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Abstract

The nanoimprinting is a potential method for submicron scale patterning for
various applications, for example, electric, photonic and optical devices. The
patterns are created by mechanical deformation of imprint resist using a pat-
terned imprinting mold called also a stamp. The bottle-neck for imprint lithogra-
phy is availability of the stamps with nanometer-scale features, which are typi-
cally fabricated by electron beam lithography. Therefore, patterning of a large
stamp is time consuming and expensive. Nanoimprint lithography can offer a
low cost and a high through-put method to replicate these imprinting molds.

In this work, stamp replication process was developed and demonstrated for
three different types of imprint molds. Replication relies on sequential patterning
method called step and stamp nanoimprint lithography (SSIL). In this method a
small master mold is used to pattern large areas sequentially. The fabricated
stamps are hard stamps for thermal imprinting, bendable metal stamps for roll
embossing and transparent stamps for UV-imprinting.

Silicon is a material often used for fabrication of hard stamps for thermal im-
printing. Fabrication process of silicon stamps was demonstrated using both the
imprinted resist and lift-off process for pattern transfer into silicon.

Bendable metal stamp for roll-to-roll application was fabricated using sequen-
tial imprinting to fabricate a polymer mold. The polymer mold was used for
fabrication of a nickel copy in subsequent electroplating process. Thus fabricated
metal stamp was used in a roll-to-roll imprinting process to transfer the patterns
onto a CA film successfully.

Polymer stamp for UV-imprinting was fabricated by patterning fluorinated
polymer templates using sequential imprinting and a silicon stamp. The im-
printed polymer stamp was used succesfully for UV-NIL.

In the stamp fabrication process the features of the silicon stamp were repli-
cated with good fidelity, retaining the original dimensions in all of three stamp
types. The results shows, that the sequential imprinting is as a potential stamp
replication method for various applications.
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Tiivistelma

Nanoimprint-litografia on noussut varteenotettavaksi ehdokkaaksi nanorakentei-
den kuvioinnissa. Téhén asti kaytetty optinen litografia on toistaiseksi kyennyt
vastaamaan haasteeseen viivanleveyden pienentyessd. Menetelmén kehittdminen
johtaa yhad kalliimpiin ja teknisesti mutkikkaampiin ratkaisuihin. Pienempiin
viivanleveyksiin on mahdollista kdyttad esim. elektronisuihkulitografiaa, mutta
menetelmén haittapuolena on massatuotannon esteeksi nouseva hitaus, miké
nostaa kustannuksia.

Nanoimprint-litografian pullonkaulana on ollut painomuottien eli leimasinten
valmistus, joka tapahtuu elektronisuihkulitografialla. Pinta-alaltaan suurien
muottien valmistus on hidasta ja tulee erittain kalliiksi. Vaihtoehtoisesti voidaan
valmistaa pieni muotti, jota toistamalla voidaan kuvioida laajoja alueita. Talla
menetelmélld voidaan tehdd suuri maara kopioita alkuperdisestd muotista tai
valmistaa suuri kokonaisuus yhdistelemalld erityyppisia pienid muotteja.

Taman vditoskirjatyon aiheena on painomuottien valmistaminen step and
stamp nanoimprint-litografiamenetelmalla. Tyodn kokeellinen osa késittda pro-
sessiparametrien optimoinnin laajojen alueiden kuviointiin sek& muottien val-
mistuksen ja kopioinnin termoplastiseen polymeeriin. Kuviointi tehtiin kaytta-
malla piistd valmistettua muottia eli leimasinta. Leimasimet valmistettiin p&daosin
piista kayttamalla UV- tai elektronisuihkulitografiaa sekd kuivaetsausta. Mene-
telmaa sovellettiin piipainomuottien kopiointiin, valmistettiin nikkelinen taipuisa
painomuotti rullapainomenetelméaa varten seké lapindkyva polymeeripainomuot-
ti UV-imprint-litografiaa varten.
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1. Introduction

The semiconductor industry has traditionally relied on optical lithography,
which has been an ideal tool for volume manufacturing. The requirements for
mass manufacturing include resolution, overlay accuracy, and economics [1].
The miniaturization of devices and integrated circuits beyond the capability of
UV lithography sets high demands for equipment and increases costs, while
processing becomes more complicated. The limits of optical lithography have
been pushed many times to meet the requirements that have been encountered
[2, 3]. Optical lithography has been under constant development and has already
reached sub-50 nm resolution. The next step is extreme ultraviolet lithography
(EUV) [4, 5], which is expected to take the resolution below 20 nm. Alternative
methods for optical lithography for patterning sub-micron-scale features have
been searched for in X-ray lithography [6], ion beam lithography [7], and elec-
tron beam lithography (EBL) [8]. Nanoimprint lithography (NIL), which was
introduced in 1995 by Stephen Chou, was quickly recognized as a potential can-
didate for post-optical lithography [9]. The advantage of NIL is that it can offer
high resolution without the need for imaging optics or complex light sources, as
in the case of the other alternatives [10].

After a demonstration of sub-10-nm features, NIL was expected to become a
next-generation lithography tool for many applications, replacing optical lithog-
raphy [11, 12]. Large-area nanoimprinting can be faster than sequential electron
beam lithography and simpler than X-ray lithography. Soon after Chou’s inven-
tion, the interest in imprint lithography grew rapidly in many research laborato-
ries. Previously published results demonstrate that the resolution of imprint li-
thography is not an obstacle. The roadblocks on the way to efficient production
are overlay accuracy and throughput [13]. The benefits of the method overcome
the roadblocks, for example, imprinting can be used to pattern functional struc-
tures in polymers, and this can be exploited in, for example, biotechnology and
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1. Introduction

photonics [14]. The fabrication of stamps with nanoscale features is slow with
the current methods, however, and can create a bottleneck in the NIL, when bro-
ken and contaminated stamps need to be replaced. There is a need for a stamp
replication and surface enlargement method that is affordable and sufficiently
fast compared with, for example, EBL.

1.1 The objective of the thesis

Nanoimprint lithography is a promising candidate for a low-cost, high-
throughput method of fabricating nanometer-scale features. There are different
variations of NIL, for example, the wafer-scale, and the step and repeat method
based on mechanical deformation of the polymer, which can be thermoplastic, or
thermally or UV curable. Common to all these methods is that they rely on a
patterned mold carrying nanoscale protrusions brought into contact with the
polymer. The physical contact gives rise to a risk of contamination or breakage
of the mold, and the availability of affordable spare molds is therefore important.

The bottleneck is the availability of the molds, which are still mainly fabri-
cated using clean room nanofabrication processing methods. Patterning of a
large mold is time consuming and expensive using, for example, e-beam lithog-
raphy and dry etching. The lifetime of the stamp can be increased by reserving
the original mold as a master for a stamp-copying process.

Economical and high volume manufacturing of submicron scale features in
microelectronics and optics require low-cost molds. The aim of this study was to
develop a method for economical stamp fabrication. Sequential imprinting, used
in this work, can offer a low-cost method to pattern large-area stamps or a num-
ber of copies from an original master.

This thesis focuses on developing large-scale pattern transfer for stamp fabri-
cation by thermal NIL. The stamp replication is established on patterning ther-
moplastic polymers using silicon molds that were patterned using UV or electron
beam lithography and dry etching. This thesis is divided into two parts: an intro-
duction and an overview of imprint lithography in Chapters 1 and 2, and an ex-
perimental part in Chapter 3 covering results and work published in journals
included in the thesis. The experimental work reported in this thesis covers the
development of Step and Stamp Imprint Lithography (SSIL). Novel large scale
pattern transfer into silicon substrate, fabrication of bendable metal stamp with
100 nm features and fabrication of UV stamp with 50 nm features have been
demonstrated. The tools and evaluation methods are also reported. The pattern

16



1. Introduction

transfer onto silicon, which enables the fabrication of silicon stamps [I, I, VII,
VIII], is described in Section 3.4.1. Section 3.4.2 deals with the fabrication of
flexible metal stamps for roll-to-roll nanoimprinting [I1l, 1\VV]. The bendable
metal stamps are used in the roll-to-roll nanoimprinting process, which is also
available at the VTT’s laboratory. Section 3.4.3 reports on a novel method to
fabricate transparent polymer stamps for the sequential UV imprinting process,
which is also available at the VTT’s facilities [V, VI]. The research has been
carried out in the Nanoelectronics Team at the VTT Technical Research Centre
of Finland.

17



2. Basics of nanoimprint lithography

Nanoimprint lithography is, basically, mechanical deformation of a polymer
using pressure and elevated temperature. Imprinting requires three basic compo-
nents: a patterned mold, printable material, and equipment to control pressure
and temperature, with the ability to bring the mold into parallel contact with the
substrate. A mold with a featured surface is used to transfer patterns onto the
thermoplastic polymer. The temperature of the mold is raised above the glass
transition temperature of the polymer before applying pressure. The patterns in
the mold are copied into polymers with opposite polarity. The mold is allowed to
cool down below the glass transition temperature before separation. The sche-
matic of the process is shown in Figure 1.

MOULD
POLYMER 1. HEAT
]
SUBSTRATE
IIIIIIII 2. PRESS
I
T - oo
RELEASE
N

Figure 1. Schematic of the nanoimprint lithography process. The thickness contrast is
created in the resist by imprinting (1). The pressure is maintained until the polymer flow
fills the cavities of the mold (2). The mold and substrate are cooled below the glass transi-
tion temperature and separated (3).
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2. Basics of nanoimprint lithography

Different imprint methods, such as parallel-scale nanoimprinting, thermal step
and repeat, UV step and flash, and microcontact printing, have been used for a
number of applications [15]. Examples of applications already realized by im-
printing are high aspect ratio MEMS structures [16], photonic crystals [17, 18],
sub-wavelength  periodic  structures  [19], metal-semiconductor-metal
photodetectors [20], field emitters from organic materials [21], field effect tran-
sistors [22], interdigitated electrodes [23], data storage disks [24, 25], micror-
ings [26], and 3-D T-gate and air bridge structures [27].

2.1 The imprint parameters

In optical lithography, the sensitivity of the resist defines the exposure time and
affects the throughput. In imprint lithography, the molding time corresponds to
the exposure time and requires understanding of material rheology. During im-
printing at elevated temperatures, the polymer melt is forced to flow into mold
cavities by pressing the mold against the substrate. After a complete cavity fill,
the mold and the substrate are cooled below T, to obtain mechanically stable
structures. In this state, the features in the polymer are rigid enough to survive
the separation from the mold. The throughput is related to the processing time
needed for heating, cooling, and the cavity fill completion time. These times are
related to the polymer flow properties, which, in turn, are related to the tempera-
ture. The limits for the suitable temperature range are set by the thermal stability
of the polymer.

At temperatures below Tg, the deformation takes place due to elongation of the
atomic distances, and this deformation is elastic. Young’s modulus below T is
high. In this temperature range, the deformation is very small. In order to obtain
melt state with proper flow properties, the polymer is heated above its T4. When
the polymer is heated above Tg, the modulus drops several orders of magnitude,
while local motion of chain segments takes place. At this temperature range, the
chains are still fixed by the network of entanglements. Above T, there is a rub-
ber-elastic region where chain segment extension between fixed points allows
relatively large deformation. The modulus is nearly constant in this region, and
deformation is recovered when pressure is released. When the temperature is
increased sufficiently, the viscous flow region is reached. An entire chain can
move in this regime, and polymer flow takes place by chain sliding. The viscos-
ity and modulus are further reduced, and deformation is irreversible. The time
needed to complete the cavity fill can be estimated using an equation derived
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2. Basics of nanoimprint lithography

from the two-dimensional squeeze flow theory. In the squeeze flow model, the
material is assumed to be purely viscous, and elastic behavior is neglected [28,
29]. The cavity fill time t; is solved by calculating the time required to displace
the amount of polymer with a stamp protrusion of total width S; see Figure 2.

Stamp

ol o
o}

h, I Palymer I h,
.

Substrate

Figure 2. Thickness of the polymer layer before imprinting (left) and after the cavity fill is
complete (right).

The assumption in the following equation is that the liquid is purely viscous, the
adhesion of the polymer is ideal at the surfaces, the polymer melt is incom-
pressible and S >> h(t), no air is trapped in the cavities, and there is no stick-slip
effect at the interfaces. The imprint time is then given by following equation:

_nSt(1 1 @)

1
o2p (h? R

In equation (1), hg is the initial thickness of the polymer film, hy is the thickness
of the residual film (the final height of the film when the cavity has been filled),
no 1S the viscosity of the polymer, p is the imprint pressure, and S is the width of
stamp protrusion.

Equation (1) shows that in order to decrease the imprint time, the viscosity
must be decreased and the imprint pressure increased. A higher film thickness
and lower ratio of cavity volume to stamp width decreases the imprint time.
Usually, the film thickness is optimized to the stamp feature height in order to
minimize the final film thickness and obtain the minimum residual layer thick-
ness for the subsequent pattern transfer. The theory ignores the more complex
flow in the complicated stamp geometries, capillary effects, surface tension,
elastic response of the polymer, forming of the mound surface [30, 31], shear
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2. Basics of nanoimprint lithography

rate effects [32, 33], and mold deformation due to mechanical stress, such as
tension, compression, flexion, and torsion [34, 35, 36]. At imprint temperatures,
the polymer is a high viscosity liquid that responds to applied pressure by instant
elastic deformation within the typical relaxation time of the material and flow at
a rate depending on the viscosity. The relaxation time and viscosity depend on
the temperature, and they decrease when the temperature increases. The time-
temperature relation is described by the Williams-Landel-Ferry (WLF) equation
[31, 37]:

Iogizlogl: _Cl(T _TO) (2)
Ty m,  C,+(T-Tp)

In equation (2), 7 is the time constant, # is the viscosity, and T is the absolute
temperature. The index O denotes the values at a reference temperature To. C;
and C, are constants at the reference temperature. Due to the exponential influ-
ence of the temperature on the viscosity, it is more efficient to increase the tem-
perature than the time. The effect of the increased pressure is more complex due
to the shear thinning effect. At temperatures that are not high enough above T,
the differences in polymer flow rate between dense and isolated structures can
result in non-uniform residual thickness [38]. On the other hand, at high tem-
peratures, low viscosity may result in self-assembly of the polymer. Scheer et al.
[39] have shown that the best imprint results are achieved at temperatures at
which viscosity is approximately 10° Pas. In SSIL, the small size of the stamp
enables high imprint pressures, reducing the imprint time considerably compared
with the parallel wafer-scale processes under similar temperature conditions.

2.2 Residual layer

The uniformity of the residual is important in situations in which the imprint
resist is used as a mask in subsequent lithographic steps. The residual can be
optimized by choosing the initial film thickness according to the local polymer
volume needed for flow and filling the stamp cavities [40]. It is quite easy to
calculate it for simple and periodic structures, but when complex stamp geome-
tries are involved, the calculations become complicated. Different numerical
methods have been used to calculate polymer flow during imprinting. Hirai et al.
[41, 42] have studied pressure and resist thickness dependency using the finite
element method. Kehagias et al. [43] have used the coarse-grain method to cal-
culate simultaneous resist viscous flow and stamp/substrate deformation during
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2. Basics of nanoimprint lithography

imprinting. Young [44] has analyzed polymer flow in nanoimprinting using a
simulation model based on the viscous model. Sirotkin et al. [45] have modeled
resist flow by the coarse-grain method derived from the 3D Navier-Stokes equa-
tions. Rowland et al [46] have studied the impact of film thickness and cavity
size on polymer flow using a Galerkin finite element program. Scheer et al. [47]
studied elastic recovery in squeeze-flow-dominated thermal imprint using com-
mercially available MARC software based on the Moony-Rivlin model.

The imprinted polymer can be used as a mask after removing the residual
layer. An anisotropic dry etching step is needed to reduce the resist layer by at
least the thickness of the residual to expose the substrate. In an ideal process, the
resist layer thickness is reduced without affecting the profile of the features. In
practice, the residual is typically removed in an RIE process using O, plasma [9].
The thickness contrast should be high and the residual layer as thin as possible to
maintain the fidelity of imprinted features during the dry etch process. The dry
etch process is not needed in the partial cavity filling method, which is able to
produce a very thin residual layer [48, 49]. In this method, the residual thickness
is minimized using a stamp with protrusions higher than the initial thickness of
the resist. As a result, the residual film is very thin, and the metal layer can be
sputtered directly on the resist. The drawback of this method is the elastic recov-
ery of large structures [50]. Another approach that can avoid elastic recovery is
to exploit the multilayer resist method and still maintain a high thickness con-
trast [51, 52, 53, 54]. On the other hand, a thick residual layer has an advantage:
it is like a soft barrier between the stamp and the hard substrate, thus protecting
the stamp from wear, which is especially important on patterning non-flat sur-
faces by NIL [55].

2.3 Thermoplastic materials

Imprint polymers can be divided into thermoplastic, thermally curing, and
photochemically curing materials. Thermoplastic polymers become soft above
Tg, and they can be molded repeatedly. Thermally curing polymers start to cross-
link at elevated temperatures, leading to high thermal stability, thus preventing
re-printing. Prepolymers of photochemically curing polymers are low-viscosity
liquids enabling a short imprint time and low residual layer at room temperature.
This is cured by UV irradiation, leading to a mechanically and chemically stable
polymer. Regardless of material, there are some general requirements for NIL,
for example, high thickness uniformity, adhesion to the substrate, low viscosity
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during imprinting, and high pattern transition fidelity. Special physical proper-
ties defined by an application have been a driving force to develop new materi-
als.

One of the first materials used for thermal imprinting is poly-methyl
methacrylate (PMMA), known as an electron beam resist. PMMA possesses
many properties that make it suitable for nanoimprint lithography, for example,
small pressure and temperature shrinkage coefficients [56, 57]. Experimental
work has revealed that the temperature is the dominant parameter to achieve
adequate flow for the imprint process [58]. The characteristics of the polymer
limit the control of the process temperature and thus the polymer flow. Extended
control has led to the tailoring of characteristics of the polymer for imprint pur-
poses. For example, the T, of the resist has been adjusted by varying the compo-
sition of the co-polymers of methyl-metacrylate (MMA) and methacrylic acid
(MAA) [59]. The PHS-based electron beam resist NEB-22 has shown high reso-
lution and good plasma etch selectivity to silicon [60]. Aromatic polymers
(PPM, PBM) developed for imprint purposes offer high dry etch resistance with
tunable Ty by varying the number of aromatic groups that are incorporated [61,
62, 63]. The bulk material can be patterned by thermal imprinting without the
resist mask. The resistless method has been used in patterning, for example,
polymer cellulose acetate [64], PET [65], polycarbonate [66], glass [67], and
silicon [68].

2.4 Imprint molds

Imprint lithography relies on a mold carrying the patterns to be replicated. The
mold is analogous to the photo mask in the UV lithography. Being a direct con-
tact technique, the resolution depends directly on the size and quality of the
mold. The resolution of the mold, in turn, depends on the mask technology pro-
viding the original patterns. The first generation mold, fabricated using existing
mask technology, is usually called a master stamp.

There is a variety of methods and materials to fabricate nanoimprint masters.
UV and electron-beam lithography are the most common methods to fabricate
masters. They are common patterning methods in the semiconductor industry
and research laboratories. Nowadays, the resolution of UV lithography enables
patterning of polymers on a submicron scale. The resolution of UV lithography
has been improved, but with increasingly complicated lithography processes.
Where available, electron beam lithography is used to achieve a sub-50-nm re-
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gime. Nowadays, e-beam facilities are available in almost every semiconductor
research laboratory. A standard scanning electron microscope (SEM) can be
converted into a lithography tool with reasonable investment in accessories,
including software and beam control hardware.

The material of the mold is selected considering the following properties:
hardness and compatibility with conventional microfabrication processes, and
the thermal expansion coefficient. A significant difference in thermal expansion
between the stamp and the substrate can result in stress or pattern distortion dur-
ing the cooling period, because thermal imprinting is typically carried out at
temperatures of 100-200 °C. Silicon has been used widely for stamp fabrication,
because it fulfills the above requirements, and the knowledge and equipment for
processing Si are commonly available in research laboratories.

Electron beam lithography and dry etching are a typical combination to pat-
tern, for example, silicon-based (Si, SiO,, SixNy) masters [69, 70, 71, 72]. An-
other direct writing method is focused ion beam (FIB) milling, which is used to
create 3D features [73, 74] directly.

Nickel is interesting as a stamp material, offering high mechanical strength
and durability [75, 76]. Polymer-on-silicon or full polymer stamps have been
fabricated, patterning cross-linking polymers by direct e-beam writing or em-
bossing [77, 78, 79]. Hydrogen silsesquioxane (HSQ) is an electron beam resist
showing high lateral resolution and good mechanical properties for stamp fabri-
cation [80]. Epoxy resin and PDMS have been used in a casting process that
relies on a patterned mold [81, 82].

2.5 Antiadhesion treatment

The high density of nanoscale patterning in the mold increases the total surface
in contact with the resist, showing a tendency to improve polymer adhesion to
the resist. The increased adhesion leads to the polymer sticking to the mold and
to the tear-off of the resist during separation. The resist-to-stamp sticking is pre-
vented by applying low-surface tension coating, thus reducing the surface energy
of the mold. The anti-adhesion layer can be applied to the stamp plasma deposi-
tion or to the wet method.

Teflon is a chemically inert polymer with low surface energy and good anti-
wetting properties. Teflon-like films can be applied to the stamp surface either
by the plasma deposition process using C,F, molecules as a polymer precursor
supply [83, 84] or by a sputtering process using a Teflon target [85].
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Chlorosilanes can be used to create Self-Assembled Monolayers (SAM) on
silicon. Chlorosilanes react spontaneously with hydroxylated silicon or silicon
dioxide surfaces, forming a non-polar surface instead of the polar SiOy, thereby
increasing the surface energy and the contact angle. The molecules can be ap-
plied to the substrate by the vapor phase or liquid deposition. Ttridecafluoro-
(1,1,2,2)-tetrahydrooctyl-trichlorosilane (TFS or F3-TCS) is widely used as an
antiadhesive layer [86, 87, 88]. The contact angle of water on silicon dioxide
has been shown to increase from 64.5° for an untreated stamp to 105° for a
SAM-treated stamp, correspondingly [89]. The contact angle of water on silicon
has been shown to increase from 22.2° to 95° with perfluorooctyltrichlorosilane
treatment [90].
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In the first experiments, the imprints were performed in a single step process
using a stamp with the maximum size of a few square centimeters. Industry re-
quires large-scale imprinting, and there are two approaches to reach this goal:
the wafer-scale parallel process and the sequential process. In the parallel me-
thod, the substrate is patterned with a stamp of the same size. The first experi-
ments were conducted using simple systems. For the wafer-scale imprinting
[IX], just a hydraulic press can be used. The more sophisticated systems are able
to perform stamp-to-substrate alignment. In the wafer-size stamps, the nanome-
ter-scale features were typically distributed over a few locations on the wafer. In
the sequential method, a small master (Figure 3) is patterned with nanometer-
scale features (Figure 4) by e-beam and replicated over large areas by sequential
imprinting (Figure 5).

Figure 3. Silicon master with an area 1 mm x 1 mm, patterned by electron beam lithogra-
phy in the center. The pattern consists of a grating with sub-micron lines with a pitch of
500 nm.
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Figure 4. SEM micrograph of sub-200-nm grating of the silicon stamp shown in Figure 3.

Figure 5. Large-scale imprinting by SSIL. Two hundred imprints on a 100-mm silicon
wafer using a stamp with a 1 mm x 1 mm area covered by a nanometer-scale grating.
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3.1 Sequential imprinting method

Papers I, Il and VIII describes the use of a commercial flip chip bonder for per-
forming Step and Stamp Imprint Lithography (SSIL) experiments. The experi-
ments included optimizing the imprint parameters (pressure, temperature and
time) and analyzing the uniformity of the transferred patterns. The system mim-
ics the operation of the optical stepper, exposing the substrate chip by chip. The
stamp is used like a reticle in an optical stepper to pattern one chip at a time. In a
thermal sequential approach, the requirements for an imprint apparatus are heat-
ing and pressing capabilities with the possibility of moving and aligning the
stamp with respect to the substrate. A patterned mold or “stamp” surface is pre-
pared using advanced Si fabrication technology, for example, electron beam
lithography that enables the writing of small patterns onto the resist and finally
transfers patterns into the substrate by dry etching. The stamp is pressed into a
thin polymer film spun onto a substrate. The polymer is imprinted at elevated
temperatures, at which the viscosity is relatively low and the polymer is able to
flow under pressure. The stamp is cooled below the glass transition temperature
before releasing the pressure and separation. The stamp is then moved to the
next site and the imprinting process is repeated. The process is presented sche-
matically in Figure 6.
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Figure 6. Schematic of step and stamp imprint lithography: (1) The stamp is aligned to the
substrate. (2) The stamp is heated and pressed into the resist. (3) The stamp is cooled
and demolded. (4) The sequence is repeated in the new location.

SSIL is a relatively flexible method that can be applied to a large area and multi-
layer patterning. In addition to wafer patterning, SSIL can be used to pattern
different substrate materials with a variety of shapes and thicknesses. In the mix
and match approach, imprinting and conventional UV lithography can be com-
bined to merge the advantages of both technologies.

In SSIL, the substrate is imprinted row by row (Figure 7). The task differs
from the parallel imprint method by repetitive temperature cycling. In the se-
guential method, the heating and cooling cycles are repeated for each imprint.
Successful patterning requires the patterns to survive the thermal cycling without
profile deformation and loss of dimension control.
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Figure 7. Patterning of a matrix by stepping the substrate chuck in the xy direction. The
gap (gx and gy) between imprints is typically >100 pm.

The imprint process requires proper material and optimized parameters (tem-
perature, pressure, and time). The optimization of the parameters was performed
by studying the effect of the altered parameters on the profile of the imprinted
features [1, I, VIII]. The profile and the residual layer of imprinted features were
evaluated by atomic force microscopy, optical microscopy, reflectometry, and
electron microscopy.

The force and temperature profiles of an imprint cycle are presented schemati-
cally in Figure 8. The solid line in Figure 8 represents the temperature of the
stamp, and the dotted line shows the pressure applied to the stamp. The glass
transition temperature is marked with a horizontal line. In the first step, the
stamp is heated above the glass transition temperature of the polymer. The stamp
is then pressed into the polymer. The force is applied to the stamp for the period
needed for the resist to flow and accommodate the shape of the stamp protru-
sions. The stamp is cooled down below the glass transition temperature before
separation.
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Figure 8. Force and temperature profile of an imprint cycle. The stamp is first heated
above the glass transition temperature of the polymer and then pressed against the po-
lymer. The force is applied to the stamp for the period, p, needed for the resist to flow and
accommodate the shape of the stamp protrusions. The stamp is cooled down below the
glass transition temperature before demolding.

The stamp temperature, imprint pressure, and imprint time must be chosen by
the material parameters of the resist and the feature sizes and topography of the
mold. The parameter window for sequential thermal imprinting is narrower than
for the parallel method, which is used to pattern a whole wafer in a single press.
In a sequential method, thermal cycling makes process control more challenging
to prevent pattern deterioration during the process.

3.2 Imprint tools
3.2.1 Imprint machines

The first imprint tests were carried out using a Karl Suss FC150 Flip Chip
Bonder (shown in Figure 9), which was found to be suitable for testing the se-
quential imprint concept without hardware modification. In a bonding mode, in
which the machine is typically used, the chip is aligned with the substrate chip
and bonded onto it. After bonding, the machine fetches the next chip and contin-
ues bonding. The imprint process proceeds in a similar manner. In the sequential
imprint mode, the machine fetches the stamp, runs the temperature and force
control cycle, and continues by moving the substrate chuck after each imprint.
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Figure 9. Photograph of an FC150 Flip Chip Bonder in a clean room.

The key elements of the imprint machine are the mobile xy chuck, the imprint
arm, and the alignment/collimation optics shown in Figure 10. The stamp is
attached to a SiC plate of the bonding arm with a high-temperature silicone ad-
hesive. The elasticity of the adhesive helps to level the stamp with the substrate
when it is in contact with it. The substrate chuck was also made of SiC. The
machine was equipped with a motorized high-resolution xy stage. The resolution
of the stage is 0.1 um. The autocollimator is capable of leveling the stamp with
the substrate with a resolution of 20 prad. The force, which the bonding arm
applies to the stamp, is adjustable within the range 0.3-500 N. Both the arm and
the chuck temperature can be controlled separately from room temperature up to
450 °C. The system can be programmed to perform sequential step and stamp
imprinting.
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Figure 10. Schematic of the alignment/collimation optics, stamp, and substrate holder of
the FC150 [I].

The NanoimPrinting Stepper NPS300 (shown in Figure 11) was developed in
collaboration between VTT and S.E.T SAS [91] (formerly Suss Microtec) using
experience collected from early imprint experiments with the FC150. The author
participated in several discussions with manufacturers’ representatives, supply-
ing feedback during the planning and testing of the prototype. The emphasis was
on the stamp-to-substrate parallelism mechanism, collimation optics, stamp size,
and handling, as well as pressure and temperature control. The machine is de-
signed for imprint lithography and addressing R&D requirements as well as
production needs. The set-up of the system allows automatic, full wafer imprint,
with an alignment capability. The main modules of the machine are a high-
accuracy alignment stage, a microscope for alignment, and an imprinting arm.
The following parameters can be controlled via software: stamp-to-wafer level-
ing, alignment, force, and temperature profiles. The stamp is aligned to the sub-
strate using a microscope. The parallelism of the optical axes during movement
is secured by an air-bearing xy-optics stage. A built-in autocollimator performs
the stamp-to-substrate pre-leveling within 20-prad accuracy using a motorized
ball cup system. The self-leveling system uses a flexure stage supplement to
reach two orders better parallelism. The imprinting arm is attached to the upper
granite bridge of the machine, which also supports the optics stage. The arm’s
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vertical movement is controlled by a DC motor. The force profile during the
imprint cycle is monitored and controlled using a closed-loop system with force
sensors integrated into the imprint arm. The substrate chuck is heated using
halogen lamps located under the optical, polished SiC top plate holding the wa-
fer by vacuum. The imprinting arm includes ceramic heaters in the back of the
optical, polished silicon carbide stamp holder, which is secured by vacuum. Both
of the chucks are equipped with water cooling to maintain the housing at room
temperature to avoid thermal drift.

Figure 11. Photograph of the NPS300 nanoimprinting stepper in a clean room.

3.2.2 Stamp holder

In the present work, the SSIL stamp material is silicon and its size is a few mil-
limeters. The maximum size is limited to 50 mm x 50 mm, which is the size of
the SiC plate used as a support for the stamp (Figure 12). The tool is designed to
be replaceable and to be raised by vacuum. As the stamp is demolded automati-
cally, it needs to be attached to the imprinting arm with a bond that is strong
enough to overcome the adhesion force to the resist. The adhesive has to be
thermally conductive and bear temperatures at least up to 200 °C. The Dow
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Corning Q1-9226 is a high-temperature, two-component silicone adhesive that is
mixed at a 1:1 ratio [92]. The mixture is cured at 150 °C for 30 minutes to reach
the final strength. The stamps are patterned by either UV lithography or e-beam
lithography depending on the resolution required. Submicron features are proc-
essed into silicon substrate using electron beam lithography and high-resolution
e-beam resists. The developed e-beam resist is used as a mask for pattern trans-
fer into silicon using the dry etching process. The patterned substrate is diced
into chips that can be glued onto the SiC tool. The stamp can also be treated by
an antiadhesion coating to prevent the resist from sticking to the stamp.

STAMP
4
l GLUE

SIC PLATE

Figure 12. Schematic showing attachment of a stamp on a support tool by glueing (left)
and a photograph of the SiC tool with a stamp glued on the top (right).

3.3 Evaluation methods
3.3.1 Optical microscopy

The optical microscope was used to obtain an overview evaluation of the im-
printed sample. In bright field mode, the light microscope is capable of showing
any rupture of the resist, which is an indication of possible resist-to-stamp stick-
ing. The microscope was used in the dark field mode to search for particles, as a
sign of contamination of the stamp or the substrate surface.
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3.3.2 Scanning electron microscopy (SEM)

SEM was used to measure the surface and cross-section features with a size be-
yond the resolution of optical microscopy. In SEM, the specimen surface is im-
aged by scanning it with a beam of electrons. The electrons interact with the
atoms near the surface of the specimen and produce a signal consisting of back-
scattered electrons. The electrons are collected in a detector, and the signal is
transformed to image the surface topography of the specimen. The instrument
used in the analysis of this work was the LEO1560 FE-SEM with a resolution of
about 1 nm.

3.3.3 Atomic force microscopy (AFM)

The height and profile of the imprinted features are evaluated with an AFM in
tapping mode.

The surface of the specimen is scanned by a sharp tip on a cantilever. The can-
tilever is silicon or silicon nitride, and the tip radius of curvature is a few nano-
meters. In tapping mode, the cantilever oscillates, barely touching the surface.
The cantilever is forced to oscillate near its resonant frequency by a piezoelectric
element in the tip holder. The amplitude of the oscillation is a few tens of nano-
meters. The feedback control detects the change in frequency or amplitude near
the surface and moves the tip up and down to maintain the resonant frequency.
Thus, the changes in resonant frequency can be used to measure the surface pro-
file of the specimen. The instrument used in this work was the DI Dimension
3100 SPM.

3.3.4 Reflectometry

In this work, an optical reflectometer was used to define the initial thickness of
the resist and the residual layer thickness of the imprinted features down to five
micrometers.

A reflectometer is used to measure the thickness of optically transparent films.
The intensity of the monochromatic reflected light depends on the film thickness
due to interference. The computer-controlled grating monochromator and a pho-
tomultiplier tube detector measure the reflected spectrum from the bare refer-
ence wafer and the resist-coated sample. The computer analyzes the interference
pattern and calculates the film thickness using a known refractive index and the
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two measured spectra. The model of the instrument used in this work was Nano-
Spec AFT 4150.

3.4 Fabricated stamps

There are different stamp types that can be categorized by the imprint method
and size. The stamps can be divided into rigid stamps for thermal NIL for wafer-
scale (parallel), large-area imprinting [93, 94, 95, 96], and small stamps for
sequential imprinting [I, 1, VII, VIII], bendable stamps for to roll-to-roll im-
printing [I11, V], and transparent stamps for UV imprinting [V, VI].

3.4.1 Replication of silicon stamps

The different stamp types used in the experiments contained various structures
defined by UV or electron beam lithography and were transferred onto the sili-
con substrate by dry etching. The patterns contained, for example, interdigitated
fingers (400 nm) and large rectangular pads (100 um), shown in Figure 13, dot
arrays (400 nm, 1 um, and 2 pm), shown in Figure 14, and periodic grating
structures with 5 um (Figure 15) and 200-nm-wide ridges, shown in Figure 16.
Figure 17 shows 50-nm features of patterns by electron beam lithography. The
small stamps were fabricated by dicing the substrate into small chips using a
precision cutting tool. These chips were glued to SiC support tools by silicone
adhesive. A summary of the stamps is presented in Table 1.

Table 1. Summary of the stamps used in the present work [l, 11, VII, VIII].

Stamp identification A B C D
Stamp features dots, pads, fingers | grating | grating grating
Stamp size (mm?) 5x5 3x3 3x3 | 20x20
Min. feature (nm) 400 5000 200 50
Feature height (nm) 300 540 500 150
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Figure 13. Optical micrograph of the 400-nm finger structures of stamp A.

Figure 14. Dot arrays of 400-nm, 1-um, and 2-um dots of stamp A.
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Figure 16. Ridges with 200-nm-wide features of stamp C.
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Figure 17. SEM micrograph of 50-nm features of stamp D [VII].

Methacrylate-based polymers containing aromatic components (PPM, mr-I
7000, mr-1 8000) were used in the experiments. The polymers were developed
for thermal imprinting by the micro resist technology GmbH [97, 98]. Sub-
strates were prepared by coating silicon wafers in a manual spinner and pre-
baking on a hotplate. The wafer size was between 100 and 200 mm.

The proper imprinting parameters for each case were optimized by studying
the effect of time, temperature, and force on the imprint quality. The imprint
temperature was varied between 55 and 105 °C above Ty and the force was var-
ied from 5 N to 500 N. The imprint time was varied from a few seconds to 10
minutes. A summary of the optimized imprint parameters for different resists
and stamps are shown in Table 2.
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Table 2. Glass transition temperatures and typical imprint parameters of the resists used
in the experiments.

Resist Ty (°C) | Imprint tem- Imprint Imprint Stamp
perature (°C) time (min) pressure
(MPa)

PPM 107 180 3 4.8 A
mr-l1 7010 65 140 5 0.3 D
mr-l 7030 65 140 5 13 B
mr-l 8010 115 170 2 0.3 D
mr-1 8030 115 220 5 13 B

Figure 18 shows an optical micrograph of a two by three matrix consisting of six
sequentially imprinted elements using stamp A. Each imprinted element consists
of filter structures and dot arrays with sizes from 400 nm upwards. A detail from
the boundary area with an imprinted dot array of 0.4-pm, 1-um, and 2-pm fea-
tures is shown in Figure 19.
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Figure 18. Optical micrograph of an imprinted two by three matrix in the thermoplastic
polymer film. The gap between the adjacent imprinted elements is about 300 pm [I].
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Figure 19. Optical micrograph of an imprinted dot array of 1-um and 2-pum features [I].

Figure 20 shows a SEM micrograph of 50-nm features in a 101-nm-thick mr-I
8010 on a 200-mm silicon substrate. The features were imprinted at 170 °C with
a force of 120 N, which corresponds to a pressure of 300 kPa. Due to the size
(20 mm x 20 mm) of the stamp, the pressure remained moderate and imprints
were not homogenous over the substrate [VI11].

Figure 20. SEM micrograph of 50-nm features imprinted on a 101-nm-thick mr-1 8010
resist [VII].
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Silicon stamps are fabricated using a dry etching process to transfer the im-
printed patterns onto substrate. The resist can be used directly as an etch mask or
a lift-off mask to fabricate a metal mask. First, the residual in the compressed
area has to be removed [VIII]. Figure 21a shows a SEM micrograph of the re-
sidual layer with a thickness of 100 nm in the bottom of the 5-pm-wide im-
printed trench. The residual was removed using oxygen plasma in the RIE at a
pressure of 125 mTorr with RF power of 150 W at an etch rate of about 5 nm/s.
Figure 21b shows the opening after residual removal.

Figure 21. SEM micrograph of a residual layer of an imprinted mr-1 8030 film with an initial
thickness of 345 nm a) and the film after the oxygen etch b).

The lift-off mask was fabricated by sputtering a 30-nm-thick layer of aluminum
onto the imprinted resist. The resist was then dissolved in acetone in an ultra-
sonic bath. The features of the aluminum mask were transferred onto the silicon
by a 10-minute CF4/O, dry etch step. The height of the etched features was 200
nm. In Figure 22, an AFM image of the etched features in silicon is shown. The
5-um features were replicated with adequate fidelity matching the feature di-
mensions of the stamp.

The replication quality of the submicron features was demonstrated by sput-
tering 30 nm of aluminum on the sample and removing the resist and the alumi-
num on top in a lift-off process. The 30-nm-thick aluminum film was used as an
etch mask for RIE. Figure 23 shows the features on the silicon stamp and the
400-nm aluminum features respectively.
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Figure 22. AFM cross-section profile of a silicon trench after dry etching in CF4/O; plas-
ma. The feature height is 200 nm.

Figure 24 is a SEM micrograph of 400-nm-diameter aluminum dots after lift-off.
A comparison of the Al features and the stamp features shows no significant
difference in lateral dimensions in the submicron features, proving the potential
for submicron-scale stamp replication.
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Figure 23. SEM micrograph showing the 400-nm fingers in stamp A a) and the aluminum
features fabricated by imprinting and lift-off b) [I].
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Figure 24. SEM micrograph of 400-nm dots in the silicon stamp a) and the aluminum dots
fabricated by imprint lithography and lift-off b).

3.4.2 Bendable nickel stamps

Roller nanoimprint lithography (RNIL) with a cylinder mold (a thin metal film
bent around a roller) was demonstrated as an alternative to flat imprint lithogra-
phy in 1998 by Tan et al. [99]. The continuous roll-to-roll process has been
demonstrated as a potential mass-fabrication tool for patterning devices on plas-
tic substrate. The plastic tape is fed from a reel to an imprinting unit. The im-
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printing unit consists of a thin patterned nickel film wrapped on a cylinder and a
backing roll [100]. In our experimental work, roll-to-roll stamps have typically
been fabricated using the electroplating process by depositing metal onto resist-
coated silicon substrate. The fabrication of micron-scale features was done by
patterning a light-sensitive resist by optical lithography. Figure 25 shows a
nickel plate fabricated by optical lithography and a resolution mask with micron-
scale test structures. The plate is cut into a rectangular shape to be fitted onto a
60-mm-wide printing roll. If stamps are wrapped over both of the rolls, the sys-
tem can be used for double-sided imprinting by using a nickel stamp on both of
the rolls (Figure 26). The Schematic of the construction is shown in Figure 27.

|

Figure 25. Nickel stamp fabricated by UV lithography using a resolution mask with mi-
cron-scale features.
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Figure 26. Printing rolls in a double simultaneous process in which nickel shims are
wrapped around both rolls [IV].
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Figure 27. Schematic of the double-sided roll-to-roll imprinting system with two nickel
stamps [IV].

The bendable metal stamps used in roll imprinting can be fabricated by machin-
ing metal film (laser ablation) or using a lithographic method (UV or e-beam)
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and electroplating. As a mass fabrication tool, roll-to-roll imprinting requires
stamps with large patterned areas. E-beam lithography lacks the high throughput
and speed needed to pattern large areas effectively however. The solution intro-
duced here is to fabricate a small stamp by EBL and use sequential imprinting to
copy the structures on a large scale.

In the fabrication process, a silicon stamp is prepared using electron beam li-
thography and dry etching. In an example process, a silicon wafer with a thermal
oxide layer is used as a starting material. The wafer is spin-coated with a nega-
tive e-beam resist, which is patterned with submicron features. The resist pat-
terns are transferred onto the oxide layer by dry etching in CF,/CHFz/He plasma.
In the next phase, the patterned oxide is used as a hard mask in the dry etching
step in the Cl,/He plasma to transfer the features onto silicon. The silicon wafer
is then diced into small stamps.

The small stamp, in turn, is used to pattern a polymer substrate, which is used
as a mold in the electroplating process. The patterned polymer mold is sputter-
coated by the TiW/Cu layer, which serves as a seed metal layer. This metal layer
provides electrical contact for nickel deposition in the electroplating bath. The
schematic of the process is presented in Figure 28. The resist mold is lost during
dissolving and can be used only once. The benefit is easy separation of the mold,
and the fabrication of the resist mold is quite straightforward and relatively fast.

Imprint resist on silicon
substrate is patterned by
EEEEN SSIL and a silicon stamp

Seed metal layer (e.g.
TiW/Cu) is sputtered on
resist

50-100 pm thick nickel is
electroplated

Stamp is detached from the
wafer by solving the resist in
acetone bath

10

Figure 28. Schematic of the nickel stamp fabrication process by SSIL and electroplating.

49



3. Stamp fabrication by imprinting

Adhesion between the polymer and the metal film is poor. In order to obtain a
smooth and mechanically stable field metal for Ni plating, the intrinsic stresses
of the films must be minimized. The stresses in the field metal stack are mainly
caused by the TiW layer. Stresses transform from compressive to tensile as a
function of the sputtering pressure. The processing pressure has to be chosen in
such a way that the stresses are minimized and visible cracks do not appear on
the film after sputtering.

In our process, the electroplating of the nickel was carried out in a custom-
cup-type plater using a Barret SN Nickel (Allied-Kelite) electrolyte bath. A
pulsed power source with a current density of 67 Am? gave a deposition rate of
about 8 pm/h.

Figure 29 depicts a SEM micrograph of the 100-nm-wide feature on the sili-
con stamp. The corresponding replicated nickel feature is shown in Figure 30. A
comparison of SEM images shows that the features are preserved during replica-
tion. Figure 31 depicts the AFM image of a 180-nm-high and 100-nm-wide ridge
on the nickel stamp.

H1=102.5 nm

Mag = 10403 K X EHT =10.00 kV Store resolution = 1024 * 768 Date 9 Jun 2005 Time :10:16:43
WD= 4 mm |_| Detector = InLens YTT Microelectronics Centre

Figure 29. SEM micrograph of an e-beam patterned 100-nm-wide ridge in the silicon
master after dry etching in Cly/He plasma [lII].
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100nm EHT = 10.00 kV Store resolution = 1024 " 768
|—i Detector = InLens

Figure 30. SEM micrograph of a 100-nm-wide and 180-nm-high ridge in the nickel stamp
(.

X 1.000 pm/div
2 200,000 nm/div

Figure 31. AFM image of a 180-nm-high ridge on the nickel stamp.
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The AFM-measured surface roughness of the nickel stamp was about 8 nm. The
value is more than 20 times higher than in the imprinted mr-1 7030 resist surface
before metal deposition and nickel plating. The electroplating process is as-
sumed to introduce stress into the metal film. This can be seen as increased
roughness of the surface. Apart from roughness, no cracks or other visible errors
were detected in the metal film.

The test runs of the stamp were made by printing onto cellulose acetate film
using a custom-made laboratory scale roll-to-roll machine. The 100-nm patterns
on the nickel stamp were successfully replicated onto cellulose acetate film
[101].

3.4.3 UV-NIL stamps

Mold-assisted nanolithography [102], or UV-Nanoimprint Lithography (UV-
NIL) [103, 104, 105, 106], has been developed in parallel with thermal NIL
since 1996. Prior to this, photopolymerization had already been used in several
areas of the electronics industry for the production of, for example, optical
waveguides and lenses. In this method, the surface topography of the wafer-scale
mold is replicated onto spin-coated, low-viscosity photo-curable polymers. An-
other approach is multilayer Step and Flash Imprint Lithography (S-FIL) [107,
108] in which a low-viscosity polymer is deposited onto a transfer layer on a
substrate by dispensing. The cavities of the stamp are filled with capillary action.
The polymer is hardened by UV radiation through the stamp. After separation, a
solid replica of the mold is left on the substrate.

Like thermal SSIL, the UV Step and Stamp Imprint Lithography (UV-SSIL)
uses a small stamp to pattern large areas sequentially. The small size of the
stamp enables high pressures to be inserted into the structured areas. The pres-
sure helps to minimize the residual layer in the compressed areas. The waviness
or bending of the stamp or substrate also becomes less critical when reducing the
size of the stamp, and the surfaces can be made flat locally. The UV-SSIL proc-
ess is shown schematically in Figure 32.
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Figure 32. Principle of the UV-SSIL process. The stamp is first aligned with the substrate.
The resist is dispensed to the substrate and the stamp is pressed against it. The resist is
exposed through the stamp. The stamp is separated and the cycle repeated in a new
location [V].

The resolution achieved in UV-NIL is better than 10 nm using a rigid quartz
mold and about 50 nm using a soft PDMS mold [109]. The challenge is in pat-
terning large areas with a highly homogenous residual layer thickness while
maintaining both high resolution and alignment accuracy [110]. The property of
the material is a key factor in reducing the residual layer. The thickness of the
residual layer has shown to increase with the square root of the viscosity [111].
In order to reach residual layer thicknesses below 100 nm, low-viscosity materi-
als [112] should be used.

In the UV-imprint lithography, the typical stamp material was quartz. Submi-
cron features can be patterned by electron-beam lithography and dry etching.
The stamp fabrication process corresponds to conventional phase-shift reticle
processing [15]. In the standard process, a fused silica reticle is coated with a
chromium layer that is a spin-coated electron beam resist. The resist is patterned
by a direct-write e-beam system. After developing the resist, the chromium is
etched with a Cl-based RIE through the openings. The resist is removed and
silica substrate is patterned by a fluorine-based RIE and chromium mask. S-FIL
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has been used to fabricate wafer-scale fused silica UV-molds using a small reti-
cle [113] and flexible polymer molds [114]. Other fabrication methods using
HSQ [115] and the Ormostamp [116] that require no RIE etching have been
reported. The fabrication process, based on conventional photomask fabrication,
confronts critical dimension (CD) losses during etching through the Cr layer
[117]. This has motivated the search for alternatives to stamp fabrication.

The motivation for the experimental work was to develop a simple method to
fabricate UV-NIL stamps with antiadhesion properties using fluorinated polymer
film on top of a quartz support. The patterning was done using thermal SSIL and
a silicon master. This method does not require any subsequent process steps,
such as dry etching. The number of masters is not limited and a number of mas-
ters can be combined to pattern large areas. Thus, submicron-scale features and
micron-scale features can be used with no need for the mix and match approach.

The fabrication of the stamp was carried out in two steps. A silicon master
was prepared in the first step and used for thermal imprinting in the second step.
The silicon master was patterned by UV or electron beam lithography and dry
etching. The silicon master with submicron-scale features was fabricated by
electron beam lithography. Correspondingly, the silicon masters with micron-
scale features were defined by UV lithography. The features of the silicon mas-
ter were transferred onto a polymer template by thermal imprinting (Figure 33).

Two different silicon masters were used to pattern a polymer stamp. In the
first one, the features consisted of 50-nm-wide lines with a 600-nm pitch. The
patterned area was 1 mm x 1 mm and the total size 3 mm x 3 mm. In the second
master, the features consisted of 350-nm pillars with a 1.2-um pitch. The stamp
size was 3 mm x 3 mm patterns covering the whole area. For the fastening to the
imprint machine, the silicon master is attached to a 50 mm x 50 mm SiC-
support. The attachment is done using thermally conductive silicone adhesive.
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Figure 33. Schematic of the fabrication steps of a polymer stamp. A polymer template on
top of the quartz plate is patterned by thermal SSIL. a). The patterned template is used as
a stamp for UV imprinting b) [VI].

In the beginning of the cycle, the silicon master is aligned with the polymer tem-
plate. It is then heated to 140 °C and pressed into a polymer using a pressure of
14 MPa. The pressure is maintained until the polymer flow into the cavities is
complete. The temperature is reduced to 60 °C before separation. These steps
were repeated until the set was completed. The master was changed for another
after eight imprints, and patterning was continued with a further eight imprints.

The patterned polymer stamp was used for UV imprinting. In the process, the
stamp was first aligned with the substrate. Next, a syringe-type dispenser was
used to deposit the UV-curable resist UVCur06 (from microresist GmBH) onto
the substrate. The material is an acrylate-based polymer with a photoinitiator.
The stamp size area was dispensed by applying a matrix of the droplet (pitch 500
pm). The volume of a single droplet was about 20 nanoliters. Next, the stamp
was pressed into the resist and kept in contact for 20 seconds before starting the
7 seconds curing step. The UV irradiation was realized through the stamp by an
LED array (power density 120 mW/cm?). After curing, the stamp was de-
molded. The substrate stage was stepped forward and the cycle was repeated at
the next site on the substrate.

The patterns of the polymer stamp consisted of two by four and two by four
matrices as a combination of two silicon masters. One stamp consisted of 50-nm
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lines and the other of 350-nm dots. The original silicon master is shown in
Figure 34, the SSIL-patterned polymer stamp in Figure 35, and the UV-
imprinted replica in Figure 36. The diameter and height of the features of the
silicon master and UV-cured replica were measured by AFM. The height of the
replicated pillars in the UV-cured resist is 128 nm while the depth of the holes in
the polymer stamp is about 132 nm. The shrinkage for mr-UVCur06 is 3-6%, so
the difference is probably due to shrinkage of the polymer during cross-linking.
The surface roughness of the silicon master, polymer stamp, and UV-cured resist
was compared by the AFM measurement. The roughness values were 0.36 nm
for the silicon master, 1 nm for the polymer stamp, and 0.93 nm for the cured
UV resist. The measured surface roughness of the polymer stamp before thermal
imprinting was 0.3 nm. The roughness was increased during thermal imprinting
when the polymer was in contact with the silicon master.

X 1.000 pm/div
Z 200.000 nm/div

Figure 34. AFM image of a silicon stamp with 350-nm-diameter pillars. The height of the
pillars is 132 nm [VI].
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X 1.000 pm/div
Z 200.000 nm/div

Figure 35. AFM image of 350-nm holes imprinted onto the polymer stamp. The depth of
the features is 130 nm [VI].

X 1.000 pmidiv
Z 200.000 nm/div

Figure 36. AFM image of 350-nm features replicated onto a UV-curable resist. The height
of the pillars is 128 nm [VI].
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Figure 37 depicts the 50-nm features in a cured mr-UVCur06 resist. The AFM
image shows that the features of the silicon master were replicated without dis-
tortion and no resist to stamp sticking was observed during the mold release. The
features in the grating are uniform and match the polymer stamp. The pattern
transfer in the boundary region did not differ from the overall quality due to the
gap between imprints.

X 1.000 pm/div
Z 200.000 nm/div

Figure 37. AFM image of 50-nm ridges in the UVcur06 resist. The patterning was done
using a polymer stamp fabricated by SSIL [VI].

The fluorinated polymer of the stamp provided good mold release with an mr-
UVCur06 resist. The UV-irradiant time was at the same level as when using a
normal quartz stamp. The measured transmittance of the polymer stamp was
95% at the 375-nm wavelength used for UV exposure.

No sticking problems were observed in either the micron- or submicron-scale
features. The fluorinated material of the stamp evidently provides good mold
release with the UV resist. The UV-irradiation time was of about the same mag-
nitude as using a normal quartz stamp. This is due to the high UV transparency
of the material. The high chemical durability of the resin enables stamp cleaning
with isopropyl alcohol. These attributes make the fluorinated polymer template a
suitable material for the fabrication of polymer UV stamps.
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4. Summary and discussion

The motivation for this work was to develop a stamp fabrication method using
thermal step and stamp imprint lithography. The experimental work was initiated
using a Karl Suss Flip Chip Bonder FC150. The machine was applied to imprint
lithography with no hardware modifications, as the flexibility of the software
allowed for the imprint application, although the machine is designed for chip
onto chip bonding. On the basis of experience collected from the FC150, a dedi-
cated imprint machine was developed by SET S.A.S. (former Suss Microtec).
The new machine, NanoimPrint Stepper NPS300, had a more reliable parallel-
ism system with a self-flexuring imprint arm to achieve final parallelism be-
tween the stamp and the substrate. The new machine has the capability to per-
form automatized alignment and collimation onto a maximum of 300-mm sub-
strate with an accuracy of a quarter of a micron. The machine can be converted
into UV-imprinting equipment by changing the head of the imprinting arm. With
this capability, the machine can also be used to process development for small-
scale pilot production.

The imprinting process was developed by optimizing the parameters tempera-
ture, pressure, and time for selected polymers. The pattern transfer onto silicon
was demonstrated using both the imprinted resist and the metal mask. The metal
mask was fabricated by lift-off using the imprinted resist as a mask. Large-area
imprinting was realized onto 200-mm silicon substrates with features of 50-nm
line width. The practical size of the silicon stamp in SSIL is limited to a few
millimeters. As for larger stamps with a size of 20 mm x 20 mm, the only partial
pattern replication over the stamp area was achieved due to the waviness of the
substrate.

Bendable metal stamps were fabricated using imprinting to define a polymer
mold and electroplating to deposit nickel onto the mold. Thus, the fabricated
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metal stamp was used in a roll-to-roll imprinting process to transfer the patterns
onto a CA film successfully.

The fabrication method of polymer stamps for UV-NIL was demonstrated by
patterning fluorinated polymer templates by thermal SSIL using a silicon stamp.
The features of the silicon stamp were replicated with good fidelity, retaining the
dimensions. The tests on the polymer stamps by UV imprinting demonstrated
good mold-release properties along with satisfactory pattern replication of sub-
micron features, thus proving the concept useful.

In the field of thermal imprinting, the emphasis has been on the parallel proc-
essing method with large molds. In recent years, the sequential method has at-
tracted wider interest, and a growing number of research groups have shown
interest in developing sequential imprinting. The benefit of the method is flexi-
bility, which allows patterning of each chip with a different stamp.

The parallel method has attracted a growing number of researchers due to its
simplicity and low cost. In thermal step and repeat imprinting, the bottleneck is
low throughput, compared with the parallel method, but the development of
rapid heating and cooling of the stamp can improve the throughput significantly.
Materials are also being developed all the time, and better suitability for imprint
purposes can be expected in the future. Another challenge in electronic applica-
tions is multilevel capability with an overlay accuracy of tens of nanometers on
wafers larger than 150 mm in diameter. Applications relying on single layer
patterning, such as optical gratings, are not as demanding in overlay accuracy
and can be realized sooner in mass production.

There are many applications in sight in nanoimprint lithography that require
sophisticated stamp fabrication technology for optical, photonic, electrical, and
biological applications. Nanoimprint lithography is suitable for patterning 3D
features used in, for example, optical devices such as sawtooth diffractive grat-
ing elements or anti-reflection surfaces. There are many other applications in the
field of optics, such as photonic crystals, light directional elements for extracting
light from LEDs, and control deviation of light in window glass surfaces for use
in natural lighting for housing. There are different sensors for nano-bio research,
such as interdigitated nanoelectrodes. In electrical application, imprinting can be
used for, for example, fabrication of MOSFETS and organic FETS.
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