
	 	 VTT PUBLICATIONS 725
VTT CREATES BUSINESS FROM TECHNOLOGY
�Technology and market foresight • Strategic research • Product and service development • IPR and licensing
• Assessments, testing, inspection, certification • Technology and innovation management • Technology partnership

• • • VTT PU
B

LIC
A

TIO
N

S 725	
Int

eg
rat

ed

 tool support

for

h

ar

d
w

ar

e-r
elat

ed
 so

ftw
ar

e d

evelop
m

ent

ISBN 978-951-38-7373-8 (URL: http://www.vtt.fi/publications/index.jsp)
ISSN 1455-0873 (URL: http://www.vtt.fi/publications/index.jsp)

Juho Eskeli

Integrated tool support for
hardware-related software
development

VTT PUBLICATIONS

708	 Satu Innamaa. Short-term prediction of traffic flow status for online driver information.
2009. 79 p. + app. 90 p.

709	 Seppo Karttunen & Markus Nora (eds.). Fusion yearbook. 2008 Annual report of
Association Euratom-Tekes. 132 p.

710	 Salla Lind. Accident sources in industrial maintenance operations. Proposals for
identification, modelling and management of accident risks. 2009. 105 p. + app. 67 p.

711	 Mari Nyyssönen. Functional genes and gene array analysis as tools for monitoring
hydrocarbon biodegradation. 2009. 86 p. + app. 59 p.

712	 Antti Laiho. Electromechanical modelling and active control of flexural rotor vibration
in cage rotor electrical machines. 2009. 91 p. + app. 84 p.

714	 Juha Vitikka. Supporting database interface development with application lifecycle
management solution. 2009. 54 p.

715	 Katri Valkokari. Yhteisten tavoitteiden ja jaetun näkemyksen muodostuminen kolmessa
erityyppisessä verkostossa. 2009. 278 s. + liitt. 21 s.

716	 Tommi Riekkinen. Fabrication and characterization of ferro- and piezoelectric multilayer
devices for high frequency applications. 2009. 90 p. + app. 38 p.

717	 Marko Jaakola. Performance Simulation of Multi-processor Systems based on Load
Reallocation. 2009. 65 p.

718	 Jouko Myllyoja. Water business is not an island: assessing the market potential of
environmental innovations. Creating a framework that integrates central variables of
internationally successful environmental innovations. 2009. 99 p. + app. 10 p.

719	 Anu Tuominen. Knowledge production for transport policies in the information society.
2009. 69 p. + app. 52 p.

720	 Markku Hänninen. Phenomenological extensions to APROS six-equation model: non-
condensable gas, supercritical pressure, improved CCFL and reduced numerical diffusion
for scalar transport calculation. 2009. 60 p. + app. 54 p.

721	 Aku Itälä. Chemical Evolution of Bentonite Buffer in a Final Repository of Spent Nuclear
Fuel During the Thermal Phase. 2009. 78 p. + app. 16 p.

722	 Kai Hiltunen, Ari Jäsberg, Sirpa Kallio, Hannu Karema, Markku Kataja, Antti Koponen,
Mikko Manninen & Veikko Taivassalo. Multiphase Flow Dynamics. Theory and Numerics.
2009. 113 p. + app. 4 p.

723	 Riikka Juvonen. DNA-based detection and characterisation of strictly anaerobic beer-
spoilage bacteria. 2009. 134 p. + app. 50 p.

724	 Paula Jouhten. Metabolic modelling and 13C flux analysis. Application to biotechnologically
important yeasts and a fungus. 2009. 94 p. + app. 83 p.

725	 Juho Eskeli. Integrated tool support for hardware-related software development. 2009.
83 p.

VTT PUBLICATIONS 725

Integrated tool support for
hardware-related software

development

Juho Eskeli

ISBN 978-951-38-7373-8 (URL: http://www.vtt.fi/publications/index.jsp)
ISSN 1455-0849 (URL: http://www.vtt.fi/publications/index.jsp)

Copyright © VTT 2009

JULKAISIJA – UTGIVARE – PUBLISHER

VTT, Vuorimiehentie 5, PL 1000, 02044 VTT
puh. vaihde 020 722 111, faksi 020 722 4374

VTT, Bergsmansvägen 5, PB 1000, 02044 VTT
tel. växel 020 722 111, fax 020 722 4374

VTT Technical Research Centre of Finland, Vuorimiehentie 5, P.O. Box 1000, FI-02044 VTT, Finland
phone internat. +358 20 722 111, fax + 358 20 722 4374

Technical editing Leena Ukskoski

3

Juho Eskeli. Integrated tool support for hardware-related software development [Integroitu työkalutuki laiteläheiseen
ohjelmistokehitykseen]. Espoo 2009. VTT Publications 725. 83 p.

Keywords development tools, tool integration

Abstract
This thesis presents how the hardware-related software development process can be improved
by means of tool integration. Challenges in hardware-related software development are diverse,
which is why a multitude of tools is needed during the development. The tools produce data that
needs to be managed, but the tools are disconnected. Tool integration provides a means of
bringing the data from disconnected tools together into one coherent, easily manageable package.

Research was conducted by initially perceiving hardware-related software development from
a systems engineering viewpoint, with a focus on several well-known process models. This was
done to understand the kinds of activities that need to be supported by the tools. A workflow
concept was introduced as a means to support the development effort of an individual worker.
An extensive background study into tool integrations was conducted to understand state-of-the-
art tool integration approaches and concepts, and then used to create the foundation for the tool
integration.

Hardware-related software development challenges were gathered from literature and industry
experiences to reinforce the understanding on needed tool support and to specify the requirements
for the tool integration. The main requirements for the tool integration were easy extensibility,
which could only be provided via a framework-based solution, and a means to provide data flow
from tool to tool while preserving traceability between the data from the tools. Tool requirements
for the integration were project management, requirement management, test management, and
change management tools. Emphasis was put on tools supporting testing and test analysis.

The tool integration, ToolChain, was implemented in two phases. In the first phase the
groundwork for the integration framework was done. Eclipse was chosen as the platform for the
integration and plug-ins selected as a means of implementation. In the second phase, tool
support focusing on the hardware-related software development aspects was added.
Implementations from each phase were validated separately in industry cases. Experiences from
these cases are presented in which it is shown how ToolChain can be easily adapted into the
target company’s environments, and how the tool integration improves the way of working.

4

Juho Eskeli. Integrated tool support for hardware-related software development [Integroitu työkalutuki laiteläheiseen
ohjelmistokehitykseen]. Espoo 2009. VTT Publications 725. 83 s.

Avainsanat development tools, tool integration

Tiivistelmä
Työssä esitetään, miten rautaläheisten ohjelmistojen kehitysprosessia voidaan parantaa työkalu-
integraation avulla. Rautaläheisten ohjelmistojen kehitystyön haasteet ovat monimuotoisia, ja
siksi kehitystyön avuksi tarvitaan useita työkaluja. Työkalut tuottavat tietoa, jota täytyy hallinnoida,
mutta toisaalta työkalut ovat irrallisia, mikä tekee hallinnoinnista hankalaa. Työkaluintegraatio
mahdollistaa tietojen koostamisen irrallisista työkaluista yhtenäiseksi, helposti hallittavaksi
kokonaisuudeksi.

Tutkimustyö aloitettiin tarkastelemalla rautaläheisten ohjelmistojen kehitystä systeemi-
suunnittelun näkökulmasta. Tarkastelu keskittyi yleisesti tunnettuihin prosessimalleihin, ja sen
tavoitteena oli selvittää, mitä aktiviteetteja työkalujen tulee tukea. Työnkulut (workflow)
esitettiin keinona tukea yksittäisen työntekijän kehitystyötä. Työkaluintegraation nykytila
selvitettiin kattavasti mahdollisten lähestymistapojen löytämiseksi, ja tätä tietoa käytettiin
työkaluintegraation perustana.

Rautaläheisten ohjelmistojen kehitykseen liittyviä haasteita koottiin kirjallisuudesta ja
teollisuuskokemuksista vahvistamaan ymmärrystä tarvittavasta työkalutuesta ja määrittämään
vaatimukset työkaluintegraatiolle. Päävaatimuksina työkaluintegraatiolle asetettiin laajennettavuus,
minkä mahdollistamiseen kehikko (framework) -pohjainen ratkaisu sopii luontevasti, ja lisäksi
tiedon kulku työkalusta työkaluun sekä jäljitettävyyden ylläpitäminen työkaluissa syntyvien
tietojen välille. Työkaluvaatimuksina integraatiolle asetettiin projektinhallinta-, vaatimusten-
hallinta-, testauksenhallinta- ja muutoksenhallintatyökalut. Erityisesti painotettiin testauksen ja
testianalyysin työkalutukea.

Työkaluintegraatio, ToolChain, toteutettiin kahdessa vaiheessa. Ensimmäisessä vaiheessa
suoritettiin pohjatyö integraatiokehykselle. Integraatioalustaksi valittiin Eclipse ja Eclipsen
liitännäiset (plug-in) integraatioiden toteutuskeinoksi. Toisessa vaiheessa lisättiin työkalutuki,
joka painottuu rautaläheiseen ohjelmistokehitykseen. Kunkin vaiheen toteutukset validoitiin
erikseen teollisuuskokeilussa. Teollisuuskokeilujen kokemukset esitetään, joista käy ilmi,
kuinka ToolChain voidaan helposti ottaa käyttöön kohdeyrityksen kehitysympäristössä ja
kuinka työkaluintegraatio helpottaa työskentelyä.

5

Preface
This thesis was written as part of the TWINS project at the VTT Technical Research Centre of
Finland. The TWINS project addresses co-design problems in product development consisting
of integrated hardware and software development. TWINS is a jointly-funded project in the
Information for European Advancement (ITEA) programme, in which there are 25 partners
(from both research and industry) from five countries. Before the writing of this thesis began,
research and development of ToolChain started in the ITEA-Merlin project, in which the author
participated during 2006–2007. Writing of the thesis began in January 2008 and it was
completed in April 2009.

I would like to thank Päivi Parviainen, VTT Technical Research Centre of Finland, for her
excellent guidance, without which the writing of this thesis would not have been possible. I
thank also Professor Tapio Seppänen and Professor Jukka Riekki from the University of Oulu
for supervising my thesis.

My colleagues from the TWINS project deserve thanks for the exemplary support and
cooperation provided. Especially I would like to thank Jukka Kääriäinen, VTT Technical
Research Centre of Finland, for support given during the work.

Oulu, Finland 7th April, 2009

Juho Eskeli

6

Contents
Abstract ... 3

Tiivistelmä.. 4

Preface .. 5

List of symbols... 8

1. Introduction.. 10

2. The development process... 12
2.1 Systems engineering... 12

2.1.1 Waterfall lifecycle.. 12
2.1.2 V-Model .. 13
2.1.3 Crnkovic model ... 14
2.1.4 Iterative lifecycle ... 14

2.2 Workflow ... 15

3. Tool integration.. 17
3.1 Why tool integration is necessary? ... 17
3.2 Tool integration approaches.. 18

3.2.1 Data integration interfaces.. 20
3.2.2 Tool integration from an application lifecycle management perspective .. 21

3.3 Existing implementations .. 21

4. Hardware-related software.. 24
4.1 Challenges .. 24

4.1.1 Product lifecycle ... 25
4.1.2 Performance ... 25
4.1.3 Memory handling .. 26
4.1.4 Testing.. 26
4.1.5 Timeliness .. 27
4.1.6 Concurrency ... 28
4.1.7 Interfaces.. 29
4.1.8 Heterogeneity ... 29
4.1.9 Reactivity and responsiveness ... 30
4.1.10 Predictability ... 30
4.1.11 Correctness and robustness... 30
4.1.12 Distributed systems .. 31
4.1.13 Resource limited target environments .. 31
4.1.14 Subcontracting.. 31
4.1.15 Managerial challenges.. 32
4.1.16 Summary .. 32

5. Requirements for tool support... 33
5.1 ToolChain process model ... 34

5.1.1 System definition phase ... 34

7

5.1.2 Sub-System definition phase.. 36
5.1.3 Implementation phase .. 37
5.1.4 Integration & release phase.. 39
5.1.5 Project management .. 41
5.1.6 Change management ... 41

5.2 Collected requirements ... 41

6. Tool integration design.. 44
6.1 ToolChain framework .. 44

6.1.1 Eclipse Architecture.. 44
6.1.2 ToolChain architecture ... 46
6.1.3 Connecting tools... 47
6.1.4 Data visibility... 48
6.1.5 Traceability ... 49
6.1.6 Security and user rights management.. 50

6.2 Hardware-related software development support ... 51
6.2.1 Overview... 51
6.2.2 Workflow support .. 53

7. Tool integration implementation .. 54
7.1 Implementations in the first phase .. 54

7.1.1 Tool integrations ... 56
7.1.1.1 Philips Project Assist Tool ... 56
7.1.1.2 Open workbench ... 57
7.1.1.3 Trac integration ... 57
7.1.1.4 Telelogic DOORS.. 58
7.1.1.5 Open source requirements management tool (OSRMT) .. 59
7.1.1.6 IBM Rational RequisitePro .. 60
7.1.1.7 Telelogic Synergy/CM ... 61
7.1.1.8 Subversion .. 61
7.1.1.9 SoftFab.. 62
7.1.1.10 Testlink .. 62

7.2 Implementations in the second phase... 63
7.2.1 PROBE framework integration ... 63
7.2.2 PERVIS and PERSIM integration... 64
7.2.3 MVA tool integration ... 64
7.2.4 Workflow implementation and integration... 65
7.2.5 Improved traceability view .. 67
7.2.6 Summary of the integrated tools... 68

8. Tool integration trial and validation ... 69
8.1 Philips case ... 69
8.2 NSN case .. 70

9. Discussion ... 74
9.1 Integration approach ... 74
9.2 Tool integrations.. 74
9.3 Process and workflow ... 75
9.4 Dissemination.. 75
9.5 Validation .. 76

9.5.1 NSN case ... 76
9.6 Future work ... 77

10. Conclusion... 79

References .. 81

1. Introduction

8

List of symbols
ALM Application Lifecycle Management

API Application Programming Interface

ASIC Application-Specific Integrated Circuit

CM Change management

CPU Central Processing Unit

CSV Comma Separated Values

DB Database

DMA Direct Memory Access

DSP Digital Signal Processing / Digital Signal Processor

ECF Eclipse Communication Framework

FIFO First in, First out

FPGA Field-Programmable Gate Array

FSA Finite State Automata

GPL GNU General Public License

GUI Graphical User Interface

HTTP Hypertext Transfer Protocol

HW Hardware

IC Integrated Circuit

ICT Information and Communication technologies

IDE Integrated Development Environment

I/O Input/Output

JDBC Java Database Connectivity

JTAG Joint Test Action Group

MAC Multiply And Accumulate

MS Microsoft

MVA Multivariate analysis

ODBC Open Database Connectivity

9

OS Operating System

OSRMT Open Source Requirements Management tool

PAT Philips Project Assist Tool

PCA Principal Component Analysis

PDE Plug-in Development Environment

PerSim Performance Simulation

PerVis Performance Visualization

PF Probe Framework

PLC Product Life Cycle

PM Project management

RM Requirement Management

RMA Rate Monotonic Analysis

RTOS Real Time Operating System

SDL Specification and Description Language

SQL Structured Query Language

SUD System Under Development

SUT System Under Test

SVN Subversion

SW Software

TC ToolChain

TM Test management

UI User Interface

UML Unified Modeling Language

URM User Rights Management

XML Extensible Markup Language

1. Introduction

10

1. Introduction
Embedded software (SW) can be found practically everywhere. For example most home
appliances such as dishwashers, DVD players, and televisions contain embedded software.
Embedded software is not limited to only consumer electronics but can also be found in medical
devices, avionics, and so on. Embedded software is so ubiquitous today that it is almost easier to
name examples of where it does not exist than where it does.

The principal purpose of the software is to implement the various requirements of the
appliance together with the underlying hardware (HW) solution. Due to the fact that most
embedded systems interact with the real world, where in some cases human lives are at stake,
embedded SW development is a considerably complex and challenging endeavour.

When embedded systems are produced for the consumer market, the major part of the total
costs originates from mass-producing the hardware components. The software in the system is a
one-time cost: once developed the software can be replicated at no additional cost. As a result
software developers often need to cope with inferior hardware while attempting to meet
specifications. To help in tackling these challenges, a plethora of methodologies and tools have
been created as an aid. However, these tools have been built to address specific problems and
challenges in the development process; they are by nature disconnected. This lack of
interoperability between tools creates additional challenges.

This thesis focuses on hardware-related software (HW rel. SW), which is a part of embedded
software development. The differentiating factor is that HW rel. SW is understood as development
of software components that are in direct interaction with hardware components (e.g. drivers for
hardware components, firmware) whereas embedded software means all software embedded as
part of a complete device including hardware and mechanical parts. Activities relating to e.g.
desktop software, hardware, or mechanics development are not in the scope of this work.

The research has been conducted by first studying the interoperability of tools, followed by
identifying problems experienced in HW rel. SW development, and then by trying to find
solutions especially to the problems that can be supported by tools. The interoperability of tools
has been studied to create a stable foundation for tool integration. Research into the current state
of tool integration has been done, and it is used as background information for the tool
integration. Subsequently, special characteristic problems encountered, and general workflow in
HW rel. SW development, have been studied from literature and from industry experiences.
Furthermore, the tools used during different phases of development have been identified and in
addition challenges and problems in the tools are discussed. Lastly, it is examined if some of
these challenges can be solved efficiently by improving tool support and the interoperability
between the tools.

1. Introduction

11

Challenges and problems in HW rel. SW development need to be addressed in every phase of
the development. For this reason it is necessary to perceive development initially from a system-
level viewpoint. Systems engineering includes the entire chain of activities from the beginning
of the product lifecycle to completion and concerns all the different disciplines participating in
system development. In this thesis systems level vision is limited to activities that concern the
software development discipline. As an additional limitation the scope begins from the
requirements engineering phase and ends in the integration & release phase. Aspects that were
defined outside of the given scope are considered as constraints originating from external
sources (i.e. inputs/outputs of the boundary phases: requirements engineering and integration &
release and maintenance).

After the literature study was complete and industry experiences gathered, the results were
analyzed. Based on the analysis an integrated tool support solution was designed and built to
address the challenges found in HW rel. SW development. The set of tools for integration was
selected based on their integration potential (i.e. the added value of integration) and based on
industry feedback. Parts implemented in this thesis are the tool integration framework and the
tool integrations themselves, with several exceptions which are mentioned in the text. The tools
used by the integration were not implemented as part of this thesis.

Finally the solution was evaluated in industry cases in which HW rel. SW was developed by
using the built solution. The purpose of the evaluation was to study how well the built solution
operates when faced with real world challenges.

This thesis is structured in the following way: chapter 2 studies the creation of embedded
systems software as part of a complex development process. For coordination and support of
software development activities many different tools are needed. However, choosing the right
tools and tool sets is difficult. The interoperability of tools is also a complicating factor. Tool
integration provides a way to improve interoperability between the tools, and it is studied in
chapter 3. Chapter 4 examines challenges often experienced in HW rel. SW development.
Chapter 5 studies the challenges by project phase, identifies possible tools to aid in the
challenges and defines requirements for the integration solution. Chapter 6 is the design of the
solution and in chapter 7 the implementation is documented in detail. Chapter 8 presents
validation cases of the implementation. Chapter 9 discusses the results of this thesis, and chapter
10 provides a summary of the results. Finally, the references are provided in chapter 11.

2. The development process

12

2. The development process
Building an embedded system is often a complex endeavour involving engineers from multiple
disciplines, including those from hardware and software development. In order to manage this
complexity, systems engineering is needed. This section elaborates the system level activities
involved in embedded systems development. This is done in order to gain a better understanding
of what kinds of activities need to be supported by the various tools. Moreover, to further
distinguish the setting in which the various tools need to operate, HW rel. SW development
activities are shown as part of the overall process.

In addition, the workflow concept is introduced in this chapter. Workflows and workflow
management are issues closely related to development processes. The process description
provides the information on what needs to be done, while the workflow description supplies the
steps and tasks that are necessary to implement some specific activity of the process.

2.1 Systems engineering

Systems engineering is a discipline that brings together different skills, disciplines, development
stages and stakeholders so that complex systems can be built. Keller & Shumate define systems
engineering as follows: Systems engineering is the process used to transform an operational
need into a working system that satisfies the requirements [1].

Systems engineering models were originally created to master the creation of very large and
complicated defence and computer systems. Systems engineering provides a comprehensive
reference model for the development of new embedded products. However, the models are
usually simplified and idealized, and development in real life is more complicated. [2]

The role of systems engineering differs from discipline-specific engineering approaches, such
as electronics engineering, software engineering and mechanical engineering [3]. Discipline-
specific engineering approaches focus on their own special area, providing mechanisms to
support them. Systems engineering provides a framework for the work of other engineering
disciplines and it remains independent of discipline and product type.

2.1.1 Waterfall lifecycle

A traditional model used to describe the steps in developing a system is the sequential system
development lifecycle. This model identifies the main tasks in the development process and gates
defining decisions between the tasks [3]. The model provides the basic principles for application
of managerial control to design processes. The development of complex products is dispersed into
several concurrent design processes including HW, SW and other discipline-specific processes.

2. The development process

13

It is the most common lifecycle, and its advantages are simplicity and strong tool support [4].
Figure 1 provides an example of the development process using the waterfall model [5].

Figure 1. Example of development process using the waterfall model.

2.1.2 V-Model

The traditional development model divides product development into two main sections. The
first section is used to define what is to be built (definition of requirements / architecture), and to
build it. The second section is used to integrate and verify what has been built (integration /
verification). Another view on system development is to enhance the traditional sequential
model by adding horizontal links between the definition and integration / verification sections.
This produces a model called the V-model (figure 2). [2, 3]

User
requirements

Program
engineering

Installation &
validation

Operational
support system

Core
product

System
requirements

Architectural
design

Product
engineering

Integration &
verification

System
requirements

Architectural
design

Product
engineering

Integration &
verification

System
requirements

Architectural
design

Product
engineering

Integration &
verification

Component
specification

Component
design, build & test Components

Integrated
sub-system

Integrated
sub-system

Integrated
system

System
development
process

Sub-system
development
processes

Lower level
sub-system
development
processes

Component
development
processes

Capability
development
process

Feedback

Partition

Partition

Feedback

Feedback

Feedback

Figure 2. Development approach based on the V-model.

2. The development process

14

After system-level requirements specification the architectural design divides and assigns
system-level requirements into sub-system level entities, which are further specified and divided
into smaller entities [6]. Stevens et al. suggest that the customer-supplier relationship applies at
each level. For example, a system level process agrees on the specification for a sub-system
level and asks for a set of components from a sub-system level. Thus, the system level
negotiates with the sub-system level (supplier) and sub-system levels negotiate with their
suppliers. [2, 3]

2.1.3 Crnkovic model

Crnkovic et al. present the complex product life cycle (PLC) model which divides PLC into sub-
PLCs for SW and HW development and considers activity types during product development.
Figure 3 describes the development processes of complex systems and their related lifecycles. [7]

Requirements
definition

Define
system arch

System
integration

System
verification

System
release

Define
functionality

HW dev

SW dev

Started Concept
defined

Component
design

prel. app.

Tooling
design

allowed

Component
approved

Started Concept
defined

SW design
prel. app.

Software
integrated

Software
approved

Started Defined System
design

System
integrated

System
tested

System
released

Common

Independent

Integrated

HW life cycle

SW life cycle

System
life cycle

Figure 3. Development process of a complex product with PLCs.

The process is divided into three main activity types. First, the process contains common
activities, which relate to the system level. Second, there are independent activities, which relate
to the different disciplines (e.g. HW and SW development). Third, there are integrated activities
where information from all processes must be accessible and integrated into common
information. [2]

2.1.4 Iterative lifecycle

Iterative lifecycles (figure 4) enhance the waterfall model by trying to tackle the incompleteness
problem [8]. This means that a phase (the phases could be the same as those presented in

2. The development process

15

chapter 2.1.1) cannot truly be complete or correct until its shortcomings and errors are identified
in the later phases. Therefore in iterative lifecycles the phases are not executed only once, but
likely multiple times. Outputs of the previous iteration can then be used as feedback for the next
iteration so that the shortcomings can be corrected. [4]

Figure 4. Example of the iterative lifecycle model.

The advantages of iterative lifecycles are that they allow for adjusting the project course during
development and early risk reduction, and they also provide support for early testing of analysis
models in draft stages. However, because the iterative lifecycle models are more complex, the
setback is that such projects are more difficult to plan and control. [4]

2.2 Workflow

This section establishes the definition of workflow as used in this thesis. Workflow
management systems and requirements for implementing them are also discussed. Workflow is
characterized by a list of activities that need to be done to accomplish a task. There is a
difference between workflow and process descriptions: workflow describes the ‘how’ while
process is more akin to ‘what’ and ‘why’.

The workflow concept is used in this thesis as a means of providing a detailed work
description for a single worker. A detailed work description specifies the interconnections
existing between different tools and identifies the working practices with the tools.

Workflow provides guidance as a number of logical steps for an individual worker on how he
or she can accomplish the tasks needed to perform the job. In addition, workflow defines the
order of steps, or conditions under which steps must be invoked, step synchronization, and
information flows [9]. Typically workflows (or workflow tools) have been used in various kinds
of form management, e.g. order form management. However, in this thesis workflow is used to
provide guidance for design and development work.

At times it may be difficult to distinguish the difference between a process and a workflow.
According to the description by Wikipedia a process can be separated from a workflow by the

2. The development process

16

fact that a process has well-defined inputs, outputs and purposes, while a workflow applies more
generally to any systematic pattern of the activity. [10]

The workflow concept has evolved from the notion of process. Workflows widen the scope of
process modelling because they support complex control flows, rich process structures and
integrations of different systems that cannot be described in process models. [11] Moreover,
workflows describe only one process, but a process can consist of many workflows.

Workflow management technology provides methodologies and software to support process
modelling as workflow specifications [9]. In this thesis workflow management is understood as
an information system that helps in the execution of a workflow of an individual worker. For
example, a workflow management system may aid the worker by automatically invoking
applications, entering data, and providing assistance on each step of the process.

For functional workflow implementation (i.e. workflow guidance implemented by a
workflow management system) it is first necessary to model the process workflows. Modelling
of the workflow can begin when the process is understood. Understanding of the process can be
achieved for example by interviewing the people who know the process well. All actors (both
human and application) that take part in the process task executions and the steps they need to
take to complete the task must be solved. It is also necessary to clarify related activities such as
data flows, constraints, controls, exceptions and priorities. If needed, it is possible to rationalize
the process after it has been modelled, as there may be steps that are no longer necessary. After
sufficient understanding of the process is established, a workflow specification can be written. [9]

In practice it is also necessary that the workflow implementation is flexible. Flexible in this
context means that it is not necessary to perform steps each time in an identical manner, which
is the traditional way in most workflow implementations, but rather that the system should
allow for alternative paths to complete the job.

3. Tool integration

17

3. Tool integration
Lack of interoperability between tools has been identified as one of the most significant
challenges in product development. This is a problem especially in embedded systems
development due to the multitude of tools needed and the jungle of existing data dependencies
between the tools. Increased interoperability enables for example efficient reporting of project
progress, smooth transfer between tasks, and availability of correct information for all. Building
tool integration(s) between separate tools is one way to enhance interoperability. However, due
to the disconnected nature of tools, the building of the integrations can be difficult and
burdensome in many situations. Literature provides various approaches that can be employed to
help in the building of tool integrations. However, there seems to be no one correct way of
doing things. For example, large tool vendors circumvent integration problems by bundling
their tools into one product with shared data. Different tool integration approaches, their relative
benefits, and existing integrations are discussed in this chapter.

3.1 Why tool integration is necessary?

Size and complexity in embedded systems software is growing quickly. At the same time,
however, the software industry is finding it difficult to deliver quality software at an ever-
increasing pace. Increasing the total number of staff does not solve the problem adequately, as
the number of capable software engineers is limited and development becomes too costly.
Therefore, one way to improve productivity is to use productivity-increasing technologies and
work methods that make it easier to excel in embedded systems software development. In
practice this means that more development tools are needed. Furthermore, cooperation between
partners is necessary, and each partner has its own set of development tools. Data between the
different tools (and partners) is related and needs to be managed. Otherwise the results will be
less than satisfactory.

Thus, one of the major problems identified in embedded systems software development is the
poor interoperability of development tools. Current existing tools are not interoperable or
provide integration only to some specific tools. In some cases, manual work is needed to
accomplish tool interoperability, which in turn wastes resources and causes errors. [12] There
are also totally integrated tool sets, which have their advantages, but they also have limitations
such as creating dependency on a particular tool vendor.

Attempts by either the tool users or developers to integrate applications outside of a single-
vendor-bundled tool set have generally been limited to various forms of data import, which
creates recurring manual administrative effort and related configuration management problems
by having data in multiple places. Usually, a small group of dedicated personnel end up acting

3. Tool integration

18

as an interface with the system engineering tool set while others continue to do their work in
common desktop applications. In practice this has resulted in the fact that the most often used
tools for systems engineering tasks are actually Microsoft (MS) Office products despite the efforts
of system engineering organizations to move toward purpose-built commercial tools. [12, 14]

Integrated tool environments aim to minimize tool deployment time, standardize the process, and
improve the efficiency of projects. Efficiency can thus be improved by rework and disruption
avoidance, and by better integration of project functions. [12] Integrated tool environments also
enable tracking the consistency of work products and provide transparency in project progress. [13]
Moreover the development process becomes easier to understand when the user does not have to
work with disconnected tools and has (workflow) guidance provided by the environment.

The European Union has identified tool interoperability as one key challenge. In European
Commission Information and Communication technologies (ICT)-call 2007 Objective ICT-
2007.3.3: ‘Embedded Systems Design’, tool integrations are specified as one of the target
outcomes: “Suites of interoperable design tools for rapid design and prototyping: integrated
tool chains that respond to the needs of industry for designing and prototyping embedded
systems. Research will contribute to one or more of: … (3) open tool frameworks facilitating
new entrants and the integration of the tool chain including associated standardization. Key
issues include: (i) technology for efficient resource management, (ii) optimising compiler
technologies, including parallelisation, taking into account features of the targeted execution
platforms and extra-functional requirements; (iii) optimised tools respecting trade-offs when
co-developing hardware and software; and (iv) model-driven development.” [15]

3.2 Tool integration approaches

The number of different tools used in HW / SW development is enormous. Therefore it is not
beneficial to integrate all the existing tools. Some tools have greater integration value than
others, and this should be considered when planning the integration. [12]

Different tools store their data in their individual repositories. Each tool repository is different
in a way that the database is designed to store information for that tool only. For successful
integration, it is necessary that the database can be somehow interfaced. The difficulty level of
tool interfacing is one factor to consider when choosing which tools to integrate. Different
methods exist for interfacing tool-specific data, e.g. Java Database Connectivity (JDBC) and
Open Database Connectivity (ODBC) connections, and application programming interface
(API). Tool interfaces are studied in more detail in chapter 3.2.1.

Data between tools has to be connected. One step in integration is identifying how the data
from different tools relates to each other. For example, test cases from the testing tool are
related to requirements from the requirement management tool. Another step is to identify how
to use this collected information. For example, requirement coverage by a test cases report could
be generated based on this information. One way to begin planning integration is to use the
company’s current “manual integration” process as a guide on how the data from tools relate to
each other, if at all.

The integration should be designed so that additional restrictions are not needlessly placed on
how the data can be mapped between tools. Pederson suggests that ideal data relationship
architecture should allow for many-to-many relationships between any managed data elements.

3. Tool integration

19

Designing such a relational model is relatively easy, if the data elements can be tracked by a
unique identifier or key [12].

There may sometimes be an overlap of functionality between different tools (i.e. data which is
similar in nature can be stored by different tools). This should be avoided because having similar
data in multiple places causes configuration management issues. Thus, perhaps the simplest
solution is to use only one tool for one type of data, and the tool can be chosen for example on the
basis of which tool has the most functionality in managing that specific type of data.

The current approaches to tool integration are described in table 1. The descriptions in table 1
are based on [16, 17, 18, 19]. Of these integration approaches, framework-based integration is
the most interesting in the scope of this thesis.

Different levels of application integration are identified by Pederson as follows [12]:
Link or Reference: adding a hyperlink or association to launch one application from another.

Common to collaboration tools and acts as a navigation aid, but does not support any sort of
data association or purposeful navigation within the associated tool

Data association: data is shared between applications. Both applications could use the same
common data set for common content or, alternatively, data could be pushed and pulled from
one application to another. A weaker form of this sort of integration would be a one-way data
push only where the one application can read but not edit data. This is adequate in many cases
depending on what the applications in question are intended to do. The interfaces are
independent in this scenario.

Interface integration: allows one application to initiate another application’s user interface and
navigate directly to the desired record. This must be done without having to log onto the associated
application or to go through its interface hierarchy to have any value. Otherwise, it is no different to
a link or reference and is actually clumsier than simply sharing data in different interfaces.

The desirable level of integration depends on the application and the need. For interface level
integration, support needs to be provided by the target application. [12]

Table 1. Current approaches to tool integration.

Approach Description

Piece-
meal

Tools are applied to achieve improvements in specific lifecycle phases, and migration
between the development phases is done manually. This approach focuses on specific
phases and lacks the view to the overall improvement between the phases

Single-
vendor

This approach attempts to improve all lifecycle phases with a full-lifecycle product from a
single vendor. The approach requires selecting a vendor with the technical expertise
required to effectively support all life cycle phases, creating the risk of locking the
organization into a costly, proprietary solution.

Best-in-
class

This approach attempts to integrate the best tools of regarded domains, typically from
different vendors, for specific lifecycle phases. Best-in-class has two variations, point-to-
point integrations and framework-based integrations.

Point-to-point integrations, or one-to-one integrations, provide integration built between
two defined tools specifically. Point-to-point integrations are adequate only for small
numbers of integration endpoints and typically create more complexity in developing and
managing tools than they solve. This is the most common type of interface between
systems engineering tools. [20]

Framework-based integrations attempt to classify tools and provide integration between
tool classes based on vendor-neutral interfaces and mechanisms. The framework-based
approach provides an integration environment and common look and feel without limiting
the choice of tools. [12]

3. Tool integration

20

3.2.1 Data integration interfaces

For integrating an application it is necessary that some kind of interface is available for
accessing data. The interfaces of the tools have usually been built for some specific purpose
(e.g. export of requirements from a requirements management tool in DOC-format, which can
later be read in MS Word). Interface(s) can also be added later via modifying the original
software.

Possible levels of integration (chapter 3.2) are somewhat related to the available interface
types. API integration generally allows for the highest level of integration and application
interfacing. The following section briefly introduces the most common types of interfaces, as
described by Pederson [12].

Data table association: data is read directly from database tables either directly or through a
broker table structure. This method is generally considered to be the direct and simplest but in
some cases reading data directly from an application’s table structure can be difficult to interpret.

API: programmed interface that writes to or reads from an application. All of the common
Microsoft desktop applications have common APIs and so do many other applications. APIs
avoid uncertainties regarding table data associations and event triggers.

Static data import/export: in this case a delimited file of some sort, most often MS Excel or
comma separated values (CSV), is created in one application and read into another. When the
source data changes, the data in the other application will no longer be current. This is the
weakest form of data access but it can be programmatically automated and is appropriate for
certain applications and processes. It is also the easiest to put in place on a one-time basis.

One has to be careful when using the software’s database backend as a point of integration,
because it is easy to make the wrong assumptions (especially when reverse engineering) about
how the application works internally. If data from the tools is used under these conditions, it is
possible that the meaning of the data is interpreted falsely. Moreover, if data is pushed into the
application database, this may break the application. One of the dangers is the updating of an
application so that the internal structure of the software is modified, which will also break the
integration unless the integration is updated accordingly.

For these reasons API-level integration or another equally powerful means of integration
should be employed because they guarantee that the application data is used and understood as
intended and the application state stays consistent. The integration, however, can be broken in
this case too if the API specification is modified without regard to backwards compatibility.

The best integration approach depends on the type of application, on the overall situation, on
the resources available for building the integration, and so on. Some of the issues that have to be
considered during integration planning are access control, security, and consistency of data. For
example, in the case of static data import/export, it is difficult to keep the data consistent, and
special means may be needed to guarantee data consistency. However, not all applications in all
situations must guarantee data consistency. Furthermore, care has to be taken not to bypass
access control and security measures of the application when building integrations. For
example, in a situation in which the data table association is used as an integration interface,
security and access control schema can be easily bypassed if the same mechanism is not built
into the integration.

3. Tool integration

21

3.2.2 Tool integration from an application lifecycle management perspective

Another relevant topic regarding tool integration is application lifecycle management (ALM).
ALM means the coordination of development lifecycle activities, including requirements,
modelling, development, build, and testing, through enforcement of processes that span these
activities, management of relationships between development artefacts used or produced by
these activities, and reporting on progress of the development effort as a whole [21]. ALM
operates with the artefacts produced and used during the lifecycle of SW products by providing
visibility into the status of the evolving SW product. A variety of solutions provide mechanisms
to represent different types of traceability links between developmental artefacts. However, the
interpretation of the meanings of such linkages is often left to the user.

Kääriäinen et al. have specified an ALM framework in an industry case study for evaluating
the current state of the ALM solution in the target organization and for detecting ALM elements
that possibly need improving. [22] This kind of framework can be used to understand what
kinds of requirements need to be implemented by the integrated tool integration solution.
Elements of the ALM framework are as follows:

Creation and management of project artefacts: how are different data items created,
identified, stored and versioned on various phases of a project lifecycle? All project data should be
securely and easily shared with all stakeholders. Team communication should be supported. [22]

Traceability of lifecycle artefacts: how is traceability in a project lifecycle handled?
Traceability provides a means to identify and maintain relationships between artefacts and,
therefore, facilitates reporting, change impact analysis and information visibility through the
product lifecycle. [22]

Reporting of lifecycle artefacts: how does the solution support reporting on a project
lifecycle? The solution should facilitate the gathering, processing and the presentation of
process and configuration item-related information for an organization. [22]

Process automation and tool integration: How well do the tools support lifecycle processes
and what kinds of tool integrations are there? An ALM solution should support the procedures
of the project and facilitate fluent data exchange and queries between various development and
management tools. [22]

3.3 Existing implementations

The existing implementations of tool integration include company-specific tool integrations
(piece-meal or point-to-point) that are not publicly available (and thus not discussed in this
chapter), various frameworks, and single vendor solutions for ALM. Solutions offering a
complete product development environment including integrated development tools have also
appeared. Examples of these implementations are presented in tables 2–3. [13]

3. Tool integration

22

Table 2. Examples of tool integration implementations.

Name Type Description

Borland Open
ALM

ALM solution Several Borland tools (e.g., CaliberRM and Caliber DefineIT,
Together, SilkTest, StarTeam) are integrated with each other.
CaliberRM integrates also with MS VSTS and Eclipse.

IBM ALM
solutions

ALM solution IBM tool portfolio covers all development lifecycle stages integrating
several IBM Rational tools (e.g., RequisitePro, Rational Rose,
Rational Software Architect, Rational Functional Tester, Rational
Performance Tester and ClearCase CM).

Microsoft
Visual Studio
Team System
(VSTS)

ALM solution A development platform that supports various phases of the SW
development lifecycle. The backbone is the Team Foundation
Server, the central point of contact for project and process
management. Process guidance is also provided via the Microsoft
Solutions Framework (MSF).

Eclipse Framework Eclipse provides use mechanisms and rules for integrating tools.
The Eclipse Platform offers good support to extend its functionality
by plug-ins. Eclipse simplifies tool integration by allowing tools to
integrate with the platform instead of each other [18, 23].

MODELBUS Framework MODELBUS offers a tool API independent layer of abstraction for
exchanging models using Eclipse EMF metamodelling technology.
The aim is to simplify access to tool data in a distributed
environment based on SOAP middleware. MODELBUS does not
offer support for, e.g., management of traceability links across tools.

Table 3. Examples of tool integration implementations, continued.

Name Type Description

ALF Framework Application Integration Framework (ALF) is part of the Eclipse
foundation. The project aims to provide a logical definition of the
overall interoperability business process. This technology handles
the exchange of information, the business logic governing the
sequencing of tools in support of the application lifecycle process,
and the routing of significant events as tools interact.

IBM Jazz Framework IBM Jazz attempts to build a scalable, extensible team-
collaboration platform for seamlessly integrating tasks across the
software lifecycle. Jazz is based on Eclipse, and is a kind of
middleware layer for linking development assets.

Model-based
tool
management
and integration
platform

Framework The platform supports model integration, where models defined in
different tools for different aspects of the same system are related
such that they may share and exchange data. The integration
platform also enables model management functionalities on a fine-
grained level. The approach is based on the Matrix PDM tool and
stores a copy of the data in the tool, which then creates
consistency problems. [24]

Fujaba Framework Mechanism to integrate different tools on the metamodel level. A
consistency management system is included, especially for the
integration of different or enhanced metamodels. The Meta-Model
Extension and Meta-Model Integration patterns enable the integration
of data in different scenarios on the meta-model level. [20]

CollabNet Development
environment

CollabNet is a collaborative development environment where the
developers and IT project managers collaborate online through
CollabNet.

3.

23

As can be seen in the tables above (tables 2–3), many tool integration frameworks and solutions
already exist. However, these solutions do not optimally solve the integration problem. For
example, the existing ALM solutions are single vendor-specific tool integrations creating
dependency on the vendor, regarding for example version support and future developments of
the tools. Single vendor solutions also limit the choice of tools; companies cannot choose the
individual tools that would fit to the situation and specific purpose the best, but have to consider
the development tools as a whole. This results in having to use a set of on-average best tools
available for the situation, whereas free selection of individual tools would provide better
support when well integrated. The same is true for the development environments. Regarding
tool integration frameworks, they are often generic, providing flexibility for the integration, but
on the other hand causing the integration having to be planned and built from scratch each time,
resulting in a large amount of effort needed. [13]

3. Tool integration

4. Hardware-related software

24

4. Hardware-related software
This chapter gives an introduction to the problem domain of developing hardware-related
software. A definition on what is meant by HW rel. SW is offered, and typical challenges in
HW rel. SW development are identified.

HW rel. SW is a sub-category of embedded software. Wikipedia defines embedded software
as computer software or firmware that plays an integral role in the electronics with which it is
supplied [25]. Embedded software is executed in different kinds of environments such as cars,
telephones, and airplanes [26]. HW rel. SW is characterized by consisting of software
components that directly interface with the underlying hardware.

Digital signal processing (DSP) is a good example of a situation in which HW rel. SW is
needed. In digital signal processor (DSP) programming developers may need to write software
in assembly language to take full advantage of the available resources. In order to write efficient
and correct implementations of algorithms (e.g. infinite impulse response filter) it is thus
necessary to understand how the underlying hardware functions. When the hardware is
thoroughly understood, the programmer can partition the algorithm so that no clock cycles are
wasted in inefficiencies, e.g. taking advantage of parallel multiply and accumulate (MAC)
operations (in the case multiple MAC units exist in the hardware) in the implementation.

Moreover, as embedded systems must interact with the physical world it is also natural that
they have features characteristic to them such as power consumption, timing constraints, and
reliability requirements. These challenges that HW rel. SW developers have to consider will be
studied in more detail in the next section.

4.1 Challenges

More often than not, embedded systems have to interact with the physical world. This fact
creates additional challenges for embedded software designers; for example, timeliness,
concurrency, liveness, reactivity, and heterogeneity of the system have to be considered.

Some of the constraints relate directly to the nature of the problem domain: for example,
when creating real-time systems aspects like schedulability, predictability and robustness need
to be taken into consideration. There are also constraints that result from the drive to reduce the
system cost to improve the product’s market fitness by using cheaper and less powerful
components. In real-time and embedded systems there is a need to operate with a minimum
memory footprint and with a minimum of support hardware. [4]

All of these factors, and more, are essential to the correctness of the system and will be
examined in the following sections. The challenges were identified from literature and from an
interview with a DSP expert with years of development experience in the telecoms industry.

4. Hardware-related software

25

4.1.1 Product lifecycle

One of the challenges identified is that there are systems that have long lifecycles: they need to
be maintained years or even decades after initial release. These systems can be built so that the
hardware portion of the system remains mostly unchanged and maintenance changes are
implemented in the software. Therefore, these systems must be designed to have enough
computational performance in reserve for future software updates. Software is updated to
implement new technologies and is in general more computationally intensive than the current
generation technologies for which the system was initially built. It may also be possible that
these new technologies have not yet been standardized or are in the draft stage, and it is
therefore difficult to predict how much performance is needed in reserve. Another aspect that
requires maintenance and sets limitations on the system is the need for backwards compatibility
to legacy versions of the product. [27]

Design of the system may begin before all the available components have been finalized; e.g.
the DSP processors used by the system are in prototype stage. Thus, the draft status of the
specifications makes the design process even more difficult, while validating the understanding
of how the hardware functions becomes harder. In addition, integration and validation testing
become more difficult and lengthy. [4, 27]

4.1.2 Performance

Performance issues in HW related SW development are plentiful. When evaluating the
performance of the system under design one of the issues that has to be addressed is the ‘latency
budget’. This issue is closely related to timeliness, which is a critical issue identified in the
development of real-time systems. Latency budget means that when a signal or trigger arrives,
certain tasks have to be done until a deadline, and the time from signal arrival to deadline is
divided into different tasks according to some criteria. The division may be performed on the
estimation of how much time each task should take. Estimation may be based for example on
the group’s educated guess as to how much calculation time is needed for the task. There is also
the human factor involved that each group working on a task would like to use all available time
budgets. [27]

Optimizations may be needed if the latency budget is overrun. Optimizations should be
focused on the task that takes proportionally the longest time to execute, because there might be
the possibility for the greatest time saving. However, it is sometimes difficult to decide when to
optimize: now or later. [27]

Interrupt behaviour is an important factor relating to platform performance and latency
budgets. Two important scenarios should be mapped that will reveal how the system performs
under load: the worst case scenario in which the amount of interrupts peak and the average
situation. Studying these situations could yield surprising results; it may be possible that the
system is not able to handle an interrupt ‘avalanche’ formed in the worst case scenario. This is
also an example where the system performance is affected by the system architecture design: if
external interrupts are used excessively in a multi-processor setup it could have a paralyzing
effect on system performance. Namely if there is a processor dedicated for control tasks, and it is
on the receiving end of the interrupt avalanche, then different approaches need to be explored. [27]

4. Hardware-related software

26

Power consumption is a performance issue that needs to be addressed, and it is especially
important in mobile embedded devices. However, in some cases heat generation may be a
bigger issue than power consumption. In devices where the heating surface area is small it may
be difficult to cool down the device adequately without novel methods. In addition, in some
devices like mobile phones, there is a certain limit for heat generation (so that the mobile phone
does not burn the consumer). [27]

4.1.3 Memory handling

Various memory issues are prominent in the development of embedded systems. Embedded
systems come with many different types of memories of varying sizes and performance
characteristics. The engineer must carry out his/her work with a minimum amount of memory to
decrease the manufacturing costs of the device, while making out the most of what is at his/her
disposal. Activities that need to be performed may include things like deciding on how to use
caching, choosing what types of memory to use and for which purposes, for example, when to
use the faster memory found on the central processing unit (CPU) and when to use the slower
general purpose memory. [27] Furthermore, memory allocation may not be automatic, but a
real-time operating system (RTOS) can be used to handle the allocation. [4]

4.1.4 Testing

Testing aims to improve the reliability and performance of the system under development
(SUD). Some of the things that need to be tested in embedded systems include memory leaks,
manufacturing faults, and software errors. Numerous different testing methodologies exist:
white box-, black box-, positive-, negative-, stress testing, and so on. These testing
methodologies can be employed in different testing activities such as unit- and regression
testing. Testing consumes time, and no system can be entirely covered by tests; in complicated
systems there are simply too many variables to cover all the possible scenarios. Enough time
should be reserved for testing, and tests should be designed so that they cover the most
important aspects of the system under test (SUT). [27]

For testing embedded systems specialized testing gear is sometimes needed, but this does not
come cheap. The budget may allow for only a limited amount of testing beds and thus imposes
restrictions on test execution, ultimately further emphasizing the importance of test planning. [27]

Embedded systems present challenges to testability. The system may initially support
different interfaces and methods of debugging and testing such as the Joint Test Action Group
(JTAG) interface, extension for logic analyzer, memory dump, debug messages, boot loader
which performs error checking, and so on. However some, if not most, of these capabilities are
often discarded and removed from the final product to save costs or for other reasons.
Corporations like to protect their intellectual property by any means necessary and therefore
make reverse-engineering of the system as difficult as possible. For example disabling the
JTAG interface, which is a powerful tool for debugging, may be such a step. Removing of the
debug interface does not come without a cost though. Maintaining the product with an extended
lifecycle becomes more problematic when these testing and debugging means are reduced or
removed. Great care should be taken during system development to weigh which testing and

4. Hardware-related software

27

diagnostic capabilities to include in the device. The consideration should be made case by case;
testing capabilities left in the device consume limited resources and are not necessary in every
application. [27]

There are also several other issues related to testing. It is important how tests are handled and
stored because in embedded systems there is more variation in a testable system and its
components than anywhere else. Therefore a proper version management system is essential, so
that tests can be replicated and additional errors caused by issues such as false testing
parameters, different compilers used for compiling, and script versions used for running tests,
can be eliminated. [27]

Testing uncovers bugs. In reality, bugs are everywhere; even the testing software and test
platforms contain bugs. Processors, operating systems (OS), compilers, development environments,
integrated circuits, and software in general contain bugs. Testing is even more important if the
SUD contains several components which have not yet matured. It is not rare that seemingly
trivial changes introduce problems that are difficult to trace: for example changing the
manufacturing process of the integrated circuit could cause timing or other problems even
though both processes should produce identically functioning integrated circuits (IC). [27]

The importance of unit testing cannot be emphasized enough. When software needs to be
modified, and if the change is made by a different team or person that originally created the
code, unit tests try to guarantee that the software block works as intended after modifications.
Thus, during integration testing effort can be better spent concentrating on finding problems
related to integration, because it can be guaranteed beyond a reasonable doubt that the software
works as intended. Unit tests need to be checked after software modifications. Unit tests can
also be used to help in understanding the purpose of the code block. [27]

Running unit tests in a cross-compiler environment has some characteristic difficulties.
Because software is developed in a desktop environment, the code cannot likely be executed in
a desktop environment, or it can be too slow if it is run in the emulator. In such a case a setup
needs to be planned regarding how the unit tests can be executed, possibly in a target
environment where the execution is swift. [27]

4.1.5 Timeliness

Timeliness is a constraint placed upon certain action; action that is completed before a set
deadline is considered timely. Action can begin in response as triggered by an event or by due-
time, and it must then complete within a defined time limit after beginning execution.
Timeliness is a factor that has to be considered when ensuring correctness of an action. [4]

Deadlines can be defined as ‘hard’ or ‘soft’. If an action misses a hard deadline it leads to a
system failure, because this is what a hard deadline means: deadlines must be met in all cases. If
an action completes after a hard deadline, it is then considered useless. To ensure that a system
meets hard deadlines the following modelling concerns are important to consider: execution
times, deadlines, arrival patterns, synchronization patterns and time sources. In the case of soft
deadlines, a system allows an action to miss a deadline and is designed to operate correctly even
in such circumstances. The system may respond in such cases for example with reduced
performance. [4, 28]

4. Hardware-related software

28

If an embedded system uses a processor that relies on techniques such as branch prediction,
speculative instruction execution and elaborate caching schemes, its reliability may be difficult
to guarantee. This is because it is difficult to analyze how such a system performs under load. [26]

4.1.6 Concurrency

When two or more computational processes execute simultaneously, the processes are called
concurrent. Pseudo-concurrent processes execute in the same execution unit, in which case there
is only one process executing at any given time and the executing process is switched by the
operating system. True concurrency is the execution of multiple processes assigned over several
execution units. However it makes little difference whether the execution is truly concurrent or
not; common concurrency issues remain. Challenges in concurrency relate to things such as
scheduling of concurrent threads, arrival patterns of events, synchronization of threads, and
controlling the use of shared resources. [4]

Different strategies exist for scheduling concurrent threads. They differ at least in
implementation complexity and in performance quality. The most common are:

- First in, First out (FIFO) run-to-completion event handling
- Non-pre-emptive task switching
- Time-slicing round robin
- Cyclic executive
- Priority-based pre-emption.

In addition, a RTOS can be used to control the task execution and prioritization of a
multitasking system. [4]

In reactive embedded systems threads can be scheduled according to incoming events. The
arrival patterns of the events may be either periodic or aperiodic. A periodic pattern occurs at a
fixed rate with the possible addition of a small variation. Aperiodic events have different timing
characteristics such as irregular, bursty, bounded, bounded average rate and unbounded. Arrival
patterns have to be analyzed, for example, to determine buffer sizes so that no events are lost. [4]

Thread rendezvous patterns deal with issues related to tasks running in different threads and
exchanging information. Tasks are run in different threads to separate the timing of execution
from other tasks. However, if there is a need to share data or control information there is also a
need for task synchronization. Messaging between tasks can be performed for example using
synchronous or asynchronous function calls, waiting, timed, and balking calls. Rendezvous of
cross-threaded messaging is important to characterize so that deadlines will always be met.
RTOSs provide a variety of techniques for inter-process communication. [4]

Sharing resources is a problem when multiple tasks compete for a shared resource. For
example one task may be in the midst of reading a value from a shared resource, task switching
occurs, and another task writes a new value in the shared resource. Subsequently the first task
would get incorrect results. To prevent this, access to shared resources can be serialized for
example by using semaphores or queues. Thus the correctness of the value is guaranteed by
ensuring that only one task at a time accesses the value. [4]

Semaphores, threads and processes provide tools for managing concurrency, but because of
their low level of abstraction complex compositions built using these tools become too hard to
understand for most. [26]

4. Hardware-related software

29

4.1.7 Interfaces

Challenges exist in trying to model the real world situation from the software/hardware
perspective using different abstraction mechanisms. One of these abstractions is called
procedure and is best described as finite computations that accept arguments and after execution
produce results. However, procedures are far from an ideal match for embedded systems. In
some cases there may be need for a unit that acts more like a process than a procedure. Process
is a continuous computation that transforms a stream of input data into a stream of output data.
For example in a mobile GSM phone there is a Viterbi decoder which may be implemented in a
dedicated signal processor, and it acts more like a process than procedure, transforming a stream
of data. It is not an easy task to package such a system so that it can safely share computing
resources with other computations. [26]

One more reason why building concurrent embedded systems is so challenging is because it
is extremely difficult to characterize aggregate systems composed of processes and threads. For
example, an aggregate of two processes is not any known component, at least not a process. In
addition, there is a need to include properties such as concurrency and dynamics in
programming language definitions. [26]

The issues mentioned are challenges that stem from trying to model the real world into a
software/hardware perspective using the abstractions that are available, but there are also other
types of challenges relating to interfaces. For example, it is characteristic to an embedded
system to have low level control of the hardware. The software needs an interface for the
hardware, and this interface is called the driver. The driver is usually provided with the
hardware, but the hardware in question may need a custom driver because the hardware is not
mass manufactured, the RTOS used does not have a suitable driver for the hardware, or the
driver exists but has poor performance qualities. [4]

Multi-processor environments create additional complications for interface design. In real-
time systems it is critical to convey the signal of a time-critical event to the target component as
quickly as possible. Several challenges need to be addressed such as data-bus structure, when to
use direct memory access (DMA), where and when to use direct signals (I/O ports, serial buses
etc.) between components and so on. Often it is not clear what kind of architecture would yield
the best results and comparing different alternatives is difficult. In such situations the educated
guess of an experienced designer may be the only tool that is available. [27]

4.1.8 Heterogeneity

Embedded systems are by nature heterogeneous. Because these devices can be built for nearly
any purpose, a variety of implementation technologies and styles exists. Embedded systems are
also a mix of hardware and software: the software is written specifically for the hardware in
question. [26] For example a first generation system may use a different CPU than the next
generation system, and if the new CPU is not backwards compatible, this may lead to major
rewriting of software components. Different software versions or implementations might also be
used for the same underlying hardware along the product family.

Because embedded systems operate in various (real-world) environments, they are also
exposed to a variety of stimuli. These stimuli are called external events; events need to be

4. Hardware-related software

30

handled, according to some constraints. Timeliness constraints for these events vary by event
type, and possibly the events are handled in an ad-hoc way in the real-time software. [26]

In addition, embedded systems developers often need to combine multiple programming
languages, mainly because there is no common model that is the solution to everything. This is
an indication of the fact that embedded system developers use the tools that best fit the task in
hand. [26]

The multi-processor environment mentioned in chapter 4.1.7 provides an example of a
heterogeneous embedded system. The system may mix application-specific integrated circuits
(ASIC), field-programmable gate arrays (FPGA), DSPs and other ICs. Finding a suitable
architecture and interconnections for the components while keeping the various quantitative and
qualitative requirements in mind is a challenging task. [27]

4.1.9 Reactivity and responsiveness

Lee characterizes a reactive system according to its ability to react continuously to its
environment at the speed of the environment [26]. By definition most real-time systems are
reactive systems. They connect to monitoring and/or control hardware and operate under real-
time constraints, and are possibly safety-critical. Most of the challenges faced by reactive
systems originate from their operational environment, the real world. The surroundings of the
device may be unpredictable but the device must still respond correctly to events when they
occur. [4, 26]

Various models and equations have been created to model the physical world. These models
have limitations when they produce valid results. When the engineer uses these models and
equations and violates limitations such as linearity or considers elements independent when in
reality they are not, problems occur. [4]

Reactive systems can be modelled using finite state automata (FSA). FSAs are mathematical
models and thus have strict rules. States in the automata have firm and distinct boundaries. This
has possible indications in control systems where discontinuity between states could lead to
problems stabilizing the system. [4]

4.1.10 Predictability

One aspect characteristic to many real-time systems is that they must be predictable. A
predictable system’s response characteristics are known in advance. This is expected of safety-
critical and high-reliability systems, such as those where human safety has to be considered.
Response characteristics can be determined for example by static mathematical analysis
methods such as rate monotonic analysis (RMA). Measures that can be taken to guarantee
predictable behaviour in embedded systems can be disabling pre-emption or using control
algorithms with known behaviour. [4]

4.1.11 Correctness and robustness

System correctness and robustness are design considerations that have to be addressed in the
development of embedded systems. Correct action is logically valid and is performed in a

4. Hardware-related software

31

timely fashion. [28] A robust system is designed to operate correctly even when parts of the
system fail. Robust system design is especially important in military and hospital applications.
Achieving correctness and robustness in complex systems is not a trivial task. System designers
must somehow design the system to cope with all the anticipated failure scenarios but also
scenarios that were not initially anticipated. [4]

4.1.12 Distributed systems

Embedded systems may be distributed across many processors where the processors may be
physically on the same board or in different locations. In distributed computing additional
challenges that need to be considered include coordination of tasks running on different
processors, managing boot-up processes and design of communication interfaces between
separate processors. [4]

Distributed computing can be used to solve high availability requirements and different
performance requirements. A system with redundant components allows parts of it to fail
gracefully and thus can be designed to provide high availability safely. Redundancy can be
captured and represented by using architectural design patterns. [4]

Distributed computing can help solve performance requirements that could not be met with a
single component or that would otherwise be too costly. Parallel processing systems are a form
of distributed computing. Not all calculations can be effectively divided for parallel computing,
but in cases where this can be done performance can be scaled up by adding more
computational units. It may also be the case that a single processor type is not adequately suited
for all types of calculations, and then a specialized computational unit can be assigned to
perform those computations. ASICs and similar specialized processing units could be used in
these cases. Determining how to divide different computational tasks to different processors and
choosing the best processors for these tasks can be challenging. [27]

4.1.13 Resource limited target environments

In embedded systems smaller CPUs and less memory lower manufacturing costs. Therefore the
embedded-system developer often needs to cope with the push to reduced hardware component
costs, physical size, heat production, and weight by reducing the number, size, and capability of
the target computing platform. [4]

Embedded system developers need to use cross-compiler tools, which are more complicated
to use than the ones available for desktop software development. Debugging embedded systems
is also more difficult. Some of the embedded systems hardware capabilities are difficult or
impossible to simulate on a workstation. The developer has to come up with alternative means
to execute and test the code, and this consumes time and effort. [4, 27]

4.1.14 Subcontracting

Embedded systems are currently so complex that a single vendor cannot manufacture everything
itself. Hardware and software components need to be subcontracted. Choosing a subcontractor
for a component has various challenges such as price and performance of the component,

4. Hardware-related software

32

contractor reputation and reliability. The customer of the SUD can also have requirements for
subcontracting: which vendor and/or model of component to use, or questions as to why a
certain component was chosen when other platform manufacturers use a different component
from another vendor. [27]

4.1.15 Managerial challenges

HW related SW development faces some additional challenges besides those that are commonly
known such as physical distance and cultural differences in teams. When multiple teams with
different disciplinary backgrounds work together on the same system, it is not always clear
which changes or issues should be communicated to others. This is an issue that can be resolved
to a degree with more transparency in communication (like group meetings), but even then it is
not always clear or understood what other teams are working on and what measures should be
taken. [27]

4.1.16 Summary

As can be seen, building embedded systems poses many different and difficult challenges for
embedded systems engineers. Some of the problems addressed (e.g. timeliness, concurrency,
reactivity and responsiveness) are directly related to real-time systems. There are also
difficulties that all embedded systems developers share in general such as the need to cope with
less powerful hardware due to the drive for cheaper manufacturing costs and the handling of
complicated interfaces. Performance and memory issues are also prominent in embedded
systems development. Furthermore, debugging and testing embedded systems is considered
difficult because of a lack of sophisticated tools and because embedded platforms complicate
testing. Activities related to these challenges are studied in the next chapter and requirements
are defined for tool support which will try to address some of these challenges.

5. Requirements for tool support

33

5. Requirements for tool support
This chapter introduces the ToolChain (TC) process model (figure 5). The basic structure of the
model was created with the help of the common process models introduced in chapter 2.
Activities related to the HW rel. SW development challenges (chapter 4) are identified and
possible tool support is discussed. The activities are then mapped to the TC process model.
Finally, the collected requirements for TC are presented. The requirements are gathered from
the TC process model, by selecting general requirements for tool integration and by focusing the
tool support on certain activities and challenges.

Figure 5. The ToolChain process model.

5. Requirements for tool support

34

5.1 ToolChain process model

The challenges in HW rel. SW development are plentiful but need to be solved. A single
challenge may need to be addressed in multiple development phases, each time from a different
perspective, with different tools. As a result, the development of HW rel. SW is highly
complicated to perform. Developers need to use many different tools and methods. The TC
process model (figure 5), presented in this chapter, was created by composing phases from well-
known models (chapter 2). The model does not present a complete PLC; instead it begins from
system definition and ends in the integration & release phase. The model presents activities
relevant to HW rel. SW development. The activities are related to the challenges identified in
chapter 4 and are organized by process phase (e.g. activities related to system definition).

5.1.1 System definition phase

The system definition phase (tables 4–7) begins with requirements gathering. The requirements
are gathered from various sources as indicated in figure 5. The process of how these inputs are
gathered is not further elaborated, as it is outside of scope of this thesis. When the first set of
requirements is defined, system architecture definition can begin. The system architecture and
system requirements definitions proceed in iterations. This work also produces interface
descriptions. Once a reasonably stable set of system requirements and architecture are defined,
the process moves to the sub-system definition phase.

Table 4. System definition activities.

1.System definition

1.1 Requirements gathering

Increment
plan

Purpose of the increment plan is to provide a timetable for implementation and to
provide steps for each increment. The first increment is planned in more detail than the
following increments, which are planned at the end of the preceding increment, in less
detail.

Focus in the first increments is mostly on requirements definition, architecture
definition, and less in implementation and testing. Focus will gradually shift towards
implementation and testing as the project matures. Each increment should aim to build
components that can be tested; e.g. an increment could consist of analyzing use
cases, implementation, integration, and testing.

Tasks should be planned so that different disciplines produce results in time for other
disciplines; e.g. a series of HW prototypes is scheduled and developed, and the HW
development schedule is leading because of the realization throughput time (critical
path). The SW development iterations are tuned as much as possible to serve the HW
releases.

The plan should also include release dates for prototypes and tasks relating to building
those prototypes (such as integration of HW and SW components via cooperation).
The increment plans can be implemented in the project management (PM) tool.

5. Requirements for tool support

35

Table 5. System definition activities, continued.

1.1 Requirements gathering

Collecting raw
requirements

Candidate requirements for the system are collected from various sources (e.g.
customer, standards, constraints, etc.) as shown in figure 5. The design constraints
of the product are addressed (e.g. manufacturing costs) as requirements.

The candidate requirements are prioritized and selected for implementation.
Preliminary analysis is performed on requirements that will be implemented. More
detailed analysis and description of requirements continues in the requirements
definition phase.

Requirement management (RM) software (e.g. Telelogic DOORS) can be used to
store raw requirements. Especially important is that the origin of the requirements
is preserved.

1.2 Requirements definition

System
requirements
definition,
including non-
functional
requirements

System requirements are derived from raw requirements. The requirements are
analyzed and detailed until enough understanding of the requirements is gained
and future work can be based on them. The requirements should be defined so
that they can be understood unambiguously, no matter the background of the
reader. Typically natural language requirements with use cases are the result of
this work.

RM software can be used to help in defining system requirements from raw
requirements. Traceability to original raw requirements should be maintained.
System requirement baselines (accessible to all project partners) should be
maintained in the change management (CM) tool (e.g. Subversion) or by the RM
tool if supported.

Table 6. System definition activities, continued.

1.2 Requirements definition

System
requirements
feasibility
evaluation

All requirements are not feasible for implementation, but that is not necessarily
known beforehand. Simulation (e.g. Simulink models in MATLAB) or prototyping
can be used to evaluate the feasibility of implementation of system
requirements.

System tests
planning

System tests are defined to validate functional and non-functional requirements
of the system. Test planning can be done by using test management (TM)
software. PM software can be used for responsibilities and timetable allocation
of testing activities. Tool integration is necessary to maintain traceability
between test cases and requirements, but also between test cases and tasks.

Tool integration between RM, TM, and PM tools makes it possible to verify that
requirements have been covered by tests, and that the testing activities proceed
on schedule.

1.3 System architecture definition

Definition System architecture can be defined by using suitable modelling language such
as unified modeling language (UML) or specification and description language
(SDL). Extensive software support exists for both of these languages, e.g. MS
Visio for UML.

Evaluation of
system
architecture
performance

The purpose of the system architecture evaluation is to reveal how successful
the allocation of requirements to sub-systems has been in the architecture
definition. Measurements are performed against non-functional requirements.

System architecture performance can be estimated via simulation tools such
as Simulink/MATLAB or by purpose-specific tools such as PerSim, which is
built for estimating system performance when upgrading from single processor
architecture to multi-processor architecture.

5. Requirements for tool support

36

Table 7. System definition activities, continued.

1.3 System architecture definition

Allocation of
requirements to
sub-systems

The system requirements are allocated to the sub-systems defined in the
architecture (i.e., to those sub-systems that are responsible for implementing the
requirement. The requirements are then analyzed and detailed from the sub-
system viewpoint, allocated to the sub-sub-systems, etc. until an adequate level is
reached where design can begin.)

Traceability between requirements in and between different levels (system, sub-
system, sub-sub-system, HW-SW) needs to be maintained in the RM tool.
Baselines of requirements allocation, system architecture and system requirements
versions need to be maintained in the CM tool and RM tool. Tool integration
between CM and RM tools is used to maintain relations between different versions
of system architecture and requirements.

1.4 Interface design

Interface
definition

Modelling software (UML, SDL, etc.) can be used to help in defining interfaces.
With the help of communication software (e.g. WIKIs) the amount of misunder-
standings between different disciplines can be reduced. Tool integration between
interface definitions stored in the CM tool and requirements from the RM tool can
be used to maintain interface relations to corresponding architecture versions and
requirement versions.

5.1.2 Sub-System definition phase

In the sub-system definition phase (tables 8–9), the sub-system architectures are defined based
on the system architecture, and the system requirements allocated to the subsystem are
analyzed. Software requirements are defined as part of the sub-system requirements. Sub-
systems are defined in several levels, until sufficient detail for starting design is reached.

Table 8. Sub-system definition activities.

2.Sub-system definition

Communication
between HW and
SW teams

Visibility in architecture and interface definition work for HW and SW teams is
important, so misunderstandings can be reduced. Communication software can
be used as a means to synchronize the work of different disciplines during
interface definition. Tool integration can provide the needed visibility in its
integrated environment, to where interface and architecture definitions are
fetched from the CM tool.

2.1 Sub-system requirements analysis

Sub-system
requirement
definition

Software and testability requirements are synthesized from the system level
requirements into the sub-system perspective. RM software can be used for
software- and testability requirements definition, and to maintain traceability
between system requirements and sub-system requirements (e.g., HW).

Sub-system
requirements
feasibility evaluation

Simulation (e.g. Simulink models in MATLAB) or prototyping can be used to
evaluate feasibility of sub-system requirements

5. Requirements for tool support

37

Table 9. Sub-system definition activities, continued.

2.2 Sub-system design

Sub-system
architecture
definition

In sub-system design stage implementation is divided into hardware and
software modules. Verification needs to be done such that all functionality is
covered after division and that there is no overlap between HW and SW
implementation. Responsibilities are assigned accordingly. Allocation/division
approaches its final form by iteration, until design can begin.

Modelling software (e.g. UML tools like MS Visio) can be used to define the
sub-system architecture. CM software is used to maintain sub-system
architecture versions. Modelling software (e.g. UML tools like MS Visio) can be
used for partitioning and a PM (e.g. TRAC) tool for assigning responsibilities.
Tool integration provides the needed visibility in architecture definition and
related project tasks.

Evaluation of sub-
system architecture
performance

Sub-system architecture performance can be measured via simulation software
such as Simulink/MATLAB or by prototyping.

Design of testability
features

Consider if it is necessary to include testability features into the final product. If
so, system performance may need to be up-scaled to support testability
features.

5.1.3 Implementation phase

In the implementation phase (tables 10–12), the software and hardware development is done in
increments and iterations, including design, coding & implementation, and unit testing for the
increments. First an increment plan is made that is updated throughout the implementation
phase. When a first set of iterations that can be integrated is ready the integration work starts.
Simultaneously the next increment’s implementation can start.

In this phase unit, regression and other testing practices are used to verify correct
implementation. Errors, such as memory leaks, manufacturing faults, and software errors, can
be identified by employing rigorous testing methods. Writing unit tests during implementation
helps in identifying errors, but also in understanding the purpose of the code block. Special tools
may be needed to set up a unit testing environment on a cross-compiler platform. Tools such as
JTAG interface, logic analyzers, and memory dumps can be very helpful in solving problems
during implementation.

Prototyping with evaluation boards is one way to test the different performance
characteristics (CPU utilization, memory consumption, interrupt behaviour) of the platform.
Another way is to evaluate the system performance against the performance requirements via
simulators and emulators. Optimizations may be necessary if the performance constraints are
not met. Optimization efforts should be focused to sections where optimization yields the most
improvement.

5. Requirements for tool support

38

Table 10. Implementation activities.

3. Implementation in increments

Communication
between HW and SW
teams during phases
of implementation

Communication between HW and SW teams is of crucial importance during
implementation to avoid misunderstandings. Communication software can be
used for this purpose. Tool integration between communication-, PM-, and CM-
software can also be used so that teams can share a view into the project
progress and produced items.

3.1 SW design

Software design Software can be designed for example by using UML, and in some cases it is
possible to synthesize software directly from models. Another example is to use
a register level description in digital circuit design and then generate VHDL
code from the description, which in turn can be used to program FPGAs. Yet
another possibility is to use Simulink models in MATLAB which can be turned
into C-code with suitable extensions.

Communication software can be used in this phase for coordinating
cooperation between HW and SW teams. CM software can be used to store
the design versions.

3.2 SW implementation

Implementation
pitfalls in
HW/SW-software

Maturity of the HW platform used is one of the aspects that is worth considering
in the SW implementation phase. Co-operation between HW and SW teams is
necessary to resolve possible issues.

Project management software can be used to monitor how the project is
progressing. Additionally, communication software can be used to aid cooperation
between HW and SW teams.

Table 11. Implementation activities, continued.

3.2 SW implementation

Software debugging Software needs to be debugged in problem situations. Various types of tools
exist for supporting debugging activities. One possibility is to use a JTAG
interface and integrated development environment (IDE) for software
debugging by e.g. executing code line by line while observing the CPU
register values.

Code optimization Static code analyzers can be used to locate problematic components in
software, and adjustments can then be performed accordingly. Compilers
also offer various compile-time optimization possibilities.

Prototyping Prototyping gives valuable feedback on how the software operates on a real
platform, but also feedback to the HW team if changes are necessary. The
prototyping schedule and tasks should be assigned as early as possible.

To test HW prototype functionality it may be necessary to add testability
features for the implementation that are removed from the final product.
Prototyping is done in cooperation between the HW and SW teams, and
feedback is given both ways.

CM and communication software can be used for coordination of prototyping
activities. CM stores software and hardware baselines which are integrated
in prototyping.

5. Requirements for tool support

39

Table 12. Implementation activities, continued.

3.2 SW implementation

Builds A build can be made one or more times per day, for different purposes.
Depending on the need, the build can consist of specific software modules or of
a complete software package. Builds are needed for integration, testing, and
releasing.

New features should be added in such way that when bugs are introduced in
the build, it is later possible to revert back to the working baseline. Builds can
be baselined in CM software, where notes are kept of changes to the previous
build.

3.3 SW unit testing

Unit testing Several unit testing frameworks exist for widely used programming languages.
For example, JUnit can be used when developing in Java language. Similar
frameworks exist for other programming languages as well.

Testing of
non-functional
requirements.

Non-functional requirements can be verified via e.g. internal instrumentation of
the software, which collects measurements from the target and manages them,
or testing can be done externally to the whole device.

Test cases can be managed in the TM tool (e.g. Testlink), and tool integration
between test instrumentation and the TM tool can be used to trace test data to
test cases.

5.1.4 Integration & release phase

In the integration and release phase (tables 13–16) the increments from the implementation
phase are put together and tested. Part of the phase is producing prototypes of the product and
finally a final release.

Table 13. Integration & release activities.

4. Integration & release

4.1 Integration and integration testing

Time allocation Most of the problems occur during integration of HW and SW components.
Therefore it is important to reserve enough time for integration and testing
activities. Incremental integration is much easier than “big-bang” integration.

Testing activities can be coordinated via PM- and TM software support. With
the help of tool integration of PM and TM tools, testing tasks are traced to test
cases.

Integration The SW and HW components produced from a finished increment are
integrated together. Continuous integration is easier than big bang integration
because problems present themselves during integration which is performed
after each increment.

Requirements
coverage verification

Tool integration between RM and TM tools can be used to verify that
requirements have been covered by tests and the tests have been completed
successfully.

5. Requirements for tool support

40

Table 14. Integration & release activities, continued.

4.1 Integration and integration testing

Testing environment Test data produced by the test environment should be made available to all
parties, so that defects become easier to track. It is also important to ensure
that the test environment and tests can be replicated at a later date if needed.
In a HW/SW project there are so many changing variables that if proper care is
not taken, replicating the tests can be difficult or downright impossible.

TM software can be used to store test parameters and test results. The TM
program should be able to manage all necessary information relating to the
testing environment, so that the environment (or version of it) can be duplicated
at a later date if needed. It may be necessary to use CM software to store
additional information on the test environment. Tool integration between TM
and CM tools can be used to maintain traceability between test cases and
related test environment configuration information.

Integration tests Integration tests consist of planning of test cases, execution of tests and result
inspection. The integration tests are planned according to an increment plan:
the main focus areas of the increment are the first priority for testing. Focus is
on interfaces- and system level (when possible) testing. Different test strategies
that may be employed are black box testing (most common), positive testing,
and negative testing.

Some testing tools provide test coverage metrics for deciding when the system
has been tested enough. The TM tool can be used for test case handling. If test
cases reveal problems that need to be corrected, communication and PM tools
can be used to inform the relevant parties. Tool integration can be used to
gather all relevant information from TM, CM, PM and communication tools into
an integrated environment.

Table 15. Integration & release activities, continued.

4.1 Integration and integration testing

Prototyping and simulation Prototyping and simulation is a way of getting results on system
development progress as early as possible; the earlier the problems are
located and necessary adjustments can be made, the better. Simulation
software (e.g. MATLAB, PerSim/PerVis) or prototypes can be used for
this purpose.

4.2 Releasing

Releases Planning of releases is done as part of the increment plan. A release is
put together from the working baseline. Releases can be of a part of the
system or a complete system. Releases are also used for different
purposes such as internal use and customer version (alpha-, beta-, and
final-release).

Releases are baselined in the CM system including notes. Release notes
should mention differences to the previous build (i.e. what has been
added, known problems, and what is lacking), so that it is possible to
revert back to the previous working baseline in case of problems.

Release testing Tests that were defined during system test planning are tested here.
Release validation criteria are derived from the increment plan:
functionality, amount of defects under a certain limit, etc. After this
release is tested and the results are published, measures are taken to
make corrections in the next release. Tool integration with CM, PM and
TM tools can be used to control release testing and the following
activities.

5. Requirements for tool support

41

Table 16. Integration & release activities, continued.

4.2 Releasing

Controlled correction of
faults in baselines

When a defect is uncovered via testing, the defect is analyzed and its
correction prioritized according to its impact on system performance/
functionality. Ultimately a change control board makes the decision if the
defect is corrected or not. If necessary, a responsible person is assigned to
correcting the fault. Otherwise the ticket for the defect is closed. The ticket is
also closed when the defect is fixed.

Assigning fault to the correct person may be challenging, because it is not
always known beforehand where the defect is located. In this case the
responsible person for fixing the defect may change one or multiple times.

Tool integration to bug tracking software (e.g. Bugzilla), CM, and PM tools
can be used to manage bugs and assign tasks to relevant personnel. The
CM system stores the defect information for different baseline versions. This
is useful in a situation where the defect has been fixed, but the correction has
accidentally not been included in the new release. Thus, the fix can be
located with the help of integration and be included in the new release.

5.1.5 Project management

Project management issues have to be addressed in every phase of the process. In HW/SW
development people come from different backgrounds: electrical engineering, mechanical
engineering, software engineering, and so on. These factions may have difficulties in identifying
and understanding problems faced by the other factions, mainly because their backgrounds
differ. Thus, communicating information which has a possible impact on other groups becomes
challenging: it is not always known whether the information is already known by others or that
the information should be relayed to others. By employing more transparency in communication
this challenge can be relieved slightly. Transparency can be provided via communication tools
or by coordination of group meetings between different disciplines.

5.1.6 Change management

CM practices are used in all phases of the process. CM support is needed for baselines and for
storing artefacts produced in different development phases of the process. Without CM, the
project can spiral out of control as the amount of different artefacts and artefact versions grows:
for example trying to determine which software version is related to which hardware prototype
can become difficult. Different approaches can be used for CM: manual documentation, tools
which maintain their own data (i.e. a TM program that stores test cases and related information),
and a dedicated CM tool for storing information produced by other tools.

5.2 Collected requirements

This chapter presents the collected requirements of tool integration (tables 17–19) which were
extracted from the challenges and activities presented in tables 4–16. The requirements fall into
two categories, requirements related to supported tools and requirements related to tool integration.

5. Requirements for tool support

42

Because of the high number of tools that could be identified in tables 4–16 (e.g. PM, RM,
CM, TM, simulation, and modelling), it is not clearly purposeful to integrate everything. Which
tools, therefore, should be integrated? To answer the question several workshops were arranged
with industry partners during the first phase of the tool integration development. The partners
were asked what types of tools would benefit most from integration. Results of the inquiry
revealed multiple core tool types, which can be seen in the requirements (table 17).

Furthermore, during the second phase of tool integration development, several interesting
tools were developed for industrial needs by the project partners. These tools aid in the HW rel.
SW testing and support instrumentation of test data from embedded devices running Linux OS,
test data storage and management, analysis of test data, and performance simulation. These tools
also address some specific identified HW rel. SW development challenges (chapter 4.1): e.g.
difficulties in debugging embedded devices due to lack of data or challenges resulting from a
lack of debugging interfaces.

Table 17. Collected requirements of tool integration.

Requirement name Requirement specification

Tool support PM, CM, TM, and RM tool support is needed in integration, because these
are the most commonly used tools according to the industry inquiry. They
are also tools that have data with many relations to each other. [29]

Tools to support test data instrumentation from embedded devices with
Linux OS, test data storage and management, analysis of test data, and
performance simulation are needed in the integration.

Traceability between
different development
artefacts

Traceability relations are maintained by the tools themselves but it is also
necessary to maintain relations between artefacts from different tools by
means of tool integration.

Data flow from tool to tool It should be possible to transfer data from tool n to tool x/y/z. This means
that there can be arbitrary amount of (n * m) bi-directional connections
between the tools.

Data visibility Data from tools is visible in the integration environment.

Reporting facilities Possibility of generating reports from data, e.g. requirements test coverage,
change impact analysis, etc. This is an additional requirement, which will
be implemented if the schedule allows.

5. Requirements for tool support

43

Table 18. Collected requirements of tool integration, continued.

Requirement name Requirement specification

Framework-based
tool integration
solution

A framework which provides a point of integration for the tools. The
framework’s purpose is to provide a common look and feel to the integrated
tools (i.e. to act as a kind of dashboard). The framework should also
provide resources for guiding how the tools (and data from tools) can be
integrated into the framework and means for defining practical interactions
between the tools (e.g. traceability between requirements and test cases).

Security The tool integration should provide at least equally good security as the
disconnected tools provide without integration (i.e. the security is not
weakened by the integration).

User rights
management

User rights management (URM) provides varying levels of access to the
integration environment. URM keeps track of authentication information for
tools, so that the user does not have to manually login to the tools.
Because users of tool integration act in different roles and each role has
specific needs and requirements, URM should reflect this by allowing for
configuration of different roles (e.g. different levels of information provided
to the user depending on whether he is stakeholder in company A or
company B). URM is an additional requirement.

Launching of
external tools

It should be possible to launch tools from the integrated environment.

Table 19. Collected requirements of tool integration, continued.

Requirement name Requirement specification

Interchangeability
of the integrated tools

Tools of the same type can be changed to other tools. E.g. multiple RM
tools are supported: DOORS, RequisitePro, etc. This requirement can be
implemented on two alternative levels. Level a. can be considered better in
terms of integration.

Tools of the same type can be used interchangeably, i.e. partner A uses
tool xyz for requirements management and partner B is using tool zyx,
while both partners can share the same requirements.

Multiple different tools of the same type are supported, but each partner
has to use the same tool for the same purpose.

Extensibility of tool
integration

New tools can be integrated into the tool integration by providing a suitable
interface. It should be possible for the users to create integration for their
own tool(s).

Workflow guidance Workflow guidance should be available in the integration environment. It
should be possible to define and execute & follow workflows with the given
set of tools.

6. Tool integration design

44

6. Tool integration design
This chapter presents the design of an integrated tool support solution for hardware-related
software development called ToolChain. The design of TC is performed against the
requirements collected in the previous chapter. The design is split into two sections, the first
part of which documents the design and implementation of TC that began early in 2006 and
continued until autumn 2007 [13, 29]. The first section presents more general aspects of the
integration (i.e. foundation), while the second section focuses on the design and development of
topics related to hardware-related tool support. The development of the second section lasted
from autumn 2007 until the beginning of 2009.

6.1 ToolChain framework

The primary requirements (tables 17–19) for the tool integration are to support data flow from tools,
to maintain traceability between development artefacts, and to provide an integrated environment for
tools. By arranging workshops with industry partners and by discussing the requirements of the
integrated tool environment, the decision was made that Eclipse would serve well as a foundation
for the tool integration. Eclipse was chosen because it is widely used in the software development
industry, and it provides facilities out-of-the-box which are needed for integration [29].

Eclipse allows for freedom from vendor lock-in because Eclipse is open-source, and
development can thus be done without limitations. As a related design choice, tools from
various vendors were selected for integration to avoid vendor lock-in. Furthermore, because
Eclipse is a framework-based solution, development of point-to-point integrations between the
various tools can be avoided. Additionally, by using Eclipse, implementation time can be
reduced, because Eclipse already implements many features that will be needed by the
integration (i.e. the plug-in extension mechanism). In addition, tool integration theory and
existing tool integration solutions as presented in chapter 3 were used as an aid during the
design of TC.

6.1.1 Eclipse Architecture

The Eclipse Platform is built on a mechanism for discovering, integrating and running modules
called plug-ins. A tool provider can write a tool as a separate plug-in that operates on files in the
workspace and surfaces its tool-specific user interface in the workbench. When Platform is
launched, the user is presented with an integrated development environment composed of a set
of available plug-ins. The quality of the user experience depends much on how well the tool
integrates to the Platform and how well various tools work with each other. [30]

6. Tool integration design

45

Eclipse provides a core of services for controlling a set of tools working together to support
programming tasks. Tool builders contribute to the Eclipse platform by wrapping their tools in
pluggable components, called Eclipse plug-ins, which conform to Eclipse's plug-in contract.
The basic mechanism of extensibility in Eclipse is that new plug-ins can add new processing
elements to existing plug-ins. Furthermore Eclipse provides a set of core plug-ins to bootstrap
this process. [31]

A plug-in is the smallest unit of the Eclipse Platform function that can be developed and
delivered separately. A plug-in is a part of the Eclipse Platform but it can be thought of as a
separate Java application that can be distributed separately and can be attached to Eclipse by
using a specified interface. [30]

A plug-in in Eclipse is a component that provides a certain type of service within the context
of the Eclipse workbench. A component means an object that may be configured into a system
at system deployment time. The Eclipse runtime provides an infrastructure to support the
activation and operation of a set of plug-ins working together to provide a seamless environment
for development activities. Within a running Eclipse instance, a plug-in is embodied in an
instance of some plug-in runtime class, or plug-in class, for short. [31]

A small kernel called the Platform Runtime handles the start-up and, actually, all of the
Eclipse Platform’s functionality is located in the plug-ins. Eclipse Platform Runtime handles
start up when the plug-ins installed are discovered, extensions and extension points are matched
up, and a global plug-in registry is built. Each plug-in has its own Java class loader and they are
only activated if needed. This procedure helps avoiding long start-up times. [30]

Every plug-in has a manifest file that declares the interconnections to other plug-ins. The
interconnection model declares the extension points and extensions to the other plug-ins. An
extension point is a named entity for collecting contributions. As can be seen in figure 6, the
plug-ins can also be integrated among themselves. Normally, a small tool is written as a single
plug-in, but a complex tool may contain several plug-ins which declare its functionality. [31]

Figure 6. The Eclipse Architecture.

6. Tool integration design

46

The development of the plug-ins in Eclipse is well guided. Eclipse includes a Plug-in
Development Environment (PDE) that contains a wizard to start plug-in projects with the basic
functionalities and interfaces to the Platform. PDE also includes a wizard for creating installable
JAR files, thereby making every plug-in quite easy to distribute and install on the other parties'
desktops. [31]

6.1.2 ToolChain architecture

The main architectural decision behind TC is to use Eclipse and its facilities as the foundation
and to have several Eclipse plug-ins as the means of connecting the different tools into the same
environment. For this reason each tool that is integrated into the TC framework has its own
plug-in. Figure 6 presents how the tools connect to Eclipse via plug-ins. Additionally, tools
wishing to connect to the TC framework must conform to the TC interface definition. This
approach guarantees that TC does not commit itself on the matter of how the particular plug-in
gets the data it needs, i.e. the plug-in developer can create a plug-in for a tool as planned and
subsequently integrate the plug-in into ToolChain by implementing the interface. [13]
Connecting of the tools is described in the next chapter.

The TC infrastructure operates so that each user will need Eclipse and TC plug-ins installed.
For each tool used in the integration it is necessary that data access between the plug-in and the
tool is provided for by some means. Additionally, the users will need to have a connection to a
centralized TC traceability database. As mentioned, one of the requirements was that it would
be possible to use different tools from the same type (e.g. RM). This requirement was however
de-prioritized due to the tight schedule so that each TC user will need to use the same tools for
the same purpose (e.g. the same RM tool). However, it is not always necessary for each user to
have the complete set of tools (i.e. it is in some cases possible to have only a subset of tools in
use, thus saving in overall licensing costs). Figure 7 shows a multi-user, multi-tool TC
environment. In the figure there are two users with slightly different tool sets, and dashed lines
of the tools represent the fact that instances of the same tool share information.

Figure 7. Example infrastructure of TC in a multi-user / multi-site environment.

6. Tool integration design

47

After tool(s) have been connected to the TC framework (figure 8), data from the various tools
becomes available for use. The data flows from connected tools are directed into the
Traceability-view plug-in, which provides the benefits of tool integration by allowing inspection
of data from tools and observation of overall status in a centralized way. The links between
different tools are stored in a traceability database. TC does not store any information
originating from the tools in its database other than what is needed for traceability. This means
that if the user has access to the tools via tool-specific plug-ins / TC integrations, it is possible to
see the complete picture regarding project status in “real-time” via TC. Due to this design
choice, difficult data replication and synchronization tasks can be avoided, which means that it
will also be much easier to implement. However, providing access to tools in a multi-site
environment has some challenges: the information systems infrastructure needs to be designed
so that each instance of TC is able to connect to each tool repository that the TC instance needs.
This can be a very complex setting when multiple tools are used, and if the tool repositories are
not managed in a centralized location.

Figure 8. TC architecture with connections to tools elaborated.

6.1.3 Connecting tools

As previously mentioned, TC does not commit on how the tools integrating into TC handle their
data. For data sharing between multiple users, it is necessary that the tools employ some means of
data delivery and synchronization between the various instances of the tools. Usually the tools
store information in a centralized repository or by some other means synchronize the information
between instances of the tool. If the tool cannot handle synchronization of instances, TC does not
try to resolve this issue from the technical point of view but does it rather by dictating the use of a
certain instance: delivery and synchronization of the used instance is up to the tool users.

6. Tool integration design

48

Tool specific plug-ins (or tool integrations) connect to the tool in question by any means that
are supported (e.g. JDBC and API). It is up to the plug-in developer to create this
interconnection between the tool and the plug-in. The developer has also the freedom to specify
the level of integration needed, what kind of data is handled, etc. The plug-in does not necessarily
need to be built from scratch, because some tools already have Eclipse plug-ins. These plug-ins
can in some cases be used to connect the tool to the TC framework. For a successful connection,
it is necessary that the data from the plug-in can be extracted and connected to the TC interface.
In practice, this most often means that the source code is needed for the plug-in.

From the TC point of view, the purpose of the tool specific plug-ins is to act as a gateway
between the TC framework and the tools. For a plug-in to connect to TC it must first conform to
one of the two TC specified interfaces: table- or tree-format. These formats dictate how the
information from a tool is represented (or structured) in the TC user interface (UI). It is up to the
plug-in provider to transform the data from the tool into a TC accepted format.

In addition to conforming to a TC interface format, plug-ins must extend the ToolChainMain
class, whose purpose is to activate selected tools when TC is launched. By extending the
ToolChainMain class plug-ins register (or advertise) themselves as part of the TC. This
guarantees that data flow and interaction between the disconnected plug-ins becomes possible.
In addition to conforming to the TC interface and extending the TC base class, it is not
necessary for a plug-in provider to implement any other functionality in the plug-in in order to
connect to TC.

6.1.4 Data visibility

The information from the tools is gathered directly from tool-specific plug-ins after the request
is made. Usually this means that the information is “real-time” because it is not cached or stored
in the TC database, but rather requested directly from the tools. However, as already mentioned,
it is up to the tool plug-ins to dictate how the information is handled.

After the information from the tools is available in the TC framework, some means must be
employed to facilitate data visibility. One way is to provide a dashboard-like interface in the
tools for users. The dashboard plug-in in TC gathers information from other plug-ins connected
to the TC framework and provides project information in a clear and concise manner. The
dashboard plug-in also employs traceability as a means of handling the relations between the
development artefacts. The plug-in handles this by allowing the user to drag & drop
development artefacts against each other and thus creating a relation between the two. Relations
are stored in a dedicated traceability database.

The dashboard-view allows for inspecting traceability of development artefacts from one
perspective, e.g. what artefacts are related to artefacts from the requirement tool. In this case the
perspective would be that of the requirement tool. For legacy reasons (decisions made during
the first phase of development) the perspective is currently fixed to only one, that of the
requirement management tool. However, this is not a limitation by design, but rather by
implementation. In an optimal situation the dashboard-view should allow the user to inspect
traceability from whichever tool’s perspective. Inspection of artefacts operates in a way that when
the user clicks on a development artefact, its detailed information is provided in one section, and
other sections provide a list of traced artefacts and some brief information about them.

6. Tool integration design

49

The UI design approach for TC was to make the tool-specific (and other) plug-ins have a
common look and feel because the user interfaces offered by different tools vary greatly in look
and feel. This can be confusing to the user and will raise the learning curve considerably. The
added benefit of using an Eclipse environment for tool integration is that when the plug-ins are
implemented by using the Java SWT-class libraries the look and feel in all integrations is
similar and there is only one UI to learn.

6.1.5 Traceability

Traceability in TC is used to present how the development artefacts from the different tools map to
each other. The database structure implementing the essentials for traceability is quite simple,
consisting of only two tables: ‘Items’ and ‘Traceabilitylinks’. The structure differs from the previous
version of TC, presented in [13], in a way that it allows for an unlimited number of different tools
and does not set any restrictions on linkages between artefacts from different tool types.

The ‘Items’ table is used to store generic information on the traced artefact in the database: id,
name, path, and type. The id field is an identifier for the item in the tool. The name field is the
name of the artefact. Path (if any) is the relative location of the artefact in the tool. The type
field is used to indicate the type of tool from which the artefact originates. The number of
needed fields in this table is rather limited because more detailed artefact information is
collected directly from the tool integration plug-in as needed, thus removing the difficulty of
replication and synchronization of data that would result from storing the information in the
traceability database. The fields are only used to create a unique identifier for the artefact so that
each artefact from each tool can be uniquely identified. Figure 9 shows an example of a
traceability scenario where unique identifiers are used to connect artefacts from the different tools.

Figure 9. Traceability of artefacts between tools in TC.

6. Tool integration design

50

The ‘Traceabilitylinks’ table consists of two foreign keys: ‘suid’ (source id) and ‘tuid’ (target id).
These foreign keys are used as reference rows (i.e. artefacts from tools) from the ‘Items’ table
and thus creating a linkage between the two. These foreign keys form together a primary key for
the ‘Items’ table. Two-way linking of artefacts is possible with this database structure, e.g. to
see test cases that are related to a requirement, or requirements that are related to a test case.
Figure 10 illustrates the TC database model.

Figure 10. The ToolChain database structure.

Two basic operations are needed for handling traceability links: adding of links and removal of
links. When creating a link, due to foreign key constraints in the ‘Traceabilitylinks’ table, it is
first necessary to add information of both tool artefacts into the ‘items’ table. Then the link can
be created. When removing a link, because it is possible that a row in the ‘items’ table is
referenced by one or more row(s) in the ‘Traceabilitylinks’ table, a row from the ‘Items’ table is
allowed to be removed only after no row in the ‘traceabilitylinks’ table is referencing it.

Traceability is implemented in the dashboard-like traceability view of TC. The view allows
the creating of links between artefacts via a drag & drop mechanism and removal of links by
clicking on the linked item and selecting ‘remove’. The view also provides means of inspecting
information on linked artefacts.

6.1.6 Security and user rights management

TC does not employ its own security or user rights management schema but instead uses those
of the tools with which it integrates. This is due to the heterogeneous nature of the tool
integration where the tools originate from different vendors. What this means in practice is that
when building tool integration (i.e. the Eclipse plug-in for the tool), whatever means are used to
connect to the tool, the tool’s own authentication and security measures, are used. This is
usually possible only if the tool supports integration, for example via API. If direct database
integration is used, security and user rights management are bypassed, in which case the same
mechanism has to be built into the Eclipse plug-in (if needed). Otherwise integration may
provide access to material that should be limited to certain user groups.

Because the amount of tools in integration can be rather large, it could be beneficial to have
some kind of authentication system for TC that stores the different configuration parameters and
user accounts for a set of tools per user or per project basis. However, this exercise is outside of
the scope of this work.

6. Tool integration design

51

6.2 Hardware-related software development support

The second phase of TC development tries to improve hardware-related software development
support via an enhanced tool set and by tight integration of the tool set into the existing integration
environment, which was described in the previous section. Furthermore, an experimental
workflow system is designed into the integration as an aid for the development work.

During the second phase of TC development, industry and research objectives were primarily
focused upon improving the instrumentation of embedded systems, management of the
instrumented information, and using the instrumented data for various purposes like analysis of
the SUT behaviour and performance. The tool set consists of the following components: Probe
Framework (PF), a performance visualization and simulation tool (PerVis & PerSim),
multivariate analysis (MVA) tool, and a test management tool. The test management tool was
integrated in the first phase of development but is mentioned here because it is an important part
of the tool set. By using this tool set and the TC framework, integration will be built which
allows for an improved testing process, compared to disconnected tools. The following section
provides an overview of the whole system, some details about the components of the system,
and finally a more detailed explanation of the integration from the TC point of view.

6.2.1 Overview

As previously mentioned, the system consists of the following components: Probe Framework,
Eclipse ToolChain, test case management software, test analysis, and performance simulation.
Figure 11 provides a rough overview of the operation of the system.

Figure 11. HW rel. SW development support in TC.

6. Tool integration design

52

As can be seen in figure 11, the Probe Framework consists of three separate parts: instrumentation,
database, and interface for the database (i.e. Probe Plug-in). Probe Framework instrumentation
is designed to gather data from systems running Linux OS. It has been developed by Markku
Pollari, VTT. Instrumentation is possible in both kernel and user modes. Kernel instrumentation
is done using SystemTap while various possibilities exist for user mode instrumentation, such as
inserting custom probes into the application source code. Probe instrumentation takes care of
handling the test data generated during execution of a test case on the embedded system, by
sending the collected data to the probe database. [32]

The probe database provides the following means of importing the collected test data into the
database: file based import and import over a network using TCP/IP-protocol. The imported
data can be structured in binary- or CSV-format. The probe database provides also two means of
export: file based or the TCP/IP based export that can be used with TC. Probe database export
needs to be guided with an extensible markup language (XML) based file. The file guides the
probe database to export the data that is needed and in the format specified by the file. TC uses
the XML-format over TCP/IP to query the probe database for test data. Replies are sent from
the probe database to the TC in the format specified by the query. Currently queries support
only listing and fetching of test data; however in the future version it is possible to import test
data to the probe database through the probe plug-in. The probe database has been developed by
Juha Vitikka, VTT. [33]

Test data is stored in the probe database in a tree structure: the root node is the project (it is
possible to have many projects, and thus many root nodes), under the project is a test case and
under the test case are the test runs. Each test run generates a set of data. A set of data consists
of columns (columns are attributes like CPU utilization) and rows which signify measurement
values for the columns. [33]

TC probe database integration makes it possible to select a certain set of data with specific
columns and rows and to direct the set for further processing. As can be seen in figure 11,
further processing can mean test data analysis (PerVis or MVA tool) or performance simulation
(PerSim). Furthermore, the probe database plug-in integrates with the traceability view, which
makes it possible to assign traceability for the test data. Traceability can be assigned for
example between a test case from the test management tool (integrated with TC) and between a
probe database test case, which is a different entity from the test case from the test management
tool. In practice this means that the test management tool stores the test case specification,
description and results (i.e. passed / failed), while the probe database stores the measurements of
the test case. By assigning traceability between the two, the testing process can be better managed.

TC integration between the analysis tools PerVis and MVA makes it possible to visualize the test
results. Each of the tools is designed for a specific purpose: PerVis is meant for visualizing application
thread behaviour, that is, how concurrent threads are executed in the temporal domain [34]. PerVis/
PerSim has been developed by Marko Jaakola, VTT. The MVA tool is designed for more general
purpose analysis of test cases and is the property of NSN. The MVA tool employs principal component
analysis (PCA) as a means of visualizing the correlation between various columns (measurement
attributes). By visualizing the correlation it is possible to deduce how and if the attributes correlate
to each other. Visualization also provides a means to detect erroneous or irregular behaviour. [35]
TC integration to these tools allows the selection of analysis parameters and execution of the
analysis from the integrated environment with the data set selected from the probe plug-in.

6. Tool integration design

53

TC integration with the simulation tool (PerSim) provides a means of analyzing the multi-
core performance of a single-core system from the data set. The data set is collected from the
single core system with the test application and is stored in the probe database. TC relays the
data set and simulation parameters to PerSim, after which PerSim generates a load model from
the data set, a profile of how the application run on the single-core system would behave in a
multi-core environment. After the simulation is complete, the load model is stored locally in a
temporary folder. The multi-core profile is then visualized using PerVis. [34] Because
simulation is time consuming, a future version of the probe database integration makes it
possible to store simulation results under the test data set. Thus, if the simulation results are
needed more than once, time can be saved by extracting the load profile through the probe
management plug-in, rather than redoing the simulation.

6.2.2 Workflow support

The primary purpose of the workflow support system in this thesis is to guide the user during
the development process: how to use the tool set and TC in combination to complete various
tasks. The requirements for the workflow support system require workflow implementation in
an integrated environment and a way of defining workflows for the system. Eclipse provides a
means to implement these requirements via its cheat sheet system. The cheat sheet system was
originally designed to guide a new user in an unfamiliar development environment (i.e. Eclipse).
For example, a cheat sheet could be used to guide the user through all the steps needed to create,
compile, and run a simple Java program. Cheat sheets use a task-based system in which a
certain activity is divided into tasks / sub-tasks. Each task takes the user through a series of steps
that need to be done to complete the task. Some of the actions can be automatically performed
by the cheat sheet, such as automatically launching a tool. [36]

The first version of the workflow support system that will be implemented via the cheat sheet
system will be quite simple, but is adequate for prototyping and gathering experience on how
the workflow support should work in the integrated environment. For a workflow system
understanding on development workflow(s) needs to be gathered in some kind of format (e.g. a
block diagram describing steps, tools, actions, and data flow). The gathered workflows will then
be modelled into the cheat sheet system. This is a non-formal approach to specifying workflows
but adequate in the scope of this exercise.

After the workflow has been modelled into the cheat sheet system, the system can offer
guidance to the user to accomplish some specific activity (e.g. testing of the system). For
example, the activity can be split into sub-sections like test case specification, test execution,
and test analysis. These sub-sections are elaborated on such a level by the cheat sheet system
that the user will immediately know what the meaning of the sub-section activity is, and what
steps are needed to succeed in the activity by using the provided tool set.

In the first version of the workflow support system, workflows will be locally stored and
delivered coupled with the TC plug-ins. However, in the future version it would be good if
modifications to workflows could be made by users and the modified versions could be stored
for further usage in a central workflow repository or similar system. This would also allow for
inspection of the work progress.

7. Tool integration implementation

54

7. Tool integration implementation
This chapter documents the development of ToolChain, which was done in two phases as
mentioned earlier. The first version, the result of the first phase, provides a general framework
for tool integration and some tool integrations. The purpose of the first version was to prove the
feasibility of the approach, not to develop perfect tool integration. As a result, the complexity of
the developed plug-ins vary; some of the plug-ins provide only simple functionality while the
others are more complex. However, all of the plug-ins are presented for the purpose of
completeness. The second phase of development focuses on the hardware-related software
development support and its implementation in TC.

7.1 Implementations in the first phase

The development of ToolChain started from learning how to create and implement Eclipse plug-
ins. The first tool integrated into the Eclipse environment was IBM Rational RequisitePro. The
tools integrated in the first prototype were, for requirements management, IBM Rational
RequisitePro, for project management Philips Project Assist Tool (PAT), for configuration
management Telelogic Synergy/CM, and for test management Philips SoftFab. [29]

After the tool-specific plug-ins were finished, integration between the tools was created. The
goal of the integration was to increase traceability during the project lifecycle. Items from the
RM tool (RequisitePro) were selected to be “the integration point” to where the other tools’
traceability links should be linked. Initially creation of links was handled differently and
separately for each tool: e.g. creating a link between project tasks (PAT) and requirements
(RequisitePro) was performed in the plug-in made especially for linking these items, while on
the other hand, a link between code files (Synergy/CM) and requirements was made in yet
another plug-in. Thus the first prototype was not according the architecture described in figure 8.
[13, 29]

The first prototype proved the concept of tool integration via Eclipse plug-ins. The next step
in ToolChain development was to implement a more generic tool integration solution. The
generalization work was done in close cooperation with the project consortium; the status of the
development was presented in bi-monthly workshops and plans were made for future
development directions. [13]

Development work continued by developing integrations to TC for alternative tools in PM,
CM, TM, and RM tool types. This was done to study the differences in integration of the tools
and thus to discover generalization possibilities for the integration. Another aim was to prove
that the ToolChain concept is robust with respect to changing tools; interoperability of tools
should be maintained when plugging out a tool and replacing it by another. The following

7. Tool integration implementation

55

additional tools were integrated to the tool chain using the same point-to-point method as in the
first prototype solution: Telelogic DOORS, OSRMT (Open Source Requirements Management
Tool), Open Workbench, Subversion and Testlink. These tools were chosen based both on the
industry partners’ input and on the decision to use open source tools. [13]

As a result, experience from building the additional tool integrations allowed for specification
of generic interfaces for PM, TM, CM and RM tools for ToolChain. Furthermore, this enabled
the changeability of the tools and also easy integration of other similar tool(s) into the
ToolChain via TC’s tool integration interface. [13]

The final version of ToolChain from the first phase of development supports three PM tools
(Open Workbench, PAT, and Trac), three RM tools (DOORS, OSRMT, and RequisitePro), two
CM tools (Subversion, and Synergy/CM) and two TM tools (Testlink, and SoftFab). Adding
other PM, RM, CM or TM tools to the ToolChain is easy via the tool integration interface. With
ToolChain’s tool selector feature any combination of these tools can be taken into use; however
if the tools are later changed, the traceability database must be cleared and therefore all the
traceability data will be lost. It is also possible to create a completely open source tool set from
the available tool integrations of the first phase TC. [13]

The traceability view of TC (figure 12) gathers important information from the selected tools.
Users can specify traceability between different development artefacts in this view by drag &
dropping. After traceability is specified, the data is immediately available to the other TC users,
who can inspect the existing relations and create new ones if necessary. [13]

Figure 12. The ToolChain requirement traceability perspective.

The traceability links are created by using the drag & drop mechanism, e.g., tracing a code file
to requirement is done by selecting a requirement and then dragging code files from the CM tool
view and dropping them into the code files window in the Traceability View. The dragged items
come from the tools’ own plug-ins. The same mechanism works for all the existing and new
tools. This mechanism makes it significantly easier to add new tools to TC; in the first prototype
changing tools and defining relationships between their artefacts had to be done by modifying
the source code and the traceability database structure. [13]

In the final version of the first phase, all the plug-ins handle their own user interface
themselves but the traceability view of the TC synchronizes the views. Thus, all views are

7. Tool integration implementation

56

always up to date for all TC users, regardless if they have the underlying tool installed on their
computer, or wherever they are located. [13]

7.1.1 Tool integrations

This chapter discusses the tool integrations that are also part of the TC tool integration solution.
The tool integrations presented here connect to the TC framework via their tool specific plug-
ins. Tools of the following types were selected for integration in the first phase based on
industry feedback and prioritization of tools: RM, PM, CM, and TM. [13, 29]

7.1.1.1 Philips Project Assist Tool

The Philips Project Assist Tool is a project management tool internally developed by Philips.
PAT has a web browser based front-end, developed on Ruby on Rails running on a MySQL
database. The integration called PatClipse was the second tool attached into the TC. The plug-in
gets the essential data from the Project Assist Tool’s MySQL database via a JDBC driver. [37]

The plug-in tries to follow the original user interface layout as closely as possible. The project
structure is shown in tree format, from increments to tasks. The burndown graphs that show
how the projects and increments are proceeding are calculated and drawn the same way as they
are in PAT. The working hours can also be updated similarly to PAT, via a form. [37]

There are even some improved features in PatClipse that the Project Assist tool does not
directly support. PatClipse provides a coloured view of the process, in which it can be seen if
the increments are running late or the estimated time limits for the tasks have been exceeded
(figure 13). Furthermore, once the user has logged in to PatClipse, the user can view the tasks
assigned to him/her in the so-called My Tasks view. PatClipse also monitors if changes have
been made in the task descriptions or estimated amount of work and notifies the user of the
changes and points out the differences. [37]

Figure 13. Project outlook in TC’s PatClipse plug-in.

7. Tool integration implementation

57

7.1.1.2 Open workbench

Open Workbench is an open source desktop application that can be used for project scheduling
and management. Open Workbench is a free alternative to Microsoft Project. [38] Open
workbench stores project information as XML files, and for this reason sharing project
information between project members has to be done manually, or the XML file could be stored
(as read only) on a network shared file system to make sharing easier. With the Open
workbench plug-in, the projects can be opened in the Eclipse environment by browsing to the
XML file’s location in the file system. After the file is loaded, it is parsed via a Xerces XML-
reader. The parsed data is then displayed in the plug-in. [37]

The open workbench project view (figure 14) shows the projects (one or more) and their
structure in a tree. Brief information about the projects or individual tasks is shown in the table.
Tasks’ statuses are indicated by different colours in the table. The plug-in is quite simple in
nature and was developed for proof of concept purposes only. [37]

Figure 14. TC plug-in for open workbench, project view.

7.1.1.3 Trac integration

Trac is a web-based open source bug tracking and project management system for software
development projects. Trac has been developed in Python programming language, and it uses
structured query language (SQL) backend with support for multiple different database engines.
Trac also provides API over hypertext transfer protocol (HTTP) for integrations. [39]

At the time of the integration’s implementation, there was an Eclipse plug-in for Trac, but the
plug-in provided access only to Trac wiki-pages, which was not enough. Because the plug-in
was open source, it was used as the basis for a new plug-in which allowed for inspection of Trac
tickets per project. Tickets can be thought of as tasks related to some activity. Most often tickets
are related to bugs in Trac but can be used for other purposes as well.

7. Tool integration implementation

58

Trac also provides out of the box integration to Subversion which allows, for example,
tracing of the ticket to (buggy) source code. However this integration is separate from the TC
integration: it is a point to point integration developed between Trac and Subversion by Trac
developers.

The TC integration connects to Trac via the HTTP-API as previously mentioned.
Implementation of the connectivity was implemented in the previously created 3rd party plug-in
and was used as the basis for the TC/Trac integration. The plug-in operates by asking the user
address of the project (e.g. http://127.0.0.1:1234/trac/mp3), username, and password. The
information is stored locally, so it is not necessary to update the information each time. After the
necessary information for connection has been provided, the user connects to the Trac project
by pressing the connect button, after which project tickets (i.e. tasks) are fetched and shown in
the plug-in. Figure 15 shows the built plug-in in operation.

Figure 15. TC’s Trac plug-in showing tickets and ticket information.

7.1.1.4 Telelogic DOORS

Telelogic DOORS is complex requirement management software originally developed by
Telelogic, now acquired by IBM [40]. The DOORS integration (figure 16) was implemented for
the OSIB industry case (chapter 8.1).

7. Tool integration implementation

59

Figure 16. Doors integration of ToolChain.

The DOORS clients communicate with the DOORS server. DOORS provides a means of
connecting directly to the server via the API-library, which is available in C-language; however
this method was tried out briefly but discarded due to difficulties resulting from inadequate
documentation. Another alternative to this is to use the DXL extension language provided by
DOORS for integration. For this approach it is necessary to run the DXL scripts in the DOORS
client. The purpose of the DXL scripts is to perform query and update operations needed by the
integration in the DOORS environment. It is possible to connect to the DOORS client to
Eclipse/TC via TCP/IP-protocol and execute DXL-based queries from there on. In short,
commands and queries originate from the Eclipse/TC environment, which calls the batch
program, developed in C, which then calls the DXL scripts running in the DOORS client. The
DOORS client then fetches the information from the DOORS server. Ultimately, information is
propagated all the way back to the Eclipse/TC DOORS plug-in. The method is overly complex
and its limitation is that the client has to be running when the integration is used, but this was
the best approach that could be developed in the set timeframe. The DOORS plug-in is one of
the more complex tool integrations developed for TC. [37]

7.1.1.5 Open source requirements management tool (OSRMT)

OSRMT is an open source requirements management tool [41]. The OSRMT plug-in was
developed to increase the amount of RM tools available with ToolChain. OSRMT does not
natively provide other means of integration other than the standard database connectivity.
However, because the source code is available for the tool, a different approach (from the other
integrations) was trialled in this case. Originally the idea was to separate the basic operations,
such as list the projects, list requirements, get requirement information, etc., from the source
code and to use these operations to build the plug-in, but this turned out to be rather difficult
because the OSRMT tool itself is quite complex and the code base is quite large. Therefore, the

7. Tool integration implementation

60

plug-in for OSRMT was developed by disconnecting the original used interface, made in Java-
AWT, from the source code and then “placing” the separated functionality under the Eclipse
user interface. As a result, the plug-in operates identically to the original tool, and only the
graphical user interface (GUI) differs (figure 17). [37]

Figure 17. Creating a new feature in the OSRMT plug-in.

However, it was later realized that this approach is sub-optimal due to the effort needed to
understand the source code of the tool itself, and the integration method causes the tool to be too
tightly coupled with the integration. Tight coupling can be problematic when the tool is updated,
which results in the fact that the plug-in integration has to be updated accordingly. In retrospect,
it might have been easier to connect directly to the underlying database, but this was not initially
done because the OSRMT database structure was incomprehensible (even with the help of the
source code). [37]

Information from OSRMT is shown in TC by using the tree interface. Implementing the
integration interface for OSRMT was rather quick due to the fact that the developer was already
very familiar with how the OSRMT tool operates on the source code level. All that was needed
was some glue code to finish the integration. The OSRMT plug-in is perhaps the most complicated
plug-in of TC due to the nature of its implementation (the plug-in is the tool itself). [37]

7.1.1.6 IBM Rational RequisitePro

Rational RequisitePro is a requirements management tool made by IBM [42]. The ReqPro plug-
in was the first integration developed for ToolChain. Development of the ReqPro plug-in was
done by Samuli Heinonen, VTT [43]. The plug-in gets its data from the Rational RequisitePro’s
MS Access 2000 database via a JDBC driver. The ReqPro plug-in shows the information about
project requirements in a table view (figure 18). The information is in the same format as the
Rational RequisitePro tool client shows and consists of requirements id, name, priority, status,
description and version. [37]

7. Tool integration implementation

61

Figure 18. TC’s ReqPro plug-in, RequirementsTable view.

7.1.1.7 Telelogic Synergy/CM

Telelogic Synergy/CM is a commercial, task-based version management tool. Telelogic has
been acquired by IBM. [44] A commercial Eclipse plug-in exists for Synergy/CM, but it was
not tested due to high licensing costs. Furthermore, no plug-in was developed for TC for
Synergy/CM.

Synergy/CM stores its information in an IBM Informix database. Integration between TC and
Synergy/CM was created by reverse engineering the information stored in the Informix
database. Reverse engineering the database structure was somewhat complicated and involved
parsing information from the tuples due to the rather interesting design approach taken by the
original database developers.

The Informix JDBC driver is used to connect to the tool database. The integration was created
in a way that direct relation is made between the file version stored in Synergy/CM and the
requirement from TC. The tool’s task-based approach is not used in the integration. The
integration was developed during the early stages of the first phase implementation and was not
transferred to the “generalized” traceability view, mainly due to high licensing costs of the tool
and expiration of the tool license. However, it would be quite easy to integrate Synergy/CM
again into the TC, provided that the tool itself was available. [37]

7.1.1.8 Subversion

Subversion (SVN) is an open source version management tool, designed to be a replacement for
CVS, which is widely used in the open source community [45, 46]. Subversion has an existing
Eclipse IDE integration called Subclipse [47]. It was decided that this plug-in would be used,
instead of implementing a separate plug-in, because it offers “reference” integration into
Subversion. [37]

Because of the existing integration of Subversion for Eclipse it was only necessary to get the
most essential status information from Subversion. The status information includes for example
version number, creation date, last modified date and modifier. The integration between the tool
chain and Subversion was performed by using the Subversion API. SVN provides two
interfaces: JavaHL (JNI) and SVNKit (pure java). Of these two, JavaHL was used because it
proved to be more suitable for purposes of this integration. [37]

The integration works in the following manner: 1) the user selects a project stored in SVN
from the package explorer, 2) the user creates a link between the requirement and SVN stored
file by dragging the chosen file from the package explorer into the TC. This creates a SVN path

7. Tool integration implementation

62

for the file (e.g. http://test.com/project/trunk/file.c) when creating the link into the traceability
database. Now if the user wants to see requirement-specific information, all the files linked to
the requirement and related information is displayed by fetching the information from the
Subversion database via the Subversion API (figure 19). [37]

Figure 19. Subversion integration, SVN stored files linked to requirement.

7.1.1.9 SoftFab

SoftFab is a testing and test management tool internally developed and used by Philips [48].
The SoftFab plug-in for Eclipse was developed by the University of Oulu. The plug-in provides
test case and report information for requested requirement(s) (figure 20).

Figure 20. The SoftFab plug-in.

The actual test execution is performed by the SoftFab server, so the plug-in only fetches the
testing information from the server. The plug-in communicates with the SoftFab server in XML
over a HTTP connection. It is capable of operating in standalone mode, but can also pass test
case status information to TC when requested. [37]

7.1.1.10 Testlink

Testlink is open source, web-based test management software [49]. The Testlink plug-in fetches
information directly from Testlink’s MySQL database via JDBC connectivity and shows the
information in the Testlink view. In the Testlink plug-in the user is able to navigate to test cases

7. Tool integration implementation

63

by selecting a project from the combo box, followed by a test suite which has the test cases
under it. The plug-in shows the most essential information from test cases such as status, build,
etc. [37]

7.2 Implementations in the second phase

7.2.1 PROBE framework integration

The Probe framework provides tools for test data instrumentation from embedded Linux devices
and management of instrumented test data by means of a probe database [50]. Probe integration
from the TC point of view consists of creating a plug-in for interfacing with the probe database.
The Probe framework structure has been previously described in chapter 6.2.1. The main
purpose of the Probe plug-in is to supply the user a means of managing test data by fetching a
list of test data stored in the Probe database and by providing means for further processing of
the data. Figure 21 shows how the Probe plug-in displays test set data in a table.

Figure 21. Probe DB plug-in showing test set data.

The plug-in operates by sending queries in XML format over a TCP/IP connection to the Probe
database, and by parsing the comma separated return values. The basic sequence of operations
done when the plug-in is launched and when the connection is made is as follows:

1. Get projects
2. For each project get project versions
3. Get test cases for each project version
4. Get test sets for each test case (i.e. different executions of the same test case)
5. Get output types for each test case (i.e. attributes, or columns).

The plug-in will then continue to build a tree structure (project version-test case-test set) of the
fetched data. The plug-in also allows inspection of test data values by clicking on a specific test

7. Tool integration implementation

64

set in the tree. The test data is shown in a table with statistics of the test data. The test data is
fetched via specific queries. If upper and lower limits have been specified for the output types
(i.e. columns), statistics include percentages of rows that were above the upper limit, below the
lower limit, and inside the limits. The plug-in also allows updating the upper and lower limits of
the test case in a table and thus resulting in re-calculation of the statistics. Values can be updated
in the Probe database via a TCP/IP connection by sending an XML query.

7.2.2 PERVIS and PERSIM integration

PerVis & PerSim have been developed for visualization and simulation of single-core & multi-
core load models. The probe database (DB) integration into TC was created to make further
processing of the test data easier. To begin the analysis, the user needs to choose the test data set
by selecting the test set, rows of the test set that will be used in processing, and output types (i.e.
columns, attributes, etc.). Selection of the test data set is show in figure 21. However, the
measurements for PerVis & PerSim are stored in custom format in the Probe DB, under only
one output type. In this case each measurement row provides information on thread task
switches with time information. To fetch the data from the Probe DB, the Probe plug-in creates
a specific XML query which is then sent to the Probe DB, and the results of the query are then
stored in a file which will be passed to either PerVis for visualization or to PerSim for
simulation based on the selection by the user in the Probe plug-in.

It is also possible to specify visualization parameters for the PerVis tool in the Probe DB
plug-in, in the PerVis tab (figure 21). The specifiable parameters are visual resolution, device
clock rate, start tick, and end tick. The parameters are passed to the PerVis tool together with the
location of the data set file on tool execution.

The PerSim simulation works in the same manner. The Probe plug-in has its own tab for
specifying simulation parameters. The parameters for simulation are: number of processors,
cycles-per-instruction in simulation, cycles-per-instruction in measurement, print sampling
cycles, and simulation granularity. The parameters of the simulation are passed to the PerSim
tool in the same manner as with the PerVis tool.

The tools are launched from TC as separate system processes. In the case of the PerSim tool,
outputs from the tool and progress of the simulation are monitored in the PerSim tab. When
simulation is finished, it is possible to visualize the results of the simulation with PerVis. The
results are stored in a specific path & file from where the PerVis tool can locate them. The tool
integration does not yet provide means for storing simulation results in the Probe DB, which
would be beneficial because running simulations is time consuming and sequential simulation
executions overwrite each other. If this is implemented in the future, multiple simulation results
(with varying parameters) could be stored under the Probe DB test set.

7.2.3 MVA tool integration

The MVA tool can be used to visualize test data to support the analysis process. As in the case
of PerVis & PerSim integrations, the MVA tool integration with the TC Probe DB plug-in
works in a similar manner. Initially the user selects a test set (or in some cases multiple test
sets), several output types (at least three), and multiple rows of data for analysis. The test data is

7. Tool integration implementation

65

stored in the Probe DB: each output type represents a real value, instead of the PerVis/PerSim
“binary string” which in fact represents multiple output types. This kind of data representation
makes it easier to distinguish the real meaning of the data; however in case of the “binary
string” it is not very meaningful to separate the output types, because the tool always needs to
process complete strings. Selection of a test set with rows and outputs is shown in figure 21. To
fetch the data from the Probe DB, the Probe plug-in creates a specific XML query which is then
sent to the Probe DB, and results of the query are then stored in a file which is passed to the
MVA tool.

The Probe plug-in allows for specifying analysis parameters for the MVA tool in the Probe
DB plug-in. Parameters can be specified in the MVA tab in the plug-in (figure 21). Some
notable specifiable parameters (from the TC integration point of view) are usage of upper and
lower limits and usage of markers and indexes (useful when analysis is performed on multiple
test sets, to differentiate the sets and values). These parameters affect how the CSV file, which
contains the data set, is created by the plug-in. The data format for the CSV file is as follows:

1st row: column names

2nd row: column values or upper limit (if upper limit parameter is selected)

3rd row: column values or lower limit (if the lower limit parameter is selected)

1st column: column 1 values or marker description (if markers are used)

2nd column: column 2 values, or column 1 values (if markers are used), or index values (if
marker/index parameter is used)

3rd column: column 3 or 2 or 1 values (based on the preceding selections).

The fact that the CSV file containing the test data needs to be built differently based on the
selection means that the XML query for the Probe DB needs to be formatted according to the
selected parameters. The CSV file contents are initially generated by the Probe DB, which takes
care of the markers, indexes, and column values. All these are comma separated, each row
representing measurement values of columns (i.e. output types like CPU utilization, memory
consumption, etc.). The Probe-plug-in appends output type names on the first row of the CSV
file, inserts upper and lower limits to the following rows (if needed) and subsequently appends
the Probe DB generated columns/rows to the end of the file. If multiple test sets were selected,
each test set is sequentially appended after each other in the CSV, after being imported from the
Probe DB.

The MVA tool parameters are written to their own file. When the MVA tool is launched for
test set(s), the location of the configuration- and CSV data files are passed as parameters to the
tool, which is launched as standalone software in a separate process. After a while, the MVA
tool will pop up with the contents of the test set(s) and specifications made by the parameters.

7.2.4 Workflow implementation and integration

Eclipse cheat sheets are used in this thesis as means of implementing workflow support in the
integrated environment. Cheat sheets (workflows) are defined in XML. Eclipse cheat sheets
provide two alternative approaches to definition: simple and composite cheat sheets. A simple

7. Tool integration implementation

66

cheat sheet consists of one task and many steps. A composite cheat sheet consists of many tasks
with many steps. Composite cheat sheets are more suitable for defining workflows. The format
for the simple and complex cheat sheets is defined in Eclipse documentation (cheat sheet
content file format). [36]

Cheat sheets are composed of tasks, sub-tasks, and steps (in this order). All steps need to be
taken to complete a task (or sub-task), but steps can be skipped or redone. Tasks can also have
dependencies between themselves, such as one task having to be completed before another can
be started. Each task guides the user through steps to achieve a certain goal (figure 22). Tasks
can include hyperlinks and references to further documentation; this can be a useful feature
when guiding the user through a real development process.

Figure 22. Example of the TC cheat sheet workflow support mechanism.

To model a workflow it is first necessary to somehow capture the basic steps of the work. One
way of capturing the workflow is to follow the execution of work while taking notes. The
captured workflow can be modelled for example as a block diagram, by using MS Visio or MS
PowerPoint. The example workflow presented below follows the phases of the process model
shown in figure 5:

1. Requirements definition (OSRMT)
2. Test case creation (TestLink)
3. Test execution & gathering of test data (Probe framework)
4. Test analysis:

a. Performance simulation – PerSim,
b. Performance visualization – PerVis.

After the workflow has been modelled on a general level, each step needs to be studied in more
detail. The details can include e.g. steps needed to perform requirement definition in the
OSRMT software. After the workflow has been modelled in adequate detail, the workflow can

7. Tool integration implementation

67

be translated to Eclipse cheat sheets. However, it is up to the user to decide how to model the
workflows as cheat sheets.

Eclipse provides a cheat sheet editor for defining cheat sheets, or cheat sheets can be created
manually by using a text editor. The Eclipse cheat sheet editor is rather crude and simple, so in
practice defining complex workflows by using either the Eclipse editor or by a text editor is a
rather slow process. The maintainability and ease of updating of the workflows is also questionable.
Furthermore, the system provides limited interaction possibilities for the users: adding
comments or modification of the workflow during execution is not possible. In the current
implementation cheat sheets are distributed with the TC plug-ins, but in the improved version
the cheat sheets could be deployed, for example, through the Subversion integration of the TC
which would make delivering up-to-date workflows to large user groups easier and automatic.

7.2.5 Improved traceability view

The traceability view of the TC maps together information gathered from the integrated tool set.
In the traceability view, information from the RM tool has a central role. Information from all
the other tools is either directly or indirectly related (test data from PF is related to test cases,
which are related to requirements) to the requirements. Thus, it is possible to maintain
traceability between requirements and related items by drag & dropping items from the tools’
plug-ins to slots reserved for these tools in the traceability view.

The traceability view provides a list of requirements and shows in parentheses the amount of
traced items for the requirements (e.g. 4/1/0, which means that there are four tasks, one file stored
in CM and no test cases for the requirement). If a requirement that has traced items is clicked on,
the traceability view will fetch information for the selected requirement into a field reserved for
requirement information, and show traced items from various tools in their own reserved fields
with additional information on the items. This fetching of information is done by querying the
tool-specific plug-ins, more specifically the interface they implement to integrate with the TC.

In the current implementation traceability is only possible between requirements and related
items, with the exception of the test data (PF) – test case (TM tools) relation, but some work has
already been done to overcome this limitation. Figure 23 shows the complete Eclipse/TC
environment with the traceability view in the bottom half of the screenshot.

Usage of traceability has been improved in the second phase of the implementation so that the
traceability operations allow for an arbitrary link structure between items from different tools.
However, work remains to update the traceability view to allow for observing and defining the
traceability from other perspectives than from RM, because in some cases it could be useful to
see, for example, what items are related to a specific test case. The possibility to generate a
graph of the traceability structure would also be a powerful tool for representing the linkages
between the items.

Figure 9 shows the integration and example use of four different tools in TC. For each tool the
entities that are connected to another entity in a certain relationship are presented in the figure.
This linking of the connections is based on the entities’ unique identifiers, which can be for
example id strings. Based on these unique identifiers traceability links are created and stored in to
the traceability database by the Traceability view’s drag & drop mechanism. As a database back-
end, TC uses the open source database engine MySQL for storing the traceability information.

7. Tool integration implementation

68

Figure 23. Overview of TC/Eclipse environment with workflow system.

7.2.6 Summary of the integrated tools

The following table (table 20) lists all the tools that have been integrated into the ToolChain.
Support for some of the tools provided in phase 1 were deprecated in phase 2, mainly because of
the high licensing costs of the tools making further development impossible.

Table 20. List of TC integrated tools.

Tool Type License Phase

Philips Project Assist Tool PM Internal 1

Open workbench PM Open source 1 & 2

TRAC PM Open source 1 & 2

Microsoft Project PM Commercial 2

IBM Rational RequisitePro RM Commercial 1 & 2

Telelogic DOORS RM Commercial 1 & 2

OSRMT RM Open source 1 & 2

Telelogic Synergy/CM CM Commercial 1

Subversion CM Open source 1 & 2

SoftFab TM Internal 1

TestLink TM Open source 1 & 2

Probe framework Testing Open source 2

PerVis & PerSim Analysis / Simulation Internal 2

MVA tool Analysis Internal 2

8. Tool integration trial and validation

69

8. Tool integration trial and validation
This chapter deals with validation and experiences of using ToolChain. As mentioned
previously, development of ToolChain has been performed in two phases. Therefore, the
validation of the TC has also been done separately for the two phases. The result of the first
phase of development, Merlin ToolChain, has been released under GNU General Public License
(GPL) version 2. It has been made available for download at SourceForge, which is a portal for
distributing open source software [51]. It has been downloaded over one hundred times at time
of writing. Both versions of the TC have been validated in industry cases, and the results are
presented in this chapter. Development of the second version was performed on a non-GPL
licensed branch of the TC, and no decision on its public release has been made.

8.1 Philips case

This validation case of the first version of ToolChain was carried out in cooperation between
Philips and VTT. The trial was conducted in the OSIB project, realized by Philips Applied
Technologies. The OSIB project aims to provide Integrated Ambient Experience™ for a new
hotel chain. The software is designed and developed for several hardware subsystems
interconnected through well-defined software interfaces. The sub-systems of the OSIB solution
are as follows: [13]

- Moodpad: advanced remote control with a touch screen and hardware buttons. Moodpad
is used to enable the user interface to the hotel room (controlling the light, TV, Venetian
blinds, sunscreen curtain, room climate).

- Room Controller: implements the hotel room logic and interacts with the Moodpad, room
TV, climate control system, RFID door lock.

- Ambient Experience server: sub-system functioning as a gateway between hotel rooms
and the external components: Property Management System of the hotel chain and the
remote hotel diagnostics centre.

All the devices communicate either via Ethernet or wireless (Wi-Fi) connections with each
other. The project uses an agile way of working, where development is done in increments of
two weeks and requirements are selected for each increment, together with the customer. [13]

The goals for the case from the ToolChain development viewpoint were to evaluate the usability
and usefulness of ToolChain in real-life product development. The aim was to gain experience from

8. Tool integration trial and validation

70

setting up a tool chain in an industry context, from its use in practice, as well as from the adaptability
of the selected concepts to the needs appearing during the use of ToolChain. [13]

From the case project viewpoint, the goals for using the tool chain were to improve
traceability and visibility of the project progress while not interrupting the product development
work. [13]

The case was the first time that the ToolChain was tried out in a real-life setting, so the
technical improvements of ToolChain during the case were significant. First ToolChain was
adapted to the Philips environment by integrating the tools they had in use to the ToolChain.
The toolset used in the case was Project Assist Tool, Telelogic DOORS, Subversion, and Philips
SoftFab. In practice, this meant developing a new plug-in for DOORS, modifying the existing
Subversion plug-in, and updating the PAT and SoftFab plug-ins because the versions used by
the project differed from those used in the development of the ToolChain. [13]

The installation of ToolChain in the case project environment was done in the duration of a
week when the ToolChain developers from VTT visited Philips to set up the ToolChain. Some
compatibility problems were encountered at first, but they were handled quite easily as they
were mainly configuration problems of the tools. Some additional features considered essential
by the case project were also added to the ToolChain during the installation. [13]

The results of the trial showed that ToolChain could be adapted and set up for the industrial
project environment relatively quickly: only a week for setup was needed. Furthermore, the
results revealed that even though the ToolChain implementation of the first phase was only a
research prototype, the setup period could be shortened in the future. [13]

In the trial OSIB project members would use the ToolChain in everyday development work.
During this period the OSIB project members wrote down all the encountered problems and
ideas for improvement. This feedback was given to the ToolChain developers bi-weekly and
urgent problems were handled immediately. The feedback was also analyzed and prioritized in
the bi-monthly workshops with industry partners. Some examples of the improvements made
for the ToolChain based on the feedback include: development of the tool selector that enables
selecting the tools that are in use, improving usage of available space in the user interface, and
showing more information to the user. The database software was also changed to an open
source alternative from a commercial one during this development period. The new version of
ToolChain was sent to Philips after finalization. [13]

In conclusion, during the evaluation period many new features were added to ToolChain and
as a result TC became more robust for practical use. The case also proved that TC can be used
in daily operations in a natural way without complicating things, but rather making working
easier. [13]

8.2 NSN case

The result of the second phase of development, integrated tool support for hardware-related
software development, was validated in an industry case. In the case, a tool set consisting of
Eclipse and TC plug-ins, Trac, OSRMT, Subversion, Testlink, Probe framework, and
Multivariate Analysis tool was used. The purpose of the case was to evaluate the ease of
installation and functionality of the tool integration. In the case a workflow was formulated
containing the steps necessary to evaluate multi-core DSP processor performance using MVA

8. Tool integration trial and validation

71

and ToolChain. A multi-core DSP board and its in-house developed TCP/IP stack Ethernet
performance was measured using a commercial load tester by Agilent. The CPU load was
measured by using an on board software hook.
The performance requirements for the system were as follows:

- Ethernet throughput, minimum throughput is 100Mb/s
- Data packet loss, maximum packet loss is 5%
- Ethernet latency, maximum latency is 100 ms
- Target CPU load, maximum target CPU load is 15%.

The performance requirements were defined in the requirement management software, which in
this case was OSRMT. The test case was then created in test management software Testlink to
reflect the performance requirements. TC was used to create traceability between the
performance requirements and the test case. Figure 24 shows the traceability in TC.

Figure 24. Traceability of requirement and test case in TC.

The test case was subsequently executed by following the test case definition in Testlink. In
practice this meant using the Agilent network transmitter and loader to generate load for the
DSP board’s TCP/IP stack with a loop and measuring the results. The measurements from
Agilent were then exported into a CSV format and imported into the probe database. Figure 25
shows the imported test data in TC. Traceability between the test case and test data from the test
run was updated in TC, as shown in figure 26.

Figure 25. ToolChain Probe plug-in with test data.

8. Tool integration trial and validation

72

Figure 26. Traceability of requirement, test case, and test data.

Analysis of the test case was performed using the TC probe plug-in. The test data set, its
attributes (e.g. packet size, frames/s, latency) and rows (i.e. measurement values) were selected
in the plug-in. Furthermore, analysis parameters for the Multivariate Analysis tool were
specified in the plug-in. After data set selection and analysis parameters were defined, the
analysis tool was executed from the TC. Figure 27 shows the analysis parameters and
visualization results for the data set.

Figure 27. Specifying analysis parameters for MVA tool and visualization of results.

From the resulting visualization, it is possible to calculate the failure rate and thus gain
knowledge of the TCP/IP stack performance. In this case the results show a high failure rate.
Results of the analysis are stored under the test case in Testlink. In this case the test case failed
because the failure rate was too high for the software in question. TC notifies the user that the
requirement has not been validated because all the test cases have not passed.

The preceding scenario was defined in the TC workflow system, so that a user unfamiliar
with the tool set and TC integration could perform the steps from importing the data into the
probe database all the way to inputting the analysis results into Testlink. The complete picture
of the TC/Eclipse environment with probe plug-in, traceability view, and workflow guidance
can be seen in figure 23.

After the execution of the case, the users of the system were asked to provide feedback on the
tool integration. The users were asked the following general questions:

- Experiences with installation and taking the TC into use
- Usage experiences with the TC
- Strong and weak points of the TC
- Optimal solution (i.e. “perfect” integration / tool set).

8. Tool integration trial and validation

73

The following feedback was provided on the questions: the users reported experiencing some
difficulties during installation, mainly in installation of the open source tools and due to the fact
that the tool documentations were scattered (i.e. each open source tool had its own instructions)
and locating them was time consuming. As a result, the installation took some time. They
reported that if the installation and taking TC into use were to happen in a tighter schedule,
more support would be needed.

Initially, the users considered the idea of tool integration of Eclipse and separate tools as
complex and complicated. However they then reported that the tools used in the case (OSRMT,
Trac, Testlink, MVA) were quite easy to learn to use; though some of them were easier than
others. Previous demonstrations of TC and documentation provided for the first phase TC
implementation were considered helpful. They also reported that support was provided and
available via e-mail as needed. Furthermore, workflow support made it easier for new users to
get used to TC, and workflows could be updated relatively quickly if needed. They suggested
that a complete user guide would prove helpful when beginning to use TC, but also reported that
the manual for the phase one implementation (i.e. Merlin manual, available from SourceForge)
was helpful.

In conclusion, they consider the usage of the TC as quite straightforward; the Eclipse
environment and the TC plug-ins are easy to understand, and traceability with its drag and drop
implementation is easy to use. TC also provides quite good selection of different tools: project
management, configuration management, requirement management, and test management.
However, especially in the given setting, tool support of test automation is needed. Furthermore,
there is a need for a more extensive tool set than what is provided by the current implementation.
Moreover, all of the features available in the tools are not used. There also seems to be a need
for fine-tuning many of the TC plug-ins; some of the output from plug-ins was considered too
“rough”. Workflow support was considered as an added bonus, but automation would be needed
in workflows.

9. Discussion

74

9. Discussion
In this thesis it was studied how an integrated tool support solution could be used to aid in
hardware-related software development. This section discusses the choices made, lessons learned,
and how successful the results were. The discussed topics include: tool integration approach,
tool integrations, traceability support, process and workflow support, dissemination work done
on TC, validation cases, and future work.

9.1 Integration approach

Design of the TC began with the architectural decision on how the various tools would connect
to each other. Existing literature on tool integration with the help of industry experiences and
knowledge of existing tool integration implementations (chapter 3) were used to guide the
research and design process. With this help, a framework-based solution, more precisely
Eclipse, was chosen. This turned out to be a good decision, in the sense that the tool integration
built on the Eclipse framework is now running smoothly. Furthermore, it is clear that a
framework-based solution offers good potential for further development, as shown by the two-
phase implementation of the TC: even after the first phase of implementation, completely
different kinds of new tools and mechanisms such as workflow support could be easily added to
the second phase implementation.

When Eclipse was initially selected, it was still in its infancy, but already gathering
momentum. Today, the Eclipse ecosystem is expanding at tremendous pace, with new tools (e.g.
tools for modelling, communication, and language-specific implementations) and features added
at a steady rate. Eclipse is also widely used in the information industry and is well known to
large user groups. TC will directly benefit from these aspects as there will be an increased
amount of tools that can be easily integrated to work with or form part of TC.

9.2 Tool integrations

In the first phase of development, a set of core tools (PM, RM, CM, TM) was integrated into the
TC. These tools aim to fulfil the basic needs of a software development project. Challenges in
HW rel. SW development are plentiful; however TC’s support in terms of tools for these
challenges is currently limited (see table 20 for the list of tools). HW rel. SW development tool
support in TC was realized in the form of tools for testing, test result analysis, and for
estimating the performance of different processor architectures. As mentioned previously, it is
not practical to integrate every available tool; thus the tools chosen were selected based on
industry feedback on which tools would provide the most added value. In TC’s case, the

9. Discussion

75

complete set of tools (phase 1 & phase 2) consists of tools from multiple vendors. TC also
provides the possibility of expanding the tool set via its integration interface, which provides TC
users the freedom of adding their own tools. This is a completely different approach to that of
proprietary tool vendors who build their tool integrations consisting entirely of their own tools.

TC consists of plug-ins with varying levels of refinement. Some of the plug-ins are suitable
for only maintaining traceability in the traceability view, while some of the plug-ins offer tighter
integration into the tools (e.g. OSRMT integration which allows performing many of the tool’s
functions in the Eclipse environment, or the HW rel. SW integrations created in the second
phase of the implementation which provide seamless integration of testing, analysis, and
performance simulation into the TC environment). The varying levels of refinement of the plug-
ins stem from the fact that the plug-ins were used to study how to integrate the tools into TC.

9.3 Process and workflow

The systems engineering viewpoint was used as a starting point in this thesis to understand the
big picture of the HW rel. SW development process, and to understand what kinds of activities
need to be supported by the tools. Furthermore, various process models were inspected to
provide better understanding on needed support. Specific challenges related to HW rel. SW
development were also studied from literature and from experiences gathered, in order to
specify requirements of the tool integration solution (whose main purpose is to support the HW
rel. SW development process). The workflow concept was introduced in order to provide
support to users on a personal level.

In practice, workflow and process support was thus realized partly via the tools provided by
the integration (chapter 9.2) and in part as workflow support as provided via the Eclipse cheat
sheet system. Before workflows could be supported by the system, it was necessary to somehow
capture the workflow. As part of the NSN case (chapter 8.2), a performance testing scenario was
modeled into the Eclipse cheat sheet system. The modelling method used was fairly ad hoc;
block diagrams were used to capture the steps in the process and were then detailed to the tool
level by taking notes on what the needed actions were. Subsequently, the workflows were
defined in the cheat sheet system as well as possible. The purpose of this thesis was not to build
a workflow system, but to study how workflow support could be used to improve tool
integration in a way that efficiency is maximized. One way for workflow support to do this is to
provide support for tools and to give guidance on how to use the tools together. Thus, the
developed workflow system is fairly simple, but nevertheless the chosen approach seems to be
working fairly well as indicated by the positive feedback given on workflow support of TC in
the NSN case.

9.4 Dissemination

Two scientific articles have been written on the development of the TC: a conference paper by
Heinonen et al. [29] and a conference paper by J.-P. Pesola, J. Eskeli, P. Parviainen et al. [13].
The author of this thesis has participated in the writing of the latter paper as one of the main
contributors. The history of TC development has been published in the previously mentioned

9. Discussion

76

papers, all the way to the first stage of TC implementation (including the Philips validation
case) as discussed in this thesis. The author of this thesis also plans on publishing a conference
article on the new research that has been discussed in this thesis.

The new research that was performed as part of this thesis includes addition of several new
tools and tool types in the TC framework, proving further its adaptability to different situations.
Workflow support was also introduced as a concept that can be used to guide developers
working with multiple tools in an integrated environment to complete certain activities. Furthermore,
the NSN validation case was presented in which the current state of implementation was tested.

The result of first version implementation has been published as an open source tool in
SourceForge. However, it has not yet been decided when or how the result of the second phase
of implementation will be published.

9.5 Validation

TC was implemented in two phases. For this reason, TC was validated separately in two
different cases. The Philips case has previously been presented and analyzed in detail in [13];
therefore the focus is on the NSN validation case in this chapter. However, the results from the
Philips case are important and show that TC can be installed in the target environment rather
quickly and TC operates naturally in day-to-day work while providing improved visibility into
project progress.

Shifting from a work environment without tool integration into one with tool integration is
not, however, without complications. If the users are not already familiar with the Eclipse
environment, the initial adaptation to using the system may take some time, and it may be
challenging to find the time in today’s fast-paced research & development work. One great
challenge related to tool integrations is how to lower the adaptation threshold for tool
integration in a company. TC tackles this challenge by providing the possibility for companies
to use their own tools, as opposed to single vendor tool integration solutions that dictate certain
tool sets. Thus, via the TC method the original way of working is disturbed as little as possible.

9.5.1 NSN case

The limitation of this case compared to the Philips case was that there were fewer users
participating in the trial and the use scenario was artificial in a way that the performance
analysis on the DSP platform had already been done but was then replicated using the TC tool
set and integration. Thus, the case provides a rather static usage of TC and does not provide a
complete overview of the TC capabilities. However, the case also provided useful feedback on
the usage of TC in an industry setting, which can be used to further develop the TC integration.

In this case, one of the users reported difficulties in installation of the various tools used in
the tool integration. However, more often than not, this is not a problem because the tools have
already been installed and taken into use, as the main idea of TC is to connect the tools already
in use and thus provide additional visibility and traceability to the development. Installation of
the TC itself went relatively smoothly, with some support needed from TC developers.
Comparison on ease of installation should be made on the scale of similar tool integration
solutions, not on the scale of how difficult it is to install, for example, a web browser on a

9. Discussion

77

desktop computer. Tool integrations are not taken into use everyday, and when done, adequate
time must be preserved for preparation. In this case there were some difficulties due to the fact
that documentation for the second phase implementation was not available at the time of
delivery of TC to the case environment.

Scattered documentation of the tools was reported as a problem. This is a common problem in
heterogeneous tool integration environments. It can be alleviated via workflow support.
Workflow support can provide instructions on tools used in the workflows by for example
providing hyperlinks to the tool documentation in the workflow description.

In the case one of the users reported that the development environment consisting of TC and
various tools seemed complicated at first, but also makes note that workflow support helps in
adapting to the new environment. The users also reported difficulties in using the tools.
However, the main focus in this thesis and in the built solution was on the integration, not on
the ease of usability, of the integrated tools. Furthermore, in most situations, users are already
familiar with the tools and the only new element for them would be to learn the use of
Eclipse/TC integration. However, in the case of a new employee it would be beneficial for
workflow support to teach the new user on how to use the tools.

Some critique was presented on the roughness of the plug-ins of the tools and on the lack of
support for certain kinds of tools (e.g. test automation) in the TC. However, as has previously
been mentioned, TC’s purpose is not to be a complete solution but rather a proof of concept that
proves the feasibility of the tool integration approach.

9.6 Future work

This section discusses future work related to matters discussed in this thesis. As previously
mentioned, the research that was done during the second phase of implementation, focusing on
hardware-related software support (e.g. the new tools and workflow system), has not yet been
published. The author of this thesis plans to publish these results in a conference article as soon
as possible.

As to the future development of the TC, adding reporting facilities is one possibility; the
validation cases revealed need for reporting facilities in tool integration, and it was also defined
as a requirement for the tool integration. Reporting has not yet been added because it was
initially prioritized as of lower importance than the actual proof of concept of tool integrations
and because further study is needed on what kinds of reports should be generated.

Reporting generates formatted sheets of information for some specific need or purpose. As a
starting point for implementation, static reports could be used; e.g. if the user wants to see the
status of the requirement test coverage, the system could check for each requirement the traced
test cases, then check test case statuses, and finally generate a report (e.g. PDF) where the
results are summarized and important details highlighted. Reporting could be further improved
when full understanding of the needed support is available (e.g. based on industry feedback).

TC currently provides communication only in the form of data visibility. As a means of
improved communication, the Eclipse Communication Framework (ECF) could be used. ECF
provides a means of implementing e.g. real-time shared editing in the Eclipse environment or
real-time communication [52].

9. Discussion

78

Feedback received during the first phase of implementation suggested that providing a web-
based UI for TC in addition to the Eclipse UI would increase TC’s usability potential. This way,
TC would become more platform independent.

In the current implementation of TC the traceability view is limited to a requirement centric
view, i.e. everything is inspected from the point of view of requirements. This could be further
developed, because in some situations it may be necessary to inspect things from different
viewpoint, e.g. what requirements relate to this test case.

To begin with, the workflow support in TC could be improved by upgrading the used Eclipse
version to Eclipse Ganymede, which provides an improved cheat sheet editor [53]. Furthermore,
as an improvement to the workflow modelling scenario, a formal modelling language could be
used (e.g. state charts) to capture the workflow which would make updating of the workflows
easier. The cheat sheet system could be improved by adding automation into the workflow that
could perform mundane tasks in the tools automatically, or by allowing the user to choose an
action from the cheat sheet system that would then orchestrate the necessary actions in the tools.

As mentioned in the requirements (tables 17–19), TC could support use of multiple tools of
same type concurrently (e.g., two partners have different RM tools in use, but need to share the
requirements with each other). In the current implementation, this is not supported. As a first
step in this direction, the Eclipse community provides project task management integration in
the form of the Mylyn framework, with which it is possible to see tasks from Bugzilla, Trac, and
JIRA in Eclipse [54]. This would in theory allow use of these PM tools simultaneously. At least
the current Trac plug-in could be discarded in favour of Mylyn, which provides much neater
facilities for task management than the current Trac plug-in. To support the traceability in the
drag & drop form, Mylyn could be modified to support TC. Furthermore, these kinds of
possibilities signify why choosing Eclipse as an integration framework was a good choice: the
open source community is constantly providing new tools and integrations to Eclipse, for free.

Installation of TC is currently done manually by copying the needed files (i.e. plug-ins,
configuration files, etc.) to specific directories as pointed out by the documentation. The installation
could be improved by creating an installer wizard that automates most of the installation process
and prompts the user only when needed.

10. Conclusion

79

10. Conclusion
Development of hardware-related software poses various challenges, and for solving these
challenges a multitude of tools have been developed. Furthermore, this multitude of tools needs
to be used seamlessly during development, but more often than not, the tools are disconnected
which makes use needlessly difficult because the consistency of data in the tools needs to be
managed manually. This thesis focused on studying if some of the HW rel. SW development
challenges could be solved efficiently by means of improving tool support and the
interoperability between the tools.

The research process began with the aim of forming a general overview of HW rel. SW
development. As a first step, HW rel. SW development was perceived from a systems
engineering viewpoint and various well-known process models were studied. This was done to
understand what kinds of activities need to be supported by the tools. The workflow concept
was introduced to support the development process.

The tool integration concept and various tool integration approaches, mechanisms, and
existing implementations were then studied. This was done to establish the rationale for tool
integration and to form a concrete background for the requirements and design of the integration
solution.

The next step was to study the challenges experienced in HW rel. SW development. The
challenges were gathered from literature and individual experiences of a professional developer.
The challenges were then mapped to the overall process, also called the TC process model. The
challenges were then used to specify requirements for the tool integration solution. Requirements
were divided into two main categories: tool support and tool integration requirements. The tools
supported by the integration were selected based on their integration potential and based on
industry feedback. Basic requirements for tool integration were to provide traceability between
development artefacts, data flow from tool to tool, and improved visibility into project data. An
architectural decision was also made at this point that a framework-based solution would be
used which would allow easy integration of tools.

As a next step, design of TC was done where the TC framework solution was formulated. TC
is based on an Eclipse framework, which is a Java open source IDE. TC consists of tool-specific
plug-ins and of a traceability view plug-in that implements the core functionality (i.e. traceability,
data visibility, etc.). The tool specific plug-ins connect to tools used in the integration via means
such as JDBC and API. Traceability information is stored in the centralized traceability
database. TC allows addition of new tools via plug-ins that implement the TC tool interface.
HW rel. SW development support of TC focuses on improving the test data gathering from
embedded systems, management of the test data, and using the gathered data in analysis of SUT
behaviour and in analysis of the SUT performance. Furthermore, workflow support was

10. Conclusion

80

designed to aid TC users during work. The workflow system guides the user on how to use the
tools and integration to accomplish certain activities. A task-based Eclipse cheat sheet system is
used for the implementation of the workflow.

TC was implemented in two phases. The first phase consisted of creating the TC framework
on the Eclipse platform and integrating the tools from PM, CM, TM, and RM categories, with a
total of nine tools integrated in this phase. The first phase of the implementation built the
foundation of TC, including the plug-in based approach, integration interface for new tools,
traceability and data visibility implementation into traceability view plug-in, etc. In the second
phase of the implementation the tools for HW rel. SW development support were added: Probe
Framework, PerVis & PerSim, and the MVA tool. In addition work was done on improving the
TC traceability model and workflow support in the form of the Eclipse cheat sheet system.

Validation of TC was also performed in two phases: a validation case for each phase. In the
first phase TC was validated in Philips’ OSIB project, and results of this case pointed out how
easily TC could be installed and adapted to the target company’s environment. TC also worked
in daily operations without complications, while improving the traceability and data visibility in
the project. The first phase implementation was also released as open source in SourceForge
where it has been downloaded well over one hundred times.

The validation case for the second phase showed no big surprise in the sense that the
installation of TC went rather smoothly. Some critique was given on the difficulty of
configuring individual tools used in TC. This is not the fault of TC but rather the consequence
of the nature of the tools used in the integration. After the case, requests were also made for
support for certain types of tools which would have improved the tool chain’s usability in the
given scenario (i.e. test automation). Workflow support in TC was considered promising.

According to the background study that was performed prior to the design of TC on tool
integrations, tool integration frameworks, and on related literature, it seems that the integration
approach used by TC is the first of its kind. TC has also generated much interest on various
occasions where it has been presented (in e.g. conferences and seminars). As the validation
cases show, TC seems to be answering to the needs of industry partners in a way that it is easy
to take into use and can be adapted to different situations. With TC it is possible to choose one’s
own set of tools – even a tool set consisting of purely open source tools is possible. This leads to
the fact that with TC there is no risk of (expensive) vendor lock-in to proprietary tool sets.
However, TC is not a complete product in the same sense as the proprietary tool sets (e.g. MS
TFS), but rather a proof of concept solution.

Development of TC has also been a learning experience in a way that much more is now
known on how to design and create tool integrations, for example what kind of data should be
linked together and from which tools, and how the integration should be performed. One of the
main challenges in tool integration thus seems to be in deciding which data to link together
(everything can be integrated, but one may ask if it is worth it) and on resolving how the tool
integration could use this information for added value. In future, research done on TC for this
thesis will be published in a conference paper presenting the new aspects. In order to improve
TC adding new features such as reporting, communication, and new tools is also possible.
Further research into the workflow system and its role in tool integration seem to be interesting
alternatives, too.

10. Conclusion

81

References
[1] Keller, M. & Schumate, K. (1992) Software specification and design, A disciplined approach for real-

time systems. John Wiley & Sons. 405 p.

[2] Ronkainen, J., Kääriäinen, J. & Abrahamsson, P. (2003) Technical report, VTT.

[3] Stevens, R., Brook, P., Jackson, K. & Arnold, S. (1998) Systems Engineering: Coping with Complexity.
Pearson Education. 374 p.

[4] Douglass, B. (1999) Doing hard time: developing real-time systems with UML, objects, frameworks, and
patterns. Addison Wesley. 714 p.

[5] (read 27.02.2009) Wikipedia: Waterfall model. URL: http://en.wikipedia.org/wiki/Waterfall_model.

[6] Kotonya, G. & Sommerville, I. (1998) Requirements Engineering: Process and Techniques. John Wiley
& Sons. 282 p.

[7] Crnkovic, I., Asklund, U. & Dahlqvist, A. (2003) Implementing and Integrating Product Data Management
and Software Configuration Management. Artech House, London. 338 p.

[8] (read 27.02.2009) Wikipedia: Iterative and incremental development. URL: http://en.wikipedia.org/
wiki/Iterative_and_incremental_development.

[9] Georgakopoulos, D. & Hornick, M. (1995) An overview of Workflow Management: From Process Modeling
to Workflow Automation Infrastructure. Distributed and Parallel Databases, Vol. 3, pp. 119–153.

[10] (read 27.02.2009) Wikipedia: Workflow. URL: http://en.wikipedia.org/wiki/Workflow.

[11] Chan, D.K.C. & Leung, K.R.P.H. (1997) Software Development as a Workflow Process. In: the
Proceedings of Joint 1997 Asia Pacific Software Engineering Conference (APSEC’97), December
2–5, Hong Kong SAR, China.

[12] Pederson, J. (2006) Creating a tool independent system engineering environment. In: IEEE Aerospace
Conference, 4–11 March. 8 p.

[13] Pesola, J.-P., Eskeli, J., Parviainen, P., Kommeren, R. & Gramza, M. (2008) Experiences of Tool
Integration: Development and Validation. In: Mertins, K., Ruggaber, R., Popplewell, K. & Xu, X. (eds.).
Enterprise Interoperability III – New Challenges and Industrial Approaches. Springer. Pp. 499–510.

[14] Industrial survey of tools used in requirements engineering and management, architecture design, and
product information management (PLM/PDM,CM), VTT, 2007.

[15] EUROPEAN COMISSION, ICT – INFORMATION AND COMMUNICATION TECHNOLOGIES, Work
Programme 2007.

[16] Kanwalinder, S. (1993) Tool Integration Frameworks -- Facts and Fiction. In: IEEE Proceedings of the
National Aerospace and Electronics Conference 2. Pp. 750–756.

[17] Nghiem, A. (read 27.02.2009) Web Services Part 6: Models of Integration. URL:
http://www.awprofessional.com/articles/article.asp?p=28713&seqNum=2.

[18] (read 27.02.2009) Eclipse: Application Lifecycle Framework. URL:
http://www.eclipse.org/proposals/eclipse-almiff/index.php.

References

82

[19] (read 27.02.2009) Digital, Framework-Based Environment Design Center, Version 2.0, SPD 56.03.00.
URL: http://h18000.www1.hp.com/info/SP5603/SP5603PF.PDF.

[20] Burmester, S., Giese, H., Niere, J., Tichy, M., Wadsack, J., Wagner, R., Wendehals, L. & Zuendorf, A.
(2004) Tool integration at the meta-model level: the Fujaba approach. International journal on
software tools for technology transfer, Springer, Vol. 6, No. 3, pp. 203–218.

[21] Schwaber, C. (2006) The Changing Face of Application Life-Cycle Management. Forrester Research
Inc., August 18.

[22] Kääriäinen, J. & Välimäki, A. (2008) Impact of Application Lifecycle Management – A Case Study. In:
Mertins, K., Ruggaber, R., Popplewell, K. & Xu, X. (editors) Enterprise Interoperability III – New
Challenges and Industrial Approaches. Springer. Pp. 55–67.

[23] Amsden, J. (read 24.03.2009) Levels Of Integration, Five ways you can integrate with the Eclipse
Platform. URL: http://www.eclipse.org/articles/index.html.

[24] El-khoury, J., Redell, O. & Torngren, M. (2005) A tool integration platform for multi-disciplinary
development. In: 31st EUROMICRO Conference on Software Engineering and Advanced
Applications, August 30 – September 3. Pp. 442–449.

[25] (read 27.02.2009) Wikipedia: Embedded Software. URL: http://en.wikipedia.org/wiki/Embedded_software.

[26] Lee, E.A. (2002) Embedded Software. In: Zelkowitz, M. (ed.). Advances in Computers, Vol. 56,
Academic Press, London.

[27] Interview of Jussi Ronkainen on embedded software challenges, VTT, 2008.

[28] (read 27.02.2009) Wikipedia: Real-time computing. URL: http://en.wikipedia.org/wiki/Real-time_computing.

[29] Heinonen, S., Kääriäinen, J. & Takalo, J. (2007) Challenges in collaboration: tool chain enables
transparency beyond partner borders. In: Proceedings of 3rd International Conference on
Interoperability for Enterprise Software and Applications I-ESA 2007, March 28–30.

[30] (read 27.02.2009) Eclipse foundation home pages. URL: http://www.eclipse.org/.

[31] (read 27.02.2009) Notes on Eclipse plug-in architecture. URL: http://www.eclipse.org/articles/Article-
Plug-in-architecture/plugin_architecture.html.

[32] Pollari, M. (2009) A Software Framework for Improving the Testability of Embedded Real-time Systems.
Master’s thesis. University of Oulu, Department of Electrical and Information Engineering, Oulu.

[33] Vitikka, J. (2008) Supporting database interface development with application lifecycle management solution.
Master’s thesis. University of Oulu, Department of Electrical and Information Engineering, Oulu.

[34] Jaakola, M. (2008) Performance simulation of multi-processor systems based on load reallocation.
Master’s thesis. University of Oulu, Department of Electrical and Information Engineering, Oulu.

[35] Tuuttila, P. (2006) Test result visualisation and analysis with principal component analysis. In: Proceedings
of Estiem vision of cycles seminar, February 3–4, Finland, Oulu.

[36] (read 27.02.2009) Documentation on Eclipse cheat sheets. URL:
http://help.eclipse.org/ganymede/topic/org.eclipse.platform.doc.isv/guide/ua_cheatsheet.htm.

[37] Heinonen, S., Pesola, J.-P. & Eskeli, J. (2007) Merlin ToolChain technical specification, VTT.

10. Conclusion

83

[38] (read 20.03.2009) Open Workbench project management tool. URL: http://www.openworkbench.org/.

[39] (read 20.03.2009) Trac project management tool. URL: http://trac.edgewall.org/.

[40] (read 20.03.2009) DOORS requirements management tool.
URL: http://www.telelogic.com/products/doors/.

[41] (read 20.03.2009) OSRMT requirements management tool.
URL: http://sourceforge.net/projects/osrmt/.

[42] (read 20.03.2009) RequisitePro requirements management tool.
URL: http://www-01.ibm.com/software/awdtools/reqpro/.

[43] Heinonen, S. (2006) Requirements Management Tool Support for Software Engineering in Collaboration.
Master’s thesis. University of Oulu, Department of Electrical and Information Engineering, Oulu.

[44] (read 20.03.2009) Telelogic Synergy change management tool.
URL: http://www.telelogic.com/corp/Products/synergy/.

[45] (read 20.03.2009) Subversion version control system. URL: http://subversion.tigris.org/.

[46] (read 20.03.2009) Concurrent Versions System.
URL: http://en.wikipedia.org/wiki/Concurrent_Versions_System.

[47] (read 20.03.2009) Subclipse integration for Subversion. URL: http://subclipse.tigris.org/.

[48] Spanjers, H. (read 20.03.2009) Philips SoftFab testing system. URL: http://www.topic.nl/nl/cm-
workshop/presentations/Hans%20Spanjers%20-%20Philips%20Applied%20Technologies.pps.

[49] (read 20.03.2009) Testlink test management tool. URL: http://testlink.org/wordpress/.

[50] (read 20.03.2009) Probe Framework for test data management and instrumentation.
URL: http://sourceforge.net/projects/noen/.

[51] (read 20.03.2009) Merlin ToolChain integration framework.
URL: http://sourceforge.net/projects/merlintoolchain.

[52] (read 20.03.2009) Eclipse Communication Framework. URL: http://www.eclipse.org/ecf/.

[53] (read 20.03.2009) Eclipse Ganymede website. URL: http://www.eclipse.org/ganymede/.

[54] (read 20.03.200) Eclipse Mylyn website. URL: http://www.eclipse.org/mylyn/.

 Series title, number and
report code of publication

VTT Publications 725
VTT-PUBS-725

Author(s)
Eskeli, Juho
Title

Integrated tool support for hardware related software
development

Abstract
This thesis presents how the hardware-related software development process can be
improved by means of tool integration. Challenges in hardware-related software development
are diverse, which is why a multitude of tools is needed during the development. The tools
produce data that needs to be managed, but the tools are disconnected. Tool integration
provides a means of bringing the data from disconnected tools together into one coherent,
easily manageable package.

Research was conducted by initially perceiving hardware-related software development
from a systems engineering viewpoint, with a focus on several well-known process models.
This was done to understand the kinds of activities that need to be supported by the tools. A
workflow concept was introduced as a means to support the development effort of an
individual worker. An extensive background study into tool integrations was conducted to
understand state-of-the-art tool integration approaches and concepts, and then used to
create the foundation for the tool integration.

Hardware-related software development challenges were gathered from literature and
industry experiences to reinforce the understanding on needed tool support and to specify the
requirements for the tool integration. The main requirements for the tool integration were easy
extensibility, which could only be provided via a framework-based solution, and a means to
provide data flow from tool to tool while preserving traceability between the data from the
tools. Tool requirements for the integration were project management, requirement management,
test management, and change management tools. Emphasis was put on tools supporting
testing and test analysis.

The tool integration, ToolChain, was implemented in two phases. In the first phase the
groundwork for the integration framework was done. Eclipse was chosen as the platform for
the integration and plug-ins selected as a means of implementation. In the second phase, tool
support focusing on the hardware-related software development aspects was added.
Implementations from each phase were validated separately in industry cases. Experiences
from these cases are presented in which it is shown how ToolChain can be easily adapted
into the target company’s environments, and how the tool integration improves the way of
working.

ISBN
978-951-38-7373-8 (URL: http://www.vtt.fi/publications/index.jsp)

Series title and ISSN Project number

VTT Publications
1455-0849 (URL: http://www.vtt.fi/publications/index.jsp)

6086

Date Language Pages
December 2009 English, Finnish abstr. 83 p.

Name of project Commissioned by
TWINS VTT

Keywords Publisher
development tools, tool integration VTT Technical Research Centre of Finland

P.O. Box 1000, FI-02044 VTT, Finland
Phone internat. +358 20 722 4520
Fax +358 20 722 4374

References

2

 Julkaisun sarja, numero ja
raporttikoodi

VTT Publications 725
VTT-PUBS-725

Tekijä(t)
Eskeli, Juho

Nimeke

Integroitu työkalutuki laiteläheiseen
ohjelmistokehitykseen

Tiivistelmä
Työssä esitetään, miten rautaläheisten ohjelmistojen kehitysprosessia voidaan parantaa
työkaluintegraation avulla. Rautaläheisten ohjelmistojen kehitystyön haasteet ovat moni-
muotoisia, ja siksi kehitystyön avuksi tarvitaan useita työkaluja. Työkalut tuottavat tietoa, jota
täytyy hallinnoida, mutta toisaalta työkalut ovat irrallisia, mikä tekee hallinnoinnista hankalaa.
Työkaluintegraatio mahdollistaa tietojen koostamisen irrallisista työkaluista yhtenäiseksi,
helposti hallittavaksi kokonaisuudeksi.

Tutkimustyö aloitettiin tarkastelemalla rautaläheisten ohjelmistojen kehitystä systeemi-
suunnittelun näkökulmasta. Tarkastelu keskittyi yleisesti tunnettuihin prosessimalleihin, ja sen
tavoitteena oli selvittää, mitä aktiviteetteja työkalujen tulee tukea. Työnkulut (workflow) esitettiin
keinona tukea yksittäisen työntekijän kehitystyötä. Työkaluintegraation nykytila selvitettiin
kattavasti mahdollisten lähestymistapojen löytämiseksi, ja tätä tietoa käytettiin työkaluintegraation
perustana.

Rautaläheisten ohjelmistojen kehitykseen liittyviä haasteita koottiin kirjallisuudesta ja
teollisuuskokemuksista vahvistamaan ymmärrystä tarvittavasta työkalutuesta ja määrittämään
vaatimukset työkaluintegraatiolle. Päävaatimuksina työkaluintegraatiolle asetettiin laajennettavuus,
minkä mahdollistamiseen kehikko (framework) -pohjainen ratkaisu sopii luontevasti, ja lisäksi
tiedon kulku työkalusta työkaluun sekä jäljitettävyyden ylläpitäminen työkaluissa syntyvien
tietojen välille. Työkaluvaatimuksina integraatiolle asetettiin projektinhallinta-, vaatimustenhallinta-,
testauksenhallinta- ja muutoksenhallintatyökalut. Erityisesti painotettiin testauksen ja testi-
analyysin työkalutukea.

Työkaluintegraatio, ToolChain, toteutettiin kahdessa vaiheessa. Ensimmäisessä vaiheessa
suoritettiin pohjatyö integraatiokehykselle. Integraatioalustaksi valittiin Eclipse ja Eclipsen
liitännäiset (plug-in) integraatioiden toteutuskeinoksi. Toisessa vaiheessa lisättiin työkalutuki,
joka painottuu rautaläheiseen ohjelmistokehitykseen. Kunkin vaiheen toteutukset validoitiin
erikseen teollisuuskokeilussa. Teollisuuskokeilujen kokemukset esitetään, joista käy ilmi
kuinka ToolChain voidaan helposti ottaa käyttöön kohdeyrityksen kehitysympäristössä, ja
kuinka työkaluintegraatio helpottaa työskentelyä.

ISBN
978-951-38-7373-8 (URL: http://www.vtt.fi/publications/index.jsp)

Avainnimeke ja ISSN Projektinumero
VTT Publications
1455-0849 (URL: http://www.vtt.fi/publications/index.jsp)

6086

Julkaisuaika Kieli Sivuja
Joulukuu 2009 Englanti, suom. tiiv. 83 s.

Projektin nimi Toimeksiantaja(t)
TWINS VTT

Avainsanat Julkaisija

development tools, tool integration VTT
PL 1000, 02044 VTT
Puh. 020 722 4520
Faksi 020 722 4374

VTT CREATES BUSINESS FROM TECHNOLOGY
�Technology and market foresight • Strategic research • Product and service development • IPR and licensing
• Assessments, testing, inspection, certification • Technology and innovation management • Technology partnership

• • • VTT PU
B

LIC
A

TIO
N

S 725	
Int

eg
rat

ed

 tool support

for

h

ar

d
w

ar

e-r
elat

ed
 so

ftw
ar

e d

evelop
m

ent

ISBN 978-951-38-7373-8 (URL: http://www.vtt.fi/publications/index.jsp)
ISSN 1455-0873 (URL: http://www.vtt.fi/publications/index.jsp)

VTT PUBLICATIONS

708	 Satu Innamaa. Short-term prediction of traffic flow status for online driver information.
2009. 79 p. + app. 90 p.

709	 Seppo Karttunen & Markus Nora (eds.). Fusion yearbook. 2008 Annual report of
Association Euratom-Tekes. 132 p.

710	 Salla Lind. Accident sources in industrial maintenance operations. Proposals for
identification, modelling and management of accident risks. 2009. 105 p. + app. 67 p.

711	 Mari Nyyssönen. Functional genes and gene array analysis as tools for monitoring
hydrocarbon biodegradation. 2009. 86 p. + app. 59 p.

712	 Antti Laiho. Electromechanical modelling and active control of flexural rotor vibration
in cage rotor electrical machines. 2009. 91 p. + app. 84 p.

714	 Juha Vitikka. Supporting database interface development with application lifecycle
management solution. 2009. 54 p.

715	 Katri Valkokari. Yhteisten tavoitteiden ja jaetun näkemyksen muodostuminen kolmessa
erityyppisessä verkostossa. 2009. 278 s. + liitt. 21 s.

716	 Tommi Riekkinen. Fabrication and characterization of ferro- and piezoelectric multilayer
devices for high frequency applications. 2009. 90 p. + app. 38 p.

717	 Marko Jaakola. Performance Simulation of Multi-processor Systems based on Load
Reallocation. 2009. 65 p.

718	 Jouko Myllyoja. Water business is not an island: assessing the market potential of
environmental innovations. Creating a framework that integrates central variables of
internationally successful environmental innovations. 2009. 99 p. + app. 10 p.

719	 Anu Tuominen. Knowledge production for transport policies in the information society.
2009. 69 p. + app. 52 p.

720	 Markku Hänninen. Phenomenological extensions to APROS six-equation model: non-
condensable gas, supercritical pressure, improved CCFL and reduced numerical diffusion
for scalar transport calculation. 2009. 60 p. + app. 54 p.

721	 Aku Itälä. Chemical Evolution of Bentonite Buffer in a Final Repository of Spent Nuclear
Fuel During the Thermal Phase. 2009. 78 p. + app. 16 p.

722	 Kai Hiltunen, Ari Jäsberg, Sirpa Kallio, Hannu Karema, Markku Kataja, Antti Koponen,
Mikko Manninen & Veikko Taivassalo. Multiphase Flow Dynamics. Theory and Numerics.
2009. 113 p. + app. 4 p.

723	 Riikka Juvonen. DNA-based detection and characterisation of strictly anaerobic beer-
spoilage bacteria. 2009. 134 p. + app. 50 p.

724	 Paula Jouhten. Metabolic modelling and 13C flux analysis. Application to biotechnologically
important yeasts and a fungus. 2009. 94 p. + app. 83 p.

725	 Juho Eskeli. Integrated tool support for hardware-related software development. 2009.
83 p.

	Abstract
	Tiivistelmä
	Preface
	Contents
	List of symbols
	1. Introduction
	2. The development process
	2.1 Systems engineering
	2.1.1 Waterfall lifecycle
	2.1.2 V-Model
	2.1.3 Crnkovic model
	2.1.4 Iterative lifecycle

	2.2 Workflow

	3. Tool integration
	3.1 Why tool integration is necessary?
	3.2 Tool integration approaches
	3.2.1 Data integration interfaces
	3.2.2 Tool integration from an application lifecycle management perspective

	3.3 Existing implementations

	4. Hardware-related software
	4.1 Challenges
	4.1.1 Product lifecycle
	4.1.2 Performance
	4.1.3 Memory handling
	4.1.4 Testing
	4.1.5 Timeliness
	4.1.6 Concurrency
	4.1.7 Interfaces
	4.1.8 Heterogeneity
	4.1.9 Reactivity and responsiveness
	4.1.10 Predictability
	4.1.11 Correctness and robustness
	4.1.12 Distributed systems
	4.1.13 Resource limited target environments
	4.1.14 Subcontracting
	4.1.15 Managerial challenges
	4.1.16 Summary

	5. Requirements for tool support
	5.1 ToolChain process model
	5.1.1 System definition phase
	5.1.2 Sub-System definition phase
	5.1.3 Implementation phase
	5.1.4 Integration & release phase
	5.1.5 Project management
	5.1.6 Change management

	5.2 Collected requirements

	6. Tool integration design
	6.1 ToolChain framework
	6.1.1 Eclipse Architecture
	6.1.2 ToolChain architecture
	6.1.3 Connecting tools
	6.1.4 Data visibility
	6.1.5 Traceability
	6.1.6 Security and user rights management

	6.2 Hardware-related software development support
	6.2.1 Overview
	6.2.2 Workflow support

	7. Tool integration implementation
	7.1 Implementations in the first phase
	7.1.1 Tool integrations
	7.1.1.1 Philips Project Assist Tool
	7.1.1.2 Open workbench
	7.1.1.3 Trac integration
	7.1.1.4 Telelogic DOORS
	7.1.1.5 Open source requirements management tool (OSRMT)
	7.1.1.6 IBM Rational RequisitePro
	7.1.1.7 Telelogic Synergy/CM
	7.1.1.8 Subversion
	7.1.1.9 SoftFab
	7.1.1.10 Testlink

	7.2 Implementations in the second phase
	7.2.1 PROBE framework integration
	7.2.2 PERVIS and PERSIM integration
	7.2.3 MVA tool integration
	7.2.4 Workflow implementation and integration
	7.2.5 Improved traceability view
	7.2.6 Summary of the integrated tools

	8. Tool integration trial and validation
	8.1 Philips case
	8.2 NSN case

	9. Discussion
	9.1 Integration approach
	9.2 Tool integrations
	9.3 Process and workflow
	9.4 Dissemination
	9.5 Validation
	9.5.1 NSN case
	9.6 Future work

	10. Conclusion
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308030d730ea30d730ec30b9537052377528306e00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /FRA <FEFF004f007000740069006f006e007300200070006f0075007200200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020005500740069006c006900730065007a0020004100630072006f0062006100740020006f00750020005200650061006400650072002c002000760065007200730069006f006e00200035002e00300020006f007500200075006c007400e9007200690065007500720065002c00200070006f007500720020006c006500730020006f00750076007200690072002e0020004c00270069006e0063006f00720070006f0072006100740069006f006e002000640065007300200070006f006c0069006300650073002000650073007400200072006500710075006900730065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e00650020007100750061006c00690074006100740069007600200068006f006300680077006500720074006900670065002000410075007300670061006200650020006600fc0072002000640069006500200044007200750063006b0076006f0072007300740075006600650020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e00200042006500690020006400690065007300650072002000450069006e007300740065006c006c0075006e00670020006900730074002000650069006e00650020005300630068007200690066007400650069006e00620065007400740075006e00670020006500720066006f0072006400650072006c006900630068002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e00200045007300740061007300200063006f006e00660069006700750072006100e700f50065007300200072006500710075006500720065006d00200069006e0063006f00720070006f0072006100e700e3006f00200064006500200066006f006e00740065002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e0067002000740069006c0020007000720065002d00700072006500730073002d007500640073006b007200690076006e0069006e0067002000690020006800f8006a0020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e00200044006900730073006500200069006e0064007300740069006c006c0069006e0067006500720020006b007200e600760065007200200069006e0074006500670072006500720069006e006700200061006600200073006b007200690066007400740079007000650072002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f00670065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000610066006400720075006b006b0065006e0020006d0065007400200068006f006700650020006b00770061006c0069007400650069007400200069006e002000650065006e002000700072006500700072006500730073002d006f006d0067006500760069006e0067002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e002000420069006a002000640065007a006500200069006e007300740065006c006c0069006e00670020006d006f006500740065006e00200066006f006e007400730020007a0069006a006e00200069006e006700650073006c006f00740065006e002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200071007500650020007000650072006d006900740061006e0020006f006200740065006e0065007200200063006f007000690061007300200064006500200070007200650069006d0070007200650073006900f3006e0020006400650020006d00610079006f0072002000630061006c0069006400610064002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e0020004500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007200650071007500690065007200650020006c006100200069006e0063007200750073007400610063006900f3006e0020006400650020006600750065006e007400650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e0020004e00e4006d00e4002000610073006500740075006b0073006500740020006500640065006c006c00790074007400e4007600e4007400200066006f006e0074007400690065006e002000750070006f00740075007300740061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007000720065007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e002000510075006500730074006500200069006d0070006f007300740061007a0069006f006e006900200072006900630068006900650064006f006e006f0020006c002700750073006f00200064006900200066006f006e007400200069006e0063006f00720070006f0072006100740069002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006800f800790020007500740073006b00720069006600740073006b00760061006c00690074006500740020006600f800720020007400720079006b006b002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e00200044006900730073006500200069006e006e007300740069006c006c0069006e00670065006e00650020006b0072006500760065007200200073006b00720069006600740069006e006e00620079006700670069006e0067002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006600f60072002000700072006500700072006500730073007500740073006b0072006900660074006500720020006100760020006800f600670020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e00200044006500730073006100200069006e0073007400e4006c006c006e0069006e0067006100720020006b007200e400760065007200200069006e006b006c00750064006500720069006e00670020006100760020007400650063006b0065006e0073006e006900740074002e>
 /ENU <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b0073006900610020007000610069006e006f006f006e0020006d0065006e0065007600690073007300e40020007400f600690073007300e4002e0020004e00e4006d00e4002000610073006500740075006b00730065007400200076006100610074006900760061007400200061007300690061006b006b00610061006c007400610020007600e400680069006e007400e400e4006e0020004100630072006f00620061007400200035002e00300020002d00790068007400650065006e0073006f0070006900760061006e0020006a00e40072006a0065007300740065006c006d00e4006e002e0020004b00610069006b006b006900200066006f006e007400690074002000750070006f00740065007400610061006e0020006d0075006b00610061006e002e0020>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

