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Lipid research has recently gained increased attention due to their involvement in 
numerous diseases including diabetes, obesity, atherosclerosis and Alzheimer’s dis-
ease. Modern technological advancements in mass spectrometry allowed us to study 
several hundreds of lipids at a time. This level of investigation not only provides 
insights into the specific roles of lipid molecular species in the health and disease, 
but also facilitates in identifying potential biomarkers for prevention and treatment 
of human health. These developments, however, comes with a set of informatics 
challenges in terms of handling the data. This thesis mainly deals with some of the 
challenges associated with this kind of lipid research in the context of liquid chro-
matography/mass spectrometry methods. The presented informatics methods herein 
assist in identification of molecular species, their functional class prediction, and 
data interpretation in biological pathway context and data analysis
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Abstract 
The potential impact of lipid research has been increasingly realised both in 
disease treatment and prevention. Recent advances in soft ionization mass 
spectrometry (MS) such as electrospray ionization (ESI) have permitted parallel 
monitoring of several hundreds of lipids in a single experiment and thus 
facilitated lipidomics level studies. These advances, however, pose a greater 
challenge for bioinformaticians to handle massive amounts of information-rich 
MS data from modern analytical instruments in order to understand complex 
functions of lipids.  The main aims of this thesis were to 1) develop bioinformatics 
approaches for lipid identification based on ultra performance liquid 
chromatography coupled to mass spectrometry (UPLC/MS) data, 2) predict the 
functional annotations for unidentified lipids, 3) understand the omics data in the 
context of pathways and 4) apply existing chemometric methods for exploratory 
data analysis as well as biomarker discovery. 

A bioinformatics strategy for the construction of lipid database for major 
classes of lipids is presented using simplified molecular input line entry system 
(SMILES) approach. The database was annotated with relevant information such 
as lipid names including short names, SMILES information, scores, molecular 
weight, monoisotopic mass, and isotope distribution. The database was tailored 
for UPLC/MS experiments by incorporating the information such as retention 
time range, adduct information and main fragments to screen for the potential 
lipids. This database information facilitated building experimental tandem mass 
spectrometry libraries for different biological tissues. 

Non-targeted metabolomics screening is often get plagued by the presence of 
unknown peaks and thus present an additional challenge for data interpretation. 
Multiple supervised classification methods were employed and compared for the 
functional prediction of class labels for unidentified lipids to facilitate exploratory 
analysis further as well as ease the identification process. As lipidomics goes 
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beyond complete characterization of lipids, new strategies were developed to 
understand lipids in the context of pathways and thereby providing insights for 
the phenotype characterization. Chemometric methods such as principal 
component analysis (PCA) and partial least squares and discriminant analysis 
(PLS/DA) were utilised for exploratory analysis as well as biomarker discovery 
in the context of different disease phenotypes. 
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1. INTRODUCTION 
Lipids are an important class of compounds that have a wide variety of key 
cellular functions including compartmentalisation, energy storage, cell-signalling, 
protein trafficking and membrane anchoring (Orešič et al. 2008, van Meer 2005, 
Vance and Vance 2008). Emerging evidence suggests that abnormalities in these 
functions are either directly or indirectly linked to the pathogenesis of various 
diseases (Wenk 2005) including obesity (Shi and Burn 2004), Alzheimer’s diseas 
(Cutler et al. 2004), cancer (Menendez and Lupu 2007) and atherosclerosis 
(Lusis 2000). The lipids are generally hydrophobic in nature and are soluble in 
organic solvents. They are defined as hydrophobic or amphipathic small 
molecules that may originate entirely or in part by carbanion based condensation 
of thioesters, and/or by carbocation based condensation of isoprene units (Fahy 
et al. 2005). These lipids vary widely ranging from simple fatty acids to complex 
glycolipids. Systematic cataloguing of all these lipid classes and their 
nomenclature is required for databases and bioinformatics needs. According to 
new classification system, lipids are classified into eight main categories: 1) 
Fatty acids, 2) Glycerolipids, 3) Glycerophospholipids, 4) Sphingolipids, 5) 
Sterols, 6) Prenol lipids, 7) Saccharolipids, and 8) Polyketides (Fahy et al. 2009). 

The structural diversity of lipids stems mainly from various combinations of 
fatty acid chain lengths and possible head groups (e.g., for glycerophospholipids) 
that are linked to glycerol backbone (Figure 1.1). The presence of ethylene-
interrupted or less common methylene-spaced double bonds in fatty acid 
moeities introduces an additional diversity in the lipidome. The presence of 
various types of glycerol-alkyl chain linkages such as ester, ether and vinyl ether 
bonds provide further diversity. Ether and vinyl ether bonds are more common 
in sn-1 position and are found mainly in phosphatidylcholine (PC) and 
phosphatidylethanolamine (PE) type of lipid classes (Snyder 1999). This 
diversity and abundance of these lipid species varies from tissue to tissue. For 
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instance, ether-linked (plasmanyl) and vinyl-ether linked (plasmenyl) phospholipids 
are more abundant in tissues such as heart, kidney, and central nervous system 
(Druilhet et al. 1975, Panganamala et al. 1971). Similar diversity can be seen in 
most other classes of lipids and the theoretical number of possible lipids, when 
conservatively estimated, exceeds ~180,000 lipids (Yetukuri et al. 2008). 
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Figure 1.1. Glycerophospholipid structural diversity: R1 and R2 are fatty acids at position 
1 and position 2, respectively. X represents head group moiety at position 3. Head groups 
legend: PA = Phosphate, PPA = Pyrophosphate, PE = Phosphoethanolamine, PC = 
Phosphocholine, PS = Phosphoserine, PG = Phosphoglycerol and PI = Phosphoinositol. 

Recent burgeoning interest in lipid research illustrates the critical physiological 
importance of lipids. Moreover, recently emerged new lipidomics consortia such 
as the US-based LIPID MAPS (www.lipidmaps.org) and its affiliated sphinGOMAP 
(http://sphingolab.biology.gatech.edu/), and similar community-wide efforts in 
Japan (www.lipidbank.jp) and Europe (www.lipidomics.net) emphasis the growing 
need for indepth lipidomic research. Other related initiatives include The 

http://www.lipidmaps.org
http://sphingolab.biology.gatech.edu/
http://www.lipidbank.jp
http://www.lipidomics.net
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Alliance for Cell Signaling (www.signaling-gateway.org/) and Lipid Profiles 
(www.lipidprofiles.com). As a result, lipid research is now beginning to appear 
as omics level science with the emerging precipitous developments. Lipidomics 
is defined as “the comprehensive understanding of the influence of all lipids on a 
biological system with respect to cell signaling, membrane architecture, 
transcriptional and translational modulation, cell-cell and cell-protein interactions, 
and response to environmental changes over time” (Watson 2006). 

Any successful lipid analytical method should be a flawless combination of 
extraction, separation, detection and easy processing of the data. However, no 
single methodology or technique is yet in widespread use to screen all lipids. 
Recent advances in mass spectrometry-based studies have revolutionized 
lipidomics research at molecular level (Griffiths 2003, Navas-Iglesias et al. 
2009, Ståhlman et al. 2009). Especially, the soft ionization MS-based analytical 
methods have gained popularity for their specificity, sensitivity and fast 
detection of different lipids from various biological matrices. The development 
of electrospray ionization techniques (Fernandis and Wenk 2009, Pulfer and 
Murphy 2003) have led to the study of lipids to a greater detail mainly in two 
ways: separation of lipid extracts using liquid chromatogram (LC) followed by 
on-line MS monitoring (Ogiso et al. 2008, Wang et al. 2005) and direct infusion 
of lipid extracts into a mass spectrometer where lipids are selectively detectable 
using techniques such as specific precursor ion scans (PIS) and neutral loss 
scans (NLS) (Ejsing et al. 2006, Ekroos et al. 2002, Han and Gross 2005a). As 
analytical technologies are becoming more mature and moving towards 
achieving the true quantitative or at least semi-quantitative characterization of 
molecular lipid species and lipid classes, it is becoming possible to study lipid 
pathways at the molecular level. It is evident that this knowledge will 
significantly advance our knowledge on thd roles of lipids in the context of 
cellular and organismal physiology. 

Lipidomics, a branch of metabolomics, is the end point of omics cascade and 
bears the direct link to several disease phenotypes and therefore has recently 
become the target of post-genomics research. The advent of modern MS 
technologies has facilitated in the analysis of hundreds of lipid molecules from a 
given biological matrix. As a result, large scale data sets are being generated 
from the modern analytical methods, presenting new challenges for lipid 
informatics. The informatics approaches in co-ordination with improved 
analytical methods should resolve and identify individual lipids, unravel minute 

http://www.signaling-gateway.org/
http://www.lipidprofiles.com
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systemic changes at molecular level and integrate the complex lipidome data 
with other enitities such as genes, proteins and other metabolites. 

1.1 Aims of the thesis 

The main aim of this thesis was to develop bioinformatics approaches for the 
non-targeted lipidomics data coming from UPLC/MS. The specific goals of my 
thesis (Figure 1.2) were the following: 

♦ Development of computational spectral libraries and their customization 
for the UPLC/MS platform to facilitate lipid identification (Publication I). 

♦ Building of tissue-specific experimental spectral libraries combining both 
positive and negative ion mode tandem mass spectrometry data (e.g., 
Publication VI). 

♦ Functional class label annotation of unidentified lipids (Publication II). 

♦ Mapping of lipidomics data in metabolic pathways (Publication I). 

♦ Applications of developed informatics approaches followed by exploratory 
analysis (Publication III, IV, V). 
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Figure 1.2. A schematic diagram showing the overview of this thesis in lipid bioinformatics 
approaches. 
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2. LITERATURE REVIEW 
The lipid bioinformatics field is interdisciplinary in nature and topics related to 
this thesis are reviewed in this chapter. This chapter reviews the use of liquid 
chromatography and mass spectrometery in the lipid analysis, and advances in 
dataprocessing tools, databases and biochemical pathways. 

2.1 Lipid analysis using LC/MS techniques 

Biological matrix usually contains several lipids some of which have the same 
effective carbon number (ECN, a measure of non-polar characteristic of fatty 
acid chain or molecule) and therefore either co-elute partially or entirely from 
the liquid chromatography (LC) column. Thus simple LC alone is not enough to 
separate them. Favourably, mass spectrometry (MS) can act as second 
dimensional separation by discriminating compounds based on their mass 
fragments. Successful integration of LC with MS has played a significant role in 
the characterization of multiple compounds in a single sample. 

2.1.1 Separation of lipids using liquid chromatography 

Several studies have successfully demonstrated the usefulness of liquid 
chromatographic techniques in the analysis of complex lipid mixture (Bijlsma et 
al. 2005, Hermansson et al. 2005, Houjou et al. 2005). LC-based methods make 
use of properties such as differential solubility and partition between mobile and 
stationary phases. One of the earlier developments of LC is thin layer 
chromatography (TLC) which has been successfully used for the analysis of 
lipids (Bennet and Heftmann 1962, Michalec et al. 1962). TLC is developed 
from paper chromatography and comprises thin layer of stationary phase such as 
silica or cellulose on a flat support. Various combinations of aqueous stationary 
and organic mobile phases facilitate separation of several classes of lipids and 
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thus serve as a rapid screening tool prior to the development of more advanced 
and sensitive methods. Another notable methodology is solid phase extraction 
(SPE). This technology is useful in separating crude lipid mixtures into several 
classes including phospholipids, fatty acids, cholesterol esters, acyl glycerols 
and cholesterol (Kaluzny et al. 1985). High performance liquid chromatography 
(HPLC) has gained high popularity for its selectivity and efficiency. The 
separation in HPLC can be achieved using either normal-phase or reverse-phase 
columns. Normal-phase HPLC facilitates separation of lipids based on their 
polar head group (Lesnefsky et al. 2000) without major effect by the fatty acid 
substituents. In this case, each class co-elutes as single chromatographic peak 
with small retention time differences across the individual molecules in the 
class. In case of reverse phase column, the separation of lipids is based on their 
polarity, degree of alkyl chain saturation, and chain length. The reverse phase 
column thus enables separation of lipids with different fatty acid compositions 
(McHowat et al. 1997). 

2.1.2 MS-based lipid analysis 

Mass spectrometer, which has profound influence on modern analytical 
chemistry, can measure the mass of charge carrying molecules. The instrument 
measures both mass-to-charge ratio of molecule and its intensity and thus serves 
as an invaluable tool in structural elucidation (using tandem mass spectrometry) 
as well as quantification. 

Electron ionization (EI) is useful in gas chromatography where the eluting 
gaseous molecules are bombarded with a beam of high-energy electrons and thus 
generating a specific fragmentation patterns. Other techniques such as chemical 
ionization (CI) use a reagent gas to ionize molecules which do not give 
molecular ion in EI and produce less fragmentation pattern than EI analysis. This 
ionization method was initially developed for gas chromatography and has been 
used as atmospheric pressure chemical ionization (APCI) for liquid samples. 
Laser-based soft ionisation technique called matrix-assisted laser desorption/ 
ionization (MALDI) is used for the analysis of large molecules and also can also 
be used for the analysis of lipids. The sample is mixed with a chemical matrix 
and then applied to sample holder as small spot. The matrix absorbs the energy 
from laser beam and thereby analyte receives the energy and results in ionization 
of molecules. ESI-based MS provides the most promising soft ionization 
technique and now has become the system of choice for both characterization 
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and quantification of lipids. This technology has been successfully applied in 
numerous lipidomic studies (Griffiths 2003, Han and Gross 2005a, Pulfer and 
Murphy 2003). This technique does not require any derivatisation and can 
directly be applied on solutions. The technique is moreover characterized by 
high-sensitivity with reasonable experimental complexity and high 
reproducibility. The ESI-based MS methodology has become the preferred 
method for the analysis of phospholipids (Brugger et al. 1997, Pulfer and 
Murphy 2003) and sphingolipids (Haynes et al. 2009). The methodology is also 
adopted for the analysis of non-polar lipids such as acylglyerols (Han and Gross 
2001). 

2.2 UPLC/MS-based non-targeted lipidomic analysis 

Advances in MS-based analytical methods, in combination with ESI-based soft 
ionization technique, have spurred lipidomic research in recent years. The 
HPLC-based methods, however, are time-consuming and often present a 
bottleneck in the routine analysis. Shorter LC analysis times allow increasing 
sample throughput as well as lab productivity. 

Recent advances in novel mass analysers such as orthogonal-accelerated time 
of flight (oa-TOF) have led to the development of mass spectrometer. A 
commonly used mass spectrometer with oa-TOF analyser contains a quadruple-
time of flight (Q-TOF) configuration (Figure 2.1) and resembles as triple 
quadrupole MS in which third quadrupole has been replaced with oa-TOF. The 
TOF analyser permits full scan acquisitions with high resolution and mass 
accuracy. This powerful combination of single quadrupole and high performance 
of TOF enables both MS and tandem mass spectrometry (MS/MS) experiments. 
In the MS mode, the first quadrupole and collision cell merely guide the ions, 
while TOF seperates all the ions that are orthogonally accelerated. In MS/MS 
mode, the filter capabilities of quadrupole are exploited to transmit and to select 
only precursor ions. These precursor ions are accelerated due to potential 
difference before they get fragmented in the collision cell induced by collision 
with neutral gases such as argon or nitrogen. The resulting ions are analysed in 
TOF tube with high mass accuracy. 
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Figure 2.1. Schematic view showing the configuration of quadrupole time of flight 
(Q-TOF) mass analyzer. 

Recent advances in reverse phase chromatographic columns (e.g., Bridged 
Ethane Hybrid (BEH) C18 columns packed with 1.7 μm particles) and mobile 
phase systems allowed HPLC system to operate at much higher back-pressures. 
The new column, called ultra performance liquid chromatography (UPLC), 
offers significant advantages in resolution, speed, and sensitivity as compared to 
conventional HPLC analysis (Apollonio et al. 2006, Churchwell et al. 2005, 
Leandro et al. 2006, Wilson et al. 2005). With improved speed and sensitivity, 
UPLC/MS platform thus provide a greater advantage in high-throughput sample 
analysis. Here, UPLC is coupled to high resolution quadrapole time of flight (Q-
TOF) mass analyzer which enables accurate mass measurements of precursor 
and fragment ions. Non-targeted lipidomics approaches have the advantage of 
detecting greater number of lipid components and possibility for detecting novel 
compounds. It is also advantageous in picking up global changes thereby serving 
as a guide for designing targeted approaches. 
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2.3 Data processing tools for lipid analysis 

The modern analytical instruments allowed lipidomic studies, generating huge 
amounts of data to process. The data processing step is critical, labor-intensive 
and becomes the rate-limiting step in metabolomics studies. This impetus has led 
to the development of many data processing tools both in open source and 
commercial environment (Katajamaa and Orešič 2007). Common data 
processing steps in lipidomics include peak detection, lipid identification, 
isotope correction, response correction and quantification. The typical data 
processing starts by inputting data in some vendor-specific format, which often 
becomes practical difficulty in applying same software for different data formats 
coming from different vendors. Recently introduced tools such as Lipid 
Qualitative/Quantitative Analysis (LipidQA) software platform (Song et al. 
2007) can identify and quantitate the complex lipids in biological mixtures. The 
software can process the data coming from TSQ-7000 triple stage quadrupole 
and LTQ linear ion trap mass spectrometers from Thermo-Finnigan and Q-TOF 
hybrid quadrupole/time-of-flight instrument from Waters-Micromass. The 
algorithm can also handle data-dependent manner lipid identification based on 
MS/MS spectra of glycerophospholipid species. Fatty Acid Analysis Tool 
(FAAT) tool (Leavell and Leary 2006) is developed for the analysis of data 
coming from Fourier transform mass spectrometry and the tool is demonstrated 
using mycobacteria species data. The main functionalities of the software 
include identification of overlapping saturated and unsaturated lipids, assignment 
of known ions from a user-defined library and handling of isotopic shifts from 
stable isotope labeling experiments. The software tools such as SECD and 
LIMSA (Hermansson et al. 2005) are useful for the display of chromatograms 
and performing several data processing steps including peak picking, integration, 
isotope correction and internal standards-based quantification. Other tools such 
as Lipid Profiler (Ejsing et al. 2006) and LipidInspector (Schwudke et al. 2005) 
are compatible for the data acquisition with Applied Biosystems hybrid 
quadrupole/time-of-flight instruments that can perform multiple precursor ion 
scans in a single experiment. The novel lipid-mediator informatics developments 
such as cognoscitive-contrast-angle algorithm and database (COCAD) (Lu et al. 
2006) enhance correct identifications of lipid-mediators by matching either 
known standard MS/MS spectra with chromatograms and UV spectra or virtual 
liquid chromatography-ultraviolet-tandem mass spectra. 
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MZmine software (Katajamaa et al. 2006, Katajamaa and Orešič 2005) is an 
open source Java-based data processing tool for LC/MS-based metabolomics 
experiments, with a particular focus on differential analysis of lipidomics data 
from UPLC/MS experimental setup. The software implements several key 
methods for data processing stage including spectral filtering, peak picking, 
deisotoping, alignment of samples and quantification. Moreover, recursive peak 
search algorithm and peak picking methods facilitate the improvement of already 
aligned data. Several data visualization options are available for the display of 
spectral data across multiple samples. MZmine2 (http://mzmine.sourceforge.net/) 
presents new features and improved modularity for better expandability. Some 
of new features include processing of high-resolution instrumental data, better 
visualisation (3D visualisation) and a new implementation of 2D visualiser. It 
allows storage of parameters for defining sample properties. The software supports 
importing of several data formats such as netCDF, Thermo RAW, mzML and 
mzXML and also the stored project-specific parameters defining the samples. 

2.4 Lipid databases 

Development of databases (Table 2.1) and related bioinformatics tools has 
become an essential part of functional genomics studies. Over the recent years, 
empowered by high-throughput technologies for omics fields, creation of 
databases devoted to certain entities such as lipids was undertaken. Consequently, 
lipid-centric databases were developed that enabled researchers to comfortably 
analyse expression patterns of lipid related genes and gene products. For 
example, a database of genomics of lipid-associated disorders, called GOLD, 
offers annotated pathways, curated data sets and possibility to study 
experimental data in the context of biological pathways (Hackl et al. 2004). The 
LIPID MAPS Proteome Database (LMPD) (Cotter et al. 2006) is a database of 
lipid-associated protein sequences and annotations. Presently, the database 
mainly comprises human and mouse related proteins of lipid metabolism. The 
protein database is enhanced with annotations from external databases. 

Several lipid databases such as LIPID BANK (http://www.lipidbank.jp/), 
LIPIDAT (Caffrey and Hogan 1992) and LMSD (Sud et al. 2007) are publicly 
available offering wide-range of information including lipid structures. Notably, 
LMSD offers systematic structures of lipids as well as other related information 
according to the classification scheme recommended by LIPID MAPS consortium. 
Users can retrieve the data from LMSD using text- or structure-based queries. 

http://mzmine.sourceforge.net/
http://www.lipidbank.jp/
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Web tools such as LIPID MAPS online tools (Fahy et al. 2007) permit user friendly-
queries from underlying databases. Lipid library (http://www.lipidlibrary.co.uk/) and 
CyberLipid (http://www.cyberlipid.org/) offer rich source of lipid information. 

The proposed classification, nomenclature, and chemical representation 
system introduced by the the LIPID MAPS consortium has become standard 
reference for the construction of lipid databases and management of lipidomics 
data. One of the main goals of LIPID MAPS initiative includes building of lipid 
databases and related bioinformatics approaches. These databases need to be 
complemented with annotation and curation of lipid structures. The LIPID 
BANK aims at curation of lipid structures as well as annotation of the related 
literature. Other databases like PubChem (http://pubchem.ncbi.nlm.nih.gov/) 
offer huge repository of chemical compounds including lipids. The database also 
provides various physical/chemical properties and cross links to other databases. 
All these databases are handy in the analysis of lipids and may serve as tools for 
validation of results. Notably, LMSD also provide various tools for mass 
spectrometry data. However, given the diversity of lipids across different 
organisms, tissues, and cell types, it is unlikely any one database can become a 
reference for mass spectrometry data. Mainly for LC/MS-based analysis, the 
development of in-house databases that are customized for the instrumental 
settings are needed 

2.5 Lipid pathway resources 

The existing databases offer rich source of information on lipid pathways. 
Databases such as Kyoto encyclopedia of genes and genomes (KEGG) database 
(Kanehisa and Goto 2000, Kanehisa et al. 2004) serve as a valuable resource for 
analyzing cells, not only at genomic level but also for metabolic networks in 
different organisms. The database offers information on most metabolic 
pathways including lipid pathways. Additionally, KEGG provides generic 
pathways (i.e., species-independent pathways) as reference pathways for the 
reconstruction of context- or organism-specific pathways. Moreover, the KEGG 
Brite (http://www.genome.jp/kegg/brite.html) maintains a collection of hierarchical 
classifications of lipid species whose reactions and pathways can be viewed. 
Other more annotated databases such as MetaCyc (Krieger et al. 2004) and EcoCyc 
(Keseler et al. 2005) serve as a good starting point for the study of lipids. 
SphinGOMAP (http://sphingolab.biology.gatech.edu/) offers comprehensive pathway 
mapping of about 450 distinct sphingolipids and glycosphingolipids species. LIPID 

http://www.lipidlibrary.co.uk/
http://www.cyberlipid.org/
http://pubchem.ncbi.nlm.nih.gov/
http://www.genome.jp/kegg/brite.html
http://sphingolab.biology.gatech.edu/
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MAPS biopathways workbench (http://www.biopathwaysworkbench.org/) provides a 
graphic tool that facilitates to display, edit and analyse biochemical pathways of 
lipids. In a recent study (Gupta et al. 2009), kinetic model was built from the 
lipidomics flux analysis using integrated network of eicosanoids metabolism and 
signaling pathways. The developed integrated model is based on the KEGG 
pathways and literature knowledge. Rate constants in the kinetic model are 
estimated and tuned using generalised constrained non-linear optimization. 
These quantitative models are quite useful for perturbation studies to gain 
mechanistic understanding about the underlying phenotype. These tools and 
databases allow reconstruction of integrated pathway models and thus open new 
avenues for building system level quantitative models. 

Table 2.1. List of publicly available lipid resources and their characteristics. 

Lipid database/source Description 

LIPID MAPS 
(www.lipidmaps.org) 

Provides guidelines for classification system for lipids, hosts 
databases of lipids and lipid-associated protein data and develop 
tools for identifying lipids. 

Lipidomics Expertise Platform 
(http://www.lipidomics.net/) 

European level Initiative for lipid research. Provides databases for 
the registered users and serves as a source for establishing 
European level networks, industrial relations and exchange of 
standard materials. 

CyberLipids 
(www.cyberlipid.org) 

Offers huge collection of updated scientific knowledge on all 
aspects of lipids. Also facilitates establishing relationships among 
students, teachers, scientists and technicians and present and 
provides updated bibliography devoted to lipid biology. 

LIPIDAT 
(ww.lipidat.chemystry.ohio-

state.edu/home.stm) 

Presents thermodynamic information on lipids including lipid 
phase transition temperatures and enthalpy changes for synthetic 
and biologically relevant complex polar lipids. 

LIPID BANK 
(www.lipidbank.jp) 

Provides chemical structures of lipids with names, chemical and 
physical properties, biological activities and metabolism. In 
addition, spectral information from various instruments such as 
ultraviolet, infrared spectrometry, nuclear magnetic resonance, 
mass spectrometry, liquid chromatography, and thin-layer 
chromatography can also be obtained. 

KEGG lipids 
(http://www.genome.jp/kegg-
in/get_htext?br08002.kegg) 

Provides lipid pathway maps as well as associated information 
such as the name, formula, mass, structure, biochemical reactions 
and external links to other public databases 

THE LIPID LIBRARY 
(http://www.lipidlibrary.co.uk/) 

Portal for the study of many classes of lipids and their analysis 
both in mass spectrometry and chromatography. 

sphinGOMAP 
(http://www.sphingomap.org/) 

Offers a database for biochemical mapping of sphingo- and 
glycosphingo-lipids. 

http://www.biopathwaysworkbench.org/
http://www.lipidmaps.org
http://www.lipidomics.net/
http://www.cyberlipid.org
http://www.lipidbank.jp
http://www.genome.jp/kegg-in/get_htext?br08002.kegg
http://www.genome.jp/kegg-in/get_htext?br08002.kegg
http://www.genome.jp/kegg-in/get_htext?br08002.kegg
http://www.lipidlibrary.co.uk/
http://www.sphingomap.org/
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3. METHODS 

3.1 Lipid analysis using UPLC/MS platform 

3.1.1 Lipid standards and chemicals 

Sample was extracted with chloroform / methanol (2:1, 100 µl) after addition of an 
aliquot (20 µl) containing internal standard mixture. After homogenization and 
vortexing, the sample was centrifuged (10000 rpm, 3 min) and the lower phase was 
collected. The lower lipid phase was mixed with another aliquot of labeled standard 
mixture. The labeled mixture containing 3 standards was added before analysis in 
order to control the extraction process (Pietiläinen et al. 2007). The labeled standards 
were PC(16:0/0:0-d3), PC(16:0/16:0-d6) and TG(16:0/16:0/16:0-13C3) and were 
obtained from Larodan Fine Chemicals (Malmo, Sweden). The internal standards 
mixture comprised MG(17:0/0:0/0:0)[rac], DG(17:0/17:0/0:0)[rac] and 
TG(17:0/17:0/17:0) from Larodan Fine Chemicals (Malmo, Sweden) and 
PC(17:0/0:0), PC(17:0/17:0), PE(17:0/17:0), PG(17:0/17:0)[rac], Cer(d18:1/17:0), 
PS(17:0/17:0), PA(17:0/17:0) and D-erythro-Sphingosine-1-Phosphate (C17 
Base) from Avanti Polar Lipids (Alabaster, AL). 

3.1.2 Mass spectrometry conditions 

The extracted lipid samples were analysed on quadrupole time-of-flight (Q-Tof 
Premier) mass spectrometer combined with an Acquity ultra performance liquid 
chormatogram (UPLC) (Waters Inc., Milford, MA). The column was an Acquity 
UPLC™ BEH C18 10×50 mm with particle size of 1.7 µm and was maintained 
at 50°C. The composition of the binary solvent system at the flow rate of 0.200 
ml/min was A: water (1% 1 M NH4Ac, 0.1% HCOOH) and B: LC/MS grade 
(Rathburn) acetonitrile/isopropanol (5 2, 1% 1 M NH4Ac, 0.1% HCOOH). The 
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initial gradient of the solvent composition was 65% A/35% B. The gradient 
reached 100% B in 6 min and maintained there for the next 7 min. The total run 
time was 18 min which included a 5 min re-equilibration step. The sample 
organizer was set at 10°C. 

The lipid profiling was carried out on Waters Q-Tof Premier mass 
spectrometer using electron spray ionization in either positive or negative ion 
mode. The data were collected usually in the mass range of m/z 300–1200 with 
scan duration of 0.2 sec. The temperature of source was maintained at 120°C and 
nitrogen was used as desolvation gas (800 L/h) at 250°C. The voltages of the 
sampling cone and the capillary were 39 V and 3.2 kV, respectively. Reserpine 
(50 µg/L) was used as the lock spray reference compound (5 µl/min; 10 sec scan 
frequency). The samples were analysed in a randomized order. 

3.1.3 Data processing with MZMine 

Lipid data from UPLC/MS experiments were first converted from raw data to 
netCDF file format using DataBridge utility of MassLynx 4.1 software (Waters, 
Inc.). The netCDF files were preprocessed using an in-house developed MZmine 
software version 0.60 (Katajamaa et al. 2006). Main functionalities of the 
software include peak picking, chromatographic alignment, spectral filtering, 
peak area calculations, visualisation (i.e. peak maps, curvilinear distance 
analysis and Sammon’s mapping), gapfilling, normalisation, and data export. 
De-isotoping step was performed using in-house developed MATLAB scripts. 
Lipids were identified using an internal spectral library or alternatively with 
tandem mass spectrometry. Calibration (normalisation) was done based on multiple 
internal standards and was performed as follows: All monoacyl lipids 
(monoacylglycerols and lysophospholipids) were normalized with LysoPC(17:0/0:0), 
all diacyl lipids except phosphatidylethanolamines and ethanolamine plasmalogens 
were normalized with PC(17:0/17:0), the phosphatidylethanolamines and 
ethanolamine plasmalogens were normalized with PE(17:0/17:0), and the 
triacylglycerols and cholesterol esters with TG(17:0/17:0/17:0). Calibration of 
unidentified lipids, similar to method described earlier (Bijlsma et al. 2005), was 
done using three internal standards as follows: lysoPC(17:0/0:0) was used to 
normalize the peaks eluting with retention time (RT) < 300s, PC(17:0/17:0) for 
300s < RT< 410s, and TG(17:0/17:0/17:0) for RT > 410s. 
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3.2 Lipid database construction 

3.2.1 Lipid scaffold generation 

Lipid database was constructed computationally using Simplified Molecular 
Input Line Entry System (SMILES) approach (Publication I) which is a widely 
used chemical notation to represent a chemical structure in terms of atoms and 
bonds governed by set of syntax rules (Weininger 1988). The database 
accommodated main classes of lipids including fatty acids, phospholipids, 
glycerolipids, cholesterol esters, and sphingolipids. The scaffolds of theoretically 
possible lipids were computed based on known lipid building blocks such as 
polar head groups and fatty acids in order to facilitate identification of lipids. In 
order to construct a particular lipid class (e.g., glycerophospholipid), SMILES 
template was constructed to represent the structure of the class. Possible lipids in 
the class along with their names were generated compuationally by varying alkyl 
moiety, nature of linkage and head group. Each lipid in the database was 
annotated with systematic name, SMILES, molecular formula and exact average 
mass and monoisotopic mass. A score value was assigned to each compound 
based on natural abundance of fatty acid(s). Common factors considered while 
assigning the score were natural abundance of the fatty acid, and odd or even 
number of carbon atoms present in the fatty acid chain. This kind of scoring 
scheme facilitated quick search of possibly abundant compounds. 

3.2.2 Lipid nomenclature 

Lipids were named according to recent nomenclature system for lipids 
introduced by LIPID MAPS consortium (Fahy et al. 2009). For example, 
lysophosphatidylcholine with 17:0 fatty acid chain at sn-1 position was named as 
1-heptadecanoyl-sn-glycero-3-phosphocholine (short name: PC(17:0/0:0)). If the 
exact fatty acid composition was not determined, total number of carbons and 
double bonds was indicated. For example, a phosphatidylcholine species 
PC(18:0/20:4) is represented as PC(38:4). However, PC(38:4) may correspond 
to isobaric (e.g., PC(22:4/16:0)) or isomeric species (e.g., PC (20:4/18:0)). 
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3.2.3 Database design 

Information on each lipid entry was converted into XML document and the 
resulting documents were loaded to the database using mass-loading tool of 
Tamino server. The database is a native XML database implemented in Tamino 
XML Server (Software AG). Each entry in the database was annotated with an 
internal identifier, scoring information, class, canonical SMILES, molecular 
formula, molecular weight and isotopic distribution. All the relevant scripts were 
implemented in the Perl language. When implementing the database, we used 
XMLSPY software (Altova, Inc.) and Tamino Schema Editor Software (Software 
AG) for the construction and validation of logical and physical schemas, 
respectively. 

3.3 Lipid pathways 

3.3.1 Lipid pathways and extensions 

System level characterization by integrating genes, proteins, lipids and other 
molecules provide better insights in an organism (Joyce and Palsson 2006). The 
existing databases provide different levels of information. The databases such as 
KEGG database (Kanehisa and Goto 2000, Kanehisa et al. 2004) serve as a 
valuable resource for analyzing cells not only at genomic level but also for 
metabolic networks in different organisms. The KEGG is a database of 
biological systems that integrates genomic, chemical and network information 
(http://www.genome.jp/kegg/). The KEGG hosts a collection of manually drawn 
pathway maps based on the current knowledge on the molecular interaction and 
reaction networks. The KEGG PATHWAY database offers information on most 
metabolic pathways including lipid pathways include fatty acid biosynthesis, 
fatty acid elongation in mitochondria, fatty acid metabolism, synthesis and 
degradation of ketone bodies, steroid biosynthesis, primary and secondary bile 
acid biosynthesis, C21-Steroid hormone metabolism, androgen and estrogen 
metabolism, glycerolipid metabolism, glycerophospholipid metabolism, ether 
lipid metabolism, sphingolipid metabolism, arachidonic acid metabolism, 
linoleic acid metabolism, alpha-linolenic acid metabolism and biosynthesis of 
unsaturated fatty acids. Additionally, KEGG also provides generic pathways 
(i.e., species-independent pathways) to serve as reference pathways for the 
reconstruction of context- or organism-specific pathways. 

http://www.genome.jp/kegg/
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Figure 3.1. An illustrative example of lipid pathway reconstruction methodology via pathway 
instantiation. Interesting lipids from co-regulation network are linked to molecular instance 
pathways. Red/green colour coding refers to up/down regulation of enzymes and lipids. 

Modern MS-based analytical techniques provide lipid species level information, 
whereas present lipid pathway information is mostly limited to the generic lipid 
class level. At the generic level, most lipid entries on pathways may contain one 
or more fatty acids and/or head groups. Due to enormous diversity in fatty acids 
and head groups, large number of specific lipids that are measurable now can be 
substitutable for a particular entry on pathway. As a result, lipid pathway 
reconstruction may easily end up in combinatorial explosion with varying complexity 
from pathway to pathway. To avoid this combinatorial problem, generic pathway 
templates are utilized to create molecular instance pathways for molecular 
species selected based upon multivariate and co-regulation analyses (Figure 3.1). 
Pathway instantiation is a method of converting generic names of lipids on 
biochemical lipid pathways to corresponding specific names of interest. Instance 
pathways allows mapping of lipids observed in mass spectrometric experiments. 
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3.3.2 Visualization tools for lipid pathways 

Managing and organising lipid-related pathways into useful, interactive pathways 
and networks present a greater challenge for lipid bioinformatics. In-house 
developed megNET software tool enables retrieval and visualisation of biological 
relationships across heterogeneous data sources from an integrated database 
(Gopalacharyulu et al. 2005). Other open source visualization tools such as 
VANTED (Junker et al. 2006) enable importing and customisation of KEGG 
lipid-specific pathways. 

3.4 Modeling with supervised and unsupervised methods 

There are two main categories of mathematical modeling approaches: supervised 
and unsupervised. Supervised modeling (Mitchell 1997) is an approach that uses 
pairs of input objects (usually in the form of matrix, X) and desired outputs (usually 
in the form of matrix, Y). The output of the function can either be continuous, as in 
the case of regression, or categorical, as in the case of classification. Information in 
matrix Y is used to guide the construction of the model for X and hence the 
name supervised. On the other hand, unsupervised modeling only utilizes the 
observed data in X and the model tries to learn the statistical patterns or trends 
available in X (Duda et al. 2001). Conventional methods for unsupervised 
learning such as principal component analysis (PCA) and hierarchical cluster 
analysis (HCA) are generally employed in exploratory analysis. 

3.4.1 Preprocessing of multivariate data 

Preprocessing of multivariate data is advocated to extract relevant information 
from a given data matrix. One of the most commonly employed procedures is 
mean-centering (also called column centering) where the goal is to model the 
actual variation in the data. In mean-centering, the mean of each measured 
variable (column mean) is substracted from each value of the respective 
variables in the data set so that resulting data matrix contains columns with zero 
mean. Other routinely used preprocessing step, especially in chemometrics, is 
unit variance (UV) scaling where each variable (column vector in the data 
matrix) is divided by the respective standard deviation. This scaling alleviates 
the effect of differences in magnitude of variables i.e., the higher magnitude 
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variables have the greater influence on the results. Combination of mean-
centering and UV-scaling can also be employed (i.e., auto scaling). 

3.4.2 PCA 

Principal Component Analysis (PCA) is a latent variables-based unsupervised 
method for exploratory analysis (Hotelling 1933). PCA uncovers simpler 
patterns from the complex inter-correlated variables. The PCA can also be seen 
as a dimensionality reduction strategy while retaining as much information as 
possible. This is achieved by creating new set of variables which are linear 
combinations of original variables to produce principal components. These 
principal components are orthogonal to each other and are uncorrelated. The 
first principal component is in the direction of the greatest variance in the data 
and subsequent components are constructed orthogonal (independent) to the 
previous ones in the direction of largest remaining variance. Usually, the first 
few latent components account for the most of the variation in the data matrix (X 
[nxm]). The data matrix, X, can be decomposed into two matrices: scores matrix 
(T) and loadings matrix (P)  

∑
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where t denotes a transpose operation on matrix. The loading matrix contains 
information on the variables while the scoring matrix contains information about 
the objects. When the data are projected into a lower dimensional space spanned 
by few principal components corresponding to maximum variation, the data 
matrix X can be written as in equation (4.2). 
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where E is unexplained variation in data matrix X and k (k << m) is the number 
of first principal components. 

3.4.3 HCA 

General clustering methods are based on the distance between the samples 
whose observed parameters are co-ordinates in the multi-dimensional space. 
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Similarity or dissimilarity of the samples is based on whether they are close or 
not in the high dimensional space. Hierarchical cluster analysis (HCA) (Jolliffe 
1986) can broadly be divided into two methods: agglomerative methods and 
divisive methods. The divisive methods start with all of the observations in one 
cluster and then proceed to split (partition) them into smaller clusters. On the 
other hand, the agglomerative methods initially treat each observation as a 
separate cluster and then proceed to fuse pair of clusters with smallest distance. 
The fusion will continue until all observations belong to one cluster. Popular 
agglomerative methods are single linkage (nearest neighbor approach), average 
linkage, complete linkage (furthest neighbor) and Ward’s method. 

Average linkage clustering uses the average similarity of observations 
between two groups as the measure between the two groups. Complete linkage 
clustering uses the furthest pair of observations between two groups to determine 
the similarity of the two groups. Single linkage clustering, on the other hand, 
computes the similarity between two groups as the similarity of the closest pair 
of observations between the two groups. Ward's linkage is distinct from all the 
other methods in that it uses an analysis of variance approach to evaluate the 
distances between clusters. 

The outcome of HCA is a hierarchy or tree-like structure (dendogram) showing 
the relations among the entities. Dendogram can be interpreted based on the 
length of branches which are proportional to distance between various clusters. 

3.4.4 PLS-DA 

PLS-DA is a widely used supervised classification algorithm when dimensionality 
reduction is needed and discrimination is sought in multivariate analysis 
(Matthew Barker 2003). In the mass spectrometry data, it is typical to observe 
that the number variables are more than the number of samples. Moreover, many 
variables are correlated. The partial least squares (PLS) method permits investigation 
of complex problem of collinearity (i.e., X-variables). The PLS-DA model establishes 
the relation between predictor variables (i.e., X matrix) and response variables 
(i.e., Y matrix) by finding latent variables in such a way that the covariance 
between the two variables is maximum. The obtained latent variables are linear 
combinations of old X-variables. Often optimum number of latent variables is 
needed and can reliably be computed from cross validation procedures. 
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3.4.5 k-NN 

k-NN is a supervised learning algorithm that works without any prior assumptions 
about the distribution from which training samples are drawn. The training data 
are vectors in the high-dimensional feature space which is partitioned into 
regions by class label. The algorithm involves storing of feature vectors and 
class labels in the learning phase. In order to estimate the class label for the test 
sample, k-NN computes distances from test sample to all other samples from 
training set and k nearest neighbours are selected. In order to compute the 
distances, distance metrics such as Euclidean distance can be employed. Test 
sample is assigned to most frequent class label among k nearest neighbours in 
high dimensional feature space. If the tie scenario arises, the ties are broken at 
random or closer neighbours are given priority. It is common to select larger k 
value to help reduce noisy effects in data and odd k value to break ties. The 
optimal choice of k is important and can be selected by cross-validation 
approach (Duda et al. 2001). 

3.4.6 SVM 

Support vector machines are a group of supervised methods introduced earlier 
by Vapnik (Vapnik 1995). The SVMs have gained popularity and have been 
successfully applied to number of applications including protein structural 
classification, image recognition, text classification, microarray gene expression 
data analysis and protein fold recognition (Brown et al. 2000, Cai et al. 2001, 
Joachims 1998). SVMs are primarily designed for binary classification problems 
where the training data with two classes are transformed into a high dimensional 
space by kernel functions. These classifiers rely on hyperplanes corresponding to 
decision functions. SVM model achieves its objective of classification by 
constructing optimal hyperplane, i.e., the hyperplane that maximises separation 
between the two classes. The solution for the classification lies in the support 
vectors that determine the maximum margin hyperplane. The margin of a linear 
classifier is the minimal distance of any training point to the hyperplane. Multi-
class problem of SVMs can be regarded as multiple binary class problems. One 
way to solve multi-class classification is using ‘one-versus-one’ approach where 
the model constructs a binary classifier for every pair of classes, resulting in k 
(k-1)/2 SVM models for k-class classification problem. 
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3.4.7 Naive Bayes 

Naive Bayes is a probability based classifier and is obtained by assuming 
conditional independence of the predictor variables given the class label in 
Bayes theorem (Hand et al. 2001). As a result, likelihood term of Bayes rules 
can be decomposed into product terms. The classifier basically ignores the 
potential inter-dependencies such as correlations among the inputs and reduces a 
complex multivariate problem to a group of simple univariate problems. For a 
given set of predictor variables, X, the model constructs posterior probability for 
any event Cj among the set of categorical levels of C. Labeling of new predictor 
variable to a particular class is based on the highest posterior probability. Naive 
Bayes methodology simplifies a classification task by allowing the computation 
of class conditional densities for each variable separately. 

3.5 Statistical hypothesis testing 

3.5.1 Student’s t-test 

Two sample t-test (Fisher Box 1987, Snedecor and Cochran 1989) is commonly 
employed to investigate whether the means of two groups of samples are 
significantly different from each other. The t-test compares difference in the two 
means in relation to existing variation in the data. The t-test, as shown in 
equation (4.3), is a ratio with numerator representing the differences between the 
means and denominator denoting the measure of variability (standard error of 
differences) in the data. 

The t-test investigates the following hypothesis: 

For null hypothesis (Ho):                 21 μμ =  

For alternative hypothesis (Ha):       21 μμ ≠  

t-statistic is given by the equation (4.3) 
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where 1y  and 2y are the means of the two samples, s1 and s2 are the standard 
deviations of the two samples, and n1 and n2 are sample sizes. 
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3.5.2 Wilcoxon test 

Wilcoxon test is a non-parametric (Mann and Whitney 1947, Wilcoxon 1945) 
equivalent of parametric t-test. The non-parametric test assumes that samples are 
randomly taken from population with symmetric frequency distribution and does 
not require that data to follow normal distribution. The test investigates 
hypothesis on median and can be applied on single sample or two samples 
(paired or unpaired samples). In single sample case, the test investigates whether 
the median of sample is different from the hypothesised median of the population. In 
two samples case, Wilcoxon test investigates median of one sample is different 
from the second one. Two common non-parametric tests are: Wilcoxon signed-
rank test for paired data and the Mann-Whitney U test (also known as Mann-
Whitney-Wilcoxon test, the Wilcoxon T test, the Wilcoxon two-sample test, or 
the Wilcoxon W test) for unpaired data. These tests are based on ranking of the 
data and looking at the ranks rather than the actual values of the observations. 

3.5.3 Analysis of variance 

Analysis variance (ANOVA) is used to compare the means of two or more 
groups using F-statistic under the assumption that sampled population are 
normally distributed (Snedecor and Cochran 1989). One-way ANOVA allows 
determining whether one given factor (factor is an independent variable whose 
values are controlled and varied, for example, in experiments) has significant 
effect in mean values of any groups in the data. 

F-test statistic computes ratio of two sources of variability as below: 

F = between group variability / within group variability 

ANOVA tests the following hypothesis: 

Null hypothesis (Ho):      kμμμμ === ...321  

Alternative hypothesis (Ha):       Means of all groups are not equal. 

The significant p value means that there is at least one group whose mean is 
different from the rest of groups. One-way ANOVA, however, does not provide 
information on which group is different from the rest. Post-hoc tests are needed 
to find which specific group(s) is different from the rest. 
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3.5.4 Multiple hypothesis testing 

The probability of making Type I errors increases rapidly along with the number 
of hypotheses tested simultaneously. This is called multiple hypothesis testing 
problem. This problem has become routine in omics studies (Farcomeni 2008) 
where large numbers of statistical tests are performed in the same data set 
independently on a number of variables. This is the condition where one needs 
to account for the multiple tests performed. For instance, when employing a t-
test for comparison of means across two groups at 5% significant level, the test 
is willing to accept 5% error i.e., if 100 hypothesis tests are performed, it is 
expected to see five significantly different variables by chance alone even if 
there are no actual differences. Many solutions (e.g., Anisimova and Yang 2007) 
are suggested to account for multiple hypotheses testing including Boneferroni 
and false discovery rate approaches. Boneferroni correction (Miller 1981), which 
controls family wise error rate, is the simplest and more conservative correction 
to account for the multiple hypothesis testing. This correction obtains acceptable 
significant level by taking into account number of hypothesis tests performed. 
This is achieved by dividing the p-value of the test by the number of tests 
performed. Other notable multiple hypothesis testing correction is false 
discovery rate (FDR) (Benjamini and Hochberg 1995) which is the expected 
proportion of Type I errors among the rejected hypotheses. It is less conservative 
approach as compared to family wise error rate correction, which is the 
probability of making at least one Type 1 error over all hypothesis tests. 

3.5.5 Correlations 

Correlation describes the degree of relationship between two variables (X and Y) 
and is measured using correlation coefficient. The value of correlation coefficient 
varies from 0 (no relationship between X and Y) to 1 (perfect linear relation 
ship) or -1 (perfect negative linear relationship). A positive value for the correlation 
implies a positive association (large values of X tend to be associated with large 
values of Y and small values of X tend to be associated with small values of Y). 
A negative value for the correlation implies a negative or inverse association 
(large values of X tend to be associated with small values of Y and vice versa). 

The most common measure of correlation is Pearson correlation (Pearson 1896) 
which is computed using equation (4.4) 
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where xyr  is correlation coefficient between X, Y variables, xi, yi are series of 
measurements on X and Y respectively, Sx and SY are standard deviations of X 
and Y respectively and x  and y  are sample means of X and Y respectively. 

The non-paramteric version of measuring correlations is Spearman's rank 
correlation (Spearman 1904) which is computed as below: 
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where ρ  is Spearman’s rank correlation coefficient, n is the number of values in 
each data set and di is the difference between the ranks of corresponding values 
Xi and Yi. 
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4. RESULTS AND DISCUSSION 
This chapter covers main results related to informatics framework for non-
targeted screening of lipids, computational aspects of functional class label 
prediction for unidentified lipids, lipid pathways instantiation strategy and 
exploratory analysis of lipidomics data. More detailed information can be found 
in the original publications I–VI. 

4.1 Lipid identification 

One of the main challenges in lipidomics is to characterize the complete lipid 
inventory present in a given biological matrix. This challenge motivated the 
present work to compute spectral libraries for the screening of potential lipid 
species. This was important especially as there were no publicly available inter-
laboratory transferable lipid libraries for the LC/MS platforms. 

4.1.1 Database content and basic search 

Lipid database (LipidDB) was constructed computationally using SMILES 
approach (Publication I). The LipidDB comprised main classes of lipids such as 
glycerophospholipids, sphingolipids, glycerolipids, and sterol esters. Specific 
contents of each lipid class are as shown in the Table 4.1. The enormous 
structural diversity found in these classes of lipids is due to the differences in 
length and degree of unsaturation in alkyl chains. Structural rules of specific 
class (i.e., glycerophospholipids) typically follow a common template which 
allowed incorporating the structural diversity computationally. The computational 
framework was based on the construction of “seed” fatty acids most likely to 
occur in living systems. Each lipid entry was assigned a scoring value based on 
the seed fatty acid composition to facilitate the searches of experimental results 
against LipidDB. The scoring value aided when search results were associated 
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with multiple hits due to isobaric and/or isomeric matches in mass as well as 
limitations in the analytical approach. Such a heuristic scoring scheme can be 
modified and the scheme may be different for different cell or tissue types. 

Table 4.1 List of different lipid classes and their specific contents in the LipidDB. 

Class Description 

Fatty Acyls Alcohols/aldehydes/carboxylic acids and CoAs 

Glycerolipids 
Mono acyl/alkyl glycerols 
Diacyl/alkyl glycerols 
Triacylglycerols 

Glycerophospholipids 

Glycerophosphocholines, 
glycerophosphoethanolamines, glycerophosphoserines, 
glycerophosphates, glyceropyrophosphates and 
glycerophosphoglycerols. 

Sphingolipids 

Sphingoid bases, various ceramides including  
ceramide phosphoinositols, ceramide phosphocholines, 
ceramide phosphoethanolamines, N-acylsphingosines, 
N-acylsphinganines, ceramide 1-phosphates and 
sulfatides. 

Sterols Cholesteryl esters 

Plasmalogens 
(glycerophospholipids) Phospholipids with vinyl ether bonds at sn-1 position 

 
LipidDB was stored in a native XML database implemented in Tamino XML 
Server (Software AG). Each lipid entry in LipidDB was described by an internal 
identifier, scoring information, class, canonical SMILES, molecular formula, 
molecular weight and isotopic distribution. XML schema for LipidDB is shown 
in the Figure 4.1. This database was extensively used for the extraction of crucial 
information using basic search interface as shown in Figure 4.2. The basic 
search allows queries on lipids species based on their molecular masses, adduct 
information, lipid classes, fatty acid chain positions, head group information and 
number of bonds. 
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Figure 4.1. XML database schema for LipidDB stored in the native Tamino XML database. 
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Figure 4.2. Basic search interface for the extraction of lipid information from the underlying 
LipidDB. 

4.1.2 Customisation of LipidDB for UPLC/MS platform 

Customisation of experimental information such as retention time, adducts and 
MS/MS fragmentation in in silico database is useful for the screening of 
potential lipids (Figure 4.3). 
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Figure 4.3. LipidDB was updated with external annotations from public databases as well 
as experimental information from UPLC/MS platform. 

Annotations from external databases: Publicly available databases such as 
PubChem (http://pubchem.ncbi.nlm.nih.gov/) provide valuable information on 
small molecules including lipids. LipidDB was annotated with physical and 
chemical properties as well as external IDs of different databases available in the 
PubChem database. 

 
Addition of retention time ranges and adducts information: In UPLC/MS-
based global lipidomics screening, retention time range information is useful 
parameter and can serve as a coarse filter to avoid false positive hits. Detailed 
tandem mass spectrometry (MS/MS)-based characterization of all peaks revealed 
information about retention time ranges for several classes of lipids. The 
information was obtained from the two dimensional m/z and retention time plot 
(Figure 5, Publication II) generated using MZmine software version 0.60. 
Characterization of class specific regions and their adduct information was based 
on MS/MS spectra. 

 
Addition of MS/MS fragmental information: In order to facilitate the 
identification of lipid species, the main fragmental peaks of acyl glycerols, 
phospholipids, cholesteryl esters and sphingolipids were included in in silico 
LipidDB. The computational library had greatly facilitated lipid identifications 

http://pubchem.ncbi.nlm.nih.gov/
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while comparing with experimental MS/MS spectra. The main fragmentation 
information of different classes of lipids is summarised as below: 

Glycerophosphocholine (PC): In the positive ion mode, PC molecular species 
form either protonated [M+H]+ or sodiated [M+Na]+ adduct ions as well as 
dominant peak at m/z 184, representing choline head group. Sodiated PC 
molecular species produce characteristic fragments at m/z [M+Na-59]+, [M+Na-
205]+ and [M+Na-183]+. To facilitate the assignment of fatty acid moieties at 
sn-1 and sn-2 positions, negative ion mode ESI-MS/MS analysis was performed. 
In general, negative ion spectra of all phospholipids classes yield four series of 
ions (Pulfer and Murphy 2003) corresponding to (1) loss of fatty acyl 
substituents as free fatty acids (2) loss of fatty acyl substituents as ketenes (3) 
fatty acyl carboxylate anions and (4) head group specific ions. In the negative 
ion mode, PC molecular species yield ions characteristic for formate adduct 
[M+HCOO]- and demethylated [M-CH3]- species as well as ions characteristic 
of the fatty-acyl group esterified at the sn-1 and sn-2 positions. Product ion 
spectra of plasmanyl (alkyl ether linkage at sn-1 position) / plasmenyl (vinyl 
ether linkage at sn-1 position) molecular species contains information predominantly 
related to fatty acyl chain at sn-2 position as well as ion reflecting the loss of sn-
2 fatty acyl chain and hence are distinguished from ester-linked phosphatidyl 
species (Khaselev and Murphy 2000, Zemski Berry and Murphy 2004). 

Glycerophosphoethanolamine (PE): Phosphatidylethanolamine, being zwitterionic, 
can be detected both in positive and negative ion mode mass spectra. 
Characterization of molecular species as their protonated species [M+H]+ and 
subsequent yielding of major fragment at m/z [M+H -141]+ (due to loss of head 
group) is used for the identification of PE molecular species in the positive ion 
mode. Ethanolamine plasmalogens are detected based on two fragment ions 
characteristic of sn-1 and sn-2 positions (Khaselev and Murphy 2000, Zemski 
Berry and Murphy 2004). In the negative ion mode, PE molecular species form 
deprotonated ([M-H]-) ion which undergoes cleavage of fatty acyls substituents 
mainly as ketenes. Head groups specific ions are observed at m/z 140 
(phosphoethanolamine ion) and 196 (i.e., loss of fatty acyl groups in PE). 

Glycerophosphatidylserine (PS): In the positive ion mode, PS is detected as 
protonated ion. Structural characterization of PS species is mainly done using 
negative ion mode ESI-MS/MS. In this mode, PS species form [M-H]- ions and 
[M-H-87]- ions, arising from the loss of serine group upon fragmentation as well 
as ions corresponding to loss of fatty acyl substituents as ketenes. 
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Glycerophosphoglycerol (PG): These are less abundant ions of phospholipids. 
In the negative ion mode, these molecular species yield [M-H]- ions as well as 
characteristic peaks of lysophospholipids-like fragments due to loss of fatty acyl 
ketenes/acids and carboxylate anions. Head group specific fragments are 
detected at m/z 227 and 171. 

Glycerophosphoric Acid (PA): PA is the simplest phospholipid and preferentially 
studied in the negative ion mode in which PA yields deprotonated ion ([M-H]-). 
Like in other phospholipids, PA forms ions corresponding to neutral loss of 
acids, neutral loss as ketenes and carboxylate anions. Head group specific ion is 
detected at m/z 153, a characteristic ion arising from loss of fatty acyls groups 
from PA species. 

Glycerophosphoinositol (PI): Negative mode ESI-MS yields [M-H]- ions of 
PI. The major fragmentation pathways involves neutral loss of fatty acid, neutral 
loss as ketenes and loss of the inositol head group (m/z 162, inositol − H2O). A 
prominent characteristic ion at m/z 241 represents a dehydrated product of 
inositol phosphate. 

Triacylglycerol (TG): ESI-MS of TG species yields ammonium adduct ions 
which are fragmented in MS/MS to diacylglycerol ([DG]+) like fragments and 
are similar to those of [DG]+ species in phospholipids due to loss of head groups 
in phospholipids. These [DG]+ species are informative in identifying TG species. 
However, in the analysis of mass spectra with co-eluting TG species, it is 
difficult to assign [DG]+ fragments to its parent TG molecular species correctly. 

Cholesteryl Ester (ChoE): ESI-MS platform is not well suited for the analysis 
of free cholesterol. ChoEs, however, form ammonium adducts in the positive ion 
mode and generate a fragment ion at m/z 369 upon collision-induced fragmentation. 

Sphingolipids: In the positive mode, ESI-MS analysis of sphingomyelin (SM) 
yields a characteristic protonated phosphocholine peak at m/z 184. PC and SM 
species are distinguished based on their characteristic m/z value (PC species 
occur at even at m/z and SM species at odd m/z). Similar to PC, sphingomyelin 
yields either [M+H]+ or [M+Na]+ ions in the positive mode, while in negative 
ion mode are [M-CH3]- and [M+ HCOO]- ions. 

In the positive ion mode, ceramides form unstable protonated molecular 
species which undergo dehydration to form [M+H-H2O]+ ion. Molecular ions in 
negative ionisation conditions are very informative in identifying the fatty acyl 
and long chain base substituents of ceramide. Ceramide species yields [M-H]- 

and [M-H-30]- (due to loss of HCHO group) ions in negative ionisation 
conditions. While positive mode analysis of long chain bases such as 
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sphingosine (d18:1), sphinganine (d18:0) and 4-D-hydroxysphinganine (t18:0) 
undergo dehydration to form fragments at m/z 282/264, 284/266 and 300/282, 
negative ion mode analysis of sphingosine and phytosphingosine moieties are 
characterised by the fragments at m/z 237/263 and 225/255/267 respectively 
(Merrill et al. 2005, Myoung Hee Lee and Jong 2003). 

4.1.3 Building of tissue-specific lipid libraries 

Comprehensive mass spectrometry studies allow building of MS/MS fragment 
libraries for different biological tissues. These libraries are useful for intra-
laboratory use in rapidly assigning lipid species coming from new experiments 
under similar conditions. Tissue-specific libraries were built using the fragmentation 
characteristics of lipids described in the section 4.1.2. Such MS/MS spectral libraries 
have limitations due to laboratory-dependent ion source conditions. Moreover, ESI 
usually produce little structural information and single set of conditions are not 
applicable for broad spectrum of lipids, or metabolites in general. 

Lipoprotein lipidomics in the context of insulin resistance and abdominal 
obesity 

Background: In order to investigate the relation between serum lipid and lipoprotein 
abnormalities with insulin resistance, sixteen non-diabetic subjects between 18 and 
60 years of age were recruited based on a healthy clinical background and modest 
alcohol consumption. Relevant clinical parameters of all subjects were measured 
using standard protocols as described in the original publication (Publication VI). 
The lipoprotein fractions such as VLDL, intermediate density lipoprotein (IDL), low 
density lipoprotein (LDL) and high density lipoprotein (HDL) were separated by 
sequential flotation in an ultracentrifuge (Taskinen et al. 1988). 

In contrast to the traditional measurement of total protein, phospholipid, 
cholesteryl esters, and TG content in a given biological sample (Vance and 
Vance 2008), modern MS-based techniques allow analysis at the molecular 
species level. The MS-based methods have become mainstay of lipidomic 
research mainly with two strategies: global and targeted approaches. Global (or 
non-targeted) approaches are directed towards identification and quantification 
of several hundreds of lipids in a high-throughput basis. In this direction, 
multiple shotgun-based MS approaches (Ejsing et al. 2009, Han & Gross 2005b) 
have been developed for wider coverage of different lipid classes. Our recent 
analysis using UPLC/MS-based platform allowed the analysis of multiple 
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abundant lipid classes (e.g., triacylglycerols, cholesterol esters, sphingomyelins, 
phosphatidylcholines) as well as bioactive lipid species (e.g., ceramides, 
plasmalogens, and lysophosphatidylcholines) simultaneously (Pietiläinen et al. 
2007). This global approach does not assume any prior knowledge on type of 
lipids to be screened and thus providing greater possibility for discovering new 
classes of lipids. The quantification of lipids in the presented methodology 
requires further optimization given that lipids cover wide concentration range of 
compounds. The targeted approaches have been developed for screening of one 
or few classes of lipids and are more quantitative. Like any other lipidomics 
methods, the UPLC/MS-based method has limitations in detecting the position 
and configuration of double bonds within the fatty acid moieties of lipid species. 
Recent developments on ozone-induced dissociation (OzID) of double bonds 
(Thomas et al. 2007) can offer a potential solution. 

 
Lipid characterization: Non-targeted profiling was performed to determine the 
individual species in each lipoprotein fraction. Tandem mass spectrometry was 
performed both in positive and negative ion modes. Negative mode analysis was 
mainly utilized to determine fatty acid composition of phospholipids. This 
extensive study, typically involved examining each individual product ion 
spectra and compiling spectral information, allowed building of spectral libraries 
for lipoprotein fractions. 

The comprehensive profiling allowed us to detect the compositional details of 
bioactive lipid species in different lipoproteins. Ceramides were found only in 
VLDL and LDL, whereas ethanolamine plasmalogens (PE(p)) were found only 
in LDL and HDL2. Lysophosphatidylcholines (lysoPC) and ether linked 
phosphatidylcholines (PC(e)) were present in all lipoproteins with the greatest 
abundance in HDL2, HDL3, and LDL (Figure 2, Publication VI). Identification 
of individual TGs in major lipoprotein particles allowed us to elucidate how 
changes in different TGs and fatty acids related to features of insulin resistance 
and abdominal obesity (Figure 1, Publication VI). 

As a summary, the SMILES-based approach allowed the construction of lipid 
database for identification of lipids in mass spectrometry analysis. The direct 
application of databases as described in section 2.4 for mass spectrometry is 
limited due to the nature of LC/MS-based analysis. The LC/MS-based spectral 
libraries are very much dependent on the type of scanning mode and 
instrumental settings and hence it is very unlikely any single database can act as 
a standard reference for all types of lipidomic analysis. This is also partly due to 
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large diversity of lipids across different organisms, tissues, and cell types. Here, 
the developed database was customized to global screening methods by addition 
of RT information, adducts, mass fragments and other annotations from external 
databases. The database was extensively used in the construction of tissue 
specific spectral libraries. 

4.2 Functional class label prediction of unidentified peaks 

Mass spectrometry-based metabolomics experiments often results in unidentified 
peaks which can hamper in the interpretation of results. The problem is even 
more challenging in the non-targeted metabolome screening experiments since 
modern MS instruments have ability to detect several hundreds of peaks in a 
given sample. Even when the identification is relatively easier for lipids if 
MS/MS spectra are obtained, non-targeted UPLC/MS approach often results in 
unidentified peaks due to analytical limitations resulting from small peaks, co-
fragmentation, ambiguous spectra, as well as complex spectra probably coming 
from modified and uncommon lipids. In fact, data analysis (univariate or 
multivariate analysis) often lead to interesting peaks which are often unidentified 
and may serve as potential biomarkers. Strategies are therefore needed to interpret 
the data when exact identifications are not available. The challenge was addressed 
computationally by predicting functional class labels for unidentified peaks 
(Publication II). This methodology serves as a helpful intermediate step in data 
analysis as well as a guide towards the further steps to identify the compounds. 

Computational methodology was demonstrated using the lipidomics data from 
our earlier twin pair study (Pietiläinen et al. 2007). The lipidomic data were 
preprocessed using an MZmine software version 0.60 (Katajamaa and Orešič, 2005, 
Katajamaa et al., 2006). Based on identifications, lipids were assigned to one of the 
following classes: glycerophosphocholines (PC) glycerophosphoethanolamines 
(PE), sphingomyelins (SM) and triacylglycerols (TG). Cross validation strategy 
was employed to assess the generalisation performance of the classifiers. Here, 
computational work involved single cross validation method for models with no 
meta-parameter estimation (i.e., random model and Naive Bayes) and double 
cross validation for models requiring metaparameter estimation (i.e., k-NN, 
SVM and PLS-DA). Details of single and double cross validation methods are 
available in original publication (Publication II). Main results of employed 
supervised classifiers (PLS/DA, SVM, Naive Bayes and k-NN) are summarised 
below. 
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4.2.1 PLS/DA 

PLS-DA is a latent variable-based supervised classifier and was investigated to 
evaluate the performance in predicting the functional labels for unlabeled peaks. 
Repeated double cross validation setting was employed to estimate the optimal 
number of latent variables, which was found to be mainly between 5 and 20 
components. The optimum number of components from inner loop of double 
cross validation was used to evaluate the performance of classifier on 
corresponding test sets in the outer loop. The errors made in predicting test set 
labels were computed and overall accuracy of the PLS-DA classifier was found 
to be 63.3%. In all, the classifier performed slightly better than both Naive 
Bayes and random models and underperformed as compared to k-NN and SVM 
models (Table 1, Publication II) 

4.2.2 SVM 

SVM classifier was used to solve multiclass-classification problem using ‘one-
against-one’ approach which trains L(L-1)/2 (L = number of levels) binary 
classifiers. The appropriate class was found by the majority voting scheme. 
Linear kernel function was utilised and the performance of classifier was 
evaluated using four-fold cross validation study with double cross validation 
being repeated for 25 times. Double cross validation was used to select an 
optimal regularisation parameter (C). The parameter corresponding to minimum 
cross validation error was varied mostly between 100 and 1000. The cross 
validation accuracy of SVM classifier was found to be 92.83 %. Prediction 
accuracies of SVM model on lipid classes were found to be better than those 
predicted by k-NN and Naive Bayes models (Table 1, Publication II). 
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Figure 4.4. Comparative cross validation performances of SVM, k-NN, PLS-DA, Naive 
Bayes and random classifiers. 

4.2.3 Naive Bayes 

Naive Bayes classifiers are probabilistic version of classifiers. It was also trained 
using four-fold cross validation repeated 25 times. Cross validation accuracy in 
class label prediction on test set as well as individual classes are shown in Table 
1 of Publication II. The performance based on cross validation accuracy of 
Naive Bayes model was found to be poor as compared to k-NN and SVM 
models. 

4.2.4 k-NN 

 k-NN classifier requires estimation of parameter k to decide appropriate class 
label for a given test sample. The value of k represents the number of nearest 
training samples in the feature space considered when deciding class label for 
the test sample. Repeated four-fold cross validation procedure was employed to 
select optimal k and performance evaluation of the k-NN classifier. The average 
cross validation accuracy of k-NN classifier for the whole test set as well as for 
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each lipid class was summarized in Table 1 of Publication II. Cross validation 
accuracy of k-NN model was 75.97 %. k-NN classifier outperformed random 
assignment model both in terms of class-specific as well as over all cross 
validation performance. Naive Bayes model showed poor cross validation 
performance as compared to k-NN model on complete test set as well as TG and 
SM classes. Better prediction accuracy of lipid classes (TG, PC and SM) 
demonstrated predictive ability of k-NN classifier in lipid data. 

Here we attempted to make use of unidentified peaks in the lipidomic analysis 
by predicting the functional labels using supervised classifiers. The k-NN and 
SVM classifiers outperformed Naive Bayes and PLS-DA classifiers. More 
robust prediction could be achieved by utilizing consensus predictions from both 
SVM and k-NN classifiers. The poor performance of Naive Bayes classifiers 
could be attributed to class-specific co-regulations of lipids. This computational 
framework complements the existing identification methodologies with predictions 
of class labels to facilitate exploratory analysis. These kinds of appproaches are 
more useful in the global screening approaches in the metabolomics where the 
identification of metabolites is a bottleneck. 

4.3 Reconstruction of lipid pathways 

Biochemical pathways are rich sources of information and may help to gain 
mechanistic links behind underlying phenotype. Properly organized and curated 
databases are required to view or construct biochemical pathways reliably. 
Databases such as KEGG PATHWAY database provide information on 
available lipid pathways besides other biochemical pathways. The database also 
provides generic, organism-independent biochemical pathways that serve as 
reference pathways for constructing organism-specific pathways. The available 
databases therefore serve as a good starting point for pathway analysis. 

4.3.1 Pathway instantiation 

Biochemical research is empowered with modern analytical techniques which 
can provide plenty of detailed molecular information. As a result, available 
pathway databases need to accommodate these changes to the resolution of 
available information. This problem is obvious particularly in the case of lipids. 
The essential building blocks for the molecular pathway instantiation were 
explained in the original publication (Publication I). 



4. RESULTS AND DISCUSSION 

53 

Each node in Figure 4.5 is either a lipid metabolite or enzyme or other 
interconnecting metabolic pathway. Grey color represents metabolites/other 
metabolic pathways and brown represents enzymes. Up- and down-regulation of 
corresponding nodes are denoted by red and green colors, respectively. Enzyme 
names are shown only if they are differentially regulated (~ 1.5 fold change). 
Glycerolipid pathway instantiation was demonstrated with TG(18:1/18:1/18:1) 
(Figure 4.5A) lipid species where experimental measurements could be mapped 
directly on pathway unlike in generic pathways and thus bridging the gap 
between MS data and existing lipid pathways. From the sphingolipid pathway 
map (Figure 4.5B), two enzymes linked to the ceramide via metabolic reactions, 
one is SGPP1 (Sphingosine-1-phosphate phosphatase 1, UniProt ID Q9JI99), the 
other GALC (galactosylceramidase, UniProt ID P54818) were upregulated in 
ob/ob. SGPP1 is involved in de novo ceramide synthesis, while GALC 
hydrolyses galactosylceramide to form ceramide. Interestingly, sphingomyelin 
SM(d18:1/18:0) a precursor of ceramide via the sphingomyelinase reaction is 
downregulated, while the sphingomyelinase level is maintained. Therefore, these 
results indicate that both glycolipids and free fatty acids may act as a source of 
the elevated ceramides in the ob/ob fatty liver.  
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Figure 4.5A, B. Instantiated pathways for Cer(d18:1/18:0) and TG(18:1/18:1/18:1). A) 
Instantiation of TG(18:1/18:1/18:1) as part of glycerolipid metabolism. (B) Instantiation of 
Cer(d18:1/18:0) as part of sphingolipid metabolism. 

4.3.2 Tissue- and context -specificity in lipid pathways 

In order to facilitate any modifications in the existing pathways, the megNET 
visualisation tool is extended to construct pathways for a given list of EC 
numbers and lipid data. The developed frame work is now being targeted 
towards building context-sensitive and tissue-specific pathways. As a part of 
new developments, a new database was compiled with all available lipid-related 
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proteins with their pathway information such as KEGG pathways and context 
information such as gene ontology terms. Knowledge about the tissue-specific 
enzymes was incorporated at transcriptomic level. The presence or absence level 
information of mRNA in tissues is expected to facilitate the development of 
tissue-specific pathways. 

4.4 Lipid profiling applications and data analysis 

High-throughput molecular profiling technologies provide an opportunity to 
measure lipids on an unprecedented scale. The large amount of data presents a 
major challenge for statistical methods to handle and assemble proper 
knowledge for biomarkers discovery efforts. These analyses typically start with 
unsupervised methods where the main aim is to get accurate knowledge on 
samples whether they really cluster or provide trends in the data. These 
techniques also serve as good visualisation tools in data analysis. Unsupervised 
methods such as principal component analysis (PCA) are useful to capture the 
trends mainly when there are correlated variables in the data (e.g., lipid data). 
Such PCA-assisted analysis of projecting samples into lower dimensional space 
from high dimensional space not only allow one to confirm the expected patterns 
in the data based on the group membership of samples but also facilitates in 
detecting outliers in samples. Supervised methods such as PLS/DA can also be 
employed to describe complex data with few latent components as well as a 
obtain set of most distinguishing variables (lipids) among the groups of samples. 

4.4.1 Lipidomic profiling of multiple tissues of the POKO mice 

Increased obesity is the one of the risk factors for type 2 diabetes. The 
relationship of how obesity causes the diabetes still remains unknown. It is 
hypothesised that when adipose tissue reaches its full capacity, the excess fat 
spills over to other metabolically active organs such as liver, pancreas and 
skeletal muscle. This condition leads to insulin resistance and diabetes (Gray and 
Vidal-Puig 2007). Earlier studies indicate that peroxisome proliferator activated 
receptor gamma (PPARγ) plays a key role in adipogenesis and insulin sensitivity 
(Koutnikova et al. 2003, Rosen et al. 1999, Spiegelman 1998). However, the 
importance of PPARγ2, which is nutritionally regulated isoform of PPARγ, is 
still not clear. 
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In order to investigate the physiological importance of PPARγ2 under positive 
energy balance conditions in ob/ob mice (PPARγ2þ/þ Lepob/Lepob) 
(Publication V), lipidomic analyses were performed on relevant tissues. Profiling 
of adipose tissue, pancreatic islets, liver, and skeletal muscle samples revealed 
distinct differences in four genotypes: WT (PPARγ2þ/þ Lepþ/Lepþ), PPARγ2 
KO (PPARγ2_/_ Lepþ/Lepþ), ob/ob (PPARγ2þ/þ Lepob/Lepob), and POKO 
(PPARγ2_/_ Lepob/Lepob). The adipose tissue from POKO mice was 
characterised by decreased triacylglycerols (TGs) and increased diacylglycerols 
(DGs). These changes were associated with increased levels of ceramides. Lipid 
profiling revealed decreased TG and DG levels and increased ceramides (Cer) 
levels in POKO islets, indicating the possible role of PPARγ2 in promoting TGs 
levels to increase the lipid-buffering capacity of β-cells thereby preventing 
lipotoxicity. Liver and skeletal muscle lipidomics revealed decreased TGs and 
increased formation of bioactive lipid species such as ceramides and 
lysophosphatidylcholines in POKO mice compared to ob/ob mice. In all, 
lipidomic profiling of four tissues showed similar pattern of changes. 

The study on 16-week-old mice revealed increased levels of ceramide in 
POKO islets as compared to ob/ob islets. The study was later extended to 
investigate whether perturbed lipid metabolism is already present in islets at 4–5 
weeks of age (Publication IV). There were no statistically significant changes in 
lipid composition among the four genotypes of mice (Figure 4.6) unlike in the 
16-week-old mice. The statistical significance was based on one way analysis of 
variance (1-way ANOVA) and associated p value was adjusted for multiple 
hypothesis testing. Analysis in other metabolically active tissues such as serum, 
liver, adipose tissue and muscle from WT, PPARγ2 KO, ob/ob and POKO mice, 
however, showed significant lipid compositional changes in 4-week-old mice. In 
serum, POKO mice had higher levels of TGs and high levels of short- and 
medium-chain PC species as compared to mice with other genotypes. 
Interestingly, the levels of long-chain TGs were lower in ob/ob mice than in WT 
and PPARγ2 KO mice. Lipidomic characterization of liver tissue revealed 
increased TG levels (mainly short- and medium chain TGs) at 4 weeks of age in 
both POKO and ob/ob mice as compared to WT mice. Ob/ob and POKO mice 
livers had increased levels of medium chain PCs when compared with WT and 
PPARγ2 KO mice. Unsaturated long-chain TGs were enriched in POKO and 
ob/ob livers. Lipidomic profiling in adipose tissue revealed similar levels of 
short-, medium- and long-chain TGs in POKO and ob/ob mice. Polyunsaturated 
long-chain TGs were enriched in POKO and ob/ob mice as compared to WT and 
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PPARγ2 KO mice. Lipidomic data from skeletal muscle showed that 4-week-old 
ob/ob mice had increased short- and medium-chain TGs as compared to other 
genotypes. Muscle from POKO and PPARγ2 KO mice contained more long-
chain TGs than WT and ob/ob muscles. Interestingly, the levels of ceramides 
and lysoPCs increased similarly in both ob/ob and POKO mice. Taken together, 
lipdomic analysis of relevant tissues from 4-week-old mice suggested abnormal 
accumulation of TGs and the resulting lipotoxicity may contribute to the severity 
of the metabolic syndrome in 16-week-old POKO mice. These studies and more 
specifically, the differences observed between the liver, serum and muscle, may 
also indicate the possibility of a hierarchical order of organs with respect to fat 
deposition and lipid-induced toxicity. 
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Figure 4.6. Lipidomic profiling of 4-wk-old mice islets from wild type, PPARγ2 KO, ob/ob 
and POKO mice (n = 5–8). No significant lipids with ANOVA p-values < 0.05 were found. 
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We further investigated the 4-wk-old lipidomics data using chemometric 
approaches to find which specific lipid variables are responsible for the 
separation of the four genotypes. Serum lipid profiles from four genotypes were 
used to demonstrate the usefulness of exploratory analysis. PCA analysis was 
performed to detect outlier samples and check whether samples of same 
genotypes are clustered together. X-block was autoscaled prior to PCA analysis. 
Separation of four genotypes was not very clear (Figure 4.7A) and more fine 
clusters were obtained using PLS/DA analysis. Outliers detected in PCA were 
removed prior to PLS/DA. The data were preprocessed by autoscaling X-block 
data and mean-centering Y-block data. Cross validation (contiguous block cross 
validation method) and Q2 scores were used to optimise the PLS/DA model. 

The variable importance in the projection (VIP) values (Wold et al. 1987) 
were computed to identify most important lipid species contributing to 
separation of four genotypes in the PLS/DA model. Top scoring VIP lipid 
variables responsible for separation each group were found. For instance, VIP 
plot of serum lipidomics for wild type is shown in Figure 4.8. Top VIP scoring 
lipids from the plot are SM(d18:1/22:0), SM(d18:1/24:1), TG(58:9), PE(36:2) 
and PE(38:6e). Similar VIP analysis was also performed on other genotypes to 
find their respective variables responsible for the separation among the 
genotypes. 
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Figure 4.7A, B. Exploratory analysis of serum lipidomic data in the ob/ob mice model for 
four genotypes. Legends WTS, PGS, OBS and POS represent wild type, PPARγ2 KO, 
ob/ob and POKO mice respectively. 
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Figure 4.8. VIP analysis of serum lipidomic data for wild type group. 

4.4.2 Lipidomic characterization of low and high HDL-C subjects 

Low levels of high density lipoprotein cholesterol (HDL-C) is a recognised risk 
factor for heart disease. However, the mechanisms of how low HDL-C is 
contributed to cardiovascular diseases are still unknown. Here, lipidomics was 
utilised to study HDL derived from well characterized high and low HDL-C 
subjects. The study comprised 47 subjects: 24 low-HDL subjects and 23 high-
HDL subjects who were participants of the Health 2000 Health Examination 
Survey. The subjects represented the extreme ends of HDL-C levels (≤ 10th and 
≥ 90th percentiles) and the HDL-C limits were as follows: for low-HDL-C men ≤ 
1.03 mmol/l, low-HDL-C women ≤ 1.23 mmol/l, high-HDL-C men ≥ 1.79 mmol/l, 
and high-HDL-C women ≥ 2.24 mmol/l. Subjects with diabetes, alcohol abuse, 
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or malignancy were excluded. Alcohol abuse was defined as >160 grams of 
alcohol / week for women and >310 grams of alcohol / week for men. 

Non-targeted lipidomic analysis was performed on low and high HDL-C 
subjects (Publication III) to uncover the differences in lipid composition and the 
resulting information was used to reconstitute HDL particles computationally. 

Univariate analysis from both clinical measurements and lipidomic profiles 
was performed in order to find the parameters characterising low and high HDL-
C subjects. Clinical and biochemical characteristics of low and high HDL-C 
subjects are summarised in (Table I, Publication III) and lipid species selected 
based on p-values (p < 0.0001) from student t-test between high and low HDL-C 
subjects are summarised in Table S1 of Publication III. Box plots for the most 
abundant lipids from lysoPC, SM, ChoE, ethanolamine plasmalogen (PEp) and 
TG classes are shown in Figure 4.10. 

Supervised classification model was built for clustering and discrimination 
using partial least squares discriminant analysis (PLS/DA). The random subsets 
cross validation method and Q2 scores were used to optimise the models. Based 
on the cross-validation, the model with two latent variables and Q2 = 0.51 was 
selected. PLS/DA scores plot revealed clear separation between the two HDL-C 
groups (Figure 4.9A). Additionally, VIP analysis was performed to discover 
lipid variables responsible for the observed separation. Identified lipids with VIP 
value greater than two were further explored using fold changes and hierarchical 
clustering analysis. Heat map of fold changes with both samples and lipid 
variables ordered by hierarchical clustering is shown in Figure 4.9B. The 
clustering was based on Euclidean distance measure. We found that top VIP 
lipid variables from PLS/DA model formed two predominant clusters: mostly 
low HDL-C subjects and mostly high HDL-C subjects. Few mis-clustered 
samples may partly be attributed to individual variability. The fold changes in 
heat map were reflecting lipid profile changes relative to the average intensity of 
lipids within low HDL-C subjects. Bar plot in Figure 4.9B shows the mean fold 
change value of top VIP lipids within HDL-C subjects as compared to low HDL-
C subjects. 

Linear association of top VIP lipid variables with measured clinical variables 
were investigated using correlation analysis. Pearson correlations were 
computed between clinical and lipid variables. Both clinical and lipid variables 
were clustered using hierarchical clustering (Figure S3, Publication III). 
Interesting correlations were observed between lipid variables and HDL-C 
clinical parameters. Concentrations of TG molecular species were negatively 
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correlated with HDL-C concentration, while the SM and lysoPC lipid species 
were positively correlated with HDL-C parameter. However, PCs did not show 
any general trend in correlation with HDL-C parameter. We further investigated 
HDL-C concentration with some top lipid variables in both low and high HDL-C 
subjects (Figure S4 and S5, Publication III). Positive correlations between 
SM(d18:1/16:0) and HDL-C were similar in low HDL-C subjects (r = 0.71, p = 
0.0001) and high HDL-C subjects (r = 0.71, p = 0.0001). Interestingly, positive 
correlation between lysoPC(18:0) and HDL-C in low HDL-C subjects (r = 0.54, 
p =0.006) disappeared in high HDL-C subjects (r = -0.06, p = 0.78). We 
observed no correlation of TG(16:0/18:1/20:1) with HDL-C in low HDL-C 
subjects (r = 0.06, p = 0.75) and negative correlation in high HDL-C subjects (r 
= -0.43, p = 0.04). Additionally, linear association was also investigated for 
ChoEs with HDL-C. No significant correlations were found with concentrations 
for ChoE(18:1) and HDL-C variable either in low HDL-C subjects (r = 0.33, p = 
0.12) or high HDL-C subjects (r = 0.02, p = 0.92). 

The lipidomic level studies enabled to have a closer look at the molecular 
level details which are used in the simulation studies. While TLC or HPLC 
methods may serve as a valuable tool to analyse class-specific changes, 
lipidomics analysis not only guided to reconstitute HDL particle using 
simulation studies but also enabled us to investigate lipid molecular composition 
(Publication III). All previous simulations in the field have been based on either 
a single-component lipid particle composed of phosphatidylcholines lipids, or a 
two-component mixture of phosphatidylcholines and cholesteryl esters. 

 
 



4. RESULTS AND DISCUSSION 

64 

A

LV1

LV
2

Low  HDL-C
High  HDL-C

-- 95% Conf. Limits

-30 -20 -10 0 10 20
-20

-15

-10

-5

0

5

10

15

20

25

Fold change 
(mean high HDL-C/mean low HDL-C

Mostly 
low HDL-C 

Mostly 
high HDL-C

-1-2 -1.5 -0.5 0 0.5 1 1.5 2

PC(O-34:3)
PC(O-36:3)
PC(18:2/18:2)
PC(O-36:2)
PC(O-34:2)
SM(d18:1/23:0)
PC(18:2/20:4)
SM(d18:1/16:0)
SM(d18:1/15:0)
SM(d18:1/23:1)
SM(d18:1/21:0)
PC(O-40:3)
lysoPC(18:1)
lysoPC(18:0)
lysoPC(22:6)
PC(O-32:1)
PC(16:0/16:0)

PC(O-36:5)
PC(O-36:4)
PC(34:0)
TG(16:0/16:1/18:1)
TG(16:0/18:1/16:0)
TG(16:0/18:1/20:1)
TG(16:0/18:1/18:1)
TG(16:0/18:2/18:1)

-2 0 2

Low HDL-C
High HDL-C

Fold change

-1 1

B

 

Figure 4.9 A. Partial least squares discriminant analysis (PLS/DA) of lipidomic profiles for 
low HDL-C and high HDL-C subjects. PLS/DA scores plot with two different HDL-C 
groups are indicated. B. Hierarchical clustering on most important VIP variables and 
samples in the heat map reflecting fold changes of lipids relative to mean intensity within 
low HDL-C group. 
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Figure 4.10. Box plots of the most abundant lipids within the TG, lysoPC, SM, ChoE and 
ethanolamine plasmalogen (PEp) classes. Concentrations are shown in mmol/l [lipid] / 
mg/dl [apoA-I]. 
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5. SUMMARY AND CONCLUSIONS 
Modern MS-based analytical technologies have generated wealth of information 
in lipidomics studies. The information presented many challenges for 
bioinformaticians due to its complexity. The goal of this thesis was to address 
such challenges in the context of non-targeted lipidomics studies based on 
UPLC/MS experimental methodologies. 

A bioinformatics approach for the construction of lipid database for major 
classes of lipids is presented. Each lipid entry in the database was assigned with 
relevant information such as lipid names including short names, SMILES, 
scores, molecular weight, monoisotopic mass, isotope distribution (Publication I). 
The database was customised for UPLC/MS experiments by incorporating the 
information such as retention time range, adducts and main fragments to screen 
for potential lipids. This database information facilitated greatly building of 
experimental tandem MS libraries for different biological tissues. An example of 
such spectral libraries was built for different lipoprotein fractions (Publication VI). 

Non-targeted metabolomic studies are often challenged by the presence of 
unknowns and hence present an additional challenge for the interpretation of 
experimental data. Frequently used supervised classification methods were 
employed for the functional prediction of class labels for unknown lipids to 
facilitate exploratory analysis as well as simplify the identification process 
(Publication II). As lipidomics goes beyond detecting the complete inventory of 
lipids, a new strategy called pathways instantiation is proposed to understand 
lipids in the context of pathways and thereby providing insights for the 
phenotype characterization (Publication I). 

Lipid profiling was successfully applied to study mouse models in the context 
of POKO mice (Publication IV and V) and humans in the context of high and 
low HDL-C subjects (Publication III). Chemometric methods such as principal 
component analysis (PCA) and partial least squares and discriminant analysis 

 



5. SUMMARY AND CONCLUSIONS 

67 

(PLS/DA) were employed for exploratory analysis as well as biomarker 
discovery in the context of different phenotypes such as characterization of high 
and low HDL-C subjects (Publication III) and POKO mice (Publication IV). 

5.1 Future perspectives 

While bioinformatics strategies presented herein facilitate lipidomic studies, the 
existing lipid informatics methods need to be extened to include more complex 
lipids and their mass spectra to databases to facilitate screening lipids such as 
steroids and glycolipids. The computational methodologies can be developed for 
the classification of unidentified metabolites for other analytical platforms. The 
novel tools are expected to integrate lipidome data with other omics level 
information in a context-dependent manner and thereby establishing lipid 
networks for underlying phenotypes. The complexity of lipidomes and their 
regulation at multiple levels makes their study a challenge for bioinformaticians 
and computational biologists. 
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Abstract
Background: Lipids are an important and highly diverse class of molecules having structural,
energy storage and signaling roles. Modern analytical technologies afford screening of many lipid
molecular species in parallel. One of the biggest challenges of lipidomics is elucidation of important
pathobiological phenomena from the integration of the large amounts of new data becoming
available.

Results: We present computational and informatics approaches to study lipid molecular profiles
in the context of known metabolic pathways and established pathophysiological responses, utilizing
information obtained from modern analytical technologies. In order to facilitate identification of
lipids, we compute the scaffold of theoretically possible lipids based on known lipid building blocks
such as polar head groups and fatty acids. Each compound entry is linked to the available
information on lipid pathways and contains the information that can be utilized for its automated
identification from high-throughput UPLC/MS-based lipidomics experiments. The utility of our
approach is demonstrated by its application to the lipidomic characterization of the fatty liver of
the genetically obese insulin resistant ob/ob mouse model. We investigate the changes of
correlation structure of the lipidome using multivariate analysis, as well as reconstruct the
pathways for specific molecular species of interest using available lipidomic and gene expression
data.

Conclusion: The methodology presented herein facilitates identification and interpretation of
high-throughput lipidomics data. In the context of the ob/ob mouse liver profiling, we have
identified the parallel associations between the elevated triacylglycerol levels and the ceramides, as
well as the putative activated ceramide-synthesis pathways.
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Background
Lipids are a diverse class of biological molecules that play
a central role as structural components of biological mem-
branes, energy reserves, and signaling molecules [1]. They
are broadly defined as hydrophobic or amphipathic small
molecules that may originate entirely or in part by carban-
ion based condensation of thioesters, and/or by carboca-
tion based condensation of isoprene units [2]. Lipids also
contribute to common pathophysiological states such as
fatty liver and lipotoxic induced insulin resistance, Alzhe-
imer's disease, atherosclerosis, and toxic manifestations of
infectious diseases [3,4]. Therefore identification and
characterization of these metabolic networks offers a
unique opportunity to devise therapeutic strategies to pre-
vent or reverse these pathological states.

While lipid-, and metabolome research in general, over
past decades was overshadowed by the progress of
genomics, recent revived and burgeoning interest in lipids
that triggered several new endeavors in lipid research illus-
trates their critical biological importance. Lipidomics as a
field aims at characterization of lipid molecular species
and their biological roles with respect to the expression of
proteins involved in lipid metabolism and function
including gene regulation [5,6].

Several useful public resources exist representing various
aspects of information on lipids, such as LIPID MAPS
[7,8], Lipid Bank [9], CyberLipids [10], and LIPIDAT [11].
The LIPID MAPS consortium introduced a nomenclature
that enables to represent a lipid compound by a unique
12-digit identifier [2]. LIPID MAPS also includes tandem
mass spectrometry (MS/MS) fragment information for
several lipid molecular species.

With the enhanced capabilities of modern MS instru-
ments and interfaces, there has been an increase in devel-
opment of global lipid analytical methods, either using
liquid chromatography mass spectrometry (LC/MS) based
methods focused on sensitive analyses of total lipid
extracts or on specific classes of metabolites [12-15], or
direct MSn scanning driven by data-dependent acquisition
[16-19] without chromatographic separation. Due to the
structural characteristics of lipids their identification from
fragment mass spectra is generally easier than for other
molecular components and today's typical global lipid
profiling analyses allows identifying of several hundred
lipid molecular species in parallel. Informatics strategies
have already been developed which utilize mass spec-
trometry based approaches in combination with database
searches to rapidly identify specific classes of lipids, such
as phospholipids [16] or PUFA-derived lipid mediators
[20]. While much further progress is still needed in the
area of lipid analytics, one of the biggest challenges is elu-

cidation of biological phenomena behind the large
amounts of lipidomics data currently available.

Advances in analytical methods, along with improved
data processing software solutions [21-25], demand
development of comprehensive lipid libraries to allow
system level identification, discovery, and subsequent
study of lipids. Integrative studies combining multi-tissue
lipidomic profiles with other levels of biological informa-
tion such as gene expression and proteomics have been
made possible due to such capabilities [26,27]. Currently
available databanks such as LIPID MAPS offer a necessary
starting point for explorations of the lipidome and a refer-
ence for validation of results. However, in context of high-
throughput lipidomic profiling and systems biology stud-
ies, the currently available online resources face threefold
challenge:

1. Due to high volumes of information available from
high-throughput lipidomics experiments, the database
system has to be efficiently linked to the analytical plat-
form generating the lipid profile data, as well as to chemo-
and bioinformatics system for compound identification
and linking the information to other levels of biological
organization to enable systems approaches.

2. Due to diversity of lipids across different organisms, tis-
sues, and cell types, it is unlikely any one database can
cover all possible lipids. A mechanism is therefore neces-
sary that facilitates identification as well as discovery of
new lipid species in biological systems from available
data.

3. Currently available pathway-level representation of lip-
ids in databases such as KEGG [28] is limited to pathway
representation of generic lipid classes, i.e. including
mainly the head group information, and not including
the fatty acid side chain information. Therefore, these
lipid databases lack the level of detail that is becoming
available by modern LC/MS based approaches.

Additionally, due to common structural features of differ-
ent lipid classes, often regulated by the same enzymes in
class-specific manner, there is a large degree of co-regula-
tion to be expected in cellular, tissue, or biofluid lipid pro-
files. In order to elucidate the changes of the organism
lipidome as a result of interventions, the data analysis and
interpretation therefore needs to balance the analysis of
global lipid pattern changes with the analysis of molecu-
lar species specific pathways.

In this paper we report a bioinformatics strategy for lipid-
omics analysis. We utilize the recently developed nomen-
clature of lipids [2] to generate a diverse scaffold of lipid
compounds represented by the Simplified Molecular
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Input Line Entry System (SMILES) representation [29,30].
Each compound entry is linked to the available informa-
tion on lipid pathways and contains the information that
can be utilized for automated identification from high-
throughput LC/MS-based lipidomics experiments. We
investigate the changes of correlation structure of the lipi-
dome using multivariate analysis, as well as reconstruct
the pathways for specific molecular instances of interest
using available lipidomic and gene expression data.

We validate our approach by investigating the lipid pro-
files associated with hepatic steatosis observed in ob/ob
mice. Our results indicate that obesity associated hepatic
steatosis involves increased liver deposition of short chain
triacylglycerol species associated with proportional
increase of reactive ceramide lipid species. Of interest, the
contribution of triacylglycerol molecular species is heter-
ogenesous as indicated by the presence of a subset of long
triacylglycerol species that does not contribute to the
development of steatosis. We also provide evidence of
specific dysregulation of ceramide synthesis pathways in
steatosis and the influence of gender on the liver lipid
composition.

Results and discussion
Lipid informatics
In this paper we primarily focus on studies of glycero-
phospholipids, sphingolipids, glycerolipids, and sterol
esters. The main structural variants among these classes
are variation within one or more fatty acid chains and the
head group (see an example in Figure 1). In order to facil-
itate automated identification of lipids from lipidomics
experiments, we used the structural rules of lipid molecu-
lar species to computationally generate a diverse set of lip-
ids from "seed" fatty acids most likely to occur in living
systems (Additional file 1 lists the seed fatty acids utilized
in this paper). Our current choice of seeds reflects bias
toward the mammalian cells, but the approach is general
enough to afford suitable modifications depending on the
area of interest.

The fatty acid seeds are expressed in terms of Simplified
Molecular Input Line Entry System (SMILES), which is a
human readable linear indexing system of atoms and
bonds, dictated by specific syntax rules [29]. The modular
nature of the lipid structure makes the SMILES representa-
tion very suitable for the task due to ease of algorithmic
manipulation of lipid (sub)structures and their modifica-
tions. While in general multiple SMILES representations
can exist for any given compound, canonical versions that
enable unique SMILES representation are available. We
utilize the Daylight canonical SMILES representation
(Daylight, Chemical information system, Inc.). We gener-
ate a generic SMILES template for different classes of lipids
and apply parsers for varying fatty acid chain lengths in

order to create all possible compounds of that class in the
given window of chosen fatty acid chain length. System-
atic names complying with nomenclature of LIPID MAPS
were generated algorithmically (Additional file 2 lists the
lipid classes generated and their sizes in the database).
Daylight SMILES Toolkit was tailored to get molecular
weights and exact masses of compounds using elemental
masses taken from literature [31].

Our approach is illustrated below using a systematic con-
struction of glycerophospholipids classes as an example:

1. Construct generic SMILES template for glycerophos-
pholipid class. SMILES template showing fatty acid seed
variables at the sn-1 and sn-2 positions and head group at
sn-3 position is:

"C(SMILES for fatty acid seed variable(R1))C(SMILES for
fatty acid seed variable (R2))COP(=O)([O-])O-X)", where
X represents SMILES for relevant part of head groups as
shown in Figure 1.

2. Use corresponding systematic names against fatty acid
seed SMILES to generate names using common name tem-
plate:

"1-name of seed variable R1-2-name of seed variable R2-
sn-glycero-3- name corresponding to X".

3. Convert SMILES into canonical SMILES.

4. From SMILES, obtain molecular formula and calculate
molecular weight.

5. Obtain isotopic distribution of that compound and tai-
lor it to the resolution of mass spectrometer.

The differences in length and degree of unsaturation in
fatty acyl/alkyl chains lead to large diversity within each
lipid class. When matching such database with the exper-
imental lipidomics results, the searches thus inevitably
result in large number of hits, both due to multiple close
matches in mass as well as due to limitations of the ana-
lytical approach. In order to facilitate sifting through the
multiple hits, we set up a heuristic scoring scheme based
on seed fatty acid composition as described in Methods.

Lipidomics data processing and identification
Our lipid profiling platform is based on non-targeted
analysis of total lipid extracts using Ultra Performance
Liquid Chromatography (UPLC) coupled to quadrupole
time of flight mass spectrometry. The platform character-
istics are described in detailed elsewhere [32]. In order to
better understand current limitations of the analytical
strategy, as well as because our computational approaches
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are adaptable to other platforms, including those using
multiple precursor and neutral loss scanning [16,18], the
analysis and data processing are described here only
briefly.

An overview of the lipidomic data flow is shown in Figure
2. We convert raw mass spectrometer files to netCDF for-
mat to enable data processing with MZmine toolbox
[21,22]. Peak detection and alignment parameters in
MZmine are set based on preliminary investigation of
platform specific characteristics such as peak shapes and
retention time variation. Following the processing, each
peak is characterized by mass-to-charge ratio (m/z) and
retention time (RT) values.

In order to facilitate automated identification of lipids
from peak lists, we compute the scaffold of theoretically
possible lipids. LipidDB is a database of lipids constructed
using SMILES, as described in the previous section. The
internal library contains the platform-specific informa-
tion about the internal standards and the lipid species
identified using UPLC/MS/MS. To ease the identification
of lipids based on the mass spectrometric data, we calcu-
late isotopic distribution for every molecular species in
both databases. The isotopic distribution is based on
observed natural abundance of each element in the chem-
ical formula [31]. Isotopic masses and abundances of
given chemical composition are predicted using Isotope
Pattern Calculator version 1.4 [33]. While the exact iso-

Structures of major glycerophospholipidsFigure 1
Structures of major glycerophospholipids. R1, R2 and X are SMILES seed variables at sn-1, sn-2 and sn-3 positions 
respectively. Head groups legend: PA = Phosphate, PPA = Pyrophosphate, PE = Phosphoethanolamine, PC = Phosphocholine, 
PS = Phosphoserine, PG = Phosphoglycerol, and PI = Phosphoinositol.
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tope patterns are kept in the database, the patterns are cor-
rected for resolution of the mass spectrometer when
matching with spectral data.

The internal library of lipids is searched first to ensure
identification of internal standards and previously identi-
fied lipids. Retention times of these lipids are used as a
constraint in lipid identification. The retention time infor-
mation in part resolves the problem of identification of
fatty acid moieties. The molecular species of the same
class and carbon composition, but of different fatty acid
composition, tend to elute at different times. The fatty
acid composition can thus be determined in separate sam-
ple runs using tandem mass spectrometry (UPLC/MS/MS)
in negative (phospho- or sphingolipids) or positive
(acylglycerols) ion mode. In order not to compromise

peak shapes in chromatographic direction, all reference
UPLC/MS/MS spectra are generated in separate runs,
which are set up so that ions selected for MS/MS analysis
are well separated in elution time. We found the variation
in retention times for the method described to be under
1.25%, as tested for multiple tissue or cell types over an
extended period of time (over 18 months) for multiple
UPLC C18 columns [32], therefore confirming retention
time is a reliable parameter for the purpose of identifica-
tion.

In the database, the redundancy due to varying fatty acid
composition for the same molecular weight can be repre-
sented using the common notation showing total number
of carbons and double bonds. For example, a diacylglyc-
erophosphocholine species GPCho(16:0/

Lipidomic platform data flowFigure 2
Lipidomic platform data flow. Summary of our lipidomic platform data flow from raw peak data to interpretation of spec-
tra involving MZmine based data processing, lipid identification, quantification and multivariate data analysis.
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20:4(5Z,8Z,11Z,14Z)) (named as 1-hexadecanoyl-2-
(5Z,8Z,11Z,14Z-eicosatetraenoyl)-sn-glycero-3-phospho-
choline using LIPID MAPS nomenclature) could be repre-
sented also as GPCho(36:4). However, GPCho(36:4)
could also represent other molecular species, for example
GPCho(20:4(5Z,8Z,11Z,14Z)/16:0) or
GPCho(18:2(9Z,12Z)/18:2(9Z,12Z)).

Peaks not identified by internal library are searched in Lip-
idDB. Lipid identifications with LipidDB involve match-
ing m/z, comparing RT range (based on knowledge on
lipids from internal library), checking heuristic score and/
or MS/MS. Matching of m/z value is a pre-requisite for
identification. In some cases, isobaric species are distin-
guished based on retention time ranges and MS/MS. Pro-
tonated phosphocholine species are identified at even m/
z and sphingomyelin species are identified at odd m/z val-
ues. We also check if identifications originate from the iso-
topic masses at the same retention time. Ultimately,
identification of isobaric species, if not separated chroma-
tographically, also depends on the mass resolution and
type of the mass spectrometer. Specifically, we have
observed co-fragmentation using UPLC/MS/MS in phos-
phatidylcholines and ethanolamine plasmalogens in a
few instances. In such cases, instruments with MSn capa-
bility and high resolution detectors (i.e., Orbitrap or
FTMS) may be necessary for exact identification.

Reconstruction of lipid molecular pathways
Following lipidomics data processing and identification,
data analysis usually includes exploration of data as well
as of their putative biological meaning. In addition to the
level changes of specific metabolites, which can be ana-
lyzed using univariate statistical approaches, co-regula-
tion of metabolites is also of interest. The
interdependence of metabolites is driven by the underly-
ing biophysical mechanisms such as chemical equilib-
rium, mass conservation, or asymmetric control
distribution [34]. Since the lipids of the same class may be
in part regulated by the same enzymes, high degree of
within-class co-regulation is to be expected. Correlation
network analysis has proved to be a valuable tool for
exploring and visualizing co-regulations in metabolomics
data [26,35,36]. A matrix of correlation coefficients, an
indirect measure of distance between metabolites [37], is
computed using pair-wise correlation between the corre-
sponding concentrations of lipids in a given sample. The
matrix is visualized in the form of metabolite correlation
network based on a certain threshold criteria over correla-
tion coefficient values.

In order to gain insight into the molecular mechanisms
underlying the observed co-regulation (or similarly for de-
regulation in specific context), the clustered lipids need to
be mapped into the known pathways. Kyoto Encyclopedia

of Genes and Genomes (KEGG) [22] has been the main
source of information on metabolic pathways. However,
KEGG lipid pathway representation is generally limited to
generic lipid classes, i.e., including mainly the head-group
information, and not including the fatty acid side-chain
information. As the level of information from MS studies
is specific instance of subclass (e.g., 1-octadecanoyl-2-
dodecanoyl-sn-glycero-3-phosphocholine) and not the
common sub class itself (e.g., 1-acyl-2-acyl-sn-glycero-3-
phosphocholine), a mechanism is necessary to convert
generic enzymatic and pathway information from KEGG
database to a specific instance under study. As we have
implemented LIPID MAPS nomenclature, conversion of
KEGG generic names into LIPID MAPS common subclass
names and in turn to specific instance names allows map-
ping of identified lipids into pathways directly from MS-
based studies with other levels of information.

We solve the limitation of generic lipid pathways by
instantiating KEGG (or related) pathways for specific lipid
molecular species of interest (Figure 3). In practice, our
strategy to represent KEGG pathways involves the follow-
ing steps:

1. Convert generic names of lipids in the KEGG reference
lipid pathway into systematic common subclass names
which enable to convert into systematic name for particu-
lar lipid as per LIPID MAPS consortium.

2. Construct XML schema to represent lipid pathway with
systematic names of lipids and known EC numbers.

3. Generate XML document for a queried lipid.

4. Use megNet pathway visualization tool [38] to display
the correlation network of lipids linked to pathways and
ontologies.

Such approach affords visualization of pathways of inter-
est in the context of observed biological data, including
data from other levels such as microarray experiments.
Presently we have not added additional level of quantita-
tive analysis based on instantiated pathway information,
but this is one of future considerations. One should bear
in mind the complexity of such challenge as lipids are reg-
ulated systemically and their levels reflect complex sys-
temic balance, therefore their pathways generally involve
multiple tissues and complex dynamics [39].

Lipid profiling of liver tissue in an obese mouse model
We illustrate the combined informatics and analytical
approach on the liver of ob/ob mice. The ob/ob is an
obese, insulin resistant mouse model resulting from the
spontaneous mutation of the ob gene encoding the leptin
protein [40]. The ob/ob mouse is commonly studied as a
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model for early onset of severe obesity, insulin resistance
and fatty liver. Figure 4 shows typical liver tissue images of
ob/ob and wild type (WT) mouse, respectively. Lipid
droplet accumulation is clearly seen in the obese model.
Obesity is associated with deposition of triacylglycerols
(TGs) in the liver tissue (hepatosteatosis). Fatty liver
develops as a result of increased free fatty acid (FFA) avail-
ability in the context of obesity and insulin resistance
associated to increased hepatic glucose production [1].
Elevated hepatic FFA levels, which further lead to
increased esterification into TGs, may result from the
combined effect of increased influx of plasma FFAs,
increased de novo FFAs, and decreased β-oxidation [41].

The following genotypes were used for analysis: Wild Type
(WT) and ob/ob. The study included 12 ob/ob (6 male, 6
female) and 10 WT (7 male, 3 female) mice of 16-week

age. Figure 5 lists the results of ULPC/MS lipidomic profil-
ing for selected molecular species, out of total 192 identi-
fied molecular species. Notable changes are upregulation
in the ob/ob livers of tri- and di-acylglycerol species, dia-
cylphosphoglycerols as well as specific reactive ceramide
species. Sphingomyelins, the substrate for ceramide syn-
thesis, appeared downregulated in the liver of the ob/ob
mice compared to their lean littermates. The increase of
acylglycerols should therefore be considered the hallmark
leading to the development of the fatty liver observed in
the ob/ob mice [42,43].

In order to include the correlation structure of lipidomics
data into the analysis and therefore explore possible asso-
ciations between different lipid molecular species, we
applied the partial least squares discriminant analysis
(PLS/DA) [44,45] using the SIMPLS algorithm to calculate

Lipid pathway instantiationFigure 3
Lipid pathway instantiation. An illustrative example of instantiation of two co-regulated molecular species in the context of 
known lipid pathways. Upregulated species and enzymes (triangles) are in red, downregulated in green, unchanged in black.
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the model [46]. PLS/DA is a common approach to multi-
variate metabolomics data analysis [47,48]. PLS analysis
maximizes the product of variance matrix of measured
variables (e.g. lipid profile data) and correlation of meas-
ured data with properties of interest (e.g. ob/ob and WT
groups). Venetian blinds cross-validation method [49]
(with 4 splits) and Q2 scores were used to optimize the
model. Two latent variables were included in the model
with the Q2 = 58%, which can be considered as a signifi-
cant model. Figure 6A shows the score plot of the PLS/DA
model, with as expected clear separation between the gen-
otypes.

The loadings in Figure 6B indicated that the observed sep-
aration is largely due to accumulation of acylglycerols in
ob/ob mouse livers. Of interest most of the ceramides
(including the most abundant Cer(d18:1/18:0) and
Cer(d18:1/16:0) species) correlated with the short chain
triacylglycerols, suggesting accumulation of reactive cera-
mide species increase in the liver of the ob/ob mice pro-
portionally to the accumulation of triacylglycerol levels.
Curiously, similar correlation between ceramides and tri-
acylglicerols was lost when considering the pool of long
chain triacylglycerols. Additionally, we observed the sepa-
ration of lipid profiles based upon gender basis. The cor-
relation between triacylglycerols and ceramides is
particularly interesting since reactive ceramide species are
believed to play an important role in development of
obesity associated insulin resistance [50]. Therefore our
results suggest that measurement of triacylglycerol in liver
may be a good indirect indicator of other reactive lipid

species pathogenically relevant for the development of
insulin resistance.

We also investigated linear associations among lipid spe-
cies by generating a correlation network. In the network,
edges between the nodes representing lipid species are
drawn if the Pearson correlation meets the cutoff criterion
(r > 0.75 and p-value < 0.001). The nodes are colored
based on fold change values comparing the mean lipid
levels of obese and WT mice. Interestingly, the network
corresponding to WT mouse liver sample contains almost
double the number of edges (2073) as compared to the
number of edges (1055) in the ob/ob mouse liver sample
network. Selected clusters of co-regulated lipids corre-
sponding to wild type and ob/ob mouse liver samples are
shown in Figure 7. The observed decrease in the number
of correlations among the lipid species under ob/ob con-
dition as compared to WT suggests decreased level of co-
regulation among lipid species in the ob/ob mouse liver
tissue, which can be attributed to ob/ob organ-specific
preferential enrichment of subset of lipids. Confirming
PLS/DA results, association of ceramides and triacylglycer-
ols is also observed using correlation network analysis.

We then selected two lipid species, TG(54:3) and
Cer(d18:1/18:0) from the Figure 7B, and mapped them
into the glycerolipid [51] and sphingolipid [52] reference
pathways, respectively (Figure 8). While the notation
TG(54:3) is redundant as there may be several corre-
sponding lipid molecular species with the same func-
tional group, total number of acyl carbons and double

Wild type and ob/ob mice liver cellsFigure 4
Wild type and ob/ob mice liver cells. Liver tissue images of wild type (WT) and ob/ob mice.
Page 8 of 15
(page number not for citation purposes)

I/8

http://www.biomedcentral.com/1752-0509/1/12


BMC Systems Biology 2007, 1:12 http://www.biomedcentral.com/1752-0509/1/12

Page 9 of 15
(page number not for citation purposes)

Selected liver lipid profiles from the ob/ob mouse modelFigure 5
Selected liver lipid profiles from the ob/ob mouse model. Array view of the lipid profiles. The changes are relative to 
the median intensity of individual molecular species within the Wild Type group. The p-values were calculated based on two-
sided t-test, conservatively adjusted by a Bonfferoni correction for the total number of 192 identified lipids: *(p < 0.05), **(p < 
0.01), ***(p < 0.001).
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bonds, we selected one particular instance, TG(18:1/18:1/
18:1), for pathway representation. The Figure 8A shows
how this particular lipid species is located in the enzy-
matic system of the glycerolipid pathway. The other path-
way, sphingolipid pathway, is instantiated from the co-
regulated network with the ceramide lipid species
Cer(d18:1/18:0). We utilize for illustration the only pub-
licly available liver ob/ob mouse gene expression data
from ChipperDB [53], obtained from 2 month old male
mice.

From the sphingolipid pathway map (Figure 8B) two
enzymes linked to the ceramide via metabolic reactions,
one is SGPP1 (Sphingosine-1-phosphate phosphatase 1,
UniprotID Q9JI99), the other GALC (galactosylcerami-
dase, UniprotID P54818) were upregulated in ob/ob.
SGPP1 is involved in de novo ceramide synthesis, while
GALC is involved in release of ceramide from glycosphin-
golipids. Interestingly, sphingomyelin SM(d18:1/18:0) as
the known precursor of ceramide via the sphingomyeli-
nase enzymatic action is downregulated, while the sphin-
gomyelinase level is maintained. Therefore, these results
indicate that both glycolipids and free fatty acids may con-
tribute as a source of the elevated ceramides observed in
the ob/ob fatty liver. The elevated fatty acid flux into the
peripheral tissues is a known factor leading to increased
ceramide synthesis [50]. In contrast, mobilization of gly-
cosphingolipids for the synthesis of ceramide has not yet
been characterized in context of obesity or insulin resist-

ance, although the importance of glycosphingolipids in
regulation of insulin sensitivity has been recognized [54].
This is now clearly one area to be investigated further.

Conclusion
Our lipid informatics strategy greatly facilitated interpre-
tation of ob/ob mouse liver lipidomic profiles which
resulted in identification of several lipid molecular spe-
cies. Notable changes in mean lipid levels comparing
obese and their normal littermates among the identified
lipids included upregulation of tri- and di-acylglycerol
species, diacylphosphoglycerols and specific ceramide
species, and downregulation of sphingomyelins in ob/ob
mice. Correlation network analysis revealed decreased
level of co-regulation among lipid species in the ob/ob
condition reflecting the specific enrichment of subset of
lipids. We observed associations of short and medium
chain triacylglycerols and ceramides, both in ob/ob and
WT mice, although these species were significantly upreg-
ulated in ob/ob mice. The pathway instantiation of spe-
cific lipid molecular species in combination to available
gene expression data revealed that both glycolipids and
free fatty acids are the sources of elevated ceramides in ob/
ob fatty liver.

Methods
Database implementation
The lipid data is stored in a native XML database imple-
mented in Tamino XML Server (Software AG). Each com-

PLS/DA analysis of the ob/ob mouse modelFigure 6
PLS/DA analysis of the ob/ob mouse model. (A) Score plot reveals genotype differences, as well as gender specific differ-
ences. (B) Loadings reveal major lipid classes associated with genotype differences.
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Correlation networks for ob/ob and WT mouse liver lipid profilesFigure 7
Correlation networks for ob/ob and WT mouse liver lipid profiles. Selected co-regulated cluster of lipid molecular 
species, including ceramides and acylglycerols. This network is based on Pearson correlation coefficient, r > 0.75 and statistic 
p-value < 0.001. Colored nodes in red (up regulation), green (down regulation) and black (no change) are based on 1.5-fold 
change cut off on mean value comparisons for ob/ob vs. WT mice. (A) Correlation network for WT mouse liver lipidomic data 
(B) Correlation network for ob/ob mouse liver lipidomic data.
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Instantiated pathways for Cer(d18:1/18:0) and TG(18:1/18:1/18:1)Figure 8
Instantiated pathways for Cer(d18:1/18:0) and TG(18:1/18:1/18:1). Each node represents either lipid metabolite or 
enzyme or other interconnecting metabolism. Grey color represents metabolites/other metabolism and brown represents 
enzymes. Up and down regulation of corresponding nodes are denoted by red and green colors, respectively. Enzyme names 
are shown only if they are differentially regulated (~1.5 fold change). A) Instantiation of TG(18:1/18:1/18:1) as part of glyceroli-
pid metabolism. (B) Instantiation of Cer(d18:1/18:0) as part of sphingolipid metabolism.
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pound entry in the database is described by an internal
identifier, scoring information, class, canonical SMILES,
molecular formula, molecular weight and isotopic distri-
bution. Perl scripts were developed to convert the data
into XML documents. Resulting XML documents are
loaded using mass-loading tool of the Tamino database.

In the course of implementing the above steps we made
use of XMLSPY software (Altova, Inc.) and Tamino
Schema Editor Software (Software AG) for the construc-
tion and validation of logical and physical schemas,
respectively.

Heuristic lipid database scoring
In order to facilitate database searches, an assigned scor-
ing value for each compound in the database is computed
from scoring values of seed fatty acid chains from which
that compound is formed. Common factors considered
while assigning the scoring to seed fatty acid chains are
natural abundance of the fatty acid and odd/even number
of carbon atoms present in a fatty acid chain. In addition,
different type of bonding (e.g. linked via ether bonds) of
fatty acids to glycerol back bone carbon gets different
score. The lesser the score the more likely the compound
is found in the nature. The total score of a lipid is then a
product of all fatty acid scores. Random score S of any
lipid compound with one or more fatty acid chains whose
score variables Vi (at Sn1 position), Vj (at Sn2 position)
and Vk(at Sn3 position) is obtained as follows

Animal model background information
Animals were housed at a density of four animals per cage
in a temperature-controlled room (20–22fC) with 12-h
light/dark cycles. Food and water were available ad libi-
tum. All animal protocols used in this study were
approved by the UK Home Office and the University of
Cambridge.

The following genotypes were used for analysis: WT (Lep
+/Lep +) and ob/ob (Lep ob/Lep ob). The study included
12 ob/ob (6 male, 6 female) and 10 WT (7 male, 3
female) mice of 16-week age. Genotyping for the point
mutation in the ob gene was performed by PCR using
standard protocols.

For light microscopy analysis, liver tissues were carefully
dissected and fixed in 10% formalin. Tissue was embed-
ded in paraffin and sectioned using a standard microtome
(Leica RM2125RT, Leica, UK). Sections were stained with
hematoxylin and eosin (H&E) using standard protocols.

Lipidomic analysis
An aliquot of 20 µl of an internal standard mixture, 50 µl
of 0.15 M sodium chloride and of chloroform: methanol
(2:1) (200 µl) was added to the weighed (20–30 mg) tis-
sue sample. The standard mixture contains the following
lipids: GPCho(17:0/17:0) (10 µg/ml), GPEtn(17:0/17:0)
(90 µ/ml), GPCho(17:0/0:0) (320 µg/ml), Cer(d18:1/
17:0) (90 µg/ml) and TG(17:0/17:0/17:0) (100 µg/ml).

The sample was homogenized and vortexed (2 min for
liver or 15 sec for islets)) and after 1 hour for liver or 20
min for islets standing centrifuged at 10000 RPM for 3
min. From the separated lower phase, an aliquot was
mixed with 10 µl of a labeled standard mixture (10 µg/ml
GPCho(16:0/0:0-D3), GPCho(16:0/16:0-D6) and
TG(16:0/16:0/16:0-13C3) and 0.5–1.0 µl injection was
used for LC/MS analysis.

Total lipid extracts were analysed on a Waters Q-Tof Pre-
mier mass spectrometer combined with an Acquity Ultra
Performance LC™ (UPLC). The column, which was kept at
50°C, was an Acquity UPLC™ BEH C18 10 × 50 mm with
1.7 µm particles. The binary solvent system (flow rate
0.200 ml/min) included A. water (1% 1 M NH4Ac, 0.1%
HCOOH) and B. LC/MS grade (Rathburn) acetonitrile/
isopropanol (5:2, 1% 1 M NH4Ac, 0.1% HCOOH). The
gradient started from 65% A/35% B, reached 100% B in 6
min and remained there for the next 7 min. The total run
time per sample including a 5 min re-equilibration step
was 18 min. The temperature of the sample organizer was
set at 10°C.

Mass spectrometry was carried out on Q-Tof Premier
(Waters, Inc.) run in ESI+ mode. The data was collected
over the mass range of m/z 300–1200 with a scan dura-
tion of 0.2 sec. The source temperature was set at 120°C
and nitrogen was used as desolvation gas (800 L/h) at
250°C. The voltages of the sampling cone and capillary
were 39 V and 3.2 kV, respectively. Reserpine (50 µg/L)
was used as the lock spray reference compound (5 µl/min;
10 sec scan frequency).

Lipid identification was performed using tandem mass
spectrometry in negative and positive ion mode, as
recently described [32].
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Abbreviations: ChoE – cholesteryl ester; FCho – free cholesterol; FDR – false discovery rate ; 

HDL-C – high-density lipoprotein cholesterol; LDL-C – low-density lipoprotein cholesterol; 

lysoPC – lysophosphatidylcholine; MS – mass spectrometry; PC – phosphatidylcholine; PE – 

phosphatidylethanolamine; PLS/DA – partial least square discriminant analysis; RCT – reverse 

cholesterol transport; SM – sphingomyelin; TG – triacylglycerol; UPLC
TM

 – Ultra Performance 

Liquid Chromatography. 
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Low level of high density lipoprotein cholesterol (HDL-C) is a powerful risk factor for 

cardiovascular disease. However, despite the reported key role of apolipoproteins specifically 

apoA-I in HDL metabolism, lipid molecular composition of HDL particles in subjects with 

high and low HDL-C levels is currently unknown. Here lipidomics was used to study HDL 

derived from well characterized high and low HDL-C subjects. Low HDL-C subjects had 

elevated triacylglycerols and diminished lysophosphatidylcholines and sphingomyelins. Using 

information about the lipid composition of HDL particles in these two groups, we 

reconstituted HDL particles in silico by performing large scale molecular dynamics 

simulations. In addition to confirming the measured change in particle size, we found that 

the changes in lipid composition also induced specific spatial distributions of lipids within the 

HDL particles, including higher amount of triacylglycerols at the surface of HDL particles in 

low HDL-C subjects. Our findings have important implications for understanding HDL 

metabolism and function. For the first time we demonstrate the power of combining 

molecular profiling of lipoproteins with dynamic modeling of lipoprotein structure. 

 

Keywords: High Density Lipoprotein / lipidomics / lipid metabolism / molecular dynamics 
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 4 

INTRODUCTION 

High-density lipoprotein (HDL) is one of the five major lipoproteins (chylomicrons, VLDL, IDL, 

LDL, HDL). HDL is the smallest and densest of the lipoproteins because it contains the highest 

proportion of protein. Low level of HDL cholesterol (HDL-C) is a powerful risk factor for 

cardiovascular disease (1-3). Accumulating evidence suggests, however, that HDL-C alone may 

not be an adequate marker of atheroprotection. HDLs are compositionally and functionally diverse 

lipoprotein particles, which needs to be taken into account in the evaluation of cardiovascular risk 

(4, 5). Recent study of HDL proteome revealed many important changes in the protein 

composition of HDL in cardiovascular patients, without changes in serum HDL-C (6). 

 

Detailed characterization of lipoprotein fractions and changes in their molecular lipid sprofile may 

help identifying novel biomarkers in lipid metabolism (7). Main lipid constituents of HDL 

particles include glycerophospholipids, cholesteryl esters (ChoE), sphingomyelins (SM) and 

triacylglycerols (TG). Lysophosphatidylcholines (lysoPC) are known to be associated with pro-

atherogenic conditions (8). Enrichment of HDL phospholipids such as phosphatidylcholines (PC) 

and SM improves the net efflux of cholesterol from scavenger receptor-BI  expressing cells (9) and 

phospholipid composition may have a major impact in the process of reverse cholesterol transport 

(RCT) (10). We also demonstrated using HDL derived either from low or high HDL-C subjects 

that cholesterol efflux from human THP-1 macrophages correlated with phospholipids, particle 

size and particle mass of HDL (11). This is consistent with earlier efflux studies demonstrating that 

the phospholipid content of HDL is an important determinant of cholesterol egress (12, 13). 

Additionally, the activity of HDL in the first step of RCT is affected by fatty acyl chain length of 
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 5 

the phospholipids (14). Together, the information on detailed lipid molecular composition of HDL 

may provide better insights into the mechanisms behind the anti-atherogenic role of HDL particles. 

 

Conventional lipoprotein analyses have relied on analyses of total protein, phospholipids, free 

cholesterol, ChoE and TG content (15). However, molecular level concentrations may provide 

more precise markers of specific metabolic phenotypes than total lipid class concentrations (16). 

Recent advances in mass spectrometry (MS) based analytical platforms and bioinformatics 

approaches for managing large volumes of the data have made it possible to study lipid species at 

the molecular level (17, 18). The lipidomics platform based on Ultra Performance Liquid 

Chromatography Mass Spectrometry (UPLC
TM

/MS) was recently utilized to characterize 

molecular lipids including triacylglycerols, glycerophospholipids, sphingomyelins, cholesteryl 

esters and ceramides in different lipoprotein fractions (16). 

 

Lipid molecular composition of HDL particles in subjects with high and low HDL-cholesterol 

levels has not been studied systematically. Here we combine clinical cohort study and global 

lipidomics with molecular simulations of HDL particles. We apply UPLC/MS-based lipidomics to 

study HDL fractions from well characterized high and low HDL-C subjects from a large Finnish 

population cohort and identify many specific changes in HDL lipidomes between subjects with 

high and low HDL-C. Using information about the lipid composition of HDL particles in these two 

groups, we reconstitute HDL particles in silico by performing large scale molecular dynamics 

simulations. In addition to confirming the measured change in particle size, we show that HDL 

particles derived from high HDL-C subjects have surprisingly different spatial distribution of 

triacylglycerols.  
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MATERIALS AND METHODS 
 
Study subjects 

The study comprised 47 subjects: 24 low-HDL subjects and 23 high-HDL subjects who were 

participants of the Health 2000 Health Examination Survey (19). The subjects represented the 

extreme ends of HDL-C levels (≤ 10
th

 and ≥ 90
th

 percentiles) and the HDL-C limits were as 

follows: for low-HDL-C men ≤ 1.03 mmol/l, low-HDL-C women ≤ 1.23 mmol/l, high-HDL-C 

men ≥ 1.79 mmol/l, and high-HDL-C women ≥ 2.24 mmol/l. Subjects with diabetes, alcohol 

abuse, or malignancy were excluded. Alcohol abuse was defined as >160 grams of alcohol / week 

for women and >310 grams of alcohol / week for men. In addition, subjects using systemic 

estrogen, corticosteroid therapy, statins or other drugs affecting HDL metabolism were excluded. 

Each study subject gave a written informed consent before participating in the study. The samples 

were collected in accordance with the Helsinki declaration and the ethics committees of the 

participating centers approved the study design.  

 

Lipoprotein separation and characterization 

HDL for the lipidomic analysis was separated from plasma samples by ultracentrifugation (20), 

HDL subspecies distribution and HDL mean particle size were determined with native gradient gel 

electrophoresis (21) with minor modifications as previously described (11). The molecular size 

intervals for HDL subspecies 2b, 2a, 3a, 3b, and 3c were used according to Blanche et al. (21), and 

for each subspecies, the relative area under the densitometric scan is reported. HDL mean particle 

size was calculated by multiplying the mean size of each HDL subclass by its relative area under 

the densitometric scan (22). LDL peak particle size was measured with gradient gel electrophoresis 

as previously described in detail (23).  
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Biochemical analyses 

Venous blood samples were drawn after an over-night fast. Serum and EDTA plasma samples 

were stored at -70°C before analysis. Serum total cholesterol (TC), TG, and HDL-C were 

measured with Olympus AU400 clinical chemistry analyzer (Olympus, Hamburg, Germany) by 

fully enzymatic methods (Olympus kits OSR 6116 and 6133 for TC and TG, respectively, and 

Roche Diagnostics kit 3030024 for HDL-C (Roche Diagnostics GmbH, Mannheim, Germany)). 

LDL-C was calculated using the Friedewald formula.(24) Concentrations of apoA-I and 

apolipoprotein B (apoB) were measured with Olympus AU400 analyser by immunoturbidometric 

methods (kits 64265 and 67249 from Orion Diagnostica, Espoo, Finland). Serum apolipoprotein 

A-II (apoA-II) was measured with Cobas Mira analyser (Hoffman-La Roche, Basel, Switzerland) 

immunoturbidometrically (Wako Chemicals GmbH, Neuss, Germany, and own polyclonal 

antibody produced in rabbits against purified human apoA-II). Serum apoE concentration was 

quantitated by ELISA (25). Plasma glucose was measured by the glucose dehydrogenase method 

(Merck Diagnostica, Darmstadt, Germany). Plasma insulin was measured by radioimmunoassay 

(Pharmacia AB, Uppsala, Sweden).  

 

Phospholipid transfer protein (PLTP) activity was measured using the radiometric assay as 

previously described (26), with minor modifications (27). PLTP concentration was measured with 

ELISA (28). Cholesterol ester transfer protein (CETP) activity was measured with radiometric 

assay as described by Groener et al. (29). Paraoxonase activity was measured with 

spectrophotometry (30). Nitrotyrosine concentration was measured with ELISA (HyCult 

biotechnology kit HK 501 Uden, The Netherlands). The measurements of IL-6, TNF-α and CRP 

were done using the Immunochemiluminometric assay (Immulite, DPC, Siemens Healthcare 

Diagnostics, USA). 
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Blood pressure values are the mean values from three consecutive measurements carried out in 1-2 

minutes intervals. Data on alcohol consumption was collected from questionnaires filled in by the 

study subjects.  

 

Lipidomic analysis 

An internal standard mixture containing 10 lipid compounds was added to each sample (20 µl of 

total HDL fraction). Lipids were extracted with chloroform / methanol (2:1, v/v, 100µl) solvent. 

The samples were centrifuged (10000 rpm, 3 min) and 60µl of the lower lipid extract was taken 

into an HPLC vial insert and another standard mixture containing 3 labelled lipid compounds was 

added. The internal standards include PC(17:0/0:0), PC(17:0/17:0), PE(17:0/17:0), 

PG(17:0/17:0)[rac], Cer(d18:1/17:0), PS(17:0/17:0), PA(17:0/17:0) and D-erythro-Sphingosine-1-

Phosphate (C17 Base) from Avanti Polar Lipids (Alabaster, AL) and MG(17:0/0:0/0:0)[rac], 

DG(17:0/17:0/0:0)[rac] and TG(17:0/17:0/17:0) from Larodan Fine Chemicals (Malmö, Sweden). 

The labeled standards include PC(16:0/0:0-D3), PC(16:0/16:0-D6) and TG(16:0/16:0/16:0-
13

C3 

from Larodan Fine Chemicals (Malmö, Sweden). 

 

Lipid extracts (2 µl injections) were analysed on a Waters Q-Tof Premier mass spectrometer 

combined with an Acquity Ultra Performance LC™ (UPLC) (Waters Inc., Milford, MA). The 

column was an Acquity UPLC
TM

 BEH C18 10 × 50 mm with 1.7 µm particles and the gradient 

solvent system included water (1% 1M NH4Ac, 0.1% HCOOH) and LC/MS grade (Rathburn) 

acetonitrile/ isopropanol (5:2, 1% 1M NH4Ac, 0.1% HCOOH). The total run time including a 5 

min re-equilibration step was 18 min. The flow rate was 0.200 ml/min. The data were collected at 

mass range of m/z 300-1200 with a scan duration of 0.2 sec in ESI+ mode. 
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Statistical methods 

Statistical analyses were performed using a freely available R language (http://www.r-

project.org/). False discovery rate (FDR) q-values were computed using statistical methods from R 

package „qvalue‟. Correlation analysis was performed using „gplots‟ library from R package. 

 

Chemometric modeling of data 

Supervised model was built for clustering and discrimination using partial least squares 

discriminant analysis (PLS/DA) (31, 32). The  PLS/DA model attempts to get  the latent variables 

by maximizing the covariance between measured data (x)  (e.g., lipid profile data) and response 

variables of interest (y) (e.g. high HDL-C and low HDL-C groups). The model was built by scaling 

x data to unit variance and zero mean and y data to zero mean. The random subsets cross 

validation method (33) and Q
2
 scores were used to optimize the models. The VIP (variable 

importance in the projection) values(34) were computed to identify most important lipid species 

contributing to separation of low- and high- HDL-C groups in the PLS/DA model. PLS/DA model 

was built using Matlab, version 7.0 (Mathworks, Natick, MA) and PLS Toolbox, version 4.0, of 

the Matlab package (Eigenvector Research, Wenatchee, WA). 

 

Construction of simulation systems and simulation parameters 

In the case of apoA-I, we first build an all-atom model for apoA-I based on the previous data after 

which we coarse grained the structure. The relative conformation of apoA-Is was similar to the 

belt-like structure of Borhani et al. who produced the solution X-ray structure of truncated apoA-I 

(residues 44-243) (35). Here, we also followed the approach of Segrest and coworkers who 

arranged atomistic apoA-Is around the lipid moiety in belt-like fashion (36) so that the 
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 10 

hydrophobic sides of amphiphilic alpha-helices were pointing towards the lipid moiety. This 

structure was further used to build a model for the full-length apoA-I by adding the previously 

absent N-terminal part (residues 1-43) of the apoA-I to our model. The conformation of this 

segment was determined to be alpha-helical as suggested by the previous NMR data (37). The 

hydrophobic side of this helix was also orientated towards the lipid moiety. We directly coarse 

grained the atomistic structure and placed the apoA-Is around the previously simulated lipid 

droplet. The secondary structure of apoA-I was enforced almost completely to the alpha-helical 

conformation, only the N- and C-terminal ends were modeled as random coils. This approach has 

been used previously in the work of Catte and coworkers with truncated apoA-I (38). Thus, the 

flexibility of alpha-helical segments arises from the three-body angle and four-body dihedral 

potentials of backbone beads that were produced by Monticelli et al. in order to extend the 

MARTINI force field to proteins (39). The radius of the ring formed by apoA-Is was ~12.5 nm and 

the average distance between apoA-Is was 2.5-3.0 nm. 

 

Next, in order to produce starting structures for the low HDL-C, normal HDL-C and high HDL-C 

systems the lipid composition of the previously simulated lipid droplet was tuned accordingly to 

Table 2.  All lipid molecules, expect those that were added to the starting system, were inside the 

ring formed by apoA-Is. Next all three systems were energy minimized by the steepest descent 

algorithm and 10 ns vacuum simulations were carried out in order to get lipids to the one unified 

phase meaning that the added lipids diffused to the main lipid particle. Systems were solvated and 

18 water beads were changed to Na+ beads in order to neutralize the charges in the systems. 

Production simulations lasted for 2 μs, which corresponds to 8 μs of effective time since the 

MARTINI model speeds up the dynamics by an approximate factor of four (39). System sizes 
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were approximately 30000-35000 water beads and 4300-5000 lipid and protein beads in total. The 

box size in each simulation was 17 x 17 x 17 nm. 

 

Simulations were performed by the GROMACS simulation package (v. 4.0) (40) and the standard 

Martini lipid force field was used for PC (PC(16:0/18:1)), lysoPC (PC(16:0/0:0)), FCho and SM 

(SM(d18:1/16:0)) molecules (41). Protein part was modeled using the protein extension of the 

Martini description (39), TG (TG(18:1/18:1/18:1)) and ChoE (ChoE(18:1)) force fields were 

constructed based on the philosophy of Martini force field, the exact parameters and validation are 

available elsewhere (38). In all simulations temperature was set to 310 K and pressure to 1 bar. 

Berendsen temperature and pressure coupling algorithms (42) were utilized with coupling 

constants of 0.4 ps and 2.0 ps, respectively. All lipid classes, apoA-Is, water and ions were 

separately coupled to heat bath. Electrostatic and Lennard-Jones interactions were calculated using 

the shift type potentials with cut-off lengths of 1.2 nm and the potentials were shifted to zero 

starting at 0.0 and 0.9 nm, respectively. Time step was set to 0.025 ps. In each case, the first 4 μs 

were treated as equilibration simulation and the last 4 μs was used in the analysis. Gromacs 

analysis programs g_rdf, g_mindist, g_gyrate and g_rmsf were used in the analysis. 

 

RESULTS 

Characteristics of the study subjects 

Clinical and biochemical characteristics of low and high HDL-C subjects are shown in Table 1. As 

expected the high HDL-C subjects had higher fasting serum HDL-C (P < 0.001) and total 

cholesterol (P < 0.001) concentrations as compared to low HDL-C subjects. However, fasting 

serum LDL-C concentrations between the groups did not differ significantly. High HDL-C 

subjects were leaner as compared to low HDL-C subjects, with lower body mass index (P < 
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0.001), lower triglycerides (P < 0.001) and insulin (P = 0.0015), as well as lower TNF-  (P =

0.038) and hs-CRP (P = 0.012) levels in plasma. The two groups had similar PLTP mass and 

CETP activity levels (Table 1). As expected, high HDL-C subjects had higher apoA-I (P < 0.001) 

and lower apoB (P < 0.001) values than low HDL-C subjects.  

Lipidomic profiling of HDL fractions 

To characterize the HDL-associated lipids at the molecular level, the established lipidomics 

platform using UPLC/MS was applied as described previously (43). A total of 307 molecular lipids 

across 12 functional classes were detected. The partial least squares discriminant analysis 

(PLS/DA) revealed that the HDL lipidomic profiles in low HDL-C and high HDL-C subjects are 

clearly different (Fig. 1A). As shown by clustering of the top ranked discriminant lipids in Fig. 1B, 

the HDL compositional changes in high HDL-C subjects as compared to low HDL-C subjects 

were dominated by elevated lysoPCs, SMs, ChoEs and diminished TGs. No within-class trend was 

observed between the low and high HDL-C groups for PCs. Box plots for the most abundant lipids 

from lysoPC, SM, ChoE, ethanolamine plasmalogen (PEp) and TG classes are shown in Fig. 2. 

The most significant identified lipid species with their fold changes and False Discovery Rate 

(FDR) q-values are shown in Table S1. Full lipidomics results for 307 detected lipid peaks are 

shown in Table S2. The observed highly significant differences between the HDL lipidomic 

profiles of the high and low HDL-C groups were not attributed to gender (Fig. S1) or TG fatty acid 

composition (Fig. S2), despite the observed gender differences in the HDL subspecies distribution 

in the low HDL-C group (Table S3).  
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Although not being among the most abundant HDL phospholipids, several of the ether lipids were 

found among the most significantly different in high and low HDL groups (Fig. 1 and Table S2), 

including the ethanolamine plasmalogens PE(P-16:0/18:2), PE(P-16:0/20:4) and PE(P-18:1/20:4) 

(Table S2). The ethanolamine plasmalogens as well as PC ether lipids containing high number of 

double bonds were diminished in the high HDL group, while the more saturated ether PCs were 

elevated as compared to the levels in the low HDL group. 

 

The top ranked lipids derived from PLS/DA (Fig. 1A) were correlated with the selected clinical 

variables (Fig. S3). The concentrations of TGs were negatively while the SMs and lysoPCs were 

positively correlated with the HDL-C concentration. We then investigated associations of HDL-C 

with the top-ranked lipids from different lipid classes in low and high HDL-C subjects separately 

(Figs. S4 and S5). Positive correlations between SM(d18:1/16:0) and HDL-C were similar in low 

HDL-C subjects (r = 0.71, P = 0.0001) and high HDL-C subjects (r = 0.71, P = 0.0001). 

Interestingly, positive correlation identified between lysoPC(18:0) and HDL-C in low HDL-C 

subjects (r = 0.54, P = 0.006)  was absent in the high HDL-C group (r = -0.06, P = 0.78). We 

observed no correlation of TG(16:0/18:1/20:1) with HDL-C  in low HDL-C subjects (r = 0.06, P = 

0.75) whereas there was a negative correlation in high HDL-C subjects (r = -0.43, P = 0.04). No 

significant correlations were found between ChoE(18:1) and  HDL-C,  neither in low HDL-C 

subjects (r = 0.33, P = 0.12) nor in high HDL-C subjects (r = 0.02, P = 0.92). Correlation analysis 

was also performed for the HDL particle size vs. the selected lipids (Figs. S4 and S5). HDL 

particle size correlated positively with lysoPC (18:0) (r = 0.50, P = 0.0003) and SM(d18:1/16:0) (r 

= 0.58, P = 0.0003), and negatively with TG(16:0/18.1/20:1) (r  = -0.51, P < 0.0001).  No such 

significant correlations were observed when analyzing the low and high HDL-C groups separately. 
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Simulations of HDL particles 

Our findings imply that the lipid composition of HDL particles as derived from subjects with high 

and low HDL cholesterol is very different. In order to gain further insight how the changes in the 

lipid composition of HDL may influence HDL structure and function, we performed coarse 

grained simulations of HDL particles, with their molecular composition derived from within-group 

mean selected lipid concentrations as obtained by lipidomics. Three coarse grained molecular 

dynamics simulations with different lipid compositions were carried out. In addition to the “High 

HDL-C” and “Low HDL-C” particles, we also simulated the “Normal HDL-C” as an intermediate 

between the two. The numbers of lipids used in each simulation are listed in Table 2. The lipid 

species concentrations obtained in global lipidomic profiling were expressed relative to the moles 

of apoA-I content. If lipid species in a certain class were contributing to separation of low and high 

HDL-C groups as per the PLS/DA model, the averaged concentration of all those species in that 

class was used to find estimate of fold changes between low and high HDL-C groups. 

Alternatively, for the lipid species such as cholesteryl esters, which did not contribute much in the 

separation of two HDL-C groups as per the model, the averaged concentration levels of all 

identified species were used to find the fold change estimate between the low and high HDL-C 

groups. Thus obtained fold change values between low and high HDL-C groups were used to 

estimate the number of species per HDL particle in low and high HDL-C particles by comparing 

the numbers in the normal-HDL-C compositions. The lipid composition for the normal-HDL 

model was chosen based on the previous paper (44) which describes the detailed molecular 

composition of the HDL2-subfraction.  
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The size of simulated HDL particle decreased when moving from high to low HDL-C particle. 

This can be clearly seen from the radii of gyration (Rg) obtained from the simulation (Fig. S6). To 

estimate the hydrodynamic particle radii (RH), we used the relation (Rg = sqrt(3/5) RH) for a 

uniform sphere. The hydrodynamic diameter of high HDL-C particle was estimated to be 9.7 nm 

and for the low HDL-C it was 9.4 nm. As an indirect validation of our combined experimental and 

modeling strategy, the diameters calculated from simulations are in approximate agreement with 

our hydrodynamical particle diameters produced by electrophoresis, with the respective diameters  

being  9.9 and  9.0 nm when comparing high and low HDL-C particle profiles. One should note 

that the experimental size measurements include all HDL fractions and, thus, it is not directly 

comparable with our simulations. However, the results are within the right size range.  

 

Interestingly, we registered by visual inspection that free cholesterol (FCho) molecules 

accumulated next to apoA-I proteins, indicating that free cholesterol molecules interact more 

favorably with apoA-I (Fig. 3B). This interaction may have important implications for the HDL 

metabolism as the cholesterol molecule concentration in the particles can modulate the 

conformational fluctuations of apoA-I or even change it. Indeed, studies with human apoA-I have 

shown that cholesterol decreases the adsorption of the apolipoprotein to a phospholipid monolayer, 

and the conformation of apoA-I varies from one lipid monolayer to another implying similar 

effects on the surface of HDL particles (45). It has been suggested that LCAT activity depends on 

the conformation of apoA-I (46, 47) and, thus, the cholesterol concentration could also be linked to 

the activation of LCAT and other HDL associated proteins. We therefore calculated the number of 

contacts between different lipid species and apoA-I (Fig. 3B). Furthermore, we produced root 

mean square fluctuation (RMSF) curves for apoA-I in different cases to characterize differences in 
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the local fluctuations (Fig. S7). The number of contacts increased between pairs SM-apoA-I, 

FCho-apoA-I and lysoPC-apoA-I when moving from low HDL-C to high HDL-C (Fig. 3B). In 

contrast, the number of contacts decreased between pairs ChoE-apoA-I, TG-apo-A-I and PC-

apoA-I. However, only the cholesterol molecules accumulate preferably next to apoA-I proteins 

independent of cholesterol concentration. This suggests that the partitioning of cholesterol in HDL 

particles is entropy driven or that apoA-I possess high cholesterol affinity.  

 

In order to study how the changes of lipid composition may affect the spatial distribution of 

specific lipid classes in HDL particles, we calculated the 3D radial distribution functions (RDFs) 

for different lipid components with respect to the center of mass of HDL particles (Figure 3c and 

Figs. S8-S10). Most notably, in low HDL-C the RDF of triacylglycerols indicated stronger 

prevalence of TG molecules at the surface (Fig. 3C) when the amount of cholesterol as well as 

other surface lipids decreases. The prevalence of cholesteryl esters did not change accordingly 

(Figs. S8-S10). Furthermore, we estimated the relative solubility TGs to the surface lipid 

monolayer by calculating the number of contacts between TGs and water phase, divided by the 

number of TG molecules (Fig. 3C). The relative solubility of TG increased with fewer surface 

lipids in the HDL particles.  

 

DISCUSSION 

Our study revealed marked differences in HDL lipidomic profiles as well as related clinical and 

biochemical characteristics between low and high HDL-C subjects. For the first time the molecular 

profiling of HDL (or other lipoprotein) particles was combined with dynamic structural modeling. 
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Such an approach allowed us to show that the lipid compositional changes also induce specific 

spatial distributions of lipids within the HDL particles. 

 

The composition of lipid and apolipoprotein components is critical in maintaining normal HDL 

metabolism as well as its function. The HDL biosynthesis is very complex and is associated with 

major steric and lipid interaction changes in structural apolipoproteins such as apoA-I and apoA-II. 

ApoA-I which constitutes about 70 % of HDL protein content is present in almost all HDL 

particles (48). The lack of apoA-I gene is associated with low HDL-C levels in mice (49) and 

humans (50). This association is valid with our observations, with the low HDL-C subjects 

displaying lower levels of apoA-I as well as of  apoA-II which constitutes approximately 20 % of 

HDL protein (51). 

 

The combined information from the key metabolic regulators and lipid profiles may provide the 

basis for mechanistic links in HDL metabolism. In addition to apoA-I and apoA-II, the key 

metabolic regulators such as CETP, lecithin-cholesterol acyltransferase (LCAT), endothelial lipase 

(EL), hepatic lipase (HL) and PLTP play central role in continuous intravascular remodeling of 

HDL particles. ApoA-I acts as a co-factor for LCAT, the enzyme responsible for transforming the 

free cholesterol to cholesteryl ester in the core of HDL (52). As higher apoA-I levels closely 

associated with high HDL-C (48, 53) higher HDL-cholesteryl ester content was observed in high 

HDL-C subjects as compared to low HDL-C groups (Fig. 2D). The cholesteryl esters in HDL are 

continuously exchanged for TG in very low-density lipoprotein (VLDL) or chylomicrons in a 

process mediated by CETP activity. Our findings revealed increases of TG content in HDL 

particles in low HDL-C subjects, thus favoring the active ChoE/TG exchange process. TG 
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enrichment of HDL notably
 
increases the ability of hepatic lipase to remodel these HDL-particles 

(54, 55) resulting in release of lipid-poor apoA-I and enhanced clearance of HDL via kidneys. It is 

known that cubilin acts as a receptor for the
 
endocytosis of apoA-I in the kidney (56, 57). 

 

Previous data suggest that in HDL particles the percentage of ChoEs of all surface lipids is 

between 13 – 27 % due to high tendency of ChoEs to locate on the surface and high concentration 

of ChoEs in these particles (58). Thus the known heteroexchange of ChoEs and TGs between HDL 

particles and apoB-100 containing lipoproteins is rational only if the acceptor and donor surfaces 

have different molar proportions of ChoEs and TG (58). In addition, higher concentration of TG 

molecules at the surface of HDL particles could give better chance for hepatic lipase to modify 

them.  
 

 

The phospholipid content in HDL is regulated by another important factor PLTP (59). Mice with 

mild overexpression of PLTP did not reveal significant changes in HDL but those lacking PLTP 

have low HDL-C levels (60, 61). On the other, strong induction of PLTP expression strongly 

lowered total plasma HDL levels in a dose-dependent way due to accelerated fractional catabolism 

of HDL (62). In the present study PLTP activities did not differ between the two HDL groups 

suggesting that PLTP cannot be responsible for the low HDL levels. PLTP facilitates the transfer 

of phospholipids between lipoprotein particles and regulates both size and composition of HDL 

particles. The TG content of HDL has a major influence on PLTP-mediated size changes (63). The 

PLTP-mediated processes facilitate the transfer of surface remnants from lipolyzed triglyceride-

rich lipoproteins to nascent HDL particles.   
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LCAT activation is influenced by the size of spherical HDL particles (64, 65). When the diameter 

of HDL particles increases the activity of LCAT enzyme is higher. Thus, we propose that the 

diameter of HDL particles is smaller in low HDL-C than in high HDL-C subjects. This lower 

activity could be somehow related to the conformation of apoA-I which could depend on the size 

and the lipid composition of the HDL particles. Interestingly, sphingomyelin content of HDL 

particles has been reported to affect LCAT activity (66, 67). 

 

Intriguingly, as the conformation of apoA-I is different in each simulation performed in the present 

study, the notable differences in the fluctuations of apoA-I are possibly influenced by the 

conformation of the protein around the particle. Furthermore, as mentioned above the 

conformation of apoA-I could depend on the size and the lipid composition of the particles, 

especially the concentration of free cholesterol could be a critical determinant of apoA-I 

conformation as it was noticed by the simulations that cholesterol molecules favorably interact 

with apoA-Is. Presumably, the conformation and dynamical properties of apoA-I around the HDL 

particles are constantly changing since lipid and protein moieties vary. Therefore, producing any 

static or unified conformational data for apoA-Is around the native HDL particles is very 

challenging. However, by means of state-of-the-art coarse grained simulations we can now 

statistically define the most probable conformations of apoA-Is induced by the different molecular 

compositions of HDL particles. However, it is important to note that we should carry out more 

simulations to give more statistical power to our conformational changes seen in the present 

simulations. Our main aim in this study was to include apoA-I model that covers same surface area 

as native ApoA-I in the HDL particles and which is able to play a role in lipid partitioning. For this 

reason the protein tertiary structure differences seen in our simulation must be treated with certain 
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caution. Notably, the fatty acyl chain saturation/desaturation degree of phospholipids may affect 

the lateral movement of apoA-I on the particle surface.  

Levels of polyunsaturated fatty acid containing ether phospholipids, including ethanolamine 

plasmalogens, were elevated in the HDL fractions of subjects with low HDL-C. Not much is 

known about the PC ether lipids in HDL, and in contrast to PE ether lipids (68), unambiguous 

structural characterization of these lipids is at present not possible. PE plasmalogens are known to 

be more abundant in HDL as compared to other lipoprotein fractions (7). Plasmalogens can serve 

as antioxidants against reactive oxygen species (ROS) and may prevent the oxidation of 

cholesterol (69). However, under oxidative stress the arachidonic acid containing plasmalogens, 

such as found in our study, become precursors of potent inflammatory mediators such as 

leukotrienes and hydroxyeicosatetraenoic acids (70). Together, the role of ether lipids in HDL 

function is likely complex and demands further investigation. 

Sphingomyelin subspecies with different fatty acyl structures were higher in high HDL-C subjects. 

Interestingly, we also demonstrated that high HDL-C subjects have lower plasma TNFα as well as 

hs-CRP levels compared to that of low HDL-C subjects. This observation has important 

consequences when connected to sphingomyelin metabolism. A key event in atherogenesis is 

endothelial activation induced by a variety of stimuli such as tumor necrosis factor-alpha (TNF- ), 

resulting in the expression of various adhesion proteins (71). The expression of adhesion proteins 

on activated endothelial cells plays an essential role for the inflammatory processes in the 

pathogenesis of atherosclerosis (72). Elevated levels of TNF-α and hs-CRP inidicate a low-grade 

inflammation that could cause several downstream effects such as activation of sphingomyelinase 
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activities and affect the endothelial cell function and development of atherosclerosis. Connection 

to sphingomyelin metabolism is important and activation of acid sphingomyelinase has been 

extensively studied in the apst decade, and the enzyme is highly activated by TNF-α (73, 74) and 

might affect the lower SM content in HDL derived from low HDL subjects. This issue needs 

further studies such as in vitro cell cultures with the isolated HDL particles derived from low and 

high HDL cholesterol subjects in order to make further conclusions on particles physiological 

performance. 
 

 

The marked differences in HDL lipid profiles reported here were obtained from the extreme ends 

of HDL-C levels in a large population cohort. Taken into account the relatively small sample size, 

the comparison of low vs. high HDL-C allowed us to minimize the effect of confounding factors 

and to study major differences. This approach thus helped us to extract the key compositional and 

structural features of HDL particles in the context of HDL-cholesterol which should be 

investigated further in other studies. To eliminate the confounding effect of apoA-I protein amount 

variation, the HDL particles were modeled based on the conservative assumption that the number 

of apoA-I molecules per particle is the same in high and low HDL-C group. One should thus keep 

in mind that our simulation model may not correctly represent the virtual structure of HDL in 

which different numbers of apoA-I are present. However, given that the observed increase of 

average apoA-I amount in high HDL-C subjects would only decrease the relative amount of 

triacylglycerols in high HDL-C subjects, the lipid spatial distribution differences between the high 

and low HDL-C are likely even bigger than estimated by our simulations.  
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In conclusion, we detected many important lipid compositional changes in subjects with high and 

low HDL-C. Elevated sphingomyelin in high HDL-C subjects confirms as well as provides 

additional evidence for the anti-inflammatory role of HDL. The lipid compositional changes also 

induced a surprising shift in the spatial distribution of triacylglycerols in subjects with low levels 

of HDL-C. The prevalence of TGs on the surface of HDL particles of these subjects may affect the 

hetero-exchange of core lipids by CETP as well as facilitate their modification by hepatic lipase. 

Finally, our study suggests that combining molecular profiling of lipoproteins with dynamic 

modeling of lipoprotein structure is a powerful new strategy that may help elucidate the 

complexity of systemic lipid metabolism as well as facilitate the efforts to invent novel therapeutic 

strategies. 
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Figure legends 

Fig. 1. (A) Partial least squares discriminant analysis (PLS/DA) of lipidomic profiles for low 

HDL-C and high HDL-C subjects. PLS/DA scores plot with two different HDL-C groups are 

marked. Two latent variables were used (Q2=51%). (B) Hierarchical clustering on most important 

variable importance in the projection (VIP) variables and samples in the heat map reflecting fold 

changes of lipids relative to mean intensity within the low HDL-C group. Bars show fold changes 

reflecting mean intensity of top VIP variables in the high HDL-C group relative to mean intensity 

within the low HDL-C group.  

Fig. 2. Box plots of the most abundant lipids within the TG, lysoPC, SM, ChoE and ethanolamine 

plasmalogen (PEp) classes. Concentrations are shown in mol/l [lipid] / mg/dl [apoA-I]. High, 

High HDL-C; Low, Low HDL-C.

Fig. 3. Coarse grained simulations of HDL particles reconstituted based on lipidomics data. (A) 

Snapshots from the end of high and low HDL-C simulations (8 μs). Apo-AIs are colored with red 

and green, cholesterol molecules are yellow and all other lipids grey. Water phase was removed 

from the snapshots for clarity. Middle snapshot demonstrates how the cholesterol molecules are 

localized next to and under apoA-Is in high HDL-C simulation. (B) The number of contacts 

between apoA-Is and different lipid beads in each simulation (error bars indicate ± SD). The 

number of contacts was not normalized with number of different lipid constituents. (C) Radial 

distribution function for TG molecules g(r) with respect to the center of mass (COM) of HDL 

particle. When surface lipid concentration decreases more TGs are able to penetrate the surface 
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monolayer which is seen as a formation of higher plateaus near 3.5 nm. The number of contacts 

between TG and water beads (per TG) in different simulations is listed in the inset.  
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 Table 1. Clinical and biochemical characteristics of the study subjects. IQR; interquartile range. 

*P-value from Mann-Whitney U test. **apoA-II measurements of three subjects both in low and 

high HDL-C groups are not available and hence calculations are based on measurements from the 

remaining subjects 

 
Low-HDL subjects 

(median (IQR)) 

High-HDL subjects 

(median (IQR)) 
P-value* 

N (men/women)** 24(12/12) 23(12/11)  

Age (years) 53 (51-56) 54 (50-60) 0.564 

Body mass index (kg/m
2
) 27.9 (24.3-31.5) 22.8 (21.4-24.6) <0.001 

Systolic blood pressure (mmHg) 131 (118-146) 132 (121-147) 0.647 

Diastolic blood pressure (mmHg) 81 (75-89) 81 (75-87) 0.882 

Total cholesterol (mmol/l) 5.15 (4.55-5.60) 5.80 (5.30-6.10) <0.001 

HDL cholesterol (mmol/l) 0.94 (0.86-1.10) 2.52 (2.12-2.61) <0.001 

LDL cholesterol (mmol/l) 3.30 (2.87-3.67) 3.01 (2.68-3.55) 0.225 

Insulin (mU/l) 9.15 (7.05-10.93) 6.00 (5.00-7.90) 0.0015 

Triglycerides (mmol/l) 1.80 (1.23-2.25) 0.70 (0.60-0.90) <0.001 

apoA-I (mg/dl) 134 (121-144) 222 (206-234) <0.001 

apoA-II (mg/dl) 28.0 (27.0-34.5) 39.0 (35.0-45.0) <0.001 

apoB (mg/dl) 124.5 (106.3-135.0) 99.0 (84.0-109.0) <0.001 

PLTP activity (nmol/ml/h) 4765 (4109-5549) 5304 (4798-5810) 0.058 

PLTP mass (µg/ml) 7.5 (6.4-9.2) 8.6 (6.8-9.5) 0.328 

CETP activity (nmol/ml/h) 28 (25-33) 31 (27-38) 0.250 

TNF-α  (ng/l) 6.5 (4.5-8.2) 4.7 (4.1-5.8) 0.038 

IL-6 (Interleukin 6)(ng/l) 1.6 (1.0-2.1) 1.1 (0.8-2.0) 0.163 

 at V
T

T
 on M

ay 7, 2010 
w

w
w

.jlr.org
D

ow
nloaded from

 

III/33

http://www.jlr.org


 34 

hs-CRP (mg/l) 1.4 (0.8-2.7) 0.7 (0.4-1.2) 0.012 

HDL size (nm) 9.0 (8.8-9.2) 9.9 (9.7-10.2) <0.001 

.  
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Table 2.

(a) The lipid compositions (number of molecules per HDL particle) used in simulations. 

apoA-I SM PC FCho ChoE TG lysoPC 
normal-HDL-C 2 18 109 50 90 19 10
low-HDL-C 2 13 109 25 81 24 5
high-HDL-C 2 23 109 75 99 14 15

(b) The average concentrations of the lipid classes as determined by lipidomics, which used to 
determine the lipid compositions in simulations shown in (a). Units: mol/l [lipid] / mg/dl [apoA-
I]. 

SM HDL-C ChoE TG lysoPC 
low-HDL-C 0.057  ± 0.003 7.545 ± 0.200 0.105 ± 0.009 0.436 ± 0.024 0.014 ± 0.007
high HDL-C 0.082 ± 0.004 10.928 ± 0.254 0.132 ± 0.020 0.244 ± 0.036 0.022 ± 0.002
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Figure 1 
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Figure 2 
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Figure 3 
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INTRODUCTION
The common forms of insulin-resistant type 2 diabetes typically
involve an early phase characterised by insulin resistance, increased
insulin secretion and a progressive expansion of -cell mass. In
response to insulin resistance, the islet machinery is challenged to
secrete sufficient insulin to maintain euglycaemia. This requires
robust adaptation that causes metabolic stress or an allostatic load
on the physiological mechanisms that control insulin secretion and
-cell mass proliferation (Stumvoll et al., 2003). At some point,
probably as a consequence of genetic vulnerability to metabolic
stress, the balance between impaired insulin signalling and
increased secretion of insulin fails, leading to hyperglycaemia and
dyslipidaemia. These toxic metabolic disturbances increase the
allostatic load on the system, ultimately causing a major collapse
of the adaptive mechanisms and -cell function (Stumvoll et al.,
2003).

Studies performed in states of frank diabetes that aim to
identify mechanisms involved in -cell failure typically fail to
distinguish early pathogenic mechanisms from either adaptive
homeostatic responses or secondary pathogenic effects. In some

cases, the same adaptive mechanism might exert opposite
metabolic effects depending on how far advanced the -cell
failure is. This indicates that the mechanisms that provide an
initial, positive, adaptive physiological response might become
toxic at later stages when acting at high intensity and/or for
extended periods of time. This concept is known as hormesis.
For example, although the short-term exposure of islets to fatty
acids promotes insulin secretion (Prentki et al., 2002; Roduit et
al., 2004), chronic exposure to, and/or high concentrations of,
fatty acids leads to -cell failure (Prentki and Corkey, 1996;
Bollheimer et al., 1998; Prentki et al., 2002). Similarly, there is
evidence that reactive oxygen species (ROS), which are
traditionally considered to be agents of molecular stress and
damage (Brownlee, 2003; Lowell and Shulman, 2005), might, at
small doses and for relatively short periods of time, provide a
physiological signal that couples oxidation of glucose to insulin
secretion (Li et al., 2006). This specific example is known as
mitohormesis or mitochondrial hormesis (Schulz et al., 2007).
Our hypothesis is that, in response to insulin resistance, specific
responses in pancreatic  cells acutely improve their capacity to
secrete insulin and trigger the expansion of -cell mass. Although
in the short term these adaptive mechanisms are efficient at
maintaining carbohydrate homeostasis, when they are activated
chronically, the same mechanisms might result in an excessive
allostatic load that, ultimately, leads to collapse of the metabolic
regulatory networks that control insulin secretion. Accumulating
evidence indicates that diagnostic and therapeutic interventions
at this late stage, when the homeostasis of the -cell functional
network is already lost, are inefficient, hence our focus on the
early stages of the evolutive process where the dynamics of the

Disease Models & Mechanisms 2, 582-592 (2009) doi:10.1242/dmm.003251
Published by The Company of Biologists 2009

Adaptation and failure of pancreatic  cells in murine
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SUMMARY

The events that contribute to the expansion of -cell mass and enhanced -cell function in insulin-resistant states have not been elucidated fully.
Recently, we showed that -cell adaptation failed dramatically in adult, insulin-resistant POKO mice, which contrasts with the appropriate expansion
of  cells in their ob/ob littermates. Thus, we hypothesised that characterisation of the islets in these mouse models at an early age should provide
a unique opportunity to: (1) identify mechanisms involved in sensing insulin resistance at the level of the  cells, (2) identify molecular effectors that
contribute to increasing -cell mass and function, and (3) distinguish primary events from secondary events that are more likely to be present at
more advanced stages of diabetes. Our results define the POKO mouse as a model of early lipotoxicity. At 4 weeks of age, it manifests with inappropriate
-cell function and defects in proliferation markers. Other well-recognised pathogenic effectors that were observed previously in 16-week-old mice,
such as increased reactive oxygen species (ROS), macrophage infiltration and endoplasmic reticulum (ER) stress, are also present in both young
POKO and young ob/ob mice, indicating the lack of predictive power with regards to the severity of -cell failure. Of interest, the relatively preserved
lipidomic profile in islets from young POKO mice contrasted with the large changes in lipid composition and the differences in the chain length of
triacylglycerols in the serum, liver, muscle and adipose tissue in adult POKO mice. Later lipotoxic insults in adult  cells contribute to the failure of
the POKO  cell. Our results indicate that the rapid development of insulin resistance and -cell failure in POKO mice makes this model a useful tool
to study early molecular events leading to insulin resistance and -cell failure. Furthermore, comparisons with ob/ob mice might reveal important
adaptive mechanisms in  cells with either therapeutic or diagnostic potential.
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functional network can still be recognised and potentially
reversed.

We recently generated a murine model, the POKO mouse, which
was obtained by crossing a peroxisome proliferator-activated
receptor gamma 2 (PPAR2) knockout (KO) mouse into a
genetically obese, insulin-resistant ob/ob background (Medina-
Gomez et al., 2007). POKO and ob/ob mice have a similar positive
energy balance (hyperphagia and energy dissipation), but because
POKO mice lack PPAR2 they are unable to expand adipose tissue
and, as a result, they become lipotoxic and markedly more insulin
resistant than their ob/ob littermates. By the age of 16 weeks, POKO
mice show severe -cell failure and hyperglycaemia. Another
difference between the two mouse models is the lack of expansion
of  cells in POKO mice, which contrasts with the markedly
increased expansion of -cell mass in insulin-resistant ob/ob
littermates. Of interest, 4-week-old ob/ob and POKO mice have a
similar islet number and morphology, which allowed us to
investigate the mechanisms that might predict subsequent
differences in metabolic profiles and expansion of -cell mass in
the two models.

The aim of our study was to investigate the early molecular
regulatory networks that might account for the later differences in
-cell mass and function in insulin-resistant ob/ob and POKO mice.
We speculated that these studies should validate the young POKO
mouse as a model that could be used to study the events leading
to -cell failure and that would be suitable for future systems biology
studies. This experimental paradigm also offers the possibility of
identifying novel key events and molecular effectors that are
involved in the adaptation of  cells to insulin resistance. Here, we
show that isolated islets from mice as young as 4-5 weeks old reveal
signs of inappropriate adaptive -cell function and lipid signalling.
Also, we provide evidence that other pathogenic effectors that are
observed characteristically in advanced stages of disease, such as
increased ROS production, inflammation, macrophage infiltration
and endoplasmic reticulum (ER) stress, are already present at 4
weeks of age, which indicates their involvement in early pathogenic
changes. However, our data also indicate that whereas these
pathogenic mechanisms are present in  cells from early stages,
they do not predict the rapid development of hyperglycaemia in
POKO mice. Our data also indicate that the altered lipid
composition of islets is a relatively late event in the context of
lipotoxicity, which is preceded by lipid changes in the serum, liver,
adipose tissue and muscle.

RESULTS
Differences in -cell mass and function in ob/ob and POKO mice
We have reported previously that, in contrast to ob/ob mice, POKO
mice do not expand their -cell mass in response to insulin
resistance (Medina-Gomez et al., 2007). As a result, adult POKO
mice suffer metabolic collapse associated with severe -cell failure
that evolves over a relatively short period of 16 weeks. This
contrasts with the robust expansion of  cells and the milder
metabolic disturbances that are observed in ob/ob littermate
controls, despite their marked obesity and insulin resistance.
Interestingly, at the age of 4 weeks, the morphology of islets from
POKO and ob/ob mice was indistinguishable, with the staining for
insulin and glucagon being similar in both types of mice (Medina-
Gomez et al., 2007).

Our initial studies in isolated islets from 4-week-old mice
revealed that, at a low glucose concentration (2.5 mM), basal insulin
secretion is maintained in POKO and ob/ob mice when compared
with wild-type (WT) controls (Fig. 1A). Insulin secretion after 25
mM of glucose was stimulated significantly, but to a similar extent,
in the insulin-resistant ob/ob and POKO mice. This indicates that,
at this early age, the differences in insulin secretory defects between
POKO and ob/ob mice are not established fully.

To validate the POKO model, we initially investigated the
expression of genes involved in -cell proliferation in young (5-
week-old) C57BL/6 female WT, PPAR2 KO, ob/ob and POKO
mice. Insulin receptor substrate 2 (IRS2) (Fig. 1B) has been shown
previously to be a key mediator of -cell proliferation and to exert
a protective role against -cell glucotoxicity (Choudhury et al.,
2005; Wang et al., 2005; Cantley et al., 2007). Our results in isolated
islets from 5-week-old mice showed that, at this early stage, the
amount of mRNA encoding IRS2 increased equally in ob/ob and
POKO mice compared with WT and PPAR2 KO mice. Similar
results were obtained with staining for Ki67 (Fig. 1C), another
marker of proliferation, which increased by a similar extent in 
cells from ob/ob and POKO mice islets compared with WT and
PPAR2 KO controls. Despite these similar changes, we identified
an important cell proliferation marker, cyclin D1, which is impaired
selectively in the POKO mice. There is a greater increase in the
expression of cyclin D1 in islets from ob/ob mice than in islets
from POKO mice (although the expression in both of these
genotypes is higher than in lean WT and PPAR2 littermates) (Fig.
1B). Together, our results indicate that, compared with WT and
PPAR2 KO mice, proliferative programmes are activated in both
ob/ob and POKO islets, even at this early stage, in response to
insulin resistance. Furthermore, our results also highlight selective
defects in cell proliferative genes in islets from POKO mice, which
might indicate a subsequent failure of proliferation. Of interest,
gene expression analysis in 5-week-old C57BL/6 female mice also
revealed decreased levels of PPAR1 in isolated islets from PPAR2
KO and POKO mice, whereas the level of mRNA encoding
PPAR1 was maintained in ob/ob islets (Fig. 1B). From this, we
speculated that the differences between ob/ob and POKO mice
might be apparent in processes that are regulated by PPAR (see
below).

Markers of -cell function that are associated with adaptation to
insulin resistance are not apparent in islets from POKO mice
We undertook a systematic evaluation of the steps involved in
coupling glucose concentration to insulin secretion. First, we
investigated whether markers of glucose transport into islets are
altered in POKO islets compared with the islets of other genotypes
studied. Glut2 is the major glucose transporter involved in glucose
uptake in islets, and is under the regulatory control of the pancreatic
and duodenal homeobox 1 transcription factor (PDX1) (Lebrun et
al., 2005). Glut2 is considered to be a surrogate of the state of
differentiation of  cells. In agreement with this, we found that the
expression levels of the mRNAs encoding both Glut2 and PDX1
are higher in islets from ob/ob mice, but that these increases were
not present in POKO mice, which show similar expression levels
to WT and PPAR2 KO mice (Fig. 2A).

Next, we investigated the expression of genes involved in glucose
intermediary metabolism, which is thought to be essential for
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coupling glucose sensing to insulin release in  cells (Chen et al.,
1994a; Chen et al., 1994b; Liu et al., 2002). An interesting difference
between both young ob/ob and POKO mice was seen in the
expression of mRNA encoding glucokinase (GK), which is
upregulated by PPAR agonists in  cells (Kim et al., 2002). In our
studies, GK mRNA is increased in islets from ob/ob mice but not
from POKO mice, in which expression levels remained comparable
to WT and PPAR2 KO mice (Fig. 2A). Expression of the gene
pyruvate carboxylase (PCX), which is another target gene of PPAR
(Jitrapakdee et al., 2005), is decreased in PPAR2 KO islets. As
expected, the level of mRNA encoding PCX is also significantly
decreased in islets from POKO mice compared with ob/ob mice
(Hasan et al., 2008).

Compensation for insulin resistance requires a concomitant
increase in insulin biosynthesis (Melloul et al., 2002). Our results
indicate that, at the age of 4 weeks, both ob/ob and POKO mice
can increase insulin gene expression to a level that is similar to WT
mice. However, despite preserved expression of the insulin gene,
transcription factors involved in insulin biosynthesis, such as v-
maf musculoaponeurotic fibrosarcoma oncogene homologue A
(MafA) (Olson et al., 1993; Hagman et al., 2005), are reduced in
islets from PPAR2 KO and POKO mice compared with WT and
ob/ob mice (Fig. 2A).

Dysregulation of fatty acid metabolism in islets in young POKO
mice
The mechanisms by which free fatty acids (FFAs) amplify
glucose-induced insulin secretion have not been elucidated fully.

Nevertheless, increased cytosolic malonyl-coenzyme A (CoA)
that arises from glucose and de novo lipogenesis can act through
AMP-activated protein kinase (AMPK)/malonyl-CoA pathways
to limit fatty acid oxidation (Roduit et al., 2004). Interestingly,
at these early stages, the levels of mRNA encoding sterol
regulatory element-binding protein 1c (SREBP1c) are already
increased in islets from ob/ob mice compared with WT, PPAR2
KO and POKO mice. Of interest, POKO mice failed to show an
increase in SREBP1c mRNA levels compared with ob/ob
islets  (Fig. 2B). However, at this stage, there were still no
differences between ob/ob and POKO islets in their levels of
expression of the mRNAs encoding acetyl-CoA carboxylase
(ACC, also known as ACACA) or carnitine palmitoyltransferase
1 (CPT1) (Fig. 2B).

We have shown previously that the adult 16-week-old POKO
islets contain a higher concentration of ceramides than ob/ob islets
(Medina-Gomez et al., 2007). Here, we investigated whether
defects in lipid metabolism were already present in islets at 4-5
weeks of age. Although we observed a trend, there were no
statistically significant changes in lipid composition among the four
genotypes of mice, as determined by analysis of variance (ANOVA)
that was adjusted for multiple hypotheses (Fig. 3A). The levels of
expression of mRNA encoding acid sphingomyelinase (ASM,
SMPD1), an enzyme involved in generating ceramides from
sphingomyelin, were increased in islets from both ob/ob and
POKO mice compared with WT mice, although expression was
higher in the ob/ob mice than in the POKO mice (Fig. 2B). Also,
there were no significant changes in de novo ceramide synthesis

Fig. 1. -cell function and proliferation in ob/ob and POKO
mice. (A)Insulin secretion from islets isolated from WT, ob/ob

and POKO mice in response to either 2.5 mM (white bars) or
25 mM (black bars) of glucose. Triplicate samples of ten different
islets were obtained from each mouse (n3-6 mice per
genotype). For each sample, insulin release was normalised to
insulin content and the fold increase in insulin above the 2.5 mM
control mice was recorded. (B)Islet mRNA levels from different
genes from 5-week-old female WT, PPAR2 KO, ob/ob and POKO
mice (n8-11 mice per genotype). ###P<0.001 WT vs ob/ob;
§§§P<0.001 PPAR2 KO vs WT; $$$P<0.001 POKO vs PPAR2 KO;
***P<0.001 POKO vs ob/ob. (C)Immunohistochemical analysis of
Ki67 in the pancreas from 4-week-old male WT, ob/ob and POKO
mice (n5). Bars, 100 mm.
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among the four genotypes, although there was a trend towards
higher expression of ceramide synthase 1 (LASS1) in POKO islets
compared with WT, PPAR2 KO and ob/ob islets, which is in line
with the increased levels of ceramides that were detected in older
mice. Furthermore, expression of the gene encoding the G-
protein-coupled receptor GPR40, a membrane receptor activated
by lipids and involved in lipotoxicity (Itoh et al., 2003; Itoh and
Hinuma, 2005), was higher in islets from ob/ob mice compared
with WT, PPAR2 KO and POKO mice (Fig. 2B). Our data
indicate that, at this early age, islets from ob/ob and POKO mice
are relatively protected from the accumulation of reactive toxic
lipid species.

Early lipidomic changes in metabolically relevant organs in young
POKO mice
Next, we investigated whether the relatively preserved lipid
composition in POKO islets can also be observed in other
metabolically relevant organs. In contrast to  cells, a multivariate
analysis revealed large differences in the lipid profiles of serum,
liver, adipose tissue and muscle (see below) in WT, PPAR2 KO,
ob/ob and POKO mice at the age of 4 weeks.

As expected from the hypertriglyceridaemia that was observed
at 4 weeks of age, the serum from POKO mice had high levels of
short-, medium- and long-chain triacylglycerols (TAGs), and high
levels of short- and medium-chain phosphatidylcholine (PC) lipid
species compared with the other genotypes studied (Fig. 3B).
Interestingly, the levels of long-chain TAGs in the serum from
young ob/ob mice were lower than in WT and PPAR2 KO mice.

Lipidomic analyses of the liver also revealed differences in lipid
profiles at 4 weeks of age (Fig. 4), with an increase in short- and
medium-chain diacylglycerols (DAGs) and TAGs in ob/ob and
POKO livers compared with WT livers; there was also a slight
increase in these lipids in PPAR2 KO livers. We also observed
enrichment in unsaturated long-chain TAGs in POKO and ob/ob
livers. Polyunsaturated long-chain TAGs remained at similar low
levels in both POKO and ob/ob livers when compared with WT
and PPAR2 KO mice (Fig. 4). Although the ceramide concentration
was similar in PPAR2 KO, POKO and ob/ob livers, it was higher
than in WT mice at this early age. The levels of medium-chain PCs
also increased in livers from ob/ob and POKO mice compared with
WT and PPAR2 KO mice.

With respect to adipose tissue, at this stage, POKO and ob/ob
mice had similar levels of short-, medium- and long-chain TAGs
(see supplementary dataset). Unlike in the liver, the concentration
of polyunsaturated long-chain TAGs with a high number of double
bonds was higher in adipose tissue from POKO and ob/ob mice
than from WT and PPAR2 KO mice. The ceramide concentration
was also increased to similar levels in the POKO and ob/ob
genotypes.

Lipidomic analysis of muscle showed an increased concentration
of short- and medium-chain TAGs in ob/ob mice compared with
the other genotypes (Fig. 5). Conversely, muscle from POKO and
PPAR2 KO mice contained more long-chain TAGs than WT and
ob/ob muscles. Compared with WT and PPAR2 KO mice, muscles
from ob/ob and POKO mice were enriched in ceramides, which
correlated with the extent of the increased levels of lysoPCs.

Oxidative stress is not an early mechanism linked to -cell failure
in POKO mice
The toxic effects of increased ROS are proposed to mediate -cell
failure (Maedler et al., 2002; Kaneto et al., 2005). Here, we
investigated whether the excessive toxicity of ROS is an early
pathogenic mechanism that determines the divergence in -cell
phenotype between ob/ob and POKO mice. The production of ROS,
which was measured using CM-H2DCFDA, a cell-permeable
indicator of ROS, revealed no differences between POKO and ob/ob
islets (Fig. 6A). Uncoupling protein 2 (UCP2) is a mitochondrial
carrier that is activated by ROS and reduces insulin secretion. We
observed no differences in the levels of mRNA encoding UCP2 in
islets, which supports the notion that ROS do not contribute to
the early stages of -cell failure in the POKO mouse (supplementary
material Fig. S1A). Furthermore, the expression of mRNA encoding
ROS scavengers that are typically induced during oxidative stress,
such as manganese superoxide dismutase (MnSOD), is unchanged
in islets from POKO and ob/ob mice compared with WT mice.
The expression of other intracellular antioxidant enzymes such as
glutathione peroxidase 1 (GPX-1) and glutathione reductase 1
(GSR-1) were also similar in the four genotypes, which further
indicates that, at this age, differences in oxidative stress are unlikely

Fig. 2. Islet gene expression of glucose and lipid metabolism genes.
(A)Islet gene expression from 5-week-old female WT, ob/ob, PPAR2 KO and
POKO mice (n8-11 mice per genotype). (B)Islet gene expression of lipid
metabolism genes from 5-week-old female WT, ob/ob, PPAR2 KO and POKO
mice (n8-11 mice per genotype). #P<0.05, ##P<0.01, ###P<0.001 WT vs ob/ob;
§P<0.05, §§P<0.01 PPAR2 KO vs WT; $$P<0.01 POKO vs PPAR2 KO; *P<0.05,
**P<0.01, ***P<0.001 POKO vs ob/ob.
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to be a main determinant of the rapid evolution of -cell failure in
pancreatic islets of the POKO mice.

Macrophage infiltration, islet inflammation and fibrosis in POKO
islets
Next, we investigated whether inflammation was present in islets
at this early stage and, therefore, whether this might be an early
pathogenic mechanism responsible for the accelerated -cell failure
in islets of POKO mice. At 4 weeks of age, the expression of the
macrophage markers CD68 and F4/80 is increased in islets from
ob/ob and POKO mice compared with WT and PPAR2 KO mice,
indicating that macrophage infiltration in islets is an early event in
the development of the metabolic syndrome. However, at this early
age, macrophage infiltration of islets per se does not predict the
subsequent evolution towards -cell failure in POKO mice. In
support of this, we observed no differences in the expression of
interleukin (IL)-6 and tumour necrosis factor (TNF) mRNA in
islets (Fig. 6B) and/or in the level of fibrosis, as assessed by
Picrosirius Red staining in 4-week-old mice from the four genotypes
(supplementary material Fig. S2). Similarly, there was no evidence
of increased apoptosis in islets using a TUNEL assay (Fig. 6C), and
no difference in the expression of Bcl2 in POKO, ob/ob, WT and
PPAR2 KO mice (Fig. 6B). Together, these data indicate that
although ob/ob and POKO mice show some proinflammatory
changes at 4 weeks of age, these changes do not predict the future
divergence in -cell failure in these mice.

ER stress is not an early pathogenic mechanism leading to -cell
failure in POKO mice
Metabolically overstretched  cells make high demands on the ER
for the biosynthesis of insulin (Nakatani et al., 2005). As these
demands become chronic, the biosynthesis of insulin might
overload the protein-folding capacity of the ER and so play a role

in the development of -cell failure (Kaneto et al., 2005; Nakatani
et al., 2005; Wellen and Hotamisligil, 2005). We investigated
whether early differences in ER stress markers could predict the
subsequent evolution of -cell function in ob/ob and POKO mice.
Initially, we assessed X-box binding protein 1 (XBP1), a
transcription factor that is downstream of inositol-requiring protein
1 (IRE1) and that is a transmembrane protein in the ER, which
functions as a sensor and transducer of ER stress (Eizirik et al.,
2008). The mRNA levels of the precursor form of XBP1 (unspliced)
and the active (spliced) form, which is formed by an IRE1-mediated
splicing reaction following ER stress, were similar in the four
genotypes (supplementary material Fig. S1B). Moreover, an ER
overload leads to apoptosis through the induction of the C/EBP
homologous protein Chop (Huang et al., 2007; Laybutt et al., 2007;
Marchetti et al., 2007). Although the mRNA expression level of
Chop is increased in both ob/ob and POKO mice at 5 weeks of age
compared with WT and PPAR2 KO mice, this increase is lower
in POKO mice than in ob/ob mice. However, expression of the ER
chaperone glucose-regulated protein 78 (GRP78) is similar in
ob/ob and POKO mice compared with WT and PPAR2 KO mice
(supplementary material Fig. S1B). This result indicates that
although incipient ER stress occurs in the early stages of -cell
compensation, it alone cannot be used to predict the course of
development of -cell expansion and failure.

DISCUSSION
Our goal was to characterise the early events and molecular factors
leading to -cell adaptation and failure in the context of obesity
and insulin resistance. For this, we took advantage of a recently
generated mouse model, the POKO mouse, which was obtained
by crossing a PPAR2 KO mouse with an ob/ob mouse, as described
previously (Medina-Gomez et al., 2007). This study focuses on the
early events that lead to severe metabolic syndrome. Our hypothesis

Fig. 3. Lipidomic profiling of islets and serum. Lipidomic profiling of islets (A) and serum (B) from 4-week-old male WT, PPAR2 KO (PG2KO), ob/ob and POKO
mice (n5-8 mice per genotype). Lipids with ANOVA P values of P<0.05 are shown. Lipid variable P values: *P<0.05, **P<0.01. Abbreviations: Cers, ceramides;
ChoEs, cholesteryl esters; DAGs, diacylglycerols; lysoPCs, lysophosphatidylcholines; lysoPE MAGs, lysophosphatidylethanolamine monoacylglycerols; PCs,
phosphatidylcholines; PC(e)s, ether-linked phosphatidylcholines; PEs, phosphatidylethanolamines; PE(e)s, ether-linked phosphatidylethanolamines; SMs,
sphingomyelins; TAGs, triacylglycerols.
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is that the early stages of disease might provide important novel
clues in the pathogenesis of metabolically induced -cell failure and
diabetes.

Here, we show that differences in metabolic stress are detected
as early as 4-5 weeks of age, as illustrated by the differences observed
between ob/ob and POKO islets at a time when the mass and
functional qualities of their  cells are apparently conserved.
Previous studies addressing this subject have faced the problem of
discriminating primary pathogenic mechanisms from secondary
toxic hits, or even from protective secondary allostatic responses
that maintain the metabolic homeostasis of the system. Here, we
focused on early events in an attempt to unravel the differences
that, at an early age, could be predictive of -cell failure. The
strength of our experimental design is based on comparing two
mouse models that have different degrees of severity and kinetics
of -cell failure and on using PPAR2 KO and WT mice, which are
not insulin resistant and have normal -cell function, as controls.
Our data indicate that, despite their apparently normal -cell
morphology and function, metabolic and genetic differences in
young ob/ob and POKO mice differentially affect -cell function
and lipid metabolism in response to insulin resistance. We observed
that other well-established mechanisms that are associated with -
cell failure, such as increased ROS production, inflammation,
macrophage infiltration and ER stress, are already present at this
early age. As these proinflammatory mechanisms are equally
apparent in POKO and ob/ob mice, it is possible that the main

difference between -cell failure in POKO and ob/ob mice might
be related to decreased resistance to stress. Our data also indicate
that these measures cannot be used to predict -cell failure, at least
in our models.

To validate the POKO mouse as a model of -cell failure, and
to validate its potential use in translational studies, we initially
characterised specific candidate mechanisms that have been
suggested previously to be involved in -cell failure in humans.
As indicated above, our results represent an in-depth
characterisation of the early metabolic events in  cells in two
mouse models that both eventually develop metabolic syndrome,
although with differing severity. As such, their comparative
analysis offers the opportunity of identifying predictors of the
metabolic syndrome development and severity. One model, the
POKO mouse, develops severe metabolic syndrome owing to
positive energy balance, impaired adipose tissue expandability and
accelerated -cell failure (Medina-Gomez et al., 2007). The ob/ob
mouse is a genetic model of positive energy balance that results
from increased food intake and decreased energy expenditure.
Adipose tissue expansion is not impaired in this model;
nevertheless, the mice develop the metabolic syndrome. One of
the most puzzling, and interesting, findings of the initial
characterisation of adult POKO mice was their inability to expand
-cell mass, a response that is typical of other insulin-resistant
strains, such as their ob/ob littermates. Another interesting
observation is that, despite the marked differences in -cell mass

Fig. 4. Lipidomic profiling of the liver. Lipidomic profiling
of the liver from 4-week-old male WT, PPAR2 KO (PG2KO),
ob/ob and POKO mice (n5-8 mice per genotype). Lipids
with ANOVA P values of P<0.05 are shown. Lipid variable P
values: *P<0.05, **P<0.01.
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in adult mice, -cell mass and function in younger (4-5 weeks
old) POKO and ob/ob mice are indistinguishable, which indicates
that this might be an interesting time at which to explore early
mediators of the subsequent divergent response.

Our results confirm that, at 4 weeks of age, POKO and ob/ob
mice have a similar -cell mass (Medina-Gomez et al., 2007), and
conserved basal and stimulated insulin secretion. Conservation of
the insulin secretory capacity of ob/ob and POKO islets indicates
that, at this stage, islets from these models are relatively healthy.
This led us to speculate that the differences observed at this stage
should be enriched in primary adaptations in comparison to the
more likely secondary adaptive and/or toxic responses that become
apparent in advances stages of the disease.

Our results confirm that it is possible to work efficiently with
such small islets and to detect signs of metabolic stress in this tissue.
We observed upregulation of IRS2 mRNA, a key mediator of -
cell proliferation that protects  cells against glucotoxicity. We also
observed upregulation of mRNA encoding Ki67, which is another
marker of cell proliferation that stains from the early to mid-G1
phase of the cell cycle through to mitosis. Given the adaptive
increase in -cell mass to maintain euglycaemia in the presence of
marked insulin resistance, the increased expression of cyclin D1 in
ob/ob islets was not unexpected. Although this may appear
paradoxical in leptin-deficient mice, as cyclin D1 has been shown
to be a target of leptin (Saxena et al., 2007), it indicates that other
specific regulators of cyclin D1 regulate -cell mass expansion. Our
data also indicate that induction of cyclin D1 in  cells might be
regulated, in part, by PPAR under conditions of either

overnutrition or metabolic stress. However, this hypothesis is
challenged by the observation that cyclin D1 is not altered in islets
from PPAR2 KO mice, even though pharmacological activation
of PPAR decreases cyclin D1 expression in vitro (Yin et al., 2001;
Koga et al., 2003). Alternatively, it has been suggested that agonist-
mediated inhibition of cell growth might be independent of PPAR
activation (Bae et al., 2003). Despite the opposing roles of leptin
and PPAR in modulating -cell mass, our data indicate that robust
alternative mechanisms are able to expand -cell mass appropriately
under conditions of increased metabolic demands. These studies
also lead us to speculate that a systems biology approach to
studying POKO islets might be a useful way to identify these
mechanisms. In any case, defining the role of cyclin D1 in coupling
-cell expansion to insulin resistance is an important subject for
subsequent studies.

Our data are sufficiently sensitive to detect specific metabolic
disturbances in islets from young mice. For example, Glut2, an
important transporter required for glucose uptake in islets, and its
main upstream regulator PDX1, are induced in islets from ob/ob
mice. In POKO islets, however, expression of Glut2 and PDX1 is
similar to that observed in WT islets, which could be considered
similar to unstressed physiological levels. In addition to
compromised glucose uptake into islets from POKO mice, the early
steps of glucose metabolism are likely to be affected, as indicated
by selective defects in GK and PCX expression in islets (Hasan et
al., 2008). As suggested above, these genes appear to be bona fide
PPAR targets because GK is regulated by thiazolidinediones in 
cells (Kim et al., 2002), and our group has evidence that PCX is a
target of PPAR action (Jitrapakdee et al., 2005). This reinforces
the idea that the POKO model might be enriched in defects in
PPAR-dependent mechanisms of -cell homeostasis. Similarly,
these data indicate that PPAR targets might be important for the
adaptation of  cells to insulin resistance and nutritional stress. As
expected, expression of the gene encoding insulin is increased in
islets from 5-week-old ob/ob and POKO mice compared with non-
insulin-resistant PPAR2 KO and WT islets. However, it might be
argued that the level of upregulation in POKO mice is
inappropriately low considering that these mice are more insulin
resistant than ob/ob mice. Gene expression analysis further
supports the concept of inappropriate adaptation to metabolic
stress in POKO mice, as indicated by the blunted transcriptional
upregulation of MafA and PDX1 in POKO islets compared with
the marked upregulation that was observed in ob/ob islets. Our
studies of glucose sensing and fuel handling also distinguish
between the severity of metabolic stress in the two models. When
considered globally, islets from POKO mice showed inappropriate
adaptations in -cell function, and defects in proliferation markers
and lipid signalling. Interestingly, compared with WT islets, the
expression of metabolic genes in POKO islets was unchanged, with
a profile that could be considered to be inappropriately normal for
the severe metabolic stress.

Following our original data from adult POKO mice (Medina-
Gomez et al., 2007), we sought to identify whether defects in fatty
acid metabolism and lipotoxicity were already evident in islets
from young POKO mice. The importance of the role of fatty acid
metabolism in -cell function is illustrated by the fact that FFAs
amplify glucose-induced insulin secretion, although the
mechanisms of this effect are far from being elucidated. It has

Fig. 5. Lipidomic profiling of skeletal muscle. Lipidomic profiling of skeletal
muscle from 4-week-old male WT, PPAR2 KO (PG2KO), ob/ob and POKO mice
(n5-8 mice per genotype). Lipids with ANOVA P values of P<0.05 are shown.
Lipid variable P values: *P<0.05, **P<0.01.
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been suggested that inappropriate activation of AMPK/ACC/
malonyl-CoA/CPT1 pathways might limit fatty acid oxidation and
compromise -cell function (Roduit et al., 2004). In young mice,
there were no differences in the expression of ACC or CPT1
mRNA. However, even at this early stage, expression of the gene
encoding SREBP1c was decreased in POKO islets compared with
ob/ob islets. This is an interesting observation because there is
evidence that excessive activation of SREBP1c reduces insulin
secretion and genetically modified mouse models have indicated
that SREBP1c has a physiological role in  cells (Yamashita et al.,
2004; Takahashi et al., 2005; Shimano et al., 2007). Furthermore,
recent evidence indicates that enhanced lipid synthesis that is
mediated by SREBP1c-dependent genes might be required for the
adaptive changes in islet gene expression and insulin secretion
that occur at high glucose concentrations (Diraison et al., 2008).
Induction of SREBP1c might, in our opinion, contribute to the
hormetic effect of fatty acids on insulin secretion. In this regard,
the increase in SREBP1c that was observed in ob/ob mice,
compared with WT mice, might be an adaptation to promote
lipogenesis in response to glucose levels; this adaptation seems
to be missing in islets from POKO mice, despite similar
challenging metabolic conditions.

We have also optimised a sensitive and sophisticated lipidomic
platform that is sufficiently sensitive to characterise the small
number of islets isolated from 4-week-old mice. Unlike in adult
mice (Medina-Gomez et al., 2007), the lipid composition of islets
from young POKO mice was unchanged when compared with the
other genotypes. However, lipidomic analysis of other metabolically
relevant tissues revealed important changes in lipid species in young

animals. For example, livers from both POKO and ob/ob mice had
similarly increased TAG levels, predominantly short- and medium-
chain TAGs, at 4 weeks of age. A priori, we would expect POKO
mice to accumulate more TAGs than ob/ob mice, particularly
considering the decrease in adipose tissue expandability that is
secondary to ablation of PPAR2, and the severity of the metabolic
disturbances (e.g. hyperlipidaemia) in POKO mice compared with
the other genotypes. In this respect, the similarity between TAG
accumulation in the livers of ob/ob and POKO mice is compatible
with some degree of impaired TAG deposition in the POKO liver.

Another interesting finding comes from analysis of skeletal muscle
from 4-week-old POKO mice; these data showed that the
concentrations of short- and medium-chain TAGs increased by less
than in skeletal muscle from ob/ob mice and were associated with
an increased concentration of other lipid species, such as long-chain
TAGs. This result agrees with the lipid profile observed in the POKO
mouse at later stages. Of interest, the levels of ceramides and
proinflammatory lysoPCs increased similarly in both ob/ob and
POKO mice. Overall, our lipidomic studies suggest that the defective
accumulation of TAGs and the resulting lipotoxicity in relevant
metabolic tissues, coupled with accelerated -cell failure and the
relatively low levels of insulin, may contribute to the severity of the
metabolic syndrome and the lipidomic profile observed in mature
POKO mice. Our data also highlight qualitative and quantitative
differences in organ-specific lipid networks and their contribution
to insulin resistance. These lipidomic studies and, more specifically,
the differences observed between the liver, serum and muscle, may
also indicate the possibility of a hierarchical order of organs with
respect to fat deposition and lipid-induced toxicity. In this respect,

Fig. 6. Islet ROS production, gene expression and
apoptosis in young mice. (A)ROS production was
measured by CM-H2DCFDA fluorescence, as described in
the Methods. (B)Islet gene expression from 5-week-old
female WT, ob/ob, PPAR2 KO and POKO mice (n8-11
mice per genotype). #P<0.05, ##P<0.01 WT vs ob/ob;
$P<0.05, $$$P<0.001 POKO vs PPAR2 KO.
(C)Representative pancreatic sections showing apoptosis
in WT, ob/ob, PPAR2 KO and POKO mice, determined by
TUNEL. Bars, 100 mm.
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our results indicate that, when adipose tissue storage becomes
incompetent, islets are not the first tissue to be to be affected by lipid
insult; it is more likely that the liver is the first organ to serve as a
sink for fat.

Our analysis of the early mechanisms leading to -cell adaptation
and failure provide evidence that islet inflammation, ROS and ER
stress, which are all alterations that are observed in the context of
severe advanced apoptosis of  cells (Poitout and Robertson, 2002),
are already present in islets from young POKO and ob/ob mice but
not in islets from PPAR2 KO and WT mice. However, we do not
conclude that these proinflammatory mechanisms are predictive
markers of either severity or the prognosis of -cell failure. In our
opinion, it is more likely that the primary mechanism, in this case
the ablation of PPAR, defines the vulnerability of the  cells to
these pathogenic mechanisms.

In summary, we have characterised the early metabolic
alterations in islets from ob/ob mice and compared them with
islets of the more severely affected POKO mice, and then
compared these to the changes in WT and PPAR2 KO controls.
Our results confirm that  cell studies at this early age are both
feasible and sufficiently sensitive to identify altered processes, and
to discriminate between different degrees of severity. Our results
justify future systems biology studies to investigate the early stages
of -cell disease as a strategy to maximise the chances of
identifying primary pathogenic mechanisms over secondary hits
and allostatic changes. Our lipidomic approach reveals that the
lipid profile of metabolically relevant organs changes during the
course of the disease, and that these changes are specific to the
particular organ. Taken together, our data support the concept
that studies in young mouse models are informative; that ob/ob
mice, and particularly the accelerated phenotype of POKO mice,
provide good models to study the early mechanisms associated
with -cell failure; and that coupling studies in  cells with lipid
analysis in other organs might provide important information
about the chronology of lipid disturbances in specific organs in
the context of lipotoxicity and the metabolic syndrome.

METHODS
Animal care
Animals were housed at a density of four animals per cage in a
temperature-controlled room (20-22°C) with 12-hour light-dark
cycles. Food and water were available ad libitum unless noted. All
animal protocols used in this study were approved by the UK Home
Office and the University of Cambridge.

Isolation and culture of pancreatic islets
The pancreas was injected, though the bile duct, with cold Hank’s
solution containing 0.4% (w/v) collagenase P (Roche Biochemicals).
The pancreas was removed, digested for 8 minutes, and islets were
collected by hand picking. Isolated islets were cultured overnight in
cell medium (RPMI 1640 with 10% FBS, and penicillin and
streptomycin), at 37°C, in 5% CO2 in air. For insulin secretion studies
or RNA extraction, islets were used on the day after isolation.

Insulin secretion studies
Insulin secretion from isolated islets (10 islets/well) was measured
for 30 minutes at 37°C in incubations in Krebs-Ringer buffer,
supplemented with 0.1% bovine serum albumin (BSA) as a carrier

containing either basal (2.5 mM) or stimulatory (25 mM) glucose
concentrations. The supernatants were assayed for insulin. Insulin
content was extracted using a 95:5 ethanol:acetic acid solution.
Insulin was measured using an electrochemical luminescence
immunoassay from MesoScale Discovery (MSD) (Gaithersburg,
MD). For these experiments, islets were isolated from several mice
of each genotype. Thus, the data are the mean of separate
experiments in which data were collected for each test solution
from samples of 10 islets each. For each sample, insulin release was
normalised to insulin content.

RNA preparation and real-time quantitative PCR
Total RNA was isolated from islets and tissue samples according
to the manufacturer’s instructions (RNAeasy kit, Qiagen). Real-time
quantitative PCR was performed using a TaqMan 7900 (Abi),
according to standard protocols.

Light microscopy and immunohistochemical analysis
Tissue samples for morphological and immunohistochemical
analyses were prepared according to published protocols (Medina-
Gomez et al., 2007). Morphometric analyses of pancreas sections
were acquired using a digital camera and microscope (Olympus
BX41), and cell areas were measured using AnalySIS
software  (Soft Imaging System). The antibodies used for
immunohistochemistry were as follows: Ki67 staining was
detected using streptavidin alkaline phosphatase (Zymed) at
1:2000 in TTBSA (Tris-Tyrode’s buffer supplemented with BSA),
and visualised with SigmaFast Fast Red TR/Naphthol AS-MX
phosphate tablets. TUNEL staining slides were pretreated with
Dako Real proteinase K for 5 minutes and then the staining was
performed using Millipore’s ApopTag peroxidase in situ apoptosis
detection kit (Chemicon S7100), according to the manufacturer’s
instructions. For estimation of collagen deposition, slides were
stained with Weigert’s iron haematoxylin (made in-house) for 30
minutes, then briefly differentiated and counterstained with
Picrosirius Red (Pioneer Research chemicals) for 1 hour, rapidly
dehydrated, cleared, and mounted in Micromount.

Measurement of ROS production
To determine the production of ROS in whole islets, islets were
loaded with 5 mol/l of CM-H2DCFDA for 1 hour followed by three
washes with fresh culture medium. ROS production was visualised
on a fluorescent microscope equipped with a digital camera. One
representative figure from three independent experiments with
similar results is shown (Fig. 6A).

Lipid profiling
Serum samples (10 ml), tissue samples (about 20 mg for liver, white
adipose tissue and skeletal muscle tissue) or islet samples were
diluted with 0.9% NaCl (10 ml for serum and islets, 50 ml for tissue
samples) and spiked with an internal standard reference compounds
mixture (10 ml for serum and islets, 20 ml for tissue samples)
(Laaksonen et al., 2006). The samples were subsequently extracted
with chloroform:methanol (2:1) solvent (100 ml for serum, 90 ml
for islets, 200 ml for tissue samples), homogenised with a glass rod,
vortexed (1 minute for serum, 15 seconds for islets, 2 minutes for
tissue samples), incubated at room temperature (1 hour for serum
and tissue samples, 20 minutes for islets), and centrifuged at 7826 g
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for 3 minutes. From the separated lower phase, an aliquot was
mixed with 10 ml of a labelled standard mixture (three stable
isotope-labelled reference compounds), and a 1.0-ml injection was
used for liquid chromatography-mass spectrometry (LC-MS)
analysis. The sample order for analysis was established by
randomisation. Lipid extracts were analyzed on a Q-ToF Premier
mass spectrometer (Waters) combined with Acquity ultra-
performance liquid chromatography (UPLC-MS) (Medina-Gomez
et al., 2007) in ESI+ mode. Data processing was performed using
the MZmine software (Katajamaa et al., 2006). The normalisation
procedure for lipidomic data was as described previously
(Laaksonen et al., 2006). Serum lipidomic data were normalised
against the serum volume of samples, and lipidomic data from
tissues were normalised against their tissue weights. Identification
of lipid species was performed based on an internal database of a
lipid library or, alternatively, by utilising the tandem mass
spectrometry library.

Statistics
For lipidomic studies, an array view of lipid profiles reflected the
changes relative to the mean intensity of molecular species within
the WT group. One-way ANOVA was performed to investigate
whether the mean intensities differed among the four genotypes.
Lipids with ANOVA P values of P<0.05 were shown. The lipid
variables with P values lying between P<0.05 and P<0.01 were
marked with ‘*’ and those with P values of P<0.01 were marked
with ‘**’. The multivariate statistical data analyses were performed
using Matlab (Mathworks) and the Matlab library PLS Toolbox
(Eigenvector Research).

The rest of the results are given as the mean±S.E. (standard
error). Statistical differences and interactions were evaluated
through a two-way lack of leptin and lack of PPAR2 factorial
ANOVA. When statistically significant differences resulted at the
interaction level, the Student’s t-test was carried out to compare
the effects. The differences were considered to be statistically
significant at P<0.05.
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TRANSLATIONAL IMPACT

Clinical issue
The earliest stages of type 2 diabetes are characterised by growing insulin
resistance and increased insulin secretion from an expanding population of
pancreatic  cells. In later stages, the  cells fail and, in the insulin-resistant
environment, they cannot produce sufficient insulin to maintain blood glucose
control. The ability to understand the crucial steps that precipitate diabetes
and -cell failure is hampered by limited mouse models for the early stages of
the disease. Most models are examined after the failing of  cells, making it
difficult to define the events leading to expansion and excessive insulin
production by  cells, and their subsequent failure.

Results
Here, the authors define a mouse model for studying the early
pathological changes that result from elevated fat levels or lipotoxicity.
They use the POKO mouse, a mouse model obtained by crossing the
insulin-resistant ob/ob mouse (which lacks leptin) with the peroxisome
proliferator-activated receptor gamma 2 (PPAR2) knockout mouse that
lacks the nuclear receptor PPAR2, which is known to have a role in
adipogenesis. The POKO mouse becomes lipotoxic and more insulin
resistant than the ob/ob mouse. Changes are found in the lipid profiles of
POKO mice as young as 4 weeks of age and are associated already with
changes in -cell proliferation and function. At this early time, pathogenic
effectors that characterise the advanced stages of disease can be
observed. Lipidomic analysis of the  cells in pre-diabetic mice reveal that,
compared with other metabolically relevant organs such as the liver,
muscle or adipose tissue, these pancreatic cells are protected from lipid-
induced toxicity at the early stages of disease. This suggests a hierarchical
order of ectopic lipid accumulation in which  cells are protected initially,
and establishes a model for understanding the early events leading to
diabetes.

Implications and future directions
Previous models are limited in their ability to address issues about the early
sensing of insulin resistance and the effectors that contribute to changes in -
cell mass and function. The authors suggest that these data establish a
foundation for subsequent systems biology profiling studies to identify the
mechanisms by which  cells initially sense insulin resistance and eventually
fail from metabolic pressure. Further work should reveal the molecular
effectors that increase -cell mass and function in the early phase of diabetes
and suggest biomarkers for early stages of the disease.
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Peroxisome proliferator activated receptor gamma 2 (PPARg2) is the nutritionally regulated isoform of PPARg.
Ablation of PPARg2 in the ob/ob background, PPARg2�/� Lepob/Lepob (POKO mouse), resulted in decreased fat mass,
severe insulin resistance, b-cell failure, and dyslipidaemia. Our results indicate that the PPARg2 isoform plays an
important role, mediating adipose tissue expansion in response to positive energy balance. Lipidomic analyses suggest
that PPARg2 plays an important antilipotoxic role when induced ectopically in liver and muscle by facilitating
deposition of fat as relatively harmless triacylglycerol species and thus preventing accumulation of reactive lipid
species. Our data also indicate that PPARg2 may be required for the b-cell hypertrophic adaptive response to insulin
resistance. In summary, the PPARg2 isoform prevents lipotoxicity by (a) promoting adipose tissue expansion, (b)
increasing the lipid-buffering capacity of peripheral organs, and (c) facilitating the adaptive proliferative response of b-
cells to insulin resistance.
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Introduction

An adipocentric view of the Metabolic Syndrome (MS)
considers obesity as the major factor leading to insulin
resistance in peripheral metabolic tissues. However, the link
between obesity and insulin resistance is complex, as
indicated by the fact that some extremely obese people are
glucose tolerant, while others with a mild degree of obesity
develop severe insulin resistance and diabetes. This suggests
that the absolute amount of fat stored may not be the most
important factor determining the relationship between
obesity and insulin resistance. Recent work showing the
complexity of the molecular mechanisms controlling adipo-
genesis [1,2] suggests that adipose tissue expandability may be
an important factor linking obesity, insulin resistance, and
associated comorbidities.

There are two mechanisms that have been proposed to
explain how expansion of the adipose tissue stores affects
insulin sensitivity. One mechanism suggests that increased
adiposity induces a chronic inflammatory state characterized
by increased cytokine production by adipocytes and/or from
macrophages infiltrating adipose tissue. Cytokines produced
by these adipocytes or macrophages may directly antagonise
insulin signalling [3,4]. A second nonexclusive hypothesis is
lipotoxicity. The lipotoxic hypothesis states that if the
amount of fuel entering a tissue exceeds its oxidative or
storage capacity, toxic metabolites that inhibit insulin action
are formed [5–8]. Of particular relevance to this article, lipid
metabolites, such as ceramides and diacylglycerol (DAG) or
reactive oxygen species generated from hyperactive oxidative
pathways, have been shown to inhibit insulin signalling and to
induce apoptosis [9–11].

The nuclear receptor peroxisome proliferator activated
receptor gamma (PPARg) is critically required for adipo-
genesis and insulin sensitivity [12–15]. There are two PPARg
isoforms, PPARg1 and PPARg2. PPARg1 is expressed in many
tissues and cell types, including white and brown adipose
tissue, skeletal muscle, liver, pancreatic b-cells, macrophages,
colon, bone, and placenta [16]. Under physiological con-
ditions, expression of PPARg2, the other splice variant, is
restricted to white and brown adipose tissue [16,17]. In
adipose tissue PPARg is the key regulator of adipogenesis.
PPARg2 is the more adipogenic PPARg isoform in vitro, it is
also the isoform regulated transcriptionally by nutrition [17–
20]. Although under physiological conditions expression of
PPARg2 is limited to adipose tissues, we have shown that
PPARg2 is ectopically induced in liver and skeletal muscle in
response to overnutrition or genetic obesity [2,18]. De novo
expression of PPARg2 in liver and muscle in obesity suggests
that PPARg2 may have a role in insulin resistance and
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lipotoxicity in these tissues. Little in vivo research into the
metabolic roles for the specific isoforms of PPARg has been
carried out, with the studies so far focusing almost exclusively
on adipose tissue [2,13,21,22]. PPARg (both isoforms) dele-
tions have been generated in most major metabolic tissues.
Liver-specific deletion of both PPARg isoforms caused an
impairment in insulin sensitivity, particularly when chal-
lenged by different genetic backgrounds (lipoatrophic or
leptin-deficiency) [23,24]. The effect of ablating both PPARg
isoforms in muscle produced controversial results, with two
groups reporting different effects on insulin sensitivity
[25,26]. The role of PPARg in pancreatic b-cells is unclear,
primarily due to its low expression under physiological
conditions [27–29] and secondly because ablation of both
PPARg isoforms in b-cells did not result in a metabolic
phenotype. However PPARg may play a role in b-cell
hyperplasia in response to insulin resistance, an idea
supported by the fact that mice that lack PPARg in b-cells
do not expand their b-cells mass in response to a high-fat diet
[30]. More recently, it has been shown that heterozygous
PPARg-deficient mice develop impaired insulin secretion,
which is associated with increased islet triacylglycerol (TAG)
content [31].

Here we investigate the physiological relevance of PPARg2
under conditions of positive energy balance by ablating
PPARg2 in ob/ob mice. We use a new approach that integrates
traditional physiological phenotyping with advanced lipido-
mic technology and transcriptomics. Our results indicate that
in the context of positive energy balance, the absence of
PPARg2 results in a major metabolic failure. Furthermore, we
provide evidence that control of adipose tissue expansion by
PPARg2 may be an important variable linking positive energy
balance to its metabolic complications including insulin
resistance, b-cell failure, and dyslipidaemia. Similarly, our
lipidomic results indicate that induction of PPARg2 in
nonadipose tissues should be considered as a physiological
adaptation that prevents the toxic effects produced by excess
nutrients. This antilipotoxic effect of PPARg2 is achieved by
increasing the lipid-buffering capacity of peripheral organs

and facilitating b-cell hyperplasia in response to insulin
resistance.

Results

Ablation of PPARg2 in Ob/Ob Mice (POKO Mouse)
Prevents Adipose Tissue Expansion in Response to
Positive Energy Balance
PPARg2�/� Lepob/Lepob mice with genetic ablation of the

PPARg2 isoform on the obese hyperphagic ob/ob background
(POKO) were generated. Matings of PPARg2þ/� Lepob/Lepþ

mice followed the expected Mendelian distribution (Fisher’s
test ¼ 0.074 and 0.135 for males and females, respectively).
PPARg1 gene expression in white adipose tissue (WAT) from
five-week-old POKO mice was similar to PPARg2 KO mice
and was not significantly different from wild-type (WT) mice
(Figure S1).
Figure 1A shows growth curves for male and female mice of

four genotypes (WT, PPARg2 KO, ob/ob, and POKO mice)
over a 12-week period. At birth, the body weight of male and
female POKO mice was indistinguishable from other geno-
types (unpublished data). The ob/ob mice quickly became
heavier than their WT littermates, with significantly elevated
body weight by four and six weeks of age in female and male
mice, respectively. However, the POKO mice did not become
obese, and their body weight remained close to WT and
PPARg2 KO body weights mice during the 12-week study.
POKO mice were as hyperphagic (Figure 1B) as the ob/ob

mice but drank far more water compared with ob/ob
littermates (81.85 6 15.14 versus 9.05 6 2.32 ml/70 h, p ,

0.01, female POKO versus ob/ob, n¼ 4 at 20 wk) (Figure S2A).
Dual-energy X-ray absorptiometry analysis at 20 wk (Figure
1C) confirmed that female POKO mice had slightly increased
fat content (4%) compared to WT and PPARg2 KO mice, but
significantly reduced fat mass compared to the 40% increase
observed in ob/ob mice. At the age of 20 wk, POKO and ob/ob
mice had a trend to a decreased total locomotor activity
during dark and light cycles compared with the WT and
PPARg2 KO mice over the 72-h period. However POKO had
similar total locomotor activity compared with ob/ob mice
(Figure S2B).
At six weeks of age, female POKO mice consumed a similar

amount of oxygen as ob/ob mice (vO2 ¼ 25.06 6 0.89 versus
23.10 6 0.99 ml/kg bodyweight 0.75/min, p¼ 0.07 POKO versus
ob/ob, n ¼ 6–8) showing a lower respiratory exchange ratio
(0.916 6 0.011 versus 0.952 6 0.007, p ¼ 0.01, female POKO
versus ob/ob) in the fed state, but similar respiratory
exchange ratio in the fasted state (0.73 6 0.014 versus 0.75
6 0.018, p-value ¼ 0.59 POKO versus ob/ob mice). Water
intake was already significantly increased in POKO compared
to ob/ob mice (13.59 6 1.88 versus 8.15 6 0.89 ml/d, p-value ,

0.05, POKO versus ob/ob). Furthermore, levels of glucose in
urine were higher in POKO mice compared with ob/ob mice
(403.4 6 49.2 versus 34.13 6 13.5 mMol/l, POKO versus ob/ob
mice, p-value¼ 0.001), showing an energy loss of 15.43 6 3.06
kJ/d through urine compared with 0.70 6 0.19 kJ/d in ob/ob
mice. At this age, POKO mice showed similar locomotor
activity compared with the ob/ob mice during the day, but
increased locomotor activity during the night (Figure S2C).
Histomorphometric analysis of adipose tissue from 16-wk-

old male mice revealed that POKO mice had fewer small
adipocytes than the ob/ob mice (Figure 1D and 1E). This
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Author Summary

It is known that obesity is linked to type 2 diabetes, however how
obesity causes insulin resistance and diabetes is not well under-
stood. Some extremely obese people are not diabetic, while other
less obese people develop severe insulin resistance and diabetes.
We believe diabetes occurs when adipose tissue becomes ‘‘full,’’
and fat overflows into other organs such as liver, pancreas, and
muscle, causing insulin resistance and diabetes. Peroxisome
proliferator activated receptor gamma (PPARg) is essential for the
development of adipose tissue and control of insulin sensitivity.
PPARg2 is the isoform of PPARg regulated by nutrition. Here we
investigate the role of PPARg2 under conditions of excess nutrients
by removing the PPARg2 isoform in genetically obese mice, the
POKO mouse. We report that removing PPARg2 decreases adipose
tissue’s capacity to expand and prevents the mouse from making as
much fat as a normal obese mouse, despite eating similarly. Our
studies suggest that PPARg plays an important antitoxic role when it
is induced in liver, muscle, and beta cells by facilitating deposition of
fat as relatively harmless lipids and thus prevents accumulation of
toxic lipid species. We also show that PPARg2 may be involved in
the adaptive response of beta cells to insulin resistance.
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analysis of adipocyte size suggests that ablation of PPARg2 in
the ob/ob background impairs the potential for adipocyte
recruitment.

Early Insulin Resistance in POKO Mice Independent of

Body Weight
As expected the reduced adipose tissue expandability of

the POKO mouse was associated with severe insulin resist-

ance. Surprisingly insulin resistance developed very early in
life with elevated insulin levels and blood glucose compared
to ob/ob mice (Table 1). We investigated whether peripheral
insulin resistance and/or a severe defect in insulin secretion
may cause hyperglycaemia in the POKO mouse. No differ-
ences in plasma glucose levels were detected three to five days
after birth amongst the four genotypes for both genders
(unpublished data). At weaning (three weeks of age) total

Figure 1. Physiological Characterisation of POKO Mouse

(A) Body weights (black circles, WT; black squares, ob/ob; white circles, PPARg2 KO; white squares, POKO) are shown for males (left) or females (right) (n
¼ 5–12). *, p , 0.05 POKO versus ob/ob and §, p , 0.01 POKO versus WT.
(B) Food intake from 20-wk-old female mice (n ¼ 4) is shown.
(C) Body composition analysis from 20-wk-old females is shown: WT, ob/ob, PPARg2 KO, and POKO mice fed chow diet mice (n¼4–7). *, p , 0.05 POKO
versus WT and ###, p , 0.001 POKO versus ob/ob.
(D) Haematoxylin and eosin (H and E)-stained sections (103) from epididymal WAT from 16-wk-old male WT, ob/ob, and POKO mice.
(E) Percent relative cumulative frequency analysis (PRCF) from epididymal WAT adipocytes from 16-wk-old male WT, ob/ob, PPARg2 KO, and POKO
mice. (n¼ 4–5).
doi:10.1371/journal.pgen.0030064.g001
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body weight was indistinguishable amongst the four geno-
types, and blood glucose levels were similar in males and
females (Figure 2A). However, by the age of four weeks,
coincident with the change to a chow diet, male and female
POKO mice developed severe hyperglycaemia compared to
the other genotypes. Insulin plasma levels in the POKO mice
at four weeks of age were increased compared to ob/ob mice
(Table 1). Insulin resistance in POKO mice was confirmed by
an insulin tolerance test (ITT) in four-week-old male and
female mice (Figure 2B). Furthermore insulin resistance in
adipose tissue was demonstrated by the extremely low levels
of glucose transporter4 (GLUT4) protein in POKO adipose
tissue when compared with GLUT4 levels in adipose tissue
from ob/ob mice (Figure S3). Of note, insulin resistance in the
POKO mice was associated with hypertriglyceridaemia as
early as four-weeks of age (Table 1).

Adult POKO Mice are Hyperglycaemic and Have Low
Plasma Insulin Levels

Given the early insulin resistance and hyperinsulinaemia in
the young POKO mice, we expected to see increased insulin
levels in mature POKO mice. At 16 weeks, male POKO mice
exhibited severe hyperglycaemia in the fasted and fed states
compared to littermate controls. Male POKO mice had
inappropriately low levels of insulin (Table 2). A similar,
but milder phenotype was also observed in POKO female
mice (unpublished data). Of note, adult ob/ob mice compen-
sated for their insulin resistance with increased insulin levels
(Table 2). POKO mice also had hypertriglyceridaemia when
compared to WT, ob/ob, or PPARg2 KO mice.

Impaired Beta-Cell Function in the POKO Mice
The inappropriately low insulin levels in the adult POKO

mice suggested a defect in b-cells. Insulin resistance in ob/ob
mice was compensated for by increasing pancreatic insulin
secretion, islet number, and size (Figure 3A). However,
despite being more insulin resistant than ob/ob mice, POKO
mice did not increase their b-cell mass, resulting in lower
plasma insulin levels than the ob/ob controls. Morphometric
analysis of pancreatic sections from 16-week-old male mice
confirmed that the islet-to-pancreas volume ratios were
similar in the POKO, WT, and PPARg2 KO mice (0.023 6

0.005, 0.013 6 0.006, and 0.016 6 0.005, respectively) and
markedly increased in ob/ob mice (0.077 6 0.017, p , 0.01 ob/

ob versus POKO). Additionally, POKO mice had significantly
decreased islet number and size (average area of islets POKO
¼ 18.40 6 2 mm2) compared to ob/ob mice (ob/ob¼ 61.59 6 8
mm2). Insulin staining demonstrated that islets from POKO
mice contained fewer insulin-positive cells than islets from
ob/ob mice (Figure 3A). The normal cellular organization of
the islet, abundant b-cells (insulin staining) in the centre of
the islet and a rim of a-cells at the periphery (glucagon
staining), was retained in the insulin resistant ob/ob mice but
was disrupted in the islets of POKO mice (Figure 3A). Islets
from POKO mice had decreased number of insulin positive
b-cells when compared to islets from ob/ob mice and a
scattered pattern of a-cells, which are morphological changes
associated with islet remodelling in the context of b-cell
failure. Gene expression analysis of islets from 16-week-old
mice revealed decreased expression of pancreatic duodenal
homeobox-1, insulin receptor substrate 2, Glut2, and insulin
in islets from POKO mice when compared with those from
WT or ob/ob (Figure S4).
The changes seen in the b-cells of POKO mice were not the

result of an inherent failure of the b-cell to develop properly
as indicated by histological studies of neonatal pancreas (day
3 to day 5) (unpublished data) and four-week-old pancreas
(Figure 2C), showing no morphological differences in the size,
number, or insulin staining of islets from POKO mice when
compared to ob/ob controls.

Impaired Glucose-Stimulated Insulin Secretion in POKO
Mouse Islets
We measured glucose-stimulated insulin secretion in 16-

week-old female POKO mice and their ob/ob littermates.
Islets isolated from POKO mice were 30% smaller than those
from ob/ob mice. Moreover, whereas normal islets were pure
white with a smooth surface, islets from POKO mice were
gray; their surface was irregular and required less time for
collagenase digestion (only ten minutes instead of 30
minutes), suggesting that they were also more fragile.
Insulin content in islets from ob/ob mice was more than 30-

fold greater than in those from POKO mice (Figure 3B).
Insulin secretion from the islets of POKO mice was strikingly
impaired compared to those of ob/ob mice, even when
expressed relative to insulin content (Figure 3C). This was
observed under basal (1 mM glucose) and stimulated (16 mM
glucose, 16 mM glucose þ tolbutamide) release.

Table 1. Metabolic Parameters in Fed 4-Wk-Old Male and Female POKO, Ob/Ob, PPARg2 KO, and WT Mice

Mice Parameters Units WT PPARg2 KO Ob/ob POKO

Males 4 wk Glucose mMol/l 11.40 6 0.56 10.65 6 0.06 11.79 6 0.66 27.80 6 3.52*

Insulin lg/l 0.84 6 0.11 1.06 6 0.14 8.47 6 2.04 11.26 6 4.63

FFA mmol/l 0.63 6 0.06 0.84 6 0.05 0.43 6 0.03 1.06 6 0.09***

TAGs mmol/l 1.26 6 0.27 1.5 6 0.14 0.92 6 0.08 3.33 6 0.80**

Adiponectin lg/ml 19.17 6 1.33 7.36 6 1.57 25.34 6 2.27 7.42 6 1.16***

Females 4 wk Glucose mMol/l 9.07 6 0.39 9.56 6 1.04 10.50 6 0.68 20.87 6 1.79***

Insulin lg/l 0.83 6 0.15 0.78 6 0.12 16.98 6 4.26 19.56 6 2.98

FFA mmol/l 0.57 6 0.06 0.76 6 0.08 0.57 6 0.08 0.76 6 0.06

TAGs mmol/l 1.09 6 0.09 1.49 6 0.13 1.11 6 0.13 4.51 6 0.69***

Adiponectin lg/ml 28.41 6 2.38 7.71 6 0.07 38.12 6 2.87 8.49 6 2.10***

Values are mean 6 standard error of mean. n ¼ 6/9. *, p , 0.05; **, p , 0.01; and ***, p , 0.001 POKO versus ob/ob.
FFA, free fatty acid.
doi:10.1371/journal.pgen.0030064.t001
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Decreased Steatosis in POKO Mice Compared to Ob/Ob

Mice
As expected, the POKO mice had increased hepatic fat

deposition compared to WT and PPARg2 KO mice (Table S1),
but surprisingly the POKO mouse had much milder hep-
atosteatosis than the ob/ob mouse (Figure 3D), suggesting that
ectopic expression of the PPARg2 isoform in the liver of ob/
ob mice (see below), might contribute to the deposition of
TAGs in the liver.

Ablation of PPARg2 Induces a Lipotoxic Lipid Profile in

Adipose Tissue, Pancreatic Islets, Liver, and Skeletal

Muscle
To investigate lipotoxicity as a potential pathogenic

mechanism we used liquid chromatography/mass spectrome-
try (LC/MS) [32] to compare a broad spectrum of cellular
lipids in the adipose tissue, pancreatic islets, liver, and

Figure 2. Early Insulin Resistance in POKO Mice Independent of Body Weight

(A) Body weight and plasma glucose levels from three, four, and five-week-old female WT, ob/ob, PPARg2 KO, and POKO. *, p , 0.05; **, p , 0.01; ***, p
, 0.001 POKO versus ob/ob.
(B) Plasma glucose levels during ITT on 4-wk-old male (left) and female (right) mice on chow diet (black triangle, WT; white triangle, PPARg2 KO; black
square, ob/ob; black diamond, POKO) (n¼ 7). *, p , 0.05; **, p , 0.01 POKO versus ob/ob.
(C) Morphological analysis of H and E-stained sections (103) in pancreas from 4-wk-old males ob/ob and POKO mice (n ¼ 5).
doi:10.1371/journal.pgen.0030064.g002

Table 2. Metabolic Parameters in 16-wk-Old Male POKO, Ob/Ob,
and WT Mice

Parameters Units WT Ob/ob POKO

Weight g 36.0 6 1.6 75.7 6 4.5 40.4 6 8.5*

Glucose fed mMol/l 10.93 6 1.45 15.27 6 2.47 54.18 6 6.5*,***

Glucose fasted mMol/l 5.46 6 0.52 10.74 6 1.78 22.64 6 3.98*,***

Insulin fed lg/l 1.86 6 0.49 46.63 6 8.32 9.46 6 1.84*,***

FFA mmol/l 0.81 6 0.10 0.88 6 0.04 1.7 6 0.43

Cholesterol mmol/l 3.26 6 0.05 6.40 6 0.46 5.20 6 0.49*,**

TAGs mmol/l 1.68 6 0.26 2.55 6 0.68 9.06 6 1.33*,***

Adiponectin lg/ml 23.88 6 1.08 13.74 6 1.30 4.21 6 0.98*,***

Values are mean 6 standard error of mean. n¼ 4/10. *, p , 0.001 POKO versus ob/ob; **,
p , 0.05 POKO versus WT; and ***, p , 0.001 POKO versus WT.
FFA, free fatty acid.
doi:10.1371/journal.pgen.0030064.t002
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skeletal muscle between the POKO mouse and controls
(Protocol S1).

Adipose tissue from POKO mice has decreased TAG but
increased DAG, ceramides, and other reactive lipid species
associated with insulin resistance. Lipidomic analysis using
LC/MS identified 74 molecular species differentially present
in POKO, ob/ob, and WT mice (Protocol S1). POKO adipose
tissue had decreased short chain TAGs compared to ob/ob

adipose tissue (Protocol S1). Conversely, the concentration of
DAGs was increased in the WAT of the POKOmice compared
to ob/ob littermates. There was also an increased concen-
tration of reactive lipid species in the WAT of POKO mice
compared to that of ob/ob. The WAT of both POKO and ob/
ob mice (Protocol S1) had increased levels of two ceramide
species (with 16:0 and 24:1 fatty acid chains, respectively) and
three proinflammatory lysophosphatidylcholine species [33]

Figure 3. Impaired b-Cell Function and Hepatic Morphological Analyis in the POKO Mice

(A) H and E-stained sections (103) and immunohistochemical (203) analysis of insulin and glucagon in pancreas from 16-wk-old males WT, ob/ob, and
POKO mice (n¼ 5).
(B) Insulin content of islets isolated from POKO (black bars), and ob/ob (grey bars) mice. Each data point is the mean of six samples each of five islets.
(C) Insulin secretion from islets isolated from POKO (black bars) and ob/ob (grey bars) mice in response to glucose (1, 16 mM) or glucose 16 mM þ
tolbutamide (200 lM). Data were collected from six samples each of five islets from three mice of each genotype. For each sample, insulin release was
normalised to insulin content. *, p , 0.05; **, p , 0.01; ***, p , 0.001 POKO versus ob/ob.
(D) H and E-stained sections (43) in liver from 16-wk-old males WT, ob/ob, and POKO mice (n¼ 5).
doi:10.1371/journal.pgen.0030064.g003
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compared to WT mice. Partial least squares discriminant
analysis indicated these changes in ceramides were greater in
the POKO than ob/ob mice (Protocol S1). Sphingomyelin
(d18:1/16:0), the precursor of ceramide (d18:1/16:0) and
antioxidant ethanolamine plasmalogen (36:1) [34] were
markedly decreased in POKO and ob/ob mice (Figure 4A).

Decreased TAG and accumulation of reactive lipid species
in islets from POKO mice. Partial least-squares discriminant
analysis of lipidomic profiles of isolated pancreatic islets of
16-week-old mice identified 44 lipid species accumulated at
different concentrations in WT, PPARg2 KO, and POKO
mice (Protocol S1). Short chain TAGs were decreased in islets

from POKO and PPARg2 KO mice when compared to those
from WT. This was associated with up-regulation of phos-
phatidylethanolamine (36:2), down-regulation of ethanol-
amine plasmalogen (36:2), and preferential accumulation of
reactive lipid species, particularly of two ceramides (20:0 and
22:0 fatty acids) in islets from POKO mice (Figure 5A and
Protocol S1).
Decreased TAG and increased reactive lipid species in liver

of POKO mice. Multivariate analysis of lipidomic profiles
(192 lipid species) revealed large changes between the POKO,
PPARg2 KO, ob/ob, and WT genotypes (Protocol S1). These
included decreased levels of short and medium chain TAGs

Figure 4. Lipidomic and Gene Expression Analysis of POKO WAT

(A) Lipidomic profiling of WAT from 16-wk-old males WT, ob/ob, and POKO mice.
(B) Adipose tissue mRNA levels from different genes from 16-wk-old male WT, PPARg2 KO, ob/ob, and POKO mice (n¼6–8). *, p , 0.05; **, p ,0.01; ***,
p ,0.001 POKO versus ob/ob.
doi:10.1371/journal.pgen.0030064.g004
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and DAGs (Figure 5B) in livers from POKO mice compared to
those of ob/ob mice. Livers from POKO mice also had
decrease levels of phosphatidylcholine lipid species (Protocol
S1) utilised during the formation and secretion of very low
density lipoproteins [35]. Conversely, POKO livers were
enriched in ceramides compared to ob/ob livers, which
correlated with the extent of increased levels of lysophos-
phatidylcholines in POKO and ob/ob mice (Protocol S1).

Decreased TAG and accumulation of reactive lipid species
in POKO skeletal muscle. The same lipidomic pattern of
decreased TAG and increased reactive lipid species previ-
ously observed in adipose tissue, b-cell, and liver was found to
a milder degree in the skeletal muscle of POKO mice
(Protocol S1). Briefly, when compared to ob/ob skeletal
muscle, POKO skeletal muscle showed a decrease in very
short-chain fatty acid TAGs and a slight decrease in levels of
medium and long chain TAGs (Protocol S1). The skeletal

muscle of POKO mice also had increased reactive lipids
including ceramide (d18:1/18:0), DAGs, lysophosphatidylcho-
lines, and sphingomyelins (precursors of ceramides) when
compared to that of ob/ob mice.

Transcriptomic Analysis in POKO Mice Correlates with

Lipidomic Changes
Given the lipotoxic profiles identified in the POKO mouse,

we hypothesised changes in the expression of metabolic genes
directly related to PPARg2 ablation and also compensatory
changes in genes associated with cellular stress (Table S4).
Gene expression analysis in WAT. Target genes of PPARg

such as Glut4, adipsin, aP2, and adiponectin were decreased to a
larger extent in the WAT of five- and 16-week-old POKO
mice than in PPARg2 KO mice (Figure S1 and Figure 4B). At
five weeks of age, when differences in body fat between
female WT, ob/ob, and POKO mice are only starting to

Figure 5. Lipidomic and Gene Expression Analysis in Islets and Liver from POKO Mice

Lipidomic profiling of islets (A) and liver (B) from 16-wk-old males WT, PPARg2 KO, ob/ob, and POKO mice. TG, TAGs; DAGs, diacylglycerols; SM,
sphingomyelins. (C) Liver gene expression from 16-wk-old male WT, ob/ob, PPARg2 KO, and POKO mice fed chow (n¼6–8). *, p , 0.05; **, p, ,0.01; ***,
p ,0.001 POKO versus ob/ob; ###, p , 0.001 POKO versus WT; zzz, p , 0.001 ob/ob versus WT.
doi:10.1371/journal.pgen.0030064.g005
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become evident, levels of GLUT4, aP2, and adiponectin
mRNA levels were similar in WT and ob/ob mice, yet were
markedly decreased in POKO mice. As the ob/ob mice aged
(16 wk) and became obese and insulin resistant, the
expression pattern of these PPARg targets in the WAT of
ob/ob mice became similar to that of the POKO mice.

Results from the lipidomic analysis suggested major
changes in the expression of genes involved in lipid
metabolism (Figure 4B). Expression of stearoyl-coenzyme A
desaturase 1 (Scd1) and sterol regulatory element-binding
protein-1c (SREBP1c) were significantly lower in WAT from
POKO mice compared to ob/ob mice. Furthermore, the
decrease in TAGs and increased DAGs correlated with
decreased expression of DAG acyltransferase 2, a key enzyme
catalysing the final step in TAG synthesis, in the WAT of
POKO mice compared with WAT from ob/ob mice. Again
supporting the lipidomic profile, the expression of hormone-
sensitive lipase, a rate-limiting enzyme for hydrolysis of
diacylglycerides, was decreased in the WAT of POKO,
PPARg2 KO, and ob/ob mice compared with WT mice, with
the lowest levels observed in the POKO mice. Adipose
triglyceride lipase levels were decreased in ob/ob and POKO
compared with WT and PPARg2 KO mice, but without
significant differences between ob/ob and POKO mice.

Oxidative stress has recently been suggested as a common
mechanism of insulin resistance. Adipose tissue from POKO
mice had increased oxidative stress compared to that of ob/ob
mice as indicated by decreased gene expression levels of
extracellular CuZn-superoxide dismutase, disruption of the
glutathione pathway as indicated by decreased levels of
gluthatione synthase, and increased levels of peroxidase and
several gluthatione transferases (Table S2). We examined
macrophage infiltration of adipose tissue as a potential
marker of inflammation associated insulin resistance. Ex-
pression of CD68 and F4/80, both macrophage markers, was
increased in the WAT of both POKO and ob/ob mice
compared with WT and PPARg2 KO mice (Figure 4B).
However their expression levels were lower in the POKO
mice than the ob/ob mice suggesting that macrophage
infiltration was not directly related to the exacerbated insulin
resistance of the POKO mouse compared to the ob/ob mouse.

Gene expression in the POKO liver. Reduced hepatic
steatosis accompanied by altered lipid profiles suggested that
lack of hepatic ectopic expression of PPARg2 might be
affecting lipid storage and metabolism in the liver of the
POKO mice. Expression of genes involved in lipid metabo-
lism in liver (Figure 5C) revealed that, proportional to the
accumulation of TAGs in the liver, fatty acid synthase, Scd1,
and the fatty acid translocase (FAT/CD36) were increased in
ob/ob and POKO livers compared to WT mice and were
significantly decreased in liver from POKO mice compared
with liver from ob/ob mice. Other lipogenic PPARg target
genes such as Lpl were also decreased in the POKO liver
compared to the ob/ob mice. The ob/ob mice also had a
compensatory increase in the expression of genes involved in
b-oxidation (e.g., Pparg, Lcad, Aox, Cpt1, and Ucp2). Interest-
ingly expression of these pro-oxidative genes was decreased
in the liver of POKO mice when compared to that of ob/ob
mice suggesting PPARg2 may contribute to their regulation
[36].

Although b-cell failure could account for the severe
hyperglycaemia observed in the POKO genotype, hepatic

gluconeogenesis function might be affected. We observed a
robust up-regulation of PPARg coactivator 1 alpha (PPARG-
C1a, also known as PGC1a) expression in the POKO liver
compared with the WT and ob/ob mice. PPARGC1a is up-
regulated in fasting and is thought to induce gluconeogenesis
[37]. In parallel with the increase in PPARGC1a, microarray
analysis revealed increased mRNA levels of the progluconeo-
genic genes phosphoenolpyruvate carboxykinase 1 (Pepck1)
and glucose-6-phosphatase (G6pc) in the livers of POKO mice
when compared to those of ob/ob mice (Table S2), suggesting
hepatic gluconeogenesis may contribute to the hyperglycae-
mia observed in POKO mice.
Gene expression analysis in skeletal muscle of POKO mice.

In 16-week-old POKO-mice skeletal muscle we observed
down-regulation of Srebp1c and Ppargc1a and up-regulation of
Ucp2 expression in skeletal muscle from POKO mice
compared to that of WT mice. Similarly, expression of Lpl
and Scd1 was down-regulated in the skeletal muscle of POKO
mice when compared with that from ob/ob mice (Figure S5;
Table S2). Gene set enrichment analysis of microarray data
showed decreased expression of oxidative phosphorylation
and mitochondrial components including electron transport
chain complex components, in skeletal muscle from POKO
mice when compared with that from ob/ob mice (Table S3).

Discussion

The link between obesity, insulin resistance, and diabetes
while epidemiologically very clear is still not properly
understood at a mechanistic level. An emerging concept is
that the absolute amount of fat stored may be less important
than the remaining storage capacity of the adipose tissue.
Here we show that the PPARg2 isoform may be an important
factor controlling obesity-induced comorbidities through two
mechanisms: (a) by regulating nutritionally induced adipose
tissue expandability and (b) when de novo expressed in
nonadipose tissues, by allowing the storage of energy in the
form of relatively harmless TAG species.
Previously we described the metabolic phenotype of the

adult PPARg2 KO mouse [2], characterised by mild insulin
resistance observed only in males. Given the greater
adipogenic potency of PPARg2 compared with PPARg1 in
vitro, we expected PPARg2 KO mice to have many more
severe defects in adipose tissue than we observed, and
therefore insulin sensitivity. As PPARg2 is the PPARg isoform
regulated in response to nutrition and obesity [17–20], we
hypothesised that PPARg2 would only become essential for
adipose tissue function in the face of positive energy balance.
The metabolic challenge we opted for was PPARg2 ablation
in the obese (ob/ob) background (PPARg2�/� Lepob/Lepob,
POKO mouse). The POKO mouse had severely decreased
body-fat mass due to impaired adipose tissue expandability.
Despite eating as much as an ob/ob mouse and expending a
similar amount of energy, the POKO mouse was unable to
store fat efficiently in its adipose tissue. This mismatch
between increased energy availability and lack of adipose
tissue expandability lead to a global metabolic failure
characterised by severe insulin resistance, b-cell failure, and
dyslipidaemia.
The observation of reduced fat mass and increased insulin

resistance in the POKO mouse compared to the ob/ob mouse
strongly supports two of our hypotheses. First, we hypoth-
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esised that PPARg2 is required to recruit new adipocytes in
overnutrition, but it is not required to make adipocytes
during development. This is reflected by similar expression of
aP2, a late marker of adipocyte differentiation, in POKO and
ob/ob mice. The absence of small adipocytes was markedly
different to other forms of lipodystrophy [38,39]. Addition-
ally, and again in contrast with other lipodystrophic models
that have markedly less adipose tissue than WT controls [38–
40], the POKO mice had a percentage body fat that was
similar (only 4% more) to WT and PPARg2 KO mice, as
opposed to ob/ob mice, which had 40% fat as a proportion of
body mass. This suggests that the remaining PPARg1 isoform
is sufficient to support development of adipose tissue and fat
deposition requirements of a lean mouse model. However,
under conditions of positive energy balance, adipose tissue
expandability mainly relies on the PPARg2 isoform. This idea
is also suggested by the studies in heterozygous mice
harbouring the murine equivalent of the human mutation
(P465L) in PPARg on an ob/ob background [41]. These mice
were able to accumulate fat and become obese even though
showing a body mass 14% lower than ob/ob controls. In
humans there is also evidence for a role for PPARg2. We have
observed that metabolically healthy, nondiabetic, morbidly
obese individuals have elevated levels of PPARg2 in their
adipose tissue when compared to lean individuals [19]. Our
second hypothesis, that the mismatch between energy
availability and adipose tissue expandability is more impor-
tant than fat mass itself as a predictor of insulin resistance, is
also supported by our data. In fact the ob/ob mouse is much
more obese than the POKO mouse but is much less insulin
resistant. Furthermore, the POKO mice were already more
insulin resistant than the ob/ob mice by the age of four weeks,
with very low levels of GLUT4 in adipose tissue, before large
differences in body weight developed, suggesting that the
bioenergetic mismatch rather than the total amount of fat
stored is important for the development of insulin resistance.

Although we hypothesised that the POKO mice would
become insulin resistant, the degree of hyperglycaemia in
these animals was in excess of what we expected. We found
that the normal adaptive response of b-cells to insulin
resistance did not occur in the POKO mice as indicated by
the pathological changes observed by histology and the lack
of b-cell hypertrophy. Although it has been shown that
genetic background can affect the ability of ob/ob mice to
undergo b-cell hypertrophy [42,43], we found that the ob/ob
controls on our mixed 129Sv 3 C57BL/6J background
underwent adaptive b-cell hyperplasia and hypertrophy,
suggesting that the lack of PPARg2 was responsible for the
failure of the POKO b-cells to adapt to insulin resistance.
Interestingly the mass of pancreatic islets in POKO mice
remained similar to the noninsulin resistant WT and PPARg2
KO mice. Furthermore, these defects in POKO b-cells did not
appear to be the result of a developmental defect, as new
born and four-week-old mice had morphologically normal
islets.

The severe b-cell phenotype of the POKO mouse contrasts
with the absence of hyperglycaemia observed in the pancre-
atic b-cell specific PPARg KO mouse [30]. However it should
be kept in mind that in the b-cell specific PPARg KO mouse,
the expression of PPARg and the lipid storage capacity of
other tissues, most importantly adipose tissue, were not
affected, and that insulin sensitivity was only mildly affected

by high fat feeding in these mice when compared to the
severe insulin resistance observed in POKO mice. Therefore
the challenge to the pancreatic b-cells in this model was
milder than in POKO mice. This is a clear example of how
tissue-specific genetic manipulations are not always the best
approach to understand the physiology of an organ in the
context of the global energy homeostasis. The potential
importance of the de novo expression of PPARg2 isoform in
b-cells is also supported by the observation that humans
harbouring the Pro12Ala mutation in PPARg2, a mutation
that is located in the g2 isoform and makes PPARg2 less
active, has only been associated with insulin deficiency and
disease severity in obese individuals with type 2 diabetes [44].
The liver of the POKO mouse also displayed an unusual

phenotype. We expected the POKO mice to have worse
hepatosteatosis with increased triglyceride deposition in liver
compared to ob/ob mice, because the POKO mice could not
store fat in adipose tissue. However POKO mice had less
hepatosteatosis than ob/ob mice suggesting that the PPARg2
isoform may directly contribute to facilitate triglyceride
deposition in the liver.
A common mechanistic link for the phenotypes observed

in the POKO liver and b-cell was not immediately obvious. To
try to determine the role of PPARg2 in these locations we
performed lipidomic and gene expression analyses of the
adipose tissue, pancreatic islet, liver, and skeletal muscle of
the POKO mouse. The lipid pattern of adipose tissue from
POKO mice was characterised by decreased TAGs and
increased DAGs in parallel with decreased gene expression
of DGAT2, hormone-sensitive lipase, and adipose triglyceride
lipase. This decrease in TAGs in the POKO adipose tissue was
associated with increased levels of reactive lipid species and a
gene expression profile suggestive of increased oxidative
stress [45–49]. Although it has been described that oxidative
stress and insulin resistance may be related to infiltration of
adipose tissue by macrophages, resulting in a chronic state of
inflammation [50–52], we did not observe increased macro-
phage infiltration in the adipose tissue of POKO mice
compared to that of ob/ob mice.
Lipidomic analysis of POKO derived islets also showed

decreased levels of triacyl and DAGs and increased levels of
ceramides, suggesting that PPARg2 may contribute to
increasing the lipid-buffering capacity of b-cells by promot-
ing formation of TAGs and thus preventing lipotoxic insults.
Liver and skeletal muscle lipidomics also showed reduced
TAG and increased formation of reactive lipid species such as
ceramides and lysophosphatidylcholines in POKO mice
compared to ob/ob mice. This lipid profile was associated
with impaired expression of pathways controlling de novo
lipogenesis, transport of fatty acids, and beta oxidation in the
POKO mice compared with the ob/ob mice. Of interest,
Ppargc1a and other gluconeogenic genes were induced in the
liver of POKO mice compared to that of ob/ob mice,
suggesting a potential mechanism contributing to marked
hyperglycaemia in POKO mice [53,54].
Overall, our lipidomic studies identify a remarkably

similar pattern of changes in lipid species in the four tissues
studied. The reduced adipose tissue mass and hepatosteatosis
in the POKO mouse compared to the ob/ob mouse is
explained by reduced levels of mature TAG in the POKO
mouse. Similarly, ablation of PPARg2 resulted in accumu-
lation of reactive lipid species implicated in causing insulin
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resistance, not only in adipose tissue, but also in other
organs involved in whole-organism glucose metabolism.
These results indicate that expression of PPARg2 in the
pancreas, liver, and muscle of the ob/ob mouse may be
performing a protective role, by increasing the capacity of
these organs to buffer toxic lipid species by allowing
accumulation of relatively harmless TAGs. The importance
of this peripheral antilipotoxic role of PPARg2 becomes
more evident if we consider that POKO and ob/ob mice are
under the same degree of positive energy balance as
determined by similar food intake, locomotor activity, and
energy expenditure, that both models lack leptin, and that
the only difference between ob/ob and POKO mice is the
presence or absence of PPARg2. Given the decreased
adipose tissue expandability of the POKO mice compared
to ob/ob, it was anticipated that, as in the liver, muscle, or b-
cells of lipodistrophic mice, the POKO mouse would
accumulate more fat than the ob/ob. However, our results
clearly indicate that mice lacking PPARg2, despite massive
nutrient availability, are unable to deposit TAG in periph-
eral tissues and instead accumulate reactive lipid species in
these organs. Therefore the pathologies of the liver and b-

cell observed in the POKO mouse may be a result of a
common lipotoxic insult facilitated by the absence of
PPARg2 (Figure 6).
In summary, in this study we provide new insights into the

physiological relevance of the PPARg2 isoform and identify
adipose tissue expandability as an important determinant of
metabolic complications. Ablation of PPARg2 decreases
adipose tissue expandability, but its pathophysiological
effects only become relevant in the context of a mismatch
between energy availability and adipose tissue expansion. We
show that PPARg2 also plays protective role when expressed
de novo in peripheral organs by increasing their capacity to
buffer toxic lipids. Ablation of PPARg2 under conditions of
positive energy balance determined by absence of leptin
produced early development of severe insulin resistance, b-
cell failure, diabetes, and hyperlipidaemia. Extrapolation of
this model to humans may suggest that normal to overweight
individuals with positive energy balance and inappropriately
severe manifestations of the MS may have a defect in PPARg2
and/or alternative mechanisms that control adipose tissue
expandability.

Figure 6. Storage of Lipids—Antilipotoxic Role of PPARg2

Antilipotoxic role of PPARg2 mediated by (a) expansion of adipose tissue and facilitation of triglyceride deposition and (b) facilitating deposition of fat
in liver, skeletal muscle, and pancreas in the form of TAG. Ob/Ob mice can induce PPARg2 expression in liver, muscle, and b-cell, facilitating deposition
of excess of energy in these organs in the form of TAG. Absence of inducibility of PPARg2 in POKO mouse liver, muscle, and b-cells results in increased
deposition of reactive lipid species and decreased TAG, leading to marked insulin resistance and b-cell failure.
doi:10.1371/journal.pgen.0030064.g006
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Materials and Methods

Generation of mice homozygous for PPARg2 KO and leptin
deficiency (ob/ob). Mice heterozygous for a disruption in exon B1 of
PPARg2 on a 129Sv background (PPARg2þ/�) [2] were crossed with
heterozygous ob/ob (Lepob/Lepþ) mice on a C57Bl/6 background to
obtain mice heterozygous for both the PPARg2 ablation and the
leptin point mutation (PPARg2þ/� Lepob/Lepþ). These mice were
crossed to obtain the four experimental genotypes: WT (PPARg2þ/þ

Lepþ/Lepþ), PPARg2 KO (PPARg2�/� Lep þ/Lepþ), ob/ob (PPARg2þ/þ

Lepob/Lepob), and POKO (PPARg2�/� Lepob/Lepob). Genotyping for
deletion of PPARg2 and the point mutation in the ob gene was
performed by PCR using standard protocols [2,55].

Animal care. Animals were housed at a density of four animals per
cage in a temperature-controlled room (20–22 8C) with 12-h light/
dark cycles. Food and water were available ad libitum unless noted.
All animal protocols used in this study were approved by the UK
Home Office and the University of Cambridge.

Blood and urine biochemistry, food intake, and body composition
analysis. Mice of the four experimental genotypes were placed at
weaning (three weeks of age) on a normal chow diet (10% of calories
derived from fat; D12450B, Research Diets, http://www.researchdiets.
com). Enzymatic assay kits were used for determination of plasma
FFAs (Roche, http://www.roche.com) and TAGs (Sigma-Aldrich, http://
www.sigmaaldrich.com). Elisa kits were used for measurements of
leptin (R & D Systems, http://www.rndsystems.com), insulin (DRG
Diagnostics International Limited, http://www.drg-international.com),
and adiponectin (B-Bridge International, http://www.b-bridge.com)
according to manufacturers’ instructions. Dual-energy X-ray absorp-
tiometry (DEXA, Lunar Corporation, http://www.lunarcorp.com) was
used to measure body composition; glucose in blood and in urine and
food intake were monitored in the four experimental genotypes as
previously shown [2].

Oxygen consumption, water intake, and locomotor activity. Oxy-
gen was measured using an eight-chamber open-circuit oxygen-
monitoring system attached to and sampled from the chambers of a
Comprehensive Laboratory Animal Monitoring System (CLAMS;
Columbus Instruments, http://www.colinst.com). Water consumed
was also measured using CLAMS. Mice were housed individually in
specially built Plexiglass cages maintained at 22 8C under an
alternating 12:12-h light-dark cycle (light period 08:00–20:00). Sample
air was sequentially passed through oxygen (O2) and carbon dioxide
(CO2) sensors (Columbus Instruments) for determination of O2 and
CO2 content. Mice were acclimatized to monitoring cages for 72 h
before data collection. Mice were weighed before each trial.
Ambulatory activity of individually housed mice was evaluated using
an eight-cage rack OPTO-M3 Sensor system (Columbus Instruments).
Cumulative ambulatory activity counts were recorded every 5 min
throughout the light and dark cycles.

Calculations of energy lost in urine. Energy lost in urine was
calculated accordingly as previously shown before [56] using the
following calculations:

Energy lost in urine kJ/day ¼ (glucose in urine [mMol/l]/1,000) 3
molecular weight glucose 3 (water intake [ml/day]/1,000) 3 E
densitycarb; E densitycarb¼ energy density related to oxidations within
the body for carbohydrates as glucose¼ 15.76 kJ/g.

RNA preparation and real-time quantitative RT-PCR. Total RNA
was isolated from islets and tissues samples according to the
manufacturer’s instructions (RNAeasy kit, Qiagen, http://www.
qiagen.com) and STAT60 (Tel-Test, http://www.isotexdiagnostics.
com/tel-test.html). Real-time quantitative PCR was performed using
a TaqMan 7900 (Applied Biosystems, http://www.appliedbiosystems.
com) according to standard protocols.

Western blot analyses. The tissue samples (40 lg) were subjected to
SDS-PAGE on 8% polyacrylamide gels. Proteins were then electro-
phoretically transferred to polyvinylidene difluoride filters. After
transferring, the filters were blocked with 5% nonfat dry milk in TBS-
Tween 20 followed by incubation with primary GLUT4 and
extracellular signal-regulated kinase 1/2 (ERK1/2) antibodies (Prom-
ega, http://www.promega.com) overnight. The bands were quantified
by scanning densitometry.

Light microscopy and immunohistochemcal analysis. Tissue sam-
ples for morphological and immunohistochemcal analysis were
prepared according to published protocols [2]. Morphometric analyses
of adipose tissue and pancreas sections were acquired using a digital
camera and microscope (Olympus BX41, http://www.olympus.com),
and cell areas were measured using AnalySIS software (Soft Imaging
System, http://www.soft-imaging.net). For adipose tissue, two fields
from each section were analysed to obtain the mean cell-area per
animal (n ¼ 5 per genotype). The Computer Assisted Stereology

Toolbox (CAST) 2.0 system from Olympus was used to perform all
measurements in the pancreas according to published protocols
[57].

Isolation and culture of pancreatic islets. The pancreas was
injected via the bile duct with cold Hank’s solution containing
0.4% (w/v) liberase (Roche). The pancreas was removed, digested for
15–30 min, and islets collected by handpicking. Isolated islets were
cultured overnight in h-cell medium (SBMI 06, hcell technology,
http://www.hcell.com) at 37 8C in 5% CO2 in air. Islets were used the
day after isolation for insulin secretion studies or RNA extraction.

Insulin secretion studies. Insulin secretion from isolated islets (five
islets/well) was measured during 1-hr static incubations in Krebs—
Ringer Buffer containing either 1 mM glucose, 16.7 mM glucose, or
16.7 mM glucose plus 200 lM tolbutamide in DMSO. The super-
natants were assayed for insulin. Insulin content was extracted using
95:5 ethanol/acetic acid. Insulin was measured using a Mouse Insulin
ELISA kit (Mercodia, http://www.mercodia.com). Islets were isolated
from three mice of each genotype for these experiments. Thus, the
data are the mean of three separate experiments, in which data were
collected for each test solution from six samples each of five islets.
For each sample, insulin release was normalised to insulin content.

ITT. ITTs on four-week-old mice were performed as previously
published [58].

Lipid profiling. For WAT and muscle, the tissue sample (50 mg) was
homogenized with 0.15 M sodium chloride (300 ll), and the lipids
were extracted with 2 ml of chloroform: methanol (2:1) and used for
LC/MS as previously described [2].

For liver and islets, an aliquot (20 ll for liver or 10 ll for islets) of
an internal standard mixture (11 reference compounds at concen-
tration level 8–10 lg/ml), 50 ll of 0.15 M sodium chloride (for liver),
and chloroform:methanol (2:1) (200 ll for liver or 90 ll for islets) was
added to the tissue sample (20–30 mg). The sample was homogenized,
vortexed (2 min for liver or 15 s for islets), let to stand (1 h for liver,
20 min for islets), and centrifuged at 10,000 RPM for 3 min. From the
separated lower phase, an aliquot was mixed with 10 ll of a labelled
standard mixture (three stable isotope-labelled reference compounds
at concentration level 9–11 lg/ml), and 0.5–1.0 ll injection was used
for LC/MS analysis.

Total lipid extracts were analysed on a Waters Q-Tof Premier mass
spectrometer (http://www.waters.com) combined with an Acquity
Ultra Performance LC (UPLC). The column, which was kept at 50
8C, was an Acquity UPLC BEH C18 103 50 mm with 1.7 lm particles.
The binary solvent system (flow rate 0.200 ml/min) included A, water
(1% 1 M NH4Ac, 0.1% HCOOH), and B, LC/MS grade (Rathburn,
http://www.rathburn.co.uk) acetonitrile/isopropanol (5:2, 1% 1 M
NH4Ac, 0.1% HCOOH). The gradient started from 65% A/35% B,
reached 100% B in 6 min, and remained there for the next 7 min. The
total run time per sample, including a 5 min re-equilibration step,
was 18 min. The temperature of the sample organizer was set at 10 8C.

Mass spectrometry was carried out on Q-Tof Premier (Waters) run
in ESIþ mode. The data were collected over the mass range of m/z
300–1,200 with scan duration of 0.2 s. The source temperature was set
at 120 8C, and nitrogen was used as desolvation gas (800 l/h) at 250 8C.
The voltages of the sampling cone and capillary were 39 V and 3.2 kV,
respectively. Reserpine (50 lg/l) was used as the lock spray reference
compound (5 ll/min; 10 s-scan frequency).

Data processing was performed using the MZmine software [59].
Identification was performed based on an internal reference database
of lipid species, or alternatively utilizing the tandem mass spectrom-
etry. The statistical analyses were performed using Matlab (Math-
works, http://www.mathworks.com) and the Matlab library PLS
Toolbox (Eigenvector Research, http://www.eigenvector.com).

Tandem mass spectrometry was used for the identification of
selected lipid species. MS/MS runs were performed by using ESIþ
mode, collision energy ramp from 15–30 V, and mass range starting
from m/z 150. The other conditions were as shown in the Protocol S1.

Statistics. Results were expressed as mean 6 standard error of
mean. Statistical analysis was performed using a two-tailed unpaired
t-test between appropriate pairs of groups, and significance declared
if p-values were less than 0.05.

Supporting Information

Figure S1. Adipose Tissue and Liver Gene Expression

Found at doi:10.1371/journal.pgen.0030064.sg001 (39 KB PPT).

Figure S2. Water Consumed and Locomotor Activity

Found at doi:10.1371/journal.pgen.0030064.sg002 (38 KB PPT).
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Figure S3. GLUT4 protein expression in WAT
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Found at doi:10.1371/journal.pgen.0030064.sg004 (25 KB PPT).

Figure S5. Gene Expression in Muscle

Found at doi:10.1371/journal.pgen.0030064.sg005 (32 KB PPT).

Protocol S1. POKO Mouse Model Lipidomics Dataset

Found at doi:10.1371/journal.pgen.0030064.sd001 (208 KB PDF).

Table S1. Tissue Weights of 16-Wk-Old Male POKO, Ob/Ob, PPARg2
KO, and WT mice

Found at doi:10.1371/journal.pgen.0030064.st001 (29 KB PPT).

Table S2. Microarray Data

Found at doi:10.1371/journal.pgen.0030064.st002 (105 KB DOC).

Table S3. Pathway Analysis from Microarray Data

Found at doi:10.1371/journal.pgen.0030064.st003 (112 KB XLS).
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GenBank (http://www.ncbi.nlm.nih.gov/Genbank) accession numbers
for the genes and gene products discussed in this paper.
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