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Abstract 

This report presents the best-known acoustic analogies, and their equations are 
derived mathematically in detail to allow their applicability to be extended when 
necessary. In the acoustic analogies, the equations governing the flow-generated 
acoustic fields are rearranged in such a way that the field variable connections 
(wave operator part) are on the left-hand side and that which is supposed to form 
the source quantities for the acoustic field (source part) is on the right-hand side. 

Lighthill’s analogy was originally developed for unbounded flows. The anal-
ogy assumes that, outside the source region, there is no static flow and the fluid 
is ideal. The refraction effects are not included in the wave operator. Powell’s 
analogy is an approximate version of Lighthill’s analogy. The Ffowcs Williams–
Hawkings analogy is such an extension of Lighthill’s analogy that, being based 
on the same starting point, it takes into account the effects of moving boundaries 
by equivalent Huygens sources. Curle’s analogy is obtained from the Ffowcs 
Williams–Hawkings analogy by assuming that the boundaries are not moving. In 
Phillips’ analogy, the effects of a moving medium are partially taken into ac-
count, and the refraction effects are included in the wave operator. The fluid 
outside the source region is assumed to be ideal. Lilley’s analogy is based on the 
same starting point as Phillips’ analogy, but all the ‘propagation effects’ occur-
ring in a transversely sheared mean flow are inside the wave operator part of the 
equation. In Howe’s analogy, the vorticity vector (in the form of Coriolis accel-
eration) and the entropy gradients are put in the source part of the equation, 
forming the main part of the sources; the compressibility of the medium is as-
sumed to be constant and the viscous losses are assumed to vanish. In Doak’s 
analogy, the compressibility of the medium does not need to be constant, the 
vorticity and the entropy gradients do not need to disappear outside the source 
region, and the viscous and thermal losses can be taken into account, somehow, 
inside and outside the source region. 

The four last-presented analogies assume that the medium is an ideal gas, so 
without modifications they cannot be applied to acoustic fields in liquids. 
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Tiivistelmä 

Tunnetuimmat akustiset analogiat esitetään ja niitä hallitsevat yhtälöt johdetaan 
matemaattisesti yksityiskohtaisesti, jotta niiden sovellettavuutta olisi mahdollista 
tarvittaessa laajentaa. Akustisissa analogioissa virtausherätteisiä akustisia kenttiä 
hallitsevat yhtälöt järjestellään siten, että vasemmalla puolella ovat kenttämuut-
tujayhteydet (aalto-operaattoriosa) ja oikealla puolella jotakin, jonka oletetaan 
muodostavan akustisen kentän lähdesuureet (lähdeosa). 

Lighthillin analogia on alun perin kehitetty rajoittamattomille virtauksille. 
Analogiassa oletetaan, että lähdealueen ulkopuolella ei ole staattista virtausta ja 
että fluidi on ideaalinen. Aalto-operaattori ei sisällä aallon taittumisen vaikutuk-
sia. Powellin analogia on approksimaatio Lighthillin analogiasta. Ffowcs Wil-
liamsin–Hawkinsin analogia on Lighthillin analogian laajennus siten että, perus-
tuen samaan lähtökohtaan, se ottaa huomioon liikkuvien rajapintojen vaikutukset 
ekvivalenttisilla Huygensin lähteillä. Curlen analogia saadaan Ffowcs William-
sin–Hawkinsin analogiasta olettamalla rajapinnat liikkumattomiksi. Phillipsin 
analogiassa liikkuvan väliaineen vaikutukset otetaan osittain huomioon ja aallon 
taittumisen vaikutukset sisältyvät aalto-operaattoriin. Lähdealueen ulkopuolinen 
fluidi oletetaan ideaaliseksi. Lilleyn analogia perustuu samaan lähtökohtaan kuin 
Phillipsin analogia, mutta kaikki virtausten sekoittumisessa esiintyvät ”etene-
misvaikutukset” ovat yhtälön aalto-operaattoripuolella. Howen analogiassa pyör-
teisyysvektori (Coriolis-kiihtyvyyden muodossa) ja entropiagradientit on sijoi-
tettu yhtälön lähdepuolelle niiden muodostaessa pääosan lähteistä, väliaineen 
puristuvuuden oletetaan olevan vakio sekä viskoottisia häviöitä ei oteta huomi-
oon. Doakin analogiassa puristuvuuden ei tarvitse olla vakio, pyörteisyyden ja 
entropiagradienttien ei tarvitse hävitä lähdealueen ulkopuolella, ja viskoottiset ja 
lämpöhäviöt voidaan jollain lailla ottaa huomioon sekä lähdealueen sisä- että 
ulkopuolella. 

Neljässä viimeiseksi esitetyssä analogiassa väliaine oletetaan ideaalikaasuksi, 
joten ilman modifikaatioita niitä ei voi soveltaa akustisiin kenttiin nesteissä. 
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Preface 

The work described in this publication has been carried out in VTT Smart Ma-
chines, Machinery and Environmental Acoustics Team. The results were ob-
tained through the UNNO task (Underwater Noise) of the SEEE project (Ship’s 
Energy Efficiency and Environment) in the EFFIMA programme (Energy and 
lifecycle efficient machines) of FIMECC SHOK with funding from Tekes. The 
programme runs from 2009 to 2013. The aim of this report is to present the best-
known acoustic analogies and derive their equations mathematically in detail to 
clarify their applicability to calculating flow-generated acoustic fields and to 
allow their applicability to be extended when necessary. 

Espoo, January 2011 

Seppo Uosukainen 
e-mail: Seppo.Uosukainen@vtt.fi 
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List of symbols 

B stagnation enthalpy, Eqs. (39) & (A.7) 

C Doppler factor, Eqs. (29) & (J.29) 

E  rate-of-strain dyadic, Eq. (B.3) 

Eint internal energy per unit mass 

F


 strength of force source distribution (dipole distribution + gravitation) 

SF


 surface force source distribution, Eq. (G.9) 

H enthalpy, Eqs. (40) & (A.6); Heaviside function (step function), Eq. 
(14) 

I  identic dyadic, Eq. (R.9) 

K thermal conductivity of fluid 

L wave operator 

P pressure 

P0 static pressure; constant reference pressure in the definition of  

Q total volume velocity 

R gas constant; distance between source and field points, Eq. (P.2) 

S entropy; surface 

T temperature; limit of time interval in App. P  

T  strength of momentum source distribution (quadrupole distribution) 

LT  Lighthill’s stress dyadic, Eqs. (5) & (H.4) 

RT  Reynolds’ stress, Eq. (7) 

ST  surface quadrupole source distribution 

WVcT  volume quadrupole distribution substituting qWS, Eqs. (20) & (J.11) 

U


 particle velocity 

V volume 
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V


 auxiliary variable in Doak’s analogy, Eqs. (43) & (O.15) 

V* specific volume, Eq. (C.3) 

a


 acceleration 

c local speed of sound in constant entropy, Eq. (A.4) 

c0 linearized speed of sound 

cP specific heat in constant pressure 

cT isothermal speed of sound, Eq. (C.3) 

cV specific heat in constant volume 

ne



 unit normal vector 

ie


 unit normal vector in wi direction (i = 1, 2, 3) 

xe  unit normal vector in x direction 

e  perturbation part of rate-of-strain dyadic E  

f field 

f



 strength of perturbation force source distribution (dipole distribution) 

Sf  surface dipole source distribution, linearized part of SF


; equivalent 
Huygens surface dipole source distribution, Eq. (G.13) 

WSf


 equivalent Huygens surface dipole source distribution (loading source) 
for moving obstacles, Eqs. (16) & (J.3) 

WVcf


 volume dipole distribution substituting qWS, Eqs. (19) & (J.10) 

g source in Eq. (1); Green’s function 

g


 acceleration of gravity 

g0 Green’s function for free space, Eq. (F.2) 

hi scale factors of coordinate system wi, i = 1, 2, 3, Eq. (G.7) 

p pressure perturbation (sound pressure) 

pf sound pressure due to dipole distribution, Eq. (F.8) for volume distri-
bution, Eq. (F.12) for surface distribution 

pfS sound pressure due to WSf


, Eq. (J.33) 

pfVc sound pressure due to WVcf


, Eq. (J.31) 

pL sound pressure due to LT , Eq. (J.34) 

pq sound pressure due to monopole distribution, Eq. (F.7) for volume 
distribution, Eq. (F.11) for surface distribution 

pT sound pressure due to quadrupole distribution, Eq. (F.9) for volume 
distribution, Eq. (F.13) for surface distribution 
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pTVc sound pressure due to WVcT , Eq. (J.32) 

pvS sound pressure due to qWS, Eq. (J.30) 

q strength of mass source distribution (monopole distribution, volume 
velocity distribution) 

qS surface monopole source distribution, Eq. (G.8); equivalent Huygens 
surface monopole distribution, Eq. (G.12) 

qWS equivalent Huygens surface monopole source distribution (thickness 
source) for moving obstacle, Eqs. (15) & (J.2)  

r


 field point vector 

0r


 source point vector 

s perturbation part of entropy S 

se entropy-related auxiliary variable, Eq. (6)  

t time 

t0 source time variable 

te retarded time, Eqs. (30) & (J.35) 

u


 perturbation particle velocity of fluid, particle velocity associated with p 

v


 velocity 

wi coordinate (i = 1, 2, 3) 

x Cartesian coordinate 

y Cartesian coordinate 

z Cartesian coordinate 

a discontinuity in variable a 

 scaled logarithmic pressure, Eqs. (35) & (C.12) 

 effects of entropy fluctuations and fluid viscosity in Lilley’s analogy, 
Eqs. (38) & (M.4) 

 coefficient of thermal expansion 

 Dirac delta function 

 energy per unit volume delivered by heat source distribution 

 adiabatic constant 

 coefficient of viscosity 

v expansion coefficient of viscosity 

 density 

´fS density perturbation due to WSf


, Eq. (27) 
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´fVc density perturbation due to WVcf


, Eq. (25) 

LT , Eq. (28) ´L density perturbation due to 

´TVc density perturbation due to WVcT , Eq. (26) 

´vS density perturbation due to qWS, Eq. (24) 

  viscous part of stress dyadic, Eq. (B.2) 




 vorticity distribution, Eqs. (11) & (B.8) 




 Lagrangian source point vector 

0 operator  operating on source coordinates 

0 (subscript) static part 

T (subscript) transpose 

´ (superscript) perturbation part 
— (overline) temporal mean value 
()f meaning: quantity f is constant in the operation inside brackets 
 

 



1. Introduction 

1. Introduction 

This report presents the best-known acoustic analogies, and their equations are 
derived mathematically. The acoustic analogies are used to describe the connec-
tion between the flow and the sound field due to the flow, i.e., the dependence of 
the flow-generated sound on its causes (sources). Here, the analogies are divided 
into three categories: density-based, phi-based and enthalpy-based analogies. 
The first two names of the categories used here are not in general use. The phi-
based analogies are called convected wave equation analogies by Karjalainen 
[1]. The division used here is based on the principal acoustic field variable used 
in the analogies. Lighthill’s analogy, Powell’s analogy, the Ffowcs Williams–
Hawkings analogy and Curle’s analogy are assigned to density-based analogies, 
Phillips’ analogy and Lilley’s analogy to phi-based analogies, and Howe’s anal-
ogy and Doak’s analogy to enthalpy-based analogies. The selection of analogies 
to be studied is based principally on a VTT Report by Karjalainen [1]. The 
mathematical complexity of applying these analogies grows in the same order as 
they are presented here [1], except for Powell’s and Curle’s analogies, which are 
special cases of Lighthill’s analogy and the Ffowcs Filliams–Hawkings analogy. 

In the acoustic analogies, the equations governing the acoustic fields are rear-
ranged in such a way that the field variable connections (wave operator part) are 
on the left-hand side and that which is supposed to form the source quantities to 
the acoustic field (source part) is on the right-hand side, as 

 gLf  , (1) 

where Lf is the wave operator part containing operator L and field f to be calcu-
lated, and g is the sources for field f. Outside the source region, the right-hand 
side of the equation is zero and the field there obeys the homogeneous wave 
equation. The right-hand side sources have to be known a priori or the field 
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1. Introduction 

equation should be solved iteratively the source part becoming more accurate at 
every iteration loop. 

Apart from being based on different field variables, the various analogies dif-
fer from each other also with respect to the terms in the equations that are de-
fined to form the right-hand side source quantities and the terms that are defined 
as belonging to the left-hand side, describing the behaviour of the field variable. 
There is no unique truth for the justifications of these rearrangements; they can 
rather be said to be matters of opinion. The source terms are, somehow, mostly 
collected from the field variable terms, only some analogies use true acoustic 
source distributions as parts of sources. 

In this text, the true acoustic sources (mass, heat, force or momentum sources) 
are defined as distributions producing acoustic energy. The internal losses (vis-
cous and thermal) are defined as sinks reducing acoustic energy. Thus, the true 
source and loss concepts are separated. E.g., the heat sources are producing and 
thermal losses are dissipating acoustic energy. In most of the acoustic analogies 
presented here, the loss terms are placed on the source part of the equation. 

The dependence of the generated sound power on the flow velocity depends 
on the source part formulation. This topic is beyond the scope of this report. 
Some aspects on this have been presented, e.g., in Ref. [1]. 

The equations governing the analogies are derived in detail from four princi-
pal non-linearized equations of acoustics for Newtonian fluids: the equation of 
continuity, the Navier-Stokes equation, the state equation and the energy equa-
tion. Although references are given for each derivation, the derivations in the 
references are not as detailed as in this publication: many intermediate grades 
are skipped in the references mentioned. Some derivations are deduced here in a 
slightly different way to that in the references. Contrary to a typical reference, 
assumptions that have to be made to obtain the final results are also introduced 
as late as possible in the derivations. This kind of detailed approach has been 
selected here to clarify what must be assumed and at what stage, to obtain the 
required equations. This facilitates to extend further the applicability of the 
analogies when necessary. 

The principal equations and all the derivations of the required equations are 
presented in the appendices. The main text only introduces the final versions of 
the analogies, the basic starting points of the analogies and all the assumptions 
needed in their derivations. 

In many cases, the concepts of ideal gas and ideal fluid are used. The concepts 
are not the same. With an ideal gas, there are no force interactions between the 

12 



1. Introduction 

gas molecules and, mathematically, the gas obeys the simple state equation of 
the ideal gas. With gases, the deviation from an ideal gas tends to decrease with 
higher temperature and lower density. An ideal fluid can be a gas or a liquid 
such that there are no viscous or thermal losses. 

The dyadic notation is used instead of the tensor notation, although the tensor 
notation is more widely used in the references. This choice was made because, 
with the dyadic notation, the formulae are, in most cases, much simpler and 
more illustrative than with the tensor notation, at least for the author. A short 
presentation of the basics of the dyadic notation is presented in Appendix R. 

In the following text, the Lagrange description and the Euler description of 
motion are both used. The Lagrange description describes the motion of individ-
ual particles and the Euler description describes the motion at fixed points in 
space. The time derivative in the Lagrange description is expressed with the total 
derivative d/dt, and in the Euler description with the partial derivative /t. Their 
connections with scalar function f, vector function f


 and dyadic function f  are 

[2] 
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where U  is the particle velocity. 

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2. Density-based analogies 

2. Density-based analogies 

The density-based analogies use ´, the perturbation component of the density , 
or the pressure perturbation (sound pressure) p, as the basic field quantity, see 
Appendix E for the perturbation quantities in the linearization of the acoustic 
field equations. Either of these can be used if the perturbation entropy variations 
are assumed to be small, in which case, according to Eq. (E.8), they have a con-
nection 

 
2
0c

p
 , (3) 

where c0 is the linearized (ambient) speed of sound. 

Lighthill’s analogy, Powell’s analogy, the Ffowcs Williams–Hawkins analogy, 
and Curle’s analogy are presented in this category. 

2.1 Lighthill’s analogy 

Lighthill published the first articles on flow-generated sound in 1952 and 1954 
[3, 4]. These articles are seen as the birth of aeroacoustics [1]. Lighthill’s anal-
ogy was originally developed for unbounded flows due to, e.g., old jet engines, 
without any heat sources. 

Lighthill’s equation is derived in Appendix H, Eq. (H.3), and it is [3, 4, 5] 

 
LTc

t
:22

2

2





, (4) 
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2. Density-based analogies 

where c is the local speed of sound in constant entropy, defined in Eq. (A.4), t is 
time, and the Lighthill’s turbulence stress dyadic (or traditionally tensor) is, see 
Eq. (H.4), 

  IeL sUUT


, (5) 

where U  is the particle velocity, 


I  is the identic dyadic,   is the perturbation 
component of the viscous part of the stress dyadic  , the latter being defined in 
Eq. (B.2), and where se is an entropy-related auxiliary variable 

 s
c

Tc
cps

P
e




2
2 , (6) 

where s is the perturbation part of the entropy S, see Eq. (E.8), p is the pressure 
perturbation (sound pressure), T is the temperature, cP is the specific heat at con-
stant pressure, and  is the coefficient of thermal expansion. The first term in 
Lighthill’s stress dyadic 

 UUT R


  (7) 

is called Reynolds’ stress. The second term is related to the entropy changes in 
acoustic fields and the third term to the viscotic shear stresses caused by gradi-
ents of the acoustic particle velocity. 

The convective velocity terms are all put into the source part of the equation 
in Lighthill’s analogy, so it is assumed in the analogy that the static flow veloc-
ity is zero outside the source region. The entropy fluctuations and the viscous 
stresses are also put into the source part, so it is assumed that there are no losses 
due to the viscosity or the thermal conductivity of the fluid outside the source 
region, which means that the fluid outside the source region is an ideal fluid. The 
entropy fluctuation term also contains the dependence of the sound speed on the 
spatial coordinates, so the sound speed should be constant with respect to the 
spatial coordinates outside the source region. The refraction effects are therefore 
not included in the wave operator. 

Assumptions that have been made to obtain Eq. (4): 
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2. Density-based analogies 

 The field quantities have to be such that they can be divided into static 
and time-dependent perturbation components. The perturbation compo-
nents have to be much smaller than the static ones so that the static 
components do not depend on the perturbation components. 

 The sound speed and the static parts of the pressure, density, entropy 
and particle velocity must not change very much as functions of the spa-
tial coordinates: their gradients should be, at most, of the perturbation 
order. The sound speed is not a function of time. 

 There are no mass, heat, force or momentum source distributions.  

As one starting point for Lighthill’s analogy is that the static flow velocity is 
zero and the sound speed is constant outside the source region, the assumption 
that the sound speed and the static part of the particle velocity must not change 
very much as a function of the spatial coordinates concerns the source region. 

If Lighthill’s stress dyadic in Eq. (4) is compared with the last term on the 
right-hand side of Eq. (H.1), Lighthill’s stress dyadic can be seen to be formally 
similar to a quadrupole source distribution. Its most important part is Reynolds’ 
stress, especially in isentropic flows, which implicates that the spatial particle 
velocity fluctuations are the main source of flow-generated sound. The other 
terms,   and Ies , in Lighthill’s stress dyadic concern the viscous and thermal 
losses inside the source region. 

Uosukainen [6] has suggested that the terms   and Ies  in Lighthill’s stress 
dyadic should be moved to the left-hand side of the equation to allow the viscous 
and thermal losses and the dependence of the sound speed on the spatial coordi-
nates outside the source region to be taken into account. In that case Lighthill’s 
stress dyadic is the same as Reynolds’ stress in Eq. (7). He further suggests that 
in Reynolds’ stress, all purely static terms and the terms containing irrotational 
perturbation velocity and density perturbation should be excluded from the 
source part and moved to the left-hand side of the equation. 

If the interaction between the sound field and the mean flow (including the 
convection and the refraction) is to be taken into account, the source term must 
be adjusted, as these effects are included there. This cannot be done until after 
the equation has been solved [5]. 

Assuming that the space to be handled is free and the perturbation entropy 
variations are small, the density perturbation can be obtained from Eq. (H.6) 
when transformed into a density quantity as [5] 
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2. Density-based analogies 
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where c0 is the linearized speed of sound, r


 is a field point vector, 0r


 is a source 
point vector, the volume integration is performed with respect to the  coordi-
nates, and V is the volume at which Lighthill’s stress dyadic is non-zero (practi-
cally the volume that contains all regions in which Lighthill’s stress dyadic is 
significant). 

0r


2.2 Powell’s analogy 

Powell’s analogy is an approximate version of Lighthill’s analogy and is based 
on the same starting point and basic assumptions as the latter. 

Powell’s equation is derived in Appendix I, Eq. (I.2), and it is [7] 

 
Pfc

t





 22
2

2

, (9) 

where the source function, replacing Lighthill’s stress dyadic, is, see Eq. (I.3), 

   UUUfP




2
1 , (10) 

where  is the vorticity distribution according to Eq. 


(B.8) 

 U


  (11) 

and term U


  is the Coriolis acceleration [8, 9]. In this case, the flow-
generated sound can be seen to be due mainly to the vorticity, more specifically 
to the changes of the Coriolis acceleration, in the source region [7, 10, 11]. Pow-
ell has argued that the vorticity usually has the predominant role in the aerody-
namic generation of sound [7]. The flow-generated noise in the ducts, in particu-
lar, is seen as being mostly due to the vorticity [1]. In the potential flow ap-
proaches, the vorticity is taken as the aerodynamic source of sound [1]. 

If the source function in Eq. (9) is compared with the second to last term on 
the right-hand side of Eq. (H.1), it can be interpreted as a dipole distribution. 
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2. Density-based analogies 

Assumptions other than those in Lighthill’s analogy that have been made to 
obtain Eq. (9): 

 There are no viscous or thermal losses (the fluid is ideal) also inside the 
source region. 

 The fluid is incompressible inside the source region. 

Assuming the space to be handled is free and the perturbation entropy variations 
are small, the density perturbation can be obtained from Eq. (I.5) when trans-
formed into a density quantity as 

    
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rr

crrtrf

c
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2
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
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 . (12) 

2.3 The Ffowcs Williams–Hawkings analogy 

The Ffowcs Williams–Hawkings analogy is such an extension of Lighthill’s 
analogy that it takes into account the effects of moving boundaries by equivalent 
Huygens sources consisting of surface monopole source distribution qWS (thick-
ness source) and surface dipole source distribution WSf


 (loading source). Thus, it 

is based on the same starting point and assumptions and equations as Lighthill’s 
analogy, the expressions for Huygens sources included. The main aim is to han-
dle solid surface interactions that are directly involved in the generation of flow 
sound, e.g., by helicopter rotors, aeroplane (or marine) propellers, and aircraft 
engine fans, compressors and turbines [5]. The Ffowcs Williams–Hawkings 
analogy therefore has considerably wider exploitation potential than the previous 
analogies. 

Consider a body with volume Vc and outer surface S moving in space and let 
the rest space volume, with Vc excluded, be denoted by V; see Figure 1. 
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2. Density-based analogies 

ne


Vc (w1 < w10)

S (w1 = w10)

V (w1 > w10)

 

Figure 1. Moving volume Vc with surface S, outer volume V. 

In this situation, the Ffowcs Williams–Hawkins equation has been derived in 
Appendix J, Eq. (J.1), and it is for the density perturbation ´ in V [12, 13, 14] 
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where the equivalent surface distributions are on the surface S with w1 = w10 in a 
coordinate system (w1, w2, w3) such that Vc is the region in which w1 < w10,  is 
the Dirac delta function, and H is the Heaviside function (step function): 

  (14) 
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0
0 xx
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Lighthill’s stress dyadic LT  is presented in Eq. (5), and the equivalent source 
distributions are, see Eqs. (J.2) and (J.3), 

    nWS evuvq

 0  (15) 

    nnnWS eevuuepf


, (16) 
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2. Density-based analogies 

where  is a unit normal vector at S pointing outwards from Vc, ne


v


 is the veloc-
ity of surface S, u


 is the perturbation particle velocity of the fluid, and 0 is the 

static density. 
The basic assumptions that have been made to obtain Eq. (13) are the same as 

those made to obtain Lighthill’s equation (4). 
In most practical cases, the body surface S is impermeable and the normal 

components of the velocity of the surface and the fluid then coincide at the sur-
face yielding to 

 nWS evq

 0  (17) 

  nnWS eepf


; (18) 

see Eqs. (J.6) and (J.7). The normal component of the surface velocity forms the 
equivalent surface monopole distribution, and the sound pressure and, in the case 
of the medium having viscous losses, the viscous part of the stress dyadic form 
the equivalent surface dipole source distribution, so these field quantities have to 
be known to take the effects of the surface into account. 

In the case of the deformation of Vc being incompressible, leading to the situa-
tion in which the total volume Vc remains constant, it is not reasonable to use the 
surface monopole distribution qWS and it can be replaced by volume dipole dis-
tribution WVcf


 and volume quadrupole distribution WVcT  inside Vc, where 

 afWVc


0  (19) 

 vvT WVc


0 , (20) 

where  and  are the velocity and acceleration in the Lagrangian coordinate 
system (velocity and acceleration of the individual particles) inside Vc; see Eqs. 

v


a


(J.10) and (J.11) [12, 5]. In this case, Eq. (13) for the density perturbation fields 
in V can now be written as, see Eq. (J.12), 
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In this approach, the particle velocity and acceleration distributions inside vol-
ume Vc have to be known, instead of the normal component of the surface veloc-
ity.  

If volume Vc is a rigid body retaining its shape, and its movement consists of 
translation and rotation, the radiated linearized density perturbation can be pre-
sented using differential equation (13) as 

 LfSvS  , (22) 

see Eq. (J.18), and using differential equation (21) as 

 LfSTVcfVc  , (23) 

see Eq. (J.13), where the partial density perturbation components due to different 
sources are as per Eqs. (J.30)–(J.34) [5, 12, 13] 
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where C is the Doppler factor, see Eq. (J.29), 
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and where the retarded time ),,( 


trtt ee  is the solution to the equation 
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see Eq. (J.35). 
The integrals above are presented in a moving Cartesian coordinate system 

with vectors ),( 00 tr


  such that the body will not move in this new coordinate 
system, i.e., in Lagrangian coordinates. The terms v


 and a


 in this coordinate 

systems signify the convectional velocity and acceleration, i.e., the velocity and 
acceleration of individual points when the coordinate movement is temporally, 
fictitiously stopped. 

If there is more than one solution to Eq. (30), a sum of all such solutions has 
to be used. This is the case at supersonic speeds. At subsonic speeds, S, Vc

 and 
V are the physical surface and volumes S, Vc and V; see Figure 1. At supersonic 
speeds, they are functions of r


 and t because the whole physical regions do not 

contribute to the integrals (Eq. (30) has no solutions for some values of ). 


For speeds at which the quantity C approaches one (v/c0  0), the solution fails 
due to singularities in the integrals. Other types of coordinate transformations 
are available to overcome this problem [12, 13]. 

In the derivation of the integrals above, it has been assumed that all moving or 
stationary surfaces are taken into account and that the perturbation entropy fluc-
tuations are small. 

If the primary sound source is the moving boundary, the effects of Lighthill’s 
stress dyadic LT  on the sound radiation is typically lower than the effects of the 
moving boundaries if the velocity v


 is low enough (below 0.7c0) [1]. This typi-

cally happens with, e.g., with helicopter rotors [13] and marine propellers [14]. 
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2. Density-based analogies 

The Ffowcs Williams–Hawkings analogy can be modified in such a way that 
stationary boundaries in a moving media can be handled. The flow-generated 
sound of surfaces guiding the flow can then be treated with the analogy. 

2.4 Curle’s analogy 

Curle’s analogy is a special version of the Ffowcs Williams–Hawkings analogy, 
and it is based on the same starting point, basic assumptions and equations as the 
latter. If the surface S is rigid and does not move, the equivalent monopole sur-
face source distribution qWS and its substitute volume dipole and quadrupole 
source distributions  and WVcf


WVcT  disappear as well as the corresponding den-

sity perturbation components ´vS, ´fVc and ´TVc. This leads to Curle’s equation 
in which the equivalent dipole surface source distribution WSf


 takes care of the 

sound scattering caused by the stationary surface. 
Curle’s equation is derived in Appendix K, Eq. (K.1), and it is for ´ in V [15] 
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where there are only two source functions, Lighthill’s stress dyadic LT  accord-
ing to Eq. (5) and the equivalent dipole distribution WSf


 according to Eq. (18).  

The radiated linearized density perturbation can be presented as 

 LfS  , (32) 

see Eq. (K.4), where the partial density perturbation components due to the two 
sources according to Eqs. (K.7) and (K.8) are [15] 
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3. Phi-based analogies 

3. Phi-based analogies 

The phi-based analogies use the pressure-related field quantity , scaled loga-
rithmic pressure, defined by Eq. (C.12), as the basic field quantity 
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where P is the pressure, P0 is some convenient constant reference pressure and  
is the adiabatic constant. Phillips’ analogy and Lilley’s analogy are presented in 
this category. 

3.1 Phillips’ analogy 

The Phillips’ equation is derived in Appendix L, Eq. (L.2), and it is [16, 5] 
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where S is the entropy and subscript T denotes the transpose of a dyadic, see Eq. 
(R.11). 

In Phillips’ analogy, a convective term in the basic equations has been moved 
to the left-hand side of the equation. This leads to the total time derivative (of 
the second order) on the wave operator side, according to the Lagrange descrip-
tion of motion, taking into account, at least partially, the effects of the static flow 
[5]. Thus, the equation is valid for a moving medium, with some accuracy. The 
dependence of the sound speed on spatial coordinates has also been moved to the 
left-hand side of the equation, so the sound speed may be a function of coordi-
nates outside the source region, and the refraction effects are included in the 
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3. Phi-based analogies 

wave operator. The entropy term and the viscous stresses are put into the source 
part, so it is assumed that there are no losses due to viscosity or the thermal con-
ductivity of the fluid outside the source region, which means that the fluid out-
side the source region is assumed to be ideal. The entropy term also contains the 
effects of heat sources, according to Eq. (D.1), so these sources can be taken into 
account. 

Assumptions that have been made to obtain Eq. (36): 

3.2 Lilley’s analogy 

Lilley published his analogy, which has been developed for the flow-generated 

rce term on the right-
ha

. (M.5) and (M.4), and it is 
[1

 

 The medium considered is an ideal gas. 
 There are no mass, force or momentum source distributions. 

noise of jet engines with a high by-pass ratio, in 1974 [17]. 
Lilley noticed that in Phillips’ equation (36), the first sou
nd side contains first order terms that should be included in the convective 

terms on the left-hand side of the equation [17]. He therefore derivated the equa-
tion with respect to time in the Lagrangian way to obtain the terms outside the 
source terms and put them on the left-hand side of the equation. Otherwise, 
Lilley’s analogy is based on the same starting point, assumptions and equations 
as Phillips’ analogy, Lilley’s equation just takes the effects of the static flow into 
account in a better way than the Phillips’ equation. 

Lilley’s equation is derived in Appendix M, Eqs
7, 5] 
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where 
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represents the effects of the entropy fluctuations and the gas viscosity. 
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3. Phi-based analogies 

In Lilley’s analogy, all the ‘propagation effects’ that occur in a transversely 
sh

fraction effects in the wave operator 
gr

eared mean flow are inside the wave operator part of the equation. In the case 
of parallel or nearly parallel mean flows (such as those that occur in by-pass jet 
engines and axial-flow fans), at least, no inconsistency is obtained when inter-
preting the right-hand side as sources [5]. 

The inclusion of the convection and re
eatly increases the complexity of the solutions. In practice, this turns out to be 

a serious drawback, and only limited solutions to Lilley’s and Phillips’ analogies 
have been found [5]. The phi-based analogies have been used as a starting point 
in the aeroacoustics of jet engines. These analogies have actually not been ap-
plied to duct acoustics [1]. 
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4. Enthalpy-based analogies 

The enthalpy-based analogies use the stagnation enthalpy B as the basic field 
quantity, defined by Eq. (A.7) as 

 UUHB



2
1 , (39) 

where enthalpy H is defined by its difference in Eq. (A.6) as 
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P

H d
d

d 


 , (40) 

where S is the entropy. 

4.1 Howe’s analogy 

Howe’s equation is derived in Appendix N, Eq. (N.13), and it is [10] 
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 (41) 

where  is the vorticity distribution and the term 


U


  is the Coriolis accel-
eration, see Eq. (11). 

In Howe’s analogy, the vorticity vector (in the form of Coriolis acceleration) 
and the entropy gradients are put in the source part of the equation, so the anal-
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4. Enthalpy-based analogies 

ogy assumes that the vorticity and the entropy gradients disappear outside the 
source region and that the sources are mainly due to these quantities. The en-
tropy time derivatives are also put into the source part, so it is assumed that there 
are no temporal entropy fluctuations except those connected to the entropy part 
of the stagnation enthalpy outside the source region. The thermal losses in the 
source region and, somehow, outside it can therefore be taken into account. The 
time-derivated entropy terms in the source part further ensure that the heat 
sources can be taken into account, according to Eq. (D.1). 

Assumptions that have been made to obtain Eq. (41): 

 The compressibility of the medium is constant with respect to time and 
spatial coordinates. 

 There are no mass, force or momentum source distributions. 
 There are no viscous losses. 
 The medium considered is an ideal gas. 

Howe’s analogy is heavy in a computational sense and it is not widely used for 
estimating flow noise [1]. 

4.2 Doak’s analogy 

Doak’s equation is derived in Appendix O, Eqs. (O.14) and (O.15), and it is [8, 
9] 
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where overline means temporal mean value, superscript ´ means the fluctuating 
(perturbation) part, R is the gas constant and 
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where F


 denotes force source distribution. 
In Doak’s analogy, the compressibility of the medium does not need to be 

constant, and the vorticity and the entropy gradients do not need to disappear 
outside the source region. The entropy time derivative is put in the source part of 
the equation of Doak’s analogy, so it is assumed that there are no temporal en-
tropy fluctuations outside the source region except those connected to the en-
tropy part of the stagnation enthalpy outside the source region. The viscous and 
thermal losses can thus be taken into account, somehow, inside and outside the 
source region, and the heat sources can be included. 

Assumptions that have been made to obtain Eq. (42): 

 The field quantities have to be such that they can be divided into static 
and time-dependent perturbation components. The perturbation compo-
nents have to be much smaller than the static ones so that the static 
components do not depend on the perturbation components. 

 There are no mass or momentum source distributions. 
 The medium considered is an ideal gas. 

Doak’s analogy has not been used in real applications [1]. 
Both Howe’s analogy and Doak’s analogy give confirmation to Powell’s iden-

tification [7] that the vorticity usually has the predominant role in the aerody-
namic generation of sound. The vorticity appears in the form of Coriolis accel-
eration in the source terms of these analogies, as well as in Powell’s analogy. 
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5. Summary 

5. Summary 

This report presents the best-known acoustic analogies, and their equations have 
been derived mathematically in detail to allow their applicability to be extended 
when necessary. The analogies have been divided into three categories: density-
based, phi-based and enthalpy-based analogies. The division is based on the 
principal acoustic field variable used in the analogies. Lighthill’s analogy, Pow-
ell’s analogy, the Ffowcs Williams–Hawkings analogy and Curle’s analogy are 
assigned to density-based analogies, Phillips’ analogy and Lilley’s analogy to 
phi-based analogies, and Howe’s analogy and Doak’s analogy to enthalpy-based 
analogies. In the acoustic analogies, the equations governing the flow-generated 
acoustic fields are rearranged in such a way that the field variable connections 
(wave operator part) are on the left-hand side and that which is supposed to form 
the source quantities for the acoustic field (source part) is on the right-hand side. 
The mathematical complexity of applying these analogies grows in the same 
order as they are presented, except for Powell’s and Curle’s analogies, which are 
special cases of Lighthill’s analogy and the Ffowcs Williams–Hawkings anal-
ogy. 

Lighthill’s analogy was originally developed for unbounded flows due to, e.g., 
old jet engines. In the analogy, it is assumed that, outside the source region, 
there is no static flow and the fluid is ideal (no viscous or thermal losses). The 
refraction effects are not included in the wave operator. Lighthill’s stress dyadic, 
which forms the source part of the analogy, can be seen to be formally similar to 
a quadrupole source distribution. Its most important part is Reynolds’ stress, 
which implicates that the spatial particle velocity fluctuations are the main 
source of flow-generated sound. 

Powell’s analogy is an approximate version of Lighthill’s analogy that as-
sumes further that the fluid is ideal also inside the source region and, as well in 
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the source region, the fluid is incompressible. This leads to a dipole-type source 
function, mainly due to the vorticity in the form of Coriolis acceleration. 

The Ffowcs Williams–Hawkings analogy is such an extension of Lighthill’s 
analogy that, being based on the same starting point, it takes into account the 
effects of moving boundaries by equivalent Huygens sources. The main aim is to 
handle solid surface interactions that are directly involved in the generation of 
flow-generated sound, e.g., by helicopter rotors, aeroplane or marine propellers, 
and aircraft engine fans, compressors and turbines. The normal component of the 
surface velocity forms the equivalent surface monopole source distribution and 
the sound pressure at the boundary forms the equivalent surface dipole source 
distribution. In the case the deformation of the body inside the surface is incom-
pressible, the information concerning the normal component of the surface ve-
locity can be replaced by the velocity and acceleration information of the body, 
forming equivalent quadrupole and dipole volume source distributions. 

Curle’s analogy is obtained from the Ffowcs Williams–Hawkings analogy by 
assuming that the boundaries are not moving. In this case, only the equivalent 
surface dipole source distribution is present to take into account the sound scat-
tering due to the surface. 

In Phillips’ analogy, a convective term in the basic equations has been moved 
to the left-hand side of the equation to take into account the effects of a moving 
medium. The refraction effects are included in the wave operator. The fluid out-
side the source region is assumed to be ideal. The heat sources can be taken into 
account. 

Lilley’s analogy is based on the same starting point as Phillips’ analogy, the 
difference being that the first order terms in the source part that should be in-
cluded in the convective terms have been moved to the left-hand side of the 
equation. In Lilley’s analogy, all the ‘propagation effects’ that occur in a trans-
versely sheared mean flow are inside the wave operator part of the equation. In 
the case of parallel or nearly parallel mean flows (such as those that occur in by-
pass jet engines and axial-flow fans), at least, no inconsistency is obtained when 
interpreting the right-hand side as sources. 

The inclusion of the convection and refraction effects in the wave operator 
greatly increases the complexity of the solutions, and only limited solutions of 
Lilley’s and Phillips’ analogies have been found. The phi-based analogies have 
been used as a starting point in the aeroacoustics of modern jet engines. These 
analogies have actually not been applied to duct acoustics. 
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In Howe’s analogy, the vorticity vector (in the form of Coriolis acceleration) 
and the entropy gradients are put in the source part of the equation, forming the 
main part of the sources. The heat sources can be taken into account. The com-
pressibility of the medium is assumed to be constant and the viscous losses are 
assumed to vanish. Howe’s analogy is heavy in the computational sense and it is 
not widely used for estimating flow noise. 

In Doak’s analogy, the compressibility of the medium does not need to be 
constant, and the vorticity and the entropy gradients do not need to disappear 
outside the source region. The viscous and thermal losses can be taken into ac-
count, somehow, inside and outside the source region, and the heat sources can 
be included. Doak’s analogy has not been used in real applications. 

All the phi-based and enthalpy-based analogies presented assume the medium 
to be an ideal gas, so without modifications they cannot be applied to acoustic 
fields in liquids. Only the density-based analogies are suitable to be applied in 
liquids without modifications. 
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Appendix A: Equation of continuity 

Appendix A: Equation of continuity 

Basic version 

The non-linear equation of continuity is, see, e.g., [5] 

   qU
t

U
t



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
 

d

d
, (A.1) 

where  is the density of the fluid, U


 is the particle velocity, t is time, and q is 
the strength of the mass source distribution (monopole distribution, volume ve-
locity distribution). 

Phi version 

With an ideal gas, the equation of continuity can be written with the help of the 
state equation of the ideal gas (C.13) as 

 q
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c
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t P
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d
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d

d 
, (A.2) 

where S is the entropy, T is the temperature, cP is the specific heat at constant 
pressure and the pressure-density related field quantity , scaled logarithmic 
pressure, is defined in Eq. (C.12). 

Entropy version 

From the energy equation (D.2), the following can be obtained 
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where P is the pressure,  is the coefficient of thermal expansion and c is the 
local speed of sound in constant entropy, defined by 
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where ()f means that quantity f is constant in the operation inside the brackets. 
By using this, the continuity equation (A.1) can be presented as 
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Enthalpy version 

Simple general fluids 

The enthalpy difference dH can be presented as [10, 18] 

 ST
P
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d

d 
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 , (A.6) 

where S is the entropy. The (specific) stagnation enthalpy B is defined by [10] 
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The gradient and the time derivative of the stagnation enthalpy, according to 
Eqs. (A.7) and (A.6), are 
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By using Eq. (A.8) (lower one), the continuity equation version (A.5) can be 
presented as 
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A3 
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Ideal gas 

Using Eqs. (C.9), (C.10), (C.8) and (C.3), the following can be obtained for an 
ideal gas 
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where  is the adiabatic constant, cV is the specific heat at constant volume and R 
is the gas constant. The following equation for an ideal gas has also been used 
above [5] 

 Rcc VP  . (A.11) 

Now the modified version (A.9) of the equation of continuity can be presented 
for an ideal gas as 
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Appendix B: Navier–Stokes equation 

Basic version 

The non-linear Navier–Stokes equation is [5 (without all source terms), 19 (with 
all source terms)] 
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where  is the density of the fluid, U


 is the particle velocity, t is time, P is the 
pressure, F


 is the strength of the force source distribution (dipole distribution + 

gravitation), T  is the strength of the momentum source distribution (quadrupole 
distribution), and   is the viscous part of the stress dyadic 

     II:2II: 3
1 EEEv  , (B.2) 

where  is the coefficient of viscosity, v is the expansion coefficient of viscos-
ity, I  is the identic dyadic, see Eq. (R.9), and E  is the rate-of-strain dyadic 
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where subscript ‘T’ denotes the transpose of a dyadic; see Eq. (R.11). For the 
dyadic notation as a whole, see Appendix R. 

Alternative version 1 

By using the equation of continuity, Eq. (A.1), the Navier–Stokes equation can 
be presented as 
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where q is the strength of the mass source distribution. 
By adding and subtracting term (c2), this can further been written as 
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where c is the local speed of sound in constant entropy, defined in Eq. (A.4). 

Alternative version 2 

Using the following equation 
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(where, in the first line, it has been utilized that abba


  for any vectors, 
and, in the second line, the upper line of Eq. (Q.5) has been used), the following 
can be obtained from Eq. (B.1) 
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where  is the vorticity distribution 


 U


 . (B.8) 

Phi version 

With an ideal gas, the Navier-Stokes equation (B.1) can be written with the help 
of the state equation of the ideal gas (C.13) as 
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B3 
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where the field quantity , scaled logarithmic pressure, is defined in Eq. (C.12) 
and where, according to Eqs. (C.12) and (C.10) in ideal gas, we have connection 
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Enthalpy version 

Using definitions (A.7) and (A.6) for stagnation enthalpy B, the Navier–Stokes 
equation version (B.7) can be presented as 
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where Eq. (A.8) (upper one) has also been used. 


Let us define vector V  by the equation 
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The Navier–Stokes equation (B.11) can now be written as 
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Appendix C: State equation 

Simple general fluids 

For simple fluids, the state equation can be expressed so that the number of in-
dependent properties needed to specify the state of the fluid is two. It is immate-
rial which two, and if two properties are specified, then all other properties have 
fixed values. [18] 

From this origin, the state equation can be expressed as, e.g., 

 ),( SPP  , (C.1) 

where P is pressure,  is density and S is entropy. 
From this equation, a general state equation can immediately be written 
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where ()f means that quantity f is constant in the operation inside the brackets. 
By using the following equations and definitions [18] 
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where T is the temperature, V* is the specific volume, cP and cV are the specific 
heats at constant pressure and volume respectively,  is the adiabatic constant,  
is the coefficient of thermal expansion, c is the local (isentropic) speed of sound 
and cT is the isothermal speed of sound, it is clear that the second partial deriva-
tive on the right-hand side of Eq. (C.2) is 
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The first partial derivative on the right-hand side of Eq. (C.2) can be identified to 
be the local speed of sound squared. With the help of this and Eq. (C.4), the state 
equation (C.2) can be written more specifically as 
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From the equation above, the entropy change can be written as 
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and the proportional density change as 
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Ideal gas 

With an ideal gas 

 , (RTPV  C.8) 

where R is the gas constant, so the coefficient of thermal expansion for an ideal 
gas is 
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C3 
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The local speed of sound for an ideal gas can be written, according to Eqs. (C.3), 
(C.8) and (C.9), as 
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Now the state equation (C.7) can be written for an ideal gas using Eqs. (C.9) and 
(C.10), as 
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By defining a new field quantity , scaled logarithmic pressure, as 
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where P0 is some convenient constant reference pressure, the state equation for 
an ideal gas (C.11) can be written as 
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Entropy version 

The energy equation for a Newtonian fluid is [18 (without source term), 19 (with 
source term)] 
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where T is the temperature, S is the entropy, t is the time U, 


 is the particle ve-
locity,  is the density,   is the viscous part of the stress dyadic defined in Eq. 
(B.2), E  is the rate-of-strain dyadic defined in Eq. (B.3), K is the thermal con-
ductivity of the fluid and  is the energy per unit volume delivered by the heat 
source distribution. With the help of Eq. (C.6), the right-hand side of Eq. (D.1) is 
the same as 
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where P is the pressure, cP is the specific heat at constant pressure,  is the coef-
ficient of thermal expansion and c is the local (isentropic) speed of sound. 

Internal energy version 

The energy balance equation can also be presented in another way. The rate of 
change of the internal energy Eint per unit mass is [18 (without source terms), 19 
(with source terms)] 
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where q is the strength of the mass source distribution. 
By forming a dot product of the Navier-Stokes equation (B.1) with the particle 

velocity we can obtain 
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where F


 is the strength of the force source distribution and T  is the momentum 
source distribution. 

Using Eqs. (D.3) and (D.4) we obtain 
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where, due to the symmetry of the viscous part of the stress dyadic and the defi-
nition of the rate-of-strain dyadic (B.3), we have, using Eq. (R.16) (eighth line), 
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where subscript ‘T’ denotes the transpose of a dyadic; see Eq. (R.11). 
Using the equation of continuity (A.1), Eq. (D.5) can be presented as 
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This can be further presented as 

 

    

    . 
d

d

)(

2
1

int

2
1

int2
1

int

t
UTUFPqqUUE

TKUUP

UUUEUUE
t


















 (D.8) 

The final form (D.8) has been presented, e.g., in Ref. [8], without the mass and 
momentum source distributions. 
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Appendix E: Linearization process 

Next, some equations will be partly linearized. The linearization is necessary to 
obtain the proper relationships for the perturbation fields, but full linearization 
would lead to a situation in which part of the sound source terms that we are 
looking for would be lost in the linearization. This presentation is based on the 
basic version of the continuity equation (A.1), the alternative version 1 of the 
Navier–Stokes equation (B.5) and the entropy versions of the energy equations 
(D.1) and (D.2). Other versions of these equations could also be selected, but 
this selection is to support the derivation of Lighthill’s equation in Appendix H. 

Let us suppose that the field quantities P, , T and S can be expressed by the 
sum of static components P0, 0, T0 and S0, and perturbation components p, ´, 
T´ and s in such a way that the perturbation components are much smaller than 
the static ones 
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 (E.1) 

and that the time averages of the perturbation components are zero. The pertur-
bation components are functions of time t and the spatial coordinates r


, while 

the static components are only functions of spatial coordinates. 
Let us also suppose that the viscous part of the stress dyadic, the rate-of-strain 

dyadic, and the particle velocity can be expressed as sums of a component re-
lated to the static fields (subscript ‘0’) and a component related to the perturba-
tion fields 
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Let us further suppose that the monopole, quadrupole and heat source distribu-
tions q, T  and  are connected to the perturbation fields and that force source 
distribution can be divided into a static gravitational force and a perturbation 
force  f



 ),()()(),( 0 trfrgrtrF


 , (E.3) 

where  is the acceleration of gravity.  g


In the absence of the perturbation components, the static components obey, 
e.g., static parts of Eqs. (A.1), (B.5), (D.1) and (D.2), which are 
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It is supposed that with the perturbation fields the static fields obey the same 
equations so that the perturbation fields have no effect on the static ones. In this 
case, the equations of the static fields can be extracted from the total field equa-
tions to obtain the equations for the perturbation fields. The energy equation 
(D.2) for fields in which static fields are extracted is 
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which can be rearranged into the form 
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Suppose that the gradients of the static field quantities P0, 0 and S0 are small, at 
most of the perturbation order, and that the local speed of sound is not a function 
of time. In this case, the second version of Eq. (E.6) can be linearized by elimi-
nating all second and higher order terms that have these gradients as part of them 
to yield 
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Now, it can be seen that the linearized presentation for the entropy perturbation 
is 

  


 2
2

cp
Tc

c
s P  (E.8) 

and its time derivative, according to Eqs. (D.1), (E.2) and (E.4), is 
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The equation of continuity version (A.1) and the Navier–Stokes equation version 
(B.5) with the static fields extracted are 
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Suppose the gradient of c2 is small, at most of the perturbation order. Using this 
and Eq. (E.8), the Navier–Stokes equation (E.11) with the static fields extracted 
can be presented as 
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Appendix F: Sound radiation from source 
distributions 

In the basic equations presented in the previous appendices, three types of true 
sound sources have been introduced: q as the monopole distribution (mass 
source distribution, volume velocity distribution), f


 as the dipole distribution 

(force source distribution) and T  as the quadrupole distribution (momentum 
source distribution). The heat source distribution is assumed to be included in 
the monopole distribution. After linearization of the field equations, see Appen-
dix E, the sound radiation of each, presented here as pq, pf and pT, and their total 
sound radiation, presented as p, can be expressed as [5, 12, 19] 
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where r


 is a field point vector, 0r


 is a source point vector, t is time, t0 is the 
‘source time variable’, V is the volume containing the source distributions, gra-
dient  operates on the field coordinates, gradient 0 operates on the source 
coordinates, and g is Green’s function. The time integration is applied to vari-
able t0 and the volume integration is applied to coordinates of 0r


. Green’s func-

tion for free space g0 is 
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where c is the speed of sound and  is the Dirac delta function. 
The field of the monopole distribution can be presented in another form. It is 

easy to notice by partial integration that 
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An extension of the upper integration bound to t + t (and the opposite action 
back) can be made because the causality of Green’s function demands Green’s 
function to be zero if t0 > t. The first term in the third version on the right-hand 
side of the equation above disappears because the subsequent time derivation 
and integration lead to the difference in the function values inside the square 
brackets at the integration path end points where the function values are zero (if 
Green’s function can be thought to vanish also below some lower time bound). 

If Green’s function is reciprocal like the free space Green’s function (F.2), we 
have 
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 (F.4) 

In this case, changing 0 to –, the gradient  can be applied as a divergence to 
the whole integrand in pf and pT (source distributions are not functions of r


) and 

the divergence operator(s) can furthermore put outside the integrals. Similarly, 
changing t0 to t in the time derivation, the time derivation can be applied to the 
whole integrand in pq (source distributions are not functions of t) and the time 
derivation can furthermore put outside the integral. Thus, in this case, the sound 
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radiation from the source distributions can be presented, according to Eqs. (F.1), 
(F.3) and (F.4), in an alternative form as 
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Thus, the sound radiation from the source distributions can be presented as 

        trptrptrptrp Tfq ,,,,
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where the monopole, dipole and quadrupole parts can be presented in the alter-
native forms 
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where the last alternatives suppose that Green’s function is reciprocal. 
If the source distributions are surface distributions qS, Sf


 and ST  instead of 

volume distributions 
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where the distributions are on the surface S with w1 = w10 in a coordinate system 
(w1, w2, w3), we obtain 

 

     

   

    

 

 























t

t S

S

t

t S

S

t

t S

S
q

tStrtrgtrq
t

tS
t

trtrg
trq

tStrtrg
t

trq
trp

0

0

0

000000

0
0

00
000

000
0

00
0

dd,,,

dd
,,

,

dd,,
,

,











 (F.11) 

 

     

    

 









t

t S

S

t

t S

Sf

tStrtrgtrf

tStrtrgtrftrp

0

0

00000

000000

dd,,,

dd,,,,





 (F.12) 

 

     

    . dd,,,:

dd,,:,,

0

0

00000

0000000

 

 









t

t S

S

t

t S

ST

tStrtrgtrT

tStrtrgtrTtrp





 (F.13) 

F4 



Appendix F: Sound radiation from source distributions 

F5 

If the free space Green’s function (F.2) is applied above, the sound radiation 
from the volume source distributions can be presented as 
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and from the surface source distributions as 
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Surface field discontinuities as sources 

Next, the quadrupole source distribution is assumed to vanish and the monopole 
and dipole source distributions are supposed to form a planar surface situated at 
plane x = 0, i.e., 
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where (x) is a Dirac delta function. Quantities qs and sF


 are thus planar source 
densities (volume velocity and force per unit area). Inserting these into the basic 
version of the continuity equation (A.1) and the basic version of the Navier–
Stokes equation (B.1) shows that the Dirac delta function can only be obtained 
from the discontinuity of the divergence and gradient terms in the equations. By 
inserting the expression 

     UUU


  (G.2) 

into the equation of continuity (A.1), it can be noted that the density must con-
tain the term H(x) and the velocity must contain the term )(xHU


 , where 

H(x) is a step function (Heaviside function) according to Eq. (14). Taking the 
gradient of the density and the divergence of the velocity yields Dirac delta func-
tions from the step functions. Integrating the continuity equation over a small 
path across x = 0, the planar monopole distribution can be seen to be 
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where  is a unit vector in the x direction. xe


Using the Navier–Stokes equation (B.1), it can be noted that to obtain Dirac 
delta functions there, the pressure must contain the term PH(x), the velocity 
must contain the term )(xHU


  and the viscous part of the stress dyadic must 
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contain the term )(xH . Inserting all the discontinuous terms into the Na-
vier–Stokes equation (B.1) and integrating it over a small path across x = 0, the 
planar dipole distribution can be seen to be 

  xxxs UUPF eee


. (G.4) 

Thus, the planar source distributions can be obtained from the field discontinui-
ties using Eqs. (G.3) and (G.4). 

If the source distribution surface is not planar, it has to be handled in general 
curvilinear coordinates. Let (w1, w2, w3) form a curvilinear coordinate system 
such that the location of the source distribution can be presented with a constant 
w1 surface w1 = w10, where w10 is constant. In this case, the source distributions 
are as in Eq. (G.1), with (x) replaced by (w1 – w10) 
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In curvilinear coordinates we have 
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 (G.6) 

where ,  and 1e


2e


3e


 are unit vectors in the w1, w2 and w3 directions, and the scale 
factors of the coordinate system are 
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When we look for discontinuities in the gradient, divergence and rotor terms in 
Eqs. (A.1) and (B.1), the discontinuities originate from the derivatives of the 
field quantities and not from those of the hi factors. Thus, in the discontinuity 
terms, all the hi factors can be put outside the derivatives in Eq. (G.6) and all the 
derivatives are of the form /(hiwi). If we think that the curvilinear coordinate 
system can be changed locally to a Cartesian one at every point on the surface, 
the derivatives /(hiwi) correspond to the local derivatives /x, /y and /z 
point by point in this case. Eqs. (G.3) and (G.4) can therefore also be used with 
non-planar surface sources if xe


 is replaced by 1e


. Thus, the non-planar surface 

monopole distribution is 
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and the non-planar surface dipole distribution is 

  111 eUeUePFs


. (G.9) 

General equivalent Huygens sources 

According to Huygens’ principle, the effect of a radiating, absorbing or scatter-
ing (reflecting and/or diffracting) region V on the other part of the space can be 
taken into account by the equivalent Huygens sources distributed on any closed 
surface enclosing V, see, e.g., [6]. The equivalent source distributions have no 
effect inside the closed surface. Thus, the equivalent surface source distributions 
at surface S enclosing region V, see Figure G.1, are similar to those presented 
above, the discontinuities of the fields being replaced by the actual perturbation 
field values on the surface. The partition of the field quantities in static and per-
turbation components is presented in Appendix E, Eqs. (E.1), (E.2) and (E.3). 
Thus, the equivalent Huygens source distributions at the surface are obtained 
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from the fields at the surface, analogously with Eqs. (G.8) and (G.9), from equa-
tions 
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, (G.11) 

where  is a unit normal vector outwards from the surface, see ne


Figure G.1.  

ne


V

S  

Figure G.1. Scattering object with volume V and surface S. 

Supposing that the perturbation fields are much smaller than the static ones (the 
velocity does not have to obey this), only the first order terms of the Huygens 
source distributions can be used. Supposing that the thermal losses are small 
(this yielding to ´ = p/c0

2, c0 is the first order value of c) yields to the first order 
expressions from Eqs. (G.10) and (G.11)  
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  nnns eueUepf
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00 . (G.13) 

If the normal component of the static flow velocity disappears, the first order 
Huygens source distributions are 
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 ns euq
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Thus, the effects of a scattering or absorbing surface on any sound field can be 
obtained by integrating the fields of the Huygens monopole and dipole distribu-
tions at the surface. The distributions to first order can be obtained from the ac-
tual fields at the surface using Eqs. (G.12) and (G.13), and with no normal static 
flow using Eqs. (G.14) and (G.15). If the Huygens surface is a true rigid surface, 
the normal component of the velocity disappears on the surface. In this case, the 
Huygens monopole distribution qs also vanishes. 

Moving obstacles as Huygens sources 

Let us suppose that the volume V in Figure G.1 is a moving obstacle having 
surface velocity v  at S. We can proceed in a similar way as before by represent-
ing the field variables by the sum of the static and perturbation components and 
replacing the discontinuities of the fields by the perturbation field variables at 
the surface. In this case, the static field 0U




 should be replaced by vU


0 . Now, 

we obtain from Eqs. (G.10) and (G.11), by neglecting second order terms having 
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 ueu n
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If the normal component of the static flow velocity disappears, the Huygens 
source distributions at moving surface S are 
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In most practical cases, the body surface S can be assumed to be impermeable, in 
which case 

   0 nevu
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, (G.20) 

and the linearized equivalent source distributions are 
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equation 

Taking the time derivative of the equation of continuity (E.10) with the static 
fields extracted and the divergence of the Navier–Stokes equation (E.12) with 
the static fields extracted, the equations can be combined to yield 
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If the mass, force and momentum source densities are absent, we have 
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where the heat source distribution  is also missing in the entropy perturbation s; 
see Eq. (E.9). 

When comparing the right-hand side of Eq. (H.2) with the last term on the 
right-hand side of Eq. (H.1), corresponding to the effect of the quadrupole distri-
bution T , it can be noted that the terms inside the brackets on the right-hand side 
of Eq. (H.2) can be interpreted as quadrupole distribution LT . If the spatial de-
rivatives of the static particle velocity are also small, at most of the perturbation 
order, Eq. (H.2) can be presented in Lighthill’s form as 

 LTc
t

:22
2

2





, (H.3) 

where Lighthill’s turbulence stress dyadic (tensor) is 
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The sound pressure can be obtained from the integral (F.9) when using lin-
earized equations. The integral has two options: the first one has spatial deriva-
tives inside the integral and the second one outside the integral. To make the 
numerical computation easier and to minimize singularities in the integrals, it is 
advantageous to select the second alternative [13]. When using the second alter-
native, Green’s function has to be spatially reciprocal according to the first equa-
tion in (F.4). Thus, with the assumptions presented, the sound pressure can be 
written as 
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where volume V is principally the whole space, rather the volume where 
Lighthill’s stress dyadic is non-zero and practically the volume containing all the 
regions in which Lighthill’s stress dyadic is significant. 

Next, it is assumed that the free space Green’s function (F.2) can be used. The 
free space Green’s function is spatially and temporally reciprocal. Using it, we 
obtain for the sound pressure 
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Powell’s equation is an approximate version of Lighthill’s equation. Assume that 
the two last terms in Lighthill’s dyadic (H.4) vanish, namely the entropy pertur-
bation and the perturbation component of the viscous part of the stress dyadic, 
which means that, also inside the source region, there are no viscous or thermal 
losses. Using Eqs. (R.16), (B.6) and (A.1) (without mass sources), we can write, 
in that case, 
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 (I.1) 

where  is the vorticity distribution according to Eq. 


(B.8). If it is further as-
sumed that the fluid is incompressible (density variations with respect to time 
and spatial coordinates vanish) inside the source region, we obtain for Powell’s 
equation 
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where the source function is 

   UUUfP
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2
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If the source function in Eq. (I.2) is compared with the second to last term on the 
right-hand side of Eq. (H.1), it can be interpreted as a dipole distribution. 

The sound pressure can be obtained from integral (F.8) when using linearized 
equations. There are two options for the integral: the first one has spatial deriva-
tives inside the integral and the second one outside the integral. To make the 
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I2 

numerical computation easier and to minimize singularities in the integrals, it is 
advantageous to select the second alternative [13]. When using the second alter-
native, Green’s function has to be spatially reciprocal according to the first equa-
tion in (F.4). Thus, with the assumptions presented, the sound pressure can be 
written as 
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It is assumed that the free space Green’s function (F.2) can be used. The free 
space Green’s function is spatially and temporally reciprocal. By using it we 
obtain for the sound pressure 
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Williams–Hawkings equation 

The Ffowcs Williams–Hawkings equation is based on the same equations as 
Lighthill’s equation, the difference being that it takes into account the effects of 
moving boundaries by equivalent Huygens sources consisting of the surface 
monopole source distribution qWS and the surface dipole source distribution . 
Consider a body with volume Vc with an outer surface S moving in space and let 
the rest of the space volume, with Vc excluded, be denoted by V; see 

WSf


Figure J.1. 

ne


Vc (w1 < w10)

S (w1 = w10)

V (w1 > w10)

 

Figure J.1. Moving volume Vc with surface S, outer volume V. 

The equivalent Huygens source distributions in the case of no normal component 
of the static flow at surface S can be obtained in linearized form from Eqs. 
(G.18) and (G.19) with Eq. (G.5). When these surface distributions are inserted 
into Eq. (H.1) and then proceeded similarly as was done to obtain Eq. (H.3), we 
can attain (omitting higher than second order quantities) an inhomogeneous 
wave equation valid for ´ in V 
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where 
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where  is the Dirac delta function, H is the Heaviside function according to Eq. 
(14), ne


 is a unit normal vector at S pointing outwards of Vc, v


 is the velocity of 

surface S, and the equivalent surface distributions are on surface S with w1 = w10 
in a coordinate system (w1, w2, w3), such that Vc is the region where w1 < w10. 
The Heaviside function with Lighthill’s turbulence stress dyadic ensures that 
only that part of it existing in V is considered. 

Next, the body surface S is considered to be impermeable, in which case we 
have, at the surface, 

   0 nevu


, (J.5) 

and Eqs. (J.2) and (J.3) reduce to 

 nWS evq

 0  (J.6) 

  nnWS eepf


. (J.7) 

The term qWS represents the equivalent Huygens monopole distribution at surface 
S. If the motion v


 is such that the total volume Vc remains constant, which is 

equivalent to the total volume velocity Q out of surface S being zero, it is not 
reasonable to handle its surface as a monopole distribution. Let us further define 
that v


 represents the velocity not only at the surface S but also inside S for the 

whole Vc. The time rate of change of volume of an element is proportional to the 
divergence of the velocity; see, e.g., [20]. This does not lead to the conclusion, 
argued by Goldstein [5], that the divergence disappears point by point in a 
proper coordinate system. The total volume velocity Q through S can be ob-
tained by integrating the normal component of the velocity at S, which can fur-
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ther be written using the Gauss theorem as a volume integral of the divergence 
of the velocity inside Vc as 

 0dd  
cVS

n VvSevQ
 . (J.8) 

Thus, the demand for the total volume Vc to remain constant leads to the conclu-
sion that only the mean value of the divergence of the velocity disappears inside 
Vc. By looking at the basic version of the equation of continuity (A.1) without 
the source terms, it can be said for fluids that if the deformation inside Vc is in-
compressible (density does not vary with time), in the Lagrangian coordinate 
system 


 (moving with individual particles), we have in Vc 

 0 v


 . (J.9) 

The same conclusion can also be obtained for solid materials, see, e.g., [21]. 
If the divergence of the velocity disappears, the surface monopole distribution 

qWS can be replaced by volume dipole distribution WVcf


 and volume quadrupole 
distribution WVcT  inside Vc, according to Appendix P [12, 5], where 
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where  is the acceleration in the Lagrangian coordinate system (acceleration of 
the individual particles inside Vc). In this case, Eq. 

a


(J.1) for density perturbation 
fields in V can now be written as 
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where the dipole volume distribution WVcf


 in Vc can be obtained from Eq. (J.10), 
the quadrupole volume distribution WVcT  in Vc can be obtained from Eq. (J.11), 
the dipole surface distribution WSf


 at surface S can be obtained from Eq. (J.7) 

and the quadrupole volume distribution LT  in V can be obtained from Eq. (J.4). 
The total sound pressure in V can be obtained from the sum of the effects of 

various source parts in Eq. (J.12) as 

 , (LfSTVcfVc ppppp  J.13) 

where the sound pressure components can be obtained from integrals (F.8), 
(F.9), (F.12) and (F.9) when using linearized equations. There are two options 
for integrals: the first has spatial derivatives inside the integral and the second 
one outside the integral. To make the numerical computation easier and to 
minimize singularities in the integrals, it is advantageous to select the second 
options [13]. When using the second alternatives, Green’s function has to be 
spatially reciprocal according to the first equation in (F.4). So with the assump-
tions presented, the various sound pressure components in Eq. (J.13) can be writ-
ten as 

       



t

t tV

WVcfVc tVtrtrgtrftrp
c0 0

0

)(

0000 dd,,,,
  (J.14) 

       



t

t tV

WVcTVc tVtrtrgtrTtrp
c0 0

0

)(

0000 dd,,,:,
  (J.15) 

       



t

t tS

WSfS tStrtrgtrftrp
0 0

0

)(

0000 dd,,,,
  (J.16) 

       



t

t tV

LL tVtrtrgtrTtrp
0 0

0

)(

0000 dd,,,:,
 . (J.17) 

If the surface monopole distribution qWS in Eq. (J.6) is not replaced by volume 
dipole and quadrupole distributions, the total sound pressure in V can be ob-
tained from the sum of the effects of various source parts in Eq. (J.1) as 
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 LfSvS pppp  , (J.18) 

where pfS and pL are as before and can be obtained from Eqs. (J.16) and (J.17). 
The first term pvS in Eq. (J.18) can be obtained using Eq. (F.11). The integral has 
three options: the first two have time derivatives inside the integral and the third 
one outside the integral. To make the numerical computation easier and to 
minimize singularities in the integrals, it is advantageous to select the third op-
tion [13]. When using the third alternative, Green’s function has to be reciprocal 
temporally according to the second equation in (F.4). Thus, the first term in Eq. 
(J.18) can be written as 
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Next, it is assumed that the free space Green’s function (F.2) can be used. This 
assumes that all boundaries in the space should be treated similarly to S. The free 
space Green’s function is spatially and temporally reciprocal. Using it, we ob-
tain, for the various partial sound fields 
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where the upper time limits of the time integrations have been extended to infi-
nite. This is allowable because the causality of Green’s function causes Green’s 
function to vanish if t0 > t. 

Next, it is supposed that the body with volume Vc is a solid particle retaining 
its shape, and its movement consists of translation and rotation. It is beneficial to 
transform the Cartesian coordinate system with vectors 0r


 to a moving Cartesian 

coordinate system with vectors ),( 00 tr


  such that, in this new coordinate system, 
the body will not move, i.e., to Lagrangian coordinates. The terms v


 and a


 in 

this coordinate systems signify the convectional velocity and acceleration, i.e., 
the velocity and acceleration of individual points when the coordinate movement 
is temporally fictitiously stopped 
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This new coordinate system will translate and rotate in a similar way to the body 
Vc itself. Then because in this coordinate system the limits of the volume and 
surface integrals are independent of time t0, the order of integrations can be 
changed, integrating first with respect to time. Using identity [5] 
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where te,i is the ith real root of 

 0)( 0 th , (J.27) 

we can see that in the integrals we are developing (c substituted by its linearized 
value c0) 
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and, using also the first equation of (J.25), that the time integrations in the 
changed spatial coordinates produce to the denominators of the expressions the 
Doppler factor 
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Thus, after the time integration, we obtain for the partial sound fields [12, 5] 
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where the retarded time ),,( 


trtt ee  is the solution to the equation 

 0
),(

),,,(
0

0 



c

trr
ttrtth e

ee


 . (J.35) 

J7 



Appendix J: Derivation of the Ffowcs  
Williams–Hawkings equation 

J8 

If there is more than one solution to Eq. (J.35), a sum of all such solutions has to 
be used [13, 5]. This is the case at supersonic speeds. At subsonic speeds, S, Vc

 
and V are the physical surface and volumes. At supersonic speeds, they are 
functions of r


 and t because the whole physical regions do not contribute to the 

integrals [13] (Eq. (J.35) has no solutions for some values of 


). 
The coordinate transformation normally requires the Jacobians of the trans-

formation to be taken into account for surface and volume integrals. As the abso-
lute value of the Jacobian in the transformations between Cartesian coordinates 
is unity, the elementary areas dS and elementary volumes dV remain the same in 
these kinds of transformations, so no Jacobians are needed in the integrals [13, 
5]. 

At speeds at which the quantity C approaces one (v/c0  0), the solution fails 
due to singularities in the integrals. Other types of coordinate transformations 
are available to overcome this problem [12, 13]. 
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Appendix K: Derivation of Curle’s equation 

If the surface S in the Ffowcs Williams–Hawkings equation is assumed to be 
rigid and it does not move, the equivalent monopole surface source distribution 
qWS and its substitute volume dipole and quadrupole source distributions  
and 

WVcf


WVcT  disappear as well as the corresponding density perturbation compo-
nents ´vS, ´fVc and ´TVc. This leads to Curle’s equation 

    , )(: 101101
22

2

2





 




wwHTwwfc
t

LWS


 (K.1) 

where 

  nnWS eepf


 (K.2) 

 


 I
2

s
c

Tc
UUT

P

L


. (K.3) 

The equivalent dipole surface source distribution takes care of the sound scatter-
ing caused by the stationary surface. 

The total sound pressure in V can be obtained from the sum of the effects of 
various source parts in Eq. (K.1) as 

 , (LfS ppp  K.4) 

where according to Eqs. (J.16) and (J.17) 
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K2 

It is assumed that the free space Green’s function (F.2) can be used. Using this, 
we obtain for the various partial sound fields from Eqs. (J.23) and (J.24) 
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Appendix L: Derivation of Phillips’ equation 

Taking the Lagrangian time derivative of the equation of continuity (A.2) of an 
ideal gas and the divergence of the Navier–Stokes equation (B.9) of an ideal gas 
and using vector identity (Q.1), we obtain for field quantity  
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where subscript ‘T’ denotes the transpose of a dyadic, see Eq. (R.11), and the 
field quantity , scaled logarithmic pressure, is defined in Eq. (C.12). 

In the case of no mass, force and momentum distributions, this leads to the 
Phillips’ equation 
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Appendix M: Derivation of Lilley’s equation 

If Eq. (L.1) is derivated in the Lagrangian way, we obtain further 
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Using identity (Q.2) and the divergence of the Navier–Stokes equation version 
(B.9) for ideal gases, we have 

 
     

   . 1

d

d

d

d

2 UUTFc

UU
t

U
U

t




















 








  (M.2) 

Now, Eq. (M.1) can be written as 
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In the case of no mass, force and momentum source distributions, Eq. (M.3) 
leads to Lilley’s equation 
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M2 
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Appendix N: Derivation of Howe’s equation 

Taking the divergence of the Navier–Stokes equation of form (B.11) and the 
partial time derivative of the continuity equation version (A.5), we obtain 
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By adding the same parts to both sides of this equation, it can be formally pre-
sented as 
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From Eq. (B.11), we can obtain for the middle term in brackets {} in Eq. (N.2) 
above 
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Combining the first and third terms in brackets {} in Eq. (N.2), we obtain, using 
Eq. (A.8) (lower one), 
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Now, Eq. (N.2) can be presented, with the help of Eqs. (N.3) and (N.4), as 
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The third line in (N.5) can be further developed as below, using identity (Q.3), 
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With the help of Eq. (B.1), we can write 

 

. 
11

1

d

d11

d

d1

22

2222

P
c

TF
c

P
c

P
t

U

c
P

ct

U

c
















 












































 (N.7) 

Thus, Eq. (N.6) can be further developed into 
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Eq. (N.5) can now be written, with the help of Eq. (N.8), as 
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If the fluid is assumed to have constant compressibility 1/c2 with respect to 
time and spatial coordinates, we obtain 

 

 

 

. 
1

d

d

d

d1

d

d

d

d

d

d

d

d1

d

d1

d

d1

d

d

2

22

2
22






 

















































 



















 TFUU
t

U

t
U

c

t

q

t

S

c

T

tt

S

c

T

t
STU

t

U

c

STUBB
t

U

ct

B

ct

P












 (N.10) 

N4 



Appendix N: Derivation of Howe’s equation 

N5 

Without any mass, force and momentum source distributions, this leads to 
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Furthermore, without viscous forces, this leads to 
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With an ideal gas, Eq. (C.9) holds for the coefficient of thermal expansion, and 
Eq. (N.12) can be written in Howe’s form 
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Appendix O: Derivation of Doak’s equation 

Taking the time derivative of the continuity equation version (A.12) for an ideal 
gas and the divergence of the Navier–Stokes equation version (B.13), we obtain, 
also using Eq. (A.7) 
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The last term on the right-hand side of the second line in Eq. (O.1) will be dealt 
with next. 

Using Eq. (B.13), we can write 
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where we have also used that 

   0 UU


. (O.3) 

By further using Eq. (B.13), the time derivative of Eq. (O.2) can be written as 
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Using dyadic identities (R.16) (fourth equation) and (R.8) (fourth equation), we 
notice that 
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Using this and Eqs. (B.6) and (B.8), we can write 
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Using Eq. (O.6) above and the definition of the stagnation enthalpy (A.7), the 
first term in the last line of Eq. (O.4) can be presented as 
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Using Eqs. (B.13) and (O.7), the last line of Eq. (O.4) can be written as 
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Now, Eq. (O.4) is 
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Finally, inserting Eqs. (O.2) and (O.9) into Eq. (O.1), we obtain, by rearranging 
the terms, 
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Expressing the stagnation enthalpy as the sum of its temporal mean value (line 
over) and the fluctuating part (´) 

 BBB   (O.11) 

and seeing from Eq. (B.13) that 

O3 



Appendix O: Derivation of Doak’s equation 

   












t

U
VUB


 , (O.12) 

we obtain for the fluctuating part of the stagnation enthalpy from Eq. (O.10) 
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where superscript ´ means the fluctuating part and line over means temporal 
mean value. 

If the mass and momentum source distribution vanish, Eq. (O.10) can be writ-
ten in Doak’s form as 
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where, now, 
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Derivation of the basic equation 

Suppose that function f obeys 

 ),(),( 000 tRftRf  , (P.1) 

where t0 is the ‘source time’ variable, R is 

 0rrR


 , (P.2) 

where r


 is a field point vector and 0r


 is a source point vector. Gradient  oper-
ates on the field coordinates and gradient 0 operates on the source coordinates. 

Suppose that the particle velocity is only a function of source coordinates 

 )( 0rUU
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This leads to relations 
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Suppose further that the particle velocity obeys 

 00  U
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 (P.5) 

Based on these assumptions, using expression (Q.4) and identities (Q.5), we can 
write 
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Based on the same assumptions as above and using Eq. (R.16) (seventh line), we 
can also write 
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Comparing Eqs. (P.6) and (P.7), we notice that 
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Let S(t0) be a closed surface enclosing volume V(t0) and ne


 be a unit vector 
pointing outwards from the volume at the surface; see Figure P.1. 

ne


V

S  

Figure P.1. Volume V surrounded by surface S. 

Suppose that f(R,t0) vanishes outside time interval – T < t0 < T. In this case, 
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Then, applying Leibniz’s rule [5, 19] 
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and the Gauss theorem, we obtain 
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Using the Gauss’ theorem, we can also write 
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By adding zero to the equation above, with the help of Eq. (P.11), we obtain 
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Taking Eq. (P.8) into account, the equation can be written as 
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Application to the Huygens monopole sources 

Let S(t0) be a physical impermeable surface enclosing volume V(t0) and let the 
particle velocity be  inside V and at S. If function f is related to Green’s func-
tion g by 

v

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we can write, using Eq. (P.14), 
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The upper time integration limit T in Eq. (P.14) has been changed to time t, and 
the lower limit has been changed to – . The former is reasonable because the 
causality of Green’s function demands that Green’s function vanishes if t0 > t. 
The latter is reasonable because function f is assumed to vanish below – T. 

Comparing the left-hand side of Eq. (P.16) with Eq. (F.11) (middle version) 
and Eq. (G.21), it can be noted that it represents the sound radiation of the 
equivalent Huygens monopole source distribution at moving surface S. Compar-
ing the first term on the right-hand side of Eq. (P.16) with Eq. (F.8) (second 
version), we notice that it represents the sound radiation of a dipole volume dis-
tribution located inside V. Furthermore, comparing the second term on the right-
hand side of Eq. (P.16) with Eq. (F.9) (second version), it can be noted that it 
represents the sound radiation of a quadrupole volume distribution located inside 
V. All the sound radiations occur outwards from volume V. Let surface S(t0) be 
represented by w1 = w10(t0) in a curvilinear coordinate system (w1, w2, w3) such 
that V is the region in which w1  w10(t0). In conclusion, with the assumptions 
used, the equivalent Huygens’ monopole source distribution 
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radiating outwards from volume V and located at an impermeable physical sur-
face S can be replaced by dipole and quadrupole volume source distributions 
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radiating outwards from volume V and located inside V. H is the Heaviside func-
tion according to Eq. (14). 

The first assumption (P.1) to obtain this result is equivalent to the spatial re-
ciprocity of Green’s function, according to Eqs. (P.15) and (F.4). The second 
assumption (P.5) demands the divergence of the particle velocity to disappear 
inside V. The third assumption demands that Green’s function is non-zero only 
in some limited time interval. The use of the concept of the equivalent Huygens 
monopole sources in the present way demands that the fields can be divided into 
static and linearized perturbation fields and that the normal component of the 
static flow velocity is zero at surface S. 
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Three useful identities used in this report: 
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where subscript ‘T’ denotes the transpose of a dyadic; see Eq. (R.11). 
If r


 is a field point vector, 0r


 is a source point vector, t is the time related to 
the field points, t0 is the time related to the source points, gradient  operates on 
the field coordinates and gradient 0 operates on the source coordinates, the last 
identity can also be presented by the formula 
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The identities are derived next. In the derivations, vector identities 
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and their dyadic equivalences, see Eq. (R.16), 
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are needed, as well as the vector identity 
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and its dyadic equivalence 
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Dyadic equivalence (Q.8) can be obtained by substituting cbA


  and using the 
vector identity (Q.7). 

The following dyadic relationships are also needed, see, Eq. (R.16), 

 

   . 

:
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 (Q.9) 

Derivation of identity (Q.1) 

By noting that 
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 (Q.10) 

we can write 

     aUaUa
tt

a 



d

d

d

d
. (Q.11) 

By using identity (Q.9), we can see that 

 

 
     
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 (Q.12) 
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By comparing Eqs. (Q.11) and (Q.12), identity (Q.1) can readily be written. 

Derivation of identity (Q.2) 

By noting that 
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 (Q.13) 

we can write 
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 (Q.14) 

where identities (Q.6) have been used. Using identity (Q.8), we note that  

 

     
       

   . 
TTT

TT

aU

UUaUa

UaUa



 







 (Q.15) 

By comparing Eqs. (Q.14) and (Q.15), identity (Q.2) can readily be written. 
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Derivation of identity (Q.3) 

By noting that 

 
 

      , 
d

d

d

d

aUa
t

a
t

aU
t

a
aU

t

a

t

a

















 









 (Q.16) 

we can write 
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 (Q.17) 

where identities (Q.5) have been used. By using identity (Q.7), we can note that  

 

     
       

   . 
T

aU

aUUUa

UaUa














 (Q.18) 

By comparing Eqs. (Q.17) and (Q.18), identity (Q.3) can readily be written. 

Derivation of identity (Q.4) 

By noting that 
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Q5 

we can write 
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 (Q.20) 

where identities (Q.5) have been used. By using identity (Q.7), we can note that 
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 (Q.21) 

By comparing Eqs. (Q.20) and (Q.21), identity (Q.4) can readily be written. 
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Appendix R: Basics of dyadic notation 

More comprehensive presentations of dyadic notation can be found in, e.g., 
Refs. [22], [23], [24] and [19].  

Dyadic is one way to present a linear mapping in the vector space. The start-
ing point of the dyadic is a bilinear function from two vector arguments called 
the dyadic product or dyad and marked by empty 

 
   
a b ab,  . (R.1) 

The dyadic is a polynom formed from dyadic products. Here, the dyadic is 
marked by two lines above as 

 A ab cd ef  
    

. (R.2) 

An arbitrary dyadic can always be presented by the same number of dyadic 
products as the number of the dimensions of the vector space. 

A linear mapping that can be presented with dyadics can always be presented 
with matrices or tensors. Let us have a linear mapping presented with a matrix as 

 . (
f

f

f

a a a

a a a

a a a

x

x

x
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

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
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

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























R.3) 

This mapping can be presented with the tensor presentation as 

 . (jiji xaf  R.4) 

With dyadics this mapping is presented as 

 xaf


 . (R.5) 

The multiplying dyadic can be presented as, e.g., 
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 a aij i j
ji



  

e e
1

3

1

3

, (R.6) 

where 

ei  and 


e  are the unit vectors in the directions of the i- and j-axes. The 

terms aij in Eq 
j

(R.6) are just the same as in Eqs. (R.3) and (R.4). 
Normally, the dyadic product does not commutate 

 
   
ab ba . (R.7) 

The following are examples of dyadic mappings 

 

   
   

  . I
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


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







 (R.8) 

In the mappings above, I  is the identic or unit dyadic, corresponding to the unit 
matrix 

 I I   
  
a a a . (R.9) 

The identic dyadic can be presented by orthonormal basis vectors 

 I e e e e e e  
     

1 1 2 2 3 3 . (R.10) 

The transpose of a dyadic is defined as  

     
ab ba

T
 . (R.11) 

If AA T , dyadic A  is symmetric. If AT  A , dyadis A  is antisymmetric. 
E.g., 

  
ab ba , 

  
aa bb  and I  are symmetric dyadics, and, e.g., 

  
ab ba  is an 

antisymmetric dyadic. Because 
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  )()(2
1 abbaabbaba


 , (R.12) 

every dyadic can be presented as a sum of a symmetric and an antisymmetric 
dyadic. 

As products between dyadics can be defined as the dot product 

             
ab cd b c ad    (R.13) 

and the double dot product 

              
ab cd a c b d:    . (R.14) 

Other products can also be defined. In some references, the double dot product is 
defined in a different way so that there is one dot product between the outer vec-
tors and another one between the inner vectors. 

With the products between dyadics, we have following properties 
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:::
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ABBA
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
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
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
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
 





 

 (R.15) 

With the differential operators, we have, e.g., the following properties 
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R4 
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 (R.16) 

where the gradient of a vector is a dyadic, and in Cartesian coordinates as 
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Seppo Uosukainen

Foundations	of	acoustic	analogies

Acoustic analogies are used to govern the flow-generated acoustic fields. The best 
known of these are presented and their equations are derived. Lighthill’s analogy is 
developed for unbounded flows with no static flow outside the source region and 
no refraction effects. Powell’s analogy is an approximate version of Lighthill’s anal-
ogy. The Ffowcs Williams-Hawkings analogy takes into account moving bounda-
ries and Curle’s analogy takes into account stationary boundaries. In Phillips’ and 
Lilley’s analogies, the effects of a moving medium and the refraction effects are 
included. In Howe’s and Doak’s analogies, the vorticity and the entropy gradients 
play an important role as sources. The four last analogies assume that the medium 
is an ideal gas, so without modifications they cannot be applied to acoustic fields 
in liquids.
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