VTT PUBLICATIONS 751

Sakari Stenudd

Using machine learning in the
adaptive control of a smart
environment

VTT PUBLICATIONS 751

Using machine learning in the
adaptive control of a smart
environment

Sakari Stenudd

ISBN 978-951-38-7420-9 (URL: http://www.vtt.fi/publications/index.jsp)
ISSN 1455-0849 (URL: http://www.vtt.fi/publications/index.jsp)

Copyright © VTT 2010

JULKAISIJA — UTGIVARE — PUBLISHER

VTT, Vuorimiehentie 5, PL 1000, 02044 VTT
puh. vaihde 020 722 111, faksi 020 722 4374

VTT, Bergsmansvagen 5, PB 1000, 02044 VTT
tel. véxel 020 722 111, fax 020 722 4374

VTT Technical Research Centre of Finland, Vuorimiehentie 5, P.O. Box 1000, FI-02044 VTT, Finland
phone internat. +358 20 722 111, fax + 358 20 722 4374

http://www.vtt.fi/publications/index.jsp
http://www.vtt.fi/publications/index.jsp

Sakari Stenudd. Using machine learning in the adaptive control of a smart environment [Koneoppi-
misen kayttd aly-ympariston mukautuvassa ohjauksessa]. Espoo 2010. VTT Publications 751. 75 p.

Keywords smart space, inter-operability, control loop, adaptive systems, self-adaptive soft-
ware, reinforcement learning, Smart-M3 I0P

Abstract

The purpose of this thesis is to study the possibilities and need for utilising ma-
chine learning in a smart environment. The most important goal of smart envi-
ronments is to improve the experience of their inhabitants. This requires adapta-
tion to the behaviour of the users and the other changing conditions in the envi-
ronment. Hence, the achievement of functional adaptation requires finding a way
to change the behaviour of the environment according to the changed user be-
haviour and other conditions. Machine learning is a research area that studies the
techniques which make it possible for software agents to improve their operation
over time.

The research method chosen in this thesis was to review existing smart envi-
ronment projects and to analyse the usages of machine learning within them.
Based upon these uses, a model for using machine learning in a smart environ-
ment was created. As a result, four different categories of machine learning in
smart environments were identified: prediction, recognition, detection and opti-
misation. When deployed to the environment, these categories form a clear loop
structure in which the outputs of previous learning agents serve as inputs for the
next agents, which ultimately enables the making of changes to the environment
according to its current state. This kind of loop is called a control loop in adap-
tive systems.

To evaluate the suitability of the model for using machine learning in a smart
environment, two demonstrations were carried out in an environment using a
Smart-M3 inter-operability platform, both utilising machine learning in one of
the above-discussed categories. In the first experiment neural networks were
used to predict query latencies in different situations in the environment. The
predictions of the network were compared to the outputs of two simpler models.
The results showed that the neural network approach was capable of adapting to
rapid changes more quickly. However, it also made more false assumptions
about the impact of the different parameters.

The second experiment belongs to the optimisation category. In this experi-
ment a decision maker was implemented for a resource allocation problem in a
distributed multi-media streaming application. It used reinforcement learning
with a look-up table and an implementation of the Q-learning algorithm. After
the learning period the agent was capable of making optimal decisions.

The experiments confirm that it is suitable to use the model described in this
thesis in smart environments. The model includes the most important uses of
machine learning and it is consistent with other results in the areas of smart envi-
ronments and self-adaptive software.

Sakari Stenudd. Using machine learning in the adaptive control of a smart environment [Koneoppimi-
sen kaytto aly-ymparistén mukautuvassa ohjauksessa]. Espoo 2010. VTT Publications 751. 75 p.

Avainsanat smart space, inter-operability, control loop, adaptive systems, self-adaptive soft-
ware, reinforcement learning, Smart-M3 I0P

Tiivistelma

Opinndytetyoni tarkoitus on tutustua koneoppimisen kéyttémahdollisuuksiin ja
-tarpeisiin alykkaassa ympdristossa. Alykkaiden ymparistojen tarkein paamaira
on niiden kayttajien kayttdkokemuksen parantaminen. TAm4 vaatii mukautumis-
ta kéayttdjien kaytokseen sekd muihin muuttuviin tilanteisiin ympéristdssa. Mu-
kautumisen saavuttamiseksi tarvitaan tapa muuttaa ympdriston toimintaa tapah-
tuvien muutosten mukaan. Koneoppiminen on tutkimusalue, joka kasittelee sel-
laisia tekniikoita, joita kdyttden ohjelmistoagentit voivat parantaa toimintaansa
ajan kuluessa.

Opinndytetyon alussa tutustutaan olemassa oleviin aly-ympéristoprojekteihin
ja tarkastellaan niissd kaytettyja koneoppimismenetelmid. Kaytettyihin mene-
telmiin perustuen esitetddn malli, joka kuvaa, miten koneoppimismenetelmia
voidaan kayttaa alykkaissa ympéristdissa. Malli sisaltdd nelja eri koneoppimis-
tyyppid: havainnointi, tunnistaminen, ennustaminen ja optimointi. Kun naita
tyyppeja kaytetddn aly-ympéristdssda, ne muodostavat selkean silmukkaraken-
teen, jossa seuraavat oppivat agentit voivat kéyttda edellisten tuloksia. Tdéma
mahdollistaa lopulta sen, ettd ymparistoon voidaan tehdd muutoksia sen nykyi-
sen tilan perusteella. Tallaista rakennetta kutsutaan mukautuvien jarjestelmien
alueella nimelld ohjaussilmukka.

Jotta voitaisiin arvioida luodun mallin soveltuvuutta, luotiin kaksi mallin osa-
aluetta kayttdvad demonstraatiota kayttden Smart-M3-yhteentoimivuusalustaa.
Ensimmaisessa toteutuksessa kaytettiin neuroverkkoja ennustamaan kyselyjen
viivetta erilaisissa aly-ympériston tilanteissa. Neuroverkon ennusteita verrattiin
kahden yksinkertaisemman mallin tuloksiin. Testit osoittivat, ettd neuroverkko-
menetelm& pystyi mukautumaan nopeisiin muutoksiin aiemmin, mutta se teki
myos joitakin véaria olettamuksia eri parametrien vaikutuksesta tulokseen.

Toinen koe kuuluu optimointiluokkaan. Siind toteutettiin paatdksentekijéoh-
jelma, jonka tuli ratkaista resurssien kohdentamisongelma hajautetussa multime-
dian suoratoisto-ohjelmassa. Paatdksentekijassd sovellettiin vahvistusoppimis-

tekniikkaa kayttden hakutaulukkoa ja Q-oppimisen toteutusta. Oppimisjakson
jalkeen agentti pystyi tekemaan optimaalisia paatoksia suurimman osan ajasta.

Tehdyt kokeet osoittivat, ettd tydssd kuvattu malli sopii kaytettdvéksi &lyk-
kéissd ymparistoissd. Malli kattaa tarkeimmat koneoppimisen kayttokohteet ja
on yhtépitdva muiden tulosten kanssa, jotka on saatu aly-ymparistdjen ja mukau-
tuvien ohjelmistojen alueella.

Preface

This Master's thesis was written at the VTT Technical Research Centre of
Finland in the Software Architectures and Platforms Knowledge Centre. The
work was carried out as a part of the TIVIT/DIEM (Devices and Information
Ecosystem) project.

I would like to express my sincere gratitude to my technical supervisor Senior
Research Scientist Anu Purhonen for her support and valuable comments during
the work. Further I would like to thank Research Professor Eila Ovaska and
Senior Research Scientist Ville Kénénen who have helped me with their expert
feedback. I would also like to thank Professors Jukka Riekki and Janne Heikkila
who are the reviewers of this work at the University of Oulu.

Oulu, Finland 23 August 2010

Sakari Stenudd

Conten

Abstract

ts

Tiivistelma

Preface

Abbreviations,

1. Introduction

2. Smart Environments

2.1
2.2

Smart Environment
Existing Smart Environment Projects
221 ACHE
222 MavHome
22.3 iDorm
224 ThinkHome
2.2.5 Otherprojects
226 Summary

3. Machine Learning

3.1
3.2
3.3
3.4
3.5

3.6

3.7
3.8

3.9

Prior Knowledge in Machine Learning
Definitions,
Different Machine Learning Systems
Bayesian Reasoning
Supervised Learning L.
3.5.1 NaiveBayesmodel
3.5.2 Decisiontrees o
3.5.3 Linear discriminant functions
3.5.4 Artificial neuralnetworks
3.5.5 Hidden Markovmodels
3.5.6 Instance-basedlearning
3.5.7 Geneticalgorithms
3.5.8 Learningrules
3.5.9 Summary of supervised machine learning methods . .
Reinforcement Learning
3.6.1 Markov DecisionProcess
3.6.2 Learningpolicies
Unsupervised Learning
Research Areas that are Based on Machine Learning ..
3.8.1 Datamining.
3.8.2 Anomalydetection
Machine Learning in Existing Smart Environment Projects . .
3.9.1 Eventand latency prediction
3.9.2 Activity pattern identification

10
12

13
13
14
14
15
17
18
18
19

20
20
20
21
22
23
23
23
24
25
27
28
29
29
29
31
32
32
33
33
34
34
35
35
36

3.9.3 Activity recognition L

3.9.4 Anomalydetection

3.9.5 Devicecontrol

3.9.6 Decisionmaking

4. Model for Using Learning in a Smart Environment
4.1 Smart Environment Inter-operability Platform
4.1.1 Inter-operability in the Smart-M310P

4.2 Potential Uses of Machine Learning in a Smart Environment .
421 Detection

422 Recognition.

423 Prediction

424 Optimisation

4.3 Interaction of Machine LearningUses

5. Implementation
5.1 Latency Prediction
51.1 Implementation.

51.2 Evaluation.

5.2 DecisionMaking
521 Implementation.

522 Evaluation.

6. Discussion
6.1 The Latency PredictionCase
6.2 The Decision-MakingCase
6.3 Summary of Results and Comparison to Other Work
6.4 FutureWork.

7. Conclusions
References

36
37
37
37

38
38
38
40
41
41
41
42
42

44
44
45
51
52
53
60

65
65
66
66
68

69

70

Abbreviations

ACHE
ANN
CRF
ECA
GA
HMM

1 (0)
P

KP

MAPE-K

MAS

MDP

MIT

ML
NB

NoTA
Ogg
OWL
RDF

RDFS

Adaptive Control of Home Environments, a smart home sys-
tem

Artificial Neural Network, a data representation model in ma-
chine learning

Conditional Random Field, a probabilistic model similar to
HMM

Event-Condition-Action, a rule model for specifying actions in
defined states

Genetic Algorithm, a machine learning technique for searching
optimal hypotheses by altering them

Hidden Markov Model, a machine learning technique that
learns sequential data

See Smart-M3 IOP

Internet Protocol, a communication protocol used in the Inter-
net; it provides addressing capabilities to a network

Knowledge Processor, an entity in Smart-M3 architecture that
uses and/or produces information

Monitor, Analyse, Plan, Execute, Knowledge, a control loop
used in autonomic computing

Multi-Agent System, a way to reduce the complexity of a sys-
tem by dividing it into smaller tasks and performing those tasks
with individual agents

Markov Decision Process, a concept utilised in reinforcement
learning. It requires that the state changes and rewards in the
environment depend only on the current state and action.

Massachusetts Institute of Technology, a private research uni-
versity located in Cambridge, Massachusetts, USA

Machine Learning

Naive Bayes, an assumption that the different features of the
feature vector are conditionally independent

Network on Terminal Architecture, provides a common com-
munication protocol and module interfaces for embedded de-
vices

A free and open media container format

Web Ontology Language, a set of W3C recommended lan-
guages based on RDF and RDFS

Resource Description Framework, a way to represent informa-
tion in the form of subject-predicate-object triples

RDF Schema, a basic ontology language

10

RL

SE

SIB

Smart-M3 IOP

SVM

TCP

TCP/1P

UDP

UPnP

URI

W3C

Reinforcement Learning, a machine learning technique in
which the agent learns from possibly-delayed rewards instead
of labelled examples

Smart Environment, a physical environment that aims to im-
prove the experience of its inhabitants by utilising knowledge
about them and itself

Semantic Information Broker, an entity in Smart-M3 architec-
ture that is used to store and deliver information

Smart-M3 Inter-operability Platform, a smart environment
platform that focuses on opening and sharing information from
different domains, devices and vendors to be used by other en-
tities

Support Vector Machine, a machine learning technique based
on linear discrimination

Transmission Control Protocol, a networking protocol that pro-
vides reliable end-to-end connection over IP

A set of communication protocols used in the Internet and
other similar networks, named after the most important pro-
tocols in it (TCP and IP)

User Datagram Protocol, a networking protocol

Universal Plug and Play, a service-level protocol set to connect
and use different devices seamlessly

Uniform Resource Identifier, a standard syntax for defining
identifiers for abstract or physical resources

World Wide Web Consortium, a consortium that develops stan-
dards for the World Wide Web

11

1. Introduction

The increase in performance and decrease in size of computing devices, along with
advances in other supporting fields, have augmented the amount of research conducted
about smart environments in which devices embedded into the environment aim to
improve the user experience [1]. There are already quite a few projects aiming to create
such environments, for example ACHE [2], MavHome [3] and iDorm [4]. However,
these projects have the main focus on creating a successful smart environment within
one domain — such as a smart home. The Smart-M3 inter-operability platform (IOP) [5]
is a more generic solution to communication between devices at the information level
and thus enables the creation of smart environments.

Dynamics and complexity are very important characteristics in smart environments.
Smart environments in different domains differ and even in the same domain the en-
vironment changes as new devices are introduced. In addition, the user behaviour and
preferences may change [2]. Therefore it is difficult, if not impossible, to design algo-
rithms that are able to control the environment in such a way that user comfort is max-
imised in every situation. This is why it is useful for the control of a smart environment
to be adaptive. Studies on adaptive systems, autonomic computing and self-adaptive
software state that adaptiveness helps to reduce the costs of handling the complexity
of software systems and in handling unexpected and changed conditions [6].

By definition, a software agent is said to learn when its performance in a certain
task improves with experience [7]. The machine learning research field studies the
ability of software agents to learn. According to the definition, it may be suitable to
use machine learning techniques in the adaptive control of smart environments. In fact,
they are already used in self-adaptive software [6] and smart environments [8].

In this work, the Smart-M3 IOP as a new inter-operability solution was chosen to
be used as a platform with which to create smart environments. The goal of this work
was to evaluate the suitability of using machine learning techniques to achieve adaptive
control in an environment using Smart-M3 IOP. Existing smart environment projects
were studied in order to find the uses of machine learning and the ways to achieve
adaptive control. Based on this, a model for using machine learning in Smart-M3 IOP
is presented. The model was validated using two separate demonstrations.

This thesis starts by introducing smart environments generally and then specifically
covering some interesting smart environment projects in Chapter 2. The next chap-
ter (Chapter 3) gives a brief description of machine learning and studies the uses of
machine learning in smart environments in more detail from a machine learning per-
spective, including some suitable techniques and algorithms for the identified problems
used by researchers from other areas. In Chapter 4 the results from previous studies
are combined and, based on them, a model for using machine learning in a smart envi-
ronment using Smart-M3 IOP is presented. Chapter 5 describes the implementation of
two cases with the aim of validating the model. In Chapter 6 the results of the cases are
discussed and the contribution of this thesis evaluated. Finally, Chapter 7 concludes
the thesis.

12

2. Smart Environments

This chapter defines the general features of smart environments and describes some
existing smart environment implementations and projects. The discussion focuses on
the machine learning uses within them.

2.1. Smart Environment

A smart environment (SE) can be defined as an environment that ‘is able to acquire
and apply knowledge about the environment and its inhabitants in order to improve
their experience in that environment’ [1]. Therefore the environment must have some
kind of sensors to be able to perceive its current state and the actions of the inhabitants
and actuators in order to change its state. This section presents the characteristics of
smart environments based on the requirements set for them and the features realised
in the prototype solutions for different application domains. These summaries help in
understanding the need for machine learning in smart environments.
Cook and Das defined the five general features of smart environments [8]:

1. Remote control of devices. Every device must be controllable remotely or auto-
matically and must not require a dedicated user interface.

2. Device communication. The devices must be able to communicate with each
other in order to build a model of the environment. They must also be able to
gain access to external information sources such as the Internet.

3. Information acquisition from intelligent sensor networks. There must be a way
to share the information gathered by the different sensors in the environment.
Using this information, the environment can constantly adjust its state to better
meet the requirements.

4. Enhanced services by intelligent devices. Information from sensor networks and
communication with the outside world allow device manufacturers or program-
mers to create more intelligent devices that can add value to their functionality
by using this external information.

5. Predictive and decision-making capabilities. The previously-described features
allow the creation of smart environments. However, controlling this kind of
environment manually would require constant monitoring and adjusting of the
devices. To get the adjustments fully automated the devices themselves must be
able to learn the optimal adaptation policies.

As mentioned in point five, predictive and decision-making capabilities require the
devices to learn adaptation policies. Additionally in point three, information acquisi-
tion from intelligent sensor networks may benefit from machine learning techniques
such as data mining, as the rest of this thesis shows. Machine learning has also been
used in the control of some devices (point one above).

Solutions for smart environments have already been created in numerous research
projects and some are presented in Section 2.2. Hermann et al. [9] listed the key aspects
of the realised prototypes of smart environments as follows:

13

e Highly integrated and seamlessly available data, services and resources in public
and private environments.

e The exchange of information, the access rights of objects, ambient resources and
devices.

e The exchange of personal information between a number of users and the envi-
ronment.

e The location-based availability of nearby entities, location-based Uls for ser-
vices, data and applications.

e System ‘intelligence’: adaptivity and, to some degree, autonomous system deci-
sions, e.g. on the use of ambient systems or data exchange.

The last item in this listing, system intelligence, states that in existing projects sys-
tems are typically adaptive and autonomous. The next section shows that this adaptiv-
ity and the autonomous decisions are implemented many times using machine learning
techniques.

2.2. Existing Smart Environment Projects

This section presents a few existing projects with the goal of creating smart environ-
ments. In addition, the uses of machine learning techniques in the projects are de-
scribed. Projects that include uses of machine learning were chosen to be presented
and other projects that may otherwise be significant but do not concentrate on such
things were excluded. As can be seen, most existing projects focus on building domes-
tic environments such as smart homes.

2.2.1. ACHE

Mozer [2, 10] describes ACHE (Adaptive Control of Home Environments), an adaptive
house that controls the comfort systems of a home such as lightning, ventilation and
air and water heating. The objectives of ACHE are the prediction of inhabitant actions
and the decrease of energy consumption. It tries to decrease the need for manual
control of the systems by anticipating the need to adjust them. Figure 1 shows the
architecture of an ACHE system. State transformation calculates some statistic values
from the state information. The occupancy model determines which zones (rooms) are
currently occupied in the house and predictors try to forecast how the state is going
to change in the near future. The set-point generator determines the target value of
the needed adaptation, for example the target temperature of the room, and the device
regulator makes the actual adjustments by controlling the physical devices. ACHE has
been deployed into a real house environment and it was able to reduce the need to
explicitly adjust the systems under its control.

The three components shown at the top of Figure 1 (device regulator, set-point gen-
erator and predictors) are adaptive and thus use machine learning. The predictors use

14

A

decision
device
regulator
~
setpoint
profile
setpoint
generator
A A
future state
information
predictors
state occupied
representation zones
state occupancy
transformation model
A h
instantaneous

environmental state

Figure 1. The system architecture of ACHE.

feed-forward neural networks and, in some cases, also look-up tables in combination
to make predictions. Both the set-point generator and device regulator need to learn;
the set-point generator tries to behave according to user preferences and the device reg-
ulator tries to find the optimal way to achieve the targets. Depending on the domain,
the components can use, for example, reinforcement learning to directly locate good
control actions or neural networks to create a model of the environment. [2]

2.2.2. MavHome

The MavHome (Managing an Intelligent Versatile Home) Project (e.g. [11, 3]) uses
multi-agent systems (MAS) and machine learning techniques to create a home envi-
ronment that is able to act as a rational agent. Figure 2 shows the architecture of
MavHome. The architecture is divided to four abstract layers: Decision, Information,
Communication and Physical. The Communication layer is used by the both of the
higher level layers in the architecture. These abstract layers are realised by concrete
functional layers which are also shown in Figure 2: Physical components, Computer
interface, Logical interface, Middleware, Services and Applications. When a sensor
in the environment makes a measurement, information flows from bottom to top. The
Communication layer transmits the information to another agent if needed, compo-
nents of the Information layer store the measurement into a database and may process
it into a more useful form. The Decision layer receives the information if it is interested

15

Decision
Maker c P
o] M u
M A Pl|B
DECISION — P M ol|L
o o) 1 1
Applications N N nls
E G T|H
M / /
T D T|S
- -S-e-r\;ic-e-s -------------------- 77121817 T
M 5 B
Prediction Database o C P1S
B o] o|cC
INFORMATION — | v 1R
Data L E NI
Mining Aggregator, | R s |- COMMUMNICATION
L cccc-c-ccccccmmmea=== Theea- Yheoo- EL-]

Logical Logical Logical Logical
Interface Proxy Proxy Proxy

Software | |Software Software
Interface| |Interface Interface
Computer
Interface OPERATING SYSTEM]
Hardware| [Hardware Hardware
Interface| |Interface Interface

-- = — PHYSICAL

Physical | Physical| |Physical| |Physical | |Physical| [Physical
Components | Device Device Device Device Device

Figure 2. MavHome abstract and concrete architecture.

in it and can select a needed action which is updated to the database in the Information
layer and delivered to the appropriate effector via the Communication layer.

The performance of MavHome has been evaluated using both simulation and real
data in an apartment with a full-time occupant. The apartment contained 25 controllers
and many sensors, for example for light, temperature and humidity. In the experiment
only motion sensors and light controllers were used and the goal was to reduce the
need for manual interactions with the lightning although it is also possible to use the
system for other goals. Both the simulated and real application of MavHome showed
a more than 70% reduction in interactions after a week of usage. [12, 3]

The operation of MavHome is divided in three separate phases: Knowledge discov-
ery and initial learning, Operation and Adaptation and continued learning. In the
first phase, there are several machine learning methods used. Data mining is used to
find activity patterns from the observed data which are then used to build a hidden
Markov-based model of the environment. A prediction algorithm is also trained using
the observation data. In addition an episode membership algorithm, which calculates
the probability of a set of observations belonging to a certain episode, is trained using
the observation data and activity patterns. The second phase utilises the models and al-
gorithms created in the first phase in order to make decisions about the needed actions.
In the third phase, the model of the environment is constantly adjusted according to the
feedback gained from the actions. Data mining is also used to find new patterns from

16

the observation data. If there is a significant change detected in the activity patterns
the model is broken and the system goes back to the first phase, otherwise the system
only runs the second and third phases. [11]

In addition to the previously-described machine learning uses, Jakkula, Crandall and
Cook have added anomaly detection capabilities to MavHome. [13]

2.2.3. iDorm

The Essex intelligent Dormitory [14, 15, 4] is a test-bed for ambient intelligence and
ubiquitous computing experiments. It is a room that contains furniture such as a bed,
wardrobe, study desk, cabinet and computer. Thus the room is similar to a combined
study and bedroom. However, the room and the furniture contain many embedded sen-
sors for components such as temperature, occupancy, humidity and light-level sensors
and actuators such as door actuators, heaters and blinds. The dormitory can also be
monitored and controlled using a virtual reality system which shows the sensor values
and allows the user to control the actuators. It also shows a visualisation of the room.
The controlling is done using the Java interface of iDorm.

There are three different networks in the iDorm. Most of the sensors and actuators
are connected to the Echelon LonWorks network while the rest are connected to the
Dallas Semiconductor 1-Wire network. Both of these networks are connected to an
IP (Internet Protocol) network using gateways. The computer in the room is also con-
nected to the IP network. The controlling and monitoring of these components is done
through the iDorm server which is a gateway between the sensors and actuators and the
outside world. This gateway provides a UPnP (Universal Plug and Play) interface to the
sensors and actuators [16]. There are three types of computational artefacts connected
to the iDorm server from the outside: the most important is the iDorm embedded agent
and in addition to that there is a mobile service robot and physically-portable devices
such as a pocket PC and a mobile phone. [15]

The iDorm embedded agent contains the most intelligence in the dormitory. It re-
ceives the sensor values, computes appropriate actions using the learnt behaviour of
the user as a reference and sends the actions through the network to the actuators. It
learns rules from the behaviour of the user and also uses predefined rules to handle
safety, emergency and economical issues. The rules learnt from user behaviour are dy-
namic and they can be added, removed or modified whenever the behaviour of the user,
or the environment, changes. The different rule sets are handled by fuzzy logic con-
trollers. The learning is based on negative reinforcement and occurs whenever the user
expresses dissatisfaction by changing the actions that the embedded agent has carried
out. [15, 16]

The recent work related to iDorm has included, for example, creating and coordi-
nating multiple embedded agents in the dormitory that handle their own related sets
of rules [17, 18]. There has also been work regarding the use of genetic algorithms in
optimising the search for solutions [18, 19]. In addition to the simulation results, there
have been a few real-data experiments including an inhabitant or even many inhabitants
living in the dormitory [15, 17, 18].

17

2.2.4. ThinkHome

In a recent paper, Reinisch et al. [20] proposed a concept called ThinkHome to apply
artificial intelligence to smart homes with the aim of reducing energy consumption. It
includes a knowledge base (KB) that stores data about the environment in ontology
form and a multi-agent system (MAS) that contains specific agents for different tasks.
There are, for example, a user preference agent and a KB interface agent that delivers
the information from the KB to the other agents. A group of mandatory agents is de-
fined to make the ThinkHome environment work. ThinkHome is still in the conceptual
phase and there are no actual implementations yet.

There are two agents in the systems that may contain learning capabilities in
ThinkHome [20]. There is a control agent that uses certain strategy to decide on the
optimal adaptations. These adaptations are made according to simple predefined rules
or a machine learning technology can be used to obtain them. The other agent said
to contain learning capabilities is the user agent which is responsible for delivering
user preferences to the environment. It should be able to learn the habits and preferred
environmental conditions of the user. Although not explicitly defined in the paper to
contain learning capabilities, the context inference agent could also use machine learn-
ing to enhance its operation. As the name suggests, its purpose is to identify contextual
information like situations and locations and the identities of the users.

2.2.5. Other projects

There are also many other projects containing some aspects of smart environments.
The Oxygen project at the Massachusetts Institute of Technology (MIT) [21] and
IBM’s DreamSpace [22] focused on creating new, more natural ways of interacting
with the environment. Philips’s ExperienceLab is a research facility which has its main
emphasis on following the behaviour and reactions of the test participants when inter-
acting with the smart environment [23]. Microsoft’s EasyLiving [24] project aimed to
aggregate diverse input/output (I/O) devices so that they could be used seamlessly and
dynamically.

The PlaceLab [25, 26] is a joint initiative of the House_n research group at MIT and
a technology processing and commercialisation company called TIAX, LLC. It is a
residential building equipped with a large number of sensors including microphones,
cameras, sensors sensing the state of doors and drawers and positioning sensors. The
goal of the PlaceLab is to allow researchers to systematically test and evaluate tech-
nologies in a natural setting using volunteer participants. There has been work on
developing activity recognition algorithms which are trained and tested using datasets
gathered from the PlaceLab [27]. In this particular experiment, decision trees were
trained using annotated sensor readings for activities.

18

2.2.6. Summary

In Table 1 the projects described in this chapter and the machine learning uses in them
are summarised. As can be seen, MavHome has the most identified uses of ML, which
is because it was the most focused on using machine learning in the smart home.

The used solutions to the machine learning problems within these projects are pre-

sented at the end of the next chapter.

Table 1. ML uses in existing SE projects.

Project

ML uses

ACHE

State prediction
Set-point generation
Device regulation

MavHome

Activity pattern detection
Activity prediction

Episode membership recognition
Environment model creation
Anomaly detection

iDorm

User-behaviour learning

ThinkHome

Decision making
User-behaviour learning

PlaceLab

Activity recognition

19

3. Machine Learning

This chapter will present some background about general machine learning paradigms.
First, the need for prior information about the problem is summarised, then some gen-
eral definitions and classifications of machine learning systems are presented. After
that the Bayesian framework for machine learning is briefly introduced. The next sec-
tion presents some different data presentations and supervised algorithms, then the
concepts of reinforcement learning and unsupervised learning as well as some other
relating areas are presented. Lastly the uses of machine learning techniques in smart
environment projects and related problems are described.

This chapter aims to be an introduction to machine learning and to help in choosing
and understanding suitable methods for given problems. The problems in this case are
the potential uses of machine learning described at the end of this chapter and in the
next chapter.

3.1. Prior Knowledge in Machine Learning

There are many different machine learning algorithms but none of them can be said
to be better than any other according to two famous theorems. The No Free Lunch
Theorem states that if there is no prior information about the problem, any two algo-
rithms may perform equally well in solving the problem: there are problems where a
constant or random output performs better than another more complex approach. If an
algorithm performs well in one problem, there must be another problem in which it
will perform badly. According to the Ugly Duckling Theorem it is impossible to say
that any two different patterns would be more similar to each other than any other two
(an ugly duckling and a beautiful swan are as similar to each other as are two beautiful
swans as long as the swans differ somehow). As a result, there must be some prior
knowledge (or good guesses or assumptions) of the problems in order to be able to
measure similarity. [28]

These prior assumptions about the problem are sometimes called the inductive bias.
Every algorithm has some kind of inductive bias implicitly added to the problem: it
can be, for example, preference for the simplest possible representation that classifies
the training data correctly. [7]

3.2. Definitions

A machine is said to learn if its performance at some defined task or tasks improves
with experience. In other words, the machine or the system can change itself so that it
does the same task or tasks better (or more efficiently) next time. [7, 29]

A hypothesis is an instance that belongs to a hypothesis space. A hypothesis space
consists of all the possible representations for solving a problem, for example all pos-
sible weights of a neural network or all possible combinations of instances in concept
learning. The problem for machine learning is to find the correct (or an approximately
correct) hypothesis from the hypothesis space. [7, 28]

20

The task of inferring a boolean-valued function from examples belonging, or not
belonging, to a concept is referred to as concept learning. Many algorithms for con-
cept learning use a general-to-specific ordering of hypotheses. Hypothesis h; is more
general than hypothesis 5y if all instances that are classified as positive by hs are also
classified as positive by /1. So the most specific hypothesis classifies all instances as
negative and the most general hypothesis classifies all instances as positive. [7]

There are at least two different classes of problems for which machine learning tech-
niques are used. In classification problems the task is to classify an instance into one of
a discrete set of possible categories. In regression problems the aim is to approximate
a real-valued target function. Concept learning is a special classification problem in
which there are two distinct classes. [7]

Overfitting is a central problem in machine learning. It means that the system learns
the training examples ‘too well’ so that it performs less well when it is used with data
that are not in the examples. Figure 3 is an example of a classification situation where
overfitting may occur. The dots represent training examples from two different classes
(squares and diamonds). They are represented with two attributes, the values of which
are shown on the x- and y-axes. When a classifier learns the classifying function so that
it takes all the training examples into account, it gets a complex function that classifies
all the training examples correctly (the thin line). However, when the classifier is
used in real situations, a simpler function (the thick line) may classify more instances
correctly. [28, 7]

Figure 3. Training examples with an overfitted (thin line) and a desired (thick
line) classifier.

3.3. Different Machine Learning Systems
Machine learning systems can be classified in many ways. In this section three clas-

sification dimensions are presented: learning strategies, representations of knowledge
and application domains. [29]

21

The following learning strategies are arranged by the amount of inference needed
by the learner: rote learning, learning from instruction, learning by analogy, learning
Jrom example and learning from observation and discovery. Rote learning means that
there is no inference by the learner needed: it should only memorise the things as they
are. Learning from instruction requires the integration of both new and prior knowl-
edge. Learning by analogy requires some modification of the gathered knowledge to
new situations. Learning from example is perhaps the most common used in research:
the learner induces a general concept description from the given examples. Learning
from observation and discovery (or unsupervised learning) needs most inference by
the learner: no external teacher is present. [29]

There are many different possibilities in what type of knowledge the learner ac-
quires. Some examples are: parameters in algebraic expressions, decision trees, for-
mal grammar, production rules, formal logic-based expressions, graphs and networks,
frames and schemas, procedural encodings and taxonomies [29]. The machine learn-
ing techniques presented in Section 3.5 are based on this kind of classification.

Learning algorithms have been applied to many different application domains, for
example, to speech recognition, cognitive modelling, expert systems, natural language
processing, music, sequence prediction and robotics [29]. The decision regarding
which learning method to use is commonly made considering the application for which
it is to be used but choosing an appropriate method is not always straightforward [30].

It is also possible to classify machine learning in three sub-sets using dependency
on the teacher [28]. In supervised learning a teacher gives a set of labelled training
examples from which the learner should generalise a representation. In unsupervised
learning no information about the input is given and thus the system cannot know
anything about the correctness of the outcome. The used algorithm forms clusters
from the input data in a ‘natural’ way. Reinforcement learning lies between the two.
No desired output is given, but the algorithm gets to know if the final output is correct
or not. An example of this is an agent learning to play chess: it does not get feedback
after every move but only receives the result of the game. Some supervised learning
techniques are presented in Section 3.5, reinforcement learning is discussed further in
Section 3.6 and unsupervised learning is introduced in Section 3.7.

3.4. Bayesian Reasoning

Bayesian reasoning is a probabilistic approach to pattern classification and machine
learning. It provides a basis for many other learning algorithms and works as a frame-
work for analysing the operation of other algorithms. In this approach the known (or
guessed) prior (or a priori) probabilities and likelihoods of events are used to calcu-
late the posterior (or a posteriori) probabilities. The basic formula used in Bayesian
reasoning is called the Bayes theorem or Bayes formula:

p(x|w;) P(w;)
p()

in which w is called the state of nature, the class to which the pattern is to be classified.
The symbol x denotes the feature vector that is used when classifying the samples.
P(wj) is the a priori probability, p(z|w,) is the likelihood (that a sample of the class

P(wj|z) = (1)

22

w; has feature vector) and P(w;|z) is the a posteriori probability. p(x) is called
evidence and it scales the shift from an a priori to a posteriori probability according to
the probability of z. This can be written as

p(x) = Zp(m\wj)P(Wj) (2)

when there are c different states of nature (categories). [28, 7]

If the parameters for the Bayes theorem are known it gives the exact probability of
the class. However, often it is not feasible to compute the needed probabilities. Even in
these cases Bayesian reasoning gives a way to analyse and understand the operation of
other algorithms. There are also other algorithms that are directly based on Bayesian
reasoning. [7]

3.5. Supervised Learning

In this section some of the best known supervised machine learning algorithms are
discussed. The algorithms are organised by the way in which they represent the data
they use in operation.

3.5.1. Naive Bayes model

In the Bayes theorem (Equation 1) the likelihood p(x|w;) is often difficult to determine
and computationally unfeasible. Therefore it is often simplified with an assumption
that the different features in the vector are conditionally independent of each other and
depend only on the state of nature w;. So the likelihood can be written as:

n

plrlw;) = [[plailw)) 3)

=1

where z; is the 7:th feature in the feature vector x. This simplification is known as the
naive Bayes rule. [7, 28]

The naive Bayes (NB) classifier is a very simple classifier. In the training phase
it calculates the needed statistics (w;) and p(x;|w;) from the training data for every
class w; and feature x;. Then it classifies the data by calculating the probabilities of
different states using the Bayes theorem and the naive Bayes rule. The NB classifier
often works surprisingly well in practice. [7]

3.5.2. Decision trees

A decision tree is a representation of a learnt discrete-valued target function. Each
node specifies a test of an attribute and each branch of a node corresponds to one value
of the attribute. When an instance is classified, the attribute of the root node is tested
and the corresponding path is followed. This is repeated for every subtree until a leaf

23

node (the classification) is reached. Decision trees are used, for example, to classify
medical patients by their disease and equipment malfunctions by their cause. Generally
decision trees are useful for problems with the following characteristics: [7]

e The instances are represented by attribute-value pairs.

e The target has discrete output values.

e The training examples may contain errors.

e The training data may contain missing attribute values (unknown values).

A basic algorithm for learning decision trees, ID3, constructs them from top to bot-
tom by calculating the information gain of every attribute and thus always tries to
find the attribute that best classifies the training examples [7]. An example of other
algorithms for training decision trees is ID3’s successor C4.5 [31]. A slightly newer
approach is Random Forests [32]. This uses many decision trees initialised with ran-
dom vectors and lets them vote for the result.

3.5.3. Linear discriminant functions

Linear discriminant functions determine a hyper-plane called a decision boundary. The
decision boundary separates the different decision regions in the feature space. The
linear discriminant function can be written as:

d
g(z) = wo + Z WiT; 4
=1

where w; are the components of the weight vector w and z; are the input feature com-
ponents. This function can be generalised by writing:

d
g9(z) = awi(x) = a'y (5)
=1

where a; are the weight vectors and y; are arbitrary functions of x, sometimes called ¢
functions. Function 5 is no longer linear in x but is linear in y. If d > d the function
makes a mapping to a higher-dimensional space. This allows it to discriminate classes
that are linearly inseparable in the initial feature space, although this comes at the cost
of more complex computations. [28]

Perceptrons

Perceptrons are very simple linear discriminant functions that can be used as a basis to
create the basic units of artificial neural networks. A perceptron calculates the linear
combination of a vector of real-valued inputs and then outputs 1 if the result is greater
than a certain threshold and —1 otherwise. The output o(z, . .., z,) is computed by

1 if Z?:O w;x; >0
—1 otherwise

o(xy,...,x,) = { (6)

24

in which z; is an input, and w; is the weight of the input. The value of x is always 1 and
—wy 1s the threshold value of the perceptron. The summation can also be represented
as the dot product of the input and weight vectors: Z?:o w;x; = W - Z.[7]

A single perceptron can be used to classify patterns that are linearly separable which
means that it must be possible to separate them with a hyper-plane with an equation of
w-& = 0. A perceptron can be used to represent the primitive Boolean functions AND,
OR, NAND and NOR, which can be used to create a network to represent any Boolean
functions. For example, the XOR function (which is an example of linearly inseparable
classes) can be implemented with the AND, NAND and OR functions, which requires
three perceptrons. [7]

The simplest training algorithm for perceptrons is the perceptron training rule,
which changes the weight associated with an input towards the desired output:

w; < w; +n(t — o)z, (7)

where ¢ is the target output, o is the output generated by the perceptron and 7 is a
positive constant, the learning rate. The value of the learning rate is usually quite
small or decreases as the number of iterations increase. The perceptron training rule
works when the training examples are linearly separable. [7]

Support vector machines

Support vector machines (SVMs) are linear discriminant functions that map the feature
space to a higher dimension. Training an SVM causes it to find the optimal hyperplane
which has the maximum distance from the nearest training patterns, called support
vectors. This is expected to give more generalisation capabilities to the SVM. [28]

Training an SVM requires choosing the ¢-functions that map the input to a higher-
dimensional space and using, for example, quadratic programming optimisation tech-
niques to find the optimal hyper-plane. The ¢-functions are often chosen using the
designer’s knowledge of the problem domain. Training an SVM is quite efficient and
they can represent complex non-linear functions. [28, 33]

3.5.4. Artificial neural networks

Artificial neural networks (ANNs) are a practical way to approximate real-valued,
discrete-valued and vector-valued target functions. ANNSs are useful in many applica-
tions such as speech recognition, visual scene interpretation and robot controls. ANNSs,
using a training method called Backpropagation, are appropriate for problems with the
following characteristics: [7]

e Instances are represented by many attribute-value pairs.

The target function may be real-valued, discrete-valued or vector-valued.

The training examples may contain errors.

Long training times are acceptable.

Fast evaluation of the target function is required.

25

e The learnt target function does not have to be understandable by humans.

ANNSs consist of sets of simple units that take a number of real-valued inputs and
produce a single real-valued output. The units are inter-connected, so the output of one
unit can be an input for another unit. The units with output that is not visible outside
the network are called hidden units. The network can be cyclic or acyclic and directed
or undirected but the majority of applications use directed acyclic ANNSs. [7]

The units of ANNs can be, for example, perceptrons as described earlier. However,
in many applications it is more practical to use other types of units. Examples of these
are linear units or unthresholded perceptrons with output that is a linear combination
of inputs and sigmoid units where the output o is:

0o=o(W-7) (8)

where 0 is the weight vector, Z is the input vector and:

1

T l4e)

a(y)
in which the variable k determines the steepness of the function curve. Linear and
sigmoid functions are differentiable and therefore it is possible to train them using a
gradient descent to adjust the weights so that the errors are reduced most. [7, 34]

There are three different classes of neural network architectures. The single-layer
feed-forward network is the simplest form of an ANN. It has an input layer of source
nodes that does no computation but delivers the inputs to the output layer of neurons.
Figure 4a is an example of an ANN of this type. In multi-layer, feed-forward networks
there are also layers of hidden units. This kind of network can extract higher-order
statistics as opposed to single-layered ones. An ANN is said to be fully connected if
every node in each layer is connected to every node of the next layout. Otherwise it is
said to be partially connected. Figure 4b shows an example of a fully-connected, two-
layer ANN. The third class, illustrated in Figure 4c, is recurrent networks which have
feedback loops. The feedback loops involve unit-delay elements (' in the figure)
which can result in non-linear dynamic behaviour. [34]

Perhaps the best-known training algorithm for neural networks is backpropagation.
This can be used to train a network with a fixed set of units and connections. In the
training phase the training examples are fed into the network and the error terms for the
units are calculated. The calculations are made starting from the output units so that
the error of the output is propagated to the previous layers in proportion to the weight
of the connection. The weights are then updated to minimise this error. [7]

Although backpropagation is the most widely known algorithm in neural networks,
there are also other possible learning algorithms. For example, Cascade-Correlation
doesn’t train a network with fixed topology but it does add new hidden units to the
networks while training. The weights of the added units are not changed afterwards,
but the output unit weights are changed repeatedly. This algorithm learns very quickly
and there is no need to determine the number of hidden units before learning. [35]

26

3.5.5. Hidden Markov models

Hidden Markov models (HMMs) can be used when making sequences of decisions
in cases where the decisions in time ¢ depend on the parameters in time ¢ — 1 [28].
HMMs are widely used, for example, in speech recognition and gesture recognition
applications [28]. An HMM has a finite number N of states Q = {¢;}. At each time
t a new state is entered depending on the state transition probability A = {a;;} of the
previous state. At each state the HMM produces an output symbol from the symbol set
V' = {wy} according to the observation probability distribution B = {b;; } of the state.
An HMM is defined by these two probability distributions and initial state probability
distribution 7 = {m;}. The state of an HMM is not directly observable but it can be
deduced using the observed symbols and probability distributions. [36]

There are three key issues or ‘problems’ in HMMs that must be solved in order to
use HMMs in real applications. The first is the evaluation problem: Given the HMM,
determine which is the probability that a particular observation sequence has been
produced by the HMM. Secondly, there is the decoding problem: Given the HMM
and the observations, determine the most likely sequence of states that created the
observations. The last problem is the learning problem: Determine the parameters of
HMM according to a set of training observations to maximise the probability that the
observations are created by that model. There are solutions to each of these problems,
for example, the forward-backward procedure is a solution to the first, the Viterbi
algorithm to the second and the Baum-Welch method to the third. [36, 28]

(@) A single- (b) A multi-layer feed- (c) A recurrent network.
layer feed- forward network.

forward net-

work.

Figure 4. Different neural network types.

27

Figure 5 shows a simple HMM with three states) = {q1, ¢2, g3} and three obser-
vation symbols V' = {vy, vy, v3}. The corresponding probability distributions are A =
{a11, a12, a13, az1, age, ass, asi, ass, ass}, B = {bi1,bia, big, bar, bag, ba3, b3y, bsa, bss}
and m = {my, Mo, w3 }.

Figure 5. A simple HMM.

3.5.6. Instance-based learning

Instance-based learners do not create a new representation of the training data, they
just store the data. The calculation is done when a new instance needs to be classi-
fied. Instance-based learners need much more storage space than other learners and
may need much calculation in the classification phase. An advantage is that each new
instance can be classified locally by only taking into account the training samples that
are needed. Instance-based learners are sometimes called lazy learners. [7]

k-Nearest-Neighbour learning

k-Nearest-Neighbour learning is perhaps the simplest instance-based learner there is.
All training and classification instances must correspond to points in an n-dimensional
feature space R" so that an instance is described by the feature vector

(a1(x),az(x), ..., an(x))

28

where a,(x) is the value of the r:th feature of the instance x. The Euclidean distance
d(z;, ;) of two instances xz; and z; is

n

d(wizs) = | D (ar(xs) = ar(;))?. (10)

r=1

The k-nearest neighbour algorithm finds the &k nearest instances to the classification
instance from the training set and gives the most frequent value of them to the classifi-
cation instance. The value k is usually a small odd number, for example three. [7]

3.5.7. Genetic algorithms

Genetic algorithms (GAs) are a set of learning algorithms that operate with popula-
tions of hypotheses which are used to generate new generations of population. Genetic
algorithms are motivated by biological evolution and they use operations such as ran-
dom mutation and crossover to change the hypotheses. The information for GAs is
typically expressed as bit strings. For example decision trees can be encoded as bit
strings: so genetic algorithms can be used to train decision trees. [7]

The use of GAs requires finding the best hypothesis from the current population.
This is made with a fitness function that estimates the fitness of a hypothesis. Some of
the most effective hypotheses are typically moved to the new population intact while
the others are used to create a new offspring of hypotheses by using crossover and mu-
tation operations on them. Genetic algorithms have been shown to be able to produce
results comparable to other machine learning methods. [7]

3.5.8. Learning rules

Rules are very easy for people to read and understand. It is possible to, for example,
train a decision tree and interpret it as a set of rules or search a satisfying rule set
using genetic algorithms. However, there are also algorithms that directly learn the
rule sets. They have two advantages compared to the previous methods: they can learn
first-order rules which are more expressive than propositional rules and they can grow
the rule set incrementally, one rule at a time. [7]

3.5.9. Summary of supervised machine learning methods

This section summarises the methods that are described above and some general char-
acteristics of different representations and algorithms are given. The summary is based
on this chapter and other literature [37, 38, 28].

Input data type: The input data (or feature values) can be discrete or continuous.
Neural networks and SVMs usually perform well with continuous features and
decision trees, rule learners and naive Bayes classifiers are good for discrete
features. Instance-based learners are typically not directly suitable for discrete
features.

29

Output data type: Neural networks can produce discrete-valued, real-valued and
vector-valued outputs. Decision trees and naive Bayes classifiers produce only
discrete-valued outputs.

Amount of training data needed: Neural networks and SVMs usually need a large
amount of training data to learn while naive Bayes classifiers need only a rela-
tively small data set.

Overfitting: Algorithms with few parameters to adjust tend to be less likely to overfit
their behaviour. Neural networks, SVMs and decision trees are more vulnerable
to overfitting than naive Bayes classifiers.

Multi-collinearity and non-linearity: Decision trees perform less well than artificial
neural networks when the input data are highly correlated. ANNs can find a so-
lution even when there is a non-linear relationship between the input and output
features. HMMs can be used when temporality must be also considered (when
the outputs also depend on the previous decisions).

Training time: The naive Bayes classifier trains very fast because it only needs a
single pass on the training data. Decision trees are also quite fast to train but
neural networks and SVMs are usually very slow. Instance-based learners need
no training. Genetic algorithms usually need a large number of iterations in order
to find suitable solutions.

Storage space: Most of the representations described in this thesis create a simplified
model of the training data and usually do not require much storage space in the
execution phase. Instance-based learners do not analyse the data until the result
is needed, so they need to have all the training examples in the memory.

Missing feature values: In decision trees, neural networks and instance-based learn-
ers the missing values must be estimated or whole examples must be dropped
from the training data whereas naive Bayes classifiers are able to simply ignore
the missing values.

Irrelevant feature values: Neural networks and ANN are very sensitive to irrelevant
features and their presence can make using these techniques impractical.

Noisy feature values: Rule learners and decision trees tolerate some noise on feature
values because of their pruning techniques whereas kNN struggles with noisy
values.

Number of parameters: If the model has less tunable parameters it is easier to use
and understand but more parameters allow better control over the process. Neu-
ral networks and SVMs have many parameters while naive Bayes classifiers have
much less. The instance-based learner kNN only has the k parameter.

Understandability: The operation and results of neural networks and SVMs are dif-
ficult to understand in comparison with decision trees, rule learners and naive
Bayes classifiers. The operation of the NN is very intuitive but the results are
sometimes quite difficult to understand.

30

The characteristics are summarised in Table 2. The columns contain estimated val-
ues for the characteristics of neural networks (ANN), support vector machines (SVM),
decision trees (DT), naive Bayes classifiers (NB), hidden Markov models (HMM), k-
nearest neighbour learners (kNN) and rule-based learners (Rule). In input and output
data types ‘C’ means continuous, ‘D’ means discrete and ‘V’ means vector. The more
stars (“x’) a method has the better it is considered in relation to the feature. For ex-
ample in ‘Amount of training data’ one star means that the model typically needs a
lot of training data to be useful. However, in the case of parameter numbers, bullets
(‘e’) are used instead of stars. The number of bullets indicates directly the number of
parameters: it is not always better that the model has many adjustable parameters.

Table 2. An overview of supervised machine learning methods.

ANN | SVM | DT | NB | HMM | kNN | Rule
Input data type C C D D C C D
Output data type C/D/V| D D D D D D
Amount of training data * * sk | kokskok Kok sokkk | Kok
Overfitting * ok sk | kekok *ok ok ok ok
Multi-collinearity skokok kokk | kok * ok * ok
Non-linearity okokok sokkk | kok * ok * ok
Training time * * kokk | sokokok *ok sokkk | Kok
Storage space skokok kokk | kkok | skekskk | skokok * koK
Missing features * sk | kekk | skokokok ok * Kok
Irrelevant features * sorskok | kokk |k koK * % *%
Noise ok ok Kk | wokk koK * *
Parameters o000 0000 00 (X] 00 [] (X X J
Understandability * * fokk | kskokok Kok sokk | kK

It should be noted that this summary tries to find the characteristic features of meth-
ods and offers quite a narrow view of the area. Different algorithms have different
features and can give better or worse capabilities to a model in some features. For
example, in the case of neural networks (see Section 3.5.4), the Cascade-Correlation
algorithm requires much less training time than backpropagation.

3.6. Reinforcement Learning

In reinforcement learning (RL), a learning agent doesn’t have a training set of correct
actions but must determine them using a reward that it gets from the environment. The
agent can observe the state of the environment and has a set of actions that alter the
state. After every action the agent gets a reward which can be negative, positive or
zero. The agent must learn a policy to achieve its goal, which can be for example to
maximise cumulative rewards. [7]

In reinforcement learning the agent must choose the strategy to follow: it can explore
the environment or exploit the already known states and rewards. There are many
situations in which it is not possible to explore the environment thoroughly and then

31

choose the best paths, for example, when the number of actions that the agent can take
is limited. This problem is called the exploration—exploitation trade-off. [39]

3.6.1. Markov Decision Process

In a Markov Decision Process (MDP) an agent has a set A of actions and can perceive
a set .S of states. At each point of time ¢ the agent perceives the current state s; and
performs the action a,. The environment produces a reward r; = (s, a;) and switches
to the next state s,1 = J(s¢, a;). Both functions r and § may be probabilistic but they
only depend on the state s; and action a;. This is called the Markov property. The
functions are not necessarily known by the agent. The agent should learn a policy
m S — A which is used to select the next action in the current state. The cumulative
value achieved by using policy 7 from an initial state s; can be defined as:

V7T(sy) = r +yri + ’727“t+2 +...= Z ’Yirtﬂ' (11)
i=0

in which the sequence of rewards r.,; is generated by selecting the action given by
the used policy in every subsequent state: a;.; = 7(s;4;). The policy function m may
also have a probabilistic outcome. The constant v (0 < v < 1), the discount factor,
determines the weight of delayed rewards compared to immediate rewards. The value
given by the equation is called the discounted cumulative reward but there are also
other definitions of total reward such as average reward and finite horizon reward. [7]

3.6.2. Learning policies

The optimal policy 7* is the policy that maximises V'™ (s) for all states s. The value
function of the optimal policy in state s is denoted as V*(s). The target is to learn
the optimal policy. There are two different approaches to learning it: model-based and
model-free. In model-based learning a model of the environment is learnt. That means
learning the state transition function d(s;, a;) and the reward function r(s;, a;). When
these functions are known, it is possible to solve the optimal action in every state. In
model-free learning the model of the environment is learnt implicitly when the value
of the different states is learnt. [40, 7]
An example of model-free learning is () learning, in which the @) function:

Q(s,a) =r(s,a) + 7V (d(s,a)) (12)
is learnt for every state-action pair and used to calculate the optimal policy:

7 (s) = argmax Q(s, a). (13)

a

The update rule of the () learning algorithm can be presented as:

~ N

Qn(s,a) « (1 = a,)Qn-1(s,a) + ap[r +ymax Qu_1(s',d)] (14)

32

where Qn(s, a) is the learning agent’s estimate of the () value for state s and action a
in time n, «, is the learning rate in time n and s’ is the new state caused by action a
in state s. () learning is a special case of temporal-difference (TD) learning. Another
similar learning algorithm is SARSA which uses a special exploring rule to choose the
actions to be taken. [40, 41, 7]

These algorithms are guaranteed to find the optimal value when every state-action
pair is visited infinitely. However, there is usually a need to generalise the learnt func-
tions. Therefore a look-up table cannot be used in many real applications but it can
be substituted, for example, with a neural network that learns to estimate the () values
based on the state-action pair. Another way is to use separate networks that take the
state as input and output the Q value for every different action. A third method is to use
one network that takes the state as an input and outputs () values for every action. [7]

3.7. Unsupervised Learning

Unsupervised learning, also called clustering, is a learning method in which there is
no teacher and thus the training samples are unlabelled. Of course this makes the
learning problem much more difficult but there are a couple of situations where using
unsupervised learning is appropriate. Duda et al. list five reasons to use them: [28]

1. Collecting and labelling a sufficiently large set of sample patterns for supervised
learning can be costly.

2. For some problems it is beneficial to use unsupervised learning to find candidate
groups from data before labelling them.

3. Continuous unsupervised learning can improve the performance of a classifier
when the characteristics of patterns change over time.

4. Unsupervised learning can be used to find features which can then be used in
categorisation.

5. Applying unsupervised learning in new data can give some insight to its structure
and aid in its analyses.

There are quite a large amount of algorithms commonly used in unsupervised learn-
ing, some of which are based on supervised-learning algorithms, however, their de-
scriptions have been omitted from this thesis. A good source of information on this is,
for example, Duda et al. [28].

3.8. Research Areas that are Based on Machine Learning

Machine learning techniques are also used in other research fields. They can serve as
an alternative solution to problems that can also be solved with, for example, statistical
analysis. In this section two such fields, namely data mining and anomaly detection,
are briefly introduced.

33

3.8.1. Data mining

Data mining is a separate research area from machine learning. However, machine
learning techniques have a significant role in data mining and therefore it is worth men-
tioning. In addition, data mining is used in some existing smart environment projects.

The research area of data mining concentrates on finding useful information from
large sets of data. Data mining is a multi-disciplinary field that combines results, for
example, from statistics, artificial intelligence, pattern recognition, machine learning,
information theory and data visualisation. The mined information can be for example
correlations, patterns, trends or groups. Data mining is already widely used in many
industries. [42]

Although supervised learning techniques are also used in data mining [42], unsuper-
vised learning is also common [43], however, the uses mentioned in this thesis utilise
unsupervised learning.

3.8.2. Anomaly detection

Anomaly-detection systems are used to monitor some entities in order to detect anoma-
lous behaviour. This is done by comparing the current activities to a previously-created
model of normal behaviour. An alert is created when there is a sufficiently large devi-
ation from the norm. Anomaly detection is used, for example, in intrusion detection
systems. Patcha and Park list some benefits of using anomaly detection in that do-
main. [44]

Anomaly detection systems are capable of detecting insider attacks.

The attacker cannot be certain which activities set off the alarm.

Anomaly detection systems are capable of detecting previously-unknown at-
tacks.

e Normal activity profiles are tailored to each different deployment environment.

However, there are also some drawbacks when using anomaly detection in intrusion-
detection systems: [44]

e The system must be trained before deployment in order to find ‘normal’ profiles.

e [t is challenging to create normal training profiles and inappropriate profiles de-
grade the performance of the detector.

e Anomaly detection systems typically generate false alarms quite often.
e Specific alarms can be difficult to associate with the events that trigger them.

e Malicious users can gradually train the system to accept anomalous behaviour
as normal.

34

The techniques used in anomaly detection are known from the fields of statistics, ma-
chine learning and data mining. Both supervised and unsupervised machine learning
methods can be used to train anomaly detectors. Examples of the techniques used are
Bayesian networks, hidden Markov models, decision trees, genetic algorithms, neural
networks and clustering techniques. [44]

3.9. Machine Learning in Existing Smart Environment Projects

This section describes the use of machine learning in the existing smart environment
projects mentioned in Section 2.2 in more detail, concentrating on the machine learning
techniques chosen to solve the problems in them. In addition, some solutions to similar
uses from different sources are described in order to find different approaches to the
same problems. The uses of ML with already-used methods are summarised in Table 3.
The classification of the uses is based on the identified uses in Table 1.

Table 3. ML problems in existing SE projects and example methods for solving
them.

Use ML Methods (Project or Author)
Event prediction Neural networks [2]
Statistical model learning [11]
Rule learning [45, 46]
Genetic algorithms [46]
Hidden Markov models [47]

Latency prediction Artificial neural networks [48]
Activity pattern identifi- | Data mining [11, 45, 47, 49]
cation

Activity recognition Decision trees [26]

Hidden Markov model [50]
Conditional random fields [50]
Naive Bayes classifier [51]

Anomaly detection Data mining [13]

Device control Neural networks [2]
Reinforcement learning [2, 52]

Decision making Neural networks [2]

Reinforcement learning [11, 2, 53]
Hidden Markov model [11]
Rule learning, genetic algorithms [15]

3.9.1. Event and latency prediction

Event prediction was used in both the ACHE and MavHome systems. In ACHE neu-
ral networks were used to predict the subsequent state of the environment [2]. In

35

MavHome a statistical model that calculates the probabilities of different events (or
episodes) was created [11].

There are also other approaches to event prediction. Vilalta and Ma [45] used an
algorithm that learnt rules which were then used in predicting events. Weiss and
Hirsch [46] used also rules for event prediction. Their rule set was learnt by using
genetic algorithms. Laxman, Tankasali and White [47] used hidden Markov models
trained using different episodes and related target events. These models were then
used to find the likelihoods of the target events after the episodes.

Although not within smart environment domain, Ipek et al. [48] have created a well-
performing solution to predict single programme execution time based on the inputs on
one machine with only a negligible amount of noise caused by other processes. They
used an artificial neural network for the problem. However, even such a simplified
scenario required thousands of programme training runs to create a good model.

3.9.2. Activity pattern identification

In many cases, the training data for event predictors is created using a data-mining
algorithm. In MavHome this algorithm is used to find activity patterns from sensor
readings [11]. Vilalta and Ma [45] also used data mining to find sequences of events but
the target events to be predicted were predefined. Laxman et al. [47] found the training
values for the hidden Markov models using data mining. This kind of frequent-pattern
mining has also been used in areas other than smart environments, for example, Han et
al. [49] did a survey about technologies and uses for frequent-pattern mining.

3.9.3. Activity recognition

In an experiment within the PlaceLab [26] decision trees trained with the C4.5 algo-
rithm were used to recognise activities. In addition to that, Van Kasteren et al. [S0] have
tested the suitability of hidden Markov models and conditional random fields (CRFs)
in recognising activities. The CRFs used in the experiment are a probabilistic model
that quite closely resembles HMMs, with the difference that the state transition prob-
abilities are not represented as conditional probabilities but as potentials between two
states. The experiments were done using a self-annotated data set with seven different
activities to recognise and the apartment contained 14 digital state-change sensors. The
results of the experiments showed a time-slice accuracy (the ratio of correct classifica-
tions to all classifications made) of about 95 % for both methods and a class accuracy
(the average accuracy for all different classes) of 70-80 %.

Miihlenbrock et al. [51] used a naive Bayes classifier to detect activities. They used
discretised sensor readings and other information such as the time of the day to detect
one of the predefined activities. Their activity detector produced good results in simple
cases where the activity induction from the inputs was quite straightforward.

36

3.9.4. Anomaly detection

MavHome also used anomaly detection. Jakkula, Crandall and Cook used temporal
data mining on the observed activities in order to calculate the probabilities for the
relations of events. When the probability of an event occurring is very small within a
given time it is considered an anomaly. Similarly, if an event does not occur although
its probability is high, it is considered an anomaly. The goal of their work is to support
elderly people living at home for longer. Anomaly detection can help in this situa-
tion, for example, by notifying the system if the inhabitant has not taken the required
medicine or has forgotten to switch off the stove. [13]

3.9.5. Device control

The ACHE system used neural networks and reinforcement learning to control de-
vices [2]. This allowed the device controllers to learn how to achieve the target condi-
tions, for example a target temperature.

Hafner and Riedmiller [52] used reinforcement learning to train a robot to allow fast
and accurate control at arbitrary speeds. The robot had three omni-directional wheels
arranged in a triangular shape and the problem was how to control them. They used
a basic Q-reinforcement learning algorithm fitted to neural networks called Neural
Fitted Q (NFQ). The system was able to control the wheels fast and accurately even
when changing loads after less than five minutes of interaction with the robot.

3.9.6. Decision making

In the ACHE system the set-point generators were responsible for making decisions
about controlling the devices. They used neural networks to create a model which was
used to determine the target value of the controller or reinforcement learning to find
the correct values directly. [2]

In MavHome the decision-making component used reinforcement learning with a
temporal-difference learning algorithm. The model of the environment learnt by the
decision maker was based on hidden Markov models. [11]

The iDorm learnt rules to find optimal actions in perceived states. The learning
was based on reinforcement learning and the trigger for changing the rules was neg-
ative feedback from the user. For finding optimal rule sets genetic algorithms can be
used. [15]

Prothmann et al. [53] have created an organic traffic control architecture which uses
a rule-based, reinforcement-learning system to find the most effective way to control
traffic lights in different situations. Their simulation results showed that this kind of
architecture and learning system can substantially improve vehicle throughputs at busy
intersections.

37

4. Model for Using Learning in a Smart Environ-
ment

This chapter describes a model for using machine learning in a smart environment.
First, the Smart-M3 inter-operability platform used in this thesis as a platform for cre-
ating applications to smart environments is described. After that the machine learning
uses described in the previous section are further elaborated and the model is created
based on them. The use of the model in an environment using the Smart-M3 IOP is
also discussed.

4.1. Smart Environment Inter-operability Platform

Devices and applications can inter-operate at a device level, service level and infor-
mation level. Device-level interoperability gives devices the means to communicate
and network with each other, for example antennas and TCP/IP protocol suite provide
this kind of inter-operability. Service-level inter-operability technologies such as Uni-
versal Plug and Play (UPnP) and Network on Terminal Architecture (NoTA) can be
used to discover and use different services provided by other devices. Smart-M3 IOP
(also referred to as M?) promotes information-level inter-operability in which the aim
is to provide information without a need to know about interfacing methods to other
entities. It can be used, for example, on top of NoTA or TCP/IP. [54]

Smart-M3 IOP defines a scalable producer—consumer infrastructure and a common
information representation format. Different applications (which can be located in
different devices) in the same application domain use a common predefined domain-
specific ontology which defines the structure of the information they provide and use. If
information is all the applications need, Smart-M3 IOP is a lightweight way to achieve
inter-operability. For example, a simple application that shows the current outdoor
temperature needs only the temperature information from the temperature sensor and
perhaps the location information of the sensor. However, many devices also need inter-
operability at lower levels. An example of this could be a counter application that
counts visitors in a shopping area using video stream from a doorway [55]. In that
case the device with the camera provides a service and the visitor counter uses the
service. Smart-M3 IOP can be used to discover the service but the applications must
still inter-operate at the service level and use a common video-streaming protocol.

4.1.1. Inter-operability in the Smart-M3 IOP

Smart-M3 IOP follows the blackboard architectural style combined with the publish—
subscribe paradigm. The information-level view of Smart-M3 IOP is shown in Fig-
ure 6. The Semantic Information Broker (SIB) is the backbone of Smart-M3 IOP: it
contains the information-sharing database and offers an interface to access and modify
the information within. Knowledge Processors (KPs) can produce, modify or remove
information in the SIBs. They can also subscribe to certain information in order to get
a notification when it changes. The communication between KPs and SIBs is made

38

Figure 6. An information-level view of Smart-M3 IOP.

using a Smart Space Access Protocol (SSAP) which defines possible operations in
the smart space. Table 4 shows these operations as described by Soininen et al. [5].
Different KPs and SIBs can be run in different processes or devices. A KP can be
simultaneously connected to many SIBs and SIBs can be distributed.

A common understanding between knowledge processors is achieved using prede-
fined ontologies. An ontology is a ‘specification of a conceptualisation’ and it defines
a shared vocabulary, relationships between concepts and meanings and inference rules
for them [56]. The standard language to represent ontologies is OWL (Web Ontology
Language) [57] which is based on the RDF (Resource Description Framework) [58]
data representation format and RDFS (RDF Schema) [59] language. Using the in-
ference rules and semantics defined in an ontology it is possible to make reasoning

Table 4. SSAP operations.

Name Description

Join Begins a session between KP and SIB

Leave Terminates the session

Insert Inserts information into the smart space

Remove Removes information from the smart space

Update A combination of the remove and insert operations

Query Queries information within the smart space

Subscribe Sets up a persistent query

Unsubscribe Terminates a persistent query

Results indication Updates the result set of a persistent query

Unsubscribe indication Notifies a knowledge processor of a smart space ini-
tiated termination of its subscription

Leave indication Notifies a knowledge processor of a smart space ini-
tiated termination of the session

39

over the information and define mappings between different ontologies. In this case,
reasoning means inferring information that is not explicitly defined in the database.

The RDF data representation format requires that all statements can be represented
as triples which consist of a subject, a predicate and an object. An object can further
be used as a subject in another triple. Therefore a collection of RDF statements can
usually be presented as a set of directed, labelled graphs in which nodes are subjects
and objects while predicates are represented as arcs. A node can be a URI (Uniform
Resource Identifier, a standard syntax for defining identifiers) reference, a literal or a
blank node. All predicates are URI references. A URI identifies a physical or abstract
concept and one URI should be used to refer to only one thing. A blank node is an
unnamed node that can be used as a subject or an object similarly to a URI reference,
the only difference is that blank nodes are unnamed. A literal is used to identify values,
for example numbers or ages. They are only used as objects in RDF. More information
about RDF can be found in the W3C recommendation [58].

The reference implementation of Smart-M3 IOP [60] uses Wilbur library [61] in
the SIB. It supports reasoning for an extended version of the RDFS language called
RDFS++ when Wilbur Query Language queries are used [61]. If normal template
queries defined in SSAP are used there is no reasoning support on the SIB side and
thus it can be thought as only an RDF triple store.

4.2. Potential Uses of Machine Learning in a Smart Environ-
ment

In Section 3.9 the uses of machine learning in existing projects were summarised. This
section aims to discuss their applicability to be used in a smart environment, especially
in one using the Smart-M3 IOP.

The seven machine learning uses identified in the Section 3.9 can be further divided
into four categories. Event prediction and latency prediction are prediction problems
in which the goal is to create a model that can be used to decide on the most probable
subsequent event. Activity recognition has some similar characteristics to the predic-
tion from the machine learning perspective but here it is categorised as a recognition
problem. It has the same goal of finding the most probable output, but it tries to recog-
nise the current situation, not to predict coming ones. Activity-pattern identification
and anomaly detection are defection problems in which the goal is to detect patterns
occurring in the input data. These problems are typically solved using unsupervised
learning techniques. The last category is optimisation problems which contains device
control and decision-making problems. In these problems the goal is to find a policy
that is optimal in the current situation.

The following subsections discuss these problems and how they fit into an environ-
ment using Smart-M3 IOP. Since inter-operability in Smart-M3 IOP is achieved using
ontologies, the requirements for the used ontologies are also summarised here.

40

4.2.1. Detection

Detection uses for machine learning are, in some cases, supplementary solutions to the
same problems that are solved using recognition algorithms. Detection problems are
typically solved using data-mining algorithms. While recognition algorithms require
the explicit labelling of training examples, data-mining algorithms divide the training
instances into classes according to algorithm-specific criteria. Use of these algorithms
can reduce the amount of work that would be done in labelling training examples for
recognition algorithms. However, since the machine does not really know the seman-
tics of the detected situations it may be more challenging to make conclusions based on
these situations. For example predefined, rule-based reasoners cannot be used without
mapping the detected situations to actual labels.

Anomaly detection is a special case of situation detection when the events are di-
vided into two classes: normal and anomalous. This method could also be substituted
with a recognition (concept learning) algorithm but the main advantage of anomaly
detection, namely the detection of novel anomalies, would be lost.

As the name suggests, data-mining algorithms need a large amount of data to pro-
vide good results. To use data mining in Smart-M3 IOP environment ontologies must
provide sufficient additional information about the data. For example the time of the
observation is usually necessary to find observations that occur in the same time frame.

4.2.2. Recognition

Recognition problems are classification problems that are handled with supervised
learning techniques. The most straightforward way to utilise recognition algorithms in
a smart environment is to train the agent before deploying it to the environment. Online
training in the environment is difficult because agent training requires labelled training
examples and they are usually not available at runtime. However, in some cases it may
be possible to get or deduce them if the output is right or wrong and thus improve the
operation accordingly using, for example, reinforcement learning techniques.

The ontologies for the information that the recognition agents use must be defined
but there are no special requirements for the design of the ontology. There must, of
course, be a way to connect pieces of information that relate to the same activity so
that the recognition can be based on this information.

4.2.3. Prediction

Common to all prediction problems is that their goal is to predict what is going to
happen in the near future. The inputs for the predictors are not necessarily direct sensor
readings but they can be pre-processed. Prediction problems can be classification or
regression problems. An example of classification problems is event prediction, where
the goal is to predict the most probable event or subsequent activity, while latency
prediction is a regression problem in which the output — the latency value — takes on
continuous values.

41

When prediction agents are used in a smart environment, online training may be
a good approach. For example a latency predictor can obviously measure the actual
latency it was predicting, compare it to the predicted value and improve its future
predictions using the actual value as a training example.

When the predictors have already been trained it can be straightforward to apply
them to Smart-M3 IOP. However, training the predictors using Smart-M3 IOP can
be a more challenging problem. To achieve adaptive behaviour the possibility of using
online training in some applications must exist. This requires that the information used
in prediction can be coupled with the correct prediction output. If the examples are not
removed from the database when new examples occur the pieces of information, for
example sensor readings or statistics calculated from them, must be marked with the
reading or calculation time. Training can be done incrementally or as batch training
using a number of instances. In both cases the labels can be gathered by observing the
environment.

4.2.4. Optimisation

Problems in which there is the possibility of gaining a reward from the environment
and where the goal is to maximise the reward exist within the optimisation category. It
is possible to use reinforcement learning for these problems. Some optimisation prob-
lems can be handled as prediction problems so that the rewards for different actions are
predicted and the action with the highest reward would be chosen. However, the goal
of optimisation problems is to find a policy that maximises long-term performance,
not just selecting the best next action. Therefore an amount of experimenting with
different actions may be advantageous.

Decision making is a good example of an optimisation problem. It requires tak-
ing into account many different variables and solving trade-offs between the benefits
of different areas of the environment. Another example, device control, may not be
present in every environment. It is needed when the devices are given high-level com-
mands and they need to be changed to low-level actuator controls. This may require
some experimentation in order to find the optimal way to control the actuators.

4.3. Interaction of Machine Learning Uses

Figure 7 shows the interaction of the four uses of machine learning. The figure is
created based on the classifications in the previous section and the uses of ML in ex-
isting projects as described in Section 3.9. The arrow starting from the environment
depicts sensor readings and the arrow ending at the environment depicts the control of
actuators. In the figure detection and recognition categories are presented in one box:
these are two different approaches to pre-processing sensor data. The pre-processed
information can be used to predict forthcoming events. These predictions, along with
the pre-processed sensor information, is then used to make decisions about how the
state of the environment should be adapted. These decisions are then used to obtain
the actual commands given to the actuators. The last two phases, decision making and
device control, belong to the optimisation category. As can be seen, machine learning

42

Decision making

~ A

—
—_—
- -

Prediction

A

Recognition/Detection \ Control

N

SMART ENVIRONMENT

Figure 7. A model for using machine learning in a smart environment.

uses form quite a clear loop structure which enables the continuous adaptation of the
application. This loop is called the control loop.

It is worth noting that all these phases can be realised without machine learning.
Pre-processing can calculate some statistical value from the sensor readings. The pre-
diction phase is not mandatory or it can use predefined rules. Decision making can also
be done using fixed rules and control commands can be given directly or mapped us-
ing static mappings so that there is no need to learn them. However, in these instances
there is the potential to achieve some improvement in the behaviour of the environment
using machine learning.

Because Smart-M3 IOP allows the distribution of resources in the environment it is
possible to have different components of the control loop in different devices as long
as they have access to the same SIB. Figure 8 shows an example composition of a
smart application using the control loop. In the figure recognition and detection tasks
are shown as a pre-processor KP and the optimisation category has again been divided
into the decision-making and device-control phases. The monitoring KP simply inserts
sensor data into the SIB.

The figure actually contains three different control loops which define a hierarchi-
cal structure. Devices 1 and 2 both have a low-level control loop in which all the
components are inside one device. Devices 3, 4 and 5 contain the components of a
higher-level control loop that also includes KPs from Devices 1 and 2. Note that this
loop does not directly include any monitoring or controlling KPs, although this would
also be possible. In this application the higher-level control is thought to be control-
ling some parameters of the applications in devices, thus monitoring and controlling is
thought to be done within the KPs of Devices 1 and 2.

43

5. Implementation

This section describes the implementation of the two demonstrated uses of machine
learning in Smart-M3 IOP. The categories chosen for the demonstrations are prediction
and optimisation. Section 5.1 describes an attempt to use ML for latency prediction.
Section 5.2 describes the implementation of a simple decision maker that aims to learn
how to make decisions that produce as the best results possible.

5.1. Latency Prediction

It is obvious that a poorly performing SIB can be a bottleneck and will limit the per-
formance of a smart space using Smart-M3 IOP. In the future there will certainly be
a wide variety of SIB implementations that can behave in different ways in different
situations. However, the KPs cannot necessarily know a priori with which kind of SIB
they are interacting. This case was motivated by the question as to whether it is possi-
ble to make some adaptations in the KP side in order to overcome the deficiencies in
SIB implementation.

Using the Python version of SIB (not publicly available) it is apparent that the SIB
performs worse when it is loaded. Notably, the number of subscriptions dramatically
slows the operation of the SIB implementation. Although Smart-M3 IOP gives no
guarantees about the time in which queries are processed, it may be beneficial for
some applications to be able to adapt their behaviour according to the time taken by
the processing of the operations. For example, if a sensor KP sends sensor information
to the SIB twice per second and processing one insert operation takes 0.75 seconds, the
SIB is not able to process all the requested operations. So the update interval should
be lengthened.

/f_/ Device 3

Device X
Pre-
[, 4,-—-”_'_'_\\-/ process
SIB

| >

Device 4

Device 5 /
k .H

Figure 8. A smart application using a control loop.

44

The goal of this case was to discover if it is possible to model the behaviour of query
latency using Python SIB and a machine learning algorithm with variables describing
the load of the SIB as inputs. There are three parameters in an environment using
Smart-M3 IOP from which it may be possible to infer the load level of the SIB. These
are:

1. The number of joined KPs.
2. The number of triples inserted.
3. The number of subscriptions made.

It can be supposed that when there are more KPs joined to a SIB there is more activity
and the SIB must perform more operations, which causes more latency. The amount of
triples in the database may affect the latency because more data requires more search-
ing. However, the amount of the increase in latency depends on the database imple-
mentation. The number of subscriptions seems to have the most affect on the latency.
That is because the SIB must check if subscriptions require notifications after every
insert, remove or update operation. In the implementation used the SIB it checks sub-
scriptions even after query operations although this would not be needed. In addition to
that, every subscription creates a separate thread for that particular subscription. This
causes an excessive number of context switches, which again increases the latency.

5.1.1. Implementation

Currently, Smart-M3 IOP does not provide KPs with any information about the status
of an SIB, for example the amount of triples, subscriptions or KPs. One possible way to
get this information would be to make the required changes to the SIB code. However,
changes to the SIB were avoided in the implementation to ensure the possibility of
using the KPs with other SIBs as well. Thus, the only way to get this information is
to explicitly insert it into the SIB. This requires that all the KPs that join to the SIB
update the information in the SIB. However, because current SIB implementations
do not provide atomic updates, this kind of cooperation is not possible. In the update
operation KPs must define both the removed and inserted information. If two KPs try to
update the same information at the same time, the updates are processed subsequently
and as a result there would be two entries for the same data, which is not the desired
outcome. So in this case this situation must be handled on the client side. In this
implementation all the KPs are in a single process and the update operations are made
in the same thread to avoid this kind of confusion.

Two separate KPs were implemented for the case. The first KP, RandomKP, gener-
ates load to the SIB. In fact, RandomKP generates many KPs that connect to the SIB
but they are all implemented in one process. The other KP, PredictorKP, tries to predict
the amount of time it takes for the SIB to process a query and compares it to the actual
time. Both KPs were implemented using C++ language and the Qt toolbox! and their
design is described in the next paragraphs.

Thttp://qt.nokia.com/

45

RandomKP

The RandomKP application has three main classes: RandomWidget, KPStarter and
RandomKP. In addition, it uses a KPInterface class which wraps the C-language
KPI_low interface [62] which is used to make operations to the SIB. RandomWidget
is the user interface (UI) which allows the user to change and monitor operation rates.
KPStarter is used to manage, create and delete RandomKP instances. RandomKP is
the actual KP that interacts with the SIB. The class diagram of RandomKP is shown in
Figure 9.

Q‘Widgetl QThreadl
KPStarter RandomKP
- running = running
- subscriptions - mutex . Triple
- inserts - subscriptions . |:
- P9 + join{)
- pd + leave()
RandomWidget - pr + run) KPinterface
-l - ps + setProbs() - ssinfo
- queryNumber - pu + setProbs() + join()
- inserts + run{) + joinComplete() + insert()
- subscriptions + stopKPs() 1 . |+ query() + remove()
+ getUi() 4 y | join() + insert() + update()
+ changeProbs() + tripleinserted() + remove() + query()
+ setSubscriptions() + tripleRemoved|) + update() + subscribe()
+ setinserts() + subscriptioninserted() + subscribe() * + unsubscribe()
+ setkPs() + subscriptionRemoved() + unsubscribe() 1 |+ 1eave()
+ getSubscriptionAmount() # inserted() # joinComplete()
+ joinComplete() # removed() .
+ submitProbs() # subscribed|)
insertsChanged() # unsubscribed()
subscriptionsChanged() # probsChanged|()
kpsChanged() *

Figure 9. The RandomKP class diagram.

The UI of the application is shown in Figure 10. The ‘Amounts’ section shows the
amounts of parameters that the application has created into the SIB. The ‘Start KP’
button allows the user to start simulation and ‘Stop KP’ stops it. The ‘Probabilities’
section shows the sliders that can be used to change the probabilities of different oper-
ations of the KPs and the probability of new KP creation. The values of these sliders
are parameters of the other classes, KPStarter and RandomKP.

Figure 11 shows an activity diagram of RandomKP. KPStarter updates the three
parameter values to the SIB and manages RandomKP instances. It runs in its own
thread where the main loop starts new RandomKPs or deletes existing ones according
to the value of the ‘KPs’ slider in RandomWidget which takes values from —100 to
100. A negative value means that the probability is that a KP will be deleted and a
positive value means that the probability is that a new KP will be created. After the
operation KPStarter waits 1-2 seconds.

RandomKP is a KP that randomly interacts with the SIB. The different operations
are query, insert, remove, subscribe and unsubscribe. In its main loop, which runs in
its own thread, it makes a maximum of one of these operations and waits 1-5 seconds.

46

RandomWidget

Amounts
KPs 69
Triples 384
Subscriptions 234
Stop KP
Probabilities
Current
Query - (8% |2 8%
Insert —_— [15% |2 15 %
Remove = (4% |2 4%
Subscribe — — |40% || 40 %
UnSubSCribe - se— (33% |2] 33%
Nothing 0% |7 0%
KPs e |34% : 34 %
Random on [off Submit

Figure 10. The RandomWidget UlI.

The probabilities of different operations can be changed using corresponding UI slid-
ers or clicking on the ‘Random’ checkbox which causes every RandomKP instance to
create random probabilities for every operation. The ‘Nothing’ probability is the dif-
ference between the sum of other operation probabilities and 100%. If the operation is
insert, remove, subscribe or unsubscribe, RandomKP notifies KPStarter of the param-
eter value change. KPStarter then updates the new value to the SIB and sends a signal
to Ul thread to update the UI (this is not shown in the activity diagram).
The average rate of incoming operations to the SIB can be calculated as follows:

. (Ziegp@) N (15)

where O is the set of five operations, p(i) is the probability of operation i and N is
the number of RandomKPs. The number 3 in the denominator is the average delay
between probability evaluations. In the equation all KPs are supposed to use the same
probabilities. The rate of one operation can be calculated by substituting the summa-
tion with the desired probability. If the KP creating probability is constant and positive,
the value of /V in time ¢ can be calculated as:

N(t) = (%)t (16)

where py is the KP creating probability and ¢ is time in seconds. 1.5 is the average delay
between KP creation probability evaluations. Thus Equation 15 can be expressed as:

"(t) = (M) (2 a7

47

User/RandomWidget

KPStarter

RandomKP

click "Start KP"

startkP

join

inserttriples "haskPs",
"hasSubscriptions”
and "hasTriples”to SIB

[all

click "Stop KP" '7

calculate random

prob [1-100] and
fetch kpprob from Ul

[kpprob < prob <:kp

[else]

KPs mus|be stopped]

>
[KPs left]

[KPs not left]

leave

rob < kpprob \L

rob and KPs leff]

calculate random prob

and determine o which
interval it belongs
stop KP

query

[remove]

[unsubscribe}

subscribe

[kp is stopped] [else]

Figure 11. An activity diagram of RandomKP.

PredictorKP

48

which shows that the incoming operation rate increases steadily over time if py, and p(7)
are constants. This equation assumes that in the case of the remove and unsubscribe
operations there are always triples to remove or subscriptions to close. However, this
is not a correct assumption if the probability of remove or unsubscribe is greater than
that of insert or subscribe, respectively.

The most important classes of PredictorKP are PredictorWidget, MeasurerKP and Pre-
dictor and its sub-classes. PredictorWidget is the UI that shows the current status of the
application. MeasurerKP makes queries to the SIB and measures the times it takes to
receive responses. Predictor is an interface class with virtual functions predict ()

and train (). The sub-classes of Predictor are used to make predictions for the la-
tency measurement. The class diagram of PredictorKP is shown in Figure 12. The
KPInterface class is the same as the one used in RandomKP.

QWidget QAbstraciTableModel QThread
PredictionsModel MeasurerkKP
- kps - subscription
PredictorWidget
redictorWidge - triples - kpamount KPinterface
+ setkPs() - Subscriptions - fripleamount - ssinfo
+ setTriples() 44—~ actualValues = subscriptionamount + join()
+ setSubs() - predictions 1 - averages + insert()
+ setAverages() - differences - nvalues + remove()
+ addParams() + makeMeasurement() + update()
+ addPrediction() + StopKP() + query()
+ run() + subscribe()
+ subscriptionindication|) + unsubscribe()
Predictor T |# kpsChanged() + leave()
friplesChanged() # joinComplete()
+ predict() |~ g subsGhanged])
+ frain() # averagesChanged|)

l |

FFNetPredictor LinearPredictor Average10Predictor

Figure 12. The PredictorKP class diagram.

The PredictorWidget Ul is shown in Figure 13. The bottom-left corner of the win-
dow shows the current values of the used parameters. The ‘Start KP’ button creates a
MeasurerKP instance and the ‘Stop KP’ button deletes it. The table in the right side
of the window shows the measurements that have been made. The first three columns
show the values of the predictions parameters at the time of measuring and the fourth
column shows the actual duration of the query. The next columns show the predictions
of different predictors along with the difference between the prediction and the actual
value.

MeasurerKP is used to handle the Predictor instances and to make and handle mea-
surements. When started, it joins to the SIB, subscribes to the KP, triple and subscrip-
tion amounts and inserts ten triples which have the same subject and predicate but
different objects. These triples are then queried in ten seconds intervals using a tem-
plate query with the object element as a wildcard. When the query is made, different
Predictor instances are used to estimate the latency. The numbers of KPs, subscrip-
tions and triples are given to the predictors as parameters. After that, the predictors are
trained using the actual latency value. The predictions and other values are updated to
the table in the Ul and written to log files.

The sub-classes of the Predictor class estimate the time to make the query when the
SIB has the given parameters. The predict () function is used to create the esti-
mate based on the parameters and the internal model of the instance and the train ()

49

function is used to refine the internal model using the actual desired output for the
parameters. In this case three different predictors were implemented and used: Lin-
earPredictor, AveragelOPredictor and FFNetPredictor. Although each could be con-
sidered to be machine learning agent by the definition that they improve their function
by experience, Linear and Averagel0 are very simple models and they are used as a
reference for testing the neural network implementation FFNet.
LinearPredictor calculates the estimation based on the previous measurements using
the linear function:
Per1 = ((100 — w)p; + wm) /100 (18)

where p; is the prediction at iteration ¢. The variable m is the latest measured value
and w is its weight. The weight starts from 100 but it decreases to 10 so that later the
previous measurements have a greater impact on the prediction. Thus LinearPredictor
can be expected to adapt quite slowly to changes in the latencies. LinearPredictor does
not use the triple, KP and subscription amounts to create the prediction.

Averagel0Predictor is another reference predictor that behaves quite similarly to
LinearPredictor. It stores ten previous measured latency values and returns the arith-
metic average value of them as a prediction. Compared to LinearPredictor AveragePre-
dictor should react a bit more rapidly to changes in measurements because it only uses
ten previous measurements while all measured latencies affect the prediction of Lin-
earPredictor.

FFNetPredictor uses a feed-forward artificial neural network to create the prediction
and here it used the neural network implementation of the Shark machine learning
library [63] was used. The network has three input units, three hidden units and one
output which is the latency estimate. The hidden units are sigmoid units, but because
they produce results between 0 and 1, the use of them in duration evaluation would
require scaling. Therefore the output unit is a linear unit in which the output is a
weighted sum of the inputs. Thus the output can be directly used as a duration estimate.

The learning algorithm used in the experiment was the IRPropPlus (improved
Resilient-Backpropagation-algorithm with weight-backtracking [64]) algorithm from
Shark which is based on the backpropagation algorithm mentioned in Section 3.5.4.
When used, the network is trained continuously after each measurement. Thirty previ-

PredictorWidget

Einear 49 KFS Triples = Subscriptions | Actual FFNet Linear AveragelO m
Averagelo 49 11 |0 0 17 0/-17]1/-16 |0/-17 |_
FFNet 38 2o 5 7 i § 34 37 /3 (17 /27|17 [-17
gl 2 14 8 15 18/4 |32/17 26/11
4 |9 29 13 16 48/32|18/2 |22/6
KPs 80
: 5 |15 |40 33 31 22/-9 |17 /-14 21 /-10
Triples 426 | I I
Subscriptions 124 B 20 |49 a7 33 43/10 25/-8 |23/-10
Stop KP 7 |26 |65 60 46 45 /-1 |29/-17 24 /-22
B 133 174 |79 |58 60/2 136/-22127 /-31

Figure 13. The PredictorWidget Ul.

50

ous measurements are saved and used in training. The training algorithm makes fifty
iterations with the thirty training inputs and outputs.

5.1.2. Evaluation

The applicability of machine learning algorithms to the case was evaluated using the
KPs described in the previous section. The Python SIB was run on a Dell Latitude
D410 laptop? and RandomKP and PredictorKP applications were run on a Dell Lati-
tude D830 laptop®. Both machines were in the same local network. The applications
were run for about ten minutes and in that time the MeasurerKP made a total of 59
measurements. The three predictors described in the previous section were used to
estimate the latency of each query and then the measurement was used to train them.
The parameter values of the different measurements are shown in Figure 14a and the
measured and estimated latencies are shown in Figure 14b.

As can be deduced from the figures, random probabilities for RandomKP instances
were used for approximately the first 200 seconds (20 measurements). Only the KP

Zhttp://www.dell.com/downloads/global/products/latit/en/spec_latit_d410_en.pdf
3http://www.dell.com/downloads/global/products/latit/en/spec_latit_d830_en.pdf

800

— KPs
— Triples
600 | — Subscriptions

700

500
400
300

200

0 10 20 30 40 50 60

(a) Parameter values.

350

— FFNet
300L] — AveragelO
— Actual

250 | — Linear

200

150 P e L N W

100+

50+

0 10 20 30 40 50 60

(b) Latencies and predictions.

Figure 14. The parameter values, measured latencies and latency estimates
of the test run.

51

http://www.dell.com/downloads/global/products/latit/en/spec_latit_d410_en.pdf
http://www.dell.com/downloads/global/products/latit/en/spec_latit_d830_en.pdf

amount increases quite rapidly. It should be noted that it is logical that both subscrip-
tion and triple insert amounts are almost always greater than KP values because the
KPs do not remove the triples that other KPs have inserted and cannot unsubscribe
other KPs’ subscriptions. Therefore the triples that have the greater probability for the
remove and/or unsubscribe operations than for insert/subscribe do not affect the over-
all behaviour too much. In this phase all the used predictors seem to perform quite
equally.

When the probability, and consequently number of subscriptions, is increased the
measured latency also increases dramatically. As expected, the reference predictors
do not react to this change very quickly but the FFNetPredictor adapts much better to
this change. However, the zigzag curve seen in the figure is very characteristic to the
measured latencies and there seems to be no correspondence between this and the used
parameter values. Therefore FFNetPredictor is often unable to predict the latencies
and often seems to be a bit ‘late’.

Later when the amount of inserted triples makes a brief peak it can be seen that the
change (at least a change of this magnitude) does not substantially affect the latency.
However, the FFNetPredictor also makes a short peak when the amount of triples be-
gins to increase. It shows that the predictor had made a false generalisation that the
triple amount would affect the latency more but it was able to correct this erroneous
assumption.

The impact of the KP amount was not tested. The expected impact is not direct
and comes from the amount of traffic and processing they require. However, different
KPs behave differently and it is difficult to find any pattern. Notably, in this test the
behaviour of the KPs changes over time. However, when speaking about real environ-
ments using Smart-M3 IOP, there may be thousands of KPs joined to an SIB. In that
case it might be possible that a pattern could be found in the relationship between the
KP amount and latency.

5.2. Decision Making

The previous case was about latency prediction which helps in making adaptation de-
cisions. However, raw latency information is often not enough to find the optimal
decisions because of the possible trade-off between different aspects of quality. Rein-
forcement learning can be used to try out different decisions in different states and thus
learn how to achieve maximum utility or reward.

In this case reinforcement learning is used to find a good policy for making deci-
sions. The problem is to find the optimal resource allocation between different devices.
A distributed video-streaming application was chosen as an example. It consists of a
video-capturing component, a colour-space converter component and a video-display
component. In this case every device in the smart space runs every component type.
When the source (capture) and sink (display) components are chosen the learning agent
must try to choose the optimal filter (colour-space converter) to get the maximum re-
ward. The environment calculates the reward that is given to the agent using the time
to establish the connections between the components and the processor utilisation rates
of the devices as parameters. However, the learning agent does not know this function

52

and it must try to estimate it using only the processor performance information from
different devices.

As can be seen, there is a possible a trade-off between latency and load distribution.
If every component is chosen from a different device the latency will probably be large
because of network latencies. However, it distributes the processing load very effi-
ciently. Running all components in one device may increase the processor utilisation
to an unacceptably high rate although it minimises the network latency.

5.2.1. Implementation

This case was implemented using four different KPs, some of which have multiple
instances running (a short name is in parentheses):

1. A KP that provides a single multi-media filtering service (PyGSTKP).

2. A manager KP that inserts device information into the SIB and is used to start
and stop PyGSTKP KPs in a device (Manager).

3. A KP that chooses the source and sink elements of the video streamer and gives
rewards (Task).

4. A learner KP that chooses a filter element and receives rewards for the task
(Learner).

The cooperation of these KPs is illustrated as a sequence diagram in Figure 15. The
KPs are described in more detail in the following sections. The descriptions focus
more on the internal functionality of the KP applications but they also clarify this
information-level cooperation so it is advisable to occasionally refer to this figure while
reading.

PyGSTKP

PyGSTKP is a KP that uses the GStreamer multi-media framework* and its Python
bindings® for multi-media processing. To better understand the operation of PyGSTKP
an explanation of the GStreamer framework is necessary.

GStreamer is a framework that allows the creation of any type of streaming multi-
media applications. It is based on plug-ins that provide the needed functionality and
is thus very extensible. There are some basic plug-ins in the core installation of
GStreamer and it is possible to install plug-in packages or create your own plug-ins
for needed tasks. The plug-ins can be classified into six groups: protocol handling,
sources, formats, codecs, filters and sinks. GStreamer is written in C language and its
type system is based on the GObject library. [65]

The most important types defined in GStreamer are Element, Pad and Pipeline. El-
ement performs one specific function such as reading, decoding or outputting data.
Elements have input (sink) and output (source) pads that can be connected to other

“http://gstreamer.freedesktop.org/
Shttp://pygstdocs.berlios.de/

53

| Manager | | PYGSTKP | | SIB | | Task | | Learner |

T T

| | I |

| | I |
Device information | 7 1 |

| = |

|

|

|

|

Device inforr‘nationE I:"]
Device information
Element types
Element types
Start element :
LJEIement informatiop |
|

Element informatiog D
loop J Task information I::]
|
|

Task information

+ —=
| Element connections

I
I
I
I
I
I
I I .
| Element connections | |
[
I | | Element states |
I
I
I
I
I
I
I
I
I

Element states
Reward | |

Reward

Y

Figure 15. Sequence diagram of the decision making test case.

elements’ pads. Every pad is associated with a capability and connected pads’ ca-
pabilities must be compatible. Capability describes the media type that the pad can
handle or output. Connected elements create a pipeline which performs a certain task,
for example media playback. Pipelines are sub-classes of elements which reduce the
complexity of GStreamer a little. Elements (and pipelines) can be in one of four states:
NULL, READY, PAUSED or PLAYING. [65]

Figure 16 shows a GStreamer pipeline of an Ogg player that supports Vorbis and
Theora codecs. The figure is adapted from the GStreamer Application Development
Manual [65]. The pipeline consists of six elements: a source, a demuxer, two decoders
and two sinks. As can be seen in the figure, source elements do not have sink pads and
sink elements do not have source pads. Demuxers create a source pad for every stream
type contained in the incoming stream.

PyGSTKP KP is a wrapper around one GStreamer element. It is used to receive a
stream over a UDP (User Datagram Protocol) link, stream it through the defined ele-
ment and send it again over a UDP link to another PyGSTKP KP. It creates a pipeline
based on the one shown in Figure 17 (pads are not explicitly shown) and sends infor-
mation about it to the SIB. The third element in the pipeline, labelled <element>, is the
element that is wrapped and its type is given as a command-line argument. The other
elements are included in GStreamer plugin packages. The udpsrc element is used to
receive a stream coming to a specified port and deliver it to the pipeline. The capsfilter
elements are used to restrict the media type of the stream. It must be used after the
udpsrc element because udpsrc cannot determine the media type and thus capability
negotiation in the pipeline would not be possible. The capsfilter after the main element

54

pipeline

vorbis-decoder audio-sink

sink] [src P sink]

file-source ogg-demuxer
|5rc_01
src » sink
|5rc_02 \ heora-decoder video-sink

sink] [src P sink]

Figure 16. GStreamer pipeline for a basic Ogg player.

udpsrc _) capsfilter _) <element> _) capsfilter _) typefind _> udpsink

Figure 17. Base model of the pipelines used in PyGSTKP.

is present only if the desired capabilities of the element are given as command-line
arguments. The fypefind element is used to find the media type of the stream: this
media type is announced in the SIB. The udpsink element sends the stream to the
next PyGSTKP KP. In fact, the udpsink element is only used when actually streaming.
Otherwise it is substituted with a fakesink element which just discards the incoming
stream. When the element is a source element the udpsrc element and the first capsfil-
ter element are not present in the pipeline. Similarly, in the case of a sink element, the
last three elements are not present.

There is an obvious problem in this structure when an element output is in a raw for-
mat. Usually in cases with compressed media formats there are marks where decoding
units start and end. However, for example, in the case of raw video, it is not possible
to know where video frames start and end because there are no start and end marks.
A workaround was created for this demonstration. If the media format of an element
is raw video (video/x-raw-rgb or video/x-raw-yuv) it is encoded to an MJPEG (Motion
JPEG) stream where every video frame is separately encoded to a JPEG image with
certain repetitive fields omitted. This solution adds a computation load to elements that
produce raw video and decreases network bandwidth need. However, since the goal of
the implementation was to demonstrate reinforcement-learning capabilities and not to
create a high-performance video decoder, this approach is suitable.

PyGSTKP inserts information about itself according to an ontology defined for this
purpose into the SIB. Figure 18 shows an example RDF sub-graph created according
to the ontology. This graph is created by a KP wrapping an ffimpegcolorspace element
which is used to make colour-space conversions. In the graph the nodes beginning
with the character ‘_’ represent blank nodes and they are of the type indicated by the
name, for example the node _device is of type gs:Device. These type triples are not
shown in the figure to keep it simple. All self-defined URIs in this case are in the
name-space gs. The ffmpegcolorspace element is of type gs:Filter which means that it
can have both source and sink pads. Other element types are gs:Source which has only

55

gs:hasElement
Y

_filter

"192.168.1.103"

gs:hasState

gs:hasClassName

"ffmpegcolorspace”
gs:hasSrcPad

gs:hasSinkPad

gs:hasCaps

"video/x-raw-yuv, width=(int)[1, 2147483647], height=(int)[1, 2147483647 1,
framerate=(fraction)[0/1, 214748364 7/1], format=(fourcc)i420 ..."

"video/x-raw-rghb, width={(int)320, height=(int)240. framerate=(fraction)25/1.
interlaced=(boolean)false, bpp=(int)24, depth=(int)24, red_mask=(int)16711680,
green_mask=(int)65280, blue_mask=(int)255, endianness=(int)4321"

gs:hasCaps

Figure 18. An RDF subgraph created by a PyGSTKP KP wrapping an ffmpeg-
colorspace filter.

source pads and gs:Sink which has only sink pads. The sink-pad information of an
element is always inserted to the SIB but source-pad information is only inserted when
the element is ready to send the stream to another KP. For source elements the source-
pad information is thus always inserted, but for filter elements only when their sink
pads are connected to other elements. Both gs:SinkPad and gs:SourcePad elements
are associated with capabilities. However, the sink pads’ capabilities are not fixed and
they show all the possible media formats that the element can handle. For example in
the case of the ffmpegcolorspace element there are over thirty possible formats (only
the first is shown in the graph to save space). In case of source pads, the capabilities are
fixed and they tell the exact media format that the element is streaming. Every sink pad
is listening to a port to which other elements can send media stream. The gs:hasState
property tells the state of the pipeline of the KP.

The connections between elements are created by an external KP. It inserts a triple
connecting a source pad and a sink pad with the predicate gs:connectedTo. PyGSTKP
KPs subscribe to these kind of triples for both their source and sink pads. When a con-
nection is made to a sink pad, the sink PyGSTKP queries the announced capabilities
of the sending source pad from the SIB and adjusts the capsfilter element accordingly.
Then it starts the pipeline and, when the typefind element finds the media type of the
source pad, it inserts the source pad information into the SIB. When a connection is
made to a source pad, PyGSTKP asks for the device’s IP address and the sink pad UDP
port of the receiver element and starts sending stream to that UDP socket. So a KP can
create ‘pipelines’ consisting of PyGSTKP elements by creating connections between
pads in the SIB.

56

Manager

Manager is a simple KP whose main tasks are starting (and stopping) PyGSTKP
processes and inserting device information into the SIB. The device information
contains the IP address, processor performance and processor usage of the device.
The IP address and processor performance are inserted into the SIB only when the
Manager KP joins it but the processor usage is updated every two seconds. The
processor performance is estimated using the bogomips value in Linux virtual
file /proc/cpuinfo. Although it is a very poor measure for processor perfor-
mance [66], it is applicable in this case because it manages to divide the devices used
in the demonstration into three categories. If the bogomips value is less than 800,
the processor performance is ‘Low’. If the value is more than 800 but less than 3000,
the performance is ‘Medium’. If it is more than 3000, the performance is ‘High’. The
average processor usage rate is calculated for the last two seconds using the values read
from the Linux virtual file /proc/stat.

After inserting the device information into the SIB the Manager KP subscribes to
the element type and reset triples with the following formats: (_device, gs:hasGSTKP,
x) and (_device, gs:reset, x) where x, the object of the triple, is not defined in the
subscriptions. When a triple, with the predicate gs:hasGSTKP, is inserted the Manager
starts a PyGSTKP sub-process with the arguments given as the triple object. When a
triple, with the predicate gs:reset, is inserted the Manager kills all PyGSTKP processes
and starts them again. This feature is actually not needed in this demonstration but is
added to increase the usability of the KP.

Task

The Task KP has two main duties. It allows the user to control the types of PyGSTKP
KPs that the different devices run and it also handles the setting of the service discovery
tasks and rewards. The user interface of the application is shown in Figure 19.

IP # of KPs KP elements

ffmpegcolorspace
1 192.168.1.100 3 val2src Add KP...
ximagesink | |

ffmpegcolorspace
2 192.168.1.103 3 vdl2camsrc Add KP...
ximagesink | |

videotestsrc

3 192.168.1.102 3 ffmpegcolorspace Add KP..
ximagesink |

Source: 192.168.1.100 Task is on
Filter: 192.168.1.100
Sink: 192.168.1.100

Last reward: 160
| Stop tasks | | ResetkPs |

Figure 19. The user interface of the Environment KP.

57

The Task KP gets subscribe indications whenever a new device joins the smart space.
It adds the IP address of the device to the first column of the table in the UL It also
makes subscriptions to the elements of the device (see the RDF graph in Figure 18).
It shows the number of elements in a device and the element class names (found from
the triple with the predicate gs:hasClassName, see Figure 18) in the next columns. It
also saves the element URIs and uses them in task generation. By clicking on the ‘Add
KP...” button the user receives a dialogue box where the arguments of a new PyGSTKP
process can be typed. That causes the device manager to start a new PyGSTKP process
and subsequently the element information to be shown in the UI. By clicking on the
‘Reset KPs’ button the Task KP sends a reset triple to every device and this causes the
device managers to restart the PyGSTKP processes.

The ‘Start tasks’ button causes the Task KP to start a task simulation. It randomly
chooses one source and one sink element URI and inserts them into the SIB as shown
in Figure 20. The learning agent must then choose the optimal filter between the source
and sink to make the streaming between the source and sink possible. The Task KP
subscribes to the state of the sink element: when it is PLAYING, it knows that cor-
rect connections have been made. Then it inserts a reward to the task (also shown in
Figure 20). The reward is calculated using the following equation:

r=200—1—s, — 10t (19)

where r is the reward, u is the average processor utilisation of all the devices, s,, is the
standard deviation of the processor utilisation rates and ¢ is the duration of the task in
seconds. The average processor utilisation is calculated using the following equation:

1 N
ﬂ:N;ui (20)

where N is the number of devices and u; is the processor utilisation rate of the device
i. The standard deviation is calculated using the following equation:

N
Sn=1\| ¥ Z(u —)2 21)

and it is included because the utilisation rates are required to be as even as possible. If
the learning agent has not chosen a filter in ten seconds, a reward of O is inserted and
the task is cancelled.

gs:hasReward

gs:hasSourceElement gs:hasSinkElement

Figure 20. An RDF subgraph created by a Task KP describing a task.

58

After the reward is inserted, the Task KP removes all the connections made by the
learning agent, waits a few seconds for the PyGSTKP instances to revert to the start
state and inserts a new task with a new source and sink. It continues this until the user
stops the loop by clicking on the ‘Stop tasks’ button.

Learner

The Learner KP chooses a filter for a task the Task KP has inserted. It uses reinforce-
ment learning with a look-up table to estimate the rewards for state—action pairs. The
KP uses base classes defined in the PyBrain library [67] and extends some of them
to overcome the challenges caused by asynchronous communication and distributed
environment.

The look-up table of Learner has entries for nine states and five actions: 45 cells
in total. The states are determined by the computing performances of the devices in
which the source and sink elements are as reported by the Manager KPs. Because there
are three possible performance levels, there are nine different permutations of source—
sink performance pairs which are regarded different states. The actions correspond to
the filters which are chosen to complete the pipeline. Because of the assumption that
network latencies and unevenness in resource usage cause worse results, the possible
actions are chosen so that they have an effect to these issues. The five actions are
abbreviated as SAMEI1, SAME2, DIFFLO, DIFFME and DIFFHI (meaning the same
device as the source, the same device as the sink, a different device from the source
and sink with low performance, a different device with medium performance and a
different device with high performance, respectively). If both the source and the sink
element are in the same device, SAMEI and SAME?2 are essentially the same actions.
If there are less than three devices belonging one of the performance categories there
will be states in which some of the last three actions are impossible. For example, if
there is only one device with medium performance and it is the same as the source in
a task it is impossible to choose a device that is different from source and has medium
performance.

The look-up table is initialised with values of 1000 to ensure that every action will
be explored in a reasonable time. It uses the () learning algorithm to find estimates for
rewards. The () learning training rule was presented in Equation 14 and is repeated
here:

Qu(s,a) < (1 —) Qn_1(s,a) + an[r + 7 max Qu_1(s,d")). (22)

Because the problem does not include state transitions, the equation can be somewhat
simplified. The variable v, the weight of future rewards, can be thought to be zero and
the () value reduces in direct relation to the expected reward for a state—action pair.
The simplified training rule is:

Tn(s,a) « (1 — ap)fn_1(s,a) + a,r (23)

where 7,(s, a) is the Learner’s estimate for the reward in time n. The learning rate in
time n, «,, is calculated as follows:

L ifk(s,a) < 10
_J ®ea) ! = 24
on { 0.1 ifk(s,a) > 10 24)

59

where k(s,a) is the number of times that action a has been taken in state s. The
minimum value for the learning rate is 0.1. For the first ten iterations of a state—action
pair the training rule calculates the arithmetic mean value of all training examples but
after that the last value always has an impact of ten per cent of the 7 value.

To handle the trade-off between exploration and exploitation Learner uses PyBrain’s
implementation of the epsilon-greedy exploration strategy. It has two parameters: ep-
silon (e) which determines the possibility of exploring and decay which determines
the decreasing speed of the epsilon parameter. So when an action is selected, there is
a possibility of 1 — € to choose the action that currently seems to be the best and a
possibility of € to randomly choose any of the available actions. After every action the
epsilon parameter is decreased by multiplying it with the decay parameter. In the used
implementation, the epsilon parameter was initialised to 0.3 and the decay parameter
was 0.9999. Thus the exploration probability was quite high and decreased slowly. It
takes over 34,000 iterations to decrease to below 0.01.

When an action is chosen the Learner waits for the Task to insert a reward for the
task. This reward is then used for the training. After that, the Learner waits for a new
task. However, when the Learner chooses an action that is impossible, a reward of
—100 1s used for training and a new action is chosen for the same task: in this way
impossible actions are not inserted into the SIB.

5.2.2. Evaluation

The case was evaluated using test runs of different lengths. In this section one of the
test runs is described. The equipment used in the test was a Dell Latitude D830 lap-
top®, a Dell Latitude D410 laptop’, a Nokia N90O smart phone®, a Linksys WRT54GL
router’ and a Logitech QuickCam Deluxe for Notebooks web camera. The Latitude
D410 laptop had Ubuntu Linux 10.04 natively installed and the Latitude D830 laptop
ran two virtual machines with Ubuntu operating system versions 9.10 and 10.04 using
VirtualBox virtualisation software!® with a Microsoft Windows XP operating system.
All the devices were connected using the WRT54GL router, N900 over Wi-Fi and
the others using Ethernet cables. The virtual machines used bridged virtual network
adapters to get IP addresses in the same address space as the physical devices. The
web camera was connected to the Dell Latitude D410 laptop. Figure 21 shows the
composition of the hardware equipment and software in the test.

The SIB was located in the virtual Ubuntu 9.10 machine. The other Ubuntu ma-
chines and Nokia N90O all ran Manager KPs. The virtual Ubuntu 10.04 ran also the
Task and Learner KPs. Using the Task KP, the needed PyGSTKP KPs were started on
all three machines. Every device had a sink KP with an ximagesink GStreamer element
and a filter KP with a ffmpegcolorspace element which changed the media types of the
streams from video/x-raw-yuv to video/x-raw-rgb. In the source KP the virtual Ubuntu
machine had a videotestsrc element, the native Ubuntu KP had a v4[2src element and

bhttp://www.dell.com/downloads/global/products/latit/en/spec_latit_d830_en.pdf
http://www.dell.com/downloads/global/products/latit/en/spec_latit_d410_en.pdf
8http://europe.nokia.com/find-products/devices/nokia-n900/specifications
“http://www.linksysbycisco.com/EU/en/products/WRT54GL
Ohttp://www.virtualbox.org/

60

http://www.dell.com/downloads/global/products/latit/en/spec_latit_d830_en.pdf
http://www.dell.com/downloads/global/products/latit/en/spec_latit_d410_en.pdf
http://www.linksysbycisco.com/EU/en/products/WRT54GL
http://www.virtualbox.org/

v4l12src video/x-raw-yuv,width=320 v4l2camsrc video/x-raw-yuv,width=320,height=240
ffmpegcolorspace video/x-raw-rgb ffmpegcolorspace video/x-raw-rgb

ximagesink ximagesink
o o
3xPyGSTKP
3xPyGSTKP
Manager
Manager
Ubuntu 10.04 Mokla N900
Dell Latitude D830 + —
Logitech web camera ’
'
/
i :
videotestsrc
WRT34GL ffmpegcolorspace video/x-raw-rgb
switch/access point ximagesink

.......
.....

BxPyGSTKH
SIB Manager | Environment | Learner
Ubuntu 9.10 Ubuntu 10.04
Windows XP
Dell Latitude D410

Figure 21. The composition of hardware and software in the decision making
tests.

the N90O had a v4/2camsrc element. The reason that the source elements were differ-
ent is that the machine with videotestsrc has no video camera and thus used test video
and the needed output format (video/x-raw-yuv,width=320,height=240) is supported
by v4[2camsrc in N90O in contrast to v4/2src. All video sources were captured using
this format. The v4[2src element works well with the Ubuntu laptop and the webcam.

The test was run overnight and it lasted for 982 minutes (sixteen hours and twenty
minutes). During this time the system made 6212 experiments, 390 of which were
impossible actions chosen by the learner and 5722 were actual decisions. Thus the
system made an average of 5.8 experiments per minute.

The look-up table of the learner used in the experiment is shown in Table 5. The
rows show the states of the environment as seen by the decision maker. They are shown
as (<source device performance> | <sink device performance>) pairs where LO, ME
and HI mean low, medium and high performance, respectively. The columns show
the action which is the chosen filter device. SAMEI means the same device as the
source, SAME?2 is the same device as the sink and DIFF<x> means a different device
where <x> is LO, ME or HI, meaning same things as previously mentioned. The cells
show the estimates of the rewards for all the possible state—action pairs. The rewards
of impossible actions are shown as a dash. The numbers of times the learner tried an
action in a state are shown in parentheses.

As can be seen in the table, the learner chose the action with the biggest expected
reward most of the time. However, for example, in the third state, LO/HI, there are two
actions with expected rewards that are very close to each other. In this situation the
decision maker changed its behaviour according to its view of the environment at that
time. Similar behaviour can be seen, for example, in the last state, HI/HI, although not
as strongly.

61

Table 5. The look-up table of the decision maker after 6212 experiments.

1. SAME1 | 2.SAME2 | 3.DIFFLO | 4. DIFFME | 5. DIFFHI
1. LO/LO 0.17 (52) 0.16 (53) - (32) 0.14 (148) | 0.15(367)
2.LOME | 32931) | 124.35(124) - (33) -(28) | 140.37 (483)
3. LO/HI 0.66 (38) | 124.51 (397) -(25) 125.77 (209) - (34)
4. ME/LO | 0.07(159) | 0.07 (60) - (39) - (20) 0.07 (413)
5.ME/ME | 137.97 (41) | 139.84 (33) | 3.53(18) -(28) | 151.14(563)
6. ME/HI | 14739 (37) | 151.67 (568) | 2.27 (29) - (46) -(33)
7. H/LO 0.04 (484) | 0.04 (69) - (44) 0.04 (102) - (32)
8. HUME | 16535 (554) | 154.24 (48) | 2.99 (35) - (38) -(32)
9. HI/HI | 163.23 (127) | 164.24 (363) | 6.32 (15) 155.07 (101) - (26)

All the state—action pairs in the table that include the Nokia N90O (device with low
performance) as a filter or sink are near zero in the table. This is erroneous behaviour
caused by the KPs on the N900 going to an unresponsive state. The exact reason for
this fault is not known and it seems to occur only with the N90O. In this experiment the
filter KP failed after 372 experiments and the sink KP failed after 4446 experiments.
Table 6 and Table 7 show the look-up tables after 372 and 4446 experiments, respec-
tively. Although some state—action pairs are visited only a few times, especially in
Table 6, the expected rewards are usually of the same magnitude as in Table 5. There-
fore it is also feasible to make an evaluation based on these tables. Table 8 shows a
combination of Tables 5, 6 and 7 where the erroneous values have been substituted
with values from earlier tables. The values with a bold font are from Table 6 and the
values with an italic font are from Table 7, other values are from Table 5. Table 9 shows
a simplified view of Table 8. The table shows the expected rewards for the selections
of different devices. If there are two entries for the same state—action pair the larger
one was chosen.

Table 6. The look-up table of the decision maker after 372 experiments.

1. SAME1 | 2. SAME2 | 3. DIFFLO | 4. DIFFME | 5. DIFFHI
1.LO/LO | 69.00(2) | 74.00(2) -2 | 107.03(17) | 88.00(3)
2.LO/ME | 7525(4) | 123.83(6) -(7) - | 137.96 (26)
3.LOMI | 63.50(2) | 149.67 (25) -(@) | 137.00 (8) - (@)
4.ME/LO | 97.29(28) | 67.50(2) - (4) -(3) 91.13 (8)
5.ME/ME | 130.67 (3) | 138.00(1) | 82.00 (1) -(3) | 145.84 (33)
6. ME/HI | 145.14 (7) | 158.51(30) | 84.00 (2) -(2) -3)
7.H/LO | 106.61 (25) | 68.67 (3) - (@) 85.67 (3) -(2)
8. HUME | 170.68 (32) | 155.60 (5) | 104.25 (4) - (@) -(3)
9. HI/HI | 154.00 (1) | 166.63(25) | 53.50(2) | 156.45(11) - (@)

62

Table 7. The look-up table of the decision maker after 4446 experiments.

1. SAME1 | 2.SAME2 | 3.DIFFLO | 4. DIFFME | 5. DIFFHI
1. LO/LO 4.81 (20) 6.37 (18) - (22) 94.95 (86) | 103.01 (305)
2. LOME 8.50 (22) | 120.06 (117) -(28) -(26) | 136.36 (331)
3. LO/HI 1.91(28) | 143.91(339) -(22) 131.03 (73) - (30)
4. ME/LO | 92.52(91) 3.09 (24) - (27) -(17) | 119.11 (343)
5.ME/ME | 139.00 (34) | 137.27 (24) | 6.64 (12) -(20) | 154.43 (392)
6. ME/HI | 145.97 (29) | 152.08 (408) | 5.27 (21) - (30) - (20)
7.HULO | 117.59(409) | 9.85(17) -(29) 103.31 (28) - (24)
8. HUME | 161.73 (379) | 151.69 (38) | 3.70 (33) - (30) -(27)
9. H/HI | 168.67 (47) | 162.73(297) | 9.63 (11) 157.68 (97) -(21)
Table 8. A combination of the look-up tables of the decision maker.
1. SAME1 | 2.SAME2 | 3.DIFFLO | 4. DIFFME | 5. DIFFHI
1.LO/LO | 69.00 (2) 74.00 (2) -(32) | 94.95(86) | 103.01 (305)
2.LO/ME | 75.25(4) 124.35 (124) -(33) -(28) | 140.37 (483)
3. LO/HI 63.50 (2) 124.51 (397) -(25) | 125.77 (209) - (34)
4. ME/LO | 92.52(91) | 67.50(2) - (39) -(20) | 119.11(343)
5.ME/ME | 137.97 (41) | 139.84(33) | 82.00 (1) -(28) | 151.14 (563)
6. ME/HI | 147.39 (37) | 151.67 (568) | 84.00 (2) - (46) - (33)
7.HI/LO | 117.59(409) | 68.67 (3) - (44) | 103.31(28) -(32)
8. H/ME | 165.35(554) | 154.24 (48) | 104.25 (4) - (38) -(32)
9. HI/HI | 163.23 (127) | 164.24 (363) | 53.50 (2) | 155.07 (101) - (26)

Table 9. A simplified view of Table 8.

LOW | MEDIUM | HIGH
1. LO/LO 74.00 94.95 103.01
2. LO/ME | 75.25 124.35 140.37
3. LO/HI 63.50 125.77 124.51
4. ME/LO | 67.50 92.52 119.11
5. ME/ME | 82.00 139.84 151.14
6. ME/HI 84.00 147.39 151.67
7. H/LO 68.67 103.31 117.59
8. H/ME | 104.25 154.24 165.35
9. HI/HI 53.50 155.07 164.24

63

From the tables it can be seen that it was not the best decision to use the low-
performance device as a filter. The values of such cells (written in bold font) are
remarkably lower than the other rewards for the states. In fact, in all but one state the
action giving the best reward was to choose the high-performance device as a filter. In
state number 3, LO/HI, the medium-performance device seems to give a slightly better
reward. However, the difference between the rewards is not significant and as can be
seen from the times that the filters were chosen, action number 2 — high performance
device — was used more than the medium one and thus had the biggest reward value
most of the time.

There is also another situation in which substituting a component with another with
better performance seems to cause a worse reward. Compared to pipeline medium—
high-low, the reward of pipeline high—high—low is inferior. In addition to that, the
reward of pipeline low—medium—medium is very close to the rewards of the aforemen-
tioned pipelines low—medium-high and low—high—high. In these situations there is no
clear advantage in using high-performance components.

64

6. Discussion

This chapter analyses the results of the thesis and discusses the success of the imple-
mented demonstrations. Some improvements and future work related to Smart-M3
generally, and specifically using machine learning in it, are suggested.

6.1. The Latency Prediction Case

The tests indicate that the use of machine learning techniques can help in predicting
latencies. However, a really usable and adaptive latency predictor in dynamic environ-
ments is still far away. This conclusion is consistent with the results of Ipek et al. as
described in Section 3.9.1.

There are many possible ways to improve the solution and results of this case. A
good approach could be a predictor that is trained before it is set up for its final oper-
ating environment. This type of predictor could give reasonable predictions from the
beginning and then use online learning to further improve the results and to adapt the
changes in the environment. The prediction capabilities of different predictors could
also be tested by using them on the same dataset.

The approach needs also more testing and validation. The evaluation presented in
this thesis, and also other tests made during the implementation, give a good indication
about the benefits of machine learning but more formal tests, longer test runs and
bigger test environments are needed. However, the current SIB implementations are
in the development phase and they contain some instabilities which makes large-scale
testing very challenging. In addition, the need for bigger environments requires more
equipment than it is reasonable to obtain for this kind of test.

The problems encountered while implementing this case indicate that there may be
a need to improve Smart-M3 IOP and SIB implementations. Some KPs, such as the
latency predictor, require reliable information about the smart space. For example, the
numbers of triples, subscriptions and joined KPs or other status information could be
this kind of required information. Other KPs could aldo use, for example, information
about the producer and production time of the information in the SIB. These features
could be implemented in the SIB and provided to all or some privileged KPs.

Additionally. the necessity for defining removed triples when updating information
is a real problem in Smart-M3. In the current situation, if many KPs update the same
data, the KPs must query the data before updating in order to check the current in-
formation in the SIB. However, if another KP updates the same information after the
query, the first KP may use obsolete triples as removable triples in the update trans-
action. Because the information is no longer in the SIB, it cannot be removed but
the added triple will be inserted anyway. Thus the same information will exist in two
triples which is not a desired outcome. It should be made possible to make updates in
which all triples, according to a certain pattern, are removed and new triples will be
inserted.

65

6.2. The Decision-Making Case

The decision maker implemented in the demonstration was able to generate a model
that allowed it to choose the best filter in every state. According to the test, it seems
that it is possible to use reinforcement learning in decision making when it is possible
to get rewards from the environment. However, in many applications getting a reward
may be difficult. For example in the implementation the reward was calculated using a
heuristic function which could also be made by the learning agent. On the other hand,
in most smart environment applications the ultimate goal is to increase human comfort
or efficiency and thus the rewards should be deduced by observing human behaviour.

The described test was able to demonstrate the learning capabilities of the decision
maker. However, there were some state—action pairs whose expected rewards were
not fully logical compared to other slightly different pairs. More test runs could have
revealed if the situation remains or if it is because of random occurrences. For example,
there were some random rewards of 0 for some pairs. These decrease the expected
reward for the pair by ten per cent, which is the minimum value of the alpha variable.

The exploration strategy of the decision maker could probably also be improved in
this case. Because the rate of exploration decreased so slowly, some clearly inferior
actions were chosen relatively many times later in the experiment. It would be worth
testing with a strategy with a bigger decay parameter or a strategy that decreases first
slowly and after a few hundred experiments decreases more rapidly. However, one
characteristic of smart environments is dynamics. New devices may occur and disap-
pear and therefore the learning agent should be able to learn and constantly recalculate
its model of the environment.

6.3. Summary of Results and Comparison to Other Work

The most important result of this thesis is the model for using machine learning in
a smart environment to achieve adaptive control which was presented in Chapter 4.
Although the model was only validated using the Smart-M3 IOP, the model itself is
more generic and it would probably also work equally well with other kind of inter-
operability solutions.

There has been other work done regarding the use of machine learning or a sub-
concept of it in smart environments. This section compares the handling of the subject
in them to the results of this thesis. The findings are also compared to the results in the
area of adaptive systems.

In the MavHome environment machine learning techniques have been in use for
quite a long time. Already in 2002, Das et al. [68] described how prediction algo-
rithms were used in MavHome. Their work concentrates on creating a well-working
smart home architecture and therefore they only describe the things that are of interest
in the MavHome domain. In 2005, Das and Cook [69] also described the need for
reinforcement learning in decision making in smart homes. However, in this thesis
other approaches chosen in other projects were also considered and the use of machine
learning is presented in a more general form.

66

The work of Fernandez-Montes et al. [70] has many similar characteristics to this
thesis. They also propose a loop structure for smart environments. Their loop con-
sists of three phases: perception, reasoning and acting. These main tasks are further
divided into different sub-tasks. In their architecture, all the learning capabilities are
included in the reasoning phase in which many different learning tasks are contained
in a learning agent. There is no validation or justification presented for the learning
task in the paper.

A loop structure similar to the one visible in Figure 7 is also common in other kind
of adaptive systems. For example the MAPE-K (Monitor, Analyse, Plan, Execute,
Knowledge) loop known from the area of autonomic computing [71] is an example of
this. This loop consists of monitoring, analysis, planning and execution phases [71,
72]. An autonomic element with a MAPE-K loop is depicted in Figure 22.

Autonomic manager

Analyze Plan

Knowledge

Monitor Execute

Managed element

Figure 22. The structure of an autonomic element with a MAPE-K control loop.

The managed element can be a hardware or software resource. It has some kind
of an internal state that can be observed (through some sensors) and altered (through
effectors or actuators). The autonomic manager does the required adapting of the el-
ement according to some predefined goals. The manager contains the aforementioned
MAPE-K loop and uses it to help identify adaptation needs. [71]

The autonomic manager monitors the managed element and its environment con-
stantly and analyses the gathered information. Based on the analysis, it plans the
needed actions and executes them. The knowledge can be, for example, an architec-
tural model of the managed element or system, a set of ECA (event-condition-action)
rules or utility information and this helps in predicting and understanding the changes
in the state of the system. Knowledge is also necessary in the planning phase to deter-
mine the best possible actions. [71, 72]

Salehia and Tahvildari call the loop the ‘adaptation loop’ and name the phases as
monitoring, detecting, deciding and acting processes [6]. Their work concerns self-
adaptive software which is a sub-concept of autonomic computing [6]. There is a
rough correspondence between these loops and the machine learning loop in smart en-
vironments presented in Figure 7. Monitoring means simply gathering the information,
as depicted by the arrow coming from the smart environment. Analysis (or detecting)
is done by the pre-processing and prediction elements. The optimisation element does

67

the adaptation planning (or deciding) and device controllers execute the adaptations
(acting process).

All in all, the results of this thesis indicate that machine learning can have an es-
sential role in improving user experience in smart environments. It is also possible
to use machine learning in environments using Smart-M3 IOP. However, one problem
is the control and cooperation of devices. According to the DIEM white paper [5]:
“The Smart-M3 is meant for opening the information. It does not guarantee the perfor-
mance and it is not meant for sending commands between devices (or KPs). That kind
of interoperability should be implemented using service level capabilities.” The idea
behind this statement is that the KPs cannot require different KPs to react in any way
to the information they share. However, it is the opinion of the author of this thesis that
inter-operability requires that other agents react in an understandable way to actions.
Additionally, the experiments made for this thesis show that in a controlled environ-
ment it is possible to deliver commands using Smart-M3 IOP. However, the ontologies
require very careful design to make them suitable for passing commands. Also, the
responsibilities about inserting and removing different RDF statements should be de-
fined carefully.

6.4. Future Work

There is still much work to be done in both the areas of machine learning and smart
environments. Smart environments can benefit from advances in machine learning and
they offer a good application domain in which to develop new learning techniques.

The machine learning model described in Chapter 4 needs more validation. The
demonstrations in this thesis validated only two parts of the framework in simplified
problem areas. In the future, a real smart environment control loop with different
learning solutions should be created in order to validate the whole model. However,
this kind of evaluation needs much more infrastructure than was available for this the-
sis: notably different sensors and actuators with which the state of the environment can
be modelled accurately and changed would be needed.

The immaturity of currently available components implementing Smart-M3 10OP
caused some unnecessary problems in implementing the demonstrations. However,
the basic idea behind the inter-operability solution seems to be working. There has
been much valuable work done in making the adoption of Smart-M3 IOP easier, yet
it is also important to work on the reliability, stability and scalability of the core com-
ponents of Smart-M3 IOP. In addition, the comments about Smart-M3 IOP and SIB
implementations stated earlier in this chapter should be taken into account while im-
proving the platform or creating new implementations.

68

7. Conclusions

This thesis described the general uses of machine learning techniques in existing smart
environment projects. There were four different categories of machine learning uses
found:

1. Detection, in which the goal is to find some characteristics of objects which
allow them to be grouped into different categories without explicit labelling.

2. Recognition, in which the goal is to classify an object or an event to a predefined
category.

3. Prediction, in which the goal is to find a model of temporal relations between
certain measurements or events.

4. Optimisation, in which the goal is to maximise the long-term rewards by making
suitable decisions in different situations.

These uses were based on an investigation of published works. Various machine
learning techniques were also presented to help in understanding the characteristics of
techniques used for different problems.

A loop structure for autonomically managing devices in the smart environment using
machine learning was proposed. The loop consists of the aforementioned categories
with the optimisation category divided into decision making and control problems.

Two demonstrations were implemented to validate the resulting model. In the first
one, a latency predictor, it attempted to generate a model of the effect of the number
of joined KPs, the number of triples in the database and the number of subscriptions
to the time it takes to make a query to the SIB. The latency predictor used a neural
network with a backpropagation-based learning algorithm for prediction. It was able to
predict the latencies better than simpler reference predictors in cases where the change
in the amounts of subscriptions and the succeeding change in the latency were rapid.
However, it also made false deductions about the relationships between inputs and
outputs in some situations.

The second demonstration was a decision maker whose task was to choose a filter
device for a video-streaming application. It used an implementation of the Q learn-
ing algorithm with a look-up table to estimate the rewards for different choices. The
rewards were calculated using the delay of completing the task and the mean and stan-
dard deviation of the processor utilisations of the devices in the smart environment
as parameters. The learning agent did not know this reward function. It was able to
fill the table with reasonable values although some values seemed somewhat illogical
compared to other values. It is probable that by using the look-up table created by
the learning agent the decision maker could make optimal decisions for these kinds of
tasks.

Machine learning techniques are now, and in the future, essential to enhance the
behaviour of smart environments. The most important work is to develop machine
learning solutions to the problems described in this thesis that are adaptive and easy to
use in different domains.

69

References

[1]

(2]

[3]

[5]

[6]

[7]
[8]

[9]

[10]

[11]

[12]

[13]

Cook, D.J. & Das, S.K. (2007) How smart are our environments? An updated
look at the state of the art. Pervasive and Mobile Computing 3, pp. 53—73. Design
and Use of Smart Environments.

Mozer, M.C. (1998) The Neural Network House: An Environment that Adapts to
its Inhabitants. In: Proc. AAAI Spring Symposium on Intelligent Environments.

Cook, D.J., Youngblood, M. & Das, S.K. (2006) A Multi-agent Approach to
Controlling a Smart Environment, Springer Berlin / Heidelberg, Lecture Notes in
Computer Science, vol. 4008. pp. 165-182.

Holmes, A., Duman, H. & Pounds-Cornish, A. (2002) The iDorm: Gateway to
Heterogeneous Networking Environments. In: International ITEA Workshop on
Virtual Home Environments, pp. 30-37.

Soininen, J.P., Liuha, P., Lappeteldinen, A., Honkola, J., Frimling, K. &
Raisamo, R. (2010), Tivit/DIEM project, White paper. URL: http://www.
tivit.fi/fi/dokumentit/64/DIEM%20whitepaper.pdf.

Salehie, M. & Tahvildari, L. (2009) Self-Adaptive Software: Landscape and Re-
search Challenges. ACM Transactions on Autonomous and Adaptive Systems 4,
pp- 14:1-14:42.

Mitchell, T.M. (1997) Machine learning. McGraw-Hill, New York.

Cook, D.J. & Das, S.K. (2005) Smart Environments: Technologies, Protocols,
and Applications. John Wiley, Hoboken, NJ.

Hermann, F.,, Blach, R., Janssen, D., Klein, T., Schuller, A. & Spath, D. (2009)
Challenges for User Centered Smart Environments, Springer Berlin / Heidelberg,
Lecture Notes in Computer Science, vol. 5612. pp. 407-415.

Mozer, M.C. (2005) Lessons from an Adaptive Home. In: D.J. Cook & S.K.
Das (eds.) Smart Environments: Technologies, Protocols, and Applications, John
Wiley, pp. 273-294.

Youngblood, G.M., Cook, D.J. & Holder, L.B. (2005) Managing Adaptive Ver-
satile environments. Pervasive and Mobile Computing 1, pp. 373—403. Special
issue on PerCom 2005.

Cook, D.J. (2008) Artificial Intelligence on the Body, in the Home, and Beyond.
In: BodyNets *08: Proceedings of the ICST 3rd international conference on Body
area networks, ICST (Institute for Computer Sciences, Social-Informatics and
Telecommunications Engineering), Brussels, Belgium, pp. 1-6.

Jakkula, V.R., Crandall, A.S. & Cook, D.J. (2009) Enhancing Anomaly Detec-
tion Using Temporal Pattern Discovery. In: Advanced Intelligent Environments,
Springer US, pp. 175-194.

70

http://www

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

Remagnino, P., Hagras, H., Monekosso, N. & Velastin, S. (2005) Ambient Intel-
ligence: A Gentle Introduction. In: Ambient Intelligence, Springer New York,
pp. 1-14.

Hagras, H., Callaghan, V., Colley, M., Clarke, G., Pounds-Cornish, A. & Du-
man, H. (2004) Creating an Ambient-Intelligence Environment Using Embedded
Agents. IEEE Intelligent Systems 19, pp. 12-20.

Hagras, H., Doctor, F., Callaghan, V. & Lopez, A. (2007) An Incremental Adap-
tive Life Long Learning Approach for Type-2 Fuzzy Embedded Agents in Ambi-
ent Intelligent Environments. IEEE Transactions on Fuzzy Systems 15, pp. 41—
55.

Duman, H., Hagras, H. & Callaghan, V. (2010) A Multi-Society-Based Intel-
ligent Association Discovery and Selection for Ambient Intelligence Environ-
ments. ACM Transactions on Autonomous and Adaptive Systems 5, pp. 1-34.

Tawil, E. & Hagras, H. (2009) An Adaptive Genetic-Based Incremental Architec-
ture for the On-Line Coordination of Embedded Agents. Cognitive Computation
1, pp. 300-326.

Hagras, H., Callaghan, V., Colley, M. & Clarke, G. (2003) A hierarchical fuzzy-
genetic multi-agent architecture for intelligent buildings online learning, adapta-
tion and control. Information Sciences 150, pp. 33-57.

Reinisch, C., Kofler, M.J. & Kastner, W. (2010) ThinkHome: A Smart Home
as Digital Ecosystem. In: Proceedings of 4th IEEE International Conference on
Digital Ecosystems and Technologies (DEST 2010), pp. 256-261.

MIT Project Oxygen (accessed 24.5.2010). URL: http://oxygen.csail.
mit.edu/.

DreamSpace (accessed 24.5.2010). URL: http://www.research.ibm.
com/natural/dreamspace/.

de Ruyter, B., van Loenen, E. & Teeven, V. (2007) User Centered Research in Ex-
periencelLab, Springer Berlin / Heidelberg, Lecture Notes in Computer Science,
vol. 4794. pp. 305-313.

Brumitt, B., Meyers, B., Krumm, J., Kern, A. & Shafer, S. (2000) EasyLiving:
Technologies for Intelligent Environments, Springer Berlin / Heidelberg, Lecture
Notes in Computer Science, vol. 1927. pp. 97-119.

Intille, S.S., Larson, K., Beaudin, J.S., Nawyn, J., Tapia, E'M. & Kaushik, P.
(2005) A Living Laboratory for the Design and Evaluation of Ubiquitous Com-
puting Technologies. In: CHI *05 extended abstracts on Human factors in com-
puting systems, ACM, New York, NY, USA, pp. 1941-1944.

Intille, S.S., Larson, K., Tapia, E.M., Beaudin, J.S., Kaushik, P., Nawyn, J. &
Rockinson, R. (2006) Using a Live-In Laboratory for Ubiquitous Computing Re-
search, Springer Berlin / Heidelberg, Lecture Notes in Computer Science, vol.
3968. pp. 349-365.

71

http://oxygen.csail
http://www.research.ibm

[27] Logan, B., Healey, J., Philipose, M., Tapia, E.M. & Intille, S. (2007) A Long-
Term Evaluation of Sensing Modalities for Activity Recognition, Springer Berlin
/ Heidelberg, Lecture Notes in Computer Science, vol. 4717. pp. 483-500.

[28] Duda, R.O., Hart, PE. & Stork, D.G. (2001) Pattern Classification. John Wiley
& Sons, New York, second ed.

[29] Michalski, R.S., Carbonell, J.G. & Mitchell, T.M. (eds.) (1983) Machine Learn-
ing: An Artificial Intelligence Approach. Morgan Kaufmann, Los Altos, Calif.

[30] van Someren, M. & Urbanci¢, T. (2006) Applications of Machine Learning:
Matching Problems to Tasks and Methods. Knowledge Engineering Review 20,
pp- 363—-402.

[31] Quinlan, J. (1993) C4.5: Programs for Machine Learning. Morgan Kaufmann.
[32] Breiman, L. (2001) Random Forests. Machine learning 45, pp. 5-32.

[33] Russell, S. & Norvig, P. (2003) Artificial Intelligence: A Modern Approach.
Prentice-Hall, Upper Saddle River, New Jersey, second ed.

[34] Haykin, S. (1999) Neural Networks: A Comprehensive Foundation. Prentice-
Hall, Upper Saddle River, New Jersey, second ed.

[35] Fahlman, S.E. & Lebiere, C. (1991) The Cascade-Correlation Learning Architec-
ture. Tech. Rep. CMU-CS-90-100, School of Computer Science, Carnegie Mel-
lon University, Pittsburgh, PA 15213.

[36] Rabiner, L.R. & Juang, B.H. (1986) An Introduction to Hidden Markov Models.
IEEE ASSP Magazine 3, pp. 4-16.

[37] Kotsiantis, S.B. (2007) Supervised Machine Learning: A Review of Classifica-
tion Techniques. Informatica 31, pp. 249-268.

[38] Kotsiantis, S.B., Zaharakis, [.D. & Pintelas, P.E. (2006) Machine learning: a
review of classification and combining techniques. Artificial Intelligence Review
6, pp. 159-190.

[39] Watkins, C. (1989) Learning from Delayed Rewards. Ph.D. thesis, King’s Col-
lege, Cambridge, England.

[40] Dietterich, T.G. (2003) Machine Learning (accessed 17.5.2010).
In: Nature Encyclopedia of Cognitive Science, MacMillan, Lon-
don. URL: http://www.cs.utsa.edu/~bylander/cs6243/
nature—-ecs-machine-learning.pdf.

[41] Kononen, V. (2004) Multiagent Reinforcement Learning in Markov Games:
Asymmetric and Symmetric Approaches. Ph.D. thesis, Helsinki University of
Technology, Deparment of Computer Science and Engineering, Espoo, Finland.

[42] Sumathi, S. & Sivanandam, S. (2006) Introduction to Data Mining and its Appli-
cations. Studies in Computational Intelligence, Springer Berlin / Heidelberg.

72

http://www.cs.utsa.edu/~bylander/cs6243/

[43]

[44]

[45]

[46]

[47]

[48]

[49]

[50]

[51]

[52]

[53]

[54]

Berkhin, P. (2006) A Survey of Clustering Data Mining Techniques. In: Grouping
Multidimensional Data, Springer Berlin Heidelberg, pp. 25-71.

Patcha, A. & Park, J.M. (2007) An overview of anomaly detection techniques:
Existing solutions and latest technological trends. Computer Networks 51, pp.
3448-3470.

Vilalta, R. & Ma, S. (2002) Predicting Rare events In Temporal Domains. In:
Proceedings of the 2002 IEEE International Conference on Data Mining, ICDM
2002., pp. 474-481.

Weiss, G.M. & Hirsh, H. (1998) Learning to Predict Rare Events in Event Se-
quences. In: Proceedings of the Fourth International Conference on Knowledge
Discovery and Data Mining, AAAI Press, pp. 359-363.

Laxman, S., Tankasali, V. & White, R.W. (2008) Stream Prediction Using A Gen-
erative Model Based On Frequent Episodes In Event Sequences. In: KDD ’08:
Proceeding of the 14th ACM SIGKDD international conference on Knowledge
discovery and data mining, ACM, New York, NY, USA, pp. 453-461.

Ipek, E., de Supinski, B.R., Schulz, M. & McKee, S.A. (2005) An Approach to
Performance Prediction for Parallel Applications, Springer Berlin / Heidelberg,
Lecture Notes in Computer Science, vol. 3648. pp. 196-205.

Han, J., Cheng, H., Xin, D. & Yan, X. (2007) Frequent pattern mining: current
status and future directions. Data Mining and Knowledge Discovery 15, pp. 55—
86.

Van Kasteren, T., Noulas, A., Englebienne, G. & Krose, B. (2008) Accurate Ac-
tivity Recognition in a Home Setting. In: UbiComp ’08: Proceedings of the 10th
international conference on Ubiquitous computing, ACM, New York, NY, USA,

pp.- 1-9.

Miihlenbrock, M., Brdiczka, O., Snowdon, D. & Meunier, J.L. (2004) Learning
to Detect User Activity and Availability from a Variety of Sensor Data. In: Pro-

ceedings of the Second IEEE Annual Conference on Pervasive Computing and
Communications, 2004. PerCom 2004., pp. 13-22.

Hafner, R. & Riedmiller, M. (2007) Neural Reinforcement Learning Controllers
for a Real Robot Application. In: Proceedings of the IEEE International Confer-
ence on Robotics and Automation (ICRA 07), pp. 2098-2103.

Prothmann, H., Branke, J., Schmeck, H., Tomforde, S., Rochner, F., Hihner, J. &
Miiller-Schloer, C. (2009) Organic traffic light control for urban road networks.
International Journal of Autonomous and Adaptive Communications Systems 2,
pp. 203-225.

Lappeteldinen, A., Tuupola, J.M., Palin, A. & Eriksson, T. (2008) Networked
systems, services and information: The ultimate digital convergence. In: 1st In-
ternational Network on Terminal Architecture Conference (NoTA2008).

73

[55]

[56]

[57]

[58]

[59]

[60]

[61]

[62]

[63]

[64]

[65]

[66]

[67]

Evesti, A., Eteldperd, M., Kiljander, J., Kuusijirvi, J., Purhonen, A. & Stenudd, S.
(2009) Semantic Information Interoperability in Smart Spaces. In: Proceedings
of the 8th International Conference on Mobile and Ubiquitous Multimedia, ACM
International Conference Proceedings Series, pp. 158—159.

Gruber, T.R. (1995) Toward Principles for the Design of Ontologies Used for
Knowledge Sharing. International Journal of Human Computer Studies 43, pp.
907-928.

Motik, B., Parsia, B. & Patel-Schneider, PF. (2009) OWL 2 Web
Ontology Language Structural Specification and Functional-Style Syntax.
W3C Recommendation, W3C. URL: http://www.w3.0rg/TR/2009/
REC-owl2-syntax-20091027/.

Carroll, J.J. & Klyne, G. (2004) Resource Description Framework (RDF): Con-
cepts and Abstract Syntax. W3C Recommendation, W3C. URL: http: //www.
w3.0rg/TR/2004/REC-rdf-concepts-20040210/.

Guha, R.V. & Brickley, D. (2004) RDF Vocabulary Description Language 1.0:
RDF Schema. W3C Recommendation, W3C. URL: http://www.w3.0rg/
TR/2004/REC-rdf-schema—-20040210/.

Smart-M3 at SourceForge.net (accessed 24.5.2010). URL: http:
//sourceforge.net/projects/smart-m3/.

Lassila, O. (2007) Programming Semantic Web Applications: A Synthesis of
Knowledge Representation and Semi-Structured Data. Ph.D. thesis, Helsinki
University of Technology, Deparment of Computer Science and Engineering, Es-
poo, Finland.

Kiljander, J. (2010) Reference Implementation of Interoperable Entity for Smart
Environments. Master’s thesis, University of Oulu, Department of Electrical and
Information Engineering, Finland.

Igel, C., Glasmachers, T. & Heidrich-Meisner, V. (2008) Shark. Journal of Ma-
chine Learning Research 9, pp. 993-996.

Igel, C. & Hiisken, M. (2003) Empirical evaluation of the improved Rprop learn-
ing algorithms. Neurocomputing 50, pp. 105-124.

Taymans, W., Baker, S., Wingo, A., Bultje, R.S. & Kost, S., GStreamer
Application Development Manual (0.10.29) (accessed 12.5.2010). URL:
http://gstreamer.freedesktop.org/data/doc/gstreamer/
head/manual /manual .pdf.

van Dorst, W., BogoMips mini-Howto (accessed 12.5.2010). URL: http://
www.clifton.nl/index.html?bogomips.html.

Schaul, T., Bayer, J., Wierstra, D., Sun, Y., Felder, M., Sehnke, F., Riickstie3, T.
& Schmidhuber, J. (2010) PyBrain. Journal of Machine Learning Research .

74

http://www.w3.org/TR/2009/
http://www
http://www.w3.org/
http://gstreamer.freedesktop.org/data/doc/gstreamer/
http://www.clifton.nl/index.html?bogomips.html
http://www.clifton.nl/index.html?bogomips.html

[68] Das, S.K., Cook, D.J., Battacharya, A., Heierman, III, E.O. & Lin, T.Y. (2002)
The Role of Prediction Algorithms in the MavHome Smart Home Architecture.
Wireless Communications, IEEE 9, pp. 77-84.

[69] Das, S.K. & Cook, D.J. (2005) Designing Smart Environments: A Paradigm
Based on Learning and Prediction, Springer Berlin / Heidelberg, Lecture Notes
in Computer Science, vol. 3776. pp. 80-90.

[70] Fernandez-Montes, A., Ortega, J.A., Alvarez, J.A. & Gonzalez-Abril, L. (2009)
Smart Environment Software Reference Architecture. In: Fifth International Joint
Conference on INC, IMS and IDC, 2009. NCM ’09., pp. 397-403.

[71] Kephart, J.O. & Chess, D.M. (2003) The Vision of Autonomic Computing. IEEE
Computer 36, pp. 41-50.

[72] Huebscher, M.C. & McCann, J.A. (2008) A survey of autonomic computing—
degrees, models, and applications. ACM Comput. Surv. 40, pp. 1-28.

75

Series title, number and
report code of publication

m- VTT Publications 751

VTT-PUBS-751

Author(s)
Sakari Stenudd

Title

Using machine learning in the adaptive control of a
smart environment

Abstract

The purpose of this thesis is to study the possibilities and need for utilising machine learning in a smart envi-
ronment. The most important goal of smart environments is to improve the experience of their inhabitants. This
requires adaptation to the behaviour of the users and the other changing conditions in the environment. Hence,
the achievement of functional adaptation requires finding a way to change the behaviour of the environment
according to the changed user behaviour and other conditions. Machine learning is a research area that studies
the techniques which make it possible for software agents to improve their operation over time.

The research method chosen in this thesis was to review existing smart environment projects and to analyse
the usages of machine learning within them. Based upon these uses, a model for using machine learning in a
smart environment was created. As a result, four different categories of machine learning in smart environments
were identified: prediction, recognition, detection and optimisation. When deployed to the environment, these
categories form a clear loop structure in which the outputs of previous learning agents serve as inputs for the
next agents, which ultimately enables the making of changes to the environment according to its current state.
This kind of loop is called a control loop in adaptive systems.

To evaluate the suitability of the model for using machine learning in a smart environment, two demonstra-
tions were carried out in an environment using a Smart-M3 inter-operability platform, both utilising machine
learning in one of the above-discussed categories. In the first experiment neural networks were used to predict
query latencies in different situations in the environment. The predictions of the network were compared to the
outputs of two simpler models. The results showed that the neural network approach was capable of adapting to
rapid changes more quickly. However, it also made more false assumptions about the impact of the different
parameters.

The second experiment belongs to the optimisation category. In this experiment a decision maker was im-
plemented for a resource allocation problem in a distributed multi-media streaming application. It used rein-
forcement learning with a look-up table and an implementation of the Q-learning algorithm. After the learning
period the agent was capable of making optimal decisions.

The experiments confirm that it is suitable to use the model described in this thesis in smart environments.
The model includes the most important uses of machine learning and it is consistent with other results in the
areas of smart environments and self-adaptive software.

ISBN
978-951-38-7420-9 (URL: http://www.vtt.fi/publications/index.jsp)

Series title and ISSN Project number

VTT Publications
1455-0849 (URL: http://www.vtt.fi/publications/index.jsp)

Date Language Pages
December 2010 English, finnish abstr. 75 p.
Name of project Commissioned by
Keywords Publisher
Smart space, inter-operability, control loop, VTT Technical Research Centre of Finland
adaptive systems, self-adaptive software, rein- P.O. Box 1000, FI-02044 VTT, Finland
forcement learning, Smart-M3 IOP Phone internat. +358 20 722 4520
Fax +358 20 722 4374

http://www.vtt.fi/publications/index.jsp
http://www.vtt.fi/publications/index.jsp

Julkaisun sarja, numero ja
raporttikoodi

WT VTT Publications 751
VTT-PUBS-751

Tekijat)
Sakari Stenudd

Nimeke

Koneoppimisen kaytto aly-ympéariston mukautu-
vassa ohjauksessa

Tiivistelma

Opinnaytetyoni tarkoitus on tutustua koneoppimisen kayttémahdollisuuksiin ja -tarpeisiin alykkaassa ymparis-
tossa. Alykkaiden ympaéristojen tarkein paamaara on niiden kayttajien kayttokokemuksen parantaminen. Tama
vaatii mukautumista kayttajien kaytokseen sekd muihin muuttuviin tilanteisiin ympéristossa. Mukautumisen
saavuttamiseksi tarvitaan tapa muuttaa ympariston toimintaa tapahtuvien muutosten mukaan. Koneoppiminen
on tutkimusalue, joka késittelee sellaisia tekniikoita, joita kdyttaen ohjelmistoagentit voivat parantaa toimintaan-
sa ajan kuluessa.

Opinnaytetyon alussa tutustutaan olemassa oleviin aly-ymparistoprojekteihin ja tarkastellaan niissa kaytettyja
koneoppimismenetelmia. Kaytettyihin menetelmiin perustuen esitetdadn malli, joka kuvaa, miten koneoppimis-
menetelmia voidaan kayttaa alykkaissa ympéaristoissa. Malli siséltéa nelja eri koneoppimistyyppié: havainnointi,
tunnistaminen, ennustaminen ja optimointi. Kun néité tyyppeja kaytetdén aly-ymparistdssé, ne muodostavat
selkean silmukkarakenteen, jossa seuraavat oppivat agentit voivat kayttaa edellisten tuloksia. Tama mahdollis-
taa lopulta sen, ettd ymparistoon voidaan tehdd muutoksia sen nykyisen tilan perusteella. Tallaista rakennetta
kutsutaan mukautuvien jarjestelmien alueella nimell& ohjaussilmukka.

Jotta voitaisiin arvioida luodun mallin soveltuvuutta, luotiin kaksi mallin osa-aluetta kayttavda demonstraatiota
kayttden Smart-M3-yhteentoimivuusalustaa. Ensimmaéisessa toteutuksessa kaytettiin neuroverkkoja ennusta-
maan kyselyjen viivetta erilaisissa aly-ympériston tilanteissa. Neuroverkon ennusteita verrattiin kahden yksinker-
taisemman mallin tuloksiin. Testit osoittivat, ettd neuroverkkomenetelma pystyi mukautumaan nopeisiin muutok-
siin aiemmin, mutta se teki myos joitakin vaaria olettamuksia eri parametrien vaikutuksesta tulokseen.

Toinen koe kuuluu optimointiluokkaan. Siind toteutettiin paatoksentekijaohjelma, jonka tuli ratkaista resurssi-
en kohdentamisongelma hajautetussa multimedian suoratoisto-ohjelmassa. Paatoksentekijassa sovellettiin
vahvistusoppimistekniikkaa kayttden hakutaulukkoa ja Q-oppimisen toteutusta. Oppimisjakson jéalkeen agentti
pystyi tekem&én optimaalisia paatdksia suurimman osan ajasta.

Tehdyt kokeet osoittivat, etta tydssa kuvattu malli sopii kaytettavaksi alykkaissa ympéristoissa. Malli kattaa
tarkeimmét koneoppimisen kayttokohteet ja on yhtapitdvd muiden tulosten kanssa, jotka on saatu &ly-
ymparistojen ja mukautuvien ohjelmistojen alueella.

ISBN
978-951-38-7420-9 (URL: http://www.vtt.fi/publications/index.jsp)

Avainnimeke ja ISSN Projektinumero
VTT Publications
1455-0849 (URL: http://www.vtt.fi/publications/index.jsp)

Julkaisuaika Kieli Sivuja

Joulukuu 2010 Englanti, suom. tiiv. 75 s.

Projektin nimi Toimeksiantaja(t)

Avainsanat Julkaisija

Smart space, inter-operability, control loop, VTT

adaptive systems, self-adaptive software, rein- PL 1000, 02044 VTT

forcement learning, Smart-M3 |IOP Puh. 020 722 4520
Faksi 020 722 4374

http://www.vtt.fi/publications/index.jsp
http://www.vtt.fi/publications/index.jsp

VTT CREATES BUSINESS FROM TECHNOLOGY

Technology and market foresight ® Strategic research ® Product and service development ® IPR and licensing
® Assessments, testing, inspection, certification ® Technology and innovation management ® Technology partnership

VTT PUBLICATIONS

737 Virpi Oksman. The mobile phone: A medium in itself. 2010. 89 p. + app. 132 p.

738 Fusion Yearbook. Association EURATOM-TEKES. Annual Report 2009. Eds. by
Seppo Karttunen & Markus Airila. 2010. 136 p. + app. 13 p.

739 Satu Hilditch. Identification of the fungal catabolic D-galacturonate pathway. 2010.
74 p. + app. 38 p.

740 Mikko Pihlatie. Stability of Ni-YSZ composites for solid oxide fuel cells during
reduction and re-oxidation. 2010. 92 p. + app. 62 p.

LGZ SNOILYIOITANd LIN e e @

741 Laxmana Rao Yetukuri. Bioinformatics approaches for the analysis of lipidomics
data. 2010. 75 p. + app. 106 p.

742 Elina Mattila. Design and evaluation of a mobile phone diary for personal health
management. 2010. 83 p. + app. 48 p.

743 Jaakko Paasi & Pasi Valkokari (eds.). Elucidating the fuzzy front end - Experiences
from the INNORISK project. 2010. 161 p.

744 Marja Vilkman. Structural investigations and processing of electronically and
protonically conducting polymers. 2010. 62 p. + app. 27 p.

745 Juuso Olkkonen. Finite difference time domain studies on sub-wavelength aperture
structures. 2010. 76 p. + app. 52 p.

746 Jarkko Kuusijarvi. Interactive visualization of quality Variability at run-time. 2010.
111 p.

747 Eija Rintala. Effects of oxygen provision on the physiology of baker’s yeast
Saccharomyces cerevisiae. 2010. 82 p. + app. 93 p.

748 Virve Vidgren. Maltose and maltotriose transport into ale and lager brewer’s yeast
strains. 2010. 93 p. + app. 65 p.

749 Toni Ahonen, Markku Reunanen & Ville Ojanen (eds.). Customer value driven
service business development. Outcomes from the Fleet Asset Management Project.
2010. 43 p. + app. 92 p.

750 Tiina Apilo. A model for corporate renewal. Requirements for innovation
management. 2010. 167 p. + app. 16 p.

751 Sakari Stenudd. Using machine learning in the adaptive control of a smart
environment. 2010. 75 p.

752 Evanthia Monogioudi. Enzymatic Cross-linking of [-casein and its impact on
digestibility and allergenicity. 2010. 85 p. + app. 66 p.

753 Jukka-Tapani Makinen. Concurrent engineering approach to plastic optics design.
2010. 99 p. + app. 98 p.

754 Sanni Voutilainen. Fungal thermostable cellobiohydrolases. Characterization and
protein engineering studies. 2010. 98 p. + app. 55 p.

INJINNOHIANT 1HVIAS V 40 TOHLINOI JAILdVYAY FHL NI ONINYVYIT INIHOVIN ONISN

ISBN 978-951-38-7420-9 (URL: http://www.vtt.fi/publications/index.jsp)
ISSN 1455-0849 (URL: http://www.vtt.fi/publications/index.jsp)

http://www.vtt.fi/publications/index.jsp
http://www.vtt.fi/publications/index.jsp

	Abstract
	Tiivistelmä
	Preface
	Contents
	Abbreviations
	1. Introduction
	2. Smart Environments
	2.1. Smart Environment
	2.2. Existing Smart Environment Projects
	2.2.1. ACHE
	2.2.2. MavHome
	2.2.3. iDorm
	2.2.4. ThinkHome
	2.2.5. Other projects
	2.2.6. Summary

	3. Machine Learning
	3.1. Prior Knowledge in Machine Learning
	3.2. Definitions
	3.3. Different Machine Learning Systems
	3.4. Bayesian Reasoning
	3.5. Supervised Learning
	3.5.1. Naive Bayes model
	3.5.2. Decision trees
	3.5.3. Linear discriminant functions
	3.5.4. Artificial neural networks
	3.5.5. Hidden Markov models
	3.5.6. Instance-based learning
	3.5.7. Genetic algorithms
	3.5.8. Learning rules
	3.5.9. Summary of supervised machine learning methods

	3.6. Reinforcement Learning
	3.6.1. Markov Decision Process
	3.6.2. Learning policies

	3.7. Unsupervised Learning
	3.8. Research Areas that are Based on Machine Learning
	3.8.1. Data mining
	3.8.2. Anomaly detection

	3.9. Machine Learning in Existing Smart Environment Projects
	3.9.1. Event and latency prediction
	3.9.2. Activity pattern identification
	3.9.3. Activity recognition
	3.9.4. Anomaly detection
	3.9.5. Device control
	3.9.6. Decision making

	4. Model for Using Learning in a Smart Environment
	4.1. Smart Environment Inter-operability Platform
	4.1.1. Inter-operability in the Smart-M3 IOP

	4.2. Potential Uses of Machine Learning in a Smart Environment
	4.2.1. Detection
	4.2.2. Recognition
	4.2.3. Prediction
	4.2.4. Optimisation

	4.3. Interaction of Machine Learning Uses

	5. Implementation
	5.1. Latency Prediction
	5.1.1. Implementation
	5.1.2. Evaluation

	5.2. Decision Making
	5.2.1. Implementation
	5.2.2. Evaluation

	6. Discussion
	6.1. The Latency Prediction Case
	6.2. The Decision-Making Case
	6.3. Summary of Results and Comparison to Other Work
	6.4. Future Work

	7. Conclusions
	References

