
Dissertation	 	 VTT PUBLICATIONS 730
VTT CREATES BUSINESS FROM TECHNOLOGY
�Technology and market foresight • Strategic research • Product and service development • IPR and licensing 
• Assessments, testing, inspection, certification • Technology and innovation management • Technology partnership

• • •  VTT PU
B

LIC
A

TIO
N

S 730  SEN
SO

R
 D

A
TA

 FU
SIO

N
 B

A
SED

 ESTIM
A

TIO
N

 O
F TYR

E-
R

O
A

D
 FR

IC
TIO

N
...

ISBN 978-951-38-7382-0  (soft back ed.) 	 ISBN 978-951-38-7383-7  (URL: http://www.vtt.fi/publications/index.jsp)
ISSN 1235-0621 (soft back ed.)		  ISSN 1455-0849 (URL: http://www.vtt.fi/publications/index.jsp)

Sami Koskinen 

Sensor Data Fusion Based 
Estimation of Tyre-Road Friction  
to Enhance Collision Avoidance

This dissertation discusses the estimation of maximum coefficients of friction be-
tween tyres and a road surface, together with the determination of road conditions. 
The estimation is based on sensor data fusion, combining data from three classes 
of sensors: environmental sensors, sensors measuring vehicle dynamics and experi-
mental tyre sensors.
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on tyre grip to further improve their calculations for braking distances and evasive 
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lision mitigation systems are analysed using simulations. A correct initial estimate 
of the maximum coefficient of friction supports the systems to efficiently improve 
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Sami Koskinen. Sensor Data Fusion Based Estimation of Tyre�Road Friction to Enhance Collision 
Avoidance [Anturidatafuusioon perustuva renkaan ja tien välisen kitkan estimointi ja tulosten hyödyntä-
minen törmäyksenestossa]. Espoo 2010. VTT Publications 730. 188 p. + app. 12 p. 

Keywords friction, sensor, data fusion, collision avoidance, collision mitigation, environmental
sensing, tyre, road, conditions, trajectory, curvature-velocity, ADAS  

Abstract 
Vehicle steering, braking and acceleration are subject to friction forces arising from 
contact of the tyres with the road surface. The contact force is both enabling and 
limiting. The ratio of the contact friction to the force of the tyres pressing on the road 
surface is described as the coefficient of friction. The maximum coefficient of fric-
tion for different surfaces characterizes the extent of tyre grip. 

Collision avoidance and collision mitigation systems require information on tyre 
grip so as to accurately calculate braking distances and evasive manoeuvres. Estimat-
ing road slipperiness (skid resistance) during driving has however proven difficult. 

This dissertation discusses estimating the maximum coefficient of friction (herein 
referred to as the friction potential) together with determining road conditions. Both 
estimations are based on multi-sensor data fusion; that is, combining data from several 
sensors. The presented sensor data fusion utilizes various sensors from three main 
classes: 1) environmental sensors, 2) sensors measuring vehicle dynamics and 3) ex-
perimental tyre sensors. This work concentrates particularly on methods for combin-
ing measurements of vehicle dynamics with environmental sensor readings; for exam-
ple, wheel speed signals are linked to readings about ice, snow or water on the road. 

The methods were incorporated into a prototype passenger car implementation, 
where testing yielded a reliable estimate of friction potential for approximately 90% 
of driving time. The estimate of friction potential was then within 0.2 of reference 
values measured in braking tests. These results encapsulate a proof of concept on 
asphalt roads in some wet, snowy, icy and dry road conditions. 

The advantages of friction estimation for collision avoidance and collision miti-
gation systems are analysed using mainly simulations. A correct initial estimate of 
the friction potential enables the systems to improve traffic safety efficiently also 
in slippery road conditions. However, the range of available environmental sensors 
does not cover long braking distances. 
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Together with the simulations, the work introduces a new method for collision 
avoidance calculations and timing the activation of collision mitigation. The 
method is based on a large number of pre-calculated vehicle trajectories. 
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Avoidance [Anturidatafuusioon perustuva renkaan ja tien välisen kitkan estimointi ja tulosten hyödyn-
täminen törmäyksenestossa]. Espoo 2010. VTT Publications 730. 188 s. + liitt. 12 s.  
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Tiivistelmä 
Renkaiden ja tien välinen liikettä vastustava voima, kitka, asettaa rajat ajoneu-
von ohjaukselle, jarrutukselle ja kiihdytykselle. Se on samalla sekä mahdollista-
va että rajoittava kontaktivoima. Kitkan ja renkaita tietä vasten puristavan voi-
man suhde ilmaistaan kitkakertoimella. Kitkakertoimen maksimiarvo eri pinnoil-
la kuvaa renkaiden pitävyyttä.  

Kehitteillä oleviin törmäyksiä estäviin ja törmäysenergiaa lieventäviin kuljet-
tajan tukijärjestelmiin tarvitaan tietoa renkaiden pitävyydestä, jotta jarrutusmat-
koja ja väistömahdollisuuksia voidaan arvioida entistä tarkemmin. Tien liukkau-
den määrittäminen ennalta ajon aikana, ilman renkaiden selkeää luistoa, on kui-
tenkin osoittautunut hankalaksi. 

Tämä väitöstyö käsittelee kitkakertoimen maksimiarvon, tässä kitkapotentiaa-
lin, ja kelitietojen määrittämistä. Tutkimuksessa hyödynnetään anturidatafuusio-
ta eli useiden antureiden tuottamien tietojen yhdistämistä. Anturidatafuusiossa 
käytetyt anturit edustavat kolmea päätyyppiä: 1) ympäristöä havainnoivat antu-
rit, 2) auton liiketilaa mittaavat anturit ja 3) rengasantureiden prototyypit. Työssä 
keskitytään erityisesti menetelmiin, joilla voidaan yhdistää ajoneuvon liiketilan 
mittaustietoja ympäristöä havainnoivien antureiden tuottamiin tietoihin. Esimer-
kiksi renkaiden pyörimisnopeuksista saatuja tietoja yhdistetään tietoihin tiellä 
olevasta jäästä, lumesta tai vedestä. 

Esitellyillä menetelmillä ja henkilöautoon toteutetulla prototyyppijärjestelmällä 
on testeissä kyetty arvioimaan kitkapotentiaalia luotettavasti noin 90 prosenttia 
ajoajasta. Tällöin kitkapotentiaalin arvio poikkeaa enintään 0,2 jarrutustesteillä 
mitatuista referenssiarvoista. Järjestelmää on testattu asfalttiteillä. Menetelmien 
toimivuus on todennettu joukolla märkiä, lumisia, jäisiä ja kuivia kelejä. 

Kitka-arvion hyötyjä on analysoitu törmäyksiä estävissä ja törmäysenergiaa 
lieventävissä järjestelmissä pääasiassa simulaatiotuloksia käyttäen. Arvio kitka-
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potentiaalista auttaa näitä järjestelmiä parantamaan liikenneturvallisuutta tehok-
kaasti myös liukkailla keleillä. Kuitenkaan saatavilla olevien keliantureiden mit-
tauskantama ei vielä kata pitkiä jarrutusmatkoja. 

Tämä työ esittelee simulaatioiden yhteydessä uuden, lukuisiin ennalta lasket-
tuihin liikeratoihin perustuvan nopean laskentamenetelmän törmäystilanteiden 
arviointiin ja esteiden väistöön. 
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1. Introduction 

1.1 Background 

The European transport policy for 2010 sets new targets for road safety as well 
as for the introduction of active safety systems in new vehicles. One of the most 
ambitious and key goals is to halve the number of road fatalities [1]. Albeit that 
responsibility will fall mainly on the national authorities, the European Union 
can contribute through several actions, such as harmonising regulations and 
promoting technologies to improve road safety. 

In 2005, VTT proposed a three-year EU project named FRICTI@N [2], that 
concentrated on measuring friction and road slipperiness using on-board sensors 
and data fusion. It was envisaged that information on friction and road condi-
tions can be used to enhance the performance of several integrated and co-
operative safety systems, such as automatic emergency braking and vehicle-to-
vehicle communication around accident black spots. The project obtained fund-
ing from the 6th Framework Programme. It belonged to the Commission�s Intel-
ligent Car Initiative, which supports the development and deployment of systems 
helping drivers to prevent or avoid traffic accidents. The FRICTI@N project has 
provided the main framework for this thesis. 

In a preceding EU project, APOLLO [3], which pioneered intelligent tyre sys-
tems, tyre deformation sensing was seen as a promising technology for detecting 
friction levels and aquaplaning. The FRICTI@N project utilized results and also 
tyre sensors from the APOLLO project, but concentrated purely on friction 
rather than on constructing intelligent tyres. 

Friction is a force between tyres and a road that are in contact. The key vari-
able to be measured or estimated during driving is the maximum coefficient of 
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friction between the tyres and the road surface. It characterizes the extent of tyre 
grip on a road. A detailed description is given in 1.2. 

In a state of the art study that was carried out during preparations for the 
FRICTI@N project, it was seen that no available single sensor was able to con-
tinuously estimate the maximum coefficient of friction of a moving vehicle. 
Continuous estimation would be required by several active safety systems and 
moreover, they would need information from tens of meters ahead of the vehi-
cle. Some environmental sensor types did show potential for estimating weather 
and road conditions. Based on the previous research it was also known that both 
tyre and vehicle sensors that measure forces and accelerations can be used to 
estimate the maximum friction coefficient during certain driving manoeuvres. It 
seemed likely that a fusion of this sensor data would be the most promising 
method for obtaining friction information to serve various applications. 

1.1.1 Motivation 

The tyre�road contact area is where all steering, acceleration and braking ma-
noeuvres are put into action; contact forces between the vehicle and road surface 
interact at tyre�road contact patches of varying size and shape. The other forces 
acting continuously on the vehicle are gravity and aerodynamic forces. 

Even if friction has an obvious role in vehicle control, drivers may sometimes 
forget the basic limits it sets. After all, on dry asphalt, maximum friction forces 
are seldom reached in normal driving. 

In a Finnish empirical field study [4], travel speeds on snow-covered roads 
were only about 4 km/h lower than in good driving conditions. The speed reduc-
tion on icy roads was 3�7 km/h. This suggests that drivers do not adapt their 
driving behaviour sufficiently in changing conditions and view the speed limits 
as guidance, not restrictions.  

In a recent study also from Finland, it was found that drivers had difficulties in 
estimating road slipperiness, shown by comparing their estimates with road 
weather station measurements [5]. There is even a Finnish anecdote that the first 
day of winter surprises drivers every year. 

The lowering of winter-time speed limits has been used for several years in 
the Nordic countries, especially in Finland, and this has had a positive effect on 
traffic safety [6, 7]. It is young and inexperienced drivers as well as older drivers 
who have the highest risk of a fatal accident during winter-time [8]. When com-
paring winter-time and summer-time accidents, a considerably higher percentage 
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of fatal accidents occurs in winter as a result of overtaking (indicating loss of 
control), head-on collisions and accidents involving pedestrians. Truck drivers 
also experience difficulties in winter driving conditions more often than average 
[6]. The increased risks are similar in Finnish and Swedish data [7]. 

A look at London�s recent accident statistics shows that drivers� misjudge-
ment of appropriate driving speeds is a major factor in speed-related accidents. 
For example, they fail to realize that wet road conditions increase the likelihood 
of skidding, or misjudge the sharpness of a bend. For male drivers, speed-related 
accidents constitute 57% of all at-fault accidents, and of these, 16% were con-
sidered as misjudgements. For women, the percentage of speed-related accidents 
was smaller, at 31%, but of these, 64% were considered as misjudgements [9]. 

Currently vehicle systems do not especially support the driver in estimating 
road slipperiness. Electronic control systems like ABS and ESC participate in 
the vehicle control only when the maximum friction is exceeded. Future safety 
systems such as collision mitigation (the main method of mitigation is automated 
emergency braking right before a collision) and co-operative driving applica-
tions (applications based on vehicle radio communication) would benefit from a 
more continuous friction estimation system. Also some of the existing systems 
could be supported with advance information that is of sufficiently high quality. 
The information would enable, for example, ABS to start braking with the opti-
mal brake pressure based on the current maximum coefficient of friction, mean-
ing the early cycles of operation are more efficient. 

Collision Mitigation Systems (CMS), which apply the brakes a moment be-
fore an accident to reduce speed, are less effective on snow if a high friction 
coefficient is assumed � braking will begin too late given the low friction. In 
early collision mitigation prototypes the maximum coefficient of friction has 
been a static value based on ordinary driving conditions, i.e. dry asphalt.  

Slippery road conditions can also affect safety systems� calculations in cases 
where the vehicle is trying to join the traffic flow or drive through an intersec-
tion, or when generally estimating safety margins for driving. 

Along with driver behaviour and alertness, which are not measured in current 
vehicles, the maximum coefficient of friction remains one of the key unknowns in 
the algorithms of future ADAS (Advanced Driver Assistance Systems) that cal-
culate e.g. the risk of collision or safe speed.  
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1.2 Tyre�road friction 

Tyre�road friction is a complex phenomenon and several models have been cre-
ated to describe it. The variety of materials used in tyres, their deformations, the 
changing properties of the road and unknown foreign materials in the tyre�road 
contact patch make it difficult to derive friction values from the physical proper-
ties of the rubber and road surface. Also, the tyre�road interaction is usually 
modelled for hard surfaces (roads) and the models may not apply if the tyres 
sink deep. 

The friction coefficient (µ) is defined, regardless of the acting surfaces, as the 
ratio of the normal (N) and tangential contact force (F) between two bodies: 

 
N
F

=µ  (1) 

A useful simplification of this equation can be derived when an object is moving 
on an even surface and only gravitation is acting as the normal force. The tan-
gential force of Equation 1 can then be written as mass multiplied by accelera-
tion, where the acceleration results from all tangential (in this case, horizontal) 
forces. The normal force becomes the mass multiplied by acceleration due to 
gravity (g). This simplification gives the following equation, which presents the 
friction coefficient as the acceleration (a) of an object on an even surface: 

 
g
a

=µ , considering simplifications (2) 

From this equation, it is easy to see that the friction coefficient varies, and that 
the maximum would be reached with maximum acceleration. 

Traditionally the force transfer between a tyre and a road is modelled using 
tyre slip, which is measured as the speed difference of the surfaces in percentage 
terms (definitions in Chapter 4.3.1). The viscoelastic behaviour of tyre materials 
causes the coefficient of friction to increase with sliding velocity until a maxi-
mum value is reached at a certain speed. The effect is easy to understand by 
imagining a brush against a surface: the force increases when the bristles bend. 
At higher sliding velocities and tyre slip, the friction coefficient decreases. 

Figure 1 shows an example of slip-force curves with different vertical load. 
The effect of vertical load on friction forces is depicted as almost linear. De-
pending on the hardness of rubber compounds, it can, however, cause a larger 
true area of contact and change the friction coefficient [10]. 
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Figure 1. Friction characteristics example [11]. 

The slip ratio describes the point of operation and is used for example in opti-
mising braking. The maximum friction is reached near 10�15% slip but this 
depends on the tyres and the road conditions. Pure sliding friction is experienced 
with 100% slip.  

Usually the maximum friction coefficient reached with a passenger car on dry 
asphalt is between 1.0�1.2. On wet asphalt the coefficient depends on several 
factors such as the water depth, tyre tread pattern and also on vehicle speed due to 
the rising hydrodynamic pressure. A variation between 0.5�0.9 can be expected at 
slow speeds. On snow, a maximum friction coefficient of 0.4 would be the pre-
liminary estimate, using winter tyres, but e.g. 0.25 using summer tyres. There are 
several types of ice, such as smooth, wet and sanded ice, but a range 0.05�0.25 
covers many of these cases. Tyre manufacturer measurements for friction profiles 
of different tyres can give more accurate estimates of the values than the ones in 
the literature, which have been collected for average car tyres. [12, 13 (p. 27)] 

The simplified Equation 2 described the maximum friction coefficient as 
equivalent to the maximum acceleration of a car on different horizontal road 
surfaces; a maximum acceleration of 1 g would indicate a maximum friction 
coefficient of 1.0. This simplification disregards air resistance and assumes a 
perfect contact to the road, with all four tyres acting. Further, when a vehicle is 
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moving on an inclined road, a gravity component affects the acceleration. The 
relationship between vehicle acceleration and friction is discussed in more detail 
in Chapter 4.3.1. However, in horizontal braking tests with moderate speeds, the 
error components in the simplification are small when compared to the maxi-
mum friction coefficient. 

Figure 1 uses the traditional sticking/static and sliding/kinetic friction terms to 
describe the value ranges of low and high slip. Several theories exist that de-
scribe exactly the different aspects of friction force, including the effects of tyre 
deformation (e.g. rolling friction due to energy dissipated as rubber is com-
pressed and released), molecular bonds causing adhesive forces and traction 
forces by means of tearing and wear. [14] 

The curve describing the relation between slip and force is likewise not fully 
static; rather, a hysteresis effect occurs when comparing acceleration with brak-
ing. Additional dynamic parameters such as effects from steering angle rate and 
camber can also be identified. [15] 

Due to the many variables involved in tyre�road friction modelling, many 
models have a basis in empirical studies. The most famous semi-empirical 
model is Pacejka�s model [16], also known as the �Magic Formula�. This model 
has been shown to suitably match experimental data and is widely used in simu-
lations. The several parameters of this model can be identified for a tyre by 
matching experimental data. 

A friction estimation system has typically to take into account several parame-
ters that influence the maximum friction coefficient and the forces that can be 
applied. The parameters can be categorized to  

1. tyre parameters (e.g. tyre pressure and stiffness) 

2. vehicle parameters (suspension, load, �) 

3. driving manoeuvres (acceleration, braking, cornering, �) 

4. road surface parameters (asphalt microtexture, gravel, �) 

5. road conditions (dry, icy, snowy, slushy, �). 

Inaccuracy in identifying contributing factors of this kind can cause large errors 
in friction estimation. On the other hand, there are applications where consider-
able improvements can be achieved even with a 3-level classification of maxi-
mum road friction: high, medium, low. A number of vehicle safety applications 
and their requirements are discussed in Chapter 2. 
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A more straightforward method for estimating or rather measuring the maxi-
mum coefficient of friction is naturally by hard braking or using maximum fric-
tion while cornering. However, the goal of on-board friction estimation systems 
is usually to be able to detect slipperiness with low excitation from normal driv-
ing. This is also one of the main goals of this study. 

This thesis uses the following terminology, originating from the APOLLO and 
FRICTI@N projects, in measuring different types of friction:  

1. Friction used � the friction coefficient currently in use, corresponding to 
the magnitude of relative tangential forces acting in tyre�road contact. The 
term can be used when discussing single tyres or the vehicle as a whole. 

2. Friction potential � the maximum tyre�road friction coefficient that can 
be used. 

3. Friction available � the remaining potential to use higher forces; the 
difference between the friction potential and friction used. 

4. Upcoming friction potential � the future friction potential in the 
direction of movement. 

Figure 2 gives a graphical representation of these terms: 
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Figure 2. Representation of friction potential, used and available.  
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The friction used is usually determined by using standard vehicle-driving-
dynamics sensors like accelerometers and wheel speed sensors. The forces could 
also be measured directly from the tyres. Often friction used is calculated as a 
lumped value for the whole vehicle, depending on the required accuracy. Al-
though the calculation is accurate compared to estimations of friction potential 
and upcoming friction, it does have several error sources: wind speed is usually 
unknown, road bumps cause momentary variations and the force and load distri-
bution between tyres may not be accurately estimated. When measuring the fric-
tion used for example from longitudinal acceleration in a vehicle�s co-ordinate 
system, changes in vehicle pitch rate and resulting pitch angle also cause varia-
tions in accelerometer measurements. Friction used will be discussed in more 
detail in Chapter 4.3.1.  

The friction potential, the maximum coefficient of friction, is a theoretic esti-
mate if not experienced as friction used. The potential can be estimated using 
friction models and measuring tyre and vehicle behaviour. The changes caused 
by impaired friction can indicate the friction potential. Additionally, information 
from environmental sensors and road weather stations can be used. Environ-
mental sensors (non-contacting measurement) are, however, unable to truly test 
the potential since the potential exists only between a tyre and a road. 

Vehicle dynamics sensors do not tell about the upcoming friction potential. 
Rather the processing for friction used and potential can take time and the values 
are actually past values. To get information about the friction potential values 
ahead, environmental sensors measuring road surface type and conditions have 
the key role. Co-operative systems that communicate information between road 
users can also be taken into consideration. 

The friction available is useful when considering the vehicle dynamics and 
e.g. driver information systems for how much unused potential still remains 
before there is a risk of uncontrolled sliding. 

1.3 Hypothesis, objectives and constraints 

The aim of this study is to test the research hypothesis: 

Environmental sensing combined with information from existing vehicle dynam-
ics sensors � and optionally from a tyre sensor � enables the estimation of tyre�
road friction potential with an accuracy and reliability high enough to enhance 
collision mitigation and avoidance. 
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A data fusion approach and architecture are presented along with test results. 
The advantages of friction estimation are presented in a novel algorithm for col-
lision avoidance. 

The major objectives of this thesis are: 

• To study an architecture for sensor data fusion from three different types 
of sensors: (I) existing in-vehicle sensors for vehicle dynamics, (II) 
environmental sensors, and (III) tyre-based sensors.  

• To examine the quality of friction information achieved through sensor 
data fusion and generally the potential of estimating the maximum 
coefficient of friction with the selected sensors. An instrumented 
research vehicle has been used in the validation of the concepts. 

• To simulate and discuss the advantages of friction estimation in collision 
mitigation and collision avoidance. A new collision avoidance algorithm 
is presented before the simulations. The method uses pre-calculated 
look-up tables for the vehicle to quickly assess the safety of optional 
trajectories. Besides friction information, the algorithm takes into 
account both static and dynamic obstacles, vehicle dimensions, 
kinematics and partially also dynamics. 

Minor contributions are also focused on: 

• Discussing the use of friction related information in current and future 
vehicle safety systems, including co-operative applications. 

• Review requirements for measuring key variables for maximum friction 
coefficient estimation with environmental sensors. 

• The practical difficulties of collision avoidance and high classification 
requirements for environmental sensing. 

This thesis covers research work that was subject to particular constraints: 

• The measurements and data collection have been limited to test vehicles, 
sensors and tracks available during the FRICTI@N project. 

• The algorithm for collision mitigation and avoidance has been tested in 
simulations only, for safety reasons, and as the required components for 
detection of dynamic obstacles and friction have not yet been integrated 
into an autonomous vehicle. The results are, however, compared to 
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existing collision mitigation systems. An early development version of 
the algorithm has been previously used in a robot application. 

Since the main parts of this research were carried out in the EU project 
FRICTI@N, involving several partners, it is important to outline the author�s 
central contributions also from this perspective. The contribution of this thesis is 
in data fusion architecture and its detailed implementation, using sensors devel-
oped by other partners (Figure 3). In particular, the work concentrates on the 
benefits of environmental sensing in combination with traditional vehicle-
dynamics-based algorithms. While collision mitigation had a role also in the 
FRICTI@N project, the simulation and algorithm concepts presented here have 
been completed later as a separate work. 
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Figure 3. Thesis central contributions. 

1.4 Structure of the thesis 

The thesis began (Chapter 1) by discussing the advantages of friction estimation 
from the perspective of promoting traffic safety. Then the research hypothesis, 
aims and limitations of the work were declared.  

Chapter 2 explores users and requirements for friction information. Especially 
the benefits to various Advanced Driver Assistance Systems are considered 
based on collected views and tests made within research organizations. 

Chapter 3 describes state-of-the-art techniques and implementations for measur-
ing tyre�road friction. This section also presents the sensor systems used in the 
study. 

The friction estimation system and data fusion approach of this study are dis-
cussed in detail in Chapter 4.  
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Chapter 5 presents the test vehicle integration of the friction estimation system 
as well as HMI aspects. 

Chapter 6 explains the procedure used for algorithm validation and the main 
test sessions during the study. It discusses in detail several tests conducted with 
the estimation system. 

The benefits to be gained from friction estimation are presented in Chapter 7, 
which deals with collision avoidance and mitigation. The chapter introduces a 
novel algorithm for calculating the times to a collision (TTC values) for millions 
of steering, braking and acceleration options using different coefficients of fric-
tion. The method has its origin in autonomous mobile robot research but it is not 
limited to any particular type of vehicle. The use of the collision avoidance algo-
rithms in future driver assistance applications is an actual topic of European 
research. 

Chapters 8 and 9 outline the major achievements and consider the future de-
velopment work necessary for building real commercial products that would 
likely be incorporated into vehicles by car manufacturers. 
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2. Users and Requirements for Friction 
Information 
The higher the accuracy and frequency of friction potential estimation, the more 
applications that can be supported. A visual driver information system may re-
quire only one estimate per second (1 Hz) and not many decimals for friction 
potential, while ABS brake systems can apply and release brakes more than ten 
times a second, requiring fast and accurate estimation to operate near the maxi-
mum friction.  

A driver may wish for a warning several seconds before e.g. entering black 
ice, whereas ABS mainly requires the current friction potential and maybe ad-
vance information of some split seconds only. 

Most needs would be satisfied by a measuring frequency of e.g. 100 Hz for 
each tyre, a friction coefficient accuracy of 0.01, and advance information about 
an area in front of the vehicle up to the maximum braking distance. However, 
getting even close to this would require improvements in sensing technology, as 
will be discussed in Chapter 3, and maybe even require the introduction of a so-
called 5th wheel to vehicles, simply to measure friction potential continuously. 
Alternatively, the vehicle could perform braking periodically either using longi-
tudinal forces or slightly turning wheels. The approaches where extra braking or 
other manoeuvres are used to determine friction have not received much atten-
tion in studies. Such suggested modifications have so far been rejected by the 
automotive industry. 

The requirements for a friction potential estimation system in production ve-
hicles rather deal with finding an optimal price/performance ratio and optimal 
information quality for different applications. New expensive sensors are to be 
avoided unless the benefit would be clearly evident. Some existing sensors can 
be modified to also provide information on road conditions. 
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Figure 4 gives an overview of how friction information can be provided to 
several applications and bring benefits at different levels, including traffic safety 
on a societal level.  
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Figure 4. Collecting and distributing friction information to benefit several applications. 
The friction estimation system is marked with red. 

The term �signal brokering� in the figure describes an idea from the FRICTI@N 
project that the friction estimation system should be the collector and distributor 
of all information related to road conditions as well as tyres.  

The key users of the friction estimation system could be categorized into 

• driver information systems  

• vehicle dynamic control systems 

• advanced driver assistance systems 

• co-operative applications. 

For each of these categories, different functions can be identified which will 
benefit from tyre�road friction information. 
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2.1 Driver information 

Drivers are generally good at interpreting the actions of other road users, such as 
observing a pedestrian looking around before crossing the road, their own driv-
ing performance, and also road weather conditions. Computers and sensor sys-
tems on the other hand excel at measuring distances, velocities and vehicle state, 
continuously. In some situations the vehicle can correct and warn about errors 
made by the driver. 

A driver may for example have little experience in driving on a slippery road. 
Most northern drivers gain experience in driving on snow and ice, but even in 
the north, gaining experience with some difficult conditions, such as thick slush 
on an unploughed road, can take longer. Drivers may also have problems in es-
timating the vehicle behaviour and remaining friction potential during hard ma-
noeuvres such as fast cornering on a wet road. 

The estimates for friction used/potential and upcoming friction could be pro-
vided directly to a driver. However, there are difficulties:  

• Friction used can be felt as acceleration of the vehicle by a driver and 
therefore the driver generally has a good idea about it. Telling something 
the driver already �knows� is usually not beneficial. Overloading the 
driver with information and flashing displays should be avoided.  

• The cases where the friction used is close to the friction potential are 
more interesting and this information could improve a driver�s 
understanding of driving limits. Estimation of friction potential on the 
other hand may not be fully continuous and it easily contains larger 
errors than the friction used. The feasibility of continuously displaying 
friction levels comes down to the performance of the friction estimation 
system. Some cases where the friction used is close to the potential 
might also go undetected and the driver would not receive a warning. 

• The friction potential in front of the vehicle can vary a lot according to 
the vehicle trajectory. On a road with fresh snow the vehicle track may 
still be clean but the potential can change rapidly within centimetres. 
This type of accurate information, giving a map of the vehicle 
surroundings, might be difficult to show to the driver. 

The road conditions and friction potential can also be condensed into simple 
symbols and warnings such as the snowflake icon used by several automotive 
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brands to remind the driver of slippery conditions. By averaging friction poten-
tial estimates over e.g. the length of road segments in digital maps might make it 
possible to provide a driver with a rough classification of a road segment slip-
periness in a manner similar to the snowflake icon. 

If a driver information system does not need frequent updates, rather just once 
per second or less, this would give an opportunity to filter out momentary errors 
in friction estimation. The frequency of false warnings in a driver warning sys-
tem generally needs to be low to ensure user acceptance of the system. 

On the other hand, averaging friction potential even over a period of one sec-
ond can lead to the loss of valuable information. Even if the weather and tyre 
performance were not to change so rapidly, the tyre�road friction potential can. 
The effects of averaging should be evaluated against the shortest slippery sec-
tions that alter the vehicle dynamics during different manoeuvres. When driving 
straight, a slippery spot can go unnoticed, but the same spot could cause difficul-
ties for a motorcyclist intending to turn. 

Advance warning icons, when there is for example black ice (the friction 
drops suddenly) or when the driver is close to the friction limits, could be inter-
esting topics for HMI development. The HMI concepts are discussed further in 
Chapter 5.2. 

Considering the discussed difficulties in continuously presenting friction po-
tential to drivers, it currently seems likely that friction estimates will have a big-
ger role indirectly, through operation of other driver assistance systems.  

2.2 Vehicle dynamic control 

Modern passenger cars are equipped with several control systems that monitor 
vehicle dynamics and stability. These systems improve the vehicle handling and 
safety by e.g. detecting and preventing skid. Currently the most important sys-
tems linked with friction potential are: 

• Tyre slip control systems: 

o Antilock Braking System (ABS) 

o Traction Control System (TCS), also known as Anti-Slip 
Regulation (ASR) 

• Electronic Stability Control (ESC) and rollover stability control. 
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ABS, TCS and ESC already contain friction estimation algorithms and generally 
their performance is difficult to improve. Only an optimal friction potential es-
timation system could considerably improve the performance while braking. A 
more likely approach is to provide these systems with an initial value for friction 
potential, which they do not have, and in that way aid the operation during the 
first cycles. Generally this would help to avoid overshooting brake pressures or 
motor torque on slippery surfaces such as ice, and to find optimal levels quicker. 
If the slip is allowed to grow too large, the transmitted forces do not reach 
maximum.  

Another input to improve the operation of ABS could theoretically be the de-
tection of gravel or deep snow. On these surfaces, locked wheels dig in and the 
build-up of material in front of the tyre stops the vehicle more quickly than ABS. 
However, locking tyres sacrifices the possibility to steer the vehicle and can 
cause a loss of control [17]. 

A friction estimation system would rather be better at preventing dangerous 
manoeuvres than later helping to correct them. There has been discussion on 
friction estimation �giving eyes to ESC�, referring to advance information from 
environmental sensing. 

2.3 Advanced Driver Assistance Systems 

Advanced Driver Assistance Systems (ADAS) are in-vehicle technologies de-
signed to improve safety by aiding the driver. The systems enhance the driver�s 
perception of hazards and in some cases partly automate the driving task. Exam-
ples of ADAS are lane departure warning, collision mitigation, intelligent speed 
adaptation and automatic parking. The term is still new and there is a need to 
clearly define what ADAS constitute. [18] 

One definition is that the systems use environmental sensing to create a view 
of the vehicle surroundings. A vision system to track pavement markings or a 
radar to detect obstacles in front of the vehicle are examples of the sensors used. 
A digital map can also be considered as a sensor. [18] 

The potential safety impacts of different ADAS have recently been evaluated in 
several European projects such as PReVAL and eImpact. The effects on injuries 
and fatalities, at 100% fleet penetration, have been estimated as being in excess of 
10% for future systems like active lane keeping support and map-based warnings 
of dangerous locations and speeding. Also collision mitigation has been estimated 
to have high impacts on safety, depending on the implementation details (detects 
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pedestrians or not) and assumptions made in the evaluation. The expectations are 
generally high for the introduction of these systems. [19, 20] 

Environmental sensing with cameras, radars and laser scanners is new for 
production vehicles, and many ADAS are still at prototype phase, with a tar-
geted entry into the market some time beyond 2010. This was the case for exam-
ple in the recent large European Integrated Project (IP) PReVENT, which show-
cased several new systems. Several questions still remain about the systems� 
reliability, performance and interaction with the driver. In particular, system 
performance tests conducted in adverse weather conditions are required to esti-
mate market readiness. [19] 

Systems designed for analysing natural signals such as a camera image or 
speech are not generally expected to perform error-free. Changing weather and 
lighting conditions, noisy signals and numerous types of real-world situations 
challenge the algorithms and even humans who try to interpret the signals. In 
machine vision, changing light is a classic problem. Further, trying to teach 
computers to recognize objects such as pedestrians requires the most advanced 
algorithms; the pedestrians can vary from a pregnant woman to removers carry-
ing a sofa. Similar problem cases occur in speech recognition when trying to 
recognize speech during high background noise (e.g. in a crowd) or when the 
speaker does not formulate his words or sentences clearly. 

It is generally not reasonable to expect 100% reliability for systems based on 
environmental sensing! However, this is nevertheless the goal for safety systems. 

Reliability can be increased by limiting the operating range of a system, e.g. 
only activating it at high speeds. This makes further assumptions possible but 
still may not bring full reliability.  

To avoid potential liability issues, the first ADAS implementations have con-
centrated on driver warnings instead of actuation. The vehicle might be allowed 
to take control for example to mitigate unavoidable collisions, or according to 
other carefully defined limits. Occasional false warnings have not been consid-
ered to be as critical as the vehicle making a wrong manoeuvre. 

False warnings will likely negatively affect the user acceptance of the system 
and, depending on the application and HMI design, can also cause dangerous 
situations. Even not getting a warning signal can be dangerous if the driver 
learns to trust the system too much [19]. 

At least the following basic uncertainties are present in ADAS algorithms as 
well as in semi-autonomous driving: 
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− the intentions of other road users (if they are about to turn, brake etc). 

− inaccuracy of digital maps with e.g. traffic signs and road works 

− detection of driver alertness and performance (falling asleep, talking on 
the phone, reaction time) 

− environmental sensing accuracy and reliability, especially in adverse 
weather conditions 

− tyre�road friction potential not known accurately. 
 

The unknown intentions of other road users can be handled partly by estimating 
the maximum acceleration (affected by friction potential) and therefore the 
change in their location. The greater the acceleration, the greater the safety mar-
gins that are needed when calculating potential collisions. Also future co-
operative systems communicating e.g. that the driver in front may be turning left 
according to his navigator could relay some intentions. This topic will be ad-
dressed also in Chapter 7, which deals with collision avoidance. 

Detecting driver alertness and activity has been studied using e.g. cameras to 
detect eye movement, sensors in the seat to measure stance and heart rate and 
also Bluetooth communication between mobile phones and the vehicle. 

Finally in the list, the maximum tyre�road friction coefficient is commonly a 
static variable for many current ADAS implementations such as for the proto-
types for collision mitigation. What the static value should be is a matter of 
lengthy discussion, but any value causes error during changing conditions. The 
value is often set high in prototypes based on the average friction levels avail-
able throughout the year. Therefore the biggest errors in calculation are seen on 
snow and ice.  

Table 1 describes briefly the problems that certain ADAS without friction es-
timation face on slippery surfaces:  
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Table 1. ADAS types and difficulties from having no friction estimation. 

ADAS type Problems from assuming a static 
high friction potential 

Collision mitigation The system applies the brakes too late 
on low friction surfaces. Does not 
warn when the risk is already high. 

Collision avoidance Not able to avoid collision, calculates 
wrong safety margins and potentially 
even dangerous manoeuvres. 

Lane departure warning Minor; the effect is via curve speed 
warning. 

Curve speed warning Does not warn in dangerous curves or 
alternatively is set to warn too easily. 

Adaptive cruise control and systems 
informing/warning of safe distance 

Too short distance to vehicle in front. 

Intersection safety Wrong calculations for other road user 
movement and ego vehicle accelera-
tion. 

Park assistance In extreme cases unable to perform 
the manoeuvre. 

 
Due to the varying nature of friction potential, tuning the applications may be 
problematic even if a friction estimate would be available: For example in curve 
speed warning, the vehicle trajectory can vary a lot within tens of meters and so 
can friction. The capabilities of environmental perception can also drop with dis-
tance. When driving close to the limits of friction, and where there are alternating 
patches of ice, snow and dry surface, calculating maximum curve speed becomes 
difficult. A safety margin is required to compensate for the uncertainties. High 
risk level and clear speeding cases can, however, be calculated more easily. 

As a conclusion, friction estimation could help several ADAS to reach their 
full potential also in difficult road conditions. 
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2.4 Co-operative applications 

The co-operative approach for improving traffic safety is based on communicat-
ing information and measurements between road users and also from and to 
infrastructure. The information can be used e.g. to extend the driver�s view by 
creating an �electronic horizon� where advance and extra information is shown 
on a map, even projected onto the windscreen or used otherwise in vehicle sys-
tems [21]. The vehicle�s own measurements are supported by the communicated 
data. Generally the communication can help to disseminate warnings and traffic 
information, and bring situational awareness to several systems. 

There is ongoing development to standardize communication and several pro-
jects are piloting applications.  

The standardization of communication is led by the IEEE working group for 
Wireless Access in Vehicular Environments (WAVE). A WLAN variant 802.11p, 
communicating at 5.9 GHz (the exact frequency ranges are different for the U.S. 
and Europe), is expected to be finalized during the first half of 2010 [22].  

The largest EU projects in the field of co-operative traffic are at the moment 
SAFESPOT and CVIS with a budget each of approximately EUR 40 million. 
Their results in 2010 will provide insight also into how close the technology is to 
market introduction. 

The co-operative applications are commonly divided into vehicle-to-vehicle 
(V2V) and vehicle-to-infrastructure (V2I) according to the type of communica-
tion used. Both communication methods can be used for distributing friction-
related information such as warnings about dangerous road conditions. 

A key challenge in using friction information in co-operative applications is 
that the friction potential is different for each vehicle and its tyres. On dry as-
phalt the differences could be considered small, but in adverse weather condi-
tions the performance differences between tyres grow (especially winter tyres vs. 
summer tyres). This might mean that only the road weather information or rough 
category values can be transferred to other vehicles and not the friction potential 
directly. This study later discusses (see Chapter 4) an approach based on re-
cording the tyre performance on different road conditions detected by environ-
mental sensors as an attempt to normalize the friction potential.  

Another challenge is the high variance of friction even over short stretches of 
road. When GPS positioning accuracy is considered to be 5 meters, even for 
�same� co-ordinates, the experienced friction can be different. Recording the 
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minimum and maximum friction potential (fluctuation range) for a road segment 
might provide a useful reference. 

Finally, as friction can change rapidly due to e.g. spilled oil on the street, the 
aging of measurements and therefore the coverage over the road network are 
challenges for co-operative applications. 

2.4.1 Vehicle-to-vehicle 

A vehicle-to-vehicle (V2V) scenario using friction data could be that a car de-
tects a big change in road conditions at a road segment and then passes on this 
information to the following and nearby vehicles. This information would be 
shown to the other drivers to make them more aware of the changing road condi-
tions or a potentially dangerous location. 

The V2V applications include improved versions of stand-alone ADAS, 
where e.g. the safety margin calculation is improved with information from other 
vehicles. Friction estimation also yields extra information that could be broad-
casted. Table 2 suggests a classification for V2V applications using friction in-
formation: 
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Table 2. Vehicle-to-vehicle co-operative applications that benefit from friction information. 

V2V application type Use of friction information 

Safety margin 

Using a co-operative systems ap-
proach, it will be possible to calculate 
and suggest safety margins to the 
driver. 

The dynamic capabilities of the vehi-
cle, road conditions, driver status and 
a dynamic map including other road 
users would be used in the calcula-
tions. The safety margin calculation 
can be used in enhanced ACC, colli-
sion mitigation systems, calculating 
safe distance to the vehicle in front, 
intersection safety and curve speed 
warning. 

Local danger warning 

Local warnings are sent to other vehi-
cles in case of a danger, e.g. accident, 
breakdown, driving off the road, stop-
ping at a dangerous place, fire or bad 
road weather conditions. 

Warning of an especially slippery road 
segment could include environmental 
measurements, measured friction 
during high slip, co-ordinates, road 
segment ID and time. The information 
could be shown on a navigator screen 
for example. 

Enhanced map data for the road 
segments ahead of the vehicle 

PReVENT EU project used a term 
�electronic horizon� for advance map 
information combined from several 
sources [21]. SAFESPOT project used 
the term �Local Dynamic Map�, em-
phasizing the dynamic content [23].  

To improve the range, accuracy and 
reliability of road weather information 
in other vehicles and their applica-
tions. 

2.4.2 Vehicle-to-infrastructure 

The second communication type is defined as vehicle-to-infrastructure (V2I) 
communication. In this case the information is picked up by an individual car 
and transferred to the infrastructure. The infrastructure could process the data 
and deliver it to other road users or radio stations. An infrastructural system 
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would be able to control traffic signs, provide data for traffic management or 
inform authorities about road surfaces. 

V2I applications are a clear example of using friction measurement and esti-
mation systems as part of probe vehicle concepts. The main purpose is to collect 
information about dangerous locations and statistical friction information to be 
processed further. The main applications are presented in the following table: 

Table 3. V2I applications using friction information. 

V2I application type Use of friction information 

Real time measurements of weather 
and road conditions 

 

Vehicle systems will collect and 
transmit real time weather information 
to all road users and to road opera-
tors� and public authorities� traffic in-
formation servers. The information can 
be presented statistically and used in 
vehicle safety applications. 

Local danger warning Co-ordinates and classification of a 
black spot that caused problems. 

Curve speed warning based on 
statistical friction information 

The curve speed warning application 
aids the driver in choosing an appro-
priate speed. On-board information is 
used to determine if the driver needs 
to be alerted. 

2.5 Requirements 

The application categories and examples discussed above present many require-
ments for a friction estimation system. In summary, the system should be able to 

1. determine the current friction used � to estimate how close the vehicle is 
to limits and to collect friction used levels 

2. determine the friction potential and the rate of changes � to estimate e.g. 
the maximum accelerations for safety margin calculations and warn of 
sudden large changes 
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3. predict the upcoming friction potential (with environmental sensors) � 
for use in different driver assistance systems 

4. classify road conditions (snow, icy, slushy, wet, dry�) to be used e.g. in 
driver information systems and co-operative applications 

5. record the co-ordinates (location reference) and time for friction 
potential estimates 

6. provide a validity for friction estimates and preferably metadata on 
estimation errors and tyre type 

7. produce a high enough sample rate for driver information systems 
(approximately >1 Hz) or also ADAS (>10 Hz). 

Preferably the system design should not include large design changes to current 
vehicles (e.g. 5th wheel) or expensive sensors.  

Additionally, as several standard vehicle sensors are available for measuring 
friction related variables such as acceleration and temperature, a friction estima-
tion system should utilize these sensors.  
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3. Sensors and Methods for Estimating 
Friction 

3.1 Overview on measuring road conditions 

Technology for observing road parameters and tyre�road contact has figured as a 
topic in a number of projects internationally � both EU-funded and others. The 
existing systems and prototypes can be divided into 

− fixed roadside monitoring systems (road-segment specific) 

− road monitoring with probe vehicles 

− environmental sensors 

− in-vehicle sensors for vehicle control systems  

− tyre sensors and tyre modelling. 

3.1.1 Fixed roadside monitoring systems 

Fixed roadside weather monitoring stations are mainly for winter maintenance 
management, supervision, planning and optimization. Road weather stations can 
have different sensors (e.g. temperature, wind speed, surface water depth) and 
weather cameras based on visual information.  

The Vaisala Remote Road Surface State Sensor DSC111 monitors the pres-
ence of water, ice, slush and snow/frost using spectroscopy. It also estimates the 
level of grip based on the road conditions. The integration time is several sec-
onds to filter out passing vehicles. [24] 

A weather warning system for drivers of heavy vehicles based on mobile 
phone positioning was introduced in Finland in 2005. The warning system is 
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based on already existing road weather services, weather radars, weather cam-
eras and road weather stations. With mobile phone positioning and the mobile 
phone network, weather information and warnings can be delivered to the driv-
ers entering the critical area [25].  

3.1.2 Road monitoring with probe vehicles 

Probe vehicles are used to automatically gather road condition information while 
driving in the traffic flow. Existing systems usually employ public transport. The 
collected information is transmitted to processing centres and the processed in-
formation is then distributed to other road users. Also the term Floating Car Data 
(FCD) is commonly used for data collection with probe vehicles. 

Finnra's (Finnish National Road Administration) mobile road condition moni-
toring system utilizes buses on regular routes to gather information about driving 
conditions. The monitoring equipment measures air temperature and humidity, 
tyre�road friction, road surface temperature and GPS co-ordinates. The friction 
measurement is based on a fifth wheel. The information, also containing images, is 
transmitted in real time to Finnra�s road weather monitoring system via GSM. [26] 

VTT�s RASTU project (2006�2008) demonstrated road slipperiness meas-
urements with trailer lorries using the vehicle bus information on wheel speeds 
and engine thrust: Especially when climbing uphill with a heavy load, there is 
noticeable speed difference between the tractive wheels and front wheels. This 
information on tyre slip was used to classify the slipperiness (not directly the 
friction coefficient) of a road segment, with no additional sensors. [27] 

3.1.3 Environmental sensors 

Optical, acoustic and radio frequency based environmental sensors utilize 
changes in the signal reflectance, polarization and absorption properties caused 
by the road surface. The contactless environmental sensors cannot be used for 
direct force measurement but can detect road conditions. The existing vehicle 
rain sensors and outdoor temperature sensors can be used to support friction 
measurements. 

Swedish company Sensice (http://www.sensice.com/) has since 2007 acquired 
European and U.S. patents for their ice detector based on infrared spectroscopy 
and a novel cheap design. The system is able to detect several surface states: dry, 
wet, icy, black ice and ice/sleet covered with a layer of water. Localized ice de-

http://www.sensice.com/
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tection is mentioned as of particular value in areas prone to icing, such as 
bridges. The system could also help to prevent pedestrian accidents when used to 
detect ice e.g. at entrances to public buildings. [28] 

The results of the research called �Discrimination of the road condition toward 
understanding of vehicle driving environments� showed that the road condition 
discrimination accuracy could be improved by using additional knowledge, such 
as information regarding snowfall, rainfall, and the time-related continuity of the 
change in road conditions. [29] 

3.1.4 In-vehicle sensors for vehicle control systems 

In-vehicle sensors provide information about the driving state of the vehicle, 
such as wheel lock-up or turning. These sensors can be used to measure changes 
caused by impaired friction and uneven road surface. They do not directly meas-
ure road conditions or the friction potential ahead. 

The possibilities to detect friction potential with standard vehicle sensors have 
been widely analysed (see [14] for a good overview). The friction potential can 
be measured during hard braking, though generally the research concentrates on 
early detection and friction classification during normal driving.  

Measuring longitudinal slip and the slip slope (curve shape before maximum 
forces are reached) from the difference in wheel speeds (as proposed in [30]) is 
one of the traditional methods. Many advanced models add e.g. tyre, suspension, 
engine torque and steering parameters for improved modelling accuracy.  

Lateral forces have also received wide interest as turning generates forces for 
friction estimation. For example the methods based on steering torque and tyre 
self-aligning torque rely on the evidence that the self-aligning torque saturates at 
lower values of slip angle than the lateral force (e.g. [31]). This feature (Figure 
5) allows the estimation of friction potential at low values of side slip angle. 
Two existing algorithms based on self-aligning torque were used in this study 
and are further discussed in Chapter 4.3.1. 
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Figure 5. Qualitative comparison of self-aligning torque (Mz) and lateral force (Fy). [2] 

Dynamical friction models (including e.g. hysteresis effects and dependence on 
velocity) such as LuGre have also been used in friction estimation. The road 
conditions are characterized with a single parameter in the model and it can even 
be estimated using only wheel angular velocity. The classification is possible 
only during slip. [32] 

�The estimation of tyre�road friction by [the] tyre rotational vibration model� 
required only ABS's wheel speed sensors. The estimation was based on the fact 
that the resonance characteristics of wheel angular velocity vary by tyre�road 
friction. The presented method could detect changes in friction potential during 
normal driving. The weakness of this system is that the resonance characteristics 
change when braking, accelerating or cornering, and the method cannot then be 
used. This method could detect friction potential changes and derive some road 
condition categories, but cannot estimate the actual friction value. The method 
was patented by Toyota in 2004 [33]. The approach was tested also in the 
FRICTI@N project by VTT (Dr Liang Nanying) in co-operation with Nokian 
Tyres Plc, though unsuccessfully, as it was not possible to fully reproduce the 
results. The power spectrum density of wheel angular velocity near the sug-
gested 40 Hz region was found to be somewhat different on asphalt vs. ice only 
for one type of tyre out of three. A relatively high wheel-speed-sampling fre-
quency (> 100 Hz) would be required for completing the assessment and study-
ing in what cases and with what equipment differences were appearing or not. 
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3.1.5 Tyre sensors 

During the past few years, tyre sensors have figured as a topic of R&D to esti-
mate tyre�road contact. The first prototypes have already been demonstrated. 
Several sensor technologies have been used in the development of intelligent 
tyre systems, such as acoustic (noise), optical, acceleration and deformation 
sensors. Mathematical tyre models are being developed and used together with 
force and deformation sensing to estimate friction coefficient, slip, aquaplaning, 
tyre pressures etc. 

Today, only laboratory prototypes of advanced tyre sensors with limited per-
formance exist. These include  

− a magnetic side wall torsion sensor by Continental [34] 

− a position sensor based on a magnet and a Hall sensor by the University 
of Darmstadt [35] 

− Surface Acoustic Wave (SAW) sensors, e.g. [36] 

− the APOLLO/FRICTI@N project prototypes using optical and strain 
sensors.  

The APOLLO project (2002�2005) pioneered an intelligent tyre system with 
integrated deformation sensing, batteryless power generation and wireless data 
transfer. Acceleration, strain and optical sensors were used and tested for defor-
mation measurements. Sensor durability inside the tyre was a major problem. 
Tests showed that acceleration sensors can quite accurately determine the con-
tact length of the tyre from the radial velocity and tangential position signal. On 
snowy surfaces, the tangential deflection signal was different on high and low 
friction surfaces. On asphalt, bitumen and concrete, the friction potential could 
not be estimated because of high signal variation. Tentative results of the project 
also suggested that the detection of nascent aquaplaning would be possible. [3] 

3.1.6 Conclusions 

A state of the art review performed in the beginning of this study suggested the 
following conclusions concerning the use of friction information for advanced 
driver support systems: 

− The importance of tyre�road contact information for enhanced driver assis-
tance is widely recognized. 
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− A number of activities to develop a system for determining friction and/or 
road slipperiness are underway. 

− Previous studies have been successful in classifying road conditions roughly 
and detecting changes in friction potential when certain conditions (driving 
situations and environmental conditions) are fulfilled.  

− It seems evident that using a one-sensor approach is not successful in deter-
mining friction potential and/or road slipperiness with sufficient accuracy to 
benefit several applications. 

− The performance of a number of vehicle control systems could be enhanced 
by means of classifiable friction or road slipperiness information. 

− Drivers, infrastructure owners and other external systems as well as co-
operative driving could benefit from friction information. 

− Current EU Integrated Projects for ADAS and co-operative systems require 
information on road slipperiness in order to demonstrate more convincingly 
the benefits of the applications under development. 

− The number of relevant patents in the field is not yet large (based on reviews 
made twice during the FRICTI@N project, in 2005 and in 2007), and these 
patents do not include systems using a multiple sensor approach (other than 
multiple vehicle state sensors) to determine friction or road slipperiness.  

At the time of planning this study, in 2005, Audi demonstrated with their All-
road Quattro concept car an environmental sensor called Audi Road Vision [37]. 
The sensor combined laser and infrared spectroscopy to distinguish between 
road conditions and to recognize various types of road surfaces, including 
gravel. It also should give feedback to ESC and ACC. The product has still not 
entered the market, but it serves as one of the first examples of how friction es-
timation with environmental sensing has been an expanding topic in the automo-
tive field. 

The FRICTI@N project was not the only project that began to study friction esti-
mation using multi-sensor data fusion. A smaller Swedish study [31] started around 
the same time. Currently no other similar friction studies are underway but the ad-
vent of environmental sensors has widely inspired sensor data fusion projects. 

Moreover, in what can already be considered as the de facto approach, road op-
erators are combining information from several measurement systems and ad-
vanced probe vehicles, using cameras and special friction-measuring equipment. 
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3.2 Sensors used in the development 

The principle idea behind using sensors in this study, and in the FRICTI@N 
project, was to combine information from �look under the car� tyre-based sen-
sors and vehicle-dynamics sensors with forward-looking sensors that monitor the 
road surface. The project aimed to use sensor clustering, which yields tyre�road 
friction potential with a minimum number of sensors. Most of the sensors used 
for friction estimation were either commercially available or prototypes of up-
coming sensors. New sensor development was not a key goal.  

A specially instrumented Audi A6 was used as the development vehicle 
(Figure 6). It is owned by RWTH Aachen University, Institut für Kraftfahrzeuge 
Aachen (IKA). The vehicle details will be further discussed in Chapter 5, Sys-
tem Integration. 

 

 

Figure 6. Audi in Aachen wet track tests August 2008. 

The vehicle-dynamics sensors were commercial sensors already existing in the 
development vehicle, including wheel speed measurement sensors, an Inertial 
Measurement Unit (IMU, measuring accelerations and rotations), brake pressure 
sensors, steering angle sensors etc. The exact requirements are set by the se-
lected vehicle feature fusion algorithms (Chapter 4). 
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Concerning environmental sensors, the FRICTI@N project selected the follow-
ing state-of-the-art sensors to be installed on the development vehicle (Table 4): 

Table 4. Environmental sensors used in the study. 

Environmental sensor Measurement distance 

Road Eye, a laser/infrared spec-
troscopy based road condition 
sensor developed by a Swedish 
company, Optical Sensors  

~1 meter 

Ibeo�s LUX laser scanner. The out-
puts used in this study were pre-
cipitation and true ground speed. 

Precipitation is measured from an 
area up to 10 meters in front. True 
ground speed and heading measure-
ments are based on detection of static 
objects in sensor range (200 meters). 

VTT�s prototype stereo camera 
measuring polarization differences 

Region of interest in the tests ap-
proximately 10�30 meters in front. 

Ordinary road and air temperature 
sensors 

The vicinity of the vehicle. 

 
Additionally the vehicle was instrumented with a Correvit ground speed camera 
to be used as an accurate reference sensor when studying vehicle dynamics and 
velocity estimations with IMU, wheel speeds and laser scanner. True ground 
speed measurements are used to calculate slip from wheel speed readings. 

Commercial infrared cameras were used to record reference data especially 
during the development phase of the VTT�s camera prototype. The FRICTI@N 
project also studied the use of modified radar technology to detect road condi-
tions [38]. These sensors were not, however, included in this data fusion study. 

The tyre sensor was an upgraded version of an APOLLO project prototype: an 
optical position sensor that is capable of providing information on the motion 
and deformation of the inner liner of the tyre. 

The following gives a more detailed description of the sensors used in the de-
velopment of sensor data fusion. 
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3.2.1 Road Eye 

Absorption spectroscopy is widely used as an analytical technique for identify-
ing different chemical compounds and also their concentrations in samples. The 
compounds have a specific absorption spectrum for electromagnetic radiation, so 
giving them a fingerprint. 

The technique can also be used for the classification of road surfaces. In par-
ticular, the different absorptions of infrared wavelengths by water and ice 
(Figure 7) have been useful in detecting different road conditions. 

 

Figure 7. Spectral response for dry, wet icy and snowy asphalt [39]. 

The Road Eye sensor (Swedish patent nr 9904665-8) is based on measuring the 
absorption of infrared light at wavelengths 1320 and 1570 nm. The wavelengths 
are produced with two laser diodes. A focusing optic in front of the diodes pro-
duces an illuminated spot of around 10 mm on the road surface. The sensor is 
designed for short distance (500�1500 mm) measurement and classification of 
road conditions for vehicle use. The active lighting ensures the sensor�s opera-
tion in both night and day conditions. 

The sensor, shown in Figure 8, is developed by Optical Sensors 
(http://www.opticalsensors.se/), which is a small Swedish company. It has been 
previously investigated in several road research projects, such as the IVSS pro-

http://www.opticalsensors.se/
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ject (www.ivss.se), and is one of the most interesting environmental sensors 
currently available. The sensor detects ice on the road and also water films, but 
with a lower sensitivity. A clear indication can be given for ice that is typically 
0.5 mm or thicker, compared to a minimum water film thickness of about 2 mm 
or thicker. [31] 

 

Figure 8. Road Eye sensor (http://www.opticalsensors.se/roadeye.htm). The dimensions 
of the casing are 51 × 53 × 45 mm. 

The sensor output is an intensity measurement for both of the used wavelengths. 
Figure 9 shows an exemplar classification from a test track measurement with 
four road conditions: dry asphalt, water, ice and snow. Each measurement is 
marked with an �x� and the coloured polygons represent the classification 
boundaries for the road conditions. The boundaries for water and ice are close to 
each other, hence their classification is difficult. 

http://www.opticalsensors.se/roadeye.htm
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Figure 9. Classification boundaries depicted in a 2-dimensional plane with the two wave-
lengths as axis [2]. 

The boundary areas between classes are where the road surfaces are easily mis-
taken. More classification examples with the sensor are given in [40]. 

The classification results obtained with Road Eye were the main environ-
mental sensor input in this study, along with basic temperature measurements. 
The classification's robustness was further improved by supporting the calcula-
tion with temperature measurements and the friction used. This will be discussed 
in Chapter 4 under environmental data fusion. 

The limited measurement distance and area meant, however, that only �road 
conditions under the right front tyre� were measured. The installation on the 
development vehicle is later shown in Figure 10, together with the laser scanner 
installation.  

3.2.2 Ibeo LUX 

Laser scanners operate on the time of flight principle by sending short laser 
pulses and measuring the time taken for the reflected light to return to the sensor. 
The travel time tells the distance to an object.  



3. Sensors and Methods for Estimating Friction 

50 

In the LUX laser scanner, manufactured by Ibeo Automobile Sensor GmbH 
(Germany), a semiconductor laser diode emits pulses that last a few nanosec-
onds. The sensing beam is guided over a rotating mirror, scanning a horizontal 
angle of 100° with a resolution down to 0.1°. The scan frequency is 12.5 Hz and 
the measurement range is up to 200 meters. [41] 

In Figure 10, the LUX is temporarily mounted immediately to the right of the 
number plate. The Road Eye, with a metal housing and the Correvit reference 
sensor, uses the same mounting. 

 

Figure 10. LUX and Road Eye sensors installed on the development vehicle: The Road 
Eye housing is on the left, LUX on the right, while the Correvit reference sensor points 
downwards. 

Ibeo has developed their laser scanners for ADAS applications such as ACC 
Stop & Go, Automatic Emergency Braking, Pedestrian Protection and Lane 
Departure Warning. These applications require accurate detection and robustness 
against adverse weather conditions. The robustness has been achieved with 
multi-echo technology and by splitting each laser pulse into four layers. The 
layers have an aperture angle of 3.2°, also allowing for compensation of the ve-
hicle pitch. The sensors evaluate and filter data from up to 16 reflections per 

Road Eye

LUX 

Correvit 
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measurement. Reflections coming from rain, dirty cover or fog can therefore be 
filtered out [42, 43]. 

During the FRICTI@N project, Ibeo developed the LUX sensor so as to not 
only filter out cluttered echoes, but to use this information to detect rain and 
snowfall. The following Figure 11 shows a laser scanner recording during snow-
fall. No objects are present, thus the points represent falling snow flakes. 

 

Figure 11. A laser scanner measurement during snowfall. Image courtesy of Ibeo. 

The amount of snowfall is related to the number and distribution of measure-
ments in the sensor�s field of view. Similar results are found during rain. The 
scanner�s precipitation output was included in the data fusion of this study and 
fused with air temperature measurements to classify rain and snowfall. 
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Additionally the sensor provides true ground speed and vehicle heading. This 
is based on detection of stationary objects and their movement in consecutive 
sensor scans. The estimate is available when static objects are present. 

3.2.3 VTT�s IcOR polarization camera prototype  

VTT developed the IcOR polarization camera prototype (Figure 12) in the 
FRICTI@N and SAFESPOT projects, which ran simultaneously. The SAFESPOT 
is an EU Integrated Project (IP) concentrating in co-operative applications [23]. 

 

Figure 12. IcOR camera prototype with dedicated polarization filters. 

The IcOR�s advantage is to be able to detect ice and water approximately 10�
70 m in front of the vehicle, which provides the driver or vehicle with time to 
react to changing conditions. 

In the beginning of the FRICTI@N project, VTT�s team collected test data in 
Ivalo, northern Finland, using a commercial infrared camera by Xenics and addi-
tional band pass and polarization filters. The camera was sensitive in the short 
wavelength band 900�1700 nm. The results showed enough potential to continue 
the development. Figure 13 gives an example of ice detection.  
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Figure 13. Near infrared camera image from a test track in Ivalo, using a 1600 nm band 
pass filter. Ice is clearly visible from a distance. 

However, the existing cameras, which operate above 900 nm, were considered to 
be too expensive for ADAS applications. Therefore, an alternative approach was 
selected: the current prototype is based on a stereo camera body by Videre De-
sign and additional polarization filters. The camera system uses low cost silicon 
detectors, which limit the bandwidth to below 950 nm. The camera system uses 
mainly the visible spectrum instead of near infrared. 

The system does not include any dedicated illumination. It relies on ambient 
illumination from external light sources in order to keep the hardware costs low. 
The illumination level in the visible band is usually sufficient for the camera 
when driving. However, when no other light source than the car�s own head-
lights are available, performance drops.  

If the sensor was required to work as a stand-alone system, the lighting could 
be re-considered. However, IcOR, like most environmental sensors, would work 
best when its output is combined in an application with other information 
sources. IcOR is also designed with other camera-based ADAS applications in 
mind, such as lane keeping; several applications should be covered with a single 
camera. 

The IcOR system includes two different analysis methods: 

• polarisation difference 
• granularity estimation. 
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The polarization measurement principle is displayed in Figure 14. Light reflection 
from a mirror-like surface (ice or a wet patch) reduces the amount of vertically po-
larized light compared to the horizontal plane [44]. When comparing the relative 
difference between horizontal and vertical polarization planes (Ih-Iv), and ignoring 
absolute intensity levels, ice or water reflectance causes an �abnormal� change. A 
detailed description of the measurement principle can be found from [45]. 

 

Figure 14. The IcOR uses a measurement principle based on suppression of vertical light 
polarisation when reflecting from mirror-like road surface. In addition, graininess analysis 
is used to distinguish icy and wet roads. [40] 

Graininess analysis supports the detection of road conditions since hypotheti-
cally an icy road is smoother than snow or asphalt, which typically forms a 
granular surface. The key idea is to perform low-pass filtering for an image and 
calculate the contrast difference of the original and filtered images. This pro-
vides information on the graininess of the picture. 

The polarisation analysis enables the detection of wet and icy road surfaces. 
Graininess calculation is needed to recognise snowy roads. According to first 
tests, the IcOR system is able to classify icy, snowy and wet roads with 70�90% 
accuracy [45, 40, 2]. However, the system performance degrades when visibility 
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is poor due to low light, dirt, strong reflections, heavy rain or snowfall, with 
camera measurements becoming difficult in general.  

The success of the classification depends on manually tuning camera parame-
ters to match background lighting. Future development is aimed at addressing 
automatic calibration. Alternatively, the performance could be improved with 
active lighting. 

In this study the IcOR camera and Road Eye were used for different purposes, 
compensating for the weaknesses of each other: the Road Eye has a faster re-
sponse time and higher reliability, but it measures only a single point just in 
front of the vehicle. The IcOR system has the advantages of  

• being able to detect patches of ice 10�30 meters beforehand 

• theoretically measuring over the whole lane and even for different 
vehicle trajectories (only partial implementation was tested during this 
study) 

• to make granularity-based road-type classifications. 

A software tool running in a Windows laptop exists for setting up the camera, 
saving data and running the analysis. For data fusion purposes it was designed to 
broadcast the confidence values of ice, dry, water and snow classifications to a 
vehicle CAN (Controller Area Network) and capture the time stamp from the 
network in order to synchronise the sensing. 

3.2.4 APOLLO/FRICTI@N project tyre sensor 

Of the sensors originally developed and tested during the APOLLO project [3], 
Helsinki University of Technology chose an optical displacement sensor for 
FRICTI@N project purposes. The optical tyre sensor has been a tool to study 
dynamic tyre behaviour. It is mainly intended for research purposes and studying 
the information available from deformations of the tyre carcass. The basic idea is 
to find a correlation between carcass deformations and forces applied to the tyre. 

In addition to vehicle and tyre state estimation, the optical sensor can be used 
in validating tyre models. 

The sensor uses a PSD (Position Sensitive Detector) chip mounted on the rim 
together with a convex lens to measure the movement of a Light Emitting Diode 
(LED), which is glued to the inner liner. This is illustrated in Figure 15. The 
figure also shows an example of measuring lateral displacement. Output from 
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the optical sensor is the measured displacement of the diode on the inner liner, 
relative to the rim.  
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Figure 15. Optical tyre sensor set-up and illustration of measuring tyre carcass lateral 
deflection from inner liner. 

Horizontal movement changes the current at the four borders of the PSD. With 
decreasing distance between the PSD and the light emitter, the light intensity 
will increase, increasing the overall current. Lateral displacement is a result of 
lateral forces, longitudinal displacement indicates longitudinal forces and verti-
cal displacement is a result of wheel load change. 

A digital radio system is used to transmit the measured data. The data is trans-
mitted using the 433 MHz ISM (industrial, scientific and medical) radio band. The 
receiver translates the data protocol to signals which are made available at a CAN 
bus. The receiver box and the measurement tyre are shown in Figure 16. [3, 2] 
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Figure 16. Measurement tyre in Aachen tests, August 2008 

During the FRICTI@N project, a new sensor housing was developed, data 
communication was enhanced and force calculations were advanced to be done 
in real-time, which was a requirement for online friction estimation [46]. Most 
of the development work was done by the Helsinki University of Technology. 

The longitudinal movement signal (Figure 17) carries most of the information. 
It reveals the contact length � the amplitude is proportional to the contact length � 
and the longitudinal forces. The update rate is, however, limited to one sample per 
rotation, so the forces cannot be accurately measured e.g. during ABS braking. 
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Figure 17. Tyre sensor longitudinal movement with different wheel loads. Measurement 
on left by Helsinki University of Technology and FEM by Nokian Tyres [2]. 

The longitudinal movement signal can further be used to also estimate vertical 
force and wheel load. Even if the vertical movement correlates better with the 
vertical force, the LED intensity signal used to measure the vertical movement 
depends on temperature, supply voltage and orientation angle. The longitudinal 
movement signal is almost independent of these factors. 

The lateral tyre force enables an estimation of the vehicle slip angle quickly: 
the tyre force starts acting before velocities can be measured from the chassis.  

Changes in tyre inflation pressure introduce a bias to the force estimates. 
Therefore the tyre pressure must be measured or estimated. 

The optical sensor has also been demonstrated as able to detect different 
stages of aquaplaning based on tyre deformations. A detailed analysis of an opti-
cal tyre sensor in aquaplaning can be found from [47]. 

The general possibilities for detecting the friction potential with tyre sensors 
were studied with FEA simulations during the FRICTI@N project by Nokian 
Tyres. The tread pattern is �testing� the friction potential all the time in the con-
tact patch through contact deformations (e.g. tread lug compression and release), 
but the deformation differences between different friction potential levels are 
small. In the inner liner, these differences are even smaller and cannot be meas-
ured with conventional sensors. 

In the friction estimation system of this study, the main outputs used from the 
tyre sensors were friction used values for each tyre. The tyre sensors can provide 
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useful information in situations where one tyre is using more friction than the 
vehicle on average. Moreover, the effect of wind speed, which causes uncer-
tainty and error for vehicle sensors, does not disturb the tyre force calculations. 

As the sensors were available for only a few select tests rather than throughout 
the study, the tyre outputs were given a complementary role in data fusion, pro-
viding detailed information on friction used and aquaplaning. 

3.3 Summary and sensor development 

Simulations have shown that a tyre sensor could theoretically be the one sensor 
capable of continuous friction potential estimation. Accuracy, durability, power 
generation and communication problems, however, delay their introduction. Be-
sides, even tyre sensors cannot measure the friction in front of the vehicle. A data 
fusion approach is generally required to support a broad range of applications. 

Environmental sensors have large potential in detecting the road conditions 
for future automotive applications. The sensor readings can give a good idea of 
friction levels that can be used as an initial estimate for applications, much in the 
way that the driver perceives his environment. In particular, broad attention has 
been given by Nordic R&D projects to the new spectroscopy based sensors (e.g. 
from Optical Sensors and Sensice) targeting automotive applications and the 
detection of ice, snow and water on the road. 

The need to utilize current environmental sensors to their fullest is evident in 
laser scanner and radar development. Enhancing current sensors with abilities to 
estimate friction potential would be a cost-efficient approach. VTT has demon-
strated ice, snow and water detection with radar frequencies and Ibeo has added 
rain and snowfall detection to their laser scanner. 

Figure 18 shows the coverage of environmental sensors available in the 
FRICTI@N project, where several approaches show promise. The yellow colour 
marks the areas where future work is perceived.  
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Figure 18. Environmental sensor coverage in the FRICTI@N project. 

Future environmental sensor development could be perceived e.g. with camera-
like sensors measuring wide areas using spectroscopy principles, as point meas-
urements do not reliably cover the vehicle path. 

During this study a need was seen for an improved classification and mapping 
of measured road and weather conditions to friction levels. Many factors affect 
e.g. friction potential on ice, such as sunshine and previous braking polishing the 
ice. These factors are mostly known but their exact relationships and prioritiza-
tion of key variables for measuring friction is complicated. This could be ad-
dressed in further environmental sensor research. 

The classification requirements could also be viewed from the point of view 
of motorcyclists: Detecting small slippery areas such as pit cover plates, road 
paintings and leaves would then become more important than with cars. 

High-grade roadside sensors such as the Vaisala Remote Road Surface State 
Sensor DSC111 are able to measure ice, snow and water layer thicknesses, but 
the sensors of this study rather indicate certain minimum layer thicknesses that 
they are able to detect. The layer thickness affects the measurement readings of 
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both Road Eye and IcOR camera, but an accurate classification in a moving ve-
hicle remains a topic for development. 

With vehicle dynamics sensors, cost has been a limiting factor for using high-
performance IMUs and also when considering additional sensors for e.g. steer-
ing torque. For accurate friction detection, at least a high-grade IMU would be 
beneficial for estimating the true ground speed and vehicle rotations during brak-
ing. The true ground speed compared with wheel speed gives the wheel slip, an 
indicator essential to friction potential estimation. The IMU used in this study 
was a common automotive grade test sample from VDO Automotive AG. It is 
necessary to take roaming (growing integration error over time) into account 
when designing true ground speed estimation with automotive IMUs.  

The following chapter presents how the selected sensors were used in the data 
fusion and introduces methods for environmental sensor data fusion, combining 
vehicle dynamics measurements. 
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4. Friction Processing and Data Fusion 
The friction estimation system of this study was designed to support different 
sensor configurations, where the performance of the available sensors can vary 
in different weather and driving conditions. To achieve this, a modular architec-
ture was used. 

4.1 Friction processing architecture 

The friction processing model (Figure 19) is based on sensor data fusion from
various sources:  

− environmental sensors (e.g. camera)  
− vehicle sensors (e.g. accelerometer, wheel speeds) 
− tyre sensors (APOLLO project prototype). 

The sensor signals are gathered within the input data gateway, which filters the 
data and passes them to three friction feature fusion modules: environmental 
(EFF), vehicle (VFF) and tyre (TFF). Features, according to [48], are �an ab-
straction of the raw data intended to provide a reduced data set that accurately 
and concisely represents the original information�. 

The data gateway is intended to be the only interface which has to be updated 
for different cars, sensors and applications. The system parameters and the final 
and intermediate outputs can all be accessed via the data gateway. This also en-
ables the feature fusion modules to utilize the results (detected features) of other 
modules. In the main, it is the VFF module, which is always required, that pro-
duces calculations for friction used and slip to support the other modules. 
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Figure 19. Friction Processing Architecture. 

The gateway takes care of two main data conversions: 

− Receiving specific messages from the vehicle bus and converting them 
to specified input signals for the friction estimation system. The input 
signals and their ranges are listed in Table 5, Chapter 4.2. 

− Receiving outputs from friction processing and converting them into 
vehicle-specific messages (Table 7). If the friction estimation system 
does not include all three modules, all outputs cannot be provided. 

The purpose of the three feature fusion modules is to analyze and combine data 
coming from sensors in their category. For example the environmental feature 
fusion module (EFF) calculates an initial probability for ice on the road based on 
camera and temperature readings. The VFF provides processed information 
based on sensors measuring the vehicle state. It produces for example friction 
used readings based on acceleration measurements. The TFF module processes 
information from tyre sensors, yielding e.g. the risk of aquaplaning. 

The main outputs of each friction estimation module are 
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− friction used (not valid for EFF as non-contact sensors) 
− friction potential 
− upcoming friction (valid only for EFF and its forward-looking 

sensors) 
− validity of the information 
− additional information on road conditions and vehicle & tyre status. 

The output is dependent on the modules� capability and the available sensors. 
All friction values produced by the feature fusion modules are tagged with valid-
ity information (the exact use will be presented later). In addition the type of 
error distribution should be available for fusion, when applicable. 

The friction information and additional outputs of the feature fusion modules 
are combined in the Decision Fusion module, which provides the final system 
outputs. Decision-level fusion, according to a general description [48], �seeks to 
process identity declarations from multiple sensors to achieve a joint declaration 
of identity�. 

In all, the selected architecture is based on traditional feature extraction and 
decision fusion models, with an emphasis on modularity. 

The realization of the architecture with MATLAB Simulink for the demon-
stration vehicle, as presented in Figure 20 and Figure 21, consisted of:  

1. Data acquisition and data gateway running at 100/200 Hz. The camera, 
laser and tyre sensor data have already been pre-processed before 
entering the main processing. This is due to the amount of raw data 
handled by these sensors. 

2. Friction processing running at 100 Hz. The detailed architecture is 
displayed in Figure 21. 
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Figure 20. MATLAB Simulink top level view of implemented software. The data acquisi-
tion and gateway on the left and friction processing in the middle, running 100 Hz. 
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Figure 21. Simulink realization of the friction processing block of Figure 20. 

The VFF, EFF and TFF blocks, on the left side of the Figure 21, provide friction 
used and friction potential estimates to be combined by the Decision Fusion. 
Additionally the figure shows blocks for driving state analysis, aquaplaning in-
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formation processing (final decision at Decision Fusion level) and combining 
vehicle slip calculations based on VFF and TFF data (also Decision Fusion 
level). The architecture design did not require modifications when implemented, 
although the modularity aspects are not as evident in a single Simulink model. 
The EFF and TFF blocks can be fully disabled in the system, representing cases 
where these modules are not available. In most vehicles at least the road tem-
perature is available for EFF processing. 

The 100 Hz processing was found to be sufficient for the friction fusion with 
the sensors used. The camera, laser and tyre sensors use different internal sam-
pling in their processing; the 100 Hz refers to the vehicle sensor, e.g. IMU ac-
quisition.  

As an example of the effect of different sampling frequencies, Figure 22 pre-
sents a maximum braking test captured with the development vehicle acceler-
ometer. The measurements are for longitudinal direction only. The top-left graph 
is the velocity and the others show the longitudinal acceleration captured with 
different frequencies (MATLAB resample from 100 Hz data). For simple re-
quirements, a sampling rate of 5 Hz is sufficient to capture the moment of maxi-
mum braking, but more advanced calculations seem to require at least 10 Hz. 
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Figure 22. Maximum deceleration captured with different sampling rates. 

4.2 System inputs and outputs 

The system inputs are raw sensor data except from tyre, camera and laser sen-
sors. These sensors used separate pre-processing in this study.  

Most input signals are or were made available on the development vehicle 
buses (internal communications networks). The friction processing Rapid Proto-
typing Unit (RPU) provided input connections for signals that were not available 
on the vehicle bus. Chapter 5 further discusses the implementation in the devel-
opment vehicle. 

Different sampling rates are accepted, but due to the processing, a frequency 
of 100 Hz was preferred. The sensors that have a notable latency in their proc-
essing (due to e.g. data transmission) need particular handling to properly syn-
chronize their data with other sensors. 
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For each sensor a definition for the Region Of Interest (ROI, where the meas-
urements originate) and installation co-ordinates in the vehicle frame are required. 
The provisional sensor inputs are listed in the following table. 
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Table 5. Inputs to the friction estimation system as defined in the FRICTI@N project [2]. 

Used by Input sensor signals Corresponding  
signal name 

Unit 
VFF EFF TFF 

Remarks 

Steering wheel angle delta rad x x   
Longitudinal accelera-
tion 

ax m/s2 x  x 
 

Lateral acceleration ay m/s2 x  x  
Vertical acceleration az m/s2 x    
Pitch rate pitchRate rad/s x    
Roll rate rollRate rad/s x    
Yaw rate yawRate rad/s x  x  
Wheel rotational veloc-
ity 

vWheelij m/s x  x 
one for each 
wheel 

Brake pressure 
pBrakeij Pa x  x 

one for each 
wheel 

Brake signal 
brakeSignal 

Boo-
lean 

x   
1 bit 

Engine torque MEngine N·m x  x  
Steering torque MSteering N·m x    
Vertical force Fz_ij N   x ij * 
Lateral force Fy_ij N   x ij * 
Rotational velocity vel_tyre_sensor_ij 1/s   x ij * 
Risk of aquaplaning  

aquaplaning_ij %   x 
0% none; 100% 
full 

Tyre estim. Frict. Po-
tential 

myy_tyre_sensor_ij -   x ij * 

Air temperature airTemperature °C  x   
Road temperature roadTemperature °C  x   
Precipitation density 
(Laser) 

precDensityAl -  x  
 

Ground Truth vehicle 
Velocity_x (Laser) 

vehicleVelocity-
GroundTruthX m/s  x  

Optional sensor. IMU 
or a separate ground 
speed camera can be 
used 

Ground Truth vehicle 
Velocity_y (Laser) 

vehicleVelocity-
GroundTruthY m/s  x   

Ground Truth vehicle 
Velocity_x, confidence 
(Laser) 

vehicleVelocity-
GroundTruthXConf %  x   

Ground Truth vehicle 
Velocity_y, confidence 
(Laser) 

vehicleVelocity-
GroundTruthYConf %  x   

Road Eye sensor 
based on spectroscopy 

Wave-
length1_Intensity -  x  Data to be proc-

essed in EFF 
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Wave-
length2_Intensity -  x  

icePolarization %  x  0: Dry;  1: Icy 
4: Wet;  7: N/A 

Camera system based 
on light polarization 
plane differences 

icfePolariza-
tion_conf   x  

Confidence level 
** 
0: 100�80%  
1: 80�60% 
2: 60�40% 
3: 40�20% 
4: 20�0% 
5: not updated *** 
6: not valid 

roadCondNIR -  x  

Optional sensor. 
0:Dry; 1:Icy  
2:Snowy; 
3:Slushy; 4:Wet;  
7: N/A 

Camera system based 
on light intensity in 
1200�1600 nm wave-
lengths, result and 
confidence 

roadCondNIR_conf %  x  confidence 
Vehicle velocity vVehicle m/s  x   
Tyre pressure pTyre Pa x  x  

*     ij ∈  {00=FL, 01=FR, 10=RL, 11=RR} 
**  Definition used in the prototype system 
***  The value could not be reliably estimated. The output will be the last valid value. 
 
The friction estimation system also requires a number of input parameters to be 
defined on the data gateway. These are values describing the car geometry, me-
chanics, wheels etc. Especially the VFF contains vehicle-model-based ap-
proaches requiring detailed information. Also the EFF algorithms have parame-
ters such as thresholds. The following table gives an example of the required 
parameters. 
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Table 6. Some required system parameters. 

Required system parameters Unit 
Sampling time s 

Static wheel radius at front axle m 

Static wheel radius at rear axle m 

Moment of inertia of the wheels of the front axle kg·m2 

Moment of inertia of the wheels of the rear axle kg·m2 

Distance from centre of gravity to front axle m 

Distance from centre of gravity to rear axle m 

Wheel track of the front axle m 

Wheel track of the rear axle m 

Total mass of the vehicle kg 

Weight on the front/rear axle kg 

Height of the centre of gravity (from axle level) m 

Moment of inertia of the car around its z-axis kg·m2 

Understeer coefficient deg/g 

 
The system must deliver the friction estimated by the algorithms and additional 
information concerning weather, road and tyre condition. The system outputs are 
listed in Table 7. 



4. Friction Processing and Data Fusion 

73 

Table 7. Current outputs of the friction processing. 

Unit Range Output type Signal 
 min max 

Remarks 

Estimated friction 
used 

Friction_used � 0 1.6 if TFF active, sepa-
rately for all tyres 

Estimated friction 
potential 

Friction_pot � 0 1.6  

Predicted upcoming 
friction potential  

Friction_pred � 0 1.6  

Estimated friction 
used validity 

Friction_used_valid � 0 6 

Estimated friction 
potential validity 

Friction_pot_valid � 0 6 

Estimated upcoming 
friction validity 

Friction_pred_valid � 0 6 

Alternatively a deci-
mal value between 
0.00�1.00 or mapped 
to confidence levels: 
0: 100�80%  
1: 80�60% 
2: 60�40% 
3: 40�20% 
4: 20�0% 
5: not updated ** 
6: not valid 

Time to reach friction 
predicted 

Friction_pred_offset ms 0 6000
0 

 

Estimated friction 
potential position 

Friction_pot_pos � 0 3 0: left side;  1: right 
side 
3: overall vehicle 

Vehicle slip ratio Vehicle_slip % 0 100 lumped value for the 
whole vehicle 

Weather condition Weather_cond � 0 7 0: Rain;  1: Snow 
2: Fog;  7: N/A 

Road condition Road_cond � 0 7 0: Dry;  1: Icy 
2: Snowy;  3: Slushy 
4: Wet;  7: N/A 

Tyre force � vertical Tyreforce_vert_ij * N 0 8 000 ij * 
Tyre force � lateral Tyreforce_lat_ij * N �8 000 8 000 ij * 
Risk of aquaplaning Aquaplaning � 0 7 Devel. stage of aqua-

planing  
0: 100�80%  
1: 80�60% 
2: 60�40% 
3: 40�20% 
4: 20�0% 
7: N/A 

Possibility of aqua-
planing position 

Aquaplaning_pos � 0 3 0: left side;  1: right 
side 
3: overall vehicle 

Abrupt change Abrupt_change � false true post-processed ac-
cording to thresholds 

Under threshold Under_threshold � false true post-processed ac-
cording to thresholds 

*    ij ∈  {00=FL, 01=FR, 10=RL, 11=RR} 
** The friction value could not be reliably estimated. The output will be the last valid friction value. 



4. Friction Processing and Data Fusion 

74 

4.3 Sensor data fusion principles 

The following describes the details of the architecture implementation: the algo-
rithms and outputs from the VFF (vehicle) and EFF (environmental) feature 
fusion modules, and the Decision Fusion approaches used. The use of TFF (tyre) 
algorithms is discussed from a fusion standpoint. 

The general data fusion approach of this study is based on the construction of 
expert systems. First the sensor data is analysed for the identification of friction 
related features. An example of this would be ice detection with a camera. The 
features are then used in determining road conditions.  

When possible, each detected feature is also assigned a probability or �valid-
ity� to enable fusion with other similar measurements. The validity was, depend-
ing on the case, based on  

− the likelihood of detection 

− algorithm internal validity checks  

− time after the previous update of the measurement.  

Statistical distribution for the measurements could also be used to combine fea-
tures, but this information was not available during development. For some EFF 
and VFF algorithms, tests were made in different conditions to estimate the reli-
ability and come up with e.g. weight factors for fusion.  

In studies such as the ProFusion2 project [49], the �completeness of the de-
tected feature� has also been used for fusion validity checking. 

Plausibility checking of detections and road conditions is done in many phases 
in the algorithms. For example the plausibility of ice detection from a camera is 
low if the road temperature is measured to be +20 °C. However, even if the sur-
face would not be icy, it may have a similar level of friction potential and some 
matching features. Both assumptions of slippery surface are clearly false if the 
vehicle is at the same time using a friction coefficient of 0.3 or higher. 

Force, acceleration and slip measurements are also used directly in various 
VFF and TFF algorithms to estimate friction used and friction potential. In addi-
tion to analysing features, the feature fusion modules provide these initial esti-
mates for friction used and friction potential. Even the EFF module provides an 
estimate for friction potential, although it does not directly measure forces. EFF 
learns from recorded historic friction levels on different surface types. If no re-
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corded match exists, a rough classification in ice, snow, wet and dry asphalt 
classes is used to provide a literature-based average value for friction potential. 

The used fusion approach is a hybrid. It contains several modules and cannot 
be simply described as using e.g. fuzzy logic or neural networks to estimate fric-
tion. The tools most similar to the used methods are Bayesian network and deci-
sion trees. 

The Bayesian networks can be used to describe e.g. the relationship between 
rain and a wet road, where there could be a 90% chance that the road is wet, 
given it is raining. This study first used this simplified link between rain and a 
wet road, but later the laser scanner�s precipitation value (when classified as 
rain) was chosen to increase the probability of a wet road detected by IcOR and 
Road Eye together. This second simplification creates a link between the amount 
of rain and the amount of water on the road, but also lacks detailed modelling. 
For example, it would be important in further studies to model the time aspect: a 
road does not instantly become wet when it starts raining. During the winter 
time, however, if rain drops are super cooled, ice could form in an instant. 

Decision trees use a tree-like model of decisions and their possible conse-
quences. They can also be used to classify road conditions by performing con-
secutive checks [50]. For example the road temperature could be either below or 
above zero. As a next step of classification, there could be rain or not. 

Weighted averaging is a simple fusion method, useful when combining results 
from similar sensors. This approach was used especially in EFF, after the weights 
were identified based on experiments. Moreover, driving state detection was used 
in VFF to select and give momentary weights for different algorithm outputs. 

In the early phases of the FRICTI@N project, a neural network approach was 
unsuccessfully tested for the VFF full raw data set. This does not mean there is 
no room for such methods (see e.g. [51]), especially when data has been post-
processed and the relationships and latencies are already analysed. 

Considering the complex phenomenon and the required driving conditions to 
detect friction potential, the problem is maybe best addressed in defined pieces 
instead of using large �black box� models. The suggested friction processing 
architecture was created to match the user needs listed [11] in the FRICTI@N 
project and especially to fulfil the requirements of modularity. 

The EFF architecture has particular similarities to the fusion framework intro-
duced by ProFusion2 [49], a subproject of PReVENT IP, in 2007. The frame-
work suggested by ProFusion2 for object detection has three main data abstrac-
tion levels for processing data:  
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(I) sensor refinement 

(II) object refinement 

(III) situation refinement. 

The Figure 23 gives an overview of the EFF data processing mapped to ProFu-
sion2 levels. The actual EFF implementation is later explained in Chapter 4.3.2. 
The term �object refinement� is renamed as �feature refinement� for the figure, as 
a generalization of the architecture. The original work discusses detecting ob-
jects on a road. 
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Figure 23. EFF data processing described using ProFusion2 architecture. 



4. Friction Processing and Data Fusion 

77 

4.3.1 VFF � Vehicle Feature Fusion 

The vehicle dynamics sensors capture the vehicle motion and states, such as 
acceleration in different directions and steering angle. These measurements as 
well as the vehicle dynamic response to different driving manoeuvres can be 
used to estimate friction.  

Generally the effects caused by friction are small, with low values of accelera-
tion and slip. In [31] a lateral acceleration of 0.3 g was required as an input to an 
algorithm to estimate friction potential on different surfaces. When analyzed, 
this lateral acceleration requirement actually means three things: 

1. friction potential on ice (< 0.25) would not be detected using the 
algorithm before high slip occurs 

2. on snow and asphalt, the algorithm would be able to detect the friction 
potential before uncontrolled sliding 

3. the estimate is not available continuously, for example, not during 
straight driving. 

The general difficulty in distinguishing a difference between friction levels can 
be explained with Figure 24. With the small values of friction used, the curves 
and their slope are close to each other. There are differences, but common meas-
urement noise makes it difficult to detect them until either (or both) a slip of 
about 5% or a friction used value of about 0.3 is reached. This is a problem es-
pecially in systems aiming at fast tracking friction [52]. 
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Figure 24. The friction profile of Nokian Tyres� WR 205/60R15 (NCN). Tests for dry and 
wet asphalt performed with Pirelli Flat Track and VTI BV12; Nokian Friction Measurement 
Vehicle for ice and snow; VTI Stationary Tyre Test Facility for smooth and rough ice. 
Load 4 kN. VERTEC project material. [12] 

Similar conditions for clear differences can be derived from the following figure 
that plots the relationship between lateral forces and slip angle. Lateral forces are 
equally used to detect friction potential, although the algorithms do require cor-
nering at a certain minimum speed. 
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Figure 25. Same as Figure 26, except for lateral forces. [12] 

The following algorithms were implemented in the VFF block: 

• friction used calculation based on IMU acceleration measurements 

• two wheel slip ratio estimation algorithms: one compares wheel speeds 
with integrated velocity from IMU during braking, the other uses a 
Correvit ground speed camera for reference during the study  

• two separate approaches for friction potential estimation based on lateral 
forces. These algorithms were provided by VDO Automotive AG 
(Continental corporation) and CRF (Centro Ricerche FIAT S.C.p.A.). 

VFF output respectively consists of 

• friction potential estimated value 

• friction potential validity 

• friction used measurement with an estimated error range 

• slip information to be used in decision fusion.  
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4.3.1.1 Friction used calculations 

The definition for friction used was given in the Introduction while Equation 2 
described it simply as the ratio of horizontal acceleration and gravitational accel-
eration when the vehicle was on an even surface. This simplification assumed 
perfect contact to the road and all four tyres active. Also air resistance slows 
down the vehicle even without friction forces at the tyre�road contact. The fol-
lowing figure shows the acting forces in more detail: 
 

Applied force

Sum in vehicle

frame: 

m×ahorizontal m×avertical
Gravity component and 
momentary contact to ground

Frictional resistance, air resistance
(~0.014 g deceleration when 100 
km/h and 2000 kg car) and gravity
component

(also rolling resistance, e.g. 0.01 g, 
and other dissipation, but in this work
they are defined to be part of friction
used by the whole vehicle)

α

 

Figure 26. Forces acting in the friction used calculation. 

The friction used for the whole vehicle is calculated in this work using the fol-
lowing equation: 
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First, the air resistance (Fd for �drag�) is added to longitudinal acceleration (ax) 
measured in the vehicle frame (co-ordinate system). This is a simplification due 
to not knowing the actual wind speed and approximating air resistance only in 
the direction of longitudinal movement. As a second step, the horizontal forces 
are divided with vertical forces. All accelerations are measured with an IMU 
fixed such that the x-axis gives vehicle longitudinal movement and the z-axis 
vertical acceleration in the vehicle frame. 

Air resistance as calculated for the development vehicle of this study � an 
Audi A6 with a mass of 2188 kg, area (A) of 2.2 m2 and a drag coefficient (Cd) 
of approximately 0.3, using the commonly known Equation 4 � causes a decel-
eration of 0.014 g at a speed of 100 km/h (assuming zero wind speed). The value 
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1.2 in the equation is an approximation for air density, affected by temperature 
and pressure. 

 dd CAvF ⋅⋅⋅⋅= 22.15.0  (4) 

The air resistance is relatively small compared to friction levels used in maximal 
braking and therefore the simplification of Equation 2 is useful for a quick esti-
mation. 

If the vehicle is parked on an incline, it is using friction without any accelera-
tion. When the vehicle is braking on an inclined road, a gravity component af-
fects the deceleration. However due to the friction used definition, when both the 
vertical and horizontal acceleration are measured in the vehicle frame, the in-
clined road does not affect the calculation!  

Usually the climbing angle on roads is small enough to be ignored, but even 
on a theoretic 30° incline and measuring a 1 g deceleration, the definition would 
correctly give |�0.5/0.866| for friction used (not including air resistance). Only 
half of the deceleration would result from use of friction and the other half is 
gravitational acceleration. 

The rolling resistance of tyres and e.g. transmission resistance are often con-
sidered separate in detailed force and brake performance calculations, but this 
work includes these in the definition of friction used. This is because especially 
the VFF module studies accelerations for the vehicle as a whole and because 
generally friction between two objects includes both sliding friction and rolling 
friction. The rolling friction is, however, an interesting case: a free rolling tyre 
can be defined to have zero slip, even though the rolling resistance causes torque 
and a (small) pulling force or driving torque would actually be required to main-
tain speed [53]. Often the value is simply left out from calculations due to the 
small magnitude (around 0.01�0.02 g) compared to braking and due to being e.g. 
dependent on velocity, tyre model and surface. Some 1.5�3.5% of rolling resis-
tance is even due to air resistance [13]. 

The presented definition for the vehicle as a whole makes friction used in cer-
tain cases a more useful indicator of a driving situation or driving style than 
plain acceleration: 

• On inclined roads, acceleration measured with an accelerometer is 
partially due to gravity, but this does not mean the driver is accelerating. 
The acceleration readings may become misleading for analysts, while 
friction used still describes the situation. 
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• On snowy roads, vehicles might never reach acceleration-based 
definitions of �critical braking�, e.g. >0.7 g. However, the vehicle may 
be using all available friction. 

Lumped friction used measurements do not capture differences between the 
wheels. The development vehicle was four-wheel drive, making some simplifi-
cations possible, but with 2-wheel drive cars and especially during acceleration, 
the friction used must be analysed for each wheel separately. The maximum 
acceleration for a 2-wheel drive vehicle is limited by friction more often than 
braking or cornering, where all wheels participate. Naturally the engine also sets 
limits for acceleration, around 0.4 g for the development vehicle but varying 
with velocity. 

The vehicle pitch and roll angles are error sources for the lumped friction used 
calculations due to its definition. With the development vehicle, the pitch was 
measured at under 2° under hard braking and roll at under 5° during maximum 
cornering. As the IMU drift was considered too large to constantly detect the 
angles and the resulting errors were small except during maximum cornering 
(sin(5) = 0.087), these variables were left out of the final calculation. Further, 
pitch and roll angles as well as load transfer between tyres during hard manoeu-
vres affect more the accurate detection of dry asphalt friction potential than the 
detection of slippery surfaces, where the accelerations and load transfer are 
smaller. Sensors and algorithms approximating the vehicle pitch and roll angles 
could nonetheless improve the friction used estimations. 

Figure 27 shows that larger changes in gravitational acceleration measure-
ments can actually be induced by the pitch rate rather than the pitch angle itself. 
This sensor inaccuracy should be removed by filtering. Using the simple averag-
ing of Equation 5 addresses both unwanted gravity measurement changes due to 
pitch rate and general acceleration sensor noise. In the equation, gt�1 refers to the 
previous averaged result of acceleration due to gravity. 

 ( ) 31301 ttfiltered ggg +⋅= −  (5) 
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Figure 27. Integrated pitch angle (blue) from pitch rate and measured changes/errors in 
z-axis acceleration (green). The pitch angle itself causes a small error but the rate of 
change can have a larger effect. 

Speed bumps and rough road surfaces also affect acceleration sensor measure-
ments and momentary friction used calculations. The author conducted an in-
dicative test (during the TeleFOT project in 2009) using BroadBit�s GPS and 
acceleration logger prototype to assess the magnitude of these effects. The log-
ger was fixed with tape near a passenger car parking brake.  

A few measurement runs over speed bumps, attempting to keep a steady 
speed, showed that the bumps induced acceleration sensor measurement noise, 
and, when the readings were low-pass filtered using an adapted version of Equa-
tion 5, there were approximately changes of 0.1 g in car longitudinal accelera-
tion. In vertical acceleration the speed bumps caused changes up to 0.5 g at legal 
speeds. The bumps were so long that the whole car was momentarily on the 
bump. As the car was driven manually in only four experimental runs and the 
accelerator pedal was not fully steady, these results are only indicative. No spe-
cial bump compensation has been implemented into the friction calculations � it 
seems the errors would be rather small (0.1) compared to friction levels used 
while braking, as well as being momentary. 
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Similar tests on cobblestone and gravel showed that these surfaces cause 
higher than usual acceleration sensor measurement noise: logger�s horizontal 
and vertical noise amplitude was around 2 m/s2 vs. 0.7 m/s2 on dry asphalt, 
without any filtering. However, no special filtering or surface classification 
based on acceleration was implemented in this study.  

As a summary, friction used was calculated by a simple algorithm using fil-
tered IMU-based acceleration measurements and an estimate for air resistance. 
The result was a lumped value for the whole vehicle. Tyre sensor measurements 
were optionally used to provide calculations at tyre level to detect possibly 
higher friction used values due to uneven force distribution. 

4.3.1.2 Wheel slip estimation  

Wheel slip is commonly divided into longitudinal slip ratio and side slip angle. 
Equation 6 shows a way to calculate slip ratio, comparing tyre spin velocity (r is 
the wheel radius, ω the angular velocity) with the linear speed of the tyre centre 
(v). Minor variations exist in the literature for a different handling of the cases 
when either speed is zero: in Equation 6 the slip varies from −100% to infinite, 
but depending on the exact definition, it can also be the other way around or 
limited to ±100% in both directions. [13 (pp. 18�19)] 

 %1001 ×⎟
⎠
⎞

⎜
⎝
⎛ −=

v
rslipRatio ω

 (6) 

The tyre slip angle is defined as the angle between a wheel�s actual direction of 
travel and the direction towards which it is pointing (Figure 28). The slip angle 
creates a lateral force (and vice versa).  

The side slip angle is mainly due to the lateral elasticity of the tyre. For the 
passenger car tyre tested in Figure 25, the maximum cornering force was 
reached at about a slip angle of 8°. This varies with tyre type. 
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Figure 28. Slip angle (α) and cornering force visualized according to [13], when the direction of 
the wheel is different to ground velocity (v). The contact patch is shown with gray colour. 

The offset between the cornering force vector and the side force applied at the 
wheel centre (also called the pneumatic trail) creates a torque commonly known 
as the self-aligning torque [13]. 

Measuring wheel slip gives very important factual data on the road surface, 
especially when combined with friction used. Tyre friction profiles (e.g. Figure 
24) can even be used to classify road conditions based on just these two values. 
As an example, a friction used of 0.3 together with a longitudinal slip ratio of 
under 5% (and no slip angle) already gives a strong hint of the surface being 
either wet or dry asphalt. 

This study concentrated on measuring longitudinal slip ratio, as two separate 
VFF algorithms were available for estimating friction potential based on slip 
angle and self-aligning torque. The slip angle was not otherwise used in the data 
fusion, but the longitudinal slip was used e.g. for plausibility checks: by select-
ing limit values for slip and friction used (as in the previous paragraph), certain 
surfaces were ruled out. Also, an assumption of reaching the friction potential at 
around 10% pure longitudinal slip was used to check that the friction potential 
output should still be slightly higher at e.g. 7% slip than the friction used. Only a 
conservative check was implemented and not an actual tyre friction profile. 

Without knowing or updating the exact tyre slip and force characteristics dur-
ing driving, matching the slip to the friction potential can however result in sur-

α 

Fcornering 
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face classification errors. In future work, the plausibility checks based on slip 
and friction used should also include learning and recording the actual tyre per-
formance. This would also enable an improved analysis of tyre longitudinal and 
lateral friction profiles. 

Without accurate ground true speed measurements, both slip values are just 
estimates based on vehicle sensor readings. In the study, using IMU and wheel 
speed measurements, the longitudinal slip could only be estimated for around 
two seconds of braking, until the integrated values from the IMU acceleration 
and rotation were badly affected by drift (error growing over time). Even using 
the Correvit, the reference ground speed camera in this study, the slip values 
under 5% were often noisy. The wheel speed measurements were available at 50 
Hz but during slow rotation, under 12 km/h, the information was considered to 
be unavailable due to measurement inaccuracy. 

Even filters used for pre-processing the data can cause time shift between 
speed measurements and therefore error in slip ratio. A filtering approach based 
on maximum acceleration � assuming the vehicle cannot reach a higher accelera-
tion than 2 g in a no-crash situation � was used in this study to remove spikes 
from speed measurements. This approach caused practically no latency. 

In the main, a slip ratio between 5�15% seemed usable in the friction estima-
tion to make comparisons with tyre friction profiles and also to estimate how 
close the forces are to the friction potential. The methods used for slip estimation 
should be improved in further work, as an accurate slip ratio and angle are essen-
tial for this type of study.  

4.3.1.3 Friction potential estimation based on vehicle lateral dynamics 

Two separate approaches for friction potential estimation, developed independ-
ently by VDO Automotive AG and CRF, were integrated in the VFF block. A 
detailed description by the companies can be found in [2]. 

The approach by VDO uses cornering to estimate friction. It compares yaw 
rate sensor measurements with estimates from a reference vehicle model. The 
reference model is a common two track model with a specifically parameterized 
tyre model, where the car body and chassis are treated as a rigid body. The in-
puts to the model included lateral and longitudinal accelerations, braking flag, 
individual wheel braking pressure, engine torque, wheel speeds, yaw rate, steer-
ing wheel angle and steering torque. 
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The approach by CRF is based on steering torque and relies on the tyre self-
aligning torque saturating at lower values of side slip angle than the lateral force 
(Figure 5). This algorithm allows estimation of the friction potential at compara-
tively small values of side slip angle. The requirement was measured by IKA 
and CRF to match lateral acceleration of 0.3�0.4 g for high grip surfaces (an 
example can be seen later in Figure 33). However, the algorithm requires sensors 
to measure the overall steering torque. This is a limitation for traditional Hydrau-
lic Power Assisted Steering (HPAS) systems, but cars with Electric Power As-
sisted Steering (EPAS) would be able to provide the required inputs. [2] 

The inputs for the CRF model were steering torque (driver + assistance), 
steering wheel angle, yaw rate, lateral acceleration and vehicle speed. They were 
used to estimate tyre forces and torque using a reference model. Similarly with 
VDO�s approach, the model outputs are finally compared with sensor measure-
ments to estimate friction potential. 

4.3.1.4 Driving-situation based preliminary fusion for friction potential 

As both the CRF and VDO algorithms detecting friction potential require lateral 
acceleration and their results were found to complement each other in the first 
FRICTI@N project validation tests by IKA, these partners implemented a pre-
liminary fusion block to merge the outputs.  

It was decided to use driving situation detection (providing states such as 
braking, cornering and straight driving) as an input for selecting the better out-
put. The performance of the algorithms was tested in various manoeuvres when 
building this fusion. This fusion strategy allows for more reliable information to 
be obtained from the similar approaches. 

The two algorithms for friction potential generally provided an estimate 
within ±0.15 when compared to the friction coefficient measured with braking 
tests for the surface. The combined performance is further discussed in the chap-
ter on validation, that is Chapter 6.4.3. 

For the data fusion, the friction potential estimate from the two algorithms was 
considered to be true at least in 80% of cases. As a next phase of the fusion, the 
output was also compared to friction used, while it was possible to further filter 
out some clear error cases, especially where the estimate was under the friction 
used. The estimation success is also higher for dry than wet asphalt for example, 
but the EFF classification was not yet used to check validity. 
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4.3.2 EFF � Environmental Feature Fusion 

The estimation of friction potential with environmental sensors is based on col-
lected experience and literature studies on how different road conditions affect 
tyre�road friction. The expected friction levels on e.g. icy and snowy road were 
discussed in Chapter 1.2. The ranges for these values in the literature are quite 
large (e.g. 0.5�0.9 for wet asphalt, excluding aquaplaning) due to the wide selec-
tion of tyres, the exact properties of the road surface, and the challenge of dis-
tinctly classifying road conditions. As stated in the conclusions of Chapter 3, a 
more accurate mapping of variables that affect friction potential is one goal in 
future environmental sensor studies. This chapter suggests a simple mapping 
tool and discusses its benefits in friction estimation. 

The EFF concentrated mainly on estimating probabilities for water, ice and 
snow on the road with different sensors. The laser scanner also provides precipi-
tation densities that are further used to classify rain and snowfall. Any number of 
road condition sensors can be used in the friction estimation system.  

In the next phase of EFF module processing, temperature measurements and fric-
tion used values (from VFF/TFF) are also used in classifying and plausibility checking 
the initial findings (e.g. �ice detected by Road Eye�). Each finding, or rather feature, 
must also come with a validity estimate (defined previously in 4.3) for the fusion. 

The block diagram in Figure 29 shows how the environmental sensors of the 
study (Chapter 4) provide probabilities for environmental feature fusion.  
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Figure 29. Block diagram of environmental friction estimation. The internal structure of the 
Probability Fusion block is later presented in Figure 30. 
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The fusion of detected environmental features so as to estimate the current fric-
tion potential is performed in 3 main processing phases: 

1. Feature extraction 

First, a feature extraction is performed for all sensor devices separately. The 
features feed blocks providing initial estimates of road and weather conditions. 
Road Eye, IcOR and a road thermometer provide information on road condi-
tions, while a laser scanner and air thermometer are used to classify rain and 
snowfall. 

2. Probability fusion 

In a probability fusion block the initial probability values for water, ice and 
snow are combined to classify the road conditions.  

Precipitation measurements were used to increase the probabilities of water 
and snow on the road. First, the precipitation was both classified and scaled to 
rain and snowfall factors based on its amount and air temperature: If air tempera-
ture is colder than −5 °C, only snowfall is expected. If the temperature is higher 
than +5 °C, rain is expected. Between the two temperatures, both detections 
gained a larger factor with a ramp function. Different amounts of precipitation 
were handled with thresholds. The factors were added to the water and snow 
probabilities. Due to the low amount of rain and snowfall data for data fusion 
verification, this is only a preliminary concept. 

The road conditions for the classification were 

• dry asphalt / high friction potential 

• wet asphalt / medium to high friction potential 

• snow / low to medium friction potential 

• ice / low friction potential. 

In addition to the validity flags provided by or pre-calculated/estimated for the 
sensors in general, the plausibility of the detected road conditions can be 
checked using 1) the VFF friction used, 2) vehicle slip and 3) air and road tem-
peratures.  

Temperature plausibility checks are performed on the sensor-given probabili-
ties of ice, snow and water by multiplying them with temperature-based factors. 
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For example, ice detection was not considered plausible when the road tempera-
ture was above +10 °C. In lower temperatures, it gains plausibility with a ramp 
function. 

If the sensors detect ice, but a high coefficient for friction used proves this im-
possible, basically the EFF could not give an estimate. However, a learning 
functionality changes this (presented below), and the EFF can theoretically 
match any sensor input to a friction level. This also means that the EFF can out-
put �low friction�, even without the presence of ice.  

As the EFF provides outputs for both the road conditions (e.g. ice) and friction 
level, these can be handled separately in the decision fusion when needed.  

3. Learning over time 

The EFF holds a mapping function, the EFF Friction Database, that records 
measured (high slip) friction potential values from VFF/TFF together with the 
corresponding EFF environmental conditions. This database is updated while 
driving and it gradually learns the best matches between sensor readings and 
friction potential. The limited scope of environmental sensing naturally limits 
the classification accuracy � the system currently learns around 100 different 
cases � but the system is still able to narrow down e.g. the range of friction lev-
els for what can be generally expected on snow with the vehicle and its tyres. 
This functionality also enables quick learning, when for example the vehicle is 
set up with summer tyres in winter conditions and therefore the expected friction 
potential is unusually low. 

The database is updated when a reasonably high slip (configuration parameter 
depending on tyres, e.g. 8% longitudinal slip) is detected and the friction poten-
tial estimate is valid. Several measurements are required to gradually change the 
expected friction potential for the road conditions (or rather: for such sensor 
detections). 

The learning feature enables  

− starting work on more accurate road weather vs. friction potential classifica-
tion, using data from several sensors 

− developing friction information exchange for co-operative applications by 
providing a possibility to normalize the effect of tyres 

− measuring the effects of worn tyres and the experienced friction after chang-
ing tyres. 
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As these topics are difficult to approach otherwise, the mapping/learning func-
tionality is an essential part of the EFF. 

Figure 30 presents the idea of using either static friction level classifications 
from the literature (friction potential for ice, etc.) or the EFF Friction Database 
as the final output from the EFF. If the map does not yet contain a recorded 
value for the exact sensor readings, an average friction potential value is given 
based on the road weather classification (e.g. snow, assuming packed snow). 
Figure 30 presents probabilities as inputs for the DB (Database) but also the raw 
output of Road Eye has been tested and it seems to work even better. 
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Figure 30. Simplified model of probability fusion and learning functionality (database) 
within the EFF. 

So far only limited tests have been performed with the mapping functionality 
enabled in the model. These are reported in Chapter 6.4. When a recorded fric-
tion potential for environmental-sensor raw data readings exists, the estimate 
was accurate in these tests. When the mapping was done using the probabilities 
of water, snow and ice only, the limited number of mapped cases caused re-
learning e.g. on different types of �wet asphalt�, and therefore errors.  

The sensors of this study are not likely to handle many separate cases, even 
when raw data (from Road Eye) is used, and this places requirements for future 
environmental sensing if more accurate mapping is to be attempted. 
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In addition to the expected friction potential, the EFF module outputs the clas-
sification for the road condition. It also provides information on how far in front 
the friction estimate is taken from.  

It should be possible to match the area from where the environmental meas-
urements are taken with the vehicle trajectory (or several potential trajectories) 
in applications. A selection of Region of Interest definitions are visualized in 
Figure 31. The yellow colour marks a chessboard type of definition, which 
would likely suit the largest range of applications. This level of spatial accuracy 
is, however, not truly possible with the sensors used in this study: currently only 
point-sized measurements can be performed with Road Eye and the IcOR cam-
era also has a limited resolution. This study only matched the EFF measurements 
approximately with current vehicle trajectory, but e.g. the several optional trajec-
tories calculated in collision avoidance places higher requirements on future 
environmental sensing. 

 

Figure 31. Visualization of different Region of Interest (ROI) definitions on a near infrared 
image based on vehicle and tyre trajectories. The blue lines represent (approximately) 
tyre tracks based on current steering. The green area was used in this study. The red 
area gives an example of trajectory based selection of ROI, for a single tyre. The yellow 
area shows an example of tiles, which is the suggested method to support a wide range 
of applications and steering options.  
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4.3.3 TFF � Tyre Feature Fusion 

The TFF module has mainly been discussed in this work as a tyre sensor and its 
outputs (see previous chapter 3.2.4).  It was designed to be an optional module in 
friction estimation and it has separate pre-processing. 

The TFF module provides tyre forces and friction used for each measurement 
tyre. It also detects phases of the developing aquaplaning [47]. During the de-
velopment, outputs for slip angle and wheel load have also been designed, but 
these were not used in the friction estimation. All the outputs except the meas-
urements for friction used are also available directly as final outputs of the fric-
tion estimation system. 

The tyre forces were tested as an input for the VFF, since they can potentially 
be used to improve VFF accuracy. For the VFF however the main development 
goals have been on current production vehicles, not having a tyre sensor yet, and 
only a few comparisons were made.  

The main interest from the fusion perspective was the TFF output for friction 
used. The information of even a single tyre using high or low friction levels dur-
ing a manoeuvre is valuable:  

• the highest value gives the friction potential more accurately than the 
averages calculated by the VFF 

• the forces indicate tyre�road contact. 

In the current prototype, the TFF gives an output vector for friction used in the 
format [ffl, ffr, frl, frr], where for example frr is the friction used for right rear tyre. 

TFF measurements also comprise the effects of wind speed on friction used, 
while the VFF has only an estimate for air resistance during calm.  

The VFF�s value for friction used was used as a plausibility check for the fric-
tion used measurements from the TFF, when all forces were combined as a 
lumped value. The VFF was used to detect and compensate for potential TFF 
offset in the measurements. 

As was presented in Figure 31, the measurements for each tyre separately can 
be better synchronized with camera and Road Eye detections (their ROI) than 
what can be done with a lumped value.  
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4.3.4 Decision fusion 

The decision fusion block combines the friction used and friction potential values 
from the three feature fusion blocks. It also introduces a rough classification for 
estimated friction potential levels based on µ�slip curves. This classification util-
izes the measured friction used and longitudinal slip ratio to determine which road 
conditions and friction potentials are plausible. For example, ice (or low friction 
potential) is not plausible when friction used is already very high, e.g. 0.6. On the 
other hand, dry asphalt is likely when friction used is over 0.6 and slip is under 5%. 

The logic would benefit from accurate slip angle measurements, but the VFF 
or TFF estimation algorithms for slip angle were not used due to their early de-
velopment phase. A kinematic model of the vehicle was used to support longitu-
dinal slip ratio estimates during IMU measured yaw rate (turning). 

The main inputs for the decision fusion (Figure 32) were  

1. EFF estimate on friction potential and road conditions 
2. friction used and potential from VFF 
3. TFF friction used for each tyre 
4. slip ratio, calculated in VFF (optionally also slip angle). 

The EFF�s road condition classification (e.g. ice) is compared with µ�slip meas-
urements as a final check for road condition output. A slip-ratio-based road clas-
sification is also an input for friction potential fusion. 

The VFF friction potential is used as a final output from the system when the es-
timate is valid and passes plausibility checks. Otherwise EFF estimates and previ-
ous valid estimates are combined as a best guess for current friction potential. This 
means for example that if we used a lot of friction in a curve, this estimate is con-
sidered valid for a while longer, if the EFF road condition classification remains 
in the same category. However, the validities of old estimates drop with distance 
travelled and the EFF estimates are considered less reliable than valid estimates 
from the VFF. Only the EFF learning features, when performing well, can provide 
more accurate information on friction than the VFF algorithms. 
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Figure 32. Decision fusion block. 

Environmental sensors can provide estimates nearly continuously and can there-
fore easily end up dominating the friction potential fusion (e.g. if we detect ice, 
then we expect low friction potential). An error in EFF measurements could 
badly affect the system. Therefore searching for a fitting balance between con-
tinuous and discontinuous estimates/measurements is important for the fusion 
and for giving safe estimates. 

Friction used (measured with acceleration sensors in the VFF and tyre sensors) is 
a continuous measurement and a fact for the system. As was discussed in Chapter 
4.3.1, the measurement has error sources, but these were considered to be small 
compared to the general accuracy of the friction potential estimation. The friction 
used measurements were the backbone of the fusion logic and plausibility checks. 

Finally, abrupt changes are sought from the friction values to detect dangerous 
locations and trigger warnings. This was due to the output specifications, where 
these outputs are included as having potential value for applications. 

Figure 33 and Figure 34 present examples of friction estimation, especially of 
EFF and VFF fusion. The first data shows that when the friction used first ex-
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ceeds 0.3, the VFF based friction potential calculation produces an estimate of a 
friction potential of 1.0. When the VFF measurement is valid, the output for 
friction potential is 1.0, otherwise the output is the EFF classification default 
0.85 (can be set in configuration parameters) for dry asphalt. No learning feature 
has been used. The VFF overcomes the EFF estimate, being generally more 
accurate. The EFF default value for the surface is in this case off by 0.2, when 
compared to the highest friction used value that was measured for the surface in 
a separate braking test: 1.05. However, having only a few road condition classes 
inevitably leads to this level of errors with any default values for dry, snow etc. 

The validity calculations can be best seen from the lowest part of the figure, 
where the validity drops when no recent measurement is available from the VFF 
and the calculation has to rely on EFF values only. 
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Figure 33. Normal driving on asphalt. System reset has been made and no previous 
information is available. When the VFF provides a high validity estimate, the final output 
also receives high validity. At 10 seconds, the validity starts to return to the EFF set 
value. In the case of the learning features being active, the final estimate would remain 
high, but in this case, without learning, the potential is also decided by the EFF. 
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The following data is captured while accelerating and cornering on partially wet 
asphalt. Also the EFF learning functionality has been in use during earlier driv-
ing, including hard manoeuvres, and this improves the estimation. 
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Figure 34. Example of EFF and VFF fusion. Acceleration and cornering on partially wet 
(51�61 s as recorded by Road Eye) asphalt. EFF learning had recorded highest friction 
used 1.05 for dry, 0.85 for wet. 

The EFF classification for the surface (several types are learned even for dry) 
now even includes values around 1.05. A clear drop in the potential is visible 
near 55 seconds, when the vehicle is moving on wetted asphalt. The high friction 
potential near 30 seconds comes from friction used (highest peak 1.08) and this 
is where the EFF could update its values for the classification. Due to the lack of 
proper slip angle estimation and the decision fusion coming to the conclusion 
that some friction potential would still be unused, the final output for friction 
potential became momentarily (near 30 s) too high during cornering. 
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The VFF friction potential estimate is available often in this example due to 
heavy acceleration. However, the acceleration on the wet segment was not high 
enough for the VFF to update its estimate. More tests of the system�s perform-
ance are presented in Chapter 6. 



5. System Integration 

99 

5. System Integration 
The friction estimation algorithms developed in the FRICTI@N project were 
demonstrated in three different vehicles, each focusing on slightly different ap-
plications: 

• Studies with a passenger vehicle demonstrator, Fiat Stilo, focused on a 
minimum sensor configuration using vehicle sensors and the VFF 
module only. The friction information was used to improve the 
operation of the APALACI collision mitigation system (presented later 
in chapter 5.3 as relevant to this study). 

• The commercial vehicle demonstrator, Volvo FH 12 truck, was the main 
test bed for environmental sensor studies. Also a partial VFF module 
was implemented. The main focus was in co-operative applications in 
collaboration with the EU projects SAFESPOT and CVIS. 

• The full friction model and the sensor data fusion approach of this study 
were developed on IKA�s development vehicle the Audi A6. The 
vehicle was instrumented with vehicle dynamics, environmental and 
also tyre sensors. Only the instrumentation of this vehicle is presented in 
this work, as the main development vehicle. 

An experimental Human�Machine Interface (HMI) approach was designed for 
all three test vehicles. Chapter 5.2 sums up these experiences. 

5.1 Development vehicle 

The FRICTI@N project development vehicle, owned by Institut für Kraftfahr-
zeuge Aachen, has been an important research tool also in several earlier studies. It 
contains extensive instrumentation, most of which is hidden under the furnishings. 
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A full validated vehicle simulation model exists for MATLAB Simulink. Using 
this tool, driving manoeuvres can be simulated before real tests are done to assess 
their potential value. Measured data can be re-run and used in simulations offline. 

The vehicle features are summarised below: 

− Audi A6 4.2 l, 220 kW, passive 4WD 
− air springs at the rear axle to reduce driving behaviour changes caused by 

load variations 
− ABS/ESC brake system 
− hydraulic power steering with variable hydraulic steering torque support 

(open interface) 
− active steering with variable steering ratio (not utilised in this study) 
− dedicated CAN bus interface (not vehicle CAN) available on dSPACE Autobox 
− sensors for individual brake pressure at each wheel 
− prepared for easy installation of new sensors. 

The car is not authorised to be driven on public roads. Consequently the devel-
opment has to take place on closed proving grounds. 

In Figure 35 you can see the Audi in winter tests at Ivalo airport.  
 

 

Figure 35. The development vehicle of the study, Audi A6, equipped with extra sensors 
and running a test program in Ivalo, Finland, 2007. 



5. System Integration 

101 

New sensors and algorithms were tested and accumulated for the vehicle during 
the FRICTI@N project.  

5.1.1 Network architecture 

The development and demonstration vehicles used a network architecture 
(Figure 36) designed for experimental purposes. Dedicated buses for additional 
sensors were used in order to avoid interference with normal vehicle functions. 
A Rapid Prototyping Unit (RPU) collects information from sensors and performs 
the calculations. 
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Figure 36. Experimental vehicle network architecture by Magneti Marelli and IKA [2]. 

The following table (Table 8) explains the network classes of Figure 36. 
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Table 8. Network Classes [2]. 

Network 
class 

Description Specifications 

Class 1 Vehicle normal production buses 
(high and low speed CAN) 

Only normal production signals utilised 
by friction estimation system are speci-
fied. 

Class 2 New buses for experimental 
activities other than FRICTI@N 

Only experimental signals utilised by 
friction estimation system are specified. 

Class 3 A dedicated FRICTI@N bus 
(high speed) 

All signals are specified. 

The development vehicle had 2 dSPACE AutoBoxes as the RPUs, the other 
being reserved for tyre analysis for the sake of development simplicity.  

The tyre sensor system needs particular care due to the nature of the data com-
ing from it: The system is made up of a receiver unit for each wheel. The outputs 
are available on dedicated point-to-point high speed (1 Mbps) CAN buses. Such 
buses are completely saturated and cannot be directly connected to the 
�FRICTI@N Bus�. For that reason a secondary Rapid Prototyping Unit was 
used in order to pre-process the signals. 

5.2 HMI concepts 

There are a few issues which affect the Human�Machine Interface (HMI) design 
of friction estimation systems that provide driver information. Firstly, the fric-
tion potential is difficult to estimate as a continuous value. With the comprehen-
sive set of sensors used in this study, an attempt could be made. However, the 
periods when there is no valid estimate for friction potential make it generally 
difficult to present the value to the driver. 

Secondly, the friction potential can vary a lot in the vicinity of the vehicle. 
This is the case for example on winter roads, where snow and asphalt alternate. 
The areas of high or low friction and the changing risks need to be somehow 
included in the application. Also, with today�s environmental sensing technol-
ogy, the friction estimation is limited to some tens of meters in front of the vehi-
cle. The quality of information often drops with distance.  

Averaging friction potential estimates over road segments to provide rough 
classifications is an option. An interesting case for future research would be e.g. 
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matching this type of averaged information with drivers� subjective estimates of 
the road slipperiness, as was suggested by the Finnish RASTU project [27]. This 
might enable a warning to be given to the drivers of slippery road segments ac-
cording to their own understanding of dangerous conditions. 

The FRICTI@N project experimented with two HMI approaches in its at-
tempt to visualize the friction information: one for warning about low friction in 
front of the vehicle, estimated with environmental sensors only, and one for 
displaying the current friction used relative to the friction potential.  

To collect background information for the work, Volvo Technology (VTEC) 
interviewed professional truck drivers in Sweden [2]:  

− A common view amongst the drivers was that black ice is the most 
aggravating condition. If there is no ice or snow elsewhere on the road, 
the driver may not drive carefully enough. 

− The most common way for the drivers to receive information about the 
road conditions was by calling colleagues. They say that a driver never 
trusts systems.  

− A warning was seen as a possible complement, when it does not smother 
senses with excessive information. A large, simple symbol was preferred 
and also an additional voice message might be something to consider. 

− Many drivers viewed the road temperature measurements as a good help, 
especially when the weather is changing fast. They rely on their 
experience on these occasions. 

The warning of low friction potential was demonstrated by VTEC with their 
R&D truck, which has an advanced dashboard (Figure 37) where different HMI 
approaches can easily be tested. 
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Figure 37. The configurable instrument cluster in the truck demonstrator 

The HMI approach included two icons (Figure 38): an informative (orange-
yellow) and a warning (red with triangle). Further tests are needed to verify their 
appearance. Since the small icons are shown on the display behind the steering 
wheel, they may also go unnoticed in the absence of an additional sound.  

   

Figure 38. VTEC HMI design for demonstrations. Images courtesy of VTEC. 

The test subjects commented that the information icon may be unnecessary dur-
ing daylight when the driver�s sight exceeds the capabilities of the Road Eye 
sensor. At night and when using the IcOR camera or other environmental sensor 
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with a longer range (than Road Eye�s 1 meter), the icon could be a more useful 
addition. For details about these tests, see VTEC�s report included in [2]. 

It is understandable that environmental sensing, particularly its range and cer-
tainty, can seem limited when compared with human vision and intellect. How-
ever, as pointed out by a recent study comparing drivers� estimates of road slip-
periness with road weather station values, the drivers do have difficulties trying 
to estimate the maximum tyre�road friction coefficient [5]. This suggests more 
detailed work is needed on identifying driver weaknesses and on finding ways to 
support them with friction estimation. An example of a new type of function for 
the driver information system could be giving out black ice warnings when the 
vehicle�s current trajectory both requires high friction and is projected to travel 
over ice. The driver might have made a miscalculation in that situation. 

When driving on a snowy road where the friction potential is low all the time, 
an information icon easily loses its significance as a warning. Therefore the fric-
tion estimation output of a sudden change in friction potential could be more 
useful in winter conditions. Also if the slipperiness can be expressed in meaning-
ful categories for the driver, a category change could be given as well. 

The second approach visualised the friction used and friction potential esti-
mates using a bar graph. Variations of this approach were developed by CRF 
and Magneti Marelli for the Fiat, and by VTT and IKA for the Audi demonstra-
tor. The design for the development vehicle is shown in Figure 39. 

 

Figure 39. A bar graph concept showing friction levels. Yellow represents friction used, 
green is friction available (up to friction potential) and gray is used to fill the bar to a 
maximum value 1.0. 

When the friction used is very low and friction potential high, the bar graph of 
the figure is almost completely green. When friction used gets higher, the graph 
becomes more and more yellow. If the friction used is near to friction potential, 
both the friction used and friction available turn red � this was to alert the driver. 
In the right end of the bar the number of gray boxes depends on the estimated 
friction potential compared to the maximum value 1.0. In this test the estimate 
for friction potential was continuously shown regardless of its validity. 
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A value 1.0 was used as the maximum for the HMI, even though the vehicles 
can occasionally reach higher values. When the vehicle is using more friction 
than 1.0, the bar graph simply shows that all friction is used. Respectively, po-
tentials higher than 1.0 are all presented as the best possible grip. 

The bar graph provides the driver with a straightforward graphical representa-
tion about of much friction the car is using and how much is available. The in-
formation can be understood with a quick glance.  

The first experiences from using the two presented methods were promising, 
but as they both 

1. increased the driver information load 

2. mostly showed something that the driver already knows 

it is as yet difficult to suggest a HMI approach for product implementation. It 
was presupposed in this study that the main use for friction information is 
through other ADAS, by enhancing their performance. However, as the estima-
tions become more and more accurate, continuous and even occasionally surpass 
the driver�s observations (based on e.g. [5]), there is also room for new HMI 
concepts. 

5.3 FRICTI@N-APALACI demonstrator 

The collision mitigation system developed in the PReVENT�s subproject 
APALACI [54] was adapted by CRF during the FRICTI@N project to utilize 
friction estimates coming from the VFF module. The purpose of this was to 
demonstrate the benefits of friction estimation in an ADAS.  

CRF decided that only existing vehicle sensors would be used in estimating 
friction potential, so as to study a concept that would be as close to the market as 
possible. 

VFF alone does not provide a continuous estimate of the friction potential or 
any future estimates, but rather a history value to be conservatively used in as-
sessing possible manoeuvres. However, the VFF estimate can be better utilized 
in timing the collision mitigation warning signals given to the driver.  

In a dangerous situation the FRICTI@N-APALACI demonstrator first gives a 
warning, and if a collision becomes unavoidable, it activates the brake system to 
reduce impact speed. It is able to start the braking very efficiently as it e.g. pre-
conditions the brakes by sending a low deceleration request. 
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The Figure 40 shows a model that has been used in APALACI to predict the 
distance where collision avoidance is no longer possible. This is the distance 
where the collision mitigation systems usually start full braking. A low energy 
impact is, however, expected. There exist also collision mitigation variations in 
which collisions would not be expected at all, such as the Volvo City Safety 
system at speeds under 15 km/h (measured against a static obstacle) [55]. Colli-
sion mitigation timing is further discussed in Chapter 7. 
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Figure 40. Collision avoidance by steering actuation as calculated in the APALACI project 
[11]. The symbols used in the figure correspond to the list of symbols of this work.  

The APALACI application provided a clear case to demonstrate the benefits of 
friction estimation: on low friction surfaces, the original system, in keeping with 
all current collision mitigation systems, starts braking too late.  

The following table shows an example reduction of impact speed and larger 
warning distances, when the VFF friction estimates were provided for the 
APALACI application. 
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Table 9. CRF�s tests with FRICTI@N-APALACI demonstrator in a forward collision sce-
nario with a stationary car-like object. Initial host vehicle speed 40 km/h, nominal friction 
coefficient 0.5. The Crash Energy Index describes the improvement in reduction of kine-
matic energy. [2] 

Initial host vehicle speed : 40 km/h 
Initial obstacle speed: 0 km/h 
Nominal friction coefficient: 0.5 

 APALACI FRICTI@N+APALACI 

Host vehicle Impact Speed (km/h) 28.13 25.31 

Distance at warning activation (m) 10.35 15.12 

Distance at Brake activation (m) 7.46 11.87 

Crash Energy Index: 19% 

 
As a conclusion from the experimental tests conducted by CRF, the system per-
formance �was improved in a meaningful range of driving situations and road 
conditions� [2]. 

The collision avoidance calculation method and timing of collision mitigation 
that will be presented in Chapter 7 are different to that used by the FRICTI@N-
APALACI demonstrator. The estimated braking distances will be compared. 
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6. Friction Tests and Algorithm Validation 
This chapter gives an overview of the validation steps performed for the algo-
rithms and the main test sessions during this study. The main goal was to verify 
and further improve the suggested data fusion concepts. Due to the environ-
mental and tyre sensors used being prototypes and the numerous changes in their 
setup and software during this study, the compiled results can, however, be in-
dicative at best, in regard to any future product implementation. 

The FRICTI@N project test procedure comprised the following steps: 

1. setting up vehicle simulation models 
2. defining relevant driving situations for real world measurements 
3. real world driving tests for building a measurement databank 
4. offline tests and algorithm development 
5. parameter setup and validation of outputs in offline testing 
6. real-world driving tests. 

The first three steps covered building a comprehensive measurement databank 
for offline algorithm development, while the final steps concentrated on evaluat-
ing and improving the performance in driving tests. 

6.1 Choosing driving manoeuvres and collecting a 
databank 

Simulation can help to identify relevant driving manoeuvres for studying fric-
tion. Several manoeuvres were simulated in the FRICTI@N project by CRF and 
IKA to estimate for example the levels of acceleration and tyre forces. These 
variables are relative to friction used and give a magnitude for the friction effects 
that could be visible in the measurements.  

The simulation results proved to be helpful when planning tests to collect a 
comprehensive measurement database. Especially for the development of vehi-
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cle sensor-based algorithms (VFF module), many different tests with a strict 
differentiation between longitudinal and lateral acceleration were considered to 
be useful. These included steady state manoeuvres for lateral acceleration, such 
as steady state cornering with increased speed or increased steering angle. For 
longitudinal measurements, acceleration and braking manoeuvres were planned 
using different levels of brake force. The manoeuvres had to be performed on 
different surfaces. Hard braking was required in each test session to define the 
friction potential for the surfaces. 

After the development vehicle was instrumented and prepared for data collec-
tion, the first main test campaign was held in Ivalo, Finland, during winter-time. 
Several test sessions followed and the most important are described in the fol-
lowing chapters. 

Nearly 200 measurement runs in total were saved and documented in detail 
including the manoeuvres, weather and vehicle set-up during the test, sensor 
signal naming and pre-processing algorithms, track dimensions etc. When the 
data fusion algorithms and especially the EFF self-learning features for building 
a database reached an operational stage, their run-time values were also saved in 
the databank for the last ~40 test runs. 

The following figure shows an extract of the databank, from summer tests 
conducted in Aachen by IKA: 
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Figure 41. Extract of an executed summer test protocol in Aachen, August 2007. 

6.2 Winter test sessions 

The first winter tests were performed on the Nokian Tyres / Test World track in 
northern Finland, next to the Ivalo airport, in February 2007. The track offers a 
long and broad snow covered runway, an ice circle and a specially prepared µ-
transition track (Figure 42). The µ-transition track enables testing transitions 
between snow, asphalt and ice in short distances. It was especially used for 
studying friction effects during straight driving. 
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Figure 42. Ivalo test track dimensions [2]. 

The test was essential also for setting up the development vehicle and integrating 
several sensors provided by the project partners (Figure 43). The vehicle state 
sensors for the VFF module remained practically intact throughout the project, 
while the environmental and tyre sensor set-up varied extensively between tests. 
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Figure 43. The development vehicle set up for the first measurements. 

The collected databank was used for offline algorithm development until addi-
tional data sets were collected during the next winter. The costs involved in pre-
paring full test campaigns and the early development phase of the systems made 
it practical to perform most tests by concentrating only on a selected set of sen-
sors and algorithms.  

The main environmental sensor validation tests were carried out in Arjeplog, 
northern Sweden at the end of March 2008. A VTEC truck was instrumented for 
the occasion (Figure 44). The truck was driven from Gothenburg to Arjeplog re-
cording 1500 km of data for Road Eye, the IcOR camera and laser scanner algo-
rithm validation. Additionally, experiments were carried out at the Arjeplog site. 

Several factors such as the amount of ambient light (IcOR), varying perform-
ance on different road conditions (Road Eye and IcOR) and prototype sensor 
mounting (all used sensors) affect the collected results. The classification suc-
cess during the FRICTI@N project EFF tests was observed to vary between 70�
95%, the highest reliability being achieved on dry asphalt. The IcOR and Road 
Eye performance in the Arjeplog tests are further analyzed in [40].  
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Figure 44. VTEC truck in Arjeplog tests. Photo courtesy of VTEC. 

During the final tests in late 2008 the project suffered from lack of snow even in 
the north and therefore the project also used artificial slippery surfaces as dis-
cussed in the following chapter. 

6.3 Summer time tests 

The main summer tests with the development vehicle were performed on IKA�s 
proving ground. The track is located in Aachen, Germany. The Figure 45 gives 
an aerial view of the track and its dimensions. 
 

80m

400m

 

Figure 45. Aerial view of the IKA�s proving ground, Aachen, Germany. Photo courtesy of IKA. 



6. Friction Tests and Algorithm Validation 

115 

The track has at least two types of asphalt, but this was not a major factor in tests 
as the friction estimation had trouble differentiating between asphalt types (e.g. 
the IcOR camera provided granularity analysis but lacked spatial resolution). 
The track can be artificially watered and this was often used to test e.g. corner-
ing on wet asphalt and the detection of different levels of wet with environ-
mental sensors. To reduce the friction potential further and to simulate icy condi-
tions, a watered synthetic coverage was used to perform tests on friction poten-
tials around 0.2.  

Figure 46 shows a collection of photos of the surfaces used in the tests. 
 

dry wet

wet on plastic film wet on plastic film
 

Figure 46. Different conditions of the test track. Photos courtesy of IKA. 

Similar tests on slippery surfaces were also performed with the truck demonstrator 
by VTEC on a different test track. Additionally, the FRICTI@N project had ac-
cess to separate aquaplaning test tracks for tyre feature fusion algorithm testing. 

For optical sensing, night-time testing was also performed on IKA�s proving 
ground. Figure 47 shows an example of �black ice� studies on an early October 
morning, using a baking tray and frozen water. The Road Eye sensor detected 
ice reliably, but the fusion algorithm gave a very low plausibility for the detec-
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tion due to the ~10 °C road temperature at the time. The IcOR camera system 
was at the same time tested for night-time detection capabilities. 

 

 

Figure 47. Night-time test of environmental sensors, especially ice detection. Aachen, 
October 2008. 

6.4 Algorithm testing 

The friction estimation algorithms were developed using MATLAB Simulink 
and the data was collected in driving tests as described earlier. The offline runs 
with recorded data covered mostly 5�30 seconds. Real driving tests were there-
fore essential to  

• test the output of the algorithms during longer periods of driving (test 
tracks only) 

• to find out algorithm bugs and undesired outputs related to manoeuvres 
and road conditions not existing in the measurement database (e.g. when 
reversing or driving on grass) 

• develop the learning features 

• develop the driver information system and HMI. 
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The measurement database had been recorded at 3200 Hz, so as to capture full 
data from sensors that have a high sampling rate. Several signals were filtered to 
remove noise during database post-processing. For the final demonstrations the 
sample rate was dropped to 100 Hz to be able to perform all calculations in real 
time. New filters (similar to Equation 5) were designed for online processing, 
with the goal to avoid a large input lag (time shift) caused by filtering.  

In Decision Fusion testing, first the outputs from single systems were compared 
to measured references (peak braking tests) from the test area. Then the system 
outputs were monitored during different driving manoeuvres. The output and reli-
ability of some algorithms depend on the driving manoeuvre. Based on the sepa-
rate tests, weight factors and other parameters were decided for the fusion. 

6.4.1 Continuous friction potential estimation 

One of the goals of this study was to achieve continuous friction potential estima-
tion. The accuracy and validity of the estimation form the criteria for this goal. 

The following test (Figure 48) shows 90 seconds of normal driving on a dry 
asphalt road. It was recorded when the development vehicle was returning from 
IKA�s test track to the garage. The EFF learning feature was in operation. 

The VFF estimate does not capture a difference between 1.0 and the actual 
values 1.05�1.1 that the EFF has learned and recorded for the surfaces during the 
previous hour. The EFF database contained a few separate values for the area, as 
during past experiments, the raw sensor data was used in the learning phase, 
instead of only the �dry asphalt� class. 

In this 90-second recording, environmental sensors can classify the road sur-
face 94% of the time (the rest of the time a historical classification is maintained 
in later fusion steps). Their relative reliability is always considered low (set with 
a configuration parameter). A VFF lateral-acceleration-based estimate was avail-
able 5.3% of the time. The VFF calculated friction used is available continu-
ously � and slip values, when wheel speed exceeds 12 km/h. The final output 
alternates between the EFF and VFF estimates. The system can be configured as 
to how long (both in meters and seconds) it considers the VFF outputs are still 
valid for the surface. Also a contradictory new EFF measure makes the previous 
estimates invalid. 
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Figure 48. Driving for 90 seconds on dry asphalt. October 2008, Aachen. 

This type of test shows a reasonable robustness against false detections. No large 
estimation errors are visible � the low friction potential should not have been 
present in the measurement. The validity of the estimate stays near EFF levels 
much of the time due to the low excitation (under 0.2 g horizontal acceleration 
most of the time) for the VFF module. 

On slippery surfaces the same levels of acceleration cause more slip and the 
VFF is more often able to give a reliable estimate. However, this also depends 
on the driving style as drivers can reduce their acceleration to avoid slip. On the 
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other hand, aggressive drivers are known to utilize ABS and TCS frequently on 
snowy roads. 

6.4.2 Transition tests 

The moments when the road surface and friction potential changed were fre-
quently studied in the testing. During straight driving at constant speed the de-
tection is based only on environmental sensing, but use of longitudinal or lateral 
forces, i.e. accelerating, braking or turning, greatly improves the reliability of 
this detection.  

Figure 49 shows an extreme case based on vehicle dynamics measurements, 
where the surface changes from snow to ice while braking with the wheels 
locked. The friction used is 0.2�0.4.  

The system classified the road surface as icy slightly earlier than the actual 
change happened, due to deceleration dropping under a threshold value. VFF 
estimation inaccuracies also caused a momentary false detection of ice in the 
beginning of the braking. 

The friction potential estimate changed only from 0.353 to 0.348 when brak-
ing started, showing the potential of the EFF learning feature to record similar 
conditions. The system would give an estimate of ~0.4 if no history information 
would be available (including a recent VFF estimate). When moving on the icy 
patch the estimate for the friction potential is close to 0.2. Due to the high slip 
the VFF estimate is constantly used instead of EFF classification based values.  

Some more friction would be available on ice by using a smaller slip ratio. 
Full sliding is usually not the most efficient way to brake. On snow, however, 
the build-up of snow in front of the tyre seems to produce the highest decelera-
tion even in this measurement. 
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Figure 49. Ivalo tests 2007: transition from snow to ice while braking (high slip, initial 
speed 60 km/h). The red line represents the moment of change (18.5 s), recorded with a 
manual trigger during the test run. As there was a small drop between the surfaces, an 
IMU pitch change indicates the drop for the front tyres happened at 18.8 s (green). 

The following figure shows a transition from mostly dry asphalt to wetted as-
phalt. In previous driving the learning functionality has learned 0.87 for the wet 
and 1.05 for dry. The output values of the algorithm are therefore as correct as 
the (lumped) acceleration-based friction used calculation; the main error source 
is rather the road surface classification. Naturally errors can happen also in the 
learning phase, e.g. changing the learned value too easily and on an incorrectly 
classified surface. 
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Figure 50. Transition and cornering from dry to wet asphalt. EFF learning has been in use 
before the test. October 2008 Aachen. 

In the figure the EFF turns to wet (0.87) earlier than the final output, which is 
affected by the VFF. The VFF algorithms are operating near their limits, with 
friction used 0.4, and constantly produce an estimate 1.0. This causes a momen-
tary classification error especially at 54�55 seconds, where the VFF output for 
its internal validity is high. 

The following figure (Figure 51) shows the same example, but this time with-
out EFF learning. The difference is visible in the EFF friction potential output, 
which uses configured values 0.65 for wet and 0.85 for dry, based on averages 
from the literature (see 1.2). 
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Figure 51. The example of Figure 50 reproduced in a simulation with no learning feature in use. 

Generally the system is able to detect large transitions. Rapidly alternating 
patches of two surfaces can, however, result in momentary errors in classifica-
tion between the types. The three previous examples also showed that when the 
friction potentials between the surfaces are rather close, ~0.2 apart, the classifi-
cation difficulties can cause a delay in detecting the transition. This delay is gen-
erally due to VFF classification errors at low excitation, which means that esti-
mates are not updated. 

The output without acceleration or cornering is practically plain EFF output, 
dominated by Road Eye measurements. The change in the EFF estimate is prac-
tically instantaneous. 
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Applications need to decide on how to use the system outputs on surfaces where 
the friction potential is constantly changing and optimize their operation accord-
ingly, as the environment cannot be accurately mapped (e.g. a grid of the sur-
roundings, showing areas of different friction potential) with the current system. 

6.4.3 VFF 

The VDO and CRF compared their VFF algorithms based on lateral acceleration 
so as to later combine the outputs. The tests were made in collaboration with IKA. 
The results showed that both algorithms required a lateral acceleration of more 
than 3 m/s2 to provide a valid estimate for the friction potential. The CRF algo-
rithm was also commented to detect ice (reference value 0.2) at 0.15 of friction 
used. The tests pointed out driving-situation-specific differences between the algo-
rithms in recognition time and accuracy. A preliminary data fusion block based on 
detecting these situations was used to output the more reliable estimate. [2] 

The estimation accuracy of the two algorithms depends on the vehicle model 
and its parameters. Changes in parameters and difficulties in accurately model-
ling the vehicle and its tyres affect the algorithms� performance, especially when 
driving with low lateral dynamics. This was evident for example with the CRF�s 
algorithm, as it had been originally developed for the APALACI and 
FRICTI@N projects� Fiat demonstrator, and the different steering system used 
in the Audi caused difficulties when adapting the algorithm. 

Based mainly on the Turin tests by CRF in March 2008, which consisted of 
170 test runs on various test track surfaces ranging from friction potential 0.3 
(artificial slippery surface) to ~1.0, the CRF estimated the VFF lateral-
acceleration-based algorithms to provide friction potential with an accuracy of 
±0.15 [2].  

This accuracy is a limiting factor also for the fusion system, where the VFF 
algorithms �decide� the output during high acceleration and these values are 
maintained as an estimate, while there are no EFF detected changes. In this 
study, only the learning-based EFF classification and longitudinal high-slip fric-
tion used measurements could outperform the accuracy of the VFF lateral accel-
eration algorithms. 

The author tested the VFF performance using databank measurements col-
lected with the development vehicle, and implemented friction used and longitu-
dinal slip algorithms to support the data fusion. Based on the databank offline 
analysis, for dry asphalt the VFF lateral acceleration algorithms provide an esti-
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mate of 1.0 in nine out of ten tests, occasionally outputting water level of friction 
potential down to 0.7. When moving from a low friction surface to a high fric-
tion surface, the acceleration is naturally low after the low friction surface and is 
usually not enough to update the estimate. 

The estimate for wet asphalt varied between 0.5�1 (also in the Turin tests at 
0.7 wet asphalt), the variation being larger than for dry asphalt. On snow, ice and 
artificial slippery surfaces (e.g. 0.3), the estimates stay in the range of 0.1�0.5, 
during cornering. However, the output can be similar for all these surfaces, mak-
ing it difficult to reliably differentiate between them, based on lateral algorithms 
alone. The algorithms also often consider their output as invalid, even when in 
the correct range.  

Especially for the icy and snowy surfaces, additional checks based on friction 
used and slip provide important support for classification, but only when already 
using most of the friction potential. For example when moving from asphalt to 
ice, without accelerating, the VFF cannot update its (invalid) estimate. Already 
using 0.1�0.15 g longitudinal acceleration does, however, produce enough slip 
for updating the final estimate from the module. Additionally, recording friction 
used during (larger than 5%) slip evens out the module output, maintaining the 
highest value until either the lateral algorithms provide a new valid output or 
high slip is again detected. 

6.4.4 Learning the true friction potential in abnormal cases 

On surfaces where the road classification (e.g. in wet and dry asphalt) does not 
accurately represent the friction potential, such as on the synthetic cover used in 
the Aachen summer testing, the learning feature of the algorithms provided ef-
fective results. The following figure shows a test where the friction potential is 
learned downwards for the surface. In this test the EFF Database inputs were 
probabilities of wet, snow and ice instead of raw sensor data. 
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Figure 52. Friction potential detection by learning. Expected friction level 0.3 (watered 
synthetic cover), vehicle speed 20 km/h. [2] 

However, using the probabilities as an input, the limited number of mapped 
cases causes re-learning on different types of �wet asphalt�, as the plastic cover 
does not differ from normal wet asphalt. This suggests utilizing raw sensor data 
in the EFF classification to potentially learn the abnormal cases. 

6.4.5 Common estimation errors and deciding validity 

The estimation errors experienced during the tests have been discussed from 
EFF and VFF perspectives, but the system�s overall performance was also linked 
to different road conditions. The following table presents the common errors 
using a road condition classification in dry, wet, snowy or icy and also �un-
known�. This provides a basis for analysing collision avoidance and mitigation 
performance on these surfaces in the next chapter. 
 

µ-potential
µ-used

longitudinal
lateral
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Table 10. Common friction potential estimation errors according to road conditions. 

Road condition Common estimation errors 

Dry asphalt Estimation may provide a literature-based conservative value for 
the surface (in this study the value was set at 0.85) if it has not 
recently learned a more accurate value. This default value may be 
slightly too low. Additionally, the classification may momentarily 
give out low values of around 0.7 due to vehicle algorithm inaccu-
racies. 

When the friction potential exceeds 1.0, the algorithms may provide 
only 1.0. 

Wet asphalt In the worst case, estimates range from 0.5�1, momentarily alter-
nating. During hard braking or cornering (> 0.5 g) the estimation is 
accurate to ±0.15. EFF learning and the data fusion provide esti-
mates within 0.2 most of the time (~90%). 

The road ahead may not be wet, which would be important for 
applications to know. 

Snowy or icy 
(asphalt) 

Estimates for friction potential generally vary between 0.1�0.5, but 
due to VFF delays the change is not always instant when driving 
onto a slippery surface, and a momentary higher value could be 
given.  

When ice, snow and asphalt are alternating, only some co-
ordinates are available for the clean icy spots from the IcOR, but 
not a true model of the road.  

Due to slip an accurate friction measurement is available more 
often than on high friction surfaces (when there are no large 
changes in driving style), but there is no proof that the value accu-
rately represents the road ahead.  

The system doesn�t differentiate snow on ice from snow on asphalt. 

Other road condi-
tions not directly 
supported by the 
system 

The estimation is often unavailable due to the surfaces not match-
ing the programmed models and therefore failing plausibility 
checks. However, classification-based systems may occasionally 
come up with a result. In this case the output would contain signifi-
cant error. 

The factual data collected on friction used and slip, as well as the 
EFF learning features matching environmental sensor inputs with 
experienced friction potential, still provide short-duration estimation. 

 
The validity of the estimates was considered to be high during the VFF corner-
ing or high slip outputs. When only an EFF estimate was available, the validity 
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of the final friction potential output was set to drop with distance from the previ-
ous VFF measurement. This configuration parameter for how the validity drops 
was not tested from an application perspective. When neither estimate is avail-
able, 5�30% of the time (based on separate sensor studies, but generally 10% in 
the databank collected in daylight conditions), the validity starts dropping fur-
ther. Even when the validity becomes zero, the previous estimate is maintained 
as an output. 

For learned EFF Friction Database values, the validity could be considered 
higher than generally for EFF default values for road surfaces. However, this 
was not implemented and should be tested from an application perspective. 
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7. Collision Avoidance and Mitigation 
This chapter discusses friction as a central starting point for collision avoidance 
algorithm design. Friction potential affects both the trajectory options available 
to avoid collisions and the maximum predicted accelerations of other dynamic 
objects. A new method is introduced for collision avoidance and mitigation cal-
culations, with an emphasis on effective computing. 

This chapter also clarifies practical requirements for friction estimation from 
an application point of view. Finally, simulations are used to show potential 
improvements in collision mitigation by comparing systems with and without 
friction estimation. 

7.1 Introduction 

Collision avoidance algorithms have been extensively studied especially in the 
field of robotics. Planning a collision-free path from point A to B, being able to 
recognize obstacles and at least stop before a dangerous collision are common 
requirements for mobile robots and autonomous vehicles.  

Collision avoidance exists at several levels. Although there are no clear classi-
fications, some distinctions between the following categories can be made: 

I. Route planning algorithms may utilize a dynamic map, which includes 
obstacles and blocked directions. A new route can be searched from a 
large map and a vehicle may completely turn around. Local maps such as 
occupancy grids1, where sensor measurements are collected to form a view 

                                                      

1 A grid format map of the environment, often evenly spaced. The cells contain e.g. the 
probability value of being occupied. 
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of the surroundings, are used even for rather detailed planning. Mostly 
these route planning algorithms consider the obstacles as static and 
calculate a new plan when required or at certain intervals. 

II. When the vehicle kinematics and dynamics are considered, the obstacles 
move and, e.g. tyre�road friction potential is estimated; this detailed 
calculation is rather called trajectory planning than route/path planning. 
Trajectory planning can however reach long distances, especially with fast 
moving vehicles. The uncertainty in obstacle movement as well as 
maximum range of environmental sensing usually set limits (time and 
distance) for this type of accurate collision avoidance. Following a route 
plan always leads to a level of trajectory planning, when a vehicle attempts 
to stay on the route and execute turns. 

III. Short trajectories and resulting collisions can also be calculated in more 
reactive control systems, which may not even have a goal direction but are 
just wondering, searching or mapping the environment. Toy robots for 
example may turn just before (of after) hitting an obstacle and then 
continue to a random direction. Collision avoidance does not necessarily 
mean long distance planning or optimal trajectory! A snapshot of a 
situation can be used in calculations to effectively prevent collisions. This 
type of functionality can also be combined with route following/planning: 
for example to stop, when the route is not free, or to improve the planned 
route with local collision avoidance. 

IV. When autonomous vehicles perform certain manoeuvres such as a lane 
change, the requirements of this manoeuvre need to be combined with 
collision avoidance calculations. During a lane change, a safety distance is 
kept to other vehicles and the maximum lateral acceleration is likely to be 
limited to ensure a smooth lane change and passenger comfort. The role of 
collision avoidance algorithms may be just to check if the required space 
is free during a manoeuvre, or to signal an abort when the manoeuvre 
cannot be completed safely.  

V. Collision warning systems calculate the risk of collision and time or 
distance before impact. Human operators can use this information to 
evaluate a situation and decide on actions. As a first action, a vehicle or 
robot may slow its speed or stop completely. In the event a system detects 
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a human on the route, it could also sound a warning and wait for the 
human to move. 

Current collision mitigation systems and variations of automatic emergency 
braking designed to support drivers mostly fall into categories III�V in this clas-
sification. In systems such as the APALACI (Chapter 5.3), first a warning is 
given to the driver and the brakes are prepared. Automatic braking starts only if 
a collision is unavoidable. During the braking, the vehicle does not change driv-
ing direction, but the driver is allowed to do so. Before the collision, seat belts 
are pre-tensioned. 

�Collision mitigation� implies various methods of mitigation and therefore the 
abbreviations CMbB (Collision Mitigation by Braking) and AEB (Automatic 
Emergency Braking) are also often used to clarify the exact implementation. 
CMS is used both to refer to �Collision Mitigation System� and �Collision Miti-
gation Brake System�. The terms do not have an established status and they fall 
within pre-crash safety systems. 

Collision mitigation systems could be considered as different from collision 
avoidance systems, since they do not necessarily even attempt to avoid collisions 
but only to mitigate the consequences. For practical reasons, their operation may 
also be limited to large objects, which can be reliably detected. 

It has been a design principle in vehicle safety that the vehicle should not take 
control while the driver still has a possibility to avoid collisions (e.g. [56]). Light 
braking could, however, be seen as a way to warn the driver as well as an ac-
ceptable early phase of collision avoidance and mitigation. 

Potential mistakes in collision avoidance operated through autonomous steer-
ing invites discussion about responsibilities and product liability, although brak-
ing and other types of mitigation also require high reliability:  

• Unnecessary hard braking might cause a rear-end collision if the driver 
following is unable to stop in time, for example due to interpreting the 
situation differently or simply being unable to brake as efficiently as a 
car with the optimized CMS braking. 

• Prototype bumper and bonnet designs, which target improved pedestrian 
protection in collisions, could include irreversible systems such as 
airbags, if collisions can be reliably detected (Figure 53). 
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Figure 53. APROSYS project bumper and bonnet concepts for improved pedestrian pro-
tection. Project final event, February 2009. 

Considering the similar algorithms used in collision avoidance and collision 
mitigation systems to calculate the time to collisions and the steering angles to 
potentially escape them, the difference can be very small: collision avoidance 
starts to apply brakes a split second earlier than collision mitigation. With colli-
sion avoidance, however, people usually refer to a system that evades obstacles 
also by steering, while collision mitigation refers to activating countermeasures 
before impact. 

The more autonomous operation (belonging to categories I�II) has been re-
cently demonstrated e.g. in the DARPA Grand Challenges. These competitions 
for autonomous vehicles, where the United States Department of Defence 
awards cash prizes for the fastest teams successfully negotiating a substantial 
off-road course, have been held in 2004, 2005 and 2007. They have been show-
cases for advanced navigation algorithms and environmental sensing. In the first 
challenge, which was held in the Mojave Desert, no vehicle successfully com-
pleted the route. In the following years the competitors have shown considerable 
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progress and in 2007 the challenge was last held in an urban environment, where 
the vehicles also had to be taught some traffic rules. [57] 

7.1.1 The uncertainties 

When discussing collision avoidance, it is difficult to overlook the uncertainties 
and approximations usually included in the calculations. This work emphasizes 
the role of accurate friction estimation, but more generally the topics are: 

1. Reliable environmental sensing 

Reliable obstacle detection and classification is the basis for the collision avoid-
ance algorithms. A camera sensor system might have difficulties in detecting 
e.g. a dark-hooded jogger who blends into the background and moves fast. Fur-
ther, the system should correctly classify small children, pregnant women and 
even recognize as a human somebody who is carrying e.g. a 40� LCD TV out 
from a shop and having only his legs visible! Obstacles with practically no 
weight, such as balloons, cardboard boxes and paper carried in the wind, offer 
further classification difficulties. 

Modelling the road/environment is important for correct trajectory planning; 
detecting lanes, ditches, kerbs, low bridges and using them in calculations. In 
normal situations a vehicle should not drive into a ditch, but in critical scenarios 
this might be acceptable. Similarly, a kerb may be an obstacle or not. Low 
bridges are obstacles depending on vehicle height and holes in the road are ob-
stacles depending on their depth. 

Environmental sensors have a limited field of view and this usually leads to 
large areas of unknown terrain for collision avoidance calculations. Adverse 
weather conditions usually affect sensor performance and the performance needs 
to be validated in the dark, rain, fog, direct sunlight, when covered with dirt etc. 
Likewise, a bumpy road surface (e.g. cobblestone) and tyre�road friction poten-
tial affect vehicle dynamics and are therefore important to detect. 

2. Interpreting situations and anticipating movement 

When a football bounces in front of the vehicle in a residential area, a computer 
might not brake for such a small object, but a human often would. The human 
driver assumes that a child might come running right after the ball! This level of 
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thinking required would require advanced artificial intelligence or at least a large 
set of rules for behaviour. 

When driving near pedestrians, drivers monitor e.g. if a person appears to 
want to cross the road. Drivers can usually assume that grown-up pedestrians 
mostly maintain their direction and speed when walking directly along the road 
side. Short distances to pedestrians, however, mean a theoretical risk of colli-
sion: a pedestrian may for some reason run into the vehicle path. This is exam-
ined in the following: 

Figure 54 shows optimal braking distances with different levels of friction po-
tential. The calculation is based on Equation 7, where s is the braking distance 
and v0 the initial velocity. Figure 55 shows the time to cover these braking dis-
tances plus a vehicle of length 5 meters, maintaining speed. 
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Figure 54. Optimal braking distances with different levels of friction potential. 
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Figure 55. The time it takes for the vehicle to cross the braking distance with current velocity. 

When assuming that a pedestrian at braking distance starts moving into the vehicle 
path, the vehicle can either stop or slightly accelerate; in a case where the pedes-
trian should not reach the vehicle path in the time it takes for the vehicle to pass 
the pedestrian, based on current velocity or higher, there would be no collision. 

Considering that the author can, from a standing start, sprint 3 meters in 1.2 
seconds, 5 meters in 1.5 seconds, and walk 5 meters in 4 seconds, e.g. the follow-
ing notes can be made about (autonomous) emergency braking and pedestrians: 

− On dry asphalt (µ = 1.0), when driving speed is below 70 km/h, collisions 
with pedestrians standing 3 meters or more away from the vehicle path, could 
be avoided without first dropping driving speed. Either the vehicle can brake 
in time or the pedestrian does not have enough time to jump in front of the 
vehicle. 

− On snowy roads (µ = 0.4), the theoretical collision risk with pedestrians 
walking near the curb is high inside the braking distance (e.g. 35 meters when 
driving 60 km/h). This could cause an autonomous vehicle to slow down to 
even below 30 km/h to avoid the risk. 
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Problems and delays related to detecting the state of a moving object would 
make the risk of collision higher than in the example, but a collision avoidance 
system that was also able to steer could perform better.  

Whether autonomous vehicles would be allowed to make similar assumptions 
and take the same risks that drivers do, e.g. when driving near pedestrians, is an 
interesting topic for legal studies.  

3. Accurate trajectory planning 

Truly accurate trajectory planning would include the effect of e.g. road bumps 
and inclined road. Further, large slip, uncontrollable sliding and race car dynam-
ics are difficult to estimate in real time. With motorcycles, the driver�s sitting 
stance affects dynamics and should not be neglected. 

Hard manoeuvres at the very last moment before collision may even cause dif-
ficulties to keep the vehicle on the road or lane. Therefore the collision avoid-
ance should also prepare for the next turns to make the operation smoother. On 
the motorway, an early lane change could effectively prevent a collision, if the 
system would be allowed such early planning. 

4. Interaction with users and non-users  

Several HMI design issues arise when the vehicle is not going exactly where the 
driver is steering because the collision avoidance system is changing the course.  

Information about the driver�s alertness can be used to trigger collision warn-
ings (the driver has not noticed a danger). If the driver is unable to continue driv-
ing or likely has a long reaction time, this information could even be used for 
early triggering of collision mitigation/avoidance to further improve their effec-
tiveness. 

A system could possibly prevent a collision with a pedestrian who e.g. seems 
to be looking in the wrong direction, also by activating the car�s horn.  

Interesting cases arise if a driver warning system warns at an intersection 
about a probable collision unless the other driver starts braking, and this happens 
where the other driver is facing a stop sign. The sign may be missing from digi-
tal maps, or be difficult to detect with environmental sensors and therefore not 
available for the safety system�s assessment. The warning would be correctly 
calculated but possibly unwarranted, as the probability of a driver not even slow-
ing to a stop sign is low. 
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5. Allow collisions in certain situations 

In some designs, the collision avoidance algorithms need to be partially or mo-
mentarily overridden to allow for a vehicle to collide with an obstacle: A car 
should be allowed to pass near bushes and trees, pushing a few branches aside if 
the driver so wishes. An indoor robot might need to push a door open at low 
speed. However, it would not be favourable to hit a tree trunk or even a door 
with high speed. There is a need for advanced obstacle analysis to provide in-
formation on which objects can be driven through or moved and under what 
conditions. In these cases the objects or some parts of them would no longer be 
considered obstacles in the algorithm. 

6. Prioritization and cost estimation 

If damage is unavoidable, a driver quickly considers the options and may for 
example prefer to drive into a ditch than hit a person. This type of prioritization 
or �cost estimation� is something that an optimal collision avoidance system 
could include. The calculations could also include which part of the vehicle(s) 
would be hit. 

The traditional potential field method for collision avoidance makes a good 
example of practical algorithm design and the approximations involved: These 
algorithms have received wide interest in robotics since the late 1980s e.g. due to 
their computational effectiveness [58]. In the method, obstacles and the area near 
them are marked as having high potential and the robot goes towards low poten-
tial. A way to visualize the principle is to think of a hilly landscape, where water 
(robot) flows in the valleys, between the hills (obstacles). The direction of the 
goal can be for example a vector, which is summed with the direction of the 
potential field at the origin of the robot. The following figure visualises a variant 
of a potential field calculation: 
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Figure 56. The left side shows detected obstacles around a vehicle/robot. The obstacles 
are unclassified and only some points have been measured with distance sensors (ultra-
sound, laser). Red arrow indicates movement direction, which is free of obstacles. The 
right side illustrates a variant of a potential field calculation where the obstacle distances 
are calculated from the edges of the robot, making a smaller figure. 

In the example, the obstacles on both sides of the vehicle cause the robot to cen-
tre its position. This type of behaviour may be effective when driving in tunnels 
or moving in corridors. In this example, the lowest obstacle is considered to be 
already too far to affect the calculation. The distances from how far the obstacles 
affect the robot, can naturally be configured � several variations can be created. 

The potential field method forces the robot on a route around obstacles, but 
the calculation is not accurately planned; rather, it is reactive. The robot also 
moves further away from obstacles that it passes near, although it would actually 
not hit them on its current trajectory. This behaviour can be interpreted as false 
avoidance or safety distance, depending on the application. When a robot avoids 
an obstacle it would not actually hit, and makes a turn towards another obstacle 
or a danger it does not detect with its environmental sensing, e.g. a ditch, the 
result can be dangerous. Ditch and hole detection have traditionally been harder 
than detecting obstacles on the same plane [59, p. 62]. 
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Potential field methods require very reliable environmental sensing and do not 
cover dynamic obstacles. Some other practical difficulties, such as passing 
through closely spaced obstacles, are discussed in [58]. 

7.2 Target Curvature-Velocity Method 

In the following, a new calculation method for local collision avoidance named the 
Target Curvature-Velocity Method (T-CVM) is introduced. It is designed for high-
speed collision mitigation and avoidance applications, yet it can perform millions 
of vehicle trajectory checks and utilize information on dynamic obstacles along 
with their classification. Tyre�road friction estimates and vehicle dynamics are 
incorporated in the calculation of pre-simulated trajectories, deciding which trajec-
tories and change of velocity can be executed. The name of the method describes 
assessing the safety of a list of optional trajectories, each initiating from the vehi-
cle�s current velocity and curvature values and reaching certain target values. 

The origins of the approach are in the well-known Curvature-Velocity Method 
(CVM) [60]. The CVM describes movement as arcs and their curvatures (Figure 
57). For each obstacle, a minimum and maximum curvature to avoid it, are cal-
culated. The calculation is frequently updated. 
 

(xmin,ymin)
cmin

cmax
(xmax,ymax)

robs
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Figure 57. Tangent curvatures for a circular obstacle, according to [60]. The robot/vehicle 
starts from the origin.  

The original work discusses indoor robot applications, where speeds and accel-
erations are rather limited. Safe operation was reported at up to 60 cm/sec. Partly 
the speed limitations were due to a lack of computational power in 1996. How-
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ever, when moving at higher speeds, a vehicle cannot instantly switch between 
these steady state curvatures, which causes an approximation error [59]. Delays 
in steering and overcoming the vehicle inertia need to be considered to cover 
high-speed applications. 

Figure 58 shows example trajectories resulting in the same final curvature, start-
ing from different initial curvatures. The trajectories have been simulated using: 

− the demonstrator vehicle, an Audi A6, dimensions 203 × 492 cm and yaw 
angular inertia 3585 kgm2 

− the common two-wheel (bicycle) kinematics simplification for a car 

− no suspension model 

− small steering, acceleration and braking delays, where the response time to 
step steering input was set maximally at 0.1 s. 

− friction potential 0.6. 
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Figure 58. Simulated trajectories when aiming for the same curvature with a constant 
speed of 30 km/h and different initial curvatures (kinematic model�s steering angle ±13°, 
omitting slip). The plots represent the paths (of the centre point of rear axle) for the next 2 
seconds, with friction potential 0.6. 
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If large steering delays would be included, in addition to inertia and limited fric-
tion potential, the time it takes for a vehicle to reach a set curvature could be-
come several seconds, as presented in [59]. 

With cars, the CVM curvatures can be understood as trajectories characterized 
by vehicle speed and steering angle. Equation 8 gives the steady state curvature 
(1/r) response with respect to the steering angle of the front wheel (δf), wheel-
base (L) and vehicle understeer coefficient (Kus). For a neutral steer vehicle, the 
understeer coefficient is zero. [13, p. 379] 

 
gvKL

r

usf /
1/1

2+
=

δ
 (8) 

Instead of using curvature values in the visualization of the T-CVM calculations, 
this work uses the �virtual steering angle� of the front wheel (in a two-wheel 
model) to represent the curvatures and provide an index. This is done for simpli-
fied visual analysis of the calculation results, but can also be misleading: It is 
important to note that the steering angle of the front wheels does not generally 
correspond to certain fixed curvatures. This is due to a varying tyre slip angle 
with vehicle speed, oversteer/understeer properties, banked road or e.g. side 
wind. The steering angle of a kinematic model can describe the curvature only in 
a geometrical study omitting slip. The virtual steering angle used in this work 
describes the trajectory tangent rather than the final steering angle of the front 
wheels. 

The final steering angle of the vehicle to negotiate a given curvature for colli-
sion avoidance would be decided by separate vehicle control algorithms, cover-
ing slip and generally the steering response. 

Equation 9 has been used in simulations to match curvatures to virtual steering 
angles. It shows the calculation for turning a circle radius r with bicycle kine-
matics in a no-slip situation. 

 )
2

tan( fLr δπ
−⋅=  (9) 

The CVM method suggests calculating distances to obstacles for each possible 
curvature and then selecting one, which satisfies both the collision avoidance 
and other objectives [60]. The current operating point and the direction towards 
the goal are the starting points for selecting a new curvature. The new curvature 
could be e.g. the closest non-colliding curvature next to the currently used curva-
ture. However, maximum vehicle accelerations set constraints on what velocities 
and curvatures can be reached in a given time.  
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The following figure illustrates the idea of calculating distances to the closest 
obstacle for every virtual steering angle. The example is calculated for the situa-
tion in Figure 56, where walls are on both sides of the vehicle. This is a re-
cording from a collision avoidance system designed for VTT�s Tracker wheel-
chair robot in the year 2000 [61, 62]. The robot has car-like properties (4 wheels 
and dimensions 65 × 145 cm, approximately one third that of the demonstration 
vehicle), except that the front wheels rotate freely and can reach any steering 
angle. As the figure shows, the robot sees no obstacles in front (steering angle 0) 
and could progress freely, but it would hit a wall approximately after 30 cm, if it 
would start turning either left or right. It can also reverse straight back without 
collision. This graph can be used as a basis for selecting a new steering angle 
and velocity to avoid collisions. 
 

 

Figure 59. Distance to collision calculated for all virtual steering angles (4° intervals) of a 
kinematic model for the situation in Figure 56. 

From the figure and knowing the current velocity, we can calculate the time to 
collision (TTC), which is the time available to change steering. The time in-
creases when braking and the extra time gives the robot more possibilities to 
change curvature.  

In cases where a robot has no other objective than to avoid collisions, the cur-
vature with the longest free distance would be selected. In addition, choosing a 
curvature immediately next to a blocked trajectory might not be preferred to 
keep larger distances to obstacles when passing them. 

The original CVM approximates obstacles as circles and gives them a safety 
radius. Enlarging either obstacles or the vehicle itself is a traditional approach in 
collision avoidance algorithms, but calculating collisions exactly and estimating 
the future movement of dynamic obstacles requires more accurate computation.  
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This work suggests calculation methods that avoid making approximations in 
order to realize the CVM ideas. Millions of alternative trajectories are pre-
simulated to accomplish this, and key parameters are saved to large look-up 
tables. Additional levels of calculation are added to support dynamic obstacles, 
the maximum use of friction, and finally obstacle classification.  

Besides these additional levels, most of the calculation methods were already 
developed for the Tracker wheelchair robot, but they have not been previously 
published in detail. An early CVM variant used with the wheelchair was found 
to support also joystick driving by correcting driver actions, and autonomous 
route tracking, where it was the final layer of calculation before actuation [61].  

The CVM and its variants can be classified as calculation methods for local 
collision avoidance. As such they are not designed for long-distance path plan-
ning that includes several turns and strategies. Path planning also generally re-
quires more information on route objectives, traffic rules and the behaviour of 
other road users. The number of alternative strategies grows with assessed dis-
tance. As with the wheelchair robot, CVM can be combined with path planning 
by exchanging preferred curvature and velocity values. 

The presented T-CVM covers near-miss calculations where a driver has al-
ready made or he is about to make an error that leads into collision. 

The calculation steps of the method are presented on the following pages, 
starting from the required pre-calculations. An example T-CVM software im-
plementation for MATLAB is included in Appendix A.  

7.2.1 Pre-calculations 

The T-CVM is based on simulating up to millions of possible vehicle trajectories 
beforehand, trying to cover practically all options. The trajectories are similar to 
the ones previously displayed in Figure 58. Below, Figure 60 shows another 
example. The trajectories depend on the vehicle kinematics, dynamics, perform-
ance and selected road properties, and they should be modelled in high detail to 
ensure that approximation errors would not be a main cause for the vehicle to 
collide with detected obstacles. The method can use any set of trajectories as an 
input, even recordings, as long as they are mapped to initial and target parame-
ters. In this sense the trajectory simulation is a modular part of the pre-
calculations that can be easily replaced. 

The key variables in the vehicle trajectory simulation are target velocity and 
curvature. Starting from initial velocity and curvature, first the vehicle is accel-
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erated and turned to target values, which are then kept. The transition phase can 
be long. Only trajectories where the target values can be reached are accepted 
for further calculations.  

Due to using only steady state initial values in trajectory simulation, re-
planning actions during e.g. heavy braking includes estimation errors. Further 
development of the method could look into compensating for these effects either 
in run-time calculations or in a simulation phase. Other similar error sources 
include e.g. a change of balance due to heavy load or (undetected) trailer use. 
However, if the selected trajectory can be executed with acceptable accuracy 
during driving, the pre-calculations can still be considered valid. 

The other parameters describing the trajectories can be selected more freely in 
an application and would preferably include friction and road inclination, but 
could also include e.g. angular velocity, allowing a vehicle to rotate on its path. 

Although the trajectories do not have to be saved for run-time calculations, 
their number increases the memory use of the model: the T-CVM relies on very 
large generated look-up tables to assist in run-time calculations. The size of the 
look-up tables scales from megabytes to gigabytes, depending on application 
parameters and accuracy requirements.  

The trajectories are simulated for a fixed maximum time forward. In the ex-
ample given in this work, this time is 2 seconds. The time is generally selected 
based on a suitable maximum time to collision (TTC) that is interesting for the 
application and can also be reasonably covered with simulation. For example 
braking distances, times required for braking (Figure 55) and environmental sen-
sors� field of view are used when deciding a suitable maximum TTC for trajec-
tory simulations. As the simulation does not include executing several turns to 
avoid an obstacle, this causes a practical limitation for covering the near future 
with acceptable accuracy. 

Due to the transition phase between steady state curvatures the trajectory for-
mulation is not unambiguous. Several strategies exist for reaching the same tar-
get values; e.g. first braking and then turning, or braking and turning both at the 
same time. Especially the case where the vehicle should execute a tighter curve 
at lower than the initial speed, attempting the final curvature right away may 
lead to using all available friction due to centrifugal force. This leaves no fric-
tion for efficient braking. This can be experienced e.g. on snow, where hard 
turning even at low speeds causes large slip. To be able to make a tight curve, a 
driver first has to brake. 
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The simulation aims to calculate a set of suitable trajectories for 1) vehicle 
control in collision avoidance and 2) to cover possible driver escape routes to 
detect unavoidable collision. The drivers have numerous options to avoid colli-
sions and it is difficult to cover them all with centimetre accuracy. Simulations 
can best cover short times and trajectories, where different steering and braking 
options can be simulated with reasonable resolution. 

At high speeds, the braking distances of cars grow to over 100 meters and 
braking lasts for over 2 seconds (Figure 54 and Figure 55). This leaves the driver 
time to execute different strategies, e.g. first brake and then turn. The following 
figure describes this type of difficulty when attempting to simulate long times 
beforehand with any CVM variant: 
 

 

Figure 60. Delayed turning vs. CVM in a special case. CVM trajectories starting to turn 
right from origin (A) would not find a free path, but trajectories where there is a delay 
before turning, may still find a collision-free route (B). 

Due to time limitations in future trajectory approximation � the number of pos-
sible trajectories growing rapidly with time � it can be difficult to accurately 
cover full braking distances in collision mitigation algorithms. This is the case 
especially when a vehicle is travelling at high speed and the friction potential is 
low. If a system attempts to cover the situation of Figure 60, it might suggest 
braking when the driver actually still has an escape route. The driver can turn 
right just before the collision. The system possibly notices the opening (�B� in 
the figure) later than the driver. This special case can be approached with sepa-
rate path planning and simulating more trajectories (this algorithm extension will 
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be discussed later), but basically the CVM calculations have a limited time and 
distance when calculating possible vehicle trajectories beforehand.  

The trajectory examples of this work have been simulated mainly by dividing 
available friction evenly between lateral and longitudinal acceleration. This 
causes the vehicle to turn quickly. This follows the original CVM, where a robot 
would almost instantly change curvature. A different approach was, however, 
taken for the trajectories where hard turning is not possible without first braking, 
as explained before. An optimal braking/acceleration strategy requires a more 
advanced controller than has been used in this study. 

Naturally banked roads, bumps and friction potential also affect trajectories. The 
suggested method is unable to directly include road bumps, but banked and in-
clined roads can be covered by calculating new sets of trajectories for a limited 
number of planes. This however multiplies memory use with the number of planes 
and requires reliable real-time estimation of road inclination. Especially being able 
to detect and include steep (e.g. 10°) uphill and downhill gradients in the applica-
tion would improve the accuracy of avoidance manoeuvre calculations. 

Due to growing memory use and the capabilities of today�s friction estimation 
systems, this method uses only a single friction potential value at a time for the 
whole simulation area. The trajectories are simulated for several different fric-
tion levels.  

If a future system can provide friction potentials e.g. mapped to a grid around 
the vehicle (Figure 31), complementing the T-CVM with path/route planning 
type algorithms, where the grid data could be used, would be an interesting re-
search topic. The current algorithm might also theoretically benefit from this 
information, if the friction potential would be clearly different for different sec-
tors or curvatures. This would enable combining e.g. two result tables calculated 
for different friction levels, based on the sector boundaries. Another approach 
could be generating virtual obstacles where the trajectories can no longer be 
continued. 

The following table sums up the trajectory parameters for the simulation. 
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Table 11. Inputs for trajectory simulation. The intervals are given using MATLAB notation. 
Example value ranges are from Appendix A code. 

Trajectory parameter Range 

Friction used � the highest 
level of friction used in ac-
celerations and steering 
when trying to reach the 
target values. 

Constant values for the trajectory 

Example: [0.1:0.1:1] (size = 10) 

Initial velocity From the lowest velocity to the highest velocity from an 
application point of view 

Example:  

simulation_upper_speed_limit = 130 
simulation_lower_speed_limit = �20 
[simulation_lower_speed_limit:10:  
simulation_upper_speed_limit] 
(size = 16) 

Initial curvature Initial curvatures with required resolution. In high-speed 
applications, an increased resolution is required close to 
straightline driving (virtual steering angle near 0). For 
presentation reasons, this work matches the curvatures to 
virtual steering angles of a kinematic model. The steer-
ing_angle_max is here decided by maximum angle of 
front wheel(s). 

Example:  

steering_angle_max = 0.5645 
initial_steering_angles = [0.5645 0.5081 0.4516 0.3952 
0.3387 0.2823 0.2258 0.1694 0.1129 0.0988 0.0847 
0.0706 0.0565 0.0423 0.0282 0.0141 0 -0.0141 �] 
(size = 33) 

Target velocity Reachable velocities, calculated from an initial velocity 
using maximum acceleration (and simulation limits).  

Example with 5 km/h step size:  

target_velocities=sort([[initial_velocity: -
5/3.6:reachable_velocity_min] [initial_velocity+5/3.6:5/3.6: 
reachable_velocity_max]]) 
(size = varies, 10-15 normally) 

Target curvature Relevant virtual steering angles calculated based on the 
maximum reachable angle with minimum speed.  
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Example: 

target_steering_angles  = [steer-
ing_angle_max: -steering_angle_max/13:-
steering_angle_max] 

then reshaping steering angles, more angles required 
near 0; straight driving: 

target_steering_angles = [target_steering_angles(1,1:8) 
target_steering_angles(1,9):-steering_angle_max/26: 
target_steering_angles(1,27-8) tar-
get_steering_angles(1,27-7: 
length(target_steering_angles)) ] 
(size = 37) 

Road inclination (optional) Optionally a few inclinations, e.g. 6�10° uphill and down-
hill (size = 3). Not included in the example but suggested 
if large variation exists in the application and road inclina-
tion can be reliably measured. 

Total number of simulated trajectories reaches almost 3 million for the example 
values (10 × 16 × 33 × 15 × 37 = 2 930 400). 

In the next phase of pre-calculations, trajectories are matched with an occu-
pancy grid or several grids of varying size. Figure 61 shows the principle of 
calculating which trajectories collide with a cell in an occupancy grid. 

The main idea is to calculate and list all different trajectories which can lead 
to collision with a certain cell in an occupation grid. Also the time period when 
the trajectory collides with the cell is calculated. 

A detected obstacle can occupy one or several cells. With this pre-calculated 
information, when an obstacle is detected, the list of trajectories that lead to col-
lision with it will instantly be known. 

The occupation grid dimensions and cell size are up to an application. The 
grid should reach approximately the area the vehicle can travel in the selected 
maximum TTC.  

In the example of Appendix A, several grids were used. The cell size does not 
have to be fixed but it can e.g. grow with distance. The cells near the vehicle 
were 30 × 30 cm in size. Obstacles far away may not need accurate calculations. 
A far-away grid could be added solely for driver warning purposes. 
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Figure 61. Simulated trajectory collides with a certain cell of an occupation grid in front of 
the vehicle. Model�s virtual steering angle is initially 13° and target is -13°. Constant 
speed 30 km/h. Friction potential 0.6 and almost no steering delay. The red lines are the 
vehicle boundary box corners. 

The calculation produces a very large amount of information to be saved. Mainly 
the look-up tables consist of lists of trajectories and their times to collision for 
each cell in the occupation grids. Saving information about the part of the vehi-
cle that will be hit first in a collision is also an option for improving collision 
mitigation, 

Additionally, the reachable combinations of velocities and curvature are re-
corded for each initial state. The initial states are defined by a limit for friction 
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use, initial velocity and initial curvature, as defined in Table 11. They form the 
main index for the look-up tables. 

Figure 62 gives a suggested format for storing the look-up tables. The use of 
this information will be discussed in the following chapter. 

MAIN INDEX

3-D table of

1. Limit for 
friction use

2. Initial
velocity

3. Initial
curvature

Optionally also
road inclination
and friction
changes

METADATA 

1. Several occupancy grid
indexes. For every x,y
pair in grid, location and 
number of entries in 
TTC data table (index
format: 
1000*startLocation+ 
numberEntries)

2. Vector of reachable
target velocities

3. Vector of target
curvatures

4. Table of reachable
combinations (velocity, 
curvature), initialized
with maximum TTC or 0

TTC DATA

4xN tables for each
occupancy grid,
containing:

1. Target velocity
2. Target curvature
3. TTC (first hit)
4. Moment of 

passing the 
point (last hit)

Optionally for
collision mitigation
also the part of the 
vehicle that will be
hit first

 

Figure 62. Look-up table levels and indexes. 

The pre-calculation phase requires a lot of computations. For each initial state 
(main index of 3 values), it takes approximately 5 minutes to calculate all poten-
tial collisions in the occupancy grid, depending on simulation accuracy. With 
simulation settings and top initial velocities in Appendix A, the calculation runs 
even for 60 minutes. This applies to the given example source code for 
MATLAB and the Intel T2600 processor. Using the number of initial states in 
the example and 5 minutes for calculation, the total time to compute the look-up 
tables exceeds 18 days (10 × 16 × 33 × 5 min).  

The resulting file sizes produced for different initial states are 100�1000 kB, 
depending on initial velocity and friction potential. With low initial speed, the 
vehicle cannot reach as many occupation grid cells as with high initial speed.  

The total amount of memory required varies greatly when changing even one 
simulation parameter, but multiplying the number of initial states in Table 11 with 
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an average file size of 500 kB we get a total memory use of approximately 2600 
MB. The example code, however, does not include mirroring same trajectories for 
opposite entry angles, which would basically cut the memory use in half. 

The look-up table reaches even larger sizes when simulating different levels of 
friction inside occupation grids or several road inclinations or otherwise higher 
accuracy. For slow speed indoor robots on the other hand, even a few megabytes 
can be sufficient as the occupation grid area and accuracy of dynamics can be 
considerably reduced. 

The large look-up tables of the T-CVM are justified with fast run-time calcu-
lations, as will be discussed in the following chapter (7.2.2). Alternatively the 
trajectory alternatives would have to be calculated in real time, which seems 
difficult to do with the same level of accuracy, and would consume a lot more 
CPU power and therefore energy in the vehicle, when comparing with almost 
plain memory operations. 

As a post-processing step for the look-up tables, the cells where all combina-
tions hit, should be specially marked to save memory and computation time. The 
following figure illustrates the number of saved velocity-trajectory combinations 
for each occupancy grid cell. The highest peak is the area where collision is un-
avoidable. 
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Figure 63. Highest peak (red ellipse) is where all options lead to collision and this should 
be specially marked in post-processing to save memory. Simulation uses friction potential 
0.4 and initial velocity 60 km/h. A single cell in the grid (x and y axis) is 30 × 30 cm and 
the vehicle is moving downwards in the figure. 



7. Collision Avoidance and Mitigation 

151 

When calculating look-up tables for high friction, many target curvature-velocity 
combinations can be reached and the size of the table grows. Especially a suitable 
target curvature selection is necessary to cover the occupation grid area effec-
tively. The weakness of T-CVM is black spots for the collision avoidance at large 
distances. This is a direct result of limited target curvature (virtual steering angle) 
resolution in look-up tables and the effect is shown in the following figure. 
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Figure 64. An example of limited target curvature resolution starting to cause black spots 
with distance, when high friction is available for turning. In the figure some black spots 
appear at 30 m from the vehicle front (openings at the lowest part of the figure, vehicle is 
moving downwards). The area of no hits (0) has been dropped for easier visualization. 
The friction potential has been 1.0 in the simulation and initial velocity 60 km/h. 

At lower values of friction use or higher speeds, the gaps do not appear until 
longer distances; as tight curves are not included, virtual steering angles can be 
more tightly spaced with the same memory consumption. 

With correct settings, the gaps barely appear within e.g. the 2 seconds of 
simulated movement with the suggested target angle accuracy. In Figure 64, at a 
steady speed, the vehicle would travel 33 meters and black spots appear at 
around 30 meters.  

For collision mitigation and avoidance, the calculated paths in the area also 
give good information on how to proceed (e.g. several combinations cause no 
collision). For collision warning, however, the black spots could cause a slightly 
delayed warning in some cases. 
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7.2.2 Run-time calculations 

The T-CVM emphasizes the role of look-up tables, which are used to quickly 
update the driving options after detecting and classifying obstacles. The run-time 
calculations are mainly for deciding actions based on the situation. The method 
produces the following type of snapshots of the current situation: 
 

32
.3

4

27
.4

9

22
.6

4

17
.7

9

12
.9

4

8.
09 3.
23

-1
.6

2

-6
.4

7

-1
1.

32

-1
6.

17

-2
1.

02

-2
5.

87

-3
0.

73

84

72

60

48

36

24

12

0

0.00

0.50

1.00

1.50

2.00

TTC (s)

Steering angle (deg)

Velocity (km/h)

Current 
velocity

 

Figure 65. An example T-CVM result plotted as bar graph. The green and yellow colours 
are only to be able to see the different bars; the red colour represents the steering options 
at current velocity. The obstacles are shown in the small figure on the right. Simulation 
parameters: initial speed 60 km/h, driving straight and maximum friction use is 1.0. Curva-
tures are represented by a linear selection of virtual target steering angles. 

In the figure, the bars that reach maximum TTC value of 2 seconds represent 
combinations of target curvature (virtual steering angle for visualization) and 
velocity that do not cause collision. The area which has a TTC value 0, repre-
sents combinations that cannot be reached during the next 2 seconds with the 
current friction potential. The other bars that show collision generally become 
shorter when speed increases; the same obstacle is hit sooner. The red colour 
indicates current velocity (green and yellow are just for clarity).  
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When comparing different T-CVM result tables, it is important to note that the 
method scales the (axes of) reachable curvatures and velocities based on initial 
conditions: First, the maximum and minimum velocities are calculated that can 
be reached within 2 seconds. Second, the tightest curvature is calculated that can 
be executed at the minimum reachable velocity. This type of scaling is done to 
exclude unnecessary values from the simulations and use memory efficiently to 
cover as many available trajectories as possible. 

The following steps are required to produce the snapshots: 

1. Environmental sensing provides obstacle co-ordinates and sizes in the 
vehicle co-ordinate system (minimum requirement: points, no excessive 
clutter). Preferably the input consists of boundary boxes of classified 
obstacles/objects, together with information on their anticipated 
movement options during the selected maximum time for simulation 
(e.g. 2 seconds). 

2. During each calculation round, the obstacle co-ordinates are matched 
with the collision avoidance occupancy grids, leading to the occupation 
of one or several cells, depending on the obstacle shape. In the case of 
dynamic obstacles, a time period is required for when the cell is 
occupied. Further, the cells that the dynamic obstacle is considered 
likely to reach during the simulation period must be estimated for 
optimal calculation. 

3. For each occupied cell, the list of trajectories that lead to collision with 
that cell is retrieved from look-up tables. For each trajectory, the look-up 
tables contain the target curvature and velocity together with first and 
last (when the obstacle has been passed) TTC values. If the cell is 
occupied during the period that the trajectory collides with it, the 
information is added to the result table. 

4. The result table (Figure 65) contains minimums of all TTC values that 
have been added to it.  

Many strategies exist for deciding a new curvature and velocity when the vehicle 
is about to collide. The result table only provides information about the available 
options. Autonomous vehicles select a new trajectory from the non-colliding 
options based on several goals and selection criteria such as target direction and 
preferred velocity, keeping distance to obstacles (combinations which are close 
to a collision are not selected), minimum use of tyre forces etc.  
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Since collision avoidance designs often involve these various goals that are 
part of the driving style � the optimization of which is not part of this study � the 
use of the T-CVM result table in collision avoidance is demonstrated only 
through near-miss avoidance simulations at the end of this chapter. The near-
miss avoidance strategies best show the effects of varying friction potential. 

The basic strategy for selecting a new curvature and velocity based on the 
T-CVM result table is to pick the closest non-colliding bar (parameters) to the cur-
rently used parameters where the TTC value has started to indicate an upcoming 
collision. If the target curvature and velocity are available from e.g. navigation, the 
selection is made from the closest non-colliding bars leading towards the target. 

Naturally, selecting parameters that barely avoid a collision leaves very little 
room for error. In practise the selection often leaves more free space between 
objects. In collision avoidance variations that try to avoid collisions early and 
ensure that there can be no close calls, any colliding trajectories would be 
avoided as early as the collision can be detected, instead of waiting for the very 
last moment. 

In collision mitigation design, however, braking could start when no options 
remain, with a clearly longer TTC than with the current velocity and curvature. 
A suggestion for timing is given at the end of this chapter. 

The sensors� limited field of view (Figure 66) usually imposes speed limitations 
for this type of collision avoidance; the vehicle cannot go fast where it does not 
see. Otherwise the system has to make assumptions on the road being free of ob-
stacles. Even if the system would not make such assumptions, the driver might. 

The figure also shows a detail common to CVM variants: using the longest 
collision-free trajectory would cause the vehicle, in this case, to leave its lane. 
Therefore knowing the lane geometry is important for use of CVM variants in 
autonomous driving. Also, changing the lane generally increases the risk of col-
lision, as environmental sensors may pick up fast moving objects when it is al-
ready too late for avoidance. 
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Figure 66. Limited sensor field of view and related assumptions. If the hatched area is 
considered an obstacle, the vehicle is soon about to collide and should slow down. How-
ever, a driver may be using an assumption that the road will be free of obstacles. 

The presented T-CVM supports also the following type of calculations: 

• Using different levels of maximum acceleration: Path planning software 
may aim to use a low acceleration level, translating to low friction use in 
T-CVM calculations. If the table calculated for low friction use does not 
contain suitable options, the calculation can be repeated for higher 
friction use, while still below the friction potential. 

• Selecting which object type to collide with: In the case of unavoidable 
collision, certain object types such as ditches can be removed from the 
calculation, opening new trajectory options. These options lead to a 
collision but with the preferred obstacle type. The look-up tables can 
also be used to save optional information about the area of the vehicle 
which would be hit first in the collision. 

• Delayed turning for double-checking unavoidable collision calculations: 
The difficulty to cover all possible trajectories that a driver can use to 
avoid collisions increases with simulation time and leads to cases 
previously presented e.g. in Figure 60. The T-CVM result table can be 
calculated for situations which first include moving the vehicle to a co-
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ordinate point it will reach on its current trajectory. The delays before 
starting to brake or turn could be e.g. 0.5, 1 and 1.5 seconds. Repeating 
the calculations for different delays may help in finding new collision-
free trajectories. It is then up to the collision mitigation application to 
design whether the system would warn the driver in this case. The 
collision mitigation timing is discussed more in Chapter 7.3. 

• Anticipating the moment of unavoidable collision for collision 
avoidance operating at near-miss ranges: To be able to start evasive 
action only just before collision becomes unavoidable, the same kind of 
anticipatory simulation can be used as in the previous case; moving 
vehicle e.g. 0.1 seconds forward on current (steady state) trajectory. 
Collision avoidance timing is also discussed in Chapter 7.3. 

• Other initial co-ordinate and time shifts: for example a lateral 
displacement can be used to find out if more free paths become 
available. This would be required to compensate for CVM methods not 
covering lane-change type manoeuvres. 

The calculation time of T-CVM depends on memory access times, number of 
cells occupied in the occupation grids and the required number of e.g. different 
friction levels to simulate.  

In basic tests, where 100 cells were occupied (different lines in the grid) and 
the same result table was calculated 10 000 times, the times to complete this 
with Appendix A MATLAB code varied between 2�5 seconds. The result table 
was updated respectively with 2 000�5 000 Hz. However, if the calculation uses 
4 000 points that have to be separately mapped on the grid (raw data of Figure), 
the performance drops to 175 Hz. These values show the speed benefits from 
using pre-calculated trajectory tables for collision avoidance. 

7.2.3 Dynamic obstacles 

When an obstacle is moving, separate environmental sensing algorithms need to 
provide the occupation grid cells that the obstacle is likely to traverse during the 
maximum simulation time. For each occupied cell, the minimum and maximum 
times that the obstacle might be present are then compared in the T-CVM with 
simulated ego vehicle trajectories.  

The following figure shows a result plot from a near-miss simulation where 2 
vehicles enter an intersection at the same time. The purpose of this example is to 
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isolate and demonstrate the effect of dynamic objects in the method. As a simpli-
fication, the second vehicle is assumed to maintain its course. As can be seen 
from the figure, such an obstacle can be avoided just by speeding up or braking. 
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Figure 67. A simulated dangerous situation with 2 cars entering an intersection at the 
same time, both vehicles travelling at 60 km/h. Friction potential 1.0. Curvatures are rep-
resented by virtual steering angles. 

The figure does not cover the potential trajectory changes of the second vehicle. 
Doing so means blocking a larger area in the occupation grid, based on e.g. the 
anticipated maximum change of velocity and direction for the object class. The 
T-CVM requires this information from external algorithms. 

In the example, had the second vehicle stopped just before the collision � let�s 
assume it is approaching a stop sign � it is likely that the collision calculations 
would still trigger or at least suggest pre-emptive actions. This is due to the un-
certainty of the actions of other drivers. Whether a driver warning would be 
sounded or other measures taken depends also on whether the applications have 
information available on traffic signs and road geometry to estimate the likeli-
hoods that the collision would actually happen.  
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Collision avoidance in intersections has been discussed e.g. in [63], with con-
sideration also for co-operative collision avoidance. Two vehicles can effec-
tively prevent collisions, if the trajectories are communicated and planned co-
operatively. 

7.3 Friction 

The use of friction information in collision avoidance has not previously been a 
starting point for algorithm development. A common approach is to include 
friction potential in rule of thumb formulas of distance calculation for initiating 
collision avoidance or braking (e.g. [64] and Figure 40). In traditional collision 
avoidance algorithms the manoeuvring speed is low, which helps to simplify the 
calculation of dynamics even to the point of considering all obstacles to be static 
and/or assuming instant changes in ego vehicle�s steering to be possible. The fast-
est speeds reported from the DARPA Challenge collision avoidance algorithms, 
still performing with a reasonable reliability, have been around 55 km/h [65]. 

The T-CVM uses different levels of friction potential in trajectory generation. 
In the example of Appendix A, friction usage simply affects maximum accelera-
tions and overcoming the moment of inertia when the vehicle needs to turn. Air 
resistance also plays a role in calculating accelerations. The accuracy of the tra-
jectory generation could be further improved by utilizing advanced vehicle and 
tyre models. This precision is, however, not necessary to demonstrate the main 
effects that different levels of friction potential have on collision mitigation and 
collision avoidance. Even for a product implementation, it can be questioned as 
to what constitutes a reasonable accuracy for pre-simulated trajectories, as they 
can never exactly match a real-life situation due to unexpected road bumps, un-
balanced vehicle loading etc. 

In curves, the vehicle uses friction to oppose centrifugal force. The remaining 
potential can be used to turn or accelerate. As the centrifugal force can grow 
rapidly even with small steering angles at high velocities, and consume all avail-
able friction, this causes some difficulty when designing optimal strategies to 
avoid collision.  

Another interesting case for trajectory simulations is attempting to reach target 
velocities and curvatures when the friction potential suddenly drops and the 
simulation begins with the vehicle in an uncontrolled slide. Simulating even 
these situations with reasonable accuracy would benefit the method. Otherwise, 
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especially in a full slide, the T-CVM calculations have to be inactivated if no 
trajectories can be assessed to support collision avoidance strategies.  

7.3.1 Collision Mitigation 

For demonstrating the impacts of friction potential estimation in collision mitiga-
tion algorithms, the following simulation was run for snow and dry asphalt: driv-
ing forward towards a parked car directly in front and saving the distance when 
collision becomes unavoidable. The purpose of the simulation was to compare 
collision mitigation capability to reduce kinetic energy at collision, when  

1) the friction potential is assumed to be a fixed value of 1.0 in the 
collision mitigation algorithm 

2) the friction potential is correctly estimated (0.4 for snow in the 
example) and does not change during braking. 

The following table shows the results based on the Appendix A code and also 
compares them to the APALACI project�s distance prediction formula (Figure 
40). What can be seen is that the APALACI rule of thumb gives similar esti-
mates, especially since the braking would in practice be suboptimal and would 
start with a delay. The trajectory simulation also included an approximation for 
brake pressure build-up during the first tenth of a second. 
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Table 12. Simulation results of distances and TTC values at the moment when a collision 
with another car (width 2 m, same as the ego vehicle) directly in front becomes unavoid-
able. The braking time when continuing to drive straight is calculated as well as the re-
duction in collision speed and kinetic energy before impact. 

 Initial speed 40 
km/h 

60 km/h 80 km/h 100 km/h 

Friction 
potential  
1.0 

distance to target 
= 5.1 m 
APALACI pred. = 
7.1 m 
simulation TTC = 
0.44 s 
braking time = 
0.59 s 
collision speed = 
20.9 km/h 
kinetic energy vs. 
original = 27% 

distance to target 
= 8.1 m 
APALACI pred. = 
10.6 m 
simulation TTC = 
0.48 s 
braking time = 
0.57 s 
collision speed = 
41.8 km/h 
kinetic energy vs. 
original = 49% 

distance to target 
= 11.4 m 
APALACI pred. = 
14.2 m 
simulation TTC = 
0.50 s 
braking time = 
0.57 s 
collision speed = 
61.5 km/h 
kinetic energy vs. 
original = 59% 

distance to target 
= 15.3 m 
APALACI pred. = 
17.7 m 
simulation TTC = 
0.54 s 
braking time = 
0.61 s 
collision speed = 
80.4 km/h 
kinetic energy vs. 
original = 65% 

Friction 
potential  
0.4 

distance to target 
= 8.4 m 
APALACI pred. = 
11.2 m 
simulation TTC = 
0.71 s 
braking time = 
0.88 s 
collision speed = 
28.3 km/h 
kinetic energy vs. 
original = 50% 
collision speed if 
friction incorrectly 
assumed 1.0 = 
33.7 km/h 
incorrect friction 
assumption kinetic 
energy vs. original 
= 71% 

distance to target 
= 13.8 m 
APALACI pred. = 
16.8 m 
simulation TTC = 
0.79 s 
braking time = 
0.92 s 
collision speed = 
47.7 km/h 
kinetic energy vs. 
original = 63% 
collision speed if 
friction incorrectly 
assumed 1.0 = 
53.5 km/h 
incorrect friction 
assumption kinetic 
energy vs. original 
= 79% 

Distance to target 
= 19.5 m 
APALACI pred. = 
22.4 m 
simulation TTC = 
0.85 s 
braking time = 
0.95 s 
collision speed = 
67.3 km/h 
kinetic energy vs. 
original = 71% 
collision speed if 
friction incorrectly 
assumed 1.0 = 
73.2 km/h 
incorrect friction 
assumption kinetic 
energy vs. original 
= 84% 

distance to target 
= 25.5 m 
APALACI pred. = 
28.0 m 
simulation TTC = 
0.89 s 
braking time = 
0.98 s 
collision speed = 
86.9 km/h 
kinetic energy vs. 
original = 75% 
collision speed if 
friction incorrectly 
assumed 1.0 = 
92.6 km/h 
incorrect friction 
assumption kinetic 
energy vs. original 
= 86% 
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The braking times (t) in the table were solved from distance values by using the com-
mon equation of travelled distance (s) with initial speed (v0) and acceleration (a): 

 
2

2

0
attvs +⋅=  (10) 

Deceleration after detecting an unavoidable calculation was here assumed to be 
the friction potential multiplied with the local acceleration due to gravity (g), 
leaving out air resistance. However, during the first tenth of a second the decel-
eration was considered to be half of the maximum to approximate brake pressure 
build-up. Adding this period to Equation 10 gives: 
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The results (and similar T-CVM simulations) show that the TTC values at the 
start of braking as well as especially the braking times before collision remain in 
the same range for a single friction potential: braking time ~0.6 s on friction 
potential 1.0 and ~0.9 s on 0.4. This also means a similar decrease in velocity 
before the collision. However, the reduction of kinetic energy drops with in-
creased initial speed as the energy is affected by speed squared. Therefore a con-
stant reduction in speed does not suffice for a constant reduction in energy.  

Finally, the table lists reduction of kinetic energy, if no friction estimation 
would be available and it was assumed that friction potential would be 1.0. These 
numbers apply when there is a possibility for the driver to change lane. If this op-
tion can reliably be ruled out, the braking could be started considerably earlier.  

The case where an obstacle is not directly in front and only a partial collision 
can happen would mean even smaller TTC values when the collision becomes 
unavoidable and therefore less effective collision mitigation. An example of this 
kind of simulation is presented with collision avoidance simulations on the fol-
lowing pages. 

7.3.2 Collision Avoidance 

From a number of collision avoidance strategies, three steady speed strategies 
for late avoidance are simulated for presenting the potential advantages of fric-
tion estimation:  
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Strategy 1. If the TTC for current curvature and velocity drops below the 
simulation maximum of 2 seconds, initiate action to choose a new 
curvature with a longer TTC by at least 0.05 seconds. 

Strategy 2. Activate avoidance when all optional curvatures lead to a colli-
sion in under 2 seconds. This is already risky for collision avoid-
ance and in variable speed simulations the vehicle would start to 
slow down in search of better options. However, this is still too 
early for collision mitigation, especially if walls nearby cause 
TTCs to be continuously under 2 seconds for all other options but 
driving straight. 

Strategy 3.  The moment of collision mitigation activation, but calculated by 
first moving the vehicle position 0.1 s forward on its current tra-
jectory. This is about the last moment for collision avoidance to 
act, considering the accuracy of the pre-calculated trajectories. 
The vehicle must also be able to utilize friction to the fullest dur-
ing the whole manoeuvre, which may be difficult. 

A description with code examples is included in the end of Appendix A on the 
required steps to use the T-CVM result tables in implementing these collision 
avoidance strategies. 

The collision mitigation triggering in strategy 3 is based on the following con-
cept, comparing available maximum TTC with current TTC: when no option 
provides at least a 0.3 seconds longer TTC than the current steering, collision 
mitigation is activated. Figure 68 shows the development of maximum and 
minimum TTCs when driving straight in the situation of Figure 69, �through� a 
parked vehicle directly in front. At ~2.2 seconds the collision becomes unavoid-
able and it hits the other vehicle ~2.6 seconds.  
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Figure 68. Collision becomes unavoidable in T-CVM when TTC max becomes equal to TTC 
min. Simulated for Figure 69 situation, straight driving 50 km/h and friction potential 1.0. 

In strategy 3 there is no guarantee that collisions can be avoided, but until the 
maximum TTC equals the minimum, the driver has options to avoid the collision 
at least for a while longer than on the current path. This triggering means near-
miss avoidance. 

The simulations for strategy 1 show practically no difference for friction po-
tentials 0.2�1.0, as the avoidance starts rather early. For strategy 2, the differ-
ences are also small and can be seen mostly in the end of the avoidance manoeu-
vre, turning to drive straight as quickly as possible. These simulations are shown 
in the following:  
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Figure 69. Strategies 1 and 2 are affected only a little by friction potential. The x-axis has 
been doubled to bring out the differences. The blue line is the centre point of rear axle 
and the red lines represent vehicle boundary box corners. 

These strategies of taking early action to avoid collisions could benefit from 
friction estimation by being able to estimate the maximum accelerations and 
therefore the potential movement of dynamic obstacles. In this example simula-
tion, however, the vehicle in front does not move. Other advantages would be 
selecting/suggesting a safe speed on slippery surfaces or possibly to act even 
earlier than normally. 

Strategy 2 could be a near-miss strategy if there are no other obstacles in the 
sensor field of view than the car in front. It is also largely affected by the simu-
lated target angle accuracy for trajectories: the more accurate the trajectories are, 
the later the calculation is able to still find a free path. Therefore the Appendix A 



7. Collision Avoidance and Mitigation 

165 

example suggests an increased curvature resolution near straight driving. In this 
simulation the effect of halving the resolution caused a 0.15 second difference in 
initiating avoidance. 

Strategy 3 for near-miss avoidance shows, on the other hand, clear differences 
for different friction potentials: 
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Figure 70. Near-miss collision avoidance (strategy 3) for three friction potentials. The x-
axis has been made wider to bring out the differences. 

In close-range collision avoidance the impact of friction estimation is similar to 
the simulated impacts in collision mitigation. 

The following simulation, which is run for a parked car on the side of the 
street, shows that collision avoidance has large safety potential in collisions that 
involve only a small part of the vehicle�s front. Collision mitigation applies 
brakes very late in these partial collisions, as theoretically the collision can be 
avoided until the very last moment: 
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Figure 71. Collision avoidance works efficiently but collision mitigation would apply the 
brakes very late, losing its safety potential. 

Avoiding partial collisions would be an interesting use scenario for further stud-
ies. The avoidance manoeuvre could be limited to the vehicle�s own lane to 
minimize the risks of not noticing on-coming vehicles. 

Another example where collision avoidance could prove useful is aborting an 
overtaking manoeuvre: when the vehicle detects a risky situation and has to quickly 
return to its own lane, an instant T-CVM calculation of three million trajectory op-
tions for a safe return might outperform especially inexperienced drivers. 

7.3.3 Friction information quality affecting collision calculations 

The simulations of Table 12 show that on snow (friction potential 0.4 in calcula-
tions) collision mitigation without friction estimation loses an average of 43% of 
its capability to reduce collision energy with different speeds. Near-miss colli-
sion avoidance simulated for the same case starts turning 0.19 seconds too late 
without friction estimation, which can lead to dangerous collisions. These results 
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outline the maximum benefits of friction estimation when friction potential is 
constant during braking and correctly estimated. 

When considering the friction information provided by the estimation system 
of this study, the main question is the reliability of the friction potential estimate 
for the area ahead of the vehicle. The IcOR polarization camera was the only 
sensor capable of classifying the road surface ahead of the vehicle. It was in-
stalled to cover an area between 10 and 30 meters in front. The other sensors and 
algorithms estimate the current friction potential, looking under the vehicle so to 
speak. This study proposes using the current friction potential or even historical 
estimates as an initial value for applications such as collision mitigation, as long 
as the forward-looking environmental sensors detect no large upcoming changes. 

If the classification for the area in front differs from the one for the surface 
under the vehicle, the estimate given for upcoming friction relies on forward-
looking sensors only. The requirement for environmental sensors to provide 
information on upcoming changes by comparing to measurement history has not 
been fully addressed in current sensor system development. The IcOR for exam-
ple can at best provide a rough classification. It can currently provide a single 
result for the whole area ahead. New collision avoidance algorithms might place 
a need for separate estimates e.g. in a grid format around the vehicle (Figure 31). 

When the friction potential on the vehicle�s path is constantly alternating (and 
while the environment cannot be modelled in detail), the application must decide 
if a short-term minimum, maximum or an averaged value produces the best re-
sults. As an example, even a correct estimate for friction potential on a wet patch 
of asphalt does not provide the best guess for friction ahead of the vehicle if the 
road is mainly dry. In cases where road slipperiness varies, the estimation accu-
racy of the friction potential under the vehicle loses some of its importance; an 
averaged value for a long braking distance can in the end be estimated only 
roughly by combining information from forward-looking environmental sensors 
with current friction. In unvarying conditions, however, the current value of 
friction potential can provide a meaningful increase in real-world performance, 
which was evident especially from the CRF�s APALACI tests (Chapter 5.3) and 
the previous collision mitigation simulations.  

This chapter discusses the general effects friction estimation has on CMS/CA 
performance. It would be too simple to state that the real world performance can 
be modelled using an estimation error of 0.2 to alter the correct friction potential. 
In learning- and classification-based systems the accuracy depends on the exact 
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case, while the output varies from not available to as accurate as recently learned 
friction potential values for the surface.  

The largest errors happen with wrong classification and there is a risk of learn-
ing also wrong friction potentials for a surface, if the environmental sensors 
cannot reliably differentiate surfaces. In cases like on a wet road, friction poten-
tial also depends on the vehicle speed, tyres, and water depth � this was not mod-
elled in the presented system, although tyre sensors were an available option to 
produce information about aquaplaning. Learning features were used to record 
tyre performance for example on snow and ice, and to provide more accurate es-
timates. However, the system did not yet include a check for having changed tyres. 

When the friction estimate is completely unavailable, collision mitigation and 
avoidance must likely use their default parameters for braking: Collision mitiga-
tion would use a high friction coefficient, around 1.0, to avoid taking control of 
the vehicle too early. Collision avoidance strategies vary, but it does not seem 
reasonable to require optimal braking conditions to be able to avoid a collision. 
This suggests a default value under 1.0. However, a low default value could 
initiate unwanted early action also in collision avoidance, if the application is 
targeting driver assistance. 

The exact design of collision avoidance for driver assistance is still a rather un-
explored topic. The main concerns have historically been in reliable environmental 
sensing to enable safe operation. A collision avoidance operation could be anything 
from momentary autonomous driving to correcting a trajectory by a few centime-
tres to avoid scratching the vehicle. The minor corrections might not even need 
friction estimation, while there could be collision avoidance or ISA approaches that 
even force a lower speed on icy roads! More autonomous operation brings up sev-
eral questions such as what are the acceptable risks taken by a system vs. a driver, 
and can the system truly outperform drivers� estimates. Braking always starts from 
an estimate of the situation, either by the driver or the vehicle. As long as the vehi-
cle does not outperform the driver�s estimates, it cannot take control. 

Future co-operative systems could provide more information on upcoming road 
conditions. However, the spatial accuracy of this information, a requirement for 
recent information and the dependence on tyre performance present problems. 
Long-distance warning systems can require a different logic than the presented colli-
sion avoidance algorithms and friction estimation, which are very limited in reach. 

The following four tables aim to summarize the effects that common friction 
estimation errors have on collision mitigation and avoidance. They are separated 
according to road conditions. 
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Table 13. Friction estimation errors affecting collision calculations on dry asphalt. 

Common 
estimation 
errors 

Estimation may provide a literature-based conservative value for the 
surface (in this study the value was set at 0.85) if it has not recently 
learned a more accurate value. This default value may be too low. Addi-
tionally, the classification may momentarily give out lower values around 
0.7 due to vehicle algorithm inaccuracies. 
When the friction potential exceeds 1.0, the algorithms are often capped to 1.0. 

Effects on 
collision 
mitigation 
by braking 

Low estimates suggest initiating early braking and actually a driver might be 
able to still avoid the collision, although it would be a close call.  

Effects on 
collision 
avoidance 

Near-miss collision avoidance would also start slightly earlier on a low 
friction estimate, but to avoid collisions despite various calculation inaccu-
racies (including e.g. potential movement of other road users), an avoid-
ance manoeuvre might not require optimal grip in any case. When the 
driver is supported earlier than the very last moment, the maximum ac-
celerations would possibly be limited also for comfort. The friction estima-
tion algorithms could probably learn the correct friction potential during 
hard avoidance manoeuvres and update the trajectory assessment. 

Table 14. Friction estimation errors affecting collision calculations on wet asphalt. 

Common 
estimation 
errors 

In the worst case, estimates range from 0.5�1, momentarily alternating. 
The road may not be wet for the full braking distance ahead. The estima-
tion is more reliable during cornering and if the EFF database contains an 
estimate matching the exact environmental measurements. 

Effects on 
collision 
mitigation 
by braking 

Even in the case of momentary errors, driver warning systems can per-
form averaging on the estimates to better time their warnings. When 
forward-looking sensors detect no upcoming changes to the friction po-
tential, the estimate can be used to the fullest. However, from varying 
estimates a system might use the highest value, to avoid acting while the 
driver still has a chance to avoid the collision. 

Effects on 
collision 
avoidance 

If wet asphalt goes undetected, this error might be large enough to cause 
a collision in near-miss collision avoidance approaches. When the friction 
potential estimates are alternating rapidly, it would be sensible to use an 
averaged value or the lowest recent estimate in collision calculations. 

If forward-looking sensors detect e.g. an icy spot and currently the vehi-
cle is on wet asphalt, this information on local friction changes might be 
on the other hand something that the current collision avoidance algo-
rithms could not use in full. 
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Table 15. Friction estimation errors affecting collision calculations on snowy and icy surfaces. 

Common 
estimation 
errors 

Estimates for friction potential vary between 0.1�0.5. When ice, snow and 
asphalt are alternating, only some co-ordinates are available for the clean 
icy spots from the IcOR, but not a true model of the road. Due to large 
slip, an accurate friction measurement may be available more often than 
on a high friction surface, but there is no proof that the value represents 
the road ahead. 

Effects on 
collision 
mitigation 
by braking 

Despite errors, driver warnings can be timed earlier.  

Due to possible delays in receiving new estimates, the braking could be 
started using an old (usually higher) value. 

Considering it is unlikely that friction potential on a road on average 
would be ~0.2, it is also unlikely that the very lowest values would be 
used in collision mitigation strategies to initiate hard braking. Environ-
mental sensing as well as collision mitigation algorithms have difficulties 
in reliably covering full braking distances (e.g. 200 meters) on icy sur-
faces. Therefore a likely value to be used on snow and ice both could be 
around 0.4 or even higher, depending on past averages, distance to the 
vehicle in front and information from forward-looking sensors. Collision 
mitigation would still be considerably improved by the estimation. 

Effects on 
collision 
avoidance 

Drivers could be warned about icy spots on the road and also prompted 
to use slower speed.  

Very low friction potentials, even if momentary, would suggest early 
avoidance manoeuvres. This could result in several situations where 
mathematical calculations conflict with the driver�s actions. A driver assis-
tance approach could in this case use collision mitigation strategies in-
stead of collision avoidance, and give out only selected warnings. Fully 
autonomous collision avoidance would act early and possibly drop speed. 
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Table 16. Friction estimation errors affecting collision calculations on other road surfaces, 
not covered by the friction estimation system. 

Common 
estimation 
errors 

The estimation is often unavailable due to surfaces not matching the 
programmed models and therefore failing plausibility checks. However, 
classification-based systems may occasionally come up with a result. In 
this case an output would contain significant error. 

The factual data collected on friction used and slip, as well as the EFF 
learning features matching environmental sensor inputs with experienced 
friction potential, still provide short-duration estimation. 

Effects on 
collision 
mitigation 
by braking 

Low-validity friction information is not likely to be used. The systems� 
performance would be the same as without friction estimation. 

Effects on 
collision 
avoidance 

A collision avoidance system might still benefit from knowing the esti-
mates and choosing a careful strategy according to system defaults. It 
would be difficult to provide reliable assistance for a driver. 
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8. Results and Discussion 
This study consisted of two parts: 1) development of sensor data fusion methods 
to estimate tyre�road friction potential and to determine road conditions, 2) then 
applying this information in collision avoidance and collision mitigation algo-
rithm design to review the advantages. The requirements of collision avoidance 
and the perceived benefits in different collision avoidance and mitigation strate-
gies were analysed using simulations and examples. In addition, the impacts the 
friction estimation could have on other vehicle safety systems were briefly dis-
cussed in Chapter 2. 

8.1 Estimation of friction potential 

New environmental sensors to detect ice, snow and water on the road can pro-
vide valuable information on slippery road conditions. Combining these meas-
urements with existing methods that estimate tyre�road friction potential based 
on vehicle dynamics, for example from accelerations and wheel slip, is a promis-
ing new topic for sensor data fusion research. While the friction estimation from 
vehicle dynamics usually requires at least moderate accelerations, in this study 
0.3 g or higher, environmental sensing has the potential to provide an estimate 
nearly continuously and also give advance information before arriving on the 
surface. 

This study discussed a friction estimation process consisting of several feature 
extraction and decision fusion steps. First the friction-related features were ex-
tracted in three feature fusion modules; environmental, vehicle and tyre feature 
fusion. The detected features and initial estimates for friction potential were used 
as an input for the decision fusion module calculating the final estimates and 
their validity. 
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The main emphasis in environmental sensing was on estimating probabilities 
for ice, snow and water just in front of the vehicle by using light absorption and 
polarization properties. These probabilities were then used in classifying and 
detecting road conditions.  

The classification was limited in the sense that the sensor systems used in the 
study were not designed to detect loose gravel, wet leaves, road paintings or e.g. 
pit cover plates, which can also be slippery when compared to dry asphalt. Cur-
rently it is difficult even to classify different types of ice, as several conditions 
such as sunshine or polishing caused by previous braking affect the friction poten-
tial. Future work is suggested for modelling in detail the effect of different envi-
ronmental variables on friction potential. Rough classifications for friction poten-
tial can already be achieved, covering mainly icy, snowy, wet and dry asphalt. 

The environmental sensors used in this study � Road Eye, IcOR, Ibeo LUX 
and two temperature sensors � were able to provide friction-related measure-
ments from 1�25 meters in front of the vehicle. The IcOR polarization camera is 
able to detect black ice from longer distances, but this capability was not tested 
in the sensor data fusion. In separate sensor-specific tests, the classification suc-
cess rate of IcOR and Road Eye has varied between 70�95%, depending on road 
conditions, sensor calibration and ambient light. When the outputs were com-
bined, and by reviewing the performance on the collected databank during the 
study, the environmental feature fusion was able to produce an estimate ap-
proximately 90% of driving time, in daylight conditions on test tracks. 

As environmental sensing can provide a near-continuous classification for the 
tested surfaces, it easily ends up dominating the sensor data fusion. However, 
environmental sensors cannot truly test the friction potential, as it exists only 
between the tyre and the road. 

A learning feature was used to improve the environmental-sensor-based initial 
estimates for friction potential. This method required a variety of environmental 
sensor data to be collected; raw sensor data for temperature, light absorption, 
and polarization. Friction used values experienced during high tyre slip were 
recorded in a database with matching environmental sensor readings. A mini-
mum of 8% slip ratio (with tyres that peaked at 10%) was used for triggering 
learning. This approach was effectively used to replace literature-based values 
for average friction potentials on e.g. ice or snow. The database can also capture 
the effect different tyres have on friction. Compensating for the role of tyres has 
importance e.g. in future co-operative systems, where cars exchange information 
on slippery road segments. 
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The friction estimation system carefully checked sensor data validity as well 
as changes in road conditions and driving manoeuvres to provide friction poten-
tial also during low acceleration and low use of friction; while no estimate could 
be made based on vehicle dynamics alone. As the main principle, the friction 
processing was using environmental sensing to search for changes in road condi-
tions that happen after a recent accurate estimate originating from vehicle dy-
namics sensors. Using this method, the vehicle-dynamics-based friction potential 
estimate was considered valid for a while longer, but as the vehicle moved fur-
ther, the validity of the output dropped quickly while the estimation had to rely 
only on environmental sensor information. 

During a minute of normal driving on dry asphalt in an urban area, accelerat-
ing and braking with 0.2�0.4 g, algorithms using vehicle dynamics, sensors were 
able to provide an estimate for friction potential approximately 5% of the time. 
On winter-time slippery conditions this value grows due to more frequent tyre 
slip, and smooth ice can be detected with 0.1�0.15 g acceleration.  

The friction estimation system predicts friction potential much like a human 
does; based on cumulated experience and by testing the friction levels during 
hard acceleration, cornering and other situations where the potential can be accu-
rately estimated. During hard manoeuvres on surfaces where friction potential 
does not vary a lot, e.g. when cornering on wet asphalt, the system could even 
exceed human performance in estimating the limits set by friction. Especially 
inexperienced and inattentive drivers might benefit from the support. However, 
during constantly alternating road conditions the environmental sensing and 
friction estimation fail to match human understanding of the situation, as the 
following example shows:  

The large variation of friction potential even in a small area causes a great dif-
ficulty in friction estimation for vehicle safety system calculations. In winter-
time, a road may have clear asphalt tracks, but outside of these tracks one often 
finds snow (Figure 72). Driver warning systems as well as collision mitigation 
systems would have to take into account the likely changes within centimetres, 
and the possibilities to keep the vehicle on the track. Constant warnings about 
low friction potential would irritate drivers. The system detects consecutive large 
changes in friction and an application has to decide how to use this information. 
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Figure 72. Varying surface type and friction potential cause difficulties in modelling the 
road � snowy road with clear asphalt tracks. 

The friction estimation system has been tested on dry, wet, icy and snowy as-
phalt, a few times on slushy asphalt, but not on dirt roads or gravel. When driv-
ing in test areas the system was able to provide friction potential estimates with 
an error mostly within 0.2, compared to reference values measured in peak brak-
ing tests. The EFF classification success rate sets the upper limits for estimation 
availability, in the tests at approximately 90%, even though the VFF (and TFF) 
can provide short-duration estimates independently. 

The system also provides several other outputs, with accuracy depending e.g. 
on whether the tyre sensors were in use. The current friction used by the vehicle 
was measured with acceleration sensors for the whole vehicle, error sources 
being e.g. an unknown wind speed, road bumps and the vehicle pitch and roll 
angles. Alternatively experimental tyre sensors provided the use of friction at the 
tyre level. The tyre sensors can also capture the effect of wind, as it affects tyre 
deformations.  

The system detects sudden changes, classifies road conditions and driving 
manoeuvres, and with tyre sensors, it provides information on stages of aqua-
planing. The environmental sensors are used to provide a prediction for friction 
potential in front of the vehicle. 

This study gives the impression that friction potential can be estimated only 
using a large set of sensors. However, the definition of friction used (Chapter 
4.3.1) as roughly equivalent to the acceleration of the vehicle, also suggests sta-
tistical ways to collect friction information. Even with current mobile phones 
that have an integrated acceleration sensor, the maximum accelerations could be 
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collected for a road segment by a large group of users: The highest accelerations 
could indicate friction categories, assuming different curve speeds and braking at 
intersections. To benefit from the algorithms developed for vehicle IMUs, first 
the orientation of a fixed mobile phone must be estimated, i.e. the direction of 
gravity measured for example by averaging values over time. Secondly, the 
travel mode is of interest: driving, walking, bicycle riding etc. 

8.2 Collision avoidance and mitigation 

The friction potential is a key unknown in collision mitigation / automatic emer-
gency braking systems. The recent prototypes of the APALACI and COMPOSE 
projects used a fixed value for friction potential, decided based on ordinary driv-
ing conditions. Using a high default value causes the systems to lose some of 
their safety potential on low friction surfaces. Using a low or medium default 
value would on the other hand cause the safety systems to activate too early in 
high friction conditions, taking the driver �out of the loop� possibly unnecessar-
ily. The default value of 1.0, near the practical maximum deceleration, was se-
lected in this study as a likely basis for comparing CMS performance with or 
without friction estimation. 

The maximum benefits from friction estimation were examined in simula-
tions, where a car driving on a surface with a friction potential of 0.4, approxi-
mating snow, collides with a stationary car directly in front. According to the 
results presented in Table 12, when the CMS incorrectly assumed a friction po-
tential of 1.0, it lost on average 43% of its capability to reduce collision energy 
with different speeds. 

On the snow-like surface the safety potential of collision mitigation was 
slightly reduced even with correct friction estimation, as deceleration is lower 
and the calculated growth in distance for starting the braking does not fully 
compensate for this. This calculation assumed that the braking is initiated at the 
moment the collision becomes unavoidable. The likely positive effects from 
being able to warn the driver earlier than on high friction, were not simulated. 

In practice, a CMS with imperfect environmental sensing might also decide to 
use a slightly higher value for friction potential than the recent estimates indi-
cate, to ensure that a collision indeed is unavoidable even if the friction would 
change within the braking distance. The main flaw of the presented friction es-
timation system from collision avoidance and mitigation perspectives is not nec-
essarily being able to give reliable information for the full braking distance 
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ahead. The braking distance and therefore the difficulty of predicting upcoming 
friction with environmental sensors further increase on slippery surfaces. There-
fore, even if the friction estimation system would classify a road as icy, the sys-
tem still might not start full braking e.g. 200 meters before an obstacle based 
simply on braking distances on ice. 

On the other hand, collisions can often be avoided until very late by making a 
steering manoeuvre. The required minimum range for detecting changes in fric-
tion potential varies from case to case. 

The simulations additionally show that collision mitigation systems lose some 
of their safety potential with increasing initial speed, when colliding with static 
obstacles: at high speeds an avoidance manoeuvre would have a higher safety 
impact than plain braking does. This is evident especially in collisions that in-
volve only a small part of the vehicle�s front (Figure 71). The vehicle has until 
the very last moment a possibility to avoid the collision and the CMS (as defined 
for these simulations) does not activate. 

The benefits of friction estimation in collision avoidance are rather small 
when the system has been designed to change trajectory as early as obstacles are 
detected to safely avoid collisions. These types of strategies use low to average 
friction during avoidance manoeuvres. The potential movement of dynamic ob-
stacles could, however, be estimated based on friction information, and a safe 
driving speed could be selected. 

When a near-miss strategy was used in collision avoidance design, the simula-
tion results showed clear differences between friction levels (Figure 70). The 
effects are comparable to changes in collision mitigation timing; near-miss 
avoidance begins only slightly earlier. An incorrect high friction estimate could 
result in a dangerous collision, while a low estimate would start the avoidance 
manoeuvre early. In near-miss avoidance the friction use is likely to be high 
enough to produce new friction potential estimates during the avoidance ma-
noeuvre. These new estimates could be used to update plans for evasive actions. 

In the context of the simulations, this work introduced a new calculation 
method to assist collision avoidance and mitigation. The method was named  
T-CVM according to its principle of assessing safe trajectory options based on 
their target curvature and velocity. The T-CVM has its origins in the popular 
curvature-velocity method (CVM). The presented variant adds support for dif-
ferent friction potentials, dynamic obstacles, obstacle classification (obstacle 
types can be either excluded or included in the calculation), accurate vehicle 
dimensions and partially also dynamics.  
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The T-CVM is based on large pre-calculated look-up tables, where even mil-
lions of possible trajectories are simulated beforehand. Each simulation starts with 
an initial curvature and velocity for how the vehicle enters the scene. In a selected 
maximum time, the vehicle attempts to reach new target values for curvature and 
velocity. The size of the look-up table generated for tests was over 2 GB. 

When an obstacle is detected and mapped to a grid around the vehicle, a list of 
trajectories that lead to a collision can be instantly read from the look-up tables. 
The method provides a table of time-to-collision values attempting to cover most 
optional curvatures and velocities in the current situation. 

Even though the number of memory operations can be large, using look-up ta-
bles ensures high update rates, generally above 100 Hz, for collision calcula-
tions. The benefits of the T-CVM are seen especially in high-speed, close-range 
collision calculations involving several obstacles with speculated movement. 

As the calculation method basically provides a table of options to select new 
curvature and velocity from, it needs to work together with some higher level 
software components that make the final selection on how to drive. Many pa-
rameters may be involved in selecting from safe steering options, such as the 
preferable safety margins, highest acceleration and jerk, shape of the road, and in 
autonomous vehicles, also goal direction. 
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9. Conclusion 
The role of sensor systems is growing in future vehicles. This is already evident 
from current research projects for developing driver assistance systems. Several 
sensors are used to monitor the driver, vehicle and their surroundings. Double-
checking driver actions with sensor systems and warning when risks are high is 
seen as a way to improve traffic safety. 

Sensor data fusion in its several forms has become an actual topic in the 
automotive industry. It plays an important part also in attempts to obtain the 
maximal benefit from a minimum number of sensors, which naturally add extra 
cost. Fusion is often application-specific and no single toolset exists. 

This work discussed the estimation of the maximum tyre�road friction coeffi-
cient, friction potential, to be used in upcoming preventive safety systems. The 
requirements and assumed benefits of friction estimation to different systems 
were collected, and collision mitigation and collision avoidance applications 
were selected for more detailed analysis.  

The reliability of friction estimation � knowing to what degree the information 
can be trusted, was viewed as important as the actual resolution of the estima-
tion. Even a resolution of a few main classes for friction potential can benefit a 
number of driver assistance and co-operative safety applications. The capability 
to predict friction potential continuously and not only during a few driving ma-
noeuvres, as in previous studies, is a necessary requirement. Also being able to 
predict maximum friction before arriving on the surface is valuable for driver 
warning, safe distance and braking calculations. 

A modular sensor data fusion architecture was examined, consisting of  

• Data Gateway, adapted to the vehicle  

• Vehicle Feature Fusion (VFF) module estimating friction potential 
based on vehicle dynamics sensors  
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• Environmental Feature Fusion (EFF) module estimating friction 
potential and road conditions using a number of environmental sensors 

• Tyre Feature Fusion (TFF) refining information from experimental tyre 
sensors 

• Decision Fusion processing the input from three feature fusion modules. 

The EFF and TFF are optional modules, though they considerably improve the 
system performance. The Data Gateway, Decision Fusion and VFF are always 
required. 

The architecture used an almost classical division into feature extraction and 
decision fusion. While much of the FRICTI@N project, which was the frame-
work for this thesis, concentrated on the feature extraction, this work covered the 
fusion steps and the process of combining environmental measurements with 
vehicle dynamics data. 

Environmental sensors can be used to estimate friction potential in situations 
that would be almost impossible with vehicle dynamics sensors alone, such as 
when the vehicle is driving straight with constant speed. They can also be used 
to predict friction potential ahead of the vehicle. Large variations in the friction 
potential can, however, cause a difficulty in mapping the surroundings of the 
vehicle and using this information in safety applications. 

The tested environmental sensors can provide information on ice, snow and 
water on the road, based on changes in light polarization and infrared light ab-
sorption. This already enables a rough classification of road conditions into dry, 
wet, snowy and icy, and possibly also slushy. Future research is needed to fur-
ther improve the classification of road surfaces and to systematically model the 
effect of different environmental variables on tyre�road friction potential. 

This study used machine learning to match environmental sensor data with ac-
tual measured friction levels. Gradual learning by building a database was 
shown to improve on rough classifications found in the literature for an average 
tyre in different road conditions.  

Sensors measuring vehicle dynamics can be used to estimate friction potential 
especially during high acceleration or large wheel slip. In this study the estima-
tion was successful starting from an acceleration of 0.3 g or a wheel slip ratio of 
approximately 5%. Vehicle dynamics sensors also constantly measure used fric-
tion, which is factual information for data fusion and applications.  

Experimental tyre sensors show potential in measuring friction directly from 
tyre carcass deformations. Due to sensor durability and manufacturing issues, 
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this potential cannot yet be fully utilized. The role of the tyre sensors in this 
study was to provide data on friction used and aquaplaning only. 

The friction estimation system has not yet been tested extensively on different 
surfaces � it has been tested mainly on dry, wet, snowy and icy asphalt test track. 
During the test drives the system provided estimates mostly within 0.2 of the 
actual friction potential. The estimate was available 90% of the time, but with 
changing validity depending on how often a reliable estimate could be calculated 
from vehicle dynamics. The environmental sensors after all cannot directly 
measure friction, as it exists only between the tyre and the road.  

The output from various sensor types for data fusion provides options to 
evaluate the plausibility of single sensor readings. Through data fusion, valid 
estimates for friction potential can also be provided during low acceleration, e.g. 
by maintaining previous vehicle dynamics based estimates while environmental 
readings stay the same. 

This study tested a hypothesis that environmental sensing combined with in-
formation from existing vehicle dynamics sensors � and optionally from a tyre 
sensor � enables the estimation of tyre�road friction potential with an accuracy 
and reliability high enough to enhance collision mitigation and avoidance. The 
advantages of friction estimation were simulated for different collision mitiga-
tion and collision avoidance strategies. Furthermore, the relevance of common 
estimation errors to practical application design was analysed.  

A new method presented for calculating collisions was able to incorporate 
friction estimates in trajectory approximation. The method is based on pre-
calculating millions of possible vehicle trajectories to quickly assess the avail-
able options during driving. 

The simulations confirmed that collision mitigation systems without friction 
estimation, designed to brake when a collision becomes unavoidable, lose much 
of their safety potential on slippery surfaces: When a car is about to hit a static 
obstacle of the same size directly in front, and the system starts braking based on 
an incorrect default value 1.0 for friction potential, while the potential is actually 
0.4, the simulated system lost on average 43% of its capability to reduce colli-
sion energy. The reduction of collision energy varies by the initial velocity. 

Alternative strategies for collision avoidance were discussed, some taking 
early action to safely avoid collisions and thereby avoiding also high accelera-
tions and use of friction. The benefits of friction estimation to these approaches 
come mostly from reducing or suggesting that the driver reduce speed on slip-
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pery surfaces, and being able to better estimate the limits for potential movement 
of other road users. 

The near-miss strategies for collision avoidance on the other hand are highly 
dependent on friction estimation, much like collision mitigation. The near-miss 
strategies begin their avoidance only slightly earlier than collision mitigation 
would start braking. However, as the friction estimation cannot generally pro-
vide reliable information for a long braking distance ahead, the estimates cannot 
be fully used without a separate logic to decide a safe strategy. 

The collision mitigation strategies discussed in this work do not apply the 
brakes while the driver still has a chance to avoid a collision. This suggests to 
use even the highest value of the estimated friction potential range. Collision 
avoidance should rather act based on the low range, at least in autonomous sys-
tems, but interaction with drivers in uncertain cases is an open topic in safety 
system development. 

The discussed collision mitigation and collision avoidance strategies all seem 
to benefit from friction estimation by improving the timing of their warnings for 
the driver in high-risk situations. 

Future friction research should focus especially on environmental sensor de-
velopment, so as to improve the detection range, spatial detail and classification 
of road conditions.  

In the near future, co-operative safety systems that will communicate with 
other vehicles and infrastructure will provide early information on changing road 
conditions.  

Collision avoidance and mitigation benefit from detailed modelling of the en-
vironment to address a list of unknowns in their calculations. The key issues to 
be addressed include the intentions and likely movement of other road users, 
traffic rules and 3D road geometry, reliable classification of small objects and 
their weight � and again, friction. 

As a conclusion, this study highlighted the importance of friction in new vehi-
cle safety systems supporting drivers. The proposed friction estimation methods 
provide the vehicle with an initial estimate of friction potential, bridging some of 
the gap between the driver�s and the vehicle�s capabilities in perceiving the envi-
ronment. 
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Errata 
 
 
p. 17: Electronic control systems like ABS and ESC participate in the vehicle control only 
when the maximum friction is exceeded there is already large slip. 
 
p. 48, a clarification due to a vague referral to a project report: “Figure 9 shows an exemplar 
classification by VTEC (Johan Casselgren) from a test track measurement with four road 
conditions: dry asphalt, water, ice and snow. A VTEC’s classifier was also used in the final 
sensor fusion sofware implementation of this study.” 
 
p. 55, repeating a reference: “In addition to vehicle and tyre state estimation, the optical 
sensor can be used in validating tyre models (see [46]).” 
 
p. 62, background: To achieve this, a modular architecture was used. 
A modular structure was an early decision together by the FRICTI@N project partners to 
cluster the sensors and also to distribute work between partners based on the sensors they 
were working with. In the beginning of the project, VDO (Thomas Haas) named the modules 
“subsystems” and suggested a data flow based on friction outputs. Later, as the author 
continued with the overall and environmental–vehicle fusion development, the final 
architecture, its data flow and naming was revised according to the presented fusion 
implementation and methods. 
 
p. 65, clarification on input data: Figure 20. MATLAB Simulink top level view of 
implemented software. The data acquisition from the development vehicle sensors on the left, 
provided by IKA, and author’s friction processing in the middle, running 100 Hz. 
 
p. 72. Table 6. Some required system parameters, revised from project’s original input list. 
 
p. 100. The vehicle features, as informed by IKA, are summarised below: 
 
p. 175, clarification on tests: The friction estimation system has methods have been tested 
using the FRICTI@N project databank from on dry, wet icy and snowy asphalt, also once on 
an artificial slippery surface a few times on slushy asphalt, but not on dirt roads or gravel. 
There have been environmental sensor changes during the collection of the databank. 
Therefore the work claims fusion methods while the collected performance results are 
indicative. When driving in test areas In test data and driving tests the system provided 
friction potential estimates with an error mostly within 0.2, compared to reference values 
measured in peak braking tests. 
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Appendix A 

The following MATLAB code was used as an example in Chapter 7, Collision 
Avoidance and Mitigation. It calculates the collision avoidance database for 
defined values of initial speed, initial curvature and friction potential. 

% Collision avoidance database generation 
  
plot_trajectory = 0; % for tests and plotting 
plot_car = 0; % for tests and plotting 
% vehicle parameters 
Vehicle_width = 2.03; % with mirrors 
Vehicle_length = 4.92; 
Vehicle_L = 2.84; % wheelbase 
Vehicle_rear = -1.09; % from rear axle 
Vehicle_front = Vehicle_length-1.09; % from rear axle 
Vehicle_inertia = 3585; % kgm^2 
Vehicle_mass = 2188; % kg 
g = 9.81; 
CvA = 2.2 * 0.3; % estimate, drag coefficient * area 
pii = 3.14159265; 
pii_half = 1.57079632; % intentionally not exaxt 
Vehicle_max_acceleration = 4; % forward acceleration simplified: 7 seconds 
from 0 to 100 km/h 
Vehice_longitudinal_force_delay = 100; % quick implementation of brak-
ing/acceleration delay, reaches any value in 0.1 sec or under; max pro-
duced longitudinal acceleration change / sec 
Vehice_lateral_force_delay = 100; % quick implementation of steering de-
lays, reaches any value in 0.1 sec or under; max produced lateral accel-
eration change / sec 
simulation_upper_speed_limit = 130; % km/h 
simulation_lower_speed_limit = -20; 
velocity = [simulation_lower_speed_limit:10:simulation_upper_speed_limit]; 
% must have several (now size 16), as start speed otherwise has an error 
velocity_ms = velocity./3.6; 
min_turning_radius = 11.00/2-Vehicle_width/2; % calculated from outer 
wheel curb to curb value 
steering_angle_max = 0.5645; % radians, results in min_turning_radius 
% Initial virtual steering angles to represent curvatures. Avoid having 
too many (now size 33). Should be non-linear: more angles near 0. 
initial_steering_angles = [0.5645 0.5081 0.4516 0.3952 0.3387 0.2823 
0.2258 0.1694 0.1129 0.0988 0.0847 0.0706 0.0565 0.0423 0.0282 0.0141 0 -
0.0141 -0.0282 -0.0423 -0.0565 -0.0706 -0.0847 -0.0988 -0.1129 -0.1694 -
0.2258 -0.2823 -0.3387 -0.3952 -0.4516 -0.5081 -0.5645]; 
turning_radiuses = Vehicle_L.*tan(pii_half-initial_steering_angles); 
  
% x,y grid where collisions are checked. 
x_up_near = [-28:0.3:28]+0.1; % +0.1 to move grid so that straight driving 
can be checked better 
y_up_near = [Vehicle_front+0.16:0.3:34.59]; 
x_up_far = [-28:2:28]; 
y_up_far = [34.59+1:2:75.59]; 
y_down_near = [Vehicle_rear-0.26:-0.5:-14.35]; 
x_down_near = [-28:0.5:28]; 
y_left_near = [Vehicle_rear-0.03:0.3:3.68]; 
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y_right_near = y_left_near; 
x_left_near = [-27.575:0.3:-1.175]; 
x_right_near = [1.175:0.3:27.575]; 
  
% ------------ TABLE INIT -------------- 
dt = 0.005; % step size for trajectory calculation [s], default 0.005 
time = 0; 
  
% ********* TABLE INDEX VALUES (the 3 key values to identify the table. 
For each set we need to calculate a new table) 
friction_potential_acc = 1*g; % [m/s^2] friction potential as acceleration 
[0.1:0.1:1] 
initial_velocity = velocity_ms(9); % the velocity which we use to enter 
the situation 
index_entry_angle = 17; % 17 middle 
% ********* 
  
entry_angle = pi/2+initial_steering_angles(index_entry_angle); en-
try_radius = turning_radiuses(index_entry_angle); % first radius 
  
% target values, fixed amount of angles and varying size of target veloci-
ties 
% 2 second braking or acceleration is max during this simulation, in the 
calculation max change ~100 km/h, 5 km/h steps with high friction 
reachable_velocity_min = max((simulation_lower_speed_limit-5)/3.6, ini-
tial_velocity-2*friction_potential_acc); 
if (reachable_velocity_min < 0 && initial_velocity > 0) 
 time_to_0 = initial_velocity/friction_potential_acc; 
 reachable_velocity_min = max((simulation_lower_speed_limit-5)/3.6, 
 0-(2-time_to_0)*Vehicle_max_acceleration); 
elseif (reachable_velocity_min < 0 && initial_velocity <= 0) 
 reachable_velocity_min = max((simulation_lower_speed_limit-5)/3.6, 
 initial_velocity-2*Vehicle_max_acceleration); 
end; 
reachable_velocity_max = min((simulation_upper_speed_limit+5)/3.6, ini-
tial_velocity+2*min(Vehicle_max_acceleration,friction_potential_acc)); 
if (reachable_velocity_max > 0 && initial_velocity < 0) 
 time_to_0 = abs(initial_velocity/friction_potential_acc); 
 reachable_velocity_max = min((simulation_upper_speed_limit+5)/3.6, 
 0+(2-time_to_0)*min(Vehicle_max_acceleration,friction_potential_acc)); 
end; 
  
% scaled number of target velocities, initial velocity as the starting 
% point 
target_velocities = sort([[initial_velocity:-5/3.6:reachable_velocity_min] 
[initial_velocity+5/3.6:5/3.6:reachable_velocity_max]]); 
if (length(target_velocities) > 15) 
 target_velocities = sort([[initial_velocity: 
 -6/3.6:reachable_velocity_min] 
 [initial_velocity+6/3.6:6/3.6:reachable_velocity_max]]); 
end; 
if (length(target_velocities) < 10) 
 target_velocities = sort([[initial_velocity: 
 -4/3.6:reachable_velocity_min] 
 [initial_velocity+4/3.6:4/3.6:reachable_velocity_max]]); 
end; 
reachable_velocity_min = target_velocities(1); 
reachable_velocity_max = target_velocities(length(target_velocities)); 
  
% scaled number of targeted steering angles (curvatures), based on fric-
tion use and minimum reachable speed 
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max_steering_radius_based_on_friction=reachable_velocity_min^2/friction_po
tential_acc; 
max_steering_angle_based_on_friction= 
abs(atan(max_steering_radius_based_on_friction/Vehicle_L)-pii_half); 
  
target_steering_angles = [steering_angle_max:-steering_angle_max/13: 
-steering_angle_max]; % Target steering angle initialization. The more, 
the better. 
% reshaping steering angles, more angles required near 0 
target_steering_angles = [target_steering_angles(1,1:8) tar-
get_steering_angles(1,9):-steering_angle_max/26: tar-
get_steering_angles(1,27-8) target_steering_angles(1,27-7: 
length(target_steering_angles)) ]; 
% reshaping steering angles if maximum allowed steering angle is smaller 
% due to low friction or high speed 
if (max_steering_angle_based_on_friction < 0.45 && reachable_velocity_min 
> 0) 
 target_steering_angles = [max_steering_angle_based_on_friction:  
 -max_steering_angle_based_on_friction/13:  
 -max_steering_angle_based_on_friction]; 
 if max_steering_angle_based_on_friction > 0.08 % otherwise enough 
  target_steering_angles = [target_steering_angles(1,1:8) 
  target_steering_angles(1,9): 
  -max_steering_angle_based_on_friction/26:target_steering_angles(1,27-8) 
  target_steering_angles(1,27-7:length(target_steering_angles)) ]; 
 end; 
elseif initial_velocity >= (60/3.6) % check if high speed (and high fric-
tion) 
 target_steering_angles = [steering_angle_max:-steering_angle_max/10: 
 -steering_angle_max]; 
 target_steering_angles = [target_steering_angles(1,1:7) 
 target_steering_angles(1,8):-steering_angle_max/40: 
 target_steering_angles(1,21-7) target_steering_angles(1,21-6: 
 length(target_steering_angles)) ]; 
end; 
  
% TO BE SAVED AFTER CALCULATION: 
% x-y index for data. The index contains a number for each x,y pair. The 
number is of format location_in_data*1000+size 
% data file is a 4*n table consisting of several 
% [index for target_steering, index for target_speed, ttc1, ttc2] 
index_up_far = zeros(length(x_up_far),length(y_up_far)); 
data_up_far = zeros(4,1); % init 
index_up_near = zeros(length(x_up_near),length(y_up_near)); 
data_up_near = zeros(4,1); % init 
index_left_near = zeros(length(x_left_near),length(y_left_near)); 
data_left_near = zeros(4,1); % init 
index_right_near = zeros(length(x_right_near),length(y_right_near)); 
data_right_near = zeros(4,1); % init 
index_down_near = zeros(length(x_down_near),length(y_down_near)); 
data_down_near = zeros(4,1); % init 
% ttc index which shows the target_steering, target_velocity pairs not 
% reachable 
ttc_index = 
2*ones(length(target_steering_angles),length(target_velocities)); 
  
% algorithm internal check for invalid inputs, also radius must not be 0 
entry_friction = abs((initial_velocity*initial_velocity)/entry_radius) 
if entry_friction > 10 
 error = entry_friction 
end; 
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% otherwise, allow even some potential slip in the beginning 
% ------------ TABLE INIT END -------------- 
  
% plotting handles only one trajectory at a time (not the loop) 
if plot_trajectory == 1 
 incr_x = [0]; incr_y = [0]; 
 plot(0,0,'x'); 
 hold; 
end; 
  
% ------------ LOOP BEGIN ------------------ 
for index_velocity = 1:length(target_velocities) 
 for index_steering_angle = 1:length(target_steering_angles) 
  progress = [index_velocity length(target_velocities) 
  index_steering_angle length(target_steering_angles)] % output  
  if (plot_trajectory > 0) 
   index_velocity = 11; % 
   index_steering_angle = 20; % 19 middle 
   target_steering_angle = target_steering_angles(index_steering_angle) 
   if (plot_trajectory == 2) 
    return; 
   end; 
   plot_trajectory = 2; 
  end; 
 
  % INIT 
  prev_velocity = initial_velocity; 
  start_friction = entry_friction; 
  prev_angle = pi/2; 
  prev_radius = entry_radius; 
  
  prev_longitudinal_acceleration = 0; % init for delay calculation 
  prev_lateral_acceleration = 0; % init for delay calculation, does not 
  include centrifugal force 
  
  target_velocity = target_velocities(index_velocity); % for all v 
  % for all angles 
  target_steering_angle = target_steering_angles(index_steering_angle);  
  target_radius = Vehicle_L*tan(pii_half-target_steering_angle); 
  
  Air_resistance_target = 0.5 * 1.2 * CvA * target_velocity * 
  target_velocity; 
  Air_deceleration_target = (abs(Air_resistance_target)) / (Vehicle_mass * 
  g); 
  target_friction_acc = sqrt(Air_deceleration_target^2 + 
  abs((target_velocity*target_velocity)/target_radius)^2) 
  
  % handle trajectory as incremental 
  incremental_trajectory_x = 0; 
  incremental_trajectory_y = 0; 
  
  if target_friction_acc > friction_potential_acc+0.1 
   % cannot be reached, skip calculating this combination 
   ttc_index(index_steering_angle,index_velocity)=0; % mark not reachable 
   continue; 
  end; 
  
  % loop while time < 2 seconds 
  for time = 1:(2/dt) 
   lat_friction_centrifugal = 
   abs((prev_velocity*prev_velocity)/prev_radius); 
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   if (lat_friction_centrifugal > friction_potential_acc && start_friction 
   < friction_potential_acc) % increment overshoot 
    lat_friction_centrifugal = friction_potential_acc; 
   end; 
  
   Air_resistance = 0.5 * 1.2 * CvA * prev_velocity * prev_velocity; 
   Air_deceleration = (abs(Air_resistance)) / (Vehicle_mass * g); 
   if (prev_velocity < 0) % different direction when reversing 
    Air_deceleration =  -Air_deceleration; 
   end; 
  
   w_target = pii*(prev_velocity/(pii*target_radius)); 
   w_curr = pii*(prev_velocity/(pii*prev_radius)); % yaw rate 
   w_diff = w_target-w_curr; 
   % rotational energy, keeping also sign 
   Er_target = 1/2*Vehicle_inertia*(w_target*w_target)*sign(w_target);  
   Er_curr = 1/2*Vehicle_inertia*(w_curr*w_curr)*sign(w_curr);  
  
   velocity_diff = target_velocity - prev_velocity; 
   max_long_acceleration = 0; % init 
   lat_acceleration = 0; % init 
  
   if (target_velocity < 0 && prev_velocity > 0) || (target_velocity > 0 
   && prev_velocity < 0) 
    % Different velocity signs. Strategy: first brake without turning. 
    curr_radius = prev_radius; 
    if velocity_diff > 0 
     max_long_acceleration = sqrt(friction_potential_acc^2 � 
     lat_friction_centrifugal^2); % full friction use 
     if (lat_friction_centrifugal > friction_potential_acc) % sliding  
     approximation 
      max_long_acceleration = 1; 
     end; 
     if (abs(max_long_acceleration - prev_longitudinal_acceleration)/dt) > 
     Vehice_longitudinal_force_delay % braking/acceleration delay 
     implementation 
      max_long_acceleration = sign(max_long_acceleration � 
      prev_longitudinal_acceleration)*Vehice_longitudinal_force_delay*dt + 
      prev_longitudinal_acceleration; 
     end; 
     curr_velocity = prev_velocity - Air_deceleration*dt + 
     max_long_acceleration*dt; 
    elseif velocity_diff < 0 
     max_long_acceleration = sqrt(friction_potential_acc^2 � 
     lat_friction_centrifugal^2); % full friction use 
     if (lat_friction_centrifugal > friction_potential_acc) % sliding 
     approximation 
      max_long_acceleration = 1; 
     end; 
     if (abs(max_long_acceleration - prev_longitudinal_acceleration)/dt) > 
     Vehice_longitudinal_force_delay % braking/acceleration delay  
     implementation 
      max_long_acceleration = sign(max_long_acceleration � 
      prev_longitudinal_acceleration)*Vehice_longitudinal_force_delay*dt +  
      prev_longitudinal_acceleration; 
     end; 
     curr_velocity = prev_velocity - Air_deceleration*dt �  
     max_long_acceleration*dt; 
    else 
     max_long_acceleration = Air_deceleration; 
     curr_velocity = prev_velocity; % assumes Air_deceleration always  
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     below friction potential 
    end; 
    w_new = pii*(curr_velocity/(pii*prev_radius)); 
   else 
    % strategy: friction potential shared half between longitudinal and  
    lateral, as long as final curvature and speed have not been reached 
    temp_prevent_lateral_acceleration = 0; 
    if velocity_diff > 0 
     if (lat_friction_centrifugal > friction_potential_acc) % sliding 
      max_long_acceleration = 0; 
     else 
      if (w_diff > 0 || w_diff < 0) 
       % remaining friction shared half (pot^2 = (centrif+x)^2+x^2), but  
       taking vehicle perfomance into account. This can be unoptimal at  
       times, starting to turn too early. 
       temp_a = (2*lat_friction_centrifugal + sqrt(  
       (2*lat_friction_centrifugal)^2 + 8*(friction_potential_acc^2- 
       lat_friction_centrifugal^2) )) / -4; 
       temp_b = (2*lat_friction_centrifugal - sqrt(  
       (2*lat_friction_centrifugal)^2 + 8*(friction_potential_acc^2- 
       lat_friction_centrifugal^2) )) / -4; 
       temp_c = max(temp_a,temp_b); 
       max_long_acceleration = min(Vehicle_max_acceleration, temp_c); 
      else 
       max_long_acceleration = min(Vehicle_max_acceleration,  
       % full friction use 
       sqrt(friction_potential_acc^2 - lat_friction_centrifugal^2));  
      end; 
      if (abs(max_long_acceleration - prev_longitudinal_acceleration)/dt) 
      > Vehice_longitudinal_force_delay % braking/acceleration delay 
      implementation 
       max_long_acceleration = sign(max_long_acceleration � 
       prev_longitudinal_acceleration)*Vehice_longitudinal_force_delay*dt 
       + prev_longitudinal_acceleration; 
      end; 
     end; 
     curr_velocity = prev_velocity - Air_deceleration*dt +  
     max_long_acceleration*dt; 
    elseif velocity_diff < 0 
     if (lat_friction_centrifugal > friction_potential_acc) 
      max_long_acceleration = 1; 
     else 
      if (w_diff > 0 || w_diff < 0) 
       if (sign(w_target) == sign(w_curr)) && (abs(w_target) > 
       abs(w_curr)) 
        % Steering angle should increase while braking - this could lead  
        into too high friction use and unable to reach target 
        % First the vehicle should just brake 
        if (sqrt(Air_deceleration_target^2 +  
        abs((prev_velocity*prev_velocity)/target_radius)^2)) >  
        (friction_potential_acc-0.05) 
         max_long_acceleration = sqrt(friction_potential_acc^2 �  
         lat_friction_centrifugal^2); % full braking while friction  
         potential would be exceeded 
         temp_prevent_lateral_acceleration = 1; 
        else % brake more than turn, pot^2 = (0.5y + centrif)^2 + y^2 
         temp_a = (lat_friction_centrifugal + sqrt( 
         lat_friction_centrifugal^2 + 5*(friction_potential_acc^2- 
         lat_friction_centrifugal^2) )) / -2.5; 
         temp_b = (lat_friction_centrifugal - sqrt( 
         lat_friction_centrifugal^2 + 5*(friction_potential_acc^2- 
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         lat_friction_centrifugal^2) )) / -2.5; 
         max_long_acceleration = max(temp_a,temp_b); 
        end; 
       else 
        % Remaining friction shared half. May start turning too early. 
        temp_a = (2*lat_friction_centrifugal + sqrt( 
        (2*lat_friction_centrifugal)^2 + 8*(friction_potential_acc^2- 
        lat_friction_centrifugal^2) )) / -4; 
        temp_b = (2*lat_friction_centrifugal - sqrt(  
        (2*lat_friction_centrifugal)^2 + 8*(friction_potential_acc^2- 
        lat_friction_centrifugal^2) )) / -4; 
        max_long_acceleration = max(temp_a,temp_b); 
       end; 
      else 
       max_long_acceleration = sqrt(friction_potential_acc^2 �  
       lat_friction_centrifugal^2); % full friction use 
      end; 
      if (abs(max_long_acceleration - prev_longitudinal_acceleration)/dt) 
      > Vehice_longitudinal_force_delay % braking/acceleration delay 
       max_long_acceleration = sign(max_long_acceleration � 
       prev_longitudinal_acceleration)*Vehice_longitudinal_force_delay*dt 
       + prev_longitudinal_acceleration; 
      end; 
     end; 
     curr_velocity = prev_velocity - Air_deceleration*dt �  
     max_long_acceleration*dt; 
    else 
     max_long_acceleration = Air_deceleration; 
     curr_velocity = prev_velocity; 
    end; 
  
    % Uses remaining friction potential for lateral acceleration 
    if (w_diff > 0 || w_diff < 0) 
     if (lat_friction_centrifugal > friction_potential_acc &&     
     start_friction > friction_potential_acc) % uses more friction than is 
     available 
      curr_velocity = prev_velocity - Air_deceleration*dt; % do not  
      accelerate/brake after all 
      lat_acceleration = 2; % just an approximation for straightening when  
      sliding 
     else 
      start_friction = 0; % not sliding any more 
      lat_acceleration = sqrt(friction_potential_acc^2 �  
      max_long_acceleration^2) - lat_friction_centrifugal; 
      if (abs(lat_acceleration - prev_lateral_acceleration)/dt) >  
      Vehice_lateral_force_delay % steering delay implementation 
       lat_acceleration = sign(lat_acceleration �  
       prev_lateral_acceleration)*Vehice_lateral_force_delay*dt +  
       prev_lateral_acceleration; 
      end; 
     end; 
     % reaching new rotational velocity 
     if temp_prevent_lateral_acceleration == 0 && (lat_acceleration > 0 ||  
     lat_acceleration < 0) 
      time_to_new_rotational_velocity = abs(Er_target �  
      Er_curr)/(Vehicle_mass*lat_acceleration*Vehicle_L/2); % divided with  
      mass*acc*distance 
      if (time_to_new_rotational_velocity < dt) 
       w_new = w_target; % approximation for velocity since it is not     
       changed 
       curr_radius = target_radius; 
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      else 
       w_new = w_curr + dt/time_to_new_rotational_velocity  * w_diff; 
       curr_radius= prev_velocity/w_new; 
      end; 
     else 
      w_new = pii*(curr_velocity/(pii*prev_radius)); 
      curr_radius = prev_radius; 
      lat_acceleration = 0; 
     end; 
    else 
     w_new = w_target; 
     curr_radius = target_radius; 
    end; 
   end; 
  
   % algorithm always needs a radius 
   if curr_radius == 0 
    curr_radius = 9999999999999999999; 
   end; 
   curr_angle = prev_angle+w_new*dt; 
  
   % prepare for new loop 
   prev_velocity = curr_velocity; 
   prev_radius = curr_radius; 
   prev_angle = curr_angle; 
   prev_longitudinal_acceleration = max_long_acceleration; 
   prev_lateral_acceleration = lat_acceleration; 
  
   incremental_trajectory_x = incremental_trajectory_x  
   +dt*curr_velocity*cos(curr_angle); 
   incremental_trajectory_y = incremental_trajectory_y  
   +dt*curr_velocity*sin(curr_angle); 
  
   % plotting at end of loop, requires only one trajectory at a time 
   if (plot_trajectory > 0) 
    incr_x = [incr_x incremental_trajectory_x]; incr_y = [incr_y  
    incremental_trajectory_y]; 
    plot(incremental_trajectory_x,incremental_trajectory_y,'x'); 
   end; 
  
   % calculation for reachable distances and velocities, plus plotting 
   x_front_left = incremental_trajectory_x + Vehicle_front*cos(curr_angle) 
   - (Vehicle_width/2)*sin(curr_angle); 
   x_front_right = incremental_trajectory_x +  
   Vehicle_front*cos(curr_angle) + (Vehicle_width/2)*sin(curr_angle); 
   x_rear_left = incremental_trajectory_x + Vehicle_rear*cos(curr_angle) �  
  (Vehicle_width/2)*sin(curr_angle); 
   x_rear_right = incremental_trajectory_x + Vehicle_rear*cos(curr_angle)  
   + (Vehicle_width/2)*sin(curr_angle); 
   y_front_left = incremental_trajectory_y + Vehicle_front*sin(curr_angle)  
   + (Vehicle_width/2)*cos(curr_angle); 
   y_front_right = incremental_trajectory_y +  
   Vehicle_front*sin(curr_angle) - (Vehicle_width/2)*cos(curr_angle); 
   y_rear_left = incremental_trajectory_y + Vehicle_rear*sin(curr_angle) +  
  (Vehicle_width/2)*cos(curr_angle); 
   y_rear_right = incremental_trajectory_y + Vehicle_rear*sin(curr_angle)  
   - (Vehicle_width/2)*cos(curr_angle); 
  
   if (time == (2/dt)) % at the end of simulation, check if target 
   velocity and steering was reached 
    if (abs(velocity_diff) >  2/3.6) || (w_diff > 0.01) % give some extra 
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     ttc_index(index_steering_angle,index_velocity)=0; % not reachable 
    end; 
   end; 
  
   % plotting at end of loop, requires only one trajectory at a time 
   if (plot_car == 1) 
    plot(x_front_left,y_front_left,'r'); 
    plot(x_front_right,y_front_right,'r'); 
    plot(x_rear_right,y_rear_right,'r'); 
    plot(x_rear_left,y_rear_left,'r'); 
    continue; % does not calculate collision table 
   end; 
  
  
   % ---------- COLLISION DETECTION START --------------- 
   % go through all the grids to calculate which cells are affected 
  
   % UP-NEAR 
   increase_location = 0; % loop assist, changing data index 
   prev_index = 0; % loop assist 
   for j = 1:length(x_up_near) % go through all X 
    x_temp = x_up_near(j); 
    for k = 1:length(y_up_near) % go through all Y 
     y_temp = y_up_near(k); 
     if index_up_near(j,k) > 0 % previous data exists 
      index_up_near(j,k) = index_up_near(j,k)+increase_location*10000; 
      prev_index = index_up_near(j,k); 
     end; 
     % collision check 
     if (((incremental_trajectory_x-x_temp)^2 + (incremental_trajectory_y- 
     y_temp)^2) < (Vehicle_front^2+0.3^2)) && 1 == collision(x_front_left, 
     y_front_left,x_front_right,y_front_right,x_rear_left, 
     y_rear_left,x_rear_right,y_rear_right,x_temp,y_temp,0.3) % COLLISION 
     CHECK 
      % collision has happened 
      collision_data = [index_steering_angle, index_velocity, time*dt, 
      time*dt]'; 
  
      if index_up_near(j,k) == 0 % no previous data exists, give correct  
      index, keep the order 
       index = floor(prev_index/10000); 
       number_of_entries = prev_index-floor(prev_index/10000)*10000; 
       index = index+number_of_entries; % new index 
       number_of_entries = 0; 
       if index == 0 % first 
        index = 2; 
       end; 
       % concatenate data 
       sizedata = size(data_up_near); 
       if (index+number_of_entries-1) == sizedata(1,2) % already last 
        data_up_near = [data_up_near collision_data]; 
       else % not last 
        increase_location = increase_location + 1; % for future rounds 
        data_up_near = [data_up_near(:,1:(index+(number_of_entries-1))) 
        collision_data data_up_near(:,(index+number_of_entries): 
        sizedata(1,2))]; 
       end; 
       number_of_entries = number_of_entries +1; 
       index_up_near(j,k) = index*10000+number_of_entries; 
       prev_index = index_up_near(j,k); 
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      else 
       % go through the data to possibly just increase ttc2 
       found = 0; 
       index = floor(index_up_near(j,k)/10000); 
       number_of_entries = index_up_near(j,k)- 
       floor(index_up_near(j,k)/10000)*10000; 
       for z = index:index+(number_of_entries-1) 
        if (data_up_near(1,z) == index_steering_angle && data_up_near(2,z) 
        == index_velocity) 
         found = 1; 
         data_up_near(3,z) = min(data_up_near(3,z),time*dt); 
         data_up_near(4,z) = max(data_up_near(3,z),time*dt); 
        end; 
       end; 
       if found == 0 % have to add new data 
        % concatenate data 
        sizedata = size(data_up_near); 
        if (index+number_of_entries-1) == sizedata(1,2) % already last 
         data_up_near = [data_up_near collision_data]; 
        else % not last but in the middle 
         increase_location = increase_location + 1; % for future rounds 
         data_up_near = [data_up_near(:,1:(index+(number_of_entries-1))) 
         collision_data data_up_near(:,(index+number_of_entries): 
         sizedata(1,2))]; 
        end; 
        number_of_entries = number_of_entries +1; 
        index_up_near(j,k) = index*10000+number_of_entries; 
       end; 
      end; 
     end; 
    end; 
   end; 
  
   % UP-FAR 
   % LEFT-NEAR 
   % RIGHT-NEAR 
   % DOWN-NEAR 
   % code removed since it can be copied from above by updating only the    
   table names 
 
  
   % ---------- COLLISION DETECTION END ----------------- 
  
  end; 
 end; 
end; 
% ------------ LOOP ENDS ------------------ 
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To use the T-CVM result tables in implementing collision avoidance strategies, 
the following steps are required: 

1. Select the set of look-up tables from memory (the data structure has been 
presented in Figure) that match the current friction potential, vehicle 
velocity and curvature (constituting the main index). 

2. The T-CVM result table is initialized with a pre-calculated table of reachable 
velocity and curvature combinations, also retrieved using the main index. 

3. For each obstacle co-ordinate (co-ordinates can be optionally filtered to match 
occupancy grid accuracy), calculate the relative distance and direction to the 
obstacle from ego vehicle origin. These co-ordinates are next checked against 
the areas covered by the occupancy grids (e.g. up_near and right_near grids). 

4. The location of TTC data is retrieved for the relative co-ordinates of the 
obstacle, using an index found from the occupancy grid cell, that the 
obstacle was mapped to: 

data_location = index_up_near(x,y); 

graph_index = floor(data_location/10000); 

graph_number_of_entries = data_location-floor(data_location/10000)*10000; 

5. The TTC data is then added to the current T-CVM result table, possibly 
overwriting the current values with smaller values. This completes the 
T-CVM result table for main index used. Several tables can be calculated 
when analysing steering options with different levels of friction use. 

for i = graph_index:(graph_index+graph_number_of_entries-1) 

   j = data_up_near(1,i); 

   ii = data_up_near(2,i); 

   if result(j,ii) > 0 % can reach this combination during next 2 seconds 

      % Next, compare data_up_near(3,i) and data_up_near(4,i) with the  

      % time that the cell is occupied by an obstacle. 

      % Static obstacles are always added. 

      result(j,ii) = min(result(j,ii), data_up_near(3,i)); % static 

   end; 

end; 
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6. An initial target curvature and velocity are selected based on navigation 
goals. The current values or the driving direction before starting an 
avoidance manoeuvre can also be used. The TTC value for the initial 
curvature and velocity is read from the T-CVM result table. 

7. If the collision avoidance is already performing a manoeuvre, for example 
the closest non-colliding steering combination to the initial values can be 
selected as the target. Several preferences and strategies can be involved in 
selecting the values, i.e. how to avoid the obstacle. The desired values of 
velocity and curvature will be inputted to separate control algorithms to 
execute.  

If the avoidance or mitigation has not been initiated, several checks can be 
performed on the TTC values in the T-CVM result table, for timing the ac-
tions. Three different strategies and checks have been presented in Chapter 
7.3.2. For example, the avoidance can be activated when the current TTC 
drops below the maximum value (2 seconds in the example code). 

Advanced strategies require also moving the vehicle co-ordinates forward on 
its current trajectory e.g. to estimate the moment when collisions become 
unavoidable. 
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