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Abstract 
Post-genomic molecular biology embodies high-throughput experimental tech-
niques and hence is a data-rich field. The goal of this thesis is to develop bioin-
formatics methods to utilise publicly available data in order to produce knowl-
edge and to aid mining of newly generated data. As an example of knowledge or 
hypothesis generation, consider function prediction of biological molecules. 
Assignment of protein function is a non-trivial task owing to the fact that the 
same protein may be involved in different biological processes, depending on 
the state of the biological system and protein localisation. The function of a gene 
or a gene product may be provided as a textual description in a gene or protein 
annotation database. Such textual descriptions lack in providing the contextual 
meaning of the gene function. Therefore, we need ways to represent the meaning 
in a formal way. Here we apply data integration approach to provide rich repre-
sentation that enables context-sensitive mining of biological data in terms of 
integrated networks and conceptual spaces. Context-sensitive gene function an-
notation follows naturally from this framework, as a particular application. Next, 
knowledge that is already publicly available can be used to aid mining of new 
experimental data. We developed an integrative bioinformatics method that util-
ises publicly available knowledge of protein-protein interactions, metabolic net-
works and transcriptional regulatory networks to analyse transcriptomics data 
and predict altered biological processes. We applied this method to a study of 
dynamic response of Saccharomyces cerevisiae to oxidative stress. The applica-
tion of our method revealed dynamically altered biological functions in response 
to oxidative stress, which were validated by comprehensive in vivo metabolom-
ics experiments.  The results provided in this thesis indicate that integration of 
heterogeneous biological data facilitates advanced mining of the data. The meth-
ods can be applied for gaining insight into functions of genes, gene products and 
other molecules, as well as for offering functional interpretation to transcriptom-
ics and metabolomics experiments. 
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Goals of the thesis

The goals of this thesis are
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• to apply these tools and methods in mining newly generated experimental data

Contributions presented in this thesis

Following contributions have been made through this thesis.
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• A technical framework for storage and retrieval of biological data achieved through XML and
relational databases.

• The technique of data traversals, achieved by curation of maps database, as the basis for
heterogeneous data integration.

• A platform called MegNet for enabling context-sensitive mining of heterogeneous biological
data through the usage of conceptual spaces as the framework for knowledge representation.

• A new method called Topological Enrichment Analysis of Functional Subnetworks (TEAFS)
for studying the dynamic activity of biological process modules, and its application to studying
the dynamic response of Saccharomyces cerevisiae to Oxidative stress.
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Chapter 1

Introduction

Systems biology aims to study biological systems at system level (Kitano, 2002). Integrative bioin-
formatics provides tools for systems biology. The necessary goal of integrative bioinformatics is to
provide platforms and methods for carrying out systems biology analysis. Ge et al. (2003) noted
that, “high-throughput data integration is needed in systems biology approaches”. This thesis con-
tributes methods for data integration, visualisation, mining, and study of network dynamics, which
are important elements of systems biology Figure 1.1.

Post genomic biology is characterized by rapid accumulation of information and thus biological
research can be viewed as information science (Schena et al., 1998). Information is increasing more
swiftly than humans resources such as time and cognitive processing power. This forces humans to
narrow their focus in processing the information, which in turn causes diminishing awareness. As an
example, the literature documenting Raynaud’s disease and fish oils were mutually isolated in the
sense that the authors and readers of one literature were not aware of the other. Much later, a cure
for Raynaud’s disease with dietary fish oils was found, using a literature-based approach covering
both areas (Swanson, 1986). This demonstrates the power of data integration. Thus the methods
for efficient retrieval and presentation of results can benefit researchers.

Cytoscape (Shannon et al., 2003; Killcoyne et al., 2009) is a general network visualization, data
integration, and analysis software, which has been mainly developed with the modelling requirements
of systems biology in mind. The core of Cytoscape mainly features powerful layout algorithms for
visualising networks and is quickly becoming a de facto standard for the visualisation of biological
networks, while its flexible plug-in architecture brings the real power via community-based devel-
opment of useful plug-ins. However, Cytoscape does not offer data management capabilities. Bio-
logical data management and integration has also attracted significant amount of research (Lacroix
and Critchlow, 2003). There are three major approaches in this area: data warehousing approach,
distributed or federated approach, and mediator approach. The data warehousing approach involves
assembling data sources into a centralised system with a global data schema and an indexing sys-
tem for integration and navigation. In the federation approach, underlying data sources remain
autonomous, and the federated system maintains a common data model and makes use of schema
mapping to translate heterogeneous source database schema to the target schema for integration.
The mediator approach introduces a mediator layer, a collection of software components perform-
ing integration, to decouple the underlying heterogeneous distributed data sources and the client
layer. Many popular and important biological data integration systems are discussed in Lacroix and
Critchlow (2003). But these systems are limited to providing web based access to multiple reference
databases.
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Figure 1.1: Systems biology can be viewed as a combination of omics technologies, data integration, analysis,
mining, and modelling, often involving use of these techniques iteratively over hypothesis driven
systematic experimental design to gain increased understanding of the structure and dynamics of
the biological systems. High throughput omics technologies provide the measurements for systems
biology. Integrative bioinformatics starts with the integration of multiple data sets from one or
more omics and also possibly from multiple organisms, and forms the basis for systems biology
analysis. Systems biology analyses include data mining, visualisation, biological networks, and
dynamic modelling. The new knowledge generated by these analyses would enable us to build
quantitative models. The hypothesis generated by the analysis of these models drive the design of
more experiments to gain increased understanding of the biological systems.

The availability of high-throughput data collection techniques of modern biology introduce some
new problems. First, there are many false positive findings and reproducibility is poor i.e., a bio-
logical sample analysed by using a single experimental technique at different times or laboratories
often lead to unidentical results (Ge et al., 2003; Ein-Dor et al., 2005; Irizarry et al., 2005; Tan
et al., 2003). Meta-analyses of multiple data sets or evidences from multiple types of biological
experiments may improve the statistical power of the analysis. Second, various types of biological
activities or interactions within an organism and between an organism and its environment do not
happen in isolation. Biological function is a net result of simultaneous activities and interactions of
various types (Kanehisa and Bork, 2003; Ideker et al., 2001a,b; Ge et al., 2003; Papin and Palsson,
2004). Thus the integrated modelling of the biological systems is very important.

This thesis addresses these problems. First, it presents bioinformatics methods to visualise
biological interactions of different types in an integrated manner. Next, it presents methods to
facilitate advanced context-sensitive mining of the integrated network data. Finally, it presents
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mining of dynamic topological changes of functional modules in integrated networks in response to
specific interventions. The methods presented in this thesis can be applied for prediction of gene,
gene product or metabolite functions, and to associate experimental phenotypes with genotypes i.e.,
for interpretation of transcriptomics and metabolomics data in terms of molecular level patterns or
changes.

Organisation of the thesis

The research presented in this thesis consists of integrative bioinformatics methods under two themes.
The first theme is that of a bioinformatics software platform which embodies methods for integration
of heterogeneous biological data: a variety of interaction, annotation, and molecular measurement
data (chapter 2). The methodological details of this software platform are presented in section 3.1.
The platform achieves integration across different biological data types using data traversals (section
3.1.4). The resulting information forms the basis for context-sensitive data mining (section 3.1.6),
which draws on the concepts from the theory of conceptual spaces. Some results of exploratory
data mining using this platform are presented in section 4.1. The second theme is the study of
dynamic changes of functional modules in an integrated network (section 3.2). An application of
this strategy with a study of dynamic topological response of oxidative stress in Saccharomyces
cerevisiae is presented in section 4.2. Summary and concluding remarks follow in chapter 5.
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Chapter 2

Biological data

Cells consist of different types of biomolecule. Reductionist approach of molecular biology deals
with studying the properties and roles of individual molecules and produced large amounts of useful
knowledge. A discrete biological function, however, can not be attributed to an individual molecule,
but to a complex web of interactions between a set of molecules. Therefore, describing biological
systems requires explaining how they arise from interactions among components in the cell (Hartwell
et al., 1999; Ge et al., 2003). Availability of complete genome sequences of several organisms (Goffeau
et al., 1996; Blattner et al., 1997; Adams et al., 2000; Lander et al., 2001; Venter et al., 2001;
Waterston et al., 2002) has opened doors for development of high-throughput omics technologies.

Figure 2.1 provides an overview of some omics experimental techniques for measuring different
biological data types, which are elaborated in this chapter. Gene expression microarrays (Schena
et al., 1995; Lockhart et al., 1996) and Serial Analysis of Gene Expression (SAGE) (Velculescu et al.,
1995), which enable us to measure the abundances of thousands of gene transcripts simultaneously,
have empowered the first omics discipline known as transcriptomics. The development of proteomics,
large scale study of proteins, followed (Patterson and Aebersold, 2003). Mass spectrometry based
protein purification (Rigaut et al., 1999; Aebersold and Mann, 2003) and yeast two hybrid analysis
(Ito et al., 2001) have enabled investigating protein-protein interactions in high-throughput manner
(Shoemaker and Panchenko, 2007a). The omics technologies have contributed to rapid accumulation
of knowledge such as gene and gene product annotations, biomolecular interactions. Simultaneously,
the availability of genome sequences also enabled development of computational algorithms for se-
quence analyses (Altschul et al., 1990; Thompson et al., 1994; Durbin et al., 1998), which also helped
to rapidly annotate new sequence data, and predict the structure and interactions (Shoemaker and
Panchenko, 2007b; Marcotte et al., 1999). Finally, text mining (Skusa et al., 2005) also helped to
retrieve important molecular interaction information, and careful manual literature curation led to
higher quality information as compared to high-throughput data (Reguly et al., 2006; Matys et al.,
2006). In the spirit of genomic data sharing, many types of the biological data have been made
accessible through world wide web.

These web-accessible databases and their associated search and mining tools are primary re-
sources serving thousands of biology researchers worldwide. These tools allow researchers to effec-
tively mine the databases and answer one’s biological questions (Kanehisa and Bork, 2003). The
databases cover a wide range of information including literature, sequences and annotations of genes
and gene products, and a variety of molecular interactions such as biochemical reactions, transcrip-
tional regulatory interactions, signal transduction pathways, to name a few. This chapter intro-
duces some of the commonly used databases for miroarray gene expression profiles, protein-protein
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Figure 2.1: Various types of data in molecular biology and the experimental techniques employed for obtaining
the data (by no means exhaustive). High-throughput techniques capable of measuring all or at
least a large number of components (several hundreds to thousands) simultaneously are known as
omics techniques. Generally the word interactome is used to refer to the collection of protein-
protein interactions, but in this thesis we also include other types such as metabolic networks
and transcriptional regulatory interactions into the interactome category for convenience, as we
repeatedly refer to all these types of interactions.
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interactions, metabolic interactions, transcriptional regulatory interactions, and signal transduction
networks.

GenBank (Benson et al., 2000, 2010) is a sequence database that stores all known DNA sequences
gathered by direct submission of sequence data from individual laboratories and from large-scale se-
quencing projects. There are two other major DNA sequence databases namely EMBL nucleotide
sequence database (Stoesser et al., 1999; Kulikova et al., 2007), and DDBJ (Tateno et al., 2002;
Kaminuma et al., 2010), and the data among these three databases are synchronised. The Ensembl
project (Hubbard et al., 2007; Flicek et al., 2010) offers an integrated source of genome sequences and
annotations for a comprehensive set of chordate genomes with a particular focus on human, mouse,
rat, zebrafish etc. The University of California Santa Cruz (UCSC) Genome Browser Database
(Karolchik et al., 2003; Rhead et al., 2010) is a source for genome sequence and annotation data.
UCSC Genome Browser, is a tool associated with the UCSC database that provides rapid visu-
alization and querying of the data. The annotations provided by these genome databases include
include mRNA and expressed sequence tag (EST) alignments, gene predictions, cross-species ho-
mologies, highlevel maps, single nucleotide polymorphisms (SNPs) and so on. Besides these general
genomic databases, there are organism specific genomic databases for model organisms. The Sac-
charomyces Genome Database (SGD) (Cherry et al., 1998; Engel et al., 2010) is a database for
the molecular biology and genetics of the yeast Saccharomyces cerevisiae that provides functional
annotations, mapping and sequence information, protein domains and structure, expression data,
mutant phenotypes, physical and genetic interactions and the primary literature from which these
data are derived. FlyBase (Gelbart et al., 1997; Drysdale et al., 2008) is a database of genetic and
genomic data concerning fruit flies of which Drosophila melanogaster is an extensively studied model
organism. FlyBase is populated with information from a variety of sources ranging from large-scale
genome projects to the primary research literature. FlyBase provides access to information on gene
models, molecular classification of gene product functions, mutant phenotypes, mutant lesions and
chromosome aberrations, gene expression patterns, transgene insertions, and anatomical images.
WormBase (Stein et al., 2001; Harris et al., 2010) is a central data repository for nematodes of
which Caenorhabditis elegans is an extensively studied model organism. WormBase includes ge-
nomic sequences, gene predictions and orthology assignments from a range of related nematodes
and relies on manual curation of information from the corpus of C. elegans literature.

Transcription factors are proteins that are vital for the transcriptional regulation of gene ex-
pression. A transcription factor has a DNA binding domain which can bind to a particular region
in the DNA sequence of a gene, called the binding site, and helps in enhancing or inhibiting the
expression of the gene (Latchman, 1997). TRANSFAC database (Wingender et al., 2000; Matys
et al., 2006) primarily provides information about entities involved in the transcriptional regulation
such as transcription factors, binding sites and genes among a variety of other related information.

Living cells interact with their environment by exchanging a variety of signals. Signaling path-
ways of the receiver cells forward the signals to the nucleus through cascades of interactions and
trigger the appropriate adaptation of the genetic program. The TRANSPATH database (Schacherer
et al., 2001; Krull et al., 2006) provides information about signal transduction pathways involved
in the transcriptional regulation of gene expression via regulating the activity of the transcription
factors.

The Universal Protein Resource (UniProt) (Bairoch et al., 2005; Apweiler et al., 2010) provides
information about protein sequences and functional information. The central database in Uniprot,
termed UniProt Knowledgebase, provides accurate, consistent and rich sequence and functional an-
notations and consists of two sections: UniProt/Swiss-Prot and UniProt/TrEMBL. UniProt/Swiss-
Prot consists of manually curated protein functional information, resulting from literature informa-
tion extraction and curator-evaluated computational analysis. UniProt/TrEMBL consists of protein
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sequences translated from EMBL gene sequences (Stoesser et al., 1999; Kulikova et al., 2007) and
annotated with computational annotation tools, pending manual curation.

Database of Interacting Proteins (DIP) (Xenarios et al., 2002) is a database of manually curated
protein-protein interactions. A curator enters each interaction entry into the database after manually
reading the publication reporting an experimentally verified interaction. This is intended to be a
comprehensive and integrated tool for browsing and efficiently extracting information about protein
interactions and interaction networks in biological processes. DIP provides access to combined
information from multiple observations and experimental techniques, from multiple organisms, as
well as to networks of interacting proteins. Each interaction entry in the DIP database contains
information about the protein domains and range of amino acids involved in the interaction, and
the corresponding experiments. The interactors are identified by Swissprot (Apweiler et al., 2010),
PIR (Barker et al., 1998), or GenBank (Benson et al., 2000) accession numbers and each interactor
entry contains information about the organism, function, superfamily, cellular location and so on.

The Biomolecular Interaction Database (BIND) (Bader et al., 2003) stores pairwise interactions
between biological ‘objects’ which could be protein, RNA, DNA, molecular complex, small molecule,
photon (light) or gene. Moreover, it contains higher level functional structures called molecular
complexes and pathways which are collections of the pairwise interactions with some additional
data. The minimum amount of information required to define an interaction is a description of
the interacting objects and a publication reference to PubMed (Wheeler et al., 2007). Data in
BIND is primarily obtained via submissions of individual contributors across the world. However,
it also incorporates interaction data imported from other databases such as PDB, and a number
of large-scale cell mapping studies using yeast two hybrid, mass spectrometry, genetic interactions
and phase display. SeqHound is a data integration system (Michalickova et al., 2002) that provides
extensive C, C++, and Perl application programming interfaces (API) for data in BIND. SeqHound
system provides also functions to link the biological objects with other biological databases in public
domain.

The Molecular Interaction database (MINT) (Zanzoni et al., 2002; Ceol et al., 2010) stores
information about experimentally verified molecular interactions extracted from publications from
peer-reviewed journals. The main focus is on physical interactions between proteins. Genetic or com-
putationally inferred interactions are not included in MINT. MINT includes an additional database
called HomoMINT (Persico et al., 2005), which is a database of interactions between human pro-
teins inferred from interactions between orthologous proteins in model organisms. A large number
of MINT data comes from large scale, genome wide experiments, although curating data from low-
throughput published experiments is given emphasis. Each interaction entry contains reference to
Swiss-Prot/TrEMBL protein accession number (Apweiler et al., 2010) for the interactor and con-
tains the experimental information and pubmed reference (Wheeler et al., 2007) for describing the
experimental conditions and other properties of the interaction.

BioGrid (Stark et al., 2006; Breitkreutz et al., 2008) is a database of protein and genetic in-
teractions. It is aimed to be a generic repository providing comprehensive information on molec-
ular interactions in several organisms such as Saccharomyces cerevisiae, Drosophila melanogaster,
Caenorhabditis elegans, and Homo sapiens. It currently hosts protein-protein interaction data from
high-throughput experiments such as yeast two-hybrid (Y2H) method (Ito et al., 2001) and mass
spectrometry analysis of purified protein complexes (Rigaut et al., 1999). Additionally, the BioGrid
team also compiles interaction data by extensive manual curation of literature. Literature curated
data for Saccharomyces cerevisiae and Schizosaccharomyces pombe have already been added to Bi-
oGrid and curation efforts for other organisms are underway (Reguly et al., 2006; Breitkreutz et al.,
2008).

The Kyoto Encyclopedia of Genes and Genomes (KEGG) system (Kanehisa et al., 2004) con-
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sists of three main components: the genomic space (KEGG GENES), the chemical space (KEGG
LIGAND), and network space (KEGG PATHWAY). The KEGG GENES is a collection of gene
catalogues for completely or partially sequenced genomes, compiled by automatically extracting in-
formation from databases such as NCBI GenBank, and RefSeq (Wheeler et al., 2007). The KEGG
LIGAND is further divided into several components including COMPOUND, GLYCAN, REAC-
TION, ENZYME, and so on (Goto et al., 2002). The COMPOUND database contains manually
entered and computationally verified chemical structures of known metabolic compounds, and some
pharmaceutical and environmental compounds. The GLYCAN database consists of carbohydrate
structures, a few hundreds of which were manually entered and the rest derived from CarbBank
project (Doubet et al., 1989). The REACTION database contains reaction formulae for enzymatic
reactions, the reactants of which are represented in COMPOUND or GLYCAN databases. The
ENZYME database contains enzyme nomenclature. Each enzyme is identified by an Enzyme Com-
mission (EC) number (Webb, 1992; Tipton and Boyce, 2000), which can be linked to other public
databases such as UniProt (Bairoch et al., 2005). The KEGG PATHWAY database is a collection of
manually drawn diagrams, called KEGG reference pathway diagrams (maps), each of which corre-
sponds to a known network of functional significance. Moreover, PATHWAY database also contains
organism-specific pathways, which are automatically generated by superimposing genes in given or-
ganisms. The KEGG pathways are provided in an XML based markup language called KGML.
Each metabolic reaction in a KEGG metabolic pathway is linked with one entry in the REACTION
database, and the enzymes in the enzymatic reactions can be linked to the databases in the genome
space as well as to other public databases via EC numbers.

iND750 is a manually reconstructed genome-scale metabolic model describing Saccharomyces
cerevisiae metabolism (Duarte et al., 2004) with 750 genes, their transcripts, proteins and reactions.
Manual reconstruction process involves curating reaction lists based on information from genome an-
notations, biochemical pathway databases, biochemistry textbooks, and publications (Förster et al.,
2003). All reactions in iND750 model are elementally and charge balanced, and compartmentalised
to eight cellular locations: extracellular space, cytosol, mitochondrion, peroxisome, nucleus, endo-
plasmic reticulum, Golgi apparatus, and vacuole. Similar semi-automated manual curation has been
employed to construct the first consensus metabolic network for yeast (Herrg̊ard et al., 2008), global
human metabolic network (Duarte et al., 2007), and so on.

Gene Expression Omnibus (GEO) (Edgar et al., 2002; Barrett et al., 2005) stores a variety of
high-throughput molecular abundance data of which microarray gene expression data is a major data
type. The data in GEO is organized into GEO Platforms (GPL), GEO Samples (GSM), GEO Series
(GSE) and GEO Data sets (GDS). A Platform describes the set of elements that can be detected and
quantified in the experiment. A Sample describes a single hybridization or experimental condition.
A Series is a group of related Samples that make up one single study. A Data set is an assembly of
biologically meaningful Samples that are statistically comparable. Of these, GPL, GSM and GSE
are direct submissions of contributors, while GDS is a curated collection.

Gene Ontology (GO) (Ashburner et al., 2000; Berardini et al., 2010) consists of three independent
ontologies: Biological process, Molecular function, and Cellular component to describe the roles of
genes and proteins in eucaryotes. GO is built on the premise that a large fraction of the genes
specifying core biological functions are shared by all eucaryotes. It is aimed to be a dynamic
controlled vocabulary applicable to all eucaryotes even as our knowledge of gene and protein roles
in cells continuously evolves.

Although the high-throughput experimental techniques of modern molecular biology empower us
to measure multiple components of a biological system simultaneously, they often produce data that
is inferior in quality to low-throughput techniques. On the one hand, high-throughput techniques
may produce large number of false positives, meaning that not all findings are necessarily correct. On

20



CHAPTER 2. BIOLOGICAL DATA

the other hand, they may also exhibit large number of false negatives or detection biases, meaning
that they may miss some true phenomena, leading to the lack of coverage or comprehensiveness in
the findings. von Mering et al. (2002) performed a detailed comparison of multiple high-throughput
techniques as well as a computational approach commonly employed for the study of protein-protein
interactions. They estimated that more than half of all high-throughput protein-protein interac-
tion data are false positives. While the estimated lower-bound to the number of protein-protein
interactions is 30,000, the number of interactions supported by more than one method is only ap-
proximately 2,400, which demonstrates the sparing coverage of the methods employed (von Mering
et al., 2002). For these reasons, manual curation of published literature has, despite the practical
difficulties, received significant interest. In order to compile high-quality data, manual literature
curation is expected to consider high-confidence data coming from low-throughput techniques, and
perhaps also additionally supported by multiple independent studies. However, a recent study that
has systematically compared the quality of a literature curated data has speculated that the quality
of the literature curated yeast protein interaction data from BioGrid (Reguly et al., 2006) is at the
most as good as or even inferior to high-throughput yeast two-hybrid (Y2H) data (Cusick et al.,
2009). On the other hand, high-throughput techniques such as Y2H method are also improving, and
it is increasingly believed that the little overlap among different high-throughput protein interaction
studies is due not to the false positives, but to the false negatives (Lemmens et al., 2010). However,
still the coverage of such data is quite little. For instance, while reporting a newly produced high-
quality comprehensive binary Y2H protein interaction map for Saccharomyces cerevisiae, Yu et al.
(2008) indicated that three proteome-level Y2H studies (i.e., Uetz et al. (2000); Ito et al. (2001);
Yu et al. (2008)) taken together, only account for approximately 20% of the empirically estimated
protein binary interactions in Saccharomyces cerevisiae. Y2H interaction maps have also been gen-
erated for other model organisms and humans (see references cited by Yu et al. (2008)), and their
quality and coverage are similar to those of S. cerevisiae interaction maps. Global metabolic net-
work reconstruction approaches described earlier (Duarte et al., 2004; Herrg̊ard et al., 2008; Duarte
et al., 2007) presumably produce high-quality metabolic networks but they are not complete and
continuously keep growing. Comprehensive system-level data of high-quality is a key ingredient of
systems biology (Kitano, 2002). Similarly, efficient computational tools to effectively handle current
and future high-throughput data and turn them into knowledge are equally important.

Most of the databases described in this chapter provide easy access to web interfaces and tools
for mining the data. However, these tools as well as the underlying data formats are different from
each other and thus very diverse. A platform for accessing all these databases in a unified fashion as
well as for performing advanced data mining of the resulting data is presented in the next chapter.
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Methods

3.1 MegNet platform for biological data integration

Although high-throughput experimental techniques of molecular biology and biochemistry produce
increasing amounts of data such as gene, protein, and metabolite expression, as well as interactions
between them, characterising a sample’s phenotype in the context of environment or experimental
condition remains a challenge. The aim of data integration is to address this challenge by providing
links between a variety of these data.

By constructing a system to represent experimental phenotypes and environmental context of
samples in GEO (Barrett et al., 2005) with annotations from Unified Medical Language System
(UMLS) (Bodenreider, 2004), and mining the data across multiple datasets representing similar
biological contexts, Butte and Kohane (2006) showed that a large set of phenome-genome and
envirome-genome relations could be retrieved within a public repository of transcriptome measure-
ments (GEO). Orešič et al. (2004) explored integrated analysis of gene, protein and metabolite
expression profiles, attempted to interpret the results in the biological context using pathways, and
emphasised the need for data traversals.

We have developed a bioinformatics platform, a consolidation of multiple heterogeneous molecular
biology databases, and a visualisation software called MegNet for automatic integrative mining of
these data (Article I, Article II). This section explains the technical details of the platform and
MegNet. Henceforth, we use the words MegNet and data integration platform interchangeably to
represent the database system and the visualisation software together.

Fundamentally MegNet system has been developed to achieve integration of heterogeneous bio-
logical data by enabling traversals across different data sources. It enables traversals across protein-
protein interactions, transcriptional regulation reactions, metabolic pathways, metabolic models,
signal transduction pathways, biological ontologies, and molecular profile data such as gene expres-
sion measurements (Figure 3.1). MegNet represents the integrated data as networks. Furthermore,
MegNet enables context-based visualisation of the integrated networks by building a conceptual
space representation (Gärdenfors, 2000) and making use of the dimensionality reduction techniques
(Carreira-Perpiñan, 1997) to visualize the similarity structure in a low-dimensional space, typically
a two-dimensional plot.
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Figure 3.1: Multiple molecular biology databases provide descriptions of biological systems at different levels
of abstraction. Some common biological information, along with names of primary databases
providing information in that domain are provided. Four levels of biological information are indicated
by boundaries: molecular profiles (black), general information about molecules (red), interactions
(blue), and biological pathways and functions (green).

3.1.1 Databases

A database is merely a collection of information that exists over a long period of time. A Database
Management System, DBMS, is a software system that supports storage of large databases, provides
efficient access to the data through powerful query languages, supports atomic and independent
execution of concurrent transactions, and supports durability—the ability to recover from failures
or errors (Garcia-Molina et al., 2002).
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Figure 3.2: Architecture of MegNet

Relational databases

Relational database systems are based on relational data model (Codd, 1970) which organizes data
as relations or tables and provides a high level query language called Structured Query Language
(SQL) for manipulating and querying the relational data (Garcia-Molina et al., 2002). Due to its
rigorous mathematical base in Relational Algebra, relational database systems became de facto
standard in DBMS technology. Oracle (http://www.oracle.com) is a famous vendor of a powerful
relational database management system.

XML databases

eXtensible Markup Language (XML, http://www.w3.org/xml) is a World Wide Web Consortium
standard for document markup. XML quickly gained popularity as data exchange format due to
its semantic capabilities and its supporting standards and technologies such as DTD, XMLSchema,
DOM, SAX, XPath, XQuery and so on (http://www.w3.org). Native XML as well as XML enabled
database systems have responded to increasing XML data management needs (Chaudhri et al., 2003).
Tamino XML Server (http://www.softwareag.com) is a powerful native XML data management
system. XML is a key technology in biology data management (pp. 291–319 of (Chaudhri et al.,
2003)), and commonly used for data exchange based on many XML data standards (Spellman et al.,
2002; Hucka et al., 2003; Hermjakob et al., 2004) and for data integration (Achard et al., 2001;
Philippi and Köhler, 2004).

3.1.2 Overview of MegNet

Our data integration and visualisation system is composed of three layers as depicted in Figure 3.2.
Data curated from heterogeneous biological sources including the ontologies constitutes the back-
end of the system. The logic and algorithms such as those for the database traversals, network
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construction, network projections, and integration of gene expression data constitute the middle-
tier. The visualisation client communicates with the middle-tier, which in turn communicates with
the back-end. Fundamentally the queries that visualisation software enables can be divided into two
types: data integration queries and network projection queries. In response to a data integration
query sent by the visualisation front-end, the middle-tier queries the relevant databases and performs
the integration using database traversals and optionally using additional correlation calculations and
sends the results in the form of an integrated network. A network projection request can be made
when an integrated network is already constructed, and the system does not use the database back-
end in processing these requests. The result of a network projection request is a low-dimensional
representation of the network, typically a 2-d plot of network nodes, where the distances between
points reflect the similarity of nodes in the network. The similarity measures will be described later
in this chapter.

3.1.3 Infrastructure

A detailed description of the infrastructure of the MegNet system is included in section Architectural
design of Article II. However, for completeness, it is depicted in Figure 3.2 and a brief summary is
given below.

Back-end: The XML data management system Tamino XML server (Software AG) is used for
storing XML data. Oracle 10g database server (Oracle Inc.) is used for storing molecular profile
data such as gene expression data and metabolomics data. Tamino Java API and Java Database
Connectivity (JDBC) enable the communication between the middle-tier and Tamino and Oracle
respectively.

Middle-tier: JBoss application server (Redhat Inc.) hosts the middle-tier, which is a set of Java
Beans invokable by web services, and sends responses as web services. The communication between
middle-tier and the visualisation front-end is handled via SOAP messages.

Front-end: The front-end consists of the user interface. Initially it was implemented in Java, but
more recently it is implemented in C#. NET, and the Java client has been deprecated. The client
communicates with middle-tier via SOAP messages.

3.1.4 Databases and data curation

Data from various public data sources were collected into our local database systems (Table 3.1,
Article I, Article II). The curation of a public database involves several steps (section 2.3 of
Article I). Usually every database might need some specialized steps in the curation process (Ta-
ble 3.1), but the general steps are as follows:

• creating logical schemas which represent the logical structure and physical properties such as
indexing to enable efficient queries.

• development of parsers to convert the non-XML data into XML or relational formats or to
convert from one XML to another XML format etc.
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Table 3.1: Databases integrated into our system, along with information on some high level steps employed for
integration. Appropriate schemas (XML or relational) were defined for each database. In some cases
the logical schemas were readily available e.g., as XML schema definition (XSD) files, in which case
they were customised as needed. If the XSD files were not available, they were developed manually.
Tamino or Oracle specific physical schema structures including indices for efficient data retrievals
were defined based on an analysis of common queries. Tamino mass data loader (or similarly Oracle
SQL loader) was used for loading data.

Database Curation tasks
UniProt (Bairoch et al., 2005) Data for UniProt-SwissProt and UniProt-TrEMBL

were available in XML format. Perl parser was writ-
ten to extract some subset of XML nodes and to
format the data for Tamino data loader.

BIND (Bader et al., 2003) Data was available in XML format. A Java parser
was written to format the data for Tamino data
loader. In order to link the protein interactors
to UniProt entries, the GenInfo identifiers were
converted to UniProt accession numbers using Se-
qHound API (Michalickova et al., 2002)

DIP (Xenarios et al., 2002) Data was available in XML format. A Perl parser
was written to format the data for Tamino data
loader.

MINT (Zanzoni et al., 2002) Data was available in PSI-MI XML format (Herm-
jakob et al., 2004). A Perl parser was written to
format the data for Tamino data loader.

BioGrid (Stark et al., 2006) Data was available in PSI-MI XML format. A Perl
parser was written to format the data for Tamino
data loader.

KEGG (Kanehisa et al., 2004) Pathway data was available in KGML, an XML for-
mat (Kanehisa et al., 2004). A Perl parser was writ-
ten for further Tamino specific formatting. Data
from KEGG LIGAND (Goto et al., 2002) database
were available as formatted text files. For these data,
XML schemas were developed and Perl parsers were
written for constructing valid XML documents.

iND750 (Duarte et al., 2004) Data were available as flat files. Parsers based on
libSBML were developed to construct SBML repre-
sentation (Hucka et al., 2003), and the data pertain-
ing to compound identities were manually annotated
with PubChem database identifiers (Wheeler et al.,
2007).

TRANSFAC (Matys et al., 2006) Data were available as formatted text files. XML
schemas were developed and Perl parsers were writ-
ten for constructing valid XML documents.

TRANSPATH (Krull et al., 2006) Data were available in XML format. Perl parsers
were written to extract some subset of XML nodes
and for Tamino specific formatting.
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GO (Ashburner et al., 2000) Data were available in an RDF-based format, and
correspondly XML schemas were readily available.
A Perl script was written for Tamino specific for-
matting, and for inserting an additional ”Ontology”
element which describes whether a term is a “Biolog-
ical Process”, “Cellular component” or a “Molecular
function”. Due to the cyclic dependency of the root
elements “go:go” and “rdf:RDF”, an empty schema
was first defined in Tamino for “rdf:RDF” element.
Then the schema for “go:go” was defined, and fi-
nally, the full structure of “rdf:RDF” element was
redefined.

GEO (Barrett et al., 2005) Data was available in simple line oriented text file
format called SOFT format. Perl parsers were de-
veloped to extract information from the SOFT files.
UMLS annotations for meta-data (Butte and Ko-
hane, 2006; Bodenreider, 2004) were incorporated
into maps database.

T1DBase (Hulbert et al., 2007) The data were available as MYSQL sqldumps. A
MYSQL database was created from the sqldumps,
and then the MYSQL data has been exported to OR-
ACLE using Oracle Database Migration Workbench.

Database traversals using schema maps

Biological system description involves various levels of abstraction (Figure 3.1) which include biolog-
ical molecules (i.e., DNA, RNA, Proteins, Metabolites, and so on), biomolecular interactons (i.e.,
Protein-protein, Protein-DNA interactions, Transcriptional regulation steps such as a transcription
factor binding to the binding site of a gene in order to control its expression, Metabolic reactions),
pathways (i.e., cascades or sets of interactions working in concordance in order to perform biologi-
cal functions), and biological processes (i.e., biological mechanisms involving, for instance, cell-cell,
cell-tissue, organ level interactions, and so on). Some of such information can be accessed from the
biological databases. Therefore, the integration of such databases allows us to automatically mine
that information. In order to build a platform, which allows mining of a variety of such biological
interactions, one should fundamentally achieve traversals across the databases providing biological
information (Orešič et al., 2004).

Resolving even simple biological relationships that contain a few biological components often
requires traversing across multiple databases. The traversals can be achieved by identifying names
or identifiers in different databases, which represent the same biological entity. In order to enable
traversals in our data integration system, we developed a database called “maps” database, which
maps names used for the same entities across multiple databases. This database is populated by
parsing information from several databases (Fig. 3B of Article I).

Currently this database contains mapping of proteins and gene expression experiments. The
protein maps contain information of proteins indexed by Uniprot Swiss-Prot and TrEMBL identifiers
(Bairoch et al., 2005). The information was primarily parsed from Uniprot Swiss-Prot and TrEMBL
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and further populated by supplementary information parsed from BIND database (Bader et al.,
2003), KEGG Pathways (Kanehisa et al., 2006), and yeast metabolism models iND750 (Duarte
et al., 2004) and YMN1 0 (Herrg̊ard et al., 2008). Maps for gene expression experiments contain
experimental meta descriptions and annotations from Unified Medical Language System (UMLS)
where available (Butte and Kohane, 2006; Bodenreider, 2004).

As an example to illustrate how the data in maps database is compiled, we explain how protein
entries in this database are linked to GenInfo identifiers provided in BIND molecular interaction
database (Bader et al., 2003). In protein-protein interaction databases such as MINT and DIP,
protein nodes are indexed by Uniprot identifiers (Zanzoni et al., 2002; Chatr-aryamontri et al., 2007;
Xenarios et al., 2000). But in BIND, interactions are indexed by GenInfo sequence identifiers (GI’s)
(Bader et al., 2003). We obtained mapping between the GI’s and Uniprot identifiers in each BIND
interaction using DBXREF table that provides all external references made in BIND and SeqHound
Perl API (Michalickova et al., 2002) as follows. We first extracted the list of unique UniProt accession
numbers from the DBXREF table. Then, for each Uniprot accession number in this list, we did the
following. We first found the corresponding primary GI using SHoundFindAcc function of SeqHound
Perl API. Next, we retrieved the list of GI’s that have the exact sequence as that of the primary
GI using SHoundRedundantGroup function of the API. We finally stored mapping between all the
GI’s whose taxonomy id (as found by SHoundTaxIDFromGi function of the API) matched that of
the primary GI. Finally, all GI’s associated with each UniProt accession were added as external
database links for the corresponding protein entry, indexed by the UniProt accession number, in
maps database.

The data traversals use protein nodes as central nodes for constructing integrated networks. More
specifically, in order to construct an integrated network consisting of various types of edges in it,
those edge types are joined based on common protein nodes they share. As an example, consider
traversing from a metabolic reaction to a protein-protein interaction. Such traversal could bring
information about the protein-protein interaction partners, when exist, of the enzyme which catalyzes
the metabolic reaction. It can be typically achieved by translating the Enzyme Classification (EC)
number of the enzyme to the corresponding protein identifier (Uniprot Id), and then searching
protein-protein interaction databases for any possible interactions partners (Fig 3 of Article I).
Similarly, for linking correlation networks based on gene expression measurements with interaction
networks we find out identifiers of the proteins which are expressed by the genes (indexed by EMBL
sequence identifiers) under consideration.

In order to achieve data traversals, the maps database is designed to contain identifiers and
names of protein entities from multiple databases. Conversions from other types of identifiers, e.g.,
EC enzyme identifiers to Uniprot protein identifiers, and linking of e.g., EMBL gene identifiers to
Uniprot protein identifiers are obtained from maps database.

3.1.5 Integration of Gene expression data

We achieved integration of gene expression data with interaction networks in other ways (sections
3.2, 4.2). At this point, however, we limit the discussion to network visualisation based integration
approach. The visualisation approach is based on correlation networks. For selected biological sam-
ples, possibly from one or more gene expression studies, the integration approach will be explained
below.

Gene co-expression across multiple experimental conditions and multiple organisms indicates
strong functional relationship, and hence is a powerful tool for elucidation of gene function (Stuart
et al., 2003). Gene Expression Omnibus (GEO) (Edgar et al., 2002; Barrett et al., 2005) stores high-
throughput gene expression data from many organisms and a huge variety of biological conditions.
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In MegNet we allow the users to assess co-expression of genes from any choice of combinations of
data sets and integrate the information with pathway and interaction data.

Gene expression data preprocessing

Many variations introduced at different stages of microarray experiments blurr the real biological
variation and microarray data preprocessing tries to remove the non-biological variations from the
data (Speed, 2003; Quackenbush, 2002; Bolstad et al., 2004). Within each GEO data set, the
statistical preprocessing of the data such as background correction and normalisation are performed
in a consistent fashion (Barrett et al., 2005), thereby removing the experiment-specific non-biological
variations. But in order to enable simultaneous mining of gene expression data from multiple studies
together, we need further normalisation so that different data sets can be combined. For example,
in building ONCOMINE system to mine a large number of diverse cancer microarray data sets,
Rhodes et al. (2004) applied median centering and standard deviation scaling per microarray. In an
across-laboratory reproducibility study of microarrays, Irizarry et al. (2005) indicated that studying
relative expression values instead of absolute expression values is a simple solution to remove the
probe-specific effects in particular experiments.

In the data collected from GEO, there are two major types of gene expression microarray datasets:
single channel (i.e., intensity based) microarrays (Lockhart et al., 1996) such as Affymetrix oligonu-
cleotide micoarray data, and dual channel (i.e., two colour) microarrays (Schena et al., 1995) such
as cDNA microarray data. Therefore, the cross-platform comparability problem reduces to applying
normalisation so that both these dataset types can be analysed in an identical fashion. Since GEO
data provides log2 ratio between individual channel intensities (i.e., between case and control) for
the dual channel arrays, we similarly normalise the single channel data of case samples with control
samples from the same study, where the selection of the case and control samples is upto the user.
To be more precise, for each case sample, we compute the log2 ratio of the gene expression intensity
measurement versus the average intensity of control samples from the same GDS dataset. After this
transformation, single channel data and dual channel data can be analyzed in identical fashion as
well as simultaneously. In order to allow data sets coming from different studies to be combined, we
scale each microarray to unit standard deviation. Finally, when multiple data sets are queried, only
the genes common to all microarray platforms are used for the analysis.

Statistical hypothesis testing

Statistical hypothesis testing (Box et al., 1969; Montgomery, 1983) is a framework that allows us
to answer particular questions related to one or more populations on the basis of samples randomly
drawn from those populations. A statistical hypothesis is an assumption about the probability
distribution of a population. Hypothesis testing generally involves the following steps

Formulation of null hypothesis (H0): The null hypothesis is the hypothesis that the results
observed in a study (e.g., difference between treatment group and control group) are purely
by chance. The null hypothesis would be rejected if data does not provide enough evidence to
its truth; otherwise, we fail to reject it. An alternative hypothesis (Ha) is complementary to
the null hypothesis, and is effectively favoured when the null hypothesis is rejected.

Calculating a test statistic: The test statistic is a measure of the size of the “effect” relevant to
our test.

Calculating the P -value: The significance probability or P -value is the probability of getting the
data at least as extreme as observed if the null hypothesis were true.
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Rejecting or failing to reject the null hypothesis: The level of significance (α) is the maxi-
mum probability with which we are willing to falsely reject the null hypothesis. The null
hypothesis would be rejected if the significance probability (p-value) is less than the level of
significance (α); the evidence to reject the null hypothesis is considered inadequate otherwise.

Parametric tests make particular assumptions on the properties of the populations. When the
parametric assumptions are not satisfied, non-parametric tests may be used instead. The advent of
powerful computers allows a new approach called a permutation test (Moore and McCabe, 2005) for
performing a non-parametric test. A permutation test employs resampling to estimate the significance
of the test statistic. Permutation tests are often more robust than formula based non-parametric
or parametric tests. They are applicable even though the parametric assumptions are not satisfied,
as long as the resampling is done in a way that is consistent with the null hypothesis (Moore and
McCabe, 2005).

Multiple hypothesis testing

In the context of hypothesis testing, two types of errors are possible: Type I error or Type II error.
Rejecting a true null hypothesis is called the Type I error. Failing to reject a false null hypothesis is
called the Type II error. When multiple hypotheses are tested at a specified Type I error probability
(α) for each test, the chance of committing at least one Type I error increases sharply with the
number of hypotheses, and such phenomenon is referred to as multiple comparison (or testing)
problem. In order to address the multiple comparison problem, one needs to define an appropriate
Type I error rate and devise powerful multiple testing procedures that control this error rate (Shaffer,
1995; Dudoit et al., 2003). Controlling the false discovery rate (FDR) is one such approach, in which,
the FDR—the expected proportion of falsely rejected null hypotheses (Benjamini and Hochberg,
1995)—is controlled. Procedure for controlling FDR proposed by Benjamini and Hochberg (1995)
is as follows. Sort the p-values of the test in ascending order, and denote the sorted order as

p1 ≤ p2 ≤ p3 ≤ . . . pm.

Represent the corresponding m hypothesis with the same indices

H1, H2, H3, . . . ,Hm.

For controlling the FDR at level α, define

j0 = max{j : pj ≤
j

m
· α}

and reject hypothesis
Hi,∀i ∈ 1, 2, 3, . . . , j0.

Other classical Type I error rates controlled in multiple comparison approaches include Per Fam-
ily Error Rate (PFER)—expected number of type I errors, and Family Wise Error Rate (FWER)—
the probability of at least one type I error (Shaffer, 1995), both of which tend to impose more strict
control over the Type I errors, but at the expense of larger number of Type II errors. Therefore,
controlling the FDR is common choice in exploratory analysis (Dudoit et al., 2003).

Correlation

Correlation between two variables X and Y is the extent to which their values vary together system-
atically (Box et al., 1969). A correlation coefficient is a measure to the extent of correlation between
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two variables. Product-moment correlation coefficient or pearson correlation coefficient, which is
calculated from given samples of X and Y as the ratio between their covariance and the product of
their standard deviations, indicates the extent to which relationship between the variables X and
Y is linear. Pearson correlation coefficient obtained from samples (r) is an estimate of the true
correlation (ρ) of the bivariate normal population (X, Y ). The null hypothesis that ρ = 0 can be
tested with the statistic

t =
r ·
√
n− 2√

1− r2

which follows Student’s distribution with (n− 2) degrees of freedom (Box et al., 1969). The p-value
of this test is the probability that pearson correlation coefficient of the sample (r) would be at least
as extreme as observed if the null hypothesis is true (i.e., if ρ = 0).

Co-expression network

MegNet allows studying co-expression of genes from multiple GEO data sets emanating from different
labs, different studies, and possibly using diverse microarray platforms. Genes that are common to all
microarray platforms in the query are identified and used for the combined analysis using correlation
via Pearson correlation coefficient. For visualizing gene expression data, we compute correlation
and p-value between every pair of genes in the selected datasets. We then apply FDR method of
Benjamini and Hochberg (1995) to account for the multiple hypothesis testing. A correlation network
is then defined as the collection of edges representing statistically significant correlation between the
pairs of gene nodes they connect. Edges sharing common genes are joined at the common gene
nodes.

Finally data traversals can be also combined with co-expression network construction in order
to link the correlation network to molecular interaction networks, pathways and ontologies. For
example, MegNet system may be used to look for interaction neighbourhood of entities on the
correlation network. But more generally, it is possible to combine interaction network construction
parameters (e.g., certain proteins, pathways or ontologies) and co-expression network construction
parameters (e.g., some particular selection of gene expression data sets) in the same query, and then
let the data traversals automatically discover the cross-talk between these different levels wherever
possible (see e.g., section 4.1.4).

3.1.6 Context-sensitive data mining

Conceptual spaces

Gärdenfors (2000) advocates conceptual spaces as a representation paradigm to modelling human
cognition and as complementary to the Symbolic and Associationist levels of representation used in
cognitive science. He argues that these three levels are representations at different levels of resolution.
In conceptual spaces, concepts are represented as high-dimensional geometric spaces over a variety of
quality dimensions with geometric or topological structure for one or more domains. A domain can
be modelled as a set of integral dimensions i.e., dimensions which need not necessarily be completely
independent. For example, an apple might be represented as a multi-dimensional space where the
dimensions could be “colour”, “taste”, “shape” and so on. Thus, while an “apple” is simply a
token (or a text string) at the Symbolic level, it has a rich underlying geometric description at the
conceptual level.

There are two approaches to explaining meanings: Realist and Cognitive semantics. According to
Realist semantics, meanings of expressions are independent of the individuals involved in communi-
cation; meanings are in the world. According to Cognitive semantics, meanings are mental entities;
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different people have different conceptualisations of the world. The realist semantics fail to deal
with the fact that different people have different approaches to learn and that meanings of concepts
often change over time and between contexts. Context plays an important role in human learning
or understanding of new concepts. In terms of conceptual spaces, different conceptualisations cor-
respond to considering different subsets or alternative choices of quality dimensions. The dynamic
nature of the meaning, i.e., changes in meaning of concepts with respect to time and context, can
be represented by giving different saliencies (i.e., weights) to dimensions and domains.

Context-sensitivity in conceptual spaces

Context-sensitivity can be achieved in conceptual spaces by specifying weights to the quality dimen-
sions and recomputing the similarities (Gärdenfors, 2000). However, how to appropriately assign
weights to the dimensions according to the context is not necessarily trivial.

In building an information inference application, Song and Bruza (2003) employed a heuristic
based on query term frequency in text corpus to automatically find out the dominant concept in
a concept combination. The concept combination heuristic was then applied to emphasise qual-
ity properties shared by the concepts in the concept combination and to increase the weights of
properties of the dominant concept by rescaling (Song and Bruza, 2003). Raubal (2004) in their
way-finding application used different sets of empirical weights to represent the users preferences on
facades according the day and night.

However, the true power of conceptual spaces representation is in allowing each user to have
one’s own conceptualisation of the world. Therefore, in an interactive system, the user must be
given full control of weight assignment. This is especially useful for facilitating exploratory data
mining. Meanwhile, the system may offer some predefined or default contexts defined by some
particular choices of weights in order to facilitate queries from users with little experience.

Using some specific experimental context of interest, if available, maybe a useful alternative. For
example, a gene expression experiment data maybe used to assign weights based on some measure
such as correlation coefficient (see e.g., section 4.1.5).

Conceptual representation of MegNet networks

An integrated network constructed using database traversals as explained earlier corresponds to sym-
bolic representation of biological relationships obtained using semantic web technologies. Therefore
representing the information in the networks as a conceptual space makes it possible to mine the
data in a context-sensitive manner, or in other words, to facilitate Cognitive semantics.

In this direction, we represent every MegNet integrated network as a high-dimensional space
(Figure 3.3) whose dimension is defined by the number of nodes in the network (Article IV). Every
node in the network is a vector in this space. A vector v representing a node p contains weighted
shortest path distances from node p to all other nodes in the network. These weights are the subject
of discussion in the next paragraph. For now, it is enough to note that, by default, the weights for
all interactions are set to 1. Therefore, the default representation contains shortest path length for
each coordinate.

As discussed earlier, context-sensitivity in a conceptual space can be achieved by specificying
one’s own conceptualisation in terms of weights on quality dimensions. But translating one’s con-
ceptualisation to weight assignment may not always be trivial. In fact, finding the best weights may
need exploration. Therefore, to facilitate interactive exploration, as a pragmatic alternative, we give
the full control of the weights to the user, and only define the default context (or system’s view of
the world), in which we assign a unit weight (i.e., weight of 1) to each interaction type.
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Figure 3.3: Conceptual space representation and context visualisation of MegNet networks. A context is defined
by a specific choice of weight assignment to the edges. Every network node is a vector in a high-
dimensional space where each coordinate represents the weighted shortest distance of this node
from a particular node in the network. Dimensionality reduction methods enable us to visualise this
space in a low-dimensional (typicaly 2-d) plot.
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As the integrated network consists of heterogeneous edge types, translating the user’s context
specification (i.e., preferences on weighting the quality dimensions) to the assignment of weights to
individual edges (or weight normalisation) is not obvious, because the underlying biological meaning
of the edges has to be preserved. For example, a metabolic reaction consists of two edge units:
the first edge connecting substrate to enzyme, and the second connecting enzyme to the product.
Therefore, assigning a weight of 1 unit to a metabolic reaction is, for instance, achieved by assigning
a weight of 0.5 to each of these two edges. For each datatype incorporated in our database system,
we define the standardisation for the distances in MegNet, so that the user is not required to know
the underlying representation of the data while specifying weights to interactions.

Visualisation of a context

Typically, MegNet integrated networks are very complex in the sense that they contain thousands
of nodes and edges. Hence, understanding the conceptual space encoded in such a network under a
particular context is a formidable task. Visualising the semantic similarities encoded into the con-
ceptual representation allows us to visualise a particular context specified by the user. Therefore,
as a solution to the visualisation problem, we apply dimensionality reduction techniques (Carreira-
Perpiñan, 1997) and visualise the distances in a lower-dimensional space (typically 2-d) (Figure 3.3).
Dimensionality reduction is most often possible, because the original high-dimensional representa-
tion of the data often contains redundancies and dependencies between the variables. Under the
assumption that the data lie on a manifold whose dimension is smaller than the dimension of the
embedding space, the dimension reduction can be achieved by the construction of a continuous
mapping between the embedding space and the unknown manifold space. This mapping has to
be inversible in order to project and reconstruct the original data with minimal error (Lee et al.,
2004). The true dimension of the unknown manifold is known as the intrinsic dimension of the data.
The intrinsic dimension needs to be provided as an input to most dimension reduction techniques
to build a correct mapping i.e., to avoid over or under fitting. Thus, finding the correct value for
the intrinsic dimension might be an exploratory undertaking. However, 2-dimensional plots are the
easiest and the most common choice for visualisation. A variety of dimension reduction techniques
exist, and are usually utilised for a variety of purposes such as visualisation, data compression, and
variable selection (Carreira-Perpiñan, 1997). As we are particularly interested in the visualisation
of the semantic distances, our focus is on dimension reduction techniques that preserve the pairwise
distances of the data space in the projection space. Therefore, we implemented three non-linear
dimensionality reduction methods in MegNet, namely, Sammons mapping (Sammon, 1969), Curvi-
linear component analysis (CCA) (Demartines and Hérault, 1997), and Curvilinear distance analysis
(CDA) (Lee et al., 2000, 2002, 2004). The aim of these projection methods is to represent the high-
dimensional vectors in a low-dimensional space in such a way that the distances are preserved by the
mapping. Each method achieves this objective by minimising a cost function. Technical details such
as the analytical formulae of the cost functions, the computational complexities of these algorithms,
and our implementation of these ideas are discussed in detail in Article II and Article IV. Some
important properties of these methods are given here for completeness.

Sammon’s mapping (Sammon, 1969) estimates the configuration of entities in the projected space
using steepest gradient descent algorithm on a cost function that is based on the interpoint distances
between the entities in the original space and the discrepancies introduced by the dimensionality
reduction mapping (see section 3.3.1 of Article II). In this way, the visual configuration approxi-
mates the original relationships in the complex networks. Sammon’s mapping puts higher emphasis
on preserving smaller distances. Curvilinear component analysis (CCA) (Demartines and Hérault,
1997) attempts to preserve the topology by first favouring shorter distances, and then the longer
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distances. CCA uses stochastic gradient descent. Curvilinear Distance analysis (CDA) (Lee et al.,
2000, 2002, 2004) maps entities in higher-dimensional space into lower-dimensional space in such
a way that the curvilinear distances, as opposed to Euclidean distances, between points in high-
dimensional space are preserved. Curvilinear distance is the shortest path distance in the centroid
graph in the high-dimensional space. CDA uses stochastic gradient descent algorithm to minimise
the projection error.

3.2 Dynamic topology of integrated networks

High-throughput functional genomics techniques such as gene expression microarrays (Schena et al.,
1998; Lockhart and Winzeler, 2000), mass spectrometry based proteomics (Aebersold and Mann,
2003) and metabolomics (Goodacre et al., 2004; Orešič et al., 2006) allow us to measure the state
of a biological system in terms of molecular abundances or concentrations. Databases describing
signalling (Krull et al., 2006), metabolic pathways (Kanehisa et al., 2004; Goto et al., 2002) and
biological functions (Ashburner et al., 2000) provide reference information on cellular processes.
One important goal of developing our data integration platform is to enable interpretation of new
experimental data in the context of the established pathway knowledge.

3.2.1 Transcriptomics

Transcriptome is the collection of messenger RNA (mRNA) molecules or “transcripts” in a cell or a
tissue. Transcriptomics is the discipline which deals with the large scale study of the transcriptome
under selected conditions. DNA microarray technology (Schena et al., 1995; Lockhart et al., 1996),
capable of measuring activity of thousands of transcripts simultaneously, has served as the platform
of choice for transcriptomics.

3.2.2 Metabolomics

The word metabolome represents the whole collection of metabolites in an organism. Metabolomics
is defined as the comprehensive study of the whole metabolome under particular conditions (Fiehn,
2001; Goodacre et al., 2004). It embodies global study of all metabolites, their dynamics, composi-
tion, interactions, responses to interventions or environmental changes (Orešič et al., 2006). Owing
to the fact that small changes in the activities of individual enzymes can lead to large changes
in metabolite concentrations, metabolomics is a more sensitive tool than transcriptomics and pro-
teomics for studying complex diseases (Orešič et al., 2006) and the regulatory roles of nutrition in
human health (Gibney et al., 2005). But due to the huge diversity among metabolites, different
technologies are required for studying different classes of metabolites, yet it is impossible to study
the whole metabolome (Orešič et al., 2006). An interesting subfield of metabolomics is lipidomics,
a discipline which deals with global study of lipids. Lipids are highly diverse molecules which play
crucial roles in cellular energy storage, structure and signalling (Orešič et al., 2008; Seppänen-Laakso
and Orešič, 2009).

3.2.3 Pathway analysis

A challenge in the analysis of data arising from functional genomics experiments is to understand
the results in the context of established information such as biological processes, metabolic pathways
and so on. Understanding what biological processes are significantly modulated under a particular
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intervention is often more informative than finding a set of individual molecules that are differentially
regulated (Curtis et al., 2005).

Recently a set of techniques broadly known as Pathway analysis methods have been developed to
achieve this goal (Curtis et al., 2005). A most prominent technique that enables pathway analysis of
genome-wide gene expression data is Gene Set Enrichment Analysis (GSEA) (Mootha et al., 2003;
Subramanian et al., 2005). By determining which gene sets (i.e., groups of genes that share common
biological function, chromosomal location or regulation) are significantly enriched among the signif-
icantly modulated genes in a gene expression study, GSEA not only offers an easy interpretation of
the data, but also accounts for the fact that single-gene analysis (i.e., analysis of differential expres-
sion using a statistical test) may miss important “group or pathway effects”. By definition, a gene
set represents the set of genes that act in concert to “perform” a biological function. A moderate
but concordant change in a gene set therefore may be more important than a very high change in a
single gene in the set. This is called the “group effect or pathway effect”. Moreover, Subramanian
and colleagues (Subramanian et al., 2005) also showed, by applying GSEA on three different lung
cancer data sets, that the pathway level changes are more reproducible than the individual gene
markers. Furthermore, GSEA is not only limited to transcriptomics data analysis. Subramanian
et al. (2005) said, “GSEA can clearly be applied to other data sets such as serum proteomics data,
genotyping information, or metabolite profiles”. Recently GSEA algorithm has also been adapted
for the data analysis in genome-wide association studies (Wang et al., 2007; Holden et al., 2008).

Numerous conceptually similar but competing approaches to GSEA exist, which employ al-
ternative enrichment statistic and permutation testing scheme, seeking to improve the statistical
power of the pathway analysis (Tian et al., 2005; Efron and Tibshirani, 2006). Moreover, high
quality pathway databases would enhance the usefulness of pathway analysis. Multiple propri-
etary pathway databases and pathway analyses software also exist (http://www.ingenuity.com,
http://www.ariadnegenomics.com, http://www.genego.com).

Finally, several studies reported that gene level biomarkers are not reproducible (Tan et al., 2003;
Michiels et al., 2005; Ein-Dor et al., 2005). Despite this poor reproducibility, however, pathway level
changes are more consistent (Subramanian et al., 2005; Zhang et al., 2008). Thus, pathway level
analysis is a more promising tool for identifying the disease mechanisms, and adaptive physiological
compensatory responses (Curtis et al., 2005).

3.2.4 Topology of biological networks

Topological properties of a variety of biological networks such as protein-protein interaction and
metabolic networks have been extensively studied by many researchers (Barabási and Oltvai, 2004).
Due to intriguing similarities such as scale-free topology between the topological properties of biolog-
ical networks and other networks such as social networks, scientific collaboration networks and so on,
Network biology has been an active area of research. Besides analysing the structures of static net-
works, studying the network dynamics is of interest as it may enable elucidation of dynamic design
principles. Kharchenko et al. (2005) studied the expression dynamics of a metabolic network and
discovered relationships between pairwise distances on the metabolic network and the co-expression
of genes. Luscombe et al. (2004) studied regulatory network dynamics by integrating transcriptional
regulatory information and gene-expression data, and showed that, in response to diverse stimuli,
transcription factors alter their interactions to varying degrees causing large topological changes in
the regulatory network.

In order to study the topological dynamics of integrated networks at the level of functional mod-
ules and to facilitate analysis and interpretation of molecular profile data such as gene expression data
via integrated network connectivity, we have established a method called Topological Enrichment
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Analysis of Functional Subnetworks (TEAFS). This method benefits from genome wide integrated
networks constructed using MegNet and genome wide gene expression profiles. Article V reports
an application of this method for studying dynamic response of oxidative stress, the results of which
are presented in section 4.2.

3.2.5 Integration of transcriptomics and interactomics data

In a recent study, subnetwork markers identified by integration of protein-protein interaction net-
works and gene expression data (Chuang et al., 2007) were found to be more reproducible than
individual gene markers found by differential gene expression analysis and they achieved higher clas-
sification accuracy in discriminating metastatic versus non-metastatic tumours. Genes with known
breast cancer mutations are typically not significantly differentially expressed, but were found to
play central roles in protein networks by interconnecting many differentially expressed genes. This
demonstrates the value of studying the gene regulation at the level of interaction network connec-
tivity.

Although gene set enrichment analysis (GSEA) (Subramanian et al., 2005) and the related meth-
ods account for the subtle but coordinated patterns of gene expression changes, they do not take the
connectivity of the system into account. For example, loss of a central node from the interaction net-
work representing the biological process may lead to compensatory rise in the expression of multiple
genes involved in the biological process simultaneously, but the loss of connectivity would render the
network dysfunctional. However, due to the simultaneous rise in the expression of multiple genes,
GSEA would report this dysfunctional pathway to be significantly up-regulated.

Recently a method called Gene Network Enrichment Analysis (GNEA) has been developed (Liu
et al., 2007). This method takes the connectivity of proteins in protein-protein interaction networks
into account in order to find pathways that are consistently affected across multiple interventions
or models related, for instance, to a particular human disease, using gene expression data. Thus,
the philosophy of this method is not to identify biological processes perturbed under a particular
intervention but rather to discover which biological processes are transcriptionally altered across
diverse tissue types in the context of a disease.

Outline of TEAFS

Topological Enrichment Analysis of Functional Subnetworks (TEAFS) facilitates understanding of
how a specific biological intervention modulates biological functions. Below we provide a general
outline of the TEAFS method. More specific details of TEAFS for studying dynamically most
changing modules can be found in Article V.

Construction of an integrated network: TEAFS uses connectivity of protein nodes in an
interaction network in terms of various topological measures (Albert and Barabási, 2002) to compute
the topological changes of subnetworks representing functional modules. The changes in the topology
of the subnetworks indicate the the changes in activity of functional modules. Thus an interaction
network is an input to this method and forms the starting point for this analysis. Any genome wide
interaction network of the organism of interest, such as a protein-protein interaction network can be
used for this purpose, but we take the unique advantage of the MegNet integrated networks.

Gene detection: The second input to TEAFS is the gene expression data that is intended to be
analysed. This data is used to compute whether a protein is “present” (P) or “absent” (A) based
on whether or not the transcript encoding the protein shows sufficiently high expression level. For
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probeset detection in Affymetrix Oligonucleotide arrays, MAS5 software (http://www.affymetrix.
com) uses Wilcoxon signed rank test for perfect match (PM) and mismatch (MM) probes, and “calls”
the probeset “present”, “absent” or “marginal” (M) based on the p-value (m Liu et al., 2002). More
recently, an alternative gene detection method called PANP was introduced for computing P/A
calls for oligonucleotide arrays (Warren et al., 2007), which uses only the PM probes for Affymetrix
chips. For spotted DNA arrays, if the hybridization signal intensity of a spot is above the background
intensity distribution, the corresponding gene may be considered present. Luscombe et al. (2004)
applied one such criterion for computing the presence or absence of transcription factors in order
to reconstruct transcriptional regulatory networks. For each sample in the selected gene expression
study, we compute the P/A corresponding to all transcripts analysed on the chip. For studying
the effects of yeast oxidative stress, we employed the P/A criteria similar to Luscombe et al. (2004)
(Article V).

Reconstruction of networks: We identify the proteins encoded by the transcripts, for instance
by translating the accession numbers, and thus infer which proteins in the network are present and
absent in each condition. For each sample in the gene expression study, we construct the condition
specific network by removing the absent protein nodes and the edges incident on them from the
original network.

Identification of Functional Subnetworks: Functional subnetworks in the integrated network
can be identified by using the established knowledge of the functional association of proteins. For
example, by identifying which proteins in the network are associated with a particular Gene Ontology
term (Ashburner et al., 2000), we can identify the functional subnetwork consisting of all these
proteins and their neighbouring interactions. Other functional categories such as metabolic pathways
(Kanehisa et al., 2006) may also be used similarly.

Computation of Topological Measures: In a directed network, the number of edges coming
into a particular node is called the “in degree” of the node, and the number of edges going out of
the node its “out degree”. Two nodes connected to each other by an edge are called neighbours.
Clustering coefficient of a node is the ratio between the number of edges between its neighbours
and the maximum number of theoretically possible edges between those neighbours. A topological
measure (i.e. in degree, out degree or clustering coefficient) of functional subnetwork in an integrated
network is the average of the topological measure of all nodes that are members of the subnetwork
(Albert and Barabási, 2002).

Enrichment score: Enrichment score or enrichment statistic assigned to a functional subnetwork
is the quantity of interest that we compute based on what questions we want to answer. In order
to find out the most changing subnetworks during a time course following a particular intervention,
an appropriate enrichment score would represent the degree of topological change the subnetwork is
subjected to over time by the underlying biological intervention. In order to find out the most chang-
ing functional subnetworks during the time course following oxidative stress in yeast we employed
standard deviation of topological measure as the enrichment score (Article V).

Computation of Statistical Significance: To compute the statistical significance of the enrich-
ment score, a null distribution for the enrichment score is calculated, based on the random P/A
model of proteins in the yeast oxidative stress study (Article V). A permutation test (Moore and
McCabe, 2005) was devised for this.
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Chapter 4

Results

4.1 MegNet based data mining

According to Hand et al. (2001), “Data mining is the analysis of (often large) observational data sets
to find unsuspected relationships and to summarise the data in novel ways that are both understand-
able and useful to the data owner”, and “the relationships and summaries derived through a data
mining exercise are referred to as models or patterns”. MegNet data integration system facilitates
mining of biological data and hence exploration of some useful patterns, novel relationships between
different biological entities from the data, and may provide novel insights into protein functions and
context-specific biological functions.

Here, we summarise some MegNet data mining examples that were published in Article I,
Article II, and Article III. The examples provided in sections 4.1.1 and 4.1.2 describe mining
based solely on data traversals. Section 4.1.3 presents a case of a conceptual space representation
with unit weights. Section 4.1.4 presents the case of integration between co-expression network with
interactions and ontologies. Finally, section 4.1.5 presents context-sensitive mining of interaction
and ontology information using the context of the gene expression experiment.

4.1.1 Integrated pathway retrieval

When attempting to model real biological phenomena one needs to understand the cross-talk across
different levels of biological organisation, for instance, between metabolic pathways and cell signaling
(Papin and Palsson, 2004). MegNet models the cross-talk across different levels through database
traversals.

As an example, we queried the following Saccharomyces cerevisiae metabolic pathways: Glycol-
ysis / Gluconeogenesis, Pentose phosphate pathway, and TCA cycle. More specifically, the query
processing would include retrieval of primary components (i.e., enzymes and compounds) of the
metabolic pathways from KEGG (Kanehisa and Goto, 2000), and then database traversals to search
protein-protein interaction databases BIND (Bader et al., 2003) and MINT (Zanzoni et al., 2002)
for interactions of the enzymes with the nearest neighbor proteins.

The resulting networks showed surprisingly high level of connectivity across different stages of
linear metabolic pathways via protein-protein interactions (Fig. 5 of Article I). Specifically, two
enzymes from the glycolysis pathway: phosphoglycerate kinase (PGK; EC: 2.7.2.3) and acetate-
CoA ligase (ACS; EC: 6.2.1.1) appeared to aggregate with SRB2 (Uniprot accession: P34162) via
protein-protein interactions.
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ACS catalyzes formation of acetyl-CoA from acetate, which is a starting point in the TCA cycle,
while PGK catalyzes acetylation of 3-phospho-d-glycerate, which is a part of the second phase of
glycolysis. SRB2 is involved in transcriptional initiation. This could mean that PGK and ACS,
enzymes at two different stages of glycolysis, are co-regulated. Thus, our results point towards a
testable hypothesis (Article I).

4.1.2 Protein neighbourhood search

Assignment of protein function is a non-trivial task owing to the fact that the same protein may be
involved in different biological processes, depending on the state of the biological system and protein
localisation (Camon et al., 2004). MegNet allows visualisation of interaction neighbourhood of a
protein, i.e., the entities in the network close to the protein, which may potentially provide insights
into the function and mode of action of a protein. These entities include molecules, genes or more
complex concepts.

As an example, we searched the neighbourhood of mannose-6-phosphate isomerase for Saccha-
romyces cerevisiae (PMI40; UniProt Id: P29952), which catalyzes the conversion between fructose-
6-phosphate and mannose-6-phosphate and thus connects glycolysis with the cell wall synthesis in
S. cerevisiae. The search involved concurrent retrieval of relationships for the following databases:
UniProt (Bairoch et al., 2005), KEGG (Kanehisa and Goto, 2000), BIND (Bader et al., 2003), MINT
(Zanzoni et al., 2002) and GO (Ashburner et al., 2000).

Figure 6 of Article I shows the neighbourhood of PMI40. The zoomed-in window shows one
region of potential interest, which includes protein-protein interactions between the PMI40 and
NUP100 (UniProt Id: Q02629), a subunit of the nuclear pore complex, as well as between NUP100
and alpha-1,6-mannosyltransferase (MNN10; UniProt Id: P50108). Also both PMI40 and MNN10
are involved in cell wall mannoprotein synthesis (GO:0000032).

PMI40 is a gate between cell wall synthesis and glycolysis, i.e., cell decision point between growth
or energy production, and MNN10 is a part of the protein complex in mannoprotein synthesis toward
the end of the cell wall biosynthesis pathways. Examination of interaction entries (BIND id’s: 137955
and 137823) suggests that NUP100 protein, which is a part of nuclear pore complex, binds to the
PMI40 and MNN10 open reading frames (Casolari et al., 2004). This and other evidence by Casolari
et al. (2004) provide support for the gene gating hypothesis, which suggests that the interaction of
the nuclear pore complex with different genes might serve as a level of gene regulation (Blobel,
1985). Thus, again, MegNet based mining leads to a testable hypothesis that PMI40 and MNN10
are co-regulated in relation to cell decision-making between energy production versus growth.

4.1.3 Context-dependent protein function visualization

In order to suggest protein function annotations to a set of human proteins related to maintenance
of energy homeostasis and specific G-protein coupled receptors (GPCRs) that are not yet well
characterized—PPAR-γ, PPAR-α, PGC1-α, SREBP2, GPR40, GPR41, and GPR43—we searched
their neighbourhood using protein-protein interaction databases BIND (Bader et al., 2003), MINT
(Zanzoni et al., 2002), DIP (Xenarios et al., 2000), metabolic pathway database KEGG (Kanehisa
and Goto, 2000), transcriptional regulation database Transfac (Matys et al., 2006) and Gene Onology
(Ashburner et al., 2000) databases. The resulting network contained three isolated subnetworks, with
all three GPCRs jointly in one subnetwork (Fig. 1 of Article III). While some of the well known
relationships were revealed in the largest subnetwork, the results of the query have not facilitated
characterization of poorly annotated proteins such as GPR40, GPR41, and GPR43.
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We then formulated the conceptual space representation of the data, by assigning unit weights
to all the edges in the network and visualised the resulting similarity strucure using curvilinear
distance analysis (CDA) (Lee et al., 2004) (Fig. 2 of Article III). According to this figure, in the
underlying conceptual space, PPAR-γ and GPR41 are closely associated with response to nutrients
(GO:0007584). PPAR-γ (UniProt id: P37231) is annotated in UniProt as “Receptor that binds per-
oxisome proliferators such as hypolipidemic drugs and fatty acids. Once activated by a ligand, the
receptor binds to a promoter element in the gene for acyl-CoA oxidase and activates its transcrip-
tion. It therefore controls the peroxisomal beta-oxidation pathway of fatty acids. Key regulator of
adipocyte differentiation and glucose homeostasis”. Thus, within the specific context of relationship
to a specific GPCR, the context-based mining approach improves this annotation by indicating that
PPAR-γ and GPR41 are closely associated with response to nutrients, as also supported by recent
research (Xiong et al., 2004).

4.1.4 Integrated co-expression and interaction networks

As an illustration of combining gene expression data with the existing interactions, pathways and
ontologies, we have utilised gene expression data from mouse congenic strains in a study related to
Type 1 Diabetes (Eaves et al., 2002). Type 1 Diabetes (T1D) is an autoimmune disease caused by
destruction of pancreatic beta cells. Non Obese Diabetic (NOD) mouse (Makino et al., 1980) is a
model of autoimmune diseases; it develops spontaneous autoimmune diabetes, which shares many
similarities with T1D in humans. Hence, NOD mouse serves as an excellent animal model for T1D
(Anderson and Bluestone, 2005).

“A congenic strain is a strain identical or almost identical to a standard inbred strain except
for the presence of a chromosome segment introduced by appropriate crosses from a second strain.
A strain is usually not regarded as congenic unless there have been at least eight crosses to the
inbred strain” (Snell, 1978). Eaves et al. (2002) utilised microarray profiling of a NOD mouse, four
NOD-derived diabetes-resistant congenic strains, and two non-diabetic control strains, to explore
functional links between genotype and phenotype for T1D, using a novel method for differential
expression analysis.

Here, the objective is to examine the correlation network of the gene expresssion profiles, link
that information with available interactions and ontologies, and study the emergent patterns. The
analysis is performed as explained in Article II. The resulting network is shown in Figure 9 of
Article II, in which, some relevant entities in network are indicated with their names.

The largest upregulated cluster is related to lipid and glucose metabolism. Interestingly, the
upregulated BRCA1 and BRCA2 genes are also placed within this cluster. BRCA genes are as-
sociated with breast cancer, but are known to be highly expressed in spleen and associated with
immune response. How these genes specifically relate to Type 1 Diabetes is unclear and requires
further study. Another upregulated small cluster of genes is found to be associated with beta-cell
proliferation, which is a known response to increased rate of beta-cell apoptosis in Type 1 Diabetes.

4.1.5 Interaction neighbourhood in experimental context

In the context-based mining example given in a previous section (4.1.3), unit weights were used for all
interactions to define the context. In general, as described in section 3.1.6, choosing proper weights
to represent a context is a difficult task and most often an exploratory undertaking. Experimental
data, such as gene expression or metabolomics experiments, can also be utilized to define a specific
context. In such cases the distance measure relating biological entities in the molecular profile space
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may correspond to the measure of co-expression (such as correlation coefficient) between different
entities.

To demonstrate the use of MegNet based mining using gene co-expression to define the context,
we constructed an integrated network of interaction neighbourhood of mouse proteins PPAR-γ,
PPAR-α, PGC1-α, GPR40, GPR41, and GPR43, together with co-expression network based on
the gene expression data from spleens of various NOD related strains of mice (Eaves et al., 2002)
(Article III). We then used a combination of the correlation coefficient values and unit weights for
the edges to define the conceptual space, and visualised the similarities using CDA mapping (Fig.
3 of Article III).

Interestingly, several tumor suppressor genes such as BRCA1 associated with PPAR-γ, are found
in this mapping. This finding deserves further attention. Only recently a link between a specific
tumor suppressor (LKB1) and diabetes has been established, linking cancer and physiological control
of metabolism (Shaw et al., 2005).

4.2 Dynamic topology of integrated networks

In this section, we present a study of dynamic topology changes. In order to study the dynamic
changes in the topology of functional modules in an integrated network, we developed a method
called Topological Enrichment Analysis of Functional Subnetworks (TEAFS; section 3.2). TEAFS
performs topological analysis of MegNet networks using transcriptomics data. We applied TEAFS to
study dynamic responses of Oxidative stress in yeast, and validated the results with comprehensive
in vivo metabolomics analysis (Article V).

4.2.1 Oxidative stress

Oxidants are normally produced by aerobic metabolism, but are produced at elevated rates under
pathophysiological conditions. Oxidative stress is defined as an imbalance between oxidants and
antioxidants in favour of the oxidants, potentially leading to damage (Sies, 1997). Oxidative stress
has been implicated in many human diseases such as atherosclerosis, diabetes, cancers, cardiovascular
diseases, Parkinson’s diseases, Alzheimer’s disease, and aging (Sohal and Weindruch, 1996; Christen,
2000; Aruoma, 1998; Maritim et al., 2002; Miwa et al., 2008). Therefore, studying the phenomenon
of oxidative stress is very important.

Saccharomyces cerevisiae or Baker’s yeast shares remarkable similarities with higher eucaryotes
and has served as a valuable model organism (Botstein et al., 1997) in facilitating understanding of
numerous human diseases. It has been used as a model organism to study the effects of oxidative
stress on aging (Gonidakis and Longo, 2008).

4.2.2 Transcriptomic response to Oxidative stress

Gasch et al. (2000) studied the responses, in terms of changes in transcript abundances over time, of
Saccharomyces cerevisiae to a set of diverse environmental stresses. This set includes oxidative stress
which was induced by growing cells to early-log phase and adding Hydrogen peroxide (H2O2) to a
concentration of 0.30mM. Samples from this culture were collected at 10, 20, 30, 40, 50, 60, 80, 100,
and 120 minutes and analysed with two-colour DNA microarrays (Schena et al., 1995). The resultant
pattern of mRNA level responses to H2O2 treatment were characterised by the strong induction of
genes that are involved in the detoxification of H2O2 and superoxides such as superoxide dismutases,
glutathione peroxidases, and thiol-specific antioxidants, as well as genes involved in oxidative and
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reductive reactions within the cell including thioredoxin, thioredoxin reductases, glutaredoxin, and
glutathione reductase (Gasch et al., 2000).

4.2.3 Topological response to Oxidative stress

The goal of the study presented in Article V is to gain an increased understanding of the dynamic
response of the oxidative stress at the level of biological function. We integrated the transcriptomic
information with interactome topology, formulating a method called Topological Enrichment Anal-
ysis of Functional Subnetworks (TEAFS), and showed that TEAFS analysis of topological changes
derived from transcriptomics changes outperformed the traditional Gene Set Ernichment Analysis
(GSEA) which is based on transcriptomic changes alone (Subramanian et al., 2005).

Metabolomics study

In order to assess the validity of the results of TEAFS analysis, we performed comprehensive study
of metabolite concentrations during the course of oxidative stress on yeast. We conducted the
metabolomics experiments with protocols for cell cultivation and H2O2 treatment identical to Gasch
et al. (2000). Lipid profiling, primary metabolite and fatty acid profiling were done with Ultra Per-
formance Liquid Chromatography coupled with Mass Spectrometry (UPLC/MS), High Performance
Liquid Chromatography and Mass Spectrometry (HPLC/MS) and Gas Chromatography (GC) re-
spectively (Goodacre et al., 2004; Orešič et al., 2006).

TEAFS analysis

An outline of TEAFS analysis is depicted in Figure 1 of Article V and a brief summary is provided
here. First, we constructed a yeast genome-wide interaction network by integrating information
pertaining to protein-protein interactions (DIP) (Xenarios et al., 2000), metabolic reactions (KEGG)
(Kanehisa et al., 2006), genes encoding the proteins (EMBL, UniProt) (Stoesser et al., 1999; Bairoch
et al., 2005), and transcriptional regulation (TRANSFAC) (Wingender et al., 2000; Matys et al.,
2006) using MegNet. Next, this network was reconstructed corresponding to each time point in the
oxidative stress experiment, by employing the gene detection criteria (i.e., presence/absence criteria)
similar to (Luscombe et al., 2004), (Article V). Next, functional modules were identified by making
use of Gene Ontology Biological Process term annotations (Ashburner et al., 2000) available in the
UniProt protein database (Bairoch et al., 2005). Finally, the test statistic associated with TEAFS
(Article V) was computed for each module, significance of the statistic was computed using a
permutation test (Moore and McCabe, 2005), and False Discovery Rate q-values were computed to
account for multiple hypothesis testing (Benjamini and Hochberg, 1995; Shaffer, 1995). The results
of TEAFS were compared to those of GSEA.

Results

TEAFS found changes in modules involved in environmental stress responses including oxidative
stress response. These modules include regulation of cell cycle and check points, response to
DNA damage stimulus (i.e., repair mechanisms), cell wall organization, pentose phosphate shunt,
biosynthesis of stress protectors (i.e., glycogen and trehalose), signal transduction pathways, post-
translational modifications, regulation of transcription and vacuolar acidification. In comparison,
GSEA failed to identify many relevant changes.

Analysis of primary metabolites revealed consistent increase in the levels of trehalose-6-phosphate
and decrease in that of pyruvate and mannose-6-phosphate during oxidative stress with respect to S.
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cerevisiae under normal conditions. Analysis of fatty acids revealed consistent increase in the levels
of palmitic acid (C16:0) during oxidative stress with respect to S. cerevisiae under normal conditions
and increase in relative palmitate concentration over time. Analysis of lipids revealed increase in
average ceramide concentrations over time. Lipid level changes, especially the ceramide and phos-
pholipid levels, and the changes in functional modules—particularly lipid metabolism, phospholipid
biosynthesis and ceramide biosynthesis—detected by TEAFS are in mutual accordance (Article V).

Fatty acid analysis results showed a significant increase in the levels of palmitic acid (16:0).
Palmitate is a precursor of de novo ceramide biosynthesis which involves fatty acid elongation. The
fatty acid elongase 3-ketoreductase (IFA38), which is encoded by the gene YBR159w, was identified
as a hub protein in our integrated reference network which was absent at all time points under
oxidative stress. The YBR159w mutant shows characteristic accumulation of ceramides and related
reactive sphingolipids similar to other mutants with defects in fatty acid elongation (Han et al.,
2002). This may indicate that accumulation of palmitate, a substrate to elongase system involving
IFA38, and subsequent accumulation of ceramides are in part consequences of IFA38 response to
oxidative stress.
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Summary and Conclusions

Post-genomic molecular biology is a data-rich field of research, and a variety of such data is publicly
available. The goals of this thesis are: developing methods to make use of the available data in
order to produce knowledge and to aid mining of newly generated data. Seeking to provide data
mining for systems biology, the research has been built up on integration of heterogenous types of
data. This thesis has made contributions in the areas of data integration, visualisation, mining, and
study of network dynamics, which are important elements of systems biology (Figure 1.1).

This thesis has presented an integrated database which is a consolidation of a number of het-
erogeneous biological databases, and a software system called MegNet that enables retrieval and
visualization of biological relationships across the data sources. Data traversals, an approach to
linking interactions of heterogeneous types based on the identity of proteins, form the basis for
the construction of integrated networks of interactions retrieved from multiple databases, and the
MegNet software system allows visualisation of the networks (Article I). Context-sensitive mining
of the data is facilitated by representing the data as conceptual spaces (Article IV), and visual-
ising the similarities using dimension reduction (projection) techniques. As demonstrated by the
results presented in section 4.1, Article I, Article II, and Article III, MegNet based data mining
approach may facilitate discovery of novel or unexpected relationships, formulation of new hypothe-
ses, data annotation, interpretation of new experimental data, and construction and validation of
new network-based models of biological systems. High-throughput experimental techniques of post-
genomic era are poor at quality and reproducibility. Therefore, integration of multiple types of data
is desirable for bringing more confidence into analysis. Gene function prediction using MegNet has
the potential to offer higher confidence as well as context-sensitivity.

The study of dynamic topological response of Saccharomyces cerevisiae to oxidative stress Arti-
cle V, was based on the integration of transcriptomics and interactomics to predict altered biological
processes. Comprehensive metabolomics was used to validate the integrative analysis. In this study,
by performing an integrative analysis of transcriptomics and interactomics data, we have showed
that the connectivity of the Saccharomyces cerevisiae cellular network is being dynamically modu-
lated in response to oxidative stress, leading to progressive accumulation of (lipo)toxic lipids such
as ceramides (Article V, section 4.2). Our approach takes advantage of connectivity of functional
modules in heterogeneous interactome network constructed by MegNet and shows that connectivity
based approach is superior to traditional pathway analysis. The findings from this study establish
the applicability of our network analysis strategy, and support the hypothesis that modelling of
local network topology dynamics can be used as an effective tool to study the activity of biological
modules.
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Omics data is ever-expanding and this poses challenges to updation and curation of data in
datawarehousing approaches for data integration such as ours. It is not possible to completely avoid
these problems, but by taking standards-based approach to data integration, the overheads in e.g.,
keeping the schemas up-to-date can be reduced to some extent. In this thesis, we have relied largely
on XML-based biological data exchange standards such as PSI-MI (Hermjakob et al., 2004), SBML
(Hucka et al., 2003), KGML (Kanehisa et al., 2004) and so on. However, the diversity of the data, and
the fact that not all data sources adapt the standards forces us to create our own schemas and write
ad-hoc parsers in many cases. As explained in Articles I–II, we adapt the source schemas directly
if available or we try to keep the problems arising from frequent schema changes to the minimum by
extracting only relevant parts of the data to our databases. We adapted a combination of multiple
approaches in data integration. Although we imported all the databases to the local warehouse, the
individual schemas were kept intact. We only created an additional semantic mapping called maps
database to facilitate resolution of entities across databases, which often doesn’t need to change
even when a new data source is added. The integration of data across databases and sophisticated
queries are handled by java programs in the middle tier.

The results of the data integration techniques such as data traversals presented in this thesis are
all from yeast, human or mouse 4.1. But the technique of data traversals is applicable more broadly to
any organism for which we have large scale protein annotations and interactomics data such as gene
regulatory reactions, metabolic reactions and protein-protein interactions. As protein identifiers
are the central to the data traversals, the data traversals are possible if the different interaction
databases use consistent identifiers or if the identifiers used in the interaction databases can be
mapped to one common type of identifiers. We used Uniprot accession numbers are the standard
identifiers for proteins, mainly because Uniprot is the primary database for protein annotations.

It is well known that publicly available molecular biology data include many false positives
and thus quality filtering of these data is essential. There are exhaustive manual curation efforts
(Keshava Prasad et al., 2009) as well as sophisticated filtering approaches to address these problems
(Wu et al., 2009). In this thesis, however, we have not considered these aspects. Using high quality
source data would enhance the value of our approaches.

Future work

Some topics of future developments include: extending Topological Enrichment Analysis of Func-
tional Subnetworks (TEAFS; sections 3.2, 4.2) to be applicable to many commonly used experimen-
tal designs, extending gene detection criteria for many commonly used experimental platforms, and
more fundamentally, defining a variety of interesting topological enrichment hypotheses and defining
new schemes for computing enrichment score, to address these new hypotheses.

In this work we considered a variety of heterogeneous data for integrative modelling. However,
integrating larger variety of data will enhance our abilities in more accurately modelling the biological
systems (Kim et al., 2010). For example, Bauer-Mehren et al. (2009) demonstrated that integration
of Single Nucleotide Polymorphism (SNP) data enables us to study the impact of the functional
effect of SNPs in the structure and dynamics of biological networks. Thus, integration of SNPs
would clearly be a natural extension to our framework.
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Demartines, P. and Hérault, J. (1997). Curvilinear component analysis: A self-organizing neural
network for nonlinear mapping of data sets. IEEE Transactions on Neural Networks, 8(1):148–154.

Doubet, S., Bock, K., Smith, D., Darvill, A., and Albersheim, P. (1989). The complex carbohydrate
structure database. Trends Biochem Sci, 14(12):475–477.

Drysdale, R. et al. (2008). Flybase : a database for the drosophila research community. Methods
Mol Biol, 420:45–59.

Duarte, N. C., Becker, S. A., Jamshidi, N., Thiele, I., Mo, M. L., Vo, T. D., Srivas, R., and Palsson,
B. Ø. (2007). Global reconstruction of the human metabolic network based on genomic and
bibliomic data. Proc Natl Acad Sci U S A, 104(6):1777–1782.

Duarte, N. C., Herrg̊ard, M. J., and Palsson, B. Ø. (2004). Reconstruction and validation of Saccha-
romyces cerevisiae iND750, a fully compartmentalized genome-scale metabolic model. Genome
Res, 14(7):1298–1309.

Dudoit, S., Shaffer, J. P., and Boldrick, J. C. (2003). Multiple hypothesis testing in microarray
experiments. Statistical Science, 18(1):71–103.

Durbin, R., Eddy, S. R., Krogh, A., and Mitchison, G. (1998). Biological sequence analysis: Proba-
bilistic models of proteins and nucleic acids. Cambridge University Press.

Eaves, I. A., Wicker, L. S., Ghandour, G., Lyons, P. A., Peterson, L. B., Todd, J. A., and Glynne,
R. J. (2002). Combining mouse congenic strains and microarray gene expression analyses to study
a complex trait: the NOD model of type 1 diabetes. Genome Res, 12(2):232–243.

Edgar, R., Domrachev, M., and Lash, A. E. (2002). Gene Expression Omnibus: NCBI gene expres-
sion and hybridization array data repository. Nucleic Acids Res, 30(1):207–210.

Efron, B. and Tibshirani, R. (2006). On testing the significance of sets of genes. Technical report.

Ein-Dor, L., Kela, I., Getz, G., Givol, D., and Domany, E. (2005). Outcome signature genes in
breast cancer: is there a unique set? Bioinformatics, 21(2):171–178.

Engel, S. R., Balakrishnan, R., Binkley, G., Christie, K. R., Costanzo, M. C., Dwight, S. S., Fisk,
D. G., Hirschman, J. E., Hitz, B. C., Hong, E. L., Krieger, C. J., Livstone, M. S., Miyasato, S. R.,
Nash, R., Oughtred, R., Park, J., Skrzypek, M. S., Weng, S., Wong, E. D., Dolinski, K., Botstein,
D., and Cherry, J. M. (2010). Saccharomyces genome database provides mutant phenotype data.
Nucleic Acids Res, 38(Database issue):D433–D436.

Fiehn, O. (2001). Combining genomics, metabolome analysis, and biochemical modelling to under-
stand metabolic networks. Comp Funct Genomics, 2(3):155–168.

Flicek, P., Aken, B. L., Ballester, B., Beal, K., Bragin, E., Brent, S., Chen, Y., Clapham, P., Coates,
G., Fairley, S., Fitzgerald, S., Fernandez-Banet, J., Gordon, L., Gräf, S., Haider, S., Hammond, M.,
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protein purification method for protein complex characterization and proteome exploration. Nat
Biotechnol, 17(10):1030–1032.

Sammon, J. W. (1969). A nonlinear mapping for data structure analysis. IEEE Transactions on
computers, 18(5):401–409.

Schacherer, F., Choi, C., Götze, U., Krull, M., Pistor, S., and Wingender, E. (2001). The
TRANSPATH signal transduction database: a knowledge base on signal transduction networks.
Bioinformatics, 17(11):1053–1057.

Schena, M., Heller, R. A., Theriault, T. P., Konrad, K., Lachenmeier, E., and Davis, R. W. (1998).
Microarrays: biotechnology’s discovery platform for functional genomics. Trends Biotechnol,
16(7):301–306.

Schena, M., Shalon, D., Davis, R. W., and Brown, P. O. (1995). Quantitative monitoring of gene
expression patterns with a complementary DNA microarray. Science, 270(5235):467–470.
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ABSTRACT
Motivation: Integration of heterogeneous data in life sciences
is a growing and recognized challenge. The problem is not only
to enable the study of such data within the context of a biolo-
gical question but also more fundamentally, how to represent
the available knowledge and make it accessible for mining.
Results: Our integration approach is based on the premise
that relationships between biological entities can be repres-
ented as a complex network. The context dependency is
achieved by a judicious use of distance measures on these
networks. The biological entities and the distances between
them are mapped for the purpose of visualization into the lower
dimensional space using the Sammon’s mapping. The system
implementation is based on a multi-tier architecture using a
native XML database and a software tool for querying and visu-
alizing complex biological networks. The functionality of our
system is demonstrated with two examples: (1) A multiple path-
way retrieval, in which, given a pathway name, the system finds
all the relationships related to the query by checking available
metabolic pathway, transcriptional, signaling, protein–protein
interaction and ontology annotation resources and (2) A pro-
tein neighborhood search, in which given a protein name,
the system finds all its connected entities within a specified
depth. These two examples show that our system is able to
conceptually traverse different databases to produce testable
hypotheses and lead towards answers to complex biological
questions.
Contact: matej.oresic@vtt.fi

1 INTRODUCTION
Historically, the decomposition of biology into different dis-
ciplines was necessary to tackle the complexity of life science
systems by ‘reducing’ the degree of complexity down to the
most basic level. With the advent of ‘omics’ revolution and
systems biology, such separation of biology is becoming arti-
ficial (Blagosklonny and Pardee, 2002). In order to utilize the

∗To whom correspondence should be addressed.

diverse life science knowledge, one first needs to address sev-
eral practical and fundamental challenges of data integration.
For example, different domain-specific naming conventions
and vocabularies have been utilized both at the low level, such
as genes and proteins, and the more complex entities, such as
biological concepts. In order to be able to integrate data, one
should therefore enable traversing across such diverse sources
of information in an automated way.

From the early days of bioinformatics, several approaches
for biological data integration have been developed. Well-
known approaches include rule-based links, such as SRS
(Etzold and Argos, 1993; Etzoldet al., 1996), federated mid-
dleware frameworks, such as Kleisli system (Davidsonet al.,
1997; Chung and Wong, 1999), as well as wrapper-based
solution using query optimization, such as IBM Discovery
Link (Hass et al., 2001). In parallel, progress has been
made to organize biological knowledge in a conceptual way
by developing ontologies and domain-specific vocabularies
(Ashburneret al., 2000; Bard and Rhee, 2004; Bodenreider,
2004). With the emergence of XML and Semantic Web
technologies, the ontology-based approach to life science
data integration has become more ostensible. In this con-
text, data integration comprises problems like homogenizing
the data model with schema integration, combining multiple
database queries and answers, transforming and integrat-
ing the latter to construct knowledge based on underlying
knowledge representation.

However, the ontology-based approach alone cannot resolve
the practical problem of evolving concepts in biology, and
its best promise lies in specialized domains and environ-
ments where concepts and vocabularies can be well con-
trolled (Searls, 2005; Oresicet al., 2005). Neither can
the ontologies alone resolve the problem of context, i.e.
what may appear closely related in one context, may be
further apart or unrelated in another (Gärdenfors, 2000).
In this paper, we present our approach to data integra-
tion and context-based mining of biological data, which is
based on the premise that relationships between biological
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entities can be represented as a complex network, with
nodes being either low level (e.g. genes, compounds) or
more complex entities, such as concepts (cell localization,
biological processes), and with edges being relationships
between them, either physical interactions or more complex
relationships.

The paper is organized as follows: in Section 2, we describe
the practical implementation of our three-tier data integration
system and the design of the Java-based tool we developed
for querying the data and visualizing complex relationships.
In Section 3, we demonstrate the utility of the system with
two query examples: (1) an integrated pathway retrieval and
(2) a protein neighborhood search. In Section 4, we discuss
the design and performance of the system as well as its future
developments.

2 SYSTEMS AND METHODS

2.1 System design
Our data integration and visualization system is composed
of three layers in which the data constitutes the back-end
layer (Fig. 1). Schema mappings, ontology definitions and
conceptual learning implementations occupy the middle tier
and the user interface constitutes the front-end layer. The
middle tier also comprises sets of algorithms and modules
that process and display results of the query. Most of our
local data are represented in XML format. The data are
stored using XML data management system Tamino XML
server (Software AG) in a Redhat Linux Advanced Server
v2.1 environment. The databases are queried using Tamino
XQuery (Fiebig and Schöning, 2004) which is an imple-
mentation of XQuery language. The queries are enabled
through the Tamino Java API. For storing more voluminous
data, such as gene-expression data and in house produced
mass spectrometry data, we use Oracle 10gdatabase server
(Oracle, Inc.).

2.2 Design of the network visualization tool
The megNet software is a Java-based tool which affords paral-
lel retrieval across multiple databases, with results displayed
as a network. Edge attributes contain information about types
of relationships, possibly quantitative or semantic informa-
tion (e.g. ‘is located in’ in case of linking a protein with a
complex entity, such as cell organelle). The tool retrieves bio-
logical data from the Tamino databases using Tamino Java
API and data from Oracle databases using JDBC. The user
interface is implemented using Java Swing libraries, with the
graphs created using Tom Sawyer Visualization Toolkit 6.0
(Tom Sawyer, Inc.). The basic layout of the user interface is
divided into four parts (Fig. 2):

• query section,

• network display section,

Fig. 1. Architecture of our bioinformatics data integration and
visualization system.

• text area displaying information on currently selecting
entity and

• distance mapping section, displaying the mapping of the
distance matrix into 2D space.

A mouse left click on a node or on an edge displays the
biological information in the text area located on the right
hand side. The information displayed in this text area contains
the data retrieved from locally installed databases and links
to external databases. The nodes can be selected to change
options, such as set a new search depth for the neighbors. In
the resultant graph, shape conventions are used to distinguish
the type of entity underlying a node. Similarly, color codes
are used to distinguish the type of relationship underlying an
edge. Each node and edge shown can be checked for original
source information. The resulting graph can be extracted and
saved in the XML format.

2.3 Databases and data curation
Data from various public data sources were collected into our
local database. Table 1 lists the data sources utilized in the
examples of this paper.

In order to add a specific bioinformatics database into our
system, it has to be passed first through a curation stage. A
typical data curation flow is explained below in the form of a
pseudoalgorithm:

(1) Decide on a data source to be set up and download
the data typically using ftp. If the downloaded data are
already in XML format go to step (3) otherwise go
to (2).
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Fig. 2. Screenshot of the megNet network visualization tool. Node shapes represent their types (e.g. protein, gene), and edge colors represent
types of relationships. The Sammon’s mapping window displays the mapping based on specified distance metrics.

(2) Study the structure of the non-XML data and define
XML schemas to capture the logical structure of the
data. Go to step (4).

(3) If the document structures have been defined using
DTD then convert the DTD to W3C Schema. If the
XML schema is available from the source itself, if
necessary, make changes to it to fit the requirements of
the implementation (e.g. change the target namespace
to Tamino namespace and define a prefix for the
original target namespace).

(4) Define physical properties, such as indices and doc-
type for the logical schema to construct a Tamino
Schema Definition document, i.e. TSD schema.
If the previous step was (2) go to (5) or else
go to (6).

(5) Develop parsers to convert the non-XML data
into an XML format. A typical development
phase is always followed by several test and
feedback loops that involve an extensive use of
XML data validation as well as human reading.
Go to (7).

(6) Develop parsers to convert the distributed XML format
to the required XML format.

(7) Load the resulting XML documents using mass-
loading tool of the Tamino Server.

It must be noted that not every field in the source data-
base is integrated. It is the task of the curator to cap-
ture its relevant subparts as well as to define appropriate
semantics for the integrated database. Table 1 shows the
XML Document Classes captured from databases used in
this paper. In the course of implementing the above steps
we make use of XMLSPY software (Altova, Inc.) and
Tamino Schema Editor software (Software AG) for the con-
struction and validation of logical and physical schemas,
respectively. The development of parsers is usually imple-
mented in Perl programming language and in some cases
using Java.

2.4 Database traversals with schema maps
Resolving even simple biological relationships containing
only a few biomolecular components often requires traversing
multiple databases (Fig. 3). In order to enable such traver-
sals within our system, we developed a database of schema
maps (henceforth called maps database), which maps across
different names used for the same entities across multiple data-
bases. At the current state of development, the maps database
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Table 1. Databases used in the present study

Database Version or release date XML document class No. of entries

Uniprot/Swiss-Prot (Bairochet al., 2005) 44.0 Uniprot 153 871
NCBI PubChema (NCBI, 2004) January 4, 2005 PC-substances 788 730
KEGG (Kanehisaet al., 2004) August 2004 Pathways 11 380
LIGAND (Goto et al., 2002) Gene 705 802

Enzyme 4327
Compound 11 116
Glycan 10 302

TRANSFAC (Matyset al., 2003) 8.4 Gene 7796
Factor 5919
Site 14 782

TRANSPATH (Krull et al., 2003) 5.3 Network 72 769
Logical classes of data

and entries:
Pathway—333
Gene—4989
Molecule—20 164
Reaction—23 065
Annotation—24 218

BIND (Baderet al., 2003) August 27, 2004 BIND-submit 90 580
MINT (Zanzoniet al., 2002) 2.1 Entryset 18 951
IntAct (Hermjakobet al., 2004) September 7, 2004 Entryset 37
Gene Ontology (Ashburneret al., 2000) January 4, 2004 GO 18 078

assocdb XML version

aNCBI PubChem (Accessed on January 10, 2005) http://pubchem.ncbi.nlm.nih.gov/

contains protein entities, indexed by UniProt identifiers. An
example of such a map is shown in the XML code in Table 2.
For creating such a map, we developed a Perl program to
extract data from the Uniprot XML documents. We further
extended this data with the GenInfo identifiers used in the
BIND database (Baderet al., 2003) for each interacting
protein. This data is obtained by applying the ‘SeqHound-
GetDefline’ function of the SeqHound API (Michalickova
et al., 2002). The HTTP method call for this ‘SeqHound’
function has been implemented using LWP module of the Perl
programming language.

The database traversals can be achieved by applying simple
join operations involving the maps database. Since the maps
database records contain identifiers and names of an entity
from all databases, it is ensured that the join operation
between appropriate databases and rightly chosen entities
would always return a non-empty result. The querying of
a database independent of the names used in it can be
achieved by writing queries to first search the maps data-
base to find out the name/Id number of the entity in the
original database and then search the original database with
the correct name/Id number. Considerable challenge for any
biological data integration is the often-changing structures
of the data in the public databanks (Critchlowet al., 2000).
We address this problem at the ‘Logical schema construc-
tion level’ of our data curation cycle by keeping our logical
schemas to be as minimal as possible, yet useful enough

to be able to observe the associations between all the data
sources.

2.5 Similarity measures and graph projection
Property of similarity plays an essential role in human per-
ception and formation of new concepts. The problem of eval-
uating similarity (or inversely, distance) between two entities
or concepts appears more difficult when considering several
‘quality dimensions’ (Gärdenfors, 2000). In the domain of
biology, the ‘quality dimensions’ could mean relationships of
different types, i.e. chemical reactions, protein–protein inter-
actions, gene sequence comparison or more complex relation-
ships like protein localization, gene–phenotype association or
compound properties.

Although distances within the molecular networks can be
intuitively set to the length of the shortest path between
the molecules, distance measure is less obvious for rela-
tionships, such as in ontologies. It was shown that Gene
Ontology (GO) could be represented as a graph, and the
distance measures in such a case were already studied (Lee
et al., 2004). For the ontology trees, we assign a distance
based on the closest common ancestor in the graph. When
combining multiple relationships and corresponding distance
measures, reasonable normalization of distance values has
to be set in order to be able to compare across hetero-
geneous data sources. The distances between entities that
do not have a direct relationship are then calculated as the
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Fig. 3. (A) Schematic representation of relationships between
two compounds and two proteins. (B) Same representa-
tion as hypothetically resolved via traversals across multiple
databases.

lengths of the shortest paths with the distance-weighted edges
(Fig. 4). The normalization of distances for each new data
source is, in practice, handled by the bioinformaticians per-
forming data curation. This assures that the system users
do not need to know the specifics of the underlying data
representation.

After distance normalization, it is ultimately up to the user
to assign importance and therefore distance bias to any par-
ticular relationship type, by which context sensitivity can be
achieved (Gärdenfors, 2000), as illustrated in Figure 4. When
visualizing such complex data, we often need to project them
into a lower dimensional space. In doing so it is important
to preserve distances, i.e. two samples that are close to each
other in the original space have to stay close when projected,
or vice versa, two entities that are close to each other in the
projected space must have come from the samples that were
close to each other in the original space. It is the idea behind
Sammon’s mapping (Sammon Jr, 1969), which is implemen-
ted in our visualization tool. Visual configuration of entities
is estimated with a gradient descent type of algorithm on a
cost function based on the interpoint distances between the
entities in the original space and the introduced discrepan-
cies when applying the dimensionality-reducing mapping. In
this way, the visual configuration approximates the original
relationships in the complex networks. This kind of distance
preservation is also used in the Kohonen’s self-organizing

Table 2. XML document from maps database for Uniprot protein entry
AG35_VACCV, with links to indices from databases, such as EMBL, PIR,
INTERPRO and Pfam

<?xml version="1.0" encoding="utf-8"?>
<protein created="1988-04-01" dataset="Swiss-Prot" ino:id="3426"
updated="2004-07-05">
<primaryid>P07242</primaryid>
<entry>AG35_VACCV</entry>
<name>Envelope protein</name>
<synonym>Protein H5</synonym>
<synonym>Protein H6</synonym>
<organism>

<name>Vaccinia virus (strain WR)</name>
<dbref id="10254" type="NCBI Taxonomy"/>

</organism>
<gene>

<name>AG35</name>
<synonym>H5R</synonym>

<dbref id="M13209" type="EMBL">
<property type="protein sequence ID"
value="AAB59841.1"/>

</dbref>
<dbref id="M23648" type="EMBL">
<property type="protein sequence ID"

value="AAA47962.1"/>
</dbref>

</gene>
<dblinks>
<dbref id="F24481" type="PIR">
<property type="entry name" value="QQVZH6"/>

</dbref>
<dbref id="IPR004966" type="InterPro">
<property type="entry name" value="Pox_Ag35"/>

</dbref>
<dbref id="PF03286" type="Pfam">
<property type="entry name" value="Pox_Ag35"/>

</dbref>
<dbref id="138380" type="GenInfo"/>

</dblinks>
</protein>

maps (Kohonen, 2001) and multi-dimensional scaling
(Torgerson, 1952).

3 EXAMPLES

3.1 Integrated pathway retrieval
Metabolic pathways and protein interaction networks have
been studied extensively in the context of topology and
modularity (Jeonget al., 2000, 2001). When attempting
to model real biological phenomena, it is becoming clear
that one needs to understand the cross-talk across differ-
ent levels of biological organization, for example, between
metabolic pathways and cell signaling (Papin and Palsson,
2004).

One of the primary motivations for the development of our
bioinformatics system was the need to facilitate the study of
available information in the context of biological questions.
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Fig. 4. Illustrative example of using graph projection in exploratory
analysis of biological networks. In CONTEXT1 we are weighting
all types of relationships similarly, so the nodes are clustered based
on shortest path length between the edges. In CONTEXT2, we are
interested only in concept cpt2, and assign lower distance value
to nearest neighbors in metabolic pathways compared with other
interactions.

One such application is the study of metabolic pathways,
enriched with information about known molecular interac-
tions at the level of protein–protein interactions, regulatory
and signaling networks. As an example, we created the fol-
lowing query: ‘Glycolysis/Gluconeogenesis AND Pentose
phosphate pathway AND TCA cycle INS.cerevisiae’. The
query was set up to first search the KEGG and retrieve the
primary components of the pathways, i.e. enzymes and com-
pounds. The database traversals were then used to search
protein–protein interaction databases BIND and MINT for
interactions of the enzymes with the nearest neighbor pro-
teins (i.e. interaction search depth was set to 1). The resulting
networks show surprisingly high level of connectivity across
different stages of linear metabolic pathways via protein–
protein interactions (Fig. 5). Specifically, in the zoomed-in
region of Figure 5, we focus on two enzymes from the gly-
colysis pathway: phosphoglycerate kinase (PGK; EC 2.7.2.3)
and acetate-CoA ligase (ACS; EC 6.2.1.1). ACS catalyzes
formation of acetyl-CoA from acetate, which is a starting
point in the TCA cycle, while PGK catalyzes acetylation
of 3-phospho-d-glycerate, which is a part of the second
phase of glycolysis. Both enzymes appear to aggregate with
SRB2, based on the evidence from the yeast two-hybrid pool-
ing approach (Itoet al., 2001). Notably, SRB2 is involved
in transcriptional initiation (Thompsonet al., 1993). This
could mean that PGK and ACS, enzymes at two different
stages of glycolysis, are coregulated. While the evidence

from high-throughput yeast two-hybrid assays needs to be
taken with caution due to possibly high number of false
positive aggregation hits (Mrowkaet al., 2001), our res-
ults do point toward a testable hypothesis for the future
research.

3.2 Protein neighborhood search
Assignment of protein function is a non-trivial task owing
to the fact that the same proteins may be involved in
different biological processes, depending on the state of
the biological system and protein localization (Camon
et al., 2004). Therefore, protein function is context
dependent.

The ‘protein neighborhood’, i.e. the entities of the network
close to the protein, mode provide an insight about the pro-
tein function and its mode of action. The entities in our case
can be molecules, genes or more complex concepts, and the
proximity is measured by applying the distance measure. As
an example, we searched the neighborhood of mannose-6-
phosphate isomerase forSaccharomyces cerevisiae (PMI40;
UniProt Id: P29952), which catalyzes the conversion between
fructose 6-phosphate and mannose 6-phosphate and thus con-
nects glycolysis with the cell wall synthesis inS.cerevisiae
(Smithet al., 1992). The search involved concurrent retrieval
of relationships for the following databases: UniProt, KEGG,
BIND, MINT and GO Biological Process. For any nearest
neighbor protein–protein association, such as protein–protein
interaction or sharing the same GO class at the lowest level,
the distance was set to 1. In the case of metabolic path-
ways, weight of each edge was set to 0.5 in the direction
of possible reaction. The search depth was set to two nearest
proteins if the first of the edges was a protein–protein inter-
action, and to the nearest protein otherwise. This included
cases where the nearest protein was connected to the search
protein via the compound in metabolic pathways or the low-
est level GO term. Figure 6 shows the resulting graphs
and Sammon’s mapping of the nearest protein neighbors of
PMI40.

The zoomed-in window shows one region of potential
interest, which includes protein–protein interactions between
the PMI40 and NUP100 (UniProt Id: Q02629), a subunit
of the nuclear pore complex, as well as between alpha-
1,6-mannosyltransferase (MNN10; UniProt Id: P50108) and
NUP100. According to GO (GO:0000032), both PMI40 and
MNN10 are also involved in cell wall mannoprotein syn-
thesis. While PMI40 is a ‘gate’ between cell wall synthesis
and glycolysis, i.e. cell decision point between growth or
energy production, MNN10 is a part of the protein complex
in mannoprotein synthesis toward the end of the cell wall bio-
synthesis pathways. Examination of interaction entries (BIND
Ids 137 955 and 137 823) suggests that NUP100 protein,
which is a part of nuclear pore complex, binds to the PMI40
and MNN10 open reading frames (Casolariet al., 2004). This
and other evidence by Casolariet al. provide support for the
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Fig. 5. Integrated pathway retrieval using megNet network visualization tool, with the query for ‘Glycolysis/Gluconeogenesis AND Pentose
phosphate pathway AND TCA cycle INS.cerevisiae’. Metabolic pathways are shown with blue edges, protein–protein interactions with pink.
Proteins are represented with squares, compounds with circles. Surprisingly, high level of connectivity via protein–protein interactions is
found across different modules of the metabolism. The zoomed-in region shows a specific connection between Acetate-CoA ligase (ACS)
and Phosphoglycerate kinase (PGK) via interactions with SRB2, which is known to be involved in transcriptional initiation. The interactions
discussed are highlighted for clarity.

Fig. 6. Network neighborhood of mannose-6-phosphate isomerase
(PMI40) inS.cerevisiae. Metabolic pathway relationships are shown
in blue, protein–protein interactions in red, and GO associations in
green. Both PMI40 and MNN10 are involved in cell wall manno-
protein synthesis (GO:0000032). NUP100 protein, which is part of
the nuclear pore complex, appears to interact with the PMI40 and
MNN10 genes.

‘gene-gating’ hypothesis, which suggests that the interaction
of the nuclear pore complex with different genes might serve
as a level of gene regulation (Blobel, 1985). It remains to be
tested whether PMI40 and MNN10 are indeed coregulated in
relation to cell decision-making between energy production
versus growth.

4 DISCUSSION
Our integration approach is based on the premise that rela-
tionships between biological entities can be represented as a
complex network. The information in such networks forms
a basis for exploratory mining. Distances between different
nodes in an integrated network play a central role in our frame-
work. In order to calculate distances, one first needs to define
distance measures across heterogeneous types of information.
We are taking a pragmatic approach by letting the user define
the distances as a part of the query. This is reasonable since the
distance basically defines the context of the questions posed
by the user and allows biasing the similarity toward particu-
lar types of relationships, or toward relationships in a specific
context. Once the distance measure is specified, we can map
the nodes of the graph into a lower dimensional space. As the
mapping is approximate, there will be some distortion while
doing the mapping. Therefore, in our opinion the exact form of
distance measure is not a critical issue, so long as it underlines
the relationships in the concept graph. In fact, selection of dis-
tance measure may reflect a subjective choice and as such will
be subject to debate. It is ultimately the end result of mining
that determines the utility of specific distance measure.
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Presently, we are using Sammon’s mapping for that purpose,
which maps the graph non-linearly into lower dimensional
space while preserving the internode distances across the
network. One disadvantage of Sammon’s mapping is that
addition of the nodes requires new computation of the map-
ping on the complete network, and is therefore not well suited
for interactive addition of new nodes. Other mappings, such as
other types of multidimensional scaling methods (Torgerson,
1952) or self organizing maps (Kohonen, 2001), are also
considered for future implementations. In particular, we will
investigate the non-metric multidimensional scaling method
(Cox and Cox, 2001), which is focused on preserving the order
of similarities.

The two illustrative examples shown in the paper provide
evidence for the usefulness of our approach. In the case
of integrated pathway retrieval, we found large level of
interconnectivity across different stages and modules of the
metabolic pathways via protein–protein interactions, which
raises questions about merit of studying the topology of meta-
bolic networks outside the scope of other biological networks.
Specifically, we found evidence of possible coregulation of
enzymes at early and late stages of glycolysis pathway, which
needs to be further investigated experimentally. In the case
of protein neighborhood search, we were able to retrieve
relationships and potential mechanisms that would not have
been easily found through browsing databases separately.
We believe our protein neighborhood search is a powerful tool
for visual protein annotation in a context dependent manner.

Our approach is not limited to pathway databases and
ontologies alone. We are currently extending the system in
two directions. First, we aim at complementing the know-
ledge extracted from structured and semistructured data with
the knowledge extracted from literature. Currently, we are
implementing a text mining tool to retrieve from literat-
ure relationships between entities of interest, with primary
focus on biomedical domain (Oresicet al., 2005). The dis-
covered relationships will be, similarly as described in this
paper, represented as a network. Second, genome information
and experimental data such as metabolic profiles or gene-
expression data can also be included. The distance measures in
such cases are related to the level of association (e.g. correla-
tion coefficient) or in the case of gene sequence comparison, to
the alignment score. Combining molecular profile data with
ontology information using database traversals has already
been attempted (Oresicet al., 2004), but without the distance
calculations.

We have presented an integrated database and software
system that enables retrieval and visualization of biological
relationships across heterogeneous data sources. We have
demonstrated its merit on two practical examples: protein
neighborhood search and integrated pathway retrieval. Owing
to light-weight design of the system, it is relatively easy
to incorporate new types of information and relationships.
We believe our approach facilitates discovery of novel or

unexpected relationships, formulation of new hypotheses,
design of experiments, data annotation, interpretation of new
experimental data, and construction and validation of new
network-based models of biological systems.
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1 Introduction 

The omics revolution has empowered us with technologies to study the biological 
systems by measuring a large number of molecular components in parallel, therefore 
enabling the systems approach (Ideker et al., 2001; Kitano, 2002). The wealth of new 
information, combined with existing repositories of knowledge dispersed across 
numerous databases and literature, demand new solutions for management and 
integration of life science data. This has already been recognised in a variety of 
application domains relying on life science research. Knowledge management and data 
integration are recognised bottlenecks in drug discovery domain and current solutions are 
not yet capable of taking the full advantage of the information delivered by the modern 
omics technologies (Searls, 2005). More fundamentally, the ability to collect molecular 
information from biological systems in parallel is also challenging the ways we represent 
the biological systems and related knowledge, as well as the ways we design experiments 
to address specific biological questions. 

Several approaches for biological data integration have been developed. Well-known 
examples include rule-based links such as SRS (Etzold and Argos, 1993; Etzold et al., 
1996), federated middleware frameworks such as Kleisli system (Davidson et al., 1997; 
Chung and Wong, 1999), as well as wrapper-based solution using query optimisation 
such as IBM Discovery Link (Hass et al., 2001). In parallel, progress has been made to 
organise biological knowledge in a conceptual way by developing ontologies and 
domain-specific vocabularies (Ashburner et al., 2000; Bard and Rhee, 2004; Bodenreider, 
2004). The emergence of XML and Semantic Web technologies has fostered the 
ontology-based approach to life science data integration. In this context, data integration 
comprises problems like homogenising the data model with schema integration, 
combining multiple database queries and answers, transforming and integrating the latter 
to construct knowledge based on underlying knowledge representation. However, the 
ontology-based approach alone cannot resolve the practical problem of evolving concepts 
in biology, and its best promise lies in specialised domains and environments where 
concepts and vocabularies can be well controlled. Neither can the ontologies alone 
resolve the problem of context, i.e., what may appear closely related in one context,  
may be further apart or unrelated in another (Gärdenfors, 2000). 

Biological systems are characterised by the complexity of interactions of their 
internal parts and also with the external environment; integrating such information may 
result in a huge and heterogeneous network of biological entities. The visualisation  
of these networks poses many challenges (Herman et al., 2000). The problem is not only 
to display them, but also to represent them in a way that would enable easy interpretation 
of these huge networks. Our goal is to alleviate this problem by using context-based 
mining. 

Biological network visualisation tools abound in many flavours, but few of  
them have met important requirements that enable real biological interpretation  
(Saraiya et al., 2005). Contextuality is one of those requirements. There are some tools 
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that provide contextuality by attaching notes to visualised entities (Shannon et al., 2003; 
Dahlquist et al., 2002). However, this approach does not resolve the interpretation 
problem especially when the networks become complex. Therefore, the context-based 
mining is needed to eliminate some dimensions that are not contextually relevant. 

Our approach to enable context-based mining is based on non-linear projection 
methods. Heterogeneous high-dimensional data are projected to a lower-dimensional 
space (two or three dimensions) in such a way that all similarity relationships are 
preserved as much as possible. This is quite challenging to implement in practice due to 
the heterogeneity of the entities and relationship types. The best compromise is to choose 
which kinds of relationships to visualise and what type of metrics to use in order to 
ensure the reliability and biological interpretability of the visualised data. Therefore, 
special attention should be put also on the data representation when integrating different 
types of information. 

In this paper, we present a data integration and mining approach based on network 
representation models, which support an advanced visualisation system. As reported in 
our initial studies, the system has the capability to enable bioinformatics studies in a 
context dependent way (Gopalacharyulu et al., 2004, 2005). Section 2 introduces the 
general architecture of our database system, its implementation and methods. Section 3 
describes our methods for network data representation and mining. Section 4 illustrates 
our approach on three different applications: metabolic network topology study,  
context-dependent protein annotation, and visualisation of Type 1 Diabetes gene 
expression dataset in the context of known pathways and ontologies. In the last section 
we discuss the current status of our research, persistent challenges, and future goals. 

2 Integrated database system 

2.1 Architectural design 

The core architecture of our data integration and visualisation system, called megNet, is 
composed of three layers; back-end, middle tier and front-end (Figure 1). The data, 
schema maps, ontology definitions constitute the back-end layer. Most of our local data 
are represented in XML or RDF formats. The data is stored using XML data management 
system Tamino XML server (Software AG) in a Redhat Linux Advanced Server v3.0 
environment. The databases are queried using Tamino X-Query which is based on  
XPath 1.0 specification. The queries are enabled through the Tamino Java API.  
For storing more voluminous data such as gene expression data and in house produced 
mass spectrometry data, we use Oracle 10g database server (Oracle, Inc.). The Oracle 
queries are performed using Oracle JDBC Thin drivers. The results obtained from queries 
to Tamino and Oracle are combined at the Java programming level in the middle tier. 

The middle tier comprises the business logic of our system. Business logic  
events, such as graph constructions, distance data projections, topology calculations are 
implemented as stateless session beans. They are processed as web services. The session 
beans are the end points of the web services. They receive their request messages from 
the client for performing a business logic event. In the end of their life cycle they send the 
response to the client. 
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Figure 1 Three-tier architecture of the bioinformatics data integration and visualisation system. 
Back end tier consists of source biological data, schema mappings and ontologies. 
Middle tier is a suite of algorithms for business logic events (e.g., network 
constructions, data projections). Front end is a Java based user interface for 
visualisation the biological data and interacting with the user 

 

The middle tier resides physically in a JBoss 4.04 Application Server (JBoss, Inc.).  
The business logic events are processed in the EJB Container of JBoss. The client and 
server communicate through SOAP messages. The SOAP messages are converted to Java 
objects by the middle tier after it has received a request message from the front-end client 
and Java objects are converted to SOAP messages before they are sent back as a  
response message. These conversions are implemented by using Apache Axis 1.4 
(Apache Software Foundation). They are processed in Apache Tomcat 5.5 Servlet 
Container. 

The front-end comprises the user interface for visualising and interacting with the  
end user. It is implemented in the Java environment. 

2.2 Database curation 

A system-wide life science data mining requires concurrent use of several databases,  
each of them likely having their own data schema, interface, address, and software tools. 
A database access tool is therefore needed that affords mining of several databases within 
one single interface. A fundamental step towards the integration of biological databases is 
to identify the ‘atoms of information’ and to develop solutions that resolve the naming 
conflicts as well as data structures. This is the task of a database ‘curator’. For every 
database (either containing annotations or information about entity relationships) the 
database curator develops a data schema that enables mapping to other databases. 

Data from various public and commercial data sources were set up in our database 
system. Table 1 lists those data sources which were utilised in the examples of this paper. 
A typical data curation flow is explained below in the form of a pseudo-algorithm: 

1 Decide on a data source to be set up and download the data typically using ftp.  
If the downloaded data is already XML format go to step (3) otherwise go to (2). 

2 Study the structure of the non-XML data and define XML schemas to capture the 
logical structure of the data. Go to step (4). I
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3 If the document structures have been defined using DTD, then convert the DTD to 
W3C Schema. If the XML schema is available from the source itself, if necessary, 
make changes to it to fit the requirements of the implementation (e.g., change the 
target name space to Tamino name-space and define a prefix for the original target 
namespace). 

4 Define physical properties such as indices, doc-type etc. for the logical schema to 
construct a Tamino Schema Definition document, i.e., TSD schema. If the previous 
step was (2) go to (5) else go to (6). 

5 Develop parsers to convert the non-XML data into an XML format. A typical 
development phase is always followed by several test and feed-back loops that 
involve an extensive use of XML data validation as well as human eye reading.  
Go to step (7). 

6 Develop parsers to convert the distributed XML format to the required XML format. 

7 Load the resulting XML documents using mass-loading tool of the Tamino Server. 

Table 1 Databases incorporated into the system 

Database Version or release date No. of entries 
UniProt/Swiss-Prot (Bairoch et al., 2005) 44.0 153871 
NCBI PubChem (http://pubchem.ncbi.nlm.nih.gov/) – 
Substance 

January 4, 2005 
788730 

KEGG (Kanehisa et al., 2004) – 
Pathways 11380 
LIGAND (Goto et al., 2002) – 
Genes 705802 
Enzymes 4327 
Compounds 11116 
Glycans 

August, 2004 

10302 
TRANSFAC (Matys et al., 2003) – 
Gene 7796 
Factor 5919 
Site 

June, 2005 

14782 
TRANSPATH (Krull et al., 2003) – 
Pathway 333 
Gene 4989 
Molecule 20164 
Reaction 23065 
Annotation 

June, 2005 

24218 
BIND (Bader et al., 2003) August, 2004 90580 
MINT (Zanzoni et al., 2002) 2.1 18951 
IntAct (Hermjakob et al., 2004) September, 2004 37 
Gene Ontology (Gene Ontology Consortium, 2000) 
assocdb XML version 

May, 2005 18078 

As not every field in the original databases is integrated, it is the task of the curator to 
capture the relevant subparts of it as well as to define appropriate semantics for the 
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integrated database. In the course of implementing the above steps we make use of 
XMLSPY software (Altova, Inc.) and Tamino Schema Editor software (Software AG)  
for the construction and validation of logical and physical schemas, respectively.  
The development of parsers is usually implemented in the Perl programming language 
and in some cases using Java. 

2.3 Database traversals with schema maps 

Even resolving simple biological relationships containing only a few biomolecular 
components often requires traversing multiple databases. In order to enable such 
traversals within our system, we developed a database of schema maps (henceforth called 
maps database), which maps across different names used for the same entities across 
multiple databases (Gopalacharyulu et al., 2005). For example, the maps database for 
protein entities is indexed by UniProt identifiers. For creating such a map, we developed 
a Perl program to extract data from the UniProt XML documents. 

The database traversals can be achieved by applying simple join operations involving 
the maps database. Since the maps database records contain identifiers and names of an 
entity from all databases, it is ensured that the join operation between appropriate 
databases and rightly chosen entities would always return a non-empty result.  
The querying of a database independent of the names used in it can be achieved by 
writing queries to first search the maps database to find out the name/Id number of the 
entity in the original database and then search the original database with the correct 
name/Id number. Considerable challenge for any biological data integration is the  
often-changing structures of the data in the public databanks (Critchlow et al., 2000).  
We address this problem at the “Logical schema construction level” of our data curation 
cycle by keeping our logical schemas to be as minimal as possible, yet useful enough to 
be able to observe the associations between all the data sources. 

3 Data visualisation and mining methods 

3.1 Network visualisation 

In life sciences, everything is connected; even entities believed to be unrelated in some 
context might associate with each other in some other contexts. Thus, an integrated 
network of interacting entities of a biological system will necessarily contain many 
different types of entities and attributes arising from a number of disparate data sources, 
including literature databases. 

The user interface of our system is capable of visualising these integrated networks in 
interactive manner (Figure 2). It constitutes the following sections: 

• query parameters section 

• network visualisation section 

• display information section 

• menu bar 

• Non-Linear Mapping (NLM) window. 
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Figure 2 User interface of megNet, developed in Java 

 

The ‘query parameters’ section consists of database, species, and query parameter menus. 
The database menu enables multiple selections from a list of all databases and the species 
menu enables multiple selections from a list of all species available in the system.  
The query parameter menu provides a collection of input boxes for entering a variety of 
parameters such as, protein names/ids, concept ids, metabolic pathway names, gene 
expression data set ids, initial depth of search etc. In addition, there is a button for 
launching the query. 

The ‘network visualisation’ section is the place where the resulting network  
of a graph construction request is displayed. This interface provides options for 
interactively visualising or modifying the network. Typical examples of user interaction 
in this section include zooming in and out of the network, moving the network using pan 
tool, selecting a node to display its annotations in the display information section, 
selecting some parts of the network either to delete that part or to modify weights of the 
edges under selection etc. 

The ‘display information’ section displays annotations of the selected node or edge. 
The information displayed reflects the annotations that exist in the databases. This section 
also provides hyperlinks to the source database of the entity under selection so as to 
enable the user to get more information on this entity. 

The ‘menu bar’ enables interaction within our system in many ways. Typical example 
features enabled through its items include saving the network result or loading the 
network (in XML format), modifying weights of various types of interactions i.e., edge, 
projecting network into lower dimensional space and performing topological calculations 
on the networks. 

The ‘NLM window’ displays the lower dimensional projection space. This interface 
also allows interactive features such as zooming in and out. Additionally, selecting  
a point in the projection space highlights the corresponding network node in the  
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‘network visualisation’ section. This enables viewing annotations of this entity in the 
‘display information’ section. 

When the user starts using the user interface, he can either load a previously saved 
network from XML document or he can construct a new network. In the former case he 
can open a file chooser from the upper menu for selecting the XML document. In the 
latter case he can assign query parameters to the network construction in the query 
parameter section that constitutes different menus on the bottom. In the database menu he 
can select from which databases he wants to retrieve entities and relationships. In the 
species menu, he selects in which species he wants to construct the network. In the query 
parameter menu, he can assign more parameters for the query. For example, he can  
type a protein name (e.g., PMI40) or identifier to visualise the neighbourhood of a certain 
protein. Or he can type a metabolic pathway name (e.g., Pentose phosphate pathway) to 
visualise all entities and interactions involved in a certain pathway or to investigate its 
neighbourhood of various types of interactions. When the user has assigned all query 
parameters, he can click on the ‘Query’ button to launch the query. 

Once the network is constructed upon assigned query parameters or loaded from 
XML document, it is visualised on the middle part of the user interface (i.e., in Network 
visualisation section). The network is portrayed by using Tom Sawyer Visualisation 6.0 
(Tom Sawyer Software, Oakland, CA, USA) symmetric layout algorithm. In the 
displayed network, shape conventions are used to distinguish the type of entity 
underlying a node. Similarly, colour codes are used to distinguish the type of the 
relationship underlying an edge. The user can make inferences from the network by 
zooming in and out. The user can save this network in XML format by opening a file 
chooser from the upper menu. A mouse left click on a node displays the biological 
information in the text area located on the right hand side. The information displayed in 
this text area contains the data retrieved from locally installed databases and links to 
external databases. 

There are many ways to represent the data structure of a network (Bollobás, 1998).  
In our approach, a biological network is represented as a directed weighted graph where 
biological entities are nodes that are connected to each other through edges which are 
interactions or relationships between the entities. The shape of the nodes is coded 
differently depending on the type of an entity (e.g., squares stand for proteins, circles 
stand for compounds). The edges can be bidirectional or unidirectional, depending on the 
nature of the relationships. For example, in the case of protein-protein interaction 
network, we would relate the neighbouring proteins by searching all possible pathways 
among them, including their regulating genes. The generated nodes and edges then show 
the proteins and their interactions, respectively. In the case of metabolic network, we 
need to relate entities that are involved in each reaction. The substrates, products and 
enzymes are represented as nodes. As reactions can be either reversible or irreversible, 
unidirectional edges are used to distinguish the direction of an irreversible reaction and 
bidirectional edges are used to represent reversible reaction. 

If the user wants to project the internal distances of the network into 2-dimensional 
space, she can assign appropriate bias by modifying the edge weights. After that she 
selects one of the available projection methods (Sammon’s NLM, Curvilinear 
Component Analysis (CCA), Curvilinear Distance Analysis (CDA)) from the upper menu 
(Each of these methods is described in detail in Section 3.2). After that the selected 
projection method is performed. As a result we obtain coordinates of the network nodes 
in the 2-dimensional projection space. These coordinates are displayed on a separate 

II/8



 

 

   

 

   

   62 P.V. Gopalacharyulu et al.    
 

    
 
 

   

 

 

       
 

window that is opened after the projection method is finished. When the user clicks on a 
node on the two-dimensional projection window, the corresponding node on the network 
is highlighted and vice versa. 

While distances within the molecular networks can be intuitively set to the length of 
the shortest path between the molecules, distance measure is less obvious for conceptual 
relationships such as in ontologies. One way to approach this is to consider an ontology 
as a graph and the distance measure is based on the shortest path to a common ancestor 
(Lee et al., 2004b). In the case of gene expression network which consists only of genes, 
the similarity measure is based on the gene expression profile distance between the genes 
(e.g., Euclidean or related). 

The user can also perform topology calculations on the network and modify the 
network (e.g., removing some nodes according to their presence in an experimental 
condition). Our system uses a variety of methods for such studies. Below, we describe 
few that have been utilised in the examples of the paper. 

3.2 Topology of a network 

The molecular entities of the cell form a very complicated and dynamic interacting 
system. One of the major challenges of contemporary biology is to understand  
the structure of this complex web of interactions. The network structure and their 
dynamics is believed to have a significant effect on the structure and function of the cell 
(Barabasi and Oltvai, 2004). 

The biological networks at the molecular level can be divided into different  
types of networks such as metabolic pathways, protein-protein interaction and regulatory 
networks. These networks are mutually interdependent and it has been demonstrated that 
they share some common network properties, e.g., the presence of single modularity 
networks (Barabasi and Oltvai, 2004; Han et al., 2004; Guimera and Amaral, 2005). 
However, the presence of the modularity in highly integrated biological networks is not 
self-evident as it lacks quantitative support (Ravasz and Barabási, 2003). There is thus a 
need for tools that afford the parallel study of multiple biological networks. 

In order to study these topological properties we can formalise the network 
representation as a graph. Therefore, we apply mathematical methods used in graph 
theory. 

Let us denote by G = (X, U) a graph containing two sets where 
X = {x1, x2, …, xn, … xN}|X|=N, the set of nodes and U = {u1, u2, …, um, … UM}|U|=M the  
set of edges, where u = [xi, xi+1]i=1…N. A weighted graph is denoted by G = (X, U, W) 
where W: U → ℜ. 

The distances between the biological entities can be derived from the path lengths 
within a graph. A path µ of length q is a sequence of edges U(µ) = {u1, u2, …, uq}.  
In a weighted graph the length of the path µ is obtained by summing up all weights of the 
edges of U(µ). In graphs, there are often many alternative paths between two nodes. 
Therefore, in practice one is mainly interested in the shortest path length between the 
selected nodes. We can obtain an average path length by calculating the shortest path 
between every pair of nodes of a graph and dividing the result by total number of nodes. 
This average value quantitatively characterises a graph by describing how close to each 
other its nodes are. 
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A graph can be characterised by its degree distribution Px(k) defining the probability 
that an arbitrary node x is connected to k neighbours. For metabolic networks, it was 
demonstrated that Px(k) decays as a power law Px(k) ≈ k–γ with γ  ≅ 2.2 in all organism 
(Jeong et al., 2000). This type of decay function characterises a scale-free network 
topology. This type of distribution is applicable only to a graph where all edges are 
bidirectional. For the case of networks containing some unidirectional edges, we would 
be interested in an in-degree distribution and out-degree distribution, which define the 
number of in-coming and out-going edges a node x has, respectively. 

Another way to characterise a graph is to calculate its clustering coefficient Cx(k) 
which is the density of connections in the neighbourhood of a node x (Dorogovtsev and 
Mendes, 2003). It is defined as the ratio between the total number n of the edges 
connected to its k nearest neighbours and the total number of all possible edges between 
all these nearest neighbours Cx(k) = 2n/k(k – 1). A high clustering coefficient Cx(k) would 
suggest a modular organisation. 

It has been shown that most of complex networks (e.g., biological networks,  
world wide web, actor networks) are scale free networks with high clustering coefficient 
(Ravasz and Barabási, 2003). This means that there are few dominating hubs which  
lead to properties such as high tolerance to random failures. On the other hand, the 
network can collapse if one eliminates as few as 5–15% of its highly connected hubs. 
Recent studies showed that metabolic networks contain a hierarchical modularity 
(Kanehisa et al., 2004). This modularity combines two features into one network type. 
According to this modularity study, graph’s in- and out-degree distributions follow power 
law Px(k) ≈ k–γ, with a constant γ ∈ ℜ, and the dependence of the clustering coefficient 
follows the power law Cx(k) ≈ k–γ as well. 

3.3 Network projections 

The main purpose of data projection is to map a high dimensional data to a lower 
dimensional space in order to be able to visualise them in a context-based manner.  
The methods implemented in our system so far are the Sammon’s NLM (Sammon, 1969), 
CCA (Demartines and Hérault, 1997) and CDA (Lee et al., 2004a). 

All projection methods we used share common features: 
Let *

ijd  denote distance, by some metric, between two points i and j in the original  
K-dimensional input space A and let dij denote the distance between points i and j in the 
L-dimensional (where L < K) output space B. In addition, every projection method  
we have used has an error function Err(.) which includes these two distances and  
some weight function which decides on how much smaller or larger distances we  
try to preserve. 

All methods try to minimise an error function iteratively, either by steepest gradient 
descent (NLM) or stochastic gradient descent (CCA and CDA). 

3.3.1 Sammon’s Non-Linear Mapping (NLM) 
Sammon’s NLM (Sammon, 1969) error function is the following: 

2*( )1Err .**

K
ij ij

K
i j ijiji j

d d
dd <
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−
= ∑
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NLM algorithm tries to minimise Err by always descending towards the steepest gradient. 
It may thus end up in a local minimum and the convergence may be slow.  
Its time-complexity is of O(n²). Therefore it may be too slow for data with tens of 
thousands of points, especially when the original dimensionality K is large, and is not 
appropriate for interactive work. 

3.3.2 Curvilinear Component Analysis (CCA) 
CCA attempts to preserve local topology by favouring first short distances, and long 
distances afterwards. The error function is formalised as follows:  

21 *Err ( ) ( , ( ))
2 ij ij ij

i i j
d d F d kλ

≠

= −∑∑  

where F(dij, λ(k)) is the weighting neighbourhood function that decreases with its 
arguments, thus favours local topology preservation. Computationally CCA is lighter 
than NLM because CCA reduces the computational cost of finding minima by using 
stochastic gradient descent and by optionally using vector quantisation to create centroids 
that approximate some groups of points in K-space. Without quantisation CCA’s  
time-complexity is of O(n²) and with vector quantisation O(n*n′) where n′ is the number 
of centroids created in vector quantisation. Therefore, the time-complexity becomes 
O(n²) with inefficient vector quantisation. 

3.3.3 Curvilinear Distance Analysis (CDA) 
Instead of calculating Euclidean distances between points of an object, CDA calculates 
curvilinear distances, denoted by δij, between points of a structure by creating a graph out 
of centroids. After that it calculates the shortest path between two prototypes of the 
codebook after quantisation and linking of the prototypes. The curvilinear distances are 
used instead of Euclidean distances. The error function becomes then: 

21 *Err ( ) ( , ( )).
2 ij ij ij

i i j
F d kδ δ λ

≠

= −∑∑  

CDA’s time-complexity is of O(n′e + n′2ln(n′)), where e is number of edges created 
between centroids, n′ number of centroids and n number of data-points. This follows 
from the complexity of Dijkstra’s (1959) shortest path algorithm that is used for every 
centroid. That becomes O(n.e + n2ln(n)) with inefficient vector quantisation. 

In the worst case the runtimes of CDA may seem to be very long compared to that of 
CCA or NLM. However, in practice its runtime is near that of CCA which is much 
shorter than that of NLM. The use of curvilinear distance measure provides much better 
results than CCA when K-space has complex features. In the following section, we will 
apply CDA projection method to visualise the metabolic network in a context-based 
manner. 
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4 Applications 

4.1 Network retrieval and topology study 

The topological properties of biological networks have been an intense topic of 
computational biology research (Jeong et al., 2000, 2001; Arita, 2004; Barabasi and 
Oltvai, 2004). A practical step necessary to retrieve specific networks involved in such 
studies requires development of parsers to retrieve those networks from appropriate 
databases. Since it is becoming clear the topology of biological network may also need to 
be viewed in the context of systems dynamics (Luscombe et al., 2004), the future 
research in this domain would benefit from ability to retrieve biological networks 
corresponding to different biological states easily from the life science databases and 
experimental data. 

A simple example of a network retrieved from our database is presented in Figure 3, 
showing a result from a query for the complete metabolic network from KEGG 
(Kanehisa et al., 2004) for S. cerevisiae species. This network can then be investigated 
for local structures, links to other networks and biological entities, as well as for  
the global studies such as analyses of network scaling properties. Figure 4 shows the 
calculated degree distribution of the yeast metabolic network retrieved from KEGG, with 
the nodes being the enzymes and the edges connections between the enzymes via 
metabolites as substrates or products. Figure 5 shows the calculated degree distribution  
as a function of node degree for the same network. It appears that neither of these 
distributions follows the power law ideally, which is in contrast with previous  
findings stating that the hierarchical modularity is present in metabolic networks  
(Jeong et al., 2000). We can see from Figure 3 that there is one large metabolic island 
which contains most nodes of the graph. The presence of several small islands may be 
explained by the lack of the connectivity data in KEGG. These islands affect the total 
distributions. 

Figure 3 Result of a retrieval of complete yeast metabolic network from megNet using a simple 
query for KEGG and S. cerevisiae 
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Figure 4 Degree distribution of the yeast metabolic network shown in Figure 3.  
It appears that the degree distribution does not follow the power law which means  
that there is no hierarchical modularity in this metabolic network 

 

Figure 5 Clustering coefficient as a function of node degree for the yeast metabolic network. 
Here the clustering coefficient does not seem to follow the power law either,  
which suggests that there is no hierarchical modularity in our network 

 

In order to demonstrate the use of context for visualisation with CDA projection 
algorithm, we retrieved a KEGG metabolic pathway with Gene Ontology (Ashburner  
et al., 2000) annotations for S. cerevisiae species. Figure 6 shows zoomed in result of that 
retrieval in the neighbourhood of the tricarboxylic acid cycle biological process, while 
the CDA projection of that graph is shown in Figure 7. In this projection the tricarboxylic 
acid cycle biological process is biased so that its incident edges have lower weights than 
the other edges of the graph. We can see that in this projection there are two main 
clusters. In one cluster there are the tricarboxylic acid cycle Gene Ontology term 
(Number 1) and its neighbour nodes. Therefore, we may conclude that in this metabolic 
pathway there is a group of enzymes and compounds that are strongly involved in the 
tricarboxylic acid cycle biological process and there is another group that is weakly 
involved in this process. 
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Figure 6 A zoom of a yeast metabolic pathway in the neighbourhood of tricarboxylic acid (TCA) 
cycle (GO:0006099). Proteins involved in the TCA cycle biological process are 
clustered near the TCA cycle Gene Ontology term 

 

Figure 7 A Curvilinear Distance Analysis projection biasing tricarboxylci acid cycle. The 
projection was obtained by lowering the distance of all connected edges to TCA node 
(number 1) in the above graph 

 

4.2 Protein neighbourhood search as a context dependent annotation 

Assignment of protein function is a nontrivial task due to the fact that the same proteins 
may be involved in different biological processes, depending on the state of the biological 
system and protein localisation. Therefore, protein function is context dependent.  
Protein databases such as UniProt (Bairoch et al., 2005) contain information on protein 
function in text format. For example, PPAR gamma (UniProt id: P37231) is annotated as 
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“Receptor that binds peroxisome proliferators such as hypolipidemic drugs and 
fatty acids. Once activated by a ligand, the receptor binds to a promoter 
element in the gene for acyl-CoA oxidase and activates its transcription.  
It therefore controls the peroxisomal beta-oxidation pathway of fatty acids.  
Key regulator of adipocyte differentiation and glucose homeostasis.” 
(http://www.expasy.org/cgi-bin/niceprot.pl?P37231) 

Such information may not be satisfactory if interested in the role of this protein in context 
of specific disease (PPARγ is known to be involved in a variety of diseases, such as 
diabetes, osteoporosis, and cancer), tissue localisation (PPAR gamma actually has two 
main isoforms, 1 and 2, of which PPAR gamma 1 is expressed in all tissues, while PPAR 
gamma 2 is mainly expressed in adipose tissue; we have been recently involved in the 
characterisation of the latter (Medina-Gomez et al., 2005), or relationship with a specific 
group of proteins. We have previously proposed the network based approach to annotate 
proteins in context dependent manner by using the ‘protein neighbourhood search’ 
(Gopalacharyulu et al., 2005), i.e., exploring the local relationships of proteins with other 
biological entities such as proteins, genes, biological processes etc. 

As an illustration of the utility of the approach, we queried a select set of proteins 
related to regulation of energy homeostasis and to insulin signalling. The following 
human proteins have been queried: 

• Peroxisome proliferator activated receptor gamma (PPARγ; UniProt id: P37231) 

• Peroxisome proliferator activated receptor alpha (PPARα; UniProt id: Q07869) 

• Peroxisome proliferator activated receptor gamma coactivator 1 alpha (PGC1α; 
UniProt id: Q9UBK2) 

• Sterol regulatory element binding protein 2 (SREBP – 2; UniProt id: Q12772) 

• Putative G protein-coupled receptor GPR40 (GPR40; O14842) 

• Putative G protein-coupled receptor GPR41 (GPR41; O14843) 

• Probable G protein-coupled receptor GPR43 (GPR43; O15552). 

The resulting network is shown in Figure 8. Short descriptions of select entities in the 
network are presented in Table 2. While detailed study of the retrieved protein 
neighbourhood lies beyond the scope of this paper, we will show its use on one example. 
The entity numbered 10 (Protein arginine N-methyltransferase 2) does not have well 
assigned function. The UniProt resource lists the protein function as 

“Probably methylates the guanidino nitrogens of arginyl residues in some 
proteins. May play a role in transcriptional coactivation.” (http://www. 
expasy.org/cgi-bin/niceprot.pl?P55345) 

Our data suggests the protein is binding with PPARγ, and so may be related to regulation 
of energy homeostasis. This provides a hypothesis for designing new experiments to 
address the function of a protein that would have more likely escaped attention otherwise. 
The topic of transcriptional co-regulators involved in energy homeostasis is a topic of 
intense research in domains of diabetes and metabolic syndrome (Lin et al., 2005). 
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Figure 8 Query for proteins PPAR gamma, PPAR alpha, PGC1, SREBP 2, GPR40, GPR41,  
GPR43 in HUMANS. The numbered nodes are listed in Table 3. Grey lines are Gene 
Ontology relations, dark grey the regulatory networks, light grey the protein-protein 
interactions 

 

Table 2 Short description of select entities from the network shown in Figure 8 

Label Name 
ID (UniProt/GO 
accession) 

Important 
interactions/associations 
(Identified by Labels 1–32) 

1 Lipid metabolism GO:0006629 – 
2* Sterol regulatory element 

binding protein-2 (SREBP-2) 
Q12772 3, 4 (MINT); 1 (GO) 

3 Transcription factor SP1 P08047 2* (MINT) 
4 Hepatocyte nuclear factor 4 

aplha 
P41235 2*(MINT); 1 (GO) 

5* Peroxisome proliferator 
activated receptor alpha  

Q07869 5* (BIND); 6, 7 (MINT);  
1, 8, 26 (GO) 

6 Retinoic acid receptor  
RXR – alpha 

P19793 5 *(MINT); 9* 
(TRANSFAC – interacting 
factor) 

7 Nuclear receptor corepressor 2 Q9Y618 5* (MINT) 
8 Fatty acid metabolism GO:0006631 5* (GO) 
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Table 2 Short description of select entities from the network shown in Figure 8 (continued) 

Label Name 
ID (UniProt/GO 
accession) 

Important 
interactions/associations 
(Identified by Labels 1–32) 

9* Peroxisome proliferator 
activated receptor gamma 

P37231 10 (BIND); 6,13,14,15 
(TRANSFAC – interacting 
factors); 1,16,17,26 (GO) 

10 Protein arginine  
N-methyltransferase 2 

P55345; EC: 2.1.1 9* (BIND) 

11 Nuclear factor of activated  
T-cells, cytoplasmic 4 

Q14934 9* (TRANSFAC  
– transcription factor of) 

12 CCAAT/enhancer binding 
protein alpha 

P49715 9* (TRANSFAC  
– transcription factor of) 

13 Nuclear factor of activated  
T-cells, cytoplasmic 1 

O95644 9* (TRANSFAC  
– interacting factor) 

14 Nuclear receptor coactivator 1 O00150; EC: 2.3.1.48 9* (TRANSFAC  
– interacting factor) 

15 CREB-binding protein Q92793; EC: 2.3.1.48 9* (TRNASFAC  
– interacting factor) 

16 White fat cell differentiation GO:0050872 9* (GO) 
17 Response to nutrients GO:0007584 9*, 18, 19 (GO) 
18 Somatostatin precursor P61278 17, 20 (GO) 
19 Guanine nucleotide-binding 

protein G(i), alpha-2 subunit 
P04899 17, 20 (GO) 

20 G-protein coupled receptor 
protein signalling pathway 

GO:0007186 18, 19, 21*, 22*, 23*,  
24, 25 (GO) 

21* Putative G protein-coupled 
receptor GPR40 

O14842 20 (GO) 

22* Putative G protein-coupled 
receptor GPR41 

O14843 20 (GO) 

23* Probable G protein-coupled 
receptor GPR43 

O15552 20 (GO) 

24 Vasopressin V1a receptor P37288 20, 26 (GO) 
25 Melanin-concentrating 

hormone receptor 1 
Q99705 20, 26 (GO) 

26 Generation of precursor 
metabolites and energy 

GO:0006091 5*, 9*, 24, 25, 32 (GO) 

27* Peroxisome proliferator 
activated receptor gamma 
coactivator 1 alpha 

Q9UBK2 28, 30, 31 (GO) 

28 Gluconeogenesis GO:0006094 27*, 29 (GO) 
29 Glucose metabolism GO:0006006 32 (GO) 
30 Positive regulation of histone 

acetylation 
GO:0035066 27* (GO) 

31 Thermoregulation GO:0001659 27* (GO) 
32 Insulin precursor P01308 26, 29 (GO) 

*Denotes an entity used in making the query for network construction. 
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Table 3 Short description of a few select entities from the network presented in Figure 6 

Label Name/description 
ID (UniProt/GO 
accession/EC number) 

1 tricarboxylic acid cycle GO:0006099 
2 alpha-4-beta-4 subunit of mitochondrial isocitrate 

dehydrogenase 1 
P28834, 1.1.1.41 

3 alpha-ketoglutarate dehydrogenase P20967, 1.2.4.2 
4, 5 Aconitase, mitochondrial P19414, 4.2.1.3 
6 NAD+-dependent isocitrate dehydrogenase P28241, 1.1.1.41 
7 Mitochondrial isoform of citrate synthase P43635, 2.3.3.1 
8 Fumarase; converts fumaric acid to L-malic acid in the TCA 

cycle. The GI molecule identifier below refers to the protein 
encoded by this gene 

P08417, 4.2.1.2 

9 alpha subunit of succinyl-CoA ligase (synthetase;  
ATP-forming), a mitochondrial enzyme of the TCA cycle 

P53598, 6.2.1.4 

10 citrate synthase. Nuclear encoded mitochondrial protein P00890, 2.3.3.1 
11 alpha-ketoglutarate dehydrogenase P20967, 1.2.4.2 
12 dihydrolipoyl transsuccinylase component of  

alpha-ketoglutarate dehydrogenase complex in mitochondria 
P19262, 2.3.1.61 

4.3 Type 1 Diabetes gene expression data 

The network edges drawn in previous examples were based on existing knowledge 
resources such as pathways and ontologies. However, the network representation affords 
extension to other relationships, such as gene sequence similarity or co-regulation of 
molecules based on profiling experiments (or collection of multiple experiments).  
The former may be particularly useful when building metabolic models of species  
with unannotated genomes based on the existing metabolic models from well annotated 
species. The latter may be utilised to interpret the data obtained from molecular  
profiling experiments. For example, applications have been reported linking the  
gene co-expression obtained from micro-array experiments to functional modules in 
cancer cells (Segal et al., 2004). We have previously utilised the correlation network 
approach to integrate across metabolite, protein, and gene level experimental profile data 
(Oresic et al., 2004). 

As an illustration of combining gene expression data with the existing pathways and 
ontologies, we utilised gene expression data from mouse congenic strains in a study 
related to Type 1 Diabetes (Eaves et al., 2002). We processed this data as explained 
below in order to construct the query. The resulting network is shown in Figure 9.  
Some relevant entities in network are indicated with their names. The gene expression 
data is incorporated as follows: 

• Normalised dataset is downloaded from the NCI GEO database 
(www.ncbi.nlm.gov/geo). GEO accession number of the data is GDS10. 

• Pearson correlation coefficients are calculated for every pair of genes. 

• Based on distribution of correlation coefficients a cut-off correlation of 0.997  
is set to select only highly correlated pairs (the cut-off can be varied as part of the 
exploratory analysis). One hundred and sixty six gene pairs pass this cut off. 
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• These gene pairs and their correlation values are defined as a relational table  
in Oracle database. 

• We compared the Diabetic strain data with Non diabetic strain data from Spleen.  
The procedure for calculating the intensity ratios is explained below: 

• The Average Intensity values (AI) contain negative values. Hence these values are 
shifted so that the least AI value becomes 1. AI values in all samples are shifted by a 
constant value of 49. 

• Average of each group of samples is calculated. 

• Ratio between average corresponding to diabetic samples is taken over average 
corresponding to non diabetic samples. 

• These values are then visualised such that down regulated genes appear in green,  
up-regulated genes appear in red and expression level of each gene determines a 
colour between these two extremes. 

The largest upregulated cluster is clearly related to lipid and glucose metabolism, but 
perhaps most curious finding being the upregulated BRCA1 and BRCA2 genes within 
this cluster. BRCA genes are associated with breast cancer, but are known to be highly 
expressed in spleen and associated with immune response. How these genes specifically 
relate to Type 1 Diabetes is unclear, and certainly this finding is worthy of further study. 
In another upregulated small cluster of genes we found association with beta-cell 
proliferation, which is a known response to increased rate of beta-cell apoptosis in Type 1 
Diabetes. 

Figure 9 Correlation network of gene expression data related to Type 1 Diabetes  
from Eaves et al. (2002) 
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5 Discussion 

In this paper we introduced an approach and a system which affords integration, mining, 
and visualisation of systems biology data. Three examples were given in domains of 
network topology studies, context-dependent protein annotation, and integration of gene 
co-expression data with available pathway knowledge. It is evident that the studies of 
complex organisms such as mammals, for example in the context of drug discovery, 
generate datasets representing physiological processes at multiple spatial and temporal 
levels. This necessitates the data integration solutions that facilitate mining of such 
diverse data (Gopalacharyulu et al., 2005; Oresic et al., 2004; van der Greef and 
McBurney, 2005; Searls, 2005). Depending on availability of data, this may include 
building associations and dependencies across biological entities, either based on 
available knowledge such as ontologies or on mathematical models. As we have shown in 
this paper, these two approaches are not mutually exclusive. 

Our integration approach is based on the premise that relationships between 
biological entities can be represented as a complex network. The information in such 
networks forms a basis for exploratory mining, as well as for development of predictive 
models. Distances between different nodes in an integrated network play a central role.  
In order to calculate distances, one first needs to define distance measures across 
heterogeneous types of information. We are taking a pragmatic approach by letting the 
user define the distances as a part of the query. This is reasonable since the distance 
basically defines the context of the questions posed by the user and allows biasing the 
similarity toward particular types of relationships, or towards a relationship in a specific 
context. Once the distance measure is specified, we can map the nodes of the graph into a 
lower dimensional space. We introduced and implemented three methods to perform such 
mappings: Sammon’s mapping, CCA and CDA. As these mappings are approximate, 
there will be some distortion while doing the mapping. Therefore, in our opinion the 
exact form of distance measure is not a critical issue, as far as it underlines the 
relationships in the concept graph. In fact, selection of distance measure may reflect a 
subjective choice and as such will be subject to debate. It is ultimately the end result of 
mining that determines the utility of specific distance measure. 

The three examples described in this paper demonstrate the utility of our approach. 
We show how the study of global network properties is facilitated using our approach. 
Similarly, the local properties of networks can be studied, as well as the properties of 
integrated networks (i.e., cross-talk between metabolism and cell signalling). Related to 
the second example, current annotation of proteins using e.g., Gene Ontology or UniProt 
do not take into account the complexity and context-dependency of protein function  
and interactions. We introduced a visual approach which enables context dependent 
interpretation. For example, in a query of six proteins related to energy homeostasis and 
insulin signalling we found a potential function for currently poorly annotated protein. 
We also extended the data integration framework to include experimental data. As a third 
example, we performed exploratory data analysis that linked clusters of gene expression 
profiles from spleen of NOD mouse model of Type 1 Diabetes to known interactions, 
regulatory pathways and ontologies related to the gene products within the clusters. 
While the ‘pathway analysis’ (Curtis et al., 2005) has already been widely utilised for 
analyses of gene expression data, our approach affords analysis across both physical 
interaction information (i.e., regulatory networks, protein-protein interactions, metabolic 
networks) as well as across known pathway annotations. As such it enables visual 
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exploration of patterns found in data, facilitating to answer the first question any biologist 
is after when attempting to interpret high-dimensional micro-array data, i.e., what appears 
to be going on in the system based on the experimental evidence. 

The pathway integration framework described in this paper is not limited only to the 
static biological pathways. Other models can be incorporated as well, as long as they are 
represented in the exchangeable schemas such as SBML or CellML. Our framework then 
affords further model refinement using interaction and ontology information from diverse 
sources. In addition, the metabolic models from well characterised species such as yeast 
(Förster et al., 2003) can be extended to less characterised related species. The data 
mining methods described in the paper are largely focused on integration across 
heterogeneous sources and mapping of complex networks into lower-dimensional space 
for the purpose of visualisation. What is needed is incorporation of more advanced data 
mining methods for statistical analysis and modelling of data. We believe the network 
framework opens new possibilities for analyses of complex heterogeneous life  
science data. 

Currently our system is able to visualise data at molecular level. One of the remaining 
challenges would be to visualise multiple levels (Saraiya et al., 2005). This kind of 
approach would enable us to investigate how a small change at the molecular level affects 
the higher abstract level (e.g., tissue or organ level). Another appealing challenge would 
be to visualise biological networks in three dimensions (Changsu Lee and Park, 2002; 
Férey et al., 2005). 

6 Conclusions 

We presented an integrated database software system that enables retrieval  
and visualisation of biological relationships across heterogeneous data sources.  
We demonstrate the utility of our approach in three applications: full metabolic network 
retrieval with network topology study, exploration of properties and relationships  
of a specific set of proteins, and combined visualisation and exploration of gene 
expression data with related pathways and ontologies. We believe our approach facilitates 
discovery of novel or unexpected relationships, formulation of new hypotheses, design of 
experiments, data annotation, interpretation of new experimental data, and construction 
and validation of new network-based models of biological systems. 
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Abstract. Assignment of protein function is a nontrivial task due to the fact that 
the same proteins may be involved in different biological processes, depending 
on the state of the biological system and protein localization. Therefore, protein 
function is context dependent and textual annotations commonly utilized to 
describe protein function lack the flexibility to address such contextuality. We 
propose an alternative approach for protein annotation motivated by the 
conceptual space approach, which relies on context-driven mapping of complex 
relationships based on known protein interactions or ontologies and on 
experimental data into low-dimensional space. We utilize the curvilinear 
distance analysis to generate such mappings, and demonstrate the approach on a 
set of proteins involved in maintenance of energy homeostasis. 

Keywords: Protein function, conceptual spaces, curvilinear distance analysis 

1   Introduction 

The wealth of information generated with modern life science technologies, 
combined with existing repositories of knowledge dispersed across numerous 
databases and literature, demand new solutions for management and integration of life 
science data. Biological systems are characterized by the complexity of interactions of 
their internal parts and also with the external environment. The protein repositories 
such as UniProt [1] describe the protein function in textual format. In such form it 
may be difficult if not impossible to express the protein function in a given context, 
therefore another layer of representation is necessary.  

While biological ontologies such as Gene Ontology [2] attempt to unify part of our 
life science knowledge at the molecular level, the diversity of life science research 
and questions addressed inevitably lead to multiple and overlapping ontologies. In 
turn, these Ontologies need to be integrated and unified, a challenge addressed by the 
Semantic Web approaches. However, these approaches are mostly based on hard 
coded symbolic representations which are valid only if the context in which they were 
created is stable. Therefore, in the fast evolving knowledge in life science, such 
approaches lack flexibility, emergence and context sensitivity.  

In this paper we propose a visual approach for context-dependent protein function 
characterization, motivated by P. Gärdenfors’ paradigm of conceptual spaces [3]. The 
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main idea behind conceptual spaces is that if we use a group of objects or “clusters” 
as references, they are much more reliable than single objects. In the conceptual 
spaces, clusters remain stable even when objects change their properties or when new 
objects come into existence or old ones disappear. Unlike in ontological structures, 
the name that is given to a cluster does not need to be taken as such by its sole 
semantic sense, but it is enriched by the set of qualities (called “quality dimensions”) 
of the cluster it represents. Therefore, naming convention is not a bottleneck as in 
Semantic Web approach.  

In living systems the quality dimensions may correspond to different levels of 
biological organization, where the objects (e.g. molecules, cells, organs) and their 
quality dimension specific relationships can be described with certain geometric 
structures (in some cases they are topological or orderings). Therefore, with the aid of 
the dimensions, similarities between biological entities and concepts can easily be 
represented by the distance in a conceptual space. 

 
Fig. 1.  Query for the protein neighborhood of PPARγ, PPARα, PGC1α, SREBP2, GPR40, 
GPR41, GPR43 human proteins, utilizing  BIND [4], MINT  [5], DIP [6], KEGG [7], Transfac  
[8] and Gene Onology [2] databases. Squares represent proteins, hexagons genes, triangles 
DNA binding sites, and diamonds GO terms. 

 2   Network representation 

 We represent networks as directed weighted graphs where biological entities are 
nodes connected via interactions or relationships between them [9]. In the context of 
protein function, a typical question utilizing network representation is about the 
protein neighborhood, i.e. what are the nearest nodes connected to a particular 
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protein, with the edges being either direct interactions or ontology-defined 
relationships. Fig. 1 shows an example of a specific query for a set of human proteins 
related to maintenance of energy homeostasis and specific G-protein coupled 
receptors (GPCRs) that are not yet well characterized. The query for the nearest 
neighbor protein relationships revealed three distinct clusters, with all three GPCRs 
jointly in a separate cluster. While some of the well known relationships were 
revealed in the largest cluster, the results of the query have not facilitated 
characterization of poorly annotated proteins such as GPR40, GPR41, and GPR43. 

3   Conceptual spaces and biological entities 

In the network view illustrated above, a logical follow-up query would include 
extension of protein neighborhood search for the next-nearest neighbors or beyond. 
However, due to high-connectivity of biological entities such approach soon becomes 
visually prohibitive. As a pragmatic alternative, we define a distance metric for each 
type of relationship, and allow the user to assign weights to different types of 
relationships as part of the mining process [9]. The key problem then becomes how to 
efficiently map data to a lower dimensional space in order to be able to visualize them 
in a context-dependent manner. We implemented Curvilinear Distance Analysis 
(CDA) [10] in our system. Curvilinear distance depends not only on the two points 
between which the distance is measured but also on the other surrounding points. 
Intuitively, instead of computing straight distances between the points, the goal of 
curvilinear distance consists in computing distances along an object that can be, for 
example, curves on the surface or any set of points.  

CDA maps the points in a higher dimensional space into a lower dimensional space 
by preserving the distances in the original space. It calculates curvilinear distances in 
the high dimensional input space by creating a graph out of centroids. After that it 
calculates distances between centroids using Dijkstra’s shortest path algorithm [11].  
CDA works by optimizing a criterion that explicitly measures the preservation of the 
pairwise distances: 
 

( ) ),,(2 λδ ijijijCDA dFdE ∑ −=  

where δij is distance measured between points pi and pj in the high dimensional data 
space and dij is distance measured between the coordinates of the same two points in 
the projection space. The factor F(dij,λ) weighs the contribution of each pair of points 
in the criterion. F is implemented as the Heaviside unit step function: 

 
( ) ( ) 0, =−= ijij ddF λθλ  if ijd−λ  <  0
                                    1=  if ijd−λ  . 0≥

 
Starting from the criterion, the derivation of the learning rule follows a similar 
scheme as for a stochastic gradient descent. Instead of moving one mapped point 
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according to the position of all other ones, one point mi is frozen while moving all 
others radially around it: 
 

( )( )
ij

ij
ijijijjj d

mm
ddFmm

−
−+← δλα ,  , 

 
where α and λ are time decreasing learning rate and neighborhood radius, 
respectively.  

An application example of CDA mapping is shown in Fig. 2, querying for the same 
entities as in Fig. 1. While there are many interesting aspects of biology retrieved in 
the mapping, we focus here on PPARγ. PPARγ (UniProt id: P37231) is annotated in 
UniProt as “Receptor that binds peroxisome proliferators such as hypolipidemic 
drugs and fatty acids. Once activated by a ligand, the receptor binds to a promoter 
element in the gene for acyl-CoA oxidase and activates its transcription. It therefore 
controls the peroxisomal beta-oxidation pathway of fatty acids. Key regulator of 
adipocyte differentiation and glucose homeostasis”. This is not a satisfactory 
explanation when searching for specific context, for example specific disease or 
relationship to specific GPCR. Our CDA projection revealed both PPARγ and GPR41 
are closely associated with response to nutrients. Interestingly, this finding is 
supported by recent research [12], yet it cannot be revealed by searching any of the 

 
Fig. 2. Results of CDA mapping for the entities and databases listed in Fig. 1. All edge weights 
(unit costs) taken to be 1. 
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databases used individually.  
Our approach is not limited only to pathway data and ontologies. Experimental data, 

such as gene expression or metabolomics experiments, can also be utilized to further 
define the context. In such cases the distance measure relating biological entities in 
the molecular profile space may correspond to the measure of co-expression (such as 
correlation coefficient) between different entities. Fig. 3 shows an example of CDA 
mapping based on a similar query as listed previously, but for the mouse proteins, and 
in the context of a specific gene expression dataset [13] from spleen tissue of NOD 
mouse. Curiously, several tumor suppressor genes such as BRCA1 associated with 
PPARγ, are found in this mapping. This finding deserves further attention. Only 
recently a link between a specific tumor suppressor (LKB1) and diabetes has been 
established [14], linking cancer and physiological control of metabolism. 
 

 
Fig. 3. Results of CDA mapping in context of Type 1 Diabetes for mouse proteins PPARγ, 
PPARα, PGC1α, GPR40, GPR41, GPR43 from databases listed above, plus the gene expression 
data from [13]. 

4   Conclusions 

In this paper we introduced an approach aiming to facilitate mining of complex 
biological networks, ontologies, and high-dimensional molecular profile data. We 
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focused specifically on context-dependent protein function assignment. The approach 
relies on network-based representation of biological entities, concepts, and their 
relationships, context-dependent assignment of distances between them, and nonlinear 
mapping into low-dimensional space to visualize distribution of concepts and entities 
in a specific context. Given the complexity of biological systems and fragmentation of 
biological knowledge, we believe our pragmatic approach is superior to more formal 
approaches such as based on Semantic Web technology in its flexibility and ability to 
extract potentially novel biological relationships leading to new hypotheses. For 
example, none of the surprising context-dependent functional relationships related to 
the PPARγ protein shown in this paper could be derived by mining Gene Ontology or 
other bioinformatics databases alone. Our approach also provides new opportunities 
for research of topological structures defined by complex biological relationships. 
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ABSTRACT

Biological  phenomena  are  usually  described  by  rela­
tional  model  of  interactions  and  dependencies  between
different entities. Therefore, a network­based knowledge
representation  of  biological  knowledge  seems  to  be  an
obvious choice. In  this paper, we propose such a repre­
sentation when integrating data from heterogeneous life
science  data  sources,  including  information  extracted
from biomedical  literature. We  show  that  such  a  repre­
sentation  enables  explanatory  analysis  in  a  context  de­
pendent  manner.  The  context  is  enabled  by  a  judicious
assignment of weights on the quality dimensions. Analy­
sis of clusters of nodes and links in the context of under­
lying  biological  questions  may  provide  emergence  of
new  concepts  and  understanding.  Results  are  obtained
with our megNet software, an integrative platform based
on  a  multi­tier  architecture  using  a  native  XML  data­
base.

1. INTRODUCTION

The primary goal of knowledge representation  is  to en­
able  computer  to  assist  humans  in  analyzing  complex
forms  of  data  to  discover  useful  information.  This  has
resulted in a wide range of techniques and tools. How to
represent knowledge depends largely on the way reason­
ing can be done with that knowledge. For example, early
works  have  been  mainly  focused  on  logic­based  repre­
sentation.  Recently,  techniques  combining  machine
learning, pattern  recognition,  statistics, and artificial  in­
telligence have been employed. Although these are well­
developed  disciplines,  their  applications  in  life  science
have been limited [1][2][3].

Biology is a data rich discipline. The problem is that
this source of knowledge is stored in a large number of
different data sources which need to be mined in paral­
lel. Integrating all this information and its efficient min­
ing is a challenge with huge application potential [4][5].
Moreover, each database may have its own interface that
users may not have time to adequately learn to use them
efficiently. A tool which can integrate the mining as well
as visualization of heterogeneous life science data would
therefore  open  new  possibilities  for  the  exploration  of

biological knowledge and possibly lead to novel discov­
eries.

As biological systems are characterized by the com­
plexity  of  interactions  of  their  internal  parts  and  also
with the external environment, integrating such interact­
ing  information  may  result  in  a  large  connected  graph
with  nodes  and  edges  of  heterogeneous  types.  This
makes  such  information hard  to visualize, and sophisti­
cated methods have been developed  for  analyzing  such
complex  networks  [6][7][8][9].  The  most  important  as­
pect  in visualizing high­dimensional data  in a  lower di­
mensional  space  is  how  to preserve  the proximity  rela­
tionships. In practice, it is very difficult if not impossible
to project hundreds of dimensional data to a smaller di­
mensional space (2 or 3 dimensions) in such a way that
all  similarity  relationships  are  preserved.  Therefore,  in
order  to  enable  effective  reasoning,  the  challenge  is  to
find  the  best  compromises by  choosing which kinds of
relationships  to visualize and with what  type of metrics
to use in order to ensure the trustworthiness of the visu­
alized data [10].

Another way to enable effective reasoning is to limit
the  scope of  deliberations  to  a  small  context associated
with  the domains under consideration. This may be ap­
proached  by  assigning  weights  to  the  “quality  dimen­
sions”  [11]  under  consideration  (gene­centric,  tissue­
centric, compound­centric, disease­centric etc.)

The above criteria have been our motivations to de­
velop an integrated visualization tool, megNet, that uses
topological  analysis  of  complex  networks  to  visualize
query  results  in  a  single  interface.  It  also  enables  con­
text­based information display from our integrated data­
base system (see [12]).

This paper discusses the representation and visualiza­
tion  aspects of  our  integration  platform.  It  is  organized
as follows: Section 2 discusses about the network repre­
sentation and clustering methods, including the notion of
distance and context. Section 3 gives examples of visual­
izing a protein­protein interaction network.

2. BIOLOGICAL NETWORKS
With  the  growing  trend  towards  systems  biology,  inte­
grated biological networks contain many different types
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of entities and attributes arising from a growing number
of disparate data sources,  including literature databases.
These databases have been created by different scientific
communities, for different purposes, and covered differ­
ent aspects. All that led to a high level of structural and
semantic heterogeneity. The  structural  and  semantic  in­
tegration  aspects of  these databases have been  reported
in our previous papers  [12][13]. Here we will  focus on
the  retrieval  and  visualization  of  these  heterogeneous
data. We are mainly interested in the data from the fol­
lowing databases:

• Protein­protein  interaction  databases:
BIND [14], DIP [15], and MINT [16].

• Biochemical pathways database: KEGG [17].
• TransFac  is  a  database  on  DNA  binding  ele­

ments and their transcription factors [18].
• TransPath, an extension of TransFac, contains

signal  transduction  pathways  that  regulate  the
activity  of  transcriptional  factors  in  different
species [19].

• GeneOntology  (GO)  is  a  database  of  three
structured controlled vocabularies that describe
gene products  in  terms of  their associated bio­
logical processes, cellular components and mo­
lecular functions in a species­independent man­
ner [20].

The first step after retrieving all the massive informa­
tion from databases is to build the network. The objects
in  network  are  then  clustered based  on  some  similarity
measure for  the display. The definition of  the similarity
measure is thus a crucial step.

2.1. Network representation

The  graph  representation  contains  nodes  and  edges
[21][22]. The nodes include various kinds of molecules,
e.g.,  proteins,  compounds,  genes,  mRNAs  etc.  For  ex­
ample, in the case of protein­protein interaction network,
we  would  relate  the  neighboring  proteins  by  searching
all  the  possible  pathways  among  them,  including  their
regulating genes.  The  generated  nodes  and  edges  show
the proteins and their interactions, respectively.

Our  biological  network  is  presented  as  a  directed
weighted graph where biological entities are nodes  that
are connected to each other through edges which are in­
teractions  between  the  entities.  The  shape  of  the  nodes
will be coded differently depending on the type of an en­
tity. The edges can be directed or undirected depending
on the nature of the interactions (Figure 1).

A metabolic network consists of reactions. In one re­
action there are substrates, products and at least one en­
zyme that catalyzes the reaction. The substrates, products
and enzymes are presented as nodes. The substrates and
products  are  presented  as  circles  and  the  enzymes  are
presented as squares. Since some reactions are reversible
and  other  reactions  are  irreversible,  directed  edges  are
used  to distinguish  the direction of  a  reaction. But  in a
protein­protein interaction network, interactions between
the  proteins  are  represented  with  undirected  edges,  be­
cause the interaction is mutual.

Figure 1: Example of our integrated network rep­
resentation used. The distance between the enti­
ties A and B, is the same as for B to A. If there is
not any path between two nodes, we assume that

the distance between them is infinity.

The  shortest  path  length  between  each  entity  is  ob­
tained by using Tom Sawyer Java analysis toolkit (Tom
Sawyer, Inc.). The distances between each entity in both
directions are calculated, based on the cost of connection
types. In Figure 1, the cost of a metabolic interval is de­
noted by y, and x is the cost of a protein­protein interac­
tion. By changing these cost parameters we can investi­
gate how protein­protein interactions affect the structure
of metabolic pathways.

2.2. Clustering of biological networks

The  molecular  entities  of  the  cell  form  a  very  compli­
cated  and  dynamic  interacting  system.  Yet,  it  has  been
demonstrated that this complex interactions shared some
common network properties, e.g.  the presence of single
modularity  networks  [24][25][26].  However,  the  pres­
ence  of  the  modularity  in  highly  integrated  biological
networks is not self­evident as it lacks quantitative sup­
port  [24].  There  is  thus  a  need  for  tools  to  identify  the
modularity  of  a  biological  network  and  to  identify  the
modules  and  their  relationships.  Clustering  is  a  mathe­
matical  method  which  allows  the  identification  of  key
connectivity  patterns  of  a  network.  The  most  common
methods  used  when  investigating  the  structure  of  com­
plex  networks  are  hierarchical  clustering  tree,  Koho­
nen’s Self­Organizing Maps (SOM) [28], and Sammon’s
mapping [29][30].

All clustering algorithms share the basic steps:
1. Compute distance matrix;
2. Find closest pair of clusters;
3. Update distance matrix.

First, the distance matrix must be computed. The dis­
tance matrix define distances from one entity to the other
entities. The distance matrix from the graph represented
in Figure 1 is:

( ) ( )0 min ,2 2 min ,2
3 0 inf 2

0 min( 2 ,2 )
3 2 2 2 0

3 3 2 3 0
2 2 2 0

y x y y y x y x
y x y y x y x
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If the purpose of the distance calculations is to inves­
tigate  the  structure  of  metabolic pathways,  the distance
matrix would not take into account metabolites and other
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proteins  that  do  not  belong  to  the  metabolic  pathway
(e.g. entities F and G in Figure 1).

After  the distance matrix has been obtained, we can
apply  clustering  algorithm  which  will  merge  objects  in
the  same  cluster  based  on  the  self­similarity.  The  self­
similarity of a group of elements is defined as the aver­
age pairwise  similarity between  the  elements. One may
also  choose  other  criteria  such  that  the  pair  of  clusters
maximizes  the  minimum  similarity  or  minimize  the
maximum similarity.

Since  the  purpose  of  the  distance  matrix  is  to  de­
scribe the proximity of the entities, the more similar dis­
tance vectors are, the closer are corresponding biological
entities.  In  our  current  implementation,  we  use  the
Sammon’s mapping algorithm to investigate the similari­
ties of the distance vectors.

2.2.1. Similarity measure
For integrated network where entities are of complex na­
ture, evaluating similarity is not a trivial task. While dis­
tances within  the molecular networks can be  intuitively
set  to  the  length of  the shortest path between the mole­
cules, distance measure is less obvious for relationships
such as  in ontologies. It was shown  that GeneOntology
can be represented as a graph, and the distance measures
based  on  the  shortest  path  to  a  common  ancestor  were
already studied [31]. In the case of gene expression net­
work which consists only of genes, the similarity meas­
ure is based on the gene expression level.

The challenge is to combine topology metrics and the
quantitative information from the data. For instance, one
can combine the gene expression level and the topology
of  the network  in  the same distance function such as in
[32]: )( exp netfd δδ += .

Given  a  set of  data points xi,  let us  note by d(xi, xj)
being the distance between two data points.

If we consider the gene expression level Gik as a log­
ratio  gene  expression  of  gene gi,,  the  distance  function
could be based on the Pearson correlation coefficient:
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with i and i are mean and standard deviation of the
transformed time series data of gi .

The correlation coefficient is then converted to a dis­
tance  function  as  a  degree  of  dissimilarity  with:

),(),(exp jiji gggg ρδ −= 1 .  We  obtain  the  combined
distance function:

),(),((.),( exp jinetjiji vvggxxd δδ +×−= 501

The network distance function could be based on the
shortest  path  and  the  weighting  function  based  on  the
degree of vertices.

It  is  supposed  that  this combined  function may  lead
to  increased  stability  of  clustering  solution  when  the
gene  expression  levels  support  the  relations  in  the  net­
works and vice versa [32].

In our current implementation, gene expression data­
bases are not yet fully operational for integrated mining.

2.2.2. Data projection and non­linear mapping
The  main  purpose  of  data  projection  is  to  transform  a
high  dimensional  data  to  a  lower  dimensional  space  in
order  to be able to visualize them. The Kohonen’s self­
organizing map (SOM) [28] is one popular method. But
the  delicate  part  of  SOM  is  that  the  user  needs  to  set
control parameters carefully that may require sometimes
a priori knowledge about the data. We have chosen the
Sammon’s mapping [29] as is easier to implement.

Like  the  SOM  algorithm,  the  basic  idea  of  the
Sammon’s mapping algorithm  is  to arrange all  the data
points on a 2­dimensional plane in such a way, that the
distances between the data points in this output plane re­
semble the distances in vector space as defined by some
metric as faithfully as possible. Unlike SOM algorithm,
the Sammon’s mapping algorithm tries to preserve inter­
nal  distances  in  the  input  data  that  the  human  eye  can
easily detect. The structure of the input data is thus pre­
served through the mapping.

More formally, let dij be an element of a distance ma­
trix D in input space, let oi be the image of the data item
xj in the 2­dimensional output space. With O we denote
the distance matrix containing the pairwise distances be­
tween images as measured by the Euclidean vector norm

ji oo − . The goal is to place the oi in such a way that

the  distance  matrix O  resembles  as  closely  as  possible
matrix D, i.e. to optimize an error function E by follow­
ing an iterative gradient­descent process:
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The  resulting  visualization  depicts  clusters  in  input
space  as  groups  of  data  points  mapped  close  to  each
other in the output plane. Thus, the inherent structure of
the  original  network  can  be  derived  from  the  structure
detected in the 2­dimensional visualization.

2.3. Context

When  a  representation  includes  several  domains,  one
must  take  into  account  the  context  in  which  what  do­
mains appear more or less important (or salient) [9].

Including  context  can  be  achieved  by  assigning
weights to each domain. The relative weight of a domain
will depend on the context.

2.3.1. Weights as context dependent variables
In  the  previous  section,  the  distance  function  could  be
weighted as follows:

∑
=

=
n

k
ijkkij dwD

1

The  weights wk  can  be  seen  as context­dependent
variables  that  represent  the  relative  degree  of  salience
for  each  dimension.  This  aspect  has  been  used  in  the
subspace clustering algorithms which assume that cluster
may  exist  in  different  subspaces  of  different  sizes.  For
example,  in  the  COSA  algorithm  [33],  the  weights  are
assigned  to  each dimension  for  each  instance, not  each
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cluster. Higher weights are assigned to those dimensions
that  have  a  smaller  dispersion  within  the k­nearest
group. The neighborhoods  for each  instance become it­
eratively  enriched  with  instances  belonging  to  its  own
cluster. The dimension weights are refined as the dimen­
sions  relevant  to  a  cluster  receive  larger  weights.  This
process enables some dimensions to emerge by different
the clustering criteria. However, in the COSA algorithm,
the  number  of  dimensions  to  be  included  in  a  cluster
cannot  be  set  directly  by  the  user,  it  is  done  through  a
parameter  , which controls  the  incentive for clustering
on more dimensions.

This COSA distance was shown to be more powerful
than traditional Euclidean distance.

Therefore,  the  choice  of  the  similarity  measure  can
affect greatly the quality of  the visualization in the pro­
jection space. When we change dimension in the visuali­
zation,  the degree of similarity between two data points
changes  with  the  salience  of  the  dimensions  of  the ob­
jects. This aspect was investigated in [9].

It must be noticed also that the knowledge and inter­
est of the user may influence the “salience weights” as it
is assumed that people can have different “perspectives”.
Therefore it is important that the user has also the possi­
bility  to  influence  this  parameter  in  the  visualization
tool.

2.3.2. The effect of context in knowledge discovery
With the explosion of information resources on the Web,
ontologies have been extensively developed to facilitate
the  understanding,  sharing,  re­use  and  integration  of
knowledge  through  the  construction  of  an  explicit  do­
main  model.  In  life  science,  the  efforts  in  building  on­
tologies across domains still have many challenges to go
through  [34][35].  Gene  Ontology  (GO)  is  the  only  on­
tology  that  has  been  extensively used  in bioinformatics
[36][37].  However,  GO  seems  to  be  more  a  taxonomy
rather  than  a  well­formed  ontological  structure  that
would enable  traditional  rule­based reasoning [38]. An­
other drawback of GO and other Ontologies in general,
is their static structure and thus, when used as a structure
for  reasoning,  they  can  only  produce monotonic  infer­
ence. Such a mode of reasoning may hinder or possibly
even prevent the discovery and exploration of new pos­
sibilities [39].

While in a context­based reasoning, the conceptuali­
zation associated to the “cluster” that has emerged from
the  context,  is non­static.  For  example, when  we  inter­
pret  clusters  obtained  from  gene  expression  data,  we
must  take  into  account  the  context  of  underlying  bio­
logical models e.g., from which tissue and what was en­
vironmental history which has led to that state.

3. EXAMPLES
In this section we would like to give an example of net­
work  clustering  of  data  retrieved  from  metabolic  path­
ways  and  protein­protein  interaction  databases.  As  an
example, we create a network based on the KEGG meta­
bolic pathway  from  the query: “Glycolysis  / Gluconeo­
genesis, Pentose phosphate and Citrate cycle pathways”,

for S.  cerevisiae  (Figure  2).  The  enzymes  are  then  en­
riched with protein­protein interaction (MINT, DIP).The
query results are shown in Figure 3. We can see from the
Sammon’s  mapping  that  there  are  two  main  clusters  in
these  pathways,  a  strongly  connected  cluster  and
sparsely  connected  cluster  (Figure  3).  Sparsely  con­
nected proteins are highlighted with gray marks, which
appear  to be  mostly  located at  the border  of  the graph.
Based on the concept of hierarchical modularity, we may
conclude  that  the  proteins  of  the  strongly  connected
cluster  are  in  higher  hierarchy  level  than  those  of  the
sparsely connected cluster.

Another example of search is performed for protein­
protein  interaction  with  the  set  of  proteins  {P41940,
O15305, P29952} which are  involved  in  the glycosyla­
tion and mannosylation pathways in S. cerevisiae, refer­
enced  in  GeneOntology  Biological  process  “GDP­
mannose  biosynthesis”  with  GO:0009298.  Results  are
shown  in  Figure  5.  Clustering  examples  with  different
contexts  (different  weight  assignments)  are  given  in
Figure  6  and  Figure  7.  In  Figure  6,  all  the  edges  have
equal  weights.  We  can  see  that  he  neighborhood  of
GO:0009298  consist  of  proteins  C05345  and  C00275,
which  denote  that  in  this  context,  they  have  stronger
connection  to  GO:0009298.  In  Figure  7,  the  neighbors
of GO:0009298 have larger weights, this has resulted in
the  clustering  of  proteins  of  the  query  set  {P41940,
O15305, P29952}.

We can “experiment” with the weight assignment for
different  context  and  notice  that  relative  proximity  of
nodes changes. This might suggest new hypotheses that
these entities might be  involved  in  the  same process or
pathways reflected by the context.

Figure 2: KEGG metabolic pathways for “Glyco­
lysis / Gluconeogenesis , Pentose phosphate and

Citrate cycle pathways.

IV/4



Figure 3: Metabolic pathway (KEGG) enriched
with protein­protein interactions from MINT and
DIP databases for “Glycolysis / Gluconeogenesis,
Pentose phosphate and Citrate cycle pathways,.
The proteins loosely connected are highlighted

with gray marks.

Figure 4: Clusters from Sammon’s mapping of
the previous graph. Two main clusters emerged,

one strongly connected and one loosely con­
nected.

Figure 5: Search result of pathway query for
mannose synthesis GO:0009298.

Figure 6: Sammon’s mapping of the previous
network for ”Context 1: Every edge has equal

weight”.

Figure 7: The Sammon’s mapping for “Context
2: The neighborhood edges of GO:0009298 have

higher weights than the other edges”.

4. CONCLUSION

In this paper we have discussed about the heterogeneity
of biological data and resources and existing methodolo­
gies to analyze those data. We introduced our approach
to represent integrated biological data for enabling visual
exploratory analysis. At  the current phase, we have  im­
plemented the Sammon’s mapping clustering with a dis­
tance  function  that  incorporates  the  notion  of  context,
which  can  be  controlled  by  the  user.  Our  experiments
have shown that the Sammon’s mapping algorithm is not
very suitable for a large number of input vectors. There­
fore,  in  our  biological  networks  consisting  of  a  large
number of nodes, clustering time is rather long. Second,
one  cannot  always  rely  totally  on  the  output  by  the
Sammon’s mapping clustering due to the trustworthiness
of  distance  function.  Therefore,  it  is  up  to  the  user  to
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look for insight and experiment with the dimension sali­
ence to see if it makes any sense and always reconnect to
the original hypothesis and background knowledge.
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