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Abstract 
In the context of software engineering, test automation as a field of research has 
been around for a very long time. Yet, testing and related concepts are still gen-
erally considered to be one of the most time-consuming and expensive parts of 
the software life cycle. Although it is a field with a relatively long research 
background, many existing test automation systems are still relatively simple 
and not very different from the early days. They still focus on executing an exist-
ing, usually manually crafted, set of tests over and over again. 

One approach that has also been around for a relatively long time but has only 
recently begun to attract considerable interest in the domain of software testing 
is model-based testing. In model-based testing, the system under test is repre-
sented by a model describing its expected behaviour at a higher abstraction level, 
and a set of chosen algorithms are used to generate tests from this model. Cur-
rently, these models need to be manually crafted from the specification. 

This thesis presents an approach for observation-based modelling in model-
based testing and aims to provide automated assistance for model creation. This 
includes design and architectural solutions to support observation and testing of 
the system, analysis of different types of executions used as a basis for observa-
tions, and finally combines the different viewpoints to provide automated tool 
support to generate an initial test model, based on the captured observations, that 
is suitable for use in model-based testing. This model is then refined and verified 
against the specification. As the approach reverses the traditional model-based 
testing approach of going from specification to implementation, to going from 
implementation to specification, guidelines for its application are also presented. 
The research uses a constructive approach, in which a problem is identified, a 
construct to address the problem is designed and implemented, and finally the 
results are evaluated. 

The approach has been evaluated in the context of a practical system in which 
its application discovered several previously unknown bugs in the implementa-
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tion of the system under test. Its effectiveness was also demonstrated by generat-
ing a highly complete model and showing how the completed model provides 
additional test coverage both in terms of code covered and injected faults dis-
covered (test mutants killed). 
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cordings from these times on YouTube. From somewhere along the line I picked 
up my desire to understand and analyse program behaviour and its different 
properties. This is also reflected in this thesis where the underlying theme is 
really satisfying my desire to understand how programs work and what makes 
them work that way.  
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ists). Any simple list would not do you justice, so thank you for everything. Too 
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1. Introduction 
Software testing is one of the activities used to ensure the proper implementation 
and functionality of a given software artefact. It can be described as “observing a 
software system to validate whether it behaves as intended and identify potential 
malfunctions” [1]. As it is rare to write software without trying to run it and thus 
implicitly trying to test it, software testing can be considered to be as old as the 
writing of software. All things considered, however, life is not that simple and 
someone who is into, for example, formal methods may disagree in the spirit of 
the famous quote from Donald E. Knuth, “Beware of bugs in the above code; I 
have only proved it correct, not tried it.” [2]. Regardless of how one looks at it, 
software testing as a research area has a long history, at least in the context of 
software engineering. Gelperin and Hetzel [3] date the first articles on program 
testing to the 1950’s and the first conference on software testing to 1972. They 
also describe the evolution of software testing over different periods. More re-
cently, software testing has been seen as encompassing all parts of the develop-
ment and maintenance processes and as something that needs to be included and 
planned for from the beginning [1]. 

Software testing research is commonly justified by arguing that testing takes 
up to 50% or more of the total development costs of software (e.g. [1]). As this 
is usually based on decades-old studies (e.g. [1]), the validity of this reasoning is 
arguable. Most of the discussion on the matter seems to agree that testing is one 
of the most costly parts of the software development process, however, so there 
is bound to be some truth in it. In software testing research, this is typically used 
to emphasize the importance of related research, and this thesis is no different. 
This emphasis alone on the cost of software testing makes software test automation 
research important from the cost-effectiveness perspective of software engineering. 

From the application domain perspective, the ever-increasing complexity of 
software-intensive systems and their increasingly pervasive nature also high-
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lights the importance of research into software testing (automation). In the last 
few decades, software has become a commodity with a growing presence in 
everything around us. This includes the “simple” things such as the electronic 
toothbrush, complex systems of systems, and life-critical applications in health-
care and other domains. In this context, it is also increasingly important for 
software to fulfil its required purpose reliably. This in turn emphasizes the need 
for better support in techniques, including test automation, to verify the correct-
ness of SW systems. 

The term “test automation” seems to imply much: automated testing of a 
given software system. One might think that given any system, the automated 
testing platform would test it and verify its correctness. In practice, however, 
most existing test automation platforms focus on automatically running existing 
test scripts that first have to be manually created. This way, they do little more 
than allow for the repetition of existing test cases, which is also often referred to 
as regression testing. As well as having to write the test scripts manually, the 
user of these platforms also typically has to take care of other tasks such as con-
necting the test cases inside the test platform to the SUT. This part is referred to 
as the test harness. 

Some approaches take automation further. These will be discussed in more de-
tail in Chapter 2. One of these approaches is model-based testing in which an 
MBT tool generates test cases based on a model of the SUT. This model typi-
cally describes the SUT at a higher level of abstraction than the implementation, 
usually as a black box focusing on its external interfaces and higher-level func-
tionality [4]. In this way, MBT tries to automate more of the testing process, as 
the model is expected to require less effort to maintain than a manually created 
suite of test cases. This can still require significant effort, however, in creating 
and maintaining the test models, including acquiring the specialist skills for pro-
ducing good models suitable for MBT. 

The research presented in this dissertation aims to make the process of MBT 
more cost-efficient and easier to adopt. It presents tools and methods to automate 
much of the process of generating a test model for a SUT. It discusses the break-
ing down of a chosen target model into a set of observations (e.g. traces of pro-
gram execution such as messages passed through external interfaces) that can be 
used to automatically generate an initial model suitable for MBT. An implemen-
tation to automatically generate an extended finite state-machine model from a 
given set of suitable observations is provided and used to evaluate the concept. 
The generated model is not intended to be perfect as is but to provide an ad-
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vanced starting point from which to quickly start the MBT testing process and 
help to model the behaviour of the SUT accurately while verifying the correct-
ness of the implementation against the specification. 

The usefulness of this type of approach has already been discussed by Berto-
lino et al. [5], who discussed this type of concept but never implemented or stud-
ied it in practice. This approach reverses the concept of model-based testing, 
which typically uses the system specification as a basis for the manual creation 
of the test model. This model is then executed and compared against the actual 
implementation. Now, instead a model is automatically generated from the im-
plementation and, with the aid of an MBT tool, used to verify the implementa-
tion against the specification following a set of provided quidelines. The gener-
ated model combined with an MBT tool includes everything needed to generate 
and run tests against the SUT, including the test scripts (for SUT input), a test 
harness and test oracles (to verify the correctness of SUT output). 

1.1 Research context 

Software testing is considered to be part of the software verification and valida-
tion processes. Together, V&V aim to make sure that the software delivers what 
the customer expects from it [6]. Verification focuses on assessing whether the 
software matches its specification, and validation on assessing that the specifica-
tion matches the customer’s needs. SW testing is a tool in these processes for 
ensuring better SW quality. V&V also include many other tools and techniques, 
such as inspections and static analysis methods [6]. Similarly, SW testing can be 
defined from many perspectives. 

The definition and focus of test automation used in this thesis follow the defi-
nition given in the software engineering book of knowledge, which defines 
software testing as consisting of “the dynamic verification of the behavior of a 
program on a finite set of test cases, suitably selected from the usually infinite 
executions domain, against the expected behavior.” [7]. 

In addition, testing is often divided into categories, such as functional and 
non-functional testing, white-box and black-box testing, and different levels of 
testing such as unit- and system-level testing. While much of the research pre-
sented in this thesis can be applied to the context of many of these different 
types of tests, the main focus of this thesis is on a subset of these. This chosen 
subset is described next. 
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Functional testing focuses on the functional properties of the software, such as 
correct input-output transitions. Non-functional testing focuses on the non-
functional attributes of the SW, such as performance and usability. The research 
presented in this thesis focuses on testing the functional properties of SW. The 
tests generated by the described test automation framework are functional tests 
for the SUT. However, many of the described results are also applicable to some 
non-functional requirements such as monitoring and analysing the SW behaviour 
for performance analysis [8]. 

The division of tests into white- and black-box tests is related to the informa-
tion on which the tests are based. White-box testing makes use of information 
about the internal structure and implementation of the SUT, whereas black-box 
testing views the SUT as a black box and focuses on testing through its external 
interfaces. Of course, the reality is never this black and white; there are gray 
areas in between where the information can be considered to partly require 
knowledge of the internal structures and implementation while still being of a 
higher level. In many cases, the two approaches can also be combined. The re-
search presented in this thesis focuses mostly on a black-box approach, with 
some gray-box elements such as relying on implemented test interfaces to access 
the internal state of components. 

When defining the research context and approach applied to this thesis, it is 
also important to define the assumptions made about the SW being tested. Two 
concepts commonly applied to the design of modern SW systems are the use of 
components and of services. These are used to define conceptual units of de-
ployment where parts of the required functionality are provided by the different 
units (as components and services). A common term related to these is the use of 
service-oriented architecture (SOA). While no strict limitations are presented, 
the research in this thesis is oriented towards SW systems to which this type of 
structuring approach is applied. Many of the publications also address embedded 
real-time systems specifically. These define the scope of the analysed SW sys-
tems, although the presented tools and techniques are not seen as being restricted 
to these domains. 

The concept of different levels of testing is discussed in more detail in [9]. In 
the context of this thesis, the focus is on testing components and services, mainly 
with a black-box approach as described earlier. In this regard, no distinct classi-
fication is made as to which levels of testing are addressed, as this depends on 
various definitions such as what constitutes a unit, a module, a component or a 
service that is being tested. The research described in this thesis, however, is more 
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oriented towards the higher levels of testing of components and services as op-
posed to considering very small units of code such as single methods or classes.

Reverse Engineering

Program Comprehension

Modeling

Test Automation
To

ol
 S

up
po

rt

Figure 1. Research context.

The research presented in this thesis combines approaches from different soft-
ware engineering research domains as illustrated in Figure 1. Reverse engineer-
ing-related concepts are used to capture observations (information) about the
SUT behaviour. Automated tool support is used to turn these observations into
models suitable for test automation. The set of observations required to capture a
comprehensive model are analysed with the help of program comprehension
techniques. The program comprehension techniques are also used to further ana-
lyse the models to support the user in the process of modelling and using the
models for verifying the implementation vs the specification. Finally, automated
model-based testing tools are used to generate more tests and to assess the cor-
rectness of the SUT implementation against its specification. All parts of this
process are supported with software tools.

1.2 Research questions

So far, the process of creating models for model-based testing has been mostly a
manual process. In this thesis, means are sought to automate as much as possible
of this process. As the focus is mainly on using observations from the execution
of an existing system as a basis for this, the main research question can be sum-
marized as follows:

• How can automated support be provided for model creation for model-
based testing of existing software?
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This question has been divided into a number of smaller subquestions which, 
when answered, provide a basis for answering the main research questions. 
These subquestions are defined as follows: 

1. How can the information to generate the models be captured? 

In order to generate the models, a set of observations first needs to be defined 
that can be used as a basis to describe the SUT at a level that enables the use of 
algorithms to generate the target models. The answer to this question requires a 
definition of the information that needs to be captured, where it should be captured 
from and how it is to be accessed by the algorithms used to generate the model. 

2. How can this information be turned into a meaningful test model for MBT? 

The generation of a model from the captured information (observations) requires 
a set of algorithms that can be used to turn the observations into a model usable 
for MBT. The answer to this question will provide these algorithms. This ques-
tion is also closely tied to the first subquestion, as defining the algorithms also 
defines the information they need to operate. 

3. How can the generated models be used for SUT verification and testing? 

When a model is generated automatically for a SUT based on observations of its 
execution, this model accurately describes the SUT as it is. To verify the cor-
rectness of the implementation, however, the actual implementation needs to be 
compared with the expected implementation (as expressed by the SUT specifica-
tion). As the model is further used to generate tests for the SUT, it should not 
describe what the SUT actually is but rather what it should be, i.e., the model 
should be made to reflect the (correct) expected specification when used for 
testing. The answer to this question will reveal how the generated model can be 
used to verify the correctness of the SUT behaviour. 

1.3 Research approach 

Software engineering research applies many different types of research methods. 
For example, Glass et al. [10] list 22 different types of research methods based 
on their review of the software engineering research literature. By far the most 
popular of these are conceptual analysis (conceptual analysis 43.5% and concep-
tual analysis/mathematical 10.6%) and concept implementation/proof of concept 
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(17.1%), followed by laboratory experiments (3.0%) [10]. Runeson and Höst 
[11] classify the different research methods further into four categories: 

• Exploratory – finding out what is happening, seeking new insights and 
generating ideas and hypotheses for new research 

• Descriptive – portraying a situation or phenomenon 

• Explanatory – seeking an explanation of a situation or a problem, mostly 
but not necessarily in the form of a causal relationship 

• Improving – trying to improve a certain aspect of the studied phenomenon. 

Going into all possible research methods in detail is outside the scope of this 
thesis, and thus the focus here is to present the parts that are relevant to the study 
in this thesis. 

Runeson and Höst describe case studies in software engineering as often tak-
ing an improvement approach [11]. In a similar way, this dissertation applies 
mainly a constructive research approach in which the problem is first analysed 
and a conceptual framework presented, then an artefact is designed and con-
structed to address the problem, and finally the results are evaluated [12, 13]. 

This type of constructive research can also be referred to as design science, 
which is generally defined as attempting to create things that serve a human 
purpose [14], or more specifically in the context of information systems as seek-
ing “to create innovations that define the ideas, practices, technical capabilities, 
and products through which the analysis, design, implementation, and use of 
information systems can be effectively and efficiently accomplished” [15]. In the 
context of software engineering, this can be translated into the specific proper-
ties of software engineering such as tools, methods and processes that support 
software engineering activities. 

In addition to design science, the second main research approach applied to this 
thesis is that of conceptual analysis. Although listed as one of the main approaches 
applied to both software engineering [10] and computer science in general [16], it 
is difficult to find a meaningful definition of conceptual analysis in the context of 
software engineering or computer science. Neither of these studies [10, 16] pro-
vides any explanation for or reference to the definition of contextual analysis, 
although they define it as one of the main approaches. In this thesis, the definition 
of conceptual analysis follows the concept of the definition of analysis in [17], 
while applying it in the context of software engineering research. 
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In light of this definition, conceptual analysis is defined here as the search for 
the definition of a given concept and the act of breaking that concept into more 
elementary parts. Once the individual parts that constitute the definition of the 
decomposed concept have been defined, the definition and the concept of the 
whole can be discussed. For example, in this context the definition of test auto-
mation is approached by splitting it into its constituent parts (test input, test har-
ness, test oracle, etc.) and using this as a basis for approaching complete solu-
tions for supporting test automation. This definition is thus based on the concept 
of analysis as discussed in [17]. 

 

Figure 2. Information Systems Research Framework as described by Hevner et al. [15]. 

Figure 2 shows the information systems research framework as described by 
Hevner et al. [15]. In this framework, the environment defines the problem space 
in which the phenomena of interest reside. Together, the different parts of the 
environment define the business need or “problem” as perceived by the re-
searcher. Given these business needs, the research is conducted in two comple-
mentary phases as shown in the middle of Figure 2. These phases are the build-
ing and evaluation of the artefacts designed to meet the identified business 
needs. The knowledge base provides the raw materials from and through which 
research is accomplished. Prior research and results from reference disciplines 
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provide the foundations for the develop/build phase of a research study. Meth-
odologies provide guidelines used in the justify/evaluate phase. Rigour is 
achieved by appropriate application of existing foundations and methodologies. 
A link back from the research to both the environment and the knowledge base 
is present in the research being applied to the actual environment and by provid-
ing new knowledge into the knowledge base. 

In line with the constructive research approach of design science, the research 
approach applied in this thesis can be described as a three-step process, progress-
ing through conceptual analysis, artefact construction and case studies presented 
in the attached papers. Thus this approach also follows the most popular research 
methods in SW engineering as described by Glass et al. [10] (conceptual analy-
sis and concept implementation). The guidelines for design research as given in 
[15] are mapped to the different papers presented in Table 1 of this thesis. 

In view of the evaluation part of the research approach described in Figure 2, a 
number of different approaches are possible [18, 15, 11]. The ones discussed 
further in this thesis are presented briefly below. A more thorough review of the 
different papers, their study subjects and how they contribute to the evaluation of 
the overall framework presented in this thesis will be given in Chapter 5. 

• A case study is described as typically focusing on what is happening in the 
context of a single project [18], although it is not uncommon to study sev-
eral projects [11, 18]. Based on different sources, Runeson and Höst [11] 
describe case studies as “an empirical method aimed at investigating con-
temporary phenomena in their context”. 

• Controlled experiments can be described as studying the effects of manipu-
lating one variable on another variable, with the requirement that subjects 
are chosen at random [11]. Kitchenham et al. [18] refer to these as formal 
experiments, stating also that the study must be replicated several times. 

• A survey involves collecting information across many teams and projects 
with the help of techniques such as interviews, for which the selection of 
subjects is planned [11, 18]. 

• Action research, which is similar to a case study but also involved in the 
change process and aims at evaluating the effect of the change [11]. This 
approach is not used in any of the publications but is considered for possi-
ble future work in Chapter 6. 
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One additional concept that is relevant to this thesis (and visible in Figure 2) is 
simulation, which is used to provide synthetic data for the experiments [15]. In 
the context of software testing this includes the use of artificially injected faults 
into the system (termed mutation testing) to assess the fault detection effective-
ness of a test automation approach. This is used as one of the evaluation tech-
niques for the OBM approach in Paper VI. 

Table 1. Design science guidelines [15] and mapping them to this thesis following [19]. 

Guideline Description 

1: Design as 
    an artefact 

A viable artefact in the form of a construct, a model, a method or an in-
stantiation is produced. In this thesis the main artefact is the OBM tool and 
related process. In addition, an independent artefact that contributes to the 
whole of the OBM approach is presented in the papers that apply a con-
structive approach. 

2: Problem 
    Relevance 

Technology-based solutions to important and relevant business problems 
are developed. The relevance of each problem is motivated in each paper, 
and for the complete OBM approach in Chapters 2–4 of this thesis. Paper I 
also provides descriptions of the general relevance of the research pre-
sented in many of the papers. 

3: Design 
    Evaluation 

The utility, quality and efficacy of a design artefact must be rigorously 
demonstrated via well-executed evaluation methods. Each part of the 
whole that constitutes the OBM approach has been evaluated in a realistic 
and relevant environment as presented in the papers. 

4: Research 
    Contributions 

Provide clear and verifiable contributions in the areas of the design arte-
fact, design foundations and/or design methodologies. This thesis as a 
whole presents a new approach to model-based testing, and each paper 
contributes to a subfield in this area in a more detailed and also independ-
ent way (a wider contribution). 

5: Research 
    Rigour 

Rigorous methods are applied in both the construction and evaluation of 
the design artefact. Each part of the research that is presented in individual 
papers has been validated by carefully planned individual studies, includ-
ing the complete approach in the final paper (VI). 

6: Design as a 
    search process 

Available means are utilized to reach desired ends while satisfying laws in 
the problem environment. Each part of the presented research has been 
iteratively refined during the course of the research. This is most visible in 
Paper II, which provides some early experiments for OBM that have been 
taken much further in Papers VI–VIII and Paper IV, which provides in-
sights into the research described in Paper V. In addition, Paper VI com-
bines all the parts, as will be described in Chapter 3. 

7: Communication 
    of research 

Research presented effectively to both technology-oriented and manage-
ment-oriented audiences. The technical details of the research have been 
thoroughly described in the attached papers. In this introductory part, 
especially in Chapter 3, a more practical overview description is given. 
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In addition, Runeson and Höst [11] provide a set of guidelines for case studies. 
They discuss a case study protocol that should formulate the case study plan and 
contain at least the following elements: 

• Objective – The objective defines the initial focus point and may evolve 
during the study. It may be, for example, one of the four types of research 
described earlier: exploratory, descriptive, explanatory or improving. [11] 

• Research questions – These provide the definition of what needs to be 
known in order to fulfil the objective of the study. [11] 

• The case – This defines what is being studied. For example, it may be a SW 
development project, a process or a product. [11] 

• Theory – This defines the frame of reference for the study. Since theories in 
SW engineering are not well developed, it can be based on, for example, 
study of existing methods or the viewpoints taken during the study. [11] 

• Methods – This defines how data are collected for the study. Examples in-
clude interviews or tool instrumentation. [11] 

• Selection strategy – This defines the selection of the studied case, that is, 
from where the case study data are sought. [11] 

Table 2 describes the different papers in this thesis for some of these viewpoints. 
The selection strategy was based mainly on the available industrial systems for 
study. As most of the case studies were carried out in collaboration with indus-
trial partners in research projects, this has set the context of the study and the 
case selection. In these cases, the motivation to use industrial projects has been 
both the drive for more collaboration with industrial partners and the provision 
of a realistic environment for the research. A notable exception is Paper III, 
which uses a freely available open source project as a case study subject. In this 
case, the choice was based on the properties such as available test cases and 
project complexity, and the aim was to have an extensible choice of tests and 
significant complexity available to enable a realistic research context. Paper VI 
can also be seen to have some elements of a controlled experiment when artifi-
cial faults are injected and the fault detection effectiveness of the OBM approach 
is evaluated. 

The most dominant research approach has been that of conceptual analysis, 
followed by constructing design artefacts and evaluating the improvements 
gained from its application. In this case, the motivation has been to first obtain a 
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complete overview of the theory (fundamentals) and current state of the subject 
area. This is seen as providing an effective research approach in first building an 
understanding of the constituent parts of the subject (such as test automation) 
and what has currently been done in the area. From this, new constructs for the 
chosen goal have been designed and evaluated. This has also been an iterative 
process, as described earlier. The final overall goal was to build a system for 
more advanced support of testing through observing and controlling a system, 
although this has progressed from more simple solutions (Paper II) to more ad-
vanced and complete solutions (Paper VIII). 

Table 2. Research approaches in the papers in this thesis following [19]. 

Paper Objective Research question(s) Research approach 

I Describing experiences 
of testing and analysis of 
complex, embedded real-
time SW 

What issues exist in testing 
and analysis of modern 
software-intensive systems? 

Experience report, descrip-
tive case study on a devel-
opment project & system 

II Improving regression 
testing via automated 
model generation 

How can a set of observa-
tions be used as a model for 
regression testing? 

Construction, improving, 
case study on testing an 
existing system 

III Improving existing test 
coverage measures and 
their analysis 

What types of tests are 
needed for different parts of 
tested SW? 

Conceptual analysis, con-
struction, improving, case 
study of a SW product  

IV Exploratory analysis of 
design for testability in 
industry 

How can support for testing 
and analysis be effectively 
built into a system? 

Interviews, exploratory, 
survey on several projects 
and teams in 2 companies  

V Providing support for 
improving behaviour 
monitoring and testing in 
SW systems 

How can effective support 
for testing and analysis be 
built into SW-intensive 
systems? 

Construction, improving, 
case study on analysis of 
several SW products 

VI Improving automation of 
model creation in model-
based testing 

How can EFSM test models 
be generated and used? 
How useful are generated 
models in practice? 

Conceptual analysis, con-
struction, improving, case 
study on several compo-
nents in a SW system 

VII Providing guidelines for 
algorithm development 
for test model generation 

How can algorithms be 
designed to generate execu-
table test models from 
captured observations? 

Conceptual analysis, con-
struction, improving, case 
study on one SW system 

VIII Improving automated 
support for test oracle 
generation 

How can automated support 
be provided for the creation 
of test oracles? 

Conceptual analysis, con-
struction, improving, case 
study on SW system 
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Overall, conceptual analysis is applied to identify relevant problems in test 
automation research. This is presented in Paper I and in Chapter 2 of this thesis. 
A set of constructs and related evaluations are presented to address the research 
problems presented in this thesis. Paper II presents the basic concept of this the-
sis, which relates to both conceptual analysis and design of the construct. Papers 
III–V present designs and implementations of constructs to address issues identi-
fied in Papers I & II. The remaining papers present the final pieces of the puzzle 
and provide the constructs to complete the work while also combining this with 
the constructs presented in the previous papers and providing an evaluation of 
the results. Paper VIII is a return to conceptual analysis in which the end result is 
analysed and a framework is presented with some of the research results de-
scribed in a wider context. The timeline for the progress of this thesis is shown 
in Figure 3, with each paper being shown on the timeline as P:X, where X is the 
number of the paper. 

 

Figure 3. Research timeline. 

The review of the state of the art described in Chapter 2 was conducted at the 
beginning of the work and updated throughout for each of the papers, and finally 
for this dissertation. Paper I describes experiences from an industrial project on 
which the author was working from the end of 2005 to 2007. Paper III is a con-
tinuation of the author’s master’s thesis. The remaining papers describe work in 
research projects after the industrial project described in Paper I. Most of this 
research work can be related to the experiences described in the industrial ex-
perience paper, and most of it was sequential, though work for Paper V was 
carried out in parallel with a master’s thesis worker under the supervision of the 
author. The work in the last three papers is closely related and thus interleaved. 
The concept analysis in Paper VIII was conducted for related work before Pa-
pers VI & VII and finalised after them. 
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1.4 Contributions of the thesis 

The main contribution of this thesis is the presented automation framework for 
supporting model-based testing. The main contribution is formed from the origi-
nal papers that make up this thesis. Each of these papers presents work on differ-
ent properties needed for the realization of the framework and provides a valida-
tion through a case study for the topic of that paper. The thesis covers the related 
background work in Chapter 2, providing an overall view of test automation and 
observation-based modelling from the viewpoints relevant to this thesis. 

The focus is on techniques related to dynamic analysis, i.e., the analysis of the 
behaviour of software systems based on observations made from their actual 
executions. The papers that form this thesis focus on the different aspects of this 
type of test automation. These papers describe the following properties related to 
implementing this type of test automation platforms: 

• An analysis of the complex environment and the requirements it sets for test 
automation platforms in a modern software-intensive system. 

• Tool and architectural design solutions and guidelines for providing effec-
tive testability support for capturing the base observations used for analys-
ing the SUT behaviour. 

• A classification framework for and analysis of the different types of execu-
tions used as a basis for the analysis of SW behaviour. 

• The decomposition of a model for the information to be observed for model 
generation. 

• Support for analysing the set of observations provided, for their complete-
ness in providing a sufficiently complete model of the SUT behaviour. 

• Methods, tools and algorithms to turn the captured observations into models 
for use in model-based testing. 

• Experiences and guidelines for using these models. 

Based on these contributions, a complete framework for supporting the automa-
tion of different aspects of testing modern software-intensive systems with the 
aid of model-based techniques is presented. The different properties of the test 
automation platform, as described, are combined to form the framework as pre-
sented in the last few papers of this thesis. The framework is summarized in 
Chapter 3 of this thesis. 
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1.5 Structure of the thesis 

The rest of this thesis is structured as follows. Chapter 2 provides an overview of 
existing research on test automation and observation-based modelling. First, it 
describes the different parts of a test automation platform and the state of re-
search relating to these parts. As test automation research is a very large area of 
research, the focus is on providing a general overview of the field. 

Secondly, Chapter 2 also provides an overview of what is called observation-
based modelling. This refers to the generation of models describing SW behav-
iour based on information captured (observations) by monitoring the execution 
of the SUT. It provides a general overview of different types of models and a 
more focused overview of the state-based models used in the work presented in 
this thesis. 

Chapter 3 presents the developed framework for generating models based on 
the observations captured from the SUT execution. It describes the decomposi-
tion of a target model to define the information that needs to be captured, how 
this information is turned into a model usable for MBT tools and the process of 
using the models with the MBT tools in SW testing and verification. It also 
shows how the papers composing this thesis relate to different parts of the pro-
posed framework. 

Chapter 4 provides a more detailed summary of the papers that compose this 
thesis. 

As the research progressed through various projects and study subjects, Chap-
ter 5 describes the study subjects used at the different phases of the study (in the 
different papers) and how each of the studies presented in the different papers 
contribute to the evaluation of the presented framework for observation-based 
modelling in model-based testing. 

Finally, Chapter 6 concludes the thesis by describing how the research ques-
tions were answered and discusses the limitations of the work and the need for 
future research. 
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2. Test automation and observation-based 
modelling 
This chapter gives an overview of research related to this thesis in the areas of 
test automation and observation-based modelling. It starts with an overview of 
the test automation research area, followed by an overview of research in the 
area of observation based-modelling. Finally, the chapter concludes with a short 
discussion on positioning the work presented in this thesis in relation to these 
two fields of research. 

2.1 Test automation 

The basic form of test automation is that of regression testing in which existing 
test cases are automatically (re-)executed. These tests can be created manually or 
with different degrees of automation, and their execution is triggered by some 
event such as a user pressing a button or committing to version control. A test 
automation system requires different components depending on its type, such as 
test scripts, input data, test oracles, a test driver and a test harness. These basic 
components are illustrated in Figure 4. 
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Figure 4. Components of a test automation framework. 

A test driver controls the overall test execution process, including the execution 
of the SUT. The SUT is isolated, for different testing purposes, from parts of its 
environment (other components or systems with which it interacts) with the help 
of a test harness. Test input can take different forms, such as message sequences 
(test scripts) and data values. Generators can also be used to automatically gen-
erate large quantities of different types of data. A test oracle is used to verify the 
correctness of the received output (such as data values or message sequences) in 
relation to a given input. In the context of this thesis, the SUT is considered as a 
black box that takes some input and produces some output, with only limited 
insight into its internal processes. 

This chapter reviews the different approaches in test automation research that 
have focused on the different parts of these test automation platforms. As the 
amount of available research in this field is vast and constantly growing, the 
intention is not to provide a complete overview of all related work but rather a 
comprehensive overview of different parts. 

2.1.1 Terminology and basic concepts 

Design for testability 

Effective implementation of test automation requires certain properties from the 
system under test (SUT) as well as the test environment [20][21]. The design of 
the SUT and the test environment architecture must consider the test require-
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ments in addition to the program (user) requirements. In short, this is called de-
sign for testability (DFT). Two basic terms related to this are observability and 
controllability. Following Binder [22], controllability can be defined as being 
able to control the SUT input (and internal state), and observability as being able 
to observe its output (and internal state). 

Experiences have shown that it is especially important to take DFT into con-
sideration from the early phases to enable efficient and cost-effective implemen-
tation of test automation [20][23]. While the testability of the SUT itself can be 
considered from a number of different perspectives [22], from the test automa-
tion perspective, the architecture is typically the most important part [20][21]. 

Techniques to support testability in the SUT architecture include isolating 
parts of the SUT for testing, accessing information about the system behaviour 
and providing test functionality [20][21][24]. From the test environment per-
spective, DFT includes automated creation of system configurations for testing, 
test interfaces between the SUT and the tester application, abstraction of test 
models and automated change management between the test cases and the SUT 
[20][21]. 

To isolate parts of the SUT for testing, it must be possible to replace clearly 
defined parts of the SUT with test implementations, commonly referred to as test 
stubs. Test stubs can be used to isolate parts of the system and to provide test 
functionality, such as input generation [21][24]. To enable effective partitioning, 
the interfaces must be separated from the implementations so that stubs can be 
attached to these interfaces [24]. 

To access information about the system behaviour, specialized interfaces must 
be available to read and write data values to program variables [24]. As not all of 
these are necessarily needed for normal functionality, extra support is often nec-
essary [20][21][24]. This support can be simple interfaces to access data such as 
system states [24][25] or test functionality such as keeping track of resource 
consumption [21]. Component internal test support functionality is seen as par-
ticularly important in testing components for which no source code is available 
[26]. The presentation of information is also seen as important in the regard that 
it still needs to be interpreted by a human analyst at some point, and it has to be 
effectively processed by the test automation system [20][21]. 
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Invariants 

As defined in the first chapter, in the context of this thesis testing is considered 
as observing and asserting a set of controlled executions (test cases) on a SUT. 
In this context, techniques designed for this type of analysis are also relevant and 
often used for testing. One such popular technique that is also used in the context 
of this thesis is that of dynamic invariant detection. Invariants in general can be 
considered as properties that hold at different points of analysis, such as over 
time. The concept of invariants, as discussed in this thesis, is generally related to 
what is defined as dynamic invariant detection aimed at detecting likely program 
invariants by Ernst et al. [27]. They define an invariant as a property that holds 
at some point in a program, and present a tool called Daikon1 to automatically 
infer these from a set of program executions [27]. 

Examples of these invariants include a variable always being constant (x = 1), 
non-zero (x ≠ 0), variable relations (x < y), a variable being a value of a function 
(x = fn(y)) and a data structure always being sorted. The invariants are called 
likely invariants as they only hold for the analysed program executions. The 
basic output of invariant detection is a model of the system describing it in the 
form of likely invariants. Likely because they are based on a set of executions of 
the code, and this set may not include all possible executions. This model can be 
used for many purposes, such as understanding the system, debugging and test 
generation [27]. 

Mutation 

When automated testing techniques are developed or automated test cases gen-
erated, their effectiveness needs to be evaluated. This requires the availability of 
faulty software to test the effectiveness of the techniques in a controlled envi-
ronment [28][29]. Two basic techniques for this are fault seeding and program 
mutation. Fault seeding is a process of manually adding faults into the program 
code. Program mutation is a process of applying an automated tool on program 
code to create mutants [30]. Each mutant is a changed version of the program, 
and the task of the test suite is then to kill these mutants, i.e., it should identify 
each mutant as a failing test case. In this case, a measure of the effectiveness of a 
generated test suite can be the amount of mutants it kills, and this can be used as 
                                                      

1 http://groups.csail.mit.edu/pag/daikon/ 

http://groups.csail.mit.edu/pag/daikon/
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a basis for test data generation algorithms [31][32]. Studies indicate that muta-
tion is an effective tool for test automation validation purposes, but requires 
special consideration [28]. 

There are three requirements to kill a mutant: reachability, necessity and suffi-
ciency [32]. The mutated statement must be reached by the execution of the pro-
gram to kill the mutant, as the mutated statement is the only changed statement 
in the program. It is necessary for the execution of the mutated statement to 
cause an observable change in the program state in order to distinguish a failed 
(mutated) test run from a correct (non-mutated) run. To be sufficient, the final 
state must be propagated through the program execution in order to be visible in 
the test output so the test case can observe the mutant. 

Test coverage 

A key concept of testing any system or software is to have a measure of how 
good the current level of testing is. In the context of software testing, this is re-
ferred to as test coverage. A basic measure for this is a ratio of which parts of the 
SUT are executed (covered) by the existing test suite and which parts are not. 
This can give, for example, a measure that 50% of the SUT code is covered by 
the tests while the other 50% is not. A basic use for this is then to look at the 
uncovered 50% and write tests to cover more of this previously uncovered code. 
As the implementation of features in a SW system often overlaps and features 
such as error-handling behaviour can be difficult to cover, this is not a straight-
forward task. Different types of tests, such as unit tests, integration tests and 
system tests have different roles in testing the SUT, and it is not always mean-
ingful to consider them as a single coverage measure [9]. For different goals, it 
can also be useful to combine different measures instead of focusing on them 
separately [33]. In practice, however, resource limitations such as time and 
money set constraints on how much testing is cost-effective to implement. 

To address the issue of resource limitations when executing existing test 
suites, various techniques have been presented, including regression test selec-
tion, prioritization and minimization [34]. These share a goal of optimizing the 
test suite execution based on a given criterion, such as new tests covering the 
biggest possible parts of the previously uncovered parts of the SUT. 

Coverage measures have also been applied in other contexts, such as mapping 
program features to their implementation [35] [36] and finding the causes of 
failures [37] [33]. In these cases, it is also possible to discuss coverage in gen-
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eral, as these techniques make use of any program executions and their related 
coverage information. Thus the executions do not have to be tests (other options 
include generated data and captured user sessions), although automated tests are 
a popular basis for this analysis. The analysis techniques that make use of cover-
age measures typically analyse the complete set of executions and relate their 
coverage against each other with goals such as locating feature implementations 
or causes of failures. 

Different types of coverage measures exist for test coverage. Examples in-
clude measures based on program structure, its data value space, requirements 
and dynamic properties of its execution [4]. Structure-based metrics measure the 
coverage of properties such as lines of code and execution paths taken. Data-
based measures consider the possible values of SUT input and output and meas-
ure how many of the possibilities have been covered. Requirements-based cov-
erage associates test cases against SUT requirements to ensure all requirements 
are tested. All these measures are based on different forms of static information 
about the SUT. In addition, measures exist based on dynamic information about 
the execution of the SUT. Examples include generating mutants and observing 
how many of these are identified (killed) by the test suite [38], and inferring an 
invariant model from the test cases to describe the coverage as an invariant 
model [39]. 

The different coverage measures show how exhaustive testing of any non-
trivial SW system is not practical as it is not cost-effective. In this regard, it is 
also expensive to create numerous test cases manually to cover all the different 
aspects needed to verify a SUT to a reasonable degree. For these reasons, test-
generation techniques focusing on these different aspects are important and have 
been the focus of much research in software engineering. 

2.1.2 Test data generation 

The basic form of a test case is to give the SUT some input and observe its out-
put. A SUT typically has several input interfaces, which accept many types of 
data. The combinations of the different inputs and their effects on the SUT be-
haviour need to be considered, as it is not possible to exhaustively test every 
possible combination. As manually crafting a good input data set for this is diffi-
cult and time-consuming, a lot of research has dealt with generating test data for 
input. This section provides an overview of approaches taken in this field. 
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Basic approaches 

A basic approach in this field is random test data generation. In this approach, 
randomly selected values from the input domain(s) of the program are used 
as test input. Random test data generation is intuitively simple and one of the 
oldest test data generation methods [40]. Although  intuitively simple, studies 
have shown that it can also be effective, and it continues to be an active re‐
search  area [40] [41] [42] [43]. While the basic application is generating nu-
merical values, the generation of objects has also been addressed. Random test-
ing is often combined with other techniques to make the selection of the random 
values more advanced, such as creating an equal spread of values [42]. 

Other basic techniques include the use of equivalence partitioning (dividing 
the set of possible values into sets that cause equal program behaviour) and 
boundary value analysis (selecting values that are considered likely to cause 
errors at variable boundaries). Although basic methods have been in use for dec-
ades, this is still an active research area. For example, more recently, Beer and 
Mohachi [44] have studied the combination of basic random data-generation 
techniques while considering the effects of variable values on each other. 

Symbolic execution is a test data generation approach that represents the evo-
lution of variable values over their control-flow paths in relation to the input 
values of the path [45] [46]. The program variables and their combinations are 
represented as symbols and the branches in these paths are turned into con-
straints (sometimes also referred to as path conditions). These constraints are 
then solved in relation to the input values and used to generate test data that will 
exercise all the paths of the SUT. This is referred to as constraint solving [31] 
[47]. Although commonly applied with symbolic execution for path coverage 
[47][43][48], constraint solving has also been applied with other types of goals 
such as generating data to kill program mutants [31] and to reach manually in-
serted assertions [49]. 

Symbolic execution and constraint solving have some limitations. They are 
typically applied on a white-box level, which requires access to the source code 
and poses complexity problems with non-trivial systems, including code size, 
pointers and arrays [50]. With powerful modern hardware and algorithms, how-
ever, they are being used more widely, also in the context of commercial test 
automation systems [43] [48]. 

More dynamic analysis methods have been presented to address issues of test 
data generation based on static analysis. In these methods, the SUT is actually 
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executed as opposed to only its static structure being analysed, such as source 
code, and the observations from the executions are used as a basis for further test 
data generation. These dynamic analysis approaches have some basic limita-
tions, such as requiring a fully executable system, and the possible effects of the 
execution, such as launching missiles or changing bank account details, need to 
be considered. A basic approach in this regard is dynamic path analysis [51], 
which exercises the SUT with actual input values and monitors the control flow. 
If the execution takes an unwanted path, analysis algorithms are applied to find 
values that make the execution take the desired path. 

Combination testing focuses on the different combinations of the input pa-
rameters. Grindal et al. [52] provide a survey on the different techniques in this 
field. The basic concept is described in the category partitioning method [53], 
which is the basis of many of these methods. In the category-partition method, 
the program is first partitioned into functional units that can be tested separately. 
For each of these, parameters and affecting environment variables are identified, 
as well as the possible values for each of these individually. Constraints are 
identified between the parameters, variables and values. Finally, combinations 
satisfying these constraints are generated for the parameters, and these are trans-
formed into test cases. As it is not realistically feasible to test all possible com-
binations, different strategies have been applied to find the combinations of in-
terest. These include simple solutions such as including each value once, and 
more complex solutions such as search-based algorithms [28]. 

While many of these basic approaches work with primitive object types, their 
use for the domain of object-oriented programs has also been studied by Thum-
malapenta et al. [54]. In this case, the problem is in the large possible state space 
of the created objects that may be used as inputs. Thummalapenta et al. [54] 
extract object method invocation sequences from existing source code reposito-
ries and use these to produce object creation sequences with the goal of reaching 
a chosen target state. Target states are identified by the coverage measures re-
quired, such as achieving higher branch coverage in unit tests that make use of 
objects of the generated type. 

Search-based approaches 

Search-based optimization techniques have been widely applied to different 
fields of software engineering, including test data generation [55] [50]. Search-
based optimization aims to optimize a set of data for a given goal using different 
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algorithms to generate data and the analysis of the results to guide further data 
generation. The use of these techniques requires two properties of the optimization 
problem to be defined: a representation of the problem and a fitness function [55] 
(sometimes also referred to as the objective function [50]). The representation is 
used to encode the problem into something that can be processed automatically, 
and the fitness function is used to rank the results to guide future data generation. 

In test data generation, the analysed problem is one of generating test data to 
fulfil a given test criteria. Thus, the possible inputs to the SUT form the search 
space, and the problem representation must encode these inputs in a way that can 
be manipulated by the search algorithms. The test criteria are translated into the 
fitness function. For example, if the goal is to cover a chosen execution path, the 
fitness function can measure how close the test data come to executing that path, 
or in the case of finding worst-case execution times, it can measure the time it 
takes to run a test case [55]. Another example of a more black-box approach is 
test data generation for a car parking system presented in [56], in which the fit-
ness function is the distance between the car and the collision area, and the rep-
resentation is the description of the parking environment (car, collision area, 
parking area). 

Traditional search-based optimization techniques applied in test data genera-
tion include hill climbing, simulated annealing and evolutionary algorithms [50]. 
Some problems remain in applying these algorithms as they are best suited to 
numerical representations, and more complex data structures and internal states 
of objects are problematic for them [50]. Thus, innovative encoding of the input 
space is often required. Although search-based test data generation has mostly 
only considered one criterion, it is also possible to optimize test data generation 
based on multiple criteria. For example, Harman et al. [57] have optimized for 
branch-coverage as well as dynamic memory allocation using both the path distance 
and the amount of memory allocated in a test run as a problem representation. 

Some work has addressed input data generation specifically for object-
oriented programs as the parameters of method calls for unit tests [58]. In this 
case, a set of predefined generators is provided to generate any primitive value 
types, and custom generators can also be provided for any parameter. Object 
values are generated by applying the value generators to their respective con-
structor methods recursively as needed. 

Combinations of search-based approaches and other test data generation 
methods have also been presented. Ayari et al. [59] use a search-based test data 
generation method for killing mutants in which the fitness function is based on 
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the distance of a generated test case from killing a mutant. In this case, the fit-
ness function is based on the formulas for constraint-based test data generation 
presented in [31]. Baudry et al. [60] have presented an approach called bacterio-
logical algorithms, which is also based on program mutation, in which the best 
data set for killing mutants is chosen from each generation, and after this all 
killed mutants are removed from the data set. In the end they collect all the cho-
sen data sets to function as separate test cases. In this way, it is a search-based 
approach with a more specific algorithm tuned for test data generation. 

Domain-specific approaches 

Like the previously described search-based test data generation approach for a 
car parking system, many forms of domain-specific test data generation have 
been applied. Examples include considering the domain-specific properties of 
the program and making use of the available domain-specific formal data struc-
ture specifications. 

For example, using domain-specific knowledge of the underlying program-
ming language constructs, Bertolino et al. [61] used the category partition 
method to generate test data from XML Schema descriptions. They created test 
scripts based on a formal test specification and a number of manual steps [53]. 
The steps included the identification of functional units in the specification, par-
titioning these into categories, then these further into choices and finally deter-
mining constraints between the choices. Bertolino et al. [61] map the different 
properties of the CP method to elements of the XML Schema, such as subsche-
mas to functional units and categories to XML element types. Based on this 
mapping and a provided XML Schema, they generate XML instances for use as 
test data. Similarly, for web services, Sneed and Huang [62] have used the web 
service description language as a basis to generate web service invocations. 
They use random test data generation, but form these into more complex compo-
sitional data types based on the analysis of the WSDL that describes the data 
types of the application. 

Yuan and Memon [63] have presented a feedback-based technique for gener-
ating test cases for graphical user interfaces (GUIs). The state of a GUI is com-
posed of triplets, which include a widget, its properties (such as colour, size, 
font) and the possible values of these properties. This state is considered to be 
changed by discrete events that describe actions and interactions between the 
GUI elements. A seed test suite is obtained from an event-interaction graph 
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(EIG), which is created by a GUI reverse-engineering algorithm. By analysing 
the states and their relationships in these executions, they build up an event-
semantic interaction graph to describe these properties. From this, they then 
generate an event-interaction semantic graph and, finally, use this graph as feed-
back from the previous test cases to generate additional interaction sequences as 
new test cases. 

Daniel et al. [64] present a technique for generating test cases for refactoring 
engines. They provide a programming library called ASTGen to produce ab-
stract syntax trees (ASTs) as input for refactoring engines. This approach is par-
tially manual as it supports the building of generators to generate input programs 
that exhibit desired properties of programs to be refactored and tested. Thus, in 
this case the input data generation takes the form of manually writing input gen-
erators that generate ASTs for SUT input, and this is supported by the frame-
work provided. 

Wang et al. [65] describe a technique for automatically generating tests for 
context-aware applications. They analyse the SUT source code to find context-
aware program points (capps) where context changes may affect the program 
behaviour. Using static analysis, a control flow graph is generated, which de-
scribes how the capps affect the program behaviour. Input data are generated in 
the form of new control flows that cover more context switches between differ-
ent capps. These take the form of control-flow scripts that are generated to be 
input according to the way the program should be manipulated to traverse differ-
ent control flows related to its context-aware behaviour. 

Program-invariant-based approaches 

Pacheso and Ernst [66] present a technique for automated generation of test 
cases based on program invariants, which they have implemented in a tool called 
Eclat. This technique is based on two inputs: the program to be tested and a set 
of correct executions of the program. They use Daikon to generate an opera-
tional model of the program under test. This model is based on a set of invariants 
inferred from a set of execution scenarios that are expected to describe the cor-
rect behaviour of the SUT. They generate input for the SUT aimed at producing 
behaviour that violates the previously inferred operational model and is consid-
ered to be potentially fault revealing. This input takes the form of method calls, 
with parameter values provided from a pool of input values. This pool is initial-
ized with a few primitive values and a null object. Further values are added, as 
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returned from method and constructor calls. The results are labelled as normal, 
faulty or fault revealing. Behaviour is considered normal if both the program in-
puts and outputs match the program invariants, fault revealing if the input matches 
the invariants but the output does not, and illegal if neither the input nor the output 
matches the invariants. Any thrown errors or exceptions also result in a fault-
revealing classification. The inputs and outputs considered are the standard in-
strumentation used by Daikon, input and output values of each method execution. 

Agitator is a commercial tool for automating parts of the unit-test generation 
process [43]. It makes use of various existing test input data generation methods, 
such as symbolic execution, constraint-solving and feedback-directed random 
input data generation. Both static and dynamic analyses are used to analyse the 
different execution paths of the SUT and provide a basis for test data generation. 
Specialized constraint-solvers are provided for specific constraints of the execu-
tion paths, such as Boolean functions of Java String objects. Heuristics are used 
as an aid to guide test data generation, such as using values -1, 0, 1 as integer 
input values. More complex objects are modified with mutator methods, and 
when they cannot be automatically generated, user-specified factory objects are 
used to generate test data objects. Feedback from executions with given values is 
also used to improve the input values. The aim is specifically to translate differ-
ent input data generation methods from research into practically usable forms for 
a commercial tool, working with code bases of significant complexity. In this 
regard, they make a number of approximations to optimize the performance of 
these algorithms. In their case they find that since they need to cover paths many 
times in order to generate usable invariants, it does not matter if the produced 
data for the chosen paths are not always 100% exact [43]. 

Use of field data 

Typically, test data for a program are generated during development on devel-
opment platforms based on assumptions about the way the program will be used 
and how it will function in actual use. A different approach is to use data col-
lected from the field, from actually deployed systems used by actual users. El-
baum and Diep [67] provide an overview of research in this area and a set of 
empirical studies on their application. One basic means to generate tests with 
field data is to include test functionality in the product itself. In this case, the 
program can be profiled during the development time and the program execu-
tions in the field can be monitored with regard to breaking the assumptions in 
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these models. From a more traditional viewpoint, field test data can be applied to 
generate test cases to match the user sessions described in the field data, or to 
augment existing test cases with executions and elements missing but identified 
in the field data. The field data collected by Elbaum and Diep are collected using 
program instrumentation. They also study the effectiveness of different instru-
mentation techniques and find good results with targeted instrumentation that 
focuses on the relevant properties of the tested functionality. 

Test scripts 

As mentioned earlier, especially in the context of object-oriented programs, the 
generation of method-invocation sequences has also been a topic of test data 
generation. In this case, a set of constructor and method invocations are com-
bined to create new test cases. These are often combined with various test input 
generation methods as described earlier to produce data such as parameter values. 

One example of this is the feedback-directed random testing technique de-
scribed by Pacheco et al. [68]. In this technique, tests are constructed by ran-
domly selecting constructor and method calls to invoke. Valid sequences are 
defined by the used contracts, which are objects classifying sequences as valid or 
invalid. Further sequences are built based on previously generated valid se-
quences, and this feedback is used to guide the generation of the sequence. Ex-
ample contracts include an object always equalling itself, and a method not 
throwing certain platform error exceptions. Filters mark call sequences that vio-
late the contracts as illegal sequences that are not to be used for generating fur-
ther sequences. As a result, the tool provides two types of tests: failing and pass-
ing. Passing tests are sequences that violate no constraints. Failing tests are ones 
that violate a constraint, and this constraint is described with an assertion in-
cluded in the test case. In addition to call sequences, they also apply the same 
analysis to variable values passed to the method invocations. They also describe 
a successful application in an industrial case study [69]. 

Tonella [58] has used search-based algorithms to generate both test input data 
(as described earlier) and method-invocation sequences for unit testing. For the 
method call sequences, the methods of a class are described along with their 
potential parameter values. Search-based algorithms are used to generate new 
sequences of method invocations to test the class under test, including the gen-
eration of required parameter objects as described earlier. The aim is to generate 
tests that satisfy a given coverage criteria. 



2. Test automation and observation-based modelling 

40 

Briand et al. [25] use constraint-based test sequence generation for COTS 
components based on component specifications. Possible method invocation 
sequences are described as 3-tuples of preceding method, succeeding method 
and predicate. In this notation, the preceding method always has to come before 
the succeeding method and the predicate further defines at which point this tran-
sition can occur. The predicates describe the constraints that are inferred from 
the component specification. Algorithms are used to solve these constraints and 
to construct fitting method-invocation sequences. 

2.1.3 Test oracles 

As described earlier, a basic form of a test case is that of providing some input to 
the SUT and observing the resulting output. The output then needs to be asserted 
in order to define if the result was correct and matches the expectations set for it. 
The component of a test automation system that does this is called the test ora-
cle. This section first discusses the properties of test oracles and then reviews the 
different approaches to the test oracle problem taken in test automation research. 

The terminology relating to test oracles is used according to [70]. A test ora-
cle is defined as a mechanism for determining the correctness of the behaviour 
of software during (test) execution. The oracle is divided into the oracle informa-
tion, specifying what constitutes the correct behaviour, and the oracle procedure, 
which is the algorithm verifying the test results against the oracle information. 

Further terms are also used according to [70]. Successful test evaluation re-
quires information to be captured about the running system using a test monitor. 
For simple systems, it can be enough to just capture the output of the system. For 
more complex systems, such as reactive systems, more detailed information such 
as internal events, timing information, stimuli and responses need to be captured. 
All the information captured by the test monitor is called the execution profile of 
the system and it includes control and data information. 

The term test oracle may be confusing at first. Who or what is this oracle and 
what does it have to do with SW testing? It is a fitting choice for what it de-
scribes however. An oracle is typically considered to be a mystical source of 
wisdom and information. In the case of a test oracle, this also holds true. The 
information on what the correct behaviour and response of the SUT are comes 
from somewhere (a mystical place). Basically in the case of SW, this informa-
tion is typically defined in the specification. From the test automation perspec-
tive, this is often problematic however. 
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If the specification is written using a formal notation, it may be possible for a 
test automation system to automatically read this notation and use this informa-
tion to define the expectations (the oracle information). In practice, however, 
most specifications are written in natural language and are often imprecise and 
incomplete. Thus a test automation system, even when generating different 
forms of test input, cannot automatically determine in which case the resulting 
output from the SUT is correct and according to expectations. In fact, if an 
automation system existed that could define what is expected from any SUT, 
without any external information, it should then also be able to generate the SUT 
itself as well as any system that has not even been defined. Thus, it is clear that fully 
automated test oracle generation without external input as such is not possible. 

Most test automation techniques then require the user to provide a manually 
defined test oracle for the test cases. It is possible to use a generic test oracle to 
check for crashes in the SUT (unexpected exits or thrown exceptions) [63], how-
ever, such approaches do not work when it comes to checking any other type of 
application-specific output that typically forms the actual test oracles for a SUT. 
Sometimes very specific test oracles can be provided for a given test automation 
system [61] [62] [64], but these do not generalize and only partially cover the 
SUT specification. 

In many cases, the oracle procedure is provided and the information needs to 
be provided. In other cases, however, it is the other way round and the informa-
tion may be inferred from an existing system but requires the definition of the 
procedure that correctly analyses this information. Any combination of these is 
also possible. In any case, the oracle in test automation always requires some 
form of manual augmentation (such as [71]) or, if fully automatic, is very spe-
cific and narrowly applicable. In the case of formal specifications, it is also pos-
sible to use these specifications as the oracle information [72]. As described 
earlier, however, these are outside the scope of this thesis. 

Supporting techniques 

Many techniques relating to test oracle automation do not provide or generate an 
automated test oracle themselves, but rather focus on supporting the user in cre-
ating the oracle information, the oracle procedure or both. Typically in these 
cases, the execution profile is captured from the SUT using a test monitor, and 
algorithms are provided to make assertions based on the execution profile. In 
these cases, the basic oracle information is usually available and the oracle pro-
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cedure needs to be provided. It is then the job of the user to describe the oracle 
procedure using the tools provided. 

Andrews and Zhang [73] have presented a technique for test oracle generation 
based on log file analysis. This is based on the SUT writing a log file based on 
using a predefined logging policy, and a log file analyser asserting the correct-
ness of the execution based on the log file. Their approach requires the log file 
analyser component to be written as a test oracle and provide a matching logging 
policy to map this oracle to the log file. They illustrate the approach with state-
machine-based matching, in which the transitions are based on the available log 
lines. The log-file analyser component is applied against log files collected from 
SUT execution and makes an assertion of whether the log file matches the ex-
pected behaviour or not. 

Both Ducasse et al. [74] and Roover et al. [75] have described similar tech-
niques for building test cases based on traces collected from a program execu-
tion. They start by executing the SUT and collecting traces from the execution. 
Logic languages derived from Prolog are used to query the execution traces, and 
these queries act as the test oracles. They assert that the recorded behaviour 
matches the expected behaviour. Ducasse et al. [74] use the queries to filter rele-
vant data from large, low-level data sets, while Roover et al. [75] perform simi-
lar queries but also aim to limit the trace data to higher level events and lighter 
trace implementation. The aim of these techniques is to produce a model that is 
both humanly understandable and machine verifiable in order to support both 
test automation and program comprehension. 

Program invariants are used as a basis for assisted oracle generation in Agita-
tor [43], Eclat [66] and the technique proposed by Xie and Notkin [76]. All of 
these provide the user with a set of invariants as inferred from the set of execu-
tions using the test input described in the previous section. They then provide the 
user with the option of turning these assertions into actual test oracles and add-
ing them to the existing test suite for the program. 

Automated oracles 

Some techniques have been presented to provide domain-specific automated test 
oracles. These typically come with their own specific input-generation mecha-
nisms and are only applicable to very restricted types of applications. These test 
systems can then be used to assess the properties of this type of applications. As 
described earlier, these automatically generated oracles cannot describe the cor-
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rectness of any application-specific properties but rather focus on chosen generic 
viewpoints. 

Daniel et al. [64] present an automated test oracle for their testing technique 
that is intended for automated testing of refactoring engines. They use a number 
of test oracles such as invertibility of the refactoring operation (performing the 
operation backwards produces the original result), checking that the refactored 
code compiles, and specific assertions for chosen refactoring operations such as 
moving an element actually resulting in creating the item in a new location. 

A similar approach has been taken by Mesbah and Deursen [77] who provide 
test oracles for GUI testing AJAX-based web applications. They use a set of 
invariants specifically defined for this type of applications as the oracle informa-
tion. This includes generic invariants such as the HTML output always being 
valid and the DOM tree not containing any error messages. It also includes ap-
plication-specific invariants that are (manually) defined specifically for each 
application such as clicks on page elements updating the displayed table of contents. 
Their automated test oracle procedure checks that these invariants are not violated 
during the use of the web application by an automated input-generation tool. 

Memon and Xie [78] have developed test oracle information extraction tech-
niques for GUI testing. They use the previously described GUI properties to 
describe the possible states of the GUI. An execution monitor is used to capture 
the state of the GUI after each event given to the SUT. They use a set of test 
cases that are considered to describe the correct behaviour of the SUT to produce 
a model of the expectations for these states. The produced model then describes 
the oracle information for regression testing. 

Machine-learning techniques are used to automatically learn models based on 
a chosen set of algorithms from potentially large data sets. As a result, they typi-
cally provide an evaluation function that describes the given data in some way. 
There are two phases to applying most machine-learning techniques. First, a set 
of training data is given to the classification algorithm to create the model. In 
this phase, the classification of the data needs to be provided in order for the 
algorithm to build (learn) a model for the classification. In the second phase, this 
model and algorithm is applied to classify further data. From the viewpoint of 
test oracles, these techniques have been applied to execution profile data to clas-
sify executions as different types such as “high”, “average” or “low” (for per-
formance testing) [79] and “passed” or “failed” (for functional correctness) 
[79][80][81]. Many of these techniques focus on low-level execution profile data 
such as function calls, variable values and relations of these properties [79] [80] 
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[81]. Although some of these studies have shown promising results, they are 
hard to generalize, as the studies are limited with regard to properties such as the 
types of faults and types of programs considered [79] [80] [81]: mainly how the 
SUT data can be encoded in a suitable format and how useful the provided ora-
cles are with respect to the specific features in the SUT specification. This type 
of oracles can thus be useful, but the user needs to consider their limitations. 

2.1.4 Test harness 

A test harness for a SUT has several roles including setting up the initial state of 
the SUT for each test and setting up the testing environment (SUT and interact-
ing components). This section provides a brief overview of test generation re-
lated to test harness functionality from the viewpoint of the work presented in 
this thesis. This means that the focus is on setting up the collaborating compo-
nents and their expected interactions (the SUT environment and related behav-
iour). Other viewpoints such as setting up the SUT state for a chosen unit test, as 
described in [82], are excluded from the scope of this thesis and thus not in-
cluded in this overview. 

One basic function of a test harness is to isolate the unit under test from the 
rest of the system. This is typically done by using a set of test components re-
ferred to as test stubs. When these are made programmable, they are often re-
ferred to as mock objects [83]. This means that a component library is used that 
provides interfaces to create these stubs and that the stubs can be programmed 
with expected interactions to simulate possible interactions between the SUT 
and its environment. 

Tillmann and Schulte [84] use static analysis (symbolic execution) for auto-
mated generation of mock objects. By analysing the source code to see how it 
interacts with other objects, they infer the specification needed for the creation 
of the mock objects. By focusing on one test at a time, they also generate the 
expected behaviour of the mock object for that test, allowing the generation of 
mock objects to isolate the chosen parts for that test. 

Saff et al. [85] use dynamic analysis to capture a trace of the SUT behaviour 
and use that as a basis to generate mock objects, their behaviour expectations 
and return values. Their goal is to factor larger tests into smaller tests in order to 
optimize the test suite execution and analysis. They use existing test cases as 
bases for analysis, capture traces of their execution including the passed objects 
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between the SUT and its environment, and use this information to define the 
expected behaviour of the mock objects and their return values. 

Beyer et al. [86] generate test drivers to act as a test harness. Functions in the 
SUT interfaces and the interfaces of the environment with which it interacts are 
associated with data vectors. The external functions (of the environment) with 
which the SUT interacts are replaced with special test data feeding functions. 
Data from the test vectors are given in the order that the associated function is 
invoked. A similar approach is described by Pesonen [87] who uses instrumenta-
tion to isolate components from their environment, and captured data from ac-
tual use as test data. 

Bertolino et al. [88] present a test harness generation method for service-
oriented mobile applications. They require the system to be described using the 
web-service description languages WSDL and WS Agreement. Their goal is to 
facilitate testing of mobile systems where the environment is highly dynamic as 
a result of moving from one context to another. Based on these specifications, 
they generate test stubs for components with which the SUT needs to interact. 
They use simulators to further generate data to test the SUT in situations in 
which the test stub components are mobile and not always available. 

2.1.5 Model-based testing 

All testing can be considered to be based on models of the SUT. For example, 
Binder [89] describes testing as always being based on a model, even if it is only 
an implicit model in the mind of the tester describing the SUT and how it should 
be tested. Model-based testing is a technique that describes the SUT with the 
help of formal models at a higher abstraction level than the implementation and 
uses tools to analyse these models and generate tests from them [4]. Different 
definitions of MBT include generation of test data, invocation sequences, com-
binations of these including test oracles and turning abstract representations 
(such as UML diagrams) into test cases [4]. In the context of this thesis, the third 
definition (generation of data, sequences and including oracles) is used. 

In this case, the model is an abstraction of the actual SUT, omitting excess de-
tails and describing only the relevant parts of interest for test generation. Using a 
set of coverage criteria and test-generation algorithms, the MBT generation tool 
generates test cases from this model. Coverage criteria may be, for example, 
covering all transitions in the model and algorithms including symbolic execu-
tion and graph traversal algorithms [4]. This generates a set of abstract test cases 
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that are then transformed into concrete test cases and mapped to the actual SUT 
by an adapter component. 

MBT tools employ different types of models and test-generation techniques 
according to their intended application [90]. In the context of this thesis, the use 
of extended finite state machines (EFSM) is the most relevant one. A short de-
scription follows of these models and related MBT techniques according to [4]. 
EFSM’s describe the SUT as a set of states, transitions between these states and 
the constraints defining when these transitions can be taken. The MBT tool then 
uses analysis algorithms to generate SUT invocation sequences, test data for 
these invocations and check the provided results. The used modelling notation is 
important as it needs to support all these properties, and programming languages 
such as Java are typically used to express them due to their ability to express all 
these properties [4][90]. In many ways, the MBT field brings together a number 
of previously presented research topics. Algorithms such as symbolic execution 
and constraint solving are used by MBT tools to analyse the model, generate 
tests and assess the coverage criteria [4]. It is also possible to combine these with 
various test data generation methods to generate input data for the generated test 
sequences. 

Various representations are available for describing the models in MBT. Con-
trol flow is typically modelled with transition-based modelling languages such 
as state machines, and this notation is extended with a programming-language-
like notation to model related data values [90]. This is a hybrid solution, and 
some tools also support the description of the complete model using a program-
ming-language-like notation [4]. 

MBT has been an active research topic for a considerable time already. For 
example, Neto et al. [91] describe the work of Ramamoorthy et al. [92] in 1976 
as an example of an early form of research into MBT. It has become more popu-
lar, however, especially in the last few years, and successes in its use have been 
reported in various domains including space [93], automotive [94] [95], health-
care [96] and others [91]. Despite several studies, however, industrial adoption is 
still seen to be lacking [91]. 

In MBT the model is typically created manually based on SUT specifications 
[4]. Creating an abstracted model of the SUT and using it to generate tests is 
seen as cheaper and less time consuming than writing similar tests manually. 
The acquisition of the required specialist skills for effective modelling, and cre-
ating and maintaining the models involve significant costs however. The oppo-
site approach can also be taken where an initial model for the SUT is automati-
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cally generated based on observing a set of controlled sample executions. This 
approach was presented by Bertolino et al. [5] as anti-model-based testing. They 
describe three reasons for taking this type of approach: the required deep exper-
tise in formal methods for creating a model, the difficulty of forcing the actual 
SUT to take execution paths similar to those generated from the manually cre-
ated model, and the lack of models for legacy systems and COTS-based systems 
[5]. In addition, this approach can be seen as having potential for significant cost 
savings, as the initial model is generated automatically. Besides describing the 
basic concept, Bertolino et al. do not take it further. This thesis presents a 
framework, which includes a practical tool implementation and evaluation of 
this type of testing. 

2.2 Observation-based modelling 

The building of models based on captured observations of a program is a popular 
approach in several fields of research such as test automation, program compre-
hension and reverse engineering. Reverse engineering, for example, is com-
monly defined as analysing a system in order to identify its components and 
their interrelationships, and creating representations of the system in another 
form or at a higher level of abstraction [97]. Similarly, program comprehension 
is a field that focuses on building a human understanding of a SW system. Sto-
rey characterizes it as theories to explain how programmers understand software 
and tools used to assist in these comprehension tasks [98]. The end result of 
these is typically a model that describes the SW under analysis at some abstrac-
tion level with the intention of helping the human user understand it better. This 
section is a review of how different techniques in different fields use observa-
tions captured from the SUT execution to build models of a program, and how 
these models are used for different purposes. 

Figure 5 shows a generic overview of an observation-based modelling proc-
ess. This process always starts with the definition of a set of execution scenarios 
to be used as a basis for the observations. These scenarios are used to drive the 
SUT execution and can include such elements as existing test cases or captured 
field data for the SUT [99]. During the execution of these execution scenarios, 
the SUT is monitored with a monitoring tool to capture the information required 
for the observation-based modelling technique. These tools can include basic 
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instrumentation frameworks such as AspectJ2, dedicated frameworks such as the 
one described in [100] or built-in support with the used middleware [21]. The 
captured observations are provided to the model-generator component or tool in 
a format suitable for automated processing. This produces, as a result, the target 
model, which can be used in different ways including testing and program com-
prehension. These results can also be used for improving or analysing the SUT, 
for example, by creating new test cases for [101] or optimizing the SUT behav-
iour [8]. 

 

Figure 5.Observation-based modelling process. 

Many of the techniques presented in the previous section build behavioural 
models of the system. The machine-learning techniques ([79], [80], [81]), for 
example, build models that classify a system into categories such as “pass” or 
“fail” in the context of software testing. More generally, many different fitness 
functions have been applied in a software engineering context, such as measur-
ing the simplicity of the design (for understanding), and metrics such as cohe-
sion and coupling as a basis for re-structuring a system [55]. Similarly, the pre-
viously described approaches of inferring invariants based on the execution 
traces can be used to create models of the system, describing the different data 
properties of the SUT and their relations (for example, [43], [66], [76]). As these 
modelling approaches have already been covered in the previous section, they 
are not repeated here. 

As mentioned, the techniques for observation-based modelling produce mod-
els at different abstraction levels. The choice of abstraction level and the focus 
                                                      

2 http://www.eclipse.org/aspectj/ 
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of the analysis are important considerations for practical industrial adoption of 
any of these techniques. The focus on an overall view of a complete SW system 
requires a higher level of abstraction for the used models, as the use of detailed 
information for any non-trivial system will produce models that are difficult to 
comprehend for human users. If, however, the goal is to analyse smaller parts of 
a SW system for purposes such as debugging or unit testing, it is better to use 
more detailed information as a basis for the analysis. Thus, in order to scale 
techniques for observation-based modelling, the needs at different levels of 
analysis must be considered. This can be addressed with abstraction methods 
such as sampling, clustering and focusing on higher level information such as 
external vs internal interfaces. From the viewpoint of this thesis, different ap-
proaches have been applied in the different studies, such as detailed information 
for resource usage analysis [100] and higher level information for external inter-
faces [101]. This also relates to the intrusiveness of capturing the observations, 
as large-scale observation of low-level details can be very resource-intensive and 
disturb the system to the extent of making the results less useful. Depending on the 
goal, it is possible to change the abstraction level by, for example, focusing on 
class or component interfaces depending on the granularity of the analysis subject. 

2.2.1 Basic terminology 

Two closely related concepts that are often mentioned as supported in the tools 
and techniques reviewed in this section are concept assignment and feature loca-
tion. SW program concepts can be mapped to two types: programming-oriented 
(such as searching or sorting a data structure) and human-oriented (such as re-
serving an airplane seat) concepts [102]. The problem of identifying human-
oriented concepts and assigning them to their implementation in a program is 
termed as the concept assignment problem by Biggerstaff et al. [102]. 

A closely related term is feature identification, which aims to map program 
features to its source code [36]. A feature in this context is defined as a require-
ment that can be executed and observed [36] [103]. Techniques for feature iden-
tification start by defining a set of execution scenarios to represent the features 
in the system. These scenarios are executed, and a trace of the program execu-
tion collected for each scenario. A scenario is seen as corresponding to certain 
features of the program and the traces of executed code in different scenarios are 
thus used to map the features to their implementation. A basic method for fea-
ture identification is the software reconnaissance method presented by Wilde 



2. Test automation and observation-based modelling 

50 

and Scully [35]. In this method, the program is exercised with two types of exe-
cution scenarios: ones that exercise the feature under investigation and ones that 
do not. The differences in execution are used to focus the analysis on parts that 
are most likely to be a part of the feature under investigation. Other approaches 
include execution scenario trace difference analysis [35], concept analysis [36], 
epidemiological approach [103] and impact analysis [104]. User-assisted ap-
proaches include concept graphs [105]. 

2.2.2 State-based models 

Mariani et al. [106] describe a technique to generate compatibility tests for 
COTS components based on the execution of previous versions of the compo-
nents. They call this technique behaviour capture and test. Based on execution 
traces of the component, they generate IO and FSM models to describe the com-
ponent behaviour. The IO models they use are the invariants provided by Daikon 
over the recorded data values that are changed during the component interac-
tions. These include the values, recursively, of any passed objects. The FSM 
model generalizes all the recorded interaction sequences and is inferred from the 
trace with their kBehaviour algorithm. They use these models for regression 
testing of components by comparing models inferred from the previous and new 
versions of the component. This can be a new version of the same component or 
a new component from a different COTS provider. They use the identified viola-
tions as a basis to identify potential issues in component integration. 

Lorenzoli et al. [107] present an algorithm called “GK-tail” that can be used to 
generate an EFSM from execution traces. This is based on finite state machines 
(FSM) and program invariants inferred with Daikon. Their algorithm combines 
the traces to form an FSM using a specific algorithm based on combining the 
sequences of method invocations of a given length to form the transitions of the 
FSM. Daikon-inferred invariants for passed and global data values are produced 
for each of the transitions in the FSM. These act as the EFSM constraints defin-
ing when a transition is allowed to take place. They consider using the EFSM for 
test case selection and for building an optimal test suite from existing test cases 
in order to increase the coverage of the model. 

Xie and Notkin [108] present a model called Object State Machine (OSM). 
From a set of SUT test executions, they capture calls from the test cases to the 
SUT, parameter values and global state after each call. The global state is re-
corded in the form of capturing return values of all public methods with non-
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void return type, including recursive scanning of composite objects. Method 
calls and their parameters represent state transitions and global state values from 
the states themselves. They see these models as useful for various tasks, such as 
finding failure causes by inspecting unexpected exception states and better un-
derstanding of the SUT. 

Cook and Du [109] have demonstrated a technique to find points in a system 
that exhibit mutually exclusive or synchronized behaviour. They model the sys-
tem as a state machine in which multiple states can be active at a time and each 
active state represents a concurrent execution path. The event trace used to build 
the model consists of the concurrent system states and transitions between the 
states. From these events, they use a technique to generate a state-based model 
for the system [110]. Once this model is established, they analyse the states to 
infer the points of mutual exclusion and synchronization. They intend that this 
model be used for facilitating the understanding of existing software systems. 

Mesbah and Deursen [77] build an FSM of web-based user interfaces. They 
use a crawler tool to click through the interface and capture possible interaction 
sequences that cause changes in the DOM tree representation. A change in the 
DOM tree constitutes a new state, and the states of the DOM tree are also the 
states of the FSM. Transitions are the clicks (input) to the SUT that caused these 
changes in the DOM tree. They use this model as a basis for invariant-based test 
generation as described in the previous section. 

Walkinshaw et al. [111] have presented a technique to infer state transitions 
from source code. The user must provide a set of states of interest, and their tool 
uses symbolic execution to analyse the source code in order to find transitions 
between these states and to describe the paths that lead to these transitions. 
States are identified using user-provided rules such as a certain method call trig-
gering a state (transition). Walkinshaw et al. [111] consider the inferred models 
to be usable for various tasks, such as testing, documentation and program com-
prehension, but do not elaborate further. 

2.2.3 Other models 

Parsons et al. [112] discuss a number of techniques for producing an execution 
trace and capturing it. They also discuss turning these traces into models, includ-
ing call graphs, runtime paths and calling context trees. The trace itself is de-
scribed as the most detailed representation (model) of the SUT behaviour. A 
call-graph is described as a compact representation showing the SUT methods 
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and their calls to other methods. However, this is described as losing information 
(call sequences and context) available in the trace itself. Calling context trees is 
described as a compromise of these, preserving context information. They de-
scribe various uses for these models, including supporting optimization, reverse 
engineering, problem determination, autonomic management and redundant 
service removal. 

UML has grown to be a popular notation for modelling software systems. It 
contains many different types of models that can also be used to describe SW 
behaviour. In the field of dynamic analysis-based modelling, two popular UML 
model types are sequence diagrams and state diagrams. State diagrams were 
covered in the previous subsection. Briand et al. [113] present a survey of tools 
to reverse engineer sequence diagrams, and Bennett et al. [114] present a survey 
and evaluation of tool features intended to help users in understanding reverse-
engineered sequence diagrams. Briand et al. [113] describe the properties of the 
tools and their support in analysing the sequence diagrams such as support for 
viewing full control flow and execution pattern identification. They deem these 
to be important features, but due to various constraints such as the limitations of 
the UML sequence diagram notation find the support limited. Bennett et al. [114] 
note the lack of studies on the real support offered by different analysis tools for 
the user. For the tools, they list a number of goals to support the cognitive process 
of the user including design and architecture recovery, feature location, design 
pattern discovery and re-documentation at different levels of abstraction. 

Most of the presented techniques analyse and model the behaviour of general 
properties of the SUT such as method calls and variable values. More domain-
specific approaches have also been applied, with the basic strengths and weak-
nesses of domain-specific models. These have the benefit of providing a better 
fit for the chosen domain at the expense of excluding all other domains. One 
example of such an approach is analysis of the behaviour of telecommunication 
systems by Marburger and Westfechtel [115]. They use static and dynamic 
analysis with views such as dependency diagrams, link chains, state diagrams 
and sequence diagrams. Some of these are more general, such as sequence dia-
grams, and some are more domain specific, such as link chains. The dynamic 
analysis, in particular, focuses on domain-specific data such as signals and the data 
passed over the signals. They describe this using the models to aid understanding 
of the system, and found the data based on dynamic analysis especially useful. 

Schmerl et al. [116] produce an architectural model from run-time events of a 
SUT. By mapping the set of run-time events to architectural events and trans-
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forming these events into an architectural description, they produce the architec-
tural model of the SUT. The architectural models they produce are described as 
sets of components and connectors. 

Process mining is a technique aimed at discovering processes from event logs 
[117]. Although it originates from the field of (human-oriented) workflow moni-
toring, its applications have since been extended to various other domains, in-
cluding SOA-based software systems [117]. This approach has been imple-
mented in the ProM3 tool that supports the building of various types of process 
models from given event logs such as Petri-nets and FSMs [118]. 

Lo et al. [119] mine temporal interaction rules from execution traces of pro-
grams. They call these invariants in describing statistically significant properties 
of interactions that hold over time in the program execution. These models con-
sist of premises leading to consequences, that is, they describe how temporal 
event sequences (premises) are followed by other event sequences (conse-
quences). They use the models to facilitate program comprehension, and as input 
for model checking to reveal errors in the implementation. Lo et al. [120] also use 
these temporal properties as input for the model-generation algorithms described 
in [107] in order to help improve the generalization of observed events from the 
traces and avoid the “spurious” events often observed in large-scale traces. 

In addition to generating models from collected execution data of a program, 
another approach is to create these models separately and use them to support 
the analysis process. In this regard, the models are first created manually and 
then compared against an inferred model of execution. This can be used, for 
example, to document the current understanding of the system and to validate it 
against the actual execution. Koskinen et al. [121] have used what they call be-
haviour profiles to describe how classes are expected to interact in a system. 
They use UML models such as class and sequence diagrams to describe the pro-
files, and traces of program execution are mapped against these traces to see if 
they are correct. Counterexamples are also sought to find places where the be-
haviour is against that which is expected. The previously described approach by 
Roover et al. [75] uses a similar mapping of traces against predefined models, 
but uses logical queries written in Prolog to describe the model and for verifying 
these logic queries against the program trace. 
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2.3 Discussion 

This chapter focuses on describing the two main background concepts and the 
existing work on these concepts: test automation and observation-based model-
ling. These two fields share many properties, for example, as mentioned, Binder 
has noted that testing is always based on a model even if it is only an implicit 
one in the tester’s mind [89]. In addition to this, the evaluation of a test execu-
tion is always based on observations. With reference to the previously men-
tioned definition of SW testing in the context of this thesis (“the dynamic verifi-
cation of the behavior of a program on a finite set of test cases, suitably selected 
from the usually infinite executions domain, against the expected behavior.” 
[7]), testing uses dynamic analysis as an underlying technique, that is, capturing 
observations from the execution of the SW behaviour and comparing these 
against set expectations. In this way, a form of observation-based modelling can 
be seen as always being required for the purposes of testing. 

There is relatively little work on the type of observation-based modelling dis-
cussed in this thesis however. This means the approach of not writing the test 
expectations manually but using the captured observations from a set of execu-
tion scenarios as a basis to provide the expectations (the oracle information) 
itself. Some of the work on observation-based modelling that is described ap-
plies the produced model in the context of software testing (e.g. Lorenzoli et al. 
[107] for test suite optimization) or verification (e.g. Lo et al. [119] for model 
checking). While a few tools allow turning simple observation-based models 
into unit tests (e.g. [43]), to the knowledge of the author of this thesis, however, 
no previous work exists on providing (semi-)automated support for generating 
executable test models suitable for MBT from captured observations prior to the 
studies presented in this thesis. One of the biggest issues in this regard can be 
seen in the provision of useful new tests based on existing tests and other execu-
tion scenarios, as these already exist and are executable. In the work presented in 
this thesis, this issue is addressed through the combination of the different sce-
narios and the use of a model-based testing tool. The aspect of verifying the 
correctness of the produced models against the system specification (its expecta-
tions) is addressed with a set of guidelines forming a new method for applying 
the produced model for testing and verification of SW with the help of existing 
techniques related to observation-based modelling from the field of program 
comprehension. 
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As described, this thesis provides a construct as a combination of these two 
different fields. In this way, it provides a novel contribution to both of these 
fields in addition to the individual contributions of different publications. 
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3. A framework for observation-based 
modelling in model-based testing 
This chapter presents an overview of the developed framework for observation-
based modelling in model-based testing. More details can be found in the origi-
nal research papers, as listed in the beginning of this thesis and provided as at-
tachments. This chapter starts with a general overview and finally describes how 
the original papers contribute to the different parts of the presented framework. 
An implementation for EFSM models is used as an example while discussing the 
concepts at a general level. This implementation is made available as open 
source4. 

The process of applying this framework can be categorised into two distinct 
phases. In the first phase, the target model used for model-based testing is de-
fined and tool support provided for the automation tasks. In the second phase, 
the available tool support and information on using the different concepts is ap-
plied. These two phases are described in more detail in the following subsections. 

3.1 Phase 1: Defining the target model 

The goal of observation-based modelling as presented in this thesis is to provide 
automated support for the modelling process in model-based testing. Different 
types of models can be applied in the test automation domain. Before applying 
model-based testing, it is important to define the target model that is being used 
and to provide automated tool support for generating the initial model. 

In the first part of applying the process, the model and the required informa-
tion for generating an initial version of it from captured observations needs to be 
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defined. This starts with choosing the model to represent the properties of inter-
est for the SUT in order to enable testing of the required properties. This model 
is decomposed to define the information that needs to be captured as observa-
tions made about the system execution. This information is also mapped back to 
the target model in order to enable the building of suitable generation algo-
rithms. To make this more manageable for complex models, they can first be 
decomposed into simpler models (behavioural patterns) that can be generated 
from captured observations and combined to form the target model. In the end, 
tool support is implemented to generate the initial model from the captured ob-
servations. This process is illustrated in Figure 6 and discussed in Paper VII. 

 

Figure 6. Model decomposition. 

In this figure (Figure 6), the term pattern refers to behavioural patterns describ-
ing the different properties captured and inferred from running and observing the 
execution scenarios of the SUT. Here, a behavioural pattern refers to specific 
abstracted models that describe partial properties required for generating the 
complete target model. This includes describing the SUT interactions, data, their 
relations and similar properties. Each of these provides a set of different patterns 
that are later mapped together to produce the final target model. For example, 
using a set of captured input and output messages as observations, an FSM can 
be considered to be a behavioural pattern in which the different states and transi-
tions describe the relations and behaviour of the SUT in terms of messages 
passed. Similarly, invariants over the data values processed by the SUT can be 
used as behavioural patterns describing the properties and relations for the data 
values. In this case, an FSM behavioural pattern can, for example, say that a re-
quest is always followed by a reply. A model in this context is considered to be 
more complex, for example, combining the properties of the behavioural patterns 
represented by an FSM and the properties represented by a data invariant model. 

Once a target model has been decomposed and related tool support has been 
provided, this can be reused for different target systems. Once the information 
that needs to be captured has been defined and the tool support to generate the 
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models from this information has been implemented, it can be applied across 
different SUTs to generate the initial model for MBT. This thesis presents an 
implementation of one type of model. This model is an extended finite state 
machine (EFSM), which was described earlier in Section 2.1.5. 

As described in Chapter 2, a test automation framework requires the existence 
of a number of different components such as test input data, a test harness and a 
test oracle. As was also described, the exact components and their requirements 
depend highly on the type of testing performed, the functionality under test, the 
design of the SUT and similar properties. For this reason, it is not possible to 
provide a generic set of components that would be applicable for all different testing 
purposes. This thesis, however, provides a basis for creating this mapping, provided 
the requirements for the model and the candidate models are known. 

Table 3 shows the decomposition of the EFSM model into a set of behavioural 
patterns and the way they are mapped to a set of captured observations. Table 3 
also briefly summarizes the basic parts of a test automation framework as pre-
sented in Chapter 2 and implemented in the EFSM model generator case example. 
These are combined to form the complete EFSM, which is implemented in an 
automated tool. The application of the model provided requires some special 
attention and is described in the next section, which describes the second phase 
of applying the OBM framework. 

Table 3. EFSM model decomposition. 

Model Element Pattern Observations 

State Data 
invariants  

Data values representing the SUT internal state during 
each observed (input and output) message passed through 
the SUT external interfaces. 

Transition FSM Input and output messages passed through the SUT exter-
nal interfaces. 

Transition guard Data 
invariants 

Input data values for received input messages, grouped as 
a separate invariant data point for each input-output mes-
sage tuple. 

Input data Data 
invariants 

Input data values (e.g. value ranges) used in input mes-
sages. 

Test harness Interface 
definitions 

Messages defined in the SUT external input and output 
interfaces. 

Test oracles FSM and 
data 
invariants 

Output messages (expected interactions) and their data 
values (expected return values). Associated separately for 
each separate transition. 
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3.2 Phase 2: Applying the framework 

The toolset developed in the first phase is applied to the second phase. This 
phase can be repeated for any SUT to which the same type of model can be ap-
plied once the first phase has been completed. An overview of the process of 
using the toolset and the modelling approach is shown in Figure 7. 

This second phase consists of three separate steps, each with a set of own sub-
steps as shown in the figure. The arrows in the figure are labelled with a number 
for the step (1–3) and a letter for the substep inside the phase (a–e). Each arrow 
describes an activity for a step in the application of the framework. The boxes 
describe different entities related to the application of the framework, indicating 
the required tools, inputs and outputs that the steps use or produce. 

This process of applying the framework is supported with automated tools for 
each step. The first step is about collecting the required data (observations) to 
build the model. This can be automated to different degrees depending on the 
type of observations that need to be captured. The second step generates the 
model. This step can be completely automated with tool support from the first 
phase. In the third step, the model is manually refined and executed (tested) until 
all errors found in the implementation and/or the specification are found and 
fixed. The refinement in this phase is manual, whereas the model execution, 
testing and reporting of results is performed by a test automation tool. Each of 
these steps is described in more detail next. 
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Figure 7. Overview of the framework. 

3.2.1 Step 1: Capturing observations 

The process of applying the framework begins in step 1 with the capturing of a 
comprehensive set of observations describing the behaviour of the SUT. In step 
1a, a set of execution scenarios are defined for capturing the base observations. 
Good candidates for these scenarios are the existing test suites of the SUT and 
field data captured, for example, from the use of the SUT [99]. Together these 
scenarios should form a representative set of the expected behaviour of the SUT 
from the perspective of the target model, including component interactions and 
input/output data. This means that the used execution scenarios should represent 
the complete behaviour of the SUT as it is intended to be included in the model, 
as opposed to only exercising a part of the SUT functionality. Depending on the 
requirements and the intended test target, the requirement for what constitutes a 
representative set can of course vary and is up to the expert defining the set, with 
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the help of tools such as the system specification. The completeness of these 
scenarios defines the quality of the model generated in the following step. The 
assessment of the set of observations has been described in more detail in Paper 
VIII. Guidelines for SW design to support more effective observations and test-
ing are presented in Papers IV and V. 

As the generated model is based on behavioural patterns mined from these ob-
servations, the mined patterns can be more powerful if the set of used scenarios 
provides a meaningful classification of expected results. For example, invalid 
input that causes error-handling behaviour can limit the usefulness of the gener-
ated model, as many existing tools for pattern mining do not provide functional-
ity to mine sufficiently complex interactions between the input data values, in-
teraction sequences and SUT internal state values. This means that unclassified 
scenarios will produce patterns and, as a result, a model that allows for all types 
of input and output, limiting their power of discovering failures such as errors 
for valid input. This is similar to existing work on using generated models for 
testing such as [66, 78] that use a set of observations considered to describe the 
correct behaviour of a SUT as a basis for the model, although different categoriza-
tions are also possible here. This is discussed in more detail in Papers VI and VII. 

As in many cases, such classifications of available execution scenarios are not 
attainable; this is not a strict requirement. When the categorization is not avail-
able, it simply means that more manual work needs to be performed in the later 
phase of model refinement, for verification and testing to identify the categories 
in the produced model. 

An execution driver component is needed to drive the execution scenarios of 
the SUT. This can be an existing test automation framework, a set of real users 
or any other form of available drivers. As the driver executes the SUT according 
to the execution scenarios, one or more monitoring components are used to cap-
ture a set of observations on the SUT behaviour (step 1b). As the framework is 
intended to take a black-box approach, it is sufficient to capture these observa-
tions from the SUT external interfaces and any provided test interface(s). The 
information captured at each observation point includes the internal state of the 
SUT, the input and output messages (method invocations) of the SUT and pa-
rameter values of these messages. Thus, it is most naturally applied to compo-
nents that provide test interfaces to read their internal state, and that clearly de-
fine their external interfaces. Other options also exist, however, as described in 
Papers IV and VI. The observations for all execution profiles are stored in a data 
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store (step 1c). Steps 1a to 1c are (automatically) repeated by the execution 
driver component until all execution scenarios have been executed. 

3.2.2 Step 2: Model generation 

In the second step, the initial target model is generated based on the observations 
captured in step 1. In step 2a, the model generator component uses the stored 
observation data as a basis to generate the initial target model in the notation 
used by the chosen MBT tool (step 2b). In the implemented EFSM generator, 
this is the notation of the ModelJUnit5 tool. The model generator mines the be-
havioural patterns into which the target model is decomposed from the observa-
tions, and combines these to produce the target model as defined in phase 1. In 
the EFSM case, the generator first mines the FSM and the Daikon data invari-
ants from the observations and combines them into an EFSM model in the nota-
tion used by an MBT tool. The FSM uses the SUT external messages as a basis 
for both the states and transitions between these states. For example, it can de-
fine that from a Request state (message) it is possible to transition to a Reply 
state (message). The data invariants are inferred based on the parameter values of 
the messages and their relations to the state of the SUT at each point. These in-
variants describe the relations between the parameter and SUT internal state val-
ues that allow each transition to occur. For example, it may say that to subscribe 
with a given client name there must be connected clients, and the given client 
name must be in the list of connected clients in the SUT internal state. These data 
invariants and the FSM form the basic behavioural patterns that are then combined 
to form the final target EFSM model. Once the initial EFSM model is generated, it 
is provided to the user for the manual refinement and verification step (step 3). 

The user of the generated model is typically a tester or analyst working with 
the software. In many cases, the use of an MBT tool requires an understanding 
of its special notations and concepts, some of which can be quite complex and 
unfamiliar to the user [91]. In the EFSM framework case study, the choice has 
been to use models presented in the Java programming language, which is famil-
iar to many developers. Similar MBT tools also exist for other languages such as 
C# [122], and the EFSM generator could be modified to also provide models in 
these languages. The use of a familiar language has the advantage of making the 
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adoption of the MBT approach easier, allowing people to work with a familiar 
notion and familiar toolset in addition to the framework, which already generates 
a model with much of the required content automatically. 

This forms the basis for the process of using the generated models. This has 
been described in more detail in Paper VI. 

3.2.3 Step 3: Model refinement for verification and testing 

The third step of refining the model is iterative. It starts with the user taking the 
generated model and choosing which part to focus on first (step 3a). These parts 
need to be enabled in the model (for example, with the transition guards in the 
EFSM), while keeping the rest of the model disabled. In practice this translates 
to disabling states in the state machine by setting their guards to always return 
false (in case of an EFSM), thus enabling the user to focus on the chosen parts of 
the model. With the target parts of the model enabled, the user can run the MBT 
tool (step 3b), which will attempt to execute the model (step 3c) against the SUT 
in order to test it (step 3d). The user will then proceed to enable the rest of the 
model one part at a time (for example, a transition at a time in the EFSM). The 
execution of the model with the MBT tool will give continuous feedback for the 
expanding model (with more parts enabled). In this step, the initial model also 
needs to be generalized to fully match the SUT specification, as it will be con-
strained to only describe the properties available in the used execution scenarios. 
The refined and generalized model is verified against the implementation by exe-
cuting it with the MBT tool, which will report any mismatches between the two. 

The execution of the model gives feedback to the user, highlighting where in 
the model the error was found. The user has to compare what the implementa-
tion does, what the model expects it to do and what the specification states that it 
should do. From this, the decision has to be made as to whether the error is in the 
implementation, the model or the specification. The original generated model 
should match the implementation and the refined one should match the specifi-
cation. Problems such as misinterpretations of the specification or the modelling 
notation can also cause problems however. This part of using the refined model is 
referred to in this thesis as verification of the implementation vs the specification. 

A second viewpoint in addition to the verification viewpoint is that of testing. 
As the model is continuously executed during the refinement phase, it can be 
executed at any time with the help of the MBT tool. This typically generates 
tests that produce complex interaction sequences and data as input for the system 
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under test. This can reveal additional errors in the implementation, where the 
implementation (or its part) is not “wrong” with regard to the specification, but 
where the different parts of the systems fail in the case of a more complex inter-
action sequence than has been tested before. In this thesis, this part is referred to 
as the testing part in the use of the model. 

The method for using the generated model for software testing and verifica-
tion has been described in more detail in Paper VI. 

3.3 Discussion 

As the generated model is based on observations made from the existing imple-
mentation, it also describes the actual implementation. Thus, care needs to be 
taken that the model is not taken as a specification of expected behaviour with-
out consideration. If the implementation is not in accordance with the specifica-
tion, this will not be visible simply by comparing the generated model with the 
implementation. The user must carefully verify that the model matches the 
specification, which should define what is expected of the implementation. 

This approach makes use of model-based testing tools and techniques, but 
turns the basic MBT approach around. In MBT, the specification is normally 
used as a basis for the model, the generated tests are executed against the im-
plementation and the results are verified to determine if any reported errors are 
due to problems in the model or in the actual implementation. As the techniques 
presented in this thesis turn this approach around, the model is now generated 
based on observations made from the actual implementation and, as described in 
this thesis, this model is refined to match the specification and constantly exe-
cuted to see that the implementation still matches the specification. Thus, it is a 
change from matching the specification to the implementation to matching the 
implementation to the specification. This thesis addresses various aspects required 
to produce the observations, provides an implementation of the model generation, 
guidelines for use, and experiences and empirical evidence on their application. 

Experiences from the executed case study indicate that the presented tech-
nique has potential to uncover different types of errors in both the implementa-
tion and the specification. In the case study, it effectively highlighted ambiguous 
parts of the specification that needed to be updated to define what was expected 
of the SUT. Several errors were found in the implementation where the specifi-
cation was implemented incorrectly. Problems were also found in the way the 
SUT was designed and implemented in the more complex scenarios with gener-
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ated input data and message sequences. These caused errors in the design at a 
level that was not clearly defined in the specification, but they were obviously 
not correct. Finally, some specified functionality was found to be missing com-
pletely from the implementation. This can only be found by checking that the 
required functionality is present in the generated model, as any unimplemented 
features will never be generated based on the implementation. These types of 
errors are best found when the SUT implementation and model genera-
tion/refinement are performed by different people, as it forces a new interpreta-
tion of the specification. 

Table 4 summarizes the contributions of each paper to the framework. 

Table 4. Contributions of each paper to the thesis subject. 

Paper Phase/ 
Step 

Contribution 

I x This paper presents a motivating case study from testing and integrating a 
complex real-world application. Many of the issues discussed are addressed 
in the later papers. 

II (2/1b), 
(2/2a), 
(2/2b) 

This paper presents some of the initial concepts for the framework presented 
in this thesis that are taken further in later papers. 

III 2/1a This paper discusses the different properties of execution scenarios (test 
cases) and the way different types of scenarios are needed to cover different 
parts of the SUT effectively. 

IV 2/1b This paper presents guidelines for building support for effective monitoring into 
the SW at various levels from high-level architecture to the detailed design. 

V 2/1b, 
2/1c 

This paper presents the design and implementation of a monitoring frame-
work that provides services for generic system monitoring and supports the 
building of more specific monitoring. 

V 2/2a From the presented monitoring framework, it is also possible to export the 
observation data to different tools, including the formats used by the EFSM 
case study tools. 

VI 2/1-3 This paper describes the overall process of phase 2, starting from the first 
steps up to the final steps, including a practical implementation for the EFSM 
case study. 

VII 1 This paper describes the first phase of model decomposition using the EFSM 
model decomposition and generation as a case example while discussing the 
concept more generally. 

VIII 2/1,3 This paper discusses means to analyse the set of observations, to optimize the 
set of used execution scenarios and to generate test oracles more generally.  
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4. Introduction to original papers 
This chapter briefly summarizes the papers presented in this thesis and shows 
their contributions and relations to each other. 

4.1 PAPER I: Integrating and Testing a System-Wide 
Feature in a Legacy System: An Experience Report 

Paper I is an experience report on a project in which a feature with system-wide 
effects was integrated and tested on an embedded real-time software platform. 
The research format is that of a descriptive case study chosen to report the ex-
periences considered interesting from a research perspective as encountered 
during the development work of the described project. The publication focuses 
on the problems and the reasons for them encountered during the course of this 
work. There is special focus on the problems caused by the environmental con-
straints of the software platform and the context in which the work was done. 
The highly embedded nature of the effected software coupled with its weak test-
ability support made it difficult to control and observe the system. It was not 
possible to run any parts of the software effectively outside the embedded de-
vices for which it was designed, nor was it possible to create different configura-
tions of components to test the integration. The difficulties of decoupling the 
different software components from their execution platform and from each 
other also made all the real-time requirements of the platform unavoidable. Fur-
ther problems were presented by the complex interactions between the system 
components. The wider context of the work included the integration of various 
black-box components from different vendors. There was very little visibility as 
to how the black-box components worked, and together they formed a network 
of components with complex interactions. This paper provides background mo-
tivation and requirements for the research area of this thesis. Similar issues were 
also reported in the interviews described in Paper IV. The author is the main 
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writer of the publication and was involved in the practical integration and testing 
work, and also collected and analysed the information presented in this paper 
from the practical project experiences. Mr. Mika Hongisto was the project man-
ager and contributed hardware-related technical background descriptions for the 
paper. Mr. Kari Kolehmainen was the main person responsible for the actual 
integration and testing work described in the paper and provided discussions and 
insights into the topics described in the paper. 

4.2 PAPER II: Towards Trace-Based Model Synthesis for 
Program Understanding and Test Automation 

Paper II describes the concept of using traces of program execution as a basis for 
producing models of the executed program. The research approach in this paper 
is to design a construct to improve regression testing of a system, and it is a case 
study focusing on a single system. The main research motivation for the study 
came from the extensive, repetitive work of integrating and testing the project 
described in Paper I, which could have been aided greatly by a simple system 
such as that described here, considering the constraints that are also described in 
this paper (addressed in more detail in Papers IV & V). Validation is based on 
the application of the presented approach on regression testing of an actual fail-
ure in the case study system. The project chosen as a case study is different to 
the original industrial project, as this was no longer available to the researcher at 
this point. The basic idea is to capture information about the flow of the program 
based on a set of described instrumentation levels. The SUT is instrumented 
using any combination of instrumentation starting from means provided by the 
HW platform to manually inserted SW instrumentation. The captured data are 
used as a model of the way the system behaves, and this model is used as a basis 
for regression tests. This model is not yet suitable for use with existing MBT 
tools but rather requires a toolset of its own. It is best applicable for regression 
testing and to systems for which there is limited control over inputs and outputs. 
The basic concepts presented in this paper were further developed in later papers 
to be better suited to MBT. The author is the sole writer of the publication. 
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4.3 PAPER III: Towards a Deeper Understanding of Test 
Coverage 

Paper III discusses how the commonly used basic measures of test coverage can 
benefit from a deeper analysis of the way different parts of the SUT are covered 
by the different tests. The research approach was that of using conceptual analy-
sis to find properties relevant to the testing and test coverage of the SUT and to 
use this information to construct a design artefact for measuring test coverage at 
more detailed level(s). The motivation was to improve the measurement of test 
coverage and thus the analysis of where new tests are needed based on the au-
thor’s experiences of various SW projects and in the SW testing community. 
Validation was based on analysis of the test suite and its coverage for an open-
source project. The case study system was chosen for the availability of a suit-
able test suite and non-trivial complexity for providing a realistic environment. 
The roles of different tests such as unit tests, integration tests and system tests 
are discussed in order to show that it is not enough just to know that a part of the 
SUT is covered by some test, but that we need a deeper understanding of the 
types of tests in the test suite and how they cover the SUT together. The con-
cepts of test granularity and level of testing are introduced to describe and com-
pare the coverage of different tests and how they cover the SUT. The described 
measurements are implemented, and an open source project and its test suite are 
analysed as a case study of the proposed concepts. This paper provides the basic 
discussion on how we need different types of executions (tests) to cover the dif-
ferent functionalities and properties of a SUT when using the traces of its execu-
tions as a basis for building a model for its behaviour. Paper VI makes use of 
this information to select the types of executions that are used to build the model 
of the SUT. The author is the sole writer of the publication. 

4.4 PAPER IV: A Study on Design for Testability in 
Component-Based Embedded Software 

Paper IV is a study and a comparison of how design for testability (DFT) was 
addressed in two large-scale software companies working on embedded real-
time software. The research approach is a survey focusing on exploring the prac-
tices of chosen companies in the field of interest. The choice of these companies 
was based on the industrial relations available at the time, and the choice of 
teams and projects inside these companies was based on their own expertise in 
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choosing a representative set with advanced solutions developed for the studied 
topics. The motivation for the study came from many sources including the au-
thor’s experiences from several projects such as the one described in Paper I, 
and from the needs and interests of the industrial partners. The results are cate-
gorized into three different types: built-in functionality to support test implemen-
tation in the SUT, control of messaging between the system components with 
supporting middleware solutions, and simulation strategies that define how the 
software components can be integrated and tested outside their embedded device 
platform. Supporting test functionality ranges from libraries with readily built 
functionality to be integrated into the SUT as needed to first-class features in the 
SUT that will be part of the production code. These features provide functional-
ity and interfaces to access information about and control SUT behaviour. Mes-
saging solutions describe middleware solutions for the SUT that enable the com-
position of different combinations of the SW components and their test stubs and 
the control of the data and control flow as messages pass through the system. 
Simulation strategies start from the definition of the software platform in a way 
that allows the components developed for it to be executed without change in an 
external (desktop) environment. The solutions employed by the two companies 
are discussed and comparisons made of their effectiveness. Some of the informa-
tion presented in this paper also served as the basis for the concepts developed 
and presented in Paper V. Some of the concepts presented are applied in Paper 
VI. The author is the sole writer of the publication. 

4.5 PAPER V: A Probe Framework for Monitoring 
Embedded Real-Time Systems 

Paper V presents a monitoring framework for embedded real-time systems. The 
research approach in this case focuses on improving issues described in Paper 
IV. Some of the motivation is also related to the issues presented in Paper I, 
where there was no effective support built into the system for monitoring and 
testing the system. This paper then focuses on effective support for the required 
features based on the previous papers. The case study subjects were chosen 
based on the industrial partners in the project at the time, which provided envi-
ronments similar to the one presented in Paper I with mainly real-time embedded 
software. Validation was based on two analysis cases on actual systems provided 
by the industrial partners. The presented framework provides generic services that 
can be deployed as is to provide information about the system at a general level 
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and supporting services to implement any system-specific probes. It also sup-
ports integration with probes created with third-party tools such as SystemTap. 
SystemTap is used as an example as it enables a running SUT to be modified to 
add and remove probe code from the kernel. The described framework is imple-
mented in C on a Linux platform and provided as shared libraries. The basic 
protocols are also provided as a Java implementation. These implementations are 
part of a larger framework, which enable the monitoring of a SUT, collection of 
the trace data and their exportation in different formats to different analysis and 
modelling tools. This also supports the Daikon and ProM tools used in Paper VI. 
Mr. Markku Pollari was responsible for implementing the presented framework 
on Linux and was the main writer of the publication. The author defined the 
concept of the framework to be developed, guided and assisted with the design 
and implementation, implemented the Java version and participated in writing 
the publication. This paper received a best paper award at the conference, and an 
invitation for an extended version by the Journal on Advances in Systems and 
Measurements. 

4.6 PAPER VI: Observation Based Modeling for Model-
Based Testing 

Paper VI brings together many of the concepts presented in the previous papers. 
The research approach started with a conceptual analysis (study) of the MBT 
approaches in order to provide a basis for understanding the requirements for 
generating a model usable for MBT. A tool and a method for its use are de-
signed, based on this information, and presented for the generation of both an 
initial model suitable for MBT and a method for using this model for testing and 
verification of SW behaviour. The choice of case study project was based on the 
industrial connections available at the Delft University of Technology, which the 
author was visiting at the time. Validation is based on a number of approaches, 
including actual testing of two SW components with the help of the provided 
artefacts, and simulation with the help of injected faults by mutation testing. The 
basic aim is to improve the support for MBT by making it easier to create the 
models and use them effectively for testing and verification. It presents a model-
generation tool and technique for generating an EFSM for MBT based on the 
observations captured from the SUT execution. It is an extension of the work 
described in Paper II of using traces of the program execution as a basis for 
building models for its behaviour. Different types of execution scenarios, as 
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described in Paper III, are used as a basis to provide the observations to build the 
model. DFT solutions, as described in Paper IV, were used to capture the infor-
mation required for the trace used as a basis for the model generation. Although 
the case study is executed on a different platform, the framework presented in 
Paper V supports the capture of the required observations and provides them in a 
suitable format for the model-generation tools applied. The presented technique 
involves the user instrumenting the SUT, capturing a set of observations based 
on a set of execution scenarios, using the provided tool to generate an EFSM 
from these observations and refining the EFSM manually to its final representa-
tion. The SUT specification is used to verify the correctness of the generated 
model (and thus of the implementation from which it is generated) and an MBT 
tool is used to generate more tests to further explore the generated EFSM. Using 
a case study, it shows how the technique can effectively find errors in both the 
implementation and the specification. The author is the main writer of the publi-
cation and defined the concepts, designed and implemented the used algorithms 
and tools, and performed the case study. Dr. Eric Piel provided the case study 
subject, helped execute the case study and participated in writing the publication. 
Dr. Hans-Gerhard Gross also helped to provide the case study and participated in 
writing the publication. 

4.7 PAPER VII: Behavior Pattern-Based Model 
Generation for Model-Based Testing 

Paper VII is both a generalization and a deeper description of the model genera-
tion technique presented in Paper VI. The research approach of this study starts 
with the use of conceptual analysis to identify the relevant properties of test 
automation systems and models in order to provide a basis for the provision of a 
generic framework for developing algorithms to generate models for model-
based testing based on captured observations. A generic framework is designed, 
based on this information, and presented in order to support the creation of algo-
rithms to support different types of models suitable for MBT. The choice of the 
case study subject is the same as in Paper VI due to the work being performed in 
the context of the same project. Validation is based on the application presented 
in more detail in Paper VI and on the description (via conceptual analysis) of its 
possible application to a second project related to web-application testing at the 
Delft University of Technology, which the author was visiting at the time of 
performing this study. While Paper VI focuses on describing the implementation 
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of the model generator and its application to the case study, this paper focuses on 
the process of generating different types of models. A general description of this 
process is presented from the viewpoint of generating different models for use 
with MBT, and the EFSM model generation is used as a case example for all the 
parts of the process. This process is described as decomposing a target model 
(such as EFSM) into a set of behavioural patterns that can be mined from the 
observations captured from running the execution scenarios for the SUT. For 
this, the information to be observed and captured as well as the means and algo-
rithms for mapping this back to the target model (generating the model) are de-
scribed. The process of using these generated models is also shorortly described 
and compared with traditional MBT approaches. The author is the sole writer of 
the publication. 

4.8 PAPER VIII: Program Comprehension for User-
Assisted Test Oracle Generation 

Paper VIII describes synergies in the fields of program comprehension and test 
oracle automation. The research approach in this case starts from conceptual 
analysis of both program comprehension and test oracles, leading to the identifi-
cation of relevant parts and properties of these two fields and their relations to 
each other. This is then used as a basis to design a framework for creating 
(semi)automated support for test oracle generation with the help of program 
comprehension tools and techniques. The motivation for this study comes from 
the observation that test oracle automation is one of the most difficult and least 
supported parts of test automation research. From the research work performed 
by the author to this point, it was clear that this part could be separated and pro-
vided individually as a meaningful and useful contribution to the field of test 
oracle automation. The choice of case study is the same as in Papers VI and VII 
as they are part of the same research work. The validation is also similar to Pa-
per VII. While Paper VI focuses on a single type of model, this paper provides 
insights into taking this into a wider context. The paper focuses on describing 
the concept of providing automated assistance for the generation of test oracles 
by means of program comprehension tools and techniques. The tool and tech-
nique presented in Papers VI and VII are used as an example of how a model 
generated from a set of captured observations can be used as an aid to under-
standing the system and to turn this model into an automated test oracle. It also 
shows how the set of used execution scenarios and the resulting set of captured 
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observations can be optimized to provide a sufficiently complete set for generat-
ing the target model. The concept is also viewed against other related work in 
the literature, and a generalization of the approach is presented by relating the 
provided example to the other approaches and against the theoretical back-
grounds of both test oracle automation and program comprehension. The author 
is the sole writer of the publication. 
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5. Framework evaluation 
Different parts of the framework presented in this thesis have been evaluated 
through different study subjects. This chapter presents the different study sub-
jects and the way they have been used in the evaluation of the different phases 
and steps of the proposed framework. 

5.1 Study subjects 

A number of different study subjects have been used during the evaluation of the 
different parts of the framework presented in this thesis. This section gives a 
brief overview of each of the study subjects related to each of the attached pa-
pers in the form of Table 5. As discussed in the presented overviews of the dif-
ferent papers in Chapter 4, Paper I also contributes to the evaluation of the dif-
ferent approaches in the papers by providing a set of practical problems from a 
real project with significant complexity and problems in integration and testing. 
A mapping of the different papers to these problem areas was also discussed in 
Chapter 4. 
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Table 5. Study subjects in the different papers. 

Paper Study subject 

I A SW platform for mobile devices is studied in this paper, including the platform code 
and a number of applications built on top of it. The process of integrating and testing a 
feature with system-wide effects was described, and experiences from this process were 
described to highlight problem areas that could be addressed in future research. 

II A middleware messaging component was studied. The use of captured traces (observa-
tions) and how they could be turned into regression tests for the SUT was explored. A 
case study with an actual error scenario for the SUT was used to evaluate the concept in 
practice. 

III An open-source software project, its existing test suite and test coverage were studied. 
The paper studied means for more detailed analysis of test coverage for a test suite. 

IV Several experts from two different industrial companies were interviewed to gather the 
best practices relating to design for testability. These experts had worked on a number 
of different projects and were chosen by the companies as the best representatives to 
provide information on this topic. In addition, technical documentation describing the 
implementations of these solutions was reviewed. 

V Experiments were performed on two Linux-based platforms. One was a desktop Linux 
environment and the other was an embedded Linux system provided by one of the 
industrial project partners. The use of the presented probe framework for monitoring 
the targeted systems, including the overhead caused, was studied both at the kernel and 
user-space level. 

VI The application of the presented model-generation approach and the proposed OBM 
method were studied with the help of different components providing services for a 
maritime surveillance system. This included studying the effectiveness and usefulness 
of the proposed approaches through the capability of finding previously undiscovered 
errors in the implementation and ambiguities in the specification. In addition, effective-
ness in test coverage and mutant detection were evaluated in comparison with the exist-
ing tests used as a basis for model generation. 

VII A database and server component that is a part of a larger system is studied. This study 
subject is very similar to the ones used in Paper VI. This paper discusses the model 
decomposition and algorithm development aspects with the help of the case study in 
more detail and more generally. Paper VI provides a more detailed evaluation of this 
approach with a specific case study. In addition, this paper (VII) briefly describes the 
application of the presented concept in the domain of web-applications. This descrip-
tion related to web applications is based on ongoing work but is not discussed in more 
detail as it is work in progress. 

VIII A database and server component that is a part of a larger system is studied. This study 
subject is very similar to the ones used in Papers VI and VII. Again, Paper VI provides 
a more detailed evaluation of this approach with a specific case study. This paper (VIII) 
and its case study show how program comprehension techniques can be used to assist in 
semi-automated generation of test oracles more generally. 
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5.2 Phase 1: Defining the target model 

Three studies presented in Papers II, VI and VII are relevant to the evaluation of 
the first phase. A simple and straightforward approach is presented in Paper II, 
which takes the interesting properties of the behaviour as captured in the trace 
(observations) and simply turns these directly into a regression test for the SUT. 
This is evaluated by applying it to the actual study subject and testing its error 
scenario. 

A generic approach to more complex modelling is presented in Paper VII, 
which also discusses its application to the definition of the required information 
for generating EFSM models and for generating similar models for automated 
GUI-based testing of web applications. This is evaluated through practical appli-
cation to these types of models, as described in Paper VII. A detailed evaluation 
of this approach is given in Paper VI, in which details of the different parts of 
the model decomposition, generation and application are given, and its useful-
ness is evaluated with the study subjects used. 

Together, these studies provide both the generic guidelines for defining the 
target model and for decomposing it into the information needed, as well as 
evaluating it with the use of practical case studies. 

5.3 Phase 2: Applying the framework 

Different studies from the different papers are relevant to the evaluation of the 
steps of this second phase. The following subsections describe the evaluation 
viewpoint for each of these papers and steps. 

5.3.1 Step 1: Capturing observations 

Papers II, III, IV, V and VI are relevant to the evaluation of this step. Paper II 
discusses different means of capturing a trace (observations) from low-level 
hardware support to high-level application-specific functionality. In this case, 
application-specific functionality is used to build a basis for test information. 
Paper III discusses the different types of execution scenarios used to build the set 
of observations. A practical evaluation of different execution scenarios is pre-
sented for the analysed software, showing how this can be applied in practice. 

Paper IV presents a set of guidelines for building support for testing and 
analysis into the architecture and design of a software system. This supports the 
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observations phase by allowing more control over the targeted system (focused 
observations, inputs and outputs) and building more advanced options and ad-
vanced support for the observation process itself. The evaluation is based on the 
discussions and experiences of the experts from the surveyed companies and the 
analysis of the provided information. Paper V is a continuation of this work, 
building a sophisticated framework that provides support to design these types of 
features into the different parts of the system being analysed. This (probe) 
framework is evaluated with two different case studies, showing how it can be 
used to provide this kind of support in practice and how effective it is. The re-
sults showed significant improvements over existing systems. 

Together, these studies provide support for the observation-capturing step in a 
manner in which each part of the proposed approach(es) has/have been evaluated 
with empirical means. 

5.3.2 Step 2: Model generation 

Papers II, VI and VII are relevant to the evaluation of this step. As discussed, 
Paper II presents an early concept of a simple turning of a captured trace (obser-
vations) into a test model and using this as a basis for regression testing. It is 
evaluated with a case study, showing how the given approach can help in the 
discovery of actual faults introduced over SW evolution. 

Paper VII provides generic guidelines for turning the captured information (as 
defined in phase 1) into a suitable test model for the SUT. This is evaluated with 
the provided case studies, showing how an EFSM can be decomposed into a set 
of behavioural patterns, which are combined to form the complete target model 
from the captured observations. Paper VI also provides a detailed evaluation of 
EFSM model generation with detailed case studies showing how this can be 
done, as well as evaluating its accuracy in producing a complete model suitable 
for SW testing and verification. 

Together, these studies provide the generic guidelines for building the algo-
rithms to generate the target model from the captured observations and for 
evaluating these with the use of practical case studies. 

5.3.3 Step 3: Model refinement for verification and testing 

Papers II, VI and VIII are relevant to the evaluation of this step. Paper II dis-
cusses some initial ideas of using the provided model to also support the process 
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of understanding the behaviour of the SW together with the goal of using it for 
testing the SW. This provides a basis for the concept of using a generated model 
for both of these purposes, which is important for their application in both SW 
testing and verification. This is evaluated with the analysis of a captured trace 
(observations) for the used case study, showing how the model can be used to 
support understanding of the analysed functionality and detect errors in regres-
sion testing. 

Paper VIII provides a generic overview of the similarities of both the program 
comprehension research field and the test automation research field. It provides a 
comprehensive overview of both fields and their similarities based on existing 
work, which in itself serves to evaluate the concept. This is further illustrated with 
the help of a case study on analysing a generated EFSM model with the help of 
tools intended to support human analysis (program comprehension) and providing 
the (human) user with an option to turn these (machine-) generated models into 
complete test models to be used for model-based testing. This is evaluated in more 
detail in Paper VI, which provides a detailed study of using a generated EFSM 
model as a basis to verify the implementation of the SUT against its specification 
and to generate more tests to detect errors in the implementation. 

Together, these studies provide both the generic guidelines for using the gen-
erated model as a basis for software testing and verification, and for evaluating 
these with the use of practical case studies. 
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6. Conclusions 
This thesis presented a framework for observation-based modelling in model-
based testing. It discussed automated generation of an initial model for MBT of 
SW and its application in testing and verifying the SUT. The introductory part 
presented the research framework and questions. The literature related to the 
research problems was also reviewed. A motivating case example of the prob-
lems of test automation for modern systems is presented in Paper I. The later 
papers then focused on different parts of the research questions, each with a dif-
ferent focus. The last few papers pull all the topics in the subquestions together 
to give an answer to the main research question. The main research question 
concerned the provision of automated support for model creation for model-
based testing. 

6.1 Answers to the research questions 

The first subquestion asked how the required information to generate the models 
can be captured. The answer to this question is two-fold. As the focus is on gen-
erating models for existing SW systems, the focus is on analysing the implemen-
tation of these systems. First, Paper VII presented a decomposition of the target 
model to the required observations. For capturing the actual observations, the 
chosen approach uses dynamic analysis of SUT executions, allowing for a black-
box, component-based approach. Paper III discusses the different types of exe-
cution scenarios needed to capture a representative model of a system. Paper IV 
discusses implementation and design solutions for capturing the required infor-
mation, and Paper V presents an implementation of a framework that provides 
supporting functionality for these solutions. Paper VIII discusses the analysis 
and optimization of the set of execution scenarios and observations. 
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The second subquestion concerned turning this information into a model suit-
able for MBT. This question is addressed in Papers II, VI, VII and VIII. Paper II 
presents a straightforward approach of using a trace captured from the execution 
of the SUT as a flow-based model for regression testing. Paper VI presents a 
more sophisticated approach to generate an EFSM model from the captured ob-
servations of the SUT. A toolset to produce the required observations and auto-
matically generate the initial model from them is also presented. The produced 
EFSM includes all the required elements, including a test harness, test input and 
test oracles. When the MBT tool is run, it generates test scripts with all these 
elements and executes them against the SUT. The model is generated in a form 
usable as such for an MBT tool. Paper VI thus focuses on the EFSM case study, 
and Papers VII and VIII on generalizing the different parts of this approach. 

The final research question asked how the generated initial models can be 
used for SUT verification and testing. As the models are generated based on 
information captured from the execution of the SUT, they correctly describe its 
actual behaviour. This does not necessarily match the expected behaviour of the 
SUT however. The most likely source for the correct, expected behaviour is the 
specification of the SUT. The process of verifying this correctness is described 
in Paper VI and the approach used is described more generally in Paper VIII. 

Together, the answers to these subquestions form an answer to the main re-
search question. They present a complete framework for observation-based 
modelling in model-based testing. The answer to the first question describes how 
to capture the required information for the initial model generation. The answer 
to the second question describes how this information can be turned into a model 
usable for MBT. The answer to the third question shows how this model can be 
applied to software testing in a reliable way, allowing the user to verify the cor-
rectness and completeness of both the implementation and the specification. 
Together they answer the main research question by providing automated sup-
port for model creation for model-based testing. 

6.2 Limitations and future work 

The term MBT has many different definitions depending on who uses it and in 
what context [4]. Even with the definition used in this thesis, different ap-
proaches can be taken and different types of models can be applied [90]. An 
implementation for EFSM models was presented, with generic analysis and dis-
cussions for different types of models. Thus, guidelines for different types of 
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models are provided, but the implementations for these different types of models 
and different types of target systems are left for future work. 

The creation of the observations (traces) for model generation requires a set of 
SUT executions that thoroughly exercise the behaviour of the SUT. Different 
properties for these executions and their sources are discussed in Papers III and 
VI. A good source is an existing test suite with categorizations of tests related to 
error handling and correct behaviour tests. Another option is to use data captured 
from monitoring the SW in its actual environment. In many cases, however, the 
availability of a good set of suitable execution data is limited. The test data gen-
eration methods presented in the literature review part of this thesis could be 
used to provide a basis for automatically generating a suitable set of executions. 
To be effective, however, this would require means to provide automated assis-
tance for the classification of the produced inputs and resulting outputs to enable 
the generation of powerful models as discussed before. Tools and techniques, 
such as the machine learning and classification techniques described in Chapter 
2, are one option to consider for providing these classifications. This area of 
research has already been discussed in Paper VIII. As such, it provides an inter-
esting venue for future research. 

The tools for mining the behavioural patterns used in the EFSM case study are 
intended to be generic and as such are not designed for the purpose of generating 
models for model-based testing. This results in limitations on their applicability 
and on the completeness of the models provided as well as a requirement for 
more manual refinement when using these models for SUT verification and test-
ing. The specific limitations for the EFSM case study are discussed in Papers VI, 
VII and VIII, together with possible means to make the behavioural pattern min-
ing more powerful in this case. In general, it can be said that making more spe-
cific behavioural pattern-mining tools for the purposes of using the patterns to 
generate specific models for model-based testing would make the automated 
model generation more powerful and provide more complete initial models. This 
also involves the trade-off of reusing existing tools (as done in the EFSM case 
study) and writing new specific tools for this purpose. Addressing this requires 
experiments with implementation and trying such pattern-mining tools for cho-
sen models and systems. 

One important property to study is more thorough evaluation of the gains of 
using the framework presented in this thesis. This involves performing user-
based studies on the usefulness of the generated initial models vs writing the 
models from scratch, including the costs of acquiring the required skills for the 
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modelling. Possible research approaches for this include introducing OBM into 
the modelling process (action research) or a comparative case study with one 
group using the OBM approach and another a “traditional” modelling approach. 
Another interesting topic of study in this regard is that of different types of test 
coverage and of how much more of the existing system can be covered by refin-
ing the initial model and using a model-based testing tool to generate further 
tests from this model in addition to the initial set of execution scenarios used to 
capture the observations for the model generation. This has already been evalu-
ated in Paper VI, but more experiments with different types of systems and pa-
rameters of experiments would be of interest. 

When problems are found in the execution of the model, that is in the com-
parison (execution) of the model vs the implementation, both the model and the 
implementation need to be analysed to find out which one is incorrect. A tech-
nique for this is presented in Paper VI in the form of the creation of a separate 
test case that makes the inputs and outputs explicit as well as the message se-
quences used in the test case. By analysing and modifying this simple test case, 
it is possible to pinpoint the actual cause of failure more effectively. There is 
currently no automated support for this, but the separate test case needs to be 
manually created. As all the information required to generate this test case auto-
matically is available in the test generated by the MBT tool, this process could 
also be automated to generate the initial test for debugging. This would be more 
in line with the off-line approach to MBT as the provided toolset is currently 
only used as an on-line testing tool. 

Although the implemented approach is successfully tested on a real imple-
mentation, as discussed in Paper VI, this is only one tested component from a 
relatively simple research prototype system. More experiments on real systems 
of significant complexity are likely to reveal more constraints in the proposed 
techniques. Performing these experiments to further validate the work and ad-
dressing any constraints that are found would be a topic for future study. 
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Abstract 
 

This paper describes our experiences with 
integrating and testing an embedded, system-wide 
feature called Dynamic Voltage and Frequency 
Scaling (DVFS) in a software platform for mobile 
devices. DVFS affects the whole system by scaling the 
hardware performance levels during run-time. 
Implementing and testing the basic functionality of 
DVFS was easy, however verifying that the whole 
system worked after integration was more difficult. The 
platform was legacy code which had not been 
developed with any consideration for this kind of a 
feature. We had to consider the complex run-time 
behaviour of the whole platform, including operating 
system services, device drivers and applications. DVFS 
could cause problems and failures in almost any part 
of the system. Based on our experiences, we describe 
problems in integrating and testing a system-wide 
feature like DVFS and suggest possible directions for 
future research to help address some of these 
problems.  
 
1. Introduction 
 

The role of software testing in general can be 
defined as exercising the system under test (SUT) with 
different inputs in order to reveal possible errors 
[3][6][23]. This usually refers to testing an application, 
component or some functionality of a system on its 
own or as a part of a larger context.  These components 
and functionality are usually considered as something 
testable on their own, decoupled from the system. 
When making a change into a software system a 
common practice is to try to localize the change as 
much as possible to enable testing the software in 
smaller parts. This requires preventing the ripple effect 
where the change cascades to other parts of the system. 
However, with system-wide features that affect the 
whole platform this becomes more difficult. 

When a new integrated feature is system-wide, 
changes can not be localized and the ripple effect can 
not be prevented. In fact, this produces the ultimate 
ripple effect by affecting the whole system and all of 
its parts. Testing the feature as a part of the system in 
this situation is more complex as we need to consider 
all the behaviour, parts and interactions in the system. 
Additional complexity is added by the fact that these 
days software is developed in an increasingly 
collaborative fashion, integrated from components that 
are provided by different companies and sometimes 
only available as binary executables. These types of 
features and systems provide new and different 
problems to consider in integration and testing. 

In this experience report we describe our 
experiences with Dynamic Voltage and Frequency 
Scaling (DVFS), a system-wide embedded feature in a 
software platform for mobile devices. DVFS affects 
the whole system by scaling the performance levels 
during run-time, with the goal of producing savings in 
power consumption. Implementing and testing the 
basic functionality of DVFS was straightforward, 
however verifying that the whole system worked after 
integrating it was far more challenging. The platform 
was legacy code which had not been developed with 
any consideration for scaling the system voltage and 
CPU speed. We had to consider the complex run-time 
behaviour of the whole system, including operating 
system services, device drivers and applications. The 
cause of problems and failures could be anywhere in 
the system. This includes components provided by 
different companies, some only as binary executables. 
Based on our experiences with DVFS we describe the 
problems involved in integrating and testing a system-
wide feature in a legacy system and suggest directions 
for possible future research. 

Section 2 describes the DVFS system from both the 
hardware and software viewpoints. Section 3 describes 
our experiences in implementing, testing and 
debugging DVFS. In section 4 we consider the causes 
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of these problems and in section 5 we highlight some 
key research areas to help solve make this easier.  
Section 6 concludes the paper. 
 
2. Dynamic Voltage and Frequency Scaling 
 

DVFS requires careful consideration of both 
hardware and software components in co-operation. In 
this section, we first describe the hardware related parts 
and their dependencies to give some background and 
motivation for how the software needed to be designed. 
Second, the DVFS related software components and 
their roles in the system are described. A detailed 
description of DVFS concepts can be found from [15]. 

 
2.1. Hardware 

 
The core of the hardware platform we were working 

with was Texas Instruments OMAP2420 multimedia 
processor.  OMAP2420 is system-on-chip product that 
has several integrated processors and features, 
including support for Dynamic Voltage Scaling (DVS) 
that was required for our research and development 
work. 
 

 
Figure 1. OMAP2420 architecture [26]. 

 
High abstraction of OMAP2420 processor and 

interconnect architecture is shown in Figure 1. Starting 
from processors: Texas Instruments TMS320C55x 
(DSP) provides audio processing, ARM11 Family 
ARM1136JS (MPU) provides general purpose 
processing, Imagination PowerVR MBX (GFX) 
provides 2D/3D graphics acceleration [17] and 
dedicated Imaging and Video Accelerator (IVA) 
provides video encoding and decoding [26]. A high 
speed shared interconnect bus provides communication 
between processors and memory. A peripheral 
interconnect bus provides communication for less data 
intensive peripherals. 

With OMAP2420 it is possible to halt the 
processing of processors and change operation voltage 
of the whole chip [27]. The voltage changing process is 
shown in Figure 2. Whenever voltage is changed, it is 
done through voltage meta state where Dynamic 
Memory Access (DMA) transfers are completed and 
halted, processing units are halted, interrupts are 
disabled and hardware parameters are reconfigured. 

 

Voltage 
Meta state

High
Voltage

Low
Voltage

 
Figure 2. Voltage adjustment process. 

 
As OMAP2420 provides only one voltage domain 

[25], voltage change affects the whole domain and all 
hardware components in it. As some components 
require higher voltage than others, the voltage needs to 
be carefully managed. Clock speed of most of the 
processors can be scaled independently of each other. 
Lowest possible operation voltage should be used for 
selected performance level for each processor to 
maximise energy efficiency. This is not always 
possible, as processing load is not evenly distributed 
over processors [15]. 

Additional difficulty is hardware characteristics. 
Some peripherals and processors might require high 
voltage to function properly regardless of the 
configured clock speed. Activity of some peripherals 
can also prevent voltage scaling process, and thus, 
needs to be considered before they are enabled. These 
characteristics require system wide awareness of what 
is going on in hardware and what is needed by 
software. 

All voltage and clock requirements of processors 
and peripherals need to be taken into account when 
developing device drivers and hardware resource 
management. For example, a typical behaviour of a 
device driver: direct access into hardware registry to 
enable clock domains of processor. This can cause a 
system crash if the provided voltage is too low. 
Centralised and protected control of hardware 
parameters is necessary to provide a stable system. 

Even though the hardware allows several different 
performance levels and independent scaling of 
processor clock speeds, we settled for two operation 
points: Full clock speed with high voltage and half 
clock speed for decreased voltage. This provides a 
reasonable trade off between development effort 
(especially configuration and testing work) and gained 
savings in energy consumption. 
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2.2. Software 

 
The software platform we were working with is 

based on top of the Symbian operating system. The 
code base has evolved over a course of more than a 
decade and thousands of engineers have taken part in 
developing it. The software platform consists of 
hundreds of components, provided by many different 
companies. The total size of the code for the system we 
worked on is close to 20M physical SLOC, mostly C 
and C++. This is the number of source lines of code 
after removing blank white space and comments [24]. 
In addition to this the system contains a number of 
third-party commercial off the shelf (COTS) and 
similar components that are only available in binary 
format and not included in the SLOC count. These 
binary only components include many of the 
components we had to work with. From the DVFS 
viewpoint the system was all legacy code as it had not 
been designed with any consideration for this type of 
feature. The functionality of DVFS needed to be 
integrated with the large existing code base, including 
the third-party components. 

DVFS is implemented in the system as a resource 
which the different components can reserve when they 
need a certain performance level. These performance 
levels are called Operation Points (OP), and in our case 
we had two OP’s, a high and a low OP. The DVFS 
resource along with several other resources is handled 
by a system Resource Manager component. When 
there are one or more reservations is the system for the 
DVFS resource, the hardware is set to high OP. The 
correct functionality of the DVFS required two 
different types of components to be directly DVFS 
aware: system load monitoring components and device 
drivers. System load monitoring is needed to reserve 
the high OP when the system performance 
requirements rise higher than what is provided by the 
low OP. Reservations must also be made when a 
hardware component is used by an application or OS 
service that requires the higher OP to function 
correctly. These hardware components are used 
through their device drivers or similar components and 
thus these components must make the reservation when 
required. When these components no longer need the 
higher OP, they must release their reservation. 

As the DVFS functionality is at the very core of the 
system, it was implemented as a Symbian OS kernel 
extension. The core implementation of the DVFS 
feature consists of the integration of many related and 
affected components in the system: 

 
1. The Resource Manager. 

2. System load monitor and performance tuner. 
3. Interface to system load information. 
4. Glue components to integrate the load 

monitor with the Resource Manager and the 
system load information interface. 

5. Device drivers for the hardware components 
that need to reserve high OP when used. 

 
These central DVFS components and their 

relationships are shown in Figure 3, which shows how 
the DVFS implementation is not a single component 
but a product of integration of many components. Only 
the glue code to integrate the components and some of 
the device drivers are in-house products. All other 
components are from third-parties and each of these 
from a different company. The third-party components 
were integrated with glue code, while the in-house 
drivers were directly changed to work with the third-
party components. In addition, many other components 
in the system are affected through their use of the 
drivers or changes in the system performance level. 

 

R
es

er
va

tio
ns

Figure 3. The  central DVFS components. 
 
In addition to having direct effect on these core 

components, DVFS also affects other parts of the 
system. Since the kernel of the operating system is a 
real-time operating system, it must meet real-time 
timing constraints. For example, when playing MP3 
music on the device, the current OP of the system and 
changing it must have no noticeable effect for the user. 
Thus the load monitoring of the system must keep the 
performance stable and high enough not to cause 
problems for the users and the user experience should 
be equal to running in high OP all the time. 

Another property that also affects all parts of the 
system is changing the hardware parameters. The 
change to low operation point requires reconfiguring 
some of the hardware components at runtime and if all 
values are not set correctly, any functionality that 
makes direct or indirect use of this hardware will fail. 
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For example, the SDRAM memory parameters with 
different hardware configurations are different in low 
and high OP and if they are not set correctly certain 
memory accesses can fail the system. DVFS should be 
transparent to as much of the system as possible, as we 
can not expect all components to take DVFS into 
account. Thus it is the responsibility of the DVFS 
implementation and the dependent components to 
make these configurations when the OP is changed. 
For us this meant we needed to find how and where 
DVFS affects the system and verify these cases are 
handled correctly. 

Figure 4 shows a high level overview of how the 
DVFS affects the system. As described earlier, the 
device drivers must be DVFS aware and reserve the 
required OP when used. The applications in the system 
are affected by the performance level in use and their 
performance requirements handled by the load 
monitor. Finally, the hardware parameters must be 
configured correctly for each OP since misconfiguring 
these produces instability in all parts of the system, 
including the device drivers and applications. 

 

DVFS

Hardware 
Parameters

Device 
Drivers Applications

Basic System 
Services 

(memory access, …)

PerformanceReconfiguration

Voltage & Clock 
Dependencies

(in)stability

(in)stability (in)stability

Figure 4. DVFS effects on the system. 
 
Variability in the platform causes some products to 

implement the DVFS functionality differently. Some 
use DVFS while others may only use Dynamic 
Frequency Scaling (DFS). This requires variation in 
the device drivers. Some products can also have 
several operation points while others will only have a 
high and a low operation point. From the software 
point of view this means that the Resource Manager 
needs to implement different functionality when the 
products using the software platform make use of 
different types of resources. Also the glue code 
component to integrate the load monitoring component 
to the system needs to change when there are different 
numbers of operation points in the system and the set 
of hardware parameters to configure varies as some are 
dependent on the scaling of voltage and others on the 

frequency. When underlying hardware is changed, the 
drivers and their interactions can also be different. 

 
3. Problems Encountered 
 

We identify the following main problems in 
integrating, testing and debugging DVFS: architectural 
mismatches in integration, identifying the DVFS 
related dependencies in the system, verifying the 
dependent components, observing the state of the 
system, finding the cause of failures and debugging 
binary components. 

Arhitectural mismatches in integration were found 
even though the integrated components were built with 
the same system in mind. All the core DVFS 
components were designed and tested to work in the 
same system by their providers. However, mismatches 
still arose as they were only tested together in 
integration. For example, the Resource Manager was 
not thread-safe, meaning when it was used from 
several concurrent threads at the same time its internal 
state would become corrupt. Yet the integrated 
components used it in a concurrent manner. Thus the 
calls to it needed to be synchronized externally. 
However, the load monitor used Symbian nanokernel 
threads to run itself, and the Symbian synchronization 
objects such as semaphores and mutexes would not 
work on nanokernel threads but required higher level 
user threads to work. These problems point to similar 
architectural mismatches as described by Garlan et al. 
[13] who studied the integration of several separate 
COTS style components. In this case it is interesting 
that these components were developed with the same 
system in mind, yet they still set mismatching 
assumptions about their environment. Getting these 
components to work together as such was not possible 
and required getting the third parties to make changes 
to their components, which was often a slow and time 
consuming effort. This also requires effectively 
pinpointing the cause of failure in several third party 
components before getting it fixed. 

Identifying the DVFS related components was easier 
for some components and more difficult for others. 
This was the first time this type of feature was being 
implemented in the platform and it was not clear what 
were the exact performance levels required by each 
part of the system. When a component was known to 
need a higher performance level because of hardware 
limitations, it was clear that it needed to reserve the 
high OP when it was used (to provide necessary clock 
or voltage). However, for all components this was not 
so clear. When the system would fail we had to 
consider the possibility of the required resources not 
having been reserved. And we could only discover this 
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by monitoring the system execution at the time of 
failure, considering the involved components and if 
any were involved that could require higher OP. As 
there were many potential causes of failure and we did 
not know in advance all components that needed the 
high OP and when, it was not possible to know 
immediately if a failure was caused by a mishandled 
dependency or something else. 

A second issue with DVFS related dependencies 
were the applications running on top of the OS. Since 
DVFS affects the system performance levels (CPU 
MHz), it also affects the processing power available to 
these applications. Since the system was only 
implemented to monitor CPU load, applications that 
require only different type of performance from the 
hardware will not perform optimally. For example, 
reading from file system can generate high load on the 
hardware buses but not enough load on the CPU to 
make the load monitor raise the performance level. As 
bus operations are dependent on the system clock 
speed, the performance is not optimal. Also 
applications causing fluctuating load can cause 
problems for the system when the OP changes 
continuously. Knowing all these cases in advance is 
not possible as there are too many possibilities. 

Verifying the DVFS dependent components proved 
to be a problem as some did not seem to correctly 
request and release the high OP when needed. The easy 
route was to blame the driver developers. However, the 
problem could also be in other components using the 
drivers and not freeing all resources, which caused the 
driver not to release its reservations. As without DVFS 
in the system many of these cases would not show up 
as problems, they were not noticed before. Thus adding 
DVFS into the system would make the driver seem 
faulty even though the problem could be elsewhere. 
Also, without means to effectively identify every 
DVFS dependency in the system, even knowing all 
required drivers in advance was not possible. 

Finding the cause of failures was problematic 
especially when the cause was in wrongly configured 
hardware parameters. For example, when the SDRAM 
memory parameters for the lower OP were wrong the 
system would hang in seemingly random functionality 
after changing to low OP. For example, we received a 
bug report for the USB driver not working with the 
DVFS, where the real cause was actually a 
misconfigured memory parameter. At the same time 
we were also experiencing problems in many other 
parts of the system, which later turned out to be for the 
same reasons. To make things more complicated, the 
memory parameters were configured by a third party 
component, who insisted the parameters should be 
similar on our platform as on theirs. Thus we did not 
consider this as a possibility of failure at first. Only 

after long debugging sessions did we come to think of 
them as a possible cause of failure and fix it, as in truth 
we found there was a small difference between our 
platform and that on which the component provider 
tested and configured the parameters. 

Observing the state of the system was difficult. At a 
time of failure the system would usually just crash with 
no clear indication of what went wrong.  Typically this 
would not produce any trace of execution as is typical 
for embedded systems. To get some idea of what was 
happening inside the system, we instrumented the 
kernel to show which thread was executing at which 
time. However, even when we had some idea of where 
the execution was when it ended, it was not always 
very useful. The true cause was often somewhere else 
in the system such as wrong hardware parameters, a 
change in system state earlier in the system execution 
or a delayed function call (DFC) started from some 
other part of the system. Finding errors in system 
behaviour and debugging the faults was then 
complicated by the lack of visibility into the system 
and the availability of detailed trace data. 

Debugging binary components is always more 
difficult and our case was no different. In addition, 
with DVFS we could not just forcus on a single binary 
component but also had to consider the fact that the 
cause of failure could be anywhere in the system. For 
example, when the system was changing from one OP 
to another, many of the operating system services (such 
as DMA) had to be stopped for the time of the change 
and restarted after. Since many of the services were 
dependant on other services, these had to be stopped 
and restarted in the correct order. This was handled by 
each dependent component having a pre- and post-
change notification function that was called before and 
after the OP was changed and in which they handled 
the stop and restart functionality. These components 
each had an order number they had to set which 
determined the order in which they would be notified. 
However, since many of these components were 
provided by different companies, some of them set 
mismatching notification orders. When the system 
would hang on changing the OP, knowing if the 
problem was in these components or somewhere 
completely different was difficult since we could not 
directly see the order numbers in the binary 
components. Instead, we had to infer them through 
instrumenting the Resource Manager and through other 
similar methods. 

A second concept related to debugging of binary 
components is when these components are composed 
of many different components themselves. For 
example, we had a case where one of the driver 
components did not seem to be working correctly by 
not releasing resources when needed. This actually 
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turned out to be a problem in another component 
provided with the driver, not in the driver code itself. 
The component would reserve a communication 
channel to the driver, which resulted in the resource 
being kept reserved. It should have released the 
channel when done but did not. Since the resource was 
not previously needed, the fault in the component 
using the driver was not visible earlier. This shows 
how a third-party component itself can be made up of 
several components, which again need to be debugged. 
If the failure is only visible in integration, the 
integrator has to locate and fix failures in all these 
components. 

In summary, Figure 5 shows a simplified view of 
how the DVFS related dependencies and possible 
failure causes spread in the system. For clarity only a 
few of each type of arrows are shown, whereas in 
reality many more dependencies exist between the 
components. Some of the dependencies are temportal, 
for example restarting the basic system services need 
to be handled in correct order when changing the OP. 
Many components are only available in binary form 
and made by different companies.  
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Figure 5. Overall DVFS dependency view. 

 
4. Problem Causes 
 

Considering the problems we had, some could be 
considered failures to adhere to good software 
development practices. However, when new system-
wide features are introduced into a legacy system they 
also give rise to specific problems. Dependencies and 
effects spread across the components, with little 
possibilities to affect this. Through these components, 
the dependencies also affect and require the attention 
of all the companies involved in the collaborative 
development effort. Based on our experiences, we 

classify the problem causes to three categories: 
collaboration processes, testability and debugging. 
Each of these is considered in this section. 

 
4.1. Collaboration Processes 

 
Modern software systems are being developed in an 

increasingly collaborative fashion, from in-house 
components, commercial off the shelf (COTS) 
components and specifically tailored third party 
components. Large parts of development are 
outsourced and software is developed in different 
collaboration models together with other companies 
[20]. As system-wide features affect large parts and 
many components at once, this affects and requires co-
operation of many component providers. As an 
example of this, DVFS is a single feature in a software 
platform for mobile devices yet it was made up of and 
integrated with components from several companies. 

To us, the mismatches and problems in addressing 
them when integrating components developed for the 
same system highlights many of these collaboration 
aspects. When a system is developed in a collaborative 
fashion from components provided by many 
companies, the collaborators often do not have the 
whole system or all components to test their 
component with. Thus the integration becomes solely 
the integrators responsibility, who often does not have 
detailed knowledge of individual components. When a 
new system-wide feature is introduced into a system, it 
will also create ripples over the system and require the 
collaborative work of all the involved component 
providers to fix the issues. When the work is specified 
to detail in contracts, addressing these issues 
effectively becomes long, slow and difficult. Instead, 
fast responsiveness and a more evolutionary approach 
are needed. The companies we worked with included 
samples of companies closer to each extreme. Some of 
the issues we faced could only be effectively resolved 
when a collaborator company was willing to make the 
required changes quickly. In practice this meant in the 
period of several weeks, not several months. 

 
4.2. Testability 
 

In the past hardware testability has received more 
attention than software testability [5][12]. However, 
lately also software testability has been receiving a 
growing interest [5][8][11][19][22][29]. Although 
DVFS is a closely hardware related feature, our 
viewpoints are on the software testability side. 
Software testability in the literature has varying 
definitions. Our view of testability in this section is in 
line with Binder [5] and is concerned with the effort 
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and ease of testing the components and their 
functionality. Another related concept is that of 
Jungmayr [19] who relates testability to identifying 
test-critical dependencies. These are the dependencies 
most critical for achieving a good testability of a 
system. 

Observability and controllability are considered by 
many as basic properties of testability [1][5][12][19]. 
To test a component we must be able to control its 
input (and internal state) and observe its output (and 
internal state) [5].  For effective testing, we need to be 
able to control the spread of code execution and 
observe the results. This is easiest when dealing with 
white-box components, where we have the source code 
available and can modify it for testability support. 
Figure 6 shows some possible aspects of testability in 
such a case. 

 

 
Figure 6. White-box testability. 

 
In this case, if we can modify the code, we can add 

support for testability. This allows breaking 
dependencies by designing the code as independent 
units, making it possible to insert stubs, mocks or 
similar objects and using other similar techniques. 
Visibility into component internals allows for example 
invoking specific functionality, reading states at 
different times and adding tracing code. This can be 
limited by the company policies and system size, 
which affect how much it is possible to actually 
influence the design of the components for which we 
have the source code available. For example, when 
implementing our own components related to DVFS, 
the techniques presented by Feathers [11] for breaking 
dependencies to bring legacy code under test were of 
great help. However, since we did not have control 
over most of the platform, we were only able to apply 
these techniques to small parts of the code. 

With third party binary components we are 
dependent on what is provided by the component 
provider as shown in Figure 7. The component is a 
black box into which we only see through the 
interfaces provided. We can not modify the 
components code, contain execution or see internal 
states, unless supported by the component through 
specialized interfaces. These interfaces are likely to be 
specific to some given task which the component 

provider has specified for the component. As it is not 
possible to know all problems and testing requirements 
that will be met in the course of integration, the 
likeness of a component providing required interfaces 
is not high. In our case we did not have interfaces for 
all the information we would have needed, and could 
not ask for them to be included in advance as we did 
not know the effects on all the components in advance. 
When the components are already delivered, getting 
new interfaces is difficult. Some observability can be 
achieved by monitoring at the platform level such as 
when we instrumented the kernel to provide traces of 
thread execution. However, the information available 
at this level is very coarse grained and not always very 
helpful in debugging a specific problem. 
 

Figure 7. Black-box testability. 
 

In real systems the different types of components 
are combined together as shown in Figure 8. This is 
where the effects of a system-wide feature such as 
DVFS are most visible. We had to consider the 
interactions of all the parts in the system together to 
verify DVFS. Our options to affect the system were 
limited as when we had the source code for the 
components, we could see their internals and add 
tracing code, but could not permanently modify them 
for testability. As the components involved also 
included a number of black box components, getting an 
overview of what was happening inside the system and 
where the problems were was difficult. 

When we add new system-wide functionality to a 
large system, we need to understand the diverse 
interactions and how they are affected. This is difficult 
on its own but more difficult when it is not possible to 
get a good view of the involved components, how they 
act and what is their state at a given time. We could see 
how a single component works and when it passes 
control to another component. However, what 
happened after passing control to a black box was not 
visible. At the same time it is difficult to get a good 
understanding of the complex interactions and relations 
inside the whole system, with concurrent threads 
executing code from many involved components. We 
had to do much of this analysis and tracing manually, 
which becomes difficult as the amount of data to 
analyse and trace quickly grows very large. 
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Figure 8. Testability on a system level. 
 
4.3. Debugging 

 
Debugging the system is closely coupled with the 

software testability. To debug something we first need 
to have a test to find the fault that we will be 
debugging.  Without automated tests to verify a fix, the 
process of fixing failures becomes tedious and slow. 
Debugging has received a lot of research interest where 
much recent work has focused on finding the cause of 
failures from program execution. These techniques 
focus on such issues as isolating failure-inducing input 
[21][30], code changes [9] and debugging of failed test 
cases [2] [14][18]. 

However, our problems were different in nature. We 
did not have any specific set of input we could vary for 
the system to see which would break it. The problems 
we had were not introduced by any specific code 
changes but rather a system wide change of 
performance level, the ripples of changes it caused and 
the integration of ready-made components, including 
some in only binary form. The feature affected many 
components in the system, all which had to work 
together in complex ways and considered as potential 
causes of failure. In many cases such as when changing 
hardware parameters, the failures would only show up 
as side effects in many different components. As 
described earlier, we could not easily decouple testable 
parts from the system and thus had no automated tests 
to verify the faults. We had to rely widely on slow and 
ineffective manual testing. 

When debugging a system we are trying to find the 
cause of failures when we already know something is 
not working. This requires the ability to observe the 
internal states and behaviour of the relevant parts of the 
system. To enable this, first the relevant parts of the 
system and the information of interest must be 
identified, which in a system-wide feature can require 
analysing large amounts of data and the interactions of 
large parts of the system. When the feature and thus its 
failure is not localized, we need to be able to monitor 
the system state as a whole and find the possible 
changes in state or behaviour that could be causing the 
failures. In most of the cases we had, there were many 

possible causes of failure and they could all cause 
problems in many different parts of the system. As we 
did not have effective techniques to monitor and 
analyse the system at this level, finding and fixing a 
cause of failure often came down to long debug 
sessions including making educated guesses, digging 
information from the system and trying different 
possibilities. 
 
 
5. Future Directions 
 

In this paper we described our experiences in 
integrating, testing and debugging DVFS, a system-
wide feature of an embedded system with a large 
legacy code base. This proved problematic as the 
system was never designed with such a feature in mind 
and the feature affected the whole system and all of its 
parts. Yet more difficulties were brought by the fact 
that the system contained components from various 
companies, some only in binary form, which all had to 
be considered. 

We expect system-wide features to become more 
common in complex software intensive systems. In 
embedded systems the close coupling of software with 
hardware makes them possible as in the case of DVFS. 
In software systems in general, the modern software 
development techniques and platforms such as aspect 
oriented programming and the possibilities provided by 
virtual machine environments will provide ample 
possibilities for similar features and problems. Many of 
the issues we faced are related to designing the systems 
and components with testability in mind. To this end 
we suggest the following research topics as helpful as 
related to integration and testing of these features in 
modern environments: 

 
1. Light weight, agile collaboration models. As 

systems are made up of increasing number of 
components from different parties, changes affect 
more collaborators and require effective, 
responsive collaboration models. Research into 
collaborative software development is ongoing 
and while different collaboration models are 
considered [20], they still need more work and a 
wider adoption to effectively address the cases 
where changes affect many collaborators at once. 

2. Identifying feature dependencies and testing 
parameters in a system. Identifying actual 
dependencies in a system is needed for effective 
re-engineering of a system. This is important for 
both integration work and for identifying the 
relevant parameters for testing the feature. DVFS 
affects some very basic properties of the system 
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and finding the affected components requires 
analysing large amounts of dynamic software 
runtime-behaviour. This needs to be simplified. 
We believe possible techniques to assist in this 
include visualisation [28] and modelling [16] of 
system state and behaviour, and behaviour 
classification [7][10].  

3. Improving the testability of legacy code in 
constrained environments. Feathers [11] provides 
a catalogue of techniques to assist in bringing 
legacy code under test. However, these existing 
methods are mostly based on the assumption of 
being able to access and modify the source code of 
involved components. When the development 
happens in a collaborative context and components 
are provided only in binary form, control over 
these components is limited. Thus techniques for 
this type of an environment where we have less 
control over changes are needed. 

4. Testability at the system level including binary 
components. In system-wide features the cause of 
the problem as well as its symptoms are often 
spread over the system in various components and 
focusing on a single component will not reveal the 
errors. Effectively addressing this issue requires 
gathering and analysing data from the system 
execution and states as a whole. Though different 
in nature, as possible research topics we suggest 
similar topics as for identifying feature 
dependencies in system state: tracing, classifying, 
modeling and visualising software states and 
behaviour. For binary components this also 
requires special support from the components or 
monitoring support from the platform itself. 
Generic approaches that make it possible to 
address internals of binary components are 
needed. These topics are ongoing in component 
based systems research [4] but still need more 
support for especially in system-wide context. 

 
6. Conclusions 
 

When new features to a software system are 
planned, they are often considered as just another 
independent feature in the system. We started with 
thinking DVFS as just scaling the voltage and 
frequency to save some power. However, with its 
system-wide effects and dependencies, we quickly 
learned differently. Some features are more 
independent than others, while some are more coupled. 
DVFS is on the far end of coupling with its system-
wide effects. In this paper we described our 
experiences in integrating and testing DVFS into the 
system. We identified the following problem areas: 

 
• Changes affecting components and requiring 

attention of many collaborators at a same time 
• Identifying system-wide dependencies 
• Accessing the states and properties at system 

level and in binary only components 
• Controlling the system execution 
• Finding the causes of failures from the large 

data sets and traces 
 
We believe integrating and testing this type of 

features is and will remain a challenging topic. 
However, we also believe this work can be made easier 
by addressing these issues with better techniques, tools 
and methods.  
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Abstract 
 

Effective maintenance and evolution of complex, 
software intensive systems requires understanding how 
the system works and having tests available to verify 
the effects of changes. Understanding complex systems 
is difficult, and testability of these systems is often low 
due to design constraints, system complexity and long-
term evolution. Thus understanding the system and 
adding new tests is difficult. Yet, especially in these 
cases, the understanding and tests are important to 
verify the system correctness over long-term evolution. 
This paper discusses synthesizing models from system 
traces and using these models to facilitate program 
understanding and test automation. Basing the models 
on execution traces allows generation of automated 
tests even for low testability systems. Generating and 
visualizing abstracted models facilitates program un-
derstanding, which helps in system maintenance.  
 
1. Introduction 
 

In the course of system maintenance and evolution, 
existing functionality is changed and new functionality 
is added. Making changes safely to an existing system 
requires both an understanding of the system and the 
availability of test cases to verify the effects of the 
changes on the system. However, many times, espe-
cially with legacy systems, a good understanding and 
related tests cases are not available. Thus, adding new 
tests for verifying the system behavior and the effects 
of the changes are needed. However, without a good 
understanding of the system and its support for test-
ability this is problematic. 

Understanding a complex system is a difficult task. 
Even with understanding, the test implementation can 
still be challenging. For example, in large legacy sys-
tems, the code base can grow to millions of lines of 
code and hundreds of components, the effects of 
change can ripple over large parts of the system, and 

the same code needs to work on different execution 
platforms [15]. Combined with a constantly evolving 
underlying platform, the understanding needs to be 
kept current and regression tests are needed to verify 
the functionality.  

Yet it is often the case, especially with legacy sys-
tems, that the functionality to test can not be easily 
separated from the system or accessing the required 
internal information is not possible. In complex sys-
tems with long-term evolution, the testability of the 
system is often low, and different features become 
tightly integrated into the system. The system platform, 
such as an embedded real-time system, can further set 
more constraints. In these cases, forcing a given con-
trol path and observing system internal states in a test 
case can be problematic, which makes applying tradi-
tional ways of building test cases problematic [15]. 

This paper addresses these issues by presenting a 
technique based on using models synthesized from 
traces of the system under test (SUT) execution, target-
ing especially systems with deeply embedded and 
complex functionality. By producing an abstracted 
model of the SUT execution, the technique facilitates 
program understanding. As the technique is based on 
system traces, it can be applied without specific test-
ability support from the SUT architecture and design. 
The generated model is used as a reference (describing 
what is expected), against which traces from the actual 
current implementation are verified in regression test-
ing. To demonstrate the application of the technique in 
practice, it is applied on a messaging middleware com-
ponent. 

This paper is structured as follows: Section 2 dis-
cusses the basic concepts. Section 3 discusses synthe-
sizing models from the system traces and using them 
as test cases. In section 4 the technique is demonstrated 
by applying it on a real world system. Section 5 dis-
cusses the technique. Section 6 discusses related work. 
Finally section 7 concludes the paper. 
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2. System Tracing 
 

System tracing is the basic concept of gathering in-
formation about the dynamic behaviour of the system. 
This can be done at multiple levels as illustrated in 
Figure 1. The left column in the figure lists the differ-
ent tracing instruments. The middle column shows the 
location of tracing instrument in the system. The right 
column describes the context dependency of the differ-
ent tracing instruments. Techniques with higher con-
text dependency, such as logging statements, require 
more manual work but also best capture the specific 
functionality of a system. The techniques with lower 
context dependency, such as platform instruments, can 
be better automated over different system and plat-
forms, but capture only an overview of the system. 
Thus the use of different levels of tracing and their 
combinations is a trade-off between how much can be 
automated and how specific information is needed. 

 
Instrument

1. Logging 
statements

2. Instrumented 
methods

3. Instrumented 
system operations

4. Instrumented 
OS services

5. Sampled program 
execution

6. (sampled)
Platform metrics

7. Platform 
instruments

Application code

Application code

System libraries

OS Kernel

OS Kernel / 
Platform services

Platform
services

Platform
services

Location Context 
dependency

High

Low

P
L
A
T
F
O
R
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MA
NU
AL

A
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O
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Figure 1. Trace levels (adapted from [26]). 

2.1 Tracing Levels 
 
Logging statements (trace level 1) are added to the 

source code to trace information about system states 
and behaviour at different points of execution. They 
are the most context dependent traces, as all the traces 
need to be added on individual basis and are different 
for each application. Similarly, by method instrumenta-
tion (trace level 2) system call graphs and method pa-
rameters can be acquired. Collection of this data can be 
automated with tools such as AspectJ [1] and GNU 
profiler [9], but it is context dependent in the sense that 
a call graph is very specific to a system. 

System operations as well as operating system (OS) 
services are shared across many applications and can 
be used to provide automated instrumentation of sys-
tem execution. While each application will have a 
unique trace, it will be within the context of the func-
tionality provided by the libraries and system services. 
For example, middleware communication data (level 3) 
or information on task and thread context switching 
[13] (level 4) can be traced. This data can be consid-
ered common high-level functionality of applications. 

The implementation of platform level trace instru-
ments (trace levels 5-7) depends on the execution envi-
ronment (the platform). In embedded systems the plat-
form is the hardware on which the embedded software 
runs. In modern application environments it is the vir-
tual machine (VM) on which the code is executed. 
Here the focus is on embedded systems as a platform, 
although modern VM environments also provide good 
support for platform level tracing, such as the Java 
Platform Debugging Architecture (JPDA) [14]. 

Sampling program execution provides abstraction 
over system behaviour. By sampling program execu-
tion at fixed intervals, it is possible to get a statistical 
view of the behaviour. For example, in embedded sys-
tems such sampling can be implemented using timer 
interrupts to record program counter values [25]. Plat-
form metrics, such as CPU load and memory alloca-
tions, can be collected in a similar way by sampling, or 
by using triggers in system state to record the metric 
values. In embedded systems, these triggers could be 
for example interrupts. Platform instruments include 
counters and similar information provided by the plat-
form internal implementation. In embedded systems 
these can be hardware counters. In VM environments, 
platform level tracing typically requires supporting 
hooks from the VM. 

In tracing binary executables, such as COTS com-
ponents without source code, it is possible to use any 
of the instruments on levels 3-7, but the possibilities at 
level 1 and 2 are limited. For level 1, possibilities are 
limited to instrumenting the glue code that integrates 
the components together. For level 2, bytecode instru-
mentation in VM environments can be used, but the 
code is likely to be obfuscated and of limited use as the 
code structure is unknown. In embedded systems, plat-
form supported instruments, such as using level 5 sam-
pling need to be used. 

On the lower levels of 3-7, instrumentation is de-
pendent on the options provided by the platform on 
which the code runs. At level 3, if there is no access to 
system library code and the libraries do not provide 
trace interfaces, possibilities are limited to what can be 
traced for example from the glue code. Levels 4 and 5 
require access to, or support from the OS kernel. Lev-
els 5-7 also require access or support from the execu-
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tion platform. Thus the available tracing options are set 
by the context in which tracing is done. 

 
2.2 Trace Based Program Understanding and 
Test Automation 

 
In this paper, the goal in considering traces as a ba-

sis for testing is two-fold; understanding the system, 
and having test cases available to document and verify 
this understanding and the important properties of the 
system behaviour across project evolution. Modern 
software intensive systems are complex and their be-
haviour is difficult to understand. Thus, in testing an 
understanding for the system needs to be built, and 
assumptions about its behaviour need to be validated. 
Similar to previous work [8], this paper considers trac-
ing actual system execution to be the best source of 
information for actual system behaviour. Once this 
understanding has been built, it is preserved in verifi-
able form as testable models. By building the models 
to be easily evolved, they can also be used to validate 
future changes and the validity of our understanding of 
the effects of these changes on the system. 

From this point of view, there is a need to consider 
the different levels of tracing and how they can be util-
ized in automated support to achieve these goals. This 
paper counts two types of testing that can make use of 
this type of automation; functional testing which veri-
fies formal properties of system execution, and statisti-
cal testing, such as performance testing, which is inter-
ested in verifying certain statistical properties and con-
straints of system execution, such as response times 
and throughput. This paper mostly considers functional 
testing but also discusses how the same techniques can 
be applied to statistical testing. 

From the functional testing perspective, system 
functionality is unique and thus context dependent. 
From this viewpoint, the best tracing level is adding 
level 1 logging statements to the system to collect the 
information of interest. This type of instrumentation 
makes it possible to define the traces at the conceptual 
level, to best describe the system execution in a way 
that facilitates program understanding. However, this 
has the drawback of requiring the most resources and 
human work for instrumentation. From this viewpoint, 
the less context dependent traces need to be considered 
as their use can be more automated and requires less 
human resources. Thus, when using this technique, the 
use of different tracing levels in synthesis, and their 
trade-offs need to be considered. 

From the statistical testing point of view, the least 
context dependent tracing levels provide equally useful 
data. This is especially true, if the platform level sup-
port is considered during design time such as in de-

signing embedded systems where hardware and soft-
ware co-design is considered. However, in most of 
these cases, also the more context dependent trace 
mechanisms need to be used to collect relevant data 
from system execution. Only a limited amount of trac-
ing can be supported at platform level and trace points 
in software code are needed to collect information on 
specific properties of the system.  Thus statistical type 
of testing can make better use of the full range of trac-
ing instrument techniques. However, this type of test-
ing is left out of the scope of this paper. 
 
3. Model Synthesis and Test Generation 
 

The approach taken to using system traces as a basis 
for program understanding and test automation is the 
following. The tracing instruments described in Figure 
1 are used to gather the trace. These traces are analysed 
to gain an understanding of the SUT. From the set of 
gathered trace elements, the ones most important for 
the functionality at hand are selected, they are refined 
to describe their relations and constraints to formalize a 
verifiable model. The resulting model is called the syn-
thesized trace based model of the system. To document 
the understanding of the system, the model is kept as a 
regression test. Current and future system behaviour is 
verified by comparing the system execution against 
this model.  

 
3.1 Abstraction Levels 

 
As discussed in [21], software can be modeled at 

different abstraction levels. To synthesize models for a 
system, the abstraction level of the models needs to be 
defined. A common concept in reverse engineering 
(RE) techniques is using data at the detail level of 
method calls to model the behavior of a system [11]. 
Traces such as these, describing the detailed low-level 
execution of a system could be used as regression tests 
to verify that the SUT behaviour is not changed. How-
ever, from the viewpoint of this paper this approach is 
problematic; the amount of trace generated quickly 
grows very large and test cases built on such traces are 
difficult to understand and fragile. 

For program understanding, large traces with excess 
detail are not optimal. Also, although this type of trac-
ing has been used for program understanding [6], it is 
dependent on factors such as method naming conven-
tions, which are prone to change and not uniform 
across projects. From test generation perspective, an-
other problem in using detailed data such as call-
graphs as a basis for test cases, is that it will cause fail-
ures at the smallest changes in the system. For exam-
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ple, simple refactorings may not be significant to the 
functionality under test but can change the call-graph.  

However, in the case of a failing test case it can be 
useful to have more detailed information available for 
locating the cause of the failure. Thus, while this paper 
mostly considers higher level abstractions, it is also 
seen as useful to maintain traceability information from 
the abstracted models to the actual source code, similar 
to [3]. 

 
3.2 Model Elements 

 
In this paper, a test case is defined as a sequence of 

steps, each tied to one or more events and defining 
their relations to other events and attributes. Table 1 
lists the generic model elements defined. Events are 
defined in similar way as [3]: Meaningful properties 
and actions in program execution. These can be at dif-
ferent abstraction levels, such as sensor input, message 
send or closing a file. However, they should represent 
relevant concepts to the program execution and the 
verification of the functionality under test. Attributes 
are associated with events and can represent any rele-
vant data for the event such as timing, message con-
tent, object identifiers and data values. 

Table 1. Generic model elements. 

Element Description 
Test start Test case execution starts. 
Test end Test case execution ends. 
Test input Test case input data. 
Test output Test case output data. 
Precedence One event must occur before another. 
Duration Event time interval. 
Task Sequence of related events. 
Synchronity Synchronization between tasks. 
Messaging Communication between tasks. 
Match Test sequence step event or attribute must 

match that of another step. 
Alternate When only a subset of a number of given 

events or attributes is required. 
Inclusion One event must include another. 
Exclusion One event excludes another. 
Reference References another test sequence step. 
Repetition Repeating loops in a model. 

 
Test start and end are useful synchronization points 

for different communicating tasks. Input and output are 
basic properties needed in software testing. They can 
be related to a test case as a whole or to smaller sub-
tasks inside a test case. For test sequence ordering, two 
levels of precedence are defined: one event occurs im-
mediately after another event, or as any event in tem-
poral order after another. Event duration is the time an 
event is active. Not all events have a meaningful dura-
tion, for example receiving a message can be consid-

ered a singular event without a specific duration. On 
the other hand another event, such as processing the 
message, can have a more meaningful duration. 

Tasks group a set of related events together to form 
a sequence of events realizing a higher-level concept. 
This can be realized as events of a single thread but 
more generally they are any events that form a higher 
level concept together, which can be spread across 
several threads or occur interleaved with other con-
cepts. Interaction related elements include synchroni-
zation and messaging, which are some of the basic 
properties of communicating and concurrent systems. 
These include such properties as points of mutual ex-
clusion and process communication. 

Single steps of system execution are rarely mean-
ingful alone, and this paper uses a set of elements to 
describe their relations to each other. Events and at-
tributes can be required to be matching the attribute 
values of other events and attributes, alternative to 
each other, including (requiring) or excluding 
(disallowing) another event or attribute. References to 
other test steps are needed to describe these relations. 
Combinations of the model elements are also possible, 
such as one of several events is allowed (alternative) 
but not many of them (exclusion). Repetition is needed 
to express loops, which are basic concepts in software 
implementation. Not all trace events are relevant to a 
feature, and as such only the relevant ones are included 
in the model and the rest are ignored. 

 
3.3 Model Building 
 

The process of building models from the system 
traces is shown in Figure 2. To build a model of the 
system behavior, the feature of interest is first executed 
to gather a trace. To gather the trace the system is in-
strumented for tracing by using any combination of the 
techniques as discussed in section 2.1. The system fea-
ture is executed to produce the trace and store the pro-
duced trace as a basis for our model. To formalize the 
relations of the trace steps as a model of the systems 
expected behaviour, the trace is refined with the model 
elements described in Table 1. This produces the 
model that is used to document the understanding of 
the system and as a basis for regression testing. 

Step 2 in Figure 2 describes executing system func-
tionality. This refers to any means to execute the func-
tionality but is best implemented as with automation, 
exercising the code in repeatable fashion. This way the 
same method of exercising the code can also be applied 
for the regression testing. However, other means such 
as manually exercising the program can also be used if 
necessary. 

Finally, as understanding for the system will likely 
grow over time, and as the system itself evolves and 
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changes, the models need to be refined. This requires 
incorporating new trace elements into the model and 
possibly adding new trace instrumentation to the sys-
tem. The model updating can be automated to the ex-
tent that a new trace is collected and the model is up-
dated with selected elements from the new trace. Only 
the refining model elements from Table 1 need to be 
added to the new trace elements and the old elements 
that are related to the new elements need to be updated 
for this part. The need to update the model can also 
come from for example finding faults in functionality 
that should be covered by regression tests based on the 
models, or if the model is otherwise found not to cor-
rectly express all the necessary information for the 
system. 

 

System 
under trace

System 
Trace

Model 
Elements

System 
execution

Trace  
based 
model

1. Instrument system 
    for tracing
2. Exercise code to
    produce the trace
3. Store trace
4. Refine trace with
   model elements to
   produce a model
5. Store the model for
   later reference and
   regression testing
6. Update trace and
  model as system 
  and/or understanding
  of it evolves.

2

3

4 5

Evolution
Trace 

instruments
1 6

6

 
Figure 2. Model building. 

 
3.4 Regression Testing 

 
The process of using the generated models for re-

gression testing is shown in Figure 3. System execu-
tion in the figure is again similar to what is described 
in section 3.3. The previously generated model is used 
as a basis for regression testing. This model is used to 
describe what is expected of the SUT. To verify the 
actual system behavior against this expected model, the 
actual execution of the SUT is traced and the trace is 
checked against the model for the expected. Analysis 
of the test results determines if the test was success-
fully passed. A failure can be analyzed and the model 
can help in locating the failure by highlighting the parts 
of the models and traces that do not match. 

The algorithm for checking the trace against the 
model is described in Figure 4, This consists of check-
ing if the trace elements meet all the required event and 
attribute values, as well as whether the trace fits within 
the constraints set by the expected model. The same 
instrumentation that is used in generating the expected 
model can be used to trace the system for regression 
testing. Test results are stored in a test log, which can 
be visualized for easier analysis as shown in Figure 6. 

 

Instrumented
System

1. Execute system to
   produce trace
2. Collect trace from
   system execution
3. Evaluate the trace
   against the model
   for the expected
4. Report test results

System 
Execution

Expected 
Model

Test 
Framework

Test Log

1

2

3

4

 
Figure 3. Regression testing. 

 
-For each model step 
  -Check if the step is found in the trace 
  -If the step is not found  
    -Mark the step failed, showing the given step as 
     missing in test log 
  -If the step is found 
    -Check all required properties set for the step as 
     specified by the model elements in Table 1. 
    -If the require properties are not met 
      -Mark the case as failed, with the reason of 
       failure shown in the test log 
-If all steps passed the check mark the test as passed 
-Else mark the test as failed 

Figure 4. Trace checking algorithm. 

 
4. Example Case 

 
4.1 Generic Communication Middleware 

 
To demonstrate and validate the practical usefulness 

of the approach, it is applied on a system called Ge-
neric Communication Middleware (GCM). GCM is a 
middleware for application messaging in heterogene-
ous distributed computing environments [20]. It is tar-
geted to facilitate the development of distributed appli-
cations into heterogeneous computing environments, 
including devices with limited resources. For demon-
stration, the basic middleware feature of sending a 
message is considered.  

In tracing GCM, manual logging statements (level 1 
as defined in Figure 1) are used. GCM does not use 
third party components, or have other external depend-
encies, and the source code is available, which makes it 
possible to instrument all parts of the system. It has 
multithreaded functionality, but to illustrate the tech-
nique is a clear and simple way, this is not the focused 
on here. The aim in the trace definition has been to 
craft it to be expressive, making the demonstration 
easier to understand. 

As the first step, trace statements are added to the 
code. The trace is iteratively refined by executing the 
system, observing the trace and evaluating its expres-
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siveness in describing the system functionality. The 
resulting trace for the feature is shown in Figure 5 on 
the right hand side, which also lists the three separate 
sequences visualized on the left hand side. These sepa-
rate sequences illustrate the grouping of subsequences 
as tasks (as in Table 1). The sequences are initializa-
tion, sending normal message and sending control mes-
sage. As shown, sending normal message is a sequence 
interleaved with other tasks, while the two others are 
continuous. 

These sequences describe the basic functionality of 
sending a message with GCM. To send a message, the 
GCM must first be initialized. Once initialization is 
done, messages can be sent. However, before the first 
message is sent, a control message must be created and 
sent to establish a connection between the GCM client 
and server. Sending a control message is done auto-
matically by the GCM service when the first message 
is sent. This whole functionality is shown in the three 
separate sequences in Figure 5. When the initial trace 
is first collected, the sequences are of course not visi-
ble and the trace is a continuous sequence of events. 
This is why the trace needs to be refined to generate a 
usable model to serve as a document for program un-
derstanding and a verifiable test case for future execu-
tions. 

 
4.2 Generating a Model and a Test Case 

 
Armed with the trace, it is possible to generate mod-

els from it and to use these as regression tests. Building 
the model includes parsing the events and attributes 
from the trace data and associating them together. This 
part can be fully automated as long as a formal trace 
format is used, as is already done in Figure 5. 

For generating models, these traces can be viewed 
from different viewpoints depending what is being 
modeled. One option is to build one large model to 
include the whole trace sequence at once. However, to 
keep the models focused and easy to handle, they have 
been partitioned to separate models. This gives an un-
derstanding of the individual functionality and the 
smaller models can later be mapped together to de-
scribe the larger functionality.  

Each of the sequences in Figure 5 could be defined 
as a model. However, here an example is used that is a 
subsequence of both sending a normal message and 
sending a control message, and illustrates a real issue 
faced in the actual development of GCM. This is illus-
trated in Figure 6, which shows a model for writing the 
actual message data (sending it across the network) 
from the client to the server. The expected column de-
scribes the initial model, and the textual description of 
the steps describes the expectations for each step and 
their relations to other steps. The steps and textual de-

scriptions are mapped by their number id values. The 
actual column describes a trace from the actual imple-
mentation and is discussed in the next subsection. 
Table 2 maps the notation elements to the model ele-
ments from Table 1. 

 
1

2

3

4

5

1. Manager Init (host=localhost,
 port=5555, state=0)
2. Start service (host=localhost,
 port=5555, state=1)
3. TCP connection created 
 (host=localhost, port=5555)
4. Message created (id=31505416,
 gcm-type=binary, sender=t-app,
 destination=t-service, type=TYPE1)
5. Sending normal message
 (id=31505416)
6. Message created (id=22591049, 
 gcm-type=binary, sender=t-app,
 destination=t-service,
 type=GCM-Control)
7. Sending control message
 (id=22591049)
8. Writing message data
(id=22591049, type=binary)
9. m-e (gcm-type=1)
10. m-e (gcm-version=1)
11. m-e (encoding=1)
12. m-e (sender=t-app)
13. m-e (destination=t-service)
14. m-e (type=GCM-Control)
15. Writing message data
(id=31505416, type=binary)
16. m-e (p-type=1)
17. m-e (p-version=1)
18. m-e (encoding=1)
19. m-e (sender=t-app)
20. m-e (destination=t-service)
21. m-e (type=TYPE1)

Sequences:
1-3   = Initialization
4-21 = Sending normal message
6-14 = Sending control message

6

7

8

9

10

14

11

12

13

15

16

17

18

19

20

21
 

Figure 5. GCM Trace. 

In GCM's evolution, the binary protocol for passing 
the message parameters has been changed from passing 
of  parameter length (step 7 in Figure 6) and value 
(step 8) to include the parameter type (step 6) as well. 
At this time the protocol version has also been changed 
to 2. The previous functionality of passing the parame-
ters produced a trace similar to the expected trace in 
Figure 6, without step 6. From the GCM version 1 
trace the expected trace shown in the figure was gener-
ated by simply changing the expected protocol type to 
2 and adding the parameter type trace element (step 6) 
to the model. 

In the actual implementation of this change, this 
type of a test case was not available. Instead, the im-
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plementation was debugged using a network monitor 
to trace and examine client-server communication. The 
updated version was found not to work properly and 
the problem was traced to faulty implementation of the 
parameter type. The fault was introduced in adding the 
new type field to the parameters. It was added as the 
last element in the parameter data when it should have 
been the first. 

Table 2. Test notation. 

Notation Model Element 
<N> Reference to another step number N. 
attr Matching attribute. 
event= Matching event. 
after= Temporal order. 
first-after= Immediate order. 
 

1

3

4

22

4

5

3

Actual Expected

1. create message
 (event=Message created)

2. write protocol-version
 (event=m-e, attr: 
  gcm-version=2, after=<1>)

3. write type
 (event=m-e, attr: type=<1>, 
  after=<2>)

4. write parameter count
(event=p-count, first-after=<3>)

5. write TLV-element
 (event=TLV, first-after=<4>)

6, write parameter type
 (event=p-type, first-after=<5>)

7. write parameter length
 (event=p-length, 
  first-after=<6>)

8. write parameter value
 (event=p-val, first-after=<7>)

1

7

5

6

8

6

7

8

 
Figure 6. A model and its verification. 

4.3 Test Execution and Analysis 
 
Figure 6 also describes the verification of the GCM 

trace against the expected model. As described earlier, 
the actual column shows the trace for the actual execu-
tion of the system and the expected column along with 
the textual description describes the generated model 
for the system. The dashed arrows show how the steps 
in the expected model are matched to the trace ele-
ments of the actual execution. For example, the ex-
pected trace element 6 (writing parameter type) is 
matched to element 8 in the actual trace. The high-

lighted (bold) trace elements and steps show failing 
steps in the trace validation. 

In the figure, the last three steps are the ones of in-
terest. Steps 6 and 7 fail as their event relations (first-
after tags) do not match the actual trace. Step 8, though 
seemingly misplaced in the trace, does not fail as its 
event relations match the actual trace: it is the first 
event to happen after the event of step 7. The parame-
ter type event (step 6) should happen as the first event 
after step 5, but it is the third element and thus this step 
fails. Similarly, step 7 should happen as the first event 
after step 6 but it happens two events before. Thus, the 
two failing steps and their associated trace elements 
effectively highlight the failure in the test case and its 
cause. This shows how this type of testing can effec-
tively find the failure and its cause. 

 
5. Discussion 
 

The intent for this paper was to demonstrate the de-
scribed technique by generating models for the GCM 
implementation and using these as regression tests. 
While there were no expectations where this would 
lead, the visualization and analysis of the traces and 
models helped understand the system and highlighted 
areas in need of improvement. First, the message ob-
jects created by the user include the information identi-
fying the binary protocol and its properties such as 
encodings. The user message objects should only con-
tain the message contents, not protocol level details.  

Second, the implementation also adds unnecessary 
details to the control message. The control message 
contains data copied for each field in the message from 
the normal message that is being sent in the system. As 
GCM is targeted to address the needs of constrained 
embedded devices, this consumes unnecessary re-
sources and should be eliminated. In the GCM specifi-
cation, this part is not described - only the type of the 
message is defined. Thus, this also highlights a possi-
ble need for refinement in the specification. 

With the exception of instrumenting the system 
(step 1 in Figure 2) and model refinement (step 4 in 
Figure 2), all steps in applying the technique can be 
fully automated. When the less context dependent trace 
mechanisms described in Figure 1 can be applied, parts 
of step 1 can also be automated. Different parts of task 
4 can also be automated. For example, promising tech-
niques exist that can be applied to identify tasks from 
system execution [5]. In general, step 4 is an interest-
ing future research topic for further automation. This 
could include rule based approaches, learning algo-
rithms, and other similar algorithms. Model refinement 
can also be made easier by providing visualizations 
such as described in Figure 6 and making it possible to 
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do the refinement through visual manipulations as well 
as with automated assistance. 

While it is possible to apply the technique presented 
in this paper to all types of functional testing, it is not 
always cost-effective. The best application domain is 
in systems where the functionality is highly embedded 
in the system and can be expressed as sequences of 
events. This can be traditional HW/SW embedded sys-
tems but also any type of system that is sufficiently 
large and complex, and needs to be tested as a larger 
integrated product. This includes cases, where the sys-
tem behaviour can not be effectively tested from exter-
nal interfaces, when the behaviour is complex, and 
needs to be understood and debugged with regards to 
its inner working. In short, this means low testability 
systems and features, where building a full set of ex-
ternal observability features is not feasible. 

For constrained systems such as real-time systems, 
the extra trace overhead (probe-effect) can also make 
use of this type of technique more challenging. Using 
and combining traces from separate parts of distributed 
system also needs further consideration. Thus future 
work needs to address the limitations of the technique 
and how it can be most cost-effectively applied in dif-
ferent contexts. In general, these constraints as well as 
other automation aspects of the technique need to be 
addressed with tool support. 

 
6. Related Work 

 
This section reviews related work. Model based 

testing (MBT) is mostly related to modeling what is 
expected of the SUT based on its requirements and 
using these models to generate test cases. Reverse en-
gineering (RE) addresses the other side of the equation: 
what is the actual implementation provided by the 
SUT. Testing tools and techniques that make use of 
trace based models are also considered. As it is possi-
ble to use the same concepts from these techniques to 
model a system for testing such as in this paper, an 
overview is given on how they trace and model the 
systems as well as how the models are used.  

In MBT, the SUT is modeled based on its require-
ments and these models are used to generate test cases 
for the SUT.  The basic idea is to explicitly describe 
the requirements as models and verify that these mod-
els accurately reflect what is expected of the system 
[21]. Once verified, these models and traces derived 
from them are used as a basis for generating test cases 
for the SUT. The models take different forms depend-
ing on what is being modeled and how. Different types 
of models used include data models [7] [23], behav-
ioral models [1] [21] [22] and domain specific models 

[16] [17] [19]. The models can be described at differ-
ent levels of abstraction for different viewpoints [21]. 

In general, MBT tools typically exercise the system 
as a black box through external interfaces that need to 
be supported by the system design [24]. Thus they fo-
cus mostly on well defined inputs and outputs of a sys-
tem, whereas the technique in this paper is more appli-
cable to the inner workings of low testability systems. 
As there are common properties in both, such as using 
models and observing the system, possible synergies 
may exist. These are however, out of the scope of this 
paper. 

Bertolino et al. [4] also describe what they call anti-
model based testing. They focus on creating a set of 
traditional test cases for black-box component based 
software and use these test cases to gather traces for 
the system. From these traces they try to synthesize a 
behavioral model for the system. They describe their 
model as a state-machine, and their tracing mechanism 
as instrumenting component glue code. Thus the ap-
proach in this paper considers more specific applica-
tion of models for program understanding and regres-
sion testing, as well as a wider range of tracing tech-
niques. 

Many RE tools apply different abstractions and fil-
terings on the traces to limit the amount of data to be 
processed, and use the processed data to provide mod-
els and visualizations of the systems [11]. Examples 
include discovering and visualizing patterns in the 
traces, generating sequence and scenario diagrams, 
graphs and custom visualizations. The main difference 
with this paper is that RE is interested in generating 
various models of the system and stops there, whereas 
the technique presented in this paper also applies these 
models for testing. 

Huselius and Andersson [13] insert probes into the 
system to monitor context switches and system calls. 
They use context switches differentiate tasks that exe-
cute jobs and use these concepts as basis for their mod-
eling. They also discuss inserting data probes to moni-
tor selected variables within the system and to repre-
sent the system state. Thus, their data set includes the 
context switches, selected system calls, and selected 
state variables. One of the uses they describe for their 
technique is the validation of COTS components, 
though they do not elaborate on it further. 

Lam and Barber [18] consider modeling agent soft-
ware for the purposes of human comprehension. They 
use use specific agent concepts for their modeling. 
Modeling the software starts by defining the agent con-
cepts in the source code as logging statements that 
gather data related to these concepts. As the software is 
executed, this information is logged and the model is 
refined with these observations. The models are stored 
in a knowledge base. Enough information is logged for 
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each event to associate it with its exact place in the 
source code. Based on the different agent concepts and 
their relations, they build an overall model that is in-
tended to help in understanding the agent system. 

Ducasse et al. [8] use logic based queries of the 
SUT execution traces to test legacy systems. Their 
traces include events and object states, recorded from 
program execution. Events are messages between ob-
jects, including parameter and return values. To vali-
date assumptions about the SUT, they use logic queries 
on the traces and define a set of trace-based logic test-
ing patterns. They use these tests to validate that legacy 
systems remain the same after changes and to help 
understand a program by creating and validating as-
sumptions about it. Their work is closely related to this 
paper: both use traces to test and facilitate understand-
ing of legacy systems. They, however, use logic que-
ries to assert the trace data, whereas this paper uses 
visualizable traces and models. This paper also bases 
the models on higher level abstractions and formalized 
event relations, whereas they use more detailed traces 
at the level of method calls. 

TextTest is a tool to create regression tests from log 
files [1]. A log file is stored and set as the "`standard" 
against which further test executions are compared. By 
text comparison, it is determined whether the test 
passes or fails. A failing test case is shown with the 
differences highlighted in the text files. TextTest pro-
vides an opportunity to use regular expressions to de-
fine lines of text that will be excluded from the com-
parison. TextTest, uses traces for testing in a similar 
way to this paper, but focuses on the manual trace level 
and on directly matching the trace file, whereas this 
paper uses a model based on broader levels of traces, 
events and their relations. In addition, the technique 
presented in this paper also aims to support system 
understanding. 

Model checking is a process of formally checking a 
model of the SUT in relation to a set of specified prop-
erties, such as deadlocks and user assertion failures 
[10] [12] [22]. Model checking tools use two different 
approaches: check models derived and abstracted from 
the source code, or drive the execution of the system 
and use it to represent the state-space [10]. Checking 
the models is performed using algorithms that explore 
their state-space for the desired properties. The states 
consist of process interactions and similar properties of 
the system [10]. While this paper is also interested in 
generating and checking a model of the actual execu-
tion against its expected model, no state-exploration is 
performed but rather conceptual matching of the two 
models is used. 
 

7. Conclusions and Future Work 
 

This paper presented a technique for trace based 
model synthesis for program understanding and test 
automation. Its application was demonstrated with a 
middleware component. It was shown how trace based 
models for existing systems can be generated and 
evolved, and how they are useful in program under-
standing. It was also shown how the models can be 
used as a basis for regression testing, which can be 
effective in finding failures and locating their causes. 
As the technique only requires having traces of system 
execution, it is also applicable to many low testability 
systems such as constrained embedded systems and 
legacy code.  

Considering automating the process of using the 
technique, it was shown how most of the technique can 
be fully automated. While currently no automated tool 
support exists, in the future to effectively use the tech-
nique, automated and integrated tool support is needed 
to trace systems, refine them to models, execute them 
as regression tests and to produce visualizations from 
the test logs. In this regard, the parts still needing the 
most manual effort and thus most potential for future 
research are automated trace instrumentation and 
model refinement from the trace(s). Further validating 
and refining the technique in different systems and 
environments is also needed.  
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FI-90571, Finland

SUMMARY

Test coverage is traditionally considered as how much of the code is covered by the test suite in whole.
However, test suites typically contain different types of tests with different roles, such as unit tests,
integration tests and functional tests. As traditional measures of test coverage make no distinction between
the different types of tests, the overall view of test coverage is limited to what is covered by the tests
in general. This paper proposes a quantitative way to measure the test coverage of the different parts
of the software at different testing levels. It is also shown how this information can be used in software
maintenance and development to further evolve the test suite and the system under test. The technique
is applied to an open-source project to show its application in practice. Copyright © 2007 John Wiley &
Sons, Ltd.
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1. INTRODUCTION

Test suites typically contain different types of tests such as unit tests, integration tests and system
tests. In practice this means that test suites consist of test cases that exercise the system under test
(SUT) at varying granularities. Some exercise smaller parts of the SUT at a finer granularity, while
others exercise larger parts at a coarser granularity. The spread and ratio of these different types of
tests vary for different test suites and different parts of the SUT. Some suites may contain fewer tests
that exercise larger parts of the SUT and some suites contain more tests that exercise smaller parts
of the SUT. In both software development and maintenance, different types of tests have different
benefits and roles, such as verifying the functionality of individual components, confirming their
interactions and aiding in debugging.
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Traditional measures of test coverage focus on measuring how much of the total SUT has been
exercised by the test suite. Various coverage measures include measures such as statement, path
and decision coverage [1]. These traditional types of code coverage are useful for seeing which
parts are not yet under test and for getting an overview of how much of the SUT is tested in
general. However, once previously uncovered code is brought under test, traditional code coverage
measures only tell us that the code is covered by some test in the test suite. These measures do not
tell anything about the types of tests exercising the piece of code. Thus, if we want to understand
better how the SUT is covered by different types of tests, the traditional view of test coverage does
not provide a good view for this purpose.

This paper proposes a way to get a deeper understanding of testing for the different parts of the
SUT. Instead of considering how much of the SUT is covered by the test suite in total, it is considered
how the different parts of the SUT are covered at the different levels of testing. A measure for the
level of testing for the different parts of the SUT is defined and it is shown how this measure can
be used during software maintenance and evolution to get a deeper understanding of the testing for
the SUT and to evolve the existing test suite. The measure is applied to an open-source software
(OSS) project to demonstrate its application in practice.

This paper is structured as follows. The next section discusses the basic concepts and describes
the measure used in this paper. Section 3 shows how the measure has been implemented in practice.
Section 4 applies the measure to an OSS project and analyses the results. Section 5 discusses the
benefits and problems in applying the measure. Section 6 reviews related work in literature. Finally,
Section 7 discusses conclusions and future work.

2. LEVELS OF TESTING

This paper uses the term test granularity to refer to the number of units of production code included
in a test case (such as ‘three methods’). The term level of testing is used to refer to a number of
test granularity measures grouped together. For example, if we use the size 10 for a single level of
testing, all tests with granularity 1–10 will belong to level 1 and all tests with granularity 11–20
will belong to level 2. If we use size ‘1’ for the size of testing level, all tests will be mapped to the
same testing level as their granularity (granularity 1 equals test level 1, granularity 2 equals level 2
and so on). However, also in this case, several tests can still be mapped to the same level if they
have the same granularity. It is possible to vary this measure according to the goal of the analysis.
The different concepts to be taken into account in defining this measure will be discussed in this
paper.

2.1. Roles for the levels of testing

The role of testing in general can be defined as exercising the SUT with different inputs in order
to reveal possible errors [1–3]. Test suites are composed of different types of tests, all of which
have their own roles in testing and debugging the system. Rothermel et al. [4] have provided a
survey of literature on advice about test granularity. This survey shows some contradictory advice
on when to apply tests at different granularities. For example, Beizer [2] suggests that it is better
to use several simple tests and Kit [5] suggests that large test cases are preferable when testing
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valid inputs for which failures should be infrequent. However, even though the advice on applying
testing at different granularities shows some contradiction, there is generally an agreement on the
roles of the different levels of testing.

Focused tests at a finer granularity run fast, focus on the cause of failure and make it possible to
cover difficult paths of execution [1–4,6–8]. Thus, their role is best at verifying the finer details of a
component’s inner working and in debugging of faults. However, getting high coverage with small
tests is expensive and verifying that individual components work in isolation does not tell whether
they work correctly together. This means trade-offs need to be made in implementing focused tests.

Higher-level tests are required to verify the behaviour of the smaller parts as a whole and to
validate the higher-level functions and properties expected from the system [1–4]. With higher level
of testing it is less expensive to get a high test coverage as the tests cover larger parts. The trade-
off is in verifying the finer details of the components and in debugging the cause of the failures.
Covering complex details of small parts is difficult with large test cases and debugging can be time
consuming when we only know that the fault is somewhere in the large portion of code executed.

For best results we need tests at lower and higher levels, where they are most useful. To be able
to evolve the test suite and determine how the different parts of the code are exercised by test cases
at different levels, we must be able to measure the levels of testing performed on the different parts
of the SUT. As, during software maintenance and evolution, these parts and the test coverage of
the regression test suite are likely to change, this analysis must be possible to be automated and
repeated as much as possible. Measuring the test coverage at the different levels of testing is where
the traditional coverage measures fail, as they do not give any information on how a piece of code
is covered, only that it is covered in some way by the test suite.

To address this problem, this paper describes a technique for measuring how the different parts of
the software are tested at different levels and builds on this to help make more informed decisions
about where and how to focus future testing effort. However, before measuring these values, the
measure of testing level and how it is related to the previous definitions in the literature is defined.
Since the interest in this paper is in automating the measurement as far as possible, the definitions
are reviewed from the viewpoint of how they can be measured automatically from test execution.

2.2. Defining the levels of testing

In the traditional testing literature, testing is divided into two basic types of testing: white box testing
and black box testing [1,2,5]. These are further divided into more specific types, so that white box
testing typically includes unit testing and parts of integration testing and black box testing typically
includes acceptance tests, functional tests, system tests and higher-level integration tests. White box
tests are typically considered to be lower-level tests and black box tests to be higher-level tests.

For quantitative measurement of test granularity, these types of classifications are problematic.
The scope of a unit in a unit test can be defined to be, for example, a method, a class, a cluster
of classes, a subroutine or a subprogram [1–3,5,9]. Similarly, integration testing can combine any
number of these different units. By these definitions both unit tests and integration tests can include
different sizes of groups of methods or classes in the SUT. Thus, by looking at the code executed
by a test it is not possible to tell when a test stops being a unit test and becomes an integration test,
or the other way around. Similarly, black box tests can exercise a small or large amount of code
depending on how the tested functionality is spread in the code.
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Rothermel et al. [4] have used a definition of granularity based on the test case input. Their
measure of granularity is based on the size of the test cases, with the size being measured by the
number or amount of input applied per test case. A test case with more input is a test case of a
higher granularity than a test case with less input. This measure can be used to classify the test
cases by their granularity. However, this measure does not tell us anything about the size of code
executed by a test case. The amount or number of input is not tied to the size of code used to
process it, as small or large amounts of input can be processed by small or large amounts of code.

This paper defines the testing level by giving each test case a numerical measure based on
how many different units of code, such as classes, methods or lines of code (LOC), are exercised
in the test case. Similarly, any measure central to a system’s functionality, such as messages or
events in a message- or event-based system, could be used. Any of these can be used to define the
test granularity and thus the level of testing for the code exercised by the test case. This gives a
quantitative, automatically measurable, measure of the granularity of each test case, which can then
be used to evaluate the levels of testing for the different parts of the SUT. For example, when using
the detail level of methods, when a test case exercises code from 10 methods its granularity is 10.
When it exercises code in 20 methods, its granularity is 20. Once these granularities are mapped
to testing levels, these levels can be ordered and compared for all parts and systems as long as the
same measure of classes, methods, LOC or combination of these is used for each test.

3. MEASURING THE TESTING LEVELS

The measurement data for the testing levels described in this paper are gathered in two steps. In
the first step, all the test cases for the SUT are executed and the coverage information for each
test case is gathered. The coverage information provides the granularity of the test cases, which
is needed for the second step. In the second step, the level of testing for the different parts of the
system is calculated. This process is described in more detail in this section, starting with step 1
and followed by step 2.

3.1. Measuring the granularity of test cases

The components and the process used to gather the data for the first step are described in Figure 1.
It describes an implementation for the Java platform as used in this paper. The used JUnit [10] and
AspectJ [11] components are freely available OSS components and the measurement can also be
implemented on any platform that has similar components available. Other approaches to collect the
execution traces of the test cases also include tracing through special debugging interfaces provided
by the platform [12] or using a common code coverage tool to measure the coverage for each test
case [13]. As a data store it is possible to use, for example, the file system or a database. Both were
successfully prototyped for this paper.

The production code is first instrumented to produce trace events for all method calls. Then, the
test cases are iterated and coverage data for each test case are collected, until all test cases have
been executed. This measurement can provide data for telling which LOC were executed, which
methods were called and which classes were used in each test case. Here AspectJ has been used
for tracing, which provides support for custom trace code. The used detail level of method calls
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Figure 1. Measuring data for step 1.

provides a compromise between very fine detail (LOC) and coarse detail (classes). While using
aspects to trace at the LOC level is not straightforward, it is possible to implement LOC level
measurement by using a code coverage tool and this was successfully experimented with during
this study. For different interests it is possible to vary the level of detail used while the rest of the
process remains unchanged. Once these data are collected, it is possible to move on to the second
step.

3.2. Associating the tests with tested parts

The second step is illustrated in Figure 2. This figure shows a simple example system consisting of
four methods in two classes and four test cases. By having measured which parts of the code are
executed by which test cases, we have collected the information presented in the figure. Test case
granularity is calculated by adding up the number of methods executed by each test. This information
is shown in Table I. The number of methods tested at the given granularities are calculated simply
by adding up the unique methods covered by tests at given granularities. This information is shown
in Table II.

While the figure shows the associations between the tests and the methods, the actual path of
execution can be anything as long as the method is executed as a part of running the test. Where the
methods are invoked from makes no difference, as the measurement system will record any call to
the observed methods while the test case is executed. It can be invoked, for example, from the test
case or from any other production code. The set of observed methods can be limited, for example,
by instrumenting only the parts of interest for coverage or by filtering the collected data.

Once we have associated each test case to the code it executes, we can calculate the metrics on
how each method is tested. For example, to calculate the lowest level of testing for each method,
we first find the smallest granularity from the test cases associated with the method. This tells us the
most focused test case for that part of the code. Once this is known, the granularity value needs to
be mapped to the testing levels, which shows the lowest level of testing for that method. Similarly,
it is possible to get the highest level of testing by finding the maximum associated value.
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Figure 2. Associating tests with the parts of software executed.

Table I. Test granularities.

Test Granularity

Test1 1
Test2 3
Test3 2
Test4 2

Table II. Method count at different granularities.

Granularity Number of methods

1 1
2 3
3 3

Table III. Test granularities for the methods.

Method name Min Max

Class A::Method1 1 3
Class A::Method2 2 2
Class A::Method3 3 3
Class B::Method1 2 3

For Figure 2, using testing level size 1 (mapping the test granularity directly to the same level),
the lowest and highest testing levels are shown in Table III. For example, Class A::Method1
is associated with test cases Test1, Test2 and Test3. As Test1 has the smallest granularity of these,

Copyright q 2007 John Wiley & Sons, Ltd. J. Softw. Maint. Evol.: Res. Pract. 2008; 20:59–76
DOI: 10.1002/smr

III/6



TOWARDS A DEEPER UNDERSTANDING OF TEST COVERAGE 65

the lowest level of testing (min) for this method is 1. As Test2 has the highest granularity (3) of
these, the highest level of testing (max) is 3. Similarly, Class B::Method1 is associated with
test cases Test2 and Test4. Thus, the min and max values are accordingly 2 (Test4) for the lowest
level and 3 (Test2) for the highest level.

4. EVALUATING AND EVOLVING A TEST SUITE

As an example of applying the technique, the test suite of PMD [14], an OSS Java source code anal-
ysis tool, is analysed in this section. To help put the measurement data in context, the total number
of tests, classes, methods and source LOC (SLOC, LOC excluding whitespace and comments) for
the project are shown in Table IV. To collect the coverage information for the testing levels, the
test suite for the project has been executed, the granularity of all test cases has been measured and
these data have been mapped to the methods in the SUT as described in Section 3. Thus, the infor-
mation needed to calculate the different levels of testing performed for all methods in the SUT is
available.

4.1. Testing levels—an overview

To get an overview of the testing at the different levels, the first step is to look at how much of the
SUT has been covered at the different levels. This provides a basic overview of the testing done
at different levels as a total and shows whether there is, for example, a lack of low- or high-level
testing in general. Using the overview data as history information also makes it possible to track
the evolution of the levels of testing over time. However, as discussed earlier, taking the analysis
of this testing data further poses the question of what size to use for the testing level. If we simply
use size 1 for each testing level (mapping the granularities directly to test levels), the overview will
describe too many details and not give the high-level overview we are interested in. As an example,
Table V lists the number of PMD methods tested at granularities 1–10 and 21–30.

At the lower granularity of 1–10, we see a large number of tests and methods covered at each
granularity. However, as we move to higher test granularities, we start to see a higher spread of
the tests as shown already by the tests at granularity 21–30. Here there are at most two tests at a
given granularity. This spread of tests is further amplified the more we move towards the higher
granularities. The highest granularity for a single PMD test case is 834. The complete spread of
the number of tests at different granularities is illustrated in Figure 3, which shows a histogram

Table IV. Project metrics.

Metric Total

Tests 781
Classes 629
Methods 4073
SLOC 38 790
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Table V. PMD Number of methods (NOMs) covered and number
of tests (NOTs) at levels 1–10 and 21–30.

Level Number of methods Number of tests

1 9 14
2 44 39
3 39 17
4 50 16
5 50 22
6 38 8
7 58 17
8 24 3
9 64 13

10 95 12
21 23 2
22 44 2
23 23 1
24 25 2
25 25 1
26 0 0
27 27 1
28 0 0
29 58 2
30 30 1

Figure 3. Number of tests at different granularities.

of the number of tests at different granularities. Figure 4 shows the number of methods covered
at each granularity. Figure 5 shows how the data can be summarized to describe tests at multiple
granularities to single testing levels, and to provide a better high-level overview.
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Figure 4. Number of methods covered at different granularities.

In Figure 5, the data for different testing levels using different level sizes are presented. In the
first row, the level size is 10, in the second 50 and so on. For example, each row for levels 1–10
in Table V is represented by a single bin (for a total of 10 bins) in Figures 3 and 4. However, in
the figures in the first row in Figure 5, a single bin represents this information for levels 1–10. The
level range then contains the data for 10 test granularities as one level. The different level sizes
provide higher abstraction overviews of the coverage at the different testing levels. For example, in
Table VI we see that, when using a level size of 1, it seems that 471 methods are covered by tests
at a granularity of 1–10. But when combined and viewed with a level size of 10, we see that this
only includes 274 unique methods. This is due to the partial overlap of the different methods being
covered in multiple tests at adjacent granularity.

When considering the roles of the test cases for the different levels, it does not make much
difference whether a method is covered by a test case of granularity 1 or 10. For covering critical
parts and making debugging easier, we may be interested in ensuring that we have good coverage
at finer levels, but debugging 10 methods should still be relatively easy. Our interest for the size
of the viewed levels can vary according to what we are looking for. At lower levels a finer spread
with a ratio of 10 or 50 may be appropriate. On the other hand, at higher levels, we may only be
interested in some form of higher-level coverage and may use a ratio of, for example, 200 or may
even look for any coverage with tests over a certain threshold granularity, such as 100.

While in these examples we have viewed the whole project at once, all these analyses can also be
applied to smaller parts of the system. If we consider, for example, parts of the system to be more
critical or error prone, we can filter only these parts of the code for analysis. This can be based on
concepts such as project structure, domain knowledge or different complexity metrics. However,
this is considered out of the scope of this paper and left as a topic of future work.

The analysis presented so far is focused on an overall view of the software testing in general.
However, to more concretely and further evolve the test suite and the tested code, more detailed
analysis is needed. This will be looked into next.
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Figure 5. Spread using different test level sizes.
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Table VI. Method counts for different level sizes.

Level size Range Number of methods

1 1–10 471
1 1–50 1896
10 1–10 274
10 1–50 1040
50 1–50 603

4.2. More detailed analysis—evolving the tests and code

Analysing in detail the way the production code is covered provides opportunities for both opti-
mizing the test suite and optimizing the production code. We can improve the test suite by imple-
menting new test cases at different levels where needed, and by removing and combining overlapping
tests. We can improve the production code by identifying the redundant code and, by adding new
tests to identify possible problems, increasing our confidence on code quality. As we are interested
in more detailed analysis, the view in this case is also focused on more detailed analysis. Thus, in
this subsection, the test granularity is also used as the testing level, which gives the most detailed
information available.

From the overview analysis it is possible to find interesting focus areas for analysis. For example,
one interesting aspect from the overview at the finest level presented in Figure 3 is the peak at levels
around 70. The detailed information for this data is presented in Table VII. The interesting aspect
of this data is that, for each granularity in 70–73, there are exactly the same number of unique
methods covered as the test granularity. As there are a number of tests at each of these granularities,
it means that all these tests at the same granularity are executing the same methods. Thus, the
tests are simply exercising the exact same functionality with different inputs. With up to 24 tests
at a single granularity all exercising the same functionality, these tests provide good candidates to
consider for trimming the test suite for excess tests by removing or combining separate test cases.

To find the methods that should be considered for further testing at a lower level, the methods
in the chosen part of the SUT must first be analysed to see which of them are not tested at a lower
level. To find which methods are only exercised as part of high-level tests and not tested at a fine
granularity, for each method, the lowest level of testing is first taken for analysis. By ordering all
the methods by this level (a simple sorting), all that needs to be done is to look at the methods
with the highest values and these are the methods to be considered first. A sample of these top
candidates is shown in Table VIII.

To conserve space, the table lists only one method from a class if there are multiple methods in
the same class at the same testing level. For example, there are three methods (CM in the table) in
the class ast.JavaParser that are each tested at the finest level (Min in the table) as a part of
a test case which exercises 834 methods. As these metrics describe some of the largest test cases in
the test suite, and variation in test size at this level is high, the methods in the same class and at the
same level are likely executed in the same test case. As a note on the different methods, by looking
at the source code and its comments, it is clear that all the code in the ast package is generated
by a parser generator. Thus, the ast package code is not considered here for further testing as it
consists solely of generated code, and testing it would mean testing the parser generator.
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Table VII. Data for levels 69–74.

Testing level Number of tests Number of methods

69 0 0
70 24 70
71 6 71
72 22 72
73 20 73
74 0 0

Table VIII. Largest minimum levels for methods.

Method name Min CM

ast.JavaParser.jj 3R 120() 834 3
strings.ConsecutiveLiteralAppends.getSwitchParent(Node, Node) 802 9
rules.ConstructorCallsOverridableMethod.MethodInvocation.isSuper() 785 37
design.ImmutableField.inLoopOrTry(SimpleNode) 773 6
strings.InsufficientStringBufferDeclaration.isLiteral(String) 768 11

To consider these methods further, the roles of testing at different levels need to be consid-
ered. The roles defined for lower-level testing in Section 2 were aiding in debugging and
verifying the finer details of the method’s inner workings. Thus, for debugging, if there is a
fault in any of these methods, it will be much more difficult to find the cause of failure as the
failure will only show as a part of a large test. For example, if there is a fault in the method
ConsecutiveLiteralAppends.getSwitchParent(Node,Node), the best indicator is a
test that exercises 802 methods. Thus, finding the cause of failure requires looking into all these
methods. Also, if a method tested only at this level provides complex behaviour, the finer details of
this behaviour are unlikely to have been tested well. By looking more closely at these methods, their
intended behaviour, usage and similar properties, it is then possible to assess whether the methods
should be considered for inclusion in new test cases.

When looking for methods that need testing at a higher level, the methods in the chosen part of
the SUT can be ordered by their highest testing levels. From these, we look for the methods with
the smallest values to find the ones to consider first for implementing new higher-level tests. A
sample of the top methods tested only at a low level is shown in Table IX. In Section 2, the roles
for higher level of testing are listed as verifying the working of the smaller parts as a whole and as
verifying the higher-level functionalities of the program.

As classes and methods in a program should be implemented to be a part of a larger piece of
functionality, there should be test cases that also make use of each class and its methods in a larger
context. Thus when parts are only tested at a low level, this could highlight missing testing for a
higher functionality of the SUT or even possibly a class that has become redundant and is no longer
needed or used elsewhere in the system.

The final decision of removing a code that is considered redundant should be left to a main-
tainer with expert knowledge of a system. However, here a feature common in today’s integrated
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Table IX. Smallest maximum levels for methods.

Method name Max CM U

symboltable.TypeSet.getASTCompilationUnitPackage() 2 2 1
stat.Metric.getTotal() 2 2 1
ant.Formatter.setToFile(File) 2 1 1
strings.AvoidDuplicateLiteralsRule.ExceptionParser(char) 2 2 6
pmd.CommandLineOptions.usage() 2 1 3

Table X. Most tested methods.

Method name Number of methods Range

ast.SimpleNode(int) 569 5–834
symboltable.SourceFileScope(String) 429 13–834
report.PackageNode(String) 374 2–834
pmd.RuleContext.setSourceCodeFilename(String) 350 3–834
symboltable.ScopeAndDeclarationFinder.cont(SimpleJavaNode) 331 118–834

development environments such as Eclipse [15] and IntelliJ [16] has been applied: finding the
usages of a method or a class in the source code. The U column in Table IX lists the results for
finding the usages for the listed methods. While in this paper this analysis was applied only to the
few methods listed manually, it could easily be automated with existing analysis tools. For example,
the analysis showed that the method Metric.getTotal() is used only in a single test case
that does nothing but test this single method’s functionality. The method is not used in any of the
production code, but looking at the traditional code coverage view would show it as covered, while
in fact it is not used in any production code.

One more interesting aspect to look at as a side effect of this analysis is the summary of how
many tests are exercising different methods. This information can help both in understanding
the system implementation and in finding the most critical parts of the system for testing, both
important concepts in software maintenance and evolution. The more the tests exercise a method,
the more central that method is to the system’s functionality. Table X lists a sample of the top most-
tested methods in the system. For example, the method ast.SimpleNode(int) is executed
in 569 different test cases. These test cases range in size from a granularity of 5 to a granularity
of 834.

Here only one method has been picked from the ast package, but overall, out of the 500 most
tested methods (ranging from methods being executed in 200–569 test cases), 372 belong to the
generated ast parser package. Since ast is a structure used to describe source code and PMD
is a source code analyser, it is quite clear that this is and should be a central concept in the
system.

An example of a method that is central to the functionality but is not tested at a finer level
is ScopeAndDeclarationfinder.cont(SimpleJavaNode) shown in Table X. This
method is executed in 331 tests, but is at the finest granularity in a test that exercises 118 methods.
Thus, this metric could also be used to aid in locating new test subjects, in addition to metrics such
as code complexity as proposed in the previous section.

Copyright q 2007 John Wiley & Sons, Ltd. J. Softw. Maint. Evol.: Res. Pract. 2008; 20:59–76
DOI: 10.1002/smr

III/13



72 T. KANSTRÉN

5. DISCUSSION

In this paper, the presented measurement technique has been applied to an OSS project for which no
detailed information was available. When using the technique for a project we are developing, we
know the SUT better and applying the technique and analysing the results is easier. However, the
success of applying the technique on a project without detailed knowledge of the SUT shows the
technique to be applicable in practice. It was possible to get an overview of how much of the SUT
is covered at the different levels and highlight places in the SUT to consider for further evolution of
the production code and the test suite. As the technique does not consider untested parts of the code,
these have to be first brought under test to be included in this analysis. Traditional code coverage
measures and other existing techniques can be used for this purpose.

Once the detail level of interest for the overview analysis is found, observing the evolution of
the different levels of testing over the history of the project can be used to monitor the testing
process. If we set a goal to get more of the SUT covered at a higher or lower level, we can then
use the overview to observe how this goal is met by looking at the evolution over time. This can
be useful for management purposes and to monitor our own progress as we work towards the goal
of coverage at different levels. However, it should be kept in mind when considering this overview
that, although the levels of testing tell more about the testing over different parts of the SUT, it still
does not tell whether the tests at the different levels would be comprehensive and good. It makes
one aspect of test case properties visible, but does not mean that full coverage at different levels
would mean perfect testing.

Measuring the granularities of testing and mapping these values to the different parts of the SUT
to get their levels of testing can be automated as is done in this paper. Different aspects of analysing
the results can also be automated as was demonstrated by using existing tools to find method usages.
However, detailed and final analysis of these results still needs human work. Tool support to aid
in this can be further developed by using, for example, complexity measures or measures to find
aspects of method importance, for which one metric was shown in this paper.

Using the technique to find places lacking in different levels of testing can have several benefits,
as shown by the analysis of the OSS project in Section 4. Finding where there is a lack of higher-
level testing can bring out untested higher-level functionality. All code in a software system should
exist to help implement the higher-level functionalities required by the system and as such take part
in higher-level tests. However, not all code needs to be tested at higher levels as some code can
be required by, for example, programming language constructs for exception handling or similar
reasons and be untested as part of higher-level tests. Similarly, as the measure of level of testing
in this paper is based on the size of code executed, higher-level functionality can be implemented
as part of small or large amounts of code. As such not all parts that are only covered by what
is measured to be a low-level test necessarily need to be made part of a higher-level test. This
highlights a topic that needs more research and shows how the technique is best used as a tool to help
in analysing the test suite by a human analyst who can judge where new tests are actually needed.

In a larger context, as the technique described in this paper provides a quantitative measure of the
levels of testing for the different parts of the SUT, it enables doing more research on the levels of
testing. Using the technique, it is now possible to see how the different parts of the SUT are covered
at different levels and use this information to analyse, for example, different implementations of
testing levels and their correlations with other properties of the tested parts of the SUT. This is

Copyright q 2007 John Wiley & Sons, Ltd. J. Softw. Maint. Evol.: Res. Pract. 2008; 20:59–76
DOI: 10.1002/smr

III/14



TOWARDS A DEEPER UNDERSTANDING OF TEST COVERAGE 73

where the most detailed information provided by the technique can be most useful as it allows
doing the most detailed analysis of these properties. This can be especially helpful in instances of
software evolution.

6. RELATED WORK

Regression test selection and optimization are research topics that focus on choosing which tests
from a test suite to run [17] and optimizing their order of execution [18]. In these cases, the
granularity of test cases is considered with such goals as how to maximize the coverage fast or
how to get additional coverage. The effects of test suite granularity on the cost-effectiveness of
regression test selection, optimization and reduction have been studied by Rothermel et al., who
focus on the granularity as defined by the test case inputs [4].

When these studies on regression testing consider test granularity, they measure it either as code
executed or by the size of input in each test case. The executed code is not used for measuring the
granularity of testing, but rather for finding a minimal set of tests to provide maximum coverage.
This paper measures the code executed by each test case and, in addition, applies a second step of
measurement, where the test granularities are mapped to the code to measure the level of testing
for the different parts of the tested code. Another difference is in the optimization goal; whereas
these studies focus on optimizing the execution of existing tests, this paper focuses on optimizing
the implementation of further test cases.

Zeller and Hildebrandt [8] and Chesley et al. [19] have developed methods and tools for finding
the cause of failure from coarse-grained tests which execute large parts of the SUT. A failing
test case is executed repeatedly with varying input or code changes until the smallest part that
causes the failure is found. Both of these techniques can lessen the need to implement lower-level
testing; however, as also noted by Gälli et al. [7], having finer granularity tests can make these
techniques work faster. Also, we still need different levels of testing to verify the finer-level details
and the higher-level functions. In many cases it is also much faster to debug something if we have
focused tests where we want instead of having to run specific tools and methods to filter out the
cause.

Nagappan has developed his own metrics suite, called Software Testing and Reliability Early
Warning (STREW) metrics suite, for predicting software maintenance and guiding the testing efforts
[20]. STREW is based on a number of metrics measured from both test code and production code,
such as number of assertions, complexity and coupling. The approach applied in STREW is similar
to that in this paper, in applying measurement to the testing and production code to guide the testing
process, but his metrics suite does not consider test granularity.

Pighin and Marzona [21] propose to focus the highest testing effort on the most fault-prone parts
of the software. They argue that it is a waste effort to put the same effort of testing on the less
fault-prone parts of the software as on the more fault-prone parts. Their approach is common with
this paper in that it proposes a method to focus the testing effort and uses the properties of code
to guide this process. However, they discuss allocating time, not how to focus the testing on the
fault-prone parts. The information in this paper provides a way to help focus the extra effort spent
on the chosen parts.
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Jones et al. have developed a technique and a tool for visualization of test information to assist
in fault localization [22]. Their technique colour codes source lines based on their execution in
passed or failed test cases. This is based on gathering coverage information for every executed test
and mapping the executed passed and failed tests for each LOC. This way, colour spectra can be
applied for each LOC to give it a colour based on how many failed tests are executed in that line.
The authors then propose that specialists can use this information to help debug the faults. This
approach uses a similar mapping of tests to code as is done in this paper, but, while they use it for
counting the number of failed tests for each line, they do not consider the granularity of testing or
the roles of the testing. Instead, their focus is on highlighting where the possible failed statement
is and using it for debugging.

Baudry et al. [12] define a test criterion for improving debugging, called test-for-diagnosis (TfD)
criterion. A good TfD value is defined as maximizing the number of dynamic basic blocks (DBBs).
DBB is defined to be the set of statements covered identically in test cases. Using their own test
suite optimization algorithm, Baudry et al. optimize existing test suites for TfD. Their aim is to
optimize the test suite to make debugging faults easier. To assist in this, they use the localization
technique proposed by Jones et al. [22], in which the test suite is optimized using the TfD measure.
Their DBB measure can be considered as a form of granularity measure, but is not usable for the
purposes of this paper, as the size of DBB varies and thus any granularity measured with it would
not be comparable. In line with this, they do not provide means to assess the granularity of testing
for the different parts of the code, but focus on the debugging of failed test cases.

Sneed [23] has used both static and dynamic analysis for linking test cases and use cases to
the code they execute. He started with static analysis, finding it inadequate for his purposes, and
then moved to dynamic analysis, similar to this paper. While he used timing-based matching to
match test cases, this paper makes use of instrumenting both the test framework and the code
under test to automatically link the test case execution to the code under test. Similarly, he used
static analysis techniques to map the trace data to the functions executed, while in this paper the
information is provided directly by the trace framework (AspectJ). This is mostly a function of
different environments and both types of tracing have advantages in different environments. Finally,
while he focused on using the information for regression test selection, this paper has focused
on understanding the test suite and its composition. However, the data could also be applied to
regression test selection in a similar way as Sneed has done.

Advances in coverage-based tools are moving them to also include more detailed coverage
information at the individual test level and using different coverage measures such as method, block
and predicate coverage [13]. While these tools do not yet provide a deeper analysis of the coverage
information as presented in this paper, extending them with this support should be simple as they
already provide the basic individual test case coverage information needed to perform the analysis.

7. CONCLUSIONS AND FUTURE WORK

This paper proposed a technique for measuring and optimizing the levels of testing over the different
parts of the system under test (SUT). It was shown how this can be applied to support software
maintenance and evolution by showing how to measure the levels of testing for the different parts
of the SUT, how to get an overview of the total testing over the SUT and its smaller parts and how
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to use this information to further evolve the production code and the test suite. Different levels of
testing have different roles in testing a system; having tests at these different levels makes it more
likely to find faults earlier and makes debugging them faster. Full coverage at these different levels
would be optimal, but it is always a trade-off and choices have to be made. This technique helps
make these choices more explicit by showing how the different parts of the SUT are tested at the
different testing levels. The technique was applied to an OSS project to illustrate its use in practice.

In summary, the technique presented helps in finding the following:

• Untested higher-level functionality by highlighting places in the SUT lacking in higher-level
testing. All code should serve to implement the required higher-level functionality of the
system and thus take part in higher-level tests.

• Redundant code that is no longer needed, by finding parts that are not tested at a higher level
and are no longer needed for any higher-level functionality.

• Parts of the SUT that are lacking in different levels of testing, for example, parts in need of
low-level testing to help in debugging or for verifying complex behaviour.

In addition, the technique provides possibilities to

• get an overview of the testing done at different levels over the SUT;
• find and understand the central components in SUT implementation;
• track evolution of the test suite and the SUT with regard to test levels; and
• do research on different levels of testing by providing an automated, quantitative measure.

Further research to improve the use of the technique would include developing techniques to
help filter out the information of interest, including the most important parts to consider for further
testing, and to study the optimal distributions for the levels of testing for different methods. Studying
the properties of the source code with relation to the different levels of testing is also needed to bring
out the possible trade-offs in implementing tests at different levels. For example, it is not always
possible to test every part at a finer granularity if they are highly coupled or getting lower coupling
may bring higher complexity. While all parts of the techniques implementation and data analysis
can be automated, integrated tool support is also still needed for enabling practical adoption.
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Abstract 

 
Effective implementation of test automation re-

quires taking testing into account in the system design. 
In short, this is called design for testability (DFT). In 
this paper a study on DFT in component-based embed-
ded software is presented, based on the interviews and 
technical documentation from two large-scale compa-
nies in the European telecom industry. The way test 
automation is addressed and the different techniques 
applied to make this more effective at the architectural 
level are described. The differences and benefits of 
different approaches are discussed. 
 
1. Introduction 
 

Effective implementation of test automation re-
quires taking testing into account in the system design. 
In short, this is called design for testability (DFT). This 
paper presents a study on DFT in two large-scale com-
panies in the European telecommunication industry, 
both working on similar products, based on the same 
standards. The way software (SW) test automation is 
addressed and the different techniques applied to make 
this more effective at the architectural level are de-
scribed. The differences and benefits of different ap-
proaches are discussed.    

The testing discussed is different levels of black-
box integration testing. At the lowest level, small com-
ponents are composed together to larger components, 
and the internal messages between these components 
are considered. Properties such as internal structure at 
the level of code are not considered. At the highest 
level, all components are fully integrated as a complete 
system. In each case there is a separate test team dedi-
cated to testing the components/system. For debugging 
problems, analysis is done at a more detailed level in-
cluding the use of white-box techniques. 

The tested systems are large-scale telecommunica-
tion systems. Each system consists of a number of 
hardware (HW) blades running SW with different 
functionality. Additionally, each system also interfaces 

with a set of other standardized systems, and both the 
internal correctness needs to be tested as well as the 
external interactions. Different parts of the SW are 
implemented in different programming languages, such 
as C/C++ and SDL. The system is divided to different 
sizes of components, and the testing described is done 
at the level of these components. While the system size 
in terms of lines of code was not always given, for ex-
ample one system consists of about one million lines of 
production code, with a similar amount of code for the 
test environment.  

As these are embedded systems, external HW mea-
surement devices can also be used. The instrumenta-
tion mechanism choice is a trade-off in minimizing the 
effects of monitoring (HW) and providing more so-
phisticated views into the systems (SW). In this paper 
the focus is on the SW solutions.  
 
2. Design for Testability 
 

The term testability in SW testing can be considered 
from various viewpoints [1][2][5][7]. While some con-
sider the architectural viewpoints [8][9][10], few de-
scribe techniques for more effective DFT at the archi-
tectural level [1][3]. However, this is commonly identi-
fied as an important goal in SW testing research [4].  

In this paper two main viewpoints of DFT are con-
sidered from the architectural viewpoint: controllability 
and observability [5]. To test a component, we must be 
able to control its input, behavior and internal state. To 
see how this input has been processed, we must be able 
to observe the components output, behavior and inter-
nal states. Finally, the system control mechanisms and 
observed data must be combined to form meaningful 
test cases for a system. 

The definition of how the interviewed see DFT has 
some variation, but the basic concepts are similar. 
These different viewpoints include the possibility to 
simulate different parts of the system for testing, to 
isolate the part that is being tested, to control system 
behavior with specialized test functionality and to ac-
cess information on system behaviour. When test code 
in integrated to observe or control a part of the system, 
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the location of the test code is called a test point. When 
testing is run in a desktop simulation environment out-
side the target HW, this is called host testing. 

The presentation and discussion of the test automa-
tion and DFT concepts in this paper are described ac-
cording to the following main concepts: test implemen-
tation, control of messaging, simulation strategies and 
implementation of functionality to support testing. 
How the different companies address each of these 
concepts is described and discussed. 
 
3. Research Methodology 
 

The interviewed companies were chosen based on 
their mutual interest. As they were starting closer col-
laboration, both had interests to combine strengths of 
the two companies. The interviews followed a semi-
structured format, where questions were grouped into 
themes. The goal was to allow the interviewed to freely 
express what they felt were important concepts, while 
keeping the focus on the matter at hand. The following 
is a list of the main questions addressed: 

Theme Main Question(s) 
Test Au-
tomation 

• How do you implement test automa-
tion? 

• What solutions do you use to support 
implementation of test automation?  

Ob-
servabil-
ity 

• How do you collect information from 
your system? 

• How do you address constraints such 
as real-time requirements? 

Contro-
lability 

• How do you support controlling sys-
tem states, behavior and partitioning? 

• How do you focus on problem analy-
sis? 

In both companies, a number of specialists in test 
automation were interviewed. Each company was 
asked to select a number of specialists with good 
knowledge on the interview topics. Some technical 
documentation was also received, describing the test 
automation systems. Once the information had been 
collected, results were checked with the interviewed 
people. 

 
4. Test Implementation 

 
The basic test implementation in both companies is 

based on verifying the correctness of message se-
quences and checking of message parameters. Al-
though the systems have hard real-time requirements, 
they are considered only at the system testing level and 
not on the integration testing level. While some load 
and stress testing is performed during integration test-

ing, it mostly done in system level testing, as in these 
cases the complete system in composed and problems 
in high level integration and interoperability can be 
seen. For testing timing related functionality in integra-
tion testing, specific test cases are used that manipulate 
the timers used in the system. For example, they can be 
set to expire immediately to test timer related fault 
handling. The amount of generated test data can also 
be a problem, as the test bus can become exhausted, 
causing failures when buffers become full. This re-
quires special considerations on how and where test 
data is processed. 

 
4.1 Integration Testing 

 
Both companies use basic test scripts to verify the 

message sequences during integration testing. Verifica-
tion of message sequences is based on the external 
interfaces of components, which is seen to help shield 
the test cases from minor changes in system implemen-
tation. As these messages are captured at the compo-
nent level, several thousand lines of code can be exe-
cuted between messages. Typically, the information on 
internal messages is also available, but these are only 
used when problems are found and need to be ana-
lyzed. Failing test cases are executed with more de-
tailed logging to focus on the cause of failure, includ-
ing internal messages passed and their parameter val-
ues. Most difficult problems to debug are seen to be 
problems that come up during long uptime, slowly 
consuming resources such as memory or CPU load. 

Company 1 (C1) has used a traditional approach of 
developing test components (stubs) as needed in isola-
tion. Company 2 (C2) has taken a different approach 
where, during development and integration testing, two 
versions of the system specification are implemented. 
One is the actual product and one is the test system. 
The test system provides simulated versions of all the 
components in the production system, and is developed 
using similar development and quality assurance proc-
esses as the production system. As two versions of the 
specification are implemented, they provide validation 
for each other and the understanding of requirements. 
In case of a failing test case it is necessary to consider 
which implementation is wrong, the test system or the 
production system. As same development processes are 
used for both systems, the same metrics can also be 
collected and compared for both. This can provide in-
teresting insight into the effectiveness of test automa-
tion development. For good test system implementa-
tion it is seen that a ratio of 1 to 1 is good and a ratio of 
1 production system error to 2-3 test system errors is 
more common. 
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4.2 System Testing 
 
Similar to integration testing, C1 has relied on 

scripting of input and output also at system test level. 
C2 used to do the same but has moved to using higher-
level abstractions due to difficulties in maintaining the 
test suites. In this case, the message sequences are en-
capsulated inside test building blocks, which describe 
high-level functionality of a system. These are further 
grouped into test cases, which are grouped into test 
suites. When system functionality is changed, updating 
test cases requires changing only some of the building 
blocks and not all test cases. As the blocks can be fur-
ther reused over a product family, this has been found 
to lead to lower maintenance costs. Also, as test cases 
can be built from higher level abstractions (building 
blocks), it is easier for a system tester to write test cas-
es without detailed knowledge of system internals. The 
goal is then similar to approaches such as model based 
testing [12], with the aim of using a higher level model 
abstraction to build test cases. In this regard, the im-
plementation of the C2 system test environment takes 
more effort, but has smaller maintenance effort as 
changes are contained in the shared test components. 

As described earlier, most of performance and load 
testing is left for the system testing phase. However, 
while C2 has put more effort into creating an advanced 
functional test environment for system testing, they 
have used only basic timing measurements of external 
interfaces also at the system testing level. For this type 
of testing, C1 has put more effort on advanced tech-
niques for supporting analysis of resource usage and 
performance. This is based on analysis of detailed in-
ternal information, starting from generic properties and 
progressing to more detailed analysis based on the 
findings from the generic properties. At this level, the 
parameters include task switches, data on resource us-
ages and use of OS services. As these can be monitored 
from outside application code (at the system level), 
they do not require as large effort to implement. When 
more focused information about an identified problem 
area is needed, more specific tracing is implemented. 
This data includes properties such as component inputs 
and outputs, system id values and data streams. Fur-
ther, analysis tools have been developed to analyze this 
information using multivariate analysis techniques. 
This has been found very useful in system optimiza-
tion. 

 
5. Control of Messaging 

 
Effective implementation of test automation re-

quires being able to control the system execution and 
observe the results. In this regard, it must be possible 

to create different compositions of the system and its 
components, including the use of test components 
(stubs) as replacements for actual components. In com-
ponent-based SW, a common means to compose com-
ponents together into larger systems is through mid-
dleware [11]. Both C1 and C2 have taken a similar 
approach to make this possible, by controlling the mes-
saging between the components, through their middle-
ware. This section reviews these approaches. 

 
5.1 Company 1 

 
C1 uses a commercial off the shelf (COTS) third-

party operating system (OS), targeted especially at 
embedded systems, in their products. For enabling 
creation of system test compositions and the use of 
simulation, rerouting of the system communication 
mechanism is used. In system execution, the execution 
of components is mapped to the OS processes, which 
run them as tasks. All communication between compo-
nents is done through the system messaging interface, 
which is an inter-process communication (IPC) inter-
face. The communication is handled by a system inter-
nal routing component that delivers the messages to the 
correct processes and components. As the same mes-
saging interface is used over all the components and is 
based on a standard protocol, it is easier to build ge-
neric and reusable test services for this interface.  

 
Figure 1. C1 message flow control and testing. 
The process of using this mechanism to attach simu-

lated components to the test target is shown in Figure 
1. The system router component contains a routing 
table for passing the internal system messages to dif-
ferent components. By modifying this routing table, 
the messages can be passed to test components instead 
of production components. In addition to basic test 
stubs, which provide messaging functionality, this has 
also been used to implement more complex functional-
ity to gain control over deeply embedded functionality. 
This is discussed in more detail in section 7.  
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5.2 Company 2 

 
As a basis in their products, C2 uses a generic open 

source software (OSS) OS, which can be used equally 
well in both a host test environment and on embedded 
target HW. The enabler for using the test environment 
is the custom middleware on top of which the whole 
system runs. This middleware contains a communica-
tion translator component, which handles the address-
ing of component communication. When the system 
components are composed together to form the system, 
each SW component publishes over the communica-
tion translator their communication id values and sub-
scribes to other components using their id values. The 
counterparts are mapped together by the communica-
tion translator. As soon as the required components are 
available, they are subscribed and connected together, 
and messages can be passed. 

Component 1 
StubTester

1.

1.

2.

2.

1. Tester initialises tested 
components and stubs.
2. Components and stubs 
register to CT.
3. CT connects stubs and 
components  together 
based on their id’s.
4. Tester executes test 
cases.
5. Messaging between 
components and stubs.

Component 
Under Test 

(CUT)

Communic. 
Translator 

(CT)

3.

3.

5.4.

4.

 
Figure 2. C2 message flow control and testing.  

Using this functionality, the components are wired 
together to provide the test composition needed to ef-
fectively isolate and test the production components as 
illustrated in Figure 2. To create system compositions 
for testing, test components are published with the con-
nection id of the matching production components. 
Thus, the system under test (SUT) sees this as a normal 
operating environment. To enable the creation of dif-
ferent system compositions for testing, the database 
describing the system components can also be con-
trolled. The system configuration is set through the 
database, and the required components are then im-
plemented in the test environment. These test compo-
nents can then, depending on the configuration, pro-
vide test functionality such as answering with certain 
messages and verifying the contents and order of 
received messages. High reuse factor has been 
achieved in using parts of the test components over 
different test cases.  
5.3 Discussion 
 

As both C1 and C2 both work in the same domain 
and develop products based on the same specifications, 

they have many commonalities in their testing. The 
systems are based on a set of standard interfaces and 
system components that define the external structure 
and interfaces of the system. At the level of integration 
and system testing, both have mainly focused their 
testing on the messages between the components. Al-
though there are differences in test implementation and 
system architecture, there are also similarities in the 
approaches taken to address the testability require-
ments in the internal design of the systems. 

To control the system execution for testing, both 
take a similar approach of controlling the routing of 
control- and data-flow via the system messages. C1 
uses the configurability of their OS message routing to 
enable this. C2 uses the similar functionality of their 
custom middleware. Both use these to enable stubbing 
of interfaces in their test environment, which in turn 
enables customized test configurations of the SUT. 
Both of these approaches have their own advantages. 
Using the services provided by the OS, there is less 
need to develop a custom, self-made middleware. 
However, using a custom-made middleware that can be 
used on both host and target system provides more 
flexibility and better possibilities for host testing, as 
described in section 6.  

Overall, it can be concluded that for the type of 
testing described here, it is necessary to be able to con-
trol the messaging of the system for effective test im-
plementation. The possibilities for this are constrained 
by the used SW platform. 
 
6. Simulation Strategies 

 
In all SW testing it is important to be able to simu-

late parts of the SUT for effective test implementation. 
As described in section 5, it must be possible to use 
simulated versions of components (test stubs) provid-
ing test functionality as a replacement for actual pro-
duction components. However, especially in the con-
text of embedded systems, it is also important in whole 
to be able to run tests in a simulated host test environ-
ment, without the need to always run on target HW [6]. 
This section describes the different approaches and 
related constraints with the interviewed companies in 
this regard. 

 
6.1 Company 1 

 
As described in section 5.1, C1 uses a COTS OS, 

targeted especially at embedded systems. From the 
simulation viewpoint, this is problematic as the OS is 
tied to the target HW, and cannot be used as such in a 
host test environment. While it does provide a separate 
simulation environment that enables some testing, this 
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simulation environment does not equal the use of ac-
tual full OS. Although C1 sees it important to effec-
tively simulate different parts for testing, they have 
done only very limited host testing. Instead, they have 
aimed at running as much as possible of testing on tar-
get HW, where the tested component(s) and the simu-
lated stubs are all loaded on to actual target HW. They 
see this to have the benefit of getting more accurate 
timing as well as fully matching any parameters of the 
target system that may affect the functionality.  

In C1, the communication interface uses a common 
messaging protocol, built on top of standard network 
protocols, for all parts of the system. This is seen as an 
especially important enabler for building effective test 
automation systems, as it enables building reusable test 
components and services. With this type of a commu-
nication mechanism, C1 has found it possible to build 
multipurpose test components that can be used in test-
ing of different parts of the system. 

 
6.2 Company 2 

 
As described in section 5.2, C2 uses a generic OSS 

OS, which can be used equally well in both a host en-
vironment and on embedded target HW. As both the 
target HW and the host simulation environment use the 
same full OS, they are a very close match to each oth-
er. Also, the same SW can be deployed both on target 
and in host environment without changes or visibility 
to the deployed SW. Only the HW interface part needs 
to be specific to the target system, and is typically only 
needed in later phases of integration. It is also possible 
to run parts of the system, such as HW specific startup 
code or databases on a different blade on a target HW, 
while running the rest of the system in a host environ-
ment. While the goal with testing at this level is to test 
as much as possible in the host environment, some of 
the testing such as redundancy and failover needs to be 
done with actual target HW, where multiple HW 
blades are available. 

 
6.3 Discussion 

 
The main difference with regards to simulation en-

vironments in C1 and C2 is in the type of OS used and 
the environment in which most of the testing is per-
formed. While this is partly defined by the possibilities 
of the used OS, it also reflects the deeper views of the 
two organizations. Running as much as possible of 
integration testing in a host test environment is a view 
shared by all interviewed people in C2, whereas the 
opposite view is shared by the people in C1. The main 
reason mentioned for C1 to prefer running as much of 
testing as possible on target is that in this case all pa-

rameters of the actual environment are correct accord-
ing to the target HW. While the optimal choice de-
pends on many properties, both C1 and C2 recognize 
that testing on target HW is expensive as it requires 
having a large number of custom made target systems 
and specialized test equipment available for testing. A 
host testing environment also enables better control 
over the test environment, and the target HW issues as 
a whole can best be addressed in the system integration 
test phase, when the whole system is composed. 

For C2, an effective host simulation environment is 
available by running their middleware and SW on top 
of it in a (desktop) host test environment in the same 
OS. As the middleware is in-house and the OS is OSS, 
the system supports a wide range of customization pos-
sibilities. The C1 OS based solution is tightly coupled 
with the internals of a third party COTS OS, which 
makes effective customization more difficult. Their OS 
is also specifically for embedded systems, and cannot 
be used in a host test environment as such. Instead, a 
specialized simulation environment is needed, which is 
more complex to match to target than running the ac-
tual OS. As C1 has not made much effort to use host 
testing, it is unclear how well this could be done. 

 
7. Test Functionality 

 
Enabling effective test implementation typically re-

quires certain properties and functionality from the 
SUT. How SW components can support the testing 
process has received a lot of attention in the recent 
years [11]. However, these techniques are mostly con-
sidered from the viewpoint of third-party black-box 
components, where support is built into a single com-
ponent. At a higher level, this section reviews how C1 
and C2 have addressed supporting testing at a level 
where several components are integrated. 

While the techniques described earlier for control-
ling messaging and using simulation are basic enablers, 
also more advanced functionality is needed. To effec-
tively build automated test cases, it must be possible to 
observe and control different parts of the system, 
which when integrated can be difficult to access. This 
is especially true when there is a need to support test-
ing and diagnosis of deployed products, as is the case 
with both C1 and C2. Finally, even when this observa-
tion and control support exists, data still needs to be 
made available. In embedded systems this provides its 
own challenges. As opposed to SW running in a desk-
top environment, there is often no direct visibility to 
the SW running on target HW, and even reading print-
outs from application code requires custom solutions, 
such as use of network protocols as used by C1 and 
C2. To support analysis of long-running systems, run-
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time test support is also needed. In this section the 
functionality to support test implementation is re-
viewed. 

 
7.1 Company 1 

 
When data from an internal part of the system needs 

to be collected in C1, the data flow can be changed. 
One applied solution is using the functionality de-
scribed in section 5.1; message routing is configured to 
go through an extra test component that collects data. 
A basic setting for this is illustrated in Figure 3. Simi-
larly, by connecting various component input and out-
put ports together, data flow in the system can be 
looped to come back to the sender. Using this tech-
nique requires special consideration, as the data will 
likely be of a different format than expected in the 
“abused” output path. 

For direct access to deeply embedded features in 
C1, a technique called embedded tests is used. These 
are test components that are integrated into the system 
to provide specific test functionality. To enable this, 
the message routing techniques described in section 5.1 
are once again used, as illustrated in Figure 4. The 
functionality of these components includes feeding test 
input data, doing comparison and transferring test re-
sult data out from internal interfaces. The embedded 
tests also help address other constraints such as real-
time requirements and limited communication buses, 
by providing fast data input and processing near the 
interface, limiting the need for external communica-
tion. These tests are typically integrated ad-hoc where 
needed and not left in the system, as also the need 
where they are used varies. Other techniques to address 
performance constraints include running test data proc-
essing and transfer tasks when system load is low, by 
using low task priorities.  

In C1 the viewpoint has been that it is difficult to 
provide generic observation points between different 
components of a system. This is both because of dif-
ferences in actual implementations of components and 
due to difficulty to get management support for adding 
extra test code into the system. The priority of DFT 
SW development and resourcing is always put much 
lower than that of production SW. As most tracing then 
needs to be implemented on ad-hoc basis, common 
functionality that is used in tracing a system has been 
implemented in a test point library. This functionality 
can be integrated in different parts of the system 
through the library. Separate integration is needed for 
each test point in the system, but from thereon the li-
brary provides the functionality. The functionality of 
this test point library includes different functionality 
needed in testing, such as storing test data, moving it 

out of the system, doing comparisons, reporting results 
and monitoring system resources. 

The goal with the test point library implementation 
is to provide functionality that makes it possible to 
implement embedded test and other test functionality 
into the system with minimal effort. This includes im-
plementation of such functionality over different parts 
of a system, but also across different products in a 
product family. To this end, the library has been made 
HW platform independent. The library functionality is 
built on top of a HW abstraction layer (HW API), and 
porting the library to a new system typically needs 
porting the HW API code between the SW and HW, 
while the HW API interface stays the same. 

 
Figure 3. Embedded test component. 

 
Figure 4. Embedded test. 

7.2 Company 2 
 

In C2, features to support testing and more detailed 
analysis of system behavior have been included in the 
system as first-class features. This includes both func-
tionality to observe system behavior and built-in test 
functionality. While their middleware would enable 
using techniques such as embedded tests described in 
section 7.1, these have not been used extensively due 
to wanting to not change the SUT during testing. In-
stead, the goal has been to always test the system as it 
will be finally deployed, with no test features added 
only for testing and removed after testing is finished. 

For systematic tracing support, development guide-
lines define what can and needs to be traced at differ-
ent levels. Tracing is divided to different levels, and 
different parts of the system are defined to belong to a 
certain trace module. Each module contains what is 

36

IV/6



called a trace notebook to store trace data. At the finest 
trace levels, developers are free to put almost any trace 
they wish, as these levels will be compiled away when 
actual SW releases are made. At the higher levels, 
which are included in deployed products and where 
less trace can be produced, guidelines include always 
putting a certain trace level on input and output of ex-
ternal and internal interfaces.  

The goal with the trace functionality is to always 
have some systematic information to work with, even 
if it is only possible to gather very limited amount of 
data due to performance constraints of deployed sys-
tems. Quality assurance policies are applied and in-
spections are done with experiences developers to see 
that all required important trace points are included in 
the system. In addition to storing information about 
system execution, all error symptoms are also logged 
in the notebooks. Techniques such as shared memory 
and stored to disk storage are used to enable access to 
data also in case of application crash. 

The trace functionality can be configured statically 
through a configuration file or dynamically through a 
configuration interface during run-time. Trace func-
tionality can also be set to activate or configure based 
on various system event triggers. Some of the basic 
functionality of tracing is also supported similar to the 
test library of C1. Mainly this is related to inserting 
trace statements, moving the data out of the system, 
data post-processing and analysis. Monitoring of sys-
tem resource usage such as CPU and memory is sup-
ported and stored by the trace system.   

As the more abstract levels of trace are always in-
cluded in the system and can be configured dynami-
cally during run-time, they can also be used during 
long testing sessions and with deployed systems in the 
field. Additionally, this is supported by built-in test 
functionality called audit tests. These tests run inside 
the system, when the system load is low and there are 
resources available to run the tests. They check the 
system consistency for properties such as resource 
leaks. Without this, it is difficult to see what has hap-
pened in the system if the system goes down after 
weeks of running and there is no sign of how the 
symptoms developed over time. 

Another application of audit type tests has been in 
testing for errors in redundant HW blades. In this case, 
the system contains two or more blades that are redun-
dant and provide fail-over functionality. During system 
runtime, these can be tested with known input and out-
put data to see if they provide correct functionality. If 
the results are different, an error notification can be 
raised and the failing blade can be replaced with a cor-
rect one while the system is running. 

 
7.3 Discussion 

 
The approaches with the two companies with re-

gards to including test functionality in a system have 
been the opposite. In C1, the viewpoint has been that 
no functionality to support testing are to be included in 
actual products, as these are not something sold to cus-
tomers. As DFT support in C1 has in general been a 
low priority, their solutions to support this have been 
limited. On the other hand, the goal in C2 has been that 
the SUT remains unchanged during testing. From their 
viewpoint, it is seen that unless test functionality is a 
part of the actual product, the tests do not test the ac-
tual system, since the test functionality is removed in 
the end. Thus their supporting DFT features have been 
made first-class features for the system. 

Due to not being able to include test functionality as 
a part of the actual product, C1 has developed their test 
point library to support testing and debugging with ad-
hoc solutions. This is seen especially problematic in 
diagnosing deployed products and in long testing ses-
sions. Integrating separate test support functionality 
requires loading a new SW version and resetting the 
system, which also makes the fault state disappear and 
impossible to debug. In general, supporting field-
testing of deployed products is identified as an impor-
tant area of improvement in C1. Currently, only a num-
ber of basic properties can be observed, such as num-
ber of resets inside a HW block. 

As stated earlier, C2 has taken the opposite ap-
proach to fully include all test functionality in the 
product. This along with their audit tests provides C2 
with much better support for testing and diagnosing 
problems of deployed products and long testing ses-
sions. Also, as systematic tracing is included in all 
parts of the C2 SUT, they also share a common data 
format. This enables use of same tools for all parts. In 
C1, this has caused some problems, due to fragmenta-
tion and incompatibilities caused by the different tools 
and data formats taken by different organizational 
units. 

One of the reasons for difficulties in getting support 
included for testing purposes into the system in C1 is 
often cited as people not wanting to add any (test) fea-
tures that are not sold to customer, into the product. In 
this regard, testing has not been valued high enough to 
be given systematic support, but has rather been 
viewed as something extra to be put up with. Thus lack 
of management support and not valuing testing high in 
the company culture are some of the main reasons. On 
the other hand, it is not clear if better support would 
have been received if someone had suggested similar 
solutions, and argued with extended support for field 
testing and other cost savings. Field test support in C1 
is one of the identified areas needing improvement. 
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8. Conclusions 
 

This paper discussed the DFT solutions to support 
test automation from two companies in the European 
telecommunications domain, working on similar large-
scale component-based embedded systems. Their tech-
niques to support effective test automation were dis-
cussed. While the approaches taken have a lot in com-
mon, there are also a number of differences. While it is 
not possible to generalize from this data to all SW de-
velopment and testing, a number of observations can 
be made that provide interesting insight into these top-
ics. These are summed in the following: 
• Testability needs to be taken into account early in 

the design, in the SW platform. Control over sys-
tem messaging provides support for control over 
system execution paths and efficient implementa-
tion of test environments and configurations. A 
common communication protocol further provides 
support for implementing reusable test compo-
nents.  

• Especially in the case of embedded systems, a 
good host test environment enables efficient SW 
testing. When this environment matches the target 
system as much as possible, efficient host testing 
is possible. One enabler for this is using an OS 
that is supported on both the target HW and in a 
(simulated desktop) host-testing environment. 

• Including supporting test functionality in the sys-
tem as first-class features allows for more effec-
tive analysis of the system, including analysis of 
long running tests and deployed systems, and en-
ables efficient field-testing. Effectively imple-
menting this requires possibilities for dynamic 
configuration of test functionality during system 
run-time. 

• In addition to systematic test support functionality, 
ad-hoc requirements are likely to arise in different 
points of testing and analysis lifecycle, and in this 
case it is useful to have support for this functional-
ity provided in the form of a reusable library.  

• Abstracting test cases from the implementation 
minimizes the effects of internal system changes 
to the test cases. This mostly applies at the system 
testing level, as in earlier testing phases it is often 
necessary to observe more detailed properties of 
the system. 

• To make it possible to get the desired test support 
functionality included into the system design and 
to create advanced tools, management support is 
crucial. This requires valuing testing and system 
analysis high in the company culture. 
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Abstract—This paper introduces a general framework directed
for system instrumentation. The introduced framework provides
support for a system instrumentation approach that enables
designing information capture, monitoring and analysis features
into a software-intensive system. We describe the general concept,
architecture and implementation of the framework and two
case studies in its application. As a prototyping platform, we
dealt with collecting information from Linux systems by probes
created with the building blocks and interfaces provided by the
framework. Overall, we demonstrate the feasibility of a more
uniform instrumentation approach through this concept and its
application in two case studies.

I. INTRODUCTION

Understanding and analysing the behaviour of complex,
software-intensive systems is important in many phases of
their life cycle, including testing, debugging, diagnosis and
optimization. In addition to these, many systems themselves
are built for the sole purpose of monitoring their environmental
data and reacting to relevant changes, such as detecting pat-
terns in internet traffic. All these activities require the ability
to collect information from the different parts of the system.

These basic activities and requirements in software engi-
neering have existed since the first days of writing software.
However, despite this there has been little research and activity
to build support for systematic monitoring and information
capture into software platforms. Instead, what is most common
is the use of ad-hoc solutions to capture data where needed, as
needed. In these cases, the instrumentation required to capture
the information is added momentarily into the system and
removed after the short-term need has passed. Recent studies
still emphasized this problem, showing large-scale systems
where these types of features are important but support for
them is lacking [1].

In this paper we present a design concept, and its implemen-
tation and validation, for a platform to support the systematic
capture and analysis of information related to the behaviour
of a system and its environment. This platform is termed
as the Probe Framework (PF). The PF provides support for
building monitoring functionality for collecting information
on the behaviour of software intensive systems and using

————————————
*Also affiliated at Delft University of Technology, Faculty of Electrical
Engineering, Mathematics and Computer Science, Mekelweg 4, 2628 CD
Delft, The Netherlands.

this information for purposes such as built-in features in the
software itself (as product features) and testing analysis of the
systems during their development (testing and debugging) and
deployment (diagnostics). The prototype implementation of PF
is available as open source1.

This paper is structured as follows. Section 2 discusses the
background and motivation for the work. Section 3 describes
the main concepts of the PF at a higher level. Section 4
discusses the implementation of the PF and section 5 presents
the experiences from this implementation and describes two
cases of utilizing it. Finally, conclusions end the paper.

II. BACKGROUND & MOTIVATION

The concept of capturing information from a system and its
environment is often described as tracing the system. Similarly,
in this paper we use the term tracing to describe the activity
of capturing information from a running system, either with
external monitoring or internal instrumentation features. The
data captured is described as a trace of program execution.
Many different domains make use of tracing information,
such are: system security analysis, internet monitoring and
protection, run-time adaptation and diagnosis, testing and
debugging.[2][3][4][5][6][7]

There are various tools around for specific instrumentation
and tracing on different platforms, such as DTrace for So-
laris [8] and OSX [9], Linux Trace Toolkit Next Generation
(LTTNG) [10] and SystemTap [11] on Linux. These tools
all share a common goal to observe and store traces of
system behaviour and resource use, such as CPU load, network
traffic and filesystem activity. They are typically intended
to provide a trace facility for the low-level resources and
related behaviour of the system kernel, using solutions such
as their own programming/scripting language to define where
to exactly insert trace code into the operating system kernel
[8][11]. For example, in our implementation of PF we make
use of SystemTap, which allows one to add trace code into
the Linux kernel without the need to recompile or reboot the
running system [12].

These low-level frameworks provide an excellent basis for
capturing low-level information from a system when ad-hoc
instrumentation needs arise. However, while these tools are

1 http://noen.sf.net
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useful for many purposes, they alone are not sufficient for ef-
ficient observation of complex system behaviour. More useful
information can be gained by using advanced analysis methods
such as multivariate analysis to infer additional information
such as relations and similar properties from the low-level
data [13]. However, what is also needed is information on a
higher level, including the events, messages and interactions
of different parts of the system. Also, information about the
environments of these parts and their relation to the lower level
details are needed.

This type of information is a part of the higher level design
of a system, and it is implemented as higher-level abstractions
inside the components. Thus, it is not possible to build generic
components that would capture this information from all the
components from the OS kernel or any custom application.
When solutions such as component based middleware are
used, it is possible to build part of this support into the
middleware itself to capture the data [1]. However, for an
effective and descriptive trace, application specific tracing is
also needed. For this level of tracing several frameworks exist,
such as Log4J [14] and syslog [15]. Additionally, when the
availability of such features and information is highly valued,
customized support for these have been built into the system
as first-class features [1].

The above descriptions show how effective analysis of
software intensive systems requires many different types of
traces to be supported, collected and analysed together. Dif-
ferent tools need to be used effectively in different steps and
finally combined as one for both built-in features and external
analysis. Only in this way is it possible to provide the required
support to get a definite view of the behaviour of a complex
system.

From this viewpoint of complete system analysis and its
support through the life cycle, the described trace tools and
frameworks suffer from a set of issues. The tools use their
own interfaces, custom data formats and storage mechanisms.
Additionally, often the storage is only considered in the form
of a local filesystem with the intention of being manually
exported to external analysis tools or read as such by humans.
Simply accessing this information from an embedded system
can be very difficult as these systems are often limited in their
external interfaces. Even where this is possible, in the case of
a deployed system, it is not always cost-effective for someone
to go to the field site to examine the trace file. Additionally, the
trend for relying on ad-hoc temporary tracing solutions makes
it very difficult to capture a meaningful trace of a system
as there is no built-in support to be used when needed. The
lack of design support for proper tracing from the beginning
further brings problems such as probe effects, where addition
of temporary trace mechanisms changes the timings of the
actual running system that is to be analysed [16].

To address these issues, to build a basis for effective system
level tracing, analysis and related program functions, we have
developed a trace platform called Probe Framework (PF). Our
prototype implementation is created on Linux and enables the
collection of trace information both from kernel and user space

probes, through a single unified component in the system. By
starting with the goal of building these features into the system
as first-class features we make it possible to address properties
such as probe effects, information access, limited resources
and real-time requirements. With a commonly shared and
customizable format for the collected trace, it is possible to
store and export this information to different analysis tools.
With unified interfaces inside the platform it is also possible
to easily design built-in features that make use of information
from all the various tools. As the main intent is to build a
higher-level abstraction mechanism, we use existing tools such
as SystemTap and integrate it to the PF. The PF and its main
concepts are described in more detail in the following sections.

III. GENERAL CONCEPT

On a higher level, the PF is a part of a larger concept
which includes three main components. The PF provides the
needed support as a platform to capture the trace information
from the system under test. An information database server is
used to collect the trace information and provide the means
to query, filter and export the trace to analysis tools. Various
trace analysis tools can be used to analyse the information
provided. This includes tools specifically for trace analysis and
also tools more generally intended for analysis of data, such
as multivariate analysis. For example, experiences on using a
multivariate analysis tool to analyse the network functionality
and behaviour of a system have been studied in [13]. In
addition to making use of the captured information in external
analysis tools, it is also possible to make use of it as part
of built-in product features for processes such as adaptation,
testing and analysis. This overall architecture is described in
figure 1.

Fig. 1. High level PF collaboration

The Probe Framework itself has a layered architecture as
presented by Buschmann et al. [17]. The PF’s architecture
is divided in three main layers; Basic services, monitoring
services and test services. The term probe, in the context of this
paper, means the entity that is formed by utilizing the different
service layers to create the functionality for collecting and
handling the monitoring of some aspect of the target system.
Each layer builds on the functionality of the layers below it,
as described in figure 2.
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Fig. 2. Layered architecture

The basic services contain services deemed necessary for
information handling, such as data buffering, storage and
relaying to external database. The basic services are general for
all the probes, and offer the support for fast implementation of
the upper level services. The basic services comprises of three
parts; first part is the probe interfaces, second is the binary
formatter and the third is the communication handler. These
are illustrated in figure 3.

Fig. 3. Structure of basic services

Together these parts take care of all the data management of
the tracing as described in figure 1.

The monitoring services offers a set of readily provided
interfaces and probes to attach to the basic services. The
actual services at this layer are used to capture and monitor
different values, such as memory consumption and CPU
usage, and their evolution in the system. Many of these basic
monitoring services are provided as ready probe components
in the implementation of the PF, including CPU load, memory
consumption and network traffic monitoring. Further, they
provide simple interfaces for building new monitoring services
on top of them without the need to concern with the complex
internal details of the data management.

The top layer, test services, is the most implementation
dependent and is where the system specific functionality can

be build. It relys on using the basic services and monitoring
services. For example, functionality can be built to inject test
data into the system, use a provided set of monitors to see how
the system behaves and store the test results using the basic
services. Similarly, in a running system the same monitors
could be used from a test service (or more accurately, built-
in functionality) that adapts the system’s runtime behaviour
and use of components based on thresholds set for monitored
values such as memory consumption, CPU load and network
traffic patterns.

IV. IMPLEMENTATION

The main implementation platform here is the embedded
real-time Linux systems. This platform was chosen as it
provides an interesting and realistic platform for the imple-
mentation of this type of software, with both possible issues
and available options. These issues include the strict timing
requirements and limited resources inherent to the embedded
real-time systems. Yet, even as we are dealing with embedded
software where we know all the running software beforehand it
needs to be possible to access the whole platform including the
kernel. With Linux as the operating system, this is particularly
easy as the whole operating system (OS) is open source
software (OSS). Additionally, the PF’s basic services of data
storage and transfer have also been implemented in Java.
However, this implementation and platform are more limited
and are thus only discussed where it provides insight into the
differences between the implementations on different types of
systems.

Although conceptually one, the actual implementation of
the probe interfaces in basic service layer is divided in two.
The major reason for this is the way execution in operating
systems typically takes place, in either user space or kernel
space. This separation also acts as a divisor for the probe types,
resulting in a split between kernel probes and user probes.
Additionally, in Linux as well as most modern OS’s each
user space process runs in its own virtual memory space, and
thus cannot normally access the memory of other processes
nor can other processes access its memory [18]. However, for
effective implementation of the PF, all the trace data for a
single system needs to be centrally managed. This requires
that there needs to be a single component that takes care of
the data management for all the probes deployed, either in
kernel or user space. This division of implementations, probes
and interfaces is described in figure 4.

There are basically two fast enough ways to address the
data relay requirements, one is that the processes can request
the kernel to map a part of another process’s memory space
to its own, and the other is that a process can request a
shared memory region with another process. These shared
memory regions are also useable between kernel space and
user space processes. The choice made when developing the
probe framework was in favour of the shared memory as
it works both in kernel space and user space. The shared
memory is used in both between kernel space and user space
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Fig. 4. Division of probe interfaces

and between processes in user space, such that a single data
management component takes care of the basic services.

The storage and relay module resides in the user space,
conforming to a general guideline for operating systems [18];
perform actions in the user space if possible, as kernel space
should be reserved for parts that absolutely must be there as
they require special privileges. Kernel code can also crash the
whole system with its privileges and thus these parts need
to be absolutely secure and reliable. Since we do not need to
perform actions with special privileges it makes sense to locate
most of the code in the user space. This is also one of the main
reasons for why the shared memory regions are used between
kernel space and user space, and also inside user space. This
was all in order to separate the trace handling functionality
from the probes and to centralize the trace collected by the
probes. This enables the storage and relay module to access the
trace, format it and provide it for higher layer functionality or
simply relay it to the end storage as requested. All this reduces
the interference induced to the target by the monitoring activity
conducted by the probe as all the ”extra” processing can be
done separate to the probe in its own process. Another benefit
for having the storage and relay module, i.e. the basic services,
in its own process in user space is that it enables easier
configuration of the provided services.

The binary formatter part of the said module is the simplest
part of the component; it is as the name suggests a formatter
used in changing the collected data to a more manageable
form. The reason for the use of binary format is to provide
an effective, single format to share the data between different
tools, layers and databases. The intent is to support probes
created in different programming languages, running on differ-
ent platforms and with strict constraints on memory and real-
time requirements typical to embedded systems. Implementing
this effectively is not trivial; however, the user is completely
shielded from the details by the provided abstraction inter-

faces. The communication handler is the second part of the
storage and relay module. This part handles the data transfer
to end storage locations, takes care of the configuration of
the storage and relay module and manages the data extraction
from the probe buffers.

In practice the basic services are implemented as a shared
library component, meaning that the implementation code
needs only a single instance (code segment) to reside in the
memory during runtime. This makes synchronizing all the
trace data for a system overall much simpler due to only having
a single instance of basic services for a system at any time.
The library is implemented as a dynamically linked library,
which is linked to the components during execution, meaning
it is shared also between different processes in the user space.
For the kernel space there is a similar component.

Configuration
In order to cope with a variety of different devices, the con-

figuration possibilities of the probe framework are substantial.
Each probe can be configured separately, as can be the storage
and relay module. Various possibilities for accumulating for
the different capabilities of the target system are offered by
the probe framework. The output possibilities and replacement
strategies, etc. used by the storage and relay module are all
configurable to suit the system’s capabilities.

The major control features of the probe framework reside
inside a configuration file that is read during the activation of
the storage and relay module. This allows configuring the basic
parameters such as overall buffers, general policies and storage
mechanisms externally. Another layer of control is embedded
in the creation of the probes, during the implementation of
a probe the creator can use custom settings to define probe
specific values or leave them out in which case the default
generic values will be used. The probe specific attributes
include buffer size, preferred storage location, priority, timing
accuracy and presumed output type. Additionally, the creation
of output types used by the probe introduces control as it
is possible to use prioritized data types for increasing the
probability that the collected trace reaches its storage location.
In order to address restrictions such as keeping the monitoring
overhead low, several policy parameters can be defined. One is
the possibility of discarding parts of the collected trace if the
basic services cannot run fast enough to relay it to a storage
destination. This is further influenced by the priority set to the
trace through the configuration. More advanced policies can
be implemented inside custom probes, such as sampling or
time-interval captures.

Instrumentation
As described earlier, instrumentation is divided into two

main types of probes: kernel and user space probes. A distinc-
tion can also be made between internal and external instrumen-
tation. Internal refers to embedding the instrumentation code
to the software object that is part of the monitored system.
In this case the probe is an integral part of the program
code. External instrumentation refers to the probes where no
modifications are made to the system software itself. Instead

V/4



a stand-alone process handles the monitoring from outside of
the target software. The PF provides support for all these
different types of instrumentation. Custom kernel and user
space probes and built-in functionality can be created using
the services provided at the different layers of the PF. A set
of external instrumentation components are provided as kernel
probes and processes to collect and analyse generic properties
such as task-switches, CPU load and network traffic. More
such custom components can also be easily created. All these
instrumentation possibilities share the set of basic services
that remain unchanged between different implementation pos-
sibilities. Therefore, it is simple to analyse the collected trace
data, build additional functionality or make other use of the
instrumentation data from all different probes and monitoring
tools through the provided interfaces.

V. EXPERIMENTS & EXPERIENCES

To perform evaluation of the PF concept, its implementation
and application we carried out two case studies. Both of these
are in the domain of monitoring embedded software-intensive
systems. This means we focused on using the monitoring
services layer of the PF, and indirectly the basic services
through the monitoring layer. In a sense our implementation
is also part of the test services layer, as we built custom
functionality to use the lower layers. We start with describing
each experiment and the overhead cost their implementation
had on the system we were analysing. We then describe our
experiences in using PF as a platform for implementing overall
instrumentation for system monitoring.

The two case studies we have performed are monitoring
kernel task switching and the memory usage of different
processes. The memory use monitoring case was conducted on
an embedded system that was provided by Espotel2. This plat-
form, called Jive3, is a battery-powered, touch screen equipped
PDA type of a device with broad connection interfaces. For
the task switching instrumentation a typical desktop PC was
used.

Task swith case study
The task switching case study focused on the scheduling of

processes (tasks). In a typical modern OS there are numerous
processes running at the same time [18], and the scheduler
handles the execution of tasks by dividing the CPU resources
to slots and distributing these slots to the tasks. Our goal was
to build a monitoring probe to capture the information on how
the task switching is performed with the given usage scenarios.
The visibility of the scheduling activity in this scenario is
strictly for the kernel space only, and as such, the monitoring
had to be implemented as a kernel probe. For this case study,
we collected three types of events:

• Task activate
• Schedule
• Task deactivate

2 http://www.espotel.fi
3 http://www.espotel.fi/ratkaisut jive.htm

The schedule event means that the running task is switched
to another, the meanings of activate and deactivate are a bit
more complex. The activate and deactivate denote that the task
is moved to or away from the run queue. For simplicity it
can be tought that these two events tell when the task can
be run i.e. scheduled. The instrumentation used in this case
is an in-line probe in the kernel’s scheduler, implemented via
SystemTap. The code that uses the PF’s probe interfaces is
added to the SystemTap probe script as embedded C. Similarly,
other existing monitoring applications could be integrated to
the PF by using the provided probe interfaces, see figure 1.

As the instrumentation is done using external instrumen-
tation it also serves to provide a generic reusable kernel
monitoring probe for future use when task switching needs
to be analysed. This is illustrated in figure 5.

Fig. 5. Task switch instrumentation.

In this case, as task scheduling happens numerous times
each second, the used instrumentation is extremely intrusive.
There are bound to be consequences due to the instrumentation
code. As we want an accurate picture of the task scheduling,
all the events need to be collected and no sampling can be
used. Therefore, the overhead is so high that the probe is
only useable temporarily for purposes such as diagnostics or
to provide basis for performance analysis. In this case we do
not have any hard real-time requirements so the temporary
inclusion of the probe and the temporal effect it poses on
the execution is acceptable. Due to the use of SystemTap this
probe can also be enabled (included) temporarily in a running
system and disabled (removed) when the required diagnostics
data is collected. Thus, it shows how it is possible to create
PF probes that can still be included in the system probe set
also in deployed systems while they are only used in ad-hoc
style during system execution. Concerning the analysis results,
it needs to be taken into consideration that the probe code
will consume part of the CPU time, causing skew in the time
interval trace, and that the storage and relay module that runs
in the user space as a normal task will appear on the obtained
task switch trace.

In our case study, we used the obtained trace for different
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purposes, including the characterization of the process load
running on the system as described in [19], for analysing task
blocking and scheduler performance. The overhead of the PF
was measured by capturing system timestamps as jiffies, the
jiffies describe system time/clock ticks as 4ms intervals. The
stamps were collected at the beginning of the instrumentation
and at its end. To obtain a reference point, the duration of
the instrumentation was measured, and then the same captures
were done in a system without the instrumentation, using the
measured duration as a time interval between the captures.
To give a better picture of the effect the instrumentation had,
the overhead is given as the reduction caused to the true idle
time of the target system. The overhead is calculated with the
following formula:[

DI
J − (CJE − CJB)

]
−

[
DI
J − (CJEI − CJBI)

]
DI
J − (CJE − CJB)

∗100%

DI = Duration of the instrumentation,
J = Duration of a jiffy,
CJEI = Captured jiffies at the end of instrumentation,
CJBI = Captured jiffies at the beginning of instrumentation,
CJE = Captured jiffies at the end of idle,
CJB = Captured jiffies at the beginning of idle.

The calculated overhead for this case was 16%. Overall, this
could be considered a high cost for instrumentation. However,
for an analysis case where the monitoring instrumentation
is very intrusive i.e. in one of the most frequently executed
function of the kernel, we do not consider this to be a bad
result at all. This probe is only intended to be used as a
temporary analysis aid and not as a fully included production
class feature.

Memory case study
In the memory usage case study the focus was on user space

instrumentation. The instrumentation target was the procfs,
process information pseudo filesystem, which is an interface
to the kernel data structures and provides information about
the processes on the system. This case study is illustrated in
figure 6.

Fig. 6. Memory usage instrumentation.

The targets of interest here are two memory usage illustrating
attributes:

• Total amount of used physical memory
• Total amount of used (memory) swap space
In this case we have more options to control how we wish

to implement the instrumentation. The probe was implemented
as an external probe that functions as a normal task in the
system. The probe was set to sample the procfs for memory
information every three seconds. This is adequate as our goal
was to observe how memory consumption develops over time.
Our intent was to use this information for observing memory
leaks and growth of consumption over time, similar to audit
tests inside a running system as described in [1]. This type
of memory problems are considered to be among the most
common and difficult to debug due to the long time they take
to develop [20]. Thus this type of information is useful to have
available to describe the development of the symptoms and to
analyse their cause over time.

For this case, the overhead caused by the used instrumenta-
tion was measured using the same method as in the previous
case. The induced overhead was 2%, which is not overly
much and could still be further improved with more efficient
integration with kernel functionality.

Generic notes
After our trials with the two case studies, we can say that

the framework provides a reliable and efficient instrumentation
interface with high potential for reuse. We implemented two
highly reusable and generic probes. Due to their very generic
nature, they can be reused as is or with minor modifications
in other contexts. As a generic framework is also bound to
be used more frequently and by more people and projects,
the code will also become more reliable and optimized over
time than separate custom solutions. That is, the more the
PF is used the better it becomes. This makes it more likely
that found problems are in the system itself and not in the
instrumentation code.

As noted earlier, the basic services of the PF have also
been implemented on the Java platform. As the PF’s imple-
mentations both share the same file formats and protocols, we
have also been able to successfully use them together. In this
sense, through the shared information database storage and
export facilities it is possible to get a view of systems with
varying component implementations. It is our experience also
from these implementations that the simplicity of the provided
interfaces is a key to their easy adoption. They must be simple
and easy to use and not get in the way of the developer.
By hiding all the complexity of trace storage, processing and
access behind simple interfaces the PF becomes also more
convenient to use. And, that is what the PF aims for, to be
a general reuseable approach for instrumentation that lets the
developers better focus their efforts on implementing the actual
product rather than spend overly much time on creating ad-hoc
instrumentation solutions.

Regarding the usability of the Probe Framework, it is not
limited to the context of embedded real-time systems. Those
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attributes are merely something that create a challenge for the
PF i.e. limit the available resource etc., and in no way limit the
environment that the PF concept is suitable to. Similarly, the
prototype implemetation being Linux specific doesn’t indicate
that the PF concept couldn’t be used in a different OS. The
PF’s mentioned Java platform implementation for instance is
not limited to the Linux environment.

VI. CONCLUSION

The probe framework described in this paper provides the
means to build and later on reuse system instrumentation
approaches effectively and reliably. It provides support for
the basic requirements of storing and accessing data, as for
more advanced needs processing, monitoring and building new
functionality to use the traced information is supported by
the PF’s higher layers. Two cases studies where the PF was
used were carried out to validate the different uses of the
framework. These cases used the provided building blocks
and interfaces to build generic, reusable probes for important
system information.

The nature of embedded systems is that there is little
consistency between different devices, having led to creation
of customized solutions for information access. Here, we have
shown that for a system where the PF is available it provides
a basis for a uniform instrumentation solution. Generic probes
can be reused across systems and new ones implemented by
using the provided building blocks and interfaces. The reuse
of the framework and probes thus leads to reduction of the
implementation effort and also to increased reliability as the
found problems are more likely to be in the system itself and
not in the instrumentation code.

For easing the lifespan testing/diagnostics/management of
the target system the probe framework can be very useful.
Given that the probe framework is intended to remain in the
target system after deployment, it can provide its services dur-
ing the targets lifespan. Therefore, it can hasten the detection
of the possible problems and offer the testing services and
monitoring services during the targets lifespan. In practice,
the probe framework requires the shared library, storage and
relay module and the various probes to remain in the target, to
provide its services after the target has been deployed. Overall,
the space requirement of the probe framework is minimal, but
naturally its presence will affect the rest of the system and
needs to be considered.

For further details on the probe framework tool and instru-
mentation methods [21] offers an in depth view.
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SUMMARY

Model-based testing represents a powerful means for automated generation of test cases. However, creating
a useful model requires expertise in the (formal) modeling languages of the tools used, and experience with
the general concepts of modeling for model-based testing, in order to achieve effective test generation. These
requirements make the adoption of model-based testing difficult and costly. An efficient approach to ease
these requirements is by generating an initial model based on observations made from software execution
and using this as an advanced starting point for model-based software testing and verification.

This article presents such an approach. Its contributions are a novel technique to generate an initial
model out of observations, suitable for model-based testing, and a method supporting and guiding its
application to software testing, and verification. Both the model generation and the presented method for
its use are evaluated through application to a concrete sub-system in the safety/surveillance domain. The
study shows, that a suitable initial model can be generated automatically, and further refined by the user
following the method, for system verification and testing. The study demonstrates how residual defects and
specification inconsistencies can be detected. Copyright c© 2007 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Testing is the most commonly used approach in industry for verification and validation of software, and
it can be regarded as the ultimate review of a system’s specification, design, and implementation [12].
Model-Based Testing (MBT) refers to automated test case generation techniques based on formalized
descriptions of the system under test (SUT), in contrast to hand-crafting test cases from other available
(non-formal) documents, or the source code [33]. Since testing can, often, consume up to half of the
overall development cost for a software project, while it adds nothing in terms of functionality to the
software, there is a strong incentive towards test automation with MBT. However, creating a useful
model for MBT requires expertise and experience with the general concepts of modeling and the used
MBT tool notations, in order to achieve effective test generation.

An effective approach for supporting the difficult and costly behavioral model design and
construction process is to generate a (partial) model out of captured observations automatically
(e.g. [13, 2]). This approach is termed here as observation-based modeling (OBM). Obviously, this
method can only be “boot-strapped” from existing runtime scenarios and their executions (such as
field data and unit tests [7]). From the test automation perspective special consideration is needed
when using models automatically generated from captured observations. Such models describe the
observed actual behaviour of the SUT instead of its expected behaviour according to a specification.
As such, human involvement is needed when using these generated models as no computer program
can automatically know what is the correct expected behaviour of any given other program.

Although many techniques have been proposed for mining behavioral models for software systems,
the produced models are not suitable for use with MBT tools, and the techniques do not provide
guidance for using them in the context of MBT. Instead in MBT, the approach has been to create
test models manually, based on system specifications. The contribution of this article are

• a novel technique for automatic generation of an initial behavioural model, suitable for MBT,
based on observations captured from SUT behaviour (execution traces),

• a method to support the use of these models for testing and verification of the SUT with the help
of a MBT tool,

• an implementation of the approach for Java based components, and
• an evaluation of the approach with a case study, including lessons learned.

The generated model provides support for the modeling process, letting the user start from an
advanced initial model suitable for MBT. The presented method provides support for the MBT
user to turn the initial model into a complete description of the SUT, while continuously verifying
the correctness of the implementation against its specifications with the help of the MBT tool.
The approaches presented are evaluated through their case study application in a real vessel traffic
surveillance system for which initial system behavioral models are devised automatically, refined and
verified manually, while continuously using a MBT tool to execute the model and generate tests.

The article is structured as follows. Sect. 2 briefly outlines related work on the techniques relevant
to this article, and summarizes our contributions. Sect. 3 describes the tools and algorithms used for
model generation. Sect. 4 describes the method for using the generated models as starting point for
model refinement, verification and testing. Sect. 5 summarizes a concrete application of OBM for
testing part of a maritime surveillance system, and discusses experiences with the techniques. Finally,
Sect. 6 summarizes and concludes the paper with directions for future research.
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2. BACKGROUND AND RELATED WORK

This section describes the concepts relevant to the topics discussed in this paper, presents existing work
on which we build, and relates the approach presented to existing literature. The contributions of this
article vs. the related work are summarized in Table I.

2.1. Background

The term Model-Based Testing has many definitions. We follow Utting and Legeard [33] who describe
MBT as “Generation of test cases with oracles from a behavioural model”. The model describes the
expected behaviour of the SUT, and is used by a MBT tool in order to generate test cases, in the form
of method invocations sequences plus input data. Validation of the correctness of the responses from
the SUT is realized by test oracles that check the expected output data and interaction sequences. Test
oracles are also typically built into the model.

In the traditional approach to MBT, (non-formal) specifications of the SUT are manually transformed
into suitable (formal) descriptions for machine processing. A MBT tool is then used to generate test
cases from the formal descriptions which are executed on the SUT in order to validate its observed
behaviour against its specified behaviour.

Two types of models are relevant to our work. First, finite state machines (FSM), and Extended FSM
(EFSM), are commonly used for behavioural modeling and model-based testing [33]. Both describe
the system in terms of control states and transitions between these states. States are externally visible
abstract representations of a system’s internal variable combinations. They are modified by the effects
of transitions, and initiated through stimuli sent to the SUT. EFSM models add conditions to the FSM
representation in order to define explicit conditions for triggering the transitions.

Second, dynamic invariants (models) are commonly used in dynamic analysis of software behaviour.
In general, dynamic invariants can be described as properties that hold at certain points during
execution of an SUT [11]. Therefore it is important to note that they do not generalize to describe all
possible behaviour of the SUT. Example invariants are x > 1, stating that in all observed executions
the value of x was always greater than 1, or x always in y[], representing the fact that the observed
value of x at any time during the observed executions is included in the values stored in the array y.
Support for inferring these invariants from a set of program executions has been implemented in a tool
called Daikon†.

OBM as presented in this article is based on dynamic analysis as underlying model extraction
technique, and it shares the basic properties of reverse engineering and program comprehension [25,
26], also domains relying on dynamic analysis. The specific goal of OBM is to use the reverse-
engineered models for testing and verification, and analysing and understanding them is important
for their effective use. Supporting this process from the program comprehension viewpoint has been
described in detail in [17].

A commonly used technique in dynamic analysis is the tracing of method and function calls and
using the data obtained for program comprehension and modeling [14]. Most modern programming

†http://groups.csail.mit.edu/pag/daikon/
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Table I. Summary of our contribution vs. related work.

Topic Existing work Added contribution

Test
process

Test generation from a state-based model with
a tool (MBT, [33]).
Conceptional layout of a OBM approach
without implementation and evaluation [4].
Application of generated model in regression
testing [9, 28, 8].

Integration and realization of techniques and
tools for automated generation of a complete
EFSM for verification and testing.
Provide a practical implementation, algo-
rithms, integration of tool support, evaluation,
plus method with guidelines, best practices and
lessons learned.

Model gen-
eration for
testing

Application of generated input and captured
invariants as a model for proposing new
tests [22].
Approach to automatically turn these invari-
ants into unit test checks for data values
(Agitator[5], Eclat[27], Xie and Notkin [35])
Generation of an EFSM to be used for selecting
tests from an existing test suite (no model code
suitable for MBT) [21]).

Generation of an EFSM to be used for gen-
erating new tests (with MBT tool), and its
use for verification of implementation against
specification.
Provide means to visually check the EFSM
against the (non-formal) specification, plus
generation and checking of interaction se-
quences, and data values.

Test oracle
generation

Implementations to check that trace properties
[28] or invariants [8] hold as regression tests.
Checking of exceptions [8] or user Interface
error codes [24].
Support for user provided test oracles [24].

Abstract complete interaction and return value
oracles for the EFSM from the traces.
Provide test oracles for all generated tests.
Generation of application specific oracles
automatically.

Mock obj.
generation

Generation of mock objects for specific
focused unit tests [29, 31].

Generate of mock objects for a MBT model,
usable for generating a number of tests.

Input data Usage of serialized objects[27], captured
invariant values[5], random and other data
factories [5] as inputs.

Application of invariants and random data
factories in MBT model generation.

languages have methods as basic building blocks, so these techniques can be applied extensively. In
addition, external tracing mechanisms, such as aspects [18], can be applied without having to modify
the source code. Various tools provide models and visualizations from the trace data, e.g., as sequence
and scenario diagrams, graphs and custom visualizations [14].

2.2. Related Work

The usefulness of possibly deriving models for MBT, based on observations captured from execution
scenarios, has been discussed before by Bertolino et al. [4]. However, they did not take their approach
beyond conceptional discussion. In this article, we present a practical implementation of these concepts

Copyright c© 2007 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. 2007; 00:1–7
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including model generation, guidelines for the use of these models for SW testing and verification, and
a practical evaluation with an experimental study and lessons learned.

Apart from the overall approach, there are a number of techniques related to the work presented here.
Both Ducasse et al. [9] and De Roover et al. [28] use logic-based queries on SUT execution traces to
test legacy systems. To validate the assumptions about the SUT, they use logic queries on the traces
and define a set of trace-based logic testing patterns. Both approaches use queries as tests for possible
software regressions after updates, and for supporting the understanding of a program, by creating and
validating assumptions about it. We provide a model based on similar traces, and apply it to MBT.

Whereas our focus is on dynamic analysis, related tools and techniques also exist in the field of
static analysis. For example, Walkinshaw et al. [34] use symbolic execution to derive state-machines
from source code, including the paths that lead to these transitions. They describe how they support
inspections and program comprehension. Our focus on MBT but the generated models can also be used
for these activities.

D’Amorim et al. [8] apply symbolic execution and random sequence generation for deriving
method invocation sequences in order to generate unit tests. Their test oracle checks for yet uncaught
exceptions, plus monitors the results of executions for violations of an operation profile described by
Daikon invariants over all processed variables and values. We also generate test oracles as part of the
model, including verification for interaction sequences and checking of captured invariants for return
values, in a format suitable for MBT.

Tillmann and Schulte [31], and Saff et al. [29] provide means to automatically generate mock objects
for the SUT. Tillmann and Schulte use static analysis (symbolic execution) and Saff et al. use dynamic
analysis to capture the behaviour expectations and return values for the mock objects. Both focus on
one test at a time, to allow the generation of mock objects for exactly the purposes of this test. The
test for which mock objects are defined is determined by factoring a larger test to smaller tests [29], or
based on static analysis of code with symbolic execution [31]. We generate mock objects in a similar
fashion but usable for all tests generated with the MBT tool.

Lorenzoli et al. [21] present an algorithm called “GK-tail” used to generate an EFSM from execution
traces from FSM and Daikon-invariants, which is similar to our approach. The EFSM is used for
test case selection and for building an optimal test suite from existing test cases in order to optimize
coverage of the model. In other work, they also compare the interactions of a component deployed in a
new context in order to observe changed behaviour [22]. Our approach uses similar building blocks for
generation of the EFSM, and it shares the application domain of test automation. However, the model
representation and the application are different from [21]. They do not generate tests from the model,
and they do not use the model as an executable specification for verification.

Lo et al. [19] mine temporal rules (invariants) from captured observations. These take the form of
premise and consequence, where the premise is noted to be followed by a consequence over time. This
has similarities with our use of interaction sequences as a basis for an initial FSM used as input for
our EFSM generation algorithms. However, Lo et al. [19] focus on this subset only, while we further
generate a complete EFSM suitable for MBT.

Finally, Mesbah and van Deursen [24] build an FSM for web-application user interfaces with the
help of an automated crawler tool that is used to exercise the user interface and capture interaction
sequences that cause changes in the interface’s document object model (DOM) tree representation.
A change in the DOM tree constitutes a new state, and this information is used to model the FSM.
Transitions are the clicks (input) to the SUT that caused these changes in the DOM tree. They use a

Copyright c© 2007 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. 2007; 00:1–7
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set of their own invariants specifically built for web-applications to describe the expected changes in
the DOM tree in response to input as test oracles. We use an FSM and invariants as a basis for our
model generation, as well. However, our generated models are different. We target specifically MBT
and generate the an executable EFSM usable for SW testing and verification with the help of a MBT
tool. We also generate more specific oracles from the traces, whereas their focus is more on generic
and user defined oracles.

3. MODEL GENERATION

This section describes our approach of generating the initial model to be used for MBT. We use a
number of tools to support our approach: ModelJUnit‡, a MBT tool using Java as a modeling notation,
JUnit§, a unit testing framework for Java, Daikon, ProM¶, a process mining tool, and EasyMock‖, a
mock object framework.

The different elements of the ESFM (states, transitions, guards, and test oracles) are generated
and combined into the initial model in ModelJUnit notation. The completeness of the generated
ModelJUnit-code varies for the different elements, and this is discussed in more detail in the following
subsections. The implementation of the model generation technique described in this section is
available as an open source project∗∗.

3.1. ModelJUnit Notation

In order to provide required background information for the model generation technique, this
subsection presents the notation of the ModelJUnit tool for which the code is generated. The listing
in Fig. 1 shows a model for a simple vending machine in ModelJUnit notation, adapted from [1]. The
vending machine accepts 25 and 50 cent coins, and issues a product, through “vend,” if 100 cents have
been provided. After vending, the machine goes back to the initial state. The right-hand side of Fig. 1
shows the graphical representation of the code as provided by ModelJUnit.

ModelJUnit uses a specialized Java notation for describing the models. The getState() method is
used by ModelJUnit to query the current state of the model. This information is used as feedback for
the test generation algorithms. The reset() method is invoked when ModelJUnit starts the generation
of a new test case. Typically, several test cases are generated from a model, with a given goal, such as
satisfying a chosen coverage criterion. The reset() method must set the model into its initial state
for the next test case (transition sequence) to be generated.

A second part of the model is described using Java annotations and naming conventions. This part
defines the actual states, transitions and constraints, or transition guards, for invoking transitions. For
example, Figure 1 shows five states for the vending machine, according to the values returned by

‡http://czt.sourceforge.net/modeljunit
§http://www.junit.org
¶http://www.processmining.org
‖http://www.easymock.org
∗∗http://noen.sourceforge.net
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public class VendingMachineModel implements FsmModel {
private int money = 0;

public Object getState() { return money; }
public void reset(boolean b) { money = 0; }

@Action public void vend() {money = 0;}
public boolean vendGuard() {return money == 100;}

@Action public void coin25() {money += 25;}
public boolean coin25Guard() {return money <= 75;}

@Action public void coin50() {money += 50;}
public boolean coin50Guard() {return money <= 50;}

}

0

50

coin50 25

coin25

75

coin25

100

coin50

coin25

vend

coin25

coin50

Figure 1. Example EFSM adapted from [1].

the getState() method, and updated by the transition methods, i.e., coin25(), and coin50().
Transitions are identified through the @Action annotation.

The transition guards determine when transitions can fire, defined in the methods vendGuard(),
coin25Guard(), and coin50Guard() (Fig. 1). ModelJUnit identifies and associates these constraint
functions with their corresponding transitions by matching each @Action-tagged transition method to
a guard method with the same name but with Guard appended to the name. When this method returns
true, the transition is permitted, and the related @Action-tagged method can be called. Otherwise, the
transition is not permitted, and the related @Action-tagged method is not called.

In addition to the basic EFSM elements shown in Fig. 1, also two test-automation-specific elements
are needed for the model. For generating tests, the transition methods must either record a test script
(for offline testing), or directly provide input to the SUT (for online testing), such as performing a
method call sut.insert25() in the coin25() transition method, which would execute the test case.
We call this the test harness, as it binds the MBT tool to the SUT.

Test oracles are needed to validate the (expected) state in the model against the (actual) state of the
implementation. For the coin25() transition method this can be provided as a simple assertion, i.e.,
assert(money == sut.getInsertedCoins()), inserted after the money += 25 statement.

3.2. Case example used in this paper

For the rest of the paper, we use a running example based on a Merger-component of a maritime
surveillance system. Here, we present the basic concepts of Merger, and in the following sections we
use this to illustrate the different concepts related to our observation-based modeling approach.
Merger receives information broadcasts from ships called AIS messages [32] and processes them

in order to form a situational picture of the coastal waters. The (simplified) architecture of this system
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ClientRcv

World
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LS2

LS20

Filter

Monitor

Plotter

WarningMergerRcvAISin
MergerAISin

AISin

Figure 2. Architecture of the surveillance system used as example.

is displayed in Figure 2. The system comes with a specification in plain English defining behaviour
and communication protocols of its components. The components are implemented in Java specifically
crafted to be executed under Fractal [6], a component middleware platform.

The Merger acts as a temporary database of AIS messages, and client components can consult it for
tracking information of a ship. It can also be configured by clients to be notified of certain ship events,
and it is key to displaying ship tracks on the screen of the command and control centre.

3.3. Capturing a set of observations

The first step in OBM is to capture a suitable set of observations to be used as a basis for the initial
model generation. In order to obtain observations, the SUT behaviour is monitored while exercising it
using a set of existing execution scenarios, such as existing test cases, recorded user sessions, or field
data [7, 10]. MBT is generally considered to be a black-box approach, based on the SUT’s external
interfaces and related specifications [33]. Similarly, our approach to generating model code is a black-
box approach, and only observations from the external interfaces of the component are captured.

Because the model generated is only as complete as the execution scenarios used to produce the
observations, it is important to verify that the scenarios include all the required behaviour of the
SUT. Missing behaviour can be augmented with additional execution scenarios. We have used the
visualizations provided by ProM and the invariant descriptions provided by Daikon as a basis for this
analysis. These are discussed in more detail in [17].

To provide more powerful generation of the initial model for MBT, it is important to be able to
classify the used execution scenarios and thus the captured observations by type. This is due to test
oracles, which need to have meaningful classification of results as will be discussed in later sections.
For example, typical test suites exercise both the nominal ("correct") behaviour of the SUT as well as
its error handling functionality. For test oracles to make a useful assertion of correctness, they must
be able to classify what is accepted and what is not. In order to achieve a useful classification in our
Merger case study, we focused on using scenarios representing nominal behaviour as far as possible.
Automated classification approaches such as [15, 20] could be applied to support this issue. However,
it is out scope of this article. It is not a strict requirement to have such as classification, and even
in the Merger case the scenarios also exercised some of the error handling properties, but a better

Copyright c© 2007 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. 2007; 00:1–7
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classification leads to more powerful generated (test oracle) model requiring less manual refinement as
described in Sect. 4.

The information (observations) required to be captured in the trace includes the messages passed
through the input- and output-interfaces of the SUT and the SUT internal state, when each message is
passed. Messages are captured at the SUT’s external interface. In order to identify different types of
observations (related to SUT state, parameters, or return values) from the captured traces, for advanced
processing and model generation, we add suitable identifiers into the trace. When middleware such as
Fractal is used, this can be used to capture all component interactions, without having to instrument
every component individually [16].

Accessing the internal state information typically requires testability support designed into the SUT,
such as additional test interfaces, following [12], or serialization interfaces. For systems not supporting
such a test interface, we can maintain an “artificial” state within the component that monitors the SUT
external interfaces, by observing the inputs and outputs of the component and classifying them by type.

The Merger case study was conducted by running the complete system shown in Figure 2 with
about 20000 real AIS messages. This produces the FSM in Figure 3. After consulting the (non-formal)
specification, this was deemed as not a complete description of the SUT with respect to its expected
functionality. To address this additional stimuli in the form of unit tests was used to complete the model
with the missing functionality. The final FSM, including all these scenarios is shown in Fig. 4. This
was considered a good and representative SUT behaviour with respect to the specification, and, thus,
good enough a basis for generating the EFSM model.

3.4. Generating the basic model elements

The generation of the initial EFSM comprises four phases. First, the static parts of the model are
generated. These parts are similar for all generated models, and the SUT interface definitions are the
variables used as input in this phase. Second, ProM is used to generate an FSM, and the FSM is
analysed and processed to capture the interactions (states and transitions) for the EFSM. Third, Daikon
is used to provide invariants over the SUT internal state and parameter data values, and the invariants
are analysed to generate the relevant constraints, i.e., transition guards, for the interactions and for
the processed data values (input data). Finally, all these separate parts of the model are combined to
produce the complete EFSM in ModelJUnit notation. While the basic FSM and invariants are provided
by existing tools, their further analysis, processing, integration and transformation into a complete
EFSM suitable for MBT is done based on our own algorithms.

The basic model elements are reset(), and getState() methods, as well as the main method
used to start the execution of the model with the MBT tool. These are illustrated in Listing 1, which
shows examples of the most relevant parts of these generated methods. State variables for the model
(the List objects in Listing 1) are generated for all variables identified to represent SUT internal state
in the observations as described in subsection 3.3.

The generated reset method clears all model state and recreates the SUT objects to avoid side-
effects between generated tests. The main model execution method (modelJUnitTest()) is generated
in JUnit notation (@Test), in order to permit seamless integration with most IDE’s (integrated
development environments), that support reporting and analysis for JUnit tests. This model execution
method is also generated to create the mock objects for the model (mockClientRcv2), and to store
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Figure 3. Merger FSM produced by ProM for the field data.

them in the model for the transition methods to access them. The generated mock objects are named
according to the “mocked” output interface, i.e., ClientRcv2.

3.5. Transforming the FSM into code for MBT

The captured observations are transformed into an FSM with ProM’s transition system miner
component [3]. As described in section 3.3, the execution trace is based on input- and output-method
invocations, made through the SUT’s external interfaces. The FSM describes the SUT in terms of these
method calls, where each message passed through one of the interfaces matches a state in the FSM.
In order to provide powerful test generation based on an MBT tool, the states of the FSM cannot be
used directly to describe the states in the EFSM. Instead, the differences between the input- and output-
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Figure 4. Merger FSM produced by ProM from combined field data and unit tests.
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...
private int testIndex = 1;
private List Messages = new ArrayList();
private List Subscriptions = new ArrayList();
private List Clients = new ArrayList();
private AISMerger aISMerger;
private ClientRcv2 mockClientRcv2;
...
@Test public void modelJUnitTest() throws Exception {

mockClientRcv2 = createMock(ClientRcv2.class);
Tester tester = new RandomTester(this);
...
tester.generate(2000);
...

}
public void reset(boolean b) {
state = "";
System.out.println("- TEST "+testIndex+" -");
testIndex++;
Messages.clear();
Subscriptions.clear();
Clients.clear();
EasyMock.reset(mockClientRcv2);
try {
aISMerger = createAISMerger(mockClientRcv2);

} catch (Exception e) {
throw new RuntimeException(e);

}
}
public Object getState() {

return state;
}
...

Listing 1. Generated reset, getState, and main execution methods for Merger.

messages in the FSM need to be considered. This is a good example for the modeling expertise required
by a user of this method for producing effective models for MBT.

In order to produce a model more suitable for MBT, we consider a state transition to be triggered by
an invocation of an input-method to the SUT. For each input-method in the FSM, a matching @Action-
method is generated in the model code. Listing 2 shows two example @Action transition and transition
guard methods for the Merger component.

The basic elements generated for each @Action transition method are also shown in Listing 2
(for Crequest). The state of the model is always set to a name matching the taken transition
(this.state = "Crequest"). This allows the tool to use its model coverage algorithms to cover
different combinations of the interaction sequences. The name of the state transition taken is printed
out (System.out.println("CREQUEST")) in order to make it easier to follow the paths that the
MBT tool takes while it generates tests from the model, e.g., for debugging.
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@Action public void Crequest() throws Exception {
this.state = "Crequest";
System.out.println("CREQUEST");
replay(mockClientRcv2);
ReturnStatus rv4 = aISMerger.Crequest(Crequest_p0(),Crequest_p1(),Crequest_p2());
assertEquals("ok", rv4);
verify(mockClientRcv2);
EasyMock.reset(mockClientRcv2);

}
public boolean CrequestGuard() {

if(Clients.isEmpty()) return false;
return true;

}
@Action public void Crequest_Creply() throws Exception {
this.state = "Crequest->Creply";
System.out.println("CREQUEST->CREPLY");
expect(mockClientRcv2.Creply((AISMessage)anyObject()))

.andReturn("ok");
replay(mockClientRcv2);
ReturnStatus rv5 = aISMerger.Crequest(Crequest_p0(),Crequest_p1(),Crequest_p2());
assertEquals("ok", rv5);
verify(mockClientRcv2);
EasyMock.reset(mockClientRcv2);

}
public boolean Crequest_CreplyGuard() {

if(Clients.isEmpty()) return false;
if(Messages.isEmpty()) return false;
return true;

}
...
private String Crequest_p0() {

return (String) randomItemFrom(Clients);
}
private int Crequest_p1() {
return (int)1.0;

}
private byte Crequest_p2() {
return (byte)1.0;

}
...

Listing 2. Generated reset sample transition (@Action), guard and parameter value generation methods for Merger.

The next step is the generation of the expected interactions within a transition. They are based on
the FSM and the categorization of each message in the component interface into an input or output
message. This classification is based on the input- and output-interface definitions (Java classes) of the
SUT. The FSM is analyzed according to this information, and each input-state (message) is associated
with outgoing transitions to any output-state (message).

A number of @Action transition methods is generated for each input message, one for the input
message alone, and one for each possible output message to which it has an outgoing transition. For
example, the FSM shown in Figure 4 has a state Crequest, which can either go to Creply or to
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AISin. As only Creply has been classified as an output message, we obtain in Listing 2 two @Action
methods: Crequest() corresponding to the input message itself when the given input produces no
output message (no Creply), and Crequest_Creply(), corresponding to the input message followed
by a Creply output message.

For each @Action transition method, an interaction oracle is also generated. These are use the
interfaces provided by the generated EasyMock objects to verify that the expected transitions do
happen, and only happen as expected. In the ones that include an expected output transition from the
input transition, an expectation is set that this output transition actually happens. For the ones without
expected output transitions, an expectation is set that no output transition occurs in the SUT.

In the Crequest_Creply() method the expectations for the output method interaction are set as
expect(mockClientRcv2.Creply((AISMessage)anyObject())).andReturn("ok");. This
means that we expect the SUT (Merger) object to call the Creply() method of mockClientRcv2
with a parameter of type AISMessage, and when this happens the mock object should return the value
"ok" to the SUT. Once the expectations are set, a call is made to the input method of the SUT that
corresponds to the state transition method being executed. In the case of Crequest_Creply() it is
the Crequest() method. Generation of the return values and the parameter value template methods
will be discussed in more detail in the subsection 3.6.

Finally the results are verified, i.e., the interaction test oracles are invoked, in the form
verify(mockClientRcv2), using the name of the corresponding mock object. This checks, that
all expectations set for the mock object are met, and no additional interactions are performed.

3.6. Transforming the invariants into code for MBT

The second model used in the generation of the EFSM code is the set of invariants provided by Daikon,
describing the properties of the parameters and return values of the input- and output-interface method
invocations for the SUT, plus their relations to the internal state values of the SUT. They are used to
generate possible return values for the mocked output message sequences, parameter values for input
messages, and guard conditions for transitions.

Daikon can output the invariant information in many different formats for testing [11]. However,
none of these formats is directly usable for our purpose. Therefore, we use the basic textual output,
parse and further process it, and finally generate code out of it. We also use our own customized
Daikon trace format, permitting more advanced analysis of the invariants for MBT. Similarly, for
guard conditions, we provide our own generalization of the Daikon invariants for more powerful guard
generation. An example of the basic Daikon invariant output used as input for our algorithms is shown
in Listing 3 for Crequest. This illustrates how the customized trace format discussed in section 3.3 can
identify invariants related to the different model elements (state, return values, parameter values). Here
they are identified by the postfix appended to the name in the trace as visible in listing 3. Additionally,
return value program points are identified by postfix _EXIT in order to work around some limitations
of the basic Daikon format.

3.6.1. Transition guards

For generating the transition guards, each internal state-related invariant is taken for processing. For
example, in Listing 2, the guard for the Crequest_Creply() transition method is the Crequest_
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=====================================================
Crequest:::ENTER
1.shipID?1 == AISType?2
2.shipID?1 == size(Clients?g[])
3.size(Clients?g[])-1 == size(Subscriptions?g[])
4.clientName?0 == "myclient"
5.shipID?1 == 1
6.Clients?g[] == [myclient]
7.Clients?g[] elements == "myclient"
8.Subscriptions?g[] == []
9.size(Clients?g[]) == 1
10.clientName?0 in Clients?g[]
=====================================================
Crequest_EXIT:::ENTER
ReturnStatus?r == "ok"
=====================================================

Listing 3. Sample Daikon output for Crequest.

CreplyGuard() method. Two guard checks have been generated for this transition, each defining a
condition that needs to be met for this transition to fire.

We started by turning all the related invariants for a transition into guard checks as expressed by
the Daikon output. Only the values related to the internal state of the SUT are available when guard
conditions are evaluated, so any invariants related to parameter values can be discarded as non-relevant.
In Listing 3, this leaves us with the invariants on lines 3 and 6-9.

Turning all these into guard statements leads to five transition guards, i.e., for invariants 6 and 7,
guard statements must be generated for checking that the state variables always contain only elements
of type myclient, and only contain one of these. Similarly, for invariant 9, a guard must be generated
to check that the Client’s state variable always includes exactly one item.

Turning the Daikon invariants into transition guards, results in a number of useless guard statements,
and the useful ones become overly constraining. For instance, analysis of invariants 3 and 6-8 reveals
that they represent random properties of the used execution scenarios, and invariant 3 is a combination
of invariants 8 and 9. Associating the two state variables is not meaningful as they are not really related.

Another example is invariant 8, stating that the list of subscriptions should always be empty at this
point. Although true for the used execution scenarios, it is not a correct requirement as subscriptions
are allowed when requests are made. The case where subscriptions exist while making a request is
simply not contained in the execution scenarios used.

Only invariant 9 is useful, although, overly constraining, in stating “there should be a connection, but
no more than one,” whereas the correct invariant, according to the specification, should state “at least
one connection.” These examples illustrate that too many and too constraining conditions are generated
from Daikon output when used directly.

Instead, we use abstractions over the Daikon invariants to provide more powerful transition guard
generation. After doing a complete model refinement for testing and verification (described in Sect. 4)
for the Merger component, we found that all useful guard statements were related to the size of single
model state variables (such as invariants 8 and 9). The correct check turns out to be “the state variable
has some content or not.”
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To provide more powerful guard generation, we devised a more specific algorithm that only
generates checks for invariants related to the size of the state variables. Daikon produces several
different types of invariants describing the contents of array variables, including size and content.
If it can be inferred from these invariants that the size of that state variable is always greater than zero,
a guard is generated to check that this variable has some content. This produces much better results
compared to direct use of Daikon invariants. The results and their validity will be discussed in more
detail in Sect. 5.

3.6.2. Object values and creation

Test automation requires the creation of SUT domain objects to provide test input and expected output.
We generate templates for providing these objects in the model. The templates include the feasible
values inferred from the invariants provided by Daikon for these objects. Daikon in- and output is
limited to strings, and, thus, best suited for describing primitive objects only.

Generation of non-primitive objects cannot be fully automated since it is impossible to determine
how primitive values in the Daikon invariants have to be mapped to previously unknown domain
objects and their constructors. Instead, the value in the invariant model is provided to the user as a
basis for manual refinement. Listing 2 shows this as "ok" in both transition methods Crequest()
and Crequest_Creply(). The same applies to the return value given to the SUT when it invokes the
mockClientRcv2 mock object in Crequest_Creply(), which is shown as .andReturn("ok") in
Listing 2. During refinement, the "ok" must be amended to create an actual domain object matching
the invariant value, as will be shown in section 4. This illustrates the domain knowledge required of
the user.

For the parameter value generation, the relations of parameter values to the internal state of the
model are also considered in addition to providing invariant values as a basis for object creation. This is
illustrated in Listing 2 by Crequest_p0(), and Crequest_p1(). For Crequest_p1(), invariant 5 in
Listing 3 describes this value as a constant of 1 and Crequest_p1() is generated to provide this value.
For Crequest_p0(), invariant 10 in Listing 3 describes this value as always being one from the list
of connected clients (from the Clients state variable). To provide suitable values, Crequest_p0()
is generated to pick an item from this state variable as a parameter.

4. TESTING AND VERIFICATION METHOD

The process of using a generated model for testing and verification is different from the traditional
model-based testing process. We call it a verification process as it allows verifying the completeness
and correctness of the (implementation) model and the specification in relation to each other, and a
testing process as it generates new test cases to exercise and evaluate the SUT behaviour.

Traditionally in MBT, the user takes the SUT specification as a basis to create a test model for the
system. In our approach, the initial model is generated based on the captured observations, leading to
an advanced starting point for the partially manual process of converting it to the final model to be
used for testing and verification with a MBT tool. Checking whether the model contains all expected
behaviour as specified, and whether this behaviour is correctly implemented, is an iterative process.
Basic requirement for this process is the SUT specification for verifying and refining the model.
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The method of using the initial generated model is outlined in the following:

1. Disable all state transitions (set guards to false).
2. Choose an initial state that can be reached from SUT startup.
3. Evaluate this generated state transition and related guard statements for correctness w.r.t. the

specification, making any modifications necessary.
4. Enable this state transition (correct the guard).
5. Execute the model with the MBT tool.
6. Analyse the root causes of any errors reported, and fix either the SUT, specification or the model

accordingly.
7. Choose the next state that can be reached once the initial state transition is enabled and verified

for correctness, and fix any errors found.
8. Continue this process from step 3 until all state transitions have been processed.
9. If any generated state transition remains disabled, or is not described in the specification,

check why the transition exists in the implementation. Amend the specification if it is a correct
transitions, amend the implementation if it is incorrect.

10. Finally, evaluate the complete model with all the generated state transitions containing all
expected (input-output) transitions included in the specification. If any are missing, check if
this is due to restrictions of the used execution scenarios or due to missing implementation. Fix
the cause.

According to our experience gained, it is best to start by focusing on one state transition at a time.
This is achieved by disabling all other transition guards (step 1). Based on the SUT specification, an
initial state can be selected for analysis (step 2). This state must be reachable from the initial starting
state. When a state is chosen for analysis, its transition guard is enabled (applying correct constraints)
to allow the MBT tool to explore it for test case generation.

Evaluating a state consists of checking that the state has the correct transition guards, so the
transitions can fire as expected , and that the transition is complete with regards to all required
elemenents(step 3). In other words, evaluating that the internal state of the model is correct and allows
executing the transition as expected, making it possible, for example, to provide correct parameter
values (such as picking a value from a state variable as shown by Crequest_p0() in listing 2). To
enable analysis of the chosen transition with the help of the MBT tool, its guard statement must first he
enabled (step 4). Evaluating a state also consists of checking the transition method itself and checking
correct values are provided, adding domain object creation, as well as updates to the model internal
state as a result of any successful transition. The extent of these modifications is discussed in more
detail in section 5.1. One of the advantages of this method and the given model is that it is possible
to execute the model with the MBT tool at any time during this process to verify the expectations and
changes made to the model (step 5). This will reveal any inconsistencies between the refined model
and the implementation, providing precise information to help with the analysis of the cause of any
possible failures (step 6).

Once a state transition is considered to be complete and correct, more state transitions can be
enabled, one at the time in an iterative manner (steps 7-8). Enabling one transition allows enabling
another following transition as the SUT state is updated by the previous transitions. Repeating this
process for all states, eventually produces the complete model. Additional errors can be discovered
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Figure 5. Merger EFSM with 3 states enabled and as visualized by ModelJUnit.

as more states are added and more complex interactions are produced by the MBT tool, potentially
requiring more analysis of previous states in the model.

Finally, the complete model must be checked against the SUT specification to assess if there are any
excess transitions left over that should not be (step 9) or if any required transitions are missing (step
10). That is, verifying the completeness and correctness of the implementation and the specification.

In order to illustrate the result of refining an initial generated model to form a completely verified
and tested model, Listing 4 shows a fully refined version of the code from Listing 2. This was produced
as an end result of the Merger case study. In the following, we describe the modifications made during
the process of applying the described method on this part of the generated Merger model.

Based on the FSM provided by ProM, we can only make an assumption that a single output message
is expected for a single input message. However, it is possible to receive several output messages back
for a single input message. For example, the transition method Crequest_Creply() in Listing 2
should produce one or more replies depending on its internal state. However, based on the FSM, the
interaction oracle (mock object) was generated to only expect one reply. In Listing 4, this has been
amended through adding .anyTimes() to the end of the expectation for the Crequest_Creply()

transition. This refinement is implicitly “required” by the MBT tool by showing where expectations
have failed.

Examples of simpler refinements for non-primitive objects are the changes from "ok" to
ReturnStatus.ok. An example of refining the generation of a primitive value is shown in Listing 4,
where the Crequest_p1() method must return an id value which was received previously by the
SUT. It must be refined manually to take one of the messages from the model state list variable
Messages and return the id values of this message.

The executed model can also be visualized at any time with ModelJUnit. This is convenient in order
to get a visual representation of the generated model thus far. Figure 5 displays such visualization of
the Merger model in which the first three states are enabled.

This visualization can be used to evaluate the final generated model w.r.t. completeness according
to the specifcation. Each oval (state) shows the input-output transitions of the model, where expected
output is shown to be followed by the input. If no output is expected in a state, this is shown as a single
input element. The arrows indicate the sequential order in which these transitions can occur. Since
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...
@Action public void Crequest_Creply() throws Exception {

this.state = "Crequest->Creply";
expect(mockClientRcv2.Creply((AISMessage)anyObject()))

.andReturn(ReturnStatus.ok).anyTimes();
replay(mockClientRcv2);
ReturnStatus rv5 = aISMerger.Crequest(Crequest_p0(),

Crequest_p1(),
Crequest_p2());

assertEquals(ReturnStatus.ok, rv5);
verify(mockClientRcv2);
EasyMock.reset(mockClientRcv2);

}

public boolean Crequest_CreplyGuard() {
if(Clients.size() < 1) return false;
if(Messages.size() < 1) return false;
return true;

}
...
long msgTime = 0;
int nextMsgId = 1;
private AISMessage AISin_p0() {

AISMessage message = new AISMessage((byte) 1, 0,
nextMsgId, new Date(msgTime));

nextMsgId++;
msgTime += 1000;
Messages.add(message);
return message;

}
...
private String Crequest_p0() {
return (String) randomItemFrom(Clients);

}

private int Crequest_p1() {
AISMessage msg = (AISMessage) randomItemFrom(Messages);
return msg.getUserID();

}

private byte Crequest_p2() {
return (byte)1.0;

}
...
private String Cdisconnect_p0() {
String client = (String) randomItemFrom(Clients);
Clients.remove(client);
Subscriptions.remove(client);
return client;

}
...

Listing 4. Refined versions of methods in listing 2.

Copyright c© 2007 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. 2007; 00:1–7
Prepared using stvrauth.cls DOI: 10.1002/stvr

VI/19



20 T. KANSTRÉN, E. PIEL, H.-G. GROSS

Tests + 
field data

PROM

Daikon

EFSM 
GeneratorMonitor

Daikon 
trace

PROM 
log

Model- 
JUnit

EFSM 
model

FSM 
model

Invariant 
model

SUT 
Spec.IDE

Step 1: 
Capturing a set 
of observations

Step 2: 
Generating 
the model

Step 3: 
Verification 
& Testing

1.1 1.2

1.2

1.2

2.1

2.1

2.2

2.2

2.3

3.1

3.1 3.2 3.2

Step 1 – Capturing a set of observations (Automated):
1.1 Execute SUT with set of execution scenarios.
1.2 Monitor tool captures observations.

Step 2 – Generating the model (Automated):
2.1 Execute ProM and Daikon with observations.
2.2 Capture the output from ProM and Daikon
2.3 Combine (ProM & Daikon) input to form EFSM model. 

Step 3 – Model refinement (User):
3.1 Execute model to test SUT vs model
3.2 Verify model vs. specification, refine as needed.
3.3 Iterate from step 3.1 until model is finished

3.1

SUT

Figure 6. Overview of the complete proposed approach.

there are potentially many (input-output) state transition sequences, this is most useful for identifying
the included input-output transitions as well as the initial start states. The visualization shown is a result
of our chosen state representation in the generated model (the state variable contents).

Finally, figure 5 presents a complete overview of the whole approach proposed in this paper,
including capturing the observations, generating the initial model, and using this as a basis for SW
testing and verification.

5. CASE STUDY EVALUATION

In this section, we discuss the experiences and lessons learned from applying our approach and method
to the example system described in section 3.2. The aim of our case study evaluation was to evaluate
the usefulness and effectiveness of the presented approach. We start by discussing the precision and
recall for our model generation technique, that is, how much of the different parts of the model are
provided by the code generator. We also discuss the usefulness of applying our approach to testing and
verification of the Merger component.

In order to evaluate the outcome further, we briefly discuss the application of our approach to a
second component of the same system, called Filter (see Fig. 2). The state representation is similar to
Merger. It maintains a list of processed AIS messages and filters out duplicate entries from overlapping
surveillance areas. This component was studied after completing the Merger example, in order to
evaluate whether the techniques can be generalized, in particular, our optimization of the transition
guard generation with invariants.
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Table II. Number of different elements in the final (complete) model.

Model Element Merger Filter

Transitions 13 2
Interaction oracles 13 (4) 1
Mock objects 1 1
State variables 3 1
Reset methods 1 1
Main execution methods 1 1
Parameter values 14 2
Input methods 6 1
Output methods 4 1
Return value oracles 7 0

5.1. Precision and Recall

Table II lists the number of elements present in the complete Merger and Filter models. Transitions
are input-output transitions represented by the @Action tagged methods in the model. Merger has one
output interface with four output methods. This interface is represented in the model by a mock object,
which is used to verify the correctness of interaction sequences (as interaction oracles). Moreover,
Merger has two input interfaces with six input methods in total. 14 Parameter values are required for
the input messages generated for the SUT. 7 Return value oracles assert the values received as return
values from the input methods in the transitions.

The precision and recall for model generation in the Merger case are shown in table III. Full means
the generated code does not need to be changed, and Partial means that an initial version of the required
code is generated and has to be amended, but the generated code hints to what it should be changed
to. For example, when a transition guard checks that a state variable is always of size 1 or 3, it is easy
to see that it should, in fact, check it has some content (size >= 1). “Missing” means something is not
generated, although, it should. “Redundant” means that some code is generated, but must be deleted,
because it is not relevant to the model. In the following subsections, the values obtained are discussed
Merger case. Finally, we summarize the results for the Filter case.

The most interesting entries in the table are the state transition methods, transition guards, parameter
values, state updates, and test oracles. The remaining entries are mostly static items always completely
generated as described in section 3.4 and illustrated in Listing 1.

5.1.1. State transition methods

State transition methods are generated completely for all input represented in the traces. However, we
discovered that Merger had an error in its implementation, where the given input did not lead to the
expected output, due to missing functionality. Hence, one required state was not generated as it was
not implemented in the SUT, and no observation captured from the SUT execution could therefore
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Table III. Merger precision and recall breakdown by model elements.

Model Element Full Partial Missing Redundant

Reset method 100% (1/1) 0% 0% 0%
State variable definitions 100% (3/3) 0% 0% 0%
State variable updates 0% 0% 100% (6/6) 0%
Main execution method 100% (1/1) 0% 0% 0%
State transition methods 91% (10/11) 0% 9% (1/11) 15,4% (2/13)
Transition guard checks (Daikon) 0% 76,9% (10/13) 23,1% (3/13) 68,7% (22/32)
Transition guard checks (Custom) 76,9% (10/13) 0% 23,1% (3/13) 9,1% (1/11)
Interaction oracles (no output) 100% (9/9) 0% 0% 0%
Interaction oracles (output) 50% (2/4) 50% (2/4) 0% 0%
Mock object return values 100% (4/4) 0% 0% 0%
Parameter values 21,4% (3/14) 0% 78,6% (11/14) 0%
Return value oracles 71,4% (5/7) 28,6% (2/7) 0% 0%

describe this state transition. This highlights the importance of analyzing the provided model properly
w.r.t. the specification for the required transitions, as some may not be implemented as they should.

Two “Redundant” state transitions were generated. In the first instance, the information for a ship
is discarded if no more messages regarding this ship are received for some period of time. This is not
triggered by any given input message, but by a timeout, and it can be observed in the trace at any
arbitrary point in time. This was a part of the large execution scenario with field data as input. This also
highlights how some specific functionality needs to be tested for with different types of approaches.

In the second instance, the reason for generating a “Redundant” state transition is not so obvious. We
could trace it to execution scenario instantiating the complete system that processes the field data and
spawning several independent threads on the go, some of which cause an interleaving of the captured
observations, producing observations for sequences not relevant for the actual SUT behaviour.

5.1.2. Transition guards

We separate two types of transition guard checks, discussed in Sect. 3.6, i.e., Transition guard check
(Daikon) and Transition guard check (Custom) in Table III. The first one refers to the original Daikon
invariants, whereas the second one refers to our optimized method that only considers the invariants
related to the size of the state variables. Since both use the same set of invariants as a basis, the numbers
of “Partial” for the first entry (“Daikon”) and “Full” for the second entry (“Custom”) are the same.

First, Daikon generated a large number of redundant invariants not relevant in any way to what is
required for our model. Seven out of ten partially or fully provided transition guards are duplicates
generated by Daikon. After removing the most obvious ones, the fraction of redundant invariants was
still 68,7% of all the invariants provided by the “pure Daikon” approach. It requires a lot of user
interaction in order to devise the “correct” invariants, and it is, by no means, satisfying.
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Applying the “Custom Transition guard checks” proved to be much more convincing, with the
number of redundant guard checks of 9.1% of the overall guards provided by Daikon. It must be
noted, however, that this technique can still produce redundant checks when invariants for irrelevant
state variables are generated as a by-product of the observations made from the execution scenarios.
However, in this case the number of redundant guards was acceptable leading to much less analysis
and correction work to be done by the user of this approach.

For the “Missing” transition guard checks, different reasons could be identified. One condition
involved checking an “OR-relation”, a composed expression, not (yet) supported by Daikon. Instead,
Daikon simply reports that neither of the invariants in the composed expression hold. Another condition
not generated could be attributed to (likely) faulty behaviour of Daikon. The invariant was always
apparent in the captured observations, but never reported by Daikon. It is not clear why the last
transition guard is missing in Daikon, as values related to this transition are numerous in the trace,
and performing detailed analysis on this was out of the scope of our study.

5.1.3. Parameter values

Parameter values are difficult to infer, due to the complexity of non-primitive objects, and due to
limited execution scenarios that do not typically exhibit the full range of input values permitted. The
successfully generated values were based on either primitive values, or on relations for which the
parameter value had to be a match to one that was already stored in the SUT state variables. Parameter
generation is still an issue to be addressed, for example through including domain objects serialized
from previous SUT executions as described in [27], or mining object specifications from SUT source
code and executions, as proposed by [30]. However, this open issue must be addressed in future work.

5.1.4. State updates

In addition to domain object creation, also related model state updates need to be added by the user. For
example, when a new message is provided to Merger, the processed Message object must be added to
the provided Messages model state variable. This is illustrated in Listing 4 in the The AISin_p0()

parameter value creation method, that adds the new processed message to the state variables Messages.
This also illustrates the need for the user to add the creation of domain objects manually. In this case,
each of the messages needs a unique id value and a unique timestamp.

These model parts related to state updates are not automatically generated due to limitations of
automatically knowing suitable representations needed for domain objects, and due to the limitations
of the underlying models used to generate the code. Daikon is intended to provide invariants over
program points, whereas this requires support for combining data over several points, such as the
provided parameter values, and their relation to the SUT internal states before and after messages are
processed. To address this issue, invariant detection could be extended to automatically cover this type
of more complex inter-relations. However, we did not find means to easily extend Daikon to do this
and leave this out of the scope of this paper.
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Table IV. SUT coverage breakdown by execution scenarios and tests for Merger(M) and Filter(F).

Source Statements Methods Conditionals Paths

M:Unit tests 53,5% (76/142) 64,5% (20/31) 38,7% (24/62) 6
M:Data 61,3% (87/142) 64,5% (20/31) 51,6% (32/62) 27
M:Data+Unit tests 77,5% (110/142) 87,1% (27/31) 61,3% (38/62) 33
M:EFSM 64,1% (91/142) 67,7% (21/31) 48,4% (30/62) 87
M:EFSM+Unit tests 65,5% (93/142) 67,7% (21/31) 51,6% (32/62) 92
F:Unit tests 38,2% (21/55) 23,5% (4/17) 32,1% (9/28) 2
F:Data 52,7% (29/55) 35,3% (6/17) 50,0% (14/28) 17
F:Data+Unit tests 52,7% (29/55) 35,3% (6/17) 50,0% (14/28) 18
F:EFSM 45,5% (25/55) 29,4% (5/17) 39,3% (11/28) 79
F:EFSM+Unit tests 45,5% (25/55) 29,4% (5/17) 39,3% (11/28) 79

5.1.5. Test oracles

As described in earlier sections, two different types of test oracles were generated, interaction oracles
and return value oracles. There are two types of interaction oracles listed in table III, ones marked
"no output" and ones marked "output". Here "no output" means the provided input is not expected
to provide any output. For "output", an input-output interaction sequence is expected. All interaction
oracles were generated with the correct expectations. However, half of these (listed as "partial" for the
"output" cases in table III) were missing the expectation that the input message can be followed by any
number of output messages. Thus it required the addition of .anyTimes() to these expectations.

For return value oracles, as well as mock object (interaction oracle) parameter values, the full
generation means that the provided model gave only one option and it was the correct one. For the
partial ones, the provided options included the correct one but also additional ones. The option here
refers to the string identifier used for the domain object in the observation trace. For reasons discussed
before, full domain objects are not generated.

5.2. Test coverage

Although we applied our model generation approach completely as a black-box approach, we also had
access to the source code and were able to gather code coverage metrics for the different test scenarios.
These are shown in Table IV. Here unit tests refer to the six unit tests used as execution scenarios. Data
refers to the set of field data and the system application that was used to process the data through the
complete system. Model refers to the tests generated by the MBT tool out of the final refined model.
The four columns correspond to four different types of coverage: statement, method, conditional, and
path coverage. This latter one is the number of unique paths in the final EFSM which were followed
during a test, in other words, it describes the combinations of input-output sequences taken during SUT
execution.

In Table IV it is visible that the tests generated from the EFSM model provide a significant increase
in coverage over the used unit tests. Data has a high coverage value but it can not be considered a test
as it simply executes the SUT without any assertions. As it has no test oracle it is not actually testing
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anything. However, it is still a useful exploration of the SUT behaviour for capturing observations.
The complete coverage of the execution scenarios used to capture the observations is shown here as
Data+Unit tests. For the difference between the code coverage of this set and that of the EFSM set,
a detailed analysis revealed that the additional code covered by Data+Unit tests is due to the larger
amount of setup involved in putting the complete system together vs. the minimal setup with mock
objects in the EFSM set.

The total coverage of all tests is shown by EFSM+Unit tests. This shows that although EFSM does
provide significant increase in coverage alone, the Unit tests still provide an additional increase and
thus the tests in the EFSM set and Unit tests set are complimentary, as is to be expected for black-box
testing and unit testing. This also provides validation for the use of unit tests as execution scenarios for
model generation in MBT.

Table IV shows the Unit tests and the EFSM paths to be mostly different. This is most likely due to
the MBT tool generating longer sequences, while the unit tests only produce short sequences. Therefor
the paths in the unit tests are likely covered also by the EFSM set but as the number of paths here is
based on complete unique paths, it does not count two paths as one if one is embedded inside another.

For the actual behaviour related code, the EFSM set outperformed the others by a small percentage
due to the generalization of the generated model in the verification and testing refinement phase. This
generalization led to execution of additional parts of the code.

The biggest difference is in the paths metric, EFSM outperforms the others by a factor of more than
two. This is what is to be expected from a MBT tool that is intended to generate complex interactions
to test the SUT, and could be even further increased through MBT tool parameters.

5.3. Mutation testing

In addition to code coverage analysis, we also conducted another coverage measured in the form of
mutation testing of both the Merger and the Filter components. The mutation testing was focused
on finding how many of the generated mutants are "killed" (discovered) by the used test cases. A mutant
is a semantically different modification in the Java class of the component. In our case these mutants
were generated with the µJava†† tool. Some of the generated mutants are “equivalent”, meaning that
their behaviour is exactly the same as the original version (e.g.: increment a variable never used after,
in/decrement a huge arbitrary constant, modify how a hashcode is computed). We manually categorized
the generated mutants to ones that really modify the behaviour of the SUT and to ones that do not.

To evaluate the effectiveness of the generated and refined model in killing these mutants, the
completely refined model as provided from the previous sections was used to generate tests and these
tests were executed to kill the mutants. Each provided mutation was applied separately and the tests
were executed to see if the changes are detected (if the mutant is killed). The results are shown in
Table V. It should be noted that this does not simulate the case of starting from initial model generation
for each mutant but simply evaluates the power of the complete and final model in killing mutants,
which places this mutation experiment closer to the domain of regression testing.

††http://cs.gmu.edu/~offutt/mujava/
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Table V. Mutation test results.

Source True positive False positive True negative False negative Total

Merger unit tests 51 16 50 0 117
Merger EFSM 51 15 51 0 117
Filter unit tests 36 7 21 0 64
Filter EFSM 36 5 23 0 64

When a test finds no errors (the SUT is considered to operate fine), the result is termed "positive".
When an error is reported, the result is termed "negative". "False positives" are the mutations which are
said to be working fine, although it was manually verified that they behave outside of the specification
sometimes. "False negative" would be a case where a correct SUT is classified as having an error.

Table V shows that the final model provides minimal gain over the initial unit tests. It is worthy to
note that the correct categorizations done by the EFSM are a superset of the one performed by the unit
tests. The model outperforms the unit tests in correct categorization of mutants with actual modified
behaviour only by a slight margin.

Although the differences in code and mutant coverage do not seem to be high, the different paths
generated with the MBT tool combined with the manual verification and testing process proved very
useful in this case, finding several previously uncaught bugs in the implementation as will be described
next.

5.4. Errors Discovered in the Merger

In the process of refining the complete model for Merger, we found several errors in the SUT
implementation. These errors can be classified to different types including mismatches between
implementation and specification, ambiguities in the specification, and problems in the design that
cause errors under certain conditions.

Problems in the SUT design were related to assumptions it made about its environment. The design
made the assumption that one client component would never have several connections at the same time
with the Merger component. This functionality was not covered by the initial execution scenarios and
the SUT specification was also not detailed to the level to define this type of details. Instead, this was
revealed by the complex input and interaction sequences generated by the MBT based on the refined
model. This also lead to a requirement of refining the specification.

Mismatches identified between implementation and model were wrong return values received from
the SUT, discovered by the return value oracles, and incorrect or missing transitions in the SUT,
discovered by the interaction oracles or by inspection of the FSM vs. the specification. In the case
of return values, making a connection would always return “ok”, regardless of the parameter provided,
and whether a connection was successful or not. This was a clear violation of the specification, which
states that Merger should return error codes. Although this functionality was exercised in the initial
execution scenarios, they did not use sequences and assertions that would reveal this error. The various
interaction sequences generated from the model, along with the test oracles did reveal it.
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Another issue detected was a missing specification item, about queries on ships that do not exist.
The generated model issued an “ok”, but the implementation returned an error code. The specification
made no statement how this should be handled by Merger. In this case, this highlighted a need to
update the specification and then re-evaluate the model vs. the implementation. This shows how having
two different “implementations” of the specifications (the SUT and the model), makes it more likely to
reveal the ambiguities and misunderstandings in the specification.

Protocol issues of the Merger were discovered through the interaction oracles and through
inspection of the FSM. The specification states that “if a client is subscribed to a ship for which data
exists, the Merger should immediately publish this data to the client,” which it did not. This problem
was found when comparing the model and specification and could be verified by inspecting the FSM’s
shown in Figure 4. This also highlights the importance of carefully comparing the generated model to
the specification. As discussed before, a generated model only contains the information observed in the
execution scenarios, excluding any unimplemented features. These can only be revealed by verifying
the model against the specification to see that it describes all required functionality and is correct.

The subscription code contained another problem that was discovered by the interaction oracles.
Subscribing to a ship for which no messages had been received so far, caused the loss of data through
a missing output message. This was an error in the implementation. Again, the required interactions
to create the initial FSM to test this were present in the used execution scenarios, but this was only
discovered by the thorough checking done in all states by the MBT when generating tests based on the
final model.

These issues could be resolved, eventually, by amending the Merger code following the specification
and the refined model. Overall, in terms of identifying previously unknown errors of a component that
had been used for some time in this context, this can be regarded as a very successful model-based
testing experiment with real value to the quality of the system.

5.5. Filter

As already shown in Table II, the Filter case study was much simpler than the Merger case study.
This is also reflected in Table VI, showing the precision and recall values for the Filter case study.
Since there are only one or two of each model element needed and generated, the values are mostly
100%. This is also visible in the number of invariants generated, where only one invariant is generated
and this is turned into the correct guard condition by our customized invariant processing algorithm.
This lack of invariants is also likely due to the small number of variables present in the observations.
As the messages observed do not have any return values, there are no mock object return values or
return value oracles needed or generated in this case. This is a simple example, but serves to provide
evidence that the approach is usable over more than just one (Merger) component, and also on simple
systems.

5.6. Limitations of the approach and the case study

We realize that the results can not be generalized as such to all possible systems, as their representation
of state can be different (such as primitive values) or different types of invariants may be important.
To provide a more comprehensive analysis and support for different types of state representations,
experiments with different types of systems would be needed. A useful approach for this would be
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Table VI. Filter precision and recall breakdown by model elements.

Model Element Full Partial Missing Extra

Reset method 100% (1/1) 0% 0% 0%
State variable definitions 100% (1/1) 0% 0% 0%
State variable updates 0% 0% 100% (1/1) 0%
Main execution method 100% (1/1) 0% 0% 0%
State transition methods 100% (2/2) 0% 0% 0%
Transition guard checks (Daikon) 0% 100% (1/1) 0% 0%
Transition guard checks (Custom) 100% (1/1) 0% 0% 0%
Interaction oracles (no output) 100% (1/1) 0% 0% 0%
Interaction oracles (output) 100% (1/1) 0% 0% 0%
Mock object return values - - - -
Parameter values 0% 0% 100% (1/1) 0%
Return value oracles - - - -

similar to that which we followed - start from all the provided invariants, analyse which ones are
relevant and investigate how these can be effectively (automatically) turned into guard checks. From
this we believe more generic and powerful transition guard generation approaches and guidelines could
be provided for different types of systems. However, this study is left out of the scope of this paper.

With respect to the tools we used, it can be summarized that having more specific and effective
means of FSM and invariant generation would be useful. Both ProM and Daikon were described to
have some limitations from our viewpoint, leading to more manual effort in the testing and verification
phase. One option would be to extend the models and tools to support the additional information
needed. Another option would be to replace those intermediary models by simpler models representing
solely the information needed for the generation of the code, and to build our own custom “FSM” and
“invariant” inference engines. For example, existing work on mining temporal invariant rules (e.g. [19])
could be used to address the limitations of discovering timing related transitions from the observations.
However, in this context it is important to offer possibilities for the user to observe the intermediary
models. For example, the usage of ProM permits the user to assess the completeness of the trace, via
many different types of models and visualizations.

Although, in most cases, the root-causes for errors reported by the MBT tool are clear, sometimes
they are difficult to identify. The cause of an error may be located in the model, or in the SUT. An
effective approach for finding these causes is to create a separate test case with a specific testing
tool, such as JUnit, based on the generated test case. This separate test case will reveal all the
hidden assumptions in data generation, interactions and similar properties, and allow the user to
experiment with different settings. A separate test case permits to do more focused analysis of the
failure cause. Currently, these tests have to be created manually. However, the information required for
their generation is already available in the test case generated by the MBT tool. With this information,
the separate test scripts with related data values and other generated input could be automatically
generated, saving considerable effort for these difficult debugging cases.

Finally, sometimes, it might be problematic to have an extensive set of test executions available
for the SUT. In these cases, an interesting research approach would be to apply input generation
mechanisms, such as search-based heuristics [23] for behavior exploration. In this case, the model

Copyright c© 2007 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. 2007; 00:1–7
Prepared using stvrauth.cls DOI: 10.1002/stvr

VI/28



OBSERVATION BASED MODELING FOR MODEL-BASED TESTING 29

becomes more of a representation of all the possibilities with the SUT, and less a representation of
what is the expected behavior. Thus it requires also the use of automated classification approaches as
described in section 3.6.2.

6. CONCLUSIONS

This paper described a a novel way to generate a complete EFSM (including test input, oracles, and
harness) out of observations from system executions, suitable for use as an advanced starting point
(model) for model-based testing. An important note when using a generated model for software testing
and verification is that this model is not a description of what should be expected from the SUT, but
rather what it actually provides. In this regard, one of the main contributions of this paper is also the
proposed method that shows how to verify the correctness of the model vs the specification, while
using it for testing and verification.

The usefulness of the proposed approach was demonstrated with the help of two real software
components, where the generated model was shown to be highly complete, providing an advanced
starting point, and where additional test coverage was gained and several new bugs were discovered
with the help of the proposed method. We also discussed the limitations of our approach, and proposed
means to address them in future work.

Future work will comprise an application of search heuristics, i.e., evolutionary testing techniques,
for the generation of test stimuli in order to obtain the traces, automated classification of inputs and
outputs captured from the execution scenarios, addressing domain object creation and improvement on
the generation of transition guards in order to make them more generic.
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Abstract—This paper presents the concept of using behavioral 
pattern mining to generate models for model-based testing. 
These patterns are mined from observations captured from 
execution scenarios of the system under test, and the different 
patterns are combined in order to provide a suitable higher-
level model for model-based testing. The concept is first dis-
cussed on a general level, providing a basis for implementation 
of semi-automated model generation algorithms based on 
combinations of different behavioral patterns. This concept is 
illustrated by showing how to generate extended finite state-
machine models in a format suitable for model-based testing. 
The generated model is further validated by applying it for 
model-based testing of a real software component, where it 
reveals actual faults in the system under test. In addition to the 
benefits, the discovered limitations of the approach are dis-
cussed. Future work is discussed as potential means to address 
these limitations. 

Keywords-model generation, model-based testing, pattern 
mining, behavioral patterns. 

I.  INTRODUCTION 
Model-based testing (MBT) makes use of models as a 

basis for generating tests for the system under test (SUT) [1]. 
When suitable models are available, this can be a powerful 
approach providing automated generation of test cases for 
the SUT. However, in many cases suitable models are not 
available, and their creation and maintenance can be expen-
sive. These models typically need to describe the SUT from 
the point of view of what is being tested, which can be sig-
nificantly different from models used for other software 
development activities. For this reason, they also require 
special modeling skills in creating models that effectively 
describe a system for MBT. Since testing is often seen as an 
activity that provides no extra functionality for the final 
customer [2], getting the required support and resources for 
building these specific models can be difficult. This serves to 
make the adoption of MBT expensive and more difficult, and 
providing any automated support for creating these models 
has great potential to make MBT more feasible. 

This paper presents the concept of using behavioral pat-
tern mining to generate suitable models for MBT. A basic 
model is automatically generated, and serves as a starting 
point to be manually refined and verified with regards to the 
SUT specification. This is supported by using a MBT tool to 
execute the model by generating tests and executing these 
against the implementation, providing a constant feedback-
loop for the refinement of the generated model. This pro-
vides a semi-automated approach to model creation, making 

the adoption of MBT easier from the viewpoint of require-
ments for providing suitable models. 

Generating models based on mining behavioral patterns 
requires first decomposing the target model into suitable 
behavioral patterns that can be mined from observations of 
the SUT execution, and combining these patterns to produce 
a complete model suitable for MBT. In this paper, the infor-
mation used for pattern mining is observations captured from 
execution scenarios of the SUT by monitoring its runtime 
behaviour. This requires the existence of suitable execution 
scenarios to exercise the SUT to capture a sufficient set of 
observations, such as a suite of unit tests or data captured 
from user sessions. This is a common requirement for tech-
niques making use of dynamic analysis (of runtime beha-
viour) [3], and most existing systems have these types of 
execution scenarios available. 

To demonstrate this approach for model generation, it is 
applied for generating an extended finite state-machine 
(EFSM) in a format suitable for MBT. This model is decom-
posed into suitable behavioral patterns, the information to be 
captured for mining the required patterns is defined, and 
means for combining these patterns to generate a basis for 
the EFSM is given. This is applied to testing an actual soft-
ware component, revealing actual faults in its implementa-
tion. Finally, the experiences including the discovered limita-
tions of the approach are discussed. Possible future direc-
tions for addressing these limitations are discussed. 

The rest of the paper is structured as follows. Section 2 
discusses the related concepts and briefly outlines related 
work. Section 3 describes the concept of generating models 
for MBT based on behavioral patterns at a general level. 
Section 4 discusses the various points of using these generat-
ed models for MBT. Section 5 presents a case study of ap-
plying a generated model in practice. Section 6 discusses the 
experiences related with the case study, the limitations of the 
approach and possible means to address these limitations in 
future work. Finally, conclusions summarize the paper. 

II. BACKGROUND AND RELATED WORK 
Many different techniques have been developed that gen-

erate state-based behavior models based on behavioral pat-
terns captured from the analysis of software execution scena-
rios. This section gives an overview of previous research in 
these related areas. 

Daikon is an invariant inference engine used to infer like-
ly invariants based on execution traces [4]. These invariants 
are described as likely invariants, as they hold for all the 
observations in the trace, which may or may not contain a 
representative sample of the SUT behavior. Example inva-
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riants include x < 100 (value of x is always observed to be 
less than 100), and x in Clients (value of x is always ob-
served to be included in the array Clients). Thus these inva-
riants describe behavioral patterns over the data processed by 
the SUT. In general, the inferred invariants can be described 
as properties that hold at certain points of the SUT execution 
[4].  

Test generation techniques based on program invariants 
include Agitator [5], Eclat [6] and the technique proposed by 
Xie and Notkin [7]. Each provides a tool that generates test 
input data, and based on the captured execution trace, 
presents a set of invariants describing the SUT behavior to 
the user. The user can analyze the proposed invariants to see 
if the SUT is working according to specification, and turn the 
invariants into assertions with related test input to form new 
test cases for the test suite. The approach presented in this 
paper makes use of these data invariants as one of the beha-
vioral patterns forming an EFSM. This is similar to the pre-
vious work in using them to provide expected input- and 
output-data values with a new application in the MBT do-
main. In addition, they are combined with state-machine 
patterns to form parts of a higher level EFSM model for 
MBT. 

Lorenzoli et al. [8] model a system based on captured ob-
servations (an execution trace) including method invoca-
tions, parameter values, and global state. Similar to the 
EFSM model generation approach presented in this paper, 
they use Finite State Machines (FSM) and Daikon-invariants 
to create the EFSM. The FSM describes behavioral interac-
tion patterns between the SUT method calls, and the inva-
riants patterns of data describe the constraints for the interac-
tions. These EFSM are used for test case selection and test 
suite optimization with the goal of increasing the coverage of 
the model. The approach presented in this paper uses similar 
means to generate the EFSM, but with different algorithms 
more suitable for MBT, and including the generation of 
model source code from these models, whereas Lorenzoli et 
al. generate no tests nor code [8]. 

A similar approach but in a different domain is presented 
by Mesbah and van Deursen [9], who build an FSM for web-
application user interfaces. In this case the FSM represents 
interaction patterns in the user interface (UI) of the web-
application, and how they affect the UI representation. The 
composition of UI elements constitutes a new state in the 
FSM model. Transitions are the clicks (input) to the SUT 
that caused the UI to change between these states. They use a 
set of their own invariants, specifically built for web-
applications to describe the expected changes in the UI in 
response to input, as test oracles. These invariants are differ-
ent from the Daikon provided ones in that they describe the 
UI elements and their associated state transitions. In the 
EFSM example used this paper, a similar association of 
behavioral-patterns related to interactions and processed data 
is considered from the viewpoint of messages exchanged 
between components, and matching MBT tools. Another 
difference is that in this paper, the patterns are provided 
through pattern mining from the execution scenarios, whe-
reas Mesbah and Deursen expect the checked invariants to be 
provided by the user [9]. 

Process mining is a technique developed to mine models 
for business processes from event logs [10]. Support for 
process mining has been implemented in a tool called ProM, 
which can produce various types of models, such as petri-
nets and FSM [11] from the event logs. Process mining con-
cepts have also been applied in the software testing domain, 
to help in validation of service-oriented applications [10]. 
ProM is used in this paper to provide the behavioral patterns 
for interaction between components in the form of an FSM. 
As ProM also supports other types of behavioral models, 
these could be used in the case where different types of inte-
raction patterns are of interest (such as petri-nets for concur-
rency). 

In order to generate a model for MBT of a SUT, test har-
ness code must also be generated to isolate the SUT from its 
environment and to verify the correctness of its interactions 
with the environment. This is commonly achieved with the 
help of (component) test stubs that emulate the environment. 
When the stubs are made programmable, they are often re-
ferred to as mock objects [12]. This usually means that a 
component library provides interfaces to create these stubs, 
and that for each stub it is possible to define the expected 
interactions with the SUT and the values that should be re-
turned in each case. 

Tillmann and Schulte [13], and Saff et al. [14] provide 
means to automatically generate mock objects for the SUT. 
Tillmann and Schulte use static analysis (symbolic execu-
tion) and Saff et al. use dynamic analysis to capture the ex-
pected interaction patterns and return values for the mock 
objects. Both focus on one test at a time, to allow the genera-
tion of mock objects for exactly the purposes of the chosen 
test. The test for which mock objects are defined is deter-
mined by factoring a larger test to smaller tests [14], or based 
on static analysis of code with symbolic execution [13]. 

A more specific test harness generation method for ser-
vice oriented mobile applications is presented by Bertolino et 
al. [15]. They assume the SUT is described using formal 
web-service description languages, such as WSDL and WS-
Agreement. Based on these specifications, they generate test 
stubs for components with which the SUT is interacting. 
WSDL is used to define the stub interfaces, and WS-
Agreement to define the expected behaviour of the SUT for 
the stubs. Additionally, using simulators, they generate data 
to test the SUT in different situations. This paper uses a 
similar approach to these mock object techniques for the 
EFSM example. The captured interaction patterns are used to 
program the expectations of component interactions for 
generated tests, and to verify that these correctly happen 
during test execution. 

III. FROM BEHAVIORAL PATTERNS TO MBT MODELS 
This section describes the concept of transforming beha-

vioral patterns captured from the execution scenarios of the 
SUT into models usable for MBT. The term Model-Based 
Testing is used here similar to that of Utting and Legeard [1] 
who describe it as “Generation of test cases with oracles 
from a behavioral model”. The model describes the expected 
behavior of the SUT, and is used to generate sequences of 
method invocations and data as SUT stimulus. In order to 
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validate the correctness of the responses from the SUT, test 
oracles (as a part of the model) check the expected output 
data and interaction sequences. The basic elements of an 
MBT system include the system specification that is used as 
a basis to create the test model, the test tool used to generate 
tests based on this model, and the test harness (for online 
testing) to execute the generated tests against the SUT or test 
script generator (for offline-testing).  

The idea of turning the MBT approach around, and min-
ing the model from the SUT execution scenarios was de-
scribed by Bertolino et al. [16] as anti-model-based testing, 
although they never took it further than describing the con-
cept. This approach is the opposite of MBT in the sense that 
the implementation (the generated model) is compared 
against the specification instead of manually creating a for-
mal model of the specification and checking it against the 
implementation.  

Using a model for MBT that is generated from existing 
execution scenarios, such as test suites, presents the question 
of usefulness of using a MBT tool to generate more tests 
based on such a model (of existing tests). Although the ex-
ecution scenarios used as a basis for model generation can 
include existing test cases, the generated tests can still be 
useful when the MBT tool generates additional complex 
interaction sequences based on the combined whole of the 
underlying patterns. The process of using the generated 
model also provides means of formal assessment of the im-
plementation against the specification. This is further de-
scribed in the sections on using the model (Sect. 4) and the 
case study evaluation (Sect. 5). 

The process of model generation described in this paper 
has two phases. The first phase of model decomposition is 
generic and needs to be done only once for a single type of 
model. The second phase of model generation is specific for 
each SUT. The following subsections describe these differ-
ent phases in more detail. In the rest of the paper, generating 
EFSM models is used as an example to illustrate the de-
scribed concepts. EFSM was chosen as a target model due to 
many MBT tools supporting this type of a model and its 
wide application in MBT [1]. Other types of models, such as 
Petri-nets could be used for different test targets [1] by re-
peating this process from a different perspective with the 
chosen model as the target model. 

A. Phase 1:Model Decomposition 
The first phase of model decomposition is illustrated in 

Figure 1. In the first step of this phase, the target model is 
defined. In this paper, the target model is the EFSM model. 
Once this model is defined, the required elements and prop-
erties of this model need to be defined. This leads to the 
decomposition of the model to the behavioral patterns that 
can be used to generate the complete model from the cap-
tured information and mined patterns. 

 

 
Figure 1. Model decomposition process. 

The EFSM model used in this paper requires a represen-
tation of states, transitions and guards defining when each of 
these transitions is allowed to take place. These form the 
basic elements required for the generation of the EFSM 
model. In addition to these target model specific properties, 
also the test automation framework related aspects need to be 
considered. This means the model needs to be linked to the 
SUT to provide executable tests (a test harness), input data 
for the created tests need to be provided, and the test results 
need to be verified (test oracles). These properties of the 
target model and the test framework need to be decomposed 
into behavioral patterns that can be mined from the execution 
scenarios. 

Behavioral interaction patterns can be used to provide the 
states and interactions by considering the interactions be-
tween the system components as state transitions for the 
EFSM model. When traversing this EFSM, the MBT tool 
will then generate tests consisting of interaction sequences 
between the components. There are also two types of interac-
tions, those providing input and those providing output. 
When generating tests for a SUT, these need to be consi-
dered as for each input interaction the MBT tool must gener-
ate the input and for each output interaction, the MBT must 
expect to receive the output (with the help of generated mock 
objects). Another important property in relation to this is 
when a given input is generated and when a given output is 
expected. In different phases of the SUT lifecycle, different 
inputs produce different outputs. This depends on the given 
input as well as the internal state the SUT is in.  

A basic EFSM representation used in this paper to ad-
dress these issues is using the input-output transitions as 
states, and allowing a transition to one of these states when 
the internal state of the SUT allows for this input-output 
transition. In this way, each test sequence generated by the 
MBT is a sequence of expected input-output transitions, 
depending on the internal state of the SUT. For the test 
framework related parts, this also requires defining the input 
values for the input transition and the expected values for the 
output transition. In order to generate suitable models for this 
EFSM representation, behavioral patterns need to be defined 
that can be mined from the observations of execution scena-
rios for the SUT, and that can be combined to form the target 
EFSM. 

For this purpose, two types of behavioral patterns are 
used in this paper. The FSM provided by the FSM miner 
component of the ProM tool is used as a basic representation 
of the interaction patterns of the components, and the inva-
riants provided by Daikon are used to provide constraints 
over the SUT internal state and to provide the required input 
data values and expected output data values. This decompos-
es the EFSM into two types of behavioral patterns that can 
be acquired with the help of existing pattern mining tools. 
Additionally, as described before, the generated tests need to 
be linked to the SUT to create executable tests (a test har-
nesss). In the EFSM case this has been achieved by using the 
input- and output-interface method name definitions as iden-
tifiers for the state transitions. This allows linking the gener-
ated input- and output-sequences to the SUT methods, pro-
viding executable tests, and is an example of linking the 
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behavioral patterns with additional static information pat-
terns for providing a complete test model. In the next step, 
the information required to mine these patterns from the 
execution scenarios needs to be considered. 

This definition of required information comes from the 
decomposed behavioral patterns. For the FSM provided by 
ProM, the information required includes the messages and 
their order as passed between the SUT components (for the 
FSM). For the invariants provided by Daikon, this includes 
the data describing the SUT internal state at the time of each 
message call, and the parameter and (possible) return values 
of each message call. The interface definitions are available 
from the SUT implementation. The information related to the 
different model elements for the EFSM case are summarized 
in Table 1. Once this required information is defined, the 
tools and algorithms to generate the behavioral patterns from 
the information, and the final (EFSM) model from the pat-
terns must be defined and implemented.  

 
Table 1. EFSM model decomposition. 

Model 
Element 

Pattern Required Information 

State Data 
inva-
riants  

Data values representing the 
SUT internal state during each 
observed (input- and output-) 
message pass. 

Transition FSM Input- and output-messages 
passed through SUT external 
interfaces. 

Transition 
guard 

Data 
inva-
riants 

Input data values for received 
input-messages, grouped as a 
separate invariant data point for 
each input-output message tuple. 

Input data Data 
inva-
riants 

Input data values (e.g. value 
ranges) used in input messages. 

Test har-
ness 

Interface 
defini-
tions 

Messages defined in the SUT 
external input- and output-
interfaces. 

Test 
oracles 

FSM and 
data 
inva-
riants 

Output messages (expected inte-
ractions) and their data values 
(expected return values). Asso-
ciated separately for each sepa-
rate transition. 

 
The process of mapping the behavioral patterns back to 

the model is the fourth and final step of the first phase. In the 
EFSM case, the ProM and Daikon already provide the basic 
behavioral patterns needed. These basic patterns need to be 
augmented and processed with specific algorithms to pro-
duce the final EFSM model. Defining how this is done com-
pletes the fourth step and the first phase. The output from 
this should be an automated tool that produces the target 
model from the given pattern information (observations) 
captured from the SUT execution profiles. 

For the EFSM model, as the FSM produced by ProM 
treats all states and transitions the same, it needs to be aug-

mented with additional information of which messages are 
input and which are output messages. Each of these is a 
separate state in the provided FSM and they need to be com-
bined to form a new FSM where the input-output pairs each 
form their own states. In this way, the input- and output-
message sequence pairs will form the basic patterns of ex-
pected interactions. This is simple enough by parsing the 
names of messages from the SUT input- and output-
interfaces and associating the FSM states with these input- 
and output message properties. When the message names are 
used as identifiers for the ProM event log, this is a 
straightforward mapping as the names will also match the 
names of the FSM states. This provides the new FSM where 
each state describes the expected input-output transitions. 

This FSM can now be used as a basis for providing the 
required states and transitions for an EFSM. However, it still 
requires the transition guards that define when a transition to 
a state is allowed to happen and when it is not allowed to 
happen. With the approach described here, this means that a 
certain state (an input-output transition) is only allowed to 
take place when the internal state of the SUT allows the 
associated input-output transition. For example, consider an 
example case where a client can request data from a server 
with a given id value. The server always responds with an 
output message (transition) but the data in this response 
depends on the server internal state. If data for the requested 
id value is available, this is given as a response. However, if 
data for the id is not available, the response gives an error 
code. As a second example, consider a SUT that receives 
messages and relays these to registered listeners for the data 
it contains. If none are registered, there is no output transi-
tion. If any are registered, there are output transitions. 

These two types of constraints (transition guards) are not 
available in a plain FSM. Instead, patterns describing the 
relations of the internal state of the SUT and the data values 
in the message parameters are needed to create guards for 
cases such as requesting data for a certain id. Similarly, pat-
terns describing the relations between the internal state of the 
SUT and input-output transition sequences are needed, in 
order to create guards for cases such as expecting notifica-
tion output messages only in cases where listeners are al-
ready registered for the received data. In the EFSM example 
of this paper, the data invariants provided by Daikon are 
used to provide this information. These invariants will, for 
example, say that when no error code is received as output, 
the request id has been one from the list of connected clients. 
These invariants can then be turned into transition guards 
defining that the SUT internal state must match these con-
straints to allow for this model state (input-output transition) 
to be explored.  

Similarly, the data invariants can be used to define the 
provided input parameter values. In the example dealing with 
connected clients, this can be done by forcing a choice of a 
valid id value from the list of connected clients. Of course, 
this requires the model to maintain itself a “copy” state of the 
SUT internal state by keeping, in this case, a list of id values 
for connected clients it has generated so far (in exploring a 
state that creates inputs that connect clients). 
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As can be seen from these examples, the different types 
of behavioral patterns need to be mapped together to produce 
the complete target model. When constructing these different 
patterns (FSM and invariants in the EFSM case), it is impor-
tant to produce the patterns in such format that they can be 
mapped together. In the EFSM case, it means that the mod-
ified FSM originally produced by ProM needs to be mapped 
to the data invariants produced by Daikon. To do this, the 
Daikon patterns are produced using captured data values and 
invariant identifiers based on the order of messages. Thus, 
for example, data values for Daikon are recorded based on 
what was each value when a message was followed by 
another message. By searching the provided patterns for ones 
with identifiers matching the input-output pairs of each FSM 
state, the mapping can be done. 

For the EFSM example, this generation of behavioral pat-
terns based on the pattern information and the generation of 
the target EFSM model based on these patterns has been 
implemented by the author of this paper in a completely 
automated tool available as open-source [17]. This tool uses 
the ProM and Daikon tools to generate the required patterns, 
creates the intermediate models, and combines these into the 
format of the used MBT tool. 

This subsection has described the model generation using 
a practical example of generating an EFSM model based on 
component interactions. Different requirements need to be 
considered when the different types of patterns are defined 
that need to be combined for creating the combined model, 
and these requirements vary depending on the chosen target 
model and domain. For example, as described earlier in 
Section 2, a specific model and tool for model-based testing 
of web-based user-interfaces was presented by Mesbah and 
van Deursen [9]. They use clicks on the web-page to stimu-
late the SUT, and expresses expectations as invariants over 
expected content of the UI elements after provided clicks and 
input data. To generate this type of model, behavioral pat-
terns are needed to describe the relations of the UI elements, 
UI navigation commands and input data values. Good candi-
dates again include an FSM with the navigation commands 
as transitions, UI elements as a state, and data invariants to 
describe the input data. Similarly, more complex combina-
tions are needed to capture the interactions between data 
values, navigation commands and how they affect the UI 
elements of different pages. This shows an example of a 
different type of an approach, while the implementation 
details in this case are left as a topic for future work. 

The output for this phase should be the definition of the 
target model, the behavioral patterns it has been decomposed 
into, the information required to mine these patterns from the 
SUT execution scenarios, and an automated toolset that 
mines the required patterns from the provided information 
and combines these patterns to form the target model. 

B. Phase 2: Model Generation 
The second phase of model generation is illustrated in 

Figure 2. This phase takes as input from the first phase the 
information required to mine the behavioral patterns that are 
used to generate the model, and the mapping of these pat-
terns to the target model as described in the previous subsec-

tion. To generate the target model, the information required 
to mine the patterns needs to be first captured from the ex-
ecution scenarios of the SUT. As a first step in this phase the 
SUT must be instrumented to capture the required informa-
tion. For the EFSM model, the required information was 
defined as the input- and output-messages of the SUT, the 
input parameter values and output values, and SUT internal 
state values. A practical example of instrumenting the SUT 
to capture this information is presented with the case study in 
Section 5. 

 

 
Figure 2. Model generation process. 

Once the SUT has been instrumented to capture the re-
quired information, it must be executed to capture the actual 
information from the runtime execution scenarios. A model 
generated based on information captured from a set of execu-
tion scenarios of the SUT is only as complete as the set of 
scenarios used as a basis. Thus, any behaviour and data val-
ues not included in these scenarios are also not included in 
the mined patterns or in the final model. In order to capture a 
sufficiently complete model for MBT, the set of scenarios, 
resulting patterns and final model must be analysed and 
augmented to form a sufficiently complete set. This is an 
iterative process of defining scenarios, capturing the infor-
mation, generating the model, analyzing these and iterating 
this over until one is satisfied with the set of scenarios. This 
process and how to perform it effectively is described in 
more detail in [18]. Capturing the information from the run-
ning system is referred to here as monitoring the execution 
scenarios (step 3). 

Once the required information has been captured, tools 
for mining the required behavioral patterns are applied. In 
the case of the EFSM model, this means running the ProM 
and Daikon tools. These tools are given the information in a 
suitable format for them to process, and as a result they pro-
vide the behavioral patterns they were designed to mine. In 
this case, the FSM model for ProM and the data invariants 
for Daikon.  

When the required behavioral patterns are available, they 
need to be combined to form the final model. This step is 
based on the information defined in step 4 of the first phase, 
where the mapping of the patterns to the model is defined. 
The previous subsection defined the mapping for EFSM 
models. In this case, as the required steps are already imple-
mented in an automated tool that generates the patterns and 
combines them together, this step is a simple application of 
the tool with the given information (event traces/logs). 

IV. USING THE GENERATED MODELS 
As described earlier, the process of using the generated 

models is basically the inverse of the traditional MBT ap-
proach. For this reason, using the generated models requires 
some special consideration. When a model is generated for a 
SUT based on the information (patterns) mined from chosen 
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execution scenarios, this model represents only those scena-
rios and not the generic behaviour of the SUT. It is not a 
generic representation of all the behaviour of the SUT, but 
includes only the behaviour and patterns included in the set 
of used execution scenarios. In this way, the model is only 
partial and needs to be augmented with additional informa-
tion to generalize it for testing all the behaviour that should 
be tested. Also, the generated model does not necessarily 
describe the correct expected behaviour of the SUT but its 
actual behaviour as expressed by the execution scenarios. If 
the implementation is not correct with respect to the specifi-
cation, this is also reflected in the model. Generating tests 
with a MBT tool from this type of a model would reveal 
these differences but simply expect that the model is correct. 
In order to be useful for testing, this model needs to be com-
pared against the specification to verify the correctness of the 
implementation. 

 

 
Figure 3. Model refinement process. 

The process of using the generated models for MBT is il-
lustrated in Figure 3. This is the manual refinement and 
validation phase of the model, done with the aid of the SUT 
specification. Indeed, a computer program (such as a test 
automation system or a model generator) can not automati-
cally know the requirements and specifications of any given 
previously unknown SUT. This is similar to the problem of 
test oracle generation, where verifying the correctness of a 
SUT is not possible without knowing what should be ex-
pected of it (thus something like this would be equal a magi-
cal oracle, giving an answer to anything and knowing every-
thing.). Thus a stage where a user checks the correctness of 
the implementation against its specification is needed. 

In this phase, a useful approach is for the user to progress 
by choosing one target (state) to validate at a time, verifying 
the generated model parts for this state against the SUT spe-
cification, and refining the model to match the specification 
and the expected behaviour for that state in general. This 
phase can also be considered as generalizing the model, as 
the model specific to the used execution scenarios must be 
refined to match fully the expected behaviour of the SUT as 
expressed in the specification, not just for those scenarios. 
As the model is executable with the help of a MBT tool, the 
refined model can be executed at any time to verify that the 
implementation still matches the refined model, i.e. that the 
implementation is correct with respect to the specification. 

To progress one state at a time, the different states of the 
generated model are analysed and their guard statements are 
refined to match the specification. With the help of these 
guard statements, it is possible to enable only a part of the 
states, and focus refinement on these. By enabling more 
states, the model will also test for more complex behaviour 

and not single (input-output transition) states. Once the cho-
sen target (state) has been verified and refined, the user can 
then progress to the next state. Eventually this will lead to a 
completely verified model, describing all expected behaviour 
of the SUT from the model viewpoint. One important point 
in this regard is to note that if behaviour related to some state 
(input-output transition) is missing from the model, simply 
checking generated states is not enough alone, but the model 
must be checked also for missing states, as some may not be 
implemented in the SUT. This is one type of error that is 
possible with the implementation vs specification, and was 
also one of the errors discovered in the case study. 

Checking for the expected behaviour here also implies 
checking that it is indeed the expected behaviour and not just 
what is implemented. All parts of the generated model need 
to be checked, including states, transitions, guards, parameter 
values given for generated test sequences and the assertions 
checking the expected interactions and return values from the 
SUT. In other words, the user must check that everything 
generated from the used execution scenarios also matches 
the expectations set in the specification. In some cases, this 
can also highlight missing information or ambiguities in the 
specification, which also serves to further improve the quali-
ty of the SUT by improving its specification and the com-
mon understanding about it.  

V. A CASE STUDY 
This section describes the application of the model gen-

eration concepts presented in this paper to a case study of 
generating a model for a SUT, refining and validating this 
model and using it to generate tests for the SUT. Only a 
high-level overview of the case study concepts is given here, 
for a more detailed description including actual examples of 
the model code the reader is referred to [19]. 

The SUT in this case is a component that acts as a data-
base and a server for sensor data. Clients can connect to it, 
subscribe and query for sensor data with a given sensor id 
and the server component keeps track of all the information 
received from different sensors. In this case, the captured 
execution profile of the SUT (the server component) is 
turned into a model for the model-based testing (MBT) tool 
ModelJUnit. This is based on the behavioral patterns pro-
vided by the ProM and Daikon tools as described earlier. The 
model generation process has been implemented in a tool 
that automatically generates the model from observations 
captured from the user execution scenarios as described in 
Section 3. 

Two types of execution scenarios were used in the case 
study, field data captured from actual SUT use and existing 
unit test cases. This is similar to how execution scenarios are 
generally constructed in dynamic analysis of running sys-
tems [3]. In the case study a set of field data was fed to the 
application to form one large scale execution scenario, and a 
set of existing unit tests were used as a set of smaller execu-
tion scenarios to cover parts of the behaviour that were not 
covered by the larger execution scenario.  

In order to capture the required information (observa-
tions) to be used for model generation, the SUT was instru-
mented with AspectJ to capture all the messages passed 
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through its external interfaces. The relevant internal state of 
the SUT was accessed through a specific interface for this 
purpose, designed to facilitate its testing. This data was 
stored in a suitable format for the ProM and Daikon tools to 
read and to mine their related behavioral patterns. The com-
ponent to produce the captured pattern information in the 
correct format for these tools is also implemented as part of 
the automated model generation tool described in Section 3. 

Once the behavioral patterns from ProM and Daikon 
were available, these were combined together (with the SUT 
interface descriptions) to form the complete EFSM with the 
model generation tool. This model was refined part by part 
against the SUT specification, constantly verifying that each 
refined part matched the implementation, i.e. that the imple-
mentation actually implemented the specification correctly as 
described in Section 4. 

After the model has been fully refined and checked 
against the specification, six different bugs had been found in 
the SUT. These bugs were found both through the execution 
of the refined model as tests generated by the MBT tool, and 
during the process of refining the model to match the specifi-
cation. During refinement it was found that there were cases 
where the specification did not state what should be expected 
as a return value from a query made to the server with 
invalid data. The refined model (based on scenarios with 
only valid input) always expected a certain value, while the 
implementation would return a different error code. Thus this 
process also served to highlight refinement needs in the 
specification. A second type of error found related to check-
ing the refined model against the specification was that of 
missing implementation for a required behaviour. This was 
visible as a missing state (intput-output transition) in the 
model when making a comparison against the specification. 

During the execution of the refined model as tests gener-
ated by the MBT tool, previously unknown bugs were found 
due to two main properties of the produced model and its 
execution. The first property is due to the MBT tool syste-
matically analyzing the model and generating tests to cover 
more possible complex interaction and input data sequences 
that were not part of the previously existing tests. The second 
property is due to the inclusion of systematic asserts to verify 
all interaction patterns and related data values received as 
return values, which also checked properties previously 
considered obviously simple and not checked by the existing 
tests. 

VI. DISCUSSION 
This section discusses the experiences and limitations of 

the presented approach and how these limitations could be 
addressed in future works. This discussion is based on the 
results from the presented case study. 

Throughout this paper the automated generation of an 
EFSM model was used as an example. The presented im-
plementation for automatically generating these models 
makes use of the ProM and Daikon tools for mining the 
required patterns from the observations made from the ex-
ecution scenarios. These are generic tools intended for pro-
viding either behavioral interaction models (ProM) or data 
invariants (Daikon). When such tools are available, they are 

useful in providing a ready component to reuse for the model 
generation implementation. However, their generality also 
makes them less useful in generating effective models for a 
specific domain such as MBT. As the generated patterns are 
more generic, they require more work in the refinement 
phase to generalize and make usable for MBT. 

In the EFSM case study, the data invariants provided by 
Daikon were first used as such to provide the transition 
guards for the states. This provided both too many (useless) 
invariants, and the invariants that were useful were overly 
constrained. This is due to Daikon being a tool intended to 
provide generic invariants over the data values. For this 
reason, it produces all possible invariants it can find although 
most of them are not useful from the MBT and EFSM transi-
tion guard viewpoint. For example, in the EFSM case it 
provided invariants describing the relations of the size of the 
internal state variables to each other, and the contents of a 
state variable array always being constant. Only the ones 
related to the size of the internal state variables alone (not in 
relation to other state variables) were found useful, and the 
rest had to be discarded to remove the useless invariants (and 
generated guard conditions).  

A second limitation is due to the Daikon invariants being 
limited to the data provided by the execution scenarios. For 
example, when global state is represented in the form of a 
list, and the size of the list is either 1 or 3 in the execution 
scenarios, a generic approach gives a condition that the value 
must always be either 1 or 3. In this case, a more optimistic 
assumption had to be made and a guard condition was gener-
ated to require that this list always contains some items (size 
> 0).  

These limitations of the Daikon invariants were ad-
dressed in the EFSM case study by implementing the de-
scribed, more optimistic, approaches as custom algorithms to 
further process the Daikon invariants from the MBT model 
generation viewpoint. Whereas using the invariants directly 
initially provided weaker results, this implemented abstrac-
tion proved to provide very powerful generation of the tran-
sition guard of the model. This shows how the basic patterns 
need to be analysed and applied from a more domain specific 
viewpoint for useful results. However, identifying a good set 
of candidates and making them more specific for the domain 
and the targeted model requires more extensive studies with 
various components, state representations and input data sets, 
or similar properties of the target model. Thus it is also de-
pendant on the target model, the state representation of the 
SUT, and similar properties. 

Maintaining state inside the test model is another area 
where the use of invariants could have been improved. Inva-
riant detection could be extended to automatically cover both 
pre- and post-conditions in the form of providing invariants 
over the SUT internal state values, both before and after a 
message is processed. For nor now, the implementation is 
focused on the pre-conditions, which means that, for exam-
ple, it is not possible to infer an invariant stating whether a 
parameter value should become a part of a state expression 
(such as a list variable, or a UI element), after a state transi-
tion. This is again mostly due to difficulties in making a tool 
built for specific, more generic cases, adapt to these special 
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requirements. In fact, this can be seen as a requirement for a 
different type of a behavioral pattern, related to the relations 
of the values in the other patterns over time. 

Concerning the FSM code generation, a set of issues 
were encountered with regards to multiplicity of state transi-
tions and the abstraction provided by the FSM. ProM pro-
vides a generic FSM from the observations, where it is not 
possible to say whether a single output, multiple outputs or 
sometimes no output at all follows an input or only in some 
cases. It only tells that it follows, if the output is there in any 
given scenario. Since it is not possible to infer from the pro-
vided FSM what are the expected combinations, all combina-
tions must be generated and the user must remove the excess 
ones during model refinement. Again, a specific FSM miner 
for the purposes of MBT model generation could preserve 
this information, allowing for automatically leaving out the 
excess states. 

With respect to the tools used, it can be summarized that 
having more specific and effective means of mining the 
required patterns from the perspective of the target domain 
and model and its use in MBT would be useful. Either by 
extending the general tools with more specific extensions or 
as separate tools specifically built for this purpose. In this 
regard, it is also important to consider the ability to inspect 
the generated patterns and models during different phases as 
described in [18]. Taking all these requirements into account, 
the effort to build such tools especially for the purposes of a 
specific model is not trivial, and as such a more generic 
approach to produce different models through extensions of 
a basic framework architecture has more potential. 

A second case is that of debugging the root-causes of the 
found failures. These can be complex to analyse and pinpoint 
to cause of failure into problems with the refined model or 
the implementation. One effective approach for finding these 
causes is to create a separate test script from the test generat-
ed by the MBT. This separate test case will reveal all the 
hidden assumptions in data generation, interactions and simi-
lar properties, and allow the user to experiment with different 
settings. Currently, these tests have to be created manually. 
However, the information required for their generation is 
already available in the test case generated by the MBT tool. 
With this information, the separate test scripts with related 
data values and other generated input could be automatically 
generated, saving considerable effort for these difficult to 
debug cases. 

Although not largely discussed in this paper, test oracles 
can also be created based on the behavioral patterns. This 
requires being able to make classifications of the patterns to 
those that should be expected or not. This is another topic to 
consider in the context of the supporting tools and is dis-
cussed in more detail in [18]. 

Finally, sometimes, an extensive set of execution scena-
rios is not available for the SUT to be used as a basis for 
making the required observations. In these cases, techniques 
such as automated test data generation could be used to au-
tomatically generate execution scenarios. However, this can 
easily lead to the generated model containing extra “noise” 
in the form of various different types of data values and 
interactions exercised. Thus it would also require more effec-

tive methods for inferring the most interesting patterns cor-
rectly, such as more specific pattern mining tools as dis-
cussed before in this section. 

VII. CONCLUSIONS 
This paper described the concept of using behavioral pat-

tern mining to generate models for model-based testing. The 
described process consists of choosing the target model, 
decomposing this model into a set of behavioral patterns, 
defining the required information to mine these patterns from 
a set of observations made from running the execution scena-
rios for the SUT. The process of turning these mined patterns 
into the suitable target models for model-based testing 
(MBT) was described. As the concept of using generated 
models as a basis for MBT is opposite of the traditional 
approach to MBT where models are usually created from the 
specification, the use of these models in the context of MBT 
was also discussed and a process for this was presented.  

Throughout the paper, the generation of an extended fi-
nite state-machine model suitable for MBT was used as an 
example. A practical implementation of an automated tool 
for this was presented and the whole approach was validated 
with a case study of its application, where it revealed faults 
in the implementation of a real software component. In addi-
tion to describing the concept and its validation, the limita-
tions of the approach as based on the experiences from the 
case study were discussed. These limitations form a basis for 
improving the presented methods in the context of future 
work. 
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Abstract—Software testing requires a test oracle that makes an 
assessment of the correctness of the tested program behaviour, 
based on a priori created model. While test automation is a 
popular research topic, there is only a limited amount of work 
in the subject of automating the process of creating test 
oracles. This lack of test oracle automation greatly limits the 
usefulness of automated testing techniques. One reason for this 
is the difficulty to automatically determine the correctness of 
previously unknown software. Instead the task of coming up 
with a useful oracle is often left to the user as a manual task. 
Program comprehension techniques are focused on supporting 
the building of human understanding for a previously un-
known program, and as such are good candidates to assist in 
the test oracle creation process. This paper addresses the lack 
of automated support for test oracle creation by providing a 
framework for using program comprehension techniques to 
provide automated assistance to the user in creating test 
oracles. Based on analysis of existing work and theoretical 
background, the basic concept for this process is defined. A 
case example demonstrates the practical application of this 
concept with the generation of a model, including a test oracle, 
for model-based testing. From the existing approaches and the 
presented case example, a framework for this type of process is 
presented in order to provide a basis for providing more po-
werful techniques for user-assisted test oracle generation. 

Keywords- Test oracle; Program comprehension; Test 
automation 

I.  INTRODUCTION 
Test automation in software engineering often does not 

live up to its name and promise. Commonly the test automa-
tion is actually a set of test scripts written manually and 
executed over and over by a tool designed for this purpose. 
This is useful for regression testing but does not deliver on 
the promise of automated testing, where one could just run a 
tool to generate tests for a given piece of software without 
having to manually create them. A truly automated testing 
platform would need to automatically generate message 
sequences to drive the system under test (SUT) through its 
interfaces, test input data for these messages, a test harness to 
isolate the SUT from its environment and a test oracle to 
verify the correctness of the SUT output in response to the 
input messages and data. 

With statements on how software testing takes more than 
50% of the total development costs [1], test automation has 
of course been a popular research topic and numerous re-
search papers have been published related to the automation 
of different test automation components. Especially test input 

generation has been a popular research area. One of the least 
automated parts of test automation remains to be the creation 
of test oracles. This can be seen to be partly due to the diffi-
culties to automatically (like a magical oracle) determine the 
correctness of previously unknown software. The specifica-
tion of what is to be expected of a SUT comes from its 
stakeholders, and no program can guess what is expected 
from another program without external input. Some generic 
properties of the correct functionality can be devised for 
specific cases and domains (e.g. refactoring engines [2] and 
protocols errors in web applications [3]), but the truly auto-
mated parts of these are limited and do not generalize. 

This paper views the automatically assisted oracle crea-
tion problem as an application of program comprehension 
(PC). Similar topics have been considered before, for exam-
ple, Sneed has discussed how the human tester is the person 
who needs to have the best understanding of the SUT [4]. PC 
is aimed at building a human understanding of software 
(SW) systems. Research in this field can be classified to 
study either the human view of cognitive processes used to 
understand programs or the technological view of building 
semi-automated tool support for program comprehension [5]. 
The end result is typically a model describing the program at 
a chosen abstraction level and from a chosen viewpoint. 
Finally this model needs to be validated to ensure correct 
understanding. This is closely related to how a test oracle 
works, by comparing a model of the expected SUT beha-
viour against a model of the actual SUT behaviour and veri-
fying that they match. 

The focus of this paper is on creating test oracles for ex-
isting systems, with the help of dynamic analysis techniques. 
In the spirit of PC, the goal is not to achieve fully automated 
generation of test oracles for any SUT but to provide a 
framework for how automated assistance for creating the test 
oracles can be provided for the human user. Starting with a 
theoretical analysis of the concepts, existing approaches for 
the subjects are reviewed. Next, an example case of applying 
PC concepts for the generation of a model, including a test 
oracle, for model-based testing is presented. Finally, existing 
approaches are summed up together in respect to the pre-
sented theoretical background to provide a framework for 
providing techniques to support test oracle automation with 
the help of PC techniques. 

The rest of the paper is structured as follows. Section 2 
provides a general overview of the test oracle concept and 
existing techniques to support test oracle automation. Section 
3 presents the general concepts of PC, and a brief overview 
of related techniques. Section 4 provides a model describing 
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the relationship between test oracles and PC, including a 
comparison of the test oracle and PC techniques presented in 
the previous sections. Section 5 presents an example case of 
a PC approach to provide automated assistance for creating 
test oracles for an existing system. Section 6 discusses the 
case study and its relation to existing work shown in section 
4, analyzing these different concepts and presenting a 
framework for user-assisted test oracle generation with the 
help of PC techniques. Finally, conclusions end the paper. 

II. TEST ORACLES 
This section presents an overview on test oracle concepts 

and related research to provide a basis for analyzing the 
synergies to program comprehension in later sections. 

A. General Concepts 
The concepts of test oracles in this paper follow the defi-

nitions used in [6]. A test oracle is defined as a mechanism 
for determining the correctness of the behaviour of software 
during (test) execution. The oracle is divided into the oracle 
information, specifying what constitutes the correct beha-
viour, and the oracle procedure, which is the algorithm veri-
fying the test results against the oracle information. Further 
terms are also used according to [6]. Successful test evalua-
tion requires capturing information about the running system 
using a test monitor. For simple systems, it can be enough 
for the test monitor to just capture the output of the system. 
For more complex systems, such as reactive systems, more 
detailed information, such as internal events, timing informa-
tion, stimuli and responses, need to be captured. All the 
information captured by the test monitor is called the execu-
tion profile (EP) of the system, and includes control and data 
information. 

 

 
Figure 1. Test oracle components. 

The different components of test oracles and their rela-
tions are illustrated in Figure 1. These are grouped to three 
main steps based on the order of their application. Before a 
test case can be created, the oracle information and proce-
dure need to be defined, which forms the first step. This is 
typically based on the program specifications and/or EP (in 
which case step 2 would precede step 1). This information 
can be generated by a human developer/tester, a test automa-
tion program or a combination of both (program supporting a 
human). In the second step, the test case is executed and the 

test monitor captures the EP of the system. The input to the 
EP is the data captured from the SUT execution by the test 
monitor. In the third and final step, the oracle procedure 
gives a verdict on test results by comparing the EP to the 
expected correct behaviour as expressed by the oracle infor-
mation.  

The following subsections give an overview of existing 
automation techniques to assist in test oracle creation, in-
cluding both fully automated test oracles (as provided oracle 
components for a given domain) and automation tools to 
assist a user in oracle creation. 

B. Automatic Test Oracle Components 
In the context of automated test oracles, Daniel et al. [2] 

have presented a set of automated test oracles for refactoring 
engines. These oracles are based on the properties of the 
refactoring operations supported, including checking for the 
invertibility of the refactoring operation (performing the 
operation backwards to check it produces the original result), 
and checking that the moving of an element actually results 
in creating the item in a new location. This type of a test 
oracle is applicable to different refactoring engines, and 
Daniel et al. describe applying it on the Netbeans and Eclipse 
IDE’s. 

A generic approach for a test oracle is checking for 
thrown exceptions and application crashes [7]. A more do-
main specific but similar approach is presented by Mesbah 
and Deursen [3], who use invariants to define a set of auto-
mated test oracles for AJAX-based web-applications. They 
provide a set of invariant-based test oracles for generic prop-
erties of this type of web-applications, such as the HTML 
always being valid, and the DOM-tree not containing any 
(HTTP) error messages. These test oracles are then applica-
ble to any AJAX web-application. As an oracle procedure 
they use an automated input-generation designed to crawl 
through web-pages and check that the resulting documents 
do not violate these invariants. 

Memon and Xie [8] present an automated test oracle for 
GUI testing. This test oracle follows the traditional 
record/replay approach, where the properties of the GUI 
elements are used to describe its states. A model of the SUT 
behaviour is captured using a set of existing test cases that 
are assumed to describe the correct behaviour of the SUT, 
and a GUI state extraction technique. This model is then 
used as a basis for regression testing to describe the expected 
states. 

Machine learning has been applied in several studies to 
generate a test oracle based on the EP of the SUT. These 
oracles are typically based on low-level EP data, such as 
capturing all function calls inside a program, their parameter 
values and the relations of these values [9]. A learning algo-
rithm is trained with EP’s labeled as failing and correct, 
which provides a test oracle that can classify a new execution 
as passing or failing. These oracles can be more generic than 
the previous approaches, but typically they need to be trained 
separately for each SUT and cannot test for any application 
specific behaviour, such as correct input-output transitions. 

These examples summarize the type of support that cur-
rent automated test oracle components can provide. In case 
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of Daniel et al. [2] the test oracles can be applied to different 
refactoring engines, but not to any other type of SW. More 
generic approaches are based on generic errors or exceptions 
thrown by the programming language constructs [7][9] or 
available in domain specific representations [3]. The Memon 
and Xie [8] approach is mainly applicable to regression test-
ing only, with the assumption that the recorded model is 
correct, and the model can be fragile with regards to small 
changes in the SUT behaviour that are irrelevant from the 
test oracle perspective.  

C. User Assisted Test Oracle Automation 
A second category in automated test oracle creation sup-

port is in user assisted test oracle creation. Typically in these 
cases, the oracle procedure is provided and the user has to 
provide the oracle information. Usually, a basis for describ-
ing the oracle information is also provided in the form of 
tools or libraries that can be used to create or describe it. 

In addition to providing automated oracle components 
(with both procedure and information) for the generic prop-
erties of web-applications as described earlier, Mesbah and 
van Deursen [3] also give the user the option to provide 
custom invariants to be checked, such as the contents of a 
table being update when a link is clicked. Their toolset will 
then automatically crawl through the web-application and 
check that the provided invariants are not violated. Here the 
invariants are the oracle information provided by the user 
and the checking of the invariants is the automated oracle 
procedure that is given. The toolset also provides means to 
describe the invariants, and in this way supports the creation 
of the oracle information. 

Andrews and Zhang [10] have presented a technique for 
test oracle generation based on log file analysis. This is 
based the SUT writing a log file based using a predefined 
logging policy and a log file analyser asserting the correct-
ness of the execution based on the log file. Their approach 
requires writing the log file analyser component and provid-
ing a matching logging policy to support the analyser. They 
illustrate the approach with a state-machine based matching, 
where the transitions are based on the available log lines. 
The log file analyser component is applied against log files 
collected from SUT execution, and makes the assertion 
whether the log file matches the expected behaviour or not. 
In this case the oracle information is provided in form of the 
analyser component that the user has to write. This is sup-
ported by the logging policy and the interfaces to their test 
execution system (the oracle procedure). 

Both Ducasse et al. [11] and De Roover et al. [12] have 
described similar techniques for building test cases based on 
traces collected from a programs execution. They start with 
executing the SUT and collecting traces from the execution. 
Logic languages derived from Prolog are used to query the 
execution traces, and these queries act as the test oracles. The 
queries assert that the recorded behaviour matches the ex-
pected behaviour. Ducasse et al. [11] use the queries to filter 
relevant data from large, low-level, data sets, while De 
Roover et al. [12] do similar queries but aim at limiting the 
trace data to higher level events and lighter trace implemen-
tation. The aim with these techniques is to produce a model 

that is both human understandable and machine verifiable, in 
order to support both test automation and PC. In this case, 
the user has to provide the oracle information in the form of 
a query that describes what should be found in the (EP) trace. 
The oracle procedure is the test automation system that ex-
ecutes the queries and reports their results, doing a compari-
son against set expectations. 

Lienhard et al. [13] describe the use of a visualization 
technique, based on a program execution trace, as a basis to 
assist the user in creating unit tests. This visualization is 
called the Test Blueprint. They focus their analysis on a part 
of a program execution, which they term an execution unit, 
in order to reveal so called side-effects. These side-effects 
describe the created and changed objects, changed object 
references and similar properties during the execution of the 
chosen unit. These are then provided to the user through their 
visualization, which helps the user in turning them into asser-
tions. These assertions are used to verify that no important 
properties (side-effects) are violated during changes of the 
SUT. They also describe the visualization as supporting the 
creation of a test harness, as it shows required interactions 
with other objects. Creating the assertions in this case is done 
manually. 

Program invariants are used as a basis for assisted oracle-
generation in Agitator [14], Eclat [15] and in the technique 
proposed by Xie and Notkin [16]. These techniques require a 
set of program executions as a basis (such as existing test 
cases or an example program) and based on this create an 
invariant model to describe the SUT. This model is based on 
capturing all method calls and their parameter values (the 
execution profile). They then provide the user with the op-
tion of turning these invariants into assertions as part of the 
SUT unit test suite, to check that the invariants are not vi-
olated in regression testing. In this case, the user is actually 
provided with a form of a test oracle procedure and informa-
tion. The oracle procedure is the assertion facility of the used 
unit test tool, and the oracle information is the invariants that 
are suggested to be turned into assertions. The procedure is 
not fully automatic, it requires the user to evaluate the use-
fulness of the proposed invariants, augment or modify them 
where needed and to choose which ones should be turned 
into assertions. As such, they can be provide highly auto-
mated support but, due to focusing on low-level execution 
data, are limited in their usefulness (much like the machine 
learning approaches described earlier) to unit- tests of small 
granularity classes or components. Higher level concepts, 
such as the properties of input-output transitions in relation 
to specification are not supported as such oracle information 
is in practice not embedded in program structure for inva-
riant detection. 

III. PROGRAM COMPREHENSION 
This section provides an overview of program compre-

hension concepts and related research to provide a basis for 
analysing the synergies with test oracles in later sections. 

A. General Concepts 
Program comprehension is a field dealing with human 

understanding of software systems, and its theoretical foun-
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dations are based on fields studying human learning and 
understanding. The theories of PC are also referred to as 
cognitive theories of program comprehension [5], which 
highlights the purpose of PC techniques and tools as an aid 
to building human understanding of software systems. Pro-
gram comprehension can make use of information from 
different sources, such as static analysis of program artefacts 
(e.g. source code) and dynamic analysis of program execu-
tions. In the context of this paper, when PC is discussed, it 
refers to techniques related to dynamic analysis. 

Figure 2 shows the process of PC as a three-step process 
based on [17], adapted to include the impact of analysis of 
the program itself on the hypothesis of the program purpose. 
First, based on the program documentation, a hypothesis is 
made for what is the purpose of the program and how it is 
expected to work. This step can also be influenced by analy-
sis of the program itself when the documentation is not up-
to-date. The program is examined in the second step to build 
a hypothesis on how it operates. The building of this hypo-
thesis can be influenced by the hypothesis on the program 
purpose. Finally, it is attempted to match the two hypotheses 
together to see if the understanding is correct. If this step 
fails, it forces a return to either step one or step two.  

 

 
Figure 2. Program comprehension process. 

In order to provide the required basis for how the appli-
cation of PC techniques for test automation is demonstrated 
in the case study section later, the basic approaches for PC 
need to be reviewed. Two basic approaches to program 
comprehension are typically identified: top-down compre-
hension and bottom-up comprehension [5]. Both can be 
mapped to the process described in Figure 2, where the top 
down emphasizes documentation for step 1 and bottom-up 
emphasizes the program part. Further, from these a hybrid 
model called an integrated metamodel has been presented 
[18]. Other types of models include a knowledge based 
model, opportunistic and systematic strategies, and consid-
eration of program and programmer characteristics [5]. 

The bottom-up approaches assume that the comprehen-
sion process starts from low-level concepts, such as reading 
source code statements, and grouping these into higher-level 
concepts [19]. In these models the programmer starts from 
composing small chunks to progressively larger chunks, 
finally acquiring a model for the program or its parts under 
investigation.  

The top-down approach was presented by Brooks [20], 
who describes program comprehension as building know-

ledge about the problem domain and mapping it to the pro-
gram source code. First an initial hypothesis is formulated 
based on the programmer’s knowledge about the program 
domain. Based on information extracted from the program, 
the hypothesis is refined and subsidiary hypothesis can be 
generated. The verification of these hypotheses is based on 
beacons, which are described as sets of features (details) in 
the code that typically indicate the occurrence of certain 
structures or operations related to the hypothesis. It is seen 
that the investigation of a program will identify strong bea-
cons for all hypotheses, and these beacons will lead to fur-
ther refinement of the hypotheses.  

In a hybrid approach, the programmer is seen to switch 
between these top-down and bottom-up approaches as seen 
necessary and as the analysis of the program progresses 
[18]. One is seen to move from the specification to source 
code and use all these available information sources as 
needed, and as described in the top-down and bottom-up 
approaches.  

B. Existing Techniques 
This subsection gives a brief overview of existing tech-

niques related to PC with dynamic analysis. Since the intent 
is to provide a basis for mapping from PC to test oracle 
automation, the focus is on behavioral models as this allows 
matching them against test oracle requirements. As PC is a 
field with a large number of techniques and studies [21], the 
focus is only to give an overview of this area. 

In order to support the human cognitive process of pro-
gram comprehension, various tools and techniques have 
been presented with different approaches, and aiming dif-
ferent properties of the SW, such as structure and behaviour. 
These approaches include visualizations, pattern detection, 
summarization (e.g. clustering), data queries, and filtering or 
slicing the data [21]. 

Sequence diagrams are a popular means to model the be-
haviour of the analysed system [22][23]. These tools are 
intended to support functions such as mapping sequences of 
messages (method invocations) to features of the analysed 
SW (top-down approach), and to understand patterns of 
execution (bottom-up approach) [22]. 

State machines are another popular means of modeling 
SW behaviour, and many approaches to synthesize state-
machines based on execution traces have been presented 
(e.g. [24], [25]). Although many of these list the support for 
PC as one of the uses, there are only few studies on actual 
use and how the generated state-machines assist humans in 
PC [21]. Although it is intuitive that understanding the 
states of a system and how the transitions between them 
happen help in PC, it would be useful to see empirical stu-
dies on how people actually use them to support this 
process. 

Other types of models include invariant models [26], 
concurrency models [27], architectural models of compo-
nents and connectors [28], and petri-nets [29]. These are 
described to help in tasks such as understanding the concur-
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rency related dependencies [27][29] or structures of the 
system [28]. However, these too suffer from lack of empiri-
cal studies on how they would be systematically applied by 
their users. This lack of empirical studies (controlled expe-
riments) on how the human users make use of these models 
is also highlighted as one of the lacking areas in PC research 
by Cornelissen et al. [21]. 

IV. TEST ORACLES AND PROGRAM COMPREHENSION 
This section presents an analysis of the relations between 

the test oracle and program comprehension concepts pre-
sented in the previous two sections, and related research. 

A. General Concepts 
The previous two sections presented the basic concepts 

of test oracles and program comprehension and an overview 
of research done in these areas. This section reviews these 
two concepts together from the viewpoints of commonalities 
to use as a basis for finding synergies between them. Figure 
1 and Figure 2 showed an overview of test oracle and PC 
procedures accordingly. Figure 3 shows these two figures at 
a higher abstraction level and maps them together. The top 
row shows the test oracle process and the bottom row shows 
the PC process. 

 

 
Figure 3. Test oracles and program comprehension. 

Figure 3 shows how the two concepts are similar by 
mapping each of the three steps in both processes to each 
other and also providing a similar feedback loop in both 
processes. The details of these steps were described in the 
previous sections and are not repeated here. Instead this 
section is focused on discussing the conceptual similarities of 
these two processes. 

In the first step, the creation of oracle information (OI) 
uses program documentation and execution profiles as input 
to create a specification of what is expected from the SUT. 
Similarly, in the first step of the PC process a functional 
hypothesis (FH) is built for the program based on its docu-
mentation and artefacts such as the EP. Thus, both processes 
have conceptually similar inputs, outputs and goals in this 
step. 

In the second step of the oracle process, the EP of the 
SUT is captured. This EP describes the behavior of the SUT 
implementation. In step 2 of the PC process, the operational 
hypothesis (OH) is built to describe how the program oper-

ates. Again, both these processes have similar goals, inputs 
and outputs in this step. Both aim at building a model to 
describe what the program is and what it does. Both also use 
the program and its executions as input. 

In the third step, the oracle process compares the OI 
model against the EP model to evaluate the test results. If 
these are found to match, the test result is marked as passed; 
otherwise it is marked as a failure. Similarly, in the program 
comprehension process, this step involves evaluating the FH 
against the OH. If these are found to match, the program 
comprehension is seen to be successful; otherwise it is seen 
to have failed.  

Finally, in both processes, a failure in the third step 
prompts a return to the earlier model generation phases.  As 
the evaluation is in both cases based on comparison of two 
models (or hypothesis), this step leads to the re-evaluation of 
both of these models to see which one(s) are not correct, 
refining these models based on this evaluation and repeating 
the process. 

B. Existing Techniques 
Many techniques that are mainly aiming to model a SW 

system list a number of possible fields where the authors 
think models generated from execution traces could be used. 
These fields usually include both PC and software testing. 
However, more concrete evaluations for all the included uses 
are in many cases missing, as usually a paper can only have 
one effective focus area. Despite this lack of studies, it is true 
that generated models at a higher level of abstraction than 
pure execution trace represented by function calls and para-
meter values are of course easier to understand for humans. 
As they also describe the executions of the SUT, they can be 
considered to have possible uses for software testing. 

Some of the better examples are found in the research de-
scribed in the earlier section about user assisted test oracles. 
For example, both Ducasse et al. [11] and De Roover et al. 
[12] describe their techniques as supporting both software 
testing and PC. They describe their tools from the software 
testing viewpoint, in the form that enables the user to create 
queries over the SUT traces and once satisfied with the an-
swers, to turn these into assertion for the test suite of the 
SUT. PC is seen to be supported in answering the queries the 
user has about the program, and test automation in keeping 
these queries as a part of the regression test suite. As a part 
of the regression test suite, they can also be seen as uphold-
ing that understanding by reporting when the related assump-
tion no longer holds. 

Similarly, the previously describe work by Lienhard et al. 
[13] on their Test Blueprints technique aims to support the 
creation of test oracles with the aid of program comprehen-
sion techniques. The visualization they use is originally 
developed to support program comprehension, and in this 
case they also use it to help the user understand the SUT in 
order to create test assertions, which act as test oracles.  

Invariant detection started out from work on producing 
models based on execution profiles and was described as 
potentially supporting many different domains, such as test 
automation and program comprehension [26]. A number of 
tools including Agitar [14], Eclat [15] and the technique 
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presented by Xie and Notkin [16] use these
models as a basis and are described as supp
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V. A CASE EXAMPLE 
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During this case study, the usefulness of this approach 
was also demonstrated as it revealed six different, previously 
unknown, errors in the SUT. These were related to different 
properties of the SUT, such as incorrect implementation of 
the specification, missing or ambiguous parts of the specifi-
cations, and design errors in implementation details of the 
SUT. 

VI. A FRAMEWORK AND RELATED DISCUSSION 
The existing techniques supporting both program com-

prehension and test oracle automation presented in section 
IV and the case example shown in section V share a number 
of properties. All start with supporting PC in the form of 
building a model based on the execution profile of the SUT. 
Test automation is supported by providing means to turn 
these models into different forms of test oracles for the SUT. 
From the PC viewpoint, they all apply a hybrid approach that 
starts with a bottom-up approach of building models from 
the execution profile, presenting them to the human user for 
analysis. The human user applies a top-down analysis by 
using the specification to determine the correctness of the 
proposed models and to turn them into test oracles. 

A. A Framework for User-Assisted Test Oracle Generation 
The different representations of the test oracle informa-

tion used by the different techniques that have been pre-
sented also share the property of being invariant representa-
tions. Some of these techniques describe the provided oracle 
information as invariants [14][15][16], however they only 
discuss invariants as a basis provided by an external tool and 
not as the underlying concept of the test oracles themselves. 
However, in practice all oracle information is always a form 
of an invariant representation of some property of the SUT, 
which is then verified with the given oracle procedure. In the 
case of using queries over execution profile traces [11][12], 
the invariant is that the property expressed by the query 
holds in all analysed versions of the traces. In the case of the 
Test Blueprint approach [13], the invariant is that the “side-
effects” checked by the created assertions are not changed. 
The concept of thinking of a test oracle information as a 
representation of an invariant, and the oracle procedure as an 
invariant-checker is important as it provides a conceptual 
framework for creating means to provide fully automated or 
user-assisted test oracle generation techniques. 

In the presented approaches based on dynamic invariants 
inferred from the SUT execution profile, both the oracle 
procedure and the oracle information are provided, but the 
user needs to analyse the provided information and make an 
assessment if this is correct or not, possibly refining it 
[14][15][16]. Using queries of the execution profile trace as 
oracles requires one to define the queries as the oracle infor-
mation to complete the oracle [11][12]. In the Test Blue-
prints approach, the user is presented with a visualization of 
the “side-effects” the execution of a program unit has, which 
can be used as a basis to write test oracles to verify these 
“side-effects” [13]. In the MBT model generation approach, 
both the oracle procedure and oracle information are pro-
vided and the user must check the information and refine the 
generated model as needed. All these approaches require the 

user to provide the oracle information or to refine it, while 
the oracle procedure is provided. The invariant- and model-
based techniques can be seen as more advanced in their sup-
port for the user as they provide (generate) the initial (oracle 
information) model in a form directly executable as a test 
oracle, and which can then be analysed and refined by the 
user. 

From these different techniques, it is possible to derive a 
set of guidelines for what to provide to the user when provid-
ing PC related techniques to assist in automated generation 
of test oracles. The items provide a framework for using 
program comprehension techniques to provide automated 
assistance for a user in generating test oracles, and can be 
summarized as providing the user with: 

 
• An invariant notation suitable for the chosen oracle 

information. 
• (a basis for) The oracle information, i.e. a set of in-

variants describing a meaningful  properties of the 
SUT. 

• The oracle procedure, i.e. an invariant checker. 
•  (an automated) Means to turn the oracle information 

into a test case with the oracle procedure. 
• Assistance for the user to analyse (comprehend) the 

generated oracle information. 
• Possibility to refine the oracle information. 
• Means to (execute the model and) verify the com-

plete oracle, i.e. an automated invariant-checker. 

B. Related Discussion 
The oracle procedure relates to the oracle information 

and how it needs to be processed and analysed. In many 
cases this can be simple, for example verifying that the out-
put from a method call always has a value smaller than 100 
(for invariant x < 100) can be implemented with a single 
assert statement. This is closely tied to the test automation 
platform used, such as a unit testing tool that provides the 
assertion facility, and the (program comprehension) tools 
used to provide the model of the execution profile that is 
used as a basis for the oracle information. 

The basis for the oracle information as described in the 
techniques reviewed in this paper is formed from the inva-
riant- and state-machine models of the SUT created based on 
the execution profile. Thus they already provide an abstrac-
tion generated based on the execution profile that the user 
can turn into or refine to produce the required oracle infor-
mation.  

Turning the oracle procedure and information into a test 
case requires mapping the oracle information to the oracle 
procedure. For example, in the MBT case example, this 
requires parsing both the invariant and state-machine models 
and turning them into an EFSM model. In the context of 
using PC tool, when they provide access to their internal 
model representations this provides the best support for both 
PC and test oracle automation as shown in section V. 

As any tests generated in this way are based on the ex-
ecution profile and are thus limited by what executions it 
contains, the user must be able to analyse the provided test 
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oracles and to refine the model to match the specification. 
Since the model describes the actual behaviour of the SUT, 
the user must also be able to verify that this is actually the 
expected behaviour of the SUT as expressed by its specifica-
tion. This highlights the need for means to analyse the mod-
els with tools such as those used in PC. This was demon-
strated in the MBT case example, where the resulting state-
machine could be visualized both from the execution profile 
and after being generated into an EFSM. In the same case 
example, it was demonstrated how the model assumptions 
can be made clear and verified (comparing the generated test 
oracle vs. the specification) by the PC related visualization 
and analysis, and by executing the model with the test auto-
mation tool. 

The process as described by the guidelines matches that 
of both program comprehension and test oracle automation 
as described in Figure 3. The user starts with the model of 
what is the expected behaviour of the SUT, such as its speci-
fication. Using the tools provided, the execution profile is 
captured and turned into a model to be used as a basis for 
defining the oracle information. The user analyses this in-
formation, refines the model and verifies its correctness. As 
required, both of these models are iteratively refined accord-
ing to findings in the verification phase.  

These examples show that using PC related concepts and 
techniques can be helpful in the context of providing auto-
mated support for test oracle generation. However, as dis-
cussed before, and also noted by Cornelissen et al. [21], there 
is a lack of studies on how the PC techniques support actual 
humans in their work. This also makes it more difficult to 
take these approaches and consider how they could be ap-
plied in the context of test oracle generation. The example 
shown in section V uses PC techniques to generate and vi-
sualize state-machines as a basis for generating a test model, 
including a test oracle. Although there are tools for state-
machine generation in PC, there are not many empirical 
studies on their use [21]. Still, in the case study described in 
this paper, one tool was used to aid in test oracle generation 
with a straight-forward approach as described in section V. 
However, more comprehensive studies in application of PC 
techniques would make the process of applying them for test 
oracle automation easier.  Similarly, this could be eased by 
providing support for accessing and using the models pro-
vided by the PC tools externally from other tools. This sup-
port and the framework presented in this section also provide 
a basis for creating more powerful techniques for user-
assisted test oracle generation.  

VII. CONCLUSIONS AND FUTURE WORK 
In the context of test automation, the creation of test 

oracles is one of the most difficult parts to automate. This is 
also visible in the limited number of papers that address the 
test oracle automation problem. This paper addressed this 
issue by providing a framework for applying techniques 
from the field of program comprehension to provide auto-
mated assistance to the user in creating test oracles. Related 
work on this topic was reviewed, analysed, and brought 
together with the concept of program comprehension for test 
oracle automation. The concept was illustrated with a prac-

tical example of generating models usable as a basis for test 
oracles in model-based testing. By comparison of this exam-
ple with related work, a framework was provided for apply-
ing program comprehension techniques to provide automated 
assistance for users in creating test oracles. The provided 
framework describes test oracles as invariant-checkers and 
provides a set of guidelines for providing automated assis-
tance to the user in generating these invariant-checkers based 
on information captured from the program execution with 
the help of dynamic analysis techniques. The provided 
framework helps with providing more powerful techniques 
to assist in the test oracle generation process. 

This paper also highlighted need for future work in the 
field of program comprehension to identify how a human 
user actually makes use of a program comprehension tech-
nique. This information is needed in order to automate the 
use of these techniques as much as possible in the context of 
the framework presented here. In the field of test automation, 
interesting future work includes making use of more pro-
gram comprehension techniques to support user-assisted test 
oracle generation. 
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