
	 	 VTT	PUBLICATIONS	746

VTT CREATES BUSINESS FROM TECHNOLOGY
 Technology and market foresight • Strategic research • Product and service development • IPR and licensing
• Assessments, testing, inspection, certification • Technology and innovation management • Technology partnership

• • • VTT PU
B

LIC
A

TIO
N

S 746 IN
TER

A
C

TIVE VISU
A

LIZA
TIO

N
 O

F Q
U

A
LITY VA

R
IA

B
ILITY A

T R
U

N
-TIM

E

ISBN 978-951-38-27xx-0 (soft back ed.) ISBN 978-951-38-27xx-0 (URL: http://www.vtt.fi/publications/index.jsp)
ISSN 1235-0621 (soft back ed.) ISSN 1455-0849 (URL: http://www.vtt.fi/publications/index.jsp)

Jarkko Kuusijärvi

Interactive	visualization	of	quality	
variability	at	run-time

VTT PUBLICATIONS

726	 Jaana	Leikas.	Life-Based	Design.A	holistic	approach	to	designing	human-technology	
interaction.	2009.		240	p.	

727	 Teemu	 Kanstrén.	 A	 Framework	 for	 Observation-Based	 Modelling	 in	 Model-Based	
Testing.	2010.	93	p.	+	app.	118	p.

728	 Stefan	Holmström.	Engineering	Tools	for	Robust	Creep	Modeling.	2010.	94	p.	+	53	p.
729	 Olavi	Lehtoranta.	Innovation,	Collaboration	in	Innovation	and	the	Growth	Performance	

of	Finnish	Firms.	2010.	136	p.	+	app.	16	p.
730	 Sami	Koskinen,	Sami.	Sensor	Data	Fusion	Based	Estimation	of	Tyre-Road	Friction	to	

Enhance	Collision	Avoidance.	2010.	188	p.	+	app.	12	p.
732	 Venkata	Gopalacharyulu	Peddinti.	Data	integration,	pathway	analysis	and	mining	for	

systems	biology.	Espoo	2010.	62	p.	+	app.	67	p.
733	 Johanna	Kirkinen.	Greenhouse	impact	assessment	of	some	combustible	fuels	with	a	

dynamic	life	cycle	approach.	Espoo	2010.	63	p.	+	app.	58	p.
734	 Antti	 Grönroos.	 Ultrasonically	 Enhanced	 Disintegration.	 Polymers,	 Sludge,	 and	

Contaminated	Soil.		2010.	100	p.	+	app.	27	p.
735	 Michael	 Lienemann.	 Characterisation	 and	 engineering	 of	 protein–carbohydrate	

	interactions.	Espoo	2010.	90	p.	+	app.	30	p.
736	 Jukka-Pekka	Pesola.	Building	Framework	for	Early	Product	Verification	and	Validation.	

Master	Thesis.	Espoo	2010.	75	p.
737	 Virpi	Oksman.	The	mobile	phone:	A	medium	in	itself.	Espoo	2010.	89	p.	+	app.	132	p.
738	 Fusion		Yearbook.	Association	EURATOM-TEKES.	Annual	Report	2009.	Eds.	by	Seppo	

Karttunen	&	Markus	Airila.	2010.	136	p.	+	app.	13	p.
739	 Satu	Hilditch.	Identification	of	the	fungal	catabolic	D-galacturonate	pathway.	Espoo	

2010.	74	p.	+	app.	38	p.
740	 Mikko	Pihlatie.		Stability	of	Ni-YSZ	composites	for	solid	oxide	fuel	cells	during	reduction	

and	re-oxidation.	Espoo	2010.	92	p.	+	app.	62	p.	
741	 Laxmana	Rao	Yetukuri.	Bioinformatics	approaches	for	the	analysis	of	lipidomics	data.	

Espoo	2010.	75	p.	+	app.	106	p.
742	 Elina	 Mattila.	 Design	 and	 evaluation	 of	 a	 mobile	 phone	 diary	 for	 personal	 health	

management.		Espoo	2010.	83	p.	+	app.	48	p.	
743	 Jaakko	Paasi	&	Pasi	Valkokari	(eds.).	Elucidating	the	fuzzy	front	end	–	Experiences	from	

the	INNORISK	project.	Espoo	2010.		161	p.
744	 Marja	 Vilkman.	 Structural	 investigations	 and	 processing	 of	 electronically	 and	

protonically	conducting	polymers.		2010.	62	p.	+	app.	27	p.
746	 Jarkko	 Kuusijärvi.	 Interactive	 visualization	 of	 quality	 variability	 at	 run-time.	 Espoo	

2010.	111	p.	

VTT PUBLICATIONS 746

Interactive visualization of quality
variability at run-time

Jarkko Kuusijärvi

ISBN 978-951-38-7412-4 (URL: http://www.vtt.fi/publications/index.jsp)
ISSN 1455-0849 (URL: http://www.vtt.fi/publications/index.jsp)

Copyright © VTT 2010

JULKAISIJA – UTGIVARE – PUBLISHER

VTT, Vuorimiehentie 5, PL 1000, 02044 VTT
puh. vaihde 020 722 111, faksi 020 722 4374

VTT, Bergsmansvägen 5, PB 1000, 02044 VTT
tel. växel 020 722 111, fax 020 722 4374

VTT Technical Research Centre of Finland, Vuorimiehentie 5, P.O. Box 1000, FI-02044 VTT, Finland
phone internat. +358 20 722 111, fax + 358 20 722 4374

Technical editing Mirjami Pullinen

2

http://www.vtt.fi/publications/index.jsp
http://www.vtt.fi/publications/index.jsp

Jarkko Kuusijärvi. Interactive visualization of quality variability at run-time [Laadun varioituvuuden
interaktiivinen visualisointi ajoaikana]. Espoo 2010. VTT Publications 746. 111 p.

Keywords software visualization, quality attributes, security, smart environments, adaptive software

Abstract

Smart environments are dynamic in nature, and the software running in these envi-
ronments requires quality adaptations in order to function efficiently. The result of
these adaptations, i.e., quality variability, must be verified in some way, and visu-
alization can be used to aid this verification process. The research problem in this
work was to find suitable visualization techniques to visualize quality variability
and implement a visualization tool that encompasses these techniques and pro-
vides an interactive visualization of quality variability for the user.

As a solution to the research problem, this work presents an interactive qual-
ity visualization tool. The requirements specification for the implemented tool
was derived from the literature review and the intended usage context of the
tool, i.e., smart environments. The literature review explores a set of applicable
visualization techniques and compares existing visualization tools with regard to
the features required to represent quality variability visually at run-time.

The visualization techniques selected for the tool include interactive timelines,
charts and meters that enable analysis of the quality attributes and their vari-
ability in different time ranges or points in time. Some additional visualization
techniques were also included such as treemaps and graphs to visualize the
structure of the smart environment.

The visualization techniques include open source visualization techniques and
self-made techniques designed and implemented from the start to cover the spe-
cific requirements set for the tool. The main contribution of this work is the
visualization tool that can be used to visualize different quality attributes and
their variability. Moreover, the tool can easily be deployed in different envi-
ronments due to its architecture and the selected implementation technologies
that make the solution extensible and portable.

The implemented visualization tool was evaluated in the context of a smart
environment in which security was adapted at run-time. The case study demon-
strated that the implemented tool can be used in the analysis of the variability of

3

4

different quality attributes. The trend of a single quality attribute can be stud-ied
for different time ranges or points in time according to need. The relation-ships
between different quality attributes can also be studied with the help of appro-
priate visualization techniques. In addition, the visualization tool was suc-
cessfully tested on mobile devices.

5

Jarkko Kuusijärvi. Interactive visualization of quality variability at run-time [Laadun varioituvuuden
interaktiivinen visualisointi ajoaikana]. Espoo 2010. VTT Publications 746. 111 s.

Avainsanat software visualization, quality attributes, security, smart environments, adaptive software

Tiivistelmä

Älykkäät ympäristöt ovat luonteeltaan dynaamisia ja vaativat niissä ajettavilta
ohjelmistoilta kykyä muuntautua vastaamaan ympäristön tilannetta; adaptoitua,
jotta ohjelmistot pystyisivät toimimaan suorituskykyisesti. Laadun variointi eli
adaptointi pitää pystyä todentamaan, ja todentamisessa voidaan käyttää hyväksi
visualisointia. Tässä työssä tutkimusongelmana on ollut löytää laadun varioitu-
vuuden visualisointiin soveltuvat visualisointitekniikat ja toteuttaa visualisointi-
työkalu, joka toteuttaa nämä visualisointitekniikat ja tarjoaa käyttäjälle vuoro-
vaikutteisen visualisoinnin laadun varioituvuudesta.

Ratkaisuna tutkimusongelmaan tässä työssä esitellään laadun varioituvuuden
interaktiivinen visualisointityökalu. Visualisointityökalun vaatimusmäärittely
johdettiin taustatutkimuksesta ja työkalun oletetusta käyttökohteesta, älykkäistä
ympäristöistä. Taustatutkimuksessa esitellään soveltuvia visualisointitekniikoita
ja vertaillaan olemassa olevia visualisointityökaluja ottaen huomioon ominai-
suudet, jotka tarvitaan laadun varioituvuuden ajoaikaiseen visualisointiin.

Visualisointityökaluun valittuihin visualisointitekniikoihin kuuluvat muun
muassa vuorovaikutteiset viivadiagrammit, kaaviot ja erilaiset mittarit, joiden
avulla laatuattribuuttien arvoja ja varioituvuutta voidaan analysoida eri aikavä-
leillä. Yleisten visualisointitekniikoiden lisäksi työkaluun sisällytettiin myös
muita soveltuvia visualisointitekniikoita, kuten puukarttoja ja graafeja, joiden
avulla älykkään ympäristön rakennetta visualisoidaan.

Työkalun visualisointitekniikat sisältävät valmiiksi toteutettuja avoimen läh-
dekoodin visualisointitekniikoita, joiden lisäksi suunniteltiin ja toteutettiin visu-
alisointitekniikoita kattamaan työkalulle asetetut vaatimukset. Työn pääsaavu-
tuksena kehitetään työkalu, jota voidaan käyttää eri laatuattribuuttien ja niiden
varioituvuuden visualisoimisessa. Sen lisäksi työkalun arkkitehtuuri ja valitut
toteutusteknologiat mahdollistavat työkalun käytön eri ympäristöissä sen laajen-
nettavuusominaisuuden ja siirrettävyyden ansiosta.

6

Toteutettu visualisointityökalu testattiin käyttäen kontekstina älykästä ympä-
ristöä ja siinä tapahtuvaa tietoturvan ajoaikaista adaptointia. Malliesimerkki
osoitti, että työkalun avulla eri laatuattribuuttien varioituvuutta pystytään tutki-
maan usealla tavalla. Yksittäisen laatuattribuutin kehityssuuntaa pystytään arvi-
oimaan määrätyllä ajanjaksolla ja useiden laatuattribuuttien välisiä yhteyksiä
pystytään myös tutkimaan usealla eri visualisointitekniikalla. Lisäksi vi-
sualisointityökalua testattiin mobiililaitteissa onnistuneesti.

1. Introduction

Preface

This thesis was written at VTT Technical Research Centre of Finland at the
Software Architectures and Platforms knowledge centre. The work was carried
out as part of the EVOLVE (Evolutionary Validation, Verification and Certifica-
tion)/ITEA2 project. The tool was tested in the context of Smart Spaces in the
SOFIA (Smart Objects for Intelligent Applications) project.

I would like to thank Research Professor Eila Ovaska and Research Scientist
Antti Evesti from VTT for their reviews and support during this work and Pro-
fessor Juha Röning from the University of Oulu for his instructions and for re-
viewing this work. I would also like to thank Professor Jukka Riekki, the second
reviewer of this work.

Oulu, March 19, 2010

Jarkko Kuusijärvi

7

1. Introduction

Contents

Abstract ... 3

Tiivistelmä ... 5

Preface.. 7

Abbreviations .. 10

1. Introduction ... 12

2. Related research and technologies .. 14
2.1 Software quality .. 14

2.1.1 Software quality attributes .. 16
2.1.2 Quality variability .. 17
2.1.3 Software verification and validation.. 19

2.2 Contexts for quality variability ... 20
2.2.1 Service-oriented architecture ... 21
2.2.2 Smart environment ... 21
2.2.3 Quality attributes in smart environments .. 22

2.3 Introduction to visualization... 23
2.3.1 Reference model for visualization .. 24
2.3.2 Information visualization... 25
2.3.3 Challenges in information visualization .. 28

2.4 Existing visualization tools .. 30
2.4.1 EVolve .. 31
2.4.2 Toolkit: prefuse... 32
2.4.3 Streamsight .. 33
2.4.4 PortVis.. 35
2.4.5 SnortView... 36
2.4.6 A network security visualisation prototype ... 37
2.4.7 NEXThink REFLEX .. 38
2.4.8 Summary .. 39

3. Interactive Quality Visualization tool ... 43
3.1 Overview... 43

3.1.1 Monitoring process ... 45
3.1.2 Visualization process.. 46

3.2 Requirements.. 47
3.3 Architecture... 50

3.3.1 Structure... 50
3.3.2 Visualization Platform... 54
3.3.3 VMonitor ... 60
3.3.4 Visualization View .. 61
3.3.5 ActionScheduler ... 63

8

1. Introduction

9

3.4 Visual mapping ... 65
3.4.1 Graphs.. 65
3.4.2 Treemaps ... 66
3.4.3 Timelines and scatter plots... 68
3.4.4 Meters .. 69
3.4.5 Time slider.. 70

4. Implementation and testing... 72
4.1 Implementation environment... 72

4.1.1 Constraints ... 73
4.1.2 Graphics libraries ... 73

4.2 Implemented components... 74
4.2.1 Initial version of the tool.. 74
4.2.2 VMonitor ... 76
4.2.3 Visualization View .. 77
4.2.4 Meters .. 79
4.2.5 Time slider.. 79
4.2.6 Timeline visualization ... 81
4.2.7 Treemap visualization .. 83

4.3 Testing .. 84
4.4 Case study .. 86

4.4.1 SOFIA Smart Space... 86
4.4.2 Testing environment... 87
4.4.3 Validation scenario overview.. 87
4.4.4 Smart environment structure .. 89
4.4.5 Quality attribute analysis .. 90
4.4.6 Quality trade-off analysis.. 92
4.4.7 Cross-platform testing .. 93
4.4.8 Summary of case study results .. 97

5. Discussion... 98
5.1 Implementation of the IQVis tool... 98
5.2 Results .. 99
5.3 Comparison with existing tools ... 101
5.4 Future development .. 102

6. Conclusion .. 103

References.. 105

1. Introduction

Abbreviations

API Application Programming Interface
AVM ActionScript Virtual Machine
CIA Confidentiality, Integrity and Availability
CPU Central Processing Unit
EMonitor Environment Monitor
EVOLVE Evolutionary Validation, Verification and Certification, project
FP Flash Player
FPS Frames Per Second
GUI Graphical User Interface
HCI Human-Computer Interaction
IEEE Institute of Electrical and Electronics Engineers, an international

non-profit professional organization for the advancement of tech-
nology related to electricity

IOP InterOperability Platform
IQVis Interactive Quality Visualization
ISO/IEC International Standardization Organization and International Elec-

trotechnical Commission
IV Information Visualization
JSON JavaScript Object Notation, lightweight data-interchange format
MVC Model-View-Controller
NIDS Network-based Intrusion Detection System
OSGi Open Service Gateway initiative (now the OSGi Alliance)
PC Personal Computer
RDF Resource Description Framework
SaaS Software as a Service
SDK Software Development Kit
SIB Semantic Information Broker

10

1. Introduction

SOA Service Oriented Architecture
SOFIA Smart Objects for Intelligent Applications
SS Smart Space
SSA Smart Space Application
SSAP Smart Space Access Protocol
TCP/IP Transmission Control Protocol / Internet Protocol
TTT Type by Task Taxonomy
UI User Interface
V&V Verification and Validation
VMonitor Visualization Monitor
XML eXtensible Mark-up Language

11

1. Introduction

1. Introduction

Modern software products typically run in highly dynamic environments and
interact with multiple other software products running in the same environment.
At the same time, environments are becoming more and more dynamic with
devices continuously entering and leaving the environment. Smart environments
consist of several different types of devices interconnected for information ex-
change [1]. Pervasive or ubiquitous computing has emerged through recent ad-
vances in middleware technologies, software agents and smart technologies
(e.g., sensors, devices, wireless networks) [1]. Pervasive or ubiquitous comput-
ing offers a suitable platform for realizing smart environments that acquire and
apply knowledge effectively and link computers to everyday settings and com-
monplace tasks in our surroundings [1]. When entering and interacting with a
smart environment, the user may want to preserve a certain security level (or
security performance). The user can, for example, just look up devices in the
smart environment where no security is needed, but when the user decides to use
a service such as a display or an application, he/she may wish to keep his/her
actions secret.

Changes to security solutions at run-time can be considered to constitute qual-
ity variability, which is controlled reconfiguration of quality rather than quality
variation, which is unwanted change to a quality. Quality attributes or quality
requirements, e.g., reliability and security, can be specified using ontologies at
design time and be connected to architectural models to provide static solutions
[2]. In order to handle quality variability at run-time, however, dynamic solu-
tions are needed based on the context of the reconfiguration [3]. As stated in [4],
it is not enough to make all security decisions at design time and it is therefore
necessary to manage security at run-time. For these purposes it is necessary to
reveal the modifications that need to be made to the security by means of moni-
toring and adaptations.

12

1. Introduction

In this work, the research problem concerns the way software quality variabil-
ity can be visualized at run-time to help the user analyse the adaptation results.
The visualization concerns only execution qualities, as the purpose is to visual-
ize run-time behaviour. This research problem has several aspects: 1) how to
visualize the change in quality attributes so that the user can analyse the variabil-
ity effectively, 2) which visualization techniques are used to map the quality
attribute data into a visual form, and 3) how to make the tool extensible and
easily adaptable so that it can be used in different contexts. Run-time visualiza-
tion of these qualities is necessary for the system administrators to analyse, ver-
ify and validate the adaptation results in real time. Visualization is even more
helpful in smart environments in which users join, leave and use services in a
dynamic way and adaptations are more likely to occur, and administrators can
therefore use visualization to help determine realized qualities in different de-
vices and environments.

The purpose of this work is to design and implement a tool that solves these
problems. How are quality attributes, e.g., security, visualized so that the
changes are noticeable? Although the main contribution of this thesis is visuali-
zation of quality attributes, the acquisition of these attributes is also considered
in the data source of the tool so that variability can be presented in real time. The
tool is demonstrated in the context of visualizing security variability in a smart
environment in the Smart Objects for Intelligent Applications (SOFIA) project
[5]. In a smart environment, numerous devices and applications can work in the
same or a different environment.

The implemented tool is called Interactive Quality Visualization and has the
acronym IQVis. The primary requirement of the IQVis tool is that it can visual-
ize quality attributes such as security at run-time to allow administrators of the
system to analyse the realized variability and adaptation. This tool is used to
visualize quality attributes in a specific environment, i.e., it is not an abstract
visualization solution. This tool is a task-specific visualization tool designed to
visualize quality variability. The tool is therefore not used to visualize large
amounts of data but to visualize certain properties, i.e., the behaviour, of the
monitored system to help the user observe the system. The tool should also be
user friendly and support extensibility and adaptability. The tool is used at run-
time in the context of a smart environment [5], and the monitor component
working as the data source should thereby support real-time updates to the quali-
ties. The run-time security monitoring and adaptation system used to provide the
quality attributes from the Smart Space (SS) is outside the scope of this work

13

2. Related research and technologies

2. Related research and technologies

This chapter describes research and technologies related to visualization and the
subject that is visualized, software quality and its variability. The research on
visualization focuses on the field of information visualization. First, software
quality, verification and validation, and smart environments are discussed as the
context to the visualization needs. Second, visualization as a term is explained,
and visualization systems and tools are reviewed and compared to provide an
insight into existing visualization techniques. A comparison of the reviewed
tools is provided at the end of this chapter.

2.1 Software quality

Software quality is defined as “the degree to which software possesses a desired
combination of quality attributes” in the Institute of Electrical and Electronics
Engineers (IEEE) 1061 standard for a Software Quality Metrics Methodology
[6]. The standard also defines a quality attribute as a characteristic of software or
a generic term applying to quality factors, quality subfactors or metric values [6].

The International Standardization Organization and International Electrotech-
nical Commission (ISO/IEC) standard 9126-1 [7] define a software quality
model for external and internal quality that categorizes software quality attrib-
utes into six characteristics: functionality, reliability, usability, efficiency, main-
tainability and portability. These characteristics are defined as follows [7]:

 Functionality is the capability of the software product to provide func-
tions that meet stated and implied needs when the software is used under
specified conditions.

 Reliability is the capability of the software product to maintain a speci-
fied level of performance when used under specified conditions.

14

2. Related research and technologies

 Usability is the capability of the software product to be understood,
learned, used and attractive to the user when used under specified condi-
tions.

 Efficiency is the capability of the software product to provide appropri-
ate performance relative to the amount of resources used, under stated
conditions.

 Maintainability is the capability of the software product to be modified.
Modifications may include corrections, improvements or adaptation of
the software to changes in the environment and requirements and func-
tional specifications.

 Portability is the capability of the software product to be transferred
from one environment to another.

These characteristics are further divided into subcharacteristics that influence the
quality characteristics, for instance, functionality comprises suitability, accuracy,
interoperability and security. The capability of the software is determined by a
set of internal attributes that can be measured with the use of metrics [7]. A met-
ric is a function that outputs a single numerical value (which can be interpreted
as the degree to which the software possesses a given attribute that affects its
quality) from software data input [7]. Examples of metrics for external charac-
teristics are given in ISO/IEC 9126-2 [8] and for internal characteristics in
ISO/IEC 9126-3 [9].

Figure 1 presents the hierarchy of quality terms, from quantitative quality met-
rics to high-level software quality [6], [7]. This thesis focuses on the visual rep-
resentation of the measured quality attributes.

Figure 1. Quality hierarchy.

15

2. Related research and technologies

2.1.1 Software quality attributes

Quality attributes are non-functional features of a system. Quality attributes are
categorized into execution and evolution quality attributes (or simply ‘qualities’)
[10]. Execution qualities (functional qualities) are observable at run-time and
thus express the behaviour of the program. The selected execution qualities for
visualization are listed in Table 1 (modified from [10]).

Table 1. Execution qualities.

Attribute Description
Performance Responsiveness of the system, which means the time required to

respond to stimuli (events) or the number of events processed in
some interval of time.

Security The system’s ability to resist unauthorized attempts at usage and
denial of service while still providing its service to legitimate users.

Availability Availability measures the proportion of time the system is up and
running.

Scalability The ease with which a system or component can be modified to fit the
problem area.

Reliability The ability of the system or component to keep operating over the
time or to perform its required functions under stated conditions for a
specified period of time.

Adaptability The ability of software to adapt its functionality according to the cur-
rent environment or user.

Of these qualities, security is of particular interest as a required attribute for
visualization at run-time. The reason for this is that in the example, smart envi-
ronment [5] security is adapted at run-time according to the situation in the smart
environment at any given time. Nevertheless, the visualization of the execution
qualities in general is taken into account.

Evolution qualities (non-functional qualities) are not observable at run-time,
however, because the solutions for these qualities lie in static structures of the
software system. For example, evolution qualities should be considered in the
development and maintenance of a software system. The evolution qualities
include maintainability, flexibility, modifiability, extensibility, portability, reus-
ability, integrability and testability. [10]

It is said [11] that implementations of non-functional requirements typically
look similar across different systems, while functional requirements and their
implementations are closely tied to individual systems. A tool for the automated

16

2. Related research and technologies

addition of architectural quality attributes for Java software is presented in [11].
The tool allows capturing the non-functional requirements and placing them in a
context with the functional specification and finally generating code that imple-
ments the required functional and non-functional requirements. Object visualiza-
tion and logging service, for example, do not interfere with the normal interac-
tion between the object and its clients. The tool also supports services that may
modify the interaction, fault masking that helps to achieve availability of the
software and atomic transaction that allows deferred executions. [11]

An example of visualizing quality attributes in the design phase is presented in
[12], in which trust and performance are visualized with a goal model showing
nodes and edges. The tool presented in [12] does not visualize the quality attrib-
utes of software at run-time. This thesis concentrates on the execution qualities
at run-time, i.e., visualizing the variability of these qualities in an appropriate
and effective way. The aim is for the variability of these qualities to be easily
noticeable with the help of visualization. The techniques to monitor the variabil-
ity of these qualities are outside the scope of this thesis. Visualization is easier
for some qualities than for others. Performance, for instance, can be monitored
through measurements, and easily visualized with numbers corresponding to, for
example, response times. Other qualities such as adaptability require some moni-
toring and the development of a visualization technique suitable for demonstrat-
ing its value and variability.

2.1.2 Quality variability

Variability is defined as “the ability of a software artefact to vary its behaviour
at some point in its lifecycle” [13]. The software artefact can be, for example,
the software architecture design, components, classes, source code and executa-
ble binaries. There are a number of steps to introduce variability into software.
The first step is the identification of variability, i.e., where variability is needed.
The second step is to constrain variability, i.e., limit the features of the identified
variation to provide sufficient flexibility. The third step is to implement variabil-
ity, i.e., select a realization technique that provides the best possible balance
between the constraints identified in the previous step. The last step is to manage
the variability, i.e., maintain and manage the variability introduced into the soft-
ware when, for example, requirements change over the time, new products are
added or old products are removed. [13]

17

2. Related research and technologies

A quality attribute variability model that uses ontologies to model variability
is introduced in [3]. The paper in [3] focuses on quality variability management
of execution qualities. Three types of quality variability in software family archi-
tectures are defined [3]:

 Variability among different quality attributes, for example: reliability is
an important quality for one family member, but for other family mem-
bers there are no reliability requirements.

 Different priority levels of quality attributes, for example: in high-end
products reliability is an extremely important property, while in other
products only medium or low-level reliability is needed.

 Indirect variation: functional or quality variability can cause variation,
for example, improvements in the reliability of one component may re-
quire other components to also be at the same level of reliability.

Variation points are defined as points at which choices are made with regard to
which variation should be used in a particular place in a software system. One
technique to implement variation points is the variability realization technique.
The taxonomy of these techniques is presented in [13]. Quality variability with
variation points is a static solution implemented at design time. Static solutions
are not enough in service-oriented systems in which quality changes over time
according to the context. The context can be, for example, the environment and
users (external state of the system) or capabilities, resources and regulations
(internal state of the system) [3]. The reasons (i.e., sources) for quality variabil-
ity can be subjective, business related or technological, as defined in [3]:

 Subjective reasons: the user of a software service prefers different quali-
ties in different contexts.

 Business reasons: the type of application may set different quality crite-
ria, for instance, differing measurement accuracy related to time, place
and ratio for services intended for professional use as opposed to those
for non-professional use.

 Technological reasons: the implementation technology or amount of
available resources may lead to quality variation, especially when exter-
nally developed software or a service is used without adaptation.

The handling of quality variability at run-time requires that the following as-
sumptions can be realized [3]:

18

2. Related research and technologies

 quality attributes are defined in an unambiguous way
 quality attributes have quantitative metrics
 quality characteristics are defined explicitly in the architecture models
 quality characteristics can be measured at run-time
 the dynamic system has decision-making mechanisms concerning recon-

figuration validity and correctness.

The assumptions presented above are essentially elaborated requirements, with
the emphasis on run-time requirements, for the steps presented in [13] for intro-
ducing variability into software. There are many tools and techniques to model
quality attribute variability at design-time [14]. An example of a tool that sup-
ports quality requirements specifications at design-time is the Quality-Oriented
Architecting Environment that enables the definition of the quality requirements
in architecture models using a specific ontology [2]. Quality can also be mod-
elled in Model-Driven Development using Quality-Driven Domain-Specific
Modelling to map requirements to models [15]. While there are tools for design-
time quality variability management, there is a need for techniques and tools to
analyse variability at run-time [3].

2.1.3 Software verification and validation

Software verification and validation (V&V) is a subject that is closely related to
software quality. The IEEE 1012-2004 standard [16] defines verification and
validation as follows:

 Verification is the process of evaluating a system or component to de-
termine whether the products of a given development phase satisfy the
conditions imposed at the start of that phase. Verification is the process
of providing evidence that the software and its associated products sat-
isfy system requirements allocated to software at the end of each life cy-
cle activity and solve the right problem.

 Validation is the process of evaluating a system or component during or
at the end of the development process to determine whether it satisfies
the specified requirements. Validation is the process of providing objec-
tive evidence that the software and its associated products conform to
requirements for all life-cycle activities during each life-cycle process.

19

2. Related research and technologies

Informally, verification may be defined by the question “Are we building the
product right?” and validation by the question “Are we building the right prod-
uct?” as stated in [17]. Software integrity levels such as complexity, criticality,
risk, safety level, security level, desired performance, reliability and other char-
acteristics are used to determine the V&V task to be performed [16]. V&V tech-
niques are usually used at design time and during the life-cycle of a software
system. Tests include, for example, acceptance, component, integration and sys-
tem testing [16]. Due to the complex software systems of today, V&V is also
performed at run-time to observe situations that traditional V&V techniques
cannot cover.

Run-time verification1 is used to check dynamically that the actual executions
of the system conform to the given requirements of the system. Run-time verifi-
cation techniques are intended as the lightweight counterpart of traditional (off-
line) verification techniques to check the properties that cannot be fully verified
offline. Run-time verification techniques analyse the observed behaviour in the
target system to check the correctness of single executions by, for example,
monitoring events and outputs. The amount of resources available at run-time is
limited when compared with off-line methods, and properties that can be
checked at run-time therefore tend to be quite simple. [18, p. 526]

Run-time verification can therefore be used, for instance, to verify the security
of the software system at run-time or check information that is only available at
run-time. The comprehensiveness of checks is often a trade-off against effi-
ciency, and the level of abstraction in verification is therefore an important
choice. In many cases it is necessary to monitor multiple components and multi-
ple abstraction levels of different operations. A combination of multiple moni-
tors and levels of abstraction is presented to improve run-time verification, espe-
cially in the case when the system is intended to maintain security properties. [19]

2.2 Contexts for quality variability

As stated in [3], quality shall be changed according to context over time in ser-
vice-oriented systems. Service-oriented systems have become an essential aim of
today’s software. The following describes service-oriented architecture, software
as a service, and smart environment concepts. The quality properties, i.e., reli-

1 http://www.runtime-verification.org.

20

http://www.runtime-verification.org

2. Related research and technologies

ability, availability, performance and security, of smart environments are also
discussed.

2.2.1 Service-oriented architecture

Service-oriented architecture (SOA) is essentially a collection of services that
communicate with each other. There are many formal definitions of SOA. The
Open Group, for example, defines SOA as “an architectural style that supports
service orientation” [20], while the OASIS group defines SOA as “a paradigm
for organizing and utilizing distributed capabilities that may be under the control
of different ownership domains” [21]. The idea of SOA is to provide flexible
and loosely coupled services and thereby improve interoperability of services.
SOA basically consists of a service consumer, a service provider and a service
directory. SOA provides a flexible infrastructure that can easily adapt to user
requirements. [22]

Software as a Service (SaaS) is a delivery paradigm of software in which the
software is offered to the user as a service through the Internet. The software is
hosted on, for example, a Web server and delivered to the customer on demand.
Payment for the software follows a subscription model in which the user can
order the service for a period of time. [23] SaaS provides users with the opportu-
nity to use software on-demand for a period of time and can therefore be used as
a delivery paradigm in smart environments. SaaS can be used with SOA to pro-
vide different services more flexibly by offering the architecture for it. Smart
environments consist of different services that are offered to the user. SaaS and
SOA provide the means for realizing these services.

2.2.2 Smart environment

Cook and Das [1] refer to a smart environment as “one that is able to acquire and
apply knowledge about the environment and its inhabitants in order to improve
their experience in that environment”. This definition implies that smart envi-
ronments (i.e., the software) must be able to adapt functionality and quality to
provide users with the best experience. Some of the most recent topics in com-
puter science, i.e., ambient intelligence, and ubiquitous and pervasive comput-
ing, aim to create smart environments by making applications and their func-
tionalities independent of PC hardware and available in any place [24]. Hermann

21

2. Related research and technologies

et al. studied research laboratory demonstrations of smart environments and
listed the potential and the key aspects of the approaches as follows [25]:

 highly integrated and seamlessly available data, services and resources
in public and private environments

 exchange of information, access rights of objects, ambient resources and
devices

 exchange of personal information between users and environment
 location-based availability of nearby entities, location-based User Inter-

faces (UIs) for services, data and applications
 system “intelligence”: adaptivity and to some degree autonomous sys-

tem decisions, e.g., on the use of ambient systems or data exchange.

Of the abovementioned list, the system “intelligence” aspect is a key factor in
this thesis, as quality variability can be thought of as part of this. Smart envi-
ronments are environments that vary dynamically, as devices can join and leave
continuously. Performance can be affected when users join and leave, and con-
sume different services dynamically (data latency and transaction throughput
[14]). Reliability is another quality that is essential in a smart environment. Per-
formance and reliability, for example, must be provided to emergency services.
Typical devices found from smart environments include sensors, actuators and
smart devices [1].

2.2.3 Quality attributes in smart environments

Smart environments require the qualities explained in Table 1, which include
reliability, availability, performance and security, to mention a few. As smart
environments are dynamic in nature, variability of these qualities is also neces-
sary: different software needs different levels of, for example, security. An ap-
plication that is used to handle the user’s personal information, e.g., bank infor-
mation, must guarantee a sufficient level of security. Performance is directly
affected by the number of devices using a service at a given time. Availability
and reliability are key qualities for providing a seamlessly working smart envi-
ronment for the users.

ISO/IEC’s 9126 standard defines security as the “capability of the software
product to protect information and data so that unauthorised persons or systems
cannot read or modify them and authorised persons or systems are not denied
access to them” [7]. The core principals of information security can be divided

22

2. Related research and technologies

into three categories: confidentiality, integrity and availability (the CIA triad).
Confidentiality is about protecting information from unauthorized access, integ-
rity concerns protecting information from unauthorized modification, and avail-
ability concerns guaranteeing legitimate access to the information at all times.
[26, pp. 4–5]

Confidentiality and integrity are usually provided by encryption and decryp-
tion. The characteristics of smart environments, i.e., a decentralized and dynamic
nature, complicate encryption, decryption and authentication. [27]

2.3 Introduction to visualization

Historically, visualization was divided into scientific visualization and informa-
tion visualization (IV). Scientific visualization typically involves scientific ap-
plication and physical data (e.g., medical images, meteorology or even mathe-
matics) whereas information visualization involves abstract data (e.g., financial
data) [28]. Visualization is often used to analyse very large amounts of data
(e.g., [29]). These two major areas of visualization often contradict each other,
as it is often not clear to which category some data set belongs [30]. Sub-areas of
research are drawn from information visualization, for instance, security visuali-
zation and software visualization.

Security visualization uses visualization techniques to help, for example, ana-
lyse the huge security-related logs or network traffic faster (e.g., [31]). Software
visualization, however, visualizes the artefacts related to software and its devel-
opment. It visualizes the structure, behaviour and evolution of software [32, p.
3]. The focus of this thesis is on information visualization, specifically security
and software visualization, as the idea is to visualize software quality attribute
variability at run-time. Security visualization is also reviewed, because security
variability is the context for visualization in the example environment.

Ware [33, p. 2] defines the term visualization as “a graphical representation of
data or concepts”. This definition states that visualization can basically be any-
thing, for example, an image, map, presentation slide or anything that changes
data into a visual form. Vision is the most valuable sense for providing informa-
tion from computers to humans because humans acquire more information
through vision than though all the other senses combined [33]. For this reason,
visualizations have an expanding role in cognitive systems. Card et al. [28, p. 6]
define visualization as “the use of computer-supported, interactive, visual repre-
sentation of data to amplify cognition,” where cognition is the acquisition of

23

2. Related research and technologies

knowledge. This narrows down the definition into computer-supported visualiza-
tion in which people can also interact with the result and use it to assist in the
understanding of the data. The main purpose of visualization is therefore to give
an insight into the data, i.e., help in decision-making and discovery. Card et al.
propose six major ways in which visualization can amplify cognition by percep-
tion [28, p. 16]:

1. Increasing memory and processing resources by allowing storage of
massive amounts of information in a quickly accessible form (e.g.,
maps).

2. Reducing searching by grouping information together.
3. Enhancing recognition of patterns by enhancing patterns.
4. Perceptual inference by making some problems obvious.
5. Perceptual monitoring by allowing monitoring of a large number of po-

tential events.
6. Manipulable medium by allowing exploration of a space of parameters

unlike static diagrams.

The benefits of visualization are stated above. Visualization can help us interpret
abstract and/or complex data and form a mental image of them. It is easier to
find, for example, the lowest and highest values of a price from a line graph than
from a table of prices if there are hundreds or thousands of different values.

2.3.1 Reference model for visualization

The high-level architecture of a visualization system can be described as a pipe-
line in which raw information is converted into a visual form by means of map-
ping. Figure 2 [28] depicts the main faces in the visualization pipeline. The first
step is to transform raw information into data tables, i.e., relational descriptions
of data extended to include metadata. Data tables are then converted into visual
structures (graphical properties) by means of visual mapping. Finally, views are
constructed with view transformations (specifying, for example, position, scale
or other graphical parameters). The user can interact with any of the steps and
change the parameters. [28]

24

2. Related research and technologies

Figure 2. Reference model for visualization.

2.3.2 Information visualization

Information visualization (IV) is a subcategory of visualization that visualizes
abstract information (with no natural mapping between the data and visual ele-
ment), such as financial data. Information visualization usually includes human
interaction to help with the visualization usage.

The Visual Information-Seeking Mantra “Overview first, zoom and filter, then
details on demand” described by Shneiderman [34] gives instructions on how
data should be presented so that they are most effective for users. This guideline
is commonly used in information visualization. The aim of interacting with visu-
alization is to find the information needed from the data by, for example, filter-
ing unwanted results.

Types of data

The first step of visualization is the raw data to be converted into a visual repre-
sentation. The raw data in information visualization can basically be anything.
One classification of data is made by Ware [33]. It divides the data into entities,
relationships and the attributes of these. Entities are the objects of interest, for
instance, people, fish or devices. Relationships are conceptual associations be-
tween entities, such as a device belongs to a smart environment. Attributes, on
the other hand, are properties attached to entities or relationships, e.g., the device
is a tablet. Ware defines the quality of attributes into category data, integer data
or real-number data [33]. Category data means that the data have a nominal

25

2. Related research and technologies

value, such as a label. Integer data are used for data that can be numbered or
ordered, for instance, the position in a list, and real-number data are used in
other cases. [33]

Taxonomies

Shneiderman [34] proposed taxonomy based on data types and low-level tasks.
The type by task taxonomy (TTT) includes seven data types. The TTT is ex-
plained below [34].

 1-dimensional: simple, linear data, e.g., sets or sequences such as pro-
gram source code or text documents.

 2-dimensional: planar or map data, such as floor plans of a building or
other layouts, geographical maps.

 3-dimensional: physical objects, such as the human body, a molecule or
a car.

 Temporal: timelines, such as project management or historical presenta-
tions in which the start and the stop time of items are separated.

 Multi-dimensional: data with more than three attributes, such as rela-
tional and statistical databases.

 Tree: tree structures of hierarchies of data or node-link diagrams in
which each item has only one parent item (except the root), such as file
system directories.

 Network: node-link structures (graphs) in which nodes can be connected
to an arbitrary number of other nodes, such as the World Wide Web
network.

This taxonomy is only a high-level presentation and these data types are often
mixed in order to provide a more precise visualization of the subject of study, for
example, when visualizing stock prices, time is just another dimension with one-
dimensional data. The seven tasks related to these data types are presented below [34]:

 Overview: provides a view of the whole data collection.
 Zoom: provides a detailed view of a single item.
 Filter: filters out uninteresting items of data from the view.
 Details-on-demand: provides details of a selected item group or item.
 Relate: views relationships between selected items or item groups.
 History: stores a history of user actions (undo, replay, step-by-step pro-

gress).

26

2. Related research and technologies

 Extract: allows extraction of information from selected items (or sav-
ing the current settings/view of the program).

The tasks presented above provide high-level interaction techniques for the visu-
alization that comply with the Visual Information-Seeking Mantra. Other similar
interaction techniques are presented in [35] as follows:

 Select: These techniques provide the user with the ability to select
item(s) of interest. This helps the user follow the item of interest
when the representation technique is changed or a large number of
items are visible at the same time. An example of this is highlighting
the selected item in a different colour or making the item noticeable in
other ways.

 Explore: These techniques allow the user to examine the visualization
in a different way, for example, when the user views a subset of data,
he/she can change the subset to a different one or remove/add items
from/to it. The most common explore technique according to [35] is
panning, when the user can move the scene or the camera, for exam-
ple, by dragging the camera with the mouse.

 Reconfigure: These techniques allow the user to view the data from
different perspectives, i.e., to help the user recognise hidden charac-
teristics of data and the relationships between them. An example
technique is support for sorting and rearranging table columns.

 Encode: These techniques enable the user to modify the current visual
representation, for instance, by changing the colour, shape or size of
an item or changing the whole view to a different one. The user can
also change, for example, the representation of data from a pie chart
to a histogram.

 Abstract/Elaborate: These techniques provide the user with the possi-
bility of adjusting the level of abstraction of the view. The user can,
for example, first look at the overview and then elaborate individual
items. This can be done by, for example, showing a tool tip for an
item or by zooming in on the view so more details can be seen. These
techniques can actually be any of the techniques from the details-on-
demand task described in the type by task taxonomy of Shneiderman [34].

 Filter: These techniques allow the user to delimit the data items being
visualized. The user can, for example, specify a range or condition so
that only items meeting the criteria are shown. An example of this is

27

2. Related research and technologies

the user selecting ranges by moving sliders or clicking check boxes.
The view is updated accordingly. These techniques are called dy-
namic query controls [35].

 Connect: These techniques allow the user to highlight relationships
and associations between the data items viewed and to show possible
hidden items relevant to the specified item. This can be done by, for
instance, highlighting or pointing out relevant items when the user
clicks on an item or moves the mouse cursor over an item.

 Other interaction techniques: These techniques include common op-
erations found in all interactive applications (not just information
visualization), such as undo/redo (allow the user to undo or redo a
command or view the history of commands or data sets and allow re-
setting of the commands or views).

While the TTT provides a high-level taxonomy for information visualization, it
does not provide a detailed classification for visualization techniques. Chi ana-
lysed 36 different visualization techniques in [36] by breaking them down into
four data stages (from raw data to the final view), three types of data transforma-
tions (required when transforming data from one stage into another) and four
types within stage operators (e.g., for rearranging data). This pipeline resembles
the high-level visualization pipeline presented by Card et al. in [28].

2.3.3 Challenges in information visualization

It is argued that humans can only observe detailed changes in one object at a
time, and yet we still look at our surroundings with the impression that we see
all the objects and their details simultaneously [37]. This lack of perception ca-
pability has to be taken into account when designing visualization systems so
that excessive amounts of information are not shown at once. This is a difficult
task when visualizing large sets of data or very detailed information. For this
reason, interaction techniques such as redo and undo are necessary so that the
user can look at the data from different perspectives and possibly several times.
If the visualization technique uses animation to show the events that are occur-
ring, there may be a wish to change the delay of the animation for different
situations.

Different techniques that help visualize change in time series analysis are dis-
cussed in [38]. Meaningful characteristics of change through time in time series

28

2. Related research and technologies

are magnitude of change, shape of change, velocity of change and direction of
change [38].

 Magnitude of change identifies the difference between measures of
something at two points in time.

 Shape of change identifies whether some value moves up, down, left
or right, or a combination of these as it varies through time.

 Velocity of change refers to the speed or rate of change. If, for exam-
ple, a line chart contains two measurements which both increase by
10 per cent at a time but one is 100 times bigger than the other then
the velocity of change in the smaller measurement is not noticeable
on the chart.

 Direction of change, or trend, identifies the overall or general direc-
tion of change in time series values, for example, the variable of time
can be introduced into a scatter plot by adding animation. Another
technique is to add visual trails that capture the place and state of an
object through time, for example, every time the object’s properties
change, a new object is placed in the new position with new proper-
ties, and the old object is left in the old position and its visibility is reduced
by some percentage so that it is identified as a previous object. [38]

User interface (UI) design and interaction are the major factors in designing
visualization systems that help the user to explore the data. Chen [39] states that
usability is recognized as the first problem of visualizations. Other problems
stated in [39] include, for example, prior knowledge (level of prior knowledge
needed to understand the visualized information), scalability, (e.g., the challenge
of visualizing data streams) and aesthetics (the purpose is to provide an insight
into the data, not just pretty pictures).

Yi et al. [35] divide information visualization systems in general into two
main components: representation and interaction.

 The representation component concerns the mapping of data into visual
representations and comes from the field of computer graphics.

 The interaction component comes from the field of human-computer inter-
action (HCI) and involves the dialogue between the user and the system.

Yi et al. argue that the representation component has received most of the atten-
tion by far in the IV research while the interaction component has often been
relegated to a secondary role. They state that only a few papers had focused on

29

2. Related research and technologies

the interactive aspects of IV (at that time, in 2007). Interaction is stated as an
essential part of IV systems because without it the visualization techniques just
become static images or autonomously animated images. They state that the
further study of interaction is undisputed. [35]

Interaction techniques include sorting, zooming, mouse-overs, selections, an-
imations, etc. Interactive navigation solutions can be roughly divided into three
techniques [40]: focus+context, zooming+filtering and incremental exploration.
Focus+context is a viewing approach that shows the user a global view of the
data with a detailed view of a portion of the data. An example of a focus+context
visualization made for graphs is presented in [41], which shows a detailed view
of one node in the centre of the circle node graph and other nodes in less detail
on the radius of the circle. Zooming+filtering reduces the amount of data visible
by means of filtering, i.e., by selecting a subset of the data (e.g., a treemap in
[29]). Incremental exploration techniques show only a portion of the data at a
time and are thus able to handle huge amounts of data. [40]

Nowadays, distributed visualizations on the Internet provide lots of visualiza-
tion techniques and interactivity from which the user can construct his/her own
visualizations. Google Visualization2, for example, provides many visualization
techniques, such as maps, timelines and charts for free. Users can also create
visualizations (or gadgets) from existing visualization techniques and add them
to their web pages, or they can create new visualization gadgets to share with the
world. Another similar example is Many Eyes3, a data visualization tool that
allows users to create new visualizations from data sets they upload themselves
by using the visualization techniques provided.

2.4 Existing visualization tools

Much research has been conducted in the area of information visualization, and
several tools and frameworks have been developed to visualize different topics.
This section reviews some of the existing systems and tools developed in this
research area. As the context for quality variability visualization in this thesis is
security in Smart Spaces, the survey of existing tools included many security
visualization tools in addition to abstract and other specific tools. The run-time

2 http://code.google.com/apis/visualization/
3 http://manyeyes.alphaworks.ibm.com/manyeyes/

30

http://code.google.com/apis/visualization/
http://manyeyes.alphaworks.ibm.com/manyeyes/

2. Related research and technologies

31

visualization of security variability, for example, has not been a subject of re-
search, although security visualization as a whole has been studied comprehen-
sively. Most of the security-related systems concentrate on visualizing network
security attacks such as the ones reviewed in this chapter. As the study concen-
trates on the run-time behaviour of the program, some tools such as the visual-
izing non-functional requirements [12] are left out.

2.4.1 EVolve

EVolve (not to be confused with the EVOLVE project in which this thesis was
written) is a software visualization framework that is designed to be both open
and extensible. It was originally developed to visualize the run-time behaviour
of Java programs to help develop compiler optimizations. New data sources or
visualization techniques can easily be integrated into it as all the interfaces are
clearly defined via the Java Application programming interfaces (APIs), and the
framework is also publicly available. It can be used both as a standalone tool
using predefined data sources and visualizations and as a toolkit for developing
new visualizations. [42]

The EVolve platform consists of three components: data source, visualization
library and fixed core. The core takes care of communication and is static, while
the data source and the visualization library can be modified to fit the user re-
quirements. The data in the example are collected offline. Extensibility is guar-
anteed with an abstract, internal representation of the source data. Data elements
are divided into entities and events. Elements consist of an entity reference and a
value, which also has properties such as amount and time. Custom properties can
also be defined to support new visualizations. Different visualizations are able to
display data from a variety of data sources as they provide an abstract presenta-
tion of their visualization capabilities. The core makes sure that only data ele-
ments with appropriate properties are sent to the visualization. [42]

The framework provides eight predefined visualizations that use either a tabu-
lar format to present data or x- and y-axes which show, for example, events as
they occur in time. The user interface supports sorting, zooming, mouse-overs
and selections to amplify the ability to interpret and draw conclusions. The user
can also compare the data by viewing different visualizations at the same time or
using colouring to track some data element.

2. Related research and technologies

Figure 3 [42] shows method invocations in two views. The left-hand picture
shows the predictability of events and the right-hand picture shows the correla-
tion between the invocation location and the invoked methods. [42]

Figure 3. Method invocation views in EVolve.

2.4.2 Toolkit: prefuse

Prefuse [43] is a toolkit for interactive information visualization. It combines
visualization building blocks such as node-link diagrams, containment diagrams
and visualizations of unstructured (edge-free) data such as scatter plots and time-
lines. Some sample visualizations from the toolkit are shown in Figure 4 [43].

32

2. Related research and technologies

Figure 4. Sample prefuse applications.

The prefuse toolkit follows the model-view-controller design pattern. This tool-
kit is designed to incorporate as much as possible of the existing visualization
techniques to provide a comprehensive visualization system for users. Although
it does have many usable visualization techniques, it is not a ready visualization
tool, but rather a toolkit for the developer to use to create visualizations intended
for data visualization. [43]

2.4.3 Streamsight

Streamsight is a visualization tool for large-scale streaming applications [44]. It
is developed for visualizing and debugging stream processing systems composed
of operators interconnected by streams. Streamsight is implemented as an
Eclipse plug-in and is composed of three main subsystems: a communication
component, data model managers and the visualization component. It was de-
signed to use visualization techniques that support the dynamic and adaptive
nature of streaming applications.

Streamsight supports monitoring, understanding and debugging for large-scale
streaming applications. Monitored information includes performance informa-

33

2. Related research and technologies

tion such as the number of packets received or Central Processing Unit (CPU)
utilization. The tool can visualize the information both in real time and from
saved snapshots of earlier visualizations. [44]

Figure 5 [44] shows part of the Streamsight basic view, a graph showing con-
nections between processing elements and details of one individual processing
element in a tooltip. Nodes in the graph are coloured according to different crite-
ria, for instance, the run-time state or performance counter chosen by the user.
Many interaction techniques are incorporated into Streamsight. The user can, for
example, zoom and pan complex topologies, view tooltips of nodes by moving
the mouse cursor over them or highlight the upstream or downstream path of an
element. The user can also view the graph from different perspectives, for ex-
ample, from a software or hardware perspective. The software perspective di-
vides the system according to jobs and applications. The hardware perspective,
however, divides the system into applications running on specific hosts, and
from a large-scale point of view the hosts can be further divided into clusters of
computational hosts. [44]

Figure 5. Part of the Streamsight view.

34

2. Related research and technologies

Streamsight supports both monitoring and visualization of the information and
incorporates many visualization techniques that are helpful for interactive visu-
alization (explained in Section 2.3). These interaction techniques include, for
example, overview, filter, zoom and tooltips.

2.4.4 PortVis

PortVis [45] is a security visualization tool that can be used to visualize security-
related network data, especially very coarsely detailed data about ports. The
main aim of PortVis is to enable the analysis of large-scale and small-scale secu-
rity events occurring in the network. PortVis uses very high-level data and is a
very high-level tool. It can uncover high-level security events and count the ac-
tivities but not show the activities themselves.

Figure 6 presents the PortVis application showing all the different visualiza-
tion tools simultaneously. The different visualization tools (views) shown in
Figure 6 are explained below. [45]

1. Timeline of the visualization
2. Main (hour) visualization, including a magnification circle
3. View of the magnification circle showing ports
4. Activity view of the selected port
5. Appearance control of the main and port displays
6. Options panel, e.g., selection of the data source to display.

PortVis aids the user by showing multiple different views of the data so that it is
easy to correlate the data. It is useful for high-level analysis and for detecting
patterns occurring on certain ports, but it does not provide detailed information
about the security events.

35

2. Related research and technologies

Figure 6. PortVis application showing multiple views.

2.4.5 SnortView

SnortView [46] uses Network-based Intrusion Detection Systems (NIDS) logs to
present security alert information. It helps the system administrator to filter out
false detections, i.e., situations in which NIDS give an alert that is either false
positive or false negative. False positive regards normal traffic as an attack,
while false negative does not give an alert for a real attack. SnortView uses visu-
alization to effectively recognize the false positives in the logs instead of using
traditional approaches that, for instance, customize the signature database used
in the alert detection and thus not eliminating possible false negative alerts. [46]

Figure 7 shows the main frames of SnortView: the source address frame on
the left, the alert frame in the centre and the source-destination matrix frame on
the right. The source address frame shows the source Internet Protocol addresses
acquired from the NIDS logs. The alert frame shows the time on the horizontal
axis and displays alerts as coloured icons. Icons are coloured with a priority

36

2. Related research and technologies

from 1 to 3 (red, yellow, blue) and their shapes visualize different kinds of at-
tacks. The source-destination matrix frame shows the source and destination
with red circles. When the user clicks on the circle the communication path be-
tween the source and the destination is highlighted with blue lines so that the
user can quickly comprehend the situation. [46]

Figure 7. SnortView frames.

2.4.6 A network security visualisation prototype

Musa and Parish described a network security visualization prototype in [31]
that visualizes the security alerts in three-dimensional displays. The tool also
supports filtering, drill-down and playback of alerts to support the analysis of the
data. A geographical view showing an attack is presented in Figure 8. This tool
supports multiple visualization techniques such as a parallel coordinates plot,
scatter plot, three-dimensional view and timeline animation. It also provides
detailed information about the security alerts, as seen in Figure 8. [31]

The timeline animation of this tool allows the user to replay the attacks with
the exact sequence in which they occurred. The tool also supports real-time
monitoring of alerts. This is done by monitoring security logs and refreshing the
display every second. [31]

37

2. Related research and technologies

 a) b)
Figure 8. A Network Security Visualisation Prototype showing a) a geographical view of
an attack on a local network and b) security alert details.

2.4.7 NEXThink REFLEX

One commercialized solution of security visualization is REFLEX by NEX-
Think described in [47]. This system only collects a small set of parameters from
the connections on the network to help the security administrator interpret the
data. It is designed to help the system administrator react to security incidents in
a corporate network quickly enough to prevent major incidents. [47]

Visualization is based on a grouping technique that groups the network items
(i.e., applications, users, ports, hosts) or groups of network items into a tree
structure. Each item has a state attribute indicating whether the item is expanded
or collapsed. When it is collapsed it shows the children of the node as a group
and when it is expanded it shows the children of the node individually. The user
can click on an item to collapse or expand it. The system shows connections
between network items with arcs connecting the nodes, e.g., an application and
the ports it uses. The connections of an application can be highlighted by mov-
ing the mouse cursor over the group, thus providing more interaction. Figure 9
presents the grouping view showing grouped network items with parallel-
coordinates visualization on the left-hand side. [47]

38

2. Related research and technologies

Security alarms are handled by showing the application that caused the alarm
and visualizing the network items involved in it and the usual behaviour of the
application such as the ports used (see Figure 9, right-hand picture). [47]

Overall, this security visualization system provides the greatest amount of user
interaction and helps the administrator quickly analyse the status of the system.

Figure 9. REFLEX solution showing a basic view and alarm.

2.4.8 Summary

Of the reviewed tools, Streamsight has many of the preferred qualities with re-
gard to the research problem of this thesis. It combines monitoring and visualiza-
tion of the needed data and offers many interaction and visualization techniques.
EVolve, however, was designed to be extensible, and new sources of data and
visualization techniques can easily be added.

As stated earlier in this chapter, there are many security visualization systems
but only a few can be utilized directly for the research problem of this thesis.
The reason so many security visualization tools were reviewed was that security
and its variability is visualized in the context of this thesis as the primary notice-
able quality in the laboratory smart environment [5]. Some systems included a
real-time visualization option to allow the administrator to analyse the results
more accurately. The usual visualization techniques used for security-related
topics are timelines, scatter plots, parallel coordinates and graphs. Most of the

39

2. Related research and technologies

systems are based on logs (computer logs or network logs) or on alarms gener-
ated by security systems.

Interaction was a major factor in the comparison of the tools because interac-
tion is the base criteria for a good visualization system. Real-time visualization
was also considered, as the purpose of this thesis is to provide a solution that can
be used to visualize the run-time quality of software (providing real-time visu-
alization). The comparison was performed with the information provided in the
papers describing the solutions. The results of the comparison of the visualiza-
tion systems and tools are stated in Table 2. The columns in Table 2 are ex-
plained as follows.

 Based on: how or where the data to be visualized can be collected?
 Interaction techniques: does the tool incorporate interaction with the

user?
 Visualization techniques: list of the visualization techniques used.
 Applicability: in what context can the tool be used?
 Extensibility: is the tool designed to be extensible, i.e., can the new

visualization techniques or data sources be added easily according to
documents?

 Real-time visualization: can the tool visualize the data in real time
when the monitored system is running?

The evaluated visualization systems used various visualization and interaction
techniques to provide the information to the user as cognitively as possible. It is
clear that one visualization technique is not enough to present various types of
data. Visualization systems can be divided in two major categories: toolkits and
task-specific tools. A visualization toolkit can be built from various techniques
to provide as much support as possible to visualize different types of data. An-
other approach is to provide a task-specific visualization system that incorpo-
rates various visualization techniques to provide the best visualization result of
the specified topic such as network security. The only commercial tool in this
review was the NEXThink REFLEX tool for visualizing network security.

Most of the evaluated visualization tools were developed for a specific pur-
pose. Only the prefuse toolkit and EVolve were designed with the option to
visualize abstract information. EVolve supports visualization of somewhat ab-
stract data through a well-defined protocol that is used mainly to make visualiza-
tions of the x- and y-axes. The prefuse toolkit provides many visualization tech-

40

2. Related research and technologies

41

niques for use by the developer, but does not provide many ready visualization
solutions.

EVolve provides the best support for extensibility. It supports the addition of
new visualizations and data sources with a clear API. The prefuse toolkit pro-
vides many visualization techniques that can be reused in the development of a
new visualization tool that incorporates some of the visualization techniques.
The prefuse toolkit uses the reference model design pattern, which employs the
Model-View-Controller (MVC) architectural pattern [48, p. 125]. The reference
model is widely used and advocated in visualization papers and frameworks
[49]. Streamsight is implemented as an Eclipse plug-in and is divided into com-
munication, data model and visualization components. The architecture of
EVolve is also divided into three main components: data source, visualization
library and a core component. This kind of separation of the architecture seems
to support extensibility very well.

Many of the visualization techniques found in the reviewed tools can be em-
ployed in the visualization tool for quality attribute variability. Timelines, for
instance, are very useful for providing a means to look at the values of different
qualities at different times. This visualization technique can be combined with
other visualization techniques to provide history functions. Scatter plots, parallel
coordinates and different charts can be used alone to provide information on the
way a certain quality has varied over time. The prefuse toolkit has many visuali-
zation techniques that support the principles mentioned in [38] to help visualize
change in time series, for example, animation. Animation techniques help the
user notice changes in different quality attribute values by either changing a
property (e.g. size, shape or colour) or by moving the object along the screen to
a different location or a combination of these. Devices and software must also be
visualized because the purpose is to visualize the quality variability of different
software in different devices. Simple graph visualization can be used to visualize
devices and their software in a smart environment. This allows the user to look
at the quality attributes of a specific device and software as well as viewing, for
instance, the security quality of all the devices or the software on a scatter plot.

2. Related research and technologies

Table 2. Comparison of visualization approaches.

Tool Based on Interaction
techniques

Visualization techniques Applicability Extensi-
bility

Real-time
visualization

EVolve logs or custom
data source

yes bar chart, scatter plot, stack,
tooltip or custom visualization

run-time behaviour of
Java programs

yes no

Prefuse
toolkit

abstract data yes radial layout, hyperbolic tree,
treemap, scatter plot, fisheye
graph, tooltip, and more

abstract yes no

Streamsight real-time yes timeline, graph and tooltip streaming applica-
tions

no yes

PortVis information poor timeline, scatter plot, histogram network security no no
A Network
Security Visu-
alisation Pro-
totype

logs yes timeline, animation, scatter plot,
parallel coordinates and geo-
graphical view (3D)

network security no yes
(1 second
refresh time)

SnortView logs poor tabular visualization, two-
dimensional time diagram and
matrix

network security no poor
(2 minutes
refresh time)

NEXThink
REFLEX

logs yes parallel-coordinates, graphs and
tooltips

network security no yes

42

42

3. Interactive Quality Visualization tool

3. Interactive Quality Visualization tool

The Interactive Quality Visualization (IQVis) tool is designed to visualize the
variability of software quality attributes at run-time. The development of the tool
starts by specifying the software requirements for the task. This chapter covers
the functional and non-functional requirements specification and architecture
design for the tool. This chapter first gives an overview of the visualization
process and then defines the requirements of the IQVis tool. Finally, it depicts
the architecture of the whole system and its components at the end of this chap-
ter with a section describing sample visual mappings for quality attribute vari-
ability.

3.1 Overview

As stated in Chapter 2, one visualization technique is not enough to visualize
different topics. This is also the situation in the case of visualizing quality attrib-
ute variability. Different visualization techniques are used to illustrate different
aspects of the data. In order to visualize execution qualities such as security and
performance, suitable metrics need to be defined that output a single numeric
value of the quality so that it can be visualized. The development of suitable
metrics for quality variability monitoring is outside the scope of this thesis. The
monitoring of qualities is environment specific, and different monitoring solu-
tions can be used in different environments. Extensibility of the tool is therefore
highly preferable so that it can be reused in different contexts. This thesis does
not cover the actual design of the monitoring system on the environment side,
but the design of the monitor component is considered for extensibility.

Figure 10 presents an overview of the visualization process with the IQVis
tool (delimited with a dashed line rectangle) in some environment. The process
starts with monitoring and transmission of the data to be visualized to the IQVis

 43

3. Interactive Quality Visualization tool

tool. The visualization process is then conducted. After the Visual Mapping, the
visual presentation of the data is shown to the user with the help of some visuali-
zation technique, e.g., a bar chart in Figure 10.

Figure 10. Overview of the visualization process.

The monitoring works as the data source for the IQVis tool. The monitored data
can be provided from trace files (not in real time) or from the monitored envi-
ronment directly (in real time) at run-time. The IQVis tool does not care whether
the monitored data are provided in real time or not, but the IQVis tool architec-
ture takes into account that the data can be provided incrementally or at once.
The IQVis tool in Figure 10 presents the whole visualization tool. It comprises
the Visualization Monitor (VMonitor), Visualization Platform and Visualization
Views, which will be defined in more detail later in this chapter.

The data source components, monitors, can be built as a client-server pattern
with different components, e.g., one component on the environment side (Envi-
ronment Monitor, EMonitor) and one component on the visualization side
(Visualization Monitor, VMonitor). By implementing the data source as a client-
server pattern, the EMonitor (on the environment side) can provide the same
data to multiple IQVis tools if necessary. The EMonitor can send the monitored
data to the VMonitor by using some specified protocol and representation, e.g.,
JavaScript Object Notation (JSON, a lightweight data-interchange format) or
eXtensible Mark-up Language (XML). The VMonitor parses the information,
converts it into a form that the IQVis tool understands and updates the model
that holds the internal representation of the data.

44

3. Interactive Quality Visualization tool

3.1.1 Monitoring process

The VMonitor component is the data source for the visualization and therefore a
vital part of the system. The task of this component is to convert the data from
the environment into an internal representation that the IQVis tool can recognize
and store. Although the main problem is to design and implement the VMonitor
component so that it can communicate with the IQVis tool, the monitoring proc-
ess on the environment side should also be taken into account. That said, the
process of monitoring information from the target environment is beyond the
scope of this work, but designing and implementing a monitor component
(VMonitor) to validate the visualization part is within the scope of this work.

The monitoring process, for example, can be either distributed or centralized.
In distributed monitoring, every device reports the information to be monitored
directly to the monitoring service, which then relays this information to the visu-
alization tool. In centralized monitoring, individual devices do not necessarily
have to notify the monitored properties; instead, one or more centralized compo-
nents observe the state of the system or environment from logs or other informa-
tion. The trade-off between these two choices is clear: a distributed solution
demands more from the individual devices in terms of processing power and
network resources, and the centralized solution may not be as accurate and reli-
able but does not influence the execution time of the monitored devices.

Monitoring can also be done by combining these two options. Some of the
properties, e.g., critical properties such security, can be monitored directly from
the devices/components and other not so important properties from system logs.
Either way, the implementation decisions made in the monitoring process of the
target environment (EMonitor) do not influence the design of the VMonitor
component on the visualization side because the VMonitor communicates with
the IQVis tool through a predefined interface. The job of the VMonitor compo-
nent is to receive data from the environment side, convert it into the IQVis tool’s
internal representation and communicate with the IQVis tool.

An example implementation of the monitoring process is defined in [50], in
which a modified OSGi (formerly known as the Open Services Gateway initia-
tive) platform (Oscar, the predecessor of the Apache Felix) is used as the moni-
toring source for a resource visualization tool of OSGi-based software compo-
nents. The OSGi platform can technically be seen as a dynamic Java class loader
and a service registry that is globally accessible on a single Java virtual machine.
The monitor agent creates an output file for the visualization tool that consists of

 45

3. Interactive Quality Visualization tool

numerical values representing the behaviour of the OSGi environment and the
monitored applications (OSGi bundles, which are Java archives). [50]

3.1.2 Visualization process

The visualization process explained in Section 2.3.1 includes mapping of the
data into a visual form, selection of the appropriate view to use and interaction
with the user (e.g., view something in more detail or possibly filter the data).
This process decides which part of the data is visualized, how the data are visu-
alized and when the data are visualized. The visualization process has to take
into account whether or not the visualization is in real time because in real time
the visualization changes take place according to the run-time state of the soft-
ware in the specific environment. The user may wish to stop, i.e., pause the real-
time situation and analyse the current situation in more detail. The Visualization
View used must be able to react according to the events coming from the model
when the data changes, e.g., increment the timeline or notify the user so that
he/she knows that new events have occurred.

The mapping of the abstract data into a visual form is an important phase
when considering how well the data are understood by the user. Quality attribute
variability can be visualized, e.g., using a time series. As said in Section 2.3.3,
there are different techniques that help to analyse change in time series, e.g.,
magnitude of change, shape of change, velocity of change and direction of
change [38]. The obvious visualization techniques for visualizing change include
timelines, scatter plots and charts (with the help of animation), which can be
found from a toolkit like prefuse [43]. Other helpful visualization techniques for
quality variability include, for instance, a gauge showing minimum and maxi-
mum values and the current value and animation techniques.

As the user may want to use different visualization techniques for different
qualities, the tool should support this by allowing the user to choose the visuali-
zation technique used for the data, e.g., by opening another Visualization View.
As a single visualization technique is rarely enough to visualize all data, differ-
ent visualization techniques can be grouped into Visualization Views that in-
clude at least one visualization technique and provide a view for the data. These
Visualization Views are components that the user can choose to use with a spe-
cific data source. Multiple views of the same data can be used to analyse the data
from different aspects. The user can view, for example, the performance of soft-
ware in one view window, security in another window and a combination of

46

3. Interactive Quality Visualization tool

these in a third window and analyse how changes in both qualities affect each
other.

3.2 Requirements

This section describes the requirements for the IQVis tool. The requirements are
mostly derived from the context of smart environments, e.g., security quality
variability, but they also take into account that the tool could be used in different
environments. Requirements are also taken from the literature study of visualiza-
tion, for example, from Section 2.3.2, which presents interaction techniques. As
the purpose of this tool is not to visualize large amounts of data but to visualize
changes in quality, scalability is not a serious requirement of the tool. The tool
shall, of course, be able to visualize tens or hundreds of different objects such as
the device, the programs running on the device and the quality variability of
these entities. One of the main requirements for this tool is that it is interactive
so that the user can view the data the way he/she wants and thereby gain a
greater insight into the data and the relationships between different qualities.

The requirements of the IQVis tool are divided into two categories: functional
requirements and quality (non-functional) requirements. Functional requirements
cover mainly the run-time properties of the system and quality (non-functional)
requirements are mainly considered for the ease of future development of the
tool. Table 3 and Table 4 list the main requirements of the tool.

Table 3 lists the functional requirements of the tool in decreasing order, i.e.,
F1 is the most important requirement. The requirements are numbered and the
letter F in front of the number identifies the requirement as a functional require-
ment. The F1 requirement is the most important requirement because it states
that the tool can be used to visualize the variability of different quality attributes.
This means that despite the tool being used to visualize security variability (F2
requirement) in the context of smart environments in the test case; the tool is
also able to visualize the variability of different qualities.

The usability and extensibility of the visualization tool are considered in the
F3 requirement, which allows the user to select used VMonitor and Visualiza-
tion View(s). This allows the addition of monitors and views to the tool without
having to rebuild the entire tool.

 47

3. Interactive Quality Visualization tool

Table 3. Functional requirements.

ID Requirement Description

F1 Ability to visualize the
variability of different qual-
ity attributes

The tool is capable of visualizing the variability of
different quality attributes.

F2 Security variability The tool can visualize changes in security quality.

F3 Installation of monitor and
view components

The tool allows the user to install VMonitor and
Visualization View components and select the ones
used.

F4 Time slider The tool must allow the user to browse the data with
a time slider so that quality variability can be seen.

F5 History functions The tool must be able to save the current situation of
the tool, i.e., the currently used monitor and view
and other settings.

F6 Data storage The tool must be able to save the data from the
current session with a monitor (data source) so that
the session can be replayed if necessary.

F7 Multiple views The tool can provide multiple views of the same data
so that the user can view multiple different aspects
of the data at the same time.

F8 Interaction The tool should be interactive, i.e., it should allow
the user to modify the view of the data, e.g., by
filtering.

F9 Animation The tool should use animation to notify changes in
the data to amplify cognition.

F10 Ability to handle quality
data over a long monitor-
ing session

The tool should be able to visualize many quality
attributes in real time over a long monitoring session
(performance-wise).

The F4 requirement is also important because time sliders enable the user to
select a point in time or a time range in which to view the data. This allows the
user to look at the quality attribute values from the whole range monitored in
addition to just viewing the latest values. All the values can, of course, be shown
on a timeline, but the view may become confusing with a large amount of val-
ues, and this would not comply with the guidelines presented in Section 2.3.2:
“Overview first, zoom and filter, then details on demand” [34].

For the F5 requirement, history functions are provided to help the user. It is
important to be able to save the analysed data so that it can be viewed at later
times, and that is why the F6 requirement is presented. The user can save the
data from the entire session and afterwards view the data again in playback
mode.

48

3. Interactive Quality Visualization tool

The F7 requirement ensures that the user can use the tool as he/she wants and
view the data from different aspects as needed.

The F8 and F9 requirements (Interaction) and (Animation) are derived from Sec-
tions 2.3.2 and 2.3.3 and help the user to analyse the data and amplify cognition.

The F10 requirement is included in the requirements because it is necessary
for the tool to be able to visualize the variability of many software quality attrib-
utes in real time and also keep the performance at a satisfactory level in long
visualization sessions. The F10 requirement is not considered to be a strict re-
quirement as this is the first prototype version of the tool.

Table 4. Quality (non-functional) requirements.

ID Requirement Description

Q1 Extensibility The system must be easy to extend with, for exam-
ple, new visualization techniques (views) or data
sources (monitors) so that the tool can be used in
different environments.

Q2 Interoperability Monitor and Visualization View components can
exchange data with the core through a well-defined
API/protocol.

Q3 Usability The tool should be easy to use even without prior
knowledge of the tool.

Table 4 lists the quality (non-functional) requirements of the tool. The require-
ments are numbered, and the letter Q in front of the number identifies the re-
quirement as a non-functional requirement. Further development of the tool is
considered in the Q1 requirement so that the tool can be used in various envi-
ronments in the future. The Q2 requirement is introduced so that new monitors
and views can easily be added to the tool. The Q3 requirement is required so that
the tool is easy to use, even without prior experience of the tool. Q3 is added to
the requirements because Section 2.3.3 found that usability is recognized as a
problem of visualization tools.

When comparing the set requirements (functional and quality) with the quali-
ties found in the surveyed visualization tools in Section 2.4, it is clear that no
single tool can fulfil all of these requirements.

 49

3. Interactive Quality Visualization tool

3.3 Architecture

This section describes the architecture of the IQVis tool. A structural view of the
whole system is provided followed by a presentation of the structures of the
major components. Visualization techniques are either designed and imple-
mented or used from the available open source toolkits. The following design of
the IQVis tool supposes that the tool is implemented with an arbitrary object-
oriented language.

3.3.1 Structure

The MVC software pattern described in [48] is widely used in interactive soft-
ware solutions. It divides the application into three components: model, view
and controller. The model contains the platform functionality for change propa-
gation and data actions. The view(s) display(s) information provided by the
model to the user. The controller(s) handle(s) user input. The UI comprises
views and controllers that together can also make changes to the model or re-
quest data from it. The basic idea is that the model notifies views when its data
changes and the views update themselves accordingly. The views can also query
the model about its state. The controller receives commands from the user from
the view and defines application behaviour accordingly. [48]

Heer and Agrawala present 12 design patterns that have proven themselves
based on the existing visualization frameworks that have been reviewed [49]. The
Reference Model pattern is widely used in information visualization software, for
example, in the prefuse toolkit presented in Chapter 2. The structural view of the
Reference Model pattern is presented in Figure 11 [49]. The Reference model
pattern provides separation of data models, visual models, views and interactive
controls, and supports extensibility and reusability of the software architecture.
The DataSource component in Figure 11 loads data sets to be visualized from, for
example, a file or database connectivity interface. One or more data sets that can
be registered to visualizations and one abstract data set can be used in multiple
visualizations. Visual attributes such as shape, size and colour are separated from
the abstract data set. A common approach is to create visual items, lightweight
components, which represent interactive visual objects with visual attributes.

Visualization, View and Control in Figure 11 employ the standard MVC pat-
tern and provide controls that can affect any level of the system. The Reference
Model pattern can be thought of as a tiered version of MVC in which the model

50

3. Interactive Quality Visualization tool

is divided into separate abstractions of the data and visual properties such as
location, size, shape and colour. [49]

Figure 11. The Reference Model pattern.

The architecture structure of the IQVis tool is presented in Figure 12. The IQVis
tool comprises three major components: VMonitor, Visualization Platform and
Visualization View. The data source component is divided into two separate com-
ponents: EMonitor (Environment Monitor) and VMonitor (Visualization Monitor).
The EMonitor monitors the environment and sends the monitored data to the
VMonitor, which then updates the data to the Visualization Platform. The Visuali-
zation Platform takes care of data storage and functionality, and encompasses the
Model-View-Controller (MVC) pattern. The monitor component is selected by the
platform at run-time to provide data to the tool and can thereby be replaced by
another monitor component. This is realized by defining a monitor interface in the
IQVis tool. The visualizations part is also separated so that new visualizations can
easily be added to the tool in the form of separated components. This architecture
is designed to meet the requirement Q1 of extensibility described in Table 4.

Figure 12. Conceptual architecture of the visualization system.

 51

3. Interactive Quality Visualization tool

The Visualization Platform is responsible for the construction of the visualiza-
tion, i.e., data transformations, visual mappings and view transformations ex-
plained in Chapter 2. The Visualization Platform model receives the data ele-
ments from the VMonitor component and stores the data with timestamp values
so that they can provide history data for the view(s) and not just the latest values.
The visualization tool supports multiple views to be constructed from the same
model. The view(s) can be built from different visualization techniques, e.g.,
timelines, scatter plots or graphs.

The architecture of the IQVis tool follows the Reference Model and MVC pat-
terns in multiple ways. First, the Visualization Platform of the tool follows the
MVC pattern and provides functionality for selecting used monitors and visuali-
zations views, and handles the internal data representation and communications.
The Visualization Platform is different from the Reference Model’s DataSet
because it only supports one DataSet at a time from the VMonitor. Second, the
VMonitor component(s) is/are the data sources and the visualizations views are
the views that are produced from the abstract data. Third, the Visualization
Views are constructed from visualizations, different visualization techniques,
which refer to visual items. These separations allow the tool to be extended easily.

Figure 13 presents the architecture of the IQVis tool in a component diagram.
The Visualization Platform comprises Model and ControlView components. The
ControlView component is a hybrid version of the Controller and the View of
the MVC pattern, and the Model component is named as the MVC pattern as-
sumes. The Controller and the View of the MVC pattern are combined into a
single ControlView component graphical user interface (GUI) component be-
cause it is only used to select the used monitor and Visualization View compo-
nents and possibly save the data from the model.

The Visualization Platform makes up the DataSet and part of the Control of
the Reference Model pattern. The Visualization Platform uses a configuration
file that lists the available monitor and Visualization View components. The
Visualization Platform therefore handles mainly configuration, data representa-
tion and storage. The Visualization View(s) make(s) up the real visualizations by
itself/themselves or by using some visualization component (Vis in Figure 13) or
open source visualization technique.

52

3. Interactive Quality Visualization tool

VisualizationView

VMonitor

IMonitor

IVisualizationView

Vis

controls

0..*1

IModel

queries model

updates model

Visualization Platform

controls VisualizationView

controls VMonitor

Figure 13. Architecture of the IQVis tool.

The Visualization View in Figure 13 corresponds to the view component of the
Reference Model pattern. The VMonitor in the Figure 13 component corre-
sponds to the DataSource component of the Reference Model pattern and pro-
vides the data to the Visualization Platform through the IModel interface. The
Visualization View and VMonitor components can both be installed at run-time.
Essentially, the VMonitor modifies the model directly and the Visualization
View(s) update(s) itself/themselves accordingly by querying the model directly
instead of communicating through the controller as in the MVC pattern.

Multiple IQVis applications can be opened from the same monitoring compo-
nent, if the data source (VMonitor and EMonitor) is split into a client-server
implementation. Multiple EMonitors can be used on the environment side and
then either use different instances of the IQVis tool or a combine the information
in the VMonitor component. The Visualization View(s) can be constructed sepa-
rately from each of the monitored quality attributes, or all the quality attributes
can be shown in a single Visualization View.

 53

3. Interactive Quality Visualization tool

The VMonitor, model and Visualization View all provide interfaces so that
the communication between these components can be assured. This makes it
possible to change the VMonitor and Visualization View components without
having to rebuild the entire software. The VMonitor and Visualization View
components can be compiled on their own when the required interfaces are
available. These interfaces are described when the different parts of the IQVis
tool are discussed in more detail in the following section.

3.3.2 Visualization Platform

The Visualization Platform consists of two major components: Model and Con-
trolView. Together, these components make up the core functionality of the IQVis
tool. These functionalities include saving the current state of the platform and sav-
ing the monitored data up to a given moment so that it can be used at a later time.
The Visualization Platform is designed to meet the quality requirements (Table 4)
Q1 extensibility and Q2 interoperability, and it therefore defines an interface for the
use of its functionalities. The Visualization Platform is also designed to meet func-
tional requirements F3, F5, F6, F7 and F10 described in Table 3.

The model is used by the VMonitor and Visualization View components. The
Visualization Platform allows the user to choose a VMonitor to be used as the data
source. The user can change the current VMonitor component, causing the model
to be cleared for the new monitored data. The Visualization Platform supports
only one monitor component at a time because it saves all the monitored data and
it could therefore slow down significantly if several environments were visualized
at the same time. This is considered because of the F10 requirement. If the user
wishes to analyse/monitor another environment, he/she can always open another
instance of the IQVis tool. The following describes the different functionalities
provided by the Visualization Platform and its interfaces.

Data representation of the model

The data representation model of the Visualization Platform’s model follows a
graph-type representation in its naming convention. This data representation
model was chosen because it can provide a very good representation of the dif-
ferent entities found in environments where this tool can be used, e.g., devices,
software and their relationships. A similar approach was used in NEXThink
REFLEX, as described in Section 2.4.7.

54

3. Interactive Quality Visualization tool

The model separates three different types of entities: nodes, edges and attrib-
utes. This data representation model partly follows the Relational Graph and the
Proxy Tuple patterns presented by Heer and Agrawala in [49]. The data represen-
tation model uses the basic form of the Relational Graph by providing different
tables for different entity types and data access that is similar to the Proxy Tuple.

Nodes represent all the entities found in the environment, e.g., devices, sen-
sors, smart agents, software and so on. Nodes have some required properties that
the platform and predefined visualizations use and, in addition, they can also
have customizable properties. Nodes are used for visualizing the different de-
vices or software being monitored in the environment so that the user can, for
example, select a device that he/she wants to look at in more detail and analyse
its quality variability. Nodes and edges are not required to be able to visualize
quality attributes and their variability, but they help the user obtain an overview
of the environment and the software currently being monitored. The pre-built
properties of nodes are:

 id: a unique identifier for the object
 label: a text used to represent this object
 time: the time this object was modified
 type: type identifying this object, e.g., device, software.

Edges represent the connections and dependencies of nodes. Edges can be used,
for example, to describe that some software runs on a certain device or that a de-
vice is connected to some smart environment. Edges can also be used to describe
the metadata of the connection, e.g., a device connection to a smart environment is
via the Transmission Control Protocol / Internet Protocol (TCP/IP) and some arbi-
trary encryption is used. Edges have the following pre-built properties:

 id: a unique identifier for the edge
 label: a text used to represent this edge
 time: the time this object was modified
 source: the source object id for this edge
 target: the target object id for this edge
 directed: Boolean, whether or not this edge is directed, i.e., the connec-

tion between nodes.

Attributes are the most important entities because they describe the different
quality attributes of software. Any entity can have attributes, but attributes do
not require the existence of nodes and edges. Attributes are defined to be attrib-

 55

3. Interactive Quality Visualization tool

utes of a certain id that maps to the id values of nodes and edges. The attributes
can be used without nodes or edges. Attributes also have some pre-built proper-
ties that must be defined as follows:

 id: a unique id that may map to a node or edge id, i.e., a foreign key to a
node or edge id

 type: describes to which quality attribute this attribute corresponds, e.g.,
security or performance. The platform recognizes quality attributes, but
this property may also be used to support possible use cases other than
quality attributes in the future.

 time: the time this attribute was modified
 value: the value of this attribute.

Attributes are separated from the actual nodes and edges because attributes are
more likely to change over time. A separation between these three entities is
therefore necessary so that the model can store all the changes in these entities
without having to duplicate all the entities that do not change frequently. This
separation is made because of the F10 functional requirement (Table 3). When
there are fewer objects in memory, the system will respond faster to data queries.

Updating the model

After the selected VMonitor component has been loaded successfully onto the
platform, it is started and the VMonitor component starts to update the model
using the changeNode, changeEdge and changeAttribute methods described in
the IModel interface (Table 5). These three methods take entity types defined
earlier (nodes, edges and attributes) and properties as a parameter. The parame-
ter is supposed to be an object that has the required properties. The model is
designed to support timeline features, so it saves all the changes made to the
model. The model uses a predefined period of time to determine whether or not
the change in the model is a new event. This period of time could be set to, for
example, 1000 milliseconds depending on the accuracy requirements. The dura-
tion determines how accurately the user can view the changes in the entities and
affects the memory requirements of the tool. This is because the model saves all
the events identified as new events into the memory, and every new event there-
fore reserves more memory.

The entities are expected to have a time value of when they were monitored in
the environment. This value may not be available at all times, however, so the

56

3. Interactive Quality Visualization tool

VMonitor component adds a time value to the data regardless of the given time
value so that the data will not violate the Visualization Platform data format.
Only one timestamp should be used, however, either the one from the EMonitor
or the one from VMonitor, so that the events can be correctly compared and
placed in the timeline of events. The VMonitor component changes the given
time value, e.g., date value, into the internal representation, which is a number
representing milliseconds between midnight on January 1, 1970, universal time,
and the time specified in the time value. This representation is also known as
UNIX time. UNIX time is chosen over a textual representation of time and date
so that the model can make a direct comparison of the numerical time values.
The UNIX time is changed into a textual representation in the visualization
component. If the EMonitor adds a time value to the monitored entity, it must
also use the aforementioned format of time so that the model can compare the
time values correctly.

Querying the model

The Visualization View components and the Visualization Platform can make
queries to the model to request data from it. The query methods are simple
methods that can be used to obtain entities according to different limits. A more
advanced querying language was not included because it was not seen as a ne-
cessity and the methods defined are adequate for the needs of this tool.

The model uses the following reasoning when entities are queried with a time
value or time range: if there is no occurrence of the entity at the given time(s),
the model takes the last occurrence of the queried entity and returns it as the
latest one. This is because the model only updates an entity when the time dif-
ference between changes is bigger than defined, as explained earlier. This time
limit can be set or checked with the setTimePeriod and getTimePeriod methods.

The model data can be saved and loaded at any time. The model provides a
getJSON method for returning a JavaScript Object Notation (JSON) encoded
String of the model data that can be saved into a file. The model data can be set
by using the setJSON method, which loads a previously saved JSON String of
model data. When the setJSON method is used, the model sends an event that
the model has been loaded. The getHistory method provides the events that have
occurred in an array that can be used to show events in the order in which they
occurred.

 57

3. Interactive Quality Visualization tool

When querying the model with a time parameter, it is important to remember to
use the time value relative to the time values inserted into the model, i.e., relative
to the time received from the monitored environment. It cannot be assumed, for
example, that a call requesting entities with the current timestamp from the device
on which the IQVis tool is used will return the latest entities in the monitored envi-
ronment. Although this is taken into account when designing the current compo-
nents that use these querying methods (and by wildcards), this has to be consid-
ered when new components are designed and implemented in the future.

The getOccurrences method (Table 5) returns all the timestamps related to
changes in nodes, edges and attributes to provide easy access to the timestamps
of occurred events. The rest of the query methods involve querying the types of
objects explained earlier. An empty string equals a wildcard in the id and time
parameters, i.e., an empty string substitutes any possible value. The type pa-
rameter cannot contain wildcards because this would make the returned object
more complex to handle, and the user now knows the kind of entity he/she will
receive.

The methods for querying a single entity type can contain the following pa-
rameters: a type parameter “node”, “edge” or “attribute”, an id of the entity and
one or two time values. The time value is represented as a number, so that the
model can quickly compare different times values and fetch the queried entity
from the data repository. The methods of querying a single entity type are:
getEntityAtTime and getEntityBetweenTimes. The getEntityAtTime method
simply returns the newest entity at a given time. The getEntityBetweenTimes
method returns all the entities, which have timestamps between the times given
in the parameters, in an array.

The methods for querying attributes are: getAttributeAtTime and getAttrib-
uteBetweenTimes. These methods are helper methods for querying attributes of
a specific entity. Attributes can of course be queried with the methods for query-
ing a single entity, but it is necessary to know the id of the specific attribute for
these methods. The methods for querying attributes are needed because attrib-
utes are stored so that the attribute id maps to the node or edge id, and one at-
tribute id can contain multiple attributes of different types. These two methods
return an entity’s attribute of a given type, e.g., a security quality of a device.
Table 5 summarises the interface IModel by presenting the name, input and out-
put values, and descriptions of all the methods of the model explained earlier.

58

3. Interactive Quality Visualization tool

Table 5. IModel interface description.

Name Input Output Description

clear - - Clears the model so that it can be
used with another monitor compo-
nent.

setTimePeriod Number value - Sets the period of time for an event
to be considered a new event.

getTimePeriod - Number Returns the current period of time
for an event to be considered a
new event.

getJSON - String Saves the current data in the
model into the JSON format String.

setJSON String data - Sets the model data from the given
JSON String.

getHistory - Array Returns the history of events
dispatched. Used to provide the
order of occurred events.

getOccurrences - Object Returns the timestamps of nodes,
edges and attributes in an object.

changeNode Object - Changes the given node to the
model with the given timestamp.

changeEdge Object - Changes the given edge to the
model with the given timestamp.

changeAttribute Object - Changes the given attribute to the
model with the given timestamp.

getEntityAtTime String type,
String id,
Number time

Object Returns the entity type requested
with a given id at a given time.

getEntityBetweenTimes String type,
String id,
Number time1, 2

Object Returns the requested type of
entity with a given id at a given
time range.

getAttributeAtTime String id,
String type,
Number time

Object Returns attributes of a given type
and id (an id maps to a node or
edge id) at a given time.

getAttributeBetweenTimes String id, String
type,
Number time1,
Number time2

Object Returns attributes of a given type
and id (an id maps to a node or
edge id) in a given time range.

 59

3. Interactive Quality Visualization tool

3.3.3 VMonitor

The VMonitor component is the data source for the IQVis tool. VMonitor com-
ponents can be loaded at run-time and activated by the user. Only one VMonitor
component can be activated at a time because of the aforementioned perform-
ance issues. The VMonitor components can communicate with the Visualization
Platform and the model through the IModel interface. The VMonitor compo-
nents are also designed to meet the F3 requirement (Table 5). The VMonitor
components are listed in the configuration file and can be installed on the plat-
form. The VMonitor component uses the setTimePeriod method defined by the
model to set the monitoring accuracy for the specific environment.

After the VMonitor component has been loaded successfully, the Visualiza-
tion Platform calls the start method with a model component that implements the
IModel interface (Table 6) as a parameter. After this, the monitor starts to update
the entities to the model. The VMonitor must use at least the required properties
of the model’s data representation. The VMonitor component can be stopped
with the stop method, which stops the monitor from sending updates to the enti-
ties. The monitor component must also support showing and hiding of its con-
figuration GUI by calling the showConfiguration or hideConfiguration method.
The configuration GUI of the monitor component is not predefined, but it can
show properties such as update frequency, status of the monitor’s (VMonitor)
connection to the environment (EMonitor), etc. Table 6 summarises the required
IMonitor interface.

Table 6. IMonitor interface description.

Name Input Output Description

start IModel - Starts the monitor component. The monitor
then starts to update data to the model by
calling the change methods described in the
IModel interface.

stop - - The monitor stops updating the model. This
is usually called when the monitor is
changed. After that the monitor is deleted.

showConfiguration - - Shows a GUI for configuring the monitor. The
user can, for example, configure where the
server-side of the monitor is located.

hideConfiguration - - Hides the configuration GUI for this monitor.

60

3. Interactive Quality Visualization tool

Figure 14 presents a class diagram for a sample monitor component designed for
the context of a Smart Space [5]. The monitor comprises two separate compo-
nents, one of which is located in the Smart Space and the other on the visualiza-
tion side. The visualization side monitor implements the IMonitor interface and
communicates with the Visualization Platform. It receives monitoring data in
JSON format via a socket connection from the EMonitor component from the
environment side (smart environment) and parses the data into the data represen-
tation described earlier in the Visualization Platform description in Section 3.3.2.

Figure 14. Class diagram of the VisMonitor component.

3.3.4 Visualization View

The Visualization View component takes care of the visualization itself, i.e.,
mapping the data into a visual form. The Visualization View component obtains
data from the model and constructs the visualization from it. The Visualization
View can use many visualization techniques to realize the visualization by using
various visualization components. These visualization components are basically
the different visualization techniques described in Sections 2.3 and 2.4. These
visualization components can be implemented from available open source visu-

 61

3. Interactive Quality Visualization tool

alization toolkits, e.g., prefuse [43], or designed and implemented for a special
purpose. The Visualization View component is designed to meet functional re-
quirements F1, F2, F3, F8 and F9 described in Table 3.

The Visualization View component decides how different entities, quality at-
tributes and their variability are visualized. Different views can be used for dif-
ferent purposes and contexts. The view should also provide interactivity with the
user by allowing him/her to explore the visualization, look at finer-grained de-
tails on demand and provide overall support to the principles presented in Sec-
tions 2.3.2 and 2.3.3.

In order to be able to create and add these Visualization Views easily to the
platform in the future, an interface is required. The interface provides functional-
ity to add the same kinds of entities as defined earlier in the model description.
The Visualization View interface also provides methods for analysing the data at
different points in time by using the showValuesAtTime and showValuesBe-
tweenTimes methods. Table 7 summarises the specification IVisualizationView.

Table 7. IVisualizationView interface description.

Name Input Output Description

start IModel - Starts the Visualization View component.
The view asks the model for the latest values
and starts listening for change events.

stop - - The Visualization View stops listening for
change events from the model.

modelLoaded Event - The Visualization View is informed that the
model has been loaded. The view updates
the latest data from the model.

modelCleared Event - The model instructs the view that it has been
cleared, e.g., a new monitor has been acti-
vated. The view clears itself.

nodeChanged Event - The view is informed of a change in a node
element; the Event contains the changed
node.

edgeChanged Event - The view is informed of a change to the edge
element; the Event contains the changed edge.

attributeChanged Event - The view is informed of a change to the
attribute element; the Event contains the
changed attribute.

showValuesAtTime Number time - Instructs the view to show data at a given
time. The view obtains the values from the
model.

showValues-
BetweenTimes

Number time1, 2 - Instructs the view to show data between two
given times. The view obtains the values
from the model.

62

3. Interactive Quality Visualization tool

Figure 15 presents a description of the Visualization View. Although this view is
designed to fulfil the requirements defined earlier and is supposed to visualize
Smart Space qualities, it should also be applicable to other environments. The
only question is whether the design of the Visualization View fulfils the re-
quirements of other contexts, e.g., how the mapping of quality attribute data into
a visual form is realized. In another context, another visualization technique
might be preferable to the ones used in this context. The implementation and
actual visualization techniques used will be discussed in more detail in the im-
plementation chapter.

Figure 15. Simplified class diagram of the SmartSpaceView component.

3.3.5 ActionScheduler

As views update themselves when the model sends events, the view components
require a scheduler to manage the data changes in the view accordingly. The
ActionScheduler is necessary so that the changes to the data can be shown in the
right order, and possibly in a sequence, rather than showing all the changes at
once. Many quality attributes may change in a period of one second and the user
may not notice the change if these changes are shown all at once. The design of
the ActionScheduler can follow the mediator design pattern, i.e., it partially han-
dles the communication between the model and the Visualization Views’ com-
ponents.

 63

3. Interactive Quality Visualization tool

The Visualization Views attach the change events from the model to the Ac-
tionScheduler’s handle method (Table 8), which determines the kind of change
that has occurred from the type of event. The ActionScheduler then schedules the
change and calls the appropriate method in the Visualization View when the view
has finished animating possible earlier changes. The ActionScheduler receives
notification when the view’s last animation has stopped. If there are no commands
in the queue when the model sends a change event, the ActionScheduler immedi-
ately calls an appropriate method in the view. The paused method defines whether
or not the ActionScheduler mediates messages. When it is set to paused, it just
stores the values into the history array. When the ActionScheduler is unpaused, it
continues to mediate events from the point in time when it was paused.

The ActionScheduler also makes it possible to replay the events from a previ-
ous monitoring session or a point in time in the current monitoring session, in
the same order as they occurred. The setHistory method (Table 8) is used to set
the history of events and corresponds to the getHistory method of the model
defined in Table 5. The ActionScheduler keeps a history of the events the model
sends so it can provide them from a point in time if needed. Table 8 summarises
the required interface for the IActionScheduler.

Table 8. IVisualizationView interface description.

Name Input Output Description

ActionScheduler IVisualizationView - Constructor. Takes a view as a
parameter.

handler Event - This method receives notification of
the change events from the model.

endScheduler Event - This method is called when the view
has finished animating a change.

paused Boolean Boolean This method pauses or unpauses
the ActionScheduler from sending
events.

setTimeRange Number fromTime - Sets the last occurred event to the
given time parameter. When the
ActionScheduler is unpaused, it
continues from this point in time. It
uses the history array set in the
setHistory method.

setHistory Array - This method sets the history of
events that have occurred. It is used
when the previous monitoring ses-
sion is used as a source to provide a
history of events.

64

3. Interactive Quality Visualization tool

 65

3.4 Visual mapping

This section discusses how quality variability can be shown in visualizations in a
way that helps the user to see the patterns and relationships between different
qualities. Visual mapping is the most important face in visualizations because it
determines how different data are represented by visualization techniques. As
said in [28, p. 6], visualizations can amplify cognition by perception, and visual
mapping is responsible for realizing this. Different visualization techniques en-
able the user to view the data from different perspectives. The visual mapping
partially meets the functional requirements F1 and F2 (Table 3) because these
requirements are met with the help of visualization techniques. Quality require-
ment Q3 usability (Table 4) must also be considered so that the use of the chosen
visualization techniques is intuitive. Different visualization techniques that are
useful in visualizing quality variability are presented in [52], where the use of
the IQVis tool is discussed.

Different visualization techniques require different types of data to be shown,
for example, a scatter plot (see Figure 4 in Section 2.4.2) requires one or two
numerical values of data to be mapped to both of the axes (x and y), a label for
the items and an optional numerical value representing the size of each item.
When thinking in terms of visualizing variability, the second numerical value
can be replaced with a time value, as time can easily be mapped to a numerical
value. A treemap (see Figure 4 in Section 2.4.2 or [29]), however, requires two
numerical values that map to the size and colour, and a number of textual values
to define the hierarchies of the map. Animation techniques can be used to pro-
vide the element of change in visualization techniques that cannot visually repre-
sent it so clearly, e.g., a scatter plot.

3.4.1 Graphs

Graphs can visualize relationships between different entities. Graphs are chosen
to visualize the devices and software present in the smart environment. Different
layouts for graphs allow the user to view the topology of the environment at
different levels. Figure 16 presents a graph showing devices and applications
joined in a smart environment.

The graph-type presentation was also used in the visualization tools that were
discussed in Section 2.4, for example, Streamsight [44] used graphs to show
connections between streaming application processing elements, and NEXThink

3. Interactive Quality Visualization tool

REFLEX [47] used a grouping technique to present network items in a tree
structure. A graph can be presented in a tree structure. Graphs can also convey
information about the communication channel in edge types.

Figure 16. Graph representing smart environment devices and their applications.

3.4.2 Treemaps

A treemap is a two-dimensional, space-filling approach for visualizing a tree struc-
ture so that certain attributes of a node are mapped to the size and colour of the
nodes visualized as rectangles. Child nodes are visualized as rectangles inside the
parent node so that the whole area of the parent node is used. A treemap can visu-
alize change in various ways. It can change either the size or colours of the items
on the map. The size of an item is the usual way of representing relationships be-
tween some values. Colours can also be used to visualize how often the size of the
object changes by, for example, mapping the colour of an entity to red when its
properties change often and to green when its properties change rarely.

Treemaps are used in, for example, GAMMATELLA [53], which represents
different kinds of program-execution data in order to support the analysis of

66

3. Interactive Quality Visualization tool

program behaviour. GAMMATELLA uses treemaps to present the system level,
the most abstracted level in its visualization. In GAMMATELLA, treemaps keep
the same layout of colours in different nodes so that a possible non-uniform ap-
pearance of nodes will not cause confusion to the user. GAMMATELLA uses
hue and brightness components to convey one- or two-dimensional information.
The hue component uses red, yellow and green as the colours for conveying
concepts of danger, caution and safety in the same way as traffic lights do. Dif-
ferent kinds of colour spectra can be used to account for different types of colour
blindness. The brightness component maps the brightness from the min and max
value of the information. The root node of the treemap represents the whole sys-
tem, and the size of leaf nodes is determined by the number of executable state-
ments in the source file it represents. Figure 17 [53] represents a treemap visu-
alization from GAMMATELLA. [53]

Treemap visualization can be used to visualize all the quality attributes of all
the devices and software in the smart environment, e.g., if the user wishes to see
the current situation in the environment. As seen in Figure 17 [53] different col-
ours and levels of brightness can easily be spotted from treemap visualization.

Figure 17. Treemap visualization from GAMMATELLA.

 67

3. Interactive Quality Visualization tool

3.4.3 Timelines and scatter plots

Timelines are useful for presenting changes in values over some time period
because the user can see the value. Timelines are basically normal line charts in
which the x-axis value can be timestamped to illustrate the change in value over
some time. Figure 18 presents a common line chart from Microsoft Word, show-
ing a line with markers displayed at each data value. As seen in Figure 18, this
kind of visualization enables the user to see how the values have changed over
time and how they may affect each other. If the visualized values differ greatly,
the velocity of change can be distorted, for example, if both values increase by
10 per cent but one is 10 times bigger at the start, the quantitative scale will not
show the correct velocity of change [38]. This problem can be fixed by changing
the quantitative scale into a logarithmic scale in which two data sets that exhibit
the same rate of change will also exhibit the same velocity of change, or slope,
despite the differences in values [38].

Scatter plots are very similar to timelines, except that they do not have lines
connecting the different values. Scatter plots can convey information, e.g., with
size, colour and shape. Although scatter plots can only visualize one point in
time, it is possible to convey change information by animating the values or by
changing the transparency of the values, for example, the older the measure-
ment, the more transparent it becomes.

0

2

4

6

8
Value1

Value2

Value1 3 4 6 6,5 7

Value2 5 3,5 3 2,5 2

9:00 9:05 9:10 9:15 9:20

Figure 18. Line chart.

68

3. Interactive Quality Visualization tool

3.4.4 Meters

Meters can be used to visualize an individual value, e.g., quality, risk or safety
level. A visualization technique that is probably familiar to many is an analogue
meter resembling an analogue clock or a car dashboard gauge. Another visual
form of meter is a bar meter showing the value with coloured bars. The change
in values, i.e., qualities, can be visualized by moving the pointer to another loca-
tion on the gauge with animation. This helps the user recognize the changes as
they occur. Meters are specially designed to meet the functional requirement F2,
security variability (Table 3).

Figure 19 shows a conceptual image of a meter gauge on the left-hand side
and a bar meter on the right-hand side. Both meters in Figure 19 illustrate meters
that would be used to visualize a quality that should be below a threshold, visu-
alized with a green line. The colours of the meters can be used to convey infor-
mation about which values are good (green), which values are not good (red)
and which values are in the middle (yellow). In Figure 19, for example, the
background of the meter and the font on the left-hand side are green because the
value of the meter is below the threshold (green line). The value of the right-
hand side meter, however, is bigger than the threshold (green line), and the font
is red. This red-yellow-green mapping of colours is probably well known to
most people, from traffic lights, and therefore provides previous experience,
which makes the software intuitive to use. Different kinds of mappings can be
used to account for different types of colour blindness.

Figure 19. Conceptual view of meters.

The drawback of using meters is that they can usually only visualize one quality
at a time. Meters are good for visualizing change in one individual value. They

 69

3. Interactive Quality Visualization tool

can be used to show, for instance, a real-time value of some individual quality in
an overview of a device. Changes can be shown by, for example, animating the
pointer to a new location and changing the colour of the meter. By adding multi-
ple meters (or multiple pointers on one meter), it is possible to visualize multiple
different qualities at the same time. Overall, meters are not as good for analysing
changes over time as timelines because it would be necessary to follow multiple
changing objects on the screen at the same time, which was found to be a weak-
ness in human perception capabilities in Section 2.3.3.

3.4.5 Time slider

Navigation plays a fundamental role in applications that support history actions.
Heer et al. [54] state that undo and redo (or back and forward) are found to be
the most common navigation operations in many applications. Another approach
to navigation is the timeline slider, which Heer et al. compare to a “time travel”
metaphor. Another important aspect of history systems is the ability to search
and filter history by means of metadata such as time, action and bookmarks. [54]

The time slider is specially designed to meet the functional requirement F4, time
slider (Table 3). Timeline slider navigation is the most suitable selection for the
navigation in the IQVis tool history of the monitored qualities because with it the
users can jump to different times or choose time ranges in which to analyse the
quality attributes. In the context of viewing the quality attribute adaptations in the
environment, there is no reason to support, for instance, editable histories as ex-
plained in [54], which allow the user to modify past actions. This is because all the
actions that influence visualization come from the monitored environment.

Figure 20 presents a conceptual view of a time slider that shows a selected
time range with arrow pointers and times above them. Another (simpler) version
of this slider would be to just have one arrow and the user select only one point
in time, i.e. vertical lines in Figure 20. It is clear that the time slider should sup-
port some sort of selection of the time period shown because as events occur in
the monitored environment the time range grows, for example, if the time slider
in Figure 20 has a fixed width, then the space between different timestamps (the
time between different timestamps is 30 minutes in Figure 20 decreases when
the time range itself grows. As the vertical lines in the time slider move closer
and closer to each other the time slider component can become fuzzy.

70

3. Interactive Quality Visualization tool

Figure 20. Conceptual view of a time slider.

The fuzziness of the slider can be taken into account by, for example, allowing it
to zoom in and out of selected sections on the time slider. Zooming in and out
enables the user to view smaller or larger periods of time. Figure 21 presents the
zoomed in view of the time slider in in Figure 20.

The time slider in Figure 20 shows a ten-hour time period, and Figure 21
shows a more detailed view of the selected five-hour time period in the Figure
20. The sliders presented in Figure 20 and Figure 21 conform to the requirement
of the F4 time slider (Table 3) with the history functions presented earlier in the
model description. History functions allow querying of data at a certain point in
time or a time range.

Figure 21. Conceptual view of a zoomed in time slider.

Further more, the time slider could also show the changes that have occurred, for
example, in qualities in the timeline itself, so the user can quickly see where the
changes have occurred on the timeline and zoom into that time period. The addi-
tion of visual cues into user-interface components has been studied by Willet et
al. [55]. Visual cues help to make timeline control more user friendly and also
help the user to gain an idea of when and how often the changes have occurred.

 71

4. Implementation and testing

4. Implementation and testing

This chapter provides a description of the implemented IQVis tool and a case
study using the tool in a smart environment. The chapter also looks at the testing
of the tool with an implemented VMonitor component to demonstrate, validate
and test the IQVis tool in a smart environment. The aim of the testing process
was to validate that the tool fulfils the requirements set in Section 3.2.

4.1 Implementation environment

IQVis is implemented as an Adobe Flash [56] application written in the Action-
script 3 language. The tool uses the open source Flex Software Development kit
(SDK) [57] and open source visualization toolkit Flare [58], which is based on
its predecessor, prefuse [43]. As open source Flex does not provide Flex builder
as open source, open source FlashDevelop [59] is used as a code editor. In addi-
tion, an open source utility library, as3corelib [60], is used for decoding JSON
messages in the VMonitor component.

As we wanted to have a lightweight and modular visualization tool for the
analysis of the run-time behaviour of quality variability, we chose Adobe Flash
[56] as the target programming environment. Other possible environments were
Java, Java Eclipse plug-in, Matlab, etc. Adobe Flash Player is a cross-platform
browser plug-in and the IQVis tool can therefore be used on various platforms
that have Adobe Flash Player. Adobe Flash Player is also a more lightweight
environment compared with, for example, Matlab or Eclipse, which require in-
stallation and much more disk space. Flash applications are compiled into the
SWF file format (SWF is not an acronym, although it is associated with Shock-
wave Flash) [61] and are run on an ActionScript Virtual Machine 2 [62] (AVM)
inside Flash Player.

72

4. Implementation and testing

4.1.1 Constraints

The following section presents the constraints that come from the chosen im-
plementation environment, Adobe Flash [56]:

 Flash player 10 (FP10) is required to save files to the local computer.
The save process can of course be modified so that the monitored infor-
mation is sent to a remote server, which then saves it to a file.

 The AVM in the Flash Player currently does not support multithreaded
applications. This means that we cannot assign different threads for the
components of the IQVis tool, and this will have an effect on the per-
formance.

A workaround to obtain threading support into the IQVis tool would be to sepa-
rate the VMonitors and Visualization Views into different Flash application files
and play them in separate AVMs (i.e., Flash players). The VMonitor and Visu-
alization View components are actually separate SWF files so they can be in-
stalled at run-time. Although this would guarantee different processes for them,
the connection between the components could slow the application down. The
communication could be handled via a socket connection or Flash LocalConnec-
tion, which uses shared memory to communicate between different Flash appli-
cations. The only downside to the usage of the LocalConnection is that all the
Flash applications would have to be running at the same time, e.g., in a browser
window or different standalone Flash players. This would require the user to
open the different applications manually. [56]

4.1.2 Graphics libraries

Graphics are an essential part of information visualizations. Some of the visuali-
zations used in IQVis are based on the Flare visualization toolkit [58], which
incorporates many common visualization techniques for Flash such as graph
drawing, scatter plots and various animation functionalities. The IQVis tool uses
a subset of these visualizations and animations. The rest of the visualizations are
implemented using the Adobe Flash [56] drawing API.

 73

4. Implementation and testing

4.2 Implemented components

The Visualization Platform defined in Section 3.3.2 is implemented to use only
one VMonitor component at a time, and only one model of the data is therefore
provided at a time. This is done because the chosen implementation environment
(Adobe Flash) does not support multithreaded applications. The model requires a
large amount of memory and performance as it saves all the events that have
occurred and provides functionality for querying and managing the data.

The components that are explained in Section 4.2.2 to Section 4.2.7 follow the
design explained in Section 3.3, so a picture of the architecture has been left out
of this chapter.

4.2.1 Initial version of the tool

The initial version of the IQVis tool was used to visualize the security adapta-
tions in the semantic information interoperability demonstration described in
[63]. The initial version (also implemented by the author) only showed the smart
environment devices and software, the security techniques used and the current
security threat levels of specific software. Screenshots of the initial IQVis tool
are shown in in Figure 22, which (a) shows the topology view of the smart envi-
ronment and (b) shows a detailed view of an application and its properties, e.g.,
meters showing the security threat level.

74

4. Implementation and testing

a) Smart environment devices.

b) Security threat level of a specific entity.

Figure 22. Initial version of the IQVis tool.

 75

4. Implementation and testing

4.2.2 VMonitor

For the second version, the implemented VMonitor sets the model’s duration
parameter to 10 milliseconds, i.e., the model should only store events to a certain
element that has a period of at least 10 milliseconds between them.

The EMonitor on the environment side sends JSON messages to the VMonitor,
which converts them to the form explained in Section 3.3.2. Figure 23 shows an
example of the kinds of messages the VMonitor receives from the EMonitor. In
Figure 23, a device called N810 joins the SS and reports that it contains a Sam-
pleApplication SSA that comprises three Knowledge Processors (SSA, KPs, ex-
plained in more detail in the case study, Section 4.4.1). The aforementioned names
(N810, SampleApplication, KP1, KP2 and KP3) are emphasized to clarify the
format. The implemented VMonitor creates the connections (edges) between the
entities by adding 5 milliseconds to the creation time of the connected entity if the
edges are not explained in the JSON message, as they are not in Figure 23.

#1:{"add": {"text":"Smart Space", "node_id": "SS1", "type": "ss", "time":

"1267775748946"}}

#2:{"add":{"node_id":"N810", "text":"N810","type":"device",

"connectedTo":"SS1", "time":"1267775749446"}}

#3:{"add":{"node_id":"SampleApplication", "text":"SampleApplication", "sub-

NodeOf":"N810","type":"ssa", "time":"1267775749946"}}

#4:{"add":{"node_id":"KP1","text":"KP1","subNodeOf":"SampleApplication",

"type":"kp", "time":"1267775750446"}}

#5:{"add":{"node_id":"KP2","text":"KP2","subNodeOf":"SampleApplication",

"type":"kp", "time":"1267775750946"}}

#6:{"add":{"node_id":"KP3","text":"KP3","subNodeOf":"SampleApplication",

"type":"kp", "time":"1267775751446"}}

Figure 23. Short example of the JSON format produced by the EMonitor.

Figure 24 presents the way the IQVis tool visualizes the commands shown in
Figure 23. As seen, the IQVis tool shows a central node, Smart Space and the
connected device, N810. The N810 device has the SampleApplication and con-
tains KP1, KP2, and KP3, as seen in the JSON message in Figure 23. In Figure
24, the mouse cursor is over the N810 device and some of the details on it are

76

4. Implementation and testing

shown in a tooltip. Notice how the UNIX time shown in the tooltip in Figure 24
is the same as the highlighted time for the addition of the N810 in Figure 23.

Figure 24. Visual representation of the JSON message in Figure 23.

4.2.3 Visualization View

Figure 25 presents the actual implementation of the Smart Space View visualiz-
ing simulated entities with the graph visualization technique in which two views
are shown with different zoom levels. A Smart Space is visualized on the left-
hand side, and connections to the devices (N810, WeatherStation, LinuxLaptop)
are undirected edges, illustrating that it is a two-way connection. The devices
include applications, which may comprise different KPs, e.g., the GardenerApp
has two KPs as shown in Figure 25. The connection between the devices and
their application is always directed from the device to the application and from
the application to the KP. This is because an SSA may be constructed from mul-
tiple KPs.

The idea of the Smart Space View is to allow the user to see the topology of
the smart environment that he/she is analysing. If there are security threat levels
monitoring events for the entities shown in the view, a minimized security threat
level meter is visible to the user (e.g., in ‘GardenerApp’ in Figure 25). If the
entity has quality attribute measurements, this is visualized showing a small
diagram in the bottom left corner of the rectangle representing different entities,

 77

4. Implementation and testing

as seen in Figure 25. When the user moves the mouse cursor over the quality
icon, a tooltip is shown.

Zoomed out view

Visual item for qual-
ity properties

Security threat meter

Figure 25. Implemented Smart Space view.

This Smart Space View can be used to view the topology of the smart environ-
ment and select certain entities from which to analyse quality variability. The
Smart Space view also allows the layout of the graph representing the topology
of the smart environment to be changed. The layout shown in Figure 25 is called
NodeLinkTreeLayout.

The Smart Space View also allows the user to zoom in or out on the graph and
to pan the graph, i.e., move it on the screen. Zooming is done by scrolling the
mouse wheel or pressing the Ctrl key and selecting the background by pressing
the left mouse button and moving the mouse up or down. Panning is done by
pressing the left mouse button and moving the mouse cursor in the preferred
direction.

If an entity has child nodes, these can be expanded or unexpanded to show or
hide more details. The graph visualization technique is implemented using the
Flare visualization toolkit [58]. A custom renderer (a class that draws the entity

78

4. Implementation and testing

according to its properties) was implemented to visualize the node instances for
different types of entities found in a Smart Space [5].

4.2.4 Meters

Meters were implemented to be able to visualize the variability of one particular
quality attribute. In the context of this thesis, that quality attribute was security.
The implementation was based on the design presented in Section 3.4.4. The
security meter was implemented as both a gauge and a bar meter (currently only
the gauge meter is in use). Figure 26 (a) presents the implemented security me-
ter, which shows that the security threat level is five (5) and is over the threshold
value of three (3). Figure 26 (b) presents a minimized bar-type meter used to
show the security threat level in an overview of all the devices (used in the
Smart Space view that is explained in Section 4.2.3).

 a) b)

Figure 26. Different implementations of meters.

The security meter is used to show visually how the security threat level of the
device changes due to the dynamic behaviour (i.e., changes happening) in a
Smart Space. When the value of the meter changes, the meter pointer or bar is
animated to the new value so that the user can spot the changes more easily.

4.2.5 Time slider

The timeline control was implemented according to the design presented in Sec-
tion 3.4.5. Figure 27 presents the current time slider of IQVis. The timeline con-
trol is used for the Visualization Views (higher level) and the visualization tech-
niques (lower level). Figure 27 shows a selected time range (delimited with two
downwards triangle thumbs) and the currently selected point in time with a cyan
triangle thumb.

 79

4. Implementation and testing

Zoom buttons

Selected time range

Selected point in time

Figure 27. Time slider used to select a point in time.

As this application supports both online and offline visualization of the moni-
tored values, the time slider component has to support both features. There are
two major use cases for the time slider component: 1) when the user wants to see
the current situation in the environment, the main time slider is not used other
than for zooming in and out of the range end, and 2) when the user views the
state of the environment in the past.

As the user views past actions in the environment, he/she is not able to view
the current run-time situation. When the user decides to look at past actions by
moving the thumb backwards on the x-axis or if he/she decides to pause the time
in order to analyse a device in more detail, the time slider component and the
whole view stop updating values. The main time slider component shows the
actions that occur at run-time with visual cues (as described earlier), but other-
wise it moves the currently viewed point in time (the selection thumb) back-
wards in time.

The different action buttons in the pause situation are illustrated in Figure 28.
The user can take three different approaches when returning to the current situa-
tion from earlier points in time. First, the user can simply press the “unpause”
button (the second button from the left in Figure 28), which causes all the oc-
curred events in the environment to be played out in sequence until the current
run-time situation is met. Second, the user can press the “jump forward” button
(the first button from the left in Figure 28) to jump to the current situation in the
environment, which causes the Visualization View to load the current values and
show them. Third, the user can drag the selection thumb to the end of the slider
component, which causes all of the occurred events to be updated at once as in
the second approach.

80

4. Implementation and testing

Figure 28. Time slider in paused mode.

Figure 28 also illustrates how the time slider functions in the paused mode, i.e.,
new events, are shown to the right of the green selection area (delimited by
downward thumbs). This means that the user now views the time range selected
on the green line but that there have been new occurrences in the real-time situa-
tion. If the time slider is zoomed in to a certain time range, the new events are
not shown on the actual timeline. Instead, a textual notification is shown under
the zoom in and out buttons in Figure 27 to notify the user.

Figure 29 shows the time slider used to select a range in time. When the user
moves the selection thumbs (downward triangles), he/she is shown a visual
tooltip of the currently selected time range. This tooltip visualizes the duration of
the currently selected time range and where it is compared with the whole time
range and it therefore helps the user to gain an understanding of which section of
the time range he/she is viewing.

Figure 29. Time range selection.

The mode shown in Figure 29 is used for, for example, timeline visualization to
select the range of time that is to be shown in the visualization. This feature is
also shown in the next section, which describes the implemented timeline visu-
alization.

4.2.6 Timeline visualization

The time slider component is used with the timeline visualization component so
that the user can view different sections of the analysed quality. The timeline

 81

4. Implementation and testing

visualization is shown to the user when the user clicks the visual item represent-
ing quality properties, which was shown in Figure 25. Figure 30 shows how the
user first limits the range of time that is shown and then zooms in on the timeline
control to view the events in more detail. Notice that the user is shown a green
vertical line (current selection limit in Figure 30) on the timeline visualization
when he/she limits the time range shown in the visualization. The user can select
the time range more quickly when he/she can see the vertical line moving across
the values shown in the timeline visualization. When the user moves the thumb
to a new location and releases the mouse button, the timeline visualization
zooms in to the chosen time range with the help of animation.

Figure 30. Timeline control and timeline visualization.

The timeline visualization also allows the user to select the time range (time
span) he/she wants and to reconstruct all the events that occurred within this
specific range. This enables the user to view how the events that have occurred
have affected other qualities or why they happened. This feature is presented in
Figure 31.

82

4. Implementation and testing

As the scatter plot visualization technique is basically the same as the timeline
visualization (only missing the edges connecting the entities), a separate image
or explanation of it is not shown.

Figure 31. Timeline control and timeline visualization.

4.2.7 Treemap visualization

The treemap visualization is implemented so that the user can see many quality
attributes and their changes at the same time. The colour of the treemap squares
is mapped to the quality attribute value. The colours go from green to yellow to
red, with green being good and red bad. Figure 32 illustrates a treemap visualiza-
tion technique in which 29 different quality attributes are visualized in a treemap
(simulated).

 83

4. Implementation and testing

Figure 32. The treemap visualization technique in IQVis.

The idea is for the user to be able to spot quickly the qualities that are currently
good or bad according to predefined limits. In Figure 32, only different quality
attributes are shown in the boxes, but the visualization could be modified in the
future to show the different devices and their combined quality values. This
technique can be used to visualize all the quality attributes in the smart environ-
ment to monitor or analyse them all at once.

4.3 Testing

The testing process verifies that the implemented environment conforms to the
defined requirements and contains the required functionality for the tool. The
requirements of the IQVis tool have been defined in Section 3.2, which includes
both functional requirements (Table 3) and quality requirements (Table 4). The
framework for the testing process is constructed from these requirements.

The testing process is divided into three parts: unit testing, component testing
and integration testing. First, the unit testing covers testing of the components’
internal methods. Second, the component testing covers testing of the compo-
nent as a whole (e.g., Visualization View, which comprises different visualiza-

84

4. Implementation and testing

tion technique components). Third, the integration testing tests that the compo-
nents are able to co-operate and exchange information. Testing is performed
with a black-box approach, i.e., observing the results the components returned
when sending series of inputs to the component. Visual components were tested
by sending data to the visualization component and observing whether or not the
produced visualization was correct. AsUnit [64] was used in unit testing to pro-
vide a low-level automated testing system for testing the different methods of
the components. AsUnit was chosen because it provides the necessary function-
ality for testing methods and events in Actionscript. Another unit test tool is the
FlexUnit, but as all of the implementation is done with the Actionscript (Flex
components are also accessed with Actionscript) language, we chose AsUnit.

The first component that was implemented and tested was the Visualization
Platform and the data model, which are responsible for data access and the func-
tionality of the whole IQVis tool. The tests covered all the explained interfaces
in Section 3.3.2, e.g., adding and modifying, querying and deleting data.

The second component that was implemented and tested was the time slider
component explained in Section 3.4.5. The time slider component is a visualiza-
tion component and was therefore tested by sending data to it and observing the
result of the visualization.

The ActionScheduler, as described in Section 3.3.5, was then implemented
and tested. The Visualization View component for the smart environment was
then implemented and several visualization techniques were added to it from the
Flare [58] visualization toolkit. The visualization techniques added from Flare
[58] included a timeline, scatter plot, treemap and graph visualization tech-
niques, as explained in Sections 3.4.1 and 3.4.3. Some layout algorithms were
also used and tested for graph visualization.

Before integration testing, a debug VMonitor was created to serve as a data
source for the IQVis tool. The debug VMonitor was implemented as described in
Section 3.3.3, except that no connection was made to the actual environment.
The debug monitor was tested to ensure it sent correct messages to the model, as
described in Section 3.3.2. The debug VMonitor was then used to test the whole
IQVis tool after all the components had been implemented and tested separately.
After finishing the integration tests successfully, an actual VMonitor for the case
study was created based on the working debug VMonitor.

The different tests showed that the implementation of the IQVis tool con-
formed to all of the requirements set in Section 3.2 as described in the design in

 85

4. Implementation and testing

Section 3.3. The case study in the next section will illustrate how the implemen-
tation of the IQVis tool worked in an actual smart environment.

4.4 Case study

This chapter describes the case study in which the IQVis tool was used to visual-
ize quality attributes and their variability in a smart environment. The purpose of
this case study is to validate all the functionalities of the IQVis tool in a real
environment, in addition to the simulation tests performed at the laboratory test-
ing phase.

In this case study we will show the structure of the SS and visualize the qual-
ity variability of an application at run-time. We will only use visualization tech-
niques that are appropriate to this case study, as this case study only includes a
few devices and applications.

4.4.1 SOFIA Smart Space

The smart environment used in this case study is called Smart Objects for Intel-
ligent Applications (SOFIA) [65]. The Semantic Information Broker (SIB) is the
main element in SOFIA [65]. Software agents connect to the Smart Space (SS)
through the SIB and request services from it, i.e., the SIB is a physical entity that
makes up one or more SSs. The SOFIA InterOperability Platform (IOP) aims to
make the information “embedded” in the physical world available to smart ob-
jects, services and applications in the smart environments [66]. IOP enhanced
with context awareness is presented in [66]. The following describes the most
important definitions of a Sofia Smart Space (SS) [65]:

 The SIB is an information world entity for storing, sharing and govern-
ing the information of one Smart Space as the RDF (Resource Descrip-
tion Framework) triples. RDF triplets present the information in subject-
predicate-object expressions.

 A knowledge processor (KP) is an information world entity that proc-
esses information and contributes to and/or consumes information con-
tent from the SIB according to ontology relevant to its defined function-
ality. A simple consumer/producer application can be formed from one
KP, but one or more KPs are needed to allow useful sharing of contents.
Information is shared by complying with a defined ontology.

86

4. Implementation and testing

 A Smart Space Application (SSA) is an application that can comprise
different KPs.

 The Smart Space Access Protocol (SSAP) is used by KPs when ac-
cessing the SIB. The SSAP defines the basic messages for joining,
leaving, inserting, removing, updating, querying and subscribing.

The reason the IQVis tool is validated in SOFIA is that quality variability is
present in the environment. The security features of the KPs are adapted at run-
time according to the situation in the smart environment. The IQVis tool will
visualize the structure of the SS by showing the relations between different de-
vices, SSAs and KPs. The actual quality variability takes place in the SSA or the
KPs and is visualized in these entities.

4.4.2 Testing environment

The actual IQVis tool was tested on a Dell Latitude D830 laptop in a web
browser (Flash player installed as a plug-in) and in a standalone debug Flash
Player. The hardware configuration of the smart environment used in the case
study includes a Dell Latitude D830 laptop running an application (legacy
adapter) that provides weather station information from the Willab Weather sta-
tion [67] to the smart environment and runs the Security Adaptation service
N810 Internet Tablet, which is used to run the gardener’s application. A laptop
and a web camera are used to provide the number of customers currently in the
smart environment, which is used as context information for the security adapta-
tions. A laptop is used to run the SIB that provides the Smart Space which the
aforementioned devices join and communicate with.

4.4.3 Validation scenario overview

To illustrate the IQVis tool in action, it was tested in the context of Smart
Spaces. The testing scenario tests a modified version of the whole scenario ex-
plained in [63]. A sample SSA in the validation scenario is a gardener applica-
tion that runs on a Nokia N810 Internet Tablet.

The mapping of the monitored qualities to the levels used in the IQVis tool is
done so that low values are good and high values are bad. The mapping is done
as explained because, in the case study, the monitored qualities describe the se-
curity threat level and the CPU utilization level. In this context, the lower the

 87

4. Implementation and testing

value the better it is. This is because the use of security algorithms requires more
CPU processing power and security adaptations therefore affect the performance
level. The quality variability that takes place in the applications is therefore
visualized by showing the changes in CPU utilization and the security threat
level. When the security quality changes in the gardener’s application, i.e., a
security mechanism is enabled or disabled, the security threat level of that appli-
cation is monitored.

The following explanations are provided to clarify the validation scenario and
are not included within the scope of this implementation. The SS has a Security
Adaptation service that monitors the status of the SS and the devices currently in
the SS. The Security Adaptation service adapts the security of the KPs, which
have reported a desired security level. An EMonitor component is installed on
the SS and monitors different aspects of the devices and software that join, inter-
act and leave the SS. The EMonitor provides quality attribute information to the
IQVis tool. It provides security risks for different KPs and information on the
dynamics of the SS, i.e., which devices are currently in the SS, which SSAs are
in the devices and which KPs make the SSAs. For the purpose of this case study,
a performance monitor is also used to monitor the used CPU time of a KP. Per-
formance monitoring is used to provide coarse-grained performance quality in-
formation to the IQVis tool so that the trade-off between qualities can be made.

The testing of the tool is performed by connecting the VMonitor (called
SSMonitor) into an SS that has no devices joined to it. The validation scenario is
described as follows:

Step1: The IQVis tool is started and the VMonitor component (SSMonitor) is
activated in order to connect to the EMonitor component in the target envi-
ronment. Next, the SSMonitor starts to update the model. It starts with the
addition of a node representing the monitored Smart Space to the currently
used view.
Step2: The N810 Internet Tablet joins to the SS. The N810 and the corre-
sponding SSAs and KPs are shown in the IQVis tool. One of the KPs in the
gardener’s application (GardenerApp) reports that it requires its security
threat level to remain below a certain limit and reports its performance usage.
A weather station KP also joins the SS and provides weather information.
Step3: More people join the SS and the Security Adaptation KP adapts the
security of the KP in the GardenerApp. The IQVis tool shows the effects of
these adaptations by visualizing the change in the meter showing the security

88

4. Implementation and testing

risk level and by adding an icon representing the quality attributes of the gar-
dener’s application. These qualities are shown at the bottom of the rectangle
representing the gardener’s application. As people arrive at the SS, the Secu-
rity Adaptation KP informs the KPs that have set a desired security level that
they have to adapt their behaviour to correspond to a certain security level.
Step4: The gardener leaves the SS and this leave is visualized by removing
the N810 node from the view. The timeline control is tested by selecting a
time before the N810 device leaves to see whether the device is shown cor-
rectly.
Step5: Monitoring of the environment stops and the data from this session are
saved with the IQVis tool. After this, another IQVis tool is started and the
saved data are loaded into the IQVis tool and compared with the IQVis tool
that is already open to see whether the visualization is the same.

4.4.4 Smart environment structure

This section covers steps 1, 2, 3 and 4 of the case study. After the SIB is initial-
ized, the IQVis tool is started and the SSMonitor activated. The IQVis tool
shows the created SS named “smart”. All the devices and software explained in
Section 4.4.2 are started and connected to the SS. Figure 33 shows how the
IQVis tool shows these devices and software after all of them are joined to the
SS. The static figure does not show that the IQVis tool adds the entities with the
help of animation, i.e., first it adds an entity and then it adds the edge that con-
nects the entity to another entity. The mouse cursor is over the timeline in Figure
33 and the timeline details are shown in a tooltip. Figure 33 also visualizes the
security threat level of one of the KPs that forms the GardenerApp by showing
the security threat level meter at the bottom of the rectangle representing the KP
(GHUI Sensor/Actuator KP in Figure 33). An icon is also visible in the KP’s
rectangle indicating that it contains quality attributes.

 89

4. Implementation and testing

Figure 33. Case study smart environment structure.

The N810 device leave is showed correctly and the time slider can be used to go
back to the point in time at which the N810 was in the environment. After the
time slider selection thumb is moved to the point before the removal of the
N810, the IQVis tool loads the situation at that time and the N810 is again visi-
ble, as in Figure 33.

4.4.5 Quality attribute analysis

The timeline visualization technique is used to analyse the quality attributes in
this case study. After the devices have joined the SS and the IQVis tool is in the
situation shown in Figure 33, the user clicks on the icon representing the quality
attributes of the GHUI Sensor/Actuator KP. After this, the user is shown a win-
dow with a timeline visualization showing all the quality attributes of the appli-
cation throughout the monitoring time. Figure 34 shows the timeline visualiza-
tion after the user has chosen the performance from the legend visible on the
right-hand side of the window and used the time slider component to limit the

90

4. Implementation and testing

range. The time slider component shows the whole time range in which qualities
have been monitored. In Figure 34, the user has pressed the “Show trend line”
button to see the trend of the performance quality.

As shown, the trend of the performance is upwards, i.e., more CPU is utilized
over time. Figure 34 also clearly demonstrates how the monitored values are 0
for some time in the beginning and then jump into the range 1-4. This shows that
the GHUI Sensor/Actuator KP application used the CPU very little at the begin-
ning of the monitoring, but started to use it more after some time. At the end of
the visible time range, the CPU utilization again dropped to 0, which tells that
the security features have been disabled.

Figure 34. Performance values and their trends.

In Figure 35, the user has selected the security quality from the legend on the
right-hand side of the timeline visualization. The time range is the same as in
Figure 34. The trend of the security is downwards, i.e., the security threat level is
decreasing. Figure 35 shows how the security threat level rises to 4 and shortly
afterwards drops to 2. This happens because the Security Adaptation KP tells the
KP in question to activate security features. After a while, the security threat
level drops to the original 1, which shows that the outside security risk has
fallen.

 91

4. Implementation and testing

Figure 35. Security values and their trends.

4.4.6 Quality trade-off analysis

This section covers step 3 of the case study. The trade-off between monitored
performance and security quality values is viewed by selecting both in the time-
line visualization. Figure 36 shows the timeline visualization with both perform-
ance and security values visible on a larger timeline than shown in Figure 34 and
Figure 35. As shown, the security value drops shortly after the performance
quality rises. This can be explained by the fact that there is a small delay be-
tween the change in security measures and the time when the Security Adapta-
tion reports that the security threat level has dropped. The trade-off between
security and performance is quite clear from Figure 36: more performance is
needed to maintain the security threat level below a certain limit. Figure 36
clearly shows that the security threat level has fallen because of the security
adaptation, although the change in the actual security algorithm is not visible.

92

4. Implementation and testing

Figure 36. Quality trade-off.

4.4.7 Cross-platform testing

This section covers step 5 of the case study. As IQVis is implemented with the
Adobe Flash platform, we wanted to check part of the validation case study with
another platform, namely, the Nokia N810 Internet Tablet and the Nokia N900
mobile device. The N810 has Adobe Flash Player (FP) 9,0,48,0 support, and the
N900 used in our test had FP 9,0,246,0 support. Due to the Flash Player version
we cannot use these devices to save the monitoring data (FP10 supports that),
but we can load some previously monitored data with them.

The use of these mobile devices in this case study poses many difficulties.
First, the hardware capabilities and physical screen size are much smaller: 4.13”
WVGA display on N810 [68] and 3.5” WVGA display on N900 [69], both with
800 x 480 pixel resolution. The physical screen size is a bigger limitation than
the pixel resolution. The physical screen size of these devices makes it harder to
visualize many entities at once. Second, both of the devices have a touch-screen,
and IQVis is not designed for this but can of course be used with it, for example,
the IQVis tool uses many tooltips, which are shown when the mouse cursor is

 93

4. Implementation and testing

over an entity. Fortunately, the N900 browser supports showing of the mouse
cursor and the tooltips are indeed visible in the N900 but not in the N810.

We chose to carry out the last step of the case study, i.e., load the monitored
data and play the monitored events as they occurred. The test includes animating
the devices, SSAs and KPs to the graph in sequence. In order to see the perform-
ance differences, we added a simple monitor that records the time it takes to load
the data and convert it into a format the IQVis tool supports. The loaded data is a
JSON formatted version of the data stored in the model. The monitor also re-
cords the average frames per second (FPS) displayed in the IQVis tool, i.e., how
many times the screen is updated per second, which has an effect on the usability
of the tool.

To eliminate variance in the tests, we created a simple VMonitor for test pur-
poses. The VMonitor loaded the previously saved test data, initiated the FPS
recorder, set the data in the IQVis tool and started to play it sequentially. The
tests were performed on the Dell Latitude D830 Laptop (Windows XP) with
different standalone Flash Players and on some common web browsers. Next,
the tests were run on both N810 and N900. All of the tests were run with a high-
quality setting of the Flash Player. Each test was run three times and the average
values were calculated from these runs. The FPS limit for the IQVis tool was set
to 100 FPS, i.e., the application would not update the screen more than 100
times a second, if it was capable. Table 9 presents the results of the performance
comparisons.

Table 9. Performance comparisons.

Device and
FP version

Time to load and con-
vert monitored data,
milliseconds

Visualize monitored data,
average FPS

Laptop FP 9,0,246,0
Standalone Player

110 97,27

Laptop FP 10,0,45,2
Standalone Player

136 98,81

Laptop FP 10,0,45,2 in
Opera 10.10

125 98,41

Laptop FP 10,0,45,2 in
Firefox 3.5.8

94 97,91

N900 FP 9,0,246,0 3721 22,83

N810 FP 9,0,48,0 9940 8,10

94

4. Implementation and testing

As can be seen from the results in Table 9, the laptop tests show that the IQVis
tool runs almost at the set 100 FPS limit. The standalone FP 9 is negligibly
slower than the standalone FP 10 on the laptop. Both of the web browser plug-in
players also almost reach the 100 FPS limit. The loading times are very close to
each other when comparing the laptop results. Due to the 100 FPS limit, the
differences between the Flash Player versions are not very clear in the laptop
tests. The reason different Flash Player versions were included was that the mo-
bile devices only have support for FP9, and we wanted to test whether different
versions have clear performance differences on the laptop.

The N900 takes approximately 30 times longer to load and convert the loaded
data into the format that the IQVis tool supports than the laptop. The N810
Internet Tablet is even slower – it takes on average about 80 times longer than
the laptop. The same trend continues when comparing the FPS of the mobile
devices. The performance of the N810 Internet Tablet is very poor compared
with the N900 and laptop. The N900 has an almost three times larger FPS than
the N810, and the laptop has, on average, a 12 times larger FPS than the N810.
The tests show that the mobile devices are much slower at converting the saved
data into the form that the IQVis tool supports. The user would most probably
want to use the IQVis tool in a mobile device to check the run-time situation in
the environment rather than analyse the previously monitored sessions. The
N900 mobile device does seem to be able to run the current IQVis tool at a satis-
factory level and because it also supports tooltips, it could be used to check the
real-time situation of the environment. The physical screen size does lead to a
few difficulties, which could be addressed by adding a new customized Visuali-
zation View for the mobile device.

Figure 37 (a) and (b) show how the IQVis tool looks on the N900 mobile de-
vice. The IQVis tool is in a situation in which a full performance test has been
run. The structure of the Smart Space is visible on the node graph in Figure 37
(a) and the timeline visualization is opened in Figure 37 (b). As can be seen, the
different entities are quite small but they are still useful, and the quality trade-
off, in particular, can be seen quite clearly on the timeline visualization. The
different entities shown on the node graph can of course be zoomed in for a
more detailed view of the structure.

 95

4. Implementation and testing

a) Structure of the Smart Space.

b) Timeline visualization.

Figure 37. Screenshots from the N900.

In conclusion, the IQVis tool is usable with mobile devices, at least with the
N900. The performance of the N810 Internet Tablet is a little too low to run the
IQVis tool at a satisfactory level. Adobe is planning to release FP 10.1 for mo-

96

4. Implementation and testing

bile devices, which should boost the performance of Flash applications on mo-
bile devices [70].

4.4.8 Summary of case study results

This section shows which of the requirements set for the IQVis tool are demon-
strated using the case study described earlier. Table 10 presents a summary of
the results.

Table 10. Functional requirements and study case steps.

ID Requirement Study case step Result

F1 Ability to visualize the variability of
different quality attributes

3 Fulfilled

F2 Security variability 2, 3 Fulfilled

F3 Installation of monitor and view
components

1, 2 Fulfilled

F4 Time slider 3, 4 Fulfilled

F5 History functions 3, 4 Fulfilled

F6 Data storing 5 Fulfilled

F7 Multiple views 3,5 Fulfilled

F8 Interaction 3 Fulfilled

F9 Animation 2,3 Fulfilled

F10 Ability to handle quality data over a
long monitoring session

5 Fulfilled

The quality requirements, namely Extensibility, Interoperability and Usability
are not included in the comparison presented in Table 10 because they are hard
to measure. The Extensibility and Interoperability requirements are met, how-
ever, because we implemented a couple of different VMonitor and Visualization
View components, which were used in the tests and study case. The tests used a
simulation VMonitor and the case study used a VMonitor that received real val-
ues from the smart environment. The usability quality requirement is not exam-
ined in the case study, but the GUI of the tool is designed for ease of use.

In addition, the IQVis tool was tested in mobile devices, and it worked at a
satisfactory level at least in the high-end mobile devices of today, namely the
Nokia N900 mobile device.

The use of the IQVis tool to visualize the structure and quality properties of
Smart Spaces is also discussed in [71].

 97

5. Discussion

5. Discussion

This chapter discusses the results of this thesis and provides a comparison of the
architecture (presented in Chapter 3) and implementation (presented in Chapter
4) of the IQVis tool compared with other visualization tools reviewed in Chapter
2. The strengths and weaknesses of the implemented IQVis tool are discussed,
and further improvements are suggested according to the discovered weak-
nesses.

5.1 Implementation of the IQVis tool

While carrying out the related research for the thesis, many useful visualization
techniques and open source toolkits were discovered, e.g., Flare [58] for Flash
and its predecessor, prefuse [43] for Java. Flare was used to provide the essential
visualization techniques for analysing quality variability in addition to the visu-
alization techniques implemented earlier. The implementation of the IQVis tool
complied fully with the design presented in Section 3.3.

The Flare API was good. The toolkit was helpful as the instructions for using
Flare were limited. Flare was mainly designed to be used in a similar way to
ManyEyes [51]. It provided functionality for converting a data set from different
formats (e.g., JSON) into visualizations. Flare provided many easy-to-implement
interaction techniques in the visualizations, for example, by providing function-
ality for implementing tooltips. The animation functionality provided by the
Flare toolkit was also used a great deal. It was also easy to implement new ren-
derers for the different entities used in the IQVis tool graph, although some
modifications were needed for visibility filtering. This was because the entities
in IQVis graph contain child elements (such as the security threat meter), and the
mouse interaction with these needed to be switched off and on when hiding or
showing the entity in the appropriate layout algorithm of Flare. A disadvantage

98

5. Discussion

of Flare is that it is not implemented according to the MVC pattern, unlike its
predecessor prefuse [43]. This implementation decision meant that only a single
visualization can be built from a single data set in Flare. The architecture of the
IQVis tool therefore uses multiple Flare visualizations to support the option to
construct multiple visualizations from the same model.

Although Flare [51] provided many useful visualization techniques, the IQVis
tool was designed to work as a visualization tool that could provide visualization
at run-time. The architecture of the IQVis tool provided necessary functionality
for implementing run-time visualizations. For the most part, Flare was easy to
use when adding individual elements into visualizations, but some were harder
to implement than others. The treemap visualization (Section 4.2.7), for exam-
ple, requires the data to be added in a tree format, e.g., a node can contain multi-
ple child nodes but can only have one parent node. The data model chosen for
the IQVis tool was graph based, and was easy to use in most of the visualiza-
tions. The reason the graph-based data model was chosen was that it was found
to be useful and often used in the related research. Only the treemap visualiza-
tion technique caused minor problems, i.e., the tree had to be formed from the
nodes and edges before the visualization could be built.

5.2 Results

The IQVis tool uses a lot of ready-made visualization from the Flare toolkit,
namely, the scatter plot, timelines, treemaps, graphs, animation and layout algo-
rithms for the graph visualization. The IQVis tool also includes some self-
implemented visualization techniques, e.g., meters and time slider. The meters
and time slider were validated in the case study along with the visualization
techniques from Flare. The time slider component was found to be useful, espe-
cially for analysing the monitored values, the relationships between different
values and quality variability.

Most of the visualization techniques that IQVis supports could have been per-
formed with other tools, e.g., Matlab, but IQVis is mainly designed to be used
along with an online monitor, e.g., visualizing the real-time situation. Use of the
other tools to provide visualizations, e.g., the ones found in Section 2.4, would
have required many modifications to them. Different data sets can be visualized
quickly and easily with the help of Internet visualization services such as
ManyEyes [51]. ManyEyes [51], for example, allows many different kinds of
data sets to be used that can be visualized with different visualization techniques.

 99

5. Discussion

When comparing the data source requirements, the IQVis is of course not as
flexible as ManyEyes because ManyEyes allows different kinds of data sets to
be used and IQVis currently only supports the format explained in this thesis.

The IQVis tool is designed to visualize quality variability in smart environ-
ments, for example, when comparing it with ManyEyes [51], the IQVis tool is
better suited to the task of visualizing quality variability because it 1) can visual-
ize a run-time situation (as opposed to visualizing logs after run-time) and 2)
store the history of the monitored qualities. These qualities enable the analyst to
analyse the quality variability in more detail with the help of different interactive
visualization techniques. The main aid for analysing the qualities afterwards is
the time slider component, which allows the user to drill down to certain details
in the data. The visualization techniques were chosen according to the properties
that were found to be useful for visualization tools. Interaction was found to be
the most profound property of visualization tools in Section 2.3.2, and this is
understandable because the whole purpose of visualizations is to provide an
insight into the data. The user is also allowed to choose which visualization
technique he/she uses to visualize in different situations. All these choices were
made to enhance the visualization experience provided to the user.

The architecture of the IQVis tool allows the user to change the two main
components of the tool, i.e., the Visualization View and VMonitor. This makes
the tool easier to deploy in a different environment in which the current visuali-
zation techniques or monitors are not applicable. New visualization techniques
can also easily be added to the tool due to the architecture. A more advanced
querying language was not included because it was not seen as necessary, and
the methods defined are adequate for the needs of this tool.

The IQVis tool architecture was presented and the concept of using visualiza-
tion in the context of V&V of dynamic systems was discussed in a paper that
was accepted by the First International Workshop on Validation and Verification
of Dynamic Software Systems (ViDaS’ 10) workshop [52]. A paper was also
submitted to the Semantic Interoperability of Smart Space (SISS) workshop on
the use of IQVis in Smart Spaces [71].

Although the IQVis tool was designed to be used with modern consumer
computers and laptops, it was still usable with mobile devices, as was concluded
in the case study. The use of mobile devices in visualization is discussed in [72].
It is stated that visualizations designed for desktop computers do not scale well
to mobile devices. From the list of limitations stated in [72], the following have
the greatest effect on the use of IQVis in mobile devices: 1) displays are limited

100

5. Discussion

due to their smaller size and lower resolution, 2) onboard hardware, e.g., CPU,
memory and graphic hardware, is less powerful, 3) input techniques are differ-
ent, e.g., point-and-tap with stylus, and 4) available tools tend to be limited. All
of these still apply today, but of course the performance of mobile devices has
improved. In addition, the N900 does have an 840 x 480 pixel resolution, which
is enough for the IQVis tool.

5.3 Comparison with existing tools

The purpose of the related research was to find a visualization tool that could
visualize different qualities at run-time. Unfortunately this kind of visualization
tool was not found. It was concluded from the related research chapter that no
visualization tool exists that would comply with all the properties presented in
Table 2. The related research compared the chosen visualization tools according
to different properties, but no tool managed to comply with all of them.

Streamsight [44], explained in Section 2.4.3, used graphs to show the connec-
tions between different processing elements in the streaming application. Nodes
were coloured according to different criteria, e.g., a performance counter. The
IQVis tool’s Smart Space view is very similar to that of the Streamsight tool’s
view. When comparing Streamsight and IQVis, Streamsight provides more in-
formation on the actual nodes of the graph as it shows different ports and the
user can change the criteria for which the nodes are coloured.

There are many good visualization tools for visualizing program behaviour.
One program behaviour visualization tool is GAMMATELLA [53], which uses
treemaps to visualize program behaviour. The IQVis tool also supports the use
of treemaps, which can be used to visualize simply the values and changes in the
different qualities observed.

Compared with the tools reviewed in Section 2.4, IQVis provides better visu-
alization support for the context of visualizing quality attribute variability. In
Table 2 in Section 2.4.8 (the summary of the reviewed tools), for example,
IQVis would be the most profound tool when compared with the presented col-
umns. These columns were based on interaction techniques, visualization tech-
niques, applicability, extensibility and real-time visualization. The IQVis tool
conforms to all of these properties, as was found in the case study.

 101

5. Discussion

5.4 Future development

The purpose of IQVis was not to provide a large number of visualization tech-
niques like toolkits, e.g., Flare. We chose a few essential visualization tech-
niques that can visualize the quality variability in an appropriate way. Neverthe-
less, more visualization techniques could be included in the IQVis tool in the
future to allow different kinds of analyses.

The IQVis tool could support saving of monitored data in different forms, e.g.,
the topology of the environment could be saved in a format such as an XML-
based GraphML file format [73] that could be used in other tools as well. By
allowing the user to save the results in different formats, he/she can distribute
the results more easily to other tools.

The treemap visualization presented in Figure 32 (Section 4.2.7) only visual-
izes different quality attributes in the boxes, but the visualization could be modi-
fied to show the different devices and their combined quality attribute values in
the future. In addition, the timeline visualization presented could be extended by
showing the used security features in the background, so that the user could also
see what is causing the changes in quality attributes.

When personal Smart Spaces become more common, people could use IQVis
to view the status of their Smart Space even if they are not at their homes. Suspi-
cious behaviour can be monitored and reported.

The tool could possibly be used in mobile devices, as the case study showed.
The performance of the tool was just barely satisfactory in the N900 mobile
device, however, and performance considerations should be addressed in the
future.

IQVis could easily be modified in a Smart Space configuration tool. With the
help of a configuration tool, users could easily view the properties of the devices
in Smart Spaces, adjust configurations and then see the monitored qualities.

IQVis could visualize more features, e.g., show the connectivity used in the
edges connecting the device to the SS. This would help the user to spot easily
how different devices are connected to the SS. In addition, the dynamic behav-
iour of the SS could be visualized in another view, i.e., show which security
features are currently activated.

102

6. Conclusion

6. Conclusion

The research problem in this thesis was how software quality variability could
be visualized at run-time to aid the user in analysing the adaptation results. This
problem included many aspects: 1) how to visualize the change in quality attrib-
utes so that the user can analyse the variability effectively, 2) which visualiza-
tion techniques are used to map the quality attribute data into a visual form, and
3) how to make the tool extensible and easily adaptable so that it can be used in
different contexts.

The literature review aimed to describe: 1) what quality variability is in the
context of smart environments, 2) what visualization is, and 3) how it can be
used to tackle the research problem. The search for existing tools focused on the
tools that were used to visualize security, as security was the main quality attrib-
ute that was visualized by the IQVis tool. The findings of the related research led
to requirements for the IQVis tool to be developed with the requirements that
came from the smart environment in which it was to be used.

The design of the IQVis tool was presented by creating an architecture that
would comply with the requirements set for the tool. The architecture of the
IQVis tool was designed so that the IQVis tool would be extensible. The design
was decomposed into different components that provided the necessary func-
tionality to conform to the set requirements.

After designing the IQVis tool, the tool was implemented with the help of a
selected implementation environment, Adobe Flash. The tests were carried out
with simulated quality values provided by a simulation data source. The tests
proved that all of the functional requirements set at the design phase were met
with the implemented prototype version. Usability was not tested in the tests or
the case study, but the design of the GUI was carried out with this requirement
in mind.

 103

6. Conclusion

104

In the end, the finished IQVis tool was used in a real smart environment in the
case study. The tool was extended with a VMonitor that received real monitoring
values from the actual smart environment. The case study validated that the im-
plemented IQVis tool actually met the requirements that were set at the design
phase. The analysis of quality variability was carried out with the visualization
techniques that were found to be appropriate at the design phase. The case study
also showed that the IQVis tool can be used in mobile devices, although the
performance tests showed that improvements should be made to increase the
performance. The most important contributions of this work are:

 time slider control to allow “timer travel” in the qualities
 timeline visualization to allow the analysis of quality attribute values

and their variability
 extensible architecture.

To conclude, the main goal of this work was reached. The implemented IQVis
tool was validated in the context of a smart environment. The tool was used to
visualize quality variability and the trade-off between different values at run-
time. There are tools for design-time quality variability management, but there is
a need for techniques and tools to analyse variability at run-time. One contribu-
tion of these tools is the IQVis tool designed and developed in this thesis. The
IQVis tool helps to verify run-time quality variability.

References

[1] Cook D.J. & Das S.K. (2007) How smart are our environments? An updated look

at the state of the art. In: Pervasive and Mobile Computing, Vol. 3, Issue 2, De-

sign and Use of Smart Environments, March 2007, pp. 53–73.

[2] Evesti A. (2007) Quality-oriented software architecture development. Master’s

Thesis. University of Oulu, Department of Electrical and Information Engineering,

Oulu, 57 p.

[3] Niemelä E., Evesti A. & Savolainen P. (2008) Modeling Quality Attribute Variabil-

ity. In: 3rd International conference on Evaluation of Novel Approaches to Soft-

ware Technology, Vol. 48, Issue 8, May 4-7, Funchal, Madeira, Portugal, pp.

631–644.

[4] Evesti A., Ovaska E. & Savola R. (2009) From Security Modelling to Run-time

Security Monitoring. In: European Workshop on Security in Model Driven Archi-

tecture 2009 (SECMDA 2009), June 24, Enschede, Netherlands, pp. 33–41.

[5] Smart Objects for Intelligent Applications. (Accessed 9.10.2009). URL:

http://www.sofia-project.eu/.

[6] IEEE (1998) IEEE Standard for a Software Quality Metrics Methodology. IEEE

Std. 1061 1998.

[7] ISO/IEC (2001) ISO/IEC 9126-1 International Standard: Software engineering –

Product quality. Part 1: Quality model. 25 p.

[8] ISO/IEC (2003) ISO/IEC 9126-2 Technical Report: Software engineering –

Product quality. Part 2: External metrics. 86 p.

[9] ISO/IEC (2003) ISO/IEC 9126-3 Technical Report: Software engineering –

Product quality. Part 3: Internal metrics. 62 p.

[10] Matinlassi M. & Niemelä E. (2003) The Impact of Maintainability on Component-

based Software Systems. In: Euromicro conference, September 1-6, Antalya,

Turkey, Vol. 29, pp. 25–32.

[11] Grover S. & Sridhar N. (2009) GenQA: automated addition of architectural qual-

ity attribute support for Java software? In: Proceedings of the 2009 ACM Sym-

posium on Applied Computing (SAC '09), Honolulu, Hawaii, pp. 483–487.

 105

http://www.sofia-project.eu/

[12] Ernst N., Yu Y. & Mylopoulos J. (2006) Visualizing non-functional requirements.

In: Proceedings of the 1st International Workshop on Requirements Engineering

Visualization, September 11, 2006. Minneapolis, Minnesota, USA, p. 2.

[13] Svahnberg M., van Gurp J. & Bosch J. (2005) A taxonomy of variability realiza-

tion techniques. Research Articles. July 10, Software: Practice and Experience,

Vol. 35, Issue 8, pp. 705–754.

[14] Etxeberria L., Sagardui G. & Belategi L. (2007) Modelling Variation in Quality

Attributes. In: 1st International Workshop on Variability Modeling of Software-

Intensive Systems (VaMoS’07), January 16-18, 2007, Limerick, Ireland, pp.

51–59.

[15] Merilinna J. & Räty T. (2009) A Tooling Environment for Quality-Driven Model-

Based Software Development. In: 9th OOPSLA Workshop on Domain-Specific

Modeling, October 25-26, Orlando, Florida, USA, pp. 107–112.

[16] IEEE (2004) IEEE Standard for Software Verification and Validation. IEEE Std.

1012-2004 (Revision of IEEE Std 1012-1998), 2005, pp. 1–110.

[17] Boehm B.W. (1984) Verifying and Validating Software Requirements and Design

Specifications. IEEE Software, Vol. 1, No. 1, 1984, pp. 75–88.

[18] Broy M., Jonsson B., Katoen J., Leucker M. & Pretschner A. (2005) Model-

Based Testing of Reactive Systems. In: Advanced Lectures, Lecture Notes in

Computer Science, Vol. 3472, Springer, 2005, 659 p.

[19] Levy J., Saidi H. & Uribe T.E. (2002) Combining monitors for runtime system

verification. In: Electronic Notes in Theoretical Computer Science, Vol. 70, El-

sevier, 2002, 16 p.

[20] Open Group, Definition of SOA. (Accessed 22.10.2009). URL:

http://opengroup.org/projects/soa/doc.tpl?gdid=10632.

[21] OASIS, Standard Reference Model for Service Oriented Architecture 1.0. (Ac-

cessed 22.10.2009). URL: http://docs.oasis-open.org/soa-rm/v1.0/soa-rm.pdf.

[22] Huhns M.N. & Singh M.P. (2005) Service-oriented computing: key concepts and

principles. In: IEEE Internet Computing, January/February 2005, Vol. 9, No. 1,

pp. 75–81.

[23] Nitu (2009) Configurability in SaaS (software as a service) applications. In: Pro-

ceeding of the 2nd Annual Conference on India Software Engineering Confer-

ence (ISEC '09), February 23-26, 2009, Pune, India, pp. 19–26.

106

http://opengroup.org/projects/soa/doc.tpl?gdid=10632
http://docs.oasis-open.org/soa-rm/v1.0/soa-rm.pdf

[24] Retkowitz D. & Stegelmann M. (2008) Dynamic Adaptability for Smart Environ-

ments. In: Distributed Applications and Interoperable Systems, 8th IFIP WG 6.1 In-

ternational Conference (DAIS 2008), Vol. 5053 of LNCS, Springer pp. 154–167.

[25] Hermann F., Blach R., Janssen D., Klein T., Schuller A. & Spath D. (2009) Chal-

lenges for User Centered Smart Environments. In: Proceedings of the 13th In-

ternational Conference on Human-Computer interaction. Part Iii: Ubiquitous and

intelligent interaction, July 19-24, 2009, San Diego, CA, pp. 407–415.

[26] Stajano F. (2002) Security for Ubiquitous Computing. John Wiley & Sons, Ltd,

New York, 268 p.

[27] Nixon P., Wagealla W., English C. & Terzis S. (2004) Security, privacy and trust

issues in smart environments. In: D.J. Cook and S.K. Das, Editors, Smart Envi-

ronments: Technology, Protocols, and Applications, Wiley, 2004, pp. 249–270.

[28] Card S.K., Mackinlay J.D. & Shneiderman B. (1999) Readings in information

visualization: Using vision to think. Morgan Kaufmann Publishers, San Fran-

cisco, CA, 686 p.

[29] Fekete JD., Plaisant C. (2002) Interactive Information Visualization of a Million

Items. In: Proceedings of the IEEE Symposium on Information Visualization, Oc-

tober 28-29, 2002, Boston, Massachusetts, USA, pp. 117–124.

[30] Tory M. & Moller T. (2004) Rethinking Visualization: A High-Level Taxonomy. In:

IEEE Symposium on Information Visualization, October 10-12, Austin, Texas,

USA, pp.151–158.

[31] Musa S. & Parish D.J. (2007) Visualising Communication Network Security At-

tacks. In: Proceedings of the 11th International Conference Information Visuali-

zation, July 04-06, 2007, Zurich, Switzerland, pp. 726–733.

[32] Diehl S. (2007) Software Visualization: Visualizing the Structure, Behaviour, and

Evolution of Software. Springer, New York, 187 p.

[33] Ware C. (2004) Information visualization: perception for design, 2nd ed. Morgan

Kaufmann Publishers, San Francisco, CA, 580 p.

[34] Shneiderman B. (1996) The Eyes Have It: A Task by Data Type Taxonomy for

Information Visualizations. In: Prceedings of the 1996 IEEE Symposium on Vis-

ual Languages, pp.336–343.

[35] Yi J. S., Kang Y. a., Stasko J.T. & Jacko J.A. (2007) Toward a Deeper Under-

standing of the Role of Interaction in Information Visualization. In: IEEE Transac-

 107

tions on Visualization and Computer Graphics 2007, Vol.13 Issue 6, pp. 1224–

1231.

[36] Chi E.H. (2000) A Taxonomy of Visualization Techniques using the Data State

Reference Model. In: Proceedings of the IEEE Symposium on Information Visu-

alization 2000, October 09-10, 2000, Salt Lake City, Utah, pp. 69.

[37] Rensink R.A. (2002) Internal vs. external information in visual perception. In:

Proceedings of the 2nd International Symposium on Smart Graphics, June 11-

13, 2002, Hawthorne, New York, Vol. 24, pp. 63–70.

[38] Few S. (2007) Visualizing Change An Innovation in Time-Series Analysis. Visual

Business Intelligence Newsletter, September 2007. (Accessed 4.11.2009). URL:

http://www.perceptualedge.com/articles/visual_business_intelligence/visualizing

_change.pdf.

[39] Chen C. (2005) Top 10 Unsolved Information Visualization Problems. IEEE

Computer Graphics and Applications, July-August, 2005, Vol. 25, Issue 4, pp.

12–16.

[40] Nguyen Q. V. & Huang M. L. (2004) A Focus+Context Visualization Technique

Using Semi-Transparency. In: Proceedings of the fourth International Confer-

ence on Computer and information Technology, September 14–16, 2004, Wu-

han, China, pp.101–108.

[41] Jankun-Kelly T.J., Kwan-Liu Ma. (2003) MoireGraphs: radial focus+context visu-

alization and interaction for graphs with visual nodes. In: IEEE Symposium on In-

formation Visualization (INFOVIS 2003), October 21–21, 2003, pp.59–66.

[42] Wang, Q., Wang, W., Brown, R., Driesen, K., Dufour, B., Hendren, L., and Ver-

brugge, C. (2003) EVolve: an open extensible software visualization framework.

In: Proceedings of the 2003 ACM Symposium on Software Visualization (SoftVis

'03), June 11–13, 2003, San Diego, California, pp. 37–ff.

[43] Heer J., Card S. K. & Landay J. A. (2005) Prefuse: A Toolkit for Interactive In-

formation Visualization. In: Proceedings of the SIGCHI Conference on Human

Factors in Computing Systems (CHI '05), April 02–07, 2005, Portland, Oregon,

USA, pp. 421–430.

[44] De Pauw W., Andrade H. & Amini L. (2008) Streamsight: a visualization tool for

large-scale streaming applications. In: Proceedings of the 4th ACM Symposium

on Software Visualization (SoftVis'08), September 16–17, 2008 Ammersee,

Germany, pp.125–134.

108

http://www.perceptualedge.com/articles/visual_business_intelligence/visualizing

[45] McPherson J., Ma K-L., Krystosk P, Bartoletti T & Christensen M. (2004) Port-

Vis: A Tool for Port-Based Detection of Security Events. In: Proceedings of the

2004 ACM Workshop on Visualization and Data Mining For Computer Security

(VizSEC/DMSEC '04), October 29, 2004, Washington DC, USA, pp. 73–81.

[46] Koike H. & Ohno K. (2004) SnortView: Visualization System of Snort Logs. Con-

ference on Computer and Communications Security. In: Proceedings of the 2004

ACM Workshop on Visualization and Data Mining For Computer Security

(VizSEC/DMSEC '04), October 29, 2004, Washington DC, USA, pp. 143–147.

[47] Hertzog P. (2006) Visualizations to improve reactivity towards security incidents

inside corporate networks. In: Proceedings of the 3rd International Workshop on

Visualization For Computer Security (VizSEC'06), November 03, 2006 Alexan-

dria, Virginia, USA, pp. 95–102.

[48] Buschmann F., Meunier R., Rohnert H., Sommerland P. & Stal M. (1996) Pat-

tern-oriented Software Architecture: a System of Patterns. John Wiley, Chiches-

ter, 457 p.

[49] Heer J. & Agrawala M. (2006) Software Design Patterns for Information Visuali-

zation. In: IEEE Transactions on Visualization and Computer Graphics, Septem-

ber/October 2006, Vol. 12, Issue 5, pp. 853–860.

[50] Miettinen, T. (2008) Resource monitoring and visualization of OSGi-based soft-

ware components. VTT Publications 685, VTT Technical Research Centre of

Finland, Espoo, 107 p. + appendixes 3 p.

[51] Viegas F.B., Wattenberg M., van Ham F., Kriss J. & McKeon M. (2007)

ManyEyes: a Site for Visualization at Internet Scale. In: IEEE Transactions on

Visualization and Computer Graphics, November, 2007, Vol. 13, Number 6, pp.

1121–1128.

[52] Kuusijärvi J. (2010) A demo on using Visualization to aid Run-time Verification of

Dynamic Service Systems. In: Proceedings of the 2010 IEEE International Con-

ference on Software Testing Verification and Validation Workshop, ICSTW'10

(ViDaS'10). Paris, France, April 6–10 2010, 6 p, in press.

[53] Jones J.A., Orso A. & Harrold M.J. (2004) Gammatella: Visualizing program-

execution data for deployed software. In: Information Visualization, September,

2004, Vol. 3, Issue 3, pp. 173–188.

[54] Heer J., Mackinlay J.D., Stolte C. & Agrawala M. (2008) Graphical Histories for

Visualization: Supporting Analysis, Communication, and Evaluation. In: IEEE

Transactions on Visualization and Computer Graphics, Vol. 14, Number 6, pp.

1189–1196.

 109

[55] Willett W., Heer J. & Agrawala M. (2007) Scented Widgets: Improving Navigation

Cues with Embedded Visualizations. In: IEEE Transactions on Visualization and

Computer Graphics, November, 2007, Vol. 13, Number 6, pp. 1129–1136.

[56] Adobe Flash platform. (Accessed 1.9.2009). URL: http://www.adobe.

com/flashplatform/.

[57] Adobe Open Source Flex SDK. (Accessed 1.9.2009). URL: http://open

source.adobe.com/wiki/display/flexsdk/Flex+SDK.

[58] Flare visualization toolkit. (Accessed 1.9.2009). URL: http://flare.prefuse.org/.

[59] Open Source FlashDevelop. (Accessed 1.9.2009). URL: http://www.flash

develop.org/.

[60] Open Source as3corelib utility library. (Accessed 1.9.2009). URL

http://code.google.com/p/as3corelib/.

[61] Adobe SWF File Format Specification Version 10. (Accessed 1.2.2010). URL:

http://www.adobe.com/devnet/swf/pdf/swf_file_format_spec_v10.pdf.

[62] Adobe ActionScript Virtual Machine 2 (AVM2) Overview. (Accessed 1.2.2010).

URL: http://www.adobe.com/devnet/actionscript/articles/avm2overview.pdf.

[63] Evesti A., Eteläperä M., Kiljander J., Kuusijärvi J., Purhonen A. & Stenudd S.

(2009) Semantic Information Interoperability in Smart Spaces. In: Mobile and

Ubiquitous Multimedia (MUM’09), November 22–25, 2009, Cambridge, United

Kingdom, pp. 158–159.

[64] AsUnit: Open Source unit test framework. (Accessed 5.10.2009). URL:

http://asunit.org/.

[65] SOFIA (2010) Architecture, D5.21 Interoperable Service Architecture (v1.0 2010-

01-01, under review, project confidential).

[66] Toninelli A., Pantsar-Syväniemi S., Bellavista P. & Ovaska E. (2009) Supporting

context awareness in smart environments: a scalable approach to information in-

teroperability. In: Proceedings of the International Workshop on Middleware for

Pervasive Mobile and Embedded Computing, pp. 1–4.

[67] VTT Technical Research Centre of Finland & Vaisala Oyj Internet Weather Sta-

tion. (Accessed 1.2.2010). URL: http://weather.willab.fi/weather.html.en.

[68] Nokia N810 Technical Specifications. (Accessed 12.2.2010). URL:

http://europe.nokia.com/support/product-support/nokia-n810/specifications.

110

http://open/
http://www.flash/
http://www.adobe
http://flare.prefuse.org/
http://code.google.com/p/as3corelib/
http://www.adobe.com/devnet/swf/pdf/swf_file_format_spec_v10.pdf
http://www.adobe.com/devnet/actionscript/articles/avm2overview.pdf
http://asunit.org/
http://weather.willab.fi/weather.html.en
http://europe.nokia.com/support/product-support/nokia-n810/specifications

 111

[69] Nokia N900 Technical details. (Accessed 12.2.2010). URL: http://maemo.

nokia.com/n900/.

[70] Adobe Labs web site. (Accessed 12.2.2010). URL: http://labs.

adobe.com/technologies/flashplayer10/.

[71] Kuusijärvi J, Evesti A. and Ovaska E. (2010) Visualizing Structure and Quality

Properties of Smart Spaces. Submitted to: Semantic Interoperability of Smart

Spaces, 2010, 6 p.

[72] Chittaro L. (2006) Visualizing Information on Mobile Devices. In Computer,

March, 2006, Vol. 39, Issue 3, pp. 40–45.

[73] GraphML File Format. (Accessed 1.2.2010). URL: http://graphml.

graphdrawing.org/

http://maemo
http://labs
http://graphml

 Series title, number and
report code of publication

VTT Publications 746
VTT-PUBS-746

Author(s)
Jarkko Kuusijärvi

Title

Interactive visualization of quality variability at
run-time

Abstract
Smart environments are dynamic in nature, and the software running in these environments re-
quires quality adaptations in order to function efficiently. The result of these adaptations, i.e., quality
variability, must be verified in some way, and visualization can be used to aid this verification proc-
ess. The research problem in this work was to find suitable visualization techniques to visualize
quality variability and implement a visualization tool that encompasses these techniques and pro-
vides an interactive visualization of quality variability for the user.

As a solution to the research problem, this work presents an interactive quality visualization tool.
The requirements specification for the implemented tool was derived from the literature review and
the intended usage context of the tool, i.e., smart environments. The literature review explores a set
of applicable visualization techniques and compares existing visualization tools with regard to the
features required to represent quality variability visually at run-time.

The visualization techniques selected for the tool include interactive timelines, charts and meters
that enable analysis of the quality attributes and their variability in different time ranges or points in
time. Some additional visualization techniques were also included such as treemaps and graphs to
visualize the structure of the smart environment.

The visualization techniques include open source visualization techniques and self-made tech-
niques designed and implemented from the start to cover the specific requirements set for the tool.
The main contribution of this work is the visualization tool that can be used to visualize different
quality attributes and their variability. Moreover, the tool can easily be deployed in different envi-
ronments due to its architecture and the selected implementation technologies that make the solu-
tion extensible and portable.

The implemented visualization tool was evaluated in the context of a smart environment in which
security was adapted at run-time. The case study demonstrated that the implemented tool can be
used in the analysis of the variability of different quality attributes. The trend of a single quality at-
tribute can be studied for different time ranges or points in time according to need. The relation-
ships between different quality attributes can also be studied with the help of appropriate visualiza-
tion techniques. In addition, the visualization tool was successfully tested on mobile devices.
ISBN
978-951-38-7412-4 (URL: http://www.vtt.fi/publications/index.jsp)

Series title and ISSN Project number

VTT Publications
1455-0849 (URL: http://www.vtt.fi/publications/index.jsp)

24506

Date Language Pages
October 2010 English, Finnish abstr. 111 p.

Name of project Commissioned by
EVOLVE VTT

Keywords Publisher
Software visualization, quality attributes, secu-
rity, smart environments, adaptive software

VTT Technical Research Centre of Finland
P.O. Box 1000, FI-02044 VTT, Finland
Phone internat. +358 20 722 4520
Fax +358 20 722 4374

http://www.vtt.fi/publications/index.jsp
http://www.vtt.fi/publications/index.jsp

 Julkaisun sarja, numero ja
raporttikoodi
VTT Publications 746
VTT-PUBS-746

Tekijä(t)
Jarkko Kuusijärvi

Nimeke

Laadun varioituvuuden interaktiivinen visualisointi
ajoaikana

Tiivistelmä
Älykkäät ympäristöt ovat luonteeltaan dynaamisia ja vaativat niissä ajettavilta ohjelmistoilta kykyä
muuntautua vastaamaan ympäristön tilannetta; adaptoitua, jotta ohjelmistot pystyisivät toimimaan
suorituskykyisesti. Laadun variointi eli adaptointi pitää pystyä todentamaan, ja todentamisessa
voidaan käyttää hyväksi visualisointia. Tässä työssä tutkimusongelmana on ollut löytää laadun
varioituvuuden visualisointiin soveltuvat visualisointitekniikat ja toteuttaa visualisointityökalu, joka
toteuttaa nämä visualisointitekniikat ja tarjoaa käyttäjälle vuorovaikutteisen visualisoinnin laadun
varioituvuudesta.

Ratkaisuna tutkimusongelmaan tässä työssä esitellään laadun varioituvuuden interaktiivinen vi-
sualisointityökalu. Visualisointityökalun vaatimusmäärittely johdettiin taustatutkimuksesta ja työka-
lun oletetusta käyttökohteesta, älykkäistä ympäristöistä. Taustatutkimuksessa esitellään soveltuvia
visualisointitekniikoita ja vertaillaan olemassa olevia visualisointityökaluja ottaen huomioon ominai-
suudet, jotka tarvitaan laadun varioituvuuden ajoaikaiseen visualisointiin.

Visualisointityökaluun valittuihin visualisointitekniikoihin kuuluvat muun muassa vuorovaikutteiset
viivadiagrammit, kaaviot ja erilaiset mittarit, joiden avulla laatuattribuuttien arvoja ja varioituvuutta
voidaan analysoida eri aikaväleillä. Yleisten visualisointitekniikoiden lisäksi työkaluun sisällytettiin
myös muita soveltuvia visualisointitekniikoita, kuten puukarttoja ja graafeja, joiden avulla älykkään
ympäristön rakennetta visualisoidaan.
 Työkalun visualisointitekniikat sisältävät valmiiksi toteutettuja avoimen lähdekoodin visualisointi-
tekniikoita, joiden lisäksi suunniteltiin ja toteutettiin visualisointitekniikoita kattamaan työkalulle ase-
tetut vaatimukset. Työn pääsaavutuksena kehitetään työkalu, jota voidaan käyttää eri laatuattribuut-
tien ja niiden varioituvuuden visualisoimisessa. Sen lisäksi työkalun arkkitehtuuri ja valitut toteutus-
teknologiat mahdollistavat työkalun käytön eri ympäristöissä sen laajennettavuusominaisuuden ja
siirrettävyyden ansiosta.
 Toteutettu visualisointityökalu testattiin käyttäen kontekstina älykästä ympäristöä ja siinä tapah-
tuvaa tietoturvan ajoaikaista adaptointia. Malliesimerkki osoitti, että työkalun avulla eri laatuattri-
buuttien varioituvuutta pystytään tutkimaan usealla tavalla. Yksittäisen laatuattribuutin kehityssuun-
taa pystytään arvioimaan määrätyllä ajanjaksolla ja useiden laatuattribuuttien välisiä yhteyksiä pys-
tytään myös tutkimaan usealla eri visualisointitekniikalla. Lisäksi visualisointityökalua testattiin mo-
biililaitteissa onnistuneesti.

ISBN
978-951-38-7412-4 (URL: http://www.vtt.fi/publications/index.jsp)

Avainnimeke ja ISSN Projektinumero
VTT Publications
1455-0849 (URL: http://www.vtt.fi/publications/index.jsp)

24506

Julkaisuaika Kieli Sivuja
Lokakuu 2010 Englanti, suom. tiiv. 111 s.

Projektin nimi Toimeksiantaja(t)
EVOLVE VTT

Avainsanat Julkaisija
Software visualization, quality attributes, secu-
rity, smart environments, adaptive software

VTT
PL 1000, 02044 VTT
Puh. 020 722 4520
Faksi 020 722 4374

http://www.vtt.fi/publications/index.jsp
http://www.vtt.fi/publications/index.jsp

	 	 VTT	PUBLICATIONS	746

VTT CREATES BUSINESS FROM TECHNOLOGY
 Technology and market foresight • Strategic research • Product and service development • IPR and licensing
• Assessments, testing, inspection, certification • Technology and innovation management • Technology partnership

• • • VTT PU
B

LIC
A

TIO
N

S 746 IN
TER

A
C

TIVE VISU
A

LIZA
TIO

N
 O

F Q
U

A
LITY VA

R
IA

B
ILITY A

T R
U

N
-TIM

E

ISBN 978-951-38-27xx-0 (soft back ed.) ISBN 978-951-38-27xx-0 (URL: http://www.vtt.fi/publications/index.jsp)
ISSN 1235-0621 (soft back ed.) ISSN 1455-0849 (URL: http://www.vtt.fi/publications/index.jsp)

Jarkko Kuusijärvi

Interactive	visualization	of	quality	
variability	at	run-time

VTT PUBLICATIONS

726	 Jaana	Leikas.	Life-Based	Design.A	holistic	approach	to	designing	human-technology	
interaction.	2009.		240	p.	

727	 Teemu	 Kanstrén.	 A	 Framework	 for	 Observation-Based	 Modelling	 in	 Model-Based	
Testing.	2010.	93	p.	+	app.	118	p.

728	 Stefan	Holmström.	Engineering	Tools	for	Robust	Creep	Modeling.	2010.	94	p.	+	53	p.
729	 Olavi	Lehtoranta.	Innovation,	Collaboration	in	Innovation	and	the	Growth	Performance	

of	Finnish	Firms.	2010.	136	p.	+	app.	16	p.
730	 Sami	Koskinen,	Sami.	Sensor	Data	Fusion	Based	Estimation	of	Tyre-Road	Friction	to	

Enhance	Collision	Avoidance.	2010.	188	p.	+	app.	12	p.
732	 Venkata	Gopalacharyulu	Peddinti.	Data	integration,	pathway	analysis	and	mining	for	

systems	biology.	Espoo	2010.	62	p.	+	app.	67	p.
733	 Johanna	Kirkinen.	Greenhouse	impact	assessment	of	some	combustible	fuels	with	a	

dynamic	life	cycle	approach.	Espoo	2010.	63	p.	+	app.	58	p.
734	 Antti	 Grönroos.	 Ultrasonically	 Enhanced	 Disintegration.	 Polymers,	 Sludge,	 and	

Contaminated	Soil.		2010.	100	p.	+	app.	27	p.
735	 Michael	 Lienemann.	 Characterisation	 and	 engineering	 of	 protein–carbohydrate	

	interactions.	Espoo	2010.	90	p.	+	app.	30	p.
736	 Jukka-Pekka	Pesola.	Building	Framework	for	Early	Product	Verification	and	Validation.	

Master	Thesis.	Espoo	2010.	75	p.
737	 Virpi	Oksman.	The	mobile	phone:	A	medium	in	itself.	Espoo	2010.	89	p.	+	app.	132	p.
738	 Fusion		Yearbook.	Association	EURATOM-TEKES.	Annual	Report	2009.	Eds.	by	Seppo	

Karttunen	&	Markus	Airila.	2010.	136	p.	+	app.	13	p.
739	 Satu	Hilditch.	Identification	of	the	fungal	catabolic	D-galacturonate	pathway.	Espoo	

2010.	74	p.	+	app.	38	p.
740	 Mikko	Pihlatie.		Stability	of	Ni-YSZ	composites	for	solid	oxide	fuel	cells	during	reduction	

and	re-oxidation.	Espoo	2010.	92	p.	+	app.	62	p.	
741	 Laxmana	Rao	Yetukuri.	Bioinformatics	approaches	for	the	analysis	of	lipidomics	data.	

Espoo	2010.	75	p.	+	app.	106	p.
742	 Elina	 Mattila.	 Design	 and	 evaluation	 of	 a	 mobile	 phone	 diary	 for	 personal	 health	

management.		Espoo	2010.	83	p.	+	app.	48	p.	
743	 Jaakko	Paasi	&	Pasi	Valkokari	(eds.).	Elucidating	the	fuzzy	front	end	–	Experiences	from	

the	INNORISK	project.	Espoo	2010.		161	p.
744	 Marja	 Vilkman.	 Structural	 investigations	 and	 processing	 of	 electronically	 and	

protonically	conducting	polymers.		2010.	62	p.	+	app.	27	p.
746	 Jarkko	 Kuusijärvi.	 Interactive	 visualization	 of	 quality	 variability	 at	 run-time.	 Espoo	

2010.	111	p.	

http://www.vtt.fi/publications/index.jsp
http://www.vtt.fi/publications/index.jsp

	1. Introduction
	2. Related research and technologies
	2.1 Software quality
	2.1.1 Software quality attributes
	2.1.2 Quality variability
	2.1.3 Software verification and validation

	2.2 Contexts for quality variability
	2.2.1 Service-oriented architecture
	2.2.2 Smart environment
	2.2.3 Quality attributes in smart environments

	2.3 Introduction to visualization
	2.3.1 Reference model for visualization
	2.3.2 Information visualization
	2.3.3 Challenges in information visualization

	2.4 Existing visualization tools
	2.4.1 EVolve
	2.4.2 Toolkit: prefuse
	2.4.3 Streamsight
	2.4.4 PortVis
	2.4.5 SnortView
	2.4.6 A network security visualisation prototype
	2.4.7 NEXThink REFLEX
	2.4.8 Summary

	3. Interactive Quality Visualization tool
	3.1 Overview
	3.1.1 Monitoring process
	3.1.2 Visualization process

	3.2 Requirements
	3.3 Architecture
	3.3.1 Structure
	3.3.2 Visualization Platform
	3.3.3 VMonitor
	3.3.4 Visualization View
	3.3.5 ActionScheduler

	3.4 Visual mapping
	3.4.1 Graphs
	3.4.2 Treemaps
	3.4.3 Timelines and scatter plots
	3.4.4 Meters
	3.4.5 Time slider

	4. Implementation and testing
	4.1 Implementation environment
	4.1.1 Constraints
	4.1.2 Graphics libraries

	4.2 Implemented components
	4.2.1 Initial version of the tool
	4.2.2 VMonitor
	4.2.3 Visualization View
	4.2.4 Meters
	4.2.5 Time slider
	4.2.6 Timeline visualization
	4.2.7 Treemap visualization

	4.3 Testing
	4.4 Case study
	4.4.1 SOFIA Smart Space
	4.4.2 Testing environment
	4.4.3 Validation scenario overview
	4.4.4 Smart environment structure
	4.4.5 Quality attribute analysis
	4.4.6 Quality trade-off analysis
	4.4.7 Cross-platform testing
	4.4.8 Summary of case study results

	5. Discussion
	5.1 Implementation of the IQVis tool
	5.2 Results
	5.3 Comparison with existing tools
	5.4 Future development

	6. Conclusion

