
Teemu Kanstrén

A Framework for Observation-Based
Modelling in Model-Based Testing

Dissertation	 	 VTT PUBLICATIONS 727

VTT PUBLICATIONS 727

A Framework for Observation-Based
Modelling in Model-Based Testing

Teemu Kanstrén

Academic Dissertation to be presented, with the assent of the Faculty of
Science, University of Oulu, for the public discussion in the Auditorium

IT115, Linnanmaa, on February 19th, 2010, at 12 o’clock noon.

2

ISBN 978-951-38-7376-9 (softback ed.)
ISSN 1235-0621 (softback ed.)

ISBN 978-951-38-7377-6 (URL: http://www.vtt.fi/publications/index.jsp)
ISSN 1455-0849 (URL: http://www.vtt.fi/publications/index.jsp)

Copyright © VTT 2010

JULKAISIJA – UTGIVARE – PUBLISHER

VTT, Vuorimiehentie 5, PL 1000, 02044 VTT
puh. vaihde 020 722 111, faksi 020 722 4374

VTT, Bergsmansvägen 5, PB 1000, 02044 VTT
tel. växel 020 722 111, fax 020 722 4374

VTT Technical Research Centre of Finland, Vuorimiehentie 5, P.O. Box 1000, FI-02044 VTT, Finland
phone internat. +358 20 722 111, fax + 358 20 722 4374

Edita Prima Oy, Helsinki 2010

http://www.vtt.fi/publications/index.jsp
http://www.vtt.fi/publications/index.jsp

3

Teemu Kanstrén. A Framework for Observation-Based Modelling in Model-Based Testing. Espoo 2010.
VTT Publications 727. 93 p. + app. 118 p.

Keywords model-based testing, test automation, observation-based modelling, test generation

Abstract
In the context of software engineering, test automation as a field of research has
been around for a very long time. Yet, testing and related concepts are still gen-
erally considered to be one of the most time-consuming and expensive parts of
the software life cycle. Although it is a field with a relatively long research
background, many existing test automation systems are still relatively simple
and not very different from the early days. They still focus on executing an exist-
ing, usually manually crafted, set of tests over and over again.

One approach that has also been around for a relatively long time but has only
recently begun to attract considerable interest in the domain of software testing
is model-based testing. In model-based testing, the system under test is repre-
sented by a model describing its expected behaviour at a higher abstraction level,
and a set of chosen algorithms are used to generate tests from this model. Cur-
rently, these models need to be manually crafted from the specification.

This thesis presents an approach for observation-based modelling in model-
based testing and aims to provide automated assistance for model creation. This
includes design and architectural solutions to support observation and testing of
the system, analysis of different types of executions used as a basis for observa-
tions, and finally combines the different viewpoints to provide automated tool
support to generate an initial test model, based on the captured observations, that
is suitable for use in model-based testing. This model is then refined and verified
against the specification. As the approach reverses the traditional model-based
testing approach of going from specification to implementation, to going from
implementation to specification, guidelines for its application are also presented.
The research uses a constructive approach, in which a problem is identified, a
construct to address the problem is designed and implemented, and finally the
results are evaluated.

The approach has been evaluated in the context of a practical system in which
its application discovered several previously unknown bugs in the implementa-

4

tion of the system under test. Its effectiveness was also demonstrated by generat-
ing a highly complete model and showing how the completed model provides
additional test coverage both in terms of code covered and injected faults dis-
covered (test mutants killed).

5

Preface
Once upon a time I was young(er) and started geeking around with computers
and programming at an early age. I still enjoy the nostalgia of watching re-
cordings from these times on YouTube. From somewhere along the line I picked
up my desire to understand and analyse program behaviour and its different
properties. This is also reflected in this thesis where the underlying theme is
really satisfying my desire to understand how programs work and what makes
them work that way.

This work was carried out together with different institutions and with finan-
cial support from a number of sources. Part of the work was conducted as a
member of the Automated Testing Platforms Team in the Software Architectures
and Platforms group at the VTT Technical Research Centre of Finland, with
funding from different projects at VTT. Part of the work was also carried out in
the context of the University of Oulu, with funding from the SoSE Graduate
School on Software Systems and Engineering. The final parts of the thesis were
finished during my research visit to the Software Engineering Research Group at
the Delft University of Technology, the Netherlands. I have also carried out
some of the work in my own time and in my own place, while I was financially
supported by scholarships from the Jenny and Antti Wihuri Foundation, and the
Nokia Foundation, and while wearing on the nerves of my family.

I wish to thank all the above institutions for making it possible for me to work
on interesting research topics and to create this thesis.

I wish to thank my supervisor Ilkka Tervonen and the reviewers of the thesis,
Per Runeson and Atif Memon. I also wish to thank the people who made my
visit to TU/Delft both interesting and possible, Arie van Deursen and Hans-
Gerhard Gross. I also thank my parents for all their support over the years, what-
ever I have chosen to do (or not) and whether it made sense or not. Finally, I
thank my wife Kaisu and my children Valtteri and Severi (almost the cover art-

6

ists). Any simple list would not do you justice, so thank you for everything. Too
bad Pikku-Pupu and Niinan tyyny did not make it to the thesis as I hoped.

I dedicate this thesis to the memory of my brother Jari, who once helped me
get back to software engineering and was there to see me start the journey for a
PhD but never to finish it.

The Hague, December 2009 Teemu Kanstrén

7

List of original publications
I Kanstrén, T., Hongisto, M. & Kolehmainen, K. 2007. Integrating and

Test-ing a System-Wide Feature in a Legacy System: An Experience
Report. Proceedings of the 11th European Conference on Software
Maintenance and Reengineering, CSMR’07, Amsterdam, the Netherlands,
21–23 March, 2007. 10 p.

II Kanstrén, T. 2007. Towards Trace Based Model Synthesis for Program

Understanding and Test Automationm. Proceedings of the 2nd International
Conference on Software Engineering Advances, ICSEA 2007, Cap
Esterel, French Riviera, France, 25–31 August, 2007. 10 p.

III Kanstrén, T. 2008. Towards a Deeper Understanding of Test Coverage.

Journal of Software Maintenance and Evolution: Research and Practice,
JSME, Vol. 20, No. 1, 2008. Pp. 59–76.

IV Kanstrén, T. 2008. A Study on Design for Testability in Component-

Based Embedded Software. Proceedings of the 6th International Conference
on Software Engineering Research, Management and Applications,
SERA’08, Prague, Czech Republic, 20–22 August, 2008. 8 p.

V Pollari, M. & Kanstrén, T. A Probe Framework for Monitoring Embedded

Real-Time Systems. Proceedings of the 4th International Conference on
Internet Monitoring and Protection, ICIMP 2009, Venice, Italy, 24–28
May, 2009. Received best paper award and invitation for extended
version to the Journal on Advances in Systems and Measurements. 7 p.

VI Kanstrén, T., Piel, E. & Gross H.-G., Observation Based Modeling for

Model-Based Testing. Submitted to the Journal of Software Testing,
Verification and Reliability, 2009.

8

VII Kanstrén, T. Behavior Pattern-Based Model Generation for Model-
Based Testing. Proceedings of the 1st International Conference on Pervasive
Patterns and Applications, PATTERNS 2009, Athens, Greece, November
15–20, 2009. 9 p.

VIII Kanstrén, T. Program Comprehension for User-Assisted Test Oracle

Generation. Proceedings of the 4th International Conference on Software
Engineering Advances, ICSEA 2009, Porto, Portugal, September 20–25,
2009. 10 p.

9

Contents

Abstract ... 3

Preface.. 5

List of original publications.. 7

List of abbreviations .. 11

1. Introduction ... 12
1.1 Research context .. 14
1.2 Research questions .. 16
1.3 Research approach... 17
1.4 Contributions of the thesis .. 25
1.5 Structure of the thesis ... 26

2. Test automation and observation-based modelling...................................... 27
2.1 Test automation .. 27

2.1.1 Terminology and basic concepts.. 28
2.1.2 Test data generation .. 32
2.1.3 Test oracles.. 40
2.1.4 Test harness... 44
2.1.5 Model-based testing ... 45

2.2 Observation-based modelling ... 47
2.2.1 Basic terminology ... 49
2.2.2 State-based models ... 50
2.2.3 Other models.. 51

2.3 Discussion... 54

3. A framework for observation-based modelling in model-based testing........ 56
3.1 Phase 1: Defining the target model... 56
3.2 Phase 2: Applying the framework ... 59

3.2.1 Step 1: Capturing observations .. 60
3.2.2 Step 2: Model generation ... 62
3.2.3 Step 3: Model refinement for verification and testing 63

3.3 Discussion... 64

10

4. Introduction to original papers .. 66
4.1 PAPER I: Integrating and Testing a System-Wide Feature in a Legacy System: An

Experience Report .. 66
4.2 PAPER II: Towards Trace-Based Model Synthesis for Program Understanding and Test

Automation.. 67
4.3 PAPER III: Towards a Deeper Understanding of Test Coverage 68
4.4 PAPER IV: A Study on Design for Testability in Component-Based Embedded Software68
4.5 PAPER V: A Probe Framework for Monitoring Embedded Real-Time Systems 69
4.6 PAPER VI: Observation Based Modeling for Model-Based Testing................................. 70
4.7 PAPER VII: Behavior Pattern-Based Model Generation for Model-Based Testing 71
4.8 PAPER VIII: Program Comprehension for User-Assisted Test Oracle Generation 72

5. Framework evaluation... 74
5.1 Study subjects... 74
5.2 Phase 1: Defining the target model... 76
5.3 Phase 2: Applying the framework ... 76

5.3.1 Step 1: Capturing observations .. 76
5.3.2 Step 2: Model generation ... 77
5.3.3 Step 3: Model refinement for verification and testing 77

6. Conclusions... 79
6.1 Answers to the research questions... 79
6.2 Limitations and future work ... 80

References.. 83

Appendices
Papers I–VIII

11

List of abbreviations
AJAX Asynchronous JavaScript And XML

AMBT Anti-Model-Based Testing

COTS Commercial Off-The-Shelf

CP Category Partition

DFT Design For Testability

DOM Document Object Model

EFSM Extended Finite State Machine

FSM Finite State Machine

GUI Graphical User Interface

HTML HyperText Markup Language

IO Input/Output

MBT Model Based Testing

OSM Object State Machine

SUT System Under Test

SW Software

UML Unified Modeling Language

V&V Verification and Validation

WS Web Service

WSDL Web Service Definition Language

XML eXtensible Markup Language

1. Introduction

12

1. Introduction
Software testing is one of the activities used to ensure the proper implementation
and functionality of a given software artefact. It can be described as “observing a
software system to validate whether it behaves as intended and identify potential
malfunctions” [1]. As it is rare to write software without trying to run it and thus
implicitly trying to test it, software testing can be considered to be as old as the
writing of software. All things considered, however, life is not that simple and
someone who is into, for example, formal methods may disagree in the spirit of
the famous quote from Donald E. Knuth, “Beware of bugs in the above code; I
have only proved it correct, not tried it.” [2]. Regardless of how one looks at it,
software testing as a research area has a long history, at least in the context of
software engineering. Gelperin and Hetzel [3] date the first articles on program
testing to the 1950’s and the first conference on software testing to 1972. They
also describe the evolution of software testing over different periods. More re-
cently, software testing has been seen as encompassing all parts of the develop-
ment and maintenance processes and as something that needs to be included and
planned for from the beginning [1].

Software testing research is commonly justified by arguing that testing takes
up to 50% or more of the total development costs of software (e.g. [1]). As this
is usually based on decades-old studies (e.g. [1]), the validity of this reasoning is
arguable. Most of the discussion on the matter seems to agree that testing is one
of the most costly parts of the software development process, however, so there
is bound to be some truth in it. In software testing research, this is typically used
to emphasize the importance of related research, and this thesis is no different.
This emphasis alone on the cost of software testing makes software test automation
research important from the cost-effectiveness perspective of software engineering.

From the application domain perspective, the ever-increasing complexity of
software-intensive systems and their increasingly pervasive nature also high-

1. Introduction

13

lights the importance of research into software testing (automation). In the last
few decades, software has become a commodity with a growing presence in
everything around us. This includes the “simple” things such as the electronic
toothbrush, complex systems of systems, and life-critical applications in health-
care and other domains. In this context, it is also increasingly important for
software to fulfil its required purpose reliably. This in turn emphasizes the need
for better support in techniques, including test automation, to verify the correct-
ness of SW systems.

The term “test automation” seems to imply much: automated testing of a
given software system. One might think that given any system, the automated
testing platform would test it and verify its correctness. In practice, however,
most existing test automation platforms focus on automatically running existing
test scripts that first have to be manually created. This way, they do little more
than allow for the repetition of existing test cases, which is also often referred to
as regression testing. As well as having to write the test scripts manually, the
user of these platforms also typically has to take care of other tasks such as con-
necting the test cases inside the test platform to the SUT. This part is referred to
as the test harness.

Some approaches take automation further. These will be discussed in more de-
tail in Chapter 2. One of these approaches is model-based testing in which an
MBT tool generates test cases based on a model of the SUT. This model typi-
cally describes the SUT at a higher level of abstraction than the implementation,
usually as a black box focusing on its external interfaces and higher-level func-
tionality [4]. In this way, MBT tries to automate more of the testing process, as
the model is expected to require less effort to maintain than a manually created
suite of test cases. This can still require significant effort, however, in creating
and maintaining the test models, including acquiring the specialist skills for pro-
ducing good models suitable for MBT.

The research presented in this dissertation aims to make the process of MBT
more cost-efficient and easier to adopt. It presents tools and methods to automate
much of the process of generating a test model for a SUT. It discusses the break-
ing down of a chosen target model into a set of observations (e.g. traces of pro-
gram execution such as messages passed through external interfaces) that can be
used to automatically generate an initial model suitable for MBT. An implemen-
tation to automatically generate an extended finite state-machine model from a
given set of suitable observations is provided and used to evaluate the concept.
The generated model is not intended to be perfect as is but to provide an ad-

1. Introduction

14

vanced starting point from which to quickly start the MBT testing process and
help to model the behaviour of the SUT accurately while verifying the correct-
ness of the implementation against the specification.

The usefulness of this type of approach has already been discussed by Berto-
lino et al. [5], who discussed this type of concept but never implemented or stud-
ied it in practice. This approach reverses the concept of model-based testing,
which typically uses the system specification as a basis for the manual creation
of the test model. This model is then executed and compared against the actual
implementation. Now, instead a model is automatically generated from the im-
plementation and, with the aid of an MBT tool, used to verify the implementa-
tion against the specification following a set of provided quidelines. The gener-
ated model combined with an MBT tool includes everything needed to generate
and run tests against the SUT, including the test scripts (for SUT input), a test
harness and test oracles (to verify the correctness of SUT output).

1.1 Research context

Software testing is considered to be part of the software verification and valida-
tion processes. Together, V&V aim to make sure that the software delivers what
the customer expects from it [6]. Verification focuses on assessing whether the
software matches its specification, and validation on assessing that the specifica-
tion matches the customer’s needs. SW testing is a tool in these processes for
ensuring better SW quality. V&V also include many other tools and techniques,
such as inspections and static analysis methods [6]. Similarly, SW testing can be
defined from many perspectives.

The definition and focus of test automation used in this thesis follow the defi-
nition given in the software engineering book of knowledge, which defines
software testing as consisting of “the dynamic verification of the behavior of a
program on a finite set of test cases, suitably selected from the usually infinite
executions domain, against the expected behavior.” [7].

In addition, testing is often divided into categories, such as functional and
non-functional testing, white-box and black-box testing, and different levels of
testing such as unit- and system-level testing. While much of the research pre-
sented in this thesis can be applied to the context of many of these different
types of tests, the main focus of this thesis is on a subset of these. This chosen
subset is described next.

1. Introduction

15

Functional testing focuses on the functional properties of the software, such as
correct input-output transitions. Non-functional testing focuses on the non-
functional attributes of the SW, such as performance and usability. The research
presented in this thesis focuses on testing the functional properties of SW. The
tests generated by the described test automation framework are functional tests
for the SUT. However, many of the described results are also applicable to some
non-functional requirements such as monitoring and analysing the SW behaviour
for performance analysis [8].

The division of tests into white- and black-box tests is related to the informa-
tion on which the tests are based. White-box testing makes use of information
about the internal structure and implementation of the SUT, whereas black-box
testing views the SUT as a black box and focuses on testing through its external
interfaces. Of course, the reality is never this black and white; there are gray
areas in between where the information can be considered to partly require
knowledge of the internal structures and implementation while still being of a
higher level. In many cases, the two approaches can also be combined. The re-
search presented in this thesis focuses mostly on a black-box approach, with
some gray-box elements such as relying on implemented test interfaces to access
the internal state of components.

When defining the research context and approach applied to this thesis, it is
also important to define the assumptions made about the SW being tested. Two
concepts commonly applied to the design of modern SW systems are the use of
components and of services. These are used to define conceptual units of de-
ployment where parts of the required functionality are provided by the different
units (as components and services). A common term related to these is the use of
service-oriented architecture (SOA). While no strict limitations are presented,
the research in this thesis is oriented towards SW systems to which this type of
structuring approach is applied. Many of the publications also address embedded
real-time systems specifically. These define the scope of the analysed SW sys-
tems, although the presented tools and techniques are not seen as being restricted
to these domains.

The concept of different levels of testing is discussed in more detail in [9]. In
the context of this thesis, the focus is on testing components and services, mainly
with a black-box approach as described earlier. In this regard, no distinct classi-
fication is made as to which levels of testing are addressed, as this depends on
various definitions such as what constitutes a unit, a module, a component or a
service that is being tested. The research described in this thesis, however, is more

1. Introduction

16

oriented towards the higher levels of testing of components and services as op-
posed to considering very small units of code such as single methods or classes.

Reverse Engineering

Program Comprehension

Modeling

Test Automation
To

ol
 S

up
po

rt

Figure 1. Research context.

The research presented in this thesis combines approaches from different soft-
ware engineering research domains as illustrated in Figure 1. Reverse engineer-
ing-related concepts are used to capture observations (information) about the
SUT behaviour. Automated tool support is used to turn these observations into
models suitable for test automation. The set of observations required to capture a
comprehensive model are analysed with the help of program comprehension
techniques. The program comprehension techniques are also used to further ana-
lyse the models to support the user in the process of modelling and using the
models for verifying the implementation vs the specification. Finally, automated
model-based testing tools are used to generate more tests and to assess the cor-
rectness of the SUT implementation against its specification. All parts of this
process are supported with software tools.

1.2 Research questions

So far, the process of creating models for model-based testing has been mostly a
manual process. In this thesis, means are sought to automate as much as possible
of this process. As the focus is mainly on using observations from the execution
of an existing system as a basis for this, the main research question can be sum-
marized as follows:

• How can automated support be provided for model creation for model-
based testing of existing software?

1. Introduction

17

This question has been divided into a number of smaller subquestions which,
when answered, provide a basis for answering the main research questions.
These subquestions are defined as follows:

1. How can the information to generate the models be captured?

In order to generate the models, a set of observations first needs to be defined
that can be used as a basis to describe the SUT at a level that enables the use of
algorithms to generate the target models. The answer to this question requires a
definition of the information that needs to be captured, where it should be captured
from and how it is to be accessed by the algorithms used to generate the model.

2. How can this information be turned into a meaningful test model for MBT?

The generation of a model from the captured information (observations) requires
a set of algorithms that can be used to turn the observations into a model usable
for MBT. The answer to this question will provide these algorithms. This ques-
tion is also closely tied to the first subquestion, as defining the algorithms also
defines the information they need to operate.

3. How can the generated models be used for SUT verification and testing?

When a model is generated automatically for a SUT based on observations of its
execution, this model accurately describes the SUT as it is. To verify the cor-
rectness of the implementation, however, the actual implementation needs to be
compared with the expected implementation (as expressed by the SUT specifica-
tion). As the model is further used to generate tests for the SUT, it should not
describe what the SUT actually is but rather what it should be, i.e., the model
should be made to reflect the (correct) expected specification when used for
testing. The answer to this question will reveal how the generated model can be
used to verify the correctness of the SUT behaviour.

1.3 Research approach

Software engineering research applies many different types of research methods.
For example, Glass et al. [10] list 22 different types of research methods based
on their review of the software engineering research literature. By far the most
popular of these are conceptual analysis (conceptual analysis 43.5% and concep-
tual analysis/mathematical 10.6%) and concept implementation/proof of concept

1. Introduction

18

(17.1%), followed by laboratory experiments (3.0%) [10]. Runeson and Höst
[11] classify the different research methods further into four categories:

• Exploratory – finding out what is happening, seeking new insights and
generating ideas and hypotheses for new research

• Descriptive – portraying a situation or phenomenon

• Explanatory – seeking an explanation of a situation or a problem, mostly
but not necessarily in the form of a causal relationship

• Improving – trying to improve a certain aspect of the studied phenomenon.

Going into all possible research methods in detail is outside the scope of this
thesis, and thus the focus here is to present the parts that are relevant to the study
in this thesis.

Runeson and Höst describe case studies in software engineering as often tak-
ing an improvement approach [11]. In a similar way, this dissertation applies
mainly a constructive research approach in which the problem is first analysed
and a conceptual framework presented, then an artefact is designed and con-
structed to address the problem, and finally the results are evaluated [12, 13].

This type of constructive research can also be referred to as design science,
which is generally defined as attempting to create things that serve a human
purpose [14], or more specifically in the context of information systems as seek-
ing “to create innovations that define the ideas, practices, technical capabilities,
and products through which the analysis, design, implementation, and use of
information systems can be effectively and efficiently accomplished” [15]. In the
context of software engineering, this can be translated into the specific proper-
ties of software engineering such as tools, methods and processes that support
software engineering activities.

In addition to design science, the second main research approach applied to this
thesis is that of conceptual analysis. Although listed as one of the main approaches
applied to both software engineering [10] and computer science in general [16], it
is difficult to find a meaningful definition of conceptual analysis in the context of
software engineering or computer science. Neither of these studies [10, 16] pro-
vides any explanation for or reference to the definition of contextual analysis,
although they define it as one of the main approaches. In this thesis, the definition
of conceptual analysis follows the concept of the definition of analysis in [17],
while applying it in the context of software engineering research.

1. Introduction

19

In light of this definition, conceptual analysis is defined here as the search for
the definition of a given concept and the act of breaking that concept into more
elementary parts. Once the individual parts that constitute the definition of the
decomposed concept have been defined, the definition and the concept of the
whole can be discussed. For example, in this context the definition of test auto-
mation is approached by splitting it into its constituent parts (test input, test har-
ness, test oracle, etc.) and using this as a basis for approaching complete solu-
tions for supporting test automation. This definition is thus based on the concept
of analysis as discussed in [17].

Figure 2. Information Systems Research Framework as described by Hevner et al. [15].

Figure 2 shows the information systems research framework as described by
Hevner et al. [15]. In this framework, the environment defines the problem space
in which the phenomena of interest reside. Together, the different parts of the
environment define the business need or “problem” as perceived by the re-
searcher. Given these business needs, the research is conducted in two comple-
mentary phases as shown in the middle of Figure 2. These phases are the build-
ing and evaluation of the artefacts designed to meet the identified business
needs. The knowledge base provides the raw materials from and through which
research is accomplished. Prior research and results from reference disciplines

1. Introduction

20

provide the foundations for the develop/build phase of a research study. Meth-
odologies provide guidelines used in the justify/evaluate phase. Rigour is
achieved by appropriate application of existing foundations and methodologies.
A link back from the research to both the environment and the knowledge base
is present in the research being applied to the actual environment and by provid-
ing new knowledge into the knowledge base.

In line with the constructive research approach of design science, the research
approach applied in this thesis can be described as a three-step process, progress-
ing through conceptual analysis, artefact construction and case studies presented
in the attached papers. Thus this approach also follows the most popular research
methods in SW engineering as described by Glass et al. [10] (conceptual analy-
sis and concept implementation). The guidelines for design research as given in
[15] are mapped to the different papers presented in Table 1 of this thesis.

In view of the evaluation part of the research approach described in Figure 2, a
number of different approaches are possible [18, 15, 11]. The ones discussed
further in this thesis are presented briefly below. A more thorough review of the
different papers, their study subjects and how they contribute to the evaluation of
the overall framework presented in this thesis will be given in Chapter 5.

• A case study is described as typically focusing on what is happening in the
context of a single project [18], although it is not uncommon to study sev-
eral projects [11, 18]. Based on different sources, Runeson and Höst [11]
describe case studies as “an empirical method aimed at investigating con-
temporary phenomena in their context”.

• Controlled experiments can be described as studying the effects of manipu-
lating one variable on another variable, with the requirement that subjects
are chosen at random [11]. Kitchenham et al. [18] refer to these as formal
experiments, stating also that the study must be replicated several times.

• A survey involves collecting information across many teams and projects
with the help of techniques such as interviews, for which the selection of
subjects is planned [11, 18].

• Action research, which is similar to a case study but also involved in the
change process and aims at evaluating the effect of the change [11]. This
approach is not used in any of the publications but is considered for possi-
ble future work in Chapter 6.

1. Introduction

21

One additional concept that is relevant to this thesis (and visible in Figure 2) is
simulation, which is used to provide synthetic data for the experiments [15]. In
the context of software testing this includes the use of artificially injected faults
into the system (termed mutation testing) to assess the fault detection effective-
ness of a test automation approach. This is used as one of the evaluation tech-
niques for the OBM approach in Paper VI.

Table 1. Design science guidelines [15] and mapping them to this thesis following [19].

Guideline Description

1: Design as
 an artefact

A viable artefact in the form of a construct, a model, a method or an in-
stantiation is produced. In this thesis the main artefact is the OBM tool and
related process. In addition, an independent artefact that contributes to the
whole of the OBM approach is presented in the papers that apply a con-
structive approach.

2: Problem
 Relevance

Technology-based solutions to important and relevant business problems
are developed. The relevance of each problem is motivated in each paper,
and for the complete OBM approach in Chapters 2–4 of this thesis. Paper I
also provides descriptions of the general relevance of the research pre-
sented in many of the papers.

3: Design
 Evaluation

The utility, quality and efficacy of a design artefact must be rigorously
demonstrated via well-executed evaluation methods. Each part of the
whole that constitutes the OBM approach has been evaluated in a realistic
and relevant environment as presented in the papers.

4: Research
 Contributions

Provide clear and verifiable contributions in the areas of the design arte-
fact, design foundations and/or design methodologies. This thesis as a
whole presents a new approach to model-based testing, and each paper
contributes to a subfield in this area in a more detailed and also independ-
ent way (a wider contribution).

5: Research
 Rigour

Rigorous methods are applied in both the construction and evaluation of
the design artefact. Each part of the research that is presented in individual
papers has been validated by carefully planned individual studies, includ-
ing the complete approach in the final paper (VI).

6: Design as a
 search process

Available means are utilized to reach desired ends while satisfying laws in
the problem environment. Each part of the presented research has been
iteratively refined during the course of the research. This is most visible in
Paper II, which provides some early experiments for OBM that have been
taken much further in Papers VI–VIII and Paper IV, which provides in-
sights into the research described in Paper V. In addition, Paper VI com-
bines all the parts, as will be described in Chapter 3.

7: Communication
 of research

Research presented effectively to both technology-oriented and manage-
ment-oriented audiences. The technical details of the research have been
thoroughly described in the attached papers. In this introductory part,
especially in Chapter 3, a more practical overview description is given.

1. Introduction

22

In addition, Runeson and Höst [11] provide a set of guidelines for case studies.
They discuss a case study protocol that should formulate the case study plan and
contain at least the following elements:

• Objective – The objective defines the initial focus point and may evolve
during the study. It may be, for example, one of the four types of research
described earlier: exploratory, descriptive, explanatory or improving. [11]

• Research questions – These provide the definition of what needs to be
known in order to fulfil the objective of the study. [11]

• The case – This defines what is being studied. For example, it may be a SW
development project, a process or a product. [11]

• Theory – This defines the frame of reference for the study. Since theories in
SW engineering are not well developed, it can be based on, for example,
study of existing methods or the viewpoints taken during the study. [11]

• Methods – This defines how data are collected for the study. Examples in-
clude interviews or tool instrumentation. [11]

• Selection strategy – This defines the selection of the studied case, that is,
from where the case study data are sought. [11]

Table 2 describes the different papers in this thesis for some of these viewpoints.
The selection strategy was based mainly on the available industrial systems for
study. As most of the case studies were carried out in collaboration with indus-
trial partners in research projects, this has set the context of the study and the
case selection. In these cases, the motivation to use industrial projects has been
both the drive for more collaboration with industrial partners and the provision
of a realistic environment for the research. A notable exception is Paper III,
which uses a freely available open source project as a case study subject. In this
case, the choice was based on the properties such as available test cases and
project complexity, and the aim was to have an extensible choice of tests and
significant complexity available to enable a realistic research context. Paper VI
can also be seen to have some elements of a controlled experiment when artifi-
cial faults are injected and the fault detection effectiveness of the OBM approach
is evaluated.

The most dominant research approach has been that of conceptual analysis,
followed by constructing design artefacts and evaluating the improvements
gained from its application. In this case, the motivation has been to first obtain a

1. Introduction

23

complete overview of the theory (fundamentals) and current state of the subject
area. This is seen as providing an effective research approach in first building an
understanding of the constituent parts of the subject (such as test automation)
and what has currently been done in the area. From this, new constructs for the
chosen goal have been designed and evaluated. This has also been an iterative
process, as described earlier. The final overall goal was to build a system for
more advanced support of testing through observing and controlling a system,
although this has progressed from more simple solutions (Paper II) to more ad-
vanced and complete solutions (Paper VIII).

Table 2. Research approaches in the papers in this thesis following [19].

Paper Objective Research question(s) Research approach

I Describing experiences
of testing and analysis of
complex, embedded real-
time SW

What issues exist in testing
and analysis of modern
software-intensive systems?

Experience report, descrip-
tive case study on a devel-
opment project & system

II Improving regression
testing via automated
model generation

How can a set of observa-
tions be used as a model for
regression testing?

Construction, improving,
case study on testing an
existing system

III Improving existing test
coverage measures and
their analysis

What types of tests are
needed for different parts of
tested SW?

Conceptual analysis, con-
struction, improving, case
study of a SW product

IV Exploratory analysis of
design for testability in
industry

How can support for testing
and analysis be effectively
built into a system?

Interviews, exploratory,
survey on several projects
and teams in 2 companies

V Providing support for
improving behaviour
monitoring and testing in
SW systems

How can effective support
for testing and analysis be
built into SW-intensive
systems?

Construction, improving,
case study on analysis of
several SW products

VI Improving automation of
model creation in model-
based testing

How can EFSM test models
be generated and used?
How useful are generated
models in practice?

Conceptual analysis, con-
struction, improving, case
study on several compo-
nents in a SW system

VII Providing guidelines for
algorithm development
for test model generation

How can algorithms be
designed to generate execu-
table test models from
captured observations?

Conceptual analysis, con-
struction, improving, case
study on one SW system

VIII Improving automated
support for test oracle
generation

How can automated support
be provided for the creation
of test oracles?

Conceptual analysis, con-
struction, improving, case
study on SW system

1. Introduction

24

Overall, conceptual analysis is applied to identify relevant problems in test
automation research. This is presented in Paper I and in Chapter 2 of this thesis.
A set of constructs and related evaluations are presented to address the research
problems presented in this thesis. Paper II presents the basic concept of this the-
sis, which relates to both conceptual analysis and design of the construct. Papers
III–V present designs and implementations of constructs to address issues identi-
fied in Papers I & II. The remaining papers present the final pieces of the puzzle
and provide the constructs to complete the work while also combining this with
the constructs presented in the previous papers and providing an evaluation of
the results. Paper VIII is a return to conceptual analysis in which the end result is
analysed and a framework is presented with some of the research results de-
scribed in a wider context. The timeline for the progress of this thesis is shown
in Figure 3, with each paper being shown on the timeline as P:X, where X is the
number of the paper.

Figure 3. Research timeline.

The review of the state of the art described in Chapter 2 was conducted at the
beginning of the work and updated throughout for each of the papers, and finally
for this dissertation. Paper I describes experiences from an industrial project on
which the author was working from the end of 2005 to 2007. Paper III is a con-
tinuation of the author’s master’s thesis. The remaining papers describe work in
research projects after the industrial project described in Paper I. Most of this
research work can be related to the experiences described in the industrial ex-
perience paper, and most of it was sequential, though work for Paper V was
carried out in parallel with a master’s thesis worker under the supervision of the
author. The work in the last three papers is closely related and thus interleaved.
The concept analysis in Paper VIII was conducted for related work before Pa-
pers VI & VII and finalised after them.

1. Introduction

25

1.4 Contributions of the thesis

The main contribution of this thesis is the presented automation framework for
supporting model-based testing. The main contribution is formed from the origi-
nal papers that make up this thesis. Each of these papers presents work on differ-
ent properties needed for the realization of the framework and provides a valida-
tion through a case study for the topic of that paper. The thesis covers the related
background work in Chapter 2, providing an overall view of test automation and
observation-based modelling from the viewpoints relevant to this thesis.

The focus is on techniques related to dynamic analysis, i.e., the analysis of the
behaviour of software systems based on observations made from their actual
executions. The papers that form this thesis focus on the different aspects of this
type of test automation. These papers describe the following properties related to
implementing this type of test automation platforms:

• An analysis of the complex environment and the requirements it sets for test
automation platforms in a modern software-intensive system.

• Tool and architectural design solutions and guidelines for providing effec-
tive testability support for capturing the base observations used for analys-
ing the SUT behaviour.

• A classification framework for and analysis of the different types of execu-
tions used as a basis for the analysis of SW behaviour.

• The decomposition of a model for the information to be observed for model
generation.

• Support for analysing the set of observations provided, for their complete-
ness in providing a sufficiently complete model of the SUT behaviour.

• Methods, tools and algorithms to turn the captured observations into models
for use in model-based testing.

• Experiences and guidelines for using these models.

Based on these contributions, a complete framework for supporting the automa-
tion of different aspects of testing modern software-intensive systems with the
aid of model-based techniques is presented. The different properties of the test
automation platform, as described, are combined to form the framework as pre-
sented in the last few papers of this thesis. The framework is summarized in
Chapter 3 of this thesis.

1. Introduction

26

1.5 Structure of the thesis

The rest of this thesis is structured as follows. Chapter 2 provides an overview of
existing research on test automation and observation-based modelling. First, it
describes the different parts of a test automation platform and the state of re-
search relating to these parts. As test automation research is a very large area of
research, the focus is on providing a general overview of the field.

Secondly, Chapter 2 also provides an overview of what is called observation-
based modelling. This refers to the generation of models describing SW behav-
iour based on information captured (observations) by monitoring the execution
of the SUT. It provides a general overview of different types of models and a
more focused overview of the state-based models used in the work presented in
this thesis.

Chapter 3 presents the developed framework for generating models based on
the observations captured from the SUT execution. It describes the decomposi-
tion of a target model to define the information that needs to be captured, how
this information is turned into a model usable for MBT tools and the process of
using the models with the MBT tools in SW testing and verification. It also
shows how the papers composing this thesis relate to different parts of the pro-
posed framework.

Chapter 4 provides a more detailed summary of the papers that compose this
thesis.

As the research progressed through various projects and study subjects, Chap-
ter 5 describes the study subjects used at the different phases of the study (in the
different papers) and how each of the studies presented in the different papers
contribute to the evaluation of the presented framework for observation-based
modelling in model-based testing.

Finally, Chapter 6 concludes the thesis by describing how the research ques-
tions were answered and discusses the limitations of the work and the need for
future research.

2. Test automation and observation-based modelling

27

2. Test automation and observation-based
modelling
This chapter gives an overview of research related to this thesis in the areas of
test automation and observation-based modelling. It starts with an overview of
the test automation research area, followed by an overview of research in the
area of observation based-modelling. Finally, the chapter concludes with a short
discussion on positioning the work presented in this thesis in relation to these
two fields of research.

2.1 Test automation

The basic form of test automation is that of regression testing in which existing
test cases are automatically (re-)executed. These tests can be created manually or
with different degrees of automation, and their execution is triggered by some
event such as a user pressing a button or committing to version control. A test
automation system requires different components depending on its type, such as
test scripts, input data, test oracles, a test driver and a test harness. These basic
components are illustrated in Figure 4.

2. Test automation and observation-based modelling

28

Figure 4. Components of a test automation framework.

A test driver controls the overall test execution process, including the execution
of the SUT. The SUT is isolated, for different testing purposes, from parts of its
environment (other components or systems with which it interacts) with the help
of a test harness. Test input can take different forms, such as message sequences
(test scripts) and data values. Generators can also be used to automatically gen-
erate large quantities of different types of data. A test oracle is used to verify the
correctness of the received output (such as data values or message sequences) in
relation to a given input. In the context of this thesis, the SUT is considered as a
black box that takes some input and produces some output, with only limited
insight into its internal processes.

This chapter reviews the different approaches in test automation research that
have focused on the different parts of these test automation platforms. As the
amount of available research in this field is vast and constantly growing, the
intention is not to provide a complete overview of all related work but rather a
comprehensive overview of different parts.

2.1.1 Terminology and basic concepts

Design for testability

Effective implementation of test automation requires certain properties from the
system under test (SUT) as well as the test environment [20][21]. The design of
the SUT and the test environment architecture must consider the test require-

2. Test automation and observation-based modelling

29

ments in addition to the program (user) requirements. In short, this is called de-
sign for testability (DFT). Two basic terms related to this are observability and
controllability. Following Binder [22], controllability can be defined as being
able to control the SUT input (and internal state), and observability as being able
to observe its output (and internal state).

Experiences have shown that it is especially important to take DFT into con-
sideration from the early phases to enable efficient and cost-effective implemen-
tation of test automation [20][23]. While the testability of the SUT itself can be
considered from a number of different perspectives [22], from the test automa-
tion perspective, the architecture is typically the most important part [20][21].

Techniques to support testability in the SUT architecture include isolating
parts of the SUT for testing, accessing information about the system behaviour
and providing test functionality [20][21][24]. From the test environment per-
spective, DFT includes automated creation of system configurations for testing,
test interfaces between the SUT and the tester application, abstraction of test
models and automated change management between the test cases and the SUT
[20][21].

To isolate parts of the SUT for testing, it must be possible to replace clearly
defined parts of the SUT with test implementations, commonly referred to as test
stubs. Test stubs can be used to isolate parts of the system and to provide test
functionality, such as input generation [21][24]. To enable effective partitioning,
the interfaces must be separated from the implementations so that stubs can be
attached to these interfaces [24].

To access information about the system behaviour, specialized interfaces must
be available to read and write data values to program variables [24]. As not all of
these are necessarily needed for normal functionality, extra support is often nec-
essary [20][21][24]. This support can be simple interfaces to access data such as
system states [24][25] or test functionality such as keeping track of resource
consumption [21]. Component internal test support functionality is seen as par-
ticularly important in testing components for which no source code is available
[26]. The presentation of information is also seen as important in the regard that
it still needs to be interpreted by a human analyst at some point, and it has to be
effectively processed by the test automation system [20][21].

2. Test automation and observation-based modelling

30

Invariants

As defined in the first chapter, in the context of this thesis testing is considered
as observing and asserting a set of controlled executions (test cases) on a SUT.
In this context, techniques designed for this type of analysis are also relevant and
often used for testing. One such popular technique that is also used in the context
of this thesis is that of dynamic invariant detection. Invariants in general can be
considered as properties that hold at different points of analysis, such as over
time. The concept of invariants, as discussed in this thesis, is generally related to
what is defined as dynamic invariant detection aimed at detecting likely program
invariants by Ernst et al. [27]. They define an invariant as a property that holds
at some point in a program, and present a tool called Daikon1 to automatically
infer these from a set of program executions [27].

Examples of these invariants include a variable always being constant (x = 1),
non-zero (x ≠ 0), variable relations (x < y), a variable being a value of a function
(x = fn(y)) and a data structure always being sorted. The invariants are called
likely invariants as they only hold for the analysed program executions. The
basic output of invariant detection is a model of the system describing it in the
form of likely invariants. Likely because they are based on a set of executions of
the code, and this set may not include all possible executions. This model can be
used for many purposes, such as understanding the system, debugging and test
generation [27].

Mutation

When automated testing techniques are developed or automated test cases gen-
erated, their effectiveness needs to be evaluated. This requires the availability of
faulty software to test the effectiveness of the techniques in a controlled envi-
ronment [28][29]. Two basic techniques for this are fault seeding and program
mutation. Fault seeding is a process of manually adding faults into the program
code. Program mutation is a process of applying an automated tool on program
code to create mutants [30]. Each mutant is a changed version of the program,
and the task of the test suite is then to kill these mutants, i.e., it should identify
each mutant as a failing test case. In this case, a measure of the effectiveness of a
generated test suite can be the amount of mutants it kills, and this can be used as

1 http://groups.csail.mit.edu/pag/daikon/

http://groups.csail.mit.edu/pag/daikon/

2. Test automation and observation-based modelling

31

a basis for test data generation algorithms [31][32]. Studies indicate that muta-
tion is an effective tool for test automation validation purposes, but requires
special consideration [28].

There are three requirements to kill a mutant: reachability, necessity and suffi-
ciency [32]. The mutated statement must be reached by the execution of the pro-
gram to kill the mutant, as the mutated statement is the only changed statement
in the program. It is necessary for the execution of the mutated statement to
cause an observable change in the program state in order to distinguish a failed
(mutated) test run from a correct (non-mutated) run. To be sufficient, the final
state must be propagated through the program execution in order to be visible in
the test output so the test case can observe the mutant.

Test coverage

A key concept of testing any system or software is to have a measure of how
good the current level of testing is. In the context of software testing, this is re-
ferred to as test coverage. A basic measure for this is a ratio of which parts of the
SUT are executed (covered) by the existing test suite and which parts are not.
This can give, for example, a measure that 50% of the SUT code is covered by
the tests while the other 50% is not. A basic use for this is then to look at the
uncovered 50% and write tests to cover more of this previously uncovered code.
As the implementation of features in a SW system often overlaps and features
such as error-handling behaviour can be difficult to cover, this is not a straight-
forward task. Different types of tests, such as unit tests, integration tests and
system tests have different roles in testing the SUT, and it is not always mean-
ingful to consider them as a single coverage measure [9]. For different goals, it
can also be useful to combine different measures instead of focusing on them
separately [33]. In practice, however, resource limitations such as time and
money set constraints on how much testing is cost-effective to implement.

To address the issue of resource limitations when executing existing test
suites, various techniques have been presented, including regression test selec-
tion, prioritization and minimization [34]. These share a goal of optimizing the
test suite execution based on a given criterion, such as new tests covering the
biggest possible parts of the previously uncovered parts of the SUT.

Coverage measures have also been applied in other contexts, such as mapping
program features to their implementation [35] [36] and finding the causes of
failures [37] [33]. In these cases, it is also possible to discuss coverage in gen-

2. Test automation and observation-based modelling

32

eral, as these techniques make use of any program executions and their related
coverage information. Thus the executions do not have to be tests (other options
include generated data and captured user sessions), although automated tests are
a popular basis for this analysis. The analysis techniques that make use of cover-
age measures typically analyse the complete set of executions and relate their
coverage against each other with goals such as locating feature implementations
or causes of failures.

Different types of coverage measures exist for test coverage. Examples in-
clude measures based on program structure, its data value space, requirements
and dynamic properties of its execution [4]. Structure-based metrics measure the
coverage of properties such as lines of code and execution paths taken. Data-
based measures consider the possible values of SUT input and output and meas-
ure how many of the possibilities have been covered. Requirements-based cov-
erage associates test cases against SUT requirements to ensure all requirements
are tested. All these measures are based on different forms of static information
about the SUT. In addition, measures exist based on dynamic information about
the execution of the SUT. Examples include generating mutants and observing
how many of these are identified (killed) by the test suite [38], and inferring an
invariant model from the test cases to describe the coverage as an invariant
model [39].

The different coverage measures show how exhaustive testing of any non-
trivial SW system is not practical as it is not cost-effective. In this regard, it is
also expensive to create numerous test cases manually to cover all the different
aspects needed to verify a SUT to a reasonable degree. For these reasons, test-
generation techniques focusing on these different aspects are important and have
been the focus of much research in software engineering.

2.1.2 Test data generation

The basic form of a test case is to give the SUT some input and observe its out-
put. A SUT typically has several input interfaces, which accept many types of
data. The combinations of the different inputs and their effects on the SUT be-
haviour need to be considered, as it is not possible to exhaustively test every
possible combination. As manually crafting a good input data set for this is diffi-
cult and time-consuming, a lot of research has dealt with generating test data for
input. This section provides an overview of approaches taken in this field.

2. Test automation and observation-based modelling

33

Basic approaches

A basic approach in this field is random test data generation. In this approach,
randomly selected values from the input domain(s) of the program are used
as test input. Random test data generation is intuitively simple and one of the
oldest test data generation methods [40]. Although intuitively simple, studies
have shown that it can also be effective, and it continues to be an active re‐
search area [40] [41] [42] [43]. While the basic application is generating nu-
merical values, the generation of objects has also been addressed. Random test-
ing is often combined with other techniques to make the selection of the random
values more advanced, such as creating an equal spread of values [42].

Other basic techniques include the use of equivalence partitioning (dividing
the set of possible values into sets that cause equal program behaviour) and
boundary value analysis (selecting values that are considered likely to cause
errors at variable boundaries). Although basic methods have been in use for dec-
ades, this is still an active research area. For example, more recently, Beer and
Mohachi [44] have studied the combination of basic random data-generation
techniques while considering the effects of variable values on each other.

Symbolic execution is a test data generation approach that represents the evo-
lution of variable values over their control-flow paths in relation to the input
values of the path [45] [46]. The program variables and their combinations are
represented as symbols and the branches in these paths are turned into con-
straints (sometimes also referred to as path conditions). These constraints are
then solved in relation to the input values and used to generate test data that will
exercise all the paths of the SUT. This is referred to as constraint solving [31]
[47]. Although commonly applied with symbolic execution for path coverage
[47][43][48], constraint solving has also been applied with other types of goals
such as generating data to kill program mutants [31] and to reach manually in-
serted assertions [49].

Symbolic execution and constraint solving have some limitations. They are
typically applied on a white-box level, which requires access to the source code
and poses complexity problems with non-trivial systems, including code size,
pointers and arrays [50]. With powerful modern hardware and algorithms, how-
ever, they are being used more widely, also in the context of commercial test
automation systems [43] [48].

More dynamic analysis methods have been presented to address issues of test
data generation based on static analysis. In these methods, the SUT is actually

2. Test automation and observation-based modelling

34

executed as opposed to only its static structure being analysed, such as source
code, and the observations from the executions are used as a basis for further test
data generation. These dynamic analysis approaches have some basic limita-
tions, such as requiring a fully executable system, and the possible effects of the
execution, such as launching missiles or changing bank account details, need to
be considered. A basic approach in this regard is dynamic path analysis [51],
which exercises the SUT with actual input values and monitors the control flow.
If the execution takes an unwanted path, analysis algorithms are applied to find
values that make the execution take the desired path.

Combination testing focuses on the different combinations of the input pa-
rameters. Grindal et al. [52] provide a survey on the different techniques in this
field. The basic concept is described in the category partitioning method [53],
which is the basis of many of these methods. In the category-partition method,
the program is first partitioned into functional units that can be tested separately.
For each of these, parameters and affecting environment variables are identified,
as well as the possible values for each of these individually. Constraints are
identified between the parameters, variables and values. Finally, combinations
satisfying these constraints are generated for the parameters, and these are trans-
formed into test cases. As it is not realistically feasible to test all possible com-
binations, different strategies have been applied to find the combinations of in-
terest. These include simple solutions such as including each value once, and
more complex solutions such as search-based algorithms [28].

While many of these basic approaches work with primitive object types, their
use for the domain of object-oriented programs has also been studied by Thum-
malapenta et al. [54]. In this case, the problem is in the large possible state space
of the created objects that may be used as inputs. Thummalapenta et al. [54]
extract object method invocation sequences from existing source code reposito-
ries and use these to produce object creation sequences with the goal of reaching
a chosen target state. Target states are identified by the coverage measures re-
quired, such as achieving higher branch coverage in unit tests that make use of
objects of the generated type.

Search-based approaches

Search-based optimization techniques have been widely applied to different
fields of software engineering, including test data generation [55] [50]. Search-
based optimization aims to optimize a set of data for a given goal using different

2. Test automation and observation-based modelling

35

algorithms to generate data and the analysis of the results to guide further data
generation. The use of these techniques requires two properties of the optimization
problem to be defined: a representation of the problem and a fitness function [55]
(sometimes also referred to as the objective function [50]). The representation is
used to encode the problem into something that can be processed automatically,
and the fitness function is used to rank the results to guide future data generation.

In test data generation, the analysed problem is one of generating test data to
fulfil a given test criteria. Thus, the possible inputs to the SUT form the search
space, and the problem representation must encode these inputs in a way that can
be manipulated by the search algorithms. The test criteria are translated into the
fitness function. For example, if the goal is to cover a chosen execution path, the
fitness function can measure how close the test data come to executing that path,
or in the case of finding worst-case execution times, it can measure the time it
takes to run a test case [55]. Another example of a more black-box approach is
test data generation for a car parking system presented in [56], in which the fit-
ness function is the distance between the car and the collision area, and the rep-
resentation is the description of the parking environment (car, collision area,
parking area).

Traditional search-based optimization techniques applied in test data genera-
tion include hill climbing, simulated annealing and evolutionary algorithms [50].
Some problems remain in applying these algorithms as they are best suited to
numerical representations, and more complex data structures and internal states
of objects are problematic for them [50]. Thus, innovative encoding of the input
space is often required. Although search-based test data generation has mostly
only considered one criterion, it is also possible to optimize test data generation
based on multiple criteria. For example, Harman et al. [57] have optimized for
branch-coverage as well as dynamic memory allocation using both the path distance
and the amount of memory allocated in a test run as a problem representation.

Some work has addressed input data generation specifically for object-
oriented programs as the parameters of method calls for unit tests [58]. In this
case, a set of predefined generators is provided to generate any primitive value
types, and custom generators can also be provided for any parameter. Object
values are generated by applying the value generators to their respective con-
structor methods recursively as needed.

Combinations of search-based approaches and other test data generation
methods have also been presented. Ayari et al. [59] use a search-based test data
generation method for killing mutants in which the fitness function is based on

2. Test automation and observation-based modelling

36

the distance of a generated test case from killing a mutant. In this case, the fit-
ness function is based on the formulas for constraint-based test data generation
presented in [31]. Baudry et al. [60] have presented an approach called bacterio-
logical algorithms, which is also based on program mutation, in which the best
data set for killing mutants is chosen from each generation, and after this all
killed mutants are removed from the data set. In the end they collect all the cho-
sen data sets to function as separate test cases. In this way, it is a search-based
approach with a more specific algorithm tuned for test data generation.

Domain-specific approaches

Like the previously described search-based test data generation approach for a
car parking system, many forms of domain-specific test data generation have
been applied. Examples include considering the domain-specific properties of
the program and making use of the available domain-specific formal data struc-
ture specifications.

For example, using domain-specific knowledge of the underlying program-
ming language constructs, Bertolino et al. [61] used the category partition
method to generate test data from XML Schema descriptions. They created test
scripts based on a formal test specification and a number of manual steps [53].
The steps included the identification of functional units in the specification, par-
titioning these into categories, then these further into choices and finally deter-
mining constraints between the choices. Bertolino et al. [61] map the different
properties of the CP method to elements of the XML Schema, such as subsche-
mas to functional units and categories to XML element types. Based on this
mapping and a provided XML Schema, they generate XML instances for use as
test data. Similarly, for web services, Sneed and Huang [62] have used the web
service description language as a basis to generate web service invocations.
They use random test data generation, but form these into more complex compo-
sitional data types based on the analysis of the WSDL that describes the data
types of the application.

Yuan and Memon [63] have presented a feedback-based technique for gener-
ating test cases for graphical user interfaces (GUIs). The state of a GUI is com-
posed of triplets, which include a widget, its properties (such as colour, size,
font) and the possible values of these properties. This state is considered to be
changed by discrete events that describe actions and interactions between the
GUI elements. A seed test suite is obtained from an event-interaction graph

2. Test automation and observation-based modelling

37

(EIG), which is created by a GUI reverse-engineering algorithm. By analysing
the states and their relationships in these executions, they build up an event-
semantic interaction graph to describe these properties. From this, they then
generate an event-interaction semantic graph and, finally, use this graph as feed-
back from the previous test cases to generate additional interaction sequences as
new test cases.

Daniel et al. [64] present a technique for generating test cases for refactoring
engines. They provide a programming library called ASTGen to produce ab-
stract syntax trees (ASTs) as input for refactoring engines. This approach is par-
tially manual as it supports the building of generators to generate input programs
that exhibit desired properties of programs to be refactored and tested. Thus, in
this case the input data generation takes the form of manually writing input gen-
erators that generate ASTs for SUT input, and this is supported by the frame-
work provided.

Wang et al. [65] describe a technique for automatically generating tests for
context-aware applications. They analyse the SUT source code to find context-
aware program points (capps) where context changes may affect the program
behaviour. Using static analysis, a control flow graph is generated, which de-
scribes how the capps affect the program behaviour. Input data are generated in
the form of new control flows that cover more context switches between differ-
ent capps. These take the form of control-flow scripts that are generated to be
input according to the way the program should be manipulated to traverse differ-
ent control flows related to its context-aware behaviour.

Program-invariant-based approaches

Pacheso and Ernst [66] present a technique for automated generation of test
cases based on program invariants, which they have implemented in a tool called
Eclat. This technique is based on two inputs: the program to be tested and a set
of correct executions of the program. They use Daikon to generate an opera-
tional model of the program under test. This model is based on a set of invariants
inferred from a set of execution scenarios that are expected to describe the cor-
rect behaviour of the SUT. They generate input for the SUT aimed at producing
behaviour that violates the previously inferred operational model and is consid-
ered to be potentially fault revealing. This input takes the form of method calls,
with parameter values provided from a pool of input values. This pool is initial-
ized with a few primitive values and a null object. Further values are added, as

2. Test automation and observation-based modelling

38

returned from method and constructor calls. The results are labelled as normal,
faulty or fault revealing. Behaviour is considered normal if both the program in-
puts and outputs match the program invariants, fault revealing if the input matches
the invariants but the output does not, and illegal if neither the input nor the output
matches the invariants. Any thrown errors or exceptions also result in a fault-
revealing classification. The inputs and outputs considered are the standard in-
strumentation used by Daikon, input and output values of each method execution.

Agitator is a commercial tool for automating parts of the unit-test generation
process [43]. It makes use of various existing test input data generation methods,
such as symbolic execution, constraint-solving and feedback-directed random
input data generation. Both static and dynamic analyses are used to analyse the
different execution paths of the SUT and provide a basis for test data generation.
Specialized constraint-solvers are provided for specific constraints of the execu-
tion paths, such as Boolean functions of Java String objects. Heuristics are used
as an aid to guide test data generation, such as using values -1, 0, 1 as integer
input values. More complex objects are modified with mutator methods, and
when they cannot be automatically generated, user-specified factory objects are
used to generate test data objects. Feedback from executions with given values is
also used to improve the input values. The aim is specifically to translate differ-
ent input data generation methods from research into practically usable forms for
a commercial tool, working with code bases of significant complexity. In this
regard, they make a number of approximations to optimize the performance of
these algorithms. In their case they find that since they need to cover paths many
times in order to generate usable invariants, it does not matter if the produced
data for the chosen paths are not always 100% exact [43].

Use of field data

Typically, test data for a program are generated during development on devel-
opment platforms based on assumptions about the way the program will be used
and how it will function in actual use. A different approach is to use data col-
lected from the field, from actually deployed systems used by actual users. El-
baum and Diep [67] provide an overview of research in this area and a set of
empirical studies on their application. One basic means to generate tests with
field data is to include test functionality in the product itself. In this case, the
program can be profiled during the development time and the program execu-
tions in the field can be monitored with regard to breaking the assumptions in

2. Test automation and observation-based modelling

39

these models. From a more traditional viewpoint, field test data can be applied to
generate test cases to match the user sessions described in the field data, or to
augment existing test cases with executions and elements missing but identified
in the field data. The field data collected by Elbaum and Diep are collected using
program instrumentation. They also study the effectiveness of different instru-
mentation techniques and find good results with targeted instrumentation that
focuses on the relevant properties of the tested functionality.

Test scripts

As mentioned earlier, especially in the context of object-oriented programs, the
generation of method-invocation sequences has also been a topic of test data
generation. In this case, a set of constructor and method invocations are com-
bined to create new test cases. These are often combined with various test input
generation methods as described earlier to produce data such as parameter values.

One example of this is the feedback-directed random testing technique de-
scribed by Pacheco et al. [68]. In this technique, tests are constructed by ran-
domly selecting constructor and method calls to invoke. Valid sequences are
defined by the used contracts, which are objects classifying sequences as valid or
invalid. Further sequences are built based on previously generated valid se-
quences, and this feedback is used to guide the generation of the sequence. Ex-
ample contracts include an object always equalling itself, and a method not
throwing certain platform error exceptions. Filters mark call sequences that vio-
late the contracts as illegal sequences that are not to be used for generating fur-
ther sequences. As a result, the tool provides two types of tests: failing and pass-
ing. Passing tests are sequences that violate no constraints. Failing tests are ones
that violate a constraint, and this constraint is described with an assertion in-
cluded in the test case. In addition to call sequences, they also apply the same
analysis to variable values passed to the method invocations. They also describe
a successful application in an industrial case study [69].

Tonella [58] has used search-based algorithms to generate both test input data
(as described earlier) and method-invocation sequences for unit testing. For the
method call sequences, the methods of a class are described along with their
potential parameter values. Search-based algorithms are used to generate new
sequences of method invocations to test the class under test, including the gen-
eration of required parameter objects as described earlier. The aim is to generate
tests that satisfy a given coverage criteria.

2. Test automation and observation-based modelling

40

Briand et al. [25] use constraint-based test sequence generation for COTS
components based on component specifications. Possible method invocation
sequences are described as 3-tuples of preceding method, succeeding method
and predicate. In this notation, the preceding method always has to come before
the succeeding method and the predicate further defines at which point this tran-
sition can occur. The predicates describe the constraints that are inferred from
the component specification. Algorithms are used to solve these constraints and
to construct fitting method-invocation sequences.

2.1.3 Test oracles

As described earlier, a basic form of a test case is that of providing some input to
the SUT and observing the resulting output. The output then needs to be asserted
in order to define if the result was correct and matches the expectations set for it.
The component of a test automation system that does this is called the test ora-
cle. This section first discusses the properties of test oracles and then reviews the
different approaches to the test oracle problem taken in test automation research.

The terminology relating to test oracles is used according to [70]. A test ora-
cle is defined as a mechanism for determining the correctness of the behaviour
of software during (test) execution. The oracle is divided into the oracle informa-
tion, specifying what constitutes the correct behaviour, and the oracle procedure,
which is the algorithm verifying the test results against the oracle information.

Further terms are also used according to [70]. Successful test evaluation re-
quires information to be captured about the running system using a test monitor.
For simple systems, it can be enough to just capture the output of the system. For
more complex systems, such as reactive systems, more detailed information such
as internal events, timing information, stimuli and responses need to be captured.
All the information captured by the test monitor is called the execution profile of
the system and it includes control and data information.

The term test oracle may be confusing at first. Who or what is this oracle and
what does it have to do with SW testing? It is a fitting choice for what it de-
scribes however. An oracle is typically considered to be a mystical source of
wisdom and information. In the case of a test oracle, this also holds true. The
information on what the correct behaviour and response of the SUT are comes
from somewhere (a mystical place). Basically in the case of SW, this informa-
tion is typically defined in the specification. From the test automation perspec-
tive, this is often problematic however.

2. Test automation and observation-based modelling

41

If the specification is written using a formal notation, it may be possible for a
test automation system to automatically read this notation and use this informa-
tion to define the expectations (the oracle information). In practice, however,
most specifications are written in natural language and are often imprecise and
incomplete. Thus a test automation system, even when generating different
forms of test input, cannot automatically determine in which case the resulting
output from the SUT is correct and according to expectations. In fact, if an
automation system existed that could define what is expected from any SUT,
without any external information, it should then also be able to generate the SUT
itself as well as any system that has not even been defined. Thus, it is clear that fully
automated test oracle generation without external input as such is not possible.

Most test automation techniques then require the user to provide a manually
defined test oracle for the test cases. It is possible to use a generic test oracle to
check for crashes in the SUT (unexpected exits or thrown exceptions) [63], how-
ever, such approaches do not work when it comes to checking any other type of
application-specific output that typically forms the actual test oracles for a SUT.
Sometimes very specific test oracles can be provided for a given test automation
system [61] [62] [64], but these do not generalize and only partially cover the
SUT specification.

In many cases, the oracle procedure is provided and the information needs to
be provided. In other cases, however, it is the other way round and the informa-
tion may be inferred from an existing system but requires the definition of the
procedure that correctly analyses this information. Any combination of these is
also possible. In any case, the oracle in test automation always requires some
form of manual augmentation (such as [71]) or, if fully automatic, is very spe-
cific and narrowly applicable. In the case of formal specifications, it is also pos-
sible to use these specifications as the oracle information [72]. As described
earlier, however, these are outside the scope of this thesis.

Supporting techniques

Many techniques relating to test oracle automation do not provide or generate an
automated test oracle themselves, but rather focus on supporting the user in cre-
ating the oracle information, the oracle procedure or both. Typically in these
cases, the execution profile is captured from the SUT using a test monitor, and
algorithms are provided to make assertions based on the execution profile. In
these cases, the basic oracle information is usually available and the oracle pro-

2. Test automation and observation-based modelling

42

cedure needs to be provided. It is then the job of the user to describe the oracle
procedure using the tools provided.

Andrews and Zhang [73] have presented a technique for test oracle generation
based on log file analysis. This is based on the SUT writing a log file based on
using a predefined logging policy, and a log file analyser asserting the correct-
ness of the execution based on the log file. Their approach requires the log file
analyser component to be written as a test oracle and provide a matching logging
policy to map this oracle to the log file. They illustrate the approach with state-
machine-based matching, in which the transitions are based on the available log
lines. The log-file analyser component is applied against log files collected from
SUT execution and makes an assertion of whether the log file matches the ex-
pected behaviour or not.

Both Ducasse et al. [74] and Roover et al. [75] have described similar tech-
niques for building test cases based on traces collected from a program execu-
tion. They start by executing the SUT and collecting traces from the execution.
Logic languages derived from Prolog are used to query the execution traces, and
these queries act as the test oracles. They assert that the recorded behaviour
matches the expected behaviour. Ducasse et al. [74] use the queries to filter rele-
vant data from large, low-level data sets, while Roover et al. [75] perform simi-
lar queries but also aim to limit the trace data to higher level events and lighter
trace implementation. The aim of these techniques is to produce a model that is
both humanly understandable and machine verifiable in order to support both
test automation and program comprehension.

Program invariants are used as a basis for assisted oracle generation in Agita-
tor [43], Eclat [66] and the technique proposed by Xie and Notkin [76]. All of
these provide the user with a set of invariants as inferred from the set of execu-
tions using the test input described in the previous section. They then provide the
user with the option of turning these assertions into actual test oracles and add-
ing them to the existing test suite for the program.

Automated oracles

Some techniques have been presented to provide domain-specific automated test
oracles. These typically come with their own specific input-generation mecha-
nisms and are only applicable to very restricted types of applications. These test
systems can then be used to assess the properties of this type of applications. As
described earlier, these automatically generated oracles cannot describe the cor-

2. Test automation and observation-based modelling

43

rectness of any application-specific properties but rather focus on chosen generic
viewpoints.

Daniel et al. [64] present an automated test oracle for their testing technique
that is intended for automated testing of refactoring engines. They use a number
of test oracles such as invertibility of the refactoring operation (performing the
operation backwards produces the original result), checking that the refactored
code compiles, and specific assertions for chosen refactoring operations such as
moving an element actually resulting in creating the item in a new location.

A similar approach has been taken by Mesbah and Deursen [77] who provide
test oracles for GUI testing AJAX-based web applications. They use a set of
invariants specifically defined for this type of applications as the oracle informa-
tion. This includes generic invariants such as the HTML output always being
valid and the DOM tree not containing any error messages. It also includes ap-
plication-specific invariants that are (manually) defined specifically for each
application such as clicks on page elements updating the displayed table of contents.
Their automated test oracle procedure checks that these invariants are not violated
during the use of the web application by an automated input-generation tool.

Memon and Xie [78] have developed test oracle information extraction tech-
niques for GUI testing. They use the previously described GUI properties to
describe the possible states of the GUI. An execution monitor is used to capture
the state of the GUI after each event given to the SUT. They use a set of test
cases that are considered to describe the correct behaviour of the SUT to produce
a model of the expectations for these states. The produced model then describes
the oracle information for regression testing.

Machine-learning techniques are used to automatically learn models based on
a chosen set of algorithms from potentially large data sets. As a result, they typi-
cally provide an evaluation function that describes the given data in some way.
There are two phases to applying most machine-learning techniques. First, a set
of training data is given to the classification algorithm to create the model. In
this phase, the classification of the data needs to be provided in order for the
algorithm to build (learn) a model for the classification. In the second phase, this
model and algorithm is applied to classify further data. From the viewpoint of
test oracles, these techniques have been applied to execution profile data to clas-
sify executions as different types such as “high”, “average” or “low” (for per-
formance testing) [79] and “passed” or “failed” (for functional correctness)
[79][80][81]. Many of these techniques focus on low-level execution profile data
such as function calls, variable values and relations of these properties [79] [80]

2. Test automation and observation-based modelling

44

[81]. Although some of these studies have shown promising results, they are
hard to generalize, as the studies are limited with regard to properties such as the
types of faults and types of programs considered [79] [80] [81]: mainly how the
SUT data can be encoded in a suitable format and how useful the provided ora-
cles are with respect to the specific features in the SUT specification. This type
of oracles can thus be useful, but the user needs to consider their limitations.

2.1.4 Test harness

A test harness for a SUT has several roles including setting up the initial state of
the SUT for each test and setting up the testing environment (SUT and interact-
ing components). This section provides a brief overview of test generation re-
lated to test harness functionality from the viewpoint of the work presented in
this thesis. This means that the focus is on setting up the collaborating compo-
nents and their expected interactions (the SUT environment and related behav-
iour). Other viewpoints such as setting up the SUT state for a chosen unit test, as
described in [82], are excluded from the scope of this thesis and thus not in-
cluded in this overview.

One basic function of a test harness is to isolate the unit under test from the
rest of the system. This is typically done by using a set of test components re-
ferred to as test stubs. When these are made programmable, they are often re-
ferred to as mock objects [83]. This means that a component library is used that
provides interfaces to create these stubs and that the stubs can be programmed
with expected interactions to simulate possible interactions between the SUT
and its environment.

Tillmann and Schulte [84] use static analysis (symbolic execution) for auto-
mated generation of mock objects. By analysing the source code to see how it
interacts with other objects, they infer the specification needed for the creation
of the mock objects. By focusing on one test at a time, they also generate the
expected behaviour of the mock object for that test, allowing the generation of
mock objects to isolate the chosen parts for that test.

Saff et al. [85] use dynamic analysis to capture a trace of the SUT behaviour
and use that as a basis to generate mock objects, their behaviour expectations
and return values. Their goal is to factor larger tests into smaller tests in order to
optimize the test suite execution and analysis. They use existing test cases as
bases for analysis, capture traces of their execution including the passed objects

2. Test automation and observation-based modelling

45

between the SUT and its environment, and use this information to define the
expected behaviour of the mock objects and their return values.

Beyer et al. [86] generate test drivers to act as a test harness. Functions in the
SUT interfaces and the interfaces of the environment with which it interacts are
associated with data vectors. The external functions (of the environment) with
which the SUT interacts are replaced with special test data feeding functions.
Data from the test vectors are given in the order that the associated function is
invoked. A similar approach is described by Pesonen [87] who uses instrumenta-
tion to isolate components from their environment, and captured data from ac-
tual use as test data.

Bertolino et al. [88] present a test harness generation method for service-
oriented mobile applications. They require the system to be described using the
web-service description languages WSDL and WS Agreement. Their goal is to
facilitate testing of mobile systems where the environment is highly dynamic as
a result of moving from one context to another. Based on these specifications,
they generate test stubs for components with which the SUT needs to interact.
They use simulators to further generate data to test the SUT in situations in
which the test stub components are mobile and not always available.

2.1.5 Model-based testing

All testing can be considered to be based on models of the SUT. For example,
Binder [89] describes testing as always being based on a model, even if it is only
an implicit model in the mind of the tester describing the SUT and how it should
be tested. Model-based testing is a technique that describes the SUT with the
help of formal models at a higher abstraction level than the implementation and
uses tools to analyse these models and generate tests from them [4]. Different
definitions of MBT include generation of test data, invocation sequences, com-
binations of these including test oracles and turning abstract representations
(such as UML diagrams) into test cases [4]. In the context of this thesis, the third
definition (generation of data, sequences and including oracles) is used.

In this case, the model is an abstraction of the actual SUT, omitting excess de-
tails and describing only the relevant parts of interest for test generation. Using a
set of coverage criteria and test-generation algorithms, the MBT generation tool
generates test cases from this model. Coverage criteria may be, for example,
covering all transitions in the model and algorithms including symbolic execu-
tion and graph traversal algorithms [4]. This generates a set of abstract test cases

2. Test automation and observation-based modelling

46

that are then transformed into concrete test cases and mapped to the actual SUT
by an adapter component.

MBT tools employ different types of models and test-generation techniques
according to their intended application [90]. In the context of this thesis, the use
of extended finite state machines (EFSM) is the most relevant one. A short de-
scription follows of these models and related MBT techniques according to [4].
EFSM’s describe the SUT as a set of states, transitions between these states and
the constraints defining when these transitions can be taken. The MBT tool then
uses analysis algorithms to generate SUT invocation sequences, test data for
these invocations and check the provided results. The used modelling notation is
important as it needs to support all these properties, and programming languages
such as Java are typically used to express them due to their ability to express all
these properties [4][90]. In many ways, the MBT field brings together a number
of previously presented research topics. Algorithms such as symbolic execution
and constraint solving are used by MBT tools to analyse the model, generate
tests and assess the coverage criteria [4]. It is also possible to combine these with
various test data generation methods to generate input data for the generated test
sequences.

Various representations are available for describing the models in MBT. Con-
trol flow is typically modelled with transition-based modelling languages such
as state machines, and this notation is extended with a programming-language-
like notation to model related data values [90]. This is a hybrid solution, and
some tools also support the description of the complete model using a program-
ming-language-like notation [4].

MBT has been an active research topic for a considerable time already. For
example, Neto et al. [91] describe the work of Ramamoorthy et al. [92] in 1976
as an example of an early form of research into MBT. It has become more popu-
lar, however, especially in the last few years, and successes in its use have been
reported in various domains including space [93], automotive [94] [95], health-
care [96] and others [91]. Despite several studies, however, industrial adoption is
still seen to be lacking [91].

In MBT the model is typically created manually based on SUT specifications
[4]. Creating an abstracted model of the SUT and using it to generate tests is
seen as cheaper and less time consuming than writing similar tests manually.
The acquisition of the required specialist skills for effective modelling, and cre-
ating and maintaining the models involve significant costs however. The oppo-
site approach can also be taken where an initial model for the SUT is automati-

2. Test automation and observation-based modelling

47

cally generated based on observing a set of controlled sample executions. This
approach was presented by Bertolino et al. [5] as anti-model-based testing. They
describe three reasons for taking this type of approach: the required deep exper-
tise in formal methods for creating a model, the difficulty of forcing the actual
SUT to take execution paths similar to those generated from the manually cre-
ated model, and the lack of models for legacy systems and COTS-based systems
[5]. In addition, this approach can be seen as having potential for significant cost
savings, as the initial model is generated automatically. Besides describing the
basic concept, Bertolino et al. do not take it further. This thesis presents a
framework, which includes a practical tool implementation and evaluation of
this type of testing.

2.2 Observation-based modelling

The building of models based on captured observations of a program is a popular
approach in several fields of research such as test automation, program compre-
hension and reverse engineering. Reverse engineering, for example, is com-
monly defined as analysing a system in order to identify its components and
their interrelationships, and creating representations of the system in another
form or at a higher level of abstraction [97]. Similarly, program comprehension
is a field that focuses on building a human understanding of a SW system. Sto-
rey characterizes it as theories to explain how programmers understand software
and tools used to assist in these comprehension tasks [98]. The end result of
these is typically a model that describes the SW under analysis at some abstrac-
tion level with the intention of helping the human user understand it better. This
section is a review of how different techniques in different fields use observa-
tions captured from the SUT execution to build models of a program, and how
these models are used for different purposes.

Figure 5 shows a generic overview of an observation-based modelling proc-
ess. This process always starts with the definition of a set of execution scenarios
to be used as a basis for the observations. These scenarios are used to drive the
SUT execution and can include such elements as existing test cases or captured
field data for the SUT [99]. During the execution of these execution scenarios,
the SUT is monitored with a monitoring tool to capture the information required
for the observation-based modelling technique. These tools can include basic

2. Test automation and observation-based modelling

48

instrumentation frameworks such as AspectJ2, dedicated frameworks such as the
one described in [100] or built-in support with the used middleware [21]. The
captured observations are provided to the model-generator component or tool in
a format suitable for automated processing. This produces, as a result, the target
model, which can be used in different ways including testing and program com-
prehension. These results can also be used for improving or analysing the SUT,
for example, by creating new test cases for [101] or optimizing the SUT behav-
iour [8].

Figure 5.Observation-based modelling process.

Many of the techniques presented in the previous section build behavioural
models of the system. The machine-learning techniques ([79], [80], [81]), for
example, build models that classify a system into categories such as “pass” or
“fail” in the context of software testing. More generally, many different fitness
functions have been applied in a software engineering context, such as measur-
ing the simplicity of the design (for understanding), and metrics such as cohe-
sion and coupling as a basis for re-structuring a system [55]. Similarly, the pre-
viously described approaches of inferring invariants based on the execution
traces can be used to create models of the system, describing the different data
properties of the SUT and their relations (for example, [43], [66], [76]). As these
modelling approaches have already been covered in the previous section, they
are not repeated here.

As mentioned, the techniques for observation-based modelling produce mod-
els at different abstraction levels. The choice of abstraction level and the focus

2 http://www.eclipse.org/aspectj/

http://www.eclipse.org/aspectj/

2. Test automation and observation-based modelling

49

of the analysis are important considerations for practical industrial adoption of
any of these techniques. The focus on an overall view of a complete SW system
requires a higher level of abstraction for the used models, as the use of detailed
information for any non-trivial system will produce models that are difficult to
comprehend for human users. If, however, the goal is to analyse smaller parts of
a SW system for purposes such as debugging or unit testing, it is better to use
more detailed information as a basis for the analysis. Thus, in order to scale
techniques for observation-based modelling, the needs at different levels of
analysis must be considered. This can be addressed with abstraction methods
such as sampling, clustering and focusing on higher level information such as
external vs internal interfaces. From the viewpoint of this thesis, different ap-
proaches have been applied in the different studies, such as detailed information
for resource usage analysis [100] and higher level information for external inter-
faces [101]. This also relates to the intrusiveness of capturing the observations,
as large-scale observation of low-level details can be very resource-intensive and
disturb the system to the extent of making the results less useful. Depending on the
goal, it is possible to change the abstraction level by, for example, focusing on
class or component interfaces depending on the granularity of the analysis subject.

2.2.1 Basic terminology

Two closely related concepts that are often mentioned as supported in the tools
and techniques reviewed in this section are concept assignment and feature loca-
tion. SW program concepts can be mapped to two types: programming-oriented
(such as searching or sorting a data structure) and human-oriented (such as re-
serving an airplane seat) concepts [102]. The problem of identifying human-
oriented concepts and assigning them to their implementation in a program is
termed as the concept assignment problem by Biggerstaff et al. [102].

A closely related term is feature identification, which aims to map program
features to its source code [36]. A feature in this context is defined as a require-
ment that can be executed and observed [36] [103]. Techniques for feature iden-
tification start by defining a set of execution scenarios to represent the features
in the system. These scenarios are executed, and a trace of the program execu-
tion collected for each scenario. A scenario is seen as corresponding to certain
features of the program and the traces of executed code in different scenarios are
thus used to map the features to their implementation. A basic method for fea-
ture identification is the software reconnaissance method presented by Wilde

2. Test automation and observation-based modelling

50

and Scully [35]. In this method, the program is exercised with two types of exe-
cution scenarios: ones that exercise the feature under investigation and ones that
do not. The differences in execution are used to focus the analysis on parts that
are most likely to be a part of the feature under investigation. Other approaches
include execution scenario trace difference analysis [35], concept analysis [36],
epidemiological approach [103] and impact analysis [104]. User-assisted ap-
proaches include concept graphs [105].

2.2.2 State-based models

Mariani et al. [106] describe a technique to generate compatibility tests for
COTS components based on the execution of previous versions of the compo-
nents. They call this technique behaviour capture and test. Based on execution
traces of the component, they generate IO and FSM models to describe the com-
ponent behaviour. The IO models they use are the invariants provided by Daikon
over the recorded data values that are changed during the component interac-
tions. These include the values, recursively, of any passed objects. The FSM
model generalizes all the recorded interaction sequences and is inferred from the
trace with their kBehaviour algorithm. They use these models for regression
testing of components by comparing models inferred from the previous and new
versions of the component. This can be a new version of the same component or
a new component from a different COTS provider. They use the identified viola-
tions as a basis to identify potential issues in component integration.

Lorenzoli et al. [107] present an algorithm called “GK-tail” that can be used to
generate an EFSM from execution traces. This is based on finite state machines
(FSM) and program invariants inferred with Daikon. Their algorithm combines
the traces to form an FSM using a specific algorithm based on combining the
sequences of method invocations of a given length to form the transitions of the
FSM. Daikon-inferred invariants for passed and global data values are produced
for each of the transitions in the FSM. These act as the EFSM constraints defin-
ing when a transition is allowed to take place. They consider using the EFSM for
test case selection and for building an optimal test suite from existing test cases
in order to increase the coverage of the model.

Xie and Notkin [108] present a model called Object State Machine (OSM).
From a set of SUT test executions, they capture calls from the test cases to the
SUT, parameter values and global state after each call. The global state is re-
corded in the form of capturing return values of all public methods with non-

2. Test automation and observation-based modelling

51

void return type, including recursive scanning of composite objects. Method
calls and their parameters represent state transitions and global state values from
the states themselves. They see these models as useful for various tasks, such as
finding failure causes by inspecting unexpected exception states and better un-
derstanding of the SUT.

Cook and Du [109] have demonstrated a technique to find points in a system
that exhibit mutually exclusive or synchronized behaviour. They model the sys-
tem as a state machine in which multiple states can be active at a time and each
active state represents a concurrent execution path. The event trace used to build
the model consists of the concurrent system states and transitions between the
states. From these events, they use a technique to generate a state-based model
for the system [110]. Once this model is established, they analyse the states to
infer the points of mutual exclusion and synchronization. They intend that this
model be used for facilitating the understanding of existing software systems.

Mesbah and Deursen [77] build an FSM of web-based user interfaces. They
use a crawler tool to click through the interface and capture possible interaction
sequences that cause changes in the DOM tree representation. A change in the
DOM tree constitutes a new state, and the states of the DOM tree are also the
states of the FSM. Transitions are the clicks (input) to the SUT that caused these
changes in the DOM tree. They use this model as a basis for invariant-based test
generation as described in the previous section.

Walkinshaw et al. [111] have presented a technique to infer state transitions
from source code. The user must provide a set of states of interest, and their tool
uses symbolic execution to analyse the source code in order to find transitions
between these states and to describe the paths that lead to these transitions.
States are identified using user-provided rules such as a certain method call trig-
gering a state (transition). Walkinshaw et al. [111] consider the inferred models
to be usable for various tasks, such as testing, documentation and program com-
prehension, but do not elaborate further.

2.2.3 Other models

Parsons et al. [112] discuss a number of techniques for producing an execution
trace and capturing it. They also discuss turning these traces into models, includ-
ing call graphs, runtime paths and calling context trees. The trace itself is de-
scribed as the most detailed representation (model) of the SUT behaviour. A
call-graph is described as a compact representation showing the SUT methods

2. Test automation and observation-based modelling

52

and their calls to other methods. However, this is described as losing information
(call sequences and context) available in the trace itself. Calling context trees is
described as a compromise of these, preserving context information. They de-
scribe various uses for these models, including supporting optimization, reverse
engineering, problem determination, autonomic management and redundant
service removal.

UML has grown to be a popular notation for modelling software systems. It
contains many different types of models that can also be used to describe SW
behaviour. In the field of dynamic analysis-based modelling, two popular UML
model types are sequence diagrams and state diagrams. State diagrams were
covered in the previous subsection. Briand et al. [113] present a survey of tools
to reverse engineer sequence diagrams, and Bennett et al. [114] present a survey
and evaluation of tool features intended to help users in understanding reverse-
engineered sequence diagrams. Briand et al. [113] describe the properties of the
tools and their support in analysing the sequence diagrams such as support for
viewing full control flow and execution pattern identification. They deem these
to be important features, but due to various constraints such as the limitations of
the UML sequence diagram notation find the support limited. Bennett et al. [114]
note the lack of studies on the real support offered by different analysis tools for
the user. For the tools, they list a number of goals to support the cognitive process
of the user including design and architecture recovery, feature location, design
pattern discovery and re-documentation at different levels of abstraction.

Most of the presented techniques analyse and model the behaviour of general
properties of the SUT such as method calls and variable values. More domain-
specific approaches have also been applied, with the basic strengths and weak-
nesses of domain-specific models. These have the benefit of providing a better
fit for the chosen domain at the expense of excluding all other domains. One
example of such an approach is analysis of the behaviour of telecommunication
systems by Marburger and Westfechtel [115]. They use static and dynamic
analysis with views such as dependency diagrams, link chains, state diagrams
and sequence diagrams. Some of these are more general, such as sequence dia-
grams, and some are more domain specific, such as link chains. The dynamic
analysis, in particular, focuses on domain-specific data such as signals and the data
passed over the signals. They describe this using the models to aid understanding
of the system, and found the data based on dynamic analysis especially useful.

Schmerl et al. [116] produce an architectural model from run-time events of a
SUT. By mapping the set of run-time events to architectural events and trans-

2. Test automation and observation-based modelling

53

forming these events into an architectural description, they produce the architec-
tural model of the SUT. The architectural models they produce are described as
sets of components and connectors.

Process mining is a technique aimed at discovering processes from event logs
[117]. Although it originates from the field of (human-oriented) workflow moni-
toring, its applications have since been extended to various other domains, in-
cluding SOA-based software systems [117]. This approach has been imple-
mented in the ProM3 tool that supports the building of various types of process
models from given event logs such as Petri-nets and FSMs [118].

Lo et al. [119] mine temporal interaction rules from execution traces of pro-
grams. They call these invariants in describing statistically significant properties
of interactions that hold over time in the program execution. These models con-
sist of premises leading to consequences, that is, they describe how temporal
event sequences (premises) are followed by other event sequences (conse-
quences). They use the models to facilitate program comprehension, and as input
for model checking to reveal errors in the implementation. Lo et al. [120] also use
these temporal properties as input for the model-generation algorithms described
in [107] in order to help improve the generalization of observed events from the
traces and avoid the “spurious” events often observed in large-scale traces.

In addition to generating models from collected execution data of a program,
another approach is to create these models separately and use them to support
the analysis process. In this regard, the models are first created manually and
then compared against an inferred model of execution. This can be used, for
example, to document the current understanding of the system and to validate it
against the actual execution. Koskinen et al. [121] have used what they call be-
haviour profiles to describe how classes are expected to interact in a system.
They use UML models such as class and sequence diagrams to describe the pro-
files, and traces of program execution are mapped against these traces to see if
they are correct. Counterexamples are also sought to find places where the be-
haviour is against that which is expected. The previously described approach by
Roover et al. [75] uses a similar mapping of traces against predefined models,
but uses logical queries written in Prolog to describe the model and for verifying
these logic queries against the program trace.

3 http://www.processmining.org

http://www.processmining.org

2. Test automation and observation-based modelling

54

2.3 Discussion

This chapter focuses on describing the two main background concepts and the
existing work on these concepts: test automation and observation-based model-
ling. These two fields share many properties, for example, as mentioned, Binder
has noted that testing is always based on a model even if it is only an implicit
one in the tester’s mind [89]. In addition to this, the evaluation of a test execu-
tion is always based on observations. With reference to the previously men-
tioned definition of SW testing in the context of this thesis (“the dynamic verifi-
cation of the behavior of a program on a finite set of test cases, suitably selected
from the usually infinite executions domain, against the expected behavior.”
[7]), testing uses dynamic analysis as an underlying technique, that is, capturing
observations from the execution of the SW behaviour and comparing these
against set expectations. In this way, a form of observation-based modelling can
be seen as always being required for the purposes of testing.

There is relatively little work on the type of observation-based modelling dis-
cussed in this thesis however. This means the approach of not writing the test
expectations manually but using the captured observations from a set of execu-
tion scenarios as a basis to provide the expectations (the oracle information)
itself. Some of the work on observation-based modelling that is described ap-
plies the produced model in the context of software testing (e.g. Lorenzoli et al.
[107] for test suite optimization) or verification (e.g. Lo et al. [119] for model
checking). While a few tools allow turning simple observation-based models
into unit tests (e.g. [43]), to the knowledge of the author of this thesis, however,
no previous work exists on providing (semi-)automated support for generating
executable test models suitable for MBT from captured observations prior to the
studies presented in this thesis. One of the biggest issues in this regard can be
seen in the provision of useful new tests based on existing tests and other execu-
tion scenarios, as these already exist and are executable. In the work presented in
this thesis, this issue is addressed through the combination of the different sce-
narios and the use of a model-based testing tool. The aspect of verifying the
correctness of the produced models against the system specification (its expecta-
tions) is addressed with a set of guidelines forming a new method for applying
the produced model for testing and verification of SW with the help of existing
techniques related to observation-based modelling from the field of program
comprehension.

2. Test automation and observation-based modelling

55

As described, this thesis provides a construct as a combination of these two
different fields. In this way, it provides a novel contribution to both of these
fields in addition to the individual contributions of different publications.

3. A framework for observation-based modelling in model-based testing

56

3. A framework for observation-based
modelling in model-based testing
This chapter presents an overview of the developed framework for observation-
based modelling in model-based testing. More details can be found in the origi-
nal research papers, as listed in the beginning of this thesis and provided as at-
tachments. This chapter starts with a general overview and finally describes how
the original papers contribute to the different parts of the presented framework.
An implementation for EFSM models is used as an example while discussing the
concepts at a general level. This implementation is made available as open
source4.

The process of applying this framework can be categorised into two distinct
phases. In the first phase, the target model used for model-based testing is de-
fined and tool support provided for the automation tasks. In the second phase,
the available tool support and information on using the different concepts is ap-
plied. These two phases are described in more detail in the following subsections.

3.1 Phase 1: Defining the target model

The goal of observation-based modelling as presented in this thesis is to provide
automated support for the modelling process in model-based testing. Different
types of models can be applied in the test automation domain. Before applying
model-based testing, it is important to define the target model that is being used
and to provide automated tool support for generating the initial model.

In the first part of applying the process, the model and the required informa-
tion for generating an initial version of it from captured observations needs to be

4 http://sourceforge.net/projects/noen/

http://sourceforge.net/projects/noen/

3. A framework for observation-based modelling in model-based testing

57

defined. This starts with choosing the model to represent the properties of inter-
est for the SUT in order to enable testing of the required properties. This model
is decomposed to define the information that needs to be captured as observa-
tions made about the system execution. This information is also mapped back to
the target model in order to enable the building of suitable generation algo-
rithms. To make this more manageable for complex models, they can first be
decomposed into simpler models (behavioural patterns) that can be generated
from captured observations and combined to form the target model. In the end,
tool support is implemented to generate the initial model from the captured ob-
servations. This process is illustrated in Figure 6 and discussed in Paper VII.

Figure 6. Model decomposition.

In this figure (Figure 6), the term pattern refers to behavioural patterns describ-
ing the different properties captured and inferred from running and observing the
execution scenarios of the SUT. Here, a behavioural pattern refers to specific
abstracted models that describe partial properties required for generating the
complete target model. This includes describing the SUT interactions, data, their
relations and similar properties. Each of these provides a set of different patterns
that are later mapped together to produce the final target model. For example,
using a set of captured input and output messages as observations, an FSM can
be considered to be a behavioural pattern in which the different states and transi-
tions describe the relations and behaviour of the SUT in terms of messages
passed. Similarly, invariants over the data values processed by the SUT can be
used as behavioural patterns describing the properties and relations for the data
values. In this case, an FSM behavioural pattern can, for example, say that a re-
quest is always followed by a reply. A model in this context is considered to be
more complex, for example, combining the properties of the behavioural patterns
represented by an FSM and the properties represented by a data invariant model.

Once a target model has been decomposed and related tool support has been
provided, this can be reused for different target systems. Once the information
that needs to be captured has been defined and the tool support to generate the

3. A framework for observation-based modelling in model-based testing

58

models from this information has been implemented, it can be applied across
different SUTs to generate the initial model for MBT. This thesis presents an
implementation of one type of model. This model is an extended finite state
machine (EFSM), which was described earlier in Section 2.1.5.

As described in Chapter 2, a test automation framework requires the existence
of a number of different components such as test input data, a test harness and a
test oracle. As was also described, the exact components and their requirements
depend highly on the type of testing performed, the functionality under test, the
design of the SUT and similar properties. For this reason, it is not possible to
provide a generic set of components that would be applicable for all different testing
purposes. This thesis, however, provides a basis for creating this mapping, provided
the requirements for the model and the candidate models are known.

Table 3 shows the decomposition of the EFSM model into a set of behavioural
patterns and the way they are mapped to a set of captured observations. Table 3
also briefly summarizes the basic parts of a test automation framework as pre-
sented in Chapter 2 and implemented in the EFSM model generator case example.
These are combined to form the complete EFSM, which is implemented in an
automated tool. The application of the model provided requires some special
attention and is described in the next section, which describes the second phase
of applying the OBM framework.

Table 3. EFSM model decomposition.

Model Element Pattern Observations

State Data
invariants

Data values representing the SUT internal state during
each observed (input and output) message passed through
the SUT external interfaces.

Transition FSM Input and output messages passed through the SUT exter-
nal interfaces.

Transition guard Data
invariants

Input data values for received input messages, grouped as
a separate invariant data point for each input-output mes-
sage tuple.

Input data Data
invariants

Input data values (e.g. value ranges) used in input mes-
sages.

Test harness Interface
definitions

Messages defined in the SUT external input and output
interfaces.

Test oracles FSM and
data
invariants

Output messages (expected interactions) and their data
values (expected return values). Associated separately for
each separate transition.

3. A framework for observation-based modelling in model-based testing

59

3.2 Phase 2: Applying the framework

The toolset developed in the first phase is applied to the second phase. This
phase can be repeated for any SUT to which the same type of model can be ap-
plied once the first phase has been completed. An overview of the process of
using the toolset and the modelling approach is shown in Figure 7.

This second phase consists of three separate steps, each with a set of own sub-
steps as shown in the figure. The arrows in the figure are labelled with a number
for the step (1–3) and a letter for the substep inside the phase (a–e). Each arrow
describes an activity for a step in the application of the framework. The boxes
describe different entities related to the application of the framework, indicating
the required tools, inputs and outputs that the steps use or produce.

This process of applying the framework is supported with automated tools for
each step. The first step is about collecting the required data (observations) to
build the model. This can be automated to different degrees depending on the
type of observations that need to be captured. The second step generates the
model. This step can be completely automated with tool support from the first
phase. In the third step, the model is manually refined and executed (tested) until
all errors found in the implementation and/or the specification are found and
fixed. The refinement in this phase is manual, whereas the model execution,
testing and reporting of results is performed by a test automation tool. Each of
these steps is described in more detail next.

3. A framework for observation-based modelling in model-based testing

60

SUT

Execution Scenarios
(Tests, Field Data, …)

Monitors

1a.Drive

SUT
Observations

1b.Observe 1c.Capture Data

Model
Generator

2a.Read Data

MBT
Tool

3d.Test

Tester/Analyst

3e.Feedback

3b.Run

Model

3c.Execute 2b.Generate

3a.Verify & refine

E x e c u

t

SUT
Specifications

3a. Verify
& refine

Figure 7. Overview of the framework.

3.2.1 Step 1: Capturing observations

The process of applying the framework begins in step 1 with the capturing of a
comprehensive set of observations describing the behaviour of the SUT. In step
1a, a set of execution scenarios are defined for capturing the base observations.
Good candidates for these scenarios are the existing test suites of the SUT and
field data captured, for example, from the use of the SUT [99]. Together these
scenarios should form a representative set of the expected behaviour of the SUT
from the perspective of the target model, including component interactions and
input/output data. This means that the used execution scenarios should represent
the complete behaviour of the SUT as it is intended to be included in the model,
as opposed to only exercising a part of the SUT functionality. Depending on the
requirements and the intended test target, the requirement for what constitutes a
representative set can of course vary and is up to the expert defining the set, with

3. A framework for observation-based modelling in model-based testing

61

the help of tools such as the system specification. The completeness of these
scenarios defines the quality of the model generated in the following step. The
assessment of the set of observations has been described in more detail in Paper
VIII. Guidelines for SW design to support more effective observations and test-
ing are presented in Papers IV and V.

As the generated model is based on behavioural patterns mined from these ob-
servations, the mined patterns can be more powerful if the set of used scenarios
provides a meaningful classification of expected results. For example, invalid
input that causes error-handling behaviour can limit the usefulness of the gener-
ated model, as many existing tools for pattern mining do not provide functional-
ity to mine sufficiently complex interactions between the input data values, in-
teraction sequences and SUT internal state values. This means that unclassified
scenarios will produce patterns and, as a result, a model that allows for all types
of input and output, limiting their power of discovering failures such as errors
for valid input. This is similar to existing work on using generated models for
testing such as [66, 78] that use a set of observations considered to describe the
correct behaviour of a SUT as a basis for the model, although different categoriza-
tions are also possible here. This is discussed in more detail in Papers VI and VII.

As in many cases, such classifications of available execution scenarios are not
attainable; this is not a strict requirement. When the categorization is not avail-
able, it simply means that more manual work needs to be performed in the later
phase of model refinement, for verification and testing to identify the categories
in the produced model.

An execution driver component is needed to drive the execution scenarios of
the SUT. This can be an existing test automation framework, a set of real users
or any other form of available drivers. As the driver executes the SUT according
to the execution scenarios, one or more monitoring components are used to cap-
ture a set of observations on the SUT behaviour (step 1b). As the framework is
intended to take a black-box approach, it is sufficient to capture these observa-
tions from the SUT external interfaces and any provided test interface(s). The
information captured at each observation point includes the internal state of the
SUT, the input and output messages (method invocations) of the SUT and pa-
rameter values of these messages. Thus, it is most naturally applied to compo-
nents that provide test interfaces to read their internal state, and that clearly de-
fine their external interfaces. Other options also exist, however, as described in
Papers IV and VI. The observations for all execution profiles are stored in a data

3. A framework for observation-based modelling in model-based testing

62

store (step 1c). Steps 1a to 1c are (automatically) repeated by the execution
driver component until all execution scenarios have been executed.

3.2.2 Step 2: Model generation

In the second step, the initial target model is generated based on the observations
captured in step 1. In step 2a, the model generator component uses the stored
observation data as a basis to generate the initial target model in the notation
used by the chosen MBT tool (step 2b). In the implemented EFSM generator,
this is the notation of the ModelJUnit5 tool. The model generator mines the be-
havioural patterns into which the target model is decomposed from the observa-
tions, and combines these to produce the target model as defined in phase 1. In
the EFSM case, the generator first mines the FSM and the Daikon data invari-
ants from the observations and combines them into an EFSM model in the nota-
tion used by an MBT tool. The FSM uses the SUT external messages as a basis
for both the states and transitions between these states. For example, it can de-
fine that from a Request state (message) it is possible to transition to a Reply
state (message). The data invariants are inferred based on the parameter values of
the messages and their relations to the state of the SUT at each point. These in-
variants describe the relations between the parameter and SUT internal state val-
ues that allow each transition to occur. For example, it may say that to subscribe
with a given client name there must be connected clients, and the given client
name must be in the list of connected clients in the SUT internal state. These data
invariants and the FSM form the basic behavioural patterns that are then combined
to form the final target EFSM model. Once the initial EFSM model is generated, it
is provided to the user for the manual refinement and verification step (step 3).

The user of the generated model is typically a tester or analyst working with
the software. In many cases, the use of an MBT tool requires an understanding
of its special notations and concepts, some of which can be quite complex and
unfamiliar to the user [91]. In the EFSM framework case study, the choice has
been to use models presented in the Java programming language, which is famil-
iar to many developers. Similar MBT tools also exist for other languages such as
C# [122], and the EFSM generator could be modified to also provide models in
these languages. The use of a familiar language has the advantage of making the

5 http://www.cs.waikato.ac.nz/~marku/mbt/modeljunit/

http://www.cs.waikato.ac.nz/~marku/mbt/modeljunit/

3. A framework for observation-based modelling in model-based testing

63

adoption of the MBT approach easier, allowing people to work with a familiar
notion and familiar toolset in addition to the framework, which already generates
a model with much of the required content automatically.

This forms the basis for the process of using the generated models. This has
been described in more detail in Paper VI.

3.2.3 Step 3: Model refinement for verification and testing

The third step of refining the model is iterative. It starts with the user taking the
generated model and choosing which part to focus on first (step 3a). These parts
need to be enabled in the model (for example, with the transition guards in the
EFSM), while keeping the rest of the model disabled. In practice this translates
to disabling states in the state machine by setting their guards to always return
false (in case of an EFSM), thus enabling the user to focus on the chosen parts of
the model. With the target parts of the model enabled, the user can run the MBT
tool (step 3b), which will attempt to execute the model (step 3c) against the SUT
in order to test it (step 3d). The user will then proceed to enable the rest of the
model one part at a time (for example, a transition at a time in the EFSM). The
execution of the model with the MBT tool will give continuous feedback for the
expanding model (with more parts enabled). In this step, the initial model also
needs to be generalized to fully match the SUT specification, as it will be con-
strained to only describe the properties available in the used execution scenarios.
The refined and generalized model is verified against the implementation by exe-
cuting it with the MBT tool, which will report any mismatches between the two.

The execution of the model gives feedback to the user, highlighting where in
the model the error was found. The user has to compare what the implementa-
tion does, what the model expects it to do and what the specification states that it
should do. From this, the decision has to be made as to whether the error is in the
implementation, the model or the specification. The original generated model
should match the implementation and the refined one should match the specifi-
cation. Problems such as misinterpretations of the specification or the modelling
notation can also cause problems however. This part of using the refined model is
referred to in this thesis as verification of the implementation vs the specification.

A second viewpoint in addition to the verification viewpoint is that of testing.
As the model is continuously executed during the refinement phase, it can be
executed at any time with the help of the MBT tool. This typically generates
tests that produce complex interaction sequences and data as input for the system

3. A framework for observation-based modelling in model-based testing

64

under test. This can reveal additional errors in the implementation, where the
implementation (or its part) is not “wrong” with regard to the specification, but
where the different parts of the systems fail in the case of a more complex inter-
action sequence than has been tested before. In this thesis, this part is referred to
as the testing part in the use of the model.

The method for using the generated model for software testing and verifica-
tion has been described in more detail in Paper VI.

3.3 Discussion

As the generated model is based on observations made from the existing imple-
mentation, it also describes the actual implementation. Thus, care needs to be
taken that the model is not taken as a specification of expected behaviour with-
out consideration. If the implementation is not in accordance with the specifica-
tion, this will not be visible simply by comparing the generated model with the
implementation. The user must carefully verify that the model matches the
specification, which should define what is expected of the implementation.

This approach makes use of model-based testing tools and techniques, but
turns the basic MBT approach around. In MBT, the specification is normally
used as a basis for the model, the generated tests are executed against the im-
plementation and the results are verified to determine if any reported errors are
due to problems in the model or in the actual implementation. As the techniques
presented in this thesis turn this approach around, the model is now generated
based on observations made from the actual implementation and, as described in
this thesis, this model is refined to match the specification and constantly exe-
cuted to see that the implementation still matches the specification. Thus, it is a
change from matching the specification to the implementation to matching the
implementation to the specification. This thesis addresses various aspects required
to produce the observations, provides an implementation of the model generation,
guidelines for use, and experiences and empirical evidence on their application.

Experiences from the executed case study indicate that the presented tech-
nique has potential to uncover different types of errors in both the implementa-
tion and the specification. In the case study, it effectively highlighted ambiguous
parts of the specification that needed to be updated to define what was expected
of the SUT. Several errors were found in the implementation where the specifi-
cation was implemented incorrectly. Problems were also found in the way the
SUT was designed and implemented in the more complex scenarios with gener-

3. A framework for observation-based modelling in model-based testing

65

ated input data and message sequences. These caused errors in the design at a
level that was not clearly defined in the specification, but they were obviously
not correct. Finally, some specified functionality was found to be missing com-
pletely from the implementation. This can only be found by checking that the
required functionality is present in the generated model, as any unimplemented
features will never be generated based on the implementation. These types of
errors are best found when the SUT implementation and model genera-
tion/refinement are performed by different people, as it forces a new interpreta-
tion of the specification.

Table 4 summarizes the contributions of each paper to the framework.

Table 4. Contributions of each paper to the thesis subject.

Paper Phase/
Step

Contribution

I x This paper presents a motivating case study from testing and integrating a
complex real-world application. Many of the issues discussed are addressed
in the later papers.

II (2/1b),
(2/2a),
(2/2b)

This paper presents some of the initial concepts for the framework presented
in this thesis that are taken further in later papers.

III 2/1a This paper discusses the different properties of execution scenarios (test
cases) and the way different types of scenarios are needed to cover different
parts of the SUT effectively.

IV 2/1b This paper presents guidelines for building support for effective monitoring into
the SW at various levels from high-level architecture to the detailed design.

V 2/1b,
2/1c

This paper presents the design and implementation of a monitoring frame-
work that provides services for generic system monitoring and supports the
building of more specific monitoring.

V 2/2a From the presented monitoring framework, it is also possible to export the
observation data to different tools, including the formats used by the EFSM
case study tools.

VI 2/1-3 This paper describes the overall process of phase 2, starting from the first
steps up to the final steps, including a practical implementation for the EFSM
case study.

VII 1 This paper describes the first phase of model decomposition using the EFSM
model decomposition and generation as a case example while discussing the
concept more generally.

VIII 2/1,3 This paper discusses means to analyse the set of observations, to optimize the
set of used execution scenarios and to generate test oracles more generally.

4. Introduction to original papers

66

4. Introduction to original papers
This chapter briefly summarizes the papers presented in this thesis and shows
their contributions and relations to each other.

4.1 PAPER I: Integrating and Testing a System-Wide
Feature in a Legacy System: An Experience Report

Paper I is an experience report on a project in which a feature with system-wide
effects was integrated and tested on an embedded real-time software platform.
The research format is that of a descriptive case study chosen to report the ex-
periences considered interesting from a research perspective as encountered
during the development work of the described project. The publication focuses
on the problems and the reasons for them encountered during the course of this
work. There is special focus on the problems caused by the environmental con-
straints of the software platform and the context in which the work was done.
The highly embedded nature of the effected software coupled with its weak test-
ability support made it difficult to control and observe the system. It was not
possible to run any parts of the software effectively outside the embedded de-
vices for which it was designed, nor was it possible to create different configura-
tions of components to test the integration. The difficulties of decoupling the
different software components from their execution platform and from each
other also made all the real-time requirements of the platform unavoidable. Fur-
ther problems were presented by the complex interactions between the system
components. The wider context of the work included the integration of various
black-box components from different vendors. There was very little visibility as
to how the black-box components worked, and together they formed a network
of components with complex interactions. This paper provides background mo-
tivation and requirements for the research area of this thesis. Similar issues were
also reported in the interviews described in Paper IV. The author is the main

4. Introduction to original papers

67

writer of the publication and was involved in the practical integration and testing
work, and also collected and analysed the information presented in this paper
from the practical project experiences. Mr. Mika Hongisto was the project man-
ager and contributed hardware-related technical background descriptions for the
paper. Mr. Kari Kolehmainen was the main person responsible for the actual
integration and testing work described in the paper and provided discussions and
insights into the topics described in the paper.

4.2 PAPER II: Towards Trace-Based Model Synthesis for
Program Understanding and Test Automation

Paper II describes the concept of using traces of program execution as a basis for
producing models of the executed program. The research approach in this paper
is to design a construct to improve regression testing of a system, and it is a case
study focusing on a single system. The main research motivation for the study
came from the extensive, repetitive work of integrating and testing the project
described in Paper I, which could have been aided greatly by a simple system
such as that described here, considering the constraints that are also described in
this paper (addressed in more detail in Papers IV & V). Validation is based on
the application of the presented approach on regression testing of an actual fail-
ure in the case study system. The project chosen as a case study is different to
the original industrial project, as this was no longer available to the researcher at
this point. The basic idea is to capture information about the flow of the program
based on a set of described instrumentation levels. The SUT is instrumented
using any combination of instrumentation starting from means provided by the
HW platform to manually inserted SW instrumentation. The captured data are
used as a model of the way the system behaves, and this model is used as a basis
for regression tests. This model is not yet suitable for use with existing MBT
tools but rather requires a toolset of its own. It is best applicable for regression
testing and to systems for which there is limited control over inputs and outputs.
The basic concepts presented in this paper were further developed in later papers
to be better suited to MBT. The author is the sole writer of the publication.

4. Introduction to original papers

68

4.3 PAPER III: Towards a Deeper Understanding of Test
Coverage

Paper III discusses how the commonly used basic measures of test coverage can
benefit from a deeper analysis of the way different parts of the SUT are covered
by the different tests. The research approach was that of using conceptual analy-
sis to find properties relevant to the testing and test coverage of the SUT and to
use this information to construct a design artefact for measuring test coverage at
more detailed level(s). The motivation was to improve the measurement of test
coverage and thus the analysis of where new tests are needed based on the au-
thor’s experiences of various SW projects and in the SW testing community.
Validation was based on analysis of the test suite and its coverage for an open-
source project. The case study system was chosen for the availability of a suit-
able test suite and non-trivial complexity for providing a realistic environment.
The roles of different tests such as unit tests, integration tests and system tests
are discussed in order to show that it is not enough just to know that a part of the
SUT is covered by some test, but that we need a deeper understanding of the
types of tests in the test suite and how they cover the SUT together. The con-
cepts of test granularity and level of testing are introduced to describe and com-
pare the coverage of different tests and how they cover the SUT. The described
measurements are implemented, and an open source project and its test suite are
analysed as a case study of the proposed concepts. This paper provides the basic
discussion on how we need different types of executions (tests) to cover the dif-
ferent functionalities and properties of a SUT when using the traces of its execu-
tions as a basis for building a model for its behaviour. Paper VI makes use of
this information to select the types of executions that are used to build the model
of the SUT. The author is the sole writer of the publication.

4.4 PAPER IV: A Study on Design for Testability in
Component-Based Embedded Software

Paper IV is a study and a comparison of how design for testability (DFT) was
addressed in two large-scale software companies working on embedded real-
time software. The research approach is a survey focusing on exploring the prac-
tices of chosen companies in the field of interest. The choice of these companies
was based on the industrial relations available at the time, and the choice of
teams and projects inside these companies was based on their own expertise in

4. Introduction to original papers

69

choosing a representative set with advanced solutions developed for the studied
topics. The motivation for the study came from many sources including the au-
thor’s experiences from several projects such as the one described in Paper I,
and from the needs and interests of the industrial partners. The results are cate-
gorized into three different types: built-in functionality to support test implemen-
tation in the SUT, control of messaging between the system components with
supporting middleware solutions, and simulation strategies that define how the
software components can be integrated and tested outside their embedded device
platform. Supporting test functionality ranges from libraries with readily built
functionality to be integrated into the SUT as needed to first-class features in the
SUT that will be part of the production code. These features provide functional-
ity and interfaces to access information about and control SUT behaviour. Mes-
saging solutions describe middleware solutions for the SUT that enable the com-
position of different combinations of the SW components and their test stubs and
the control of the data and control flow as messages pass through the system.
Simulation strategies start from the definition of the software platform in a way
that allows the components developed for it to be executed without change in an
external (desktop) environment. The solutions employed by the two companies
are discussed and comparisons made of their effectiveness. Some of the informa-
tion presented in this paper also served as the basis for the concepts developed
and presented in Paper V. Some of the concepts presented are applied in Paper
VI. The author is the sole writer of the publication.

4.5 PAPER V: A Probe Framework for Monitoring
Embedded Real-Time Systems

Paper V presents a monitoring framework for embedded real-time systems. The
research approach in this case focuses on improving issues described in Paper
IV. Some of the motivation is also related to the issues presented in Paper I,
where there was no effective support built into the system for monitoring and
testing the system. This paper then focuses on effective support for the required
features based on the previous papers. The case study subjects were chosen
based on the industrial partners in the project at the time, which provided envi-
ronments similar to the one presented in Paper I with mainly real-time embedded
software. Validation was based on two analysis cases on actual systems provided
by the industrial partners. The presented framework provides generic services that
can be deployed as is to provide information about the system at a general level

4. Introduction to original papers

70

and supporting services to implement any system-specific probes. It also sup-
ports integration with probes created with third-party tools such as SystemTap.
SystemTap is used as an example as it enables a running SUT to be modified to
add and remove probe code from the kernel. The described framework is imple-
mented in C on a Linux platform and provided as shared libraries. The basic
protocols are also provided as a Java implementation. These implementations are
part of a larger framework, which enable the monitoring of a SUT, collection of
the trace data and their exportation in different formats to different analysis and
modelling tools. This also supports the Daikon and ProM tools used in Paper VI.
Mr. Markku Pollari was responsible for implementing the presented framework
on Linux and was the main writer of the publication. The author defined the
concept of the framework to be developed, guided and assisted with the design
and implementation, implemented the Java version and participated in writing
the publication. This paper received a best paper award at the conference, and an
invitation for an extended version by the Journal on Advances in Systems and
Measurements.

4.6 PAPER VI: Observation Based Modeling for Model-
Based Testing

Paper VI brings together many of the concepts presented in the previous papers.
The research approach started with a conceptual analysis (study) of the MBT
approaches in order to provide a basis for understanding the requirements for
generating a model usable for MBT. A tool and a method for its use are de-
signed, based on this information, and presented for the generation of both an
initial model suitable for MBT and a method for using this model for testing and
verification of SW behaviour. The choice of case study project was based on the
industrial connections available at the Delft University of Technology, which the
author was visiting at the time. Validation is based on a number of approaches,
including actual testing of two SW components with the help of the provided
artefacts, and simulation with the help of injected faults by mutation testing. The
basic aim is to improve the support for MBT by making it easier to create the
models and use them effectively for testing and verification. It presents a model-
generation tool and technique for generating an EFSM for MBT based on the
observations captured from the SUT execution. It is an extension of the work
described in Paper II of using traces of the program execution as a basis for
building models for its behaviour. Different types of execution scenarios, as

4. Introduction to original papers

71

described in Paper III, are used as a basis to provide the observations to build the
model. DFT solutions, as described in Paper IV, were used to capture the infor-
mation required for the trace used as a basis for the model generation. Although
the case study is executed on a different platform, the framework presented in
Paper V supports the capture of the required observations and provides them in a
suitable format for the model-generation tools applied. The presented technique
involves the user instrumenting the SUT, capturing a set of observations based
on a set of execution scenarios, using the provided tool to generate an EFSM
from these observations and refining the EFSM manually to its final representa-
tion. The SUT specification is used to verify the correctness of the generated
model (and thus of the implementation from which it is generated) and an MBT
tool is used to generate more tests to further explore the generated EFSM. Using
a case study, it shows how the technique can effectively find errors in both the
implementation and the specification. The author is the main writer of the publi-
cation and defined the concepts, designed and implemented the used algorithms
and tools, and performed the case study. Dr. Eric Piel provided the case study
subject, helped execute the case study and participated in writing the publication.
Dr. Hans-Gerhard Gross also helped to provide the case study and participated in
writing the publication.

4.7 PAPER VII: Behavior Pattern-Based Model
Generation for Model-Based Testing

Paper VII is both a generalization and a deeper description of the model genera-
tion technique presented in Paper VI. The research approach of this study starts
with the use of conceptual analysis to identify the relevant properties of test
automation systems and models in order to provide a basis for the provision of a
generic framework for developing algorithms to generate models for model-
based testing based on captured observations. A generic framework is designed,
based on this information, and presented in order to support the creation of algo-
rithms to support different types of models suitable for MBT. The choice of the
case study subject is the same as in Paper VI due to the work being performed in
the context of the same project. Validation is based on the application presented
in more detail in Paper VI and on the description (via conceptual analysis) of its
possible application to a second project related to web-application testing at the
Delft University of Technology, which the author was visiting at the time of
performing this study. While Paper VI focuses on describing the implementation

4. Introduction to original papers

72

of the model generator and its application to the case study, this paper focuses on
the process of generating different types of models. A general description of this
process is presented from the viewpoint of generating different models for use
with MBT, and the EFSM model generation is used as a case example for all the
parts of the process. This process is described as decomposing a target model
(such as EFSM) into a set of behavioural patterns that can be mined from the
observations captured from running the execution scenarios for the SUT. For
this, the information to be observed and captured as well as the means and algo-
rithms for mapping this back to the target model (generating the model) are de-
scribed. The process of using these generated models is also shorortly described
and compared with traditional MBT approaches. The author is the sole writer of
the publication.

4.8 PAPER VIII: Program Comprehension for User-
Assisted Test Oracle Generation

Paper VIII describes synergies in the fields of program comprehension and test
oracle automation. The research approach in this case starts from conceptual
analysis of both program comprehension and test oracles, leading to the identifi-
cation of relevant parts and properties of these two fields and their relations to
each other. This is then used as a basis to design a framework for creating
(semi)automated support for test oracle generation with the help of program
comprehension tools and techniques. The motivation for this study comes from
the observation that test oracle automation is one of the most difficult and least
supported parts of test automation research. From the research work performed
by the author to this point, it was clear that this part could be separated and pro-
vided individually as a meaningful and useful contribution to the field of test
oracle automation. The choice of case study is the same as in Papers VI and VII
as they are part of the same research work. The validation is also similar to Pa-
per VII. While Paper VI focuses on a single type of model, this paper provides
insights into taking this into a wider context. The paper focuses on describing
the concept of providing automated assistance for the generation of test oracles
by means of program comprehension tools and techniques. The tool and tech-
nique presented in Papers VI and VII are used as an example of how a model
generated from a set of captured observations can be used as an aid to under-
standing the system and to turn this model into an automated test oracle. It also
shows how the set of used execution scenarios and the resulting set of captured

4. Introduction to original papers

73

observations can be optimized to provide a sufficiently complete set for generat-
ing the target model. The concept is also viewed against other related work in
the literature, and a generalization of the approach is presented by relating the
provided example to the other approaches and against the theoretical back-
grounds of both test oracle automation and program comprehension. The author
is the sole writer of the publication.

5. Framework evaluation

74

5. Framework evaluation
Different parts of the framework presented in this thesis have been evaluated
through different study subjects. This chapter presents the different study sub-
jects and the way they have been used in the evaluation of the different phases
and steps of the proposed framework.

5.1 Study subjects

A number of different study subjects have been used during the evaluation of the
different parts of the framework presented in this thesis. This section gives a
brief overview of each of the study subjects related to each of the attached pa-
pers in the form of Table 5. As discussed in the presented overviews of the dif-
ferent papers in Chapter 4, Paper I also contributes to the evaluation of the dif-
ferent approaches in the papers by providing a set of practical problems from a
real project with significant complexity and problems in integration and testing.
A mapping of the different papers to these problem areas was also discussed in
Chapter 4.

5. Framework evaluation

75

Table 5. Study subjects in the different papers.

Paper Study subject

I A SW platform for mobile devices is studied in this paper, including the platform code
and a number of applications built on top of it. The process of integrating and testing a
feature with system-wide effects was described, and experiences from this process were
described to highlight problem areas that could be addressed in future research.

II A middleware messaging component was studied. The use of captured traces (observa-
tions) and how they could be turned into regression tests for the SUT was explored. A
case study with an actual error scenario for the SUT was used to evaluate the concept in
practice.

III An open-source software project, its existing test suite and test coverage were studied.
The paper studied means for more detailed analysis of test coverage for a test suite.

IV Several experts from two different industrial companies were interviewed to gather the
best practices relating to design for testability. These experts had worked on a number
of different projects and were chosen by the companies as the best representatives to
provide information on this topic. In addition, technical documentation describing the
implementations of these solutions was reviewed.

V Experiments were performed on two Linux-based platforms. One was a desktop Linux
environment and the other was an embedded Linux system provided by one of the
industrial project partners. The use of the presented probe framework for monitoring
the targeted systems, including the overhead caused, was studied both at the kernel and
user-space level.

VI The application of the presented model-generation approach and the proposed OBM
method were studied with the help of different components providing services for a
maritime surveillance system. This included studying the effectiveness and usefulness
of the proposed approaches through the capability of finding previously undiscovered
errors in the implementation and ambiguities in the specification. In addition, effective-
ness in test coverage and mutant detection were evaluated in comparison with the exist-
ing tests used as a basis for model generation.

VII A database and server component that is a part of a larger system is studied. This study
subject is very similar to the ones used in Paper VI. This paper discusses the model
decomposition and algorithm development aspects with the help of the case study in
more detail and more generally. Paper VI provides a more detailed evaluation of this
approach with a specific case study. In addition, this paper (VII) briefly describes the
application of the presented concept in the domain of web-applications. This descrip-
tion related to web applications is based on ongoing work but is not discussed in more
detail as it is work in progress.

VIII A database and server component that is a part of a larger system is studied. This study
subject is very similar to the ones used in Papers VI and VII. Again, Paper VI provides
a more detailed evaluation of this approach with a specific case study. This paper (VIII)
and its case study show how program comprehension techniques can be used to assist in
semi-automated generation of test oracles more generally.

5. Framework evaluation

76

5.2 Phase 1: Defining the target model

Three studies presented in Papers II, VI and VII are relevant to the evaluation of
the first phase. A simple and straightforward approach is presented in Paper II,
which takes the interesting properties of the behaviour as captured in the trace
(observations) and simply turns these directly into a regression test for the SUT.
This is evaluated by applying it to the actual study subject and testing its error
scenario.

A generic approach to more complex modelling is presented in Paper VII,
which also discusses its application to the definition of the required information
for generating EFSM models and for generating similar models for automated
GUI-based testing of web applications. This is evaluated through practical appli-
cation to these types of models, as described in Paper VII. A detailed evaluation
of this approach is given in Paper VI, in which details of the different parts of
the model decomposition, generation and application are given, and its useful-
ness is evaluated with the study subjects used.

Together, these studies provide both the generic guidelines for defining the
target model and for decomposing it into the information needed, as well as
evaluating it with the use of practical case studies.

5.3 Phase 2: Applying the framework

Different studies from the different papers are relevant to the evaluation of the
steps of this second phase. The following subsections describe the evaluation
viewpoint for each of these papers and steps.

5.3.1 Step 1: Capturing observations

Papers II, III, IV, V and VI are relevant to the evaluation of this step. Paper II
discusses different means of capturing a trace (observations) from low-level
hardware support to high-level application-specific functionality. In this case,
application-specific functionality is used to build a basis for test information.
Paper III discusses the different types of execution scenarios used to build the set
of observations. A practical evaluation of different execution scenarios is pre-
sented for the analysed software, showing how this can be applied in practice.

Paper IV presents a set of guidelines for building support for testing and
analysis into the architecture and design of a software system. This supports the

5. Framework evaluation

77

observations phase by allowing more control over the targeted system (focused
observations, inputs and outputs) and building more advanced options and ad-
vanced support for the observation process itself. The evaluation is based on the
discussions and experiences of the experts from the surveyed companies and the
analysis of the provided information. Paper V is a continuation of this work,
building a sophisticated framework that provides support to design these types of
features into the different parts of the system being analysed. This (probe)
framework is evaluated with two different case studies, showing how it can be
used to provide this kind of support in practice and how effective it is. The re-
sults showed significant improvements over existing systems.

Together, these studies provide support for the observation-capturing step in a
manner in which each part of the proposed approach(es) has/have been evaluated
with empirical means.

5.3.2 Step 2: Model generation

Papers II, VI and VII are relevant to the evaluation of this step. As discussed,
Paper II presents an early concept of a simple turning of a captured trace (obser-
vations) into a test model and using this as a basis for regression testing. It is
evaluated with a case study, showing how the given approach can help in the
discovery of actual faults introduced over SW evolution.

Paper VII provides generic guidelines for turning the captured information (as
defined in phase 1) into a suitable test model for the SUT. This is evaluated with
the provided case studies, showing how an EFSM can be decomposed into a set
of behavioural patterns, which are combined to form the complete target model
from the captured observations. Paper VI also provides a detailed evaluation of
EFSM model generation with detailed case studies showing how this can be
done, as well as evaluating its accuracy in producing a complete model suitable
for SW testing and verification.

Together, these studies provide the generic guidelines for building the algo-
rithms to generate the target model from the captured observations and for
evaluating these with the use of practical case studies.

5.3.3 Step 3: Model refinement for verification and testing

Papers II, VI and VIII are relevant to the evaluation of this step. Paper II dis-
cusses some initial ideas of using the provided model to also support the process

5. Framework evaluation

78

of understanding the behaviour of the SW together with the goal of using it for
testing the SW. This provides a basis for the concept of using a generated model
for both of these purposes, which is important for their application in both SW
testing and verification. This is evaluated with the analysis of a captured trace
(observations) for the used case study, showing how the model can be used to
support understanding of the analysed functionality and detect errors in regres-
sion testing.

Paper VIII provides a generic overview of the similarities of both the program
comprehension research field and the test automation research field. It provides a
comprehensive overview of both fields and their similarities based on existing
work, which in itself serves to evaluate the concept. This is further illustrated with
the help of a case study on analysing a generated EFSM model with the help of
tools intended to support human analysis (program comprehension) and providing
the (human) user with an option to turn these (machine-) generated models into
complete test models to be used for model-based testing. This is evaluated in more
detail in Paper VI, which provides a detailed study of using a generated EFSM
model as a basis to verify the implementation of the SUT against its specification
and to generate more tests to detect errors in the implementation.

Together, these studies provide both the generic guidelines for using the gen-
erated model as a basis for software testing and verification, and for evaluating
these with the use of practical case studies.

6. Conclusions

79

6. Conclusions
This thesis presented a framework for observation-based modelling in model-
based testing. It discussed automated generation of an initial model for MBT of
SW and its application in testing and verifying the SUT. The introductory part
presented the research framework and questions. The literature related to the
research problems was also reviewed. A motivating case example of the prob-
lems of test automation for modern systems is presented in Paper I. The later
papers then focused on different parts of the research questions, each with a dif-
ferent focus. The last few papers pull all the topics in the subquestions together
to give an answer to the main research question. The main research question
concerned the provision of automated support for model creation for model-
based testing.

6.1 Answers to the research questions

The first subquestion asked how the required information to generate the models
can be captured. The answer to this question is two-fold. As the focus is on gen-
erating models for existing SW systems, the focus is on analysing the implemen-
tation of these systems. First, Paper VII presented a decomposition of the target
model to the required observations. For capturing the actual observations, the
chosen approach uses dynamic analysis of SUT executions, allowing for a black-
box, component-based approach. Paper III discusses the different types of exe-
cution scenarios needed to capture a representative model of a system. Paper IV
discusses implementation and design solutions for capturing the required infor-
mation, and Paper V presents an implementation of a framework that provides
supporting functionality for these solutions. Paper VIII discusses the analysis
and optimization of the set of execution scenarios and observations.

6. Conclusions

80

The second subquestion concerned turning this information into a model suit-
able for MBT. This question is addressed in Papers II, VI, VII and VIII. Paper II
presents a straightforward approach of using a trace captured from the execution
of the SUT as a flow-based model for regression testing. Paper VI presents a
more sophisticated approach to generate an EFSM model from the captured ob-
servations of the SUT. A toolset to produce the required observations and auto-
matically generate the initial model from them is also presented. The produced
EFSM includes all the required elements, including a test harness, test input and
test oracles. When the MBT tool is run, it generates test scripts with all these
elements and executes them against the SUT. The model is generated in a form
usable as such for an MBT tool. Paper VI thus focuses on the EFSM case study,
and Papers VII and VIII on generalizing the different parts of this approach.

The final research question asked how the generated initial models can be
used for SUT verification and testing. As the models are generated based on
information captured from the execution of the SUT, they correctly describe its
actual behaviour. This does not necessarily match the expected behaviour of the
SUT however. The most likely source for the correct, expected behaviour is the
specification of the SUT. The process of verifying this correctness is described
in Paper VI and the approach used is described more generally in Paper VIII.

Together, the answers to these subquestions form an answer to the main re-
search question. They present a complete framework for observation-based
modelling in model-based testing. The answer to the first question describes how
to capture the required information for the initial model generation. The answer
to the second question describes how this information can be turned into a model
usable for MBT. The answer to the third question shows how this model can be
applied to software testing in a reliable way, allowing the user to verify the cor-
rectness and completeness of both the implementation and the specification.
Together they answer the main research question by providing automated sup-
port for model creation for model-based testing.

6.2 Limitations and future work

The term MBT has many different definitions depending on who uses it and in
what context [4]. Even with the definition used in this thesis, different ap-
proaches can be taken and different types of models can be applied [90]. An
implementation for EFSM models was presented, with generic analysis and dis-
cussions for different types of models. Thus, guidelines for different types of

6. Conclusions

81

models are provided, but the implementations for these different types of models
and different types of target systems are left for future work.

The creation of the observations (traces) for model generation requires a set of
SUT executions that thoroughly exercise the behaviour of the SUT. Different
properties for these executions and their sources are discussed in Papers III and
VI. A good source is an existing test suite with categorizations of tests related to
error handling and correct behaviour tests. Another option is to use data captured
from monitoring the SW in its actual environment. In many cases, however, the
availability of a good set of suitable execution data is limited. The test data gen-
eration methods presented in the literature review part of this thesis could be
used to provide a basis for automatically generating a suitable set of executions.
To be effective, however, this would require means to provide automated assis-
tance for the classification of the produced inputs and resulting outputs to enable
the generation of powerful models as discussed before. Tools and techniques,
such as the machine learning and classification techniques described in Chapter
2, are one option to consider for providing these classifications. This area of
research has already been discussed in Paper VIII. As such, it provides an inter-
esting venue for future research.

The tools for mining the behavioural patterns used in the EFSM case study are
intended to be generic and as such are not designed for the purpose of generating
models for model-based testing. This results in limitations on their applicability
and on the completeness of the models provided as well as a requirement for
more manual refinement when using these models for SUT verification and test-
ing. The specific limitations for the EFSM case study are discussed in Papers VI,
VII and VIII, together with possible means to make the behavioural pattern min-
ing more powerful in this case. In general, it can be said that making more spe-
cific behavioural pattern-mining tools for the purposes of using the patterns to
generate specific models for model-based testing would make the automated
model generation more powerful and provide more complete initial models. This
also involves the trade-off of reusing existing tools (as done in the EFSM case
study) and writing new specific tools for this purpose. Addressing this requires
experiments with implementation and trying such pattern-mining tools for cho-
sen models and systems.

One important property to study is more thorough evaluation of the gains of
using the framework presented in this thesis. This involves performing user-
based studies on the usefulness of the generated initial models vs writing the
models from scratch, including the costs of acquiring the required skills for the

6. Conclusions

82

modelling. Possible research approaches for this include introducing OBM into
the modelling process (action research) or a comparative case study with one
group using the OBM approach and another a “traditional” modelling approach.
Another interesting topic of study in this regard is that of different types of test
coverage and of how much more of the existing system can be covered by refin-
ing the initial model and using a model-based testing tool to generate further
tests from this model in addition to the initial set of execution scenarios used to
capture the observations for the model generation. This has already been evalu-
ated in Paper VI, but more experiments with different types of systems and pa-
rameters of experiments would be of interest.

When problems are found in the execution of the model, that is in the com-
parison (execution) of the model vs the implementation, both the model and the
implementation need to be analysed to find out which one is incorrect. A tech-
nique for this is presented in Paper VI in the form of the creation of a separate
test case that makes the inputs and outputs explicit as well as the message se-
quences used in the test case. By analysing and modifying this simple test case,
it is possible to pinpoint the actual cause of failure more effectively. There is
currently no automated support for this, but the separate test case needs to be
manually created. As all the information required to generate this test case auto-
matically is available in the test generated by the MBT tool, this process could
also be automated to generate the initial test for debugging. This would be more
in line with the off-line approach to MBT as the provided toolset is currently
only used as an on-line testing tool.

Although the implemented approach is successfully tested on a real imple-
mentation, as discussed in Paper VI, this is only one tested component from a
relatively simple research prototype system. More experiments on real systems
of significant complexity are likely to reveal more constraints in the proposed
techniques. Performing these experiments to further validate the work and ad-
dressing any constraints that are found would be a topic for future study.

83

References
[1] Bertolino, A. Software Testing Research: Achievements, Challenges, Dreams. In:

Proceedings of Future of Software Engineering (FOSE07), 2007. Pp. 85–103.

[2] Knuth, D. Knuth: Frequently Asked Questions. [Online]. HYPERLINK: http://www-cs-
faculty.stanford.edu/~knuth/faq.html.

[3] Gelperin, D. and Hetzel, B. The Growth of Software Testing. Communications of the
ACM, Vol. 31, No. 6, pp. 687–695, June 1988.

[4] Utting, M. and Legeard, B. Practical Model-Based Testing: A Tools Approach. Morgan
Kaufmann, 2007.

[5] Bertolino, A., Polini, A., Inverardi, P. and Muccini, H. Towards Anti-Model-Based-
Testing. In: Fast Abstracts in International Conference on Dependable Systems
and Networks (DSN’04), Florence, 2004.

[6] Sommerville, I. Software Engineering, 8th ed. Addison Wesley, 2006.

[7] Bertolino, A. and Marchetti, E. Software Testing. In: Guide to Software Engineering
Body of Knowledge (SWEBOK). Bourque, P. and Dupuis, R. (eds.). IEEE Com-
puter Society, 2004, ch. 5. Pp. 5-1–5-16.

[8] Tuuttila, P. and Kanstrén, T. Experiences in using principal component analysis for
testing and analyzing complex system behavior. In: 21st International Conference
on Software & Systems Engineering and their Applications, Paris, France, 2008.

[9] Kanstrén, T. Towards a Deeper Understanding of Test Coverage. Journal of Software
Maintenance and Evolution: Research and Practice, Vol. 20, No. 1, pp. 59–76,
2008.

[10] Glass, R. L., Vessey, I. and Ramesh, V. Research in Software Engineering: An
Analysis of the Literature. Information and Software Technology, Vol. 44,
pp. 491–506, 2002.

[11] Runeson, P. and Höst, M. Guidelines for conducting and reporting case study re-
search in software engineering. Empirical Software Engineering, Vol. 14, No. 2,
pp. 131–164, April 2009.

[12] Järvinen, P. On Research Methods. Tampere, Finland: Tampereen yliopistopaino
Oy, 2004.

http://www-cs-faculty.stanford.edu/~knuth/faq.html

84

[13] Nunamaker, J. F., Chem, M. and Purdin, T. D. M. Systems development in information
systems research. Journal of Management Information Systems, Vol. 7, No. 3,
pp. 89–106, 1991.

[14] March, S. T. and. Smith, G. F. Design and Natural Science Research on Information
Technology. Decision Support Systems, Vol. 15, pp. 251–266, 1995.

[15] Hevner, A. R., March, S. T., Park, J. and Ram, S. Design Science in Information Systems
Research. Management Information Systems Quarterly, Vol. 28, No. 1, 2004.

[16] Ramesh, V., Glass, R. L. and Vessey, I. Research in Computer Science: An Empirical
Study. Journal of Systems and Software, Vol. 70, pp. 165–176, 2004.

[17] Bealey, M. Analysis. In: Stanford Encyclopedia of Philosophy, 2009. [Online].
HYPERLINK: http://plato.stanford.edu/entries/analysis/ http://plato.stanford.edu/
entries/analysis/.

[18] Kitchenham, B., Pickard, L. and Pfleeger, S. L. Case Studies for Method and Tool
Evaluation. IEEE Software, Vol. 12, No. 4, pp. 52–62, July 1995.

[19] Harjumaa, L. Improving the software inspection process with patterns. Oulu, Finland:
University of Oulu, 2005.

[20] Berner, S., Weber, R. and Keller, R. K. Observations and Lessons Learned from
Automated Testing. In: Proceedings of the 27th International Conference on
Software Engineering (ICSE05), St. Louis, Missouri, USA, 2005. Pp. 571–579.

[21] Kanstrén, T. A Study on Design for Testability in Component-Based Embedded
Software. In: Proceedings of the 6th International Conference on Software Engi-
neering Research, Management and Applications, Prague, Czech Republic,
2008. Pp. 31–38.

[22] Binder, R. V. Design for Testability in Object-Oriented Systems. Communications of
the ACM, Vol. 37, No. 9, pp. 87–101, September 1994.

[23] Persson, C. and Yilmaztürk, N. Establishment of Automated Regression Testing at
ABB: Industrial Experience Report on 'Avoiding the Pitfalls'. In: Proceedings of
the 19th IEEE International Conference on Automated Software Engineering
(ASE04), 2004. Pp. 112–121.

[24] Bass, L., Clements, P. and Kazman, R. Software Architecture in Practice, 2nd ed.
Addison-Wesley, 2003.

http://plato.stanford.edu/entries/analysis/ http://plato.stanford.edu/entries/analysis/

85

[25] Briand, L. C., Labiche, Y. and Sówka, M. M. Automated, Contract-Based User Testing
of Commercial-Off-The-Shelf Components. In: Proceedings of the 28th International
Conference on Software Engineering (ICSE06), Shanghai, China, 2006. Pp. 92–101.

[26] Rehman, M. J., Jabeen, F., Bertolino, A. and Polini, A. Testing Software Components
for Integration: A Survey of Issues and Techniques. Journal of Software Testing,
Verification and Reliability, Vol. 17, pp. 95–133, 2007.

[27] Ernst, M. D., Perkins, J. H., Guo, P. J., McCamant, S., Pacheco, C., Tschantz, M. S.,
and Xiao, C. The Daikon System for Dynamic Detection of Likely Invariants. Science
of Computer Programming, 2007.

[28] Andrews, D., Briand, L.C. and Labiche, Y. Is Mutation an Appropriate Tool for Testing
Experiments? In: Proc. 27th International Conference on Software Engineering
(ICSE’05), 2005. Pp. 402–411.

[29] Do, H., Elbaum, S. and Rothermel, G. Supporting Controlled Experimentation with
Testing Techniques: An Infrastructure and its Potential Impact. Empirical Soft-
ware Engineering, Vol. 10, No. 4, pp. 405–435, 2005.

[30] DeMillo, R. A., Lipton, R. J. and Sayward, F. G. Hints on Test Data Selection: Help
for the Practicing Programmer. IEEE Computer, Vol. 11, No. 4, 1978.

[31] DeMillo, R. A. and Offutt, A. J. Constraint-Based Automatic Test Data Generation.
IEEE Transactions on Software Engineering, Vol. 17, No. 9, September 1991.

[32] Liu, M.-H., Gao, Y.-F., Shan, J.-H., Liu, J.-H., Zhang, L. and Sun, J.-S. An Approach
to Test Data Generation for Killing Multiple Mutants. In: Proc. 22nd IEEE Interna-
tional Conference on Software Maintenance (ICSM’06), 2006.

[33] Santelices, R., Jones, J. A., Yu, Y. and Harrold, M. J. Lightweight Fault-Localization
Using Multiple Coverage Types. In: International Conference on Software Engi-
neering (ICSE’09), Vancouver, Canada, 2009.

[34] Rothermel, G., Elbaum, S., Malishevsky, A. G., Kallakuri, P. and Qiu, X. On Test
Suite Composition and Cost-Effective Regression Testing. ACM Transactions
on Software Engineering, Vol. 13, No. 3, pp. 277–331, 2004.

[35] Wilde, N. and Scully, M. C. Software Reconnaissance: Mapping Program Features to
Code. Journal of Software Maintenance: Research and Practice, Vol. 7, No. 1,
January/February 1995.

[36] Eisenbarth, T., Koschke, R. and Simon, D. Locating Features in Source Code. IEEE
Transactions on Software Engineering, Vol. 29, No. 3, pp. 210–214, March 2003.

86

[37] Zeller, A. Why Programs Fail: A Guide to Systematic Debugging. Morgan Kaufmann,
2005.

[38] Andrews, J. H., Briand, L. C., Labiche, Y. and Namin, A. S. Using Mutation Analysis
for Assessing and Comparing Testing Coverage Criteria. IEEE Transactions on
Software Engineering, Vol. 32, No. 8, pp. 608–624, August 2006.

[39] Harder, M., Mellen, J. and Ernst, M. D. Improving Test Suites via Operational Abstraction.
In: International Conference on Software Engineering, Portland, Oregon, 2003.
Pp. 60–71.

[40] Duran, J. and Ntafos, S. An Evaluation of Random Testing. IEEE Transactions on
Software Engineering, Vol. 10, No. 4, pp. 438–444, 1984.

[41] Gutjahr, W. Partition Testing Versus Random Testing: The Influence of Uncertainty.
IEEE Transactions on Software Engineering, Vol. 25, No. 5, pp. 661–674, 1999.

[42] Ciupa, I., Leitner, A., Oriol, M. and Meyer, B. ARTOO: Adaptive Random Testing for
Object-Oriented Software, 2008, pp. 71–80.

[43] Boshernitsan, M., Doong, R. and Savoia, A. From Daikon to Agitator: Lessons and
Challenges in Building a Commercial Tool for Developer Testing. In: Proc. Inter-
national Symposium on Software Testing and Analysis (ISSTA’06), Portland,
Maine, 2006. Pp. 169–179.

[44] Beer, A. and Mohacsi, S. Efficient Test Data Generation for Variables with Complex
Dependencies. In: Proceedings of the 1st International Conference on Software
Testing, Verification and Validation, Lillehammer, Norway, 2008. Pp. 3–11.

[45] Clarke, L. A. A System to Generate Test Data and Symbolically Execute Programs.
IEEE Transactions on Software Engineering, Vol. 2, No. 3, pp. 215–222, Sep-
tember 1976.

[46] King, J. C. Symbolic Execution and Program Testing. Communications of the ACM,
Vol. 19, No. 7, pp. 385–394, July 1976.

[47] Gotlieb, A., Botella, B. and Rueher, M. Automatic Test Data Generation using Con-
straint Solving Techniques. In: Proc. International Symposium on Software Testing
and Analysis (ISSTA’98), 1998. Pp. 53–62.

[48] Tillmann, N. and Schulte, W. Unit Tests Reloaded: Parameterized Unit Testing with
Symbolic Execution. IEEE Software, Vol. 23, No. 4, pp. 38–47, July/August 2006.

87

[49] Korel, B. and Al-Yami, A. M. Assertion-Oriented Automated Test Data Generation. In:
Proc. 18th International Conference on Software Engineering (ICSE’96), 1996.
Pp. 71–80.

[50] McMinn, P. Search-Based Software Test Data Generation: A Survey. Journal of
Software Testing, Verification and Reliability, Vol. 14, pp. 105–156, 2004.

[51] Korel, B. Automated Software Test Data Generation. IEEE Transactions on Software
Engineering, Vol. 16, No. 8, pp. 870–879, 1990.

[52] Grindal, M., Offutt, J. and Andler, S. F. Combination Testing Strategies: A Survey. Journal
of Software Testing, Verification and Reliability, Vol. 15, pp. 167–199, 2005.

[53] Ostrand, T. J. and Balcer, M. J. The Category-Partition Method for Specifying and
Generating Functional Tests. Communications of the ACM, Vol. 31, No. 6,
pp. 676–686, June 1988.

[54] Thummalapenta, S., Xie, T., Tillmann, N., Halleux, J. de and Schulte, W. MSeqGen:
Object-Oriented Unit-Test Generation via Mining Source Code. In: Proc. 7th joint
meeting of the European Software Engineering Conference and the ACM
SIGSOFT Symposium on Foundations of Software Engineering, Amsterdam,
The Netherlands, 2009.

[55] Harman, M. The Current State and Future of Search Based Software Engineering.
In: Proc. Future of Software Engineering (FOSE’07), 2007.

[56] Buehler, O. and Wegener, J. Evolutionary Functional Testing of an Automated Park-
ing System. In: Proc. International Conference on Computer, Communications
and Control Technologies and the 9th International Conference on Information
Systems Analysis and Synthesis, Orlando, Florida, 2003.

[57] Harman, M., Lakhotia, K. and McMinn, P. A Multi-Objective Approach to Search-
Based Test Data Generation. In: Proc. 9th Annual Conference on Genetic and
Evolutionary Computation (GECCO’07), 2007. Pp. 1098–1105.

[58] Tonella, P. Evolutionary Testing of Classes. In: Proc. International Symposium of
Software Testing and Analysis (ISSTA’04), Boston, Massachusetts, 2004.
Pp. 119–128.

[59] Ayari, K., Bouktif, S. and Antoniol, G. Automatic Mutation Test Input Data Generation
via Ant Colony. In: Proc. 9th Annual Conference on Genetic and Evolutionary
Computation (GECCO’07), 2007. Pp. 1074–1081.

88

[60] Baudry, B., Fleurey, F., Jézéqual, J.-M. and Traon, Y. L. From Genetic to Bacterio-
logical Algorithms for Mutation-Based Testing. Journal of Software Testing, Veri-
fication and Reliability, Vol. 15, pp. 73–96, 2005.

[61] Bertolino, A., Gao, J., Marchetti, E. and Polini, A. Automatic Test Data Generation for
XML Schema-Based Partitioning Testing. In: Proc. 2nd International Workshop
on Automation of Software Test (AST’07), 2007.

[62] Sneed, H. and Huang, S. The Design and Use of WSDL-Test: A Tool for Testing
Web Services. Journal of Software Maintenance and Evolution: Research and
Practice, Vol. 19, pp. 297–314, 2007.

[63] Yaun, X. and Memon, A. M. Using GUI Run-Time State as Feedback to Generate
Test Cases. In: Proc. 29th International Conference on Software Engineering
(ICSE’07), 2007.

[64] Daniel, B., Dig, D., Garcia, K. and Marinov, D. Automated Testing of Refactoring
Engines. In: Proc. 6th joint meeting of the European Software Engineering Con-
ference and the ACM SIGSOFT Symposium on Foundations of Software Engi-
neering (ESEC/FSE’07), Dubrovnik, Croatia, 2007. Pp. 185–194.

[65] Wang, Z., Elbaum, S. and Rosenblum, D. S. Automated generation of Context-Aware
Tests. In: Proc. 29th International Conference on Software Engineering (ICSE’07),
2007.

[66] Pacheso, C. and Ernst, M. D. Eclat: Automatic Generation and Classification of Test
Inputs. In: Proc. European Conference on Object-Oriented Programming (ECOOP’05),
2005. Pp. 504–527.

[67] Elbaum, S. and Diep, M. Profiling Deployed Software: Assessing Strategies and
Testing Opportunities. IEEE Transactions on Software Engineering, Vol. 31, No.
4, pp. 312–327, April 2005.

[68] Pacheco, C., Lahiri, S. K., Ernst, M. D. and Ball, T. Feedback-Directed Random Test
Generation. In: Proceedings of the 29th International Conference on Software
Engineering, Minneapolis, USA, 2007.

[69] Pacheco, C., Lahiri, S. K. and Ball, T. Finding Errors in.NET with Feedback-Directed
Random Testing. In: Proceedings of the International Symposium on Software
Testing and Analysis (ISSTA08), Seattle, Washington, USA, 2008. Pp. 87–95.

[70] Richardson, D. J., Aha, S. L. and O'Malley, T. O. Specification-Based Test Oracles
for Reactive Systems. In: Proc. of the 14th International Conference on Software
Engineering, Melbourne, Australia, 1992. Pp. 105–118.

89

[71] Kanstrén, T. Program Comprehension for User-Assisted Test Oracle Generation. In:
Proc. 4th Int’l. Conf. on Software. Eng. Advances (ICSEA2009), Porto, Portugal,
2009.

[72] Antoy, S. and Hamlet, D. Automatically Checking an Implementation against Its For-
mal Specification. IEEE Transactions on Software Engineering, Vol. 26, No. 1,
pp. 55–69, January 2000.

[73] Andrews, J. H. and Zhang, Y. General Test Result Checking with Log File Analysis.
IEEE Transaction on Software Eng., Vol. 29, No. 7, pp. 634–648, July 2003.

[74] Ducasse, S., Gîrba, T. and Wuyts, R. Object-Oriented Legacy System Trace-Based
Logic Testing. In: Proc. European Conference on Software Maintenance and
Reengineering (CSMR’06), 2006.

[75] Roover, C. D., Michiels, I., Gybels, K., Gybels, K. and D’Hondt, T. An Approach to
High-Level. In: Proc. 14th International Conference on Program Comprehension
(ICPC’06), 2006, Behavioral Program Documentation Allowing Lightweight Veri-
fication.

[76] Xie, T. and Notkin, D. Tool-Assisted Unit-Test Generation and Selection Based on
Operational Abstractions. Journal of Automated Software Engineering, Vol. 13,
No. 3, pp. 345–371, July 2006.

[77] Mesbah, A. and Deursen, A. van Invariant-Based Testing of Ajax User Interfaces. In:
Proc. of the 31st International Conference on Software Engineering, Vancouver,
Canada, 2009.

[78] Memon, A. and Xie, Q. Using Transient/Persisten Errors to Develop Automated Test
Oracles for Event-Driven Software. In: Proceedings of the 19th International
Conference on Automated Software Engineering, 2004.

[79] Haran, M., Karr, A., Last, M., Orso, A., Porter, A. A., Sanil, A. and Fouché, S. Tech-
niques for Classifying Executions of Deployed Software to Support Software
Engineering Tasks. IEEE Transactions on Software Engineering, Vol. 33, No. 5,
pp. 287–304, May 2007.

[80] Jin, H., Wang, Y., Chen, N.-W., Gou, Z.-J. and Wang, S. Artificial Neural Network for
Automatic Test Oracles Generation. In: International Conference on Computer
Science and Software Engineering, Wuhan, Hubei, 2008.Pp. 727–730.

[81] Bowring, J. F., Rehg, J. M. and Harrold, M. J. Active Learning for Automatic Classifica-
tion of Software Behaviour. In: Proceedings of the International Symposium on
Software Testing and Analysis, Boston, Massachusetts, USA, 2004. Pp. 195–205.

90

[82] Elbaum, S., Chin, H. N., Dwyer, M. B. and Jorde, M. Carving and Replaying Differen-
tial Unit Test Cases from System Test Cases. IEEE Transactions on Software
Engineering, Vol. 35, No. 1, pp. 29–45, January/February 2009.

[83] Mackinnon, T., Freeman, S. and Craig, P. Endo-Testing: Unit Testing with Mock
Objects. In: Proceedings of eXtreme Programming and Flexible Processes in
Software Engineering – XP2000, Cagliari, Sardinia, Italy, 2000.

[84] Tillmann, N. and Schulte, W. Mock-Object Generation with Behaviour. In: Proceedings
of the 21st IEEE/ACM International Conference on Automated Software Engineering,
Tokyo, Japan, 2006. Pp. 365–368.

[85] Saff, D., Artzi, S., Perkins, J. H. and Ernst, M. l. D. Automatic Test Factoring for Java.
In: Proceedings of the 20th Annual IEEE/ACM International Conference on
Automated Software Engineering (ASE 2005), Long Beach, CA, USA, 2005,
pp. 114–123.

[86] Beyer, D., Chlipala, A. J., Henzinger, T. A., Jhala, R. and Majumdar, R. Generating
Tests from Counterexamples. In: Proceedings of the 26th International Confer-
ence on Software Engineering, 2004. Pp. 326–335.

[87] Pesonen, J. Extending Software Integration Testing Using Aspects in Symbian OS.
In: Proceedings of Testing: Academic and Industrial Conference – Practice and
Research Techniques (TAIC-PART 2006), 2006. Pp. 147–151.

[88] Bertolino, A., Angelis, G. De, Lonetti, F. and Sabetta, A. Let the Puppets Move!
Automated Testbed Generation for Service-Oriented Mobile Applications. In:
Proceedings of the 34th Euromicro Conference on Software Engineering and
Advanced Applications, Parma, Italy, 2008.Pp. 321–328.

[89] Binder, R. V. Testing Object-Oriented Systems – Models, Patterns and Tools. Addi-
son-Wesley, 1999.

[90] Puolitaival, O.-P., Luo, M. and Kanstrén, T. On the Properties and Selection of
Model-Based Testing Tool and Technique. In: Proceedings of the 1st Workshop
on Model-Based Testing in Practice (MoTiP2008), Berlin, Germany, 2008.

[91] Neto, A. D., Subramanyan, R., Vieira, M., Travassos, G. H. and Shull, F. Improving
Evidence about Software Technologies: A Look at Model-Based Testing. IEEE
Software, Vol. 25, No. 3, pp. 10–13, May/June 2008.

[92] Ramamoorthy, C. V., Ho, S. F. and Chen, W. T. On the Generation of Program Test
Data. IEEE Transaction on Software Engineering, Vol. 2, No. 4, pp. 293–300, 1976.

91

[93] Blackburn, M., Busser, R., Nauman, A., Knickerbocker, R. and Kasuda, R. Mars
Polar Lander Fault Identification Using Model-Based Testing. In: Proceedings of
the 8th IEEE International Conference on Engineering of Complex Computer
Systems (ICECCS02), 2002. Pp. 163–169.

[94] Bringmann, E. and Krämer, A. Model-Based Testing of Automotive Systems. In:
Proceedings of the International Conference on Software Testing, Verification
and Validation, 2008. Pp. 485–493.

[95] Pretschner, A., Prenninger, W., Wagner, S., Kühnel, C., Baumgartner, M., Sostawa,
B., Zölch, R. and Stauner, T. One Evaluation of Model-Based Testing and its
Automation. In: Proceedings of the 27th International Conference on Software
Engineering, St. Louis, Missouri, USA, 2005. Pp. 392–401.

[96] Vieira, M., Song, X., Matos, G., Storck, S., Tanikella, R. and Hasling, B. Applying
Model-Based Testing to Healthcare Products: Preliminary Experiences. In: Pro-
ceedings of the 30th International Conference on Software Engineering (ICSE08),
Leipzig, Germany, 2008. Pp. 669–671.

[97] Chikofsky, E. J. and Cross II, E. J. Reverse Engineering and Design Recovery: A
Taxonomy. IEEE Software, Vol. 7, No. 1, pp. 13–17, 1990.

[98] Storey, M.-A. Theories, Tools and Research Methods in Program Comprehension:
Past, Present and Future. Software Quality Journal, Vol. 14, No. 3, pp. 183–208,
September 2006.

[99] Cornelissen, B., Zaidman, A., Deursen, A. van, Moonen, L. and Koschke, R. A Sys-
tematic Survey of Program Comprehension through Dynamic Analysis. IEEE
Transaction on Software Eng., 2009.

[100] Pollari, M. and Kanstrén, T. A Probe Framework for Monitoring Embedded Real-
Time Systems. In: Proc. 4th International Conference on Internet Monitoring and
Protection (ICIMP 2009), Venice/Mestre, Italy, 2009. Pp. 109–115.

[101] Kanstrén, T., Piel, E. and Gross, H.-G. Observation Based Modeling for Model-
Based Testing. Submitted to Journal of Software Testing, Verification and Reli-
ability, 2009.

[102] Biggerstaff, T., Mitbander, B. G. and Webster, D. E. Program Understanding and
the Concept Assignment Problem. Communications of the ACM, Vol. 37, No. 5,
pp. 72–82, May 1994.

[103] Antoniol, G. and Guéhéneuc, Y.-G. Feature Identification: An Epidemiological Meta-
phor. IEEE Transactions on Software Engineering, Vol. 32, No. 9, pp. 627–641,
September 2006.

92

[104] Rohatgi, A., Hamou-Lhadj, A. and Rilling, J. An Approach for Mapping Features to
Code Based on Static and Dynamic Analysis. In: Proceedings of the 16th IEEE
International Conference on Program Comprehension, 2008. Pp. 236–241.

[105] Robillard, M. P. and Murphy, G. C. Representing Concerns in Source Code. ACM
Transactions on Software Engineering and Methodology, Vol. 16, No. 1, Febru-
ary 2007.

[106] Mariani, L., Papagiannakis, S. and Pezzé, M. Compatibility and Regression Testing
of COTS-Component-Based Software. In: Proc. 29th International Conference
on Software Engineering (ICSE’07), 2007.

[107] Lorenzoli, D., Mariani, L. and Pezzè, M. Automatic Generation of Software Behav-
ioral Models. In: Proceedings of the 30th International Conference on Software
Engineering (ICSE08), Leipzig, Germany, 2008. Pp. 501–510.

[108] Xie, T. and Notkin, D. Automatic Extraction of Object-Oriented Observer Abstrac-
tions from Unit-Test Executions. In: Proceedings of the 6th International Confer-
ence on Formal Engineering Methods (ICFEM04), Seattle, Washington, USA,
2004. Pp. 290–305.

[109] Cook, J. E. and Du, Z. Discovering Thread Interactions in a Concurrent System. Journal
of Systems and Software, Vol. 77, No. 3, pp. 285–297, September 2005.

[110] Cook, J. E. and Wolf, A. Discovering Models of Software Processes from Event-
Based Data. ACM Transactions on Software Engineering and Methodology, Vol.
7, No. 3, pp. 215–249, 1998.

[111] Walkinshaw, N., Bogdanov, K., Ali, S. and Holcombe, M. Automated Discovery of
State Transitions and their Functions in Source Code. Software Testing, Verifi-
cation and Reliability, Vol. 18, No. 2, pp. 99–121, June 2008.

[112] Parsons, T., Mos, A., Trofin M., Gshwind, T. and Murphy, J. Extracting Interactions
in Component-Based Systems. IEEE Transactions on Software Engineering,
Vol. 34, No. 6, pp. 783–799, November/December 2008.

[113] Briand, L. C., Labiche, Y. and Leduc, J. Towards the Reverse Engineering of UML
Sequence Diagrams for Distributed Java Software. IEEE Transactions on Soft-
ware Engineering, Vol. 32, No. 9, pp. 642–663, September 2006.

[114] Bennett, C., Myers, D., Storey, M.-A., German, D. M., Ouellet, D., Salois, M. and
Charland, P. A Survey and Evaluation of Tool Features for Understanding Re-
verse-Engineered Sequence Diagrams. Journal of Software Maintenance and
Evolution: Research and Practice, Vol. 20, No. 4, pp. 291–315, July 2008.

93

[115] Marburger, A. and Westfechtel, B. Tools for Understanding the Behavior of Tele-
communication Systems. In: Proceedings of the 25th International Conference
on Software Engineering, Portland, Oregon, USA, 2003. Pp. 430–441.

[116] Schmerl, B., Aldrich, J., Garlan, D., Kazman, R. and Yan, H. Discovering Architectures
from Running Systems. IEEE Transactions on Software Engineering, Vol. 32, No. 7,
pp. 454–466, July 2006.

[117] Aalst, W. M. P. van der, Rubin, V., Verbeek, H. M. W., Dongen, B. F. van, Kindler, E.
and Günther, C. W. Process Mining: A Two-Step Approach to Balance Between
Underfitting and Overfitting. Software and Systems Modeling (SoSyM), 2009.

[118] Aalst, W. M. P. van der, Dongen, B. F. van, Günther, C. W., Mans, R. S., Alves de
Medeiros, A. K., Rozinat, A., Rubin, V., Song, M., Verbeek, H. M. W. and Wei-
jters, A. J. M. M. ProM 4.0: Comprehensive Support for Real Process Analysis.
In: Proceedings of the 28th International Conference on Applications and Theory
of Petri Nets and Other Models of Concurrency (ICATPN07), Siedlce, Poland,
2007.

[119] Lo, D., Khoo, S.-C. and Liu, C. Mining Temporal Rules for Software Maintenance.
Journal of Software Maintenance and Evolution: Research and Practice, Vol. 20,
No. 4, pp. 227–247, 2008.

[120] Lo, D., Mariani, L. and Pezze, M. Automatic Steering of Behavioral Model Inference,
Amsterdam, Netherlands, 2009, Proc. 7th joint meeting of the European Soft-
ware Engineering Conference and the ACM SIGSOFT Symposium on the
Foundations of Software Engineering (ESEC/FSE 2009).

[121] Koskinen, J., Kettunen, M. and Systä, T. Profile-Based Approach to Support Com-
prehension of Software Behavior. In: Proceedings of the 14th International IEEE
Conference on Program Comprehension (ICPC06). Pp. 212–224.

[122] Jacky, J., Veanes, M., Campbell, C. and Schulte, W. Model-Based Software Testing
and Analysis with C#. Cambridge University Press, 2008.

PAPER I

Integrating and Testing a System-
Wide Feature in a Legacy System

An Experience Report

In: Proceedings of the 11th European Conference on
Software Maintenance and Reengineering, CSMR’07,

Amsterdam, the Netherlands, 21–23 March, 2007. 10 p.
© 2007 IEEE.

Reprinted with permission from the publisher.

Integrating and Testing a System-Wide Feature in a Legacy System:
An Experience Report

Teemu Kanstrén, Mika Hongisto, and Kari Kolehmainen
VTT Technical Research Centre of Finland

P.O.Box 1100, FI-90571 Oulu, Finland
{teemu.kanstren, mika.hongisto, kari.kolehmainen}@vtt.fi

Abstract

This paper describes our experiences with
integrating and testing an embedded, system-wide
feature called Dynamic Voltage and Frequency
Scaling (DVFS) in a software platform for mobile
devices. DVFS affects the whole system by scaling the
hardware performance levels during run-time.
Implementing and testing the basic functionality of
DVFS was easy, however verifying that the whole
system worked after integration was more difficult. The
platform was legacy code which had not been
developed with any consideration for this kind of a
feature. We had to consider the complex run-time
behaviour of the whole platform, including operating
system services, device drivers and applications. DVFS
could cause problems and failures in almost any part
of the system. Based on our experiences, we describe
problems in integrating and testing a system-wide
feature like DVFS and suggest possible directions for
future research to help address some of these
problems.

1. Introduction

The role of software testing in general can be
defined as exercising the system under test (SUT) with
different inputs in order to reveal possible errors
[3][6][23]. This usually refers to testing an application,
component or some functionality of a system on its
own or as a part of a larger context. These components
and functionality are usually considered as something
testable on their own, decoupled from the system.
When making a change into a software system a
common practice is to try to localize the change as
much as possible to enable testing the software in
smaller parts. This requires preventing the ripple effect
where the change cascades to other parts of the system.
However, with system-wide features that affect the
whole platform this becomes more difficult.

When a new integrated feature is system-wide,
changes can not be localized and the ripple effect can
not be prevented. In fact, this produces the ultimate
ripple effect by affecting the whole system and all of
its parts. Testing the feature as a part of the system in
this situation is more complex as we need to consider
all the behaviour, parts and interactions in the system.
Additional complexity is added by the fact that these
days software is developed in an increasingly
collaborative fashion, integrated from components that
are provided by different companies and sometimes
only available as binary executables. These types of
features and systems provide new and different
problems to consider in integration and testing.

In this experience report we describe our
experiences with Dynamic Voltage and Frequency
Scaling (DVFS), a system-wide embedded feature in a
software platform for mobile devices. DVFS affects
the whole system by scaling the performance levels
during run-time, with the goal of producing savings in
power consumption. Implementing and testing the
basic functionality of DVFS was straightforward,
however verifying that the whole system worked after
integrating it was far more challenging. The platform
was legacy code which had not been developed with
any consideration for scaling the system voltage and
CPU speed. We had to consider the complex run-time
behaviour of the whole system, including operating
system services, device drivers and applications. The
cause of problems and failures could be anywhere in
the system. This includes components provided by
different companies, some only as binary executables.
Based on our experiences with DVFS we describe the
problems involved in integrating and testing a system-
wide feature in a legacy system and suggest directions
for possible future research.

Section 2 describes the DVFS system from both the
hardware and software viewpoints. Section 3 describes
our experiences in implementing, testing and
debugging DVFS. In section 4 we consider the causes

11th European Conference on Software Maintenance and Reengineering (CSMR'07)
0-7695-2802-3/07 $20.00 © 2007

I/1

of these problems and in section 5 we highlight some
key research areas to help solve make this easier.
Section 6 concludes the paper.

2. Dynamic Voltage and Frequency Scaling

DVFS requires careful consideration of both
hardware and software components in co-operation. In
this section, we first describe the hardware related parts
and their dependencies to give some background and
motivation for how the software needed to be designed.
Second, the DVFS related software components and
their roles in the system are described. A detailed
description of DVFS concepts can be found from [15].

2.1. Hardware

The core of the hardware platform we were working

with was Texas Instruments OMAP2420 multimedia
processor. OMAP2420 is system-on-chip product that
has several integrated processors and features,
including support for Dynamic Voltage Scaling (DVS)
that was required for our research and development
work.

Figure 1. OMAP2420 architecture [26].

High abstraction of OMAP2420 processor and

interconnect architecture is shown in Figure 1. Starting
from processors: Texas Instruments TMS320C55x
(DSP) provides audio processing, ARM11 Family
ARM1136JS (MPU) provides general purpose
processing, Imagination PowerVR MBX (GFX)
provides 2D/3D graphics acceleration [17] and
dedicated Imaging and Video Accelerator (IVA)
provides video encoding and decoding [26]. A high
speed shared interconnect bus provides communication
between processors and memory. A peripheral
interconnect bus provides communication for less data
intensive peripherals.

With OMAP2420 it is possible to halt the
processing of processors and change operation voltage
of the whole chip [27]. The voltage changing process is
shown in Figure 2. Whenever voltage is changed, it is
done through voltage meta state where Dynamic
Memory Access (DMA) transfers are completed and
halted, processing units are halted, interrupts are
disabled and hardware parameters are reconfigured.

Voltage
Meta state

High
Voltage

Low
Voltage

Figure 2. Voltage adjustment process.

As OMAP2420 provides only one voltage domain

[25], voltage change affects the whole domain and all
hardware components in it. As some components
require higher voltage than others, the voltage needs to
be carefully managed. Clock speed of most of the
processors can be scaled independently of each other.
Lowest possible operation voltage should be used for
selected performance level for each processor to
maximise energy efficiency. This is not always
possible, as processing load is not evenly distributed
over processors [15].

Additional difficulty is hardware characteristics.
Some peripherals and processors might require high
voltage to function properly regardless of the
configured clock speed. Activity of some peripherals
can also prevent voltage scaling process, and thus,
needs to be considered before they are enabled. These
characteristics require system wide awareness of what
is going on in hardware and what is needed by
software.

All voltage and clock requirements of processors
and peripherals need to be taken into account when
developing device drivers and hardware resource
management. For example, a typical behaviour of a
device driver: direct access into hardware registry to
enable clock domains of processor. This can cause a
system crash if the provided voltage is too low.
Centralised and protected control of hardware
parameters is necessary to provide a stable system.

Even though the hardware allows several different
performance levels and independent scaling of
processor clock speeds, we settled for two operation
points: Full clock speed with high voltage and half
clock speed for decreased voltage. This provides a
reasonable trade off between development effort
(especially configuration and testing work) and gained
savings in energy consumption.

11th European Conference on Software Maintenance and Reengineering (CSMR'07)
0-7695-2802-3/07 $20.00 © 2007

I/2

2.2. Software

The software platform we were working with is

based on top of the Symbian operating system. The
code base has evolved over a course of more than a
decade and thousands of engineers have taken part in
developing it. The software platform consists of
hundreds of components, provided by many different
companies. The total size of the code for the system we
worked on is close to 20M physical SLOC, mostly C
and C++. This is the number of source lines of code
after removing blank white space and comments [24].
In addition to this the system contains a number of
third-party commercial off the shelf (COTS) and
similar components that are only available in binary
format and not included in the SLOC count. These
binary only components include many of the
components we had to work with. From the DVFS
viewpoint the system was all legacy code as it had not
been designed with any consideration for this type of
feature. The functionality of DVFS needed to be
integrated with the large existing code base, including
the third-party components.

DVFS is implemented in the system as a resource
which the different components can reserve when they
need a certain performance level. These performance
levels are called Operation Points (OP), and in our case
we had two OP’s, a high and a low OP. The DVFS
resource along with several other resources is handled
by a system Resource Manager component. When
there are one or more reservations is the system for the
DVFS resource, the hardware is set to high OP. The
correct functionality of the DVFS required two
different types of components to be directly DVFS
aware: system load monitoring components and device
drivers. System load monitoring is needed to reserve
the high OP when the system performance
requirements rise higher than what is provided by the
low OP. Reservations must also be made when a
hardware component is used by an application or OS
service that requires the higher OP to function
correctly. These hardware components are used
through their device drivers or similar components and
thus these components must make the reservation when
required. When these components no longer need the
higher OP, they must release their reservation.

As the DVFS functionality is at the very core of the
system, it was implemented as a Symbian OS kernel
extension. The core implementation of the DVFS
feature consists of the integration of many related and
affected components in the system:

1. The Resource Manager.

2. System load monitor and performance tuner.
3. Interface to system load information.
4. Glue components to integrate the load

monitor with the Resource Manager and the
system load information interface.

5. Device drivers for the hardware components
that need to reserve high OP when used.

These central DVFS components and their

relationships are shown in Figure 3, which shows how
the DVFS implementation is not a single component
but a product of integration of many components. Only
the glue code to integrate the components and some of
the device drivers are in-house products. All other
components are from third-parties and each of these
from a different company. The third-party components
were integrated with glue code, while the in-house
drivers were directly changed to work with the third-
party components. In addition, many other components
in the system are affected through their use of the
drivers or changes in the system performance level.

R
es

er
va

tio
ns

Figure 3. The central DVFS components.

In addition to having direct effect on these core

components, DVFS also affects other parts of the
system. Since the kernel of the operating system is a
real-time operating system, it must meet real-time
timing constraints. For example, when playing MP3
music on the device, the current OP of the system and
changing it must have no noticeable effect for the user.
Thus the load monitoring of the system must keep the
performance stable and high enough not to cause
problems for the users and the user experience should
be equal to running in high OP all the time.

Another property that also affects all parts of the
system is changing the hardware parameters. The
change to low operation point requires reconfiguring
some of the hardware components at runtime and if all
values are not set correctly, any functionality that
makes direct or indirect use of this hardware will fail.

11th European Conference on Software Maintenance and Reengineering (CSMR'07)
0-7695-2802-3/07 $20.00 © 2007

I/3

For example, the SDRAM memory parameters with
different hardware configurations are different in low
and high OP and if they are not set correctly certain
memory accesses can fail the system. DVFS should be
transparent to as much of the system as possible, as we
can not expect all components to take DVFS into
account. Thus it is the responsibility of the DVFS
implementation and the dependent components to
make these configurations when the OP is changed.
For us this meant we needed to find how and where
DVFS affects the system and verify these cases are
handled correctly.

Figure 4 shows a high level overview of how the
DVFS affects the system. As described earlier, the
device drivers must be DVFS aware and reserve the
required OP when used. The applications in the system
are affected by the performance level in use and their
performance requirements handled by the load
monitor. Finally, the hardware parameters must be
configured correctly for each OP since misconfiguring
these produces instability in all parts of the system,
including the device drivers and applications.

DVFS

Hardware
Parameters

Device
Drivers Applications

Basic System
Services

(memory access, …)

PerformanceReconfiguration

Voltage & Clock
Dependencies

(in)stability

(in)stability (in)stability

Figure 4. DVFS effects on the system.

Variability in the platform causes some products to

implement the DVFS functionality differently. Some
use DVFS while others may only use Dynamic
Frequency Scaling (DFS). This requires variation in
the device drivers. Some products can also have
several operation points while others will only have a
high and a low operation point. From the software
point of view this means that the Resource Manager
needs to implement different functionality when the
products using the software platform make use of
different types of resources. Also the glue code
component to integrate the load monitoring component
to the system needs to change when there are different
numbers of operation points in the system and the set
of hardware parameters to configure varies as some are
dependent on the scaling of voltage and others on the

frequency. When underlying hardware is changed, the
drivers and their interactions can also be different.

3. Problems Encountered

We identify the following main problems in
integrating, testing and debugging DVFS: architectural
mismatches in integration, identifying the DVFS
related dependencies in the system, verifying the
dependent components, observing the state of the
system, finding the cause of failures and debugging
binary components.

Arhitectural mismatches in integration were found
even though the integrated components were built with
the same system in mind. All the core DVFS
components were designed and tested to work in the
same system by their providers. However, mismatches
still arose as they were only tested together in
integration. For example, the Resource Manager was
not thread-safe, meaning when it was used from
several concurrent threads at the same time its internal
state would become corrupt. Yet the integrated
components used it in a concurrent manner. Thus the
calls to it needed to be synchronized externally.
However, the load monitor used Symbian nanokernel
threads to run itself, and the Symbian synchronization
objects such as semaphores and mutexes would not
work on nanokernel threads but required higher level
user threads to work. These problems point to similar
architectural mismatches as described by Garlan et al.
[13] who studied the integration of several separate
COTS style components. In this case it is interesting
that these components were developed with the same
system in mind, yet they still set mismatching
assumptions about their environment. Getting these
components to work together as such was not possible
and required getting the third parties to make changes
to their components, which was often a slow and time
consuming effort. This also requires effectively
pinpointing the cause of failure in several third party
components before getting it fixed.

Identifying the DVFS related components was easier
for some components and more difficult for others.
This was the first time this type of feature was being
implemented in the platform and it was not clear what
were the exact performance levels required by each
part of the system. When a component was known to
need a higher performance level because of hardware
limitations, it was clear that it needed to reserve the
high OP when it was used (to provide necessary clock
or voltage). However, for all components this was not
so clear. When the system would fail we had to
consider the possibility of the required resources not
having been reserved. And we could only discover this

11th European Conference on Software Maintenance and Reengineering (CSMR'07)
0-7695-2802-3/07 $20.00 © 2007

I/4

by monitoring the system execution at the time of
failure, considering the involved components and if
any were involved that could require higher OP. As
there were many potential causes of failure and we did
not know in advance all components that needed the
high OP and when, it was not possible to know
immediately if a failure was caused by a mishandled
dependency or something else.

A second issue with DVFS related dependencies
were the applications running on top of the OS. Since
DVFS affects the system performance levels (CPU
MHz), it also affects the processing power available to
these applications. Since the system was only
implemented to monitor CPU load, applications that
require only different type of performance from the
hardware will not perform optimally. For example,
reading from file system can generate high load on the
hardware buses but not enough load on the CPU to
make the load monitor raise the performance level. As
bus operations are dependent on the system clock
speed, the performance is not optimal. Also
applications causing fluctuating load can cause
problems for the system when the OP changes
continuously. Knowing all these cases in advance is
not possible as there are too many possibilities.

Verifying the DVFS dependent components proved
to be a problem as some did not seem to correctly
request and release the high OP when needed. The easy
route was to blame the driver developers. However, the
problem could also be in other components using the
drivers and not freeing all resources, which caused the
driver not to release its reservations. As without DVFS
in the system many of these cases would not show up
as problems, they were not noticed before. Thus adding
DVFS into the system would make the driver seem
faulty even though the problem could be elsewhere.
Also, without means to effectively identify every
DVFS dependency in the system, even knowing all
required drivers in advance was not possible.

Finding the cause of failures was problematic
especially when the cause was in wrongly configured
hardware parameters. For example, when the SDRAM
memory parameters for the lower OP were wrong the
system would hang in seemingly random functionality
after changing to low OP. For example, we received a
bug report for the USB driver not working with the
DVFS, where the real cause was actually a
misconfigured memory parameter. At the same time
we were also experiencing problems in many other
parts of the system, which later turned out to be for the
same reasons. To make things more complicated, the
memory parameters were configured by a third party
component, who insisted the parameters should be
similar on our platform as on theirs. Thus we did not
consider this as a possibility of failure at first. Only

after long debugging sessions did we come to think of
them as a possible cause of failure and fix it, as in truth
we found there was a small difference between our
platform and that on which the component provider
tested and configured the parameters.

Observing the state of the system was difficult. At a
time of failure the system would usually just crash with
no clear indication of what went wrong. Typically this
would not produce any trace of execution as is typical
for embedded systems. To get some idea of what was
happening inside the system, we instrumented the
kernel to show which thread was executing at which
time. However, even when we had some idea of where
the execution was when it ended, it was not always
very useful. The true cause was often somewhere else
in the system such as wrong hardware parameters, a
change in system state earlier in the system execution
or a delayed function call (DFC) started from some
other part of the system. Finding errors in system
behaviour and debugging the faults was then
complicated by the lack of visibility into the system
and the availability of detailed trace data.

Debugging binary components is always more
difficult and our case was no different. In addition,
with DVFS we could not just forcus on a single binary
component but also had to consider the fact that the
cause of failure could be anywhere in the system. For
example, when the system was changing from one OP
to another, many of the operating system services (such
as DMA) had to be stopped for the time of the change
and restarted after. Since many of the services were
dependant on other services, these had to be stopped
and restarted in the correct order. This was handled by
each dependent component having a pre- and post-
change notification function that was called before and
after the OP was changed and in which they handled
the stop and restart functionality. These components
each had an order number they had to set which
determined the order in which they would be notified.
However, since many of these components were
provided by different companies, some of them set
mismatching notification orders. When the system
would hang on changing the OP, knowing if the
problem was in these components or somewhere
completely different was difficult since we could not
directly see the order numbers in the binary
components. Instead, we had to infer them through
instrumenting the Resource Manager and through other
similar methods.

A second concept related to debugging of binary
components is when these components are composed
of many different components themselves. For
example, we had a case where one of the driver
components did not seem to be working correctly by
not releasing resources when needed. This actually

11th European Conference on Software Maintenance and Reengineering (CSMR'07)
0-7695-2802-3/07 $20.00 © 2007

I/5

turned out to be a problem in another component
provided with the driver, not in the driver code itself.
The component would reserve a communication
channel to the driver, which resulted in the resource
being kept reserved. It should have released the
channel when done but did not. Since the resource was
not previously needed, the fault in the component
using the driver was not visible earlier. This shows
how a third-party component itself can be made up of
several components, which again need to be debugged.
If the failure is only visible in integration, the
integrator has to locate and fix failures in all these
components.

In summary, Figure 5 shows a simplified view of
how the DVFS related dependencies and possible
failure causes spread in the system. For clarity only a
few of each type of arrows are shown, whereas in
reality many more dependencies exist between the
components. Some of the dependencies are temportal,
for example restarting the basic system services need
to be handled in correct order when changing the OP.
Many components are only available in binary form
and made by different companies.

Resource
Manager

Driver 1 Driver 2

Driver 3

Driver 1
Client 2

Driver 1
Client 1

Driver 2
Client 1

Driver 3
Client 1

Driver 3
Client 2

Load
Monitor

HW
Config.

Basic
System

Service 1

App 1

App 2 Basic
System

Service 3

Basic
System

Service 2

App 4

Basic
System

Service 4

App 5

App 3

Figure 5. Overall DVFS dependency view.

4. Problem Causes

Considering the problems we had, some could be
considered failures to adhere to good software
development practices. However, when new system-
wide features are introduced into a legacy system they
also give rise to specific problems. Dependencies and
effects spread across the components, with little
possibilities to affect this. Through these components,
the dependencies also affect and require the attention
of all the companies involved in the collaborative
development effort. Based on our experiences, we

classify the problem causes to three categories:
collaboration processes, testability and debugging.
Each of these is considered in this section.

4.1. Collaboration Processes

Modern software systems are being developed in an

increasingly collaborative fashion, from in-house
components, commercial off the shelf (COTS)
components and specifically tailored third party
components. Large parts of development are
outsourced and software is developed in different
collaboration models together with other companies
[20]. As system-wide features affect large parts and
many components at once, this affects and requires co-
operation of many component providers. As an
example of this, DVFS is a single feature in a software
platform for mobile devices yet it was made up of and
integrated with components from several companies.

To us, the mismatches and problems in addressing
them when integrating components developed for the
same system highlights many of these collaboration
aspects. When a system is developed in a collaborative
fashion from components provided by many
companies, the collaborators often do not have the
whole system or all components to test their
component with. Thus the integration becomes solely
the integrators responsibility, who often does not have
detailed knowledge of individual components. When a
new system-wide feature is introduced into a system, it
will also create ripples over the system and require the
collaborative work of all the involved component
providers to fix the issues. When the work is specified
to detail in contracts, addressing these issues
effectively becomes long, slow and difficult. Instead,
fast responsiveness and a more evolutionary approach
are needed. The companies we worked with included
samples of companies closer to each extreme. Some of
the issues we faced could only be effectively resolved
when a collaborator company was willing to make the
required changes quickly. In practice this meant in the
period of several weeks, not several months.

4.2. Testability

In the past hardware testability has received more
attention than software testability [5][12]. However,
lately also software testability has been receiving a
growing interest [5][8][11][19][22][29]. Although
DVFS is a closely hardware related feature, our
viewpoints are on the software testability side.
Software testability in the literature has varying
definitions. Our view of testability in this section is in
line with Binder [5] and is concerned with the effort

11th European Conference on Software Maintenance and Reengineering (CSMR'07)
0-7695-2802-3/07 $20.00 © 2007

I/6

and ease of testing the components and their
functionality. Another related concept is that of
Jungmayr [19] who relates testability to identifying
test-critical dependencies. These are the dependencies
most critical for achieving a good testability of a
system.

Observability and controllability are considered by
many as basic properties of testability [1][5][12][19].
To test a component we must be able to control its
input (and internal state) and observe its output (and
internal state) [5]. For effective testing, we need to be
able to control the spread of code execution and
observe the results. This is easiest when dealing with
white-box components, where we have the source code
available and can modify it for testability support.
Figure 6 shows some possible aspects of testability in
such a case.

Figure 6. White-box testability.

In this case, if we can modify the code, we can add

support for testability. This allows breaking
dependencies by designing the code as independent
units, making it possible to insert stubs, mocks or
similar objects and using other similar techniques.
Visibility into component internals allows for example
invoking specific functionality, reading states at
different times and adding tracing code. This can be
limited by the company policies and system size,
which affect how much it is possible to actually
influence the design of the components for which we
have the source code available. For example, when
implementing our own components related to DVFS,
the techniques presented by Feathers [11] for breaking
dependencies to bring legacy code under test were of
great help. However, since we did not have control
over most of the platform, we were only able to apply
these techniques to small parts of the code.

With third party binary components we are
dependent on what is provided by the component
provider as shown in Figure 7. The component is a
black box into which we only see through the
interfaces provided. We can not modify the
components code, contain execution or see internal
states, unless supported by the component through
specialized interfaces. These interfaces are likely to be
specific to some given task which the component

provider has specified for the component. As it is not
possible to know all problems and testing requirements
that will be met in the course of integration, the
likeness of a component providing required interfaces
is not high. In our case we did not have interfaces for
all the information we would have needed, and could
not ask for them to be included in advance as we did
not know the effects on all the components in advance.
When the components are already delivered, getting
new interfaces is difficult. Some observability can be
achieved by monitoring at the platform level such as
when we instrumented the kernel to provide traces of
thread execution. However, the information available
at this level is very coarse grained and not always very
helpful in debugging a specific problem.

Figure 7. Black-box testability.

In real systems the different types of components
are combined together as shown in Figure 8. This is
where the effects of a system-wide feature such as
DVFS are most visible. We had to consider the
interactions of all the parts in the system together to
verify DVFS. Our options to affect the system were
limited as when we had the source code for the
components, we could see their internals and add
tracing code, but could not permanently modify them
for testability. As the components involved also
included a number of black box components, getting an
overview of what was happening inside the system and
where the problems were was difficult.

When we add new system-wide functionality to a
large system, we need to understand the diverse
interactions and how they are affected. This is difficult
on its own but more difficult when it is not possible to
get a good view of the involved components, how they
act and what is their state at a given time. We could see
how a single component works and when it passes
control to another component. However, what
happened after passing control to a black box was not
visible. At the same time it is difficult to get a good
understanding of the complex interactions and relations
inside the whole system, with concurrent threads
executing code from many involved components. We
had to do much of this analysis and tracing manually,
which becomes difficult as the amount of data to
analyse and trace quickly grows very large.

11th European Conference on Software Maintenance and Reengineering (CSMR'07)
0-7695-2802-3/07 $20.00 © 2007

I/7

Figure 8. Testability on a system level.

4.3. Debugging

Debugging the system is closely coupled with the

software testability. To debug something we first need
to have a test to find the fault that we will be
debugging. Without automated tests to verify a fix, the
process of fixing failures becomes tedious and slow.
Debugging has received a lot of research interest where
much recent work has focused on finding the cause of
failures from program execution. These techniques
focus on such issues as isolating failure-inducing input
[21][30], code changes [9] and debugging of failed test
cases [2] [14][18].

However, our problems were different in nature. We
did not have any specific set of input we could vary for
the system to see which would break it. The problems
we had were not introduced by any specific code
changes but rather a system wide change of
performance level, the ripples of changes it caused and
the integration of ready-made components, including
some in only binary form. The feature affected many
components in the system, all which had to work
together in complex ways and considered as potential
causes of failure. In many cases such as when changing
hardware parameters, the failures would only show up
as side effects in many different components. As
described earlier, we could not easily decouple testable
parts from the system and thus had no automated tests
to verify the faults. We had to rely widely on slow and
ineffective manual testing.

When debugging a system we are trying to find the
cause of failures when we already know something is
not working. This requires the ability to observe the
internal states and behaviour of the relevant parts of the
system. To enable this, first the relevant parts of the
system and the information of interest must be
identified, which in a system-wide feature can require
analysing large amounts of data and the interactions of
large parts of the system. When the feature and thus its
failure is not localized, we need to be able to monitor
the system state as a whole and find the possible
changes in state or behaviour that could be causing the
failures. In most of the cases we had, there were many

possible causes of failure and they could all cause
problems in many different parts of the system. As we
did not have effective techniques to monitor and
analyse the system at this level, finding and fixing a
cause of failure often came down to long debug
sessions including making educated guesses, digging
information from the system and trying different
possibilities.

5. Future Directions

In this paper we described our experiences in
integrating, testing and debugging DVFS, a system-
wide feature of an embedded system with a large
legacy code base. This proved problematic as the
system was never designed with such a feature in mind
and the feature affected the whole system and all of its
parts. Yet more difficulties were brought by the fact
that the system contained components from various
companies, some only in binary form, which all had to
be considered.

We expect system-wide features to become more
common in complex software intensive systems. In
embedded systems the close coupling of software with
hardware makes them possible as in the case of DVFS.
In software systems in general, the modern software
development techniques and platforms such as aspect
oriented programming and the possibilities provided by
virtual machine environments will provide ample
possibilities for similar features and problems. Many of
the issues we faced are related to designing the systems
and components with testability in mind. To this end
we suggest the following research topics as helpful as
related to integration and testing of these features in
modern environments:

1. Light weight, agile collaboration models. As

systems are made up of increasing number of
components from different parties, changes affect
more collaborators and require effective,
responsive collaboration models. Research into
collaborative software development is ongoing
and while different collaboration models are
considered [20], they still need more work and a
wider adoption to effectively address the cases
where changes affect many collaborators at once.

2. Identifying feature dependencies and testing
parameters in a system. Identifying actual
dependencies in a system is needed for effective
re-engineering of a system. This is important for
both integration work and for identifying the
relevant parameters for testing the feature. DVFS
affects some very basic properties of the system

11th European Conference on Software Maintenance and Reengineering (CSMR'07)
0-7695-2802-3/07 $20.00 © 2007

I/8

and finding the affected components requires
analysing large amounts of dynamic software
runtime-behaviour. This needs to be simplified.
We believe possible techniques to assist in this
include visualisation [28] and modelling [16] of
system state and behaviour, and behaviour
classification [7][10].

3. Improving the testability of legacy code in
constrained environments. Feathers [11] provides
a catalogue of techniques to assist in bringing
legacy code under test. However, these existing
methods are mostly based on the assumption of
being able to access and modify the source code of
involved components. When the development
happens in a collaborative context and components
are provided only in binary form, control over
these components is limited. Thus techniques for
this type of an environment where we have less
control over changes are needed.

4. Testability at the system level including binary
components. In system-wide features the cause of
the problem as well as its symptoms are often
spread over the system in various components and
focusing on a single component will not reveal the
errors. Effectively addressing this issue requires
gathering and analysing data from the system
execution and states as a whole. Though different
in nature, as possible research topics we suggest
similar topics as for identifying feature
dependencies in system state: tracing, classifying,
modeling and visualising software states and
behaviour. For binary components this also
requires special support from the components or
monitoring support from the platform itself.
Generic approaches that make it possible to
address internals of binary components are
needed. These topics are ongoing in component
based systems research [4] but still need more
support for especially in system-wide context.

6. Conclusions

When new features to a software system are
planned, they are often considered as just another
independent feature in the system. We started with
thinking DVFS as just scaling the voltage and
frequency to save some power. However, with its
system-wide effects and dependencies, we quickly
learned differently. Some features are more
independent than others, while some are more coupled.
DVFS is on the far end of coupling with its system-
wide effects. In this paper we described our
experiences in integrating and testing DVFS into the
system. We identified the following problem areas:

• Changes affecting components and requiring

attention of many collaborators at a same time
• Identifying system-wide dependencies
• Accessing the states and properties at system

level and in binary only components
• Controlling the system execution
• Finding the causes of failures from the large

data sets and traces

We believe integrating and testing this type of

features is and will remain a challenging topic.
However, we also believe this work can be made easier
by addressing these issues with better techniques, tools
and methods.

10. References

[1] B. Baudry and Y.L. Traon, “Measuring design testability

of a UML class diagram”, Journal of Information and
Software Technology 47, 2005, pp. 859-879.

[2] B. Baudry, F. Fleurey and Y.L. Traon, “Improving Test
Suites for Efficient Fault Localization”, Proc. 28th Int’l.
Conf. Software Eng. (ICSE’06), 2006.

[3] B. Beizer, Black Box Testing: Techniques for Functional
Testing of Software and Systems, John Wiley & Sons,
Inc., 1995, 320 pp.

[4] S. Beydeda and V. Gruhn, “State of the art in testing
components”, Proc. 3rd Int’l. Conf. Quality Software
2003, Nov., 2003, pp. 146-153.

[5] R. Binder, “Design for testability in object-oriented
systems”, Communications of the ACM, Vol. 37, No. 9,
 Sept. 1994, pp. 87-101.

[6] R. Binder, Testing Object Oriented Systems, Addison-
Wesley, Reading, MA, 2000. 1200pp.

[7] J.F. Bowring , J.M. Rehg and M.J. Harrold, “Active
learning for automatic classification of software
behaviour”, Proc. Int’l. Symposium on Software Testing
and Analysis (ISSTA 2004), July 2004, pp 195–205.

[8] M. Bruntik, A. and Van Deursen, “Predicting Class
Testability Using Object-Oriented Metrics”, Proc. 4th
IEEE Int’l. Workshop on Source Code Analysis and
Manipulation (SCAM’04), 2004, pp. 136-145.

[9] O.C. Chesley, X. Ren and B.G. Ryder, “Crisp: A
Debugging Tool for Java Programs”, Proc. 21st IEEE
Int’l. Conf. on Software Maintenance (ICSM’05), 2005.

[10] W. Dickinson, D. Leon and A. Podgurski, “Finding
Failures by Cluster Analysis of Execution Profiles”,
Proc. 23rd Int’l. Conf. Software Eng.(ICSE 2001),
Toronto, Ontario, Canada, 2001, pp. 339-348.

[11] M. Feathers, Working Effectively With Legacy Code,
Prentice Hall, 2005, 304 pp.

[12] S. Freedman, “Testability of Software Components”,
IEEE Trans. Software Eng., vol.17, no.6, June 1991,
pp.553-564.

[13] D. Garlan, R. Allen and J. Ockerbloom, “Architectural
Mismatch or Why it’s hard to build systems out of

11th European Conference on Software Maintenance and Reengineering (CSMR'07)
0-7695-2802-3/07 $20.00 © 2007

I/9

existing parts”, Proc. 17th Intl. Conf. Software Eng.
(ICSE’95), 1995, pp. 179-185.

[14] M. Gälli, M. Lanza, O. Nierstrasz and R. Wuyts
“Ordering Broken Unit Tests for Focused Debugging”,
Proc. 20th IEEE Int’l. Conf. on Software Maintenance
(ICSM’04), 2004.

[15] M. Hongisto and K. Kolehmainen, “Dynamic Voltage
Scaling Framework for Mobile Multimedia Systems”,
Proc. 4th IASTED Int’l. Conf. Communications, Internet
and Information Technology (CIIT 2006), 2006.

[16] J. Huselius, and J. Andersson, “Model Synthesis for
Real-Time Systems”, Proc. 9th European Conf. Software
Maintenance and Reengineering (CSMR 2005), 2005.

[17] Imagination Technologies Ltd., “Texas Instruments
Announces OMAP 2 Devices Utilising PowerVR MBX
Graphics Core”, press release, Feb. 2004,
http://www.imgtec.com/news/Release/index.asp?ID=37
3 (cited Dec. 2006).

[18] J.A. Jones, M.J. Harrold, J. Stasko, “Visualization of
Test Information to Assist Fault Localization”, Proc.
Int’l. Conf. Software Eng. (ICSE’02), 2002, pp. 467-
477.

[19] S. Jungmayr, “Identifying Test-Critical Dependencies”,
Proc. 18th IEEE Int’l. Conf. Software Maintenance
(ICSM’04), 2004.

[20] M. Lindström, “Ensuring Availability and Access to
New and Existing Technologies in Cellular Terminal
Business”, Ph.D. Dissertation. Helsinki University of
Technology (HUT), 2003, ISBN 951-22-6521-4.

[21] G. Mishegri and Z. Su, “HDD: Hierarchical Delta
Debugging”, Proc. 28th Int’l. Conf. Software Eng.
(ICSE’06), 2006.

[22] S. Mouchawrab, L.C. Briand and Y. Labiche, “A
measurement framework for object-oriented software

testability”, Journal of Information and Software
Technology 47, 2005, pp. 979-999.

[23] G. Myers, T. Badgett, T. Thomass and C. Sandler, The
Art of Software Testing, John Wiley & Sons, Inc, 2004,
256 pp.

[24] R.E. Park, “Software Size Measurement: A Framework
for Counting Source Statements”, SEI Technical Report
CMU/SEI-92-TR-25, Sept.1992.

[25] H. Stork, “Structuring Process and Design for Future
Mobile Communication Devices”,
http://videos.dac.com/43rd/slides/stork.pdf (cited Dec.
2006).

[26] Texas Instruments, “OMAP 2 Architecture:
OMAP2420 Processor”, whitepaper, 2005,
http://focus.ti.com/pdfs/wtbu/TI_OMAP2420.pdf (cited
Dec. 2006).

[27] Texas Instruments, “SmartReflex power and
performance management technologies”, whitepaper,
http://focus.ti.com/pdfs/wtbu/smartreflex_whitepaper.pd
f (cited Dec. 2006).

[28] T. Vaskivuo, “Correlation Methods for Analysis and
Visualisation of Software Run-time Behaviour”, Proc.
9th Int’l. Conf. Software Eng. and Applications 2005
(SEA 2005). Phoenix, Arizona, 14 - 16 Nov., 2005.

[29] J.M. Voas and K.W. Miller, “Software Testability: The
New Verification”, IEEE Software, May 1995, pp. 17-
28.

[30] A. Zeller and R. Hildebrandt, “Simplifying and
Isolating Failure-Inducing Input”, IEEE Trans. Software
Eng., vol. 28, no. 2, Feb. 2002.

11th European Conference on Software Maintenance and Reengineering (CSMR'07)
0-7695-2802-3/07 $20.00 © 2007

I/9

http://www.imgtec.com/news/Release/index.asp?ID=373
http://videos.dac.com/43rd/slides/stork.pdf
http://focus.ti.com/pdfs/wtbu/TI_OMAP2420.pdf
http://focus.ti.com/pdfs/wtbu/smartreflex_whitepaper.pdf

PAPER II

Towards Trace Based Model
Synthesis for Program Understanding

and Test Automation

In: Proceedings of the 2nd International Conference on
Software Engineering Advances, ICSEA 2007, Cap

Esterel, French Riviera, France, 25–31 August, 2007.
10 p. © 2007 IEEE.

Reprinted with permission from the publisher.

Towards Trace Based Model Synthesis for Program Understanding and Test
Automation

Teemu Kanstrén
VTT Technical Research Centre of Finland,

P.O.Box 1100, FI-90571 Oulu, Finland
teemu.kanstren@vtt.fi

Abstract

Effective maintenance and evolution of complex,
software intensive systems requires understanding how
the system works and having tests available to verify
the effects of changes. Understanding complex systems
is difficult, and testability of these systems is often low
due to design constraints, system complexity and long-
term evolution. Thus understanding the system and
adding new tests is difficult. Yet, especially in these
cases, the understanding and tests are important to
verify the system correctness over long-term evolution.
This paper discusses synthesizing models from system
traces and using these models to facilitate program
understanding and test automation. Basing the models
on execution traces allows generation of automated
tests even for low testability systems. Generating and
visualizing abstracted models facilitates program un-
derstanding, which helps in system maintenance.

1. Introduction

In the course of system maintenance and evolution,
existing functionality is changed and new functionality
is added. Making changes safely to an existing system
requires both an understanding of the system and the
availability of test cases to verify the effects of the
changes on the system. However, many times, espe-
cially with legacy systems, a good understanding and
related tests cases are not available. Thus, adding new
tests for verifying the system behavior and the effects
of the changes are needed. However, without a good
understanding of the system and its support for test-
ability this is problematic.

Understanding a complex system is a difficult task.
Even with understanding, the test implementation can
still be challenging. For example, in large legacy sys-
tems, the code base can grow to millions of lines of
code and hundreds of components, the effects of
change can ripple over large parts of the system, and

the same code needs to work on different execution
platforms [15]. Combined with a constantly evolving
underlying platform, the understanding needs to be
kept current and regression tests are needed to verify
the functionality.

Yet it is often the case, especially with legacy sys-
tems, that the functionality to test can not be easily
separated from the system or accessing the required
internal information is not possible. In complex sys-
tems with long-term evolution, the testability of the
system is often low, and different features become
tightly integrated into the system. The system platform,
such as an embedded real-time system, can further set
more constraints. In these cases, forcing a given con-
trol path and observing system internal states in a test
case can be problematic, which makes applying tradi-
tional ways of building test cases problematic [15].

This paper addresses these issues by presenting a
technique based on using models synthesized from
traces of the system under test (SUT) execution, target-
ing especially systems with deeply embedded and
complex functionality. By producing an abstracted
model of the SUT execution, the technique facilitates
program understanding. As the technique is based on
system traces, it can be applied without specific test-
ability support from the SUT architecture and design.
The generated model is used as a reference (describing
what is expected), against which traces from the actual
current implementation are verified in regression test-
ing. To demonstrate the application of the technique in
practice, it is applied on a messaging middleware com-
ponent.

This paper is structured as follows: Section 2 dis-
cusses the basic concepts. Section 3 discusses synthe-
sizing models from the system traces and using them
as test cases. In section 4 the technique is demonstrated
by applying it on a real world system. Section 5 dis-
cusses the technique. Section 6 discusses related work.
Finally section 7 concludes the paper.

International Conference on Software Engineering Advances(ICSEA 2007)
0-7695-2937-2/07 $25.00 © 2007

II/1

mailto:teemu.kanstren@vtt.fi

2. System Tracing

System tracing is the basic concept of gathering in-
formation about the dynamic behaviour of the system.
This can be done at multiple levels as illustrated in
Figure 1. The left column in the figure lists the differ-
ent tracing instruments. The middle column shows the
location of tracing instrument in the system. The right
column describes the context dependency of the differ-
ent tracing instruments. Techniques with higher con-
text dependency, such as logging statements, require
more manual work but also best capture the specific
functionality of a system. The techniques with lower
context dependency, such as platform instruments, can
be better automated over different system and plat-
forms, but capture only an overview of the system.
Thus the use of different levels of tracing and their
combinations is a trade-off between how much can be
automated and how specific information is needed.

Instrument

1. Logging
statements

2. Instrumented
methods

3. Instrumented
system operations

4. Instrumented
OS services

5. Sampled program
execution

6. (sampled)
Platform metrics

7. Platform
instruments

Application code

Application code

System libraries

OS Kernel

OS Kernel /
Platform services

Platform
services

Platform
services

Location Context
dependency

High

Low

P
L
A
T
F
O
R
M

MA
NU
AL

A
U
T
O
M
A
T
E
D

Figure 1. Trace levels (adapted from [26]).

2.1 Tracing Levels

Logging statements (trace level 1) are added to the

source code to trace information about system states
and behaviour at different points of execution. They
are the most context dependent traces, as all the traces
need to be added on individual basis and are different
for each application. Similarly, by method instrumenta-
tion (trace level 2) system call graphs and method pa-
rameters can be acquired. Collection of this data can be
automated with tools such as AspectJ [1] and GNU
profiler [9], but it is context dependent in the sense that
a call graph is very specific to a system.

System operations as well as operating system (OS)
services are shared across many applications and can
be used to provide automated instrumentation of sys-
tem execution. While each application will have a
unique trace, it will be within the context of the func-
tionality provided by the libraries and system services.
For example, middleware communication data (level 3)
or information on task and thread context switching
[13] (level 4) can be traced. This data can be consid-
ered common high-level functionality of applications.

The implementation of platform level trace instru-
ments (trace levels 5-7) depends on the execution envi-
ronment (the platform). In embedded systems the plat-
form is the hardware on which the embedded software
runs. In modern application environments it is the vir-
tual machine (VM) on which the code is executed.
Here the focus is on embedded systems as a platform,
although modern VM environments also provide good
support for platform level tracing, such as the Java
Platform Debugging Architecture (JPDA) [14].

Sampling program execution provides abstraction
over system behaviour. By sampling program execu-
tion at fixed intervals, it is possible to get a statistical
view of the behaviour. For example, in embedded sys-
tems such sampling can be implemented using timer
interrupts to record program counter values [25]. Plat-
form metrics, such as CPU load and memory alloca-
tions, can be collected in a similar way by sampling, or
by using triggers in system state to record the metric
values. In embedded systems, these triggers could be
for example interrupts. Platform instruments include
counters and similar information provided by the plat-
form internal implementation. In embedded systems
these can be hardware counters. In VM environments,
platform level tracing typically requires supporting
hooks from the VM.

In tracing binary executables, such as COTS com-
ponents without source code, it is possible to use any
of the instruments on levels 3-7, but the possibilities at
level 1 and 2 are limited. For level 1, possibilities are
limited to instrumenting the glue code that integrates
the components together. For level 2, bytecode instru-
mentation in VM environments can be used, but the
code is likely to be obfuscated and of limited use as the
code structure is unknown. In embedded systems, plat-
form supported instruments, such as using level 5 sam-
pling need to be used.

On the lower levels of 3-7, instrumentation is de-
pendent on the options provided by the platform on
which the code runs. At level 3, if there is no access to
system library code and the libraries do not provide
trace interfaces, possibilities are limited to what can be
traced for example from the glue code. Levels 4 and 5
require access to, or support from the OS kernel. Lev-
els 5-7 also require access or support from the execu-

International Conference on Software Engineering Advances(ICSEA 2007)
0-7695-2937-2/07 $25.00 © 2007

II/2

tion platform. Thus the available tracing options are set
by the context in which tracing is done.

2.2 Trace Based Program Understanding and
Test Automation

In this paper, the goal in considering traces as a ba-

sis for testing is two-fold; understanding the system,
and having test cases available to document and verify
this understanding and the important properties of the
system behaviour across project evolution. Modern
software intensive systems are complex and their be-
haviour is difficult to understand. Thus, in testing an
understanding for the system needs to be built, and
assumptions about its behaviour need to be validated.
Similar to previous work [8], this paper considers trac-
ing actual system execution to be the best source of
information for actual system behaviour. Once this
understanding has been built, it is preserved in verifi-
able form as testable models. By building the models
to be easily evolved, they can also be used to validate
future changes and the validity of our understanding of
the effects of these changes on the system.

From this point of view, there is a need to consider
the different levels of tracing and how they can be util-
ized in automated support to achieve these goals. This
paper counts two types of testing that can make use of
this type of automation; functional testing which veri-
fies formal properties of system execution, and statisti-
cal testing, such as performance testing, which is inter-
ested in verifying certain statistical properties and con-
straints of system execution, such as response times
and throughput. This paper mostly considers functional
testing but also discusses how the same techniques can
be applied to statistical testing.

From the functional testing perspective, system
functionality is unique and thus context dependent.
From this viewpoint, the best tracing level is adding
level 1 logging statements to the system to collect the
information of interest. This type of instrumentation
makes it possible to define the traces at the conceptual
level, to best describe the system execution in a way
that facilitates program understanding. However, this
has the drawback of requiring the most resources and
human work for instrumentation. From this viewpoint,
the less context dependent traces need to be considered
as their use can be more automated and requires less
human resources. Thus, when using this technique, the
use of different tracing levels in synthesis, and their
trade-offs need to be considered.

From the statistical testing point of view, the least
context dependent tracing levels provide equally useful
data. This is especially true, if the platform level sup-
port is considered during design time such as in de-

signing embedded systems where hardware and soft-
ware co-design is considered. However, in most of
these cases, also the more context dependent trace
mechanisms need to be used to collect relevant data
from system execution. Only a limited amount of trac-
ing can be supported at platform level and trace points
in software code are needed to collect information on
specific properties of the system. Thus statistical type
of testing can make better use of the full range of trac-
ing instrument techniques. However, this type of test-
ing is left out of the scope of this paper.

3. Model Synthesis and Test Generation

The approach taken to using system traces as a basis
for program understanding and test automation is the
following. The tracing instruments described in Figure
1 are used to gather the trace. These traces are analysed
to gain an understanding of the SUT. From the set of
gathered trace elements, the ones most important for
the functionality at hand are selected, they are refined
to describe their relations and constraints to formalize a
verifiable model. The resulting model is called the syn-
thesized trace based model of the system. To document
the understanding of the system, the model is kept as a
regression test. Current and future system behaviour is
verified by comparing the system execution against
this model.

3.1 Abstraction Levels

As discussed in [21], software can be modeled at

different abstraction levels. To synthesize models for a
system, the abstraction level of the models needs to be
defined. A common concept in reverse engineering
(RE) techniques is using data at the detail level of
method calls to model the behavior of a system [11].
Traces such as these, describing the detailed low-level
execution of a system could be used as regression tests
to verify that the SUT behaviour is not changed. How-
ever, from the viewpoint of this paper this approach is
problematic; the amount of trace generated quickly
grows very large and test cases built on such traces are
difficult to understand and fragile.

For program understanding, large traces with excess
detail are not optimal. Also, although this type of trac-
ing has been used for program understanding [6], it is
dependent on factors such as method naming conven-
tions, which are prone to change and not uniform
across projects. From test generation perspective, an-
other problem in using detailed data such as call-
graphs as a basis for test cases, is that it will cause fail-
ures at the smallest changes in the system. For exam-

International Conference on Software Engineering Advances(ICSEA 2007)
0-7695-2937-2/07 $25.00 © 2007

II/3

ple, simple refactorings may not be significant to the
functionality under test but can change the call-graph.

However, in the case of a failing test case it can be
useful to have more detailed information available for
locating the cause of the failure. Thus, while this paper
mostly considers higher level abstractions, it is also
seen as useful to maintain traceability information from
the abstracted models to the actual source code, similar
to [3].

3.2 Model Elements

In this paper, a test case is defined as a sequence of

steps, each tied to one or more events and defining
their relations to other events and attributes. Table 1
lists the generic model elements defined. Events are
defined in similar way as [3]: Meaningful properties
and actions in program execution. These can be at dif-
ferent abstraction levels, such as sensor input, message
send or closing a file. However, they should represent
relevant concepts to the program execution and the
verification of the functionality under test. Attributes
are associated with events and can represent any rele-
vant data for the event such as timing, message con-
tent, object identifiers and data values.

Table 1. Generic model elements.

Element Description
Test start Test case execution starts.
Test end Test case execution ends.
Test input Test case input data.
Test output Test case output data.
Precedence One event must occur before another.
Duration Event time interval.
Task Sequence of related events.
Synchronity Synchronization between tasks.
Messaging Communication between tasks.
Match Test sequence step event or attribute must

match that of another step.
Alternate When only a subset of a number of given

events or attributes is required.
Inclusion One event must include another.
Exclusion One event excludes another.
Reference References another test sequence step.
Repetition Repeating loops in a model.

Test start and end are useful synchronization points

for different communicating tasks. Input and output are
basic properties needed in software testing. They can
be related to a test case as a whole or to smaller sub-
tasks inside a test case. For test sequence ordering, two
levels of precedence are defined: one event occurs im-
mediately after another event, or as any event in tem-
poral order after another. Event duration is the time an
event is active. Not all events have a meaningful dura-
tion, for example receiving a message can be consid-

ered a singular event without a specific duration. On
the other hand another event, such as processing the
message, can have a more meaningful duration.

Tasks group a set of related events together to form
a sequence of events realizing a higher-level concept.
This can be realized as events of a single thread but
more generally they are any events that form a higher
level concept together, which can be spread across
several threads or occur interleaved with other con-
cepts. Interaction related elements include synchroni-
zation and messaging, which are some of the basic
properties of communicating and concurrent systems.
These include such properties as points of mutual ex-
clusion and process communication.

Single steps of system execution are rarely mean-
ingful alone, and this paper uses a set of elements to
describe their relations to each other. Events and at-
tributes can be required to be matching the attribute
values of other events and attributes, alternative to
each other, including (requiring) or excluding
(disallowing) another event or attribute. References to
other test steps are needed to describe these relations.
Combinations of the model elements are also possible,
such as one of several events is allowed (alternative)
but not many of them (exclusion). Repetition is needed
to express loops, which are basic concepts in software
implementation. Not all trace events are relevant to a
feature, and as such only the relevant ones are included
in the model and the rest are ignored.

3.3 Model Building

The process of building models from the system
traces is shown in Figure 2. To build a model of the
system behavior, the feature of interest is first executed
to gather a trace. To gather the trace the system is in-
strumented for tracing by using any combination of the
techniques as discussed in section 2.1. The system fea-
ture is executed to produce the trace and store the pro-
duced trace as a basis for our model. To formalize the
relations of the trace steps as a model of the systems
expected behaviour, the trace is refined with the model
elements described in Table 1. This produces the
model that is used to document the understanding of
the system and as a basis for regression testing.

Step 2 in Figure 2 describes executing system func-
tionality. This refers to any means to execute the func-
tionality but is best implemented as with automation,
exercising the code in repeatable fashion. This way the
same method of exercising the code can also be applied
for the regression testing. However, other means such
as manually exercising the program can also be used if
necessary.

Finally, as understanding for the system will likely
grow over time, and as the system itself evolves and

International Conference on Software Engineering Advances(ICSEA 2007)
0-7695-2937-2/07 $25.00 © 2007

II/4

changes, the models need to be refined. This requires
incorporating new trace elements into the model and
possibly adding new trace instrumentation to the sys-
tem. The model updating can be automated to the ex-
tent that a new trace is collected and the model is up-
dated with selected elements from the new trace. Only
the refining model elements from Table 1 need to be
added to the new trace elements and the old elements
that are related to the new elements need to be updated
for this part. The need to update the model can also
come from for example finding faults in functionality
that should be covered by regression tests based on the
models, or if the model is otherwise found not to cor-
rectly express all the necessary information for the
system.

System
under trace

System
Trace

Model
Elements

System
execution

Trace
based
model

1. Instrument system
 for tracing
2. Exercise code to
 produce the trace
3. Store trace
4. Refine trace with
 model elements to
 produce a model
5. Store the model for
 later reference and
 regression testing
6. Update trace and
 model as system
 and/or understanding
 of it evolves.

2

3

4 5

Evolution
Trace

instruments
1 6

6

Figure 2. Model building.

3.4 Regression Testing

The process of using the generated models for re-

gression testing is shown in Figure 3. System execu-
tion in the figure is again similar to what is described
in section 3.3. The previously generated model is used
as a basis for regression testing. This model is used to
describe what is expected of the SUT. To verify the
actual system behavior against this expected model, the
actual execution of the SUT is traced and the trace is
checked against the model for the expected. Analysis
of the test results determines if the test was success-
fully passed. A failure can be analyzed and the model
can help in locating the failure by highlighting the parts
of the models and traces that do not match.

The algorithm for checking the trace against the
model is described in Figure 4, This consists of check-
ing if the trace elements meet all the required event and
attribute values, as well as whether the trace fits within
the constraints set by the expected model. The same
instrumentation that is used in generating the expected
model can be used to trace the system for regression
testing. Test results are stored in a test log, which can
be visualized for easier analysis as shown in Figure 6.

Instrumented
System

1. Execute system to
 produce trace
2. Collect trace from
 system execution
3. Evaluate the trace
 against the model
 for the expected
4. Report test results

System
Execution

Expected
Model

Test
Framework

Test Log

1

2

3

4

Figure 3. Regression testing.

-For each model step
 -Check if the step is found in the trace
 -If the step is not found
 -Mark the step failed, showing the given step as
 missing in test log
 -If the step is found
 -Check all required properties set for the step as
 specified by the model elements in Table 1.
 -If the require properties are not met
 -Mark the case as failed, with the reason of
 failure shown in the test log
-If all steps passed the check mark the test as passed
-Else mark the test as failed

Figure 4. Trace checking algorithm.

4. Example Case

4.1 Generic Communication Middleware

To demonstrate and validate the practical usefulness

of the approach, it is applied on a system called Ge-
neric Communication Middleware (GCM). GCM is a
middleware for application messaging in heterogene-
ous distributed computing environments [20]. It is tar-
geted to facilitate the development of distributed appli-
cations into heterogeneous computing environments,
including devices with limited resources. For demon-
stration, the basic middleware feature of sending a
message is considered.

In tracing GCM, manual logging statements (level 1
as defined in Figure 1) are used. GCM does not use
third party components, or have other external depend-
encies, and the source code is available, which makes it
possible to instrument all parts of the system. It has
multithreaded functionality, but to illustrate the tech-
nique is a clear and simple way, this is not the focused
on here. The aim in the trace definition has been to
craft it to be expressive, making the demonstration
easier to understand.

As the first step, trace statements are added to the
code. The trace is iteratively refined by executing the
system, observing the trace and evaluating its expres-

International Conference on Software Engineering Advances(ICSEA 2007)
0-7695-2937-2/07 $25.00 © 2007

II/5

siveness in describing the system functionality. The
resulting trace for the feature is shown in Figure 5 on
the right hand side, which also lists the three separate
sequences visualized on the left hand side. These sepa-
rate sequences illustrate the grouping of subsequences
as tasks (as in Table 1). The sequences are initializa-
tion, sending normal message and sending control mes-
sage. As shown, sending normal message is a sequence
interleaved with other tasks, while the two others are
continuous.

These sequences describe the basic functionality of
sending a message with GCM. To send a message, the
GCM must first be initialized. Once initialization is
done, messages can be sent. However, before the first
message is sent, a control message must be created and
sent to establish a connection between the GCM client
and server. Sending a control message is done auto-
matically by the GCM service when the first message
is sent. This whole functionality is shown in the three
separate sequences in Figure 5. When the initial trace
is first collected, the sequences are of course not visi-
ble and the trace is a continuous sequence of events.
This is why the trace needs to be refined to generate a
usable model to serve as a document for program un-
derstanding and a verifiable test case for future execu-
tions.

4.2 Generating a Model and a Test Case

Armed with the trace, it is possible to generate mod-

els from it and to use these as regression tests. Building
the model includes parsing the events and attributes
from the trace data and associating them together. This
part can be fully automated as long as a formal trace
format is used, as is already done in Figure 5.

For generating models, these traces can be viewed
from different viewpoints depending what is being
modeled. One option is to build one large model to
include the whole trace sequence at once. However, to
keep the models focused and easy to handle, they have
been partitioned to separate models. This gives an un-
derstanding of the individual functionality and the
smaller models can later be mapped together to de-
scribe the larger functionality.

Each of the sequences in Figure 5 could be defined
as a model. However, here an example is used that is a
subsequence of both sending a normal message and
sending a control message, and illustrates a real issue
faced in the actual development of GCM. This is illus-
trated in Figure 6, which shows a model for writing the
actual message data (sending it across the network)
from the client to the server. The expected column de-
scribes the initial model, and the textual description of
the steps describes the expectations for each step and
their relations to other steps. The steps and textual de-

scriptions are mapped by their number id values. The
actual column describes a trace from the actual imple-
mentation and is discussed in the next subsection.
Table 2 maps the notation elements to the model ele-
ments from Table 1.

1

2

3

4

5

1. Manager Init (host=localhost,
 port=5555, state=0)
2. Start service (host=localhost,
 port=5555, state=1)
3. TCP connection created
 (host=localhost, port=5555)
4. Message created (id=31505416,
 gcm-type=binary, sender=t-app,
 destination=t-service, type=TYPE1)
5. Sending normal message
 (id=31505416)
6. Message created (id=22591049,
 gcm-type=binary, sender=t-app,
 destination=t-service,
 type=GCM-Control)
7. Sending control message
 (id=22591049)
8. Writing message data
(id=22591049, type=binary)
9. m-e (gcm-type=1)
10. m-e (gcm-version=1)
11. m-e (encoding=1)
12. m-e (sender=t-app)
13. m-e (destination=t-service)
14. m-e (type=GCM-Control)
15. Writing message data
(id=31505416, type=binary)
16. m-e (p-type=1)
17. m-e (p-version=1)
18. m-e (encoding=1)
19. m-e (sender=t-app)
20. m-e (destination=t-service)
21. m-e (type=TYPE1)

Sequences:
1-3 = Initialization
4-21 = Sending normal message
6-14 = Sending control message

6

7

8

9

10

14

11

12

13

15

16

17

18

19

20

21

Figure 5. GCM Trace.

In GCM's evolution, the binary protocol for passing
the message parameters has been changed from passing
of parameter length (step 7 in Figure 6) and value
(step 8) to include the parameter type (step 6) as well.
At this time the protocol version has also been changed
to 2. The previous functionality of passing the parame-
ters produced a trace similar to the expected trace in
Figure 6, without step 6. From the GCM version 1
trace the expected trace shown in the figure was gener-
ated by simply changing the expected protocol type to
2 and adding the parameter type trace element (step 6)
to the model.

In the actual implementation of this change, this
type of a test case was not available. Instead, the im-

International Conference on Software Engineering Advances(ICSEA 2007)
0-7695-2937-2/07 $25.00 © 2007

II/6

plementation was debugged using a network monitor
to trace and examine client-server communication. The
updated version was found not to work properly and
the problem was traced to faulty implementation of the
parameter type. The fault was introduced in adding the
new type field to the parameters. It was added as the
last element in the parameter data when it should have
been the first.

Table 2. Test notation.

Notation Model Element
<N> Reference to another step number N.
attr Matching attribute.
event= Matching event.
after= Temporal order.
first-after= Immediate order.

1

3

4

22

4

5

3

Actual Expected

1. create message
 (event=Message created)

2. write protocol-version
 (event=m-e, attr:
 gcm-version=2, after=<1>)

3. write type
 (event=m-e, attr: type=<1>,
 after=<2>)

4. write parameter count
(event=p-count, first-after=<3>)

5. write TLV-element
 (event=TLV, first-after=<4>)

6, write parameter type
 (event=p-type, first-after=<5>)

7. write parameter length
 (event=p-length,
 first-after=<6>)

8. write parameter value
 (event=p-val, first-after=<7>)

1

7

5

6

8

6

7

8

Figure 6. A model and its verification.

4.3 Test Execution and Analysis

Figure 6 also describes the verification of the GCM

trace against the expected model. As described earlier,
the actual column shows the trace for the actual execu-
tion of the system and the expected column along with
the textual description describes the generated model
for the system. The dashed arrows show how the steps
in the expected model are matched to the trace ele-
ments of the actual execution. For example, the ex-
pected trace element 6 (writing parameter type) is
matched to element 8 in the actual trace. The high-

lighted (bold) trace elements and steps show failing
steps in the trace validation.

In the figure, the last three steps are the ones of in-
terest. Steps 6 and 7 fail as their event relations (first-
after tags) do not match the actual trace. Step 8, though
seemingly misplaced in the trace, does not fail as its
event relations match the actual trace: it is the first
event to happen after the event of step 7. The parame-
ter type event (step 6) should happen as the first event
after step 5, but it is the third element and thus this step
fails. Similarly, step 7 should happen as the first event
after step 6 but it happens two events before. Thus, the
two failing steps and their associated trace elements
effectively highlight the failure in the test case and its
cause. This shows how this type of testing can effec-
tively find the failure and its cause.

5. Discussion

The intent for this paper was to demonstrate the de-
scribed technique by generating models for the GCM
implementation and using these as regression tests.
While there were no expectations where this would
lead, the visualization and analysis of the traces and
models helped understand the system and highlighted
areas in need of improvement. First, the message ob-
jects created by the user include the information identi-
fying the binary protocol and its properties such as
encodings. The user message objects should only con-
tain the message contents, not protocol level details.

Second, the implementation also adds unnecessary
details to the control message. The control message
contains data copied for each field in the message from
the normal message that is being sent in the system. As
GCM is targeted to address the needs of constrained
embedded devices, this consumes unnecessary re-
sources and should be eliminated. In the GCM specifi-
cation, this part is not described - only the type of the
message is defined. Thus, this also highlights a possi-
ble need for refinement in the specification.

With the exception of instrumenting the system
(step 1 in Figure 2) and model refinement (step 4 in
Figure 2), all steps in applying the technique can be
fully automated. When the less context dependent trace
mechanisms described in Figure 1 can be applied, parts
of step 1 can also be automated. Different parts of task
4 can also be automated. For example, promising tech-
niques exist that can be applied to identify tasks from
system execution [5]. In general, step 4 is an interest-
ing future research topic for further automation. This
could include rule based approaches, learning algo-
rithms, and other similar algorithms. Model refinement
can also be made easier by providing visualizations
such as described in Figure 6 and making it possible to

International Conference on Software Engineering Advances(ICSEA 2007)
0-7695-2937-2/07 $25.00 © 2007

II/7

do the refinement through visual manipulations as well
as with automated assistance.

While it is possible to apply the technique presented
in this paper to all types of functional testing, it is not
always cost-effective. The best application domain is
in systems where the functionality is highly embedded
in the system and can be expressed as sequences of
events. This can be traditional HW/SW embedded sys-
tems but also any type of system that is sufficiently
large and complex, and needs to be tested as a larger
integrated product. This includes cases, where the sys-
tem behaviour can not be effectively tested from exter-
nal interfaces, when the behaviour is complex, and
needs to be understood and debugged with regards to
its inner working. In short, this means low testability
systems and features, where building a full set of ex-
ternal observability features is not feasible.

For constrained systems such as real-time systems,
the extra trace overhead (probe-effect) can also make
use of this type of technique more challenging. Using
and combining traces from separate parts of distributed
system also needs further consideration. Thus future
work needs to address the limitations of the technique
and how it can be most cost-effectively applied in dif-
ferent contexts. In general, these constraints as well as
other automation aspects of the technique need to be
addressed with tool support.

6. Related Work

This section reviews related work. Model based

testing (MBT) is mostly related to modeling what is
expected of the SUT based on its requirements and
using these models to generate test cases. Reverse en-
gineering (RE) addresses the other side of the equation:
what is the actual implementation provided by the
SUT. Testing tools and techniques that make use of
trace based models are also considered. As it is possi-
ble to use the same concepts from these techniques to
model a system for testing such as in this paper, an
overview is given on how they trace and model the
systems as well as how the models are used.

In MBT, the SUT is modeled based on its require-
ments and these models are used to generate test cases
for the SUT. The basic idea is to explicitly describe
the requirements as models and verify that these mod-
els accurately reflect what is expected of the system
[21]. Once verified, these models and traces derived
from them are used as a basis for generating test cases
for the SUT. The models take different forms depend-
ing on what is being modeled and how. Different types
of models used include data models [7] [23], behav-
ioral models [1] [21] [22] and domain specific models

[16] [17] [19]. The models can be described at differ-
ent levels of abstraction for different viewpoints [21].

In general, MBT tools typically exercise the system
as a black box through external interfaces that need to
be supported by the system design [24]. Thus they fo-
cus mostly on well defined inputs and outputs of a sys-
tem, whereas the technique in this paper is more appli-
cable to the inner workings of low testability systems.
As there are common properties in both, such as using
models and observing the system, possible synergies
may exist. These are however, out of the scope of this
paper.

Bertolino et al. [4] also describe what they call anti-
model based testing. They focus on creating a set of
traditional test cases for black-box component based
software and use these test cases to gather traces for
the system. From these traces they try to synthesize a
behavioral model for the system. They describe their
model as a state-machine, and their tracing mechanism
as instrumenting component glue code. Thus the ap-
proach in this paper considers more specific applica-
tion of models for program understanding and regres-
sion testing, as well as a wider range of tracing tech-
niques.

Many RE tools apply different abstractions and fil-
terings on the traces to limit the amount of data to be
processed, and use the processed data to provide mod-
els and visualizations of the systems [11]. Examples
include discovering and visualizing patterns in the
traces, generating sequence and scenario diagrams,
graphs and custom visualizations. The main difference
with this paper is that RE is interested in generating
various models of the system and stops there, whereas
the technique presented in this paper also applies these
models for testing.

Huselius and Andersson [13] insert probes into the
system to monitor context switches and system calls.
They use context switches differentiate tasks that exe-
cute jobs and use these concepts as basis for their mod-
eling. They also discuss inserting data probes to moni-
tor selected variables within the system and to repre-
sent the system state. Thus, their data set includes the
context switches, selected system calls, and selected
state variables. One of the uses they describe for their
technique is the validation of COTS components,
though they do not elaborate on it further.

Lam and Barber [18] consider modeling agent soft-
ware for the purposes of human comprehension. They
use use specific agent concepts for their modeling.
Modeling the software starts by defining the agent con-
cepts in the source code as logging statements that
gather data related to these concepts. As the software is
executed, this information is logged and the model is
refined with these observations. The models are stored
in a knowledge base. Enough information is logged for

International Conference on Software Engineering Advances(ICSEA 2007)
0-7695-2937-2/07 $25.00 © 2007

II/8

each event to associate it with its exact place in the
source code. Based on the different agent concepts and
their relations, they build an overall model that is in-
tended to help in understanding the agent system.

Ducasse et al. [8] use logic based queries of the
SUT execution traces to test legacy systems. Their
traces include events and object states, recorded from
program execution. Events are messages between ob-
jects, including parameter and return values. To vali-
date assumptions about the SUT, they use logic queries
on the traces and define a set of trace-based logic test-
ing patterns. They use these tests to validate that legacy
systems remain the same after changes and to help
understand a program by creating and validating as-
sumptions about it. Their work is closely related to this
paper: both use traces to test and facilitate understand-
ing of legacy systems. They, however, use logic que-
ries to assert the trace data, whereas this paper uses
visualizable traces and models. This paper also bases
the models on higher level abstractions and formalized
event relations, whereas they use more detailed traces
at the level of method calls.

TextTest is a tool to create regression tests from log
files [1]. A log file is stored and set as the "`standard"
against which further test executions are compared. By
text comparison, it is determined whether the test
passes or fails. A failing test case is shown with the
differences highlighted in the text files. TextTest pro-
vides an opportunity to use regular expressions to de-
fine lines of text that will be excluded from the com-
parison. TextTest, uses traces for testing in a similar
way to this paper, but focuses on the manual trace level
and on directly matching the trace file, whereas this
paper uses a model based on broader levels of traces,
events and their relations. In addition, the technique
presented in this paper also aims to support system
understanding.

Model checking is a process of formally checking a
model of the SUT in relation to a set of specified prop-
erties, such as deadlocks and user assertion failures
[10] [12] [22]. Model checking tools use two different
approaches: check models derived and abstracted from
the source code, or drive the execution of the system
and use it to represent the state-space [10]. Checking
the models is performed using algorithms that explore
their state-space for the desired properties. The states
consist of process interactions and similar properties of
the system [10]. While this paper is also interested in
generating and checking a model of the actual execu-
tion against its expected model, no state-exploration is
performed but rather conceptual matching of the two
models is used.

7. Conclusions and Future Work

This paper presented a technique for trace based
model synthesis for program understanding and test
automation. Its application was demonstrated with a
middleware component. It was shown how trace based
models for existing systems can be generated and
evolved, and how they are useful in program under-
standing. It was also shown how the models can be
used as a basis for regression testing, which can be
effective in finding failures and locating their causes.
As the technique only requires having traces of system
execution, it is also applicable to many low testability
systems such as constrained embedded systems and
legacy code.

Considering automating the process of using the
technique, it was shown how most of the technique can
be fully automated. While currently no automated tool
support exists, in the future to effectively use the tech-
nique, automated and integrated tool support is needed
to trace systems, refine them to models, execute them
as regression tests and to produce visualizations from
the test logs. In this regard, the parts still needing the
most manual effort and thus most potential for future
research are automated trace instrumentation and
model refinement from the trace(s). Further validating
and refining the technique in different systems and
environments is also needed.

8. Acknowledgements

The author wishes to thank the anonymous referees
for their constructive comments. The publication of
this paper has been supported by the ITEA TWINS
project, and the work of the author has also been sup-
ported by the Jenny and Antti Wihuri Foundation.

9. References

[1] J. Anderson, and G. Bache. “The video store revis-

ited yet again: Adventures in gui acceptance test-
ing”, Proc. Extreme Programming and Agile
Processes in Software Eng., pp. 1–10, 2004.

[2] AspectJ, http://www.aspectj.org. [referenced May-
2007]

[3] M. Auguston, J. B. Michael, and M.-T. Shing, "Environ-
ment behavior models for scenario generation and test-
ing automation”, Proc. 1st int’l. workshop on Advances
in model-based testing (A-MOST’05), pp. 1–6, New
York, USA, 2005. ACM Press.

[4] A. Bertolino, A. Polini, P. Inverardi, and H. Muccini,
“Towards Anti-Model-Based Testing”, Fast Abstracts in
Int’l. Conf. Dependable Systems and Networks (DSN
2004), Florence, 2004.

International Conference on Software Engineering Advances(ICSEA 2007)
0-7695-2937-2/07 $25.00 © 2007

II/9

[5] J. E. Cook, and Z. Du, “Discovering thread interactions in
a concurrent system”, J. Syst. Softw., 77(3):285–297,
2005.

[6] B. Cornelissen, A. Deursen, L. Moonen, and A. Zaidman,
“Visualizing Testsuites to Aid in Software Understand-
ing”, Proc. Conf. on Softw. Maintenance and Reengi-
neering (CSMR'07), 2007.

[7] S. R. Dalal, A. Jain, N. Karunanithi, J. M. Leaton, C. M.
Lott, G. C. Patton, and B. M. Horowitz, “Model-based
testing in practice”, Proc. 21st Int’l. Conf. on Softw.
Eng. (ICSE’99), pp. 285–294, Los Alamitos, CA, USA,
1999.

[8] S. Ducasse, T. Girba, and R. Wuyts. “Object-oriented
legacy system trace-based logic testing”, Proc. Conf. on
Softw. Maintenance and Reengineering (CSMR’06), pp.
37–46, 2006.

[9] GNU Profiler,
http://www.gnu.org/software/binutils/manual/gprof-
2.9.1/gprof.html. [referenced May-2007].

[10] P. Godefroid, “Software model checking: The verisoft
approach”, Form. Methods Syst. Des., 26(2):77–101,
2005.

[11] A. Hamou-Lhadj, and T. C. Lethbridge, “A survey of
trace exploration tools and techniques”, Proc. conf. of
the Centre for Advanced Studies on Collaborative re-
search (CASCON ’04), pp. 42–55, 2004.

[12] G. J. Holzmann, “The model checker SPIN”, IEEE
Trans. Softw. Eng., 23(5), pp.279–295, May 1997.

[13] J. Huselius and J. Andersson, “Model synthesis for real-
time systems”, Proc. Conf. Softw. Maintenance and Re-
engineering (CSMR’05), pp. 52–60, Mar. 2005.

[14] Java Platform Debugging Architecture,
http://java.sun.com/javase/6/docs/technotes/guides/jpda/
index.html. [referenced May-2007]

[15] T. Kanstren, M. Hongisto, and K. Kolehmainen, "Inte-
grating and testing a system-wide feature in a legacy
system: An experience report", Proc. Conf. on Softw.
Maintenance and Reengineering (CSMR'07), 2007.

[16] M. Katara, A. Kervinen, M. Maunumaa, T. Paakkonen,
and M. Satama, “Towards deploying model-based test-
ing with a domain-specific modeling approach”, Proc.
Testing: Academic & Industrial Conf. on Practice And
Research Techniques (TAIC-PART ’06), pp. 81–89,
2006.

[17] G.-B. Kim, "A method of generating massive virtual
clients and model-based performance test", Proc. 5th
Int’l. Conference on Quality Software (QSIC'05), pp.
250–254, 2005.

[18] D. N. Lam, and K. S. Barber, “Comprehending agent
software”, Proc. 4th Int’l. joint conference on Autono-
mous Agents and MultiAgent Systems (AAMAS'05), pp.
586–593, 2005.

[19] E. M. Olimpiew, and H. Gomaa, “Model-based testing
for applications derived from software product lines”,
Proc. 1st int’l. workshop on Advances in model-based
testing (A-MOST’05), pp. 1–7, 2005.

[20] D. Pakkala, P. Pakkonen, and M. Sihvonen, “A generic
communication middleware architecture for distributed
application and service messaging”, Proc. Join Int’l.
Conf. on Autonomic and Autonomous Systems and Int’l.
Conf. on Networking and Services (ICAS-ICNS 2005),
Oct. 2005.

[21] A. Pretschner, W. Prenninger, S. Wagner, C. K �uhnel,
M. Baumgartner, B. Sostawa, R. Zolch, and T. Stauner,
“One evaluation of model-based testing and its automa-
tion”, Proc. 27th Int’l. Conf. on Softw. Eng. (ICSE'05),
pp. 392–401, 2005.

[22] Robby, M. B. Dwyer, and J. Hatcliff, “Bogor: an exten-
sible and highly-modular software model checking
framework”, Proc. 9th European Softw. Eng. Conf. held
jointly with 11th ACM SIGSOFT Int’l. Symposium on
Foundations of Softw. Eng. (ESEC/FSE-11), pp. 267–
276, 2003.

[23] P. Schroeder, E. Kim, J. Arshem, and P. Bolaki, "Com-
bining behavior and data modeling in automated test
case generation", Proc. 3rd Int’l. Conf. Quality Softw.
(QSIC ’03), pp. 247–254, Nov. 2003.

[24] Utting M., Legeard B., Practical Model-Based Testing -
A Tools Approach, Morgan Kaufmann, 456 pages, 2007.

[25] T. Vaskivuo, “Correlation methods for visualization of
software run-time behaviour”, Proc. Softw. Eng. And
Applications (SEA 2005), Nov. 2005.

[26] T. Vaskivuo, “Correlation methods for visualization of
software run-time behaviour”, Presentation at Softw.
Eng. And Applications (SEA 2005), Nov. 2005.

International Conference on Software Engineering Advances(ICSEA 2007)
0-7695-2937-2/07 $25.00 © 2007

II/10

http://www.gnu.org/software/binutils/manual/gprof-2.9.1/gprof.html
http://www.gnu.org/software/binutils/manual/gprof-2.9.1/gprof.html
http://java.sun.com/javase/6/docs/technotes/guides/jpda/

PAPER III

Towards a Deeper Understanding of
Test Coverage

In: Journal of Software Maintenance and Evolution:
Research and Practice, JSME, Vol. 20, No. 1, 2008.

Pp. 59–76.
Reprinted with permission from the publisher.

JOURNAL OF SOFTWARE MAINTENANCE AND EVOLUTION: RESEARCH AND PRACTICE
J. Softw. Maint. Evol.: Res. Pract. 2008; 20:59–76
Published online 5 November 2007 in Wiley InterScience (www.interscience.wiley.com). DOI: 10.1002/smr.362

Research

Towards a deeper
understanding of test coverage

Teemu Kanstrén∗,†

VTT Technical Research Center of Finland, P.O. Box 1100, Kaitoväylä 1, Oulu
FI-90571, Finland

SUMMARY

Test coverage is traditionally considered as how much of the code is covered by the test suite in whole.
However, test suites typically contain different types of tests with different roles, such as unit tests,
integration tests and functional tests. As traditional measures of test coverage make no distinction between
the different types of tests, the overall view of test coverage is limited to what is covered by the tests
in general. This paper proposes a quantitative way to measure the test coverage of the different parts
of the software at different testing levels. It is also shown how this information can be used in software
maintenance and development to further evolve the test suite and the system under test. The technique
is applied to an open-source project to show its application in practice. Copyright © 2007 John Wiley &
Sons, Ltd.

Received 3 July 2006; Revised 18 September 2007; Accepted 19 September 2007

KEY WORDS: test granularity; level of testing; test optimization; test coverage

1. INTRODUCTION

Test suites typically contain different types of tests such as unit tests, integration tests and system
tests. In practice this means that test suites consist of test cases that exercise the system under test
(SUT) at varying granularities. Some exercise smaller parts of the SUT at a finer granularity, while
others exercise larger parts at a coarser granularity. The spread and ratio of these different types of
tests vary for different test suites and different parts of the SUT. Some suites may contain fewer tests
that exercise larger parts of the SUT and some suites contain more tests that exercise smaller parts
of the SUT. In both software development and maintenance, different types of tests have different
benefits and roles, such as verifying the functionality of individual components, confirming their
interactions and aiding in debugging.

∗Correspondence to: Teemu Kanstrén, VTT Technical Research Center of Finland, P.O. Box 1100, Kaitoväylä 1, Oulu
FI-90571, Finland.
†E-mail: teemu.kanstren@vtt.fi

Copyright q 2007 John Wiley & Sons, Ltd.

III/1

http://www.interscience.wiley.com
mailto:teemu.kanstren@vtt.fi

60 T. KANSTRÉN

Traditional measures of test coverage focus on measuring how much of the total SUT has been
exercised by the test suite. Various coverage measures include measures such as statement, path
and decision coverage [1]. These traditional types of code coverage are useful for seeing which
parts are not yet under test and for getting an overview of how much of the SUT is tested in
general. However, once previously uncovered code is brought under test, traditional code coverage
measures only tell us that the code is covered by some test in the test suite. These measures do not
tell anything about the types of tests exercising the piece of code. Thus, if we want to understand
better how the SUT is covered by different types of tests, the traditional view of test coverage does
not provide a good view for this purpose.

This paper proposes a way to get a deeper understanding of testing for the different parts of the
SUT. Instead of considering how much of the SUT is covered by the test suite in total, it is considered
how the different parts of the SUT are covered at the different levels of testing. A measure for the
level of testing for the different parts of the SUT is defined and it is shown how this measure can
be used during software maintenance and evolution to get a deeper understanding of the testing for
the SUT and to evolve the existing test suite. The measure is applied to an open-source software
(OSS) project to demonstrate its application in practice.

This paper is structured as follows. The next section discusses the basic concepts and describes
the measure used in this paper. Section 3 shows how the measure has been implemented in practice.
Section 4 applies the measure to an OSS project and analyses the results. Section 5 discusses the
benefits and problems in applying the measure. Section 6 reviews related work in literature. Finally,
Section 7 discusses conclusions and future work.

2. LEVELS OF TESTING

This paper uses the term test granularity to refer to the number of units of production code included
in a test case (such as ‘three methods’). The term level of testing is used to refer to a number of
test granularity measures grouped together. For example, if we use the size 10 for a single level of
testing, all tests with granularity 1–10 will belong to level 1 and all tests with granularity 11–20
will belong to level 2. If we use size ‘1’ for the size of testing level, all tests will be mapped to the
same testing level as their granularity (granularity 1 equals test level 1, granularity 2 equals level 2
and so on). However, also in this case, several tests can still be mapped to the same level if they
have the same granularity. It is possible to vary this measure according to the goal of the analysis.
The different concepts to be taken into account in defining this measure will be discussed in this
paper.

2.1. Roles for the levels of testing

The role of testing in general can be defined as exercising the SUT with different inputs in order
to reveal possible errors [1–3]. Test suites are composed of different types of tests, all of which
have their own roles in testing and debugging the system. Rothermel et al. [4] have provided a
survey of literature on advice about test granularity. This survey shows some contradictory advice
on when to apply tests at different granularities. For example, Beizer [2] suggests that it is better
to use several simple tests and Kit [5] suggests that large test cases are preferable when testing

Copyright q 2007 John Wiley & Sons, Ltd. J. Softw. Maint. Evol.: Res. Pract. 2008; 20:59–76
DOI: 10.1002/smr

III/2

TOWARDS A DEEPER UNDERSTANDING OF TEST COVERAGE 61

valid inputs for which failures should be infrequent. However, even though the advice on applying
testing at different granularities shows some contradiction, there is generally an agreement on the
roles of the different levels of testing.

Focused tests at a finer granularity run fast, focus on the cause of failure and make it possible to
cover difficult paths of execution [1–4,6–8]. Thus, their role is best at verifying the finer details of a
component’s inner working and in debugging of faults. However, getting high coverage with small
tests is expensive and verifying that individual components work in isolation does not tell whether
they work correctly together. This means trade-offs need to be made in implementing focused tests.

Higher-level tests are required to verify the behaviour of the smaller parts as a whole and to
validate the higher-level functions and properties expected from the system [1–4]. With higher level
of testing it is less expensive to get a high test coverage as the tests cover larger parts. The trade-
off is in verifying the finer details of the components and in debugging the cause of the failures.
Covering complex details of small parts is difficult with large test cases and debugging can be time
consuming when we only know that the fault is somewhere in the large portion of code executed.

For best results we need tests at lower and higher levels, where they are most useful. To be able
to evolve the test suite and determine how the different parts of the code are exercised by test cases
at different levels, we must be able to measure the levels of testing performed on the different parts
of the SUT. As, during software maintenance and evolution, these parts and the test coverage of
the regression test suite are likely to change, this analysis must be possible to be automated and
repeated as much as possible. Measuring the test coverage at the different levels of testing is where
the traditional coverage measures fail, as they do not give any information on how a piece of code
is covered, only that it is covered in some way by the test suite.

To address this problem, this paper describes a technique for measuring how the different parts of
the software are tested at different levels and builds on this to help make more informed decisions
about where and how to focus future testing effort. However, before measuring these values, the
measure of testing level and how it is related to the previous definitions in the literature is defined.
Since the interest in this paper is in automating the measurement as far as possible, the definitions
are reviewed from the viewpoint of how they can be measured automatically from test execution.

2.2. Defining the levels of testing

In the traditional testing literature, testing is divided into two basic types of testing: white box testing
and black box testing [1,2,5]. These are further divided into more specific types, so that white box
testing typically includes unit testing and parts of integration testing and black box testing typically
includes acceptance tests, functional tests, system tests and higher-level integration tests. White box
tests are typically considered to be lower-level tests and black box tests to be higher-level tests.

For quantitative measurement of test granularity, these types of classifications are problematic.
The scope of a unit in a unit test can be defined to be, for example, a method, a class, a cluster
of classes, a subroutine or a subprogram [1–3,5,9]. Similarly, integration testing can combine any
number of these different units. By these definitions both unit tests and integration tests can include
different sizes of groups of methods or classes in the SUT. Thus, by looking at the code executed
by a test it is not possible to tell when a test stops being a unit test and becomes an integration test,
or the other way around. Similarly, black box tests can exercise a small or large amount of code
depending on how the tested functionality is spread in the code.

Copyright q 2007 John Wiley & Sons, Ltd. J. Softw. Maint. Evol.: Res. Pract. 2008; 20:59–76
DOI: 10.1002/smr

III/3

62 T. KANSTRÉN

Rothermel et al. [4] have used a definition of granularity based on the test case input. Their
measure of granularity is based on the size of the test cases, with the size being measured by the
number or amount of input applied per test case. A test case with more input is a test case of a
higher granularity than a test case with less input. This measure can be used to classify the test
cases by their granularity. However, this measure does not tell us anything about the size of code
executed by a test case. The amount or number of input is not tied to the size of code used to
process it, as small or large amounts of input can be processed by small or large amounts of code.

This paper defines the testing level by giving each test case a numerical measure based on
how many different units of code, such as classes, methods or lines of code (LOC), are exercised
in the test case. Similarly, any measure central to a system’s functionality, such as messages or
events in a message- or event-based system, could be used. Any of these can be used to define the
test granularity and thus the level of testing for the code exercised by the test case. This gives a
quantitative, automatically measurable, measure of the granularity of each test case, which can then
be used to evaluate the levels of testing for the different parts of the SUT. For example, when using
the detail level of methods, when a test case exercises code from 10 methods its granularity is 10.
When it exercises code in 20 methods, its granularity is 20. Once these granularities are mapped
to testing levels, these levels can be ordered and compared for all parts and systems as long as the
same measure of classes, methods, LOC or combination of these is used for each test.

3. MEASURING THE TESTING LEVELS

The measurement data for the testing levels described in this paper are gathered in two steps. In
the first step, all the test cases for the SUT are executed and the coverage information for each
test case is gathered. The coverage information provides the granularity of the test cases, which
is needed for the second step. In the second step, the level of testing for the different parts of the
system is calculated. This process is described in more detail in this section, starting with step 1
and followed by step 2.

3.1. Measuring the granularity of test cases

The components and the process used to gather the data for the first step are described in Figure 1.
It describes an implementation for the Java platform as used in this paper. The used JUnit [10] and
AspectJ [11] components are freely available OSS components and the measurement can also be
implemented on any platform that has similar components available. Other approaches to collect the
execution traces of the test cases also include tracing through special debugging interfaces provided
by the platform [12] or using a common code coverage tool to measure the coverage for each test
case [13]. As a data store it is possible to use, for example, the file system or a database. Both were
successfully prototyped for this paper.

The production code is first instrumented to produce trace events for all method calls. Then, the
test cases are iterated and coverage data for each test case are collected, until all test cases have
been executed. This measurement can provide data for telling which LOC were executed, which
methods were called and which classes were used in each test case. Here AspectJ has been used
for tracing, which provides support for custom trace code. The used detail level of method calls

Copyright q 2007 John Wiley & Sons, Ltd. J. Softw. Maint. Evol.: Res. Pract. 2008; 20:59–76
DOI: 10.1002/smr

III/4

TOWARDS A DEEPER UNDERSTANDING OF TEST COVERAGE 63

JUnit Test
Framework

Test Cases

Production
Code

Trace Code

AspectJ
Weaver

1. Instrument code
2. Run tests
3. Exercise code
4. Generate trace
 events
5. Generate test
 events
6. Store coverage
 for test case
7. Repeat steps 2-6
 for all test cases

1.

2.

3.5.

4.

Data Store

6.

Figure 1. Measuring data for step 1.

provides a compromise between very fine detail (LOC) and coarse detail (classes). While using
aspects to trace at the LOC level is not straightforward, it is possible to implement LOC level
measurement by using a code coverage tool and this was successfully experimented with during
this study. For different interests it is possible to vary the level of detail used while the rest of the
process remains unchanged. Once these data are collected, it is possible to move on to the second
step.

3.2. Associating the tests with tested parts

The second step is illustrated in Figure 2. This figure shows a simple example system consisting of
four methods in two classes and four test cases. By having measured which parts of the code are
executed by which test cases, we have collected the information presented in the figure. Test case
granularity is calculated by adding up the number of methods executed by each test. This information
is shown in Table I. The number of methods tested at the given granularities are calculated simply
by adding up the unique methods covered by tests at given granularities. This information is shown
in Table II.

While the figure shows the associations between the tests and the methods, the actual path of
execution can be anything as long as the method is executed as a part of running the test. Where the
methods are invoked from makes no difference, as the measurement system will record any call to
the observed methods while the test case is executed. It can be invoked, for example, from the test
case or from any other production code. The set of observed methods can be limited, for example,
by instrumenting only the parts of interest for coverage or by filtering the collected data.

Once we have associated each test case to the code it executes, we can calculate the metrics on
how each method is tested. For example, to calculate the lowest level of testing for each method,
we first find the smallest granularity from the test cases associated with the method. This tells us the
most focused test case for that part of the code. Once this is known, the granularity value needs to
be mapped to the testing levels, which shows the lowest level of testing for that method. Similarly,
it is possible to get the highest level of testing by finding the maximum associated value.

Copyright q 2007 John Wiley & Sons, Ltd. J. Softw. Maint. Evol.: Res. Pract. 2008; 20:59–76
DOI: 10.1002/smr

III/5

64 T. KANSTRÉN

Figure 2. Associating tests with the parts of software executed.

Table I. Test granularities.

Test Granularity

Test1 1
Test2 3
Test3 2
Test4 2

Table II. Method count at different granularities.

Granularity Number of methods

1 1
2 3
3 3

Table III. Test granularities for the methods.

Method name Min Max

Class A::Method1 1 3
Class A::Method2 2 2
Class A::Method3 3 3
Class B::Method1 2 3

For Figure 2, using testing level size 1 (mapping the test granularity directly to the same level),
the lowest and highest testing levels are shown in Table III. For example, Class A::Method1
is associated with test cases Test1, Test2 and Test3. As Test1 has the smallest granularity of these,

Copyright q 2007 John Wiley & Sons, Ltd. J. Softw. Maint. Evol.: Res. Pract. 2008; 20:59–76
DOI: 10.1002/smr

III/6

TOWARDS A DEEPER UNDERSTANDING OF TEST COVERAGE 65

the lowest level of testing (min) for this method is 1. As Test2 has the highest granularity (3) of
these, the highest level of testing (max) is 3. Similarly, Class B::Method1 is associated with
test cases Test2 and Test4. Thus, the min and max values are accordingly 2 (Test4) for the lowest
level and 3 (Test2) for the highest level.

4. EVALUATING AND EVOLVING A TEST SUITE

As an example of applying the technique, the test suite of PMD [14], an OSS Java source code anal-
ysis tool, is analysed in this section. To help put the measurement data in context, the total number
of tests, classes, methods and source LOC (SLOC, LOC excluding whitespace and comments) for
the project are shown in Table IV. To collect the coverage information for the testing levels, the
test suite for the project has been executed, the granularity of all test cases has been measured and
these data have been mapped to the methods in the SUT as described in Section 3. Thus, the infor-
mation needed to calculate the different levels of testing performed for all methods in the SUT is
available.

4.1. Testing levels—an overview

To get an overview of the testing at the different levels, the first step is to look at how much of the
SUT has been covered at the different levels. This provides a basic overview of the testing done
at different levels as a total and shows whether there is, for example, a lack of low- or high-level
testing in general. Using the overview data as history information also makes it possible to track
the evolution of the levels of testing over time. However, as discussed earlier, taking the analysis
of this testing data further poses the question of what size to use for the testing level. If we simply
use size 1 for each testing level (mapping the granularities directly to test levels), the overview will
describe too many details and not give the high-level overview we are interested in. As an example,
Table V lists the number of PMD methods tested at granularities 1–10 and 21–30.

At the lower granularity of 1–10, we see a large number of tests and methods covered at each
granularity. However, as we move to higher test granularities, we start to see a higher spread of
the tests as shown already by the tests at granularity 21–30. Here there are at most two tests at a
given granularity. This spread of tests is further amplified the more we move towards the higher
granularities. The highest granularity for a single PMD test case is 834. The complete spread of
the number of tests at different granularities is illustrated in Figure 3, which shows a histogram

Table IV. Project metrics.

Metric Total

Tests 781
Classes 629
Methods 4073
SLOC 38 790

Copyright q 2007 John Wiley & Sons, Ltd. J. Softw. Maint. Evol.: Res. Pract. 2008; 20:59–76
DOI: 10.1002/smr

III/7

66 T. KANSTRÉN

Table V. PMD Number of methods (NOMs) covered and number
of tests (NOTs) at levels 1–10 and 21–30.

Level Number of methods Number of tests

1 9 14
2 44 39
3 39 17
4 50 16
5 50 22
6 38 8
7 58 17
8 24 3
9 64 13

10 95 12
21 23 2
22 44 2
23 23 1
24 25 2
25 25 1
26 0 0
27 27 1
28 0 0
29 58 2
30 30 1

Figure 3. Number of tests at different granularities.

of the number of tests at different granularities. Figure 4 shows the number of methods covered
at each granularity. Figure 5 shows how the data can be summarized to describe tests at multiple
granularities to single testing levels, and to provide a better high-level overview.

Copyright q 2007 John Wiley & Sons, Ltd. J. Softw. Maint. Evol.: Res. Pract. 2008; 20:59–76
DOI: 10.1002/smr

III/8

TOWARDS A DEEPER UNDERSTANDING OF TEST COVERAGE 67

Figure 4. Number of methods covered at different granularities.

In Figure 5, the data for different testing levels using different level sizes are presented. In the
first row, the level size is 10, in the second 50 and so on. For example, each row for levels 1–10
in Table V is represented by a single bin (for a total of 10 bins) in Figures 3 and 4. However, in
the figures in the first row in Figure 5, a single bin represents this information for levels 1–10. The
level range then contains the data for 10 test granularities as one level. The different level sizes
provide higher abstraction overviews of the coverage at the different testing levels. For example, in
Table VI we see that, when using a level size of 1, it seems that 471 methods are covered by tests
at a granularity of 1–10. But when combined and viewed with a level size of 10, we see that this
only includes 274 unique methods. This is due to the partial overlap of the different methods being
covered in multiple tests at adjacent granularity.

When considering the roles of the test cases for the different levels, it does not make much
difference whether a method is covered by a test case of granularity 1 or 10. For covering critical
parts and making debugging easier, we may be interested in ensuring that we have good coverage
at finer levels, but debugging 10 methods should still be relatively easy. Our interest for the size
of the viewed levels can vary according to what we are looking for. At lower levels a finer spread
with a ratio of 10 or 50 may be appropriate. On the other hand, at higher levels, we may only be
interested in some form of higher-level coverage and may use a ratio of, for example, 200 or may
even look for any coverage with tests over a certain threshold granularity, such as 100.

While in these examples we have viewed the whole project at once, all these analyses can also be
applied to smaller parts of the system. If we consider, for example, parts of the system to be more
critical or error prone, we can filter only these parts of the code for analysis. This can be based on
concepts such as project structure, domain knowledge or different complexity metrics. However,
this is considered out of the scope of this paper and left as a topic of future work.

The analysis presented so far is focused on an overall view of the software testing in general.
However, to more concretely and further evolve the test suite and the tested code, more detailed
analysis is needed. This will be looked into next.

Copyright q 2007 John Wiley & Sons, Ltd. J. Softw. Maint. Evol.: Res. Pract. 2008; 20:59–76
DOI: 10.1002/smr

III/9

68 T. KANSTRÉN

Figure 5. Spread using different test level sizes.

Copyright q 2007 John Wiley & Sons, Ltd. J. Softw. Maint. Evol.: Res. Pract. 2008; 20:59–76
DOI: 10.1002/smr

III/10

TOWARDS A DEEPER UNDERSTANDING OF TEST COVERAGE 69

Table VI. Method counts for different level sizes.

Level size Range Number of methods

1 1–10 471
1 1–50 1896
10 1–10 274
10 1–50 1040
50 1–50 603

4.2. More detailed analysis—evolving the tests and code

Analysing in detail the way the production code is covered provides opportunities for both opti-
mizing the test suite and optimizing the production code. We can improve the test suite by imple-
menting new test cases at different levels where needed, and by removing and combining overlapping
tests. We can improve the production code by identifying the redundant code and, by adding new
tests to identify possible problems, increasing our confidence on code quality. As we are interested
in more detailed analysis, the view in this case is also focused on more detailed analysis. Thus, in
this subsection, the test granularity is also used as the testing level, which gives the most detailed
information available.

From the overview analysis it is possible to find interesting focus areas for analysis. For example,
one interesting aspect from the overview at the finest level presented in Figure 3 is the peak at levels
around 70. The detailed information for this data is presented in Table VII. The interesting aspect
of this data is that, for each granularity in 70–73, there are exactly the same number of unique
methods covered as the test granularity. As there are a number of tests at each of these granularities,
it means that all these tests at the same granularity are executing the same methods. Thus, the
tests are simply exercising the exact same functionality with different inputs. With up to 24 tests
at a single granularity all exercising the same functionality, these tests provide good candidates to
consider for trimming the test suite for excess tests by removing or combining separate test cases.

To find the methods that should be considered for further testing at a lower level, the methods
in the chosen part of the SUT must first be analysed to see which of them are not tested at a lower
level. To find which methods are only exercised as part of high-level tests and not tested at a fine
granularity, for each method, the lowest level of testing is first taken for analysis. By ordering all
the methods by this level (a simple sorting), all that needs to be done is to look at the methods
with the highest values and these are the methods to be considered first. A sample of these top
candidates is shown in Table VIII.

To conserve space, the table lists only one method from a class if there are multiple methods in
the same class at the same testing level. For example, there are three methods (CM in the table) in
the class ast.JavaParser that are each tested at the finest level (Min in the table) as a part of
a test case which exercises 834 methods. As these metrics describe some of the largest test cases in
the test suite, and variation in test size at this level is high, the methods in the same class and at the
same level are likely executed in the same test case. As a note on the different methods, by looking
at the source code and its comments, it is clear that all the code in the ast package is generated
by a parser generator. Thus, the ast package code is not considered here for further testing as it
consists solely of generated code, and testing it would mean testing the parser generator.

Copyright q 2007 John Wiley & Sons, Ltd. J. Softw. Maint. Evol.: Res. Pract. 2008; 20:59–76
DOI: 10.1002/smr

III/11

70 T. KANSTRÉN

Table VII. Data for levels 69–74.

Testing level Number of tests Number of methods

69 0 0
70 24 70
71 6 71
72 22 72
73 20 73
74 0 0

Table VIII. Largest minimum levels for methods.

Method name Min CM

ast.JavaParser.jj 3R 120() 834 3
strings.ConsecutiveLiteralAppends.getSwitchParent(Node, Node) 802 9
rules.ConstructorCallsOverridableMethod.MethodInvocation.isSuper() 785 37
design.ImmutableField.inLoopOrTry(SimpleNode) 773 6
strings.InsufficientStringBufferDeclaration.isLiteral(String) 768 11

To consider these methods further, the roles of testing at different levels need to be consid-
ered. The roles defined for lower-level testing in Section 2 were aiding in debugging and
verifying the finer details of the method’s inner workings. Thus, for debugging, if there is a
fault in any of these methods, it will be much more difficult to find the cause of failure as the
failure will only show as a part of a large test. For example, if there is a fault in the method
ConsecutiveLiteralAppends.getSwitchParent(Node,Node), the best indicator is a
test that exercises 802 methods. Thus, finding the cause of failure requires looking into all these
methods. Also, if a method tested only at this level provides complex behaviour, the finer details of
this behaviour are unlikely to have been tested well. By looking more closely at these methods, their
intended behaviour, usage and similar properties, it is then possible to assess whether the methods
should be considered for inclusion in new test cases.

When looking for methods that need testing at a higher level, the methods in the chosen part of
the SUT can be ordered by their highest testing levels. From these, we look for the methods with
the smallest values to find the ones to consider first for implementing new higher-level tests. A
sample of the top methods tested only at a low level is shown in Table IX. In Section 2, the roles
for higher level of testing are listed as verifying the working of the smaller parts as a whole and as
verifying the higher-level functionalities of the program.

As classes and methods in a program should be implemented to be a part of a larger piece of
functionality, there should be test cases that also make use of each class and its methods in a larger
context. Thus when parts are only tested at a low level, this could highlight missing testing for a
higher functionality of the SUT or even possibly a class that has become redundant and is no longer
needed or used elsewhere in the system.

The final decision of removing a code that is considered redundant should be left to a main-
tainer with expert knowledge of a system. However, here a feature common in today’s integrated

Copyright q 2007 John Wiley & Sons, Ltd. J. Softw. Maint. Evol.: Res. Pract. 2008; 20:59–76
DOI: 10.1002/smr

III/12

TOWARDS A DEEPER UNDERSTANDING OF TEST COVERAGE 71

Table IX. Smallest maximum levels for methods.

Method name Max CM U

symboltable.TypeSet.getASTCompilationUnitPackage() 2 2 1
stat.Metric.getTotal() 2 2 1
ant.Formatter.setToFile(File) 2 1 1
strings.AvoidDuplicateLiteralsRule.ExceptionParser(char) 2 2 6
pmd.CommandLineOptions.usage() 2 1 3

Table X. Most tested methods.

Method name Number of methods Range

ast.SimpleNode(int) 569 5–834
symboltable.SourceFileScope(String) 429 13–834
report.PackageNode(String) 374 2–834
pmd.RuleContext.setSourceCodeFilename(String) 350 3–834
symboltable.ScopeAndDeclarationFinder.cont(SimpleJavaNode) 331 118–834

development environments such as Eclipse [15] and IntelliJ [16] has been applied: finding the
usages of a method or a class in the source code. The U column in Table IX lists the results for
finding the usages for the listed methods. While in this paper this analysis was applied only to the
few methods listed manually, it could easily be automated with existing analysis tools. For example,
the analysis showed that the method Metric.getTotal() is used only in a single test case
that does nothing but test this single method’s functionality. The method is not used in any of the
production code, but looking at the traditional code coverage view would show it as covered, while
in fact it is not used in any production code.

One more interesting aspect to look at as a side effect of this analysis is the summary of how
many tests are exercising different methods. This information can help both in understanding
the system implementation and in finding the most critical parts of the system for testing, both
important concepts in software maintenance and evolution. The more the tests exercise a method,
the more central that method is to the system’s functionality. Table X lists a sample of the top most-
tested methods in the system. For example, the method ast.SimpleNode(int) is executed
in 569 different test cases. These test cases range in size from a granularity of 5 to a granularity
of 834.

Here only one method has been picked from the ast package, but overall, out of the 500 most
tested methods (ranging from methods being executed in 200–569 test cases), 372 belong to the
generated ast parser package. Since ast is a structure used to describe source code and PMD
is a source code analyser, it is quite clear that this is and should be a central concept in the
system.

An example of a method that is central to the functionality but is not tested at a finer level
is ScopeAndDeclarationfinder.cont(SimpleJavaNode) shown in Table X. This
method is executed in 331 tests, but is at the finest granularity in a test that exercises 118 methods.
Thus, this metric could also be used to aid in locating new test subjects, in addition to metrics such
as code complexity as proposed in the previous section.

Copyright q 2007 John Wiley & Sons, Ltd. J. Softw. Maint. Evol.: Res. Pract. 2008; 20:59–76
DOI: 10.1002/smr

III/13

72 T. KANSTRÉN

5. DISCUSSION

In this paper, the presented measurement technique has been applied to an OSS project for which no
detailed information was available. When using the technique for a project we are developing, we
know the SUT better and applying the technique and analysing the results is easier. However, the
success of applying the technique on a project without detailed knowledge of the SUT shows the
technique to be applicable in practice. It was possible to get an overview of how much of the SUT
is covered at the different levels and highlight places in the SUT to consider for further evolution of
the production code and the test suite. As the technique does not consider untested parts of the code,
these have to be first brought under test to be included in this analysis. Traditional code coverage
measures and other existing techniques can be used for this purpose.

Once the detail level of interest for the overview analysis is found, observing the evolution of
the different levels of testing over the history of the project can be used to monitor the testing
process. If we set a goal to get more of the SUT covered at a higher or lower level, we can then
use the overview to observe how this goal is met by looking at the evolution over time. This can
be useful for management purposes and to monitor our own progress as we work towards the goal
of coverage at different levels. However, it should be kept in mind when considering this overview
that, although the levels of testing tell more about the testing over different parts of the SUT, it still
does not tell whether the tests at the different levels would be comprehensive and good. It makes
one aspect of test case properties visible, but does not mean that full coverage at different levels
would mean perfect testing.

Measuring the granularities of testing and mapping these values to the different parts of the SUT
to get their levels of testing can be automated as is done in this paper. Different aspects of analysing
the results can also be automated as was demonstrated by using existing tools to find method usages.
However, detailed and final analysis of these results still needs human work. Tool support to aid
in this can be further developed by using, for example, complexity measures or measures to find
aspects of method importance, for which one metric was shown in this paper.

Using the technique to find places lacking in different levels of testing can have several benefits,
as shown by the analysis of the OSS project in Section 4. Finding where there is a lack of higher-
level testing can bring out untested higher-level functionality. All code in a software system should
exist to help implement the higher-level functionalities required by the system and as such take part
in higher-level tests. However, not all code needs to be tested at higher levels as some code can
be required by, for example, programming language constructs for exception handling or similar
reasons and be untested as part of higher-level tests. Similarly, as the measure of level of testing
in this paper is based on the size of code executed, higher-level functionality can be implemented
as part of small or large amounts of code. As such not all parts that are only covered by what
is measured to be a low-level test necessarily need to be made part of a higher-level test. This
highlights a topic that needs more research and shows how the technique is best used as a tool to help
in analysing the test suite by a human analyst who can judge where new tests are actually needed.

In a larger context, as the technique described in this paper provides a quantitative measure of the
levels of testing for the different parts of the SUT, it enables doing more research on the levels of
testing. Using the technique, it is now possible to see how the different parts of the SUT are covered
at different levels and use this information to analyse, for example, different implementations of
testing levels and their correlations with other properties of the tested parts of the SUT. This is

Copyright q 2007 John Wiley & Sons, Ltd. J. Softw. Maint. Evol.: Res. Pract. 2008; 20:59–76
DOI: 10.1002/smr

III/14

TOWARDS A DEEPER UNDERSTANDING OF TEST COVERAGE 73

where the most detailed information provided by the technique can be most useful as it allows
doing the most detailed analysis of these properties. This can be especially helpful in instances of
software evolution.

6. RELATED WORK

Regression test selection and optimization are research topics that focus on choosing which tests
from a test suite to run [17] and optimizing their order of execution [18]. In these cases, the
granularity of test cases is considered with such goals as how to maximize the coverage fast or
how to get additional coverage. The effects of test suite granularity on the cost-effectiveness of
regression test selection, optimization and reduction have been studied by Rothermel et al., who
focus on the granularity as defined by the test case inputs [4].

When these studies on regression testing consider test granularity, they measure it either as code
executed or by the size of input in each test case. The executed code is not used for measuring the
granularity of testing, but rather for finding a minimal set of tests to provide maximum coverage.
This paper measures the code executed by each test case and, in addition, applies a second step of
measurement, where the test granularities are mapped to the code to measure the level of testing
for the different parts of the tested code. Another difference is in the optimization goal; whereas
these studies focus on optimizing the execution of existing tests, this paper focuses on optimizing
the implementation of further test cases.

Zeller and Hildebrandt [8] and Chesley et al. [19] have developed methods and tools for finding
the cause of failure from coarse-grained tests which execute large parts of the SUT. A failing
test case is executed repeatedly with varying input or code changes until the smallest part that
causes the failure is found. Both of these techniques can lessen the need to implement lower-level
testing; however, as also noted by Gälli et al. [7], having finer granularity tests can make these
techniques work faster. Also, we still need different levels of testing to verify the finer-level details
and the higher-level functions. In many cases it is also much faster to debug something if we have
focused tests where we want instead of having to run specific tools and methods to filter out the
cause.

Nagappan has developed his own metrics suite, called Software Testing and Reliability Early
Warning (STREW) metrics suite, for predicting software maintenance and guiding the testing efforts
[20]. STREW is based on a number of metrics measured from both test code and production code,
such as number of assertions, complexity and coupling. The approach applied in STREW is similar
to that in this paper, in applying measurement to the testing and production code to guide the testing
process, but his metrics suite does not consider test granularity.

Pighin and Marzona [21] propose to focus the highest testing effort on the most fault-prone parts
of the software. They argue that it is a waste effort to put the same effort of testing on the less
fault-prone parts of the software as on the more fault-prone parts. Their approach is common with
this paper in that it proposes a method to focus the testing effort and uses the properties of code
to guide this process. However, they discuss allocating time, not how to focus the testing on the
fault-prone parts. The information in this paper provides a way to help focus the extra effort spent
on the chosen parts.

Copyright q 2007 John Wiley & Sons, Ltd. J. Softw. Maint. Evol.: Res. Pract. 2008; 20:59–76
DOI: 10.1002/smr

III/15

74 T. KANSTRÉN

Jones et al. have developed a technique and a tool for visualization of test information to assist
in fault localization [22]. Their technique colour codes source lines based on their execution in
passed or failed test cases. This is based on gathering coverage information for every executed test
and mapping the executed passed and failed tests for each LOC. This way, colour spectra can be
applied for each LOC to give it a colour based on how many failed tests are executed in that line.
The authors then propose that specialists can use this information to help debug the faults. This
approach uses a similar mapping of tests to code as is done in this paper, but, while they use it for
counting the number of failed tests for each line, they do not consider the granularity of testing or
the roles of the testing. Instead, their focus is on highlighting where the possible failed statement
is and using it for debugging.

Baudry et al. [12] define a test criterion for improving debugging, called test-for-diagnosis (TfD)
criterion. A good TfD value is defined as maximizing the number of dynamic basic blocks (DBBs).
DBB is defined to be the set of statements covered identically in test cases. Using their own test
suite optimization algorithm, Baudry et al. optimize existing test suites for TfD. Their aim is to
optimize the test suite to make debugging faults easier. To assist in this, they use the localization
technique proposed by Jones et al. [22], in which the test suite is optimized using the TfD measure.
Their DBB measure can be considered as a form of granularity measure, but is not usable for the
purposes of this paper, as the size of DBB varies and thus any granularity measured with it would
not be comparable. In line with this, they do not provide means to assess the granularity of testing
for the different parts of the code, but focus on the debugging of failed test cases.

Sneed [23] has used both static and dynamic analysis for linking test cases and use cases to
the code they execute. He started with static analysis, finding it inadequate for his purposes, and
then moved to dynamic analysis, similar to this paper. While he used timing-based matching to
match test cases, this paper makes use of instrumenting both the test framework and the code
under test to automatically link the test case execution to the code under test. Similarly, he used
static analysis techniques to map the trace data to the functions executed, while in this paper the
information is provided directly by the trace framework (AspectJ). This is mostly a function of
different environments and both types of tracing have advantages in different environments. Finally,
while he focused on using the information for regression test selection, this paper has focused
on understanding the test suite and its composition. However, the data could also be applied to
regression test selection in a similar way as Sneed has done.

Advances in coverage-based tools are moving them to also include more detailed coverage
information at the individual test level and using different coverage measures such as method, block
and predicate coverage [13]. While these tools do not yet provide a deeper analysis of the coverage
information as presented in this paper, extending them with this support should be simple as they
already provide the basic individual test case coverage information needed to perform the analysis.

7. CONCLUSIONS AND FUTURE WORK

This paper proposed a technique for measuring and optimizing the levels of testing over the different
parts of the system under test (SUT). It was shown how this can be applied to support software
maintenance and evolution by showing how to measure the levels of testing for the different parts
of the SUT, how to get an overview of the total testing over the SUT and its smaller parts and how

Copyright q 2007 John Wiley & Sons, Ltd. J. Softw. Maint. Evol.: Res. Pract. 2008; 20:59–76
DOI: 10.1002/smr

III/16

TOWARDS A DEEPER UNDERSTANDING OF TEST COVERAGE 75

to use this information to further evolve the production code and the test suite. Different levels of
testing have different roles in testing a system; having tests at these different levels makes it more
likely to find faults earlier and makes debugging them faster. Full coverage at these different levels
would be optimal, but it is always a trade-off and choices have to be made. This technique helps
make these choices more explicit by showing how the different parts of the SUT are tested at the
different testing levels. The technique was applied to an OSS project to illustrate its use in practice.

In summary, the technique presented helps in finding the following:

• Untested higher-level functionality by highlighting places in the SUT lacking in higher-level
testing. All code should serve to implement the required higher-level functionality of the
system and thus take part in higher-level tests.

• Redundant code that is no longer needed, by finding parts that are not tested at a higher level
and are no longer needed for any higher-level functionality.

• Parts of the SUT that are lacking in different levels of testing, for example, parts in need of
low-level testing to help in debugging or for verifying complex behaviour.

In addition, the technique provides possibilities to

• get an overview of the testing done at different levels over the SUT;
• find and understand the central components in SUT implementation;
• track evolution of the test suite and the SUT with regard to test levels; and
• do research on different levels of testing by providing an automated, quantitative measure.

Further research to improve the use of the technique would include developing techniques to
help filter out the information of interest, including the most important parts to consider for further
testing, and to study the optimal distributions for the levels of testing for different methods. Studying
the properties of the source code with relation to the different levels of testing is also needed to bring
out the possible trade-offs in implementing tests at different levels. For example, it is not always
possible to test every part at a finer granularity if they are highly coupled or getting lower coupling
may bring higher complexity. While all parts of the techniques implementation and data analysis
can be automated, integrated tool support is also still needed for enabling practical adoption.

REFERENCES

1. Binder R. Testing Object Oriented Systems. Addison-Wesley: Reading MA, 2000; 1200.
2. Beizer B. Black Box Testing: Techniques for Functional Testing of Software and Systems. Wiley: New York NY, 1995;

320.
3. Myers G, Badgett T, Thomass T, Sandler C. The Art of Software Testing. Wiley: New Jersey, 2004; 256.
4. Rothermel G, Elbaum S, Malishevsky AG, Kallakuri P, Quit X. On test suite composition and cost-effective regression

testing. ACM TOSEM 2004; 13(3):277–331.
5. Kit E. Software Testing in the Real World. Addison-Wesley: Reading MA, 1995; 272.
6. Feathers M. Working Effectively with Legacy Code. Prentice-Hall: Upper Saddle River NJ, 2004; 456.
7. Gälli M, Lanza M, Nierstrasz O, Wuyts R. Ordering broken unit tests for focused debugging. Proceedings 20th IEEE

International Conference on Software Maintenance (ICSM’04), 2004; 114–123.
8. Zeller A, Hildebrandt R. Simplifying, isolating failure-inducing input. IEEE Transactions on Software Engineering 2002;

28(2):183–200.
9. Runeson P. A survey of unit testing practices. IEEE Software 2006; 23(4):22–29.

10. JUnit: Testing framework. http://www.junit.org [3 July 2006].
11. AspectJ: Java programming language aspect oriented programming extension. http://www.aspectj.org [6 May 2007].

Copyright q 2007 John Wiley & Sons, Ltd. J. Softw. Maint. Evol.: Res. Pract. 2008; 20:59–76
DOI: 10.1002/smr

III/17

http://www.junit.org
http://www.aspectj.org

76 T. KANSTRÉN

12. Baudry B, Fleurey F, Traon YL. Improving test suites for efficient fault localization. Proceedings of the 28th International
Conference on Software Engineering (ICSE’06), 2006; 82–91.

13. Lingampally R, Gupta A, Jalote P. Multipurpose code coverage tool for java. Proceedings of the 40th Annual Hawaii
International Conference on System Sciences (HICSS’07), 2007; 261.

14. PMD: Source code analyser. http://pmd.sourceforge.net [6 May 2007].
15. Eclipse: Integrated development environment. http://www.eclipse.org [6 May 2007].
16. IntelliJ: Integrated development environment. http://www.intellij.com [6 May 2007].
17. Rothermel G, Harrold MJ. Analysing regression test selection techniques. IEEE Transactions on Software Engineering

1996; 22(8):529–551.
18. Rothermel G, Untch RH, Harrold MJ. Prioritizing test cases for regression testing. IEEE Transactions on Software

Engineering 2001; 27(10):929–948.
19. Chesley OC, Ren X, Ryder BG. Crisp: A debugging tool for java programs. Proceedings 21st IEEE International

Conference on Software Maintenance (ICSM’05), 2005; 401–410.
20. Nagappan N. A software testing and reliability early warning (STREW) metric suite. PhD Dissertation. North Carolina

State University, 2005; 136.
21. Pighin M, Marzona A. Optimizing test to reduce maintenance. Proceedings 21st IEEE International Conference on

Software Maintenance (ICSM’05), 2005; 465–472.
22. Jones JA, Harrold MJ, Stasko J. Visualization of test information to assist fault localization. Proceedings of the 4th

International Conference on Software Engineering (ICSE’02), 2002; 467–477.
23. Sneed H. Reverse engineering of test cases for selective regression testing. Proceedings of the 8th European Conference

on Software Maintenance and Reengineering (CSMR’04), 2004; 69–74.

AUTHOR’S BIOGRAPHY

Teemu Kanstrén is a Research Scientist at VTT Technical Research Centre of Finland.
Prior to joining VTT he worked as a Systems Analyst in the software industry for 5
years. He is currently a PhD student at the University of Oulu, where he also received
his MSc in Computer Science in 2004. His research interests include automated software
testing and analysis.

Copyright q 2007 John Wiley & Sons, Ltd. J. Softw. Maint. Evol.: Res. Pract. 2008; 20:59–76
DOI: 10.1002/smr

III/18

http://pmd.sourceforge.net
http://www.eclipse.org
http://www.intellij.com

PAPER IV

A Study on Design for Testability in
Component-Based Embedded

Software

In: Proceedings of the 6th International Conference on
Software Engineering Research, Management and
Applications, SERA’08, Prague, Czech Republic,

20–22 August, 2008. 8 p.
© 2008 IEEE.

Reprinted with permission from the publisher.

A Study on Design for Testability in Component-Based Embedded Software

Teemu Kanstrén
VTT, Kaitoväylä 1, 90571 Oulu, Finland

teemu.kanstren@vtt.fi

Abstract

Effective implementation of test automation re-

quires taking testing into account in the system design.
In short, this is called design for testability (DFT). In
this paper a study on DFT in component-based embed-
ded software is presented, based on the interviews and
technical documentation from two large-scale compa-
nies in the European telecom industry. The way test
automation is addressed and the different techniques
applied to make this more effective at the architectural
level are described. The differences and benefits of
different approaches are discussed.

1. Introduction

Effective implementation of test automation re-
quires taking testing into account in the system design.
In short, this is called design for testability (DFT). This
paper presents a study on DFT in two large-scale com-
panies in the European telecommunication industry,
both working on similar products, based on the same
standards. The way software (SW) test automation is
addressed and the different techniques applied to make
this more effective at the architectural level are de-
scribed. The differences and benefits of different ap-
proaches are discussed.

The testing discussed is different levels of black-
box integration testing. At the lowest level, small com-
ponents are composed together to larger components,
and the internal messages between these components
are considered. Properties such as internal structure at
the level of code are not considered. At the highest
level, all components are fully integrated as a complete
system. In each case there is a separate test team dedi-
cated to testing the components/system. For debugging
problems, analysis is done at a more detailed level in-
cluding the use of white-box techniques.

The tested systems are large-scale telecommunica-
tion systems. Each system consists of a number of
hardware (HW) blades running SW with different
functionality. Additionally, each system also interfaces

with a set of other standardized systems, and both the
internal correctness needs to be tested as well as the
external interactions. Different parts of the SW are
implemented in different programming languages, such
as C/C++ and SDL. The system is divided to different
sizes of components, and the testing described is done
at the level of these components. While the system size
in terms of lines of code was not always given, for ex-
ample one system consists of about one million lines of
production code, with a similar amount of code for the
test environment.

As these are embedded systems, external HW mea-
surement devices can also be used. The instrumenta-
tion mechanism choice is a trade-off in minimizing the
effects of monitoring (HW) and providing more so-
phisticated views into the systems (SW). In this paper
the focus is on the SW solutions.

2. Design for Testability

The term testability in SW testing can be considered
from various viewpoints [1][2][5][7]. While some con-
sider the architectural viewpoints [8][9][10], few de-
scribe techniques for more effective DFT at the archi-
tectural level [1][3]. However, this is commonly identi-
fied as an important goal in SW testing research [4].

In this paper two main viewpoints of DFT are con-
sidered from the architectural viewpoint: controllability
and observability [5]. To test a component, we must be
able to control its input, behavior and internal state. To
see how this input has been processed, we must be able
to observe the components output, behavior and inter-
nal states. Finally, the system control mechanisms and
observed data must be combined to form meaningful
test cases for a system.

The definition of how the interviewed see DFT has
some variation, but the basic concepts are similar.
These different viewpoints include the possibility to
simulate different parts of the system for testing, to
isolate the part that is being tested, to control system
behavior with specialized test functionality and to ac-
cess information on system behaviour. When test code
in integrated to observe or control a part of the system,

Sixth International Conference on Software Engineering Research, Management and Applications

978-0-7695-3302-5/08 $25.00 © 2008 IEEE

DOI 10.1109/SERA.2008.11

31

IV/1

mailto:teemu.kanstren@vtt.fi

the location of the test code is called a test point. When
testing is run in a desktop simulation environment out-
side the target HW, this is called host testing.

The presentation and discussion of the test automa-
tion and DFT concepts in this paper are described ac-
cording to the following main concepts: test implemen-
tation, control of messaging, simulation strategies and
implementation of functionality to support testing.
How the different companies address each of these
concepts is described and discussed.

3. Research Methodology

The interviewed companies were chosen based on
their mutual interest. As they were starting closer col-
laboration, both had interests to combine strengths of
the two companies. The interviews followed a semi-
structured format, where questions were grouped into
themes. The goal was to allow the interviewed to freely
express what they felt were important concepts, while
keeping the focus on the matter at hand. The following
is a list of the main questions addressed:

Theme Main Question(s)
Test Au-
tomation

• How do you implement test automa-
tion?

• What solutions do you use to support
implementation of test automation?

Ob-
servabil-
ity

• How do you collect information from
your system?

• How do you address constraints such
as real-time requirements?

Contro-
lability

• How do you support controlling sys-
tem states, behavior and partitioning?

• How do you focus on problem analy-
sis?

In both companies, a number of specialists in test
automation were interviewed. Each company was
asked to select a number of specialists with good
knowledge on the interview topics. Some technical
documentation was also received, describing the test
automation systems. Once the information had been
collected, results were checked with the interviewed
people.

4. Test Implementation

The basic test implementation in both companies is

based on verifying the correctness of message se-
quences and checking of message parameters. Al-
though the systems have hard real-time requirements,
they are considered only at the system testing level and
not on the integration testing level. While some load
and stress testing is performed during integration test-

ing, it mostly done in system level testing, as in these
cases the complete system in composed and problems
in high level integration and interoperability can be
seen. For testing timing related functionality in integra-
tion testing, specific test cases are used that manipulate
the timers used in the system. For example, they can be
set to expire immediately to test timer related fault
handling. The amount of generated test data can also
be a problem, as the test bus can become exhausted,
causing failures when buffers become full. This re-
quires special considerations on how and where test
data is processed.

4.1 Integration Testing

Both companies use basic test scripts to verify the

message sequences during integration testing. Verifica-
tion of message sequences is based on the external
interfaces of components, which is seen to help shield
the test cases from minor changes in system implemen-
tation. As these messages are captured at the compo-
nent level, several thousand lines of code can be exe-
cuted between messages. Typically, the information on
internal messages is also available, but these are only
used when problems are found and need to be ana-
lyzed. Failing test cases are executed with more de-
tailed logging to focus on the cause of failure, includ-
ing internal messages passed and their parameter val-
ues. Most difficult problems to debug are seen to be
problems that come up during long uptime, slowly
consuming resources such as memory or CPU load.

Company 1 (C1) has used a traditional approach of
developing test components (stubs) as needed in isola-
tion. Company 2 (C2) has taken a different approach
where, during development and integration testing, two
versions of the system specification are implemented.
One is the actual product and one is the test system.
The test system provides simulated versions of all the
components in the production system, and is developed
using similar development and quality assurance proc-
esses as the production system. As two versions of the
specification are implemented, they provide validation
for each other and the understanding of requirements.
In case of a failing test case it is necessary to consider
which implementation is wrong, the test system or the
production system. As same development processes are
used for both systems, the same metrics can also be
collected and compared for both. This can provide in-
teresting insight into the effectiveness of test automa-
tion development. For good test system implementa-
tion it is seen that a ratio of 1 to 1 is good and a ratio of
1 production system error to 2-3 test system errors is
more common.

32

IV/2

4.2 System Testing

Similar to integration testing, C1 has relied on

scripting of input and output also at system test level.
C2 used to do the same but has moved to using higher-
level abstractions due to difficulties in maintaining the
test suites. In this case, the message sequences are en-
capsulated inside test building blocks, which describe
high-level functionality of a system. These are further
grouped into test cases, which are grouped into test
suites. When system functionality is changed, updating
test cases requires changing only some of the building
blocks and not all test cases. As the blocks can be fur-
ther reused over a product family, this has been found
to lead to lower maintenance costs. Also, as test cases
can be built from higher level abstractions (building
blocks), it is easier for a system tester to write test cas-
es without detailed knowledge of system internals. The
goal is then similar to approaches such as model based
testing [12], with the aim of using a higher level model
abstraction to build test cases. In this regard, the im-
plementation of the C2 system test environment takes
more effort, but has smaller maintenance effort as
changes are contained in the shared test components.

As described earlier, most of performance and load
testing is left for the system testing phase. However,
while C2 has put more effort into creating an advanced
functional test environment for system testing, they
have used only basic timing measurements of external
interfaces also at the system testing level. For this type
of testing, C1 has put more effort on advanced tech-
niques for supporting analysis of resource usage and
performance. This is based on analysis of detailed in-
ternal information, starting from generic properties and
progressing to more detailed analysis based on the
findings from the generic properties. At this level, the
parameters include task switches, data on resource us-
ages and use of OS services. As these can be monitored
from outside application code (at the system level),
they do not require as large effort to implement. When
more focused information about an identified problem
area is needed, more specific tracing is implemented.
This data includes properties such as component inputs
and outputs, system id values and data streams. Fur-
ther, analysis tools have been developed to analyze this
information using multivariate analysis techniques.
This has been found very useful in system optimiza-
tion.

5. Control of Messaging

Effective implementation of test automation re-

quires being able to control the system execution and
observe the results. In this regard, it must be possible

to create different compositions of the system and its
components, including the use of test components
(stubs) as replacements for actual components. In com-
ponent-based SW, a common means to compose com-
ponents together into larger systems is through mid-
dleware [11]. Both C1 and C2 have taken a similar
approach to make this possible, by controlling the mes-
saging between the components, through their middle-
ware. This section reviews these approaches.

5.1 Company 1

C1 uses a commercial off the shelf (COTS) third-

party operating system (OS), targeted especially at
embedded systems, in their products. For enabling
creation of system test compositions and the use of
simulation, rerouting of the system communication
mechanism is used. In system execution, the execution
of components is mapped to the OS processes, which
run them as tasks. All communication between compo-
nents is done through the system messaging interface,
which is an inter-process communication (IPC) inter-
face. The communication is handled by a system inter-
nal routing component that delivers the messages to the
correct processes and components. As the same mes-
saging interface is used over all the components and is
based on a standard protocol, it is easier to build ge-
neric and reusable test services for this interface.

Figure 1. C1 message flow control and testing.
The process of using this mechanism to attach simu-

lated components to the test target is shown in Figure
1. The system router component contains a routing
table for passing the internal system messages to dif-
ferent components. By modifying this routing table,
the messages can be passed to test components instead
of production components. In addition to basic test
stubs, which provide messaging functionality, this has
also been used to implement more complex functional-
ity to gain control over deeply embedded functionality.
This is discussed in more detail in section 7.

33

IV/3

5.2 Company 2

As a basis in their products, C2 uses a generic open

source software (OSS) OS, which can be used equally
well in both a host test environment and on embedded
target HW. The enabler for using the test environment
is the custom middleware on top of which the whole
system runs. This middleware contains a communica-
tion translator component, which handles the address-
ing of component communication. When the system
components are composed together to form the system,
each SW component publishes over the communica-
tion translator their communication id values and sub-
scribes to other components using their id values. The
counterparts are mapped together by the communica-
tion translator. As soon as the required components are
available, they are subscribed and connected together,
and messages can be passed.

Component 1
StubTester

1.

1.

2.

2.

1. Tester initialises tested
components and stubs.
2. Components and stubs
register to CT.
3. CT connects stubs and
components together
based on their id’s.
4. Tester executes test
cases.
5. Messaging between
components and stubs.

Component
Under Test

(CUT)

Communic.
Translator

(CT)

3.

3.

5.4.

4.

Figure 2. C2 message flow control and testing.

Using this functionality, the components are wired
together to provide the test composition needed to ef-
fectively isolate and test the production components as
illustrated in Figure 2. To create system compositions
for testing, test components are published with the con-
nection id of the matching production components.
Thus, the system under test (SUT) sees this as a normal
operating environment. To enable the creation of dif-
ferent system compositions for testing, the database
describing the system components can also be con-
trolled. The system configuration is set through the
database, and the required components are then im-
plemented in the test environment. These test compo-
nents can then, depending on the configuration, pro-
vide test functionality such as answering with certain
messages and verifying the contents and order of
received messages. High reuse factor has been
achieved in using parts of the test components over
different test cases.
5.3 Discussion

As both C1 and C2 both work in the same domain
and develop products based on the same specifications,

they have many commonalities in their testing. The
systems are based on a set of standard interfaces and
system components that define the external structure
and interfaces of the system. At the level of integration
and system testing, both have mainly focused their
testing on the messages between the components. Al-
though there are differences in test implementation and
system architecture, there are also similarities in the
approaches taken to address the testability require-
ments in the internal design of the systems.

To control the system execution for testing, both
take a similar approach of controlling the routing of
control- and data-flow via the system messages. C1
uses the configurability of their OS message routing to
enable this. C2 uses the similar functionality of their
custom middleware. Both use these to enable stubbing
of interfaces in their test environment, which in turn
enables customized test configurations of the SUT.
Both of these approaches have their own advantages.
Using the services provided by the OS, there is less
need to develop a custom, self-made middleware.
However, using a custom-made middleware that can be
used on both host and target system provides more
flexibility and better possibilities for host testing, as
described in section 6.

Overall, it can be concluded that for the type of
testing described here, it is necessary to be able to con-
trol the messaging of the system for effective test im-
plementation. The possibilities for this are constrained
by the used SW platform.

6. Simulation Strategies

In all SW testing it is important to be able to simu-

late parts of the SUT for effective test implementation.
As described in section 5, it must be possible to use
simulated versions of components (test stubs) provid-
ing test functionality as a replacement for actual pro-
duction components. However, especially in the con-
text of embedded systems, it is also important in whole
to be able to run tests in a simulated host test environ-
ment, without the need to always run on target HW [6].
This section describes the different approaches and
related constraints with the interviewed companies in
this regard.

6.1 Company 1

As described in section 5.1, C1 uses a COTS OS,

targeted especially at embedded systems. From the
simulation viewpoint, this is problematic as the OS is
tied to the target HW, and cannot be used as such in a
host test environment. While it does provide a separate
simulation environment that enables some testing, this

34

IV/4

simulation environment does not equal the use of ac-
tual full OS. Although C1 sees it important to effec-
tively simulate different parts for testing, they have
done only very limited host testing. Instead, they have
aimed at running as much as possible of testing on tar-
get HW, where the tested component(s) and the simu-
lated stubs are all loaded on to actual target HW. They
see this to have the benefit of getting more accurate
timing as well as fully matching any parameters of the
target system that may affect the functionality.

In C1, the communication interface uses a common
messaging protocol, built on top of standard network
protocols, for all parts of the system. This is seen as an
especially important enabler for building effective test
automation systems, as it enables building reusable test
components and services. With this type of a commu-
nication mechanism, C1 has found it possible to build
multipurpose test components that can be used in test-
ing of different parts of the system.

6.2 Company 2

As described in section 5.2, C2 uses a generic OSS

OS, which can be used equally well in both a host en-
vironment and on embedded target HW. As both the
target HW and the host simulation environment use the
same full OS, they are a very close match to each oth-
er. Also, the same SW can be deployed both on target
and in host environment without changes or visibility
to the deployed SW. Only the HW interface part needs
to be specific to the target system, and is typically only
needed in later phases of integration. It is also possible
to run parts of the system, such as HW specific startup
code or databases on a different blade on a target HW,
while running the rest of the system in a host environ-
ment. While the goal with testing at this level is to test
as much as possible in the host environment, some of
the testing such as redundancy and failover needs to be
done with actual target HW, where multiple HW
blades are available.

6.3 Discussion

The main difference with regards to simulation en-

vironments in C1 and C2 is in the type of OS used and
the environment in which most of the testing is per-
formed. While this is partly defined by the possibilities
of the used OS, it also reflects the deeper views of the
two organizations. Running as much as possible of
integration testing in a host test environment is a view
shared by all interviewed people in C2, whereas the
opposite view is shared by the people in C1. The main
reason mentioned for C1 to prefer running as much of
testing as possible on target is that in this case all pa-

rameters of the actual environment are correct accord-
ing to the target HW. While the optimal choice de-
pends on many properties, both C1 and C2 recognize
that testing on target HW is expensive as it requires
having a large number of custom made target systems
and specialized test equipment available for testing. A
host testing environment also enables better control
over the test environment, and the target HW issues as
a whole can best be addressed in the system integration
test phase, when the whole system is composed.

For C2, an effective host simulation environment is
available by running their middleware and SW on top
of it in a (desktop) host test environment in the same
OS. As the middleware is in-house and the OS is OSS,
the system supports a wide range of customization pos-
sibilities. The C1 OS based solution is tightly coupled
with the internals of a third party COTS OS, which
makes effective customization more difficult. Their OS
is also specifically for embedded systems, and cannot
be used in a host test environment as such. Instead, a
specialized simulation environment is needed, which is
more complex to match to target than running the ac-
tual OS. As C1 has not made much effort to use host
testing, it is unclear how well this could be done.

7. Test Functionality

Enabling effective test implementation typically re-

quires certain properties and functionality from the
SUT. How SW components can support the testing
process has received a lot of attention in the recent
years [11]. However, these techniques are mostly con-
sidered from the viewpoint of third-party black-box
components, where support is built into a single com-
ponent. At a higher level, this section reviews how C1
and C2 have addressed supporting testing at a level
where several components are integrated.

While the techniques described earlier for control-
ling messaging and using simulation are basic enablers,
also more advanced functionality is needed. To effec-
tively build automated test cases, it must be possible to
observe and control different parts of the system,
which when integrated can be difficult to access. This
is especially true when there is a need to support test-
ing and diagnosis of deployed products, as is the case
with both C1 and C2. Finally, even when this observa-
tion and control support exists, data still needs to be
made available. In embedded systems this provides its
own challenges. As opposed to SW running in a desk-
top environment, there is often no direct visibility to
the SW running on target HW, and even reading print-
outs from application code requires custom solutions,
such as use of network protocols as used by C1 and
C2. To support analysis of long-running systems, run-

35

IV/5

time test support is also needed. In this section the
functionality to support test implementation is re-
viewed.

7.1 Company 1

When data from an internal part of the system needs

to be collected in C1, the data flow can be changed.
One applied solution is using the functionality de-
scribed in section 5.1; message routing is configured to
go through an extra test component that collects data.
A basic setting for this is illustrated in Figure 3. Simi-
larly, by connecting various component input and out-
put ports together, data flow in the system can be
looped to come back to the sender. Using this tech-
nique requires special consideration, as the data will
likely be of a different format than expected in the
“abused” output path.

For direct access to deeply embedded features in
C1, a technique called embedded tests is used. These
are test components that are integrated into the system
to provide specific test functionality. To enable this,
the message routing techniques described in section 5.1
are once again used, as illustrated in Figure 4. The
functionality of these components includes feeding test
input data, doing comparison and transferring test re-
sult data out from internal interfaces. The embedded
tests also help address other constraints such as real-
time requirements and limited communication buses,
by providing fast data input and processing near the
interface, limiting the need for external communica-
tion. These tests are typically integrated ad-hoc where
needed and not left in the system, as also the need
where they are used varies. Other techniques to address
performance constraints include running test data proc-
essing and transfer tasks when system load is low, by
using low task priorities.

In C1 the viewpoint has been that it is difficult to
provide generic observation points between different
components of a system. This is both because of dif-
ferences in actual implementations of components and
due to difficulty to get management support for adding
extra test code into the system. The priority of DFT
SW development and resourcing is always put much
lower than that of production SW. As most tracing then
needs to be implemented on ad-hoc basis, common
functionality that is used in tracing a system has been
implemented in a test point library. This functionality
can be integrated in different parts of the system
through the library. Separate integration is needed for
each test point in the system, but from thereon the li-
brary provides the functionality. The functionality of
this test point library includes different functionality
needed in testing, such as storing test data, moving it

out of the system, doing comparisons, reporting results
and monitoring system resources.

The goal with the test point library implementation
is to provide functionality that makes it possible to
implement embedded test and other test functionality
into the system with minimal effort. This includes im-
plementation of such functionality over different parts
of a system, but also across different products in a
product family. To this end, the library has been made
HW platform independent. The library functionality is
built on top of a HW abstraction layer (HW API), and
porting the library to a new system typically needs
porting the HW API code between the SW and HW,
while the HW API interface stays the same.

Figure 3. Embedded test component.

Figure 4. Embedded test.

7.2 Company 2

In C2, features to support testing and more detailed
analysis of system behavior have been included in the
system as first-class features. This includes both func-
tionality to observe system behavior and built-in test
functionality. While their middleware would enable
using techniques such as embedded tests described in
section 7.1, these have not been used extensively due
to wanting to not change the SUT during testing. In-
stead, the goal has been to always test the system as it
will be finally deployed, with no test features added
only for testing and removed after testing is finished.

For systematic tracing support, development guide-
lines define what can and needs to be traced at differ-
ent levels. Tracing is divided to different levels, and
different parts of the system are defined to belong to a
certain trace module. Each module contains what is

36

IV/6

called a trace notebook to store trace data. At the finest
trace levels, developers are free to put almost any trace
they wish, as these levels will be compiled away when
actual SW releases are made. At the higher levels,
which are included in deployed products and where
less trace can be produced, guidelines include always
putting a certain trace level on input and output of ex-
ternal and internal interfaces.

The goal with the trace functionality is to always
have some systematic information to work with, even
if it is only possible to gather very limited amount of
data due to performance constraints of deployed sys-
tems. Quality assurance policies are applied and in-
spections are done with experiences developers to see
that all required important trace points are included in
the system. In addition to storing information about
system execution, all error symptoms are also logged
in the notebooks. Techniques such as shared memory
and stored to disk storage are used to enable access to
data also in case of application crash.

The trace functionality can be configured statically
through a configuration file or dynamically through a
configuration interface during run-time. Trace func-
tionality can also be set to activate or configure based
on various system event triggers. Some of the basic
functionality of tracing is also supported similar to the
test library of C1. Mainly this is related to inserting
trace statements, moving the data out of the system,
data post-processing and analysis. Monitoring of sys-
tem resource usage such as CPU and memory is sup-
ported and stored by the trace system.

As the more abstract levels of trace are always in-
cluded in the system and can be configured dynami-
cally during run-time, they can also be used during
long testing sessions and with deployed systems in the
field. Additionally, this is supported by built-in test
functionality called audit tests. These tests run inside
the system, when the system load is low and there are
resources available to run the tests. They check the
system consistency for properties such as resource
leaks. Without this, it is difficult to see what has hap-
pened in the system if the system goes down after
weeks of running and there is no sign of how the
symptoms developed over time.

Another application of audit type tests has been in
testing for errors in redundant HW blades. In this case,
the system contains two or more blades that are redun-
dant and provide fail-over functionality. During system
runtime, these can be tested with known input and out-
put data to see if they provide correct functionality. If
the results are different, an error notification can be
raised and the failing blade can be replaced with a cor-
rect one while the system is running.

7.3 Discussion

The approaches with the two companies with re-

gards to including test functionality in a system have
been the opposite. In C1, the viewpoint has been that
no functionality to support testing are to be included in
actual products, as these are not something sold to cus-
tomers. As DFT support in C1 has in general been a
low priority, their solutions to support this have been
limited. On the other hand, the goal in C2 has been that
the SUT remains unchanged during testing. From their
viewpoint, it is seen that unless test functionality is a
part of the actual product, the tests do not test the ac-
tual system, since the test functionality is removed in
the end. Thus their supporting DFT features have been
made first-class features for the system.

Due to not being able to include test functionality as
a part of the actual product, C1 has developed their test
point library to support testing and debugging with ad-
hoc solutions. This is seen especially problematic in
diagnosing deployed products and in long testing ses-
sions. Integrating separate test support functionality
requires loading a new SW version and resetting the
system, which also makes the fault state disappear and
impossible to debug. In general, supporting field-
testing of deployed products is identified as an impor-
tant area of improvement in C1. Currently, only a num-
ber of basic properties can be observed, such as num-
ber of resets inside a HW block.

As stated earlier, C2 has taken the opposite ap-
proach to fully include all test functionality in the
product. This along with their audit tests provides C2
with much better support for testing and diagnosing
problems of deployed products and long testing ses-
sions. Also, as systematic tracing is included in all
parts of the C2 SUT, they also share a common data
format. This enables use of same tools for all parts. In
C1, this has caused some problems, due to fragmenta-
tion and incompatibilities caused by the different tools
and data formats taken by different organizational
units.

One of the reasons for difficulties in getting support
included for testing purposes into the system in C1 is
often cited as people not wanting to add any (test) fea-
tures that are not sold to customer, into the product. In
this regard, testing has not been valued high enough to
be given systematic support, but has rather been
viewed as something extra to be put up with. Thus lack
of management support and not valuing testing high in
the company culture are some of the main reasons. On
the other hand, it is not clear if better support would
have been received if someone had suggested similar
solutions, and argued with extended support for field
testing and other cost savings. Field test support in C1
is one of the identified areas needing improvement.

37

IV/7

8. Conclusions

This paper discussed the DFT solutions to support
test automation from two companies in the European
telecommunications domain, working on similar large-
scale component-based embedded systems. Their tech-
niques to support effective test automation were dis-
cussed. While the approaches taken have a lot in com-
mon, there are also a number of differences. While it is
not possible to generalize from this data to all SW de-
velopment and testing, a number of observations can
be made that provide interesting insight into these top-
ics. These are summed in the following:
• Testability needs to be taken into account early in

the design, in the SW platform. Control over sys-
tem messaging provides support for control over
system execution paths and efficient implementa-
tion of test environments and configurations. A
common communication protocol further provides
support for implementing reusable test compo-
nents.

• Especially in the case of embedded systems, a
good host test environment enables efficient SW
testing. When this environment matches the target
system as much as possible, efficient host testing
is possible. One enabler for this is using an OS
that is supported on both the target HW and in a
(simulated desktop) host-testing environment.

• Including supporting test functionality in the sys-
tem as first-class features allows for more effec-
tive analysis of the system, including analysis of
long running tests and deployed systems, and en-
ables efficient field-testing. Effectively imple-
menting this requires possibilities for dynamic
configuration of test functionality during system
run-time.

• In addition to systematic test support functionality,
ad-hoc requirements are likely to arise in different
points of testing and analysis lifecycle, and in this
case it is useful to have support for this functional-
ity provided in the form of a reusable library.

• Abstracting test cases from the implementation
minimizes the effects of internal system changes
to the test cases. This mostly applies at the system
testing level, as in earlier testing phases it is often
necessary to observe more detailed properties of
the system.

• To make it possible to get the desired test support
functionality included into the system design and
to create advanced tools, management support is
crucial. This requires valuing testing and system
analysis high in the company culture.

9. References

[1] L. Bass, P. Clements, R. Kazman, Software Architecture

in Practice, 2nd edition, Addision-Wesley, 2003.
[2] B. Baudry, Y.L. Traon, Measuring Design Testability of

a UML class diagram., Information & Software Tech-
nology, vol. 47, no. 13, pp. 859-879, 2005.

[3] S. Berner., R. Weber, R.K. Keller, Observations and
Lessons Learned from Automated Testing, Proc. 27th
Int’l. Conf. on Software Eng. (ICSE 2005), p. 571-579,
2005.

[4] A. Bertolino, Software Testing Research: Achieve-
ments, Challenges, Dreams, Proc. Future of Software
Engineering (FOSE2007), pp. 85-103, 2007.

[5] R.V. Binder, Design for Testability in Object-Oriented
Systems, Communications of the ACM, vol. 37, no. 9,
pp. 87-101, September 1994.

[6] B. Broekman, E. Notenboom, Testing Embedded Soft-
ware, Addison Wesley, 2002.

[7] M. Bruntik, A. Deursen, An Empirical study into class
testability, Journal of Systems and Software, vol. 79, no.
9, September 2006.

[8] S. Jungmayr, Identifying Test-Critical Dependencies,
Proc. IEEE Int’l. Conf. on Software Maintenance, Mon-
tréal, Canada, 2002.

[9] R. Kolb, D. Muthig, Making Testing Product Lines
More Efficient by Improving the Testability of Product
Line Architectures, Proc. of the ISSTA 2006 workshop
on Role of Software Architecture for Testing and Anal-
ysis (ROSETEA2006), pp. 22-27, 2006, Portland,
Maine.

[10] B. Pettichord, Design for Testability, Proc. Pacific
Northwest Software Quality Conference (PNSQC2002),
Oct. 2002.

[11] M.J. Rehman, F. Jabeen, A. Bertolino, A. Polini, Test-
ing Software Components for Integration: A Survey of
Issues and Techniques, Software Testing, Verification
and Reliability, vol. 17, 2007, pp. 95-133.

[12] M. Utting, B. Legeard, Practical Model-Based Testing:
A Tools Approach, Morgan Kaufmann, 2006.

38

IV/8

PAPER V

A Probe Framework for Monitoring
Embedded Real-Time Systems

In: Proceedings of the 4th International Conference on
Internet Monitoring and Protection, ICIMP 2009,

Venice, Italy, 24–28 May, 2009. 7 p.
© 2009 IEEE.

Reprinted with permission from the publisher.

A Probe Framework for Monitoring Embedded
Real-time Systems

Markku Pollari
Technical Research Centre of Finland, VTT

Oulu, Finland
Email: markku.pollari@vtt.fi

Teemu Kanstrén∗
Technical Research Centre of Finland, VTT

Oulu, Finland
Email: teemu.kanstren@vtt.fi

Abstract—This paper introduces a general framework directed
for system instrumentation. The introduced framework provides
support for a system instrumentation approach that enables
designing information capture, monitoring and analysis features
into a software-intensive system. We describe the general concept,
architecture and implementation of the framework and two
case studies in its application. As a prototyping platform, we
dealt with collecting information from Linux systems by probes
created with the building blocks and interfaces provided by the
framework. Overall, we demonstrate the feasibility of a more
uniform instrumentation approach through this concept and its
application in two case studies.

I. INTRODUCTION

Understanding and analysing the behaviour of complex,
software-intensive systems is important in many phases of
their life cycle, including testing, debugging, diagnosis and
optimization. In addition to these, many systems themselves
are built for the sole purpose of monitoring their environmental
data and reacting to relevant changes, such as detecting pat-
terns in internet traffic. All these activities require the ability
to collect information from the different parts of the system.

These basic activities and requirements in software engi-
neering have existed since the first days of writing software.
However, despite this there has been little research and activity
to build support for systematic monitoring and information
capture into software platforms. Instead, what is most common
is the use of ad-hoc solutions to capture data where needed, as
needed. In these cases, the instrumentation required to capture
the information is added momentarily into the system and
removed after the short-term need has passed. Recent studies
still emphasized this problem, showing large-scale systems
where these types of features are important but support for
them is lacking [1].

In this paper we present a design concept, and its implemen-
tation and validation, for a platform to support the systematic
capture and analysis of information related to the behaviour
of a system and its environment. This platform is termed
as the Probe Framework (PF). The PF provides support for
building monitoring functionality for collecting information
on the behaviour of software intensive systems and using

————————————
*Also affiliated at Delft University of Technology, Faculty of Electrical
Engineering, Mathematics and Computer Science, Mekelweg 4, 2628 CD
Delft, The Netherlands.

this information for purposes such as built-in features in the
software itself (as product features) and testing analysis of the
systems during their development (testing and debugging) and
deployment (diagnostics). The prototype implementation of PF
is available as open source1.

This paper is structured as follows. Section 2 discusses the
background and motivation for the work. Section 3 describes
the main concepts of the PF at a higher level. Section 4
discusses the implementation of the PF and section 5 presents
the experiences from this implementation and describes two
cases of utilizing it. Finally, conclusions end the paper.

II. BACKGROUND & MOTIVATION

The concept of capturing information from a system and its
environment is often described as tracing the system. Similarly,
in this paper we use the term tracing to describe the activity
of capturing information from a running system, either with
external monitoring or internal instrumentation features. The
data captured is described as a trace of program execution.
Many different domains make use of tracing information,
such are: system security analysis, internet monitoring and
protection, run-time adaptation and diagnosis, testing and
debugging.[2][3][4][5][6][7]

There are various tools around for specific instrumentation
and tracing on different platforms, such as DTrace for So-
laris [8] and OSX [9], Linux Trace Toolkit Next Generation
(LTTNG) [10] and SystemTap [11] on Linux. These tools
all share a common goal to observe and store traces of
system behaviour and resource use, such as CPU load, network
traffic and filesystem activity. They are typically intended
to provide a trace facility for the low-level resources and
related behaviour of the system kernel, using solutions such
as their own programming/scripting language to define where
to exactly insert trace code into the operating system kernel
[8][11]. For example, in our implementation of PF we make
use of SystemTap, which allows one to add trace code into
the Linux kernel without the need to recompile or reboot the
running system [12].

These low-level frameworks provide an excellent basis for
capturing low-level information from a system when ad-hoc
instrumentation needs arise. However, while these tools are

1 http://noen.sf.net

V/1

mailto:markku.pollari@vtt.fi
mailto:teemu.kanstren@vtt.fi
http://noen.sf.net

useful for many purposes, they alone are not sufficient for ef-
ficient observation of complex system behaviour. More useful
information can be gained by using advanced analysis methods
such as multivariate analysis to infer additional information
such as relations and similar properties from the low-level
data [13]. However, what is also needed is information on a
higher level, including the events, messages and interactions
of different parts of the system. Also, information about the
environments of these parts and their relation to the lower level
details are needed.

This type of information is a part of the higher level design
of a system, and it is implemented as higher-level abstractions
inside the components. Thus, it is not possible to build generic
components that would capture this information from all the
components from the OS kernel or any custom application.
When solutions such as component based middleware are
used, it is possible to build part of this support into the
middleware itself to capture the data [1]. However, for an
effective and descriptive trace, application specific tracing is
also needed. For this level of tracing several frameworks exist,
such as Log4J [14] and syslog [15]. Additionally, when the
availability of such features and information is highly valued,
customized support for these have been built into the system
as first-class features [1].

The above descriptions show how effective analysis of
software intensive systems requires many different types of
traces to be supported, collected and analysed together. Dif-
ferent tools need to be used effectively in different steps and
finally combined as one for both built-in features and external
analysis. Only in this way is it possible to provide the required
support to get a definite view of the behaviour of a complex
system.

From this viewpoint of complete system analysis and its
support through the life cycle, the described trace tools and
frameworks suffer from a set of issues. The tools use their
own interfaces, custom data formats and storage mechanisms.
Additionally, often the storage is only considered in the form
of a local filesystem with the intention of being manually
exported to external analysis tools or read as such by humans.
Simply accessing this information from an embedded system
can be very difficult as these systems are often limited in their
external interfaces. Even where this is possible, in the case of
a deployed system, it is not always cost-effective for someone
to go to the field site to examine the trace file. Additionally, the
trend for relying on ad-hoc temporary tracing solutions makes
it very difficult to capture a meaningful trace of a system
as there is no built-in support to be used when needed. The
lack of design support for proper tracing from the beginning
further brings problems such as probe effects, where addition
of temporary trace mechanisms changes the timings of the
actual running system that is to be analysed [16].

To address these issues, to build a basis for effective system
level tracing, analysis and related program functions, we have
developed a trace platform called Probe Framework (PF). Our
prototype implementation is created on Linux and enables the
collection of trace information both from kernel and user space

probes, through a single unified component in the system. By
starting with the goal of building these features into the system
as first-class features we make it possible to address properties
such as probe effects, information access, limited resources
and real-time requirements. With a commonly shared and
customizable format for the collected trace, it is possible to
store and export this information to different analysis tools.
With unified interfaces inside the platform it is also possible
to easily design built-in features that make use of information
from all the various tools. As the main intent is to build a
higher-level abstraction mechanism, we use existing tools such
as SystemTap and integrate it to the PF. The PF and its main
concepts are described in more detail in the following sections.

III. GENERAL CONCEPT

On a higher level, the PF is a part of a larger concept
which includes three main components. The PF provides the
needed support as a platform to capture the trace information
from the system under test. An information database server is
used to collect the trace information and provide the means
to query, filter and export the trace to analysis tools. Various
trace analysis tools can be used to analyse the information
provided. This includes tools specifically for trace analysis and
also tools more generally intended for analysis of data, such
as multivariate analysis. For example, experiences on using a
multivariate analysis tool to analyse the network functionality
and behaviour of a system have been studied in [13]. In
addition to making use of the captured information in external
analysis tools, it is also possible to make use of it as part
of built-in product features for processes such as adaptation,
testing and analysis. This overall architecture is described in
figure 1.

Fig. 1. High level PF collaboration

The Probe Framework itself has a layered architecture as
presented by Buschmann et al. [17]. The PF’s architecture
is divided in three main layers; Basic services, monitoring
services and test services. The term probe, in the context of this
paper, means the entity that is formed by utilizing the different
service layers to create the functionality for collecting and
handling the monitoring of some aspect of the target system.
Each layer builds on the functionality of the layers below it,
as described in figure 2.

V/2

Fig. 2. Layered architecture

The basic services contain services deemed necessary for
information handling, such as data buffering, storage and
relaying to external database. The basic services are general for
all the probes, and offer the support for fast implementation of
the upper level services. The basic services comprises of three
parts; first part is the probe interfaces, second is the binary
formatter and the third is the communication handler. These
are illustrated in figure 3.

Fig. 3. Structure of basic services

Together these parts take care of all the data management of
the tracing as described in figure 1.

The monitoring services offers a set of readily provided
interfaces and probes to attach to the basic services. The
actual services at this layer are used to capture and monitor
different values, such as memory consumption and CPU
usage, and their evolution in the system. Many of these basic
monitoring services are provided as ready probe components
in the implementation of the PF, including CPU load, memory
consumption and network traffic monitoring. Further, they
provide simple interfaces for building new monitoring services
on top of them without the need to concern with the complex
internal details of the data management.

The top layer, test services, is the most implementation
dependent and is where the system specific functionality can

be build. It relys on using the basic services and monitoring
services. For example, functionality can be built to inject test
data into the system, use a provided set of monitors to see how
the system behaves and store the test results using the basic
services. Similarly, in a running system the same monitors
could be used from a test service (or more accurately, built-
in functionality) that adapts the system’s runtime behaviour
and use of components based on thresholds set for monitored
values such as memory consumption, CPU load and network
traffic patterns.

IV. IMPLEMENTATION

The main implementation platform here is the embedded
real-time Linux systems. This platform was chosen as it
provides an interesting and realistic platform for the imple-
mentation of this type of software, with both possible issues
and available options. These issues include the strict timing
requirements and limited resources inherent to the embedded
real-time systems. Yet, even as we are dealing with embedded
software where we know all the running software beforehand it
needs to be possible to access the whole platform including the
kernel. With Linux as the operating system, this is particularly
easy as the whole operating system (OS) is open source
software (OSS). Additionally, the PF’s basic services of data
storage and transfer have also been implemented in Java.
However, this implementation and platform are more limited
and are thus only discussed where it provides insight into the
differences between the implementations on different types of
systems.

Although conceptually one, the actual implementation of
the probe interfaces in basic service layer is divided in two.
The major reason for this is the way execution in operating
systems typically takes place, in either user space or kernel
space. This separation also acts as a divisor for the probe types,
resulting in a split between kernel probes and user probes.
Additionally, in Linux as well as most modern OS’s each
user space process runs in its own virtual memory space, and
thus cannot normally access the memory of other processes
nor can other processes access its memory [18]. However, for
effective implementation of the PF, all the trace data for a
single system needs to be centrally managed. This requires
that there needs to be a single component that takes care of
the data management for all the probes deployed, either in
kernel or user space. This division of implementations, probes
and interfaces is described in figure 4.

There are basically two fast enough ways to address the
data relay requirements, one is that the processes can request
the kernel to map a part of another process’s memory space
to its own, and the other is that a process can request a
shared memory region with another process. These shared
memory regions are also useable between kernel space and
user space processes. The choice made when developing the
probe framework was in favour of the shared memory as
it works both in kernel space and user space. The shared
memory is used in both between kernel space and user space

V/3

Fig. 4. Division of probe interfaces

and between processes in user space, such that a single data
management component takes care of the basic services.

The storage and relay module resides in the user space,
conforming to a general guideline for operating systems [18];
perform actions in the user space if possible, as kernel space
should be reserved for parts that absolutely must be there as
they require special privileges. Kernel code can also crash the
whole system with its privileges and thus these parts need
to be absolutely secure and reliable. Since we do not need to
perform actions with special privileges it makes sense to locate
most of the code in the user space. This is also one of the main
reasons for why the shared memory regions are used between
kernel space and user space, and also inside user space. This
was all in order to separate the trace handling functionality
from the probes and to centralize the trace collected by the
probes. This enables the storage and relay module to access the
trace, format it and provide it for higher layer functionality or
simply relay it to the end storage as requested. All this reduces
the interference induced to the target by the monitoring activity
conducted by the probe as all the ”extra” processing can be
done separate to the probe in its own process. Another benefit
for having the storage and relay module, i.e. the basic services,
in its own process in user space is that it enables easier
configuration of the provided services.

The binary formatter part of the said module is the simplest
part of the component; it is as the name suggests a formatter
used in changing the collected data to a more manageable
form. The reason for the use of binary format is to provide
an effective, single format to share the data between different
tools, layers and databases. The intent is to support probes
created in different programming languages, running on differ-
ent platforms and with strict constraints on memory and real-
time requirements typical to embedded systems. Implementing
this effectively is not trivial; however, the user is completely
shielded from the details by the provided abstraction inter-

faces. The communication handler is the second part of the
storage and relay module. This part handles the data transfer
to end storage locations, takes care of the configuration of
the storage and relay module and manages the data extraction
from the probe buffers.

In practice the basic services are implemented as a shared
library component, meaning that the implementation code
needs only a single instance (code segment) to reside in the
memory during runtime. This makes synchronizing all the
trace data for a system overall much simpler due to only having
a single instance of basic services for a system at any time.
The library is implemented as a dynamically linked library,
which is linked to the components during execution, meaning
it is shared also between different processes in the user space.
For the kernel space there is a similar component.

Configuration
In order to cope with a variety of different devices, the con-

figuration possibilities of the probe framework are substantial.
Each probe can be configured separately, as can be the storage
and relay module. Various possibilities for accumulating for
the different capabilities of the target system are offered by
the probe framework. The output possibilities and replacement
strategies, etc. used by the storage and relay module are all
configurable to suit the system’s capabilities.

The major control features of the probe framework reside
inside a configuration file that is read during the activation of
the storage and relay module. This allows configuring the basic
parameters such as overall buffers, general policies and storage
mechanisms externally. Another layer of control is embedded
in the creation of the probes, during the implementation of
a probe the creator can use custom settings to define probe
specific values or leave them out in which case the default
generic values will be used. The probe specific attributes
include buffer size, preferred storage location, priority, timing
accuracy and presumed output type. Additionally, the creation
of output types used by the probe introduces control as it
is possible to use prioritized data types for increasing the
probability that the collected trace reaches its storage location.
In order to address restrictions such as keeping the monitoring
overhead low, several policy parameters can be defined. One is
the possibility of discarding parts of the collected trace if the
basic services cannot run fast enough to relay it to a storage
destination. This is further influenced by the priority set to the
trace through the configuration. More advanced policies can
be implemented inside custom probes, such as sampling or
time-interval captures.

Instrumentation
As described earlier, instrumentation is divided into two

main types of probes: kernel and user space probes. A distinc-
tion can also be made between internal and external instrumen-
tation. Internal refers to embedding the instrumentation code
to the software object that is part of the monitored system.
In this case the probe is an integral part of the program
code. External instrumentation refers to the probes where no
modifications are made to the system software itself. Instead

V/4

a stand-alone process handles the monitoring from outside of
the target software. The PF provides support for all these
different types of instrumentation. Custom kernel and user
space probes and built-in functionality can be created using
the services provided at the different layers of the PF. A set
of external instrumentation components are provided as kernel
probes and processes to collect and analyse generic properties
such as task-switches, CPU load and network traffic. More
such custom components can also be easily created. All these
instrumentation possibilities share the set of basic services
that remain unchanged between different implementation pos-
sibilities. Therefore, it is simple to analyse the collected trace
data, build additional functionality or make other use of the
instrumentation data from all different probes and monitoring
tools through the provided interfaces.

V. EXPERIMENTS & EXPERIENCES

To perform evaluation of the PF concept, its implementation
and application we carried out two case studies. Both of these
are in the domain of monitoring embedded software-intensive
systems. This means we focused on using the monitoring
services layer of the PF, and indirectly the basic services
through the monitoring layer. In a sense our implementation
is also part of the test services layer, as we built custom
functionality to use the lower layers. We start with describing
each experiment and the overhead cost their implementation
had on the system we were analysing. We then describe our
experiences in using PF as a platform for implementing overall
instrumentation for system monitoring.

The two case studies we have performed are monitoring
kernel task switching and the memory usage of different
processes. The memory use monitoring case was conducted on
an embedded system that was provided by Espotel2. This plat-
form, called Jive3, is a battery-powered, touch screen equipped
PDA type of a device with broad connection interfaces. For
the task switching instrumentation a typical desktop PC was
used.

Task swith case study
The task switching case study focused on the scheduling of

processes (tasks). In a typical modern OS there are numerous
processes running at the same time [18], and the scheduler
handles the execution of tasks by dividing the CPU resources
to slots and distributing these slots to the tasks. Our goal was
to build a monitoring probe to capture the information on how
the task switching is performed with the given usage scenarios.
The visibility of the scheduling activity in this scenario is
strictly for the kernel space only, and as such, the monitoring
had to be implemented as a kernel probe. For this case study,
we collected three types of events:

• Task activate
• Schedule
• Task deactivate

2 http://www.espotel.fi
3 http://www.espotel.fi/ratkaisut jive.htm

The schedule event means that the running task is switched
to another, the meanings of activate and deactivate are a bit
more complex. The activate and deactivate denote that the task
is moved to or away from the run queue. For simplicity it
can be tought that these two events tell when the task can
be run i.e. scheduled. The instrumentation used in this case
is an in-line probe in the kernel’s scheduler, implemented via
SystemTap. The code that uses the PF’s probe interfaces is
added to the SystemTap probe script as embedded C. Similarly,
other existing monitoring applications could be integrated to
the PF by using the provided probe interfaces, see figure 1.

As the instrumentation is done using external instrumen-
tation it also serves to provide a generic reusable kernel
monitoring probe for future use when task switching needs
to be analysed. This is illustrated in figure 5.

Fig. 5. Task switch instrumentation.

In this case, as task scheduling happens numerous times
each second, the used instrumentation is extremely intrusive.
There are bound to be consequences due to the instrumentation
code. As we want an accurate picture of the task scheduling,
all the events need to be collected and no sampling can be
used. Therefore, the overhead is so high that the probe is
only useable temporarily for purposes such as diagnostics or
to provide basis for performance analysis. In this case we do
not have any hard real-time requirements so the temporary
inclusion of the probe and the temporal effect it poses on
the execution is acceptable. Due to the use of SystemTap this
probe can also be enabled (included) temporarily in a running
system and disabled (removed) when the required diagnostics
data is collected. Thus, it shows how it is possible to create
PF probes that can still be included in the system probe set
also in deployed systems while they are only used in ad-hoc
style during system execution. Concerning the analysis results,
it needs to be taken into consideration that the probe code
will consume part of the CPU time, causing skew in the time
interval trace, and that the storage and relay module that runs
in the user space as a normal task will appear on the obtained
task switch trace.

In our case study, we used the obtained trace for different

V/5

http://www.espotel.fi
http://www.espotel.fi/ratkaisut

purposes, including the characterization of the process load
running on the system as described in [19], for analysing task
blocking and scheduler performance. The overhead of the PF
was measured by capturing system timestamps as jiffies, the
jiffies describe system time/clock ticks as 4ms intervals. The
stamps were collected at the beginning of the instrumentation
and at its end. To obtain a reference point, the duration of
the instrumentation was measured, and then the same captures
were done in a system without the instrumentation, using the
measured duration as a time interval between the captures.
To give a better picture of the effect the instrumentation had,
the overhead is given as the reduction caused to the true idle
time of the target system. The overhead is calculated with the
following formula:[

DI
J − (CJE − CJB)

]
−

[
DI
J − (CJEI − CJBI)

]
DI
J − (CJE − CJB)

∗100%

DI = Duration of the instrumentation,
J = Duration of a jiffy,
CJEI = Captured jiffies at the end of instrumentation,
CJBI = Captured jiffies at the beginning of instrumentation,
CJE = Captured jiffies at the end of idle,
CJB = Captured jiffies at the beginning of idle.

The calculated overhead for this case was 16%. Overall, this
could be considered a high cost for instrumentation. However,
for an analysis case where the monitoring instrumentation
is very intrusive i.e. in one of the most frequently executed
function of the kernel, we do not consider this to be a bad
result at all. This probe is only intended to be used as a
temporary analysis aid and not as a fully included production
class feature.

Memory case study
In the memory usage case study the focus was on user space

instrumentation. The instrumentation target was the procfs,
process information pseudo filesystem, which is an interface
to the kernel data structures and provides information about
the processes on the system. This case study is illustrated in
figure 6.

Fig. 6. Memory usage instrumentation.

The targets of interest here are two memory usage illustrating
attributes:

• Total amount of used physical memory
• Total amount of used (memory) swap space
In this case we have more options to control how we wish

to implement the instrumentation. The probe was implemented
as an external probe that functions as a normal task in the
system. The probe was set to sample the procfs for memory
information every three seconds. This is adequate as our goal
was to observe how memory consumption develops over time.
Our intent was to use this information for observing memory
leaks and growth of consumption over time, similar to audit
tests inside a running system as described in [1]. This type
of memory problems are considered to be among the most
common and difficult to debug due to the long time they take
to develop [20]. Thus this type of information is useful to have
available to describe the development of the symptoms and to
analyse their cause over time.

For this case, the overhead caused by the used instrumenta-
tion was measured using the same method as in the previous
case. The induced overhead was 2%, which is not overly
much and could still be further improved with more efficient
integration with kernel functionality.

Generic notes
After our trials with the two case studies, we can say that

the framework provides a reliable and efficient instrumentation
interface with high potential for reuse. We implemented two
highly reusable and generic probes. Due to their very generic
nature, they can be reused as is or with minor modifications
in other contexts. As a generic framework is also bound to
be used more frequently and by more people and projects,
the code will also become more reliable and optimized over
time than separate custom solutions. That is, the more the
PF is used the better it becomes. This makes it more likely
that found problems are in the system itself and not in the
instrumentation code.

As noted earlier, the basic services of the PF have also
been implemented on the Java platform. As the PF’s imple-
mentations both share the same file formats and protocols, we
have also been able to successfully use them together. In this
sense, through the shared information database storage and
export facilities it is possible to get a view of systems with
varying component implementations. It is our experience also
from these implementations that the simplicity of the provided
interfaces is a key to their easy adoption. They must be simple
and easy to use and not get in the way of the developer.
By hiding all the complexity of trace storage, processing and
access behind simple interfaces the PF becomes also more
convenient to use. And, that is what the PF aims for, to be
a general reuseable approach for instrumentation that lets the
developers better focus their efforts on implementing the actual
product rather than spend overly much time on creating ad-hoc
instrumentation solutions.

Regarding the usability of the Probe Framework, it is not
limited to the context of embedded real-time systems. Those

V/6

attributes are merely something that create a challenge for the
PF i.e. limit the available resource etc., and in no way limit the
environment that the PF concept is suitable to. Similarly, the
prototype implemetation being Linux specific doesn’t indicate
that the PF concept couldn’t be used in a different OS. The
PF’s mentioned Java platform implementation for instance is
not limited to the Linux environment.

VI. CONCLUSION

The probe framework described in this paper provides the
means to build and later on reuse system instrumentation
approaches effectively and reliably. It provides support for
the basic requirements of storing and accessing data, as for
more advanced needs processing, monitoring and building new
functionality to use the traced information is supported by
the PF’s higher layers. Two cases studies where the PF was
used were carried out to validate the different uses of the
framework. These cases used the provided building blocks
and interfaces to build generic, reusable probes for important
system information.

The nature of embedded systems is that there is little
consistency between different devices, having led to creation
of customized solutions for information access. Here, we have
shown that for a system where the PF is available it provides
a basis for a uniform instrumentation solution. Generic probes
can be reused across systems and new ones implemented by
using the provided building blocks and interfaces. The reuse
of the framework and probes thus leads to reduction of the
implementation effort and also to increased reliability as the
found problems are more likely to be in the system itself and
not in the instrumentation code.

For easing the lifespan testing/diagnostics/management of
the target system the probe framework can be very useful.
Given that the probe framework is intended to remain in the
target system after deployment, it can provide its services dur-
ing the targets lifespan. Therefore, it can hasten the detection
of the possible problems and offer the testing services and
monitoring services during the targets lifespan. In practice,
the probe framework requires the shared library, storage and
relay module and the various probes to remain in the target, to
provide its services after the target has been deployed. Overall,
the space requirement of the probe framework is minimal, but
naturally its presence will affect the rest of the system and
needs to be considered.

For further details on the probe framework tool and instru-
mentation methods [21] offers an in depth view.

REFERENCES

[1] T. Kanstrén, A Study on Design for Testability in Component Based
Embedded Software, SERA 2008.

[2] A. Hussain, G. Bartlett, Y. Pryadkin, J. Heidemann, C. Papadopoulos
and J. Bannister 2005. Experiences with a continuous network tracing
infrastructure. In Proceedings of the 2005 ACM SIGCOMM Workshop
on Mining Network Data, Philadelphia, Pennsylvania, USA, August 26 -
26, 2005.

[3] Y. Bao, M. Chen, Y. Ruan, L. Liu, J. Fan, Q. Yuan, B. Song and J. Xu
HMTT: a platform independent full-system memory trace monitoring
system. In Proceedings of the 2008 ACM SIGMETRICS international
Conference on Measurement and Modeling of Computer Systems, An-
napolis, MD, USA, June 02 - 06, 2008

[4] K. Yamanishi and Y. Maruyama, Dynamic syslog mining for network
failure monitoring. In Proceedings of the Eleventh ACM SIGKDD inter-
national Conference on Knowledge Discovery in Data Mining, Chicago,
Illinois, USA, August 21 - 24, 2005.

[5] M. Diep, M. Cohen and S. Elbaum (2006) Probe Distribution Techniques
to Profile Events in Deployed Software. In: ISSRE 06: Proceedings of the
17th International Symposium on Software Reliability Engineering, IEEE
Computer Society, Raleigh, NC, USA, pp. 331-342.

[6] H. Giese and S. Henkler (2006) Architecture-Driven Platform Indepen-
dent Deterministic Replay for Distributed Hard Real-Time Systems. In:
ROSATEA 06: Proceedings of the ISSTA workshop on role of software
architecture for testing and analysis, ACM, Portland, Maine, USA, pp.
28-38.

[7] S. Elbaum and M. Diep (2005) Profiling Deployed Software: Assessing
Strategies and Testing Opportunities. IEEE Transactions on Software
Engineering 31, pp. 312-327.

[8] B. M. Cantrill, M. W. Shapiro and A. H. Leventhal, Dynamic Instru-
mentation of Production Systems, USENIX annual technical conference,
Boston, MA, 2004.

[9] Mac OS X. Website, [17.12.2008] http://www.apple.com/macosx/
[10] M. Desnoyers and M. Dagenais, LTTng: Tracing across execution layers,

from the Hypervisor to user-space, Ottawa Linux Symposium 2008.
[11] F. Eigler, Problem solving with systemtap, Ottawa Linux Symposium

2006.
[12] SystemTap. Website, [08.12.2008] http://sourceware.org/ systemtap/
[13] P. Tuuttila and T. Kanstrén, Experiences in Using Principal Component

Analysis for Testing and Analysing Complex System Behaviour, ICSSEA
2008.

[14] Apache log4j. Website, [17.12.2008] http://logging.apache.org/log4j/
[15] C. Lonvick, The BSD Syslog Protocol, RFC Editor, 2001.
[16] H. Thane and H. Hansson (1999) Handling Interrupts in Testing of

Distributed Real-Time Systems. In: RTCSA 99: Proceedings of the Sixth
International Conference on Real-Time Computing Systems and Appli-
cations, IEEE Computer Society, Washington, DC, USA, p. 450.

[17] F. Buschmann, R. Meunier, H. Rohnert, P. Sommerlad and M. Stal
(1996) Pattern- Oriented Software Architecture: A System of Patterns,
John Wiley & Sons, New York, NY, USA, 476 p.

[18] A.S. Tanenbaum Modern Operating Systems 3rd edition, Prentice Hall,
2008, 1104pp.

[19] M. Jaakola (2008) Performance Simulation of Multi-processor Systems
based on Load Reallocation. Masters thesis, Oulu University, Department
of Electrical and Information Engineering, Oulu.

[20] J. Vincent, G. King, P. Lay and J. Kinghorn (2002) Principles of
built-in-test for run-time-testability in component-based software systems.
Software Quality Control 10, pp. 115-133.

[21] M. Pollari (2009) A Software Framework for Improving the Testability
of Embedded Real-time Systems. Masters thesis, Oulu University, Depart-
ment of Electrical and Information Engineering, Oulu.

V/7

http://www.apple.com/macosx/
http://sourceware.org/
http://logging.apache.org/log4j/

PAPER VI

Observation Based Modeling for
Model-Based Testing

In: Submitted to the Journal of Software Testing,
Verification and Reliability, 2009.

Reprinted with permission from the publisher.

SOFTWARE TESTING, VERIFICATION AND RELIABILITY
Softw. Test. Verif. Reliab. 2007; 00:1–7 (DOI: 10.1002/000)
Published online in Wiley InterScience (www.interscience.wiley.com). DOI: 10.1002/000

Observation Based Modeling for
Model-Based Testing

Teemu Kanstrén1,∗, Éric Piel2, Hans-Gerhard Gross2

1 VTT
Kaitoväylä 1, 90571 Oulu, Finland
teemu.kanstren@vtt.fi
2Software Engineering Research Group
Delft University of Technology
Mekelweg 4, 2628CD Delft, The Netherlands
{e.a.b.piel,h.g.gross}@tudelft.nl

SUMMARY

Model-based testing represents a powerful means for automated generation of test cases. However, creating
a useful model requires expertise in the (formal) modeling languages of the tools used, and experience with
the general concepts of modeling for model-based testing, in order to achieve effective test generation. These
requirements make the adoption of model-based testing difficult and costly. An efficient approach to ease
these requirements is by generating an initial model based on observations made from software execution
and using this as an advanced starting point for model-based software testing and verification.

This article presents such an approach. Its contributions are a novel technique to generate an initial
model out of observations, suitable for model-based testing, and a method supporting and guiding its
application to software testing, and verification. Both the model generation and the presented method for
its use are evaluated through application to a concrete sub-system in the safety/surveillance domain. The
study shows, that a suitable initial model can be generated automatically, and further refined by the user
following the method, for system verification and testing. The study demonstrates how residual defects and
specification inconsistencies can be detected. Copyright c© 2007 John Wiley & Sons, Ltd.

Received 30 August 2009

KEY WORDS: Model-Based Testing, Observation Based Modeling, Software Testing, Verification

∗Correspondence to: VTT
Kaitoväylä 1, 90571 Oulu, Finland

Contract/grant sponsor: This work has been supported by the Nokia Foundation
Contract/grant sponsor: The work presented in this paper has been carried out partially under the Poseidon project in cooperation
with the Embedded Systems Institute (ESI), Eindhoven, The Netherlands, and supported by the Dutch Ministry of Economic
Affairs; contract/grant number: BSIK03021

Copyright c© 2007 John Wiley & Sons, Ltd.
Prepared using stvrauth.cls [Version: 2007/09/24 v1.00]

VI/1

http://www.interscience.wiley.com
mailto:teemu.kanstren@vtt.fi

2 T. KANSTRÉN, E. PIEL, H.-G. GROSS

1. INTRODUCTION

Testing is the most commonly used approach in industry for verification and validation of software, and
it can be regarded as the ultimate review of a system’s specification, design, and implementation [12].
Model-Based Testing (MBT) refers to automated test case generation techniques based on formalized
descriptions of the system under test (SUT), in contrast to hand-crafting test cases from other available
(non-formal) documents, or the source code [33]. Since testing can, often, consume up to half of the
overall development cost for a software project, while it adds nothing in terms of functionality to the
software, there is a strong incentive towards test automation with MBT. However, creating a useful
model for MBT requires expertise and experience with the general concepts of modeling and the used
MBT tool notations, in order to achieve effective test generation.

An effective approach for supporting the difficult and costly behavioral model design and
construction process is to generate a (partial) model out of captured observations automatically
(e.g. [13, 2]). This approach is termed here as observation-based modeling (OBM). Obviously, this
method can only be “boot-strapped” from existing runtime scenarios and their executions (such as
field data and unit tests [7]). From the test automation perspective special consideration is needed
when using models automatically generated from captured observations. Such models describe the
observed actual behaviour of the SUT instead of its expected behaviour according to a specification.
As such, human involvement is needed when using these generated models as no computer program
can automatically know what is the correct expected behaviour of any given other program.

Although many techniques have been proposed for mining behavioral models for software systems,
the produced models are not suitable for use with MBT tools, and the techniques do not provide
guidance for using them in the context of MBT. Instead in MBT, the approach has been to create
test models manually, based on system specifications. The contribution of this article are

• a novel technique for automatic generation of an initial behavioural model, suitable for MBT,
based on observations captured from SUT behaviour (execution traces),

• a method to support the use of these models for testing and verification of the SUT with the help
of a MBT tool,

• an implementation of the approach for Java based components, and
• an evaluation of the approach with a case study, including lessons learned.

The generated model provides support for the modeling process, letting the user start from an
advanced initial model suitable for MBT. The presented method provides support for the MBT
user to turn the initial model into a complete description of the SUT, while continuously verifying
the correctness of the implementation against its specifications with the help of the MBT tool.
The approaches presented are evaluated through their case study application in a real vessel traffic
surveillance system for which initial system behavioral models are devised automatically, refined and
verified manually, while continuously using a MBT tool to execute the model and generate tests.

The article is structured as follows. Sect. 2 briefly outlines related work on the techniques relevant
to this article, and summarizes our contributions. Sect. 3 describes the tools and algorithms used for
model generation. Sect. 4 describes the method for using the generated models as starting point for
model refinement, verification and testing. Sect. 5 summarizes a concrete application of OBM for
testing part of a maritime surveillance system, and discusses experiences with the techniques. Finally,
Sect. 6 summarizes and concludes the paper with directions for future research.

Copyright c© 2007 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. 2007; 00:1–7
Prepared using stvrauth.cls DOI: 10.1002/stvr

VI/2

OBSERVATION BASED MODELING FOR MODEL-BASED TESTING 3

2. BACKGROUND AND RELATED WORK

This section describes the concepts relevant to the topics discussed in this paper, presents existing work
on which we build, and relates the approach presented to existing literature. The contributions of this
article vs. the related work are summarized in Table I.

2.1. Background

The term Model-Based Testing has many definitions. We follow Utting and Legeard [33] who describe
MBT as “Generation of test cases with oracles from a behavioural model”. The model describes the
expected behaviour of the SUT, and is used by a MBT tool in order to generate test cases, in the form
of method invocations sequences plus input data. Validation of the correctness of the responses from
the SUT is realized by test oracles that check the expected output data and interaction sequences. Test
oracles are also typically built into the model.

In the traditional approach to MBT, (non-formal) specifications of the SUT are manually transformed
into suitable (formal) descriptions for machine processing. A MBT tool is then used to generate test
cases from the formal descriptions which are executed on the SUT in order to validate its observed
behaviour against its specified behaviour.

Two types of models are relevant to our work. First, finite state machines (FSM), and Extended FSM
(EFSM), are commonly used for behavioural modeling and model-based testing [33]. Both describe
the system in terms of control states and transitions between these states. States are externally visible
abstract representations of a system’s internal variable combinations. They are modified by the effects
of transitions, and initiated through stimuli sent to the SUT. EFSM models add conditions to the FSM
representation in order to define explicit conditions for triggering the transitions.

Second, dynamic invariants (models) are commonly used in dynamic analysis of software behaviour.
In general, dynamic invariants can be described as properties that hold at certain points during
execution of an SUT [11]. Therefore it is important to note that they do not generalize to describe all
possible behaviour of the SUT. Example invariants are x > 1, stating that in all observed executions
the value of x was always greater than 1, or x always in y[], representing the fact that the observed
value of x at any time during the observed executions is included in the values stored in the array y.
Support for inferring these invariants from a set of program executions has been implemented in a tool
called Daikon†.

OBM as presented in this article is based on dynamic analysis as underlying model extraction
technique, and it shares the basic properties of reverse engineering and program comprehension [25,
26], also domains relying on dynamic analysis. The specific goal of OBM is to use the reverse-
engineered models for testing and verification, and analysing and understanding them is important
for their effective use. Supporting this process from the program comprehension viewpoint has been
described in detail in [17].

A commonly used technique in dynamic analysis is the tracing of method and function calls and
using the data obtained for program comprehension and modeling [14]. Most modern programming

†http://groups.csail.mit.edu/pag/daikon/

Copyright c© 2007 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. 2007; 00:1–7
Prepared using stvrauth.cls DOI: 10.1002/stvr

VI/3

x > 1
x always in y[]
y
http://groups.csail.mit.edu/pag/daikon/
http://groups.csail.mit.edu/pag/daikon/

4 T. KANSTRÉN, E. PIEL, H.-G. GROSS

Table I. Summary of our contribution vs. related work.

Topic Existing work Added contribution

Test
process

Test generation from a state-based model with
a tool (MBT, [33]).
Conceptional layout of a OBM approach
without implementation and evaluation [4].
Application of generated model in regression
testing [9, 28, 8].

Integration and realization of techniques and
tools for automated generation of a complete
EFSM for verification and testing.
Provide a practical implementation, algo-
rithms, integration of tool support, evaluation,
plus method with guidelines, best practices and
lessons learned.

Model gen-
eration for
testing

Application of generated input and captured
invariants as a model for proposing new
tests [22].
Approach to automatically turn these invari-
ants into unit test checks for data values
(Agitator[5], Eclat[27], Xie and Notkin [35])
Generation of an EFSM to be used for selecting
tests from an existing test suite (no model code
suitable for MBT) [21]).

Generation of an EFSM to be used for gen-
erating new tests (with MBT tool), and its
use for verification of implementation against
specification.
Provide means to visually check the EFSM
against the (non-formal) specification, plus
generation and checking of interaction se-
quences, and data values.

Test oracle
generation

Implementations to check that trace properties
[28] or invariants [8] hold as regression tests.
Checking of exceptions [8] or user Interface
error codes [24].
Support for user provided test oracles [24].

Abstract complete interaction and return value
oracles for the EFSM from the traces.
Provide test oracles for all generated tests.
Generation of application specific oracles
automatically.

Mock obj.
generation

Generation of mock objects for specific
focused unit tests [29, 31].

Generate of mock objects for a MBT model,
usable for generating a number of tests.

Input data Usage of serialized objects[27], captured
invariant values[5], random and other data
factories [5] as inputs.

Application of invariants and random data
factories in MBT model generation.

languages have methods as basic building blocks, so these techniques can be applied extensively. In
addition, external tracing mechanisms, such as aspects [18], can be applied without having to modify
the source code. Various tools provide models and visualizations from the trace data, e.g., as sequence
and scenario diagrams, graphs and custom visualizations [14].

2.2. Related Work

The usefulness of possibly deriving models for MBT, based on observations captured from execution
scenarios, has been discussed before by Bertolino et al. [4]. However, they did not take their approach
beyond conceptional discussion. In this article, we present a practical implementation of these concepts

Copyright c© 2007 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. 2007; 00:1–7
Prepared using stvrauth.cls DOI: 10.1002/stvr

VI/4

OBSERVATION BASED MODELING FOR MODEL-BASED TESTING 5

including model generation, guidelines for the use of these models for SW testing and verification, and
a practical evaluation with an experimental study and lessons learned.

Apart from the overall approach, there are a number of techniques related to the work presented here.
Both Ducasse et al. [9] and De Roover et al. [28] use logic-based queries on SUT execution traces to
test legacy systems. To validate the assumptions about the SUT, they use logic queries on the traces
and define a set of trace-based logic testing patterns. Both approaches use queries as tests for possible
software regressions after updates, and for supporting the understanding of a program, by creating and
validating assumptions about it. We provide a model based on similar traces, and apply it to MBT.

Whereas our focus is on dynamic analysis, related tools and techniques also exist in the field of
static analysis. For example, Walkinshaw et al. [34] use symbolic execution to derive state-machines
from source code, including the paths that lead to these transitions. They describe how they support
inspections and program comprehension. Our focus on MBT but the generated models can also be used
for these activities.

D’Amorim et al. [8] apply symbolic execution and random sequence generation for deriving
method invocation sequences in order to generate unit tests. Their test oracle checks for yet uncaught
exceptions, plus monitors the results of executions for violations of an operation profile described by
Daikon invariants over all processed variables and values. We also generate test oracles as part of the
model, including verification for interaction sequences and checking of captured invariants for return
values, in a format suitable for MBT.

Tillmann and Schulte [31], and Saff et al. [29] provide means to automatically generate mock objects
for the SUT. Tillmann and Schulte use static analysis (symbolic execution) and Saff et al. use dynamic
analysis to capture the behaviour expectations and return values for the mock objects. Both focus on
one test at a time, to allow the generation of mock objects for exactly the purposes of this test. The
test for which mock objects are defined is determined by factoring a larger test to smaller tests [29], or
based on static analysis of code with symbolic execution [31]. We generate mock objects in a similar
fashion but usable for all tests generated with the MBT tool.

Lorenzoli et al. [21] present an algorithm called “GK-tail” used to generate an EFSM from execution
traces from FSM and Daikon-invariants, which is similar to our approach. The EFSM is used for
test case selection and for building an optimal test suite from existing test cases in order to optimize
coverage of the model. In other work, they also compare the interactions of a component deployed in a
new context in order to observe changed behaviour [22]. Our approach uses similar building blocks for
generation of the EFSM, and it shares the application domain of test automation. However, the model
representation and the application are different from [21]. They do not generate tests from the model,
and they do not use the model as an executable specification for verification.

Lo et al. [19] mine temporal rules (invariants) from captured observations. These take the form of
premise and consequence, where the premise is noted to be followed by a consequence over time. This
has similarities with our use of interaction sequences as a basis for an initial FSM used as input for
our EFSM generation algorithms. However, Lo et al. [19] focus on this subset only, while we further
generate a complete EFSM suitable for MBT.

Finally, Mesbah and van Deursen [24] build an FSM for web-application user interfaces with the
help of an automated crawler tool that is used to exercise the user interface and capture interaction
sequences that cause changes in the interface’s document object model (DOM) tree representation.
A change in the DOM tree constitutes a new state, and this information is used to model the FSM.
Transitions are the clicks (input) to the SUT that caused these changes in the DOM tree. They use a

Copyright c© 2007 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. 2007; 00:1–7
Prepared using stvrauth.cls DOI: 10.1002/stvr

VI/5

6 T. KANSTRÉN, E. PIEL, H.-G. GROSS

set of their own invariants specifically built for web-applications to describe the expected changes in
the DOM tree in response to input as test oracles. We use an FSM and invariants as a basis for our
model generation, as well. However, our generated models are different. We target specifically MBT
and generate the an executable EFSM usable for SW testing and verification with the help of a MBT
tool. We also generate more specific oracles from the traces, whereas their focus is more on generic
and user defined oracles.

3. MODEL GENERATION

This section describes our approach of generating the initial model to be used for MBT. We use a
number of tools to support our approach: ModelJUnit‡, a MBT tool using Java as a modeling notation,
JUnit§, a unit testing framework for Java, Daikon, ProM¶, a process mining tool, and EasyMock‖, a
mock object framework.

The different elements of the ESFM (states, transitions, guards, and test oracles) are generated
and combined into the initial model in ModelJUnit notation. The completeness of the generated
ModelJUnit-code varies for the different elements, and this is discussed in more detail in the following
subsections. The implementation of the model generation technique described in this section is
available as an open source project∗∗.

3.1. ModelJUnit Notation

In order to provide required background information for the model generation technique, this
subsection presents the notation of the ModelJUnit tool for which the code is generated. The listing
in Fig. 1 shows a model for a simple vending machine in ModelJUnit notation, adapted from [1]. The
vending machine accepts 25 and 50 cent coins, and issues a product, through “vend,” if 100 cents have
been provided. After vending, the machine goes back to the initial state. The right-hand side of Fig. 1
shows the graphical representation of the code as provided by ModelJUnit.

ModelJUnit uses a specialized Java notation for describing the models. The getState() method is
used by ModelJUnit to query the current state of the model. This information is used as feedback for
the test generation algorithms. The reset() method is invoked when ModelJUnit starts the generation
of a new test case. Typically, several test cases are generated from a model, with a given goal, such as
satisfying a chosen coverage criterion. The reset() method must set the model into its initial state
for the next test case (transition sequence) to be generated.

A second part of the model is described using Java annotations and naming conventions. This part
defines the actual states, transitions and constraints, or transition guards, for invoking transitions. For
example, Figure 1 shows five states for the vending machine, according to the values returned by

‡http://czt.sourceforge.net/modeljunit
§http://www.junit.org
¶http://www.processmining.org
‖http://www.easymock.org
∗∗http://noen.sourceforge.net

Copyright c© 2007 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. 2007; 00:1–7
Prepared using stvrauth.cls DOI: 10.1002/stvr

VI/6

getState()
reset()
reset()
http://czt.sourceforge.net/modeljunit
http://www.junit.org
http://www.processmining.org
http://www.easymock.org
http://noen.sourceforge.net
http://czt.sourceforge.net/modeljunit
http://www.junit.org
http://www.processmining.orgk
http://www.processmining.orgk
http://www.easymock.org
http://www.easymock.org

OBSERVATION BASED MODELING FOR MODEL-BASED TESTING 7

public class VendingMachineModel implements FsmModel {
private int money = 0;

public Object getState() { return money; }
public void reset(boolean b) { money = 0; }

@Action public void vend() {money = 0;}
public boolean vendGuard() {return money == 100;}

@Action public void coin25() {money += 25;}
public boolean coin25Guard() {return money <= 75;}

@Action public void coin50() {money += 50;}
public boolean coin50Guard() {return money <= 50;}

}

0

50

coin50 25

coin25

75

coin25

100

coin50

coin25

vend

coin25

coin50

Figure 1. Example EFSM adapted from [1].

the getState() method, and updated by the transition methods, i.e., coin25(), and coin50().
Transitions are identified through the @Action annotation.

The transition guards determine when transitions can fire, defined in the methods vendGuard(),
coin25Guard(), and coin50Guard() (Fig. 1). ModelJUnit identifies and associates these constraint
functions with their corresponding transitions by matching each @Action-tagged transition method to
a guard method with the same name but with Guard appended to the name. When this method returns
true, the transition is permitted, and the related @Action-tagged method can be called. Otherwise, the
transition is not permitted, and the related @Action-tagged method is not called.

In addition to the basic EFSM elements shown in Fig. 1, also two test-automation-specific elements
are needed for the model. For generating tests, the transition methods must either record a test script
(for offline testing), or directly provide input to the SUT (for online testing), such as performing a
method call sut.insert25() in the coin25() transition method, which would execute the test case.
We call this the test harness, as it binds the MBT tool to the SUT.

Test oracles are needed to validate the (expected) state in the model against the (actual) state of the
implementation. For the coin25() transition method this can be provided as a simple assertion, i.e.,
assert(money == sut.getInsertedCoins()), inserted after the money += 25 statement.

3.2. Case example used in this paper

For the rest of the paper, we use a running example based on a Merger-component of a maritime
surveillance system. Here, we present the basic concepts of Merger, and in the following sections we
use this to illustrate the different concepts related to our observation-based modeling approach.
Merger receives information broadcasts from ships called AIS messages [32] and processes them

in order to form a situational picture of the coastal waters. The (simplified) architecture of this system

Copyright c© 2007 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. 2007; 00:1–7
Prepared using stvrauth.cls DOI: 10.1002/stvr

VI/7

getState()
coin25()
coin50()
@Action
vendGuard()
coin25Guard()
coin50Guard()
@Action
Guard
@Action
@Action
sut.insert25()
coin25()
coin25()
assert(money == sut.getInsertedCoins())
money += 25
Merger
Merger
Merger

8 T. KANSTRÉN, E. PIEL, H.-G. GROSS

ClientRcv

World

LS1

LS2

LS20

Filter

Monitor

Plotter

WarningMergerRcvAISin
MergerAISin

AISin

Figure 2. Architecture of the surveillance system used as example.

is displayed in Figure 2. The system comes with a specification in plain English defining behaviour
and communication protocols of its components. The components are implemented in Java specifically
crafted to be executed under Fractal [6], a component middleware platform.

The Merger acts as a temporary database of AIS messages, and client components can consult it for
tracking information of a ship. It can also be configured by clients to be notified of certain ship events,
and it is key to displaying ship tracks on the screen of the command and control centre.

3.3. Capturing a set of observations

The first step in OBM is to capture a suitable set of observations to be used as a basis for the initial
model generation. In order to obtain observations, the SUT behaviour is monitored while exercising it
using a set of existing execution scenarios, such as existing test cases, recorded user sessions, or field
data [7, 10]. MBT is generally considered to be a black-box approach, based on the SUT’s external
interfaces and related specifications [33]. Similarly, our approach to generating model code is a black-
box approach, and only observations from the external interfaces of the component are captured.

Because the model generated is only as complete as the execution scenarios used to produce the
observations, it is important to verify that the scenarios include all the required behaviour of the
SUT. Missing behaviour can be augmented with additional execution scenarios. We have used the
visualizations provided by ProM and the invariant descriptions provided by Daikon as a basis for this
analysis. These are discussed in more detail in [17].

To provide more powerful generation of the initial model for MBT, it is important to be able to
classify the used execution scenarios and thus the captured observations by type. This is due to test
oracles, which need to have meaningful classification of results as will be discussed in later sections.
For example, typical test suites exercise both the nominal ("correct") behaviour of the SUT as well as
its error handling functionality. For test oracles to make a useful assertion of correctness, they must
be able to classify what is accepted and what is not. In order to achieve a useful classification in our
Merger case study, we focused on using scenarios representing nominal behaviour as far as possible.
Automated classification approaches such as [15, 20] could be applied to support this issue. However,
it is out scope of this article. It is not a strict requirement to have such as classification, and even
in the Merger case the scenarios also exercised some of the error handling properties, but a better

Copyright c© 2007 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. 2007; 00:1–7
Prepared using stvrauth.cls DOI: 10.1002/stvr

VI/8

Merger
Merger

OBSERVATION BASED MODELING FOR MODEL-BASED TESTING 9

classification leads to more powerful generated (test oracle) model requiring less manual refinement as
described in Sect. 4.

The information (observations) required to be captured in the trace includes the messages passed
through the input- and output-interfaces of the SUT and the SUT internal state, when each message is
passed. Messages are captured at the SUT’s external interface. In order to identify different types of
observations (related to SUT state, parameters, or return values) from the captured traces, for advanced
processing and model generation, we add suitable identifiers into the trace. When middleware such as
Fractal is used, this can be used to capture all component interactions, without having to instrument
every component individually [16].

Accessing the internal state information typically requires testability support designed into the SUT,
such as additional test interfaces, following [12], or serialization interfaces. For systems not supporting
such a test interface, we can maintain an “artificial” state within the component that monitors the SUT
external interfaces, by observing the inputs and outputs of the component and classifying them by type.

The Merger case study was conducted by running the complete system shown in Figure 2 with
about 20000 real AIS messages. This produces the FSM in Figure 3. After consulting the (non-formal)
specification, this was deemed as not a complete description of the SUT with respect to its expected
functionality. To address this additional stimuli in the form of unit tests was used to complete the model
with the missing functionality. The final FSM, including all these scenarios is shown in Fig. 4. This
was considered a good and representative SUT behaviour with respect to the specification, and, thus,
good enough a basis for generating the EFSM model.

3.4. Generating the basic model elements

The generation of the initial EFSM comprises four phases. First, the static parts of the model are
generated. These parts are similar for all generated models, and the SUT interface definitions are the
variables used as input in this phase. Second, ProM is used to generate an FSM, and the FSM is
analysed and processed to capture the interactions (states and transitions) for the EFSM. Third, Daikon
is used to provide invariants over the SUT internal state and parameter data values, and the invariants
are analysed to generate the relevant constraints, i.e., transition guards, for the interactions and for
the processed data values (input data). Finally, all these separate parts of the model are combined to
produce the complete EFSM in ModelJUnit notation. While the basic FSM and invariants are provided
by existing tools, their further analysis, processing, integration and transformation into a complete
EFSM suitable for MBT is done based on our own algorithms.

The basic model elements are reset(), and getState() methods, as well as the main method
used to start the execution of the model with the MBT tool. These are illustrated in Listing 1, which
shows examples of the most relevant parts of these generated methods. State variables for the model
(the List objects in Listing 1) are generated for all variables identified to represent SUT internal state
in the observations as described in subsection 3.3.

The generated reset method clears all model state and recreates the SUT objects to avoid side-
effects between generated tests. The main model execution method (modelJUnitTest()) is generated
in JUnit notation (@Test), in order to permit seamless integration with most IDE’s (integrated
development environments), that support reporting and analysis for JUnit tests. This model execution
method is also generated to create the mock objects for the model (mockClientRcv2), and to store

Copyright c© 2007 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. 2007; 00:1–7
Prepared using stvrauth.cls DOI: 10.1002/stvr

VI/9

Merger
reset()
getState()
List
modelJUnitTest()
@Test
mockClientRcv2

10 T. KANSTRÉN, E. PIEL, H.-G. GROSS

[{}]

[{0=Cconnect}]

Cconnect
complete

[{0=AISin}]

AISin
complete

Cconnect
complete

AISin
complete

[{0=Cnew}]

Cnew
complete

[{0=Cpublish}]

Cpublish
complete

Cnew
complete

[{0=Csubscribe}]

Csubscribe
complete

AISin
complete

Cnew
complete

[{0=Cdispose}]

Cdispose
complete

AISin
complete

Cpublish
complete

Cdispose
complete

AISin
complete

Cdispose
complete

Figure 3. Merger FSM produced by ProM for the field data.

them in the model for the transition methods to access them. The generated mock objects are named
according to the “mocked” output interface, i.e., ClientRcv2.

3.5. Transforming the FSM into code for MBT

The captured observations are transformed into an FSM with ProM’s transition system miner
component [3]. As described in section 3.3, the execution trace is based on input- and output-method
invocations, made through the SUT’s external interfaces. The FSM describes the SUT in terms of these
method calls, where each message passed through one of the interfaces matches a state in the FSM.
In order to provide powerful test generation based on an MBT tool, the states of the FSM cannot be
used directly to describe the states in the EFSM. Instead, the differences between the input- and output-

Copyright c© 2007 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. 2007; 00:1–7
Prepared using stvrauth.cls DOI: 10.1002/stvr

VI/10

ClientRcv2

OBSERVATION BASED MODELING FOR MODEL-BASED TESTING 11

[{}]

[{0=Cconnect}]

Cconnect
complete

[{0=AISin}]

AISin
complete

Cconnect
complete

[{0=Crequest}]

Crequest
complete

[{0=Cnew}]

Cnew
complete

[{0=Cdisconnect}]

Cdisconnect
complete

[{0=Csubscribe}]

Csubscribe
complete

[{0=Cunsubscribe}]

Cunsubscribe
complete

AISin
complete

[{0=Creply}]

Creply
complete

Cconnect
complete

Crequest
complete

AISin
complete

Cnew
complete

[{0=Cpublish}]

Cpublish
complete

Crequest
complete

Cnew
complete

Csubscribe
complete

Cconnect
complete

AISin
complete

AISin
complete

Cnew
complete

[{0=Cdispose}]

Cdispose
complete

AISin
complete

Cpublish
complete

Cdispose
complete

AISin
complete

Cdispose
complete

Figure 4. Merger FSM produced by ProM from combined field data and unit tests.

Copyright c© 2007 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. 2007; 00:1–7
Prepared using stvrauth.cls DOI: 10.1002/stvr

VI/11

12 T. KANSTRÉN, E. PIEL, H.-G. GROSS

...
private int testIndex = 1;
private List Messages = new ArrayList();
private List Subscriptions = new ArrayList();
private List Clients = new ArrayList();
private AISMerger aISMerger;
private ClientRcv2 mockClientRcv2;
...
@Test public void modelJUnitTest() throws Exception {

mockClientRcv2 = createMock(ClientRcv2.class);
Tester tester = new RandomTester(this);
...
tester.generate(2000);
...

}
public void reset(boolean b) {
state = "";
System.out.println("- TEST "+testIndex+" -");
testIndex++;
Messages.clear();
Subscriptions.clear();
Clients.clear();
EasyMock.reset(mockClientRcv2);
try {
aISMerger = createAISMerger(mockClientRcv2);

} catch (Exception e) {
throw new RuntimeException(e);

}
}
public Object getState() {

return state;
}
...

Listing 1. Generated reset, getState, and main execution methods for Merger.

messages in the FSM need to be considered. This is a good example for the modeling expertise required
by a user of this method for producing effective models for MBT.

In order to produce a model more suitable for MBT, we consider a state transition to be triggered by
an invocation of an input-method to the SUT. For each input-method in the FSM, a matching @Action-
method is generated in the model code. Listing 2 shows two example @Action transition and transition
guard methods for the Merger component.

The basic elements generated for each @Action transition method are also shown in Listing 2
(for Crequest). The state of the model is always set to a name matching the taken transition
(this.state = "Crequest"). This allows the tool to use its model coverage algorithms to cover
different combinations of the interaction sequences. The name of the state transition taken is printed
out (System.out.println("CREQUEST")) in order to make it easier to follow the paths that the
MBT tool takes while it generates tests from the model, e.g., for debugging.

Copyright c© 2007 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. 2007; 00:1–7
Prepared using stvrauth.cls DOI: 10.1002/stvr

VI/12

@Action
@Action
Merger
@Action
Crequest
this.state = "Crequest"
System.out.println("CREQUEST")

OBSERVATION BASED MODELING FOR MODEL-BASED TESTING 13

@Action public void Crequest() throws Exception {
this.state = "Crequest";
System.out.println("CREQUEST");
replay(mockClientRcv2);
ReturnStatus rv4 = aISMerger.Crequest(Crequest_p0(),Crequest_p1(),Crequest_p2());
assertEquals("ok", rv4);
verify(mockClientRcv2);
EasyMock.reset(mockClientRcv2);

}
public boolean CrequestGuard() {

if(Clients.isEmpty()) return false;
return true;

}
@Action public void Crequest_Creply() throws Exception {
this.state = "Crequest->Creply";
System.out.println("CREQUEST->CREPLY");
expect(mockClientRcv2.Creply((AISMessage)anyObject()))

.andReturn("ok");
replay(mockClientRcv2);
ReturnStatus rv5 = aISMerger.Crequest(Crequest_p0(),Crequest_p1(),Crequest_p2());
assertEquals("ok", rv5);
verify(mockClientRcv2);
EasyMock.reset(mockClientRcv2);

}
public boolean Crequest_CreplyGuard() {

if(Clients.isEmpty()) return false;
if(Messages.isEmpty()) return false;
return true;

}
...
private String Crequest_p0() {

return (String) randomItemFrom(Clients);
}
private int Crequest_p1() {
return (int)1.0;

}
private byte Crequest_p2() {
return (byte)1.0;

}
...

Listing 2. Generated reset sample transition (@Action), guard and parameter value generation methods for Merger.

The next step is the generation of the expected interactions within a transition. They are based on
the FSM and the categorization of each message in the component interface into an input or output
message. This classification is based on the input- and output-interface definitions (Java classes) of the
SUT. The FSM is analyzed according to this information, and each input-state (message) is associated
with outgoing transitions to any output-state (message).

A number of @Action transition methods is generated for each input message, one for the input
message alone, and one for each possible output message to which it has an outgoing transition. For
example, the FSM shown in Figure 4 has a state Crequest, which can either go to Creply or to

Copyright c© 2007 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. 2007; 00:1–7
Prepared using stvrauth.cls DOI: 10.1002/stvr

VI/13

@Action
Crequest
Creply

14 T. KANSTRÉN, E. PIEL, H.-G. GROSS

AISin. As only Creply has been classified as an output message, we obtain in Listing 2 two @Action
methods: Crequest() corresponding to the input message itself when the given input produces no
output message (no Creply), and Crequest_Creply(), corresponding to the input message followed
by a Creply output message.

For each @Action transition method, an interaction oracle is also generated. These are use the
interfaces provided by the generated EasyMock objects to verify that the expected transitions do
happen, and only happen as expected. In the ones that include an expected output transition from the
input transition, an expectation is set that this output transition actually happens. For the ones without
expected output transitions, an expectation is set that no output transition occurs in the SUT.

In the Crequest_Creply() method the expectations for the output method interaction are set as
expect(mockClientRcv2.Creply((AISMessage)anyObject())).andReturn("ok");. This
means that we expect the SUT (Merger) object to call the Creply() method of mockClientRcv2
with a parameter of type AISMessage, and when this happens the mock object should return the value
"ok" to the SUT. Once the expectations are set, a call is made to the input method of the SUT that
corresponds to the state transition method being executed. In the case of Crequest_Creply() it is
the Crequest() method. Generation of the return values and the parameter value template methods
will be discussed in more detail in the subsection 3.6.

Finally the results are verified, i.e., the interaction test oracles are invoked, in the form
verify(mockClientRcv2), using the name of the corresponding mock object. This checks, that
all expectations set for the mock object are met, and no additional interactions are performed.

3.6. Transforming the invariants into code for MBT

The second model used in the generation of the EFSM code is the set of invariants provided by Daikon,
describing the properties of the parameters and return values of the input- and output-interface method
invocations for the SUT, plus their relations to the internal state values of the SUT. They are used to
generate possible return values for the mocked output message sequences, parameter values for input
messages, and guard conditions for transitions.

Daikon can output the invariant information in many different formats for testing [11]. However,
none of these formats is directly usable for our purpose. Therefore, we use the basic textual output,
parse and further process it, and finally generate code out of it. We also use our own customized
Daikon trace format, permitting more advanced analysis of the invariants for MBT. Similarly, for
guard conditions, we provide our own generalization of the Daikon invariants for more powerful guard
generation. An example of the basic Daikon invariant output used as input for our algorithms is shown
in Listing 3 for Crequest. This illustrates how the customized trace format discussed in section 3.3 can
identify invariants related to the different model elements (state, return values, parameter values). Here
they are identified by the postfix appended to the name in the trace as visible in listing 3. Additionally,
return value program points are identified by postfix _EXIT in order to work around some limitations
of the basic Daikon format.

3.6.1. Transition guards

For generating the transition guards, each internal state-related invariant is taken for processing. For
example, in Listing 2, the guard for the Crequest_Creply() transition method is the Crequest_

Copyright c© 2007 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. 2007; 00:1–7
Prepared using stvrauth.cls DOI: 10.1002/stvr

VI/14

AISin
Creply
@Action
Crequest()
Creply
Crequest_Creply()
Creply
@Action
Crequest_Creply()
expect(mockClientRcv2.Creply((AISMessage)anyObject())).andReturn("ok");
Merger
Creply()
mockClientRcv2
AISMessage
"ok"
Crequest_Creply()
Crequest()
verify(mockClientRcv2)
Crequest
_EXIT
Crequest_Creply()
Crequest_CreplyGuard()
Crequest_CreplyGuard()

OBSERVATION BASED MODELING FOR MODEL-BASED TESTING 15

===
Crequest:::ENTER
1.shipID?1 == AISType?2
2.shipID?1 == size(Clients?g[])
3.size(Clients?g[])-1 == size(Subscriptions?g[])
4.clientName?0 == "myclient"
5.shipID?1 == 1
6.Clients?g[] == [myclient]
7.Clients?g[] elements == "myclient"
8.Subscriptions?g[] == []
9.size(Clients?g[]) == 1
10.clientName?0 in Clients?g[]
===
Crequest_EXIT:::ENTER
ReturnStatus?r == "ok"
===

Listing 3. Sample Daikon output for Crequest.

CreplyGuard() method. Two guard checks have been generated for this transition, each defining a
condition that needs to be met for this transition to fire.

We started by turning all the related invariants for a transition into guard checks as expressed by
the Daikon output. Only the values related to the internal state of the SUT are available when guard
conditions are evaluated, so any invariants related to parameter values can be discarded as non-relevant.
In Listing 3, this leaves us with the invariants on lines 3 and 6-9.

Turning all these into guard statements leads to five transition guards, i.e., for invariants 6 and 7,
guard statements must be generated for checking that the state variables always contain only elements
of type myclient, and only contain one of these. Similarly, for invariant 9, a guard must be generated
to check that the Client’s state variable always includes exactly one item.

Turning the Daikon invariants into transition guards, results in a number of useless guard statements,
and the useful ones become overly constraining. For instance, analysis of invariants 3 and 6-8 reveals
that they represent random properties of the used execution scenarios, and invariant 3 is a combination
of invariants 8 and 9. Associating the two state variables is not meaningful as they are not really related.

Another example is invariant 8, stating that the list of subscriptions should always be empty at this
point. Although true for the used execution scenarios, it is not a correct requirement as subscriptions
are allowed when requests are made. The case where subscriptions exist while making a request is
simply not contained in the execution scenarios used.

Only invariant 9 is useful, although, overly constraining, in stating “there should be a connection, but
no more than one,” whereas the correct invariant, according to the specification, should state “at least
one connection.” These examples illustrate that too many and too constraining conditions are generated
from Daikon output when used directly.

Instead, we use abstractions over the Daikon invariants to provide more powerful transition guard
generation. After doing a complete model refinement for testing and verification (described in Sect. 4)
for the Merger component, we found that all useful guard statements were related to the size of single
model state variables (such as invariants 8 and 9). The correct check turns out to be “the state variable
has some content or not.”

Copyright c© 2007 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. 2007; 00:1–7
Prepared using stvrauth.cls DOI: 10.1002/stvr

VI/15

Crequest_CreplyGuard()
Crequest_CreplyGuard()
myclient
Merger

16 T. KANSTRÉN, E. PIEL, H.-G. GROSS

To provide more powerful guard generation, we devised a more specific algorithm that only
generates checks for invariants related to the size of the state variables. Daikon produces several
different types of invariants describing the contents of array variables, including size and content.
If it can be inferred from these invariants that the size of that state variable is always greater than zero,
a guard is generated to check that this variable has some content. This produces much better results
compared to direct use of Daikon invariants. The results and their validity will be discussed in more
detail in Sect. 5.

3.6.2. Object values and creation

Test automation requires the creation of SUT domain objects to provide test input and expected output.
We generate templates for providing these objects in the model. The templates include the feasible
values inferred from the invariants provided by Daikon for these objects. Daikon in- and output is
limited to strings, and, thus, best suited for describing primitive objects only.

Generation of non-primitive objects cannot be fully automated since it is impossible to determine
how primitive values in the Daikon invariants have to be mapped to previously unknown domain
objects and their constructors. Instead, the value in the invariant model is provided to the user as a
basis for manual refinement. Listing 2 shows this as "ok" in both transition methods Crequest()
and Crequest_Creply(). The same applies to the return value given to the SUT when it invokes the
mockClientRcv2 mock object in Crequest_Creply(), which is shown as .andReturn("ok") in
Listing 2. During refinement, the "ok" must be amended to create an actual domain object matching
the invariant value, as will be shown in section 4. This illustrates the domain knowledge required of
the user.

For the parameter value generation, the relations of parameter values to the internal state of the
model are also considered in addition to providing invariant values as a basis for object creation. This is
illustrated in Listing 2 by Crequest_p0(), and Crequest_p1(). For Crequest_p1(), invariant 5 in
Listing 3 describes this value as a constant of 1 and Crequest_p1() is generated to provide this value.
For Crequest_p0(), invariant 10 in Listing 3 describes this value as always being one from the list
of connected clients (from the Clients state variable). To provide suitable values, Crequest_p0()
is generated to pick an item from this state variable as a parameter.

4. TESTING AND VERIFICATION METHOD

The process of using a generated model for testing and verification is different from the traditional
model-based testing process. We call it a verification process as it allows verifying the completeness
and correctness of the (implementation) model and the specification in relation to each other, and a
testing process as it generates new test cases to exercise and evaluate the SUT behaviour.

Traditionally in MBT, the user takes the SUT specification as a basis to create a test model for the
system. In our approach, the initial model is generated based on the captured observations, leading to
an advanced starting point for the partially manual process of converting it to the final model to be
used for testing and verification with a MBT tool. Checking whether the model contains all expected
behaviour as specified, and whether this behaviour is correctly implemented, is an iterative process.
Basic requirement for this process is the SUT specification for verifying and refining the model.

Copyright c© 2007 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. 2007; 00:1–7
Prepared using stvrauth.cls DOI: 10.1002/stvr

VI/16

"ok"
Crequest()
Crequest_Creply()
mockClientRcv2
Crequest_Creply()
.andReturn("ok")
"ok"
Crequest_p0()
Crequest_p1()
Crequest_p1()
Crequest_p1()
Crequest_p0()
Clients
Crequest_p0()

OBSERVATION BASED MODELING FOR MODEL-BASED TESTING 17

The method of using the initial generated model is outlined in the following:

1. Disable all state transitions (set guards to false).
2. Choose an initial state that can be reached from SUT startup.
3. Evaluate this generated state transition and related guard statements for correctness w.r.t. the

specification, making any modifications necessary.
4. Enable this state transition (correct the guard).
5. Execute the model with the MBT tool.
6. Analyse the root causes of any errors reported, and fix either the SUT, specification or the model

accordingly.
7. Choose the next state that can be reached once the initial state transition is enabled and verified

for correctness, and fix any errors found.
8. Continue this process from step 3 until all state transitions have been processed.
9. If any generated state transition remains disabled, or is not described in the specification,

check why the transition exists in the implementation. Amend the specification if it is a correct
transitions, amend the implementation if it is incorrect.

10. Finally, evaluate the complete model with all the generated state transitions containing all
expected (input-output) transitions included in the specification. If any are missing, check if
this is due to restrictions of the used execution scenarios or due to missing implementation. Fix
the cause.

According to our experience gained, it is best to start by focusing on one state transition at a time.
This is achieved by disabling all other transition guards (step 1). Based on the SUT specification, an
initial state can be selected for analysis (step 2). This state must be reachable from the initial starting
state. When a state is chosen for analysis, its transition guard is enabled (applying correct constraints)
to allow the MBT tool to explore it for test case generation.

Evaluating a state consists of checking that the state has the correct transition guards, so the
transitions can fire as expected , and that the transition is complete with regards to all required
elemenents(step 3). In other words, evaluating that the internal state of the model is correct and allows
executing the transition as expected, making it possible, for example, to provide correct parameter
values (such as picking a value from a state variable as shown by Crequest_p0() in listing 2). To
enable analysis of the chosen transition with the help of the MBT tool, its guard statement must first he
enabled (step 4). Evaluating a state also consists of checking the transition method itself and checking
correct values are provided, adding domain object creation, as well as updates to the model internal
state as a result of any successful transition. The extent of these modifications is discussed in more
detail in section 5.1. One of the advantages of this method and the given model is that it is possible
to execute the model with the MBT tool at any time during this process to verify the expectations and
changes made to the model (step 5). This will reveal any inconsistencies between the refined model
and the implementation, providing precise information to help with the analysis of the cause of any
possible failures (step 6).

Once a state transition is considered to be complete and correct, more state transitions can be
enabled, one at the time in an iterative manner (steps 7-8). Enabling one transition allows enabling
another following transition as the SUT state is updated by the previous transitions. Repeating this
process for all states, eventually produces the complete model. Additional errors can be discovered

Copyright c© 2007 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. 2007; 00:1–7
Prepared using stvrauth.cls DOI: 10.1002/stvr

VI/17

Crequest_p0()

18 T. KANSTRÉN, E. PIEL, H.-G. GROSS

Cconnect

Cconnect

AISin

AISin

Cconnect AISin

Cconnect->Cnew

Cconnect_Cnew

Cconnect_Cnew

Figure 5. Merger EFSM with 3 states enabled and as visualized by ModelJUnit.

as more states are added and more complex interactions are produced by the MBT tool, potentially
requiring more analysis of previous states in the model.

Finally, the complete model must be checked against the SUT specification to assess if there are any
excess transitions left over that should not be (step 9) or if any required transitions are missing (step
10). That is, verifying the completeness and correctness of the implementation and the specification.

In order to illustrate the result of refining an initial generated model to form a completely verified
and tested model, Listing 4 shows a fully refined version of the code from Listing 2. This was produced
as an end result of the Merger case study. In the following, we describe the modifications made during
the process of applying the described method on this part of the generated Merger model.

Based on the FSM provided by ProM, we can only make an assumption that a single output message
is expected for a single input message. However, it is possible to receive several output messages back
for a single input message. For example, the transition method Crequest_Creply() in Listing 2
should produce one or more replies depending on its internal state. However, based on the FSM, the
interaction oracle (mock object) was generated to only expect one reply. In Listing 4, this has been
amended through adding .anyTimes() to the end of the expectation for the Crequest_Creply()

transition. This refinement is implicitly “required” by the MBT tool by showing where expectations
have failed.

Examples of simpler refinements for non-primitive objects are the changes from "ok" to
ReturnStatus.ok. An example of refining the generation of a primitive value is shown in Listing 4,
where the Crequest_p1() method must return an id value which was received previously by the
SUT. It must be refined manually to take one of the messages from the model state list variable
Messages and return the id values of this message.

The executed model can also be visualized at any time with ModelJUnit. This is convenient in order
to get a visual representation of the generated model thus far. Figure 5 displays such visualization of
the Merger model in which the first three states are enabled.

This visualization can be used to evaluate the final generated model w.r.t. completeness according
to the specifcation. Each oval (state) shows the input-output transitions of the model, where expected
output is shown to be followed by the input. If no output is expected in a state, this is shown as a single
input element. The arrows indicate the sequential order in which these transitions can occur. Since

Copyright c© 2007 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. 2007; 00:1–7
Prepared using stvrauth.cls DOI: 10.1002/stvr

VI/18

Merger
Merger
Crequest_Creply()
.anyTimes()
Crequest_Creply()
"ok"
ReturnStatus.ok
Crequest_p1()
id
Messages
id
Merger

OBSERVATION BASED MODELING FOR MODEL-BASED TESTING 19

...
@Action public void Crequest_Creply() throws Exception {

this.state = "Crequest->Creply";
expect(mockClientRcv2.Creply((AISMessage)anyObject()))

.andReturn(ReturnStatus.ok).anyTimes();
replay(mockClientRcv2);
ReturnStatus rv5 = aISMerger.Crequest(Crequest_p0(),

Crequest_p1(),
Crequest_p2());

assertEquals(ReturnStatus.ok, rv5);
verify(mockClientRcv2);
EasyMock.reset(mockClientRcv2);

}

public boolean Crequest_CreplyGuard() {
if(Clients.size() < 1) return false;
if(Messages.size() < 1) return false;
return true;

}
...
long msgTime = 0;
int nextMsgId = 1;
private AISMessage AISin_p0() {

AISMessage message = new AISMessage((byte) 1, 0,
nextMsgId, new Date(msgTime));

nextMsgId++;
msgTime += 1000;
Messages.add(message);
return message;

}
...
private String Crequest_p0() {
return (String) randomItemFrom(Clients);

}

private int Crequest_p1() {
AISMessage msg = (AISMessage) randomItemFrom(Messages);
return msg.getUserID();

}

private byte Crequest_p2() {
return (byte)1.0;

}
...
private String Cdisconnect_p0() {
String client = (String) randomItemFrom(Clients);
Clients.remove(client);
Subscriptions.remove(client);
return client;

}
...

Listing 4. Refined versions of methods in listing 2.

Copyright c© 2007 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. 2007; 00:1–7
Prepared using stvrauth.cls DOI: 10.1002/stvr

VI/19

20 T. KANSTRÉN, E. PIEL, H.-G. GROSS

Tests +
field data

PROM

Daikon

EFSM
GeneratorMonitor

Daikon
trace

PROM
log

Model-
JUnit

EFSM
model

FSM
model

Invariant
model

SUT
Spec.IDE

Step 1:
Capturing a set
of observations

Step 2:
Generating
the model

Step 3:
Verification
& Testing

1.1 1.2

1.2

1.2

2.1

2.1

2.2

2.2

2.3

3.1

3.1 3.2 3.2

Step 1 – Capturing a set of observations (Automated):
1.1 Execute SUT with set of execution scenarios.
1.2 Monitor tool captures observations.

Step 2 – Generating the model (Automated):
2.1 Execute ProM and Daikon with observations.
2.2 Capture the output from ProM and Daikon
2.3 Combine (ProM & Daikon) input to form EFSM model.

Step 3 – Model refinement (User):
3.1 Execute model to test SUT vs model
3.2 Verify model vs. specification, refine as needed.
3.3 Iterate from step 3.1 until model is finished

3.1

SUT

Figure 6. Overview of the complete proposed approach.

there are potentially many (input-output) state transition sequences, this is most useful for identifying
the included input-output transitions as well as the initial start states. The visualization shown is a result
of our chosen state representation in the generated model (the state variable contents).

Finally, figure 5 presents a complete overview of the whole approach proposed in this paper,
including capturing the observations, generating the initial model, and using this as a basis for SW
testing and verification.

5. CASE STUDY EVALUATION

In this section, we discuss the experiences and lessons learned from applying our approach and method
to the example system described in section 3.2. The aim of our case study evaluation was to evaluate
the usefulness and effectiveness of the presented approach. We start by discussing the precision and
recall for our model generation technique, that is, how much of the different parts of the model are
provided by the code generator. We also discuss the usefulness of applying our approach to testing and
verification of the Merger component.

In order to evaluate the outcome further, we briefly discuss the application of our approach to a
second component of the same system, called Filter (see Fig. 2). The state representation is similar to
Merger. It maintains a list of processed AIS messages and filters out duplicate entries from overlapping
surveillance areas. This component was studied after completing the Merger example, in order to
evaluate whether the techniques can be generalized, in particular, our optimization of the transition
guard generation with invariants.

Copyright c© 2007 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. 2007; 00:1–7
Prepared using stvrauth.cls DOI: 10.1002/stvr

VI/20

state
Merger
Filter
Merger
Merger

OBSERVATION BASED MODELING FOR MODEL-BASED TESTING 21

Table II. Number of different elements in the final (complete) model.

Model Element Merger Filter

Transitions 13 2
Interaction oracles 13 (4) 1
Mock objects 1 1
State variables 3 1
Reset methods 1 1
Main execution methods 1 1
Parameter values 14 2
Input methods 6 1
Output methods 4 1
Return value oracles 7 0

5.1. Precision and Recall

Table II lists the number of elements present in the complete Merger and Filter models. Transitions
are input-output transitions represented by the @Action tagged methods in the model. Merger has one
output interface with four output methods. This interface is represented in the model by a mock object,
which is used to verify the correctness of interaction sequences (as interaction oracles). Moreover,
Merger has two input interfaces with six input methods in total. 14 Parameter values are required for
the input messages generated for the SUT. 7 Return value oracles assert the values received as return
values from the input methods in the transitions.

The precision and recall for model generation in the Merger case are shown in table III. Full means
the generated code does not need to be changed, and Partial means that an initial version of the required
code is generated and has to be amended, but the generated code hints to what it should be changed
to. For example, when a transition guard checks that a state variable is always of size 1 or 3, it is easy
to see that it should, in fact, check it has some content (size >= 1). “Missing” means something is not
generated, although, it should. “Redundant” means that some code is generated, but must be deleted,
because it is not relevant to the model. In the following subsections, the values obtained are discussed
Merger case. Finally, we summarize the results for the Filter case.

The most interesting entries in the table are the state transition methods, transition guards, parameter
values, state updates, and test oracles. The remaining entries are mostly static items always completely
generated as described in section 3.4 and illustrated in Listing 1.

5.1.1. State transition methods

State transition methods are generated completely for all input represented in the traces. However, we
discovered that Merger had an error in its implementation, where the given input did not lead to the
expected output, due to missing functionality. Hence, one required state was not generated as it was
not implemented in the SUT, and no observation captured from the SUT execution could therefore

Copyright c© 2007 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. 2007; 00:1–7
Prepared using stvrauth.cls DOI: 10.1002/stvr

VI/21

Merger
Filter
@Action
Merger
Merger
Merger
Merger
Filter
Merger

22 T. KANSTRÉN, E. PIEL, H.-G. GROSS

Table III. Merger precision and recall breakdown by model elements.

Model Element Full Partial Missing Redundant

Reset method 100% (1/1) 0% 0% 0%
State variable definitions 100% (3/3) 0% 0% 0%
State variable updates 0% 0% 100% (6/6) 0%
Main execution method 100% (1/1) 0% 0% 0%
State transition methods 91% (10/11) 0% 9% (1/11) 15,4% (2/13)
Transition guard checks (Daikon) 0% 76,9% (10/13) 23,1% (3/13) 68,7% (22/32)
Transition guard checks (Custom) 76,9% (10/13) 0% 23,1% (3/13) 9,1% (1/11)
Interaction oracles (no output) 100% (9/9) 0% 0% 0%
Interaction oracles (output) 50% (2/4) 50% (2/4) 0% 0%
Mock object return values 100% (4/4) 0% 0% 0%
Parameter values 21,4% (3/14) 0% 78,6% (11/14) 0%
Return value oracles 71,4% (5/7) 28,6% (2/7) 0% 0%

describe this state transition. This highlights the importance of analyzing the provided model properly
w.r.t. the specification for the required transitions, as some may not be implemented as they should.

Two “Redundant” state transitions were generated. In the first instance, the information for a ship
is discarded if no more messages regarding this ship are received for some period of time. This is not
triggered by any given input message, but by a timeout, and it can be observed in the trace at any
arbitrary point in time. This was a part of the large execution scenario with field data as input. This also
highlights how some specific functionality needs to be tested for with different types of approaches.

In the second instance, the reason for generating a “Redundant” state transition is not so obvious. We
could trace it to execution scenario instantiating the complete system that processes the field data and
spawning several independent threads on the go, some of which cause an interleaving of the captured
observations, producing observations for sequences not relevant for the actual SUT behaviour.

5.1.2. Transition guards

We separate two types of transition guard checks, discussed in Sect. 3.6, i.e., Transition guard check
(Daikon) and Transition guard check (Custom) in Table III. The first one refers to the original Daikon
invariants, whereas the second one refers to our optimized method that only considers the invariants
related to the size of the state variables. Since both use the same set of invariants as a basis, the numbers
of “Partial” for the first entry (“Daikon”) and “Full” for the second entry (“Custom”) are the same.

First, Daikon generated a large number of redundant invariants not relevant in any way to what is
required for our model. Seven out of ten partially or fully provided transition guards are duplicates
generated by Daikon. After removing the most obvious ones, the fraction of redundant invariants was
still 68,7% of all the invariants provided by the “pure Daikon” approach. It requires a lot of user
interaction in order to devise the “correct” invariants, and it is, by no means, satisfying.

Copyright c© 2007 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. 2007; 00:1–7
Prepared using stvrauth.cls DOI: 10.1002/stvr

VI/22

OBSERVATION BASED MODELING FOR MODEL-BASED TESTING 23

Applying the “Custom Transition guard checks” proved to be much more convincing, with the
number of redundant guard checks of 9.1% of the overall guards provided by Daikon. It must be
noted, however, that this technique can still produce redundant checks when invariants for irrelevant
state variables are generated as a by-product of the observations made from the execution scenarios.
However, in this case the number of redundant guards was acceptable leading to much less analysis
and correction work to be done by the user of this approach.

For the “Missing” transition guard checks, different reasons could be identified. One condition
involved checking an “OR-relation”, a composed expression, not (yet) supported by Daikon. Instead,
Daikon simply reports that neither of the invariants in the composed expression hold. Another condition
not generated could be attributed to (likely) faulty behaviour of Daikon. The invariant was always
apparent in the captured observations, but never reported by Daikon. It is not clear why the last
transition guard is missing in Daikon, as values related to this transition are numerous in the trace,
and performing detailed analysis on this was out of the scope of our study.

5.1.3. Parameter values

Parameter values are difficult to infer, due to the complexity of non-primitive objects, and due to
limited execution scenarios that do not typically exhibit the full range of input values permitted. The
successfully generated values were based on either primitive values, or on relations for which the
parameter value had to be a match to one that was already stored in the SUT state variables. Parameter
generation is still an issue to be addressed, for example through including domain objects serialized
from previous SUT executions as described in [27], or mining object specifications from SUT source
code and executions, as proposed by [30]. However, this open issue must be addressed in future work.

5.1.4. State updates

In addition to domain object creation, also related model state updates need to be added by the user. For
example, when a new message is provided to Merger, the processed Message object must be added to
the provided Messages model state variable. This is illustrated in Listing 4 in the The AISin_p0()

parameter value creation method, that adds the new processed message to the state variables Messages.
This also illustrates the need for the user to add the creation of domain objects manually. In this case,
each of the messages needs a unique id value and a unique timestamp.

These model parts related to state updates are not automatically generated due to limitations of
automatically knowing suitable representations needed for domain objects, and due to the limitations
of the underlying models used to generate the code. Daikon is intended to provide invariants over
program points, whereas this requires support for combining data over several points, such as the
provided parameter values, and their relation to the SUT internal states before and after messages are
processed. To address this issue, invariant detection could be extended to automatically cover this type
of more complex inter-relations. However, we did not find means to easily extend Daikon to do this
and leave this out of the scope of this paper.

Copyright c© 2007 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. 2007; 00:1–7
Prepared using stvrauth.cls DOI: 10.1002/stvr

VI/23

Merger
Messages
AISin_p0()
Messages

24 T. KANSTRÉN, E. PIEL, H.-G. GROSS

Table IV. SUT coverage breakdown by execution scenarios and tests for Merger(M) and Filter(F).

Source Statements Methods Conditionals Paths

M:Unit tests 53,5% (76/142) 64,5% (20/31) 38,7% (24/62) 6
M:Data 61,3% (87/142) 64,5% (20/31) 51,6% (32/62) 27
M:Data+Unit tests 77,5% (110/142) 87,1% (27/31) 61,3% (38/62) 33
M:EFSM 64,1% (91/142) 67,7% (21/31) 48,4% (30/62) 87
M:EFSM+Unit tests 65,5% (93/142) 67,7% (21/31) 51,6% (32/62) 92
F:Unit tests 38,2% (21/55) 23,5% (4/17) 32,1% (9/28) 2
F:Data 52,7% (29/55) 35,3% (6/17) 50,0% (14/28) 17
F:Data+Unit tests 52,7% (29/55) 35,3% (6/17) 50,0% (14/28) 18
F:EFSM 45,5% (25/55) 29,4% (5/17) 39,3% (11/28) 79
F:EFSM+Unit tests 45,5% (25/55) 29,4% (5/17) 39,3% (11/28) 79

5.1.5. Test oracles

As described in earlier sections, two different types of test oracles were generated, interaction oracles
and return value oracles. There are two types of interaction oracles listed in table III, ones marked
"no output" and ones marked "output". Here "no output" means the provided input is not expected
to provide any output. For "output", an input-output interaction sequence is expected. All interaction
oracles were generated with the correct expectations. However, half of these (listed as "partial" for the
"output" cases in table III) were missing the expectation that the input message can be followed by any
number of output messages. Thus it required the addition of .anyTimes() to these expectations.

For return value oracles, as well as mock object (interaction oracle) parameter values, the full
generation means that the provided model gave only one option and it was the correct one. For the
partial ones, the provided options included the correct one but also additional ones. The option here
refers to the string identifier used for the domain object in the observation trace. For reasons discussed
before, full domain objects are not generated.

5.2. Test coverage

Although we applied our model generation approach completely as a black-box approach, we also had
access to the source code and were able to gather code coverage metrics for the different test scenarios.
These are shown in Table IV. Here unit tests refer to the six unit tests used as execution scenarios. Data
refers to the set of field data and the system application that was used to process the data through the
complete system. Model refers to the tests generated by the MBT tool out of the final refined model.
The four columns correspond to four different types of coverage: statement, method, conditional, and
path coverage. This latter one is the number of unique paths in the final EFSM which were followed
during a test, in other words, it describes the combinations of input-output sequences taken during SUT
execution.

In Table IV it is visible that the tests generated from the EFSM model provide a significant increase
in coverage over the used unit tests. Data has a high coverage value but it can not be considered a test
as it simply executes the SUT without any assertions. As it has no test oracle it is not actually testing

Copyright c© 2007 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. 2007; 00:1–7
Prepared using stvrauth.cls DOI: 10.1002/stvr

VI/24

.anyTimes()

OBSERVATION BASED MODELING FOR MODEL-BASED TESTING 25

anything. However, it is still a useful exploration of the SUT behaviour for capturing observations.
The complete coverage of the execution scenarios used to capture the observations is shown here as
Data+Unit tests. For the difference between the code coverage of this set and that of the EFSM set,
a detailed analysis revealed that the additional code covered by Data+Unit tests is due to the larger
amount of setup involved in putting the complete system together vs. the minimal setup with mock
objects in the EFSM set.

The total coverage of all tests is shown by EFSM+Unit tests. This shows that although EFSM does
provide significant increase in coverage alone, the Unit tests still provide an additional increase and
thus the tests in the EFSM set and Unit tests set are complimentary, as is to be expected for black-box
testing and unit testing. This also provides validation for the use of unit tests as execution scenarios for
model generation in MBT.

Table IV shows the Unit tests and the EFSM paths to be mostly different. This is most likely due to
the MBT tool generating longer sequences, while the unit tests only produce short sequences. Therefor
the paths in the unit tests are likely covered also by the EFSM set but as the number of paths here is
based on complete unique paths, it does not count two paths as one if one is embedded inside another.

For the actual behaviour related code, the EFSM set outperformed the others by a small percentage
due to the generalization of the generated model in the verification and testing refinement phase. This
generalization led to execution of additional parts of the code.

The biggest difference is in the paths metric, EFSM outperforms the others by a factor of more than
two. This is what is to be expected from a MBT tool that is intended to generate complex interactions
to test the SUT, and could be even further increased through MBT tool parameters.

5.3. Mutation testing

In addition to code coverage analysis, we also conducted another coverage measured in the form of
mutation testing of both the Merger and the Filter components. The mutation testing was focused
on finding how many of the generated mutants are "killed" (discovered) by the used test cases. A mutant
is a semantically different modification in the Java class of the component. In our case these mutants
were generated with the µJava†† tool. Some of the generated mutants are “equivalent”, meaning that
their behaviour is exactly the same as the original version (e.g.: increment a variable never used after,
in/decrement a huge arbitrary constant, modify how a hashcode is computed). We manually categorized
the generated mutants to ones that really modify the behaviour of the SUT and to ones that do not.

To evaluate the effectiveness of the generated and refined model in killing these mutants, the
completely refined model as provided from the previous sections was used to generate tests and these
tests were executed to kill the mutants. Each provided mutation was applied separately and the tests
were executed to see if the changes are detected (if the mutant is killed). The results are shown in
Table V. It should be noted that this does not simulate the case of starting from initial model generation
for each mutant but simply evaluates the power of the complete and final model in killing mutants,
which places this mutation experiment closer to the domain of regression testing.

††http://cs.gmu.edu/~offutt/mujava/

Copyright c© 2007 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. 2007; 00:1–7
Prepared using stvrauth.cls DOI: 10.1002/stvr

VI/25

Merger
Filter
http://cs.gmu.edu/~offutt/mujava/
http://cs.gmu.edu/~offutt/mujava/

26 T. KANSTRÉN, E. PIEL, H.-G. GROSS

Table V. Mutation test results.

Source True positive False positive True negative False negative Total

Merger unit tests 51 16 50 0 117
Merger EFSM 51 15 51 0 117
Filter unit tests 36 7 21 0 64
Filter EFSM 36 5 23 0 64

When a test finds no errors (the SUT is considered to operate fine), the result is termed "positive".
When an error is reported, the result is termed "negative". "False positives" are the mutations which are
said to be working fine, although it was manually verified that they behave outside of the specification
sometimes. "False negative" would be a case where a correct SUT is classified as having an error.

Table V shows that the final model provides minimal gain over the initial unit tests. It is worthy to
note that the correct categorizations done by the EFSM are a superset of the one performed by the unit
tests. The model outperforms the unit tests in correct categorization of mutants with actual modified
behaviour only by a slight margin.

Although the differences in code and mutant coverage do not seem to be high, the different paths
generated with the MBT tool combined with the manual verification and testing process proved very
useful in this case, finding several previously uncaught bugs in the implementation as will be described
next.

5.4. Errors Discovered in the Merger

In the process of refining the complete model for Merger, we found several errors in the SUT
implementation. These errors can be classified to different types including mismatches between
implementation and specification, ambiguities in the specification, and problems in the design that
cause errors under certain conditions.

Problems in the SUT design were related to assumptions it made about its environment. The design
made the assumption that one client component would never have several connections at the same time
with the Merger component. This functionality was not covered by the initial execution scenarios and
the SUT specification was also not detailed to the level to define this type of details. Instead, this was
revealed by the complex input and interaction sequences generated by the MBT based on the refined
model. This also lead to a requirement of refining the specification.

Mismatches identified between implementation and model were wrong return values received from
the SUT, discovered by the return value oracles, and incorrect or missing transitions in the SUT,
discovered by the interaction oracles or by inspection of the FSM vs. the specification. In the case
of return values, making a connection would always return “ok”, regardless of the parameter provided,
and whether a connection was successful or not. This was a clear violation of the specification, which
states that Merger should return error codes. Although this functionality was exercised in the initial
execution scenarios, they did not use sequences and assertions that would reveal this error. The various
interaction sequences generated from the model, along with the test oracles did reveal it.

Copyright c© 2007 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. 2007; 00:1–7
Prepared using stvrauth.cls DOI: 10.1002/stvr

VI/26

Merger
Merger
Merger

OBSERVATION BASED MODELING FOR MODEL-BASED TESTING 27

Another issue detected was a missing specification item, about queries on ships that do not exist.
The generated model issued an “ok”, but the implementation returned an error code. The specification
made no statement how this should be handled by Merger. In this case, this highlighted a need to
update the specification and then re-evaluate the model vs. the implementation. This shows how having
two different “implementations” of the specifications (the SUT and the model), makes it more likely to
reveal the ambiguities and misunderstandings in the specification.

Protocol issues of the Merger were discovered through the interaction oracles and through
inspection of the FSM. The specification states that “if a client is subscribed to a ship for which data
exists, the Merger should immediately publish this data to the client,” which it did not. This problem
was found when comparing the model and specification and could be verified by inspecting the FSM’s
shown in Figure 4. This also highlights the importance of carefully comparing the generated model to
the specification. As discussed before, a generated model only contains the information observed in the
execution scenarios, excluding any unimplemented features. These can only be revealed by verifying
the model against the specification to see that it describes all required functionality and is correct.

The subscription code contained another problem that was discovered by the interaction oracles.
Subscribing to a ship for which no messages had been received so far, caused the loss of data through
a missing output message. This was an error in the implementation. Again, the required interactions
to create the initial FSM to test this were present in the used execution scenarios, but this was only
discovered by the thorough checking done in all states by the MBT when generating tests based on the
final model.

These issues could be resolved, eventually, by amending the Merger code following the specification
and the refined model. Overall, in terms of identifying previously unknown errors of a component that
had been used for some time in this context, this can be regarded as a very successful model-based
testing experiment with real value to the quality of the system.

5.5. Filter

As already shown in Table II, the Filter case study was much simpler than the Merger case study.
This is also reflected in Table VI, showing the precision and recall values for the Filter case study.
Since there are only one or two of each model element needed and generated, the values are mostly
100%. This is also visible in the number of invariants generated, where only one invariant is generated
and this is turned into the correct guard condition by our customized invariant processing algorithm.
This lack of invariants is also likely due to the small number of variables present in the observations.
As the messages observed do not have any return values, there are no mock object return values or
return value oracles needed or generated in this case. This is a simple example, but serves to provide
evidence that the approach is usable over more than just one (Merger) component, and also on simple
systems.

5.6. Limitations of the approach and the case study

We realize that the results can not be generalized as such to all possible systems, as their representation
of state can be different (such as primitive values) or different types of invariants may be important.
To provide a more comprehensive analysis and support for different types of state representations,
experiments with different types of systems would be needed. A useful approach for this would be

Copyright c© 2007 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. 2007; 00:1–7
Prepared using stvrauth.cls DOI: 10.1002/stvr

VI/27

Merger
Merger
Merger
Filter
Merger
Filter
Merger

28 T. KANSTRÉN, E. PIEL, H.-G. GROSS

Table VI. Filter precision and recall breakdown by model elements.

Model Element Full Partial Missing Extra

Reset method 100% (1/1) 0% 0% 0%
State variable definitions 100% (1/1) 0% 0% 0%
State variable updates 0% 0% 100% (1/1) 0%
Main execution method 100% (1/1) 0% 0% 0%
State transition methods 100% (2/2) 0% 0% 0%
Transition guard checks (Daikon) 0% 100% (1/1) 0% 0%
Transition guard checks (Custom) 100% (1/1) 0% 0% 0%
Interaction oracles (no output) 100% (1/1) 0% 0% 0%
Interaction oracles (output) 100% (1/1) 0% 0% 0%
Mock object return values - - - -
Parameter values 0% 0% 100% (1/1) 0%
Return value oracles - - - -

similar to that which we followed - start from all the provided invariants, analyse which ones are
relevant and investigate how these can be effectively (automatically) turned into guard checks. From
this we believe more generic and powerful transition guard generation approaches and guidelines could
be provided for different types of systems. However, this study is left out of the scope of this paper.

With respect to the tools we used, it can be summarized that having more specific and effective
means of FSM and invariant generation would be useful. Both ProM and Daikon were described to
have some limitations from our viewpoint, leading to more manual effort in the testing and verification
phase. One option would be to extend the models and tools to support the additional information
needed. Another option would be to replace those intermediary models by simpler models representing
solely the information needed for the generation of the code, and to build our own custom “FSM” and
“invariant” inference engines. For example, existing work on mining temporal invariant rules (e.g. [19])
could be used to address the limitations of discovering timing related transitions from the observations.
However, in this context it is important to offer possibilities for the user to observe the intermediary
models. For example, the usage of ProM permits the user to assess the completeness of the trace, via
many different types of models and visualizations.

Although, in most cases, the root-causes for errors reported by the MBT tool are clear, sometimes
they are difficult to identify. The cause of an error may be located in the model, or in the SUT. An
effective approach for finding these causes is to create a separate test case with a specific testing
tool, such as JUnit, based on the generated test case. This separate test case will reveal all the
hidden assumptions in data generation, interactions and similar properties, and allow the user to
experiment with different settings. A separate test case permits to do more focused analysis of the
failure cause. Currently, these tests have to be created manually. However, the information required for
their generation is already available in the test case generated by the MBT tool. With this information,
the separate test scripts with related data values and other generated input could be automatically
generated, saving considerable effort for these difficult debugging cases.

Finally, sometimes, it might be problematic to have an extensive set of test executions available
for the SUT. In these cases, an interesting research approach would be to apply input generation
mechanisms, such as search-based heuristics [23] for behavior exploration. In this case, the model

Copyright c© 2007 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. 2007; 00:1–7
Prepared using stvrauth.cls DOI: 10.1002/stvr

VI/28

OBSERVATION BASED MODELING FOR MODEL-BASED TESTING 29

becomes more of a representation of all the possibilities with the SUT, and less a representation of
what is the expected behavior. Thus it requires also the use of automated classification approaches as
described in section 3.6.2.

6. CONCLUSIONS

This paper described a a novel way to generate a complete EFSM (including test input, oracles, and
harness) out of observations from system executions, suitable for use as an advanced starting point
(model) for model-based testing. An important note when using a generated model for software testing
and verification is that this model is not a description of what should be expected from the SUT, but
rather what it actually provides. In this regard, one of the main contributions of this paper is also the
proposed method that shows how to verify the correctness of the model vs the specification, while
using it for testing and verification.

The usefulness of the proposed approach was demonstrated with the help of two real software
components, where the generated model was shown to be highly complete, providing an advanced
starting point, and where additional test coverage was gained and several new bugs were discovered
with the help of the proposed method. We also discussed the limitations of our approach, and proposed
means to address them in future work.

Future work will comprise an application of search heuristics, i.e., evolutionary testing techniques,
for the generation of test stimuli in order to obtain the traces, automated classification of inputs and
outputs captured from the execution scenarios, addressing domain object creation and improvement on
the generation of transition guards in order to make them more generic.

REFERENCES

1. Groovy - model-based testing with ModelJUnit. In http://groovy.codehaus.org/Model-based+testing+using+ModelJUnit,
Referenced August, 2009.

2. W. M. P. v. d. Aalst, B. F. v. Dongen, C. W. Günther, R. S. Mans, A. K. A. d. Medeiros, A. Rozinat, V. Rubin, M. Song,
H. M. W. Verbeek, and A. J. M. M. Weijters. Prom 4.0: Comprehensive support for real process analysis. In Application
and Theory of Petri nets and Other Models of Concurrency 2007, volume 4546, pages 484–494. Springer, 2007.

3. W. M. P. v. d. Aalst, V. Rubin, H. M. W. Verbeek, B. F. v. Dongen, E. Kindler, and C. W. Günther. Process mining: A
two-step approach to balance between underfitting and overfitting. Software and Systems Modeling (SoSyM), 2009.

4. A. Bertolino, A. Polini, P. Inverardi, and H. Muccini. Towards anti-model-based testing. In Fast Abstract in The Int’l.
Conf. on Dependable Systems and Networks, DSN 2004, Florence, 2004.

5. M. Boshernitsan, R. Doong, and A. Savoia. From daikon to agitator: Lessons and challenges in building a commercial
tool for developer testing. In Proc. of the Int’l. Symposium on Software Testing and Analysis (ISSTA2006), pages 169–179,
Portland, Maine, USA, 2006.

6. E. Bruneton, T. Coupaye, M. Leclercq, V. Quéma, and J.-B. Stefani. The fractal component model and its support in java.
Software: Practice and Experience, 36(11-12):1257–1284, 2006.

7. B. Cornelissen, A. Zaidman, A. v. Deursen, L. Moonen, and R. Koschke. A systematic survey of program comprehension
through dynamic analysis. IEEE Transactions on Software Engineering, 2009.

8. M. d’Amorim, C. Pacheco, D. Marinov, T. Xie, and M. D. Ernst. An empirical comparison of automated generation
and classification techniques for object-oriented unit testing. In Proc. of the 21st Int’l. Conf. on Automated Software
Engineering (ASE’06), pages 59–68, Tokyo, Japan, Sept. 2006.

9. S. Ducasse, T. Girba, and R. Wuyts. Object-oriented legacy system trace-based logic testing. In Proc. Conf. on Softw.
Maintenance and Reengineering (CSMR’06), pages 37–46, 2006.

10. S. Elbaum and M. Diep. Profiling deployed software: Assessing strategies and testing opportunities. IEEE Transactions
on Softw. Eng., 31(4):312–327, Apr. 2005.

Copyright c© 2007 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. 2007; 00:1–7
Prepared using stvrauth.cls DOI: 10.1002/stvr

VI/29

http://groovy.codehaus.org/Model-based+testing+using+ModelJUnit

30 T. KANSTRÉN, E. PIEL, H.-G. GROSS

11. M. D. Ernst, J. H. Perkins, P. J. Guo, S. McCamant, C. Pacheco, M. S. Tschantz, and C. Xiao. The daikon system for
dynamic detection of likely invariants. Science of Computer Programming, 69(1–3):35–45, Dec. 2007.

12. H.-G. Gross. Component-Based Software Testing with UML. Springer, Heidelberg, 2005.
13. A. Hamou-Lhadj, E. Braun, D. Amyot, and T. Lethbridge. Recovering behavioral design models from execution traces.

In 9th European Conf. on Software Maintenance and Reengineering (CSMR’2005), pages 112–121, 2005.
14. A. Hamou-Lhadj and T. C. Lethbridge. A survey of trace exploration tools and techniques. In Proc. conf. of the Centre

for Advanced Studies on Collaborative research (CASCON’04), pages 42–55, 2004.
15. M. Haran, A. Karr, M. Last, and A. Sanil. Techniques for classifying executions of deployed software to support software

engineering tasks. IEEE Trans. Softw. Eng., 33(5):287–304, 2007. Orso, Alessandro and A. Porter, Adam and Fouche,
Sandro.

16. . T. Kanstrén. A study on design for testability in component-based embedded software. In Proc. 6th Int’l. Conf. on Softw.
Eng. Research, Management and Applications (SERA’08), pages 31–38, Prague, Czech Republic, 2008.

17. . T. Kanstrén. Program comprehension for user-assited test oracle creation. In Proc. 4th Int’l. Conf. on Softw. Eng.
Advances (ICSEA’09), Porto, Portugal, 2009.

18. G. Kiczales, E. Hilsdale, J. Hugunin, M. Kersten, J. Palm, and W. Griswold. Getting started with AspectJ. Commun. ACM,
44(10):59–65, 2001.

19. D. Lo, S.-C. Khoo, and C. Liu. Mining temporal rules for software maintenance. J. Softw. Maint. Evol., 20(4):227–247,
2008.

20. D. Lo, L. Mariani, and M. Pezzè. Automatic steering of behavioral model inference. In Proc. 7th European Softw. Eng.
Conf. and the ACM SIGSOFT Symposium on Foundations of Soft. Eng.(ESEC/FSE’09), pages 345–354, Amsterdam, The
Netherlands, Aug. 2009.

21. D. Lorenzoli, L. Mariani, and M. Pezzè. Automatic generation of software behavioral models. In Proc. 30th Int’l. Conf.
on Softw. Eng. (ICSE’08), pages 501–510, Leipzig, Germany, May 2008.

22. L. Mariani and M. Pezzè. Dynamic detection of COTS component incompatibility. IEEE Software, 24(5):76–85, Sept.
2007.

23. P. McMinn. Search-based software test data generation: a survey. Softw. Test., Verif. Reliab., 14(2):105–156, 2004.
24. A. Mesbah and A. v. Deursen. Invariant-based automatic testing of ajax user interfaces. In 31st Int’l. Conf. on Softw. Eng.

(ICSE’09), Vancouver, 2009.
25. H. A. Müller, J. H. Jahnke, D. B. Smith, M.-A. D. Storey, S. R. Tilley, and K. Wong. Reverse engineering: a roadmap. In

ICSE - Future of SE Track, pages 47–60, 2000.
26. M. L. Nelson. A survey of reverse engineering and program comprehension. CoRR, abs/cs/0503068, 2005.
27. C. Pacheco and M. D. Ernst. Eclat: Automatic generation and classification of test inputs. In ECOOP 2005 –- Object-

Oriented Programming, 19th European Conference, pages 504–527, Glasgow, Scotland, July 2005.
28. C. D. Roover, I. Michiels, K. Gybels, and T. D’Hondt. An approach to high-level behavioral program documentation

allowing lightweight verification. In Proc. 14th Int’l. Conf. on Program Comprehension (ICPC’06), 2006.
29. D. Saff, S. Artzi, J. H. Perkins, and M. D. Ernst. Automated test factoring for java. In Proc. of the 20th Int’l. Conf. on

Automated Softw. Eng. (ASE2005), pages 114–123, 2005.
30. S. Thummalapenta, T. Xie, N. Tillmann, J. de Halleux, and W. Schulte. Mseqgen: Object-oriented unit-test generation via

mining source code. In Proc. 7th European Softw. Eng. Conf. and the ACM SIGSOFT Symposium on Foundations of Soft.
Eng.(ESEC/FSE’09), Amsterdam, The Netherlands, Aug. 2009.

31. N. Tillman and W. Schulte. Mock-object generation with behaviour. In Proc. of the 21st Int’l. Conf. on Automated Softw.
Eng. (ASE2006), pages 365–368, Tokyo, Japan, 2006.

32. I. T. Union. Recommendation ITU-R M.1371-1, 2001.
33. M. Utting and B. Legeard. Practical Model-Based Testing: A Tools Approach. Morgan Kaufmann, 1 edition, 2006.
34. N. Walkinshaw, K. Bogdanov, S. Ali, and M. Holcombe. Automated discovery of state transitions and their functions in

source code. Softw. Test., Verif. Reliab., 18(2):99–121, 2008.
35. T. Xie and D. Notkin. Tool-assisted unit test generation and selection based on operational abstractions. Automated

Software Engineering Journal, 13(3):345–371, July 2006.

Copyright c© 2007 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. 2007; 00:1–7
Prepared using stvrauth.cls DOI: 10.1002/stvr

VI/30

PAPER VII

Behavior Pattern-Based Model
Generation for Model-Based Testing

In: Proceedings of the 1st International Conference on
Pervasive Patterns and Applications, PATTERNS

2009, Athens, Greece, November 15–20, 2009. 9 p.
© 2009 IEEE.

Reprinted with permission from the publisher.

Behaviour Pattern-Based Model Generation for Model-Based Testing

Teemu Kanstrén
VTT Technical Research Centre of Finland, Kaitoväylä 1, 90571 Oulu, Finland

& Delft University of Technology, The Netherlands
teemu.kanstren@vtt.fi

Abstract—This paper presents the concept of using behavioral
pattern mining to generate models for model-based testing.
These patterns are mined from observations captured from
execution scenarios of the system under test, and the different
patterns are combined in order to provide a suitable higher-
level model for model-based testing. The concept is first dis-
cussed on a general level, providing a basis for implementation
of semi-automated model generation algorithms based on
combinations of different behavioral patterns. This concept is
illustrated by showing how to generate extended finite state-
machine models in a format suitable for model-based testing.
The generated model is further validated by applying it for
model-based testing of a real software component, where it
reveals actual faults in the system under test. In addition to the
benefits, the discovered limitations of the approach are dis-
cussed. Future work is discussed as potential means to address
these limitations.

Keywords-model generation, model-based testing, pattern
mining, behavioral patterns.

I. INTRODUCTION
Model-based testing (MBT) makes use of models as a

basis for generating tests for the system under test (SUT) [1].
When suitable models are available, this can be a powerful
approach providing automated generation of test cases for
the SUT. However, in many cases suitable models are not
available, and their creation and maintenance can be expen-
sive. These models typically need to describe the SUT from
the point of view of what is being tested, which can be sig-
nificantly different from models used for other software
development activities. For this reason, they also require
special modeling skills in creating models that effectively
describe a system for MBT. Since testing is often seen as an
activity that provides no extra functionality for the final
customer [2], getting the required support and resources for
building these specific models can be difficult. This serves to
make the adoption of MBT expensive and more difficult, and
providing any automated support for creating these models
has great potential to make MBT more feasible.

This paper presents the concept of using behavioral pat-
tern mining to generate suitable models for MBT. A basic
model is automatically generated, and serves as a starting
point to be manually refined and verified with regards to the
SUT specification. This is supported by using a MBT tool to
execute the model by generating tests and executing these
against the implementation, providing a constant feedback-
loop for the refinement of the generated model. This pro-
vides a semi-automated approach to model creation, making

the adoption of MBT easier from the viewpoint of require-
ments for providing suitable models.

Generating models based on mining behavioral patterns
requires first decomposing the target model into suitable
behavioral patterns that can be mined from observations of
the SUT execution, and combining these patterns to produce
a complete model suitable for MBT. In this paper, the infor-
mation used for pattern mining is observations captured from
execution scenarios of the SUT by monitoring its runtime
behaviour. This requires the existence of suitable execution
scenarios to exercise the SUT to capture a sufficient set of
observations, such as a suite of unit tests or data captured
from user sessions. This is a common requirement for tech-
niques making use of dynamic analysis (of runtime beha-
viour) [3], and most existing systems have these types of
execution scenarios available.

To demonstrate this approach for model generation, it is
applied for generating an extended finite state-machine
(EFSM) in a format suitable for MBT. This model is decom-
posed into suitable behavioral patterns, the information to be
captured for mining the required patterns is defined, and
means for combining these patterns to generate a basis for
the EFSM is given. This is applied to testing an actual soft-
ware component, revealing actual faults in its implementa-
tion. Finally, the experiences including the discovered limita-
tions of the approach are discussed. Possible future direc-
tions for addressing these limitations are discussed.

The rest of the paper is structured as follows. Section 2
discusses the related concepts and briefly outlines related
work. Section 3 describes the concept of generating models
for MBT based on behavioral patterns at a general level.
Section 4 discusses the various points of using these generat-
ed models for MBT. Section 5 presents a case study of ap-
plying a generated model in practice. Section 6 discusses the
experiences related with the case study, the limitations of the
approach and possible means to address these limitations in
future work. Finally, conclusions summarize the paper.

II. BACKGROUND AND RELATED WORK
Many different techniques have been developed that gen-

erate state-based behavior models based on behavioral pat-
terns captured from the analysis of software execution scena-
rios. This section gives an overview of previous research in
these related areas.

Daikon is an invariant inference engine used to infer like-
ly invariants based on execution traces [4]. These invariants
are described as likely invariants, as they hold for all the
observations in the trace, which may or may not contain a
representative sample of the SUT behavior. Example inva-

 VII/1

mailto:teemu.kanstren@vtt.fi

riants include x < 100 (value of x is always observed to be
less than 100), and x in Clients (value of x is always ob-
served to be included in the array Clients). Thus these inva-
riants describe behavioral patterns over the data processed by
the SUT. In general, the inferred invariants can be described
as properties that hold at certain points of the SUT execution
[4].

Test generation techniques based on program invariants
include Agitator [5], Eclat [6] and the technique proposed by
Xie and Notkin [7]. Each provides a tool that generates test
input data, and based on the captured execution trace,
presents a set of invariants describing the SUT behavior to
the user. The user can analyze the proposed invariants to see
if the SUT is working according to specification, and turn the
invariants into assertions with related test input to form new
test cases for the test suite. The approach presented in this
paper makes use of these data invariants as one of the beha-
vioral patterns forming an EFSM. This is similar to the pre-
vious work in using them to provide expected input- and
output-data values with a new application in the MBT do-
main. In addition, they are combined with state-machine
patterns to form parts of a higher level EFSM model for
MBT.

Lorenzoli et al. [8] model a system based on captured ob-
servations (an execution trace) including method invoca-
tions, parameter values, and global state. Similar to the
EFSM model generation approach presented in this paper,
they use Finite State Machines (FSM) and Daikon-invariants
to create the EFSM. The FSM describes behavioral interac-
tion patterns between the SUT method calls, and the inva-
riants patterns of data describe the constraints for the interac-
tions. These EFSM are used for test case selection and test
suite optimization with the goal of increasing the coverage of
the model. The approach presented in this paper uses similar
means to generate the EFSM, but with different algorithms
more suitable for MBT, and including the generation of
model source code from these models, whereas Lorenzoli et
al. generate no tests nor code [8].

A similar approach but in a different domain is presented
by Mesbah and van Deursen [9], who build an FSM for web-
application user interfaces. In this case the FSM represents
interaction patterns in the user interface (UI) of the web-
application, and how they affect the UI representation. The
composition of UI elements constitutes a new state in the
FSM model. Transitions are the clicks (input) to the SUT
that caused the UI to change between these states. They use a
set of their own invariants, specifically built for web-
applications to describe the expected changes in the UI in
response to input, as test oracles. These invariants are differ-
ent from the Daikon provided ones in that they describe the
UI elements and their associated state transitions. In the
EFSM example used this paper, a similar association of
behavioral-patterns related to interactions and processed data
is considered from the viewpoint of messages exchanged
between components, and matching MBT tools. Another
difference is that in this paper, the patterns are provided
through pattern mining from the execution scenarios, whe-
reas Mesbah and Deursen expect the checked invariants to be
provided by the user [9].

Process mining is a technique developed to mine models
for business processes from event logs [10]. Support for
process mining has been implemented in a tool called ProM,
which can produce various types of models, such as petri-
nets and FSM [11] from the event logs. Process mining con-
cepts have also been applied in the software testing domain,
to help in validation of service-oriented applications [10].
ProM is used in this paper to provide the behavioral patterns
for interaction between components in the form of an FSM.
As ProM also supports other types of behavioral models,
these could be used in the case where different types of inte-
raction patterns are of interest (such as petri-nets for concur-
rency).

In order to generate a model for MBT of a SUT, test har-
ness code must also be generated to isolate the SUT from its
environment and to verify the correctness of its interactions
with the environment. This is commonly achieved with the
help of (component) test stubs that emulate the environment.
When the stubs are made programmable, they are often re-
ferred to as mock objects [12]. This usually means that a
component library provides interfaces to create these stubs,
and that for each stub it is possible to define the expected
interactions with the SUT and the values that should be re-
turned in each case.

Tillmann and Schulte [13], and Saff et al. [14] provide
means to automatically generate mock objects for the SUT.
Tillmann and Schulte use static analysis (symbolic execu-
tion) and Saff et al. use dynamic analysis to capture the ex-
pected interaction patterns and return values for the mock
objects. Both focus on one test at a time, to allow the genera-
tion of mock objects for exactly the purposes of the chosen
test. The test for which mock objects are defined is deter-
mined by factoring a larger test to smaller tests [14], or based
on static analysis of code with symbolic execution [13].

A more specific test harness generation method for ser-
vice oriented mobile applications is presented by Bertolino et
al. [15]. They assume the SUT is described using formal
web-service description languages, such as WSDL and WS-
Agreement. Based on these specifications, they generate test
stubs for components with which the SUT is interacting.
WSDL is used to define the stub interfaces, and WS-
Agreement to define the expected behaviour of the SUT for
the stubs. Additionally, using simulators, they generate data
to test the SUT in different situations. This paper uses a
similar approach to these mock object techniques for the
EFSM example. The captured interaction patterns are used to
program the expectations of component interactions for
generated tests, and to verify that these correctly happen
during test execution.

III. FROM BEHAVIORAL PATTERNS TO MBT MODELS
This section describes the concept of transforming beha-

vioral patterns captured from the execution scenarios of the
SUT into models usable for MBT. The term Model-Based
Testing is used here similar to that of Utting and Legeard [1]
who describe it as “Generation of test cases with oracles
from a behavioral model”. The model describes the expected
behavior of the SUT, and is used to generate sequences of
method invocations and data as SUT stimulus. In order to

VII/2

validate the correctness of the responses from the SUT, test
oracles (as a part of the model) check the expected output
data and interaction sequences. The basic elements of an
MBT system include the system specification that is used as
a basis to create the test model, the test tool used to generate
tests based on this model, and the test harness (for online
testing) to execute the generated tests against the SUT or test
script generator (for offline-testing).

The idea of turning the MBT approach around, and min-
ing the model from the SUT execution scenarios was de-
scribed by Bertolino et al. [16] as anti-model-based testing,
although they never took it further than describing the con-
cept. This approach is the opposite of MBT in the sense that
the implementation (the generated model) is compared
against the specification instead of manually creating a for-
mal model of the specification and checking it against the
implementation.

Using a model for MBT that is generated from existing
execution scenarios, such as test suites, presents the question
of usefulness of using a MBT tool to generate more tests
based on such a model (of existing tests). Although the ex-
ecution scenarios used as a basis for model generation can
include existing test cases, the generated tests can still be
useful when the MBT tool generates additional complex
interaction sequences based on the combined whole of the
underlying patterns. The process of using the generated
model also provides means of formal assessment of the im-
plementation against the specification. This is further de-
scribed in the sections on using the model (Sect. 4) and the
case study evaluation (Sect. 5).

The process of model generation described in this paper
has two phases. The first phase of model decomposition is
generic and needs to be done only once for a single type of
model. The second phase of model generation is specific for
each SUT. The following subsections describe these differ-
ent phases in more detail. In the rest of the paper, generating
EFSM models is used as an example to illustrate the de-
scribed concepts. EFSM was chosen as a target model due to
many MBT tools supporting this type of a model and its
wide application in MBT [1]. Other types of models, such as
Petri-nets could be used for different test targets [1] by re-
peating this process from a different perspective with the
chosen model as the target model.

A. Phase 1:Model Decomposition
The first phase of model decomposition is illustrated in

Figure 1. In the first step of this phase, the target model is
defined. In this paper, the target model is the EFSM model.
Once this model is defined, the required elements and prop-
erties of this model need to be defined. This leads to the
decomposition of the model to the behavioral patterns that
can be used to generate the complete model from the cap-
tured information and mined patterns.

Figure 1. Model decomposition process.

The EFSM model used in this paper requires a represen-
tation of states, transitions and guards defining when each of
these transitions is allowed to take place. These form the
basic elements required for the generation of the EFSM
model. In addition to these target model specific properties,
also the test automation framework related aspects need to be
considered. This means the model needs to be linked to the
SUT to provide executable tests (a test harness), input data
for the created tests need to be provided, and the test results
need to be verified (test oracles). These properties of the
target model and the test framework need to be decomposed
into behavioral patterns that can be mined from the execution
scenarios.

Behavioral interaction patterns can be used to provide the
states and interactions by considering the interactions be-
tween the system components as state transitions for the
EFSM model. When traversing this EFSM, the MBT tool
will then generate tests consisting of interaction sequences
between the components. There are also two types of interac-
tions, those providing input and those providing output.
When generating tests for a SUT, these need to be consi-
dered as for each input interaction the MBT tool must gener-
ate the input and for each output interaction, the MBT must
expect to receive the output (with the help of generated mock
objects). Another important property in relation to this is
when a given input is generated and when a given output is
expected. In different phases of the SUT lifecycle, different
inputs produce different outputs. This depends on the given
input as well as the internal state the SUT is in.

A basic EFSM representation used in this paper to ad-
dress these issues is using the input-output transitions as
states, and allowing a transition to one of these states when
the internal state of the SUT allows for this input-output
transition. In this way, each test sequence generated by the
MBT is a sequence of expected input-output transitions,
depending on the internal state of the SUT. For the test
framework related parts, this also requires defining the input
values for the input transition and the expected values for the
output transition. In order to generate suitable models for this
EFSM representation, behavioral patterns need to be defined
that can be mined from the observations of execution scena-
rios for the SUT, and that can be combined to form the target
EFSM.

For this purpose, two types of behavioral patterns are
used in this paper. The FSM provided by the FSM miner
component of the ProM tool is used as a basic representation
of the interaction patterns of the components, and the inva-
riants provided by Daikon are used to provide constraints
over the SUT internal state and to provide the required input
data values and expected output data values. This decompos-
es the EFSM into two types of behavioral patterns that can
be acquired with the help of existing pattern mining tools.
Additionally, as described before, the generated tests need to
be linked to the SUT to create executable tests (a test har-
nesss). In the EFSM case this has been achieved by using the
input- and output-interface method name definitions as iden-
tifiers for the state transitions. This allows linking the gener-
ated input- and output-sequences to the SUT methods, pro-
viding executable tests, and is an example of linking the

VII/3

behavioral patterns with additional static information pat-
terns for providing a complete test model. In the next step,
the information required to mine these patterns from the
execution scenarios needs to be considered.

This definition of required information comes from the
decomposed behavioral patterns. For the FSM provided by
ProM, the information required includes the messages and
their order as passed between the SUT components (for the
FSM). For the invariants provided by Daikon, this includes
the data describing the SUT internal state at the time of each
message call, and the parameter and (possible) return values
of each message call. The interface definitions are available
from the SUT implementation. The information related to the
different model elements for the EFSM case are summarized
in Table 1. Once this required information is defined, the
tools and algorithms to generate the behavioral patterns from
the information, and the final (EFSM) model from the pat-
terns must be defined and implemented.

Table 1. EFSM model decomposition.

Model
Element

Pattern Required Information

State Data
inva-
riants

Data values representing the
SUT internal state during each
observed (input- and output-)
message pass.

Transition FSM Input- and output-messages
passed through SUT external
interfaces.

Transition
guard

Data
inva-
riants

Input data values for received
input-messages, grouped as a
separate invariant data point for
each input-output message tuple.

Input data Data
inva-
riants

Input data values (e.g. value
ranges) used in input messages.

Test har-
ness

Interface
defini-
tions

Messages defined in the SUT
external input- and output-
interfaces.

Test
oracles

FSM and
data
inva-
riants

Output messages (expected inte-
ractions) and their data values
(expected return values). Asso-
ciated separately for each sepa-
rate transition.

The process of mapping the behavioral patterns back to

the model is the fourth and final step of the first phase. In the
EFSM case, the ProM and Daikon already provide the basic
behavioral patterns needed. These basic patterns need to be
augmented and processed with specific algorithms to pro-
duce the final EFSM model. Defining how this is done com-
pletes the fourth step and the first phase. The output from
this should be an automated tool that produces the target
model from the given pattern information (observations)
captured from the SUT execution profiles.

For the EFSM model, as the FSM produced by ProM
treats all states and transitions the same, it needs to be aug-

mented with additional information of which messages are
input and which are output messages. Each of these is a
separate state in the provided FSM and they need to be com-
bined to form a new FSM where the input-output pairs each
form their own states. In this way, the input- and output-
message sequence pairs will form the basic patterns of ex-
pected interactions. This is simple enough by parsing the
names of messages from the SUT input- and output-
interfaces and associating the FSM states with these input-
and output message properties. When the message names are
used as identifiers for the ProM event log, this is a
straightforward mapping as the names will also match the
names of the FSM states. This provides the new FSM where
each state describes the expected input-output transitions.

This FSM can now be used as a basis for providing the
required states and transitions for an EFSM. However, it still
requires the transition guards that define when a transition to
a state is allowed to happen and when it is not allowed to
happen. With the approach described here, this means that a
certain state (an input-output transition) is only allowed to
take place when the internal state of the SUT allows the
associated input-output transition. For example, consider an
example case where a client can request data from a server
with a given id value. The server always responds with an
output message (transition) but the data in this response
depends on the server internal state. If data for the requested
id value is available, this is given as a response. However, if
data for the id is not available, the response gives an error
code. As a second example, consider a SUT that receives
messages and relays these to registered listeners for the data
it contains. If none are registered, there is no output transi-
tion. If any are registered, there are output transitions.

These two types of constraints (transition guards) are not
available in a plain FSM. Instead, patterns describing the
relations of the internal state of the SUT and the data values
in the message parameters are needed to create guards for
cases such as requesting data for a certain id. Similarly, pat-
terns describing the relations between the internal state of the
SUT and input-output transition sequences are needed, in
order to create guards for cases such as expecting notifica-
tion output messages only in cases where listeners are al-
ready registered for the received data. In the EFSM example
of this paper, the data invariants provided by Daikon are
used to provide this information. These invariants will, for
example, say that when no error code is received as output,
the request id has been one from the list of connected clients.
These invariants can then be turned into transition guards
defining that the SUT internal state must match these con-
straints to allow for this model state (input-output transition)
to be explored.

Similarly, the data invariants can be used to define the
provided input parameter values. In the example dealing with
connected clients, this can be done by forcing a choice of a
valid id value from the list of connected clients. Of course,
this requires the model to maintain itself a “copy” state of the
SUT internal state by keeping, in this case, a list of id values
for connected clients it has generated so far (in exploring a
state that creates inputs that connect clients).

VII/4

As can be seen from these examples, the different types
of behavioral patterns need to be mapped together to produce
the complete target model. When constructing these different
patterns (FSM and invariants in the EFSM case), it is impor-
tant to produce the patterns in such format that they can be
mapped together. In the EFSM case, it means that the mod-
ified FSM originally produced by ProM needs to be mapped
to the data invariants produced by Daikon. To do this, the
Daikon patterns are produced using captured data values and
invariant identifiers based on the order of messages. Thus,
for example, data values for Daikon are recorded based on
what was each value when a message was followed by
another message. By searching the provided patterns for ones
with identifiers matching the input-output pairs of each FSM
state, the mapping can be done.

For the EFSM example, this generation of behavioral pat-
terns based on the pattern information and the generation of
the target EFSM model based on these patterns has been
implemented by the author of this paper in a completely
automated tool available as open-source [17]. This tool uses
the ProM and Daikon tools to generate the required patterns,
creates the intermediate models, and combines these into the
format of the used MBT tool.

This subsection has described the model generation using
a practical example of generating an EFSM model based on
component interactions. Different requirements need to be
considered when the different types of patterns are defined
that need to be combined for creating the combined model,
and these requirements vary depending on the chosen target
model and domain. For example, as described earlier in
Section 2, a specific model and tool for model-based testing
of web-based user-interfaces was presented by Mesbah and
van Deursen [9]. They use clicks on the web-page to stimu-
late the SUT, and expresses expectations as invariants over
expected content of the UI elements after provided clicks and
input data. To generate this type of model, behavioral pat-
terns are needed to describe the relations of the UI elements,
UI navigation commands and input data values. Good candi-
dates again include an FSM with the navigation commands
as transitions, UI elements as a state, and data invariants to
describe the input data. Similarly, more complex combina-
tions are needed to capture the interactions between data
values, navigation commands and how they affect the UI
elements of different pages. This shows an example of a
different type of an approach, while the implementation
details in this case are left as a topic for future work.

The output for this phase should be the definition of the
target model, the behavioral patterns it has been decomposed
into, the information required to mine these patterns from the
SUT execution scenarios, and an automated toolset that
mines the required patterns from the provided information
and combines these patterns to form the target model.

B. Phase 2: Model Generation
The second phase of model generation is illustrated in

Figure 2. This phase takes as input from the first phase the
information required to mine the behavioral patterns that are
used to generate the model, and the mapping of these pat-
terns to the target model as described in the previous subsec-

tion. To generate the target model, the information required
to mine the patterns needs to be first captured from the ex-
ecution scenarios of the SUT. As a first step in this phase the
SUT must be instrumented to capture the required informa-
tion. For the EFSM model, the required information was
defined as the input- and output-messages of the SUT, the
input parameter values and output values, and SUT internal
state values. A practical example of instrumenting the SUT
to capture this information is presented with the case study in
Section 5.

Figure 2. Model generation process.

Once the SUT has been instrumented to capture the re-
quired information, it must be executed to capture the actual
information from the runtime execution scenarios. A model
generated based on information captured from a set of execu-
tion scenarios of the SUT is only as complete as the set of
scenarios used as a basis. Thus, any behaviour and data val-
ues not included in these scenarios are also not included in
the mined patterns or in the final model. In order to capture a
sufficiently complete model for MBT, the set of scenarios,
resulting patterns and final model must be analysed and
augmented to form a sufficiently complete set. This is an
iterative process of defining scenarios, capturing the infor-
mation, generating the model, analyzing these and iterating
this over until one is satisfied with the set of scenarios. This
process and how to perform it effectively is described in
more detail in [18]. Capturing the information from the run-
ning system is referred to here as monitoring the execution
scenarios (step 3).

Once the required information has been captured, tools
for mining the required behavioral patterns are applied. In
the case of the EFSM model, this means running the ProM
and Daikon tools. These tools are given the information in a
suitable format for them to process, and as a result they pro-
vide the behavioral patterns they were designed to mine. In
this case, the FSM model for ProM and the data invariants
for Daikon.

When the required behavioral patterns are available, they
need to be combined to form the final model. This step is
based on the information defined in step 4 of the first phase,
where the mapping of the patterns to the model is defined.
The previous subsection defined the mapping for EFSM
models. In this case, as the required steps are already imple-
mented in an automated tool that generates the patterns and
combines them together, this step is a simple application of
the tool with the given information (event traces/logs).

IV. USING THE GENERATED MODELS
As described earlier, the process of using the generated

models is basically the inverse of the traditional MBT ap-
proach. For this reason, using the generated models requires
some special consideration. When a model is generated for a
SUT based on the information (patterns) mined from chosen

VII/5

execution scenarios, this model represents only those scena-
rios and not the generic behaviour of the SUT. It is not a
generic representation of all the behaviour of the SUT, but
includes only the behaviour and patterns included in the set
of used execution scenarios. In this way, the model is only
partial and needs to be augmented with additional informa-
tion to generalize it for testing all the behaviour that should
be tested. Also, the generated model does not necessarily
describe the correct expected behaviour of the SUT but its
actual behaviour as expressed by the execution scenarios. If
the implementation is not correct with respect to the specifi-
cation, this is also reflected in the model. Generating tests
with a MBT tool from this type of a model would reveal
these differences but simply expect that the model is correct.
In order to be useful for testing, this model needs to be com-
pared against the specification to verify the correctness of the
implementation.

Figure 3. Model refinement process.

The process of using the generated models for MBT is il-
lustrated in Figure 3. This is the manual refinement and
validation phase of the model, done with the aid of the SUT
specification. Indeed, a computer program (such as a test
automation system or a model generator) can not automati-
cally know the requirements and specifications of any given
previously unknown SUT. This is similar to the problem of
test oracle generation, where verifying the correctness of a
SUT is not possible without knowing what should be ex-
pected of it (thus something like this would be equal a magi-
cal oracle, giving an answer to anything and knowing every-
thing.). Thus a stage where a user checks the correctness of
the implementation against its specification is needed.

In this phase, a useful approach is for the user to progress
by choosing one target (state) to validate at a time, verifying
the generated model parts for this state against the SUT spe-
cification, and refining the model to match the specification
and the expected behaviour for that state in general. This
phase can also be considered as generalizing the model, as
the model specific to the used execution scenarios must be
refined to match fully the expected behaviour of the SUT as
expressed in the specification, not just for those scenarios.
As the model is executable with the help of a MBT tool, the
refined model can be executed at any time to verify that the
implementation still matches the refined model, i.e. that the
implementation is correct with respect to the specification.

To progress one state at a time, the different states of the
generated model are analysed and their guard statements are
refined to match the specification. With the help of these
guard statements, it is possible to enable only a part of the
states, and focus refinement on these. By enabling more
states, the model will also test for more complex behaviour

and not single (input-output transition) states. Once the cho-
sen target (state) has been verified and refined, the user can
then progress to the next state. Eventually this will lead to a
completely verified model, describing all expected behaviour
of the SUT from the model viewpoint. One important point
in this regard is to note that if behaviour related to some state
(input-output transition) is missing from the model, simply
checking generated states is not enough alone, but the model
must be checked also for missing states, as some may not be
implemented in the SUT. This is one type of error that is
possible with the implementation vs specification, and was
also one of the errors discovered in the case study.

Checking for the expected behaviour here also implies
checking that it is indeed the expected behaviour and not just
what is implemented. All parts of the generated model need
to be checked, including states, transitions, guards, parameter
values given for generated test sequences and the assertions
checking the expected interactions and return values from the
SUT. In other words, the user must check that everything
generated from the used execution scenarios also matches
the expectations set in the specification. In some cases, this
can also highlight missing information or ambiguities in the
specification, which also serves to further improve the quali-
ty of the SUT by improving its specification and the com-
mon understanding about it.

V. A CASE STUDY
This section describes the application of the model gen-

eration concepts presented in this paper to a case study of
generating a model for a SUT, refining and validating this
model and using it to generate tests for the SUT. Only a
high-level overview of the case study concepts is given here,
for a more detailed description including actual examples of
the model code the reader is referred to [19].

The SUT in this case is a component that acts as a data-
base and a server for sensor data. Clients can connect to it,
subscribe and query for sensor data with a given sensor id
and the server component keeps track of all the information
received from different sensors. In this case, the captured
execution profile of the SUT (the server component) is
turned into a model for the model-based testing (MBT) tool
ModelJUnit. This is based on the behavioral patterns pro-
vided by the ProM and Daikon tools as described earlier. The
model generation process has been implemented in a tool
that automatically generates the model from observations
captured from the user execution scenarios as described in
Section 3.

Two types of execution scenarios were used in the case
study, field data captured from actual SUT use and existing
unit test cases. This is similar to how execution scenarios are
generally constructed in dynamic analysis of running sys-
tems [3]. In the case study a set of field data was fed to the
application to form one large scale execution scenario, and a
set of existing unit tests were used as a set of smaller execu-
tion scenarios to cover parts of the behaviour that were not
covered by the larger execution scenario.

In order to capture the required information (observa-
tions) to be used for model generation, the SUT was instru-
mented with AspectJ to capture all the messages passed

VII/6

through its external interfaces. The relevant internal state of
the SUT was accessed through a specific interface for this
purpose, designed to facilitate its testing. This data was
stored in a suitable format for the ProM and Daikon tools to
read and to mine their related behavioral patterns. The com-
ponent to produce the captured pattern information in the
correct format for these tools is also implemented as part of
the automated model generation tool described in Section 3.

Once the behavioral patterns from ProM and Daikon
were available, these were combined together (with the SUT
interface descriptions) to form the complete EFSM with the
model generation tool. This model was refined part by part
against the SUT specification, constantly verifying that each
refined part matched the implementation, i.e. that the imple-
mentation actually implemented the specification correctly as
described in Section 4.

After the model has been fully refined and checked
against the specification, six different bugs had been found in
the SUT. These bugs were found both through the execution
of the refined model as tests generated by the MBT tool, and
during the process of refining the model to match the specifi-
cation. During refinement it was found that there were cases
where the specification did not state what should be expected
as a return value from a query made to the server with
invalid data. The refined model (based on scenarios with
only valid input) always expected a certain value, while the
implementation would return a different error code. Thus this
process also served to highlight refinement needs in the
specification. A second type of error found related to check-
ing the refined model against the specification was that of
missing implementation for a required behaviour. This was
visible as a missing state (intput-output transition) in the
model when making a comparison against the specification.

During the execution of the refined model as tests gener-
ated by the MBT tool, previously unknown bugs were found
due to two main properties of the produced model and its
execution. The first property is due to the MBT tool syste-
matically analyzing the model and generating tests to cover
more possible complex interaction and input data sequences
that were not part of the previously existing tests. The second
property is due to the inclusion of systematic asserts to verify
all interaction patterns and related data values received as
return values, which also checked properties previously
considered obviously simple and not checked by the existing
tests.

VI. DISCUSSION
This section discusses the experiences and limitations of

the presented approach and how these limitations could be
addressed in future works. This discussion is based on the
results from the presented case study.

Throughout this paper the automated generation of an
EFSM model was used as an example. The presented im-
plementation for automatically generating these models
makes use of the ProM and Daikon tools for mining the
required patterns from the observations made from the ex-
ecution scenarios. These are generic tools intended for pro-
viding either behavioral interaction models (ProM) or data
invariants (Daikon). When such tools are available, they are

useful in providing a ready component to reuse for the model
generation implementation. However, their generality also
makes them less useful in generating effective models for a
specific domain such as MBT. As the generated patterns are
more generic, they require more work in the refinement
phase to generalize and make usable for MBT.

In the EFSM case study, the data invariants provided by
Daikon were first used as such to provide the transition
guards for the states. This provided both too many (useless)
invariants, and the invariants that were useful were overly
constrained. This is due to Daikon being a tool intended to
provide generic invariants over the data values. For this
reason, it produces all possible invariants it can find although
most of them are not useful from the MBT and EFSM transi-
tion guard viewpoint. For example, in the EFSM case it
provided invariants describing the relations of the size of the
internal state variables to each other, and the contents of a
state variable array always being constant. Only the ones
related to the size of the internal state variables alone (not in
relation to other state variables) were found useful, and the
rest had to be discarded to remove the useless invariants (and
generated guard conditions).

A second limitation is due to the Daikon invariants being
limited to the data provided by the execution scenarios. For
example, when global state is represented in the form of a
list, and the size of the list is either 1 or 3 in the execution
scenarios, a generic approach gives a condition that the value
must always be either 1 or 3. In this case, a more optimistic
assumption had to be made and a guard condition was gener-
ated to require that this list always contains some items (size
> 0).

These limitations of the Daikon invariants were ad-
dressed in the EFSM case study by implementing the de-
scribed, more optimistic, approaches as custom algorithms to
further process the Daikon invariants from the MBT model
generation viewpoint. Whereas using the invariants directly
initially provided weaker results, this implemented abstrac-
tion proved to provide very powerful generation of the tran-
sition guard of the model. This shows how the basic patterns
need to be analysed and applied from a more domain specific
viewpoint for useful results. However, identifying a good set
of candidates and making them more specific for the domain
and the targeted model requires more extensive studies with
various components, state representations and input data sets,
or similar properties of the target model. Thus it is also de-
pendant on the target model, the state representation of the
SUT, and similar properties.

Maintaining state inside the test model is another area
where the use of invariants could have been improved. Inva-
riant detection could be extended to automatically cover both
pre- and post-conditions in the form of providing invariants
over the SUT internal state values, both before and after a
message is processed. For nor now, the implementation is
focused on the pre-conditions, which means that, for exam-
ple, it is not possible to infer an invariant stating whether a
parameter value should become a part of a state expression
(such as a list variable, or a UI element), after a state transi-
tion. This is again mostly due to difficulties in making a tool
built for specific, more generic cases, adapt to these special

VII/7

requirements. In fact, this can be seen as a requirement for a
different type of a behavioral pattern, related to the relations
of the values in the other patterns over time.

Concerning the FSM code generation, a set of issues
were encountered with regards to multiplicity of state transi-
tions and the abstraction provided by the FSM. ProM pro-
vides a generic FSM from the observations, where it is not
possible to say whether a single output, multiple outputs or
sometimes no output at all follows an input or only in some
cases. It only tells that it follows, if the output is there in any
given scenario. Since it is not possible to infer from the pro-
vided FSM what are the expected combinations, all combina-
tions must be generated and the user must remove the excess
ones during model refinement. Again, a specific FSM miner
for the purposes of MBT model generation could preserve
this information, allowing for automatically leaving out the
excess states.

With respect to the tools used, it can be summarized that
having more specific and effective means of mining the
required patterns from the perspective of the target domain
and model and its use in MBT would be useful. Either by
extending the general tools with more specific extensions or
as separate tools specifically built for this purpose. In this
regard, it is also important to consider the ability to inspect
the generated patterns and models during different phases as
described in [18]. Taking all these requirements into account,
the effort to build such tools especially for the purposes of a
specific model is not trivial, and as such a more generic
approach to produce different models through extensions of
a basic framework architecture has more potential.

A second case is that of debugging the root-causes of the
found failures. These can be complex to analyse and pinpoint
to cause of failure into problems with the refined model or
the implementation. One effective approach for finding these
causes is to create a separate test script from the test generat-
ed by the MBT. This separate test case will reveal all the
hidden assumptions in data generation, interactions and simi-
lar properties, and allow the user to experiment with different
settings. Currently, these tests have to be created manually.
However, the information required for their generation is
already available in the test case generated by the MBT tool.
With this information, the separate test scripts with related
data values and other generated input could be automatically
generated, saving considerable effort for these difficult to
debug cases.

Although not largely discussed in this paper, test oracles
can also be created based on the behavioral patterns. This
requires being able to make classifications of the patterns to
those that should be expected or not. This is another topic to
consider in the context of the supporting tools and is dis-
cussed in more detail in [18].

Finally, sometimes, an extensive set of execution scena-
rios is not available for the SUT to be used as a basis for
making the required observations. In these cases, techniques
such as automated test data generation could be used to au-
tomatically generate execution scenarios. However, this can
easily lead to the generated model containing extra “noise”
in the form of various different types of data values and
interactions exercised. Thus it would also require more effec-

tive methods for inferring the most interesting patterns cor-
rectly, such as more specific pattern mining tools as dis-
cussed before in this section.

VII. CONCLUSIONS
This paper described the concept of using behavioral pat-

tern mining to generate models for model-based testing. The
described process consists of choosing the target model,
decomposing this model into a set of behavioral patterns,
defining the required information to mine these patterns from
a set of observations made from running the execution scena-
rios for the SUT. The process of turning these mined patterns
into the suitable target models for model-based testing
(MBT) was described. As the concept of using generated
models as a basis for MBT is opposite of the traditional
approach to MBT where models are usually created from the
specification, the use of these models in the context of MBT
was also discussed and a process for this was presented.

Throughout the paper, the generation of an extended fi-
nite state-machine model suitable for MBT was used as an
example. A practical implementation of an automated tool
for this was presented and the whole approach was validated
with a case study of its application, where it revealed faults
in the implementation of a real software component. In addi-
tion to describing the concept and its validation, the limita-
tions of the approach as based on the experiences from the
case study were discussed. These limitations form a basis for
improving the presented methods in the context of future
work.

ACKNOWLEDGMENT
The author wishes to thank Eric Verbeek for his help

with the ProM tool, and Eric Piel and Hans-Gerhard Gross
for providing the case study environment and discussions
and comments related to the topics discussed in this paper.
This work has been supported by the Nokia foundation.

REFERENCES

[1] M. Utting and B. Legeard, Practical Model-Based Testing: A
Tools Approach.: Morgan Kaufmann, 2007.

[2] T. Kanstrén, "A Study on Design for Testability in
Component-Based Embedded Software," in Proceedings of
the 6th International Conference on Software Engineering
Research, Management and Applications, Prague, Chezh
Republic, 2008, pp. 31-38.

[3] B. Cornelissen, A. Zaidman, A. van Deursen, L. Moonen, and
R. Koschke, "A Systematic Survey of Program
Comprehension through Dynamic Analysis," IEEE
Transaction on Software Eng., 2009.

[4] M. D. Ernst, J. Cockrell, W. G. Griswold, and D. Notkin,
"Dynamically Discovering Likely Program Invariants to
Support Program Evolution," IEEE Transactions on Software
Eng., vol. 27, no. 2, pp. 99-123, Feb. 2001.

[5] M. Boshernitsan, R. Doong, and A. Savoia, "From Daikon to
Agitator: Lessons and Challenges in Building a Commercial
Tool for Developer Testing," in Proc. Int'l. Symposium on
Software Testing and Analysis (ISSTA'06), Portland, Maine,
2006, pp. 169-179.

VII/8

[6] C. Pacheso and M. D. Ernst, "Eclat: Automatic Generation
and Classification of Test Inputs," in Proc. European Conf.
on Object-Oriented Programming (ECOOP'05), 2005, pp.
504-527.

[7] T. Xie and D. Notkin, "Tool-Assisted Unit-Test Generation
and Selection Based on Operational Abstractions," Journal of
Automated Software Engineering, vol. 13, no. 3, pp. 345-371,
July 2006.

[8] D. Lorenzoli, L. Mariani, and M. Pezzè, "Automatic
Generation of Software Behavioral Models," in Proc. 30th
Int'l. Conf. on Software Eng. (ICSE'08), Leipzig, Germany,
2008, pp. 501-510.

[9] A. Mesbah and A. van Deursen, "Invariant-Based Testing of
Ajax User Interfaces," in Proc. 31st Int'l. Conf. on Software
Eng., Vancouver, Canada, 2009.

[10] W.M.P. van der Aalst, B. F. van Dongen, C. W. Günther, R.
S. Mans, A. K. Alves de Medeiros, A. Rozinat, V. Rubin, M.
Song, H.M.W. Verbeek, and A.J.M.M. Weijters, "ProM 4.0:
Comprehensive Support for Real Process Analysis," in
Proceedings of the 28th International Conference on
Applications and Theory of Petri Nets and Other Models of
Concurrency (ICATPN07), Siedlce, Poland, 2007.

[11] W.M.P. van der Aalst, V. Rubin, H.M.W. Verbeek, B.F. van
Dongen, E. Kindler, and C.W. Günther, "Process Mining: A
Two-Step Approach to Balance Between Underfitting and
Overfitting," Software and Systems Modeling (SoSyM), 2009.

[12] T. Mackinnon, S. Freeman, and P. Craig, "Endo-Testing: Unit
Testing with Mock Objects," in Proc. eXtreme Programming
and Flexible Processes in Software Eng. (XP2000), Cagliari,
Sardinia, Italy, 2000.

[13] N. Tillmann and W. Schulte, "Mock-Object Generation with

Behaviour," in Proceedings of the 21st IEEE/ACM
Internation Conference on Automated Software Engineering,
Tokyo, Japan, 2006, pp. 365-368.

[14] D. Saff, S. Artzi, J. H. Perkins, and M. D. Ernst, "Automated
Test Factoring for Java," in Proc. 20th ACM/IEEE
International Conference on Automated Software Engineering
(ASE'05), 2005, pp. 114-123.

[15] A. Bertolino, G. De Angelis, F. Lonetti, and A. Sabetta, "Let
the Puppets Move! Automated Testbed Generation for
Service-Oriented Mobile Applications," in Proc. 34th
Euromicro Conf. on Software Eng. and Advanced
Applications, Parma, Italy, 2008, pp. 321-328.

[16] A Bertolino, A Polini, P Inverardi, and H Muccini, "Towards
Anti-Model-Based-Testing," in Fast Abstracts in
International Conference on Dependable Systems and
Networks (DSN'04), Florence, 2004.

[17] Framework for Dynamic Analysis and Test. [Online].
http://sourceforge.net/projects/noen/, referenced August 2009.

[18] T. Kanstrén, "Program Comprehension for User-Assisted Test
Oracle Generation," in Proc. 4th Int'l. Conf. on Software. Eng.
Advances, Porto, Portugal, 2009.

[19] T. Kanstrén, E. Piel, and H-G. Gross, "Trace-based code
generation for model-based testing," in Technical Report
TUD-SERG-2009-017, Delft University of Technology,
Software Engineering Research Group, 2009.

VII/9

http://sourceforge.net/projects/noen/

PAPER VIII

Program Comprehension for User-
Assisted Test Oracle Generation

Proceedings of the 4th International Conference on
Software Engineering Advances, ICSEA 2009, Porto,

Portugal, September 20–25, 2009. 10 p.
© 2009 IEEE.

Reprinted with permission from the publisher.

Program Comprehension for User-Assisted Test Oracle Generation

Teemu Kanstrén
VTT Technical Research Centre of Finland

Kaitoväylä 1, 90571 Oulu, Finland
e-mail: teemu.kanstren@vtt.fi

Abstract—Software testing requires a test oracle that makes an
assessment of the correctness of the tested program behaviour,
based on a priori created model. While test automation is a
popular research topic, there is only a limited amount of work
in the subject of automating the process of creating test
oracles. This lack of test oracle automation greatly limits the
usefulness of automated testing techniques. One reason for this
is the difficulty to automatically determine the correctness of
previously unknown software. Instead the task of coming up
with a useful oracle is often left to the user as a manual task.
Program comprehension techniques are focused on supporting
the building of human understanding for a previously un-
known program, and as such are good candidates to assist in
the test oracle creation process. This paper addresses the lack
of automated support for test oracle creation by providing a
framework for using program comprehension techniques to
provide automated assistance to the user in creating test
oracles. Based on analysis of existing work and theoretical
background, the basic concept for this process is defined. A
case example demonstrates the practical application of this
concept with the generation of a model, including a test oracle,
for model-based testing. From the existing approaches and the
presented case example, a framework for this type of process is
presented in order to provide a basis for providing more po-
werful techniques for user-assisted test oracle generation.

Keywords- Test oracle; Program comprehension; Test
automation

I. INTRODUCTION
Test automation in software engineering often does not

live up to its name and promise. Commonly the test automa-
tion is actually a set of test scripts written manually and
executed over and over by a tool designed for this purpose.
This is useful for regression testing but does not deliver on
the promise of automated testing, where one could just run a
tool to generate tests for a given piece of software without
having to manually create them. A truly automated testing
platform would need to automatically generate message
sequences to drive the system under test (SUT) through its
interfaces, test input data for these messages, a test harness to
isolate the SUT from its environment and a test oracle to
verify the correctness of the SUT output in response to the
input messages and data.

With statements on how software testing takes more than
50% of the total development costs [1], test automation has
of course been a popular research topic and numerous re-
search papers have been published related to the automation
of different test automation components. Especially test input

generation has been a popular research area. One of the least
automated parts of test automation remains to be the creation
of test oracles. This can be seen to be partly due to the diffi-
culties to automatically (like a magical oracle) determine the
correctness of previously unknown software. The specifica-
tion of what is to be expected of a SUT comes from its
stakeholders, and no program can guess what is expected
from another program without external input. Some generic
properties of the correct functionality can be devised for
specific cases and domains (e.g. refactoring engines [2] and
protocols errors in web applications [3]), but the truly auto-
mated parts of these are limited and do not generalize.

This paper views the automatically assisted oracle crea-
tion problem as an application of program comprehension
(PC). Similar topics have been considered before, for exam-
ple, Sneed has discussed how the human tester is the person
who needs to have the best understanding of the SUT [4]. PC
is aimed at building a human understanding of software
(SW) systems. Research in this field can be classified to
study either the human view of cognitive processes used to
understand programs or the technological view of building
semi-automated tool support for program comprehension [5].
The end result is typically a model describing the program at
a chosen abstraction level and from a chosen viewpoint.
Finally this model needs to be validated to ensure correct
understanding. This is closely related to how a test oracle
works, by comparing a model of the expected SUT beha-
viour against a model of the actual SUT behaviour and veri-
fying that they match.

The focus of this paper is on creating test oracles for ex-
isting systems, with the help of dynamic analysis techniques.
In the spirit of PC, the goal is not to achieve fully automated
generation of test oracles for any SUT but to provide a
framework for how automated assistance for creating the test
oracles can be provided for the human user. Starting with a
theoretical analysis of the concepts, existing approaches for
the subjects are reviewed. Next, an example case of applying
PC concepts for the generation of a model, including a test
oracle, for model-based testing is presented. Finally, existing
approaches are summed up together in respect to the pre-
sented theoretical background to provide a framework for
providing techniques to support test oracle automation with
the help of PC techniques.

The rest of the paper is structured as follows. Section 2
provides a general overview of the test oracle concept and
existing techniques to support test oracle automation. Section
3 presents the general concepts of PC, and a brief overview
of related techniques. Section 4 provides a model describing

VIII/1

mailto:teemu.kanstren@vtt.fi

the relationship between test oracles and PC, including a
comparison of the test oracle and PC techniques presented in
the previous sections. Section 5 presents an example case of
a PC approach to provide automated assistance for creating
test oracles for an existing system. Section 6 discusses the
case study and its relation to existing work shown in section
4, analyzing these different concepts and presenting a
framework for user-assisted test oracle generation with the
help of PC techniques. Finally, conclusions end the paper.

II. TEST ORACLES
This section presents an overview on test oracle concepts

and related research to provide a basis for analyzing the
synergies to program comprehension in later sections.

A. General Concepts
The concepts of test oracles in this paper follow the defi-

nitions used in [6]. A test oracle is defined as a mechanism
for determining the correctness of the behaviour of software
during (test) execution. The oracle is divided into the oracle
information, specifying what constitutes the correct beha-
viour, and the oracle procedure, which is the algorithm veri-
fying the test results against the oracle information. Further
terms are also used according to [6]. Successful test evalua-
tion requires capturing information about the running system
using a test monitor. For simple systems, it can be enough
for the test monitor to just capture the output of the system.
For more complex systems, such as reactive systems, more
detailed information, such as internal events, timing informa-
tion, stimuli and responses, need to be captured. All the
information captured by the test monitor is called the execu-
tion profile (EP) of the system, and includes control and data
information.

Figure 1. Test oracle components.

The different components of test oracles and their rela-
tions are illustrated in Figure 1. These are grouped to three
main steps based on the order of their application. Before a
test case can be created, the oracle information and proce-
dure need to be defined, which forms the first step. This is
typically based on the program specifications and/or EP (in
which case step 2 would precede step 1). This information
can be generated by a human developer/tester, a test automa-
tion program or a combination of both (program supporting a
human). In the second step, the test case is executed and the

test monitor captures the EP of the system. The input to the
EP is the data captured from the SUT execution by the test
monitor. In the third and final step, the oracle procedure
gives a verdict on test results by comparing the EP to the
expected correct behaviour as expressed by the oracle infor-
mation.

The following subsections give an overview of existing
automation techniques to assist in test oracle creation, in-
cluding both fully automated test oracles (as provided oracle
components for a given domain) and automation tools to
assist a user in oracle creation.

B. Automatic Test Oracle Components
In the context of automated test oracles, Daniel et al. [2]

have presented a set of automated test oracles for refactoring
engines. These oracles are based on the properties of the
refactoring operations supported, including checking for the
invertibility of the refactoring operation (performing the
operation backwards to check it produces the original result),
and checking that the moving of an element actually results
in creating the item in a new location. This type of a test
oracle is applicable to different refactoring engines, and
Daniel et al. describe applying it on the Netbeans and Eclipse
IDE’s.

A generic approach for a test oracle is checking for
thrown exceptions and application crashes [7]. A more do-
main specific but similar approach is presented by Mesbah
and Deursen [3], who use invariants to define a set of auto-
mated test oracles for AJAX-based web-applications. They
provide a set of invariant-based test oracles for generic prop-
erties of this type of web-applications, such as the HTML
always being valid, and the DOM-tree not containing any
(HTTP) error messages. These test oracles are then applica-
ble to any AJAX web-application. As an oracle procedure
they use an automated input-generation designed to crawl
through web-pages and check that the resulting documents
do not violate these invariants.

Memon and Xie [8] present an automated test oracle for
GUI testing. This test oracle follows the traditional
record/replay approach, where the properties of the GUI
elements are used to describe its states. A model of the SUT
behaviour is captured using a set of existing test cases that
are assumed to describe the correct behaviour of the SUT,
and a GUI state extraction technique. This model is then
used as a basis for regression testing to describe the expected
states.

Machine learning has been applied in several studies to
generate a test oracle based on the EP of the SUT. These
oracles are typically based on low-level EP data, such as
capturing all function calls inside a program, their parameter
values and the relations of these values [9]. A learning algo-
rithm is trained with EP’s labeled as failing and correct,
which provides a test oracle that can classify a new execution
as passing or failing. These oracles can be more generic than
the previous approaches, but typically they need to be trained
separately for each SUT and cannot test for any application
specific behaviour, such as correct input-output transitions.

These examples summarize the type of support that cur-
rent automated test oracle components can provide. In case

VIII/2

of Daniel et al. [2] the test oracles can be applied to different
refactoring engines, but not to any other type of SW. More
generic approaches are based on generic errors or exceptions
thrown by the programming language constructs [7][9] or
available in domain specific representations [3]. The Memon
and Xie [8] approach is mainly applicable to regression test-
ing only, with the assumption that the recorded model is
correct, and the model can be fragile with regards to small
changes in the SUT behaviour that are irrelevant from the
test oracle perspective.

C. User Assisted Test Oracle Automation
A second category in automated test oracle creation sup-

port is in user assisted test oracle creation. Typically in these
cases, the oracle procedure is provided and the user has to
provide the oracle information. Usually, a basis for describ-
ing the oracle information is also provided in the form of
tools or libraries that can be used to create or describe it.

In addition to providing automated oracle components
(with both procedure and information) for the generic prop-
erties of web-applications as described earlier, Mesbah and
van Deursen [3] also give the user the option to provide
custom invariants to be checked, such as the contents of a
table being update when a link is clicked. Their toolset will
then automatically crawl through the web-application and
check that the provided invariants are not violated. Here the
invariants are the oracle information provided by the user
and the checking of the invariants is the automated oracle
procedure that is given. The toolset also provides means to
describe the invariants, and in this way supports the creation
of the oracle information.

Andrews and Zhang [10] have presented a technique for
test oracle generation based on log file analysis. This is
based the SUT writing a log file based using a predefined
logging policy and a log file analyser asserting the correct-
ness of the execution based on the log file. Their approach
requires writing the log file analyser component and provid-
ing a matching logging policy to support the analyser. They
illustrate the approach with a state-machine based matching,
where the transitions are based on the available log lines.
The log file analyser component is applied against log files
collected from SUT execution, and makes the assertion
whether the log file matches the expected behaviour or not.
In this case the oracle information is provided in form of the
analyser component that the user has to write. This is sup-
ported by the logging policy and the interfaces to their test
execution system (the oracle procedure).

Both Ducasse et al. [11] and De Roover et al. [12] have
described similar techniques for building test cases based on
traces collected from a programs execution. They start with
executing the SUT and collecting traces from the execution.
Logic languages derived from Prolog are used to query the
execution traces, and these queries act as the test oracles. The
queries assert that the recorded behaviour matches the ex-
pected behaviour. Ducasse et al. [11] use the queries to filter
relevant data from large, low-level, data sets, while De
Roover et al. [12] do similar queries but aim at limiting the
trace data to higher level events and lighter trace implemen-
tation. The aim with these techniques is to produce a model

that is both human understandable and machine verifiable, in
order to support both test automation and PC. In this case,
the user has to provide the oracle information in the form of
a query that describes what should be found in the (EP) trace.
The oracle procedure is the test automation system that ex-
ecutes the queries and reports their results, doing a compari-
son against set expectations.

Lienhard et al. [13] describe the use of a visualization
technique, based on a program execution trace, as a basis to
assist the user in creating unit tests. This visualization is
called the Test Blueprint. They focus their analysis on a part
of a program execution, which they term an execution unit,
in order to reveal so called side-effects. These side-effects
describe the created and changed objects, changed object
references and similar properties during the execution of the
chosen unit. These are then provided to the user through their
visualization, which helps the user in turning them into asser-
tions. These assertions are used to verify that no important
properties (side-effects) are violated during changes of the
SUT. They also describe the visualization as supporting the
creation of a test harness, as it shows required interactions
with other objects. Creating the assertions in this case is done
manually.

Program invariants are used as a basis for assisted oracle-
generation in Agitator [14], Eclat [15] and in the technique
proposed by Xie and Notkin [16]. These techniques require a
set of program executions as a basis (such as existing test
cases or an example program) and based on this create an
invariant model to describe the SUT. This model is based on
capturing all method calls and their parameter values (the
execution profile). They then provide the user with the op-
tion of turning these invariants into assertions as part of the
SUT unit test suite, to check that the invariants are not vi-
olated in regression testing. In this case, the user is actually
provided with a form of a test oracle procedure and informa-
tion. The oracle procedure is the assertion facility of the used
unit test tool, and the oracle information is the invariants that
are suggested to be turned into assertions. The procedure is
not fully automatic, it requires the user to evaluate the use-
fulness of the proposed invariants, augment or modify them
where needed and to choose which ones should be turned
into assertions. As such, they can be provide highly auto-
mated support but, due to focusing on low-level execution
data, are limited in their usefulness (much like the machine
learning approaches described earlier) to unit- tests of small
granularity classes or components. Higher level concepts,
such as the properties of input-output transitions in relation
to specification are not supported as such oracle information
is in practice not embedded in program structure for inva-
riant detection.

III. PROGRAM COMPREHENSION
This section provides an overview of program compre-

hension concepts and related research to provide a basis for
analysing the synergies with test oracles in later sections.

A. General Concepts
Program comprehension is a field dealing with human

understanding of software systems, and its theoretical foun-

VIII/3

dations are based on fields studying human learning and
understanding. The theories of PC are also referred to as
cognitive theories of program comprehension [5], which
highlights the purpose of PC techniques and tools as an aid
to building human understanding of software systems. Pro-
gram comprehension can make use of information from
different sources, such as static analysis of program artefacts
(e.g. source code) and dynamic analysis of program execu-
tions. In the context of this paper, when PC is discussed, it
refers to techniques related to dynamic analysis.

Figure 2 shows the process of PC as a three-step process
based on [17], adapted to include the impact of analysis of
the program itself on the hypothesis of the program purpose.
First, based on the program documentation, a hypothesis is
made for what is the purpose of the program and how it is
expected to work. This step can also be influenced by analy-
sis of the program itself when the documentation is not up-
to-date. The program is examined in the second step to build
a hypothesis on how it operates. The building of this hypo-
thesis can be influenced by the hypothesis on the program
purpose. Finally, it is attempted to match the two hypotheses
together to see if the understanding is correct. If this step
fails, it forces a return to either step one or step two.

Figure 2. Program comprehension process.

In order to provide the required basis for how the appli-
cation of PC techniques for test automation is demonstrated
in the case study section later, the basic approaches for PC
need to be reviewed. Two basic approaches to program
comprehension are typically identified: top-down compre-
hension and bottom-up comprehension [5]. Both can be
mapped to the process described in Figure 2, where the top
down emphasizes documentation for step 1 and bottom-up
emphasizes the program part. Further, from these a hybrid
model called an integrated metamodel has been presented
[18]. Other types of models include a knowledge based
model, opportunistic and systematic strategies, and consid-
eration of program and programmer characteristics [5].

The bottom-up approaches assume that the comprehen-
sion process starts from low-level concepts, such as reading
source code statements, and grouping these into higher-level
concepts [19]. In these models the programmer starts from
composing small chunks to progressively larger chunks,
finally acquiring a model for the program or its parts under
investigation.

The top-down approach was presented by Brooks [20],
who describes program comprehension as building know-

ledge about the problem domain and mapping it to the pro-
gram source code. First an initial hypothesis is formulated
based on the programmer’s knowledge about the program
domain. Based on information extracted from the program,
the hypothesis is refined and subsidiary hypothesis can be
generated. The verification of these hypotheses is based on
beacons, which are described as sets of features (details) in
the code that typically indicate the occurrence of certain
structures or operations related to the hypothesis. It is seen
that the investigation of a program will identify strong bea-
cons for all hypotheses, and these beacons will lead to fur-
ther refinement of the hypotheses.

In a hybrid approach, the programmer is seen to switch
between these top-down and bottom-up approaches as seen
necessary and as the analysis of the program progresses
[18]. One is seen to move from the specification to source
code and use all these available information sources as
needed, and as described in the top-down and bottom-up
approaches.

B. Existing Techniques
This subsection gives a brief overview of existing tech-

niques related to PC with dynamic analysis. Since the intent
is to provide a basis for mapping from PC to test oracle
automation, the focus is on behavioral models as this allows
matching them against test oracle requirements. As PC is a
field with a large number of techniques and studies [21], the
focus is only to give an overview of this area.

In order to support the human cognitive process of pro-
gram comprehension, various tools and techniques have
been presented with different approaches, and aiming dif-
ferent properties of the SW, such as structure and behaviour.
These approaches include visualizations, pattern detection,
summarization (e.g. clustering), data queries, and filtering or
slicing the data [21].

Sequence diagrams are a popular means to model the be-
haviour of the analysed system [22][23]. These tools are
intended to support functions such as mapping sequences of
messages (method invocations) to features of the analysed
SW (top-down approach), and to understand patterns of
execution (bottom-up approach) [22].

State machines are another popular means of modeling
SW behaviour, and many approaches to synthesize state-
machines based on execution traces have been presented
(e.g. [24], [25]). Although many of these list the support for
PC as one of the uses, there are only few studies on actual
use and how the generated state-machines assist humans in
PC [21]. Although it is intuitive that understanding the
states of a system and how the transitions between them
happen help in PC, it would be useful to see empirical stu-
dies on how people actually use them to support this
process.

Other types of models include invariant models [26],
concurrency models [27], architectural models of compo-
nents and connectors [28], and petri-nets [29]. These are
described to help in tasks such as understanding the concur-

VIII/4

rency related dependencies [27][29] or structures of the
system [28]. However, these too suffer from lack of empiri-
cal studies on how they would be systematically applied by
their users. This lack of empirical studies (controlled expe-
riments) on how the human users make use of these models
is also highlighted as one of the lacking areas in PC research
by Cornelissen et al. [21].

IV. TEST ORACLES AND PROGRAM COMPREHENSION
This section presents an analysis of the relations between

the test oracle and program comprehension concepts pre-
sented in the previous two sections, and related research.

A. General Concepts
The previous two sections presented the basic concepts

of test oracles and program comprehension and an overview
of research done in these areas. This section reviews these
two concepts together from the viewpoints of commonalities
to use as a basis for finding synergies between them. Figure
1 and Figure 2 showed an overview of test oracle and PC
procedures accordingly. Figure 3 shows these two figures at
a higher abstraction level and maps them together. The top
row shows the test oracle process and the bottom row shows
the PC process.

Figure 3. Test oracles and program comprehension.

Figure 3 shows how the two concepts are similar by
mapping each of the three steps in both processes to each
other and also providing a similar feedback loop in both
processes. The details of these steps were described in the
previous sections and are not repeated here. Instead this
section is focused on discussing the conceptual similarities of
these two processes.

In the first step, the creation of oracle information (OI)
uses program documentation and execution profiles as input
to create a specification of what is expected from the SUT.
Similarly, in the first step of the PC process a functional
hypothesis (FH) is built for the program based on its docu-
mentation and artefacts such as the EP. Thus, both processes
have conceptually similar inputs, outputs and goals in this
step.

In the second step of the oracle process, the EP of the
SUT is captured. This EP describes the behavior of the SUT
implementation. In step 2 of the PC process, the operational
hypothesis (OH) is built to describe how the program oper-

ates. Again, both these processes have similar goals, inputs
and outputs in this step. Both aim at building a model to
describe what the program is and what it does. Both also use
the program and its executions as input.

In the third step, the oracle process compares the OI
model against the EP model to evaluate the test results. If
these are found to match, the test result is marked as passed;
otherwise it is marked as a failure. Similarly, in the program
comprehension process, this step involves evaluating the FH
against the OH. If these are found to match, the program
comprehension is seen to be successful; otherwise it is seen
to have failed.

Finally, in both processes, a failure in the third step
prompts a return to the earlier model generation phases. As
the evaluation is in both cases based on comparison of two
models (or hypothesis), this step leads to the re-evaluation of
both of these models to see which one(s) are not correct,
refining these models based on this evaluation and repeating
the process.

B. Existing Techniques
Many techniques that are mainly aiming to model a SW

system list a number of possible fields where the authors
think models generated from execution traces could be used.
These fields usually include both PC and software testing.
However, more concrete evaluations for all the included uses
are in many cases missing, as usually a paper can only have
one effective focus area. Despite this lack of studies, it is true
that generated models at a higher level of abstraction than
pure execution trace represented by function calls and para-
meter values are of course easier to understand for humans.
As they also describe the executions of the SUT, they can be
considered to have possible uses for software testing.

Some of the better examples are found in the research de-
scribed in the earlier section about user assisted test oracles.
For example, both Ducasse et al. [11] and De Roover et al.
[12] describe their techniques as supporting both software
testing and PC. They describe their tools from the software
testing viewpoint, in the form that enables the user to create
queries over the SUT traces and once satisfied with the an-
swers, to turn these into assertion for the test suite of the
SUT. PC is seen to be supported in answering the queries the
user has about the program, and test automation in keeping
these queries as a part of the regression test suite. As a part
of the regression test suite, they can also be seen as uphold-
ing that understanding by reporting when the related assump-
tion no longer holds.

Similarly, the previously describe work by Lienhard et al.
[13] on their Test Blueprints technique aims to support the
creation of test oracles with the aid of program comprehen-
sion techniques. The visualization they use is originally
developed to support program comprehension, and in this
case they also use it to help the user understand the SUT in
order to create test assertions, which act as test oracles.

Invariant detection started out from work on producing
models based on execution profiles and was described as
potentially supporting many different domains, such as test
automation and program comprehension [26]. A number of
tools including Agitar [14], Eclat [15] and the technique

VIII/5

presented by Xie and Notkin [16] use these
models as a basis and are described as supp
ware testing and PC. They exercise the SU
scenarios, either with generated input or w
cases. The inferred invariants of the SUT ar
to the user and the user is given the option to
riants into assertions to create new test c
related input data. PC is supported by des
behaviour as a set of invariants, test automa
the user to turn these invariants into assert
suite. Again, PC can also be seen to be s
inclusion in a regression test suite, which re
when these assumptions no longer hold.

V. A CASE EXAMPLE
This section presents a case example of a

cepts presented in this paper. Previously
background for the use of PC for user-ass
creation has been presented, including a brie
set of existing tools that can be seen to help
This section is intended to present an examp
ing the previously presented theoretical con
and is thus termed a case example. With the
and techniques, a model, including a test ora
based on the execution profile (traces) of th
cepts presented on the previous sections on
theory are mapped to this concrete example
how the PC concepts can help in the diffe
process.

The SUT in this case is a component th
base and a server for sensor data. Clients c
subscribe and query for sensor data and th
nent keeps track of all the information rece
ent sensors. In this case, the captured execut
SUT (the server component) is turned into
model-based testing (MBT) tool ModelJU
the SUT has to be modeled as an exten
machine (EFSM), where it makes transition
to another based on a set of guard constrai
when each transition can be taken. The m
process has been implemented in a tool th
generates the model from the execution prof

To start with, when a model is used as
of a SUT, the model should provide a co
scription of the SUT at the chosen abstractio
also comprehensive test generation from thi
the model is generated based on the execu
tured from the existing SUT with a set of de
the completeness of the model depends on t
of the execution profile.

As described by Cornelissen et al. [21], P
analysis has two typical possible data source
basis to analyse a system. One is the existi
the other is any existing sample execution
such as user sessions or example applicati
example, first the execution profile of the
captured by using an example application i

1 http://www.cs.waikato.ac.nz/~marku/m

e invariant based
porting both soft-
UT with a set of
with existing test
re then presented
o turn these inva-
cases along with
scribing the SUT
ation in allowing

rtions for the test
supported by the
esults in reporting

applying the con-
y the theoretical
sisted test oracle

ef description of a
p in this process.
ple case of apply-
ncepts in practice
e help of PC tools
acle, is generated

he SUT. The con-
n the background
e, and it is shown
erent parts of this

hat acts as a data-
can connect to it,
he server compo-
eived from differ-
tion profile of the

o a model for the
nit1. This means

nded finite state-
ns from one state
ints that describe
model generation
hat automatically
file traces.
a basis for MBT

omprehensive de-
on level to ensure
is model. As here
ution profile cap-
efined executions,
the completeness

PC with dynamic
es to be used as a
ing test suite and

n of the program,
ions. In this case
e SUT has been
intended to dem-

mbt/modeljunit/

onstrate the use of the component
about 20000 messages captured f
through the component and sets up
illustrate the use of the data.

To check that the execution pr
hensive description of the SUT to b
EFSM, the execution profile is vis
process mining tool. This tool is
build an understanding of business
event logs as different types of mod
ize the execution profile trace as an
of the execution profile can be chec
tion (in this case written in technical
tion is shown in Figure 4.

Figure 4. ProM visualization of the

This visualization and analysis a
bottom-up approach to PC, providi
derstanding of the available SUT e
this view is used, it is not possible
profile is a comprehensive repres
behaviour for the purposes of testin
egy needs to be applied and the pr
against the SUT specification. From
execution profile was missing som
transitions, such as the ability to req
data message back as a reply. To
execution profile was augmented wi
cases (executions) intended to captu
states and transitions of the SUT. Th
execution profile with the example
cused tests is shown in Figure 5. Th
a comprehensive description of the S

2 http://www.processm

t. This application feeds
from real-world sensors
p a set of test clients to

rofile contains a compre-
be used as a basis for an
sualized with the ProM2
intended to help people
processes by visualizing

dels. By using it to visual-
n FSM, the completeness
cked against its specifica-
l English). This visualiza-

initial execution profile.

approach can be seen as a
ng means to gain an un-

execution profile. If only
e to tell if the execution
entation of the program

ng. Instead, a hybrid strat-
roduced model compared
m this it was seen that the
me important states and
uest sensor data and get a
address these issues, the
ith additional focused test

ure the missing behavioral
he resulting model for the
e application and six fo-
his was judged to provide
SUT behaviour.

mining.org

VIII/6

http://www.cs.waikato.ac.nz/~marku/m
http://www.processm

With a satisfactory execution profile (de
states) now available, it is used as a basis f
model in a format usable by the MBT t
another benefit of applying the synergies
test automation as described in previous
point the tool support to build the basic state
test model is already available in the PC
reused for test model generation also. Pro
built for visualization to support analysis
However, in recent versions support for u
algorithms from outside its GUI have also b
this support, the test model generation tool
the author of this paper creates the state-m
Figure 5 and uses it as a basis in its own alg
ate the test model.

Figure 5. ProM visualization of the final ex

The generated EFSM model includes ev
by the MBT tool, including the test oracles.
generated from the ProM state-machine mo
invariant model produced by the Daikon3 to
ed from the EP trace. The generated test o
the interactions in the tests generated by the
those in the state-machine and use the inv
the correctness of return values. These need
the user manually to see that they do not mis
details, such as self-loops, or creation of com

Without going into details (due to space
paper and to retain focus), a basic approa
generated model is to enable the SUT state

3 http://groups.csail.mit.edu/pag/d

escribing required
for generating the
tool. This shows
between PC and
sections. At this
e-machine for the
tool and can be

oM is originally
s of event logs.
sing the analysis
een added. Using
 implemented by

machine shown in
orithms to gener-

ecution profile.

verything needed
These oracles are

odel and from the
ool, both generat-
oracles check that

MBT tool match
ariants check for
to be checked by
ss any behavioral

mplex objects.
limitations of the

ach to refine the
es and transitions

daikon/

one at a time and check their correc
cation. With this approach the bui
supports the PC process, as the MB
and it exactly tells how it matches o
implementation. This process is illu
ure 7, and Figure 8. In Figure 6
enabled. In Figure 7 two more stat
Figure 8 one additional state has be
lizations are provided by the MBT t
back loop similar to using a PC to
ment process progresses, all states
time. At the same time, the execu
oracles also give feedback back to
stracted model may hide importan
MBT tool executes it and reports an
model against the implementation, it
tions in the model clear and check
sults.

Figure 6. First state enabled i

Figure 7. Three states enabled

Figure 8. Four states enabled i

ctness against the specifi-
ilding of the model also
T model can be executed
or differs from the actual
ustrated in Figure 6, Fig-

the first state has been
es have been enabled. In

een enabled. These visua-
tool, which allows a feed-
ool. As the model refine-
will be enabled one at a
uted model and the test
 the PC process. An ab-

nt details, and when the
ny errors in matching the
t also makes any assump-

ks them, reporting the re-

in the MBT model.

in the MBT model.

in the MBT model.

VIII/7

http://groups.csail.mit.edu/pag/d

During this case study, the usefulness of this approach
was also demonstrated as it revealed six different, previously
unknown, errors in the SUT. These were related to different
properties of the SUT, such as incorrect implementation of
the specification, missing or ambiguous parts of the specifi-
cations, and design errors in implementation details of the
SUT.

VI. A FRAMEWORK AND RELATED DISCUSSION
The existing techniques supporting both program com-

prehension and test oracle automation presented in section
IV and the case example shown in section V share a number
of properties. All start with supporting PC in the form of
building a model based on the execution profile of the SUT.
Test automation is supported by providing means to turn
these models into different forms of test oracles for the SUT.
From the PC viewpoint, they all apply a hybrid approach that
starts with a bottom-up approach of building models from
the execution profile, presenting them to the human user for
analysis. The human user applies a top-down analysis by
using the specification to determine the correctness of the
proposed models and to turn them into test oracles.

A. A Framework for User-Assisted Test Oracle Generation
The different representations of the test oracle informa-

tion used by the different techniques that have been pre-
sented also share the property of being invariant representa-
tions. Some of these techniques describe the provided oracle
information as invariants [14][15][16], however they only
discuss invariants as a basis provided by an external tool and
not as the underlying concept of the test oracles themselves.
However, in practice all oracle information is always a form
of an invariant representation of some property of the SUT,
which is then verified with the given oracle procedure. In the
case of using queries over execution profile traces [11][12],
the invariant is that the property expressed by the query
holds in all analysed versions of the traces. In the case of the
Test Blueprint approach [13], the invariant is that the “side-
effects” checked by the created assertions are not changed.
The concept of thinking of a test oracle information as a
representation of an invariant, and the oracle procedure as an
invariant-checker is important as it provides a conceptual
framework for creating means to provide fully automated or
user-assisted test oracle generation techniques.

In the presented approaches based on dynamic invariants
inferred from the SUT execution profile, both the oracle
procedure and the oracle information are provided, but the
user needs to analyse the provided information and make an
assessment if this is correct or not, possibly refining it
[14][15][16]. Using queries of the execution profile trace as
oracles requires one to define the queries as the oracle infor-
mation to complete the oracle [11][12]. In the Test Blue-
prints approach, the user is presented with a visualization of
the “side-effects” the execution of a program unit has, which
can be used as a basis to write test oracles to verify these
“side-effects” [13]. In the MBT model generation approach,
both the oracle procedure and oracle information are pro-
vided and the user must check the information and refine the
generated model as needed. All these approaches require the

user to provide the oracle information or to refine it, while
the oracle procedure is provided. The invariant- and model-
based techniques can be seen as more advanced in their sup-
port for the user as they provide (generate) the initial (oracle
information) model in a form directly executable as a test
oracle, and which can then be analysed and refined by the
user.

From these different techniques, it is possible to derive a
set of guidelines for what to provide to the user when provid-
ing PC related techniques to assist in automated generation
of test oracles. The items provide a framework for using
program comprehension techniques to provide automated
assistance for a user in generating test oracles, and can be
summarized as providing the user with:

• An invariant notation suitable for the chosen oracle

information.
• (a basis for) The oracle information, i.e. a set of in-

variants describing a meaningful properties of the
SUT.

• The oracle procedure, i.e. an invariant checker.
• (an automated) Means to turn the oracle information

into a test case with the oracle procedure.
• Assistance for the user to analyse (comprehend) the

generated oracle information.
• Possibility to refine the oracle information.
• Means to (execute the model and) verify the com-

plete oracle, i.e. an automated invariant-checker.

B. Related Discussion
The oracle procedure relates to the oracle information

and how it needs to be processed and analysed. In many
cases this can be simple, for example verifying that the out-
put from a method call always has a value smaller than 100
(for invariant x < 100) can be implemented with a single
assert statement. This is closely tied to the test automation
platform used, such as a unit testing tool that provides the
assertion facility, and the (program comprehension) tools
used to provide the model of the execution profile that is
used as a basis for the oracle information.

The basis for the oracle information as described in the
techniques reviewed in this paper is formed from the inva-
riant- and state-machine models of the SUT created based on
the execution profile. Thus they already provide an abstrac-
tion generated based on the execution profile that the user
can turn into or refine to produce the required oracle infor-
mation.

Turning the oracle procedure and information into a test
case requires mapping the oracle information to the oracle
procedure. For example, in the MBT case example, this
requires parsing both the invariant and state-machine models
and turning them into an EFSM model. In the context of
using PC tool, when they provide access to their internal
model representations this provides the best support for both
PC and test oracle automation as shown in section V.

As any tests generated in this way are based on the ex-
ecution profile and are thus limited by what executions it
contains, the user must be able to analyse the provided test

VIII/8

oracles and to refine the model to match the specification.
Since the model describes the actual behaviour of the SUT,
the user must also be able to verify that this is actually the
expected behaviour of the SUT as expressed by its specifica-
tion. This highlights the need for means to analyse the mod-
els with tools such as those used in PC. This was demon-
strated in the MBT case example, where the resulting state-
machine could be visualized both from the execution profile
and after being generated into an EFSM. In the same case
example, it was demonstrated how the model assumptions
can be made clear and verified (comparing the generated test
oracle vs. the specification) by the PC related visualization
and analysis, and by executing the model with the test auto-
mation tool.

The process as described by the guidelines matches that
of both program comprehension and test oracle automation
as described in Figure 3. The user starts with the model of
what is the expected behaviour of the SUT, such as its speci-
fication. Using the tools provided, the execution profile is
captured and turned into a model to be used as a basis for
defining the oracle information. The user analyses this in-
formation, refines the model and verifies its correctness. As
required, both of these models are iteratively refined accord-
ing to findings in the verification phase.

These examples show that using PC related concepts and
techniques can be helpful in the context of providing auto-
mated support for test oracle generation. However, as dis-
cussed before, and also noted by Cornelissen et al. [21], there
is a lack of studies on how the PC techniques support actual
humans in their work. This also makes it more difficult to
take these approaches and consider how they could be ap-
plied in the context of test oracle generation. The example
shown in section V uses PC techniques to generate and vi-
sualize state-machines as a basis for generating a test model,
including a test oracle. Although there are tools for state-
machine generation in PC, there are not many empirical
studies on their use [21]. Still, in the case study described in
this paper, one tool was used to aid in test oracle generation
with a straight-forward approach as described in section V.
However, more comprehensive studies in application of PC
techniques would make the process of applying them for test
oracle automation easier. Similarly, this could be eased by
providing support for accessing and using the models pro-
vided by the PC tools externally from other tools. This sup-
port and the framework presented in this section also provide
a basis for creating more powerful techniques for user-
assisted test oracle generation.

VII. CONCLUSIONS AND FUTURE WORK
In the context of test automation, the creation of test

oracles is one of the most difficult parts to automate. This is
also visible in the limited number of papers that address the
test oracle automation problem. This paper addressed this
issue by providing a framework for applying techniques
from the field of program comprehension to provide auto-
mated assistance to the user in creating test oracles. Related
work on this topic was reviewed, analysed, and brought
together with the concept of program comprehension for test
oracle automation. The concept was illustrated with a prac-

tical example of generating models usable as a basis for test
oracles in model-based testing. By comparison of this exam-
ple with related work, a framework was provided for apply-
ing program comprehension techniques to provide automated
assistance for users in creating test oracles. The provided
framework describes test oracles as invariant-checkers and
provides a set of guidelines for providing automated assis-
tance to the user in generating these invariant-checkers based
on information captured from the program execution with
the help of dynamic analysis techniques. The provided
framework helps with providing more powerful techniques
to assist in the test oracle generation process.

This paper also highlighted need for future work in the
field of program comprehension to identify how a human
user actually makes use of a program comprehension tech-
nique. This information is needed in order to automate the
use of these techniques as much as possible in the context of
the framework presented here. In the field of test automation,
interesting future work includes making use of more pro-
gram comprehension techniques to support user-assisted test
oracle generation.

ACKNOWLEDGMENT
This work has been supported by the Nokia Foundation.

The author wishes to thank Eric Verbeek for his help with
the ProM tool, and Andy Zaidman and the anonymous re-
viewers for their helpful comments on improving the paper.

REFERENCES

[1] A. Bertolino, "Software Testing Research:
Achievements, Challenges, Dreams," in Proc. Future
of Software Engineering (FOSE'07), 2007.

[2] B. Daniel, D. Dig, K. Garcia, and D. Marinov,
"Automated Testing of Refactoring Engines," in Proc.
6th joint meeting of the European Software
Engineering Conference and the ACM SIGSOFT
Symposium on Foundations of Software Engineering
(ESEC/FSE'07), Dubrovnic, Croatia, 2007, pp. 185-
194.

[3] Ali Mesbah and Arie van Deursen, "Invariant-Based
Testing of Ajax User Interfaces," in Proc. 31st Int'l.
Conf. on Software Eng., Vancouver, Canada, 2009.

[4] H. Sneed, "Program Comprehension for the Purpose of
Testing," in Proc. 14th Int'l. Workshop on Program
Comprehension (IWPC'04), 2004.

[5] M-A. Storey, "Theories, Tools and Research Methods
in Program Comprehension: Past, Present and Future,"
Software Quality Journal, vol. 14, no. 3, pp. 183-208,
Sept. 2006.

[6] Debra J. Richardson, Stephanie Leif Aha, and T. Owen
O'Malley, "Specification-Based Test Oracles for
Reactive Systems," in Proc. 14th Int'l. Conf. on
Software Eng. (ICSE'92), Melbourne, Australia, 1992,
pp. 105-118.

[7] X. Yaun and A. M. Memon, "Using GUI Run-Time

VIII/9

State as Feedback to Generate Test Cases," in Proc.
29th Int'l. Conf. on Software Eng. (ICSE'07), 2007.

[8] Atif Memon and Qing Xie, "Using Transient/Persistent
Errors to Develop Automated Test Oracles for Event-
Driven Software," in Proc. 19th Int'l. Conf. on
Automated Software Eng. (ASE'04), 2004.

[9] Murani Haran, Alan Karr, Michael Last, Alessandro
Orso, Adam A. Porter, Ashish Sanil, and Sandro
Fouché, "Techniques for Classifying Executions of
Deployed Software to Support Software Engineering
Tasks," IEEE Transactions on Software Eng., vol. 33,
no. 5, pp. 287-304, May 2007.

[10] J. H. Andrews and Y. Zhang, "General Test Result
Checking with Log File Analysis," IEEE Transaction
on Software Eng., vol. 29, no. 7, pp. 634-648, July
2003.

[11] S. Ducasse, T. Gîrba, and R. Wuyts, "Object-Oriented
Legacy System Trace-Based Logic Testing," in Proc.
European Conf. on Software Maintenance and
Reengineering (CSMR'06), 2006.

[12] C. D. Roover, I. Michiels, K. Gybels, K. Gybels, and
T. D'Hondt, "An Approach to High-Level Behavioral
Program Documentation Allowing Lightweight
Verification," in Proc. 14th Int'l. Conf. on Program
Comprehension (ICPC'06), 2006.

[13] Adrian Lienhard, Tudor Gîrba, Orla Greevy, and Oscar
Nierstrasz, "Test Blueprints - Exposing Side Effects in
Execution Traces to Support Writing Unit Tests," in
Proc. 12th European Conf. on Software Maintenance
and Reengineering (CSMR'08), 2008, pp. 83-92.

[14] M. Boshernitsan, R. Doong, and A. Savoia, "From
Daikon to Agitator: Lessons and Challenges in
Building a Commercial Tool for Developer Testing," in
Proc. Int'l. Symposium on Software Testing and
Analysis (ISSTA'06), Portland, Maine, 2006, pp. 169-
179.

[15] C. Pacheso and M. D. Ernst, "Eclat: Automatic
Generation and Classification of Test Inputs," in Proc.
European Conf. on Object-Oriented Programming
(ECOOP'05), 2005, pp. 504-527.

[16] T. Xie and D. Notkin, "Tool-Assisted Unit-Test
Generation and Selection Based on Operational
Abstractions," Journal of Automated Software
Engineering, vol. 13, no. 3, pp. 345-371, July 2006.

[17] K. Magel, "A Theory of Small Program Complexity,"
ACM SIGPLAN Notices, vol. 17, no. 3, 1982.

[18] A. von Myrhauser and A. M. Vans, "Program
Comprehension During Software Maintenance and
Evolution," IEEE Computer, vol. 28, no. 8, pp. 44-55,
August 1995.

[19] N. Pennington, "Stimulus Structures and Mental
Represntations in Expert Comprehension of Computer
Programs," Cognitive Psychology, vol. 19, pp. 295-
341, 1987.

[20] R. Brooks, "Towards a Theory of the Comprehension
of Computer Programs," Int'l. Jounral of Man-Machine
Studies, vol. 18, pp. 543-554, 1983.

[21] B. Cornelissen, A. Zaidman, A. van Deursen, L.
Moonen, and R. Koschke, "A Systematic Survey of
Program Comprehension through Dynamic Analysis,"
IEEE Transaction on Software Eng., 2009.

[22] C. Bennett, D. Myers, M-A. Storey, D. M. German, D.
Ouellet, M. Salois, and P. Charland, "A Survey and
Evaluation of Tool Features for Understanding
Reverse-Engineered Sequence Diagrams," Journal of
Software Maintenance and Evolution: Research and
Practice, vol. 20, no. 4, pp. 291-315, July 2008.

[23] L. C. Briand, Y. Labiche, and J. Leduc, "Towards the
Reverse Engineering of UML Sequence Diagrams for
Distributed Java Software," IEEE Transactions on
Software Eng., vol. 32, no. 9, pp. 642-663, Sept. 2006.

[24] D. Lorenzoli, L. Mariani, and M. Pezzè, "Automatic
Generation of Software Behavioral Models," in Proc.
30th Int'l. Conf. on Software Eng. (ICSE'08), Leipzig,
Germany, 2008, pp. 501-510.

[25] Neil Walkinshaw, Kirill Bogdanov, Shaukat Ali, and
Mike Holcombe, "Automated Discovery of State
Transitions and their Functions in Source Code,"
Software Testing, Verification and Reliability, vol. 18,
no. 2, pp. 99-121, June 2008.

[26] M. D. Ernst, J. Cockrell, W. G. Griswold, and D.
Notkin, "Dynamically Discovering Likely Program
Invariants to Support Program Evolution," IEEE
Transactions on Software Eng., vol. 27, no. 2, pp. 99-
123, Feb. 2001.

[27] J. E. Cook and Z. Du, "Discovering Thread Interactions
in a Concurrent System," Journal of Systems and
Software, vol. 77, no. 3, pp. 285-297, Sept. 2005.

[28] B. Schmerl, J. Aldrich, D. Garlan, R. Kazman, and H.
Yan, "Discovering Architectures from Running
Systems," IEEE Transactions on Software Eng., vol.
32, no. 7, pp. 454-466, July 2006.

[29] W.M.P. van der Aalst, V. Rubin, H.M.W. Verbeek,
B.F. van Dongen, E. Kindler, and C.W. Günther,
"Procee Mining: A Two-Step Approach to Balance
Between Underfitting and Overfitting," Software and
Systems Modeling (SoSyM), 2009.

VIII/10

 Series title, number and
report code of publication

VTT Publications 727
VTT-PUBS-727

Author(s)
Teemu Kanstrén
Title

A Framework for Observation-Based Modelling in
Model-Based Testing

Abstract
In the context of software engineering, test automation as a field of research has been around for a
very long time. Yet, testing and related concepts are still generally considered to be one of the most
time-consuming and expensive parts of the software life cycle. Although it is a field with a relatively
long research background, many existing test automation systems are still relatively simple and not
very different from the early days. They still focus on executing an existing, usually manually
crafted, set of tests over and over again.

One approach that has also been around for a relatively long time but has only recently begun to
attract considerable interest in the domain of software testing is model-based testing. In model-
based testing, the system under test is represented by a model describing its expected behaviour at
a higher abstraction level, and a set of chosen algorithms are used to generate tests from this
model. Currently, these models need to be manually crafted from the specification.

This thesis presents an approach for observation-based modelling in model-based testing and
aims to provide automated assistance for model creation. This includes design and architectural
solutions to support observation and testing of the system, analysis of different types of executions
used as a basis for observations, and finally combines the different viewpoints to provide automated
tool support to generate an initial test model, based on the captured observations, that is suitable
for use in model-based testing. This model is then refined and verified against the specification. As
the approach reverses the traditional model-based testing approach of going from specification to
implementation, to going from implementation to specification, guidelines for its application are also
presented. The research uses a constructive approach, in which a problem is identified, a construct
to address the problem is designed and implemented, and finally the results are evaluated.

The approach has been evaluated in the context of a practical system in which its application
discovered several previously unknown bugs in the implementation of the system under test. Its
effectiveness was also demonstrated by generating a highly complete model and showing how the
completed model provides additional test coverage both in terms of code covered and injected
faults discovered (test mutants killed).

ISBN
978-951-38-7376-9 (softback ed.)
978-951-38-7377-6 (URL: http://www.vtt.fi/publications/index.jsp)

Series title and ISSN Project number

VTT Publications
1235-0621 (softback ed.)
1455-0849 (URL: http://www.vtt.fi/publications/index.jsp)

33451

Date Language Pages
January 2010 English 93 p. + app. 118 p.

Name of project Commissioned by

Keywords Publisher
Model-based testing, test automation,
observation-based modelling, test generation

VTT Technical Research Centre of Finland
P.O. Box 1000, FI-02044 VTT, Finland
Phone internat. +358 20 722 4520
Fax +358 20 722 4374

http://www.vtt.fi/publications/index.jsp
http://www.vtt.fi/publications/index.jsp

VTT CREATES BUSINESS FROM TECHNOLOGY
�Technology and market foresight • Strategic research • Product and service development • IPR and licensing
• Assessments, testing, inspection, certification • Technology and innovation management • Technology partnership

• • • VTT PU
B

LIC
A

TIO
N

S 727	
A

 fra
m

ew
o

rk fo
r o

bservatio
n

-ba
sed m

o
dellin

g
 in

 m
o

del-ba
sed testin

g

ISBN 978-951-38-7376-9 (soft back ed.) 	 ISBN 978-951-38-7377-6 (URL: http://www.vtt.fi/publications/index.jsp)
ISSN 1235-0621 (soft back ed.)		 ISSN 1455-0849 (URL: http://www.vtt.fi/publications/index.jsp)

Software testing is one of the most time consuming and expensive parts of the
software development lifecycle. Advanced techniques such as model-based testing
(MBT) promise to ease this process. However taking these techniques into use can
require significant investments and expertise, hindering their success.

This dissertation presents a framework for observation-based modelling (OBM)
for MBT. OBM uses a set of observations (trace) captured from actual execution
scenarios for an existing system as a basis for an advanced starting point for test-
ing and verification with the help of a MBT tool. The approach helps verifying the
correctness of the implementation vs the specification, and testing for errors in the
implementation details. Providing advanced starting points for MBT testing tech-
niques and guidelines for their use reduces the cost and effort needed in their adop-
tion and provides for more advanced automated testing and verification support.

http://www.vtt.fi/publications/index.jsp
http://www.vtt.fi/publications/index.jsp

	Abstract
	Preface
	List of original publications
	Contents
	1. Introduction
	1.1 Research context
	1.3 Research approach
	1.4 Contributions of the thesis
	1.5 Structure of the thesis

	2. Test automation and observation-basedmodelling
	2.1 Test automation
	2.1.1 Terminology and basic concepts
	2.1.2 Test data generation
	2.1.3 Test oracles
	2.1.4 Test harness
	2.1.5 Model-based testing

	2.2 Observation-based modelling
	2.2.1 Basic terminology
	2.2.2 State-based models
	2.2.3 Other models

	2.3 Discussion

	3. A framework for observation-basedmodelling in model-based testing
	3.1 Phase 1: Defining the target model
	3.2 Phase 2: Applying the framework
	3.2.1 Step 1: Capturing observations
	3.2.2 Step 2: Model generation
	3.2.3 Step 3: Model refinement for verification and testing

	3.3 Discussion

	4. Introduction to original papers
	4.1 PAPER I: Integrating and Testing a System-WideFeature in a Legacy System: An Experience Report
	4.2 PAPER II: Towards Trace-Based Model Synthesis forProgram Understanding and Test Automation
	4.3 PAPER III: Towards a Deeper Understanding of TestCoverage
	4.4 PAPER IV: A Study on Design for Testability inComponent-Based Embedded Software
	4.5 PAPER V: A Probe Framework for MonitoringEmbedded Real-Time Systems
	4.6 PAPER VI: Observation Based Modeling for Model-Based Testing
	4.7 PAPER VII: Behavior Pattern-Based ModelGeneration for Model-Based Testing
	4.8 PAPER VIII: Program Comprehension for User-Assisted Test Oracle Generation

	5. Framework evaluation
	5.1 Study subjects
	5.2 Phase 1: Defining the target model
	5.3 Phase 2: Applying the framework
	5.3.1 Step 1: Capturing observations
	5.3.2 Step 2: Model generation
	5.3.3 Step 3: Model refinement for verification and testing

	6. Conclusions
	6.1 Answers to the research questions
	6.2 Limitations and future work

	References
	P727_Paper_VI.pdf
	1 INTRODUCTION
	2 BACKGROUND AND RELATED WORK
	2.1 Background
	2.2 Related Work

	3 MODEL GENERATION
	3.1 ModelJUnit Notation
	3.2 Case example used in this paper
	3.3 Capturing a set of observations
	3.4 Generating the basic model elements
	3.5 Transforming the FSM into code for MBT
	3.6 Transforming the invariants into code for MBT
	3.6.1 Transition guards
	3.6.2 Object values and creation

	4 TESTING AND VERIFICATION METHOD
	5 CASE STUDY EVALUATION
	5.1 Precision and Recall
	5.1.1 State transition methods
	5.1.2 Transition guards
	5.1.3 Parameter values
	5.1.4 State updates
	5.1.5 Test oracles

	5.2 Test coverage
	5.3 Mutation testing
	5.4 Errors Discovered in the Merger
	5.5 Filter
	5.6 Limitations of the approach and the case study

	6 CONCLUSIONS
	PAPER I: Integrating and Testing a System-
Wide Feature in a Legacy System -
An Experience Report
	PAPER II: Towards Trace Based Model
Synthesis for Program Understanding
and Test Automation
	PAPER III: Towards a Deeper Understanding of
Test Cover
	PAPER IV: A Study on Design for Testability in
Component-Based Embedded
Software
	PAPER V: A Probe Framework for Monitoring
Embedded Real-Time Systems
	PAPER VI: Observation Based Modeling for
Model-Based Testing
	PAPER VII: Behavior Pattern-Based Model
Generation for Model-Based Testing
	PAPER VIII: Program Comprehension for User-
Assisted Test Oracle Generation

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308030d730ea30d730ec30b9537052377528306e00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /FRA <FEFF004f007000740069006f006e007300200070006f0075007200200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020005500740069006c006900730065007a0020004100630072006f0062006100740020006f00750020005200650061006400650072002c002000760065007200730069006f006e00200035002e00300020006f007500200075006c007400e9007200690065007500720065002c00200070006f007500720020006c006500730020006f00750076007200690072002e0020004c00270069006e0063006f00720070006f0072006100740069006f006e002000640065007300200070006f006c0069006300650073002000650073007400200072006500710075006900730065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e00650020007100750061006c00690074006100740069007600200068006f006300680077006500720074006900670065002000410075007300670061006200650020006600fc0072002000640069006500200044007200750063006b0076006f0072007300740075006600650020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e00200042006500690020006400690065007300650072002000450069006e007300740065006c006c0075006e00670020006900730074002000650069006e00650020005300630068007200690066007400650069006e00620065007400740075006e00670020006500720066006f0072006400650072006c006900630068002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e00200045007300740061007300200063006f006e00660069006700750072006100e700f50065007300200072006500710075006500720065006d00200069006e0063006f00720070006f0072006100e700e3006f00200064006500200066006f006e00740065002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e0067002000740069006c0020007000720065002d00700072006500730073002d007500640073006b007200690076006e0069006e0067002000690020006800f8006a0020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e00200044006900730073006500200069006e0064007300740069006c006c0069006e0067006500720020006b007200e600760065007200200069006e0074006500670072006500720069006e006700200061006600200073006b007200690066007400740079007000650072002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f00670065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000610066006400720075006b006b0065006e0020006d0065007400200068006f006700650020006b00770061006c0069007400650069007400200069006e002000650065006e002000700072006500700072006500730073002d006f006d0067006500760069006e0067002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e002000420069006a002000640065007a006500200069006e007300740065006c006c0069006e00670020006d006f006500740065006e00200066006f006e007400730020007a0069006a006e00200069006e006700650073006c006f00740065006e002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200071007500650020007000650072006d006900740061006e0020006f006200740065006e0065007200200063006f007000690061007300200064006500200070007200650069006d0070007200650073006900f3006e0020006400650020006d00610079006f0072002000630061006c0069006400610064002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e0020004500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007200650071007500690065007200650020006c006100200069006e0063007200750073007400610063006900f3006e0020006400650020006600750065006e007400650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e0020004e00e4006d00e4002000610073006500740075006b0073006500740020006500640065006c006c00790074007400e4007600e4007400200066006f006e0074007400690065006e002000750070006f00740075007300740061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007000720065007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e002000510075006500730074006500200069006d0070006f007300740061007a0069006f006e006900200072006900630068006900650064006f006e006f0020006c002700750073006f00200064006900200066006f006e007400200069006e0063006f00720070006f0072006100740069002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006800f800790020007500740073006b00720069006600740073006b00760061006c00690074006500740020006600f800720020007400720079006b006b002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e00200044006900730073006500200069006e006e007300740069006c006c0069006e00670065006e00650020006b0072006500760065007200200073006b00720069006600740069006e006e00620079006700670069006e0067002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006600f60072002000700072006500700072006500730073007500740073006b0072006900660074006500720020006100760020006800f600670020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e00200044006500730073006100200069006e0073007400e4006c006c006e0069006e0067006100720020006b007200e400760065007200200069006e006b006c00750064006500720069006e00670020006100760020007400650063006b0065006e0073006e006900740074002e>
 /ENU <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b0073006900610020007000610069006e006f006f006e0020006d0065006e0065007600690073007300e40020007400f600690073007300e4002e0020004e00e4006d00e4002000610073006500740075006b00730065007400200076006100610074006900760061007400200061007300690061006b006b00610061006c007400610020007600e400680069006e007400e400e4006e0020004100630072006f00620061007400200035002e00300020002d00790068007400650065006e0073006f0070006900760061006e0020006a00e40072006a0065007300740065006c006d00e4006e002e0020004b00610069006b006b006900200066006f006e007400690074002000750070006f00740065007400610061006e0020006d0075006b00610061006e002e0020>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

