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Abstract 
Personal health monitoring refers to the long-term health monitoring that is per-
formed in uncontrolled environments instead of a laboratory, for example, at 
home or by using wearable sensors. The monitoring is done by individuals 
alone, usually without guidance from health care professionals. Data produced 
by personal health monitoring (for example, actigraphy, heart rate, etc.) are cur-
rently used more in personal wellness monitoring rather than in clinical decision-
making, because of challenges in the interpretation of the long-term and possibly 
unreliable data. Automatic analysis of long-term personal health monitoring data 
could be used for the continuous recognition of changes in individual’s behavior 
and health status, and to point out which everyday selections have a negative 
effect on health and which have a positive effect. This can not be achieved by 
using sparse measurements in controlled environments. 

In this thesis, data analysis was carried out for the recognition of physical and 
mental load using data from wearable sensors and other self-measurements. 
Large, annotated data libraries were collected in real-life or realistic laboratory 
conditions for the purpose of the development of practical algorithms and the 
identification of the most information-rich sensors and signal interpretation 
methods. Time and frequency domain features were computed from raw sensor 
data for the correlation analysis and the automatic classification of the personal 
health monitoring data. The decision tree, artificial neural network, K-Nearest 
Neighbor and a hybrid of a decision tree and artificial neural network classifiers 
were used. 

Automatic activity recognition aims at recognizing individual’s activities and 
postures using data from unobtrusive, wearable sensors. Similarly, the unobtru-
sive, wearable sensors can be used for the assessment of energy expenditure. 
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The quantities measured in this thesis include acceleration, compass bearings, 
angular rate, ECG, heart rate, respiratory effort, illumination, temperature, hu-
midity, GPS location, pulse plethysmogram, skin conductance and air pressure. 
The results indicate that several everyday activities, especially those with regular 
movements, can be recognized with good accuracy. The energy expenditure 
estimate obtained using movement sensors was found accurate in activities in-
volving regular movements. The sensors that react to the change of activity type 
without delay were found the most useful for activity recognition. These include 
accelerometers, magnetometers, angular rate sensors and GPS location sensors. 

Automatic assessment of mental load aims at measuring the level of mental 
load during everyday activities using data from wearable sensors. The assess-
ment of long-term stress aims at finding measures that reflect the perceived 
stress level, either directly or as observed through changes in behavior. Data 
were collected with people suffering from long-term work-related stress and 
participating in a rehabilitation program. Automatic measurements of recovery, 
measured with a bed sensor, actigraphy and bedroom illumination sensors were 
found to correlate best with the self-assessed stress level. 

Careful selection of sensor types, sensor locations and input features played a 
more critical role in successful classification than the selection of a classifier. 
Computational complexity of the classifier’s classification phase has an impact 
on the power consumption of a hosting mobile terminal. Power consumption is 
one of the bottlenecks in long-term personal health monitoring solutions today. 



 

5 

Juha Pärkkä. Analysis of Personal Health Monitoring Data for Physical Activity Recognition and 
Assessment of Energy Expenditure, Mental Load and Stre [Henkilökohtaisessa terveydentilan seu-
rannassa syntyvän mittaustiedon analyysiä fyysisten aktiviteettien tunnistamista sekä energiankulutuk-
sen, henkisen kuormituksen ja stressin arviointia varten]. Espoo 2011. VTT Publications 765. 103 s. + 
liitt. 54 s. 

Avainsanat personal health monitoring, biosignal processing and classification, physical activity, 
activity recognition, energy expenditure, mental load, stress  

Tiivistelmä 
Henkilökohtaisen terveydentilan seuranta viittaa pitkäaikaismittauksiin, joita 
tehdään laboratorion sijaan kontrolloimattomissa oloissa, esimerkiksi kotona tai 
puettavien antureiden avulla. Mittauksia tekee yksilö itse, yleensä ilman tervey-
denhuollon ammattilaisten ohjausta. Henkilökohtaisen terveydentilan seurannas-
ta kertyvää dataa, esimerkiksi aktigrafiaa tai sykettä, käytetään tällä hetkellä 
enemmän henkilökohtaiseen terveyden seurantaan kuin kliiniseen päätöksente-
koon. Tämä johtuu paikoin epäluotettavan pitkäaikaisdatan tulkinnan haasteista. 
Pitäkaikaismittauksilla voidaan kuitenkin jatkuvasti arvioida muutoksia yksilön 
käyttäytymisessä ja terveydentilassa ja osoittaa, millä valinnoilla on terveyden 
kannalta positiivisia, millä negatiivisia vaikutuksia. Tähän ei päästä harvoilla 
yksittäismittauksilla kontrolloiduissa oloissa.  

Tässä työssä käytettiin puettavien antureiden ja muiden henkilökohtaisten mit-
tausten avulla kerättyä dataa yksilön fyysisen aktiivisuuden ja henkisen kuorman 
profilointiin automaattisen data-analyysin avulla. Tutkimuksissa kerättiin laajo-
ja, annotoituja datakirjastoja jokapäiväistä elämää vastaavissa ympäristöissä. 
Datakirjastojen avulla tunnistettiin parhaita antureita sekä kehitettiin käytännön-
läheisiä algoritmeja datan automaattista tulkintaa varten. Aika- ja taajustason 
piirteitä laskettiin antureiden tuottamasta raakadatasta korrelaationanalyysiä ja 
henkilökohtaisen terveysdatan automaattista luokittelua varten. Työssä käytettiin 
luokittelijoina binäärisiä päätöspuita, neuraaliverkkoja, k-lähimmän naapurin 
luokittelijaa (KNN) sekä päätöspuun ja neuraaliverkon yhdistelmäluokittelijaa. 

Automaattisen aktiviteettien tunnistuksen tavoitteena on tunnistaa käyttäjän 
aktiviteetit ja asennot päälle puettavien mutta huomaamattomien ja liikkumista 
häiritsemättömien antureiden avulla. Samoja antureita voidaan käyttää myös 
automaattiseen energiankulutuksen tunnistamiseen. Tässä työssä mitattiin kiih-
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tyvyyksiä, kompassisuuntaa, kulmanopeutta, EKG:ta, sykettä, hengitysliikkeitä, 
valoa, lämpötilaa, kosteutta, GPS-paikkaa, pulssipletysmogrammia, ihon johta-
vuutta sekä ilmanpainetta. Tulosten perusteella useita arkipäiväisiä aktiviteetteja, 
erityisesti toistuvaa liikettä sisältäviä, voidaan tunnistaa automaattisesti hyvällä 
tarkkuudella. Liikeantureiden datasta laskettava energiankulutusarvio toimii 
hyvällä tarkkuudella toistuvaa liikettä sisältävillä aktiviteeteilla. Aktiviteettien 
tunnistuksen kannalta parhaiksi antureiksi osoittautuivat ne, joiden ulostulosig-
naali muuttuu välittömästi aktiviteettityypin vaihtuessa. Näitä antureita olivat 
kiihtyvyysanturit, magnetometrit, kulmanopeusanturit sekä GPS-paikannin.  

Henkisen kuormituksen automaattisen arvioinnin tavoitteena on henkisen 
kuormituksen tason mittaaminen puettavilla antureilla, osana arkipäivän elämää. 
Pitkäaikaisen stressin automaattisen arvioinnin tavoitteena on löytää mittareita, 
jotka kuvastavat yksilön kokeman stressin voimakkuutta joko suoraan tai käyt-
täytymismuutoksia seuraamalla. Työssä kerättiin dataa pitkäaikaisesta työstres-
sistä kärsivien ja kuntoutusohjelmaan osallistuvien henkilöiden avulla. Auto-
maattisesti palautumista mittaavien antureiden, sänkyanturin, aktigrafin sekä 
makuuhuoneeseen sijoitetun valoanturin, tuottama data korreloi voimakkaimmin 
itseraportoidun stressin kanssa.  

Anturityypin, anturin sijainnin sekä piirteiden valinnalla oli suurempi rooli 
onnistuneessa luokittelussa kuin luokittelijan valinnalla. Luokittelijan luokittelu-
vaiheen laskennallinen monimutkaisuus vaikuttaa akkukäyttöisen laitteen tehon-
kulutukseen. Tehonkulutus on tällä hetkellä yksi pitkäaikaisen, henkilökohtaisen 
terveydentilan seurannan pahimmista pullonkauloista. 
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1. Introduction 
Long-term personal health monitoring, as part of everyday life, is a central ele-
ment of care in certain areas of health and disease management. For example, 
long-term monitoring of weight, blood pressure and blood glucose is used in 
health and disease management (Lappalainen et al. 2005, Verberk et al. 2007, 
Martin et al. 2006). However, the overall wellbeing of an individual is influ-
enced by physiological, psychological and social factors. All these three factors 
interact as determinants of health. In fact, behavioral and social factors explain 
more than 50% of health outcomes (McGinnis et al. 2002). Thus, there is a need 
for comprehensive, long-term health monitoring that uses both physiological and 
behavioral monitoring. 

Sedentary lifestyle is a common risk factor in chronic diseases in a modern 
lifestyle. At least 60% of the world’s population fail to achieve the minimum 
recommendation of 30 minutes of moderate-intensity physical activity daily 
(Puska et al. 2004). High mental load is a major problem in public health in 
modern society. In 13 countries of the Organisation for Economic Co-operation 
and Development (OECD), mental disorder causes one third of disability pen-
sions (OECD 2009). Prolonged stress has been suspected to cause physical ill-
ness (Honkonen et al. 2006), and burnout has been found to be related with all-
cause mortality in people under 45 years of age (Ahola et al. 2010). Both the 
volume of physical activity and the volume of mental load can be modified with 
behavioral changes. Thus, there is a need to provide new tools that help individ-
uals to analyze their current lifestyle and motivate them to a healthier lifestyle. 

Today, an ageing population is a burden and cost on health care systems in 
many countries. This has accelerated the ongoing change from reactive and cen-
tralized care to proactive and patient-centric health care, where the patient is 
given more responsibility for his/her care, with health care professionals sup-
porting him/her in the care process. A central theme is to improve patients’ self-
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efficacy. Self-efficacy refers, for instance, to the patient having the correct in-
formation, skills and motivation to do self-care. Thus, the emphasis is moving 
from improving patients’ compliance to improving patients’ self-efficacy. The 
patient-centric  care  has  been  shown  to  be  beneficial,  for  example,  in  terms  of  
changes in the health status, patients’ self-efficacy and health care resource utili-
zation (Lorig et al. 2001). 

 The miniaturization of sensors, and electronics in general, have made many 
new sensors truly wearable. Similarly, developments in solid-state memory 
technology and communications technologies have opened new possibilities for 
long-term personal health monitoring. The solid-state memories can store persis-
tent data in ambulatory conditions more reliably than the earlier micromechani-
cal drives with moving heads and spinning disks. In addition, the capacity of the 
solid-state data storage devices has grown and allows longer recordings with 
sufficient sampling frequencies for many new applications. Developments in 
wireless communications technologies have enabled wireless data transfer in 
body area networks as well as over wider area networks. Mobile phones have 
become one possible platform for wearable systems (Amft & Lukowicz 2009). 
Personal health records are being developed to be an Internet-based set of tools 
that people can use to access and manage their life-long health information 
(Tang  et  al.  2006).  The  personal  health  record  is  a  central  element  in  a  whole  
new ecosystem of services that cooperate with the patient as co-producers of 
health (Saranummi 2009). The components of an ecosystem are made inter-
operable through international standardization that is being specified, for exam-
ple, in the Continua Health Alliance (Carroll et al. 2007). 

Different sensors, for instance, stand-alone, embedded and wearable, are 
available on the market today and a lot of data are being acquired by individuals. 
However, all the acquired data are not yet utilized efficiently. Utilization of the 
data comprises an enormous task of data analysis and data interpretation. The 
long-term data measured in uncontrolled environments by individuals them-
selves are not something that can be easily interpreted. Thus, there is a need to 
develop new data analysis methods for personal health monitoring data. The 
long-term personal health monitoring improves outcomes and reduces health 
care resource utilization (Cleland et al. 2005, Celler et al. 2003). The acquired 
data can be useful for both the patient and the medical professional, as they can 
be used in health and disease management as well as in prevention. 

The studies on automatic recognition of physical activities and energy ex-
penditure are commonly based on signals obtained from wearable sensors. The 
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goal of automatic recognition of physical activities and automatic assessment of 
energy expenditure is to show people current distribution of their daily activities, 
level of their energy expenditure, and to motivate people to a more active life-
style. The rough estimates of daily energy expenditure provided by simple activ-
ity monitors, such as the pedometers, can be further improved by using carefully 
selected sensors and by placing them on well-chosen points on the body, where 
they can be carried unobtrusively, without disturbing the user. Physical fitness 
has many components, which require different types of exercise: endurance can 
be enhanced by long-duration activities, balance can be improved, for example, 
by playing ball games, and muscle strength can be improved by exercising at the 
gym. In order to estimate a particular user’s need for different activities, a more 
advanced analysis of user’s physical activities is needed than what is available 
from simple activity monitoring devices. Continuous, automatic monitoring of 
daily physical activities and energy expenditure could provide more advanced 
information that can be used to promote a more active lifestyle with a wider 
spectrum of different exercises. 

The advanced studies on mental load use data from both self-assessments as 
well as automatic measurements and self-measurements. No gold standard exists 
for the objective measuring of mental load. Clinical studies on mental load make 
use of, for example, salivary samples and blood tests. In everyday, continuous 
use, these are not applicable. Using a combination of several wireless sensors 
and self-assessment tools, a new type of data can be collected, which can allow 
studying new measures for the objective quantification of level of mental load 
unobtrusively and in the long-term. Supporting the interpretation of the long-
term self-measured data might also make the health care professionals more 
willing to use this information in the future. 

This thesis contains publications on the author’s research in the years 2003 to 
2010 on the analysis of sensor data for personal health management. This covers 
applications for automatic recognition of physical activities, automatic assess-
ment of energy expenditure, and automatic recognition of mental load and stress. 
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2. Background and Literature Review 
The analysis of personal health monitoring data measured in uncontrolled envi-
ronments requires several steps in order to guarantee good quality data and the 
reliable interpretation of data. A human uses his/her senses every day, for exam-
ple to recognize faces or traffic signs. This is an example of pattern recognition 
in  humans.  The  senses  acquire  data  from  the  target  objects  and  the  brain  per-
forms the classification. An automatic pattern recognition system takes raw 
measurement data and classifies patterns automatically. The general design cycle 
of an automatic pattern recognition system is shown in Figure 1. The design of 
automatic pattern recognition systems for the analysis of personal health moni-
toring data follows the general design cycle. 

 

Figure 1. Design cycle of a pattern recognition system ((Duda et al. 2001), modified). 
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Once a target for measurements has been set, and a physical quantity, the meas-
urand, has been selected, sensors that can measure the target well are selected. 
Next, the aim is to collect a data set that contains a representative variation of 
the data in different circumstances. The data are used for training and the evalua-
tion of the system. The data collection is a laborious task, the cost of which can 
be easily underestimated. The raw data obtained from sensors may contain arte-
facts that have to be removed at the signal pre-processing stage. Pre-processing 
may also involve the synchronization of data from different sources, re-
sampling, scaling the sensor outputs and signal filtering. 

Next, features are extracted from the pre-processed signals. Sliding window is 
the most commonly used technique for extracting features from signals. Only the 
part of the signal which is within the window is processed at a time. Signal char-
acteristics, for example the mean, are computed for the window contents. Then, 
the window is slid to its next location on the signal. Both block windows, that is, 
the windows next to each other, and overlapping windows can be used. 

Feature selection aims at selecting the most information-rich subset of features 
to be used as inputs to the classifier. The different computed features of the pat-
tern  are  components  of  a  feature  vector  in  a  feature  space.  For  classification,  
features that maximize the inter-class distance and minimize the intra-class vari-
ability are the best features. Both the prior knowledge and the training data are 
used for feature selection. 

Next, the classifier and its structure are designed. Characteristics of the data 
influence the design. A more complex classifier is required, when the classes are 
not  easily separable.  The classifier  is  trained to recognize the patterns with the 
training data set. In supervised learning, the training data contains both the input 
patterns and the desired outputs for each pattern. Too complex a classifier may 
overfit to the training data. Such a classifier would not generalize and give satis-
factory results with unseen patterns. An evaluation data set is used to evaluate 
the resulting classifier performance with unseen data. The evaluation may also 
show needs for the re-designing of some parts of the system. 

Once the classifier is designed and ready for use, its components for online 
use can be described as in Figure 2. The physical measurand is converted to an 
electric signal using the sensors. The obtained electrical signal is pre-processed 
and the selected input features are computed and fed to the classifier, which as-
signs class labels to the patterns. In active use, both the accuracy and the compu-
tational complexity of each component become an issue. 
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Figure 2. Components of a pattern recognition system during online recognition. 

This chapter explains the requirements for sensors, central feature extraction, feature 
selection and classification methods used in this thesis. It also reviews the literature 
on the three application domains: 1) automatic activity recognition, 2) automatic as-
sessment of energy expenditure and 3) automatic assessment of mental load and stress. 

2.1 Sensors and Data Analysis Methods 

2.1.1 Requirements for Sensors 

A sensor converts a physical quantity to electric output. For example, a pressure 
sensor converts pressure to electric output. An optimal sensor responds to the 
physical energy available via the measurand and excludes other sources of ener-
gy (Webster 2010). Many sensors require a calibration signal for maintenance of 
accurate output. Many sensors also require an external power source for convert-
ing the energy from one form to another. The power consumption is critical, 
especially in the case of long-term monitoring using wearable sensors. 

Traditionally, most of the studies on automatic health monitoring in uncon-
trolled environments (environments other than hospitals) focus on health moni-
toring at home. These solutions use mostly embedded sensors that are available 
in the home environment, either as separate devices or embedded into structures 
such as furniture. More recently, with advances in electronics and communica-
tion technology, wearable sensors have attracted increased attention. It is possi-
ble to monitor user’s health status and behavior at home and during movement 
by combining the fixed home sensors and the wearable sensors. 

Because the sensors in the home environment are used by non-professionals, 
certain characteristics are required of sensor systems (Korhonen et al. 2003). 
They should be reliable, robust and durable, because the environment of use 
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may vary and a non-professional user may not be aware of limitations of use. 
The wearable sensors should be unobtrusive and have an attractive design, be-
cause they are used in various situations of everyday life. They should not limit 
normal activities, but rather have attractive features that motivate to long-term 
use. Preferably, the sensors should automatically communicate data to central 
data storage or have processing power and storage space for storing enough data 
for history and trend visualization. The sensor should be self-calibrating and 
have long battery life. The user interaction with the device should be minimized 
and the achieved benefits should overcome the potential burden to the user. The 
sensor should also be robust against artefacts such as movement or environmen-
tal light. 

One of the key aspects of wearable sensor systems is the ability to use the sys-
tem while engaged with real-world tasks (Amft & Lukowicz 2009). Further user 
needs for wearable sensors and sensor systems are usability, embedded medical 
decision making, and clinical validity (Lymberis 2004). Usability refers to the 
easy daily use, power autonomy and informative user interface. Embedded med-
ical decision-making refers to algorithms that integrate collected data, and ana-
lyze trends and changes in data and suggest the best possible medical diagnosis. 
Today, no such algorithms are in clinical use in homecare or ambulatory devic-
es. Clinical validity tells us if a device has clinical use, and whether it can accu-
rately discriminate between normal and abnormal data. 

Further requirements for psychometric monitoring are accuracy, validity, sen-
sitivity to change and incremental clinical validity (Haynes & Yoshioka 2007). 
Accuracy refers to the degree to which the measure obtained reflects the target 
variable. If no gold standard measurement exists, the degree of validity of  a  
measure can be estimated by estimating the degree of its co-variance with other 
measures. Validity can sometimes be conditional and unstable, thus, the same 
validity cannot be obtained in different settings (for example, subjects of differ-
ent ages, a different severity of conditions, a different measurement context, 
etc.). Sensitivity to change describes the degree to which obtained measures re-
flect  changes in a  target  variable,  thus,  whether  the changes are delayed or  im-
mediate. Incremental validity refers to the degree to which the measure strengthens 
the validity of the clinical decision-making beyond the measures normally used. 

With these requirements in mind, the sensor set for each study was selected. 
With activity recognition and estimation of energy expenditure, the focus is on 
wearable sensors. For mental load and stress monitoring, both wearable and 
embedded sensors are used. 
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2.1.2 Feature Extraction 

Feature extraction aims at extracting such characteristics of the input patterns 
that enable their classification into distinct classes. In the analysis of personal 
health monitoring data, the features are computed from the content of a sliding 
window. Feature extraction methods commonly used to study signal characteris-
tics include 1) time-domain features and 2) frequency domain features. Time-
domain features include the mean, median, variance, skewness, kurtosis, range, 
means for high frequency data and low frequency data, and the integral of modu-
lus of accelerations for estimation of energy expenditure. Frequency domain 
features include the peak frequency, peak power, spectral power on different 
frequency bands and spectral entropy. The central features are presented in this 
chapter in more details. The emphasis is on computationally less complex fea-
tures that are more useful in embedded and wearable devices and in long-term 
monitoring rather than computationally more complex features. 

2.1.2.1 Sample Mean 

Mean  represents the sample mean of values within the sliding window. In equa-
tion (1), n denotes window length and x[i] denotes the ith value of the signal. The 
sample mean of accelerometer data has been used to identify postures. This can be 
done, because the gravitational acceleration component shows on signal and can 
be used to distinguish, for example, vertical and horizontal postures. 

 

 
= [ ] 

(1)  

2.1.2.2 Sample Variance 

Sample variance  represents the signal variance around the sample mean with-
in the window. It is often used to represent signal energy. 

 
= ( [ ] )  

(2)  
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2.1.2.3 Median 

Median represents the point for which half of the distribution is higher and half 
is lower. Variable y denotes the sliding window contents sorted into ascending 
order. The median value of accelerometer data can be used for the identification 
of postures.  

 
=

[( + 1)/2], if is odd
( [ /2] + [1 + /2]), if is even 

(3)  

2.1.2.4 Integral Method 

Integral method was designed (Bouten et al. 1994, 1997) to give an estimate of 
energy expenditure using a triaxial accelerometer. The abbreviation IMAtot 
stands for the Total Integral of Modulus of Accelerations, where modulus refers 
to the absolute value. In equation 4, ax,  ay and az denote the three orthogonoal 
components of accelerations obtained from the triaxial accelerometer and t de-
notes time. T denotes a window length and t0 denotes a window start time. The 
resulting integral is influenced by both the intensity and the duration of the 
movement activity. Equation 5 presents the formula in a discrete form, in which 
N denotes the window length. Before using the integral method, raw accelerometer 
data is bandpass filtered (0.5 … 11 Hz) to highlight voluntary human movements 
and reject changes caused by posture changes and high-frequency vibrations. 

 

 
= | | + + | |  

(4)  

 
= | [ ]| + [ ] + | [ ]| 

(5)  
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2.1.2.5 Peak Frequency 

The frequency spectrum of discrete signal x is computed using the Discrete Fouri-
er Transform (DFT). The DFT is defined as (Oppenheim et al. 1999) 

 
( ) = [ ]  

(6)  

, where X denotes the frequency spectrum, j denotes the imaginary unit, k de-
notes the kth Fourier coefficient in the frequency domain, n denotes the variable 
index, and N denotes the length of the sliding window. The frequency spectrum 
determines how much of each frequency component is required to synthesize the 
original time-domain signal x using complex sinusoidal components. The DFT 
can be efficiently computed using the Fast Fourier Transform (FFT) algorithm 
(Cooley & Tukey 1965). 
 
The frequency spectrum is squared to obtain the Power Spectral Density (PSD) 
function P(fi) 

 
( ) =

1
( ) ( ) =

1
| ( )|  

(7)  

, where N denotes the number of frequency components obtained from the DFT. 
Peak frequency is the frequency with the highest power of the computed pow-

er spectrum. The peak frequency of accelerometer data describes the dominant 
frequency of the activity. For example, if the sliding window contains accel-
erometer data from running, the frequency is higher than that from walking, 
because of a higher step rate during running. 

2.1.2.6 Peak Power 

Peak  power  is  the  maximum  power  in  the  PSD.  It  reflects  the  most  prevalent  
sinusoidal component in the signal. 

2.1.2.7 Spectral Entropy 

As a physical concept in thermodynamics, entropy is proportional to the loga-
rithm of the amount of microstates in a system and thus measures the amount of 



2. Background and Literature Review 

24 

disorder in the system. In information theory, the entropy H of a random variable 
X was defined as (Shannon 1948)  

 
( ) = ( ) log ( ) 

(8)  

, where xi is the state i of variable x, N is  the number of  states  and p(xi) is  the 
probability of state xi. In addition to a time-domain, entropy has been computed 
also for frequency domain signals (Johnson & Shore 1984). This has been 
named the spectral entropy and it describes the irregularity of the signal. The 
spectral entropy has also been successfully used in activity recognition (Bao & 
Intille 2004, Lester et al. 2006). A method for the efficient computation of spec-
tral entropy by combining time and frequency domain approaches was devel-
oped for anesthesia monitors (Viertiö-Oja et al. 2004). 

The spectral entropy SN is defined for a frequency band [f1, f2] as  

 
( , ) =

( )log( ( ))
log( , )  

(9)  

, where P(fi) denotes the PSD component of frequency fi. The entropy value is 
normalized to range between 0 (complete regularity) and 1 (maximum irregulari-
ty) by dividing the sum by log(Nf1,f2), where N refers to the number of frequency 
components in the defined frequency band. 

2.1.2.8 Histogram Transformation 

With many biomedical signals, the inter-individual variability is large, making it 
impossible to use common thresholds for classification. Histogram transfor-
mation is a method developed to transform the individual HR values to a com-
mon range from 0 to 100. The method was developed for the detection of surgi-
cal stress with people undergoing a surgery during general anaesthesia in order 
to control the amount of anesthetic medication during the surgery (Huiku et al. 
2007). The histogram transformation combines HR data from two distributions, 
the individual and the group HR distributions into one distribution using a 
weighted sum. The combined distribution is used to form a cumulative sum 
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function.  The  function  is  then  used  to  transfer  the  individual  HR values  to  the  
common range. Figure 3 shows an example of the method. 

 

Figure 3. Histogram Transformation normalizes the HR with respect to the individual and 
group distributions: a) group distribution, b) individual distribution, c) combined distribution 
and d) the cumulative sum function. The x-axis represents the HR [bpm]. 

2.1.3 Feature Selection 

Pattern recognition requires representative features, thus features that can be 
used to discriminate between patterns. If a classifier, using just a couple of fea-
tures, does not provide accurate classification results, it is common to use more 
input features in the classifier. This often helps, but the number of input features 
is limited; after this limit the performance of the classifier starts to decrease. 
This phenomenon is called “the curse of dimensionality”. The performance de-
grades due to the fact that there are not enough training data to train the classifier 
well in the higher dimensional space. The number of training samples must grow 
exponentially with the number of input features. Thus, it is necessary to select a 
set  of  features  to  be  used  as  inputs  to  the  classifier.  The  collection  of  selected  
features is called a feature set. For effective classification, it is important to find 
features that have the optimal discriminative power between the classes. In case 
of activity recognition, well-selected features have very little variation between 
subjects and repetitions of the same activity, but they show large changes between 



2. Background and Literature Review 

26 

different activities at the same time (Preece et al. 2009). The classification using 
a large feature set with heavily correlated or otherwise unnecessary features 
requires also more computational power and slows down the classification process. 

Human eye is good at selecting features that show large changes between dif-
ferent activities. Although visual inspection may be an accurate method for find-
ing the best features, it may be too laborious with large feature sets. Therefore, 
different methods have been developed for creating an optimum input feature set 
for classifiers. Methods referred to as dimensionality reduction create new fea-
tures by combining the raw features (for example linear combination). Feature 
selection methods aim at selecting the best feature subset from the original fea-
tures for classification. 

Sequential Forward Search (SFS) (Whitney 1971) was one of the first feature 
selection methods and is widely used for feature selection also today. The SFS 
method starts with an empty feature set and it adds one feature, the one that 
alone has the highest classification accuracy. In next rounds, one feature, the one 
that together with the already selected features produces the highest recognition 
accuracy  is  selected.  The  process  stops,  when  the  given  number  of  features  is  
selected or no improvement is achieved by adding more features. 

2.1.4 Classification 

Classification aims at recognizing and assigning class labels to input patterns. 
The input patterns consist of the features computed from the input data. The 
classifiers can be divided into two classes: supervised and unsupervised classifi-
ers. Unsupervised classifiers take the input data and search for clusters in data, 
without knowledge of the true class labels of the input patterns. Supervised clas-
sifiers are trained with the help of training data and training algorithms. In the 
training phase, a model of the training data is built for use in the classification 
phase. Many classifiers use training data to define decision borders in feature 
space. The decision borders divide feature space into distinct regions that repre-
sent the classes. A generalizable decision border is able to achieve a good accu-
racy of classification not only with training data, but also with unseen input pat-
terns. An overly complex decision border overfits to training data and does not 
generalize well to unseen patterns. Training can be done offline, for example, on 
a PC, even if the classification phase takes place in an embedded device. In the 
classification phase, the aim is to use the trained classifier and recognize unseen 
input patterns effectively and with good accuracy. 
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The classifiers used with health-related data are the same as those generally 
used in machine learning and pattern recognition. Supervised methods are com-
monly used, because they find exact matches with real-world classes. This is not 
always the case with unsupervised methods. For long-term monitoring with 
wearable and embedded devices, the primary focus is on finding practical, com-
putationally efficient methods. Classifiers with the efficient classification phase 
are preferred in particular. Training is supposed to be done elsewhere, not in the 
embedded device. Computationally more complex classifiers are used as refer-
ences and to find which classifiers have the best performance in this application 
area. According to published literature (Duda et al. 2001, Lippmann 1989), the 
K-Nearest Neighbor classifier is computationally most demanding during the 
classification and decision trees are the computationally most efficient classifica-
tion algorithms. Figure 4 shows the memory requirements for the most common-
ly used classifiers. 

 

Figure 4. Classifier memory requirements versus training time ((Lippmann 1989), modified). 
Decision trees, Multi-Layer Perceptrons and K-Nearest Neighbor algorithms were used in 
the studies for this thesis. 
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2.1.4.1 Artificial Neural Network 

From the class of classifiers known as Artificial Neural Networks (ANN), Multi-
Layer Perceptron (MLP) network is one of the most widely used classifiers. An 
MLP is a feed-forward network that consists of artificial processing units (“neu-
rons”) and connections between the neurons. The processing of one neuron is 
shown from inputs to one neuron’s output in equation (10) 

 
 
 

= +  

 

y = (S) 
(10)  

 
, where x1 …  xp denote the input features, w0…wp denote the weights of each 
input, S denotes the weighted sum of inputs and bias (+1), y denotes output and 

 denotes the activation function (Haykin 1999, Lehtokangas 1995). The input 
signals are multiplied by weights and added to form the activation signal S, 
which is in turn fed to the activation function . The activation functions com-
monly scale the activation signal to some range. For example, the tanh-function 
scales the activation signal to range -1…1 and a logistic function scales the acti-
vation signal to range 0…1. The logistic activation function can be expressed as: 

 
=

1
1 +  

(11)  

A multilayer perceptron (MLP) consists of several layers of such neurons. An 
example of a typical MLP structure is shown in Figure 5. The MLP in Figure 5 
has an input layer, one hidden layer and an output layer. The input layer consists 
of 4 input neurons, a hidden layer of 5 hidden neurons and an output layer of 3 
output neurons. No computations occur in the input layer. The neurons of the 
hidden and output layers contain the computations described in equation (10). 
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Figure 5. An example illustrating the multilayer perceptron (MLP) structure. 

Training algorithms are used to learn from training data and build the knowledge 
into the ANN structure. MLP training is a supervised process, where each input 
pattern is accompanied with the desired output class. The gradient descent meth-
ods can be used to train the network. The Rprop training method (Riedmiller & 
Braun 1993) is especially suitable with large amount of training data. The Rprop 
training is computationally more efficient than that of, for example, the basic 
back-propagation algorithm. An MLP can be used to define nonlinear decision 
borders and thus very complex decision regions. One of the most difficult prob-
lems in constructing an MLP is to define a network of the suitable structure and 
size. If too complex a network is built, it slows down the training and classifica-
tion phases and the resulting network does not generalize well for the use with 
new, unseen patterns. However, if too small a network is built, it cannot find the 
necessary decision regions for proper classification. 

Although the training phase of an MLP is computationally demanding, the 
classification  using  an  MLP  is  a  straightforward  process.  After  training  the  
weights are fixed and classification requires only the operations described in 
equations (10) and (11) for each neuron. Thus, the structure is well applicable to 
long-term monitoring with battery-powered devices. 

2.1.4.2 Decision Trees 

Decision trees  are  widely used classifiers  of  several  benefits  to  their  long-term 
use in health and behavior monitoring: they are easy to interpret and a priori 
knowledge can be naturally incorporated (Duda et al. 2001). They also perform 
efficient classification compared to other classifiers (Figure 4) (Duda et al. 2001, 
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Lee & Lippmann 1990). This is because they require only a few numerical com-
parisons for classification. Decision tree classification can be thought of as a 
series of questions, in which the next question depends on the answer to the previous 
question. After a series of questions, a class label is assigned to the sample. The 
decision tree decision boundaries in feature space form rectangular decision 
regions (Figure 6). 

 

Figure 6. Binary decision tree decision regions in feature space. The classes are recog-
nized by two features x1 and x2 and decisions x1 < th1 and x2 < th2, where th1 refers to the 
threshold value of feature x1. 

A decision tree consists of nodes, branches and leaves. The first node is called 
the root node and it performs the first split of dataset into subsets. In each node, 
a question is asked (for example, is variance > 0.5?), which divides the input 
dataset into subsets. Depending on the answer, one of the branches is followed to 
the next node. Every decision tree can be represented using binary decisions 
(Duda et al. 2001). In binary decision trees, a dataset is divided into two subsets 
in each node. For example, the right branch is followed, when the sample value 
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is > 0.5 and the left branch is followed when the sample value is <= 0.5. Termi-
nal nodes are called leaves. In a leaf node, a class label is assigned to a sample. 
All samples arriving to the same leaf will get the same class label. When talking 
about subsequent nodes, the node closer to the root node is called the parent 
node and the node closer to leaves is called the child node. 

The decision trees can be “custom”, thus manually generated using a priori in-
formation and features selected after human reasoning, or they can be automati-
cally generated with the help of training data. In automatic generation of a deci-
sion tree, the aim is to divide a dataset into as pure subsets as possible. The Gini 
impurity index is one of the most widely used methods for measuring the impu-
rity of nodes. When using the Gini impurity index, datasets are divided into 
smaller subsets using divisions that cause the maximal decrease in impurity 
compared to that of a parent node. The Gini impurity is defined as 

 
i(N) = P( )P( ) = P )  

(12)  

, where i(N) denotes impurity at node N, P( j) denotes fraction of patterns at 
node N that are of class j (Duda et al. 2001). This can be interpreted as the ex-
pected error rate at node N. The target Gini impurity is naturally 0 and it is 
reached,  when all  patterns belong to the same class:  i(N) = (1-12)/2 = 0 . Maxi-
mum impurity is reached when all classes are equally probable. For two-class 
case, the maximum impurity is: i(N) = (1-0.52-0.52)/2 = 0.25. The decrease in 
impurity from a parent node to a child node is defined as 

 i(N) = i(N) P i(N ) (1 P )i(N ) (13)  

, where i(NL) and i(NR) are the impurities of left and right child nodes, and PL is 
the fraction of patterns at node N that will go to the left branch, when one selected 
feature is used as a dividing criterion. When impurity decreases are computed 
for all feature candidates, the feature with the largest impurity decrease is selected 
for node N. 

The decision tree obtained in the automatic decision tree generation is often 
overly complex and easily overfits to training data (Witten & Frank 1999). Thus, 
different pruning methods have been developed to reduce the size of such a tree. 
Pruning reduces complexity of the tree and improves its generalizability. In post-
pruning, a complete tree is first generated and then pruned. Prepruning is used 
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during the tree generation process to decide when to stop creating new subtrees. 
Most of automatic decision tree generation methods use postpruning, because they 
tend to find better combinations of features, and thus better performing trees. For 
example, this is the case when two separate features do not improve classification 
performance, but combined together they improve the performance. 

2.1.4.3 K-Nearest Neighbor 

The K-Nearest Neighbor (KNN) classifier (also called the “instance-based” clas-
sifier) is an intuitive method that classifies patterns based on their similarity to 
patterns in a training set. The method is also called ”lazy” learning, because in 
the training phase of the basic KNN algorithm, all training patterns are just 
stored for comparison in the classification phase and all computation is done 
during the classification phase. Because of these characteristics, the method is 
not efficient in the classification phase: it requires a lot of memory and a lot of 
computations compared to model-based methods that discard training patterns 
after the model creation. However, the accuracy of the KNN classifier is good 
when training data are representative and large enough (Duda et al. 2001). For 
this reason, it is often used as a reference classifier. 

The algorithm requires only one parameter, the parameter K, which deter-
mines how many nearest neighbors are taken into account when comparing an 
unlabeled pattern to training patterns. In the case of K = 1, the method is simply 
called the “Nearest Neighbor method” or ”1-NN method”. When computing the 
distance from an unlabeled pattern to training patterns, different distance metrics 
can be used. The Euclidean distance is most commonly used 

 

= | | = ( )  

(14)  

, where x is the unlabeled pattern in an n-dimensional feature space and y is a 
training pattern. To make the Euclidean distance work properly, the features 
have  to  be  normalized.  With  1-NN,  an  unlabeled  pattern  is  assigned  with  the  
same class label as a training pattern with the smallest distance to the unlabeled 
pattern. The decision regions obtained in this procedure are shown in Figure 7. 
Such decision regions are also called the Voronoi tessellation. All points falling 
into the same cell are assigned the same class label. 
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Figure 7. Decision regions for 1-NN classifier. The points represent training patterns and 
the lines describe the decision borders around each training pattern. An unlabeled pattern 
will be classified as the same class as a training pattern that is closest to the unlabeled 
pattern. The regions are also called the Voronoi tessellation. In three dimensions the 
regions become crystal-like regions. 

With the selection K = 1, the classifier easily overfits to training data. By select-
ing a larger K, K nearest neighbors to the unlabeled pattern are searched and the 
class  that  appears  most  often among the K nearest  neighbors  is  assigned to the 
unlabeled pattern. Odd K is preferred over even K to avoid a tie. The selection 
depends on the amount of training data and a possible overlapping of classes. 
Larger  values of  K achieve better  generalization than small  values of  K.  Large 
values of K also give probabilistic information of the decision, and thus obtain a 
more reliable estimate for the unlabeled pattern, but small values of K concen-
trate the search on neighbors closer to the unlabeled pattern. Thus, the selection 
of K is a compromise between obtaining a reliable estimate and localizing the 
search on suitably small region in feature space (Duda et al.  2001). 

2.2 Activity Recognition 

Today, physical inactivity is part of a normal lifestyle in industrialized countries. 
Level of physical activity required at work, to travel and at home is decreasing 
with sedentary work and technologies designed to ease home activities and trav-
eling. Leisure physical activities are insufficient or too irregular to achieve an 
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adequate level of physical activity per week. At the same time, the chronic dis-
eases are becoming more and more prevalent. It has been shown that physical 
inactivity contributes to many chronic diseases, such as cardiovascular disease, 
type 2 diabetes, and possibly certain types of cancer and osteoporosis (Pate et al. 
1995, WHO 2010). 

2.2.1 Physical Activity Recommendations 

Physical activity recommendations have been created to increase awareness of 
adequate levels of physical activity with a view of gaining health benefits. There 
are different recommendations for different target groups (such as adults, older 
adults, chronic disease groups) and for different ambition levels (to maintain 
good health, to get more health benefits). 

The minimum recommendation of the World Health Organization (WHO) in 
respect of health maintenance is 30 minutes of moderate-intensity physical activ-
ity per day (Puska et al. 2004). This can be achieved through everyday activities 
like walking to work, shopping, gardening, cleaning, etc. The recommendation 
aims to achieve at least 1000 kcal energy expenditure per week. The only limita-
tion is that the 30-minute period must be performed in continuous periods of 
minimum 10 minutes. 

According to the WHO, at least 60% of the world’s population fails to achieve 
the minimum recommendation (Puska et al. 2004). In a recent study (Chastin et 
al. 2009), compliance with physical activity recommendations was examined on 
a group of 78 postal workers in the UK. Only 10% of the participants succeeded 
in complying with the 30-minute-daily recommendation. 

Physical activity guidelines for Americans (Leavitt 2008) were published to 
promote physical activity in the USA. The guidelines recommend 60 minutes of 
physical activity per day. The recommendation also emphasizes that the daily 
physical activity should include: 1) aerobic exercises, 2) muscle-strengthening 
exercises, and 3) bone-strengthening exercises.  

The most recent recommendation “Global Recommendations on Physical Ac-
tivity for Health” published by the WHO (WHO 2010) no longer advocates daily 
exercise, but weekly goals. The recommendation includes three targeted guide-
lines: 1) for children of 5 to 17 years of age, 2) for adults of 18 to 64 years of 
age, and 3) for older adults of 65 years of age and above. The new recommenda-
tion puts more emphasis on vigorous-intensity exercise. In addition, it recom-
mends activities increasing muscle strength and bone strength. 
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The Finnish Current Care recommendations (Kesäniemi et al. 2010) contain 
physical activity guidelines for healthy adults as well as for adults suffering from 
different illnesses. Essentially, the Finnish recommendations are similar to the 
international ones, but adapted for the Finnish society. The Physical Activity Pie 
is a popular graphical visualization of the Finnish recommendations (Fogelholm 
et al. 2005). 

2.2.2 Physical Activity Monitoring 

Traditionally, the level of physical activity has been assessed using question-
naires or diaries. These are useful and cost-efficient methods for obtaining rough 
estimates of physical activity in large populations. However, for obtaining more 
objective estimates, direct measurements are needed. 

By definition, physical activity is any bodily movement that results in energy 
expenditure and that is produced by skeletal muscles (Caspersen et al. 1985). 
Thus, it covers many types of physical activity, including both natural physical 
activity and intentional exercise. In order to adequately assess the activity profile 
of a person, both the recognition of energy expenditure and the types of activi-
ties are needed. Energy expenditure gives an overview, indicating whether the 
person performs enough physical activity. Activity type recognition enables 
profiling different categories (aerobic, muscle-strengthening and bone-
strengthening activities). The need for activity and posture recognition has re-
cently been identified also in studies comparing time spent in sedentary activities 
and  cardiac  risk  factors.  It  has  been  found  that  reducing  sedentary  time  and  
breaking long sedentary periods into several shorter ones reduce the cardiac risk 
factors (Healy & Owen 2010). 

The first drawings of devices measuring steps and distance can be found in the 
drawings of Leonardo da Vinci (Gibbs-Smith 1985, Tudor-Locke 2003). Leo-
nardo designed a pendulum-type pedometer, but as it did not work well for 
measuring distance, he designed an odometer. The odometer was a simplifica-
tion of an ancient Roman machine, designed by the architect Vitruvius. It was a 
wheelbarrow-like device. The circumference of a wheel was known and the de-
vice  dropped  pellets  to  a  box  every  few  turns.  The  distance  was  estimated  by  
calculating the number of pellets in the box. For example, the device was used to 
create maps. 

A pedometer and the Manpo-kei program (or “10,000 steps meter”) in Japan 
in 1965 (Tudor-Locke 2003) were one of the first wearable methods intended for 
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objectively measuring physical activity. The program used the pedometer devel-
oped by professor Hatano and aimed at reaching a daily goal of 10,000 steps. 
The program was a success in Japan and continued for decades there. A person-
alized version of the Manpo-Kei program was brought to the USA (Tudor-Locke 
2003). This modified program highlights the importance of natural physical ac-
tivity instead of intentional exercise and questions the 10,000 step goal for eve-
ryone. Instead it emphasizes the need to increase the amount of steps from the 
current level. At the beginning of the program, the baseline is measured over one 
week using a pedometer and the goal is defined individually for each person. 

The pedometers used in the original Manpo-Kei program were based on a me-
chanical lever that deflected with vertical oscillations. Thus, the pedometer had 
to remain in a fixed position to detect steps correctly. Therefore, the first pedom-
eters were attached using a belt clip on a waist, above the dominant leg. They 
were accurate in detecting steps during brisk walking and running, but could not 
detect steps accurately during slow walking. Although the first pedometers esti-
mated also distance (the length of an individual’s step had to be entered) and 
energy expenditure (required specifying weight, age and gender), these addition-
al functions were not very accurate. Distance measurement did not work well 
with variable lengths of steps and with surfaces other than a flat one. Energy 
expenditure estimate often failed because of the fact that the pedometer did not 
measure the intensity of the activity, but the number of steps. 

Today, electrical accelerometers that sense both the movements and their in-
tensity are used. Despite the different construction, electrical accelerometers are 
also based on the spring-mass principle. In this system, a small mass is attached 
to a spring inside an accelerometer. When acceleration is applied to the mass, the 
spring either stretches or compresses. The displacement can be measured and 
used for computation of the applied acceleration. At present, the most popular 
accelerometers require an external power supply, but thanks to that, they respond 
to both accelerations caused by body movements and the static gravitational 
acceleration (Mathie et al. 2004). When the sensor is kept motionless, the result-
ing output signal is, in the case of a 1D accelerometer, a projection of the gravi-
tational acceleration to the direction of the sensitive axis. With 3D accelerome-
ters, the resultant vector of all three sensitive axes can be computed, representing 
the direction and magnitude of the acceleration. In movement, the measured 
acceleration is the vector sum of gravitational and movement accelerations. Ar-
tefacts are caused to the signal, for example, by a loosely attached sensor or by 
external accelerations, such as motor vibrations when traveling in a vehicle. The 
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amount of artefacts can be minimized by a careful placement of the sensor and 
by signal filtering. 

Table 1. Common accelerometer locations and applications ((Mathie et al. 2004), modified). 

Location Application References 

Ankle, thigh 
Leg movement during 
walking 

(Lafortune 1991, Bussmann et al. 2000, 
Aminian et al. 1999) 

Ankle 
Quantification of activities 
in stroke rehabilitation (Hester et al. 2006) 

Wrist Parkinsonian bradykinesia (Veltink et al. 1995) 
Wrist Activities of daily living (Yang et al. 2008) 
Arms, legs Parkinsonian tremor (Van Emmerik & Wagenaar 1996) 

Ear 
Quantification of activity 
and recovery from surgery (Lo et al. 2007) 

Chest Coughing (Fukakusa et al. 1998) 
Waist Detection of activity/rest (Mathie et al. 2003, Karantonis et al. 2006) 

Multiple  
instruments 

Whole body movements 
(Bao & Intille 2004, Fahrenberg et al. 
1997, Foerster & Fahrenberg 2000,  
Uiterwaal et al. 1998, Veltink et al. 1996) 

Center of 
mass (within 
pelvis) 

Whole body movements 
(Bouten et al. 1997, Smidt et al. 1971, 
Sekine et al. 2000) 

 
The frequency range of voluntary human activities is between 0.3 and 3.5 Hz 
(Sun & Hill 1993). The use of 0.5 Hz … 11 Hz band-pass filters was suggested 
to reduce gravitational artefacts and allow recording of faster movements that 
occur in younger subjects (Van Someren et al. 1996).  

The dynamical range required for the measurement depends on the application 
and measurement site. Generally, the accelerations measured during everyday 
activities like walking and running are largest from feet and smallest from the 
head (Mathie et al. 2004). Running produces vertical accelerations of 8.1g, and 
cycling produces 2.2g when measured from the ankle (Woodward & Cunning-
ham 1993). 

Accelerometry is used in many application areas. Table 1 shows examples of 
applications where accelerometers have been used. The most common applica-
tion areas were summarized as follows (Mathie et al. 2004): 

 longitudinal measurement of activities (activity recognition, functional 
status monitoring of an older adult or of a person in rehabilitation) 
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 estimation of long-term energy expenditure (EE profile of a day) 

 circadian rhythms (sleep-wake patterns, EE estimation) 

 event detection (falls, etc.). 

Algorithms utilizing accelerometer data have most extensively focused on the 
detection of energy expenditure using a single accelerometer. However, with 
recent developments on electronics and sensors, studies on the use of several 
accelerometers and several other types of sensors together with accelerometers 
to detect the energy expenditure and activity type have been given more atten-
tion. According to the physical activity recommendations, it is possible to in-
crease health benefits by performing, physical activities that improve 1) endur-
ance, 2) bones and muscles, and 3) balance in addition to normal daily physical 
activity such as steps. Thus, methods are needed to profile human daily activity 
more accurately. Accelerometry is a suitable method for measurements in un-
controlled environments, because accelerometers have small size, light weight, 
long battery life and they accurately measure accelerations as a function of time. 

Multisensory approaches as well as single-sensor approaches have been stud-
ied for activity recognition. Generally, multisensory approaches have produced 
more  accurate  results  than  those  done  with  a  single  or  just  a  few sensors.  Bao  
and Intille (Bao & Intille 2004) compared the results obtained with a single sen-
sor, a combination of two sensors and a combination of 5 sensors. They studied 
the automatic recognition of 20 everyday household activities in semi-supervised 
settings using 5 stand-alone data loggers with 20 subjects. The accelerometers 
were placed on ankle, thigh, hip, arm and wrist. The best results with a single 
sensor were obtained using the thigh sensor (-29%, as compared with the result 
obtained using 5 acceleration sensors), the second best with the hip sensor 
(-34%). The best results using a combination of two sensors were obtained with 
thigh and wrist sensors (-3%), second best with hip and wrist sensors (-5%). 
Generally, adding more sensors increases accuracy, but already with two sen-
sors, one on the lower body and one on the upper body, accurate results can be 
achieved. The overall accuracy in this study was 84% and it was obtained using 
a decision tree classifier (Bao & Intille 2004). Table 2 shows examples of classi-
fiers used for activity recognition and the accuracies obtained. 
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Table 2. Summary of studies that have compared different classifiers for automatic activity 
recognition. SVM stands for Support Vector Machine classifier, HMM stands for the Hidden 
Markov Model and GMM for the Generalized Markov Model ((Preece et al. 2009), modified). 

Publication 
Sub-
jects 

Activ-
ities Activities 

Accelerom-
eter place-
ments 

Classification 
Accuracy 

(Bao & Intille 
2004) 

20 20 Walking, sitting, 
cycling, running, 
vacuuming, 
folding laundry, 
etc. 

Shank, thigh, 
upper arm, 
wrist and hip 

Decision tree 
(84%),  
kNN (83%), 
naïve Bayes 
(52%) 

(Maurer et al. 
2006) 

6 6 Sitting, standing, 
walking,  
ascending stairs, 
descending 
stairs, running 

Wrist Decision tree 
(87%),  
Naïve Bayes 
(< 87%),  
kNN (< 87%) 

(Pirttikangas et al. 
2006) 

13 17 Typing,  
watching TV, 
drinking,  
walking upstairs, 
cycling, etc. 

Both wrists, 
thigh and 
necklace 

ANN (93%), 
kNN (90%) 

(Ravi et al.  
2005) 

2 8 Standing,  
running, sit-ups, 
vacuuming, 
brushing teeth, 
walking, etc. 

Waist Naïve Bayes 
(64%),  
SVM (63%), 
decision trees 
(57%),  
kNN (50%) 

(Lester et al. 
2005) 

2 10 Walking,  
driving, jogging, 
ascending and 
descending 
escalator  

Shoulder Naïve Bayes 
(67%),  
HMM (47%), 
HMM and 
binary classi-
fiers (95%) 

(Allen et al.  
2006) 

6 8 Sitting, standing, 
lying, walking 
and four postur-
al transitions 

Waist GMM (91%), 
decision tree 
(71%) 

(Könönen et al. 
2010) 

12 9 Cycling, playing 
football, lying, 
Nordic walking, 
rowing, running, 
sitting, standing, 
walking 

Hip and 
wrist 

SVM (79%), 
kNN (77%), 
minimum 
distance  
classifier 
(73%) 
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2.3 Assessment of Energy Expenditure 

The total daily energy expenditure (EE) of a human consists of 1) resting meta-
bolic rate, 2) thermic effect of feeding and 3) posture, spontaneous and voluntary 
physical activity (Lagerros & Lagiou 2007). The resting metabolic rate is esti-
mated to be between 60 and 75% of the total energy expenditure (Figure 8), and 
is reasonably constant from day-to-day and also between different individuals. 
The thermic effect of feeding represents the energy required by the body to di-
gest, absorb, etc., after eating a meal. It is estimated to represent about 10% of 
the  total  EE.  The  component  that  influences  the  variation  of  the  total  EE  the  
most is physical activity. It is estimated to represent 15 to 30% of the total EE. 

 

Figure 8. Components of the Total Energy Expenditure (Lagerros & Lagiou 2007). 

Strenuousness of physical activity is referred to as intensity. The most common 
way to measure the intensity of physical activity is to use the metabolic equiva-
lent  or  metabolic  energy  turnover  (MET).  MET  is  a  measure,  which  tells  the  
intensity of physical activity with multiples of a resting metabolic rate. Thus, 1 
MET refers to the resting metabolic rate. This is traditionally measured during 
quiet sitting. Walking has an intensity of about 4 MET and jogging about 7 
MET. Thus, the intensity of such jogging consumes 7 times the resting metabol-
ic  rate.  The  compendium of  physical  activities  and  their  MET values  was  first  
published in 1993 and updated later in 2000 (Ainsworth et al. 1993, Ainsworth 
et al. 2000). 

In energy metabolism, a calorie is the commonly used unit of energy, which 
corresponds to circa 4.19 Joule. When the intensity and duration of an activity as 
well as the weight of the subject is known, the energy expenditure can be com-
puted by the multiplication of intensity [METs], duration [hours] and body 
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weight  [kilograms]  (Figure  9).  For  example,  for  a  person  with  a  weight  of  80  
kilograms, jogging (7 MET) for 1 hour requires approximately 560 kcal. For 
comparison, one chocolate bar of 50 grams contains 200–250 kcal of energy. Sta-
ble body weight requires that energy intake and energy expenditure be balanced. 

 

Figure 9. Energy Expenditure of an 80kg person jogging with the intensity of 7MET for 1 
hour. Based on (Lagerros & Lagiou 2007). 

The MET estimate standardizes the measurement of physical activity, but does 
not take into account varying conditions. The varying conditions can include age 
or sex of subject, efficiency of activity, weather, etc. Such standardization is 
useful, for example, when computing EE from self-assessed surveys that do not 
include measurements. Physical activities have been categorized into light, mod-
erate and vigorous activities, which are represented by intensities < 3 MET,  
3–5.99 MET, and > 6 MET respectively (Pate et al. 1995, Ainsworth et al. 2000). 
These categories are used in the physical activity guidelines for dosing physical 
activities. For example, moderate intensity activities have been found most help-
ful in increasing energy expenditure (Westerterp 2001). Since one activity can be 
light for one individual, but vigorous for someone else, the thresholds between 
light, moderate and vigorous activities can vary according to the conditions. For 
instance, walking is light physical activity for a healthy person in good condition, 
but it is a vigorous activity for someone with cardiac problems. It is possible to 
find people, who can increase their energy expenditure even to 100-fold above 
the resting metabolic rate for very short durations (Bouchard et al. 2007). Table 3 
shows thresholds for middle-aged adults whose maximal oxygen consumption is 
either good (> 12 MET) or bad (< 5 MET) (Kesäniemi et al. 2010). 
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Table 3. Classification of MET intensities into light, moderate and vigorous. The values 
are computed for middle-aged adults whose maximal oxygen consumption is either good 
(> 12 MET) or bad (< 5 MET) ((Kesäniemi et al. 2010), modified) 

Category of PA 
Relative 

Strenuousness  
[% of max HR] 

Good condition 
[MET] 

Bad condition 
[MET] 

Light  63  5.3  2.5 

Moderate 64–76 5.4–7.5 2.6–3.3 

Vigorous  77  7.6  3.4 

 
There are many different methods of assessing energy expenditure (Figure 10). 
The methods can be divided into those measuring physical activity and those 
estimating energy expenditure. These are further divided into direct methods that 
measure the physical activity or energy expenditure directly, and indirect meth-
ods that provide a measurement that correlates with true physical activity or 
energy expenditure. Direct methods for the measurement of physical activity 
include motion sensors, direct observation, for instance by an assistant, and GPS 
tracking. All these methods measure the physical activity as it occurs and energy 
expenditure can be estimated based on the data. Direct methods for the meas-
urement of energy expenditure include calorimetry and doubly labeled water. 
They are both rather accurate methods for the measurement of energy expendi-
ture. Indirect measurements of energy expenditure include the measurement of 
oxygen uptake, heart rate, body temperature and ventilation. All these correlate 
with energy expenditure. 

Surveys, questionnaires, recalls and logs are indirect methods that measure 
physical activity. They are the most practical methods for large epidemiologic 
studies, because they are low-cost methods. However, they do not provide accu-
rate profiling of the daily EE. The problem with recalls is that they tend to put 
more emphasis on intentional exercise, and underestimate the unintentional 
physical activities. 
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Figure 10. Conceptual framework for defining and assessing physical activity (PA) and 
energy expenditure (Ainsworth 2009). 

Doubly labeled water is considered the gold standard in free-living energy ex-
penditure measurements (Lagerros & Lagiou 2007). It achieves an error rate of 
2–10% (Laporte et al. 1985). In this method, the subjects drink water containing 
isotopically labeled hydrogen and oxygen atoms. An overall estimate of EE is 
obtained by measuring the proportion of unmetabolized isotopically labeled 
water from urine. The measurement gives an overall estimate of EE over the 
measurement time, which is optimally 1 to 2 weeks. The doubly labeled water 
method is very practical, because it does not affect the activities of the subject. 
The drawback of the method is the high price of isotopes. 

Direct calorimetry measures the production of heat. This can be measured in 
special chambers, where subjects spend the measurement period. Although the 
method is very accurate, with an error estimate of less than 1%, it is not applica-
ble to measurements in free-living conditions. 

Indirect calorimetry measures oxygen consumption which correlates with heat 
production.  This  method  requires  the  subject  to  wear  a  face  mask  and  the  
equipment that analyzes breathing gases. The error rate of this method is 2 to 3% 
(Laporte et al. 1985). Although this method is not applicable to everyday meas-
urements, it is suitable for reference in (semi-) free-living measurements. 

Pedometers, otherwise step counters, measure steps, not the intensity of walk-
ing or running. In general, pedometers assess the number of steps accurately, the 
distance less accurately, and the EE least accurately. 10 tested electronic pedom-
eters estimated EE within +/- 30% at 5 different walking speeds on a treadmill as 
compared with indirect calorimetry (Crouter et al. 2003). Generally pedometers 
overestimate the true EE at all walking speeds (Crouter et al. 2003). 
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Modern accelerometers provide an accurate profile of daily physical activities 
with the intensity, duration and frequency of activities. The monitors do not 
interfere with physical activity and they can be considered socially acceptable 
thanks to their small size. In addition, the cost of such monitors has decreased to 
a level acceptable for large-scale studies (Troiano et al. 2008). If monitors can be 
made more accurate, more detailed information on the dose-effect of physical 
activity can be obtained. 

Using accelerometry, correlations of 0.71–0.96 have been obtained between 
the EE estimate and doubly labeled water (Meijer 1990), indirect calorimetry 
(Bouten et al. 1994) and whole-room calorimetry using single regression models 
(one regression equation for the mapping of the activity integral values to 
METs). A two-regression model including separate regression models for irregu-
lar and regular (walking and running) activities achieved a correlation of 0.96 
between the EE estimate and indirect calorimetry (Crouter et al. 2006). A recent 
study used a single triaxial accelerometer and different regression equations for 
each activity, obtaining the correlation of 0.71 between the EE estimate and 
doubly labeled water in free-living conditions (Bonomi et al. 2010). The results 
in all studies are influenced by the selection of the activities performed. 

The motion sensors traditionally used for the estimation of energy expenditure 
include pedometers, actigraphy and only lately, accelerometers. Other movement 
sensors, such as angular rate sensors have not been studied extensively for the 
EE estimation. The validity and feasibility of EE estimation methods is summa-
rized in Figure 11. 
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Figure 11. Feasibility versus validity of methods used for monitoring energy expenditure 
((Esliger & Tremblay 2007), modified). Arrows indicate changes expected in the future. 

2.4 Assessment of Mental Load and Stress 

A psychophysiological phenomenon, stress, has become a major public health 
problem in industrialized countries. In Finland, about 7% of employees suffer 
from work-related burnout (Kalimo & Toppinen 1997). According to another 
study, 2.5% of employees in Finland suffer from severe burnout and 24% from 
mild burnout (Aromaa & Koskinen 2004). 7.4% of employees in Sweden and 4–
7% in the Netherlands have been reported to suffer from severe burnout (Shirom 
2005). Mental disorder was the most common reason for disability pension in 
Finland in 2008 (Hiltunen et al. 2008). One third of disability pensions were 
caused by mental health problems in 13 OECD countries (OECD 2009). In Fin-
land, political decisions have been made in order to fight this trend by means of 
1) improving employees’ working capabilities and 2) by supporting employees 
to continue working (Gould et al. 2010). 
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Short-term mental load is healthy and only improves individual performance, 
but if a tolerance threshold is exceeded, one is said to have stress (Lindholm & 
Gockel 2000). In this thesis, the term mental load refers to short-term stress and 
the term stress refers to long term stress. Mental load is caused, for example, by 
intensive concentration on a task. It causes sympathetic responses such as the 
smaller heart rate variability (HRV) and higher blood pressure that help to cope 
with a difficult situation that requires high concentration or fast response. Nor-
mally, the sympathetic responses decrease as the stressful situation passes, for 
example, during sleeping or holidays. Prolonged mental load and insufficient 
recovery may lead to stress, allostatic load, burnout and physical illness (Honko-
nen et al. 2006). To deal with the prolonged physiological changes caused by 
stress, the body has to alter its physiological regulation and adapt to the constant 
stressors. The cumulative price of adaptation is called the allostatic load (Kin-
nunen 2005). Continued allostatic load may lead to a physical illness. This pro-
cess may be insidious and the person affected may be unable to feel any changes 
before the diseases appear. During the allostatic load state, the person may feel 
symptoms of burnout: emotional exhaustion that does not disappear at leisure, 
depersonalization or cynicism, and a reduced sense of personal accomplishment 
(Maslach & Jackson 1981). The key factors affecting psychological ill health at 
work are: long hours worked, work overload and pressure and their effects on 
personal lives, lack of participation in decision-making, poor social support, and 
unclear management and work role (Michie & Williams 2003). The work envi-
ronment has become mentally more burdening, for example, the work intensity 
and number of complex tasks at work have increased (Ahola et al. 2010). 

Physiological variables, such as the heart rate variability (HRV) and blood 
pressure are known to be related to sympathetic  stress  reactions (Shapiro et  al.  
2001). The resting heart rate, resting-ECG and blood pressure have also been 
used to identify high sympathetic activity and stress. Similarly, the HRV has 
been found to be lower in older, ill or stressed individuals in contrast to younger 
individuals or individuals in good physical condition (Karemaker & Lie 2000). 
In addition to physiological variables, detected behavioral patterns, such as daily 
activity patterns, and sleep patterns may be relevant for modeling the user’s life 
status. Wellbeing of an individual includes physiological, psychological and 
social factors, all of which are interacting as determinants of health. Behavioral 
and social factors have been reported to contribute more than 50% to health out-
comes (McGinnis et al. 2002). 
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Thus, there is a need for comprehensive health monitoring solutions that use 
physiological, psychological and behavioral monitoring. However, little is 
known about the mutual correlations of these variables in long-term settings or 
their relationship with changes in the stress status. One of the difficulties is the 
definition of stress. How could stress be monitored so that each individual would 
use a common stress scale? There is no gold standard for measuring stress. This 
has led to the fact that most studies report correlations between measured varia-
bles, but do not yet proceed to automatic classification of stress. Recent studies 
have demonstrated different measurement setups (Intille et al. 2003, Wilhelm et 
al. 2006) and developed user interfaces for representing the stress history to the 
user (Sanches et al. 2010), but the connection between the user interface devel-
opments, measured data and the actual stress states is currently not clear. 

For the monitoring and profiling of the user’s mental load and recovery, ques-
tionnaires such as the Bergen burnout indicator (BBI), Derogatis stress profile 
(DSP) and Maslach Burnout Inventory (MBI) have been used (Maslach & Jack-
son 1981). Long-term monitoring has been suggested for the identification of 
work-related stress (Van Amelsvoort et al. 2000). Automatic methods that use 
several data sources for the long-term monitoring of stress would help to identify 
stress early, and possibly allow earlier intervention when necessary. 

Cortisol awakening rise is a widely used indicator of long-term stress. Cortisol 
samples are assessed based on saliva samples measured during the first hour 
after awakening. The timing of the sampling is important, because the cortisol 
level has a circadian rhythm: it is the lowest during the first half of night-time 
sleep and abruptly increases during the second half of sleep (Kudielka et al. 
2006). The peak levels can be measured shortly after morning awakening. After 
the peak, the cortisol level decreases continuously during the day. Stress-related 
cortisol superimposes on the circadian cortisol rhythm. The measure is non-
invasive, but it requires laboratory analysis, and thus is not applicable to every-
day life. Cortisol levels have been shown to be higher in stress and after frag-
mented sleep (Ekstedt et al. 2004). 

Wrist actigraphy has not been used to assess mental load in many studies, but 
it is used to assess sleep which is often affected under the high mental load. For 
instance, school children who were reported by teachers to have behavioral 
symptoms had shorter total sleep time than those without behavioral symptoms 
(Aronen et al. 2000). Psychiatric inpatients with major depressive disorder were 
reported to have higher nighttime motor activity than those with less depressive 
symptoms (Lemke et al. 1999). In home measurements, actigraphy is used in-
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stead of polysomnography (PSG), the gold standard for sleep analysis. PSG re-
quires expensive equipment and is more obtrusive (for example nasal pressure, 
EEG,  etc.)  and  is  carried  out  in  hospital  sleep  laboratories  over  one  or  a  few  
nights. Actigraphy is unobtrusive and it can be recorded over multiple days and 
nights.  Total  sleep time assessed using actigraphy has been shown to correlate  
well with PSG in healthy adults with correlations r = 0.97 (Jean-Louis et al. 
1996) and r = 0.722…0.836 (Weiss et al. 2010). Also minute-by-minute sleep-
wake comparisons have shown good agreement with PSG in adults (91–93%) 
(Jean-Louis et al. 2001). However, actigraphy has been shown to be less accu-
rate in specific measurements such as sleep offset and sleep efficiency. It has 
also been shown to be reliable in detecting sleep in healthy populations, but less 
reliable in detecting sleep, when sleep becomes more disturbed (Jean-Louis et al. 
1996). In case of sleep-disordered patients, Kushida et al (Kushida et al. 2001) 
suggest using data from both the actigraphy and the subjective questionnaires. 
Artefacts of actigraphic measurements are caused by non-compliance (volunteer 
not wearing an actigraph), breathing movements, postural blocking of arm move-
ments or vehicle movements when traveling in a vehicle (Pollak et al. 2001). 

Previous studies on the automatic assessment of stress can be divided into two 
categories: 1) those aiming at automatic identification of mental load (short-term 
stress) or emotions, and 2) those aiming at the identification of long-term stress. 
The studies focusing on the identification of mental load deal with experiments, 
where the subject has to perform rather short-duration tasks with different 
stressors, for example, to give a public presentation, perform computations, etc. 
The measured signals are then compared, for instance, with those measured be-
fore and after the task. The studies focusing on the identification of long-term 
stress use questionnaires or, for example cortisol measurements as a reference. 

2.4.1 Studies on Assessment of Mental Load 

Pressure distribution on a chair was studied for the identification of mental load 
and high social evaluative stress states with 4-minute mental arithmetic tasks and 
evaluative feedback sessions (Arnrich et al. 2010). 74% accuracy in identifying 
stress from normal mental load was achieved using the XY-fused Kohonen net-
work and self-organizing maps. Higher variance of sideward movements was 
recorded during periods with high stress in most volunteers. 

ECG, electromyogram, skin conductance and respiration were studied during 
a 50-minute car-driving task in the city of Boston (Healey & Picard 2005). 
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5-minute intervals of representative data from rest, highway and city driving 
tasks were automatically classified with 97% accuracy using Fisher projection 
and a linear discriminant classifier. In most drivers examined, the skin conduct-
ance and heart rate correlated most with the driver’s stress level. 

Facial electromyogram, respiration, electrodermal activity and ECG were 
studied in car-racing simulations (Katsis et al. 2006). Five emotions: high stress, 
low stress, disappointment, euphoria and neutral face were recognized with 86% 
accuracy with experienced psychologist’s manual scoring as a reference. A sup-
port vector machine was used as a classifier. Large between-subject variability 
was observed. 

Electromyogram, ECG, skin conductance and respiration were studied during 
music listening for the purpose of emotion recognition (Kim & André 2008). 
Four emotional states: positive/high arousal, negative/high arousal, positive/low 
arousal and negative/low arousal were recognized for each song with 70% accu-
racy using a specially developed emotion-specific multilevel dichotomous clas-
sifier. 65% accuracy was obtained when using linear discriminant analysis. 

HRV was studied during a 20-minute conference presentation as well as 30 
minutes before and after it for the identification of stress (Kusserow et al. 2008). 
The talk period was best identified using the RR-interval duration. This feature 
was better for the identification of stress than, for example, the low-
frequency/high-frequency (LF/HF) ratio and respiration frequency. 

Electrodermal activity was studied for the identification of mental load and 
high social evaluative stress states with 4-minute mental arithmetic tasks and 
evaluative feedback sessions (Setz et al. 2010). Periods with stress were identi-
fied with 83% accuracy using linear discriminant analysis. 

Electrodermal activity, pulse, pupil diameter and skin temperature were stud-
ied during the paced Stroop color test (Zhai & Barreto 2006). Relaxed and 
stressed states were recognized with 90% accuracy using a support vector ma-
chine classifier. Pupil diameter was found to be the best feature. 

2.4.2 Studies on Assessment of Stress 

HRV was studied for correlation with self-reported mental strive, physical strive 
and busyness (Antila et al. 2005). 12 subjects self-monitored HRV and made 
self-assessments of several stress-related variables for circa 10 weeks. Beat-to-
beat HR was measured daily when awake. A behavioral diary with 12 different 
variables was filled in every day and every evening. Significant correlations 
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between data from these two sources were found. Daytime “busyness” correlates 
positively, r = 0.143, with the average HR. Daytime “mental strive” correlates 
positively, r = 0.158, with the “stress time” that was computed from HRV. 

Self-reported mental strain was studied for correlation with HRV (Kinnunen et 
al. 2006). 27 postal workers self-assessed mental strain and their RR-intervals 
were recorded during a working day, leisure time and sleep. 18 subjects had 
positive significant correlation between the “absolute stress vector”, a feature 
derived from HRV and self-reported mental strain. The features were computed 
using 5-minute time resolution. 

HR, motor activity, blood pressure, weight, temperature, self-reported wellbe-
ing, activities and alcohol consumption were studied for the prediction of day-
time diastolic blood pressure during daily life for 2 to 3 months (Tuomisto et al. 
2006). 14 volunteers participated. Self-reported psychological effort and alcohol 
consumption were found to be the best predictors for daytime diastolic BP. For 
two-predictor linear regression model the correlation was r = 0.14. 
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3. Objectives of the Thesis 
The main objective of this thesis was to gain new knowledge on using wearable 
sensors for long-term wellness management. Large, annotated data libraries 
were first collected with unobtrusive sensors as part of everyday activities. 

The data collected were then used to achieve the following specific objectives: 

1. To identify the most useful sensors, sensor locations and signal interpre-
tation methods for automatic activity recognition applications (P1, P2, 
and P4). 

2. To identify the most useful movement sensors, sensor locations and sig-
nal interpretation methods for automatic assessment of energy expendi-
ture (P3). 

3. To identify the best sensors and signal interpretation methods for the au-
tomatic assessment of mental load and stress (P5 and P6). 
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4. Outlines of the Studies 

4.1 Automatic Activity Recognition using Data from Pre-
Defined Scenario of Activities 

The purpose of Study 1 (P1) was to take a data-oriented and empirical approach 
to automatic activity recognition and collect a large, annotated and well-
documented data library of wearable sensor data of different everyday activities 
with several volunteers. The aim was to find the most information-rich sensors 
and the most useful signal processing and classification methods for automatic 
activity recognition. These could potentially be used to develop an “activity 
diary”, which would show the user which activities he/she has performed during 
the day (or over a longer period) and how much sedentary activities are present. 
As a user sees this information, he/she can draw conclusions and adjust his/her 
behavior. 

The target activities for the study were 1) lying, 2) sitting/standing, 3) walk-
ing, 4) Nordic walking, 5) running, 6) rowing using a rowing ergometer, and 7) 
bicycling using a bicycle ergometer. A scenario was written which included 
several activities in different places both the indoors and outdoors. The purpose 
of the scenario was to make sure each volunteer performed each activity. Total 
duration of one session was about 2 hours per volunteer. During this time, the 
volunteer wore several wearable sensors and an assistant followed the volunteer, 
annotating the activity start and end times on a PDA. Figure 12 shows the data 
collection system with sensors and their placements. Figure 13 shows the 
equipment used. Altogether 18 different quantities were measured: 1) altitude, 2) 
audio, 3) body position, 4) chest accelerations (3D), 5) chest compass bearings 
(3D), 6) ECG, 7) environmental humidity, 8) environmental light, 9) environ-
mental temperature, 10) heart rate, 11) GPS location, 12) pulse plethysmograph-
ic waveform, 13) respiratory effort, 14) blood oxygen saturation (SpO2), 15) skin 
conductance, 16) skin temperature, 17) wrist accelerations (3D) and 18) wrist 
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compass bearings (2D). Figure 14 shows the annotation application used with a 
PDA.  The  accelerometers  were  placed  on  a  chest  (rucksack  strap)  and  a  wrist.  
Their sampling rate was 200 Hz on the chest and 40 Hz on the wrist. The dy-
namical range of the accelerometers was – 2 … + 2 g (g refers to gravitational 
acceleration, ~ 9.81 m/s2). 

 

Figure 12. Study 1 sensors and equipment: G = GPS receiver, T = skin temperature sensor, 
M = microphone, SB = SensorBox (with a 3D accelerometer, 3D magnetometer, environ-
mental temperature, humidity and illumination sensors), E = ECG, R = respiratory effort 
belt, B = body position sensor, K = skin conductivity, H = Heart rate and altitude monitors, 
A = SoapBox (with 3D acceleration and 2D magnetometer sensors), O = oximeter on a 
finger, REC = recorders (small PC and a signal recorder). Coloring indicates storage: 
data from red sensors are stored on a PC and signal recorder, green sensors store data 
locally. 

16 volunteers (13 males and 3 females) took part in the collection of data. The 
mean age was 25.8 ± 4.3 years and the BMI was 24.1 ± 3.0 kg/m2. Most of them 
were students from a local university. 
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Figure 13. Study 1 Data Acquisition System: on the left: equipment on the floor, on the 
right: equipment in the rucksack. On the left, top row: Rucksack. Second row: PC battery, 
PC, Embla recorder (white) and battery. Third row: Oximeter (gray), SoapBox (black), 
microphone and amplifier (black), SensorBox. Fourth row: Respiratory effort strap (blue), 
body position (blue, around strap on the left), ECG electrodes (white-blue), skin tempera-
ture (silver, on top of the blue strap), skin conductance (gray, around the blue strap), 
Suunto wrist-top computer and its heart rate strap below, second oximeter (black), GPS 
navigator. 

 

Figure 14. Annotation application on the PDA for storing the “true” activity. 
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The data were stored on two devices: a small PC and a sleep recorder (Figure 13). 
The data were used for offline analysis. Several feature signals with 1 Hz sam-
pling frequency were computed from the raw data using a sliding window. The 
features included time-domain features like mean, variance, median, skewness, 
kurtosis, 25th percentile  and  75th percentile and frequency-domain features like 
spectral centroid, spectral spread, peak frequency, peak frequency power and 
signal power in different frequency bands. 4- and 10-second sliding windows 
were used to compute the features. The best features were selected by the visual 
comparison of feature distributions between different activities. Three different 
classifiers: automatic decision tree, custom decision tree and artificial neural 
network were used for automatic activity recognition. The classifier training was 
performed by using the feature signals as inputs and the annotation as the target. 
The results were computed using leave-one-subject-out cross validation. 

Custom decision tree represents a simplistic and computationally efficient de-
cision tree. Custom made decision trees were built using a priori information and 
the input features were selected by human reasoning. First, the tree structure was 
designed, and second, the features for each node were selected. The thresholds 
for each node were selected so that they maximized the classification accuracy 
of training data. 

Automatic decision tree refers to a tree that was automatically generated using 
the training data. Postpruning was used to find an optimal tree structure. Cross-
validation (CV) was used by dividing the training set into 10 subsets. In each CV 
cycle, 9 subsets were used for tree generation and one for testing the obtained 
tree. The misclassifications of the 10 CV cycles were added together to find the 
total misclassification rate of each pruning level. The smallest tree with one 
standard error away in relation to the original, unpruned tree was selected to be 
the final decision tree. 

4.2 Automatic Activity Recognition in Supervised and 
Unsupervised Conditions 

The purpose of Study 2 (P2) was to collect data for automatic activity recogni-
tion with the updated equipment, both in supervised and in unsupervised condi-
tions. In unsupervised conditions, the volunteers annotated the activities them-
selves, without the assistant’s presence. The same annotation application on a 
PDA was used as  in  Study 1.  The target  activities  in  Study 2 were 1)  lying,  2)  
sitting/standing, 3) walking, 4) Nordic walking, 5) running, 6) bicycling, 7) bi-
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cycling with bicycle ergometer, 8) rowing with a rowing ergometer and 9) play-
ing football (soccer). The total duration of one session increased from 2 hours to 
about 6 hours, including 2 hours of supervised time and 4 hours of unsupervised 
time, when the volunteer was free to do what he or she wanted, wearing the sen-
sors and annotating the activities. 

The equipment was updated so that all data were stored on the sleep recorder 
(Embla), and the PC (Databrick) was no longer used. The Piezo respiratory ef-
fort sensor was replaced with the respiratory inductance plethysmogram (RIP) 
sensor belts on the chest and abdomen. The sensor box with the 3D accelerome-
ter, 3D magnetometer, environment light intensity, environmental temperature 
and environmental humidity sensors was moved from the chest (rucksack strap) 
onto the hip (belt). At the same time, the sampling rate of accelerometers and 
magnetometers was dropped from 200 Hz to 20 Hz to allow longer data collec-
tion. Accelerometer dynamical ranges were updated from 2g to 10g. Skin con-
ductance, body position sensors were removed, because they did not produce 
useful signals for our purpose. The wrist magnetometer was removed, because 
the signal it provided was like a low-pass filtered version of the accelerometer 
signal. Thus, the accelerometer provided more accurate information on wrist 
movements for activity recognition. The differences between Study 1 and Study 
2  sensor  setups  are  shown  in  Table  4.  Study  2  sensors  and  their  locations  are  
shown in Figure 15. 
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Table 4. Sensors, their locations and sampling rates in Study 1 (P1) and Study 2 (P2). 

Signal  Sensor  
site (P1) 

Fs (P1) 
[Hz] 

Sensor  
site (P2)  

Fs (P2) 
[Hz] 

3D acceleration  chest & wrist  200 & 40  hip & wrist  20 & 20  

3D magnetometer  chest  200  hip  20  

2D magnetometer  wrist  40    

Environment light intensity  chest  200  hip  200  

Environment humidity  chest  200  hip  1  

Environment temperature  chest  200  hip  1  

ECG (1-channel: 2 electrodes)  chest  200  chest  200  

Respiratory effort  chest (Piezo)  200  chest &  
abdomen(RIP) 

200  

Skin temperature  lower neck  200  armpit  1  

Body position (metal ball)  chest  200    

Skin conductance (chest)  chest  200    

Pulse wave (PPG) from oximeter    finger  75  

Blood oxygen saturation (SaO2)  
from oximeter  

finger & 
forehead  1 & 3  

finger  
oximeter 3  

Heart rate (from Suunto & oximeter)  chest & 
finger  

0.5 & 1  finger  
oximeter 

3  

Altitude (barometer & GPS)  
wrist & 
shoulder  

0.5 & 
irregular  

GPS on 
shoulder  

1/20  

Location, speed (GPS)  shoulder  irregular  shoulder  1/20  

Audio (for annotation) chest  22 000  wrist  8 000  

Photos (for annotation)   chest  1/180  

Annotation  PDA   PDA   
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Figure 15. Study 2 Data acquisition system: T = temperature, E = ECG, R = Respiratory 
effort using RIP sensors, SB = Sensor box, A = accelerometer on the wrist, M = MP3 
audio recorder, O = oximeter, P = PDA for annotations, G = GPS receiver, C = Camera, 
REC = Recorder for storing 19 channels of data. 

12 volunteers (10 males and 2 females) took part in the collection of data. The mean 
age was 27.1 ± 9.2 years and the body mass index (BMI) was 23.8 ± 1.9 kg/m2. 
Most  of  them were students  from the local  university.  Table 5 summarizes the 
volunteer and recording characteristics of Study 1 (P1) and Study 2 (P2). 

Table 5. Volunteer and recording characteristics in Study 1 and Study 2. 

 Study 1 (P1, N = 16) Study 2 (P2, N = 12) 

 Age 
(yrs) 

Weight 
(kg) 

Length 
(cm) 

BMI 
(kg/m2) 

Recording 
length 
(hh:mm.ss) 

Age 
(yrs) 

Weight 
(kg) 

Length 
(cm) 

BMI 
(kg/m2) 

Recording 
Length 
(hh:mm.ss) 

Min 19 53 160 20.4 1:27:12 19 60 167 21.5 5:49:18 

Max 33 95 189 30.3 2:54:03 49 85 190 26.4 7:41:39 

Mean 25.8 77.5 178.8 24.1 1:57:15 27.1 76.6 179.2 23.8 6:43:49 

Std ±4.3 ±12.7 ±7.7 ±3.0 ±0:22:09 ±9.2 ±7.6 ±6.2 ±1.9 ±0:32:38 
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Time-domain feature signals computed from the raw data using sliding windows 
included mean, variance, median, skewness, kurtosis, 25th percetile and 75th per-
centile. Frequency domain feature signals included peak frequency, peak power, 
and power on different frequency bands. 

Four different classifiers were used for automatic activity recognition: a cus-
tom decision tree, automatic decision tree, artificial neural network and a hybrid 
classifier. The results were computed using leave-one-subject-out cross validation. 

The hybrid classifier is a hybrid of a binary decision tree and an artificial neu-
ral network. It combines a priori knowledge with the nonlinear classification 
power of artificial neural networks. In this structure, each node of the custom 
decision tree was replaced with a small multilayer perceptron (MLP) network. 
Each MLP was given the same inputs that were given to the whole custom-made 
decision tree, but each MLP was required to make only one binary classification, 
the one that was relevant for each node. 

4.3 Assessment of Energy Expenditure 

The purpose of Study 3 (P3) was to assess two types of wearable sensors in the 
estimation of energy expenditure, and to find the best sensors, sensor locations 
and signal interpretation methods. Two different sensors, 3D accelerometers and 
3D angular rate (gyro) sensors, were packaged into one data logger. The accel-
erometers had ± 18 g and the angular rate sensors had the ± 100 deg/s dynamical 
range. Three data loggers were placed in three different body points: 1) the wrist 
of a non-dominant hand, 2) a hip and 3) an ankle. The true energy expenditure 
was measured using a portable cardiopulmonary exercise testing system (indirect 
calorimetry). Figure 16 summarizes the study sensors and sensor locations. 

Data were collected while performing common everyday tasks: hanging laun-
dry, ironing, folding and putting away laundry, vacuuming, walking, using the 
stairs, walking and pushing a shopping cart, walking and carrying bags, running, 
bicycling with an ergometer, walking and running on a treadmill. Treadmill and 
bike ergometer resistance were adjusted to be approximately equally strenuous 
for users of different gender and age. 11 volunteers with the mean age of 38.6 ± 
13.1 years took part in the measurements. Their mean length was 170.3 ± 8.5 
centimeters, weight 67.5 ± 10.7 kilograms and BMI 23.2 ± 2.6 kg/m2. Altogether 10 
hours 7 minutes of data were collected, which is 55 minutes per volunteer on aver-
age. During the data collection, activities were annotated by a nurse using the same 
PDA annotation application that had been used in Studies 1 & 2 (P1 and P2). 
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The features computed from the accelerometer and angular rate data included 
1) time above threshold, 2) zero-crossings, 3) integral method. Estimates of MET 
were obtained using linear regression. 30-second median measured MET from 
the end of each activity were used as references. 

 

Figure 16. Study 3 data acquisition system: 3 data loggers (A) with a 3D accelerometer 
and 3D angular rate sensors on the body and the reference (M), a portable breathing gas 
analyzer. 

4.4 Personalized, Online Activity Recognition 

Study 4 (P4) presented a simplified, wireless and online version of the automatic 
activity recognition systems developed in Studies 1 and 2 (P1 and P2). In Study 
4 (P4), only ankle accelerometer data were used, because it was found to be the 
best sensor and the best sensor location in Study 3 (P3). The accelerometer sam-
pling rate was 50 Hz and the dynamical range was ± 6 g. In contrast to Studies 1 
and 2 (P1 and P2), where data had been processed and classified offline on a PC, 
the data collected in Study 4 (P4) were analyzed and classified online on a PDA. 
In this study, the data were measured using wireless motion band sensors (Lau-
rila et al. 2005). The data were transferred from the ankle accelerometer using 
wireless Bluetooth connection. The PDA application used for annotations in the 
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previous studies was extended to allow user annotations, signal acquisition over 
Bluetooth, feature computation and classification of activity groups. 

Study  4  (P4) presented a personalization algorithm that can be used to im-
prove classifier accuracy by introducing individual data to the classifier and 
evaluating the difference between the default classifier and the personalized 
classifer performances. The default classifer was trained using leave-one-
subject-out cross-validation. The features used for online classification were in 
time-domain: mean, variance, and in frequency domain peak power and spectral 
entropy. The classifier used was a custom decision tree. 

A new data set was collected with the wireless online activity recognition sys-
tem including a PDA and the 3D accelerometer on an ankle (Figure 17). The 
target activities included the most common everyday activities: 1) lying, 2) sit-
ting/standing, 3) walking, 4) running, and 5) bicycling. The system was evaluat-
ed on 7 volunteers (6 males and 1 female). Their mean age was 23.6 ± 13.0 years 
(range 4 … 37) and the mean length was 158.4 ± 36.2 centimeters (range 92 … 
187 cm). 

 

Figure 17. Study 4 data acquisition and activity recognition system: a 3D accelerometer 
(A) with wireless Bluetooth data transfer on an ankle and a PDA (P) with an application 
for annotation, data acquisition, feature computation and classification. 
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A personalization algorithm was developed and used with the custom decision 
tree. It was designed to keep the classifier structure intact, but update the thresh-
old values with new training data. Thus, the nodes and division features were the 
ones selected with a priori information, but the personal threshold values were 
updated with the user’s own data. 

4.5 Recognition of Physical Activities and Mental Load 

In Study 5 (P5), the focus was on automatic recognition of physical activities 
and mental load, identification of the most information-rich sensors and data 
interpretation methods. The target activities were 1) lying, 2) sitting with normal 
mental load, 3) sitting with heavy mental load, 4) walking, and 5) running. Sit-
ting with the normal mental load meant sitting and reading comics. Sitting with 
the heavy mental load meant sitting and working on an IQ (Intelligence Quo-
tient) test on the computer. 

The data set collected in Study 2 with 12 volunteers was used. The duration of 
the IQ test was 20 minutes and the duration of reading comics was 5 minutes. 
The features computed include time and frequency domain features such as heart 
rate variability (HRV), acceleration (min, max, mean, variance, peak frequency, 
peak power, spectral entropy, energy expenditure), compass bearings and respir-
atory effort using the RIP sensor. Classification was done using three different 
classifiers: Custom decision tree, artificial neural network and K-Nearest Neigh-
bor algorithm (with K = 5).  The features  for  ANN and KNN were selected au-
tomatically using the Sequential Forward Search (SFS) algorithm. 

Two different techniques, the histogram transformation (Huiku et al. 2007) 
and a new normalization technique using the information of the activity context 
were used to normalize the HR data. The activity context normalization normal-
izes the individual heart rates to a common range using median HRs during two 
different activities. This was done to allow identification of high and normal 
mental loads. The normalization was tested using two different activity pairs: 
sitting and walking, as well as sitting and running. The median HRs of the two 
activities are transformed to fixed values on the normalized range. 

4.6 Assessment of Perceived Stress 

The purpose of Study 6 (P6) was to study how different physiological and be-
havioral variables measured over a long period of time at home in uncontrolled 
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conditions by participants themselves, or automatically by wireless sensors, were 
related to psychological self-assessments or data acquired by standard validated 
questionnaires. In addition, the aim was to find the best sensors and signal fea-
tures that could be used in long-term psychophysiological wellness monitoring. 

17 volunteers (14 females and 3 males) were recruited from vocational reha-
bilitation groups aimed at improving the working ability. They were white-collar 
workers: university employees and health care employees. The mean age was 
54.5 ± 5.4 years. Participants of this program report increased levels of work 
exhaustion and long-term stress among other health and work-related com-
plaints. Bergen Burnout Inventory (BBI) questionnaire was used to assess the 
initial level of burnout. The mean BBI of the volunteer group was 49.2 ± 12.0. 
The rehabilitation was paid by the Social Insurance Institution of Finland 
(KELA). 

The data collection equipment is presented in Figure 18. The data were col-
lected using wearable sensors, home-based sensors, self-assessments and ques-
tionnaires. The individual devices are shown in P6, Figure 1. In addition, the 
type of day (work / free / sick / rehabilitation) was written down on a paper form. 
Feature signals were computed from the raw data. The feature signals had a 
sampling interval of 1 day. 
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Figure 18. Study 6 data collection equipment: (A) IST wrist activity monitor (actigraph), 
(H) Suunto heart rate monitor, (WD) Nokia mobile phone with Wellness Diary application 
for self-assessments and measurement results from (SC) Omron pedometer, (BP) Omron 
blood pressure monitor and (Sc) weight scale, (BS) Emfit bed sensor, (I) bedroom tem-
perature and illumination sensors, (PC) laptop PC and (Server) central server. 

The study protocol (Figure 19) included a two-week rehabilitation in a rehabili-
tation center. The participants used the self-monitoring equipment for two weeks 
before the rehabilitation, during the two-week rehabilitation and for two months 
after the rehabilitation. In the beginning of the study, the participants filled in the 
BBI questionnaire. They filled the first DSP questionnaire, as the data collection 
equipment was installed into their homes. The second DSP was filled in after the 
rehabilitation, the third one a month after that, and the fourth one, a month later, 
at the end of the measurement period. Study protocol is shown in Figure 19. 
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Figure 19. Study protocol: measurements and questionnaires, DSP = Derogatis Stress 
Profile, BBI = Bergen Burnout Inventory. 

In addition to the DSP, stress assessments were performed daily by means of a 
Wellness Diary. The stress level was assessed every evening and typed into the 
application using the visual analog scale 0 … 10. The value given reflected the 
stress level of the whole day. The daily measurement and assessment routines 
are summarized in Table 6. Other measurements were carried out automatically 
and did not require user interaction. 

Table 6. Daily measurements and self-assessments. WD stands for Wellness Diary mo-
bile phone application. 

Morning Actions needed 

Weight Measure and fill weight form in WD 

Blood pressure Measure and fill blood pressure form in WD 

Sleep Estimate length and quality of previous night’s sleep and fill in sleep form in WD 

Steps Place pedometer in pocket 

Heart rate Start HR measurement. Measure HR 3 days a week (2 on work days, 1 at the weekend) 

Evening Actions before going to bed 

Heart rate Stop measurement and transfer data to laptop 

Blood pressure Measure and fill blood pressure form in WD 

Stress Assess day’s stress level and fill in stress form in WD 

Steps Check day’s step count on pedometer and fill in steps form in WD 

Others  

Exercise Fill in exercise form in WD for each sports activity  

Wellness Diary Send measurement results from mobile phone to research server once a week 
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Features from the WD are values entered once per day. Bed sensor features were 
computed from presence and HR data that the sensor gave out once per minute. 
The computed features included the start time of overnight bed presence, the end 
time of overnight bed presence, the number of wakeups at night, bed time 
length, time in bed during daytime, mean bed time during last 3 nights, mean 
night HR. The activity features were computed from wrist activity count data 
that indicated the amount of movements. Sleep was identified based on low ac-
tivity. The activity features included the mean night activity, standard deviation 
of night activity, day activity standard deviation of day activity, ratio of night 
activity and previous day activity, ratio of night activity and next day activity, 
sleep length and the number of sleep periods. For illumination data, the mean, 
median and variance of night data were computed. HRV features were computed 
using Firstbeat PRO Wellness Analysis Software (Firstbeat Technologies Ltd., 
Jyväskylä, Finland). The software splits the HR data into stationary segments of 
sports, stress and relaxation based on the HR, HRV and the indices derived from 
these. A medical doctor scored the sleep length and sleep quality using the activ-
ity monitor signal, bed presence signal and the WD self-reported sleep start and 
end  times.  The  features  were  correlated  with  two  targets:  1)  daily  self-
assessment of stress level and 2) DSP questionnaire total stress score measured 
once per month for identification of the features reflecting changes in perceived 
stress level. 
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5. Results of the Studies 

5.1 Automatic Activity Recognition using Data from Pre-
Defined Scenario of Activities 

In Publication P1, the target was to recognize seven activities: lying, sit-
ting/standing, walking, Nordic walking, running, bicycling (using a bicycle er-
gometer) and rowing (using a rowing ergometer) using data recorded with wear-
able sensors. The data library collected with 16 volunteers contained more than 
31 hours of annotated data from wearable sensors. Altogether 35 channels of 
data were collected. The data were synchronized, calibrated, re-sampled and 
converted into accessible formats. The data library was carefully documented, 
stored on a DVD and shared with collaborating companies. 

For  recognizing  target  activities,  the  accelerometer  signals  proved  to  be  the  
most valuable signals as they reacted to activity changes with clear signal 
changes without delay. The magnetometer, environmental light intensity, GPS 
and audio also reacted immediately to activity or other context changes. Heart 
rate, respiratory effort and pulse plethysmograph signals can be used to assess 
the intensity of the activity, but they are not very suitable for recognizing the 
activity type. Heart rate and respiratory effort signals did not change immediate-
ly as the activity type changed (for instance, from running to sitting). The pulse 
plethysmogram on the other hand was prone to movement artefacts and pro-
duced a useful signal only in rest. 

Feature signals  were computed from the raw data and the best  features  were 
selected using the visual inspection of synchronized signals and annotations. The 
boxplots of feature distributions during different activities were also used for 
feature selection. The feature signals were computed to have a common sam-
pling frequency of 1 Hz. Both time-domain and frequency domain features were 
found useful for activity recognition. For example, the FFT was used to extract 
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the  pace  of  periodic  activities.  This  can  be  visualized  in  the  form  of  a  time-
frequency plot or spectogram (Figure 20). 

 

Figure 20. Spectogram of vertical acceleration on the chest during walking, Nordic walking 
and running activities. 

The best features were selected by visualizing the features by 1) plotting and 
comparing the features and annotation in the time domain and by 2) plotting the 
distribution of feature values during each activity. The selected features are 
summarized in Table 7. 

Table 7. Selected sensors, sensor placements, features and sensor dimensions for activity 
recognition. 

Feature Sensor Placement Dimension 

Median Accelerometer Chest Up-down 

Variance Accelerometer Chest Back-forth 

Sum of 3D variances Accelerometer Wrist 3D 

Peak Frequency Accelerometer Chest Up-down 

Peak Power Accelerometer Chest Up-down 

Power ratio: 1–1.5 Hz / 0.2–5Hz Magnetometer Chest Left-right 
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Automatic classification was performed with 1 Hz resolution using three differ-
ent classifiers: artificial neural network (Multi-Layer Perceptron), automatic 
decision  tree  and  a  custom-made  binary  decision  tree.  Table  8  summarizes  the  
activity recognition results of the three different classifiers. All three classifiers 
were given the same six input features. The results were computed using leave-
one-subject-out cross validation. 

Table 8. Results of the automatic activity recognition using data collected in a supervised 
manner (assistant annotations as references) 

  
Lying 

Rowing 
(ergome-
ter) 

Cycling 
(ergome-
ter) 

Sitting/ 
Standing Running Nordic 

walking Walking TOTAL 

Custom 
Decision 
Tree 

87 69 79 96 97 90 58 82 

Auto-
matic 
Decision 
Tree 

83 56 82 95 97 72 78 86 

Artificial 
Neural 
Network 

74 59 75 96 22 52 79 82 

 
Overall, activities containing periodic movements were detected with good accu-
racy. The best activities for automatic activity recognition are activities with 
periodic movements and distinct characteristic from other activities, for exam-
ple, Nordic walking, where typical walking hip accelerations are accompanied 
with large wrist acceleration impulses as the pole hits the ground. Also static 
postures can be detected with good accuracy (for instance, lying). However, in 
this study, accelerometers on the chest and wrist did not allow discrimination 
between sitting and standing. 

Annotations made by an assistant on a PDA application were found to be ac-
curate except for certain occasions. For example when a volunteer and assistant 
went  to  a  bus,  paid their  trip  and walked to their  seats,  the volunteer  sat  down 
while  the  assistant  was  paying  for  his  trip.  Thus,  an  annotation  error  of  some  
seconds was present. Generally, it can be said that the accuracy of annotations is 
in the order of ± 1 sec. 
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5.2 Automatic Activity Recognition in Supervised and 
Unsupervised Conditions 

In Publication P2, a new data set was collected with an updated sensor setup and 
some new activities. The target activities included lying, sitting/standing, walk-
ing, Nordic walking, running, rowing, bicycling, bicycling using a bicycle er-
gometer, and playing football (soccer). In addition to the supervised activities, 
the volunteers spent 4 hours outside the laboratory, without assistant’s supervi-
sion, annotating their activities on the PDA application themselves. The features 
used for the automatic recognition of the activities are summarized in Table 9. 
One more time, the accelerometer features were found the most information-rich 
signals for recognizing activity types. The speed computed from the GPS loca-
tion data was also used for recognizing the football activity, where a lot of 
movement occurs within a restricted area. Moving the accelerometer from the 
chest to a hip did not help in the process of discriminating sitting and standing. 
Otherwise, features similar to chest accelerations were found useful, also by 
using the hip accelerations. Lowering accelerometer sampling rates from 200 Hz 
to 20 Hz did not dramatically degrade the recognition accuracy. Only the high 
impulses from Nordic walking would require higher sampling rates to be accu-
rately recorded. 

Table 9. Selected sensors, sensor placements, features and sensor dimensions for activity 
recognition. 

Feature Sensor Placement Dimension 

Range Accelerometer Hip Up-down 

Mean Accelerometer Hip Up-down 

Sum of 3D variances Accelerometer Wrist 3D 

Speed GPS Shoulder   

Peak Frequency Accelerometer Hip Up-down 

Peak Frequency Accelerometer Wrist Back-forth 

Spectral Entropy Accelerometer Hip Up-down 

 
The classification was performed using the same type of classifiers as in Study 1 
and one additional classifier: the hybrid of a binary decision tree and an ANN. 
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The classification results are summarized in Table 10. The results were comput-
ed using leave-one subject-out cross validation and classifying each second of 
the  data  into  one  of  the  nine  classes.  All  four  classifiers  were  given  the  same  
seven input features. 

Table 10. Results of automatic activity recognition using data collected in supervised and 
unsupervised settings (both phases: assistant-annotated and volunteer-annotated data) 

  Lying 

Row-
ing 
(ergo-
meter) 

Cy-
cling 
(ergo-
meter) 

Sitting/ 
Stand-
ing 

Run-
ning 

Nordic 
walk-
ing 

Walk-
ing 

Foot-
ball 

Cy-
cling TOTAL 

Custom 
Decision 
Tree 

98 58 20 94 91 85 50 63 52 83 

Automat-
ic Deci-
sion Tree 

96 84 79 53 83 66 62 55 74 60 

Artificial 
Neural 
Network 

98 85 4 96 90 66 67 47 67 87 

Hybrid 
Classifier 97 87 18 97 89 70 71 78 72 89 

 

5.3 Assessment of Energy Expenditure 

In Publication P3, the target was to assess energy expenditure using a 3D accel-
erometer and 3D angular rate sensors placed in three different points on the 
body: ankle, hip and wrist. The reference MET values were measured with a 
breathing gas analyzer during several everyday activities: hanging, ironing, fold-
ing and putting away laundry, vacuuming, walking, using the stairs, walking and 
pushing a shopping cart, walking and carrying bags, running, bicycling with an 
ergometer, walking and running on a treadmill. 

To find a steady-state period of each activity, the last 30 seconds of data col-
lected for each activity were used. Three features were computed: time above a 
threshold, zero-crossings, and integral. The integral method proved to be the 
most accurate estimate as it measures both the time and intensity of movements. 
Before  using  the  integral  method,  the  3D  signals  were  rectified,  summed,  and  
band-pass filtered (0.5–11 Hz) to highlight the voluntary human movements. 
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Table 11. Selected sensors, sensor placements, features and sensor dimensions for the 
estimation of energy expenditure. 

Feature Sensor Placement Dimension 

Integral Accelerometer Ankle 3D 

Integral Accelerometer Hip 3D 

Integral Accelerometer Wrist 3D 

Integral Gyro Ankle 3D 

Integral Gyro Hip 3D 

Integral Gyro Wrist 3D 

 
The results are summarized in Figure 21 and Table 12. In the case of the house-
hold activities in this study, the 3D acceleration sensor on the ankle provided the 
most accurate estimates of MET. The results obtained with the ankle accelerom-
eter have a RMSE of 1.21 MET. Hip and wrist locations fail to provide a good 
resolution for low-intensity activities. Data from an angular rate sensor provided 
only slightly worse estimates of MET than the accelerometer sensors. 

 

 

Figure 21. Task names, measured METs and estimates (task number on the x-axis). 

Task 
1. Hanging laundry 
2. Ironing laundry 
3. Folding laundry 
4. Putting away laundry (on a shelf) 

5. Vacuuming 
6. Walking up the stairs 
7. Walking down the stairs 
8. Walking and pushing a shopping cart 
9. Walking and carrying bags  
10. Walking (at a free pace) 
11. Running (at a free pace) 
12. Cycling a bike ergometer (65% of max) 
13. Walking on a treadmill (35% of max) 
14. Walking on a treadmill (45% of max) 
15. Walking on a treadmill (55% of max) 
16. Running on a treadmill (65% of max) 
17. Running on a treadmill (75% of max) 
18. Running on a treadmill (85% of max) 
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Table 12. Number of tasks (N) included in the analysis, Pearson correlation (r ) and root-
mean-square error (RMSE) between the measured MET and estimates. 

  N r RMSE [MET] 

Acc Ankle 163 0.86 1.21 

Gyro Ankle 163 0.84 1.32 

Acc Wrist 178 0.81 1.40 

Acc Hip 177 0.80 1.42 

Gyro Hip 177 0.69 1.71 

Gyro Wrist 178 0.48 2.09 

 
When using wearable data loggers for estimating MET, higher-intensity activi-
ties (such as running) get better accuracy estimates than low-intensity activities 
(such as ironing laundry). 

The annotation accuracy in this  study was in the order  of  ± 1 sec.  The same 
annotation tool as in Publication P1 was used by an assistant.  

5.4 Personalized, Online Activity Recognition 

In Publication P4, a new data set was collected using an online activity recogni-
tion  system  on  a  PDA.  Data  were  measured  using  a  3D  accelerometer  on  the  
ankle that sent the data to the PDA using Bluetooth. The target was to recognize 
five activities: lying, sitting/standing, walking, bicycling and running. Addition-
ally, a personalization algorithm was developed for improving classifier perfor-
mance on individual data. 

Only data from the ankle location was used in activity recognition. The features 
selected for the classification were computed from the up-down accelerations of 
the ankle accelerometer. The features selected are summarized in Table 13. 
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Table 13. Selected sensors, sensor placements, features and sensor dimensions for 
activity recognition. 

Feature Sensor Placement Dimension 

Mean Accelerometer Ankle Up-down 

Variance Accelerometer Ankle Up-down 

Spectral peak power Accelerometer Ankle Up-down 

Spectral Entropy Accelerometer Ankle Up-down 

 
The binary decision tree classifier was used for online activity recognition. First, 
the results were computed with leave-one-subject-out cross validation, then in-
dividual data was introduced, one activity at a time and activity recognition re-
sults were computed after introducing each new activity. 

Summary of the case-wise classification results before, during and after the 
personalization is presented in Table 14. The overall accuracy was 86.6% before 
personalization and 94.0% after personalization. The results were computed 
online on the PDA. The results before the personalization were computed using 
leave-one-subject-out cross validation and classifying each second of data. The 
annotation accuracy in this study was in the order of ± 1 sec. The same annota-
tion tool as in Publication P1 was used by an assistant. 

Table 14. Individual classification accuracies in original stage and after personalization. 

ID(sex, age, length) Original [%] Personalized [%] 

Case 1 (M, 37, 180) 87 99 

Case 2 (F, 37, 156) 80 89 

Case 3 (M, 27, 180) 79 99 

Case 4 (M, 28, 186) 90 90 

Case 5 (M, 24, 187) 88 88 

Case 6 (M, 4, 92) 74 77 

Case 7 (M, 8, 128) 95 99 

Overall 87 94 
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5.5 Recognition of Physical Activities and Mental Load 

In Publication P5, the data set used in Publication P2 was used for recognizing 
physical activities and mental load in supervised settings. The target activities 
included lying, sitting and the normal mental load, sitting and the heavy mental 
load, walking and running. Data used for the recognition were measured with 
accelerometers on the hip and wrist, magnetometers on the hip and wrist, 2 ECG 
electrodes, respiratory inductive plethysmogram belts on the abdomen and chest, 
and skin temperature and pulse plethysmogram using a finger oximeter. 

Three different classifiers were used for automatic recognition: custom deci-
sion tree, 5-Nearest Neighbour (5-NN) and artificial neural network (Multi-
Layer  Perceptron).  Features  for  the  first  two  classifiers  were  selected  using  an  
automatic feature selection algorithm, the sequential forward search (SFS); fea-
tures for the custom decision tree were selected manually. The selected features 
are summarized in Table 15. 

Table 15. Selected sensors, sensor placements, features and sensor dimensions select-
ed for the recognition of physical activities and the mental load. 

Feature (Custom Decision Tree) Sensor Placement Dimension 

Mean Accelerometer Hip Up-down 
Normalized HR 2-electrode ECG Chest   
Range Accelerometer Hip Up-down 
Peak power Accelerometer Hip Up-down 

Feature (SFS + 5-NN) Sensor Placement Dimension 

Maximum Accelerometer Hip Up-down 
Normalized HR ECG Chest   
Standard deviation Respiratory Effort Chest   
Minimum Accelerometer Hip Up-down 
Declination angle Magnetometer Hip 3D 
Feature (SFS+ANN) Sensor Placement Dimension 
Maximum Accelerometer Hip Back-forth 
Estimate of EE Accelerometer Hip 3D 
Minimum Accelerometer Hip Up-down 
Normalized HR ECG Chest   
Peak power Accelerometer Hip Back-forth 
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The results were computed using the leave-one-subject-out cross validation and 
for each second of the data. Table 16 summarizes the recognition results. Raw 
heart rate data were not significantly different during the heavy versus normal 
mental load, but the normalized HRs and the standard deviation of respiratory 
effort signal were significantly different. The HR normalization was done utiliz-
ing information on the activity context. The inter-individual HR variability dur-
ing walking was large compared to that during running. Thus, the running HR 
and sitting HR were selected as end-points for normalization. The respiratory 
effort signal was found to have lower variability during the heavy mental load 
than during the normal mental load. 

Table 16. Recognition results for physical activities and the mental load. 

  Lying 
Normal 
mental 

load 

Heavy 
mental 

load 
Walking Running TOTAL 

Custom Decision Tree 98 78 93 84 91 89 

K-Nearest Neighbor 98 68 84 95 100 89 

Artificial Neural Network 91 94 59 85 99 85 

 

5.6 Assessment of Perceived Stress 

In Publication P6, a new data set was collected using a wrist activity monitor 
(actigraph), a heart rate monitor, a bed sensor, environmental sensors and a mo-
bile phone with the Wellness Diary application for self-assessments and meas-
urement results from a pedometer, a blood pressure monitor and a weight scale. 
The target was to compare measurements with perceived stress. The perceived 
stress was assessed with two different measures: daily self-assessment on a mo-
bile phone and a monthly DSP questionnaire. 
 Spearman correlations (Table 17) were computed between assessed busy-
ness/stress/pressure and the measured variables. Only workdays were included 
in this correlation calculation, because the focus was on work-related stress, not 
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on holiday stress. The personal average of the variable value was subtracted 
first, before pooling the data together. 

Table 17. Statistically significant correlations to the daily self-assessment of stress. Only 
statistically significant overall correlations (p < 0.05) are shown. 

Feature Sensor Placement P RHO 

Sleep length Self-assessed (WD)   0.00 -0.26 

Sleep length Actigraph (IST) Wrist 0.00 -0.22 

Number of weight entries WD   0.00 0.13 

Standard deviation during the day Actigraph (IST) Wrist 0.00 -0.15 

Median night  Illumination Bedroom  0.00 -0.14 

Sport time Suunto T6 HRM Chest belt 0.00 -0.33 

Variance at night Illumination Bedroom  0.00 0.13 

Number of exercise entries WD   0.00 -0.10 

Sleep length Scored   0.00 -0.12 

Mean day activity Actigraph (IST) Wrist 0.00 -0.12 

Sleep quality Scored   0.00 0.21 

Mean at night Illumination Bedroom  0.00 0.12 

Sleep quality Self-assessed (WD)   0.00 -0.10 

Morning diastolic BP Blood-pressure monitor (Omron) Arm 0.01 0.10 

Relaxation time Suunto T6 HRM Chest belt 0.01 0.15 

Stress time Suunto T6 HRM Chest belt 0.01 0.15 

 
Correlations to DSPtss points (Table 17) were obtained by computing the medi-
an of psychophysiological variables over 7 days (the day people filled in the 
DSP questionnaire and 6 days before). The personal average was not subtracted, 
before pooling the data from different cases together, because there were only 
maximum four DSPtss measurements per case. 
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Table 18. Statistically significant correlations (7-day medians) with the DSP total stress 
score. Only significant correlations (p < 0.05) are shown. 

Feature Sensor Placement p rho 

Mean night HR Bed sensor Below bed 
mattress 0.03 0.59 

Standard deviation during the day Actigraph (IST) Wrist 0.03 0.35 

Standard deviation at night Actigraph (IST) Wrist 0.03 0.34 

Exercise duration WD   0.04 -0.36 

Weight change compared to the 
previous day WD   0.04 0.30 

 
The daily annotation of perceived stress was stored on the mobile phone applica-
tion. The patients reported that it was rather difficult to assess one’s stress level, 
and  there  might  be  changes  in  the  way  the  patients  performed  the  self-
assessment over time. The full resolution 0 … 5 may thus not be reliable, but it 
was estimated that it was accurate with a tolerance of 1 unit on the visual analog 
scale (VAS). 
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6. Discussion  

6.1 Results versus Objectives 

The first objective was to identify the most useful wearable sensors, sensor loca-
tions and signal interpretation methods for automatic activity recognition. 

 
This objective was achieved in Studies P1, P2, and P4. A large, annotated and 
well-documented data library of wearable sensor data was collected for the pur-
pose of the development and validation of automatic activity recognition algo-
rithms. Based on the collected data library, algorithms for automatic activity 
recognition were developed and evaluated, and the most information-rich sen-
sors and signal interpretation methods were identified. 

Based on the collected data sets, it was established that accelerometers were 
the most useful sensors for automatic activity recognition. As the activity chang-
es, an accelerometer provides a clear signal change, without any delay. A mag-
netometer, environmental light intensity, GPS, and audio data also show imme-
diate responses to activity and other context changes, and thus are potentially 
useful. The best locations of sensors are dependent on the activities to be recog-
nized. Based on the data collected, movement sensors on the torso (chest and 
hip) provide data that represent the whole body movements and allow identifica-
tion of many activities. A movement sensor on the ankle also provides useful 
data for the identification of everyday activities, as it picks a strong signal of leg 
movements. For the identification of more specific activities (such as Nordic 
walking versus walking), additional sensors placed on extremities are required. 
For signal interpretation, frequency-domain and time-domain features of move-
ment sensor data were the most useful ones (for example, peak frequency, spec-
tral entropy, mean and variance). The selection of the classifier did not play a 
critical role. Classification results of a computationally effective custom decision 
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tree classifier were competitive with more complex classifiers. The custom deci-
sion tree classifier was implemented on a portable device and successfully used 
for wireless, on-line activity recognition on a PDA. A personalization algorithm 
for the custom decision tree was successfully implemented to improve the classi-
fication accuracies of different individuals’ data. 

 
The second objective was to identify the best movement sensors, sensor locations 
and signal interpretation for automatic assessment of energy expenditure. 
 
This objective was achieved in Study P3. A data set was collected with compact 
data loggers on different body points during various everyday activities. As a 
result, the best sensors, sensor locations and data interpretation methods for the 
estimation of energy expenditure were identified. The estimate computed using 
the integral method on the ankle accelerometer data gave the best estimates of 
energy expenditure on the activity set selected for the study. 

 
The third objective was to identify the best sensors and signal interpretation 
methods for automatic assessment of mental load and stress. 
 
This objective was achieved in Studies P5 and P6. The automatic assessment of 
the day-time mental load can be improved 1) by utilizing the activity context 
available from the automatic activity recognition and 2) by scaling the biosignals 
measured from individuals to a common range. In addition to measuring the day-
time mental load, the measurement of recovery, for example, at night is useful 
for the automatic assessment of longer-term stress. 

Recognition of the short-term mental load during tasks of a 6-hour data collec-
tion period was performed in Study P5. This study applies the recognized activi-
ty type for the automatic recognition of mental load and identifies the best sen-
sors for the recognition of short-term mental load and physical activities. Heart 
rate and the standard deviation from respiratory effort were found to be the dis-
tinguishing features for the recognition of the heavy mental load. A new scaling 
method based on the HR during different activities was introduced for trans-
forming the individual HRs to a common range. 

Methods for assessing longer-term, perceived mental stress were developed 
using data obtained from wearable and fixed sensors in Study P6. A new data set 
was  collected  as  part  of  a  vocational  rehabilitation  program.  The  features  with  
strongest correlations to two references: 1) self-assessed daily stress level and, 2) 
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to the DSP questionnaire total stress score were identified. Sleep length estimat-
ed based on wrist actigraphy and bedroom illumination at night measured with 
an illumination sensor were found to be the best methods for the automatic as-
sessment of perceived daily stress. An average night heart rate was found to be 
the best method for the automatic assessment of longer-term stress, as measured 
using the DSP questionnaire. Overall, the P6 results showed modest, but signifi-
cant pooled overall correlations between self-assessed stress level and physio-
logical and behavioral variables. Strong, but sometimes conflicting correlations 
can were found in individual data. 

6.2 Impact of Studies in Their Research Fields 

In Studies P1 and P2, an exceptionally large data library was collected in out-of-
lab and realistic laboratory settings. They were one of the first studies on activity 
recognition based on such extensive data sets. Nonetheless, until now only a few 
studies have been published on automatic activity recognition that use annotated 
data collected in out-of-lab or realistic laboratory settings with several different 
wearable sensors and with several volunteers (Bao & Intille 2004, Foerster et al. 
1999). When measurements are carried out in realistic settings, the variability of 
data increases and the classification accuracy decreases compared to the results 
obtained in laboratory environment (Foerster et al. 1999). Publication P1 demon-
strated the classification results in supervised settings and P2 demonstrated their 
applicability also in unsupervised settings. The recognition accuracy decreased 
only slightly when the algorithms were applied to unsupervised data. The recog-
nition accuracies reached in P1 and P2 are among the most accurate ones ob-
tained in multi-class activity recognition studies (Preece et al. 2009). In addition, 
the classification results were computed with a higher frequency in P1 and P2 
than in previous studies (Foerster et al. 1999). The target was inferred once per 
second using sliding windows in P1 and P2, while block-windows of 20…40 sec 
were used in an earlier study (Foerster et al. 1999). 

One of the best-known models for estimating energy expenditure from ac-
celerometer data was presented by Crouter et al. (Crouter et al. 2006). Publica-
tion P3 demonstrates results obtained using a single-linear-regression model. 
The single-regression model was found to perform better in the case of the activ-
ities in P3. Sensors other than accelerometers have not widely been studied in 
terms of energy expenditure estimation. Publication P3 shows that EE estimates 
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obtained with angular rate sensors perform almost as well as those obtained with 
accelerometers. 

Publication P4 demonstrates the use of an activity classification algorithm in 
an online environment on a PDA. This is one step in the process of developing 
and transforming research prototypes into commercial products. Publication P4 
evaluates the algorithms in a wireless, online environment and introduces a 
method for classifier (and product) personalization for the purpose of achieving 
a better accuracy of activity recognition. The effect of personalization has not 
been widely studied, but provides one way to improve the accuracy of a product. 
The study shows that default training gives good results for many individuals, but 
for some users, classifier personalization is needed to ensure equal performance. 
 The automatic classification of both physical activities and different levels of 
mental load in everyday life or realistic laboratory conditions has not been ap-
proached by many studies. Previous studies mainly concentrate on comparing 
feature signals  during different  activities,  but  do not  yet  infer  classes from fea-
tures (Kusserow et al. 2008). In Publication P5, such a classifier was developed 
and evaluated. The results identify feature signals and inter-individual scaling 
techniques for the recognition of mental load. Information from automatic activi-
ty recognition was found useful for improving the automatic recognition of men-
tal load. 

Previous studies on long-term stress, work exhaustion and burnout mainly 
adopt a psychological approach and use questionnaires as the primary tools of 
assessing the stress level (Honkonen et al. 2006, Maslach & Jackson 1981, 
Derogatis 1987). Study P6 employed a more technological approach with the 
purpose of identifying the most information-rich sensors and signal interpreta-
tion methods for the assessment of stress. Publication P6 was  one  of  the  first  
studies to evaluate the use of several wearable sensors in the assessment of long-
term stress and burnout as part of everyday life and during a rehabilitation pro-
gram. The results also show that people with long-term stress are skilled enough 
to use wearable monitoring devices and self-assessment tools. However, the 
devices may overburden people suffering from severe burnout. People react to 
increasing stress individually and changes can be seen in different variables. 
This highlights the need for the monitoring of personal trends of each individual. 
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6.3 Experiences with Sensors and Methods 

Sensors that react fast to activity changes are particularly useful for the recogni-
tion of activities. They included for example accelerometer, magnetometer, an-
gular rate, illumination, and GPS sensors. 

Sensors that react slowly or poorly to activity changes are more difficult to use 
for activity recognition purposes. In this study, the following sensors represent 
this category: temperature, humidity, heart rate and respiratory effort. Sensors 
whose signal is easily disturbed by artefacts, for example because of movement 
or light are also difficult to use for activity recognition. The following sensors 
were prone to artefacts: an oximeter on finger and an oximeter on forehead. 

Acceleration sensors are very useful for activity recognition as they react fast 
and robustly to changes in the activity and posture. The locations for the 3D 
acceleration sensors on the torso and the extremities were good. The signal from 
the torso sensor is useful for recognition of many activities such as walking, 
running and biking on an exercise bike. The signal from the wrist is useful in the 
detection of activities involving frequent hand movements such as Nordic walk-
ing. The separation of standing and sitting would require a signal from the lower 
parts of the body. 

Magnetometer sensors are not as reliable in activity detection as acceleration 
sensors because there are lots of metallic objects in our everyday environment. 
They cause small changes to Earth’s magnetic field, and thus artifacts to a mag-
netometer signal. Even then, activities consisting of periodic movements can be 
detected reasonably well also from the magnetometer signal. Such activities 
include for example walking and running. In the analysis and calibration of a 
magnetometer signal, it must be noted that in Finland the strongest component is 
perpendicular to the earth surface. Thus, the sensor measures not only the direc-
tion, but also the posture of the person. 

Lower sampling rates (20 Hz for acceleration and magnetometer signals) keep 
the volume of data reasonable, but the lower sampling rate degrades the recogni-
tion of activities that involve fast transients. For example, during Nordic walking 
there are spikes in the wrist accelerometer data, every time the pole hits the 
ground. With the lower sampling rate, the signal from activities involving fast 
transients is not so different from a signal of similar activities not involving such 
transients (for example, Nordic walking versus walking). Thus, the selection of a 
sampling rate is a compromise between a small volume of data and a good 
recognition performance. Lower sampling rate also ensures a longer battery life. 
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A 10g acceleration sensor on a wrist provided a range large enough for the 
measurement of Nordic walking. In Study P1, a 2 g acceleration sensor was used 
on the wrist; in some cases, the signal peaks were clipped during the Nordic 
walking because of too large accelerations. Thus, a 10g sensor is better for this 
purpose, but a 6g sensor would also have a range large enough as well. 

Biosignals provide useful information for the measurement of the exertion 
level of an individual, but they do not react to changes in the type of activity. For 
example, the heart rate clearly shows the intensity with which an individual is 
performing a task, but it does not give any information as to whether the person 
is running or biking. There are also large differences between individuals, for 
example, the resting heart rates are different as well as changes in the heart rate 
after certain exertion. In addition, the heart rate remains high for a rather long 
time after the exertion stops, so the reaction to the activity change is slow. Heart 
rate can be measured with good reliability. However, the respiratory effort sig-
nal measured with a piezo belt contains too many artefacts on many occasions, 
for example because of steps. When a person is not moving, the respiration rate 
can be detected with a fairly good reliability. Regular breathing is available only 
when the subject is not talking, eating, coughing, etc. 

Oximeter signals  (pulse, PPG and SpO2) often disappear because of move-
ment artefacts. External light also interferes with the signals. The probe location 
on a forehead is slightly more immune to movements, but on the other hand, it 
can be difficult to find a good location on the forehead to get a signal powerful 
enough. A finger probe provides a more powerful signal, but is more prone to 
movement artefacts. The pulse and SpO2 signals do not provide new useful in-
formation, but the PPG signal could be used as an estimate of relative changes in 
the blood pressure. However, the device should be firmly attached on skin and 
covered from external light for this to work in for ambulatory measurements. In 
this study, the signal quality was not good enough for such purposes. 

A Skin conductance signal reacts only to heavy sweating, not to small changes 
in dry skin conductance. The heavy sweating made the material behind the sen-
sor  wet  and the signal  did not  return from the saturated state  during the rest  of  
the measurement. Because of these problems with hardware, the signal was not 
used in activity recognition. 

Skin temperature shows not only changes in skin temperature, but more clear-
ly changes in the surrounding air temperature, for example, when moving be-
tween indoor/outdoor locations. Thus, the recognition of exercise types based on 
the skin temperature is difficult with the currently available signals and equip-
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ment. The signal can be useful in stable conditions (indoors), but the sensor used 
in studies P1 and P2 reacted to changes too slowly. The skin temperature sensor 
had a faster response than the environment temperature sensor that was part of a 
sensor board with a bigger mass. 

A body position sensor did not work in the mobile measurements. The signal 
provides some information on movements, for instance whether the person is 
stable or not, but acceleration signals are more useful for this purpose. 

An illumination sensor was a useful sensor for detecting light in general and 
artificial light in particular. The sensor has a fast response to changes in illumi-
nation level. In P1 and P2 it was used to detect indoor/outdoor locations, and in 
P6 to detect waking at night. 

Environment humidity and temperature sensors were not very useful in this 
data set, because they reacted too slowly to context changes (temperature - more 
than 10 minutes). However, they give an indication of the indoor/outdoor loca-
tion. A humidity sensor measures not only the humidity of the environment, but 
also the humidity caused by sweating. In addition, when moving from the cold 
outdoors to the warm, but dry indoors, the moisture of the warm indoor air con-
centrates on the surface of the cold sensor and the signal saturates, showing ‘ex-
tremely humid’. The signal output corrects as the sensor warms up, but the delay 
is critical for detecting abrupt changes accurately. 

Altitude and location (from  the  GPS)  are  useful  signals  that  react  fast  to  
changes. Altitude was not very useful for the detection of the selected activities. 
However,  the speed was calculated based on the location data  and used for  the 
recognition of the football activity. 

Activities involving the periodic movements of the body can be detected par-
ticularly well using acceleration sensors. Magnetometer signals can also bring 
extra information in addition to acceleration signals. A good example of this 
process is the detection of rowing from the acceleration or magnetometer sig-
nals. High level activities that do not contain monotonic movements, but irregu-
lar combinations of many different movements (for example, football and other 
ball games, etc.) are more challenging for the activity recognition. 

According to the P6 field trial, people suffering from long-term stress accept 
self-assessments and measurements over a long period of time at home very 
well. It is important that the measurements are easy (preferably automatic) so 
that they are only a minimal burden to the subject. The compliance with meas-
urements can be improved by providing the subject with useful feedback on the 
measurements  and  signal  trends.  Despite  their  stress  status,  most  people  are  
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skilled enough to use the devices, except for people suffering from more severe 
burnout. The use of new devices can be easier, if they are introduced one by one, 
with time to learn new functions before another device is introduced. 

In Study P6, the monitoring of recovery (sleep, exercise) was found to give 
best indications of stress. A note was taken of the system disturbing the privacy. 
The bed sensor did not disturb most of the subjects, but a few participants found 
it a little bit disturbing. The wrist activity monitor was found unobtrusive; gener-
ally, it was not brought up in discussions. A comment was made on its being 
slightly uncomfortable, because it had to be attached tightly around the wrist. 
The Wellness Diary on the mobile phone was found easy to use. The heart rate 
measurement using a wrist-top computer and a chest belt was found laborious 
and uncomfortable in long-term monitoring. This was mainly due to the fact that 
the chest belt was available in one size only. However, a comment was made on 
the heart rate measurement being especially useful. Some subjects saw the heart 
rate measurement more useful than others. The pedometer and blood pressure 
monitor were found easy to use. The subjects of P6 estimated monitoring of the 
blood pressure, weight and exercise as most useful to their health. 

Daily self-assessment of stress and the total stress score from DSP question-
naires once per month were used as the “ground truths” for measuring stress at 
home. The DSP was found to measure personal character rather than changes in 
the dynamic stress status. The daily self-assessment of stress was found to have 
more day-to-day variability, but difficult to perform over a long period of time. 

In feature selection, a human eye is good at selecting features that show 
changes between different activities. By plotting the feature distributions during 
different activities (P1, Figure 4) or by plotting the feature signals along with 
annotations in the time domain (P2,  Figure 3), it is possible to visually inspect, 
which features show great discriminatory power. It is also possible to arrange the 
computed features as a function of the target. If the plot still seems noisy, 
smoothing (moving median filtering in P6, Figure 5) can help see trends in data. 

The complexity of the classification algorithm has an effect on the battery 
consumption of an embedded device. The lazy classifiers that perform many 
operations during the classification phase (such as the KNN classifier) consume 
more battery power than, for example, the decision tree algorithms that perform 
only threshold comparisons. Thus, decision tree algorithms can be regarded as 
energy-efficient algorithms in continuous use. In P2, the overall classification 
accuracy of the automatic decision tree algorithm was below those of the other 
classifiers. However, the automatic decision tree algorithm has the most stable 
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performance, since it recognizes all the activities with reasonable accuracy, 
while the other classifiers fail to recognize cycling on an exercise bike. During 
training, for example, an ANN optimizes the overall performance, but an auto-
matic decision tree algorithm uses a different optimization technique, which 
does not optimize the overall performance on training data but the classification 
accuracy of each activity separately. During the training phase, it is important to 
decide  whether  to  use  the  same  amounts  of  training  data  for  each  activity  and  
ensure the optimal recognition of each activity, or to use the amounts of data that 
come from everyday activities and optimize the overall classification accuracy. 
The decision depends on the application. 

6.4 Limitations of Studies 

In Publication P1, the dynamic range of accelerometers was not large enough 
(±2g). This caused the clipping of the high-variability accelerometer data in 
some activities (for example, Nordic walking) performed by some volunteers 
and therefore degraded the classification accuracy of these activities. 

In Publication P2, the sampling rates were lowered in relation to those used in 
P1 to allow longer periods of data collection. However, the sampling rate of 20 
Hz for accelerometers was too low. Too low sampling rate made the identifica-
tion of vigorous activities more difficult, because the sharp peaks caused by 
impacts were rounded and less separable from less vigorous activities. 

In Publications P1 and P2, the absence of accelerometers on the lower body 
did not allow for the separation of sitting and standing from each other. The 
accelerometer  on the chest  was moved to a  hip in order  to  achieve this  separa-
tion. The move was inspired by a publication by Lee and Mase (Lee & Mase 
2002). However, even the sensor location on the hip did not allow for the separa-
tion of the two activities, because the belt by which the accelerometer was at-
tached was moving during activities and did not provide accurate enough data. 
Thus, the conclusion based on P1 and P2 is that an accelerometer on a thigh is 
needed for the automatic separation of sitting and standing. 

In Publications P1, P2, P3 and P4, large data sets with several volunteers and 
activities were collected and methods were developed based on the large data 
sets. But the applicability of the results in long-term monitoring in real-life con-
ditions is still uncertain. Especially the results of Study P4 were limited by the 
battery life of a wireless sensor, which limited its use to about 1 hour. Thus, it 
would be necessary to acquire data over full days or even several days with the 
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participation of several different volunteers during different activities in order to 
prove the robustness of algorithms in end-user products. 

In Publication P5, the data from physical activities and different levels of 
mental load were collected in experimental settings. The applicability of the 
results has not been tested in real-life conditions. The scaling of HR features to a 
common range would require individual data from the normal mental load in 
order to work properly. Therefore, the method would not work accurately if a 
device is taken into use only when already stressed and with altered HR profile. 

In Publication P6, some hardware problems were experienced with the con-
tinuously measuring devices during the study. The problems encountered caused 
breaks in the process of measurement or data transmission (for example, a mo-
dem was damaged due to a thunder storm). Missing data may weaken the signif-
icance of the observed variable correlations. Two variables (perceived daily 
stress and long-term stress profile questionnaire) were used as “ground truth” 
references for stress. No gold standard reference exists for stress measurements. 
For the development of wearable stress monitors, a better definition of stress and 
an agreement on a gold standard reference for stress assessment are needed. 

6.5 Future Directions 

In Publications P1, P2, P3, P4 and P5, the equipment did not allow the full pro-
filing of people by recordings over the whole day or week, mainly due to limited 
battery  life  and  memory  capacity.  In  the  future,  however,  this  will  be  possible  
and recording over whole days and weeks will be possible. This will open possi-
bilities for providing personalized information and guidance, for example, 
though the use of personal health records. For evaluating the performance of the 
developed algorithms in full-day and full-week recordings, new, longer meas-
urements are needed. 

In Publications P1, P2, P4 and P5, both time- and frequency domain features 
derived from accelerometer data were found useful for activity recognition. 
Combinations of data from different sensor dimensions or locations were not 
used as inputs. For example, cross-covariance between axes has been found to 
be a useful feature (Atallah et al. 2010) for activity recognition. Thus, different 
features for the combining of sensor dimensions and sensor locations can pro-
vide useful information, for example, to find if different body parts work in syn-
chrony or not during different activities. In the development of mental load and 
long-term stress, the adequacy of recovery plays an important role. Study P6 
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showed that the assessment of recovery reflects the stress level with the strong-
est correlation of the measured variables. This is encouraging because for exam-
ple sleep quality can be assessed unobtrusively, without user interaction, using 
several different sensors such as a bed sensor, actigraphy or bedroom illumina-
tion. In the future, further studies on such new measures of recovery may prove 
useful in the assessment of stress level. 

A current lifestyle in industrialized countries drives to sedentarism and heavy 
mental load. Early history shows that the lifestyle required more physical activi-
ty and less  mental  load.  The optimum would be to find a  balance between the 
load and recovery in both the physical and mental load. The focus of current 
research is moving from the assessment of physical activity towards the meas-
urement and assessment of the volume of sedentarism (Chastin & Granat 2010). 
This is because several studies have pointed out how the length of sedentary 
periods may affect several risk factors. Even short breaks during the long seden-
tary periods have been shown to decrease cardiometabolic risk factors (Healy & 
Owen 2010). 
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7. Conclusions 
In this thesis, practical methods for the automatic recognition of physical activi-
ties and automatic assessment of energy expenditure as well as mental load and 
long-term stress using data from wearable sensors and other self-measurements 
were studied. Signal interpretation and classification methods were developed 
and the most information-rich sensors identified. The methods were developed 
based on large, realistic and annotated data libraries collected as part of the stud-
ies. Applicability of the methods was evaluated with the collected realistic data 
and state-of-the-art scientific results were obtained. The following conclusions 
can be drawn from the studies carried out within the framework of this thesis: 
 Careful selection of sensors, sensor locations and input features plays a more 

critical role in successful classification than the selection of a classifier. 
 Computational complexity of the classification phase of a classifier has an 

impact on the power consumption of the hosting mobile terminal. 
 Accelerometer signal is the most useful signal for recognition of the type of 

activity as well as for estimating the energy expenditure with everyday ac-
tivities. 

 Automatic activity recognition enables more accurate automatic detection of 
high day-time mental load by focusing the analysis on sedentary periods. 

 Normalized heart rate and variability of respiratory rate signals allow detec-
tion of high day-time mental load with reasonable accuracy. 

 In addition to the measurement of the day-time mental load, the measure-
ment of recovery at night is useful for the assessment of long-term stress. 

 No single sensor is clearly better than others in monitoring long-term stress. 
 Useful measures for automatic assessment of long-term stress are 

o sleep length estimated using wrist actigraphy, 
o night illumination level estimated using the bedroom illumination 

sensor and 
o average night heart rate estimated using the bed sensor. 
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Errata in Publications 
Publication 1, page 3, Table 1 and page 4, paragraphs 3 and 4: 
Correct abbreviation of blood oxygen saturation signal obtained using pulse 
oximeter is SpO2. 
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and Ilkka Korhonen, Member, IEEE

Abstract—Automatic classification of everyday activities can be
used for promotion of health-enhancing physical activities and
a healthier lifestyle. In this paper, methods used for classifica-
tion of everyday activities like walking, running, and cycling are
described. The aim of the study was to find out how to recog-
nize activities, which sensors are useful and what kind of sig-
nal processing and classification is required. A large and real-
istic data library of sensor data was collected. Sixteen test per-
sons took part in the data collection, resulting in approximately
31 h of annotated, 35-channel data recorded in an everyday en-
vironment. The test persons carried a set of wearable sensors
while performing several activities during the 2-h measurement
session. Classification results of three classifiers are shown: cus-
tom decision tree, automatically generated decision tree, and ar-
tificial neural network. The classification accuracies using leave-
one-subject-out cross validation range from 58 to 97% for cus-
tom decision tree classifier, from 56 to 97% for automatically
generated decision tree, and from 22 to 96% for artificial neural
network. Total classification accuracy is 82% for custom decision
tree classifier, 86% for automatically generated decision tree, and
82% for artificial neural network.

Index Terms—Activity classification, context awareness, physi-
cal activity, wearable sensors.

I. INTRODUCTION

PHYSICAL inactivity is a health risk that many people in
both developed and developing countries are facing to-

day. According to World Health Organization (WHO), at least
60% of the world’s population fails to achieve the minimum
recommendation of 30 min moderate intensity physical activ-
ity daily [13]. The main reason for not achieving this basic
level of physical activity is that the level of activity required
in work, in travel, and at home is decreasing with sedentary
work and with the advent of technologies that are designed to
ease home activities and traveling. The physical activities on
free time are insufficient or too irregular to achieve the weekly
goal. Physical inactivity is known to contribute in many chronic
diseases, such as cardiovascular disease, type 2 diabetes, and
possibly certain types of cancer and osteoporosis [2], [3]. As
the population is rapidly aging in many countries, promotion of
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a healthier lifestyle, especially for the elderly population, can
provide substantial savings in future health care costs.

By following the minimum recommendation, many health
benefits can be obtained, when compared with completely
inactive people [4]–[6]. The basic level of physical activity
helps, for example, in managing weight, in lowering blood
pressure, in increasing the level of the good high-density
lipoprotein (HDL) cholesterol, in improving sugar tolerance,
and in changing hormone levels to a direction more suitable for
preventing cancer [3], [7]. The basic level of physical activity
can be achieved by everyday activities like walking at work,
shopping, gardening, cleaning, etc. The 30-min daily physical
activity targets to at least 1000 kcal energy expenditure weekly.
The only limitation in achieving the goal is that the daily 30-min
physical activity must be collected in continuous periods of a
minimum 10 min.

Level of daily physical activity can be measured objectively
by measuring energy expenditure. The accelerometer signal
has been used previously to estimate energy expenditure,
and the estimate has been shown to correlate well with true
energy expenditure [8]. Although achieving the minimum
recommendation of physical activity brings many health
benefits, even more health benefits can be achieved by taking
part in a more vigorous [5] and a wider spectrum of physical
activities. For example, endurance-enhancing activities and
activities maintaining flexibility and muscular strength bring
health benefits that are not achieved with basic activity [3].
Endurance can be enhanced, e.g., with energetic walking,
jogging, cycling, and rowing. Activities maintaining functions
of the musculoskeletal system are, e.g., ball games, gym, and
dancing. Thus, in addition to daily energy expenditure, activity
types play an important role in overall well being and health.

Accelerometers have been shown to be adequate for activ-
ity recognition. The studies using accelerometry for monitoring
human movement have been recently reviewed in [9] and [10].
In laboratory settings, the most prevalent everyday activities
(sitting, standing, walking, and lying) have been successfully
recognized with accelerometers [11]–[15]. However, applica-
bility of these results to out-of-lab monitoring is unclear. For
example, in [15] the recognition accuracy of nine patterns de-
creased from 95.8% to 66.7% as the recordings were shifted
outside the laboratory. Also, recognition of different activities
involving dynamic motion has not yet been studied thoroughly.
In a few studies data have been collected outside the laboratory.
In [15] 24 subjects spent approximately 50 min outside labo-
ratory. Accelerometers were placed on sternum, wrist, thigh,
and lower leg. Nine patterns (sitting, standing, lying, sitting and

1089-7771/$20.00 © 2006 IEEE
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talking, sitting and operating PC, walking, stairs up, stairs down,
and cycling) were recognized from presegmented data with an
overall accuracy of 66.7%. In [16] five biaxial accelerometers
attached to hip, wrist, arm, ankle, and thigh were used to rec-
ognize 20 everyday activities such as walking, watching TV,
brushing teeth, vacuuming, etc. From 82 to 160 min of data
were collected from 20 subjects and a decision tree classifier
was used for classification. Recognition accuracies ranged from
41 to 97% for different activities.

Many research groups have recently studied activity recog-
nition as part of context awareness research [16]–[22]. Context
sensing and use of context information is an important part of
the ubiquitous computing scenario [23]–[25]. Context sensing
aims at giving a computing device (e.g., cellular phone, wrist-
top computer, or a device integrated into clothes) senses, with
which it becomes aware of its surroundings. With the senses
the device is capable of measuring its user and environment and
it becomes context aware. The context describes the situation
or status of the user or device. Different devices can use the
context information in different ways, e.g., for adapting its user
interface, for offering relevant services and information, for an-
notating digital diary (e.g., energy expenditure), etc. Location
and time belong to the group of the most important contexts and
the use of these contexts has been studied extensively. However,
to recognize the physical activities of a person, a sensor-based
approach is needed.

Our vision in automatic classification of physical activities
is to contribute to long-term monitoring of health and to a
more active lifestyle. The application we have in mind can
be called an “activity diary”. The diary would show the user
which activities he did during the day and what were the
daily cumulative durations of each activity. When the user
is shown this information, he can draw the conclusions him-
self and adjust his behavior accordingly. This model is called
the behavioral feedback model [26]. This model is being suc-
cessfully used, e.g., in weight management programs. On the
other hand the activity diary information can be utilized by
context-aware services and devices that offer adapted infor-
mation or adapt their user interface (UI) based on the user’s
activity type.

In this work our aim was to study activity classification,
which are the most information-rich sensors and what kind
of signal processing and classification methods should be
used for activity classification. We took a data-oriented and
empirical approach and collected a large data library of
realistic data. In this paper, we describe methods for automatic
activity classification from data collected with body-worn
sensors.

II. METHODS

A. Data Collection

The goal of our data collection was to assess the feasibil-
ity and accuracy of context recognition based on realistic data.
We collected a large data library of realistic context data with
many different sensors (accelerometers, physiological sensors,

etc.) and with many test persons. The collected data were then
used in development of context recognition algorithms. A data
collection system was developed for sensing and storing context-
related data in real-life conditions. Only the sensors are small
in size that were applicable to ambulatory measurements were
used. The data were stored on a rugged, compact PC (Databrick
III, Datalux Corporation, Winchester, VA, USA) and on a flash-
card-memory-based, 19-channel recorder (Embla A10, Med-
care, Reykjavik, Iceland). Additionally, two stand-alone de-
vices were used: Global Positioning System (GPS) recorder
(Garmin eTrex Venture, Garmin Ltd., Olathe, Kansas, USA) and
wrist-top computer that measured heart rate and altitude (Su-
unto X6HR, Suunto Oy, Vantaa, Finland). The PC and recorder
were placed into a normal rucksack (dimensions: 40 cm × 30
cm × 10 cm, weight 5 kg with the equipment) that the test
persons carried during the measurement sessions. The sensors
were put on the test person with help of an assistant before
the start of the measurement session. The system measured 18
different quantities from the user and his environment (Table
I). Some of the quantities were measured with multiple sen-
sors, which resulted in altogether 22 signals and 35 channels
of data.

During the measurement sessions, the test persons followed
a scenario (Table II) that describes the tasks they should at least
do and locations they should at least visit. The scenario consists
of visits to several everyday places (bus, restaurant, shop, and
library) and of several physical activities (lying, sitting, stand-
ing, walking, Nordic walking, running, rowing, cycling). Nordic
walking is fitness walking with specifically designed poles to
engage the upper body.

Because the signals have large interindividual difference
in different activities, we recruited 16 volunteers (13 males,
3 females, age 25.8 ± 4.3 years, body mass index [BMI]
24.1 ± 3.0 kg/m2) to gather a representative dataset for al-
gorithm development. The volunteers were recruited by us-
ing bulletin board and news advertisements at a local uni-
versity. The duration of each measurement session was about
2 h. The durations varied between measurement sessions be-
cause of the loose scenario, which was not supposed to be
followed strictly. Because the goal was to collect realistic
data, the test persons were given a lot of freedom during
the measurement session. For example, they could choose
the restaurant and shop they preferred. Also the order of
places visited and time spent in each place depended on the
test person.

The test person was accompanied by an annotator (same
person for all cases), who used a personal digital assistance
(PDA) to mark changes in context for reference purposes. An
annotation application (Fig. 1) was written for a PDA using
C#.NET. The annotation application provides a UI for visual-
izing and changing the currently selected and active contexts.
In the UI, the contexts are organized hierarchically into up-
per level context types, e.g., activity and lower level context
values, e.g., lie or sit. The context values are mutually exclu-
sive. As a context value changes, the annotator taps on the
name of the new context value with the PDA pen. The soft-
ware stores the new state together with a timestamp on PDA
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TABLE I
SIGNALS AND SENSORS OF DATA COLLECTION SYSTEM

memory. Data collection start and end markers were manu-
ally added to annotation data and all context data to allow
synchronization of the data. The accuracy of manual markers
is ± 0.5 s. In 2-h data collection this was considered an
adequate accuracy.

TABLE II
SCENARIO FOR DATA COLLECTION

Fig. 1. Annotation Software on PDA. Checkboxes on the left are used to
expand and collapse between the title line and full view. Radio buttons are used to
mark the active context value. Eating and Drinking can be active simultaneously.
The asterisk is used to mark the context value “other.”

B. Context Data Library

After the measurements, the data were synchronized, cali-
brated, re-sampled, and converted into suitable formats [27] for
visualization. All the data (31 h) were collected into Palantir
Context Data Library 2003.
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Fig. 2. Spectogram of vertical acceleration on chest during walking, Nordic
walking and running. Horizontal axis is time.

C. Signal Processing and Feature Extraction

The goal in context recognition is to develop algorithms that
can automatically infer the annotated context from the collected
signals. The signals were first visually inspected and compared
against the annotated contexts. This gave us the first impression
on which signals are more useful than others. Feature signals
(1-Hz sampling rate) were calculated from the raw data.

A priori information was used to select which features to
calculate. For example, walking and running (measured in re-
alistic circumstances) have constant frequency, which did not
vary much between test persons either. Walking is seen as 2 Hz
and running as 2.5–3 Hz oscillation in the signal (Fig. 2).

Time-domain features calculated were mean, variance, me-
dian, skew, kurtosis, 25% percentile and 75% percentile counted
using a sliding window. Frequency-domain features were spec-
tral centroid, spectral spread, estimation of frequency peak, es-
timation of power of the frequency peak, and signal power in
different frequency bands. For acceleration both 4-s and 10-s
windows were used. For blood oxygen saturation (SaO2) the
window was 10 s, for respiratory effort it was 60 s, and for all
others it was 1 s.

Time-domain features were calculated for 1) body position;
2) humidity; 3) blood oxygen saturation SaO2 ; 4) skin resis-
tance; 5) skin temperature; and 6) environmental temperature.
Both time and frequency domain features were calculated for 1)
accelerations; 2) magnetometer signals; 3) environmental light
intensity; and 4) respiratory effort.

In addition to the basic time- and frequency-domain features,
the following features were calculated. Speech was detected
from audio signal using a modified version of a speech/music
discriminator [28]. Radius and two angles describing the vec-
tor of magnetic field as well as ratio between frequency bands
1–1.5 Hz and 0–5 Hz were calculated from magnetometer sig-
nals. R-peaks were detected and different features related to
heart rate variability (e.g., R-R interval) were calculated from
the electrocardiogram [29]. Speed was calculated from GPS
location data. Power on frequency band 80–100 Hz was calcu-
lated from a light-intensity signal. Respiratory frequency, tidal
volume, frequency and amplitude deviations, rate of ventilation

and spectral entropies were estimated and calculated from the
respiratory effort signal.

D. Feature Selection

Feature selection was based on visual and statistical analysis.
The features were visually compared against annotation to find
good candidate features. Distribution bar graphs of each feature
signal during different activities were plotted for comparison
(Fig. 4). The plots show how the distribution of each feature
signal changes between different activities. The more the dis-
tribution moves between activities and the less the distributions
overlap, the better it is for discrimination of activities.

A priori information was used in the quest for the best fea-
tures. For example, during running there is more up-down move-
ment and thus more energy in acceleration signal than during
other activities. Based on a priori information, some new fea-
tures were calculated from raw data. The best features were
selected based on the distribution bar graphs. If there were more
than one feature that could have been used for a specific deci-
sion, the feature with best discrimination power was selected.

As a result of the feature selection process, six features
(Fig. 4) were selected for classification: 1) peak frequency of
up-down chest acceleration Fpeak (chestacc,y); 2) median of
up-down chest acceleration Med(chestacc,y); 3) peak power
of up-down chest acceleration Ppeak (chestacc,y); 4) vari-
ance of back-forth chest acceleration Var(chestacc,z); 5) sum
of variances of three-dimensional (3-D) wrist accelerations∑

Var(wristacc, 3 D); 6) power ratio of frequency bands
1–1.5 Hz and 0.2–5 Hz measured from left-right magnetometer
on chest P1 (chestmagn,x).

E. Classification

During the feature selection process it was noticed that with
the selected sensor setup, it was not possible to discriminate sit-
ting and standing from each other (see Discussion for more
details). Thus sitting and standing were combined into one
class, resulting in seven target classes for classification: 1) lying;
2) sitting/standing; 3) walking; 4) Nordic walking; 5) running;
6) rowing (with a rowing machine); and 7) cycling (with an
exercise bike). Three different classifiers were used in classi-
fication. All of them were given the same set of six features
as inputs.

For classification, two decision trees were applied, namely a
custom decision tree and an automatically generated decision
tree. Also, an artificial neural network (ANN) was used as a ref-
erence classifier. Decision trees have been successfully applied
to activity recognition earlier [16]. The custom decision tree was
selected to represent a simple and transparent approach based
on human rationalization. The automatically generated decision
tree was selected to see how well the automatic tree genera-
tion algorithm performs compared with human-made rules. An
advantage of the decision trees is that the problem of context
recognition is divided in to smaller subproblems, which are
tackled one by one very intuitively.

The recorded data were used for context recognition on a
second-by-second basis by using the feature signals as inputs
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Fig. 3. Custom decision tree.

and PDA annotations as targets. For all three classifiers the
results were acquired by 12-fold leave-one-subject-out cross-
validation.

1) Custom Decision Tree: The custom decision tree (Fig. 3)
was built by using domain knowledge and visual inspec-
tion of the signals. The tree has 13 nodes, 7 of which are
leaf nodes and 6 of which represent a binary decision. The
decisions can be named with questions: 1) footsteps?; 2) ly-
ing?; 3) running?; 4) rowing?; 5) Nordic walking?; 6) cycling?.
The numbering refers to numbers of the six selected features.
Leaf-nodes “sitting/standing” and “walking” can be considered
as classes “other,” because everything that is not recognized as
any of the activities in upper levels of the tree falls into these cat-
egories. This is in line with the data, because the context value
“other” was not used in annotations either. Fig. 4 depicts the
decisions made in the nodes: it shows the distributions of fea-
ture data during each activity. The circled activities are relevant
for the node; others have been ruled out in the upper level deci-
sions. For each branch of the tree, the threshold value was de-
fined by using a 12-fold leave-one-subject-out cross-validation.
The threshold value for each node was chosen to be the average
of the acquired 12 thresholds. The threshold values remained
unchanged during the whole validation process.

2) Automatically Generated Decision Tree: An automati-
cally generated decision tree was generated using a Matlab
(MathWorks Inc, Natick, MA) Statistics Toolbox function called
“treefit.” The rule for splitting was Gini’s index [30], which is
one of the standard options. It progressively looks for the largest
class in the data set and tries to isolate it from the rest of the data.
The results were obtained by using leave-one-subject-out cross-
validation resulting in separate training/validation sessions for
each subject. In each training/validation session the tree was
built using the training data (containing data from all but one
subject), pruned to an optimum level (the level with the lowest
error rate in the training set) using cross-validation within the
training data, and the obtained tree was used to classify the data
of the left-out subject. It should be noted that the size of the tree
may be different in each training/validation session. In average

the tree had 9.7 branches (minimum, 7; maximum, 14) and 10.7
leafs (minimum, 8; maximum, 15).

3) Artificial Neural Network: A multilayer perceptron with
resilient backpropagation as the training algorithm was used as
the artificial neural network classifier. The sizes of input, hidden
and output layers were 6, 15 and 7, respectively. The output that
had the highest value was selected as the classification result.

F. Postprocessing

Classification was made for each second of the data inde-
pendently, and no temporal connections were considered. This
resulted in rapid changes of the classification results especially
at transitions between two activities. For instance, getting up
from a sitting or lying position produced high acceleration peaks
that caused misclassification. Activities that only last for a few
seconds are not realistic. Thus, median filtering was used on the
results of all three classifiers to use simple temporal logic to filter
out short-duration misclassifications. The median filter replaces
short activities with the surrounding longer duration activity.
After several experiments, a median filter of 31 s was selected.
A median filter this long may prevent the recognition of some
short periods of activities (such as short walks) but it improves
the overall classification. Both causal and anticausal versions
were tested, and with the selected filter length their results were
very close to each other. Anticausal filtering worked slightly
better. Fig. 5 demonstrates the difference between filtered and
unfiltered results.

III. RESULTS

A. Data Quality

Data from 12 of 16 cases were used in classification. Data of
four cases were left out because of missing wrist acceleration
signals. The wrist acceleration signals were lost because of a
hardware problem.

B. Classification Results

Tables III–V show the confusion matrices for the three differ-
ent classifiers. In the tables, each sample represents 1 s. Table VI
summarizes the classification accuracies of different activities.

IV. DISCUSSION

We classified activities from realistic, out-of-lab context data
using three different classifiers and six feature signals as inputs.
Classification was done with 1-s time resolution; thus each sec-
ond of the data was classified and compared with annotated
data. Only a few previous studies have recognized activities
from data measured in the out-of-lab environment. Rowing and
Nordic walking have not been recognized in previous studies.
Lying, sitting, standing, walking, running, and cycling have also
been recognized in previous studies.

Bao and Intille [16] achieved recognition accuracy of 94.96%
for lying down and relaxing, 94.78% for sitting and relaxing,
95.67% for standing still, 89.71% for walking, 87.,68% for
running, and 96.29% for bicycling. Their data were measured in
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Fig. 4. Nodes of custom decision tree. Figure depicts distributions of feature signals during different activities. Activities marked with an R fall into right branch
and activities marked an L fall into left branch of node. Circled activities are relevant for the node, others have been ruled out in upper level nodes.

Fig. 5. Classification results before (top) and after (bottom) median filter-
ing. During black time intervals on the timeline sitting is classified as active
(sitting = true). During white time intervals, sitting is not classified as active
(sitting = false). Most of the sitting intervals that are shorter than 15 seconds
are replaced with the dominant activity by median filtering.

TABLE III
CONFUSION MATRIX OF CUSTOM DECISION TREE

a naturalistic environment, which is comparable to our setting.
They used five acceleration sensors on the hip, wrist, arm, ankle,
and thigh. They concluded that the thigh and wrist could be the
ideal locations for activity recognition.

Absence of an accelerometer on the lower body is a limitation
in our study. An extra accelerometer on the lower body would
probably improve classification accuracy. Placing an accelerom-
eter on the thigh was also considered in our study, but the thigh
was not seen as a feasible sensor placement for a consumer
product and this placement was ignored.

TABLE IV
CONFUSION MATRIX OF AUTOMATICALLY GENERATED DECISION TREE

TABLE V
CONFUSION MATRIX OF ARTIFICIAL NEURAL NETWORK

Foerster et al. [15] achieved recognition accuracy (subactiv-
ities combined) of 89% for lying, 100% for sitting, 88% for
standing, 99% for walking, and 100% for cycling. Their data
were collected in an out-of-lab environment. They segmented
the data manually into 20 s or longer segments according to the
behavior observation. Results were obtained by classifying the
selected segments only (466 segments). About the segmentation
they mention: “The classification can be improved by lengthen-
ing segments...” They used four sensor placements (chest, wrist,
thigh, and lower leg). In our study, 1-s segments were used
(72 272 segments).

P1/6
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TABLE VI
CLASSIFIER RESULTS [%]

A. Confusions

Much of our classifiers’ confusion seen in the results can
be explained with transitions from one activity to another. The
annotator was not given the choice to annotate “transition,” but
he had to switch from one activity to another instantly at some
point during the transition. The transition is sometimes gradual,
for example, when sitting changes to lying. The resulting inac-
curacy is especially visible in the recognition of lying, which
should be detected almost perfectly from the direction of grav-
ity. Because lying periods were short, the uncertainty caused
by transition periods in the beginning and end of lying became
significant.

Lying is detected by the custom-made decision tree as a com-
bination of decisions “no footsteps” and “lying.” Duration of
each lying period was only 2 min per case (total, 27 min) and
confusion is 13 s per case (total, 3.5 min). The inaccuracy in
annotation and duration of transition from sitting/standing to
lying was in practice in this order. The artificial neural network
additionally confuses lying with walking.

Recognition of running combines decisions “footsteps” and
“running.” Recognition of footsteps is rather clear (Fig. 4, node
1). The distributions of activities including footsteps and not
including footsteps do not overlap much. The total amount of
annotated running is about 39 min. The custom decision tree
and the automatic decision tree recognize running very well.
About 1 min of running is confused with standing and a few
seconds with walking. Again, at least on part, the classifiers can
be more accurate than the annotation and part of the confusion
is not really confusion at all. Running started from the standing
position and because of cars, slippery weather, etc. some walk-
ing and stops are included in the period annotated as “running.”
Artificial neural network confuses running heavily with other
activities, especially with Nordic walking and walking.

Rowing is recognized as combination of decisions “no foot-
steps,” “no lying.” and “rowing.” The custom decision tree rec-
ognizes 27 min of the total 40 min annotated as rowing. Because
this includes data from 12 cases and rowing was started and
ended by sitting, some sitting may indeed have been annotated
as rowing. However, the amount of confusion toward sitting is
rather large, so some classification error is also present. In addi-
tion, confusion with walking cannot be explained with annota-
tion inaccuracy. The automatic decision tree similarly confuses
rowing with sitting/standing and with walking. The artificial
neural network commits the same error and further confuses 1
min of rowing as running.

Walking is one of the most common activities in this data
set as in everyday life. Walking is recognized as combina-
tion of decisions “footsteps,” “no running,” and “no Nordic
walking.” Distributions of walking and Nordic walking partly
overlap when using the feature in node 5. Both decision trees
confuse walking mostly with Nordic walking and with sit-
ting/standing. The artificial neural network confuses walking
mostly with sitting/standing. Confusion with sitting/standing
can be explained with inaccuracies in annotation. Activity an-
notated as walking often includes short periods of standing.
Very short periods of walking between other dominant activi-
ties, even if annotated correctly and classified correctly by the
decision tree, are replaced with dominating activity by the post-
processing method in the classification results. This degrades the
performance when lots of short periods of walking are present.

Nordic walking was detected from increased arm motion. This
approach is successful when the poles are used as effectively as
they should be used. People not familiar with Nordic walking
tend to use the poles very little and smoothly. Such use of the
poles creates problems for recognition because the accelerations
measured from the wrist have very low amplitude. This fact can
be utilized, e.g., in teaching effective Nordic walking.

Sitting/standing is the most dominant activity in this data
library and for most people in their everyday lives. It is recog-
nized by combining decisions “no footsteps,” “no lying,” “no
rowing,” and “no cycling.” All of the three classifiers classify
sitting/standing rather well, mostly confusing them with walk-
ing. This is partly due to annotation inaccuracy. For example,
in a library the activity annotated as standing includes very
short periods of walking, which has not always been annotated
correctly. Also, if annotated and classified correctly, very short
periods of standing are replaced with the dominating activity by
postprocessing.

Cycling with an exercise bike is detected from the left-right
movement of chest by using the magnetometer signal. The dis-
tribution of cycling in this feature overlaps slightly with sit-
ting/standing and thus some confusion with sitting/standing
is inevitable. A small amount of annotation inaccuracy can
be present mostly in the beginning and end of activities an-
notated as exercise biking. These are because the test per-
son does not start or stop cycling exactly at the same time
with annotation.

B. Classifiers

The custom decision tree treats the different activities more
equally than the other classifiers because it optimizes perfor-
mance of one node at a time, not the overall performance as
the other classifiers do. That is why it has the best recognition
accuracy for more than half of the activities, but the overall ac-
curacy is not the best. The automatically generated tree had the
best overall performance. This is in line with earlier studies [16].
For artificial neural network classification, the everyday data are
rather noisy. Thus the artificial neural network easily overfits.
Noticeable in neural network results is the poor recognition of
running, which was well recognized by both of the decision tree
classifiers.
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C. Physiological Signals

Physiological signals such as heart rate and respiration were
expected to have a larger role in activity recognition. Although
they have been previously used together with accelerometers in
ambulatory monitoring [14], they did not provide very useful
data for activity recognition in our setup, in part, because they
react to activity changes with a delay. The physiological signals
correlate with the intensity level of the activity, but they do
not reflect the type of activity (e.g., cycling versus walking),
nor the duration of activity very accurately. With physiological
signals (e.g., heart rate), the interindividual difference is also
large, which creates extra challenge for algorithm development.

D. Sensors

In this study, accelerometers proved to be the most
information-rich and most accurate sensors for activity recogni-
tion. They react fast to activity changes and they reflect well the
type of activity. Placement of accelerometers in this study on
rucksack straps and on wrists did not make it possible to separate
sitting and standing from each other, because there was no clear
change in the signal properties between these two activities.
Different approaches were tried for detection of these activities.
For example, it was assumed that the direction of a test person’s
body would stay more stable during sitting than during standing.
However, the recorded data did not show such behavior. In the
future, we will consider placing one accelerometer on the waist
to enable discrimination of sitting from standing.

Even though gravity and magnetic flux are fundamentally
different measures (e.g., direction), our data showed that for ac-
tivity recognition, the information content of accelerometer and
magnetometer signals is similar. Our 3D magnetometer and 3D
accelerometer were located in one box, attached on a rucksack
strap. When visually comparing the signals recorded during dif-
ferent physical activities, the magnetometer signal looks like a
low-pass-filtered version of the accelerometer signal.

E. Temporal Connections Between Activities

Temporal connections between activities were not thoroughly
studied in this work. In this study a median filter was used
to remove very short activities from classifier results. Use of
median filtering degrades the classification accuracy of the
short-duration activities, which may be a problem in some ap-
plications. However, when aiming for a daily summary of activ-
ities, this is not a major problem. Utilizing the temporal history
of activities might improve accuracy of activity recognition.
Probabilistic models can be used to help in classification pro-
cess, especially in transition from one recognized activity type
to another. In [20] Markov chains have been used to assign
probabilities to state transfers from one activity to another. The
model is used to inhibit class change based on raw data only.
If the transition has low probability, more requests from raw
data classification are required before the change is accepted by
the overall classification system. The drawback of this approach
is that it requires a lot of realistic training data and probably
also user-specific training data. However, in the future we will

Fig. 6. Portions of activities in annotation (left) and results of custom deci-
sion tree (right). Activities clockwise from 12 o’clock: lying, rowing, cycling,
sitting/standing, running, Nordic walking, walking.

consider using a probabilistic model to reduce the number of
(short-duration) false recognitions.

F. Rucksack

Weight of the rucksack with the equipment was approxi-
mately 5 kg. This felt like a normal rucksack. Before selecting
the rucksack, we also tried a belt bag, but compared with the
rucksack, it felt uncomfortable with the equipment. In the data
collection, the rucksack may have some effect on the activities,
but it was not considered disturbing by the volunteers. Note that
in this study placement of the chest acceleration sensor on the
rucksack strap may affect the signal during dynamic activities,
like running, because the rucksack moves slightly. However,
in overall activity classification, the effect caused by rucksack
movement is not significant.

G. Application: Activity Diary

Automatic classification of everyday activities can be used for
promotion of a healthier lifestyle, e.g., with an “activity diary.”
The user could, e.g., in the evening check what kind of activities
he has done during the day and how much time he has spent on
each activity. Fig. 6 depicts the portions of our data in the form
of an “activity diary.”

V. CONCLUSION

Results of activity recognition were encouraging. With care-
ful selection and placement of sensors, several everyday activ-
ities can be automatically recognized with good accuracy by
using feature extraction and classification algorithms. Informa-
tion about the daily activities can be used in consumer products
to show the user his daily activity diary. This would increase the
user’s awareness of his daily activity level and promote a more
active lifestyle.
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Abstract—Physical activity has a positive impact on people’s
well-being, and it may also decrease the occurrence of chronic
diseases. Activity recognition with wearable sensors can provide
feedback to the user about his/her lifestyle regarding physical ac-
tivity and sports, and thus, promote a more active lifestyle. So far,
activity recognition has mostly been studied in supervised labora-
tory settings. The aim of this study was to examine how well the
daily activities and sports performed by the subjects in unsuper-
vised settings can be recognized compared to supervised settings.
The activities were recognized by using a hybrid classifier com-
bining a tree structure containing a priori knowledge and artificial
neural networks, and also by using three reference classifiers. Ac-
tivity data were collected for 68 h from 12 subjects, out of which
the activity was supervised for 21 h and unsupervised for 47 h.
Activities were recognized based on signal features from 3-D ac-
celerometers on hip and wrist and GPS information. The activities
included lying down, sitting and standing, walking, running, cy-
cling with an exercise bike, rowing with a rowing machine, playing
football, Nordic walking, and cycling with a regular bike. The to-
tal accuracy of the activity recognition using both supervised and
unsupervised data was 89% that was only 1% unit lower than the
accuracy of activity recognition using only supervised data. How-
ever, the accuracy decreased by 17% unit when only supervised
data were used for training and only unsupervised data for val-
idation, which emphasizes the need for out-of-laboratory data in
the development of activity-recognition systems. The results sup-
port a vision of recognizing a wider spectrum, and more complex
activities in real life settings.

Index Terms—Activity classification, context awareness, physi-
cal activity, wearable sensors.

I. INTRODUCTION

CHRONIC noncommunicable diseases (NCDs) cause 60%
of global deaths and the figure is expected to rise to 73%

by 2020 [1]. Such diseases include, for example, cardiovascular
diseases, diabetes, osteoporosis, and certain types of cancer.
Physical inactivity is a major risk factor for these deaths, and
it is estimated to cause 2 million unnecessary deaths per year.
There is, thus, an urgent need to promote more active lifestyle.

There is strong evidence that regular physical exercise de-
creases the risk of cardiovascular disease (e.g., [2]), which is
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the leading cause of death in many developed countries. Risk
factors associated with cardiovascular diseases include smok-
ing, obesity, and high blood pressure, the last two of which are
closely related to physical inactivity. Type II diabetes is strongly
associated with obesity that, in turn, has a well-known relation to
physical inactivity [3]. There is evidence that exercise improves
the physiological control of glucose metabolism [4]. Falls are
also a major health hazard to elderly people resulting often in hip
fracture requiring surgical operation and long rehabilitation. It
is suggested that muscle strength, neuromuscular coordination,
postural stability, steadiness of gait, and the structural properties
of bone all influence fall frequency [5]. Each of these can be
directly enhanced by physical training.

Estimating energy expenditure is a common way to assess the
activity level of a subject. Traditional devices for the estimation
of energy expenditure are not suited for unobtrusive ambulatory
monitoring. Recently, wearable devices have become available
for that purpose and studies have shown that accelerometer-
based estimation of energy expenditure can be obtained with
relatively good accuracy [6], [7]. However, energy expenditure
is only one important aspect of physical activity. An interna-
tional consensus statement regarding physical activity, fitness,
and health [8] identifies six areas affected by physiological ef-
fort: body shape, bone strength, muscular strength, skeletal flex-
ibility, motor fitness, and metabolic fitness. All of these have
their own distinct impact on an individual’s general well-being,
and thus, estimating energy expenditure alone is not sufficient
in order to assess the overall impact of the physical activities on
the individual’s well-being.

A more detailed analysis of physical effort can be obtained by
activity recognition, i.e., by detecting the exact form of activity
the subject is performing. Previous studies have applied activity
recognition, e.g., for elderly care [9]. We believe that another
important application domain for the activity recognition lies in
preventive healthcare (prevention of NCDs). In order to avoid
the vicious circle of illnesses and related reduced ability to
perform physical activities, the monitoring of the changes in
physical activity needs to start before the physical ability of an
individual starts to decline.

Accelerometers are currently among the most widely studied
wearable sensors for activity recognition, thanks to their accu-
racy in the detection of human body movements, small size,
and reasonable power consumption [10]. Recent reviews have
described the use of accelerometers in movement and activity
detection [10], [11]. In laboratory settings, the most prevalent
everyday activities (sitting, standing, walking, and lying) have

1089-7771/$25.00 © 2008 IEEE
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been successfully recognized with accelerometers [12]–[18].
However, the applicability of these results to out-of-laboratory
monitoring is unclear. Long-term out-of-laboratory monitor-
ing often means less-controlled user-annotated data collection,
which introduces several challenges such as the following.

1) Annotations of the data are more unreliable causing diffi-
culty in classifier training and also degrading classification
results.

2) People perform activities in many different ways that are
hard to categorize. For example, a person may lie down
on a sofa in a way that cannot be said to be either sitting
or lying.

In a few studies, data have been collected outside the labo-
ratory. In [16], 24 subjects spent approximately 50 min outside
the laboratory. Accelerometers were placed on sternum, wrist,
thigh, and lower leg. Nine patterns (sitting, standing, lying, sit-
ting and talking, sitting and operating PC, walking, stairs up,
stairs down, and cycling) were recognized from presegmented
data using similarity measures with a total accuracy of 66.7%.
In the same study, the accuracy in laboratory settings was 95.8%
illustrating the difficulties introduced by out-of-laboratory set-
tings. In [19], five biaxial accelerometers attached to hip, wrist,
arm, ankle, and thigh were used to recognize 20 everyday activ-
ities such as walking, watching TV, brushing teeth, vacuuming,
etc. Data were collected for 82–160 min from 20 subjects. Four
different classifier structures were used of which decision tree
provided the best results accuracies ranging from 41% to 97%
for different activities.

In our previous study on activity recognition [20], 16 test
persons went through an approximately 2 h recording session
with a supervisor during which the following activities were
executed: lying, rowing (with a rowing machine), cycling (with
an exercise bike), sitting, standing, running, Nordic walking,
and walking. The recognition accuracies for different activities
varied for the best classifier between 58% and 97%.

In this study, new data were collected that also contained
unsupervised out-of-laboratory period. Our aim was to study
the effects of such environment to the classification accuracy.

II. METHODS

A. Data Collection

The devices used in the data collection and their locations
on the body are illustrated in Fig. 1. Although this figure in-
cludes sensors from which data are not used in this study, they
are shown in the figure for more complete picture of the data-
collection system.

Acceleration signals were measured with ADXL202 ac-
celerometers (Analog Devices, Norwood, MA), and were stored
on a flash-card-memory-based, 19-channel recorder (Embla
A10, Medcare, Reykjavik, Iceland). Sampling frequency was
20 Hz, and the range of the sensor output was ±10 g. Location
information was stored on a Garmin eTrex Venture GPS receiver
(Garmin Ltd., Olathe, KA) once per 20 s. Accelerometers were
attached to their data-storage unit by cables. Cables were taped
to the body so that they did not restrict normal movements.
Also, the cables were placed so that it was possible to place the

Fig. 1. Data collection and annotation system. The sensors and devices rele-
vant for this study are printed in bold.

TABLE I
TEST PROTOCOL FOR DATA COLLECTION

rucksack with the data-storage unit on the floor, for example,
when sitting down.

Twelve subjects [aged 27.1 ± 9.2 years, body mass index
(BMI) 23.8 ± 1.9, ten males, two females] were recruited by
advertisements at a local university. A written consent was ob-
tained from each volunteer. Approximately 6 h of data were
collected with each subject. The 6 h measurement session was
further divided into two phases: 1) a supervised period with ex-
act scenario and accurate supervisor-made annotations and 2)
an unsupervised period with subject-made annotations. The test
protocol is described in Table I.

During the supervised data-collection session, the subject
was accompanied by a supervisor, who used a personal digital
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Fig. 2. Annotation application on PDA.

assistant (PDA) and a custom-made application to mark changes
in activity and context for reference purposes (Fig. 2). After
the supervised phase, the use of the PDA application was in-
structed to the test person, and he/she made the annotations
himself/herself throughout the unsupervised period.

Exercise bike and rowing machine were each used for 5 min
indoors. The user was given the freedom to choose a comfortable
pace in each activity. Cycling was performed outdoors with real
bikes. Most test persons used their own bikes. Football was
played in a nearby park. In practice, this meant kicking a ball
with the supervisor and running after the ball every now and
then, not real football game with 22 players. Nordic walking
is an activity that has recently become popular in northern and
middle Europe. In short, it is fast-pace walking using poles
similar to skiing poles. It also enables the training of the upper
body during walking. During the unsupervised period, many
people went to work or attend lectures. Some people performed
different activities such as bowling, driving a car, walking to
different places like library, cottage, etc. One person went home
and took a nap.

Fig. 2 depicts the annotation application [21]. In each panel,
the options are exclusive. The context value was changed by
tapping another value. “Activity” panel was used to mark the
true activity of the subject. “Location” was used to tell whether
the subject was indoors, outdoors, or in a vehicle. “Eating” de-
scribed eating and drinking in general. “Annotator” is “assistant”
during the supervised activities and “self” during the unsuper-
vised period. “Sync” was used to mark the start and end markers
for synchronization. For some annotated context, there was also
an option for transition (“∗” in the application UI) such as the
transition from sitting to standing, which was used only by the
supervisor. It was not in use during the free period, as marking
the transitions from one activity to another was considered too
challenging to be done by the subject alone while performing
the activities.

B. Signal Processing

Signal features were calculated for each second of the data
collection. Time-domain features calculated were mean, vari-

Fig. 3. Selected signal features during different activities in excerpt from the
supervised data. Panels from top to bottom: 1) peak frequency of up-down ac-
celeration (feature A); 2) range of up-down acceleration (feature B); 3) spectral
entropy of up-down acceleration (feature F); 4) speed; 5) activity: A) cycling;
B) walking; C) playing football; D) Nordic walking; E) running.

ance, median, skew, kurtosis, 25% percentile, and 75% per-
centile. Frequency-domain features included the estimation of
power of the frequency peak and signal power in different fre-
quency bands. Speed was calculated from GPS location data.
Spectral entropy SN [22] of the acceleration signals for the
frequency band 0–10 Hz was calculated as

SN (f1 , f2) =
−

∑f2
fi =f1

P (fi) log(P (fi))
log(N [f1 , f2 ])

(1)

where P (fi) represents the power spectral density (PSD) value
of the frequency fi . The PSD values are normalized so that
their sum in the band [f1 , f2 ] is 1. N [f1 , f2 ] is the num-
ber of frequency components in the corresponding band in
PSD.

The feature selection proceeded by identifying for each activ-
ity the feature having the best performance in discriminating the
corresponding activity from other activities. The performance
of each feature was evaluated by the area under the receiver
operator characteristic (ROC) curve.

Figs. 3 and 4 show examples of how different signal features
behave during different activities. The following signal features
were selected for activity classification:

1) peak frequency of the up–down acceleration measured
from the hip;

2) range of the up–down acceleration measured from the hip;
3) mean value of the up–down acceleration measured from

the hip;
4) peak frequency of the horizontal acceleration measured

from the wrist;
5) sum of variances of 3-D acceleration measured from the

hip;
6) spectral entropy of the up–down acceleration measured

from the hip;
7) speed measured from the GPS.
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Fig. 4. Selected signal features during different activities in excerpt from
the unsupervised data. Panels from top to bottom: 1) peak frequency of up-
down acceleration (feature A); 2) range of up-down acceleration (feature B);
3) spectral entropy of up-down acceleration (feature F); 4) mean value of up-
down acceleration (feature C); 5) activity: A) sitting; B) walking; C) standing.
Also, shorter segments with corresponding shades of gray represent the same
activities.

The following nine target classes were used for the activity
recognition: 1) lying; 2) sitting and standing (see Section IV
for the reason why these activities were combined into a single
group); 3) walking; 4) running; 5) Nordic walking; 6) rowing
with a rowing machine; 7) cycling with an exercise bike; 8)
cycling with real bike; and 9) playing football. Compared to our
earlier study, two activities were novel: cycling with a real bike
and playing football. Although cycling with a regular bike and
with an exercise bike are very similar activities, we wanted to
keep them as separate classes because in everyday life they can
be performed with different purposes: exercise bike is used only
for exercising aerobic fitness, whereas regular bike is often used
for transportation. Football was included to test the feasibility of
the system to detect a more complex type of activity, as football
comprises walking, standing, running, kicking the ball, etc.

Four different classifiers were used: 1) custom decision tree;
2) automatically generated decision tree; 3) artificial neural net-
work (ANN); and 4) hybrid model. Classifiers 1–3 were included
mainly for comparison purposes to evaluate the performance
of the classifier 4. For all classifiers, results were acquired by
12-fold leave-one-subject-out cross validation. Each classifier
had the same seven-signal features at their disposal. Data sample
order was randomized before the training phase. The following
describes the classifier structures in detail.

1) Custom decision tree: In custom decision tree, each de-
cision is made by a simple thresholding mechanism [20].
The structure of the tree was built using a priori knowl-
edge and our own intuitive modeling of different activi-
ties. The obtained tree had eight binary decision nodes.
The structure of the tree is depicted in Fig. 5. Specific
questions can be assigned to each of the numbered de-
cision nodes: a) footsteps? b) lying? c) running? d) cy-
cling? e) playing football? f) doing indoor exercise? g)
Nordic walking? h) rowing? The tree has been built so that
“walk” and “sit/stand” are default groups for any activity

Fig. 5. Structure of the custom decision tree and hybrid model.

the decision tree is not familiar with. For example, if foot-
steps are detected, but not the characteristics of running
or Nordic walking, the activity falls through the tree to a
class “walk”. Similarly, if no footsteps are recognized and
also none of the characteristics of lying, cycling, cycling
on exercise bike, or rowing, the activity falls to “sit/stand”.

2) Automatically generated decision tree: An automatically
generated decision tree was used in order to compare how
well the human-made rules and tree structure perform
compared to automatic classification. The tree was gen-
erated using a Matlab (MathWorks, Inc., Natick, MA)
Statistics Toolbox function “treefit.”

3) Artificial neural network (ANN): A multilayer perceptron
with a hidden layer of 15 nodes and with resilient back
propagation as the training algorithm was used as the ANN
classifier.

4) Hybrid model: As a novel method, we combined the best
qualities of the custom decision tree model and neural
networks. Our observations suggested that though im-
plementing a priori knowledge into a classifier structure
improved the results in general, it also resulted in sim-
pler rules, which degraded the recognition accuracy in
some aspects. Thus, the purpose was to achieve a model
that could combine the best properties of the human
a priori knowledge of the activities with the accurate
nonlinear classification properties of the ANNs. In the
hybrid model, the simple thresholding decisions made in
each decision node of the custom decision tree (Fig. 5)
were replaced by small multilayer perceptron networks
(size 7:5:1). Each node gave as output a value between 0
and 1. A value of 0.5 was considered the decision bound-
ary when selecting which branch of the tree to proceed.

III. RESULTS

The total amount of data used for the analysis was 68:28:32
(hh:mm:ss), 21:08:57 of which were supervised data and
47:19:35 were unsupervised. The data consisted of the follow-
ing percentages of activities: 1) lying 7.3%; 2) rowing 1.5%;
3) cycling with an exercise bike 1.4%; 4) sitting and standing
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TABLE II
SUMMARY OF THE ACTIVITY-RECOGNITION RESULTS USING BOTH

SUPERVISED AND UNSUPERVISED DATA FOR TRAINING AND TESTING

OF THE CLASSIFIERS (PERCENTAGES)

TABLE III
DETAILED ACTIVITY-RECOGNITION RESULTS OF THE HYBRID MODEL USING

BOTH SUPERVISED AND UNSUPERVISED DATA FOR TRAINING AND TESTING

OF THE CLASSIFIER (PERCENTAGES)

TABLE IV
DETAILED ACTIVITY-RECOGNITION RESULTS OF THE HYBRID MODEL

USING ONLY SUPERVISED DATA FOR TRAINING AND TESTING

OF THE CLASSIFIER (PERCENTAGES)

63.2%; 5) running 1.9%; 6) Nordic walking 2.8%; 7) walking
16.8%; 8) football 1.5%; and 9) cycling with a regular bike
3.6%. The classification results are summarized in Table II. The
results of the hybrid model are described in Table III. To assess
the importance and reliability of supervised and unsupervised
data sets, the following results were also calculated.

1) The total classification accuracy was calculated using only
supervised data both in training and testing of the model
(leave-one-subject-out cross-validation). The test was per-
formed in order to obtain activity-recognition results that
are comparable to those of the earlier studies with lab-
oratory data. The total classification accuracy was 90%,
increasing by 1% unit compared to the result obtained
by using all collected data in training and validation. The
results are shown in Table IV.

TABLE V
DETAILED ACTIVITY-RECOGNITION RESULTS OF THE HYBRID MODEL USING

SUPERVISED DATA FOR TRAINING AND UNSUPERVISED DATA FOR TESTING

OF THE CLASSIFIER (PERCENTAGES)

2) The supervised data were used for the training, whereas the
unsupervised data were used for the testing of the model.
The test was performed in order to assess the feasibility of
a scenario in which an activity-recognition device would
be trained with laboratory data and be used in out-of-
laboratory settings. The total classification accuracy was
72% decreasing by 17% unit compared to the result ob-
tained by using all collected data in training and validation.
Only four activities were annotated by the subjects during
the free period: lying down, sitting and standing, walking,
and cycling. The results are shown in Table V.

IV. DISCUSSION

Activity data were collected for 68 h from 12 subjects, out
of which the activity was supervised for 21 h and unsupervised
for 47 h. Activities were recognized from the data by using
3-D accelerometers on hip and wrist and GPS information. The
total accuracy of the activity recognition using both supervised
and unsupervised data was 89%. In comparison to our previous
study in which only supervised data were used and the total
accuracy of 86% was achieved [20], the results obtained here
show slightly improved performance.

The aim of the study was to assess the feasibility of activity
recognition in out-of-laboratory settings. The 1% unit difference
between the classification accuracy obtained using all data and
that obtained using only supervised data suggest that activity
recognition is also feasible in out-of-laboratory. However, the
17% unit decrease in the classification accuracy when only su-
pervised data were used for training and only unsupervised for
validation suggests that in order to obtain an activity-recognition
algorithm feasible in out-of-laboratory settings, it must also be
trained with annotated real-life data.

The hybrid model classifier proved to provide better results
than the reference classifiers. It confirms our hypothesis that
combining human a priori knowledge and the nonlinear clas-
sification process of neural networks may provide a basis for
activity recognition with even greater variety of activities. How-
ever, with ANNs, an important issue is the noise and inaccuracy
in the everyday activity data. For that reason, special care should
be taken to obtain an adequate learning rate for the ANNs, as a
very big rate can prevent the convergence of the model. As the
hybrid model provided the best classification results, mainly its
results are discussed in the following.

Cycling with an exercise bike and regular bike introduced
difficulties in this study. In our earlier study, we had measured
acceleration from the wrist and chest. In that study, cycling with

P2/5



ERMES et al.: DETECTION OF DAILY ACTIVITIES AND SPORTS WITH WEARABLE SENSORS 25

an exercise bike was detected with the accuracy of 75–82% [20].
In this study, an accelerometer placed on the hip could not pro-
duce a signal that could discriminate cycling and footsteps as
well. This can be observed, for example, in the result summary
in Table II. One can observe a clear tradeoff between the accu-
rate detection of the two cycling activities and the rest of the
activities. Automatically generated decision tree was the only
classifier that could recognize the two cycling activities with
nearly acceptable accuracy. However, this resulted in decrease
in the detection accuracies of the other activities as well as in
the total detection accuracy. Other classifiers concentrated on
the other activities, thus leading to a worse detection of the
cycling activities. The detection of cycling with a regular bike
outdoors has better accuracy, as the GPS signal provides addi-
tional information for this task.

Football playing was detected with 88% accuracy from the
supervised data that was a surprisingly high accuracy. How-
ever, it seems that the unsupervised period has included some
movements similar to football, which degraded the recognition
accuracy to 78% when all data were considered. Nevertheless,
we feel that the accuracy is encouraging for future research in
the recognition of more complex sports.

In supervised data, walking was detected with acceptable
accuracy of 81%. If Nordic walking and walking had been con-
sidered a single class, the recognition accuracy would have been
93%. Including the unsupervised period decreased the accuracy
with 10% unit for the hybrid model, which seems acceptable
because the exact annotation of walking in different day-to-day
situations is difficult as the walking periods may be of short
duration.

Lying was detected with 97% and sitting and standing were
recognized with 97% accuracy, as well. Seventy-eight percent of
the unsupervised data comprised lying, sitting, or standing. This
supports the assumption that the recognition of these passive ac-
tivities is of major importance, as everything else not belonging
to these activities can be considered more health enhancing.
Thus, as a simple index of subject’s overall activity, a percent-
age showing the amount of time spent in any other activity than
these three could be used. For that purpose, the recognition ac-
curacies obtained for these three activities in out-of-laboratory
settings are encouraging.

In our previous study, we had recognized that the absence
of accelerometers on the lower body (below waistline) was a
limitation in the sensor setup. This was especially noticed as the
inability to differentiate sitting and standing. For that reason, we
repositioned the 3-D accelerometer from the chest level to the
hip, as there were indications that such a placement could enable
the discrimination of these two activities [23]. However, it be-
came clear that, in our study, this discrimination was not possible
regardless of the accelerometer replacement. As the subjects in
our study wore sport clothes, the belt with the accelerometers
had to be placed on top of the clothes. For that reason, it was not
tightly connected to other clothes or the body, and the position
of the accelerometers did not stay fixed. It seems that in order
to obtain more precise acceleration information on hip, special
attention must be paid on the sensor location and attachment.
However, also such subject-dependent factors as body shape in-

fluence the sensor orientation on the waist. For that reason, the
accurate discrimination of sitting and standing using waist-level
accelerometry without user-specific training is complicated.

In the previous study, we used accelerometers with the sam-
pling frequency of 200 Hz. For the current study, we dropped the
sampling frequency to 20 Hz, which consumes less power. This
decision was also backed up by other studies [6], [24], suggest-
ing that such a sampling frequency should be enough. However,
this proved to be a wrong decision because the impulses pro-
duced, for example, by a foot hitting the ground during running
and a pole hitting the ground during Nordic walking diminished
notably, and as the signal features used for discriminating these
activities were based on the impulses, the activity-recognition
accuracy also decreased.

For this study, 2 g accelerometers were replaced by 10 g ones,
as we had noticed that the−2 to 2 g range is not sufficient during
vigorous exercise. In general, −10 to 10 g scale was enough for
the exercises on our protocol. Larger scale resulted in decreased
signal resolution, but it seems that the decrease had negligible
influence on the signal features.

Our future challenges include adjusting the activity-detection
algorithms to real-time performance and for mobile devices.
That way, the continuous monitoring of daily activities could be
performed unobtrusively, and the changes in the daily durations
of different activities could be reported that could motivate
the user to prevent chronic diseases associated with physical
inactivity.

ACKNOWLEDGMENT

The authors thank A. Ylisaukko-Oja, J. Vilmi, and P. Korpipää
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Abstract—Automatic estimation of physical activity using 
wearable sensors can be used for promotion of a healthier 
lifestyle. In this study, accelerometers and gyroscopes attached 
to ankle, wrist and hip were used to estimate intensity of 
physical activity. The estimates are compared to metabolic 
equivalent (MET) obtained from a portable cardiopulmonary 
exercise testing system. Data from common everyday tasks and 
exercise were collected with 11 subjects. The tasks include, e.g., 
ironing, vacuuming, walking, running and cycling on exercise 
bicycle (ergometer). The strongest linear correlation with 
metabolic equivalent was obtained with the tri-axial 
accelerometer attached to the ankle (r=0.86). 

I. INTRODUCTION 
CCORDING to World Health Organization (WHO), 60% 
of the world’s population fail to follow the minimum 

recommendation of 30 minutes moderate intensity physical 
activity daily [1]. Physical inactivity is a severe health risk in 
modern societies. It is known to contribute to many chronic 
diseases such as cardiovascular disease, type 2 diabetes, 
cancers and osteoporosis [2],[3]. Thus all measures 
promoting a more active lifestyle are welcome. In aging 
societies, promotion of a more active lifestyle means better 
quality life for a great number of people and reduced health 
care costs.  

One way to promote a healthier lifestyle is to develop 
methods that can automatically estimate physical activity or 
energy expenditure and show, e.g., a daily summary to the 
user. Intensity of physical activity and energy expenditure 
can be estimated objectively in many ways, e.g., with direct 
and indirect calorimetry, doubly labeled water, heart rate, 
temperature, ventilation, movement sensors, questionnaires 
and diaries [4]. Many of these methods are not applicable to 
long-term measurements in free-living conditions. 
Accelerometers have been used in many studies to estimate 
physical activity and energy expenditure in different tasks 
[4]-[8]. They have also been used for automatic recognition 
of daily activities [9]-[11]. However, use of gyro sensors 
(angular rate sensors) on estimation of physical activity or 
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energy expenditure has not been studied extensively. In this 
study, we compare the performance of accelerometer and 
gyro sensors attached to ankle, hip and wrist in estimating 
intensity of physical activities. These sensors can be used 
unobtrusively also in free-living conditions in long term.   

II. METHODS 

A. Data Collection 
Data were collected during common everyday tasks like 

household activities, walking, running and bicycling. The 
detailed list of tasks is given in Table I. The measurements 
were organized indoors in February 2007. 

 

  
The treadmill speeds and bike ergometer resistance were 
different for four user groups: male 25-35 yrs, female 25-35, 
male 50-60, female 50-60. The goal was to adjust the speeds 
so that they would be approximately equally strenous for 
these user groups. Estimate of a group’s maximal 
performance was taken from a table of normative values of 
VO2max with specific reference to age and sex [12]. The 
estimates were done by a sports testing professional.   

Three stand-alone, battery-operated data loggers with 
accelerometer (Kionix KXPA4, Kionix Inc., Ithaca, NY, 
USA) and gyro (XV-3500, Epson Toyocom Corp., Tokyo 
Japan) sensors were used to collect data. The data loggers 

Estimating Intensity of Physical Activity: A Comparison of 
Wearable Accelerometer and Gyro Sensors and 3 Sensor Locations 

J.Pärkkä, Member, IEEE, M.Ermes, K.Antila, M.van Gils, Member, IEEE, A.Mänttäri, H.Nieminen 

A TABLE I 
TASKS PERFORMED WITH 3 DATA LOGGERS AND A BREATHING GAS 

ANALYZER  

Task 
Durat

ion 
[min] 

1. Hanging laundry 2  
2. Ironing laundry 2 

3. Folding laundry 2 
4. Putting away laundry (on shelter) 2 
5. Vacuuming 5 
6. Walking stairs up 1 
7. Walking stairs down 1 
8. Walking and pushing shopping cart 5 
9. Walking and carrying bags (3 laps, bags 2.7 kg each) 5 
10. Walking (free pace) 3 
11. Running (free pace) 2 
12. Cycling on bike ergometer (65% of max performance) 5 
BREAK 20 
13. Walking on treadmill (35 % of maximal performance) 4 

14. Walking on treadmill (45 % of maximal performance) 4 
15. Walking on treadmill (55 % of maximal performance) 4 
16. Running on treadmill (65 % of maximal performance) 4 
17. Running on treadmill (75 % of maximal performance) 4 
18. Running on treadmill (85 % of maximal performance) 4 
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were attached firmly with special straps to wrist (non-
dominating hand) and ankle (same side as wrist sensor) and 
with belt on hip. These sensor locations were chosen, 
because they were seen realistic in everyday use. Sampling 
rate of 50Hz was used. The accelerometer has +/- 18g and 
the gyro sensor +/- 100deg/s dynamical range. The three 
data loggers were synchronized offline with markers on data. 
The markers were generated by piling the data loggers on 
each other and knocking them simultaneously on table.  

Reference data were collected with the portable 
cardiopulmonary exercise testing system (Metamax 3B, 
Cortex Biophysik GmbH, Leipzig, Germany). The Metamax 
data collection system is designed for exercise testing, thus 
the masks and equipment are light-weight, easy to carry and 
do not restrict movements. Clock of Metamax PC was 
synchronized in the beginning of each measurement session. 
The accuracy obtained was in the order of +/- 3 sec.  

11 subjects took part in the data collection. The subjects 
were students and employees of participating organizations. 
The study has been approved by local ethical committee. 
The subjects’ mean age was 38.6 (std 13.1), mean length 
170.3 cm (8.5), mean weight 67.5 kg (10.7) and mean BMI 
23.2 kg/m2 (2.6). Before a subject was allowed to participate 
in the study, he filled in a health questionnaire and went 
through a health check. Each measurement session was 
supervised by professional nurse.  

While supervising the measurement session, the nurse 
also annotated each task using an annotation application 
running on a PDA [13]. The application lists all task names 
with one radio button for each task plus a button for 
transition periods. Annotation of each task was turned on a 
few seconds after task start and turned off a few seconds 
before task end to avoid annotation of transition periods as 
tasks of interest. The PDA clock was synchronized with 
other clocks in the beginning of the measurement by tapping 
the screen simultaneously when the data loggers were 
knocked on table. 

The total amount of data collected with 11 subjects was 
10 h 7 min (in average about 55 min per case). The time 
spent in transition periods is not included in this figure. 

B. Signal processing 
The 50Hz signals from tri-axial accelerometers and gyro 

sensors were the starting points for estimation of metabolic 
equivalent. A modified version of the integral method [7] 
was used to compute the estimate for metabolic equivalent. 
The integral method takes absolutes of the 3D signals, 
integrates over the given period and sums the 3D signals into 
one signal (1)  
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,where ax, ay and az are the tri-axial sensor signals. We 
summed the 3 absolute values at each sample into one signal 
before integration. Before integration, the signal was also 
band-pass filtered (0.5 – 11 Hz) to highlight accelerations 

caused by human movements. The estimates were obtained 
by fitting a line on the data set (integral value vs. measured 
metabolic equivalent). The integral method was introduced 
in [7] and has been widely used since then in estimation of 
energy expenditure from accelerometer data.  

Unit of the metabolic equivalent is MET. One MET is by 
definition obtained at complete rest. The moderate intensity 
activities are those, whose intensity is 3-6 METs, thus 
consuming 3-6 times the energy consumed in rest. Such 
activities are typically leisure time walking and cycling. In 
this study, metabolic equivalent from Metamax was used as 
target value. One MET equals 3.5 ml of consumed oxygen 
per kg per minute (1 MET = 3.5 ml/kg/min VO2). Thus, the 
value is more convenient than VO2 (oxygen consumption, 
l/min), because it is relative to subject’s own resting 
metabolic rate and takes into account the subject’s body 
weight. This makes it easier to pool together data from 
different subjects. As metabolic equivalent is obtained from 
a breathing gas analyzer, it is a breath-by-breath value, thus 
no regular sampling is available.  

To find a period of each task, where the oxygen uptake 
represents well the true intensity of physical activity without 
the previous activities affecting too much the value, a 30-
second “steady state” period of each task was selected for 
comparison with metabolic equivalent. The period used in 
comparison is the 30 last seconds of each task as taken from 
the annotation. The median of metabolic equivalent in this 
30-sec period is used as reference.  

III. RESULTS 
Pearson linear correlation was computed between the 

estimates and measured metabolic equivalent. The MET 
estimate was calculated using the integral method separately 
for ankle, hip and wrist sensors. Table II summarizes the 
results. The correlations are also depicted in Fig 1 for each 
sensor type and sensor location. 

 
The best correlation, r=0.86, was obtained using the ankle 

acceleration sensor. This comparison comprised 156 of max 
198 tasks (11 subjects, 18 tasks each). The missing tasks 
were due to hardware problems. Also visually assessed, the 
data seem to have rather a nice linear relationship. The RMS 
error between linear fit and data was 1.17 MET.  

The measured MET and estimated METs from different 
sensors and sensor locations are plotted task-wise in Fig 2. 
Measured METs are given task-wise in Table III for 
different age and gender groups.  

TABLE II 
NUMBER OF TASKS, PEARSON CORRELATION AND RMS ERROR 

BETWEEN MEASURED MET AND MET ESTIMATES 

 Acc 
Ankle 

Acc 
Hip 

Acc 
Wrist 

Gyro
Ankle 

Gyro
Hip 

Gyro
Wrist 

N 163 177 178 163 177 178 
r 0,86 0,80 0,81 0,84 0,69 0,48 
RMSE 
[MET] 

1,21 1,42 1,40 1,32 1,71 2,09 
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Fig. 1 Measured MET (x) vs. estimated MET (y) from accelerometer 
and gyro sensors. Sensor locations are ankle, hip and wrist. The lines 
across the plots show the output of an ideal estimator. 
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Fig. 2 Task-wise mean of measured METs and estimates (filled circle: 
measured MET, open square: estimate from accelerometer, asterisk: 
estimate from gyro sensor. Sensor locations are ankle (topmost), hip 
(middle) and wrist (bottom).  Names for task numbers can be found in 
Tables I and III. 

 

IV. DISCUSSION 
The best sensor location for estimating MET was ankle 

(Table II, Fig 1, Fig 2). Wrist and hip gave smaller linear 
correlations. This was a clear, but slightly surprising result, 
since many studies have concluded that accelerometers 
attached to human trunk instead of extremities should give 
best estimates of energy expenditure. The reason for the 
different result might lie in task set used. All tasks in our 
data set are performed in standing posture and in most tasks 
feet also do most of the work. Our data set does not include 
activities that heavily involve hand movements. Also 
carrying bags involves more foot movements than hand 
movements although hands do static work in that task. 

Crouter et al. [5] used a hip actigraph to estimate energy 
expenditure. They suggest use of two different regression 
equations for different activities. They divided activities into 
low-variability (e.g. running) and high variability signals 
(e.g. household activities). With our data set, one linear fit 
gave a good estimate for ankle signal (Fig 1). In our study, a 
constant value would represent low activity (high variability) 
task estimates very well, when hip or wrist accelerometers 
are used. Gyro sensors on the other hand are more sensitive 
to small intensity changes in low activity tasks. 

Task-wise analysis (Fig 2.) of accelerometer estimates 
reveals that the estimates obtained with ankle accelerometer 
perform rather well in all other tasks except walking stairs 
down (7) and cycling (12). This is probably due to lack of 
steps in cycling (spinning does not produce similar 
accelerations), and effect of walking stairs up before walking 
down (duration of these activities was too short, previous 
activity affects measured MET value). Wrist and hip 
accelerometers, on the other hand, react only to tasks 
involving running. Other tasks are given more or less a 

TABLE III 
MEASURED METABOLIC EQUIVALENTS (MET) FOR MALES IN AGE GROUP 

25-35, FEMALES 25-35, MALES 50-60 AND FEMALES 50-60 (N=4,3,2,2, 
RESPECTIVELY)  

Task 
M 
25-
35 

F  
25-
35 

M 
50-
60 

F      
50-
60 

1. Hanging laundry 2,5 2,4 3,1 2,9 
2. Ironing laundry 2,1 2,2 2,4 2,4 
3. Folding laundry 2,3 2,0 2,6 2,7 
4. Putting away laundry (on shelf) 2,6 2,4 2,8 3,2 
5. Vacuuming 3,4 3,3 3,0 4,2 
6. Walking stairs up 5,0 4,0 4,6 5,5 
7. Walking stairs down 5,6 6,4 6,2 5,2 
8. Walking and pushing shopping cart 4,0 4,5 2,9 4,0 
9. Walking and carrying bags  4,5 5,5 4,1 5,0 
10. Walking  4,3 5,4 3,9 4,8 
11. Running  9,5 7,6 8,7 8,3 
12. Cycling on bike ergometer (65%) 8,1 7,2 5,9 4,8 
BREAK     
13. Walking on treadmill (35 %) 4,2 3,4 3,6 3,5 
14. Walking on treadmill (45 %) 4,9 4,1 3,7 4,0 
15. Walking on treadmill (55 %) 6,0 4,8 4,7 4,2 
16. Running on treadmill (65 %) 8,9 6,6 7,1 5,4 
17. Running on treadmill (75 %) 9,9 7,5 7,5 6,4 
18. Running on treadmill (85 %) 10,6 8,2 8,2 7,8 
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constant estimate of MET with wrist and hip accelerometers.  
Summary of task-wise analysis is provided in Table IV. 

Task-wise analysis of gyro sensor estimates (Fig 2.) 
shows the sensor attached on ankle gives second best 
estimate (r=0.84) of MET after ankle accelerometer. Ankle 
gyro signal integral tends to overestimate intensity of 
walking (tasks 8-10, 13-15) and underestimate intensity of 
running (tasks 11, 16-18) more than ankle accelerometer. 
Intensity of cycling is heavily underestimated also with 
ankle gyro.  

Hip gyro gives an accurate estimate of all tasks involving 
walking (tasks 5-10, 13-15). It also gives accurate intensity 
estimate of running with free pace (task 11). However, it 
underestimates intensity of running on treadmill and cycling. 
It also overestimates intensity of household activities.  

Wrist gyro has a rather distinct profile from all other 
sensor-location combinations. It gives accurate intensity 
estimates for vacuuming, walking stairs up, walking and 
pushing shopping cart. It overestimates intensity of 
household activities (tasks 1-4) and walking activities (tasks 
10, 13-15). It underestimates intensity of running (tasks 11, 
16-18), cycling, walking stairs down and walking and 
carrying bags. It clearly reacts on all periodic hand 
movements (e.g., tasks 10-11, 13-18). 

Measured metabolic equivalents are listed in Table III for 
males and females and for age groups 25-35 and 50-60. 
Household activities (tasks 1-5) generally do not reach the 
level of moderate intensity (3-6 MET) physical activity, 
except vacuuming. The laundry activities done were 
considered rather easy compared to “real” laundry work. 
These tasks were also short in duration. Their intensity in 
free living conditions is probably higher than what was 
measured in this study. Walking in different forms (free 
pace, with bags, with shopping cart, stairs) are typical 
moderate intensity activities. Running in general exceeds the 
intensity defined as moderate intensity. It must be kept in 
mind that to gain the positive health effects, the 30-min-
moderate-intensity activity should be done at least in periods 
of 10 minutes continuous activity. When exercising longer 
or harder than moderate intensity, more health benefits can 
be obtained. When comparing age and gender groups, it is 
notable that the treadmill speeds in female groups and 
especially in the female 50-60 group were not as demanding 
as the speeds in male groups. 

 

 

  CONCLUSION 
This study gave us valuable information on correlation of 

wearable sensor signals and intensity of different physical 
activities. Based on the results of this study, a larger study 
with more subjects is started.  
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Personalization Algorithm for Real-Time Activity
Recognition Using PDA, Wireless Motion

Bands, and Binary Decision Tree
Juha Pärkkä, Luc Cluitmans, and Miikka Ermes

Abstract—Inactive and sedentary lifestyle is a major problem in
many industrialized countries today. Automatic recognition of type
of physical activity can be used to show the user the distribution of
his daily activities and to motivate him into more active lifestyle.
In this study, an automatic activity-recognition system consisting
of wireless motion bands and a PDA is evaluated. The system clas-
sifies raw sensor data into activity types online. It uses a decision
tree classifier, which has low computational cost and low battery
consumption. The classifier parameters can be personalized online
by performing a short bout of an activity and by telling the system
which activity is being performed. Data were collected with seven
volunteers during five everyday activities: lying, sitting/standing,
walking, running, and cycling. The online system can detect these
activities with overall 86.6% accuracy and with 94.0% accuracy
after classifier personalization.

Index Terms—Binary decision tree, classifier personalization,
real-time activity recognition.

I. INTRODUCTION

R EGULAR physical activity is known to produce long-term
health benefits. In 1995, the World Health Organization

(WHO) reported that 60% of the world’s population fails to
achieve the minimum recommendation of 30 min moderate in-
tensity physical activity daily [1]. In a recent study [2], compli-
ance with physical activity recommendations was assessed with
78 postal workers in the U.K. Only 10% of the participants suc-
ceeded in complying with the 30-min daily recommendation.
Today’s sedentary lifestyle and parents’ habits also affect the
children. In a recent study [3], 17% of the 7-year-old Finnish
school children were overweight and 5% were obese. Thus, the
benefits of a more active lifestyle should be emphasized not
only among the working-age population, but also among chil-
dren and elderly. Physical activity guidelines for Americans [4]
were recently published to promote physical activity. The new
guidelines recommend 60 min of physical activity daily. The
recommendation also emphasizes that the daily physical activ-
ity should include 1) aerobic exercise; 2) muscle-strengthening
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exercise; and 3) bone-strengthening exercise. The guidelines are
important in educating people about the level of physical activ-
ity required to achieve health benefits. However, still there is a
clear need to motivate people to start exercising and to continue
exercising regularly.

Methods for objectively measuring the level of physical ac-
tivity have focused traditionally on the indirect measurement or
assessment of energy expenditure. Several methods have been
developed to assess the energy expenditure with unobtrusive
sensors as part of everyday life (e.g., step counters and heart
rate monitors). Accelerometers have been shown to be especially
suitable for estimating the human movement [5]. However, more
research is needed to objectively measure the type of activity
(e.g., aerobic, muscle-strengthening, and bone-strengthening).
Previous studies have shown that it is possible to infer the daily
distribution of activities into different activity types with good
accuracy using offline [6]–[8] and online [9] methods based on
accelerometer measurements.

Methods commonly used for activity classification were re-
cently reviewed in [10]. Methods like artificial neural networks,
support vector machines, K-nearest neighbor, decision trees,
Bayesian classifiers, etc., are commonly used, but no single clas-
sification scheme has proven to be superior in this task. When
porting the activity-recognition algorithms from PC into mobile
devices, complexity of the algorithm becomes an issue. A com-
plex algorithm consumes more time and more processing power.
In our recent study [11], we compared different classification
algorithms running on a mobile phone. The results show that
very simple classification algorithms outperform more complex
algorithms on a battery-powered device. The battery lifetime of
an activity-recognition application running with a simple algo-
rithm is significantly longer than with an algorithm requiring
intensive computation. However, when using a simple classifi-
cation algorithm, the features used as inputs to the classifier have
to be carefully selected to maintain good classification accuracy.

In this study, we report results of an activity-recognition al-
gorithm based on a decision tree classifier to automatically rec-
ognize physical activities on a portable device, online. We also
report results of a personalization algorithm used to update the
decision tree threshold values with user’s own data. The per-
sonalization represents a situation, where a customer buys a
device, whose algorithm uses default parameters that have been
trained to give optimum performance for average users. After
buying the device, the user might be interested in personalizing
the activity-recognition algorithm to achieve better recognition
accuracy. This procedure is necessary, especially, for people

1089-7771/$26.00 © 2010 IEEE
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Fig. 1. PDA with annotation screen of activity recognition software.

performing the activities in a different way (e.g., different pace
or intensity) than the default users.

II. METHODS

A. Data Collection

The goal of our data collection was to evaluate the activity-
recognition system running on a portable device and the useful-
ness of the personalization feature in improving the classifica-
tion accuracy. The central device in data collection and activity
recognition is a personal digital assistant (PDA) (HTC P3300,
HTC, Taiwan). The PDA is running an application that is based
on an annotation application used in earlier studies [12] (see
Fig. 1). In addition to annotation functions, the current applica-
tion receives data over Bluetooth connection, computes feature
signals from raw data online, classifies the data in second-by-
second basis online, and stores the data on a memory card. When
the personalization feature is used, the user can tell the system
which activity he is performing, by annotating his activity type
with start and end times using the pen stylus.

The human movements were quantified with Nokia wire-
less motion bands [13] using the 3-D accelerometer signal and
Bluetooth connection for data transfer to the PDA (see Fig. 2).
Fifty Hertz of sampling rate was used with accelerometers. Data
were collected with wireless motion bands attached to volun-
teers’ both ankles and wrists. The wireless motion bands were
attached using velcro straps. The velcro straps were adjustable
so that firm attachment was possible for all volunteers.

Fig. 2. Wireless motion band attached on ankle.

TABLE I
ACTIVITIES DURING EVALUATION

The activity-recognition system was evaluated with seven
volunteers. Median volunteer age was 27 yrs (range 4–37 yrs),
and median length was 180 cm (range 92–187 cm) (see Table V).
The volunteers performed six activities according to the activity
plan (see Table I) and annotated these using the PDA.

B. Feature Extraction and Classification

Four features were computed from the raw sensor data. These
were 1) intensity of highest peak in power spectral density
(PSD); 2) signal average; 3) signal spectral entropy; and 4) sig-
nal variance. The time-domain features were computed from the
most recent 255 samples (5 s), and the frequency-domain fea-
tures were computed from the same 255 samples and one added
zero for efficient fast Fourier transform (FFT) implementation
with 256 samples. In our earlier study, we found that features
computed from an ankle sensor signal represent the activity type
very well, better than those attached to wrist or hip [14]. Com-
bination of the ankle sensor data with other sensor data did not
improve classification accuracy. Thus, only ankle sensor data
are used for computing the feature signals. Furthermore, only
the vertical direction of the 3-D sensor is used. This has the
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Fig. 3. Binary decision tree used for activity recognition on PDA.

Fig. 4. Effect of personalization. Variance of volunteers’ data in node 4,
which separates walking and running. Bars represent training data, and line
plots represent the individual data (leave-one-out cross-validation). Line plots
have been multiplied with 3 to make them better visible. Data during walking
is seen on the left as open bars and thick line. Running is represented on the
right as filled bars and thin line. Cases (a)–(e) are adult data, cases (f) and (g)
are child data. The ages of cases (a)–(g) are 37, 37, 27, 28, 24, 4, and 8 years,
respectively. Vertical lines show node 4 threshold, dotted vertical line is the
original threshold obtained with training data, and the solid line is that after
personalization.

advantage that the activity-recognition system is simple and can
be implemented with small amount of rather simple sensors.

Structure of the binary decision tree used for automatic ac-
tivity recognition with PDA includes four nodes (see Fig. 3).
The tree is structured so that there is one threshold value in
each node. Feature signal samples with values larger than the
threshold fall into the right branch, while those smaller than
the threshold fall into left branch. Node 1 utilizes intensity of

TABLE II
ONLINE, SUPERVISED PERSONALIZATION ALGORITHM FOR UPDATING

DECISION TREE THRESHOLDS

the highest peak in PSD to discriminate activities containing
regular movements from static activities. Node 2 utilizes signal
average to discriminate upright positions from positions in hor-
izontal direction. Node 3 discriminates cycling from walking
and running with the help of spectral entropy. Cycling produces
one peak in PSD without harmonics, while walking and run-
ning produce a peak with multiple harmonics. The harmonics
increase signal entropy in walking and running. Node 4 utilizes
signal variance to discriminate walking from running. Sitting
and standing were combined into one activity, because they
both represent static activity with low energy consumption.

A personalization algorithm was developed and used to im-
prove classifier accuracy. The algorithm searches for optimum
decision boundary between the activities falling left and right
in each node (see Fig. 4). When using the device for automatic
activity recognition, the user can annotate his activities and thus
personalize his algorithm online. The personalization algorithm
takes 3–10 min of new data with annotation and uses that for
updating the thresholds in each node. The updating rules are
given in Table II.

III. RESULTS

All data from the seven volunteers were used in evaluation.
Leave-one-subject-out cross-validation was used in training and
testing the classifier. Thus, data of one volunteer was left out
and threshold values were defined based on the data from six
volunteers. The obtained classifier was then tested on the sub-
ject’s data that were left out earlier. The same procedure was
repeated for all volunteers. Confusion matrix was computed by
summing the seven confusion matrices together.

The original confusion matrix as obtained without personal-
ization shows a rather good overall performance to other activ-
ities, except walking (see Table III). The original accuracy is
86.6%. This is the normalized accuracy, meaning that each ac-
tivity has equal weight even if they would have different amount
of samples.

The confusion matrix after personalization shows an im-
proved accuracy (see Table IV). The accuracy after personal-
ization is 94%.

Individual classification accuracies for each volunteer in orig-
inal stage and after introducing data for personalization were
computed (see Table V). Data for personalization are presented
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TABLE III
CONFUSION MATRIX OF ORIGINAL DECISION TREES [IN PERCENTAGE]

TABLE IV
CONFUSION MATRIX OF PERSONALIZED DECISION TREES [IN PERCENTAGE]

TABLE V
INDIVIDUAL CLASSIFICATION ACCURACIES IN ORIGINAL STAGE AND

AFTER INTRODUCTION OF EACH NEW SET OF PERSONAL

TRAINING DATA [IN PERCENTAGE]

TABLE VI
MISSING SAMPLES PER MINUTE

to the algorithm one activity at a time (about 5 min of annotated
data) and accuracies are computed after introduction of each
new activity.

Some packets were lost due to the wireless data transfer.
The number of missing samples per case ranges from 0.01% to
2.02% (see Table VI). Overall, 0.43% of samples are missing
on each minute of the data received over the wireless Bluetooth
connection.

IV. DISCUSSION

A simple and effective online classifier for activity recog-
nition using wireless sensors and a PDA was presented. The
classifier is accompanied with a personalization algorithm. The
selected classifier, a binary decision tree, is an effective algo-
rithm, requiring only a few comparisons and thus consuming
very little battery power compared to more complex classifiers.

Fig. 5. Missing samples in one recording. In each second, 50 new samples per
channel are expected to arrive over the wireless Bluetooth connection. The figure
shows two layers of missing data. (Top panel) Number of samples missing, when
some packets are received (short breaks). (Bottom panel) Number of seconds
with no incoming packets (longer breaks). In the bottom panel, bars are placed
on the time, when the next packets after a break are received.

Despite of its low computational cost, it can produce decent
classification accuracy with carefully selected features.

The binary decision tree algorithm has been found very effi-
cient, requiring only simple comparisons and doing classifica-
tion rapidly [15]. A decision tree classifier can classify many
orders of magnitude faster than most classifiers that depend
on distance calculation between input pattern and stored exem-
plars [16]. During classification, a decision tree consumes very
little memory.

In this study, the original classification accuracies for static
activities are almost perfect. Also cycling can be detected almost
perfectly. Walking and running however are being mixed. One
reason for this is that some people ran with very low speed and
with very low step, so that the normal acceleration impact when
the heel hits the ground in running does not appear in the data.
In a way, it is thus justified to say that the activity performed is
walking instead of running. Some part of activity annotated as
walking is also recognized as sitting or standing. In this study,
this is only true in cases when the volunteer had to stop, e.g.,
because of traffic lights.

The personalization algorithm improves accuracy on average
with 7.4%. Thus, there is a trend that personalization improves
classification accuracy; however, the dataset is too limited to
prove statistical significance. Interestingly, with all except case
3, introduction of personal walking data first decreases classifi-
cation accuracy. The decrease is corrected by introducing more
activities (cycling, running) later. However, it gives an indica-
tion that it is advisable to introduce personal data with multiple
activities instead of just one.

The poor classification accuracy of case six data is due to
lots of short connection breaks (see Tables V and VI). The per-
sonalization algorithm finds the optimal threshold values, but
cannot compute features when data are missing. Wireless trans-
mission of data to PDA is not as reliable as data transfer with
wired connection. The sensor indexed measured samples with
a running index from 0 to 254, thus in blocks of approximately
5 s. We experienced two types of breaks: short breaks of less
than 5 s and longer breaks leading to no incoming packets from
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the sensor (see Fig. 5). When data are collected with multiple
sensors simultaneously, the breaks seem more common than
when using only a couple of sensors.

Currently, the bottleneck in wide utilization of such activity-
recognition systems is the battery consumption. An effective
classifier limits battery consumption of the mobile device, but
one problem remains. Wireless transmission of data from sensor
unit to the mobile device consumes too much power. Currently,
the battery in wireless motion bands drains in 0.5–1 h. It is not
yet enough for getting the whole-day distribution of activities.

V. CONCLUSION

A simple and effective decision tree classifier and a personal-
ization algorithm were implemented on PDA. The online system
can detect the most common daily activities with overall 86.6%
normalized accuracy and with 94.0% normalized accuracy after
classifier personalization.
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I. Korhonen, “Activity classification using realistic data from wearable
sensors,” IEEE Trans. Inf. Technol. Biomed., vol. 10, no. 1, pp. 119–128,
Jan. 2006.
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Abstract—Long-term monitoring of health is essential in 
many chronic conditions, but automatic monitoring is not yet 
utilized routinely with mental stress. Accelerometers, 
magnetometers, ECG, respiratory effort, skin temperature 
and pulse oximetry were used with 12 health volunteers in 
this study for monitoring 1) heavy mental load, 2) normal 
mental load, 3) walking, 4) running and 5) lying. Heavy 
mental load consisted of a 20-min IQ test and normal mental 
load was represented by reading a comic book. Automatic 
feature selection using sequential forward search was used to 
select the best features for classification of the five activities. 
Normalized heart rate, utilizing activity context information 
was found to be the most powerful feature for discriminating 
heavy mental load from normal. Classification accuracy for 
all 5 activities was 89% with a custom decision tree and with 
a k-nearest neighbor classifier and 85% with an artificial 
neural network. 

I. INTRODUCTION 
ONG-TERM MONITORING OF HEALTH is essential in 
chronic conditions such as hypertension [1] and 

diabetes [2]. Monitoring of blood pressure helps people 
with hypertension to administer medication better. 
Monitoring of blood glucose helps people with diabetes to 
manage their health, e.g., with medication, diet and 
exercise better. However, the wellbeing of an individual 
comprises not only physiological, but also psychological 
and social factors. 

Stress and burnout are major public health problems in 
many industrialized countries. In Finland, in the year 2008 
mental disorder was the most common reason for 
disability pension [3]. OECD estimated that on average 
one third of disability pensions are caused by mental 
health problems in 13 OECD countries [4].  

Burnout is a psychological consequence of prolonged 
work stress and it has been reported to co-exist with 
physical and mental disorders. It has been found to predict 
disability pensions [5]. Recently, burnout was also found 
to be related with all-cause mortality in people under 45 
years of age [6]. The key work factors affecting 
psychological ill health are long hours worked, work 
overload and pressure and the effects of these on personal 
lives, lack of participation in decision making, poor social 
support, unclear management and work role [7]. Also, the 
work environment has also become mentally more 
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burdening, e.g., work intensity and number of complex 
tasks in work have increased [4]. In Finland, political 
decisions made to fight these trends are currently to 1) 
improve employee working capability and 2) support 
employees to continue longer at work [8]. 

Stress causes sympathetic responses like smaller heart 
rate variability (HRV) and higher blood pressure that help 
in coping with the difficult situation that requires fast 
reaction or high concentration. The sympathetic responses 
decrease as the stressful situation passes, e.g., during 
sleeping or holidays. Prolonged stress and insufficient 
recovery may lead to burnout and physical illnesses [9]. 

Currently stress is assessed using questionnaires like the 
Maslach Burnout Inventory [10]. Automatic monitoring of 
stress over a long term would help in early identification 
of stress and in earlier intervention. Automatic monitoring 
could help people to self-manage their stress better and in 
stress monitoring setting to reduce the burden caused by 
manual questionnaires. Comprehensive monitoring of 
stress requires monitoring of mental and physical load as 
well as recovery. 

Several studies have presented good accuracy detection 
of physical activities using wearable sensors [11][12][13]. 
Central methods for analysis have been reviewed in 
[14],[15]. Studies dealing with automatic detection of 
mental load using wearable sensors typically report signal 
feature characteristics during different mental loads 
[16],[17],[18], but do not yet proceed to automatic 
classification. Only a few studies show classification rates 
for identification of different mental loads using wearable 
sensors [19],[20]. Originating from affective computing 
and emotion research, somewhat similar studies have used 
electrodermal activity [21] and  electromyogram, 
electrocardiogram, skin conductivity and respiration 
signals [22] for recognition of psychological and 
emotional conditions.  

In our earlier studies, we have studied methods for 
automatic identification of physical activities [12][13][23], 
mental load and recovery [18] in out-of-lab conditions. In 
this study, we focus on identification of mental load using 
data from wearable sensors and show classification 
accuracies for five activities, including two activities 
involving mental load. Our hypothesis is that by 
combining measurements from many wearable sensors, it 
is possible to automatically recognize, not only physical 
load, but also mental load. By utilizing the information 
from automatic activity recognition (activity context) it is 
possible to improve automatic recognition rates for mental 
load. Using only, e.g., heart rate (HR) features for 
classification of mental load is error-prone, because also 
physical activity causes sympathetic response and, e.g., 
increases HR. 
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II. METHODS 

A. Data Collection 
The purpose of the data collection was to use different 

wearable sensors during mental and physical load and rest 
and to identify the most useful sensors, feature extraction 
methods and classification methods for automatic 
recognition of those activities. The data were collected as 
part of the study described in [12] and [13]. This study 
focuses on the analysis of data measured during mental 
load since that had not been covered in previous analyses.  

The data includes (Fig.1) 3D accelerations (Analog 
Devices ADXL 202E, Fs=20Hz) from hip and wrist, 3D 
compass data from hip (Honeywell HMC1023, Fs=20Hz), 
1-lead ECG (Embla A10, Fs=200Hz), respiratory effort 
using respiratory inductive plethysmography (RIP) sensors 
(Embla XactTrace, Fs=200Hz), skin temperature from 
armpit (YSI 409B, Fs=1Hz) and photoplethysmography 
(PPG) using a finger pulse oximeter (Embla XN oximeter, 
Fs=1Hz).  Volunteer activities were annotated using an 
annotation application running on a PDA [12]. Data were 
stored on a solid-state-memory recorder (Embla A10). The 
recorder was carried in a rucksack. 

Twelve healthy volunteers (10 males, 2 females) were 
recruited with ads at the local university.  Mean volunteer 
age was 27.1±9.2 yrs, range 19…49 yrs. Mean length was 
179.2±6.2 cm, range 167…190 cm. Mean weight was 
76.6±7.6 kg, range 60…85 kg. Mean body mass index 
(BMI) was 23.8±1.9 kg/m2, range 21.5….26.4 kg/m2. A 
written consent was obtained from each volunteer. 

Table I describes the activities done during the 
measurement sessions. The measurement session started 
with a 3-min rest in lying position (Fig. 2). Heavy mental 
load was caused with a 20-min IQ-test (intelligent 
quotient) consisting of completion of geometrical series.  

 

 
Fig.  1 Wearable sensors: 1) audio recorder for secondary annotation, 2) 
3D acceleration sensor box on wrist, 3) two ECG electrodes, 4) two RIP 
belts, 5) sensor box with 3D accelerometer and 3D magnetometer on hip, 
6) skin temperature sensor in armpit. 
 

TABLE I 
TARGET ACTIVITIES 

Activity Duration  
[min] 

Indoor activities  
Lying 3 
Heavy mental load:  sitting and doing IQ test on computer 20 
Lying 3 
Normal mental load: sitting and reading comics 5 
Lying 3 
Outdoor activities  
Walking in a park 5 
Running in a park 5 

 

 
Fig.  2 Photos of activities performed by volunteers: a) resting: lying, b) 
heavy mental load: doing IQ test on computer, c) normal mental load: 
reading comics, d) physical activities: walking and running in park. In b, 
oximeter can be seen on index finger. 

The IQ-test was performed on a computer in a sitting 
position. The participants were asked to solve as many of 
the tasks as possible during the 20-min period to get an IQ 
score. They were not told the score would not be needed 
for the study. After the IQ test the volunteers rested in a 
lying position for 3 minutes. Next, they continued with a 
task requiring normal mental load: reading comics in a 
sitting position at a desk. This was followed by a 3-min 
resting period. Outdoor activities were performed in a 
park, minimum 5 min of walking and minimum 5 min of 
running. Each user was given the freedom to exercise at a 
comfortable pace. 

B. Feature extraction and feature selection 
During the tasks, data were stored for offline analysis. 

Feature signals (Fs=1Hz) were computed from the 
collected raw data using Matlab (Matlab 2009b, 
Mathworks Inc., Natick, MA, USA). The computed 
features include time and frequency domain features, e.g., 
HRV, acceleration (e.g., min, max, mean, variance, peak 
frequency, peak power, power spectral density (PSD) 
entropy, estimated energy expenditure), compass bearings 
(e.g., inclination, declination) and respiratory effort (e.g., 
amplitude, std, entropy, mean freq., peak req., range). 
Sequential Forward Search (SFS) was used together with 
an artificial neural network (ANN) and K-nearest neighbor 
(KNN) classifiers to find the best features for 
classification. 

For automatic recognition of mental load, HR and HRV 
features were computed [24]. Four normalized heart rate 
features were computed: HRnormht, HRnormht_sit, 
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HRnormsit,walk, HRnormsit,run. The first two utilize the 
histogram transformation method [25], that computes HR 
distribution for a group of people (estimate of whole 
population) and for the individual and combines these by 
weighted sum. A cumulative sum is then computed from 
the combined histogram. The individual HR histogram 
was weighted with 0.7 and the group HR distribution with 
0.3. The cumulative distribution function is used to 
normalize the individual HR data to range 0…100%. HR 
data with all HR data in all activities was used for 
HRnormht. HR distribution of activities done in sitting 
position was used for HRnormht_sit. Histogram 
transformation was applied in leave-one-case-out manner, 
using data from 11 cases for group data and 1 for 
individual data.  

Activity context was used for HR scaling by computing 
the median HR during activities. In computation of 
HRnormsit,walk, median HRs during sitting and walking 
were used for linear scaling. Median HR during sitting 
received value 0 and median HR during walking the value 
100. In computation of the HRnormsit,run., the HR data was 
similarly scaled using median HR during sitting and 
running (1). 

sitmedianrunmedian

sitmedian
runsit HRHR

HRHR
HRnorm

,,

,
, *100

−
−

= (1) 

, where HR = stored HR data vector, HRmedian,sit = median 
HR during sitting activity, HRmedian,run = median HR during 
running activity and HRnormsit,run = normalized HR vector. 

C. Classification 
Three classifiers were used for automatic classification. 

ANN and KNN were used with SFS feature selection. The 
ANN was a multilayer perceptron network with the 
resilient propagation learning algorithm and with network 
size 5:7:5. The KNN classifier was used with five inputs 
and with parameter k=5. A custom binary decision tree 
was built for reference. No SFS was used with the custom 
decision tree. The classification results were computed 
using leave-one-person-out cross-validation (CV) for 
KNN and ANN. Custom decision tree is a fixed structure 
and thus CV was not used with it. Classification was done 
with 1-s time resolution, thus each second of the data was 
classified and compared with annotation. 

The structure of binary decision tree includes four nodes 
(Fig 3). Feature signal samples with values larger than the 
node threshold fall into the right branch, while those 
smaller than the threshold fall into left branch. The node 
decisions can be described as 1) footsteps?, 2) lying?, 3) 
mental stress? and 4) running?. Node 1 utilizes intensity of 
the highest peak in PSD of vertical hip acceleration 
computed with 10-sec window to discriminate activities 
containing regular movements from static activities. Node 
2 utilizes mean vertical hip acceleration to discriminate 
upright positions from positions in horizontal direction. 
Node 3 discriminates heavy and normal mental load found 
in sitting position using HRnormsit,run. Node 4 utilizes 
vertical hip acceleration range to discriminate walking 
from running. Custom decision tree features were selected 
with visual inspection of feature signals. 

 
Fig.  3 Custom decision tree structure 

III. RESULTS 
Data from all 12 cases were used in the analysis. Fig.4 

depicts the HR during normal mental load (read) and 
heavy mental load (IQ) in each case. Table II summarizes 
HRV features and respiratory effort SD during different 
activities and shows, which features are significantly 
different between normal and heavy mental load. 
Wilcoxon rank sum test was used with p<0.05 to test the 
null hypothesis that the feature distributions of heavy and 
normal mental load have equal median. Table III shows 
correct classification accuracies per activity for all three 
classifiers. Table IV shows the confusion matrix for the 
custom decision tree. 

The features selected by SFS for KNN were: 1) 
Maximum hip vertical acceleration, 2) HR normalized 
using sitting and running heart rates, 3) standard deviation 
of respiratory effort signal, 4) minimum hip vertical 
acceleration and 5) declination angle of hip magnetometer. 
The features selected for ANN were: 1) maximum hip 
horizontal acceleration, 2) estimate of energy expenditure 
using all 3 dimensions of hip accelerations, 3) minimum 
hip vertical acceleration, 4) HR normalized using 
histogram transformation and all sitting HR data, 5) peak 
power of horizontal hip accelerations computed with 10-
sec window. 

 

 
Fig.  4 HR distribution during normal (read) and heavy (IQ) mental loads 
in each case. 
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TABLE II 
MEAN (AND STD) OF HRV AND RESPIRATOTY EFFORT FEATURES DURING 
DIFFERENT ACTIVITIES (* INDICATES SIGNIFICANT DIFFERENCE BETWEEN 
NORMAL AND HEAVY MENTAL LOAD WITH P<0.05 AND USING WILCOXON 

RANK SUM TEST) 

Feature 
Lie Sit & 

norm 
load 

Sit & 
heavy 
load 

Walk 
Run 

Resp. Effort SD 1.4  
(0.6)  

1.3  *  
(0.3)  

0.7  *  
(0.2)  

2.1  
(0.3)  

16.3 
(5.8)

HR  67.5 
(2.3)  

68.4 
(1.5)  

77.3 
(1.5)  

102.7 
(3.9)  

160.8 
(4.7)  

SD2  100.0 
(24.7)  

100.5 
(25.0)  

72.7 
(17.6)  

57.8 
(18.8)  

18.5 
(16.9)  

SD1  46.1 
(7. 6)  

41.9 
(7.0)  

27.3 
(5.2)  

30.5 
(8.7)  

11.0 
(9.4)  

SD1/SD2 0.4 
(0.1)  

0.4 
(0.1)  

0.38 
(0.1)  

0.4 
(0.1)  

0.6  
(0.3) 

RMSSD  65.2 
(10.7)  

59.2 
(10.0)  

38.7 
(7.4)  

43.1 
(12.3)  

15.6 
(13.3)  

HR SD 78.6 
(17.2)  

77.7 
(17.2)  

55.1 
(12.4)  

47.9 
(14.4)  

15.6 
(13.7) 

HRnormsit,walk -8.1 
(5.9)  

-1.3  * 
(4.1)  

24.5  * 
(4.2)  

84.6 
(10.4)  

254.1 
(15.1) 

HRnormsit,run  -1.5 
(2.6)  

-0.5  * 
(1.7)  

10.0  * 
(1.6)  

37.2 
(4.4)  

101.6 
(5.3)  

HRnormht_sit  19.0 
(6.8)  

16.6  * 
(4.3)  

51.8  * 
(12.5)  

90.3 
(4.4)  

100.0 
(0.0)  

HRnormht  12.3 
(3.4)  

12.1  * 
(2.1)  

27.4  * 
(3.0)  

68.8 
(5.8)  

98.5 
(0.7)  

 

 
 

 
 

The inter-individual variability in HR was measured by 
computing means (and SD) of HR data during activities: 
lying 67.5 (14.0) beats per minute (bpm), normal mental 
load 68.4 (13.3) bpm, heavy mental load 77.3 (16.5) bpm, 
walking 102.7 (21.5) bpm and running 160.8 (10.0) bpm. 
These figures were computed by first computing the 
individual mean HR during each activity and then 
computing the mean and SD over all cases. 

IV. DISCUSSION 
Activities were classified using wearable sensor data into 

both mental and physical activities. The results show good 
accuracy for the classification of both physical and mental 
activities. For identification of physical activities, 
accelerometer data and features computed from them are 
the most useful ones. For identification of mental load, 
accelerometer, HR and respiratory effort features are 
useful. 

When looking at the HR data during normal and heavy 
mental loads, an elevated HR can be found in all 12 cases 
during heavy mental load (Fig.4, Table II). Even though 
the result is as expected, the consistency of the difference 
in all cases is remarkable. This suggests that automatic 
monitoring of mental load is feasible. Table II shows how 
well HRV and respiratory effort features can be used for 
classification. The normalized HRs and respiratory effort 
SD are the best indicators for differentiating heavy and 
normal mental load. None of the not-normalized HR 
features are significantly different between heavy and 
normal mental loads. 

In order to efficiently utilize the HR data in 
classification, we should get rid of the great inter-
individual variability. Two methods: histogram 
transformation and scaling with information from activity 
classification were utilized in this study. As can be seen 
from the list of the features selected by SFS with KNN and 
ANN, HR normalization with data from sitting and 
running activities was selected for KNN and HR 
normalization with histogram normalization over sitting 
activities was selected for ANN. In case of custom 
decision tree, the thresholding was most successful with 
HR normalized using data from sit and run activities. 

In addition to features computed from accelerometer and 
HR data, the standard deviation of respiratory effort signal 
was selected for KNN classifier. This feature has in most 
cases the smallest values during heavy mental load and 
largest values during running (Table II). Even normal 
mental load and lying have larger respiratory effort SD 
than what heavy mental load has. This is probably due to 
the fact that during the IQ test (as often during heavy 
mental load), people concentrate intensively and do not 
speak or move. In general, speaking and movement 
change the dynamics of respiratory effort signal. For 
KNN, SFS selects also the hip declination feature 
computed using the magnetometer data. This feature tells 
the angle between horizontal axis parallel to direction of 
the volunteer’s body and the direction of the magnetic 
field. Thus, in this case it may tell differences in sitting 
position (at a desk / leaning back). 

Also PPG signal was measured with a finger oximeter, 
but quality of that signal was not good enough for 
analysis, because of clipping. Similarly, skin temperature 
was measured, but although the sensor was placed in 
volunteer armpit, it reflects mostly temperature of the 
surroundings (e.g., indoor vs. outdoor). 

SFS feature selection allows rapid selection of features 
that are potentially useful in classification. However, the 
resulting feature set should always be checked against 
domain knowledge to allow a sensible set of final features. 

Tables III and IV show the classification accuracies for 
each classifier and the confusion matrix for custom 
decision tree. The heavy mental load can be detected using 
a custom decision tree with 93% accuracy and the normal 
mental load with 78% accuracy. Lying, walking and 
running can be detected with 98%, 84% and 91% 
accuracy, respectively. The best correct classification 
accuracies are obtained with custom decision tree and 
KNN. Custom decision tree is computationally very 

TABLE III 
CLASSIFIER RESULTS [%] 

 Custom 
Decision Tree 

K-nearest 
neighbor 

Artificial Neural 
Network 

Lie 98 98 91 
Normal mental 78 68 94 
Heavy mental 93 84 59 
Walk 84 95 85 
Run 91 100 99 
TOTAL 89 89 85 

TABLE IV 
CONFUSION MATRIX OF CUSTOM BINARY DECISION TREE [%] 

Annotation Recognized Activity 
 Lie Medium Heavy Walk Run 
Lie 98 1 1 0 0 
Normal mental 0 78 22 0 0 
Heavy mental 0 7 93 0 0 
Walk 3 0 13 84 0 
Run 0 0 0 9 91 
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efficient, while KNN is very demanding. ANN correct 
classification accuracy is 85%.  

In order to use this method in real life, baseline HR 
without stress in sitting position should be available for 
normalization of the individual HR distribution.  

V. CONCLUSION 
Both mental and physical load and activities were 

automatically recognized from wearable sensor data with 
good accuracy. Activity context can be used for 
normalizing the individual HR data and for improving the 
correct recognition rate of mental load. 

REFERENCES 
[1] W.J. Verberk, A.A. Kroon, J.W.M. Lenders, A.G.H. Kessels, G.A. 

van Montfrans, A.J. Smit, P.-H.M. van der Kuy, P.J. Nelemans, 
R.J.M.W. Rennenberg, D.E. Grobbee, F.W. Beltman, M.A. Joore, 
D.E.M. Brunenberg, C. Dirksen, T. Thien, P.W. de Leeuw, “Self-
measurement of blood pressure at Home Reduces the Need for 
Antihypertensive Drugs – A Randomized, Controlled Trial”, 
Hypertension, vol. 50, pp. 1019-1025, 2007.   

[2] J.M. Evans, R.W. Newton, D.A. Ruta, T.M. MacDonald, R.J. 
Stevenson, A.D. Morris, “Frequency of blood glucose monitoring 
in relation to glycaemic control: observational study with diabetes 
database”, BMJ, 319(7202):83-6, 1999. 

[3] M. Hiltunen, K. Käkönen, J. Kannisto, M. Pellinen, K. Lybäck, R. 
Goebel, Pensioners and insured in Finland 2008, Joint publication 
of Finnish Centre for Pensions, The Local Government Pensions 
Institution and State Treasury.  Available: 
http://www.etk.fi/Binary.aspx?Section=42845&Item=64651  

[4] OECD, Sickness, Disability and Work: Keeping on Track in the 
Economic Downturn – Background Paper, OECD, 2009. Available: 
http://www.oecd.org/dataoecd/42/15/42699911.pdf  

[5] K. Ahola, R. Gould, M. Virtanen, T. Honkonen, A. Aromaa, J. 
Lönnqvist, ”Occupational burnout as a predictor of disability 
pension: A population-based cohort study”, Occupational and 
Environmental Medicine, 66(5), 284-290, 2009.      

[6] K. Ahola, A. Väänänen, A. Koskinen, A. Kouvonen, A. Shirom, 
“Burnout as a predictor of all-cause mortality among industrial 
employees: A 10-year prospective register-linkage study”, Journal 
of Psychosomatic Research, vol. 69, pp 51-57, 2010. 

[7] S. Mitchie, S. Williams, ”Reducing work related psychological ill 
health and sickness absence: a systematic literature review”, 
Occupational and Environmental Medicine, vol,60, pp. 3-9, 2003. 

[8] R. Gould, H. Nyman, H. Lampi, “Masennukseen perustuvat 
työkyvyttömyyseläkkeet meillä ja muualla” in H. Uusitalo, M. 
Kautto, C. Lindell (eds), Myöhemmin eläkkeelle – selvityksiä ja 
laskelmia, (in Finnish), publication of Finnish Centre for Pensions, 
2010. Available: 
http://www.etk.fi/Binary.aspx?Section=64145&Item=64589 

[9] T. Honkonen, K. Ahola, M. Pertovaara, E. Isometsä, R. Kalimo, E. 
Nykyri, A. Aromaa, J. Lönnqvist, ”The association between 
burnout and physical illness in the general population – results from 
the Finnish Health 2000 Study”, Journal of Psychosomatic 
Research, vol 61, pp 59-66, 2006. 

[10] C. Maslach, S.E. Jackson, “The measurement of experienced 
burnout”, Journal of Occupational Behaviour, vol. 2, pp. 99-113, 
1981. 

[11] L. Bao and S. Intille, “Activity recognition from user-annotated 
acceleration data,” in Proc. 2nd Int. Conf. Pervasive Computing, 
2004, pp. 1–17. 

[12] J. Pärkkä, M. Ermes, P. Korpipää, J. Mäntyjärvi, J. Peltola, I. 
Korhonen, ”Activity recognition using realistic data from wearable 
sensors”, IEEE Transactions on Information Technology in 
Biomedicine, vol. 10, no. 1, January 2006. 

[13] M. Ermes, J. Pärkkä, J. Mäntyjärvi, I. Korhonen, ”Detection of 
daily activities and sports with wearable sensors in controlled and 
uncontrolled conditions”, IEEE Transactions on Information 
Technology in Biomedicine, Vol.  12, no: 1, 20 – 26, 2008. 

[14] S.J. Preece, J.Y. Goulermas, L.P.J. Kenney, D. Howard, K. Meijer, 
R. Crompton, “Activity identification using body-mounted sensors 
– a review of classification techniques”, Physiol. Meas., vol 30, pp. 
R1-R33, 2009. 

[15] M. Mathie, A. C. F. Coster, N. H. Lovell, and B. G. Celler, 
“Accelerometry: providing an integrated, practical method for long-
term, ambulatory monitoring of human movement,” Physiol. 
Measure., vol. 25, no. 2, pp. R1–R20, Apr. 2004. 

[16] M. Kusserow, O. Amft, G. Tröster, “Analysis of Heart Stress 
Response for a Public Talk Assistant System” in E. Aarts et al. 
(Eds.): Conf. Proc. of AmI 2008, LNCS 5355, pp. 326–342, 2008. 

[17] J. Taelman, S. Vandeput, A. Spaepen, S. van Huffel, “Influence of 
Mental Stress on Heart Rate and Heart Rate Variability”, in IFMBE 
Proc. of 4th ECIFMBE, Antwerp, Belgium, 23–27 Nov, 2008. 

[18] J. Pärkkä, J. Merilahti, E.M. Mattila, E. Malm, K. Antila, M. 
Tuomisto, A. Saarinen, M. van Gils, I. Korhonen, ”Relationship of 
Psychological and Physiological Variables in Long-term Self-
monitored  Data during Work Ability Rehabilitation Program”, 
IEEE Transactions on Information Technology in Biomedicine, 
Vol.  13, No: 2, 141 – 151, 2009. 

[19] C. Setz, B. Arnrich, J. Schumm, R. La Marca, G. Tröster, U. Ehlert, 
“Discriminating Stress From Cognitive Load Using a Wearable 
EDA Device”, IEEE Transactions on Information Technology in 
Biomedicine, vol. 14, pp 410-417, 2010. 

[20] B. Arnrich, C. Setz, R. La Marca, G. Tröster, U. Ehlert, “What does 
your chair know about your stress level?”, IEEE Transactions on 
Information Technology in Biomedicine, vol. 14, pp 207-214, 2010. 

[21] M.-Z. Poh, N.C. Swenson, R.W. Picard, “A wearable sensor for 
Unobtrusive, Long-Term Assessment of Electrodermal Activity”, 
IEEE Transactions on Biomedical Engineering, vol. 57, no. 5, pp. 
1243-52, 2010.  

[22] J. Kim, E. André, “Emotion Recognition Based on Physiological 
Changes in Music Listening”, IEEE Transactions on Pattern 
Analysis and Machine Intelligence, vol. 30, no. 12, pp. 2067-83, 
2008. 

[23] J. Pärkkä, M. Ermes, K. Antila, M. van Gils, A. Mänttäri, H. 
Nieminen, “Estimating intensity of physical activity: a comparison 
of wearable accelerometer and gyro sensors and 3 sensor 
locations”, Conf Proc of 29th IEEE EMBC, Lyon, France, 23-26 
August 2007. 

[24] Task Force of The European Society of Cardiology and The North 
American Society of Pacing and Electrophysiology, “Heart rate 
variability - Standards of measurement, physiological 
interpretation, and clinical use”, European Heart Journal, vol. 17, 
354-381, 1996. 

[25] M. Huiku, K. Uutela, M. van Gils, I. Korhonen, M. Kymäläinen, P. 
Meriläinen, M. Paloheimo, M. Rantanen, P. Takala, H. Viertiö-Oja 
and A. Yli-Hankala, “Assessment of surgical stress during general 
anaesthesia”, British Journal of Anaesthesia, vol. 98, pp. 447-55, 
2007. 

P5/5





PUBLICATION P6 

Relationship of Psychological and 
Physiological Variables in Long-term 

Self-monitored Data during Work 
Ability Rehabilitation Program 

 

In: IEEE Transactions on Information Technology in 
Biomedicine 2009. Vol. 13, No. 2, pp. 141–151. 

Reprinted with permission from the publisher. 
[2009] IEEE. 

 
This material is posted here with permission of the IEEE. Such permis-

sion of the IEEE does not in any way imply IEEE endorsement of any of 
VTT Technical Research Centre´s products or services. Internal or  
personal use of this material is permitted. However, permission to 

reprint/republish this material for advertising or promotional purposes  
or for creating new collective works for resale or redistribution must be 

obtained from the IEEE by writing to pubs-permissions@ieee.org. By 
choosing to view this material, you agree to all provisions of the 

copyright laws protecting it. 



 



IEEE TRANSACTIONS ON INFORMATION TECHNOLOGY IN BIOMEDICINE, VOL. 13, NO. 2, MARCH 2009 141

Relationship of Psychological and Physiological
Variables in Long-Term Self-Monitored Data During

Work Ability Rehabilitation Program
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Abstract—Individual wellness comprises both psychological and
physiological wellbeing, which are interrelated. In long-term mon-
itoring of wellness, both components should be included. Work-
related stress and burnout are persistent problems in industrial
countries. Early identification of work-related stress symptoms
and early intervention could reduce individual suffering and im-
prove the working productivity and creativity. The goal of this
study was to explore the relationship between physiological and
psychological variables measured at home by the users themselves
or automatically. In all, 17 (3 males and 14 females, age 40–62)
people participating in a work ability rehabilitation program (due
to work overload) were monitored for three months. Physiolog-
ical and behavioral variables (activity, bed occupancy, heart rate
(HR) and respiration during night, HR during day, blood pressure,
steps, weight, room illumination, and temperature) were measured
with different unobtrusive wireless sensors. Daily self-assessment
of stress, mood, and behaviors (exercise, sleep) were collected using
a mobile phone diary. The daily self-assessment of stress and the
Derogatis stress profile questionnaire were used as reference for
stress status. Results show modest, but significant pooled overall
correlations between self-assessed stress level, and physiological
and behavioral variables (e.g., sleep length measured with wrist-
worn activity monitor: ρ = −0.22, p < 0.001, and variance of
nightly bedroom illumination: ρ = 0.13, p < 0.001). Strong, but
sometimes conflicting correlations can be found at individual level,
suggesting individual reactions to stress in daily life.

Index Terms—Actigraph, behavior, heart rate (HR), psycholog-
ical and physiological variables, sleep, stress, wellness monitoring.
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I. INTRODUCTION

LONG-TERM monitoring of health and wellness as a part
of everyday life is seen as a central element of both

chronic disease management and health or wellness manage-
ment [1], [2]. Monitoring of physiological variables such as
heart rate (HR), blood pressure, or blood glucose has been
widely applied for this purpose. However, the wellbeing of the
individual includes physiological, psychological, and social fac-
tors, all of which are interacting as determinants of health. In
fact, behavioral and social factors explain more than 50% of
health outcomes [3]. In addition, interpretation of variations
in physiological variables measured in uncontrolled conditions,
such as at home, requires knowledge of the other contribut-
ing factors. Hence, there is a need for comprehensive health
monitoring approaches including both psychophysiological and
behavioral components. However, only relatively few studies
have been published that deal with mutual relationships be-
tween these variables in long-term real-life settings [4]–[6].
Some equipment has been developed that is suitable for such
studies [7], [8].

An important psychophysiological phenomenon is stress, as
work-related stress and burnout are major public health prob-
lems. In Finland, about 7% of employees suffer from severe
work-related burnout [9]. Another study concludes that 2.5%
of employees in Finland suffer from severe burnout and about
24% from mild burnout [10]. The prevalence of severe burnout
among employees in Finland, Sweden (7.4%), and the Nether-
lands (4%–7%) probably gives a good indication of the situation
in other industrialized countries also [11]. Recently, the World
Health Organization (WHO) started a promotion program on
mental health [12]. WHO states that historically, mental health
has often been misunderstood and access to mental health care
has been too difficult. With the promotion program, WHO seeks
to highlight the importance of mental health and attempts to
lower barriers preventing access to mental healthcare.

Stress causes sympathetic responses (such as higher cortisol
level, smaller HR variability (HRV), and higher blood pressure)
that first help us tackling situations requiring fast reaction or
high concentration. This is a healthy and normal reaction, which
disappears as the stressful situation passes by, e.g., during sleep
and holidays. For stress management, a central issue is the suc-
cessful recovery after a stressful situation [13]. If this recovery
fails, an allostatic load is cumulated, which may lead to health
consequences such as burnout [13]. Burnout has been defined
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to comprise emotional exhaustion that does not disappear dur-
ing free time, depersonalization or cynicism, and reduced sense
of personal accomplishment [14]. Prolonged stress has been
suspected to cause physical illnesses [15], and even potentially
transfer to other people [16].

Traditionally, stress, work exhaustion, and burnout have been
assessed using questionnaires, e.g., Bergen burnout indica-
tor (BBI) [17], Derogatis stress profile (DSP) [18], [19], and
Maslach burnout inventory [14]. Automatic and more compre-
hensive methods for monitoring stress status at home over long
term could help to obtain early identification of stress, and may
lead to earlier intervention when necessary. In such approaches,
physiological, psychological, and behavioral monitoring could
be applied. Several physiological variables are known to be
related to sympathetic stress reactions, e.g., HRV and blood
pressure [20]. In addition, behavioral patterns such as daily ac-
tivity patterns and sleep patterns may be relevant [21], [22].
Self-reported stress and other behavioral events have been rec-
ommended to be included together with physiological variables
when the stress state of a participant is to be assessed [23].
However, little is known about the mutual correlations of these
variables in long-term settings or their relationship to changes
in stress status.

Our objective was to study how different physiological
and behavioral variables measured in long term at home in
uncontrolled conditions by participants themselves, or automat-
ically by wireless sensors, are related to psychological self-
assessments or data acquired by standard validated question-
naires (BBI and DSP). In addition to the identification of the
significant correlations between the variables, we aimed to find
the best single variables that could be used in long-term psy-
chophysiological wellness monitoring. We recruited 17 partic-
ipants from a rehabilitation program, and targeted to improve
the working ability. Participants of this program commonly re-
port increased levels of work exhaustion and long-term stress,
among other health and work-related complaints. The partici-
pants were monitored for three months both at home and during
the rehabilitation period in the rehabilitation institute.

The methods used are described in Section II. Results of
the study are presented in Section III. Section IV discusses the
results. Conclusions of the study are presented in Section V.

II. METHODS

A. Data Collection

The goal of data collection was to study whether the selected
home monitoring devices provide information that as such, or
after processing, reflect the participant’s stress level. This study
was conducted in real-life settings. The data collection equip-
ment consisted of ten hardware units: 1) activity monitor (acti-
graph) worn on the wrist; 2) HR monitor; 3) mobile phone;
4) step counter; 5) blood pressure monitor; 6) personal weight
scale; 7) movement sensor in bed; 8) wireless sensor node with
temperature and illumination sensors; 9) laptop PC; and 10)
central server (Fig. 1). Data from activity monitor worn on the
wrist, movement sensor in bed, HR monitor, and wireless sensor
node with temperature and illumination sensors were sent via

Fig. 1. Data collection equipment (details in text): (1) IST wrist activity mon-
itor (actigraph). (2) Suunto HR monitor. (3) Nokia mobile phone with Wellness
Diary application for self-assessments and measurement results from (4) Omron
step counter, (5) Omron blood pressure monitor, and (6) weight scale, (7) Emfit
bed sensor, (8) environmental sensors, (9) laptop PC, and (10) central server.
Collected HR data were processed with Firstbeat PRO WAS.

the laptop to central server. Data from blood pressure monitor,
step counter, personal weight scale, and daily self-assessments
(e.g., stress, sleep quality) were sent via Wellness Diary mobile
phone application to the central server (Fig. 1).

The laptop (HP nc6000, Hewlett-Packard Company, Palo
Alto, CA) was used as a data storage unit, to which the data
were transferred from devices that acquired data continuously.
A computer program was written especially for this study to
automatically send all collected data from the laptop to a central
server once per week using a modem connection.

A mobile phone (Nokia 6670, Nokia Corporation, Helsinki,
Finland) was used as a second data storage unit. The user man-
ually entered measurement results (e.g., blood pressure) and
self-assessments (e.g., stress level) into the Wellness Diary pro-
gram [24], [25] installed on the mobile phone. The Wellness
Diary is a stand-alone program that was not connected to the
laptop. Instead, the user could send the collected data as a mul-
timedia messaging service (MMS) message to a central server.
The user was instructed to do so once per week. The Wellness
Diary application is a tool for self-assessments, which is a basic
concept of cognitive behavioral therapy. It relies on the user
entering the inputs to make the user aware of changes in his
health status, to subsequently learn what has positive effect on
health, and as a consequence start changing his behavior. This is
why all measurement results were not transferred automatically
to the Wellness Diary application. The Wellness Diary used in
this study was a modified version of the one available on the
Internet [24].
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The activity monitor (actigraph) [26] worn on the wrist (IST
Vivago WristCare, IST International Security Technology Oy,
Helsinki, Finland) continuously measured the user’s activity
as reflected by hand movements. The device was attached to
the wrist of the nondominant hand. Its data were transferred
automatically, via IST wireless base station, to the laptop. The
range of the wireless connection is 20–30 m, which covers a
typical apartment.

The movement sensor in the bed (Emfit SafeBed, Emfit Ltd.,
Vaajakoski, Finland) was a thin-film ferroelectret sensor, which
was placed below the mattress and which measures pressure
changes. The sensor measured continuously and the data were
transferred automatically to the laptop via a wireless sensor node
(SoapBox [27]).

The HR monitor (Suunto T6 wrist-top computer, Suunto Oy,
Vantaa, Finland) was used to make one-day, beat-to-beat HR
recordings three days a week. The user started the normal one-
day-measurement in the morning and ended it in the evening by
stopping the measurement and downloading the data to the lap-
top. HR data were analyzed using Firstbeat PRO Wellness Anal-
ysis Software (WAS) (Firstbeat Technologies Oy, Jyväskylä,
Finland).

The blood pressure monitor (Omron 705IT, Omron, Kyoto,
Japan) was used to measure blood pressure every morning and
evening. Users manually entered the blood pressure readings to
the Wellness Diary.

The step counter (Omron Walking Style II, Omron, Kyoto,
Japan) measured the number of steps taken during a day, and
reflecting “lifestyle activities.” The user read the step count from
the step counter display in the evening and entered the step count
into the Wellness Diary.

Bedroom temperature and illumination levels were continu-
ously measured using the SoapBox sensor platform [27], which
also wirelessly sends data to the laptop. The SoapBox unit
was placed close to bedroom reading lamp for easy detection
of lights-on during night. Data collection and transfer were
automatic.

A personal weight scale was used to measure the user’s weight
every morning before breakfast. The users’ own scales were
used; thus, many different models were used. The user manually
entered the weight to the Wellness Diary.

Additionally, each participant filled in a BBI-15 questionnaire
once, a DSP questionnaire four times, and used the “day-type
paper form” to write down the day type (work, free, sick, re-
habilitation) for each day of the measurement period. Fig. 2
depicts the study protocol.

Participants were recruited from vocational rehabilitation
groups (rehabilitation funded by KELA, The Social Insurance
Institution of Finland). The participants had lowered working
ability (due to mental stress), and their application to the re-
habilitation had been approved by KELA. The time from ap-
plication to the actual rehabilitation took several months. The
study was conducted in two parts, first eight people partici-
pated in the measurements simultaneously in May–August 2005
and nine more people took part in September–December 2005.
The 17 participants included 14 females and 3 males. Average
age was 54.5 years (standard deviation (SD) 5.4 years, range

Fig. 2. Study protocol describing both measurements and questionnaires
(Bergen burnout indicator—BBI, Derogatis stress profile—DSP).

Fig. 3. Wellness Diary stress assessment form (in Finnish, “Kiire/stressi/
paineet” = busyness/stress/pressure and “Väsymys” = tiredness).

40–62). The participants were white-collar workers, represent-
ing mostly university employees and health care professionals.
The average BBI was 49.2 (SD 12, range 26–72). Nine par-
ticipants had increased values of DSP (total stress score ≥50)
during the study. The study has been approved by local ethics
committee (hospital district of North-Ostrobothnia, Finland).

The study protocol contained a two-week rehabilitation in a
rehabilitation center. The participants used the self-monitoring
equipment for two weeks before the rehabilitation, during the
two-week rehabilitation, and for two months after the rehabil-
itation (Fig. 2). In the beginning of the study, the participants
filled in the BBI, and as the devices were installed into their
home, they filled in the DSP questionnaire for the first time. The
DSP was filled in the second time after the rehabilitation, the
third time one month after that, and the fourth time at the end
of the measurement period. The DSP total stress score (DSPtss)
was used as the reference of stress level in this study.

In addition to DSP, stress assessments were done daily by
means of Wellness Diary. The stress form (Fig. 3) in the
Wellness Diary software consisted of four assessments:
1) busyness/stress/pressure; 2) tension/anxiety/fear; 3) tired-
ness; and 4) trouble/irritation/anger. The participant was al-
lowed to answer as many of the four assessments as she/he
felt relevant. The stress level was assessed in the evening. The
participants were instructed to do the assessment so that the
given value covers the feelings of the whole day. The assess-
ment was done using a slider with scale from 0 to 10 and −1
for “no assessment.” In addition to DSPtss, the daily stress level
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TABLE I
DAILY MEASUREMENT ROUTINES (WD = WELLNESS DIARY,

HR = HEART RATE)

“busyness/stress/pressure” assessed using the Wellness Diary
was used as a second reference of stress level. The daily mea-
surement and assessment routines are summarized in Table I.
Other measurements were done automatically and did not re-
quire user interaction.

B. Feature Signals

After data collection, feature signals were computed from the
raw data. The generated feature signals have a sampling rate
of one per day. A brief description of each feature is given in
Table II.

Wellness Diary features are raw data as entered into the appli-
cation by the user. Outliers are removed by comparing the values
to known acceptable ranges. For blood pressure measurements,
morning was defined as 5–12 O’clock (5–12 AM), and evening
as 14–24 O’clock (2–12 PM). Feature “WD weight change” was
defined as weight of next morning minus weight on the current
day morning.

The bed sensor features were computed from presence and
HR data that the device gives as output once per minute. The
presence signal describes how many seconds the bed has been
occupied during the past 60 s. HR is an average over the past
minute. A filtered presence signal was obtained by low-pass
filtering the presence signal using a filter length of 10 min.
The low-pass filtering removes short-duration absences from the
bed during night. Filtered values greater than 30 s were taken
into account, and the signal was turned into a Boolean signal
describing presence (1) and absence (0) from bed. “Bed time
start” and “Bed time end” times are searched from the filtered
signal, and defined as the start and end of the longest continuous
bed presence block during the night. “Bed wakeups” is computed
from the unfiltered bed occupancy signal. A Boolean presence
signal is generated by giving 1 for values 60 s and 0 for others.
Number of wakeups is computed as the number of breaks during
night (number of zero blocks between sleep start and sleep end
times). “Bed avg sleep 3 nights” is computed as the average sleep
length over 3 consecutive nights. Night sleep time is computed
from the filtered signal. “Bed 20 to 10 bed time” is a direct

TABLE II
FEATURE SIGNALS (FS = 1 PER DAY)

sum of bed presence between 20 O’clock in the evening and
10 O’clock in the morning, computed from the unfiltered signal.
Similarly “Bed 10 to 20 bed time” is a direct sum of bed presence
during day time. “Bed avg night HR” is the average HR over the
self-reported sleep time. HR signal is available directly from the
bed sensor.

Activity monitor (actigraph) features were computed from the
wrist activity monitor data. The activity monitor signal is an ac-
tivity count that is high when there are a lot of hand movements
and low when the hand is not moving. The activity monitor
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detects sleep automatically based on low activity, and gives as
one output signal a Boolean vector, which indicates sleep [26].
Low activity can occur during day as well as during night; thus,
time limits are required in order to reliably detect the sleep-
ing time during night. By default, the wrist activity monitor
used in the study detects sleep during the night 23–07 O’clock
(11 PM–07 AM). These limits are designed for elderly users. In
this study, we had working age users, who sleep more irregu-
larly. In order to analyze the effect of stress on night activity
and day activity, we took the scored sleep onset and wakeup
times, and used these to define night. Day was defined to begin
1 h after wakeup and night 1 h before sleep onset. The fea-
ture “Wrist sleep length” represents the sleep length as detected
by the activity monitor during the scored night. Feature “Wrist
number of sleep periods” represents the number of sleep periods
the activity monitor algorithm detects during the scored night.
“Wrist act ratio N to next D” represents the average activity
ratio of previous night and current day. This feature is high if
night activity is high or day activity is low. Similarly, the fea-
ture “Wrist act ratio N to prev D” represents the activity ratio
of previous night and previous day. The “Wrist night activity”
feature represents the average activity during the scored night.
“Wrist night activity SD” represents the SD of activity during
the scored night. Similarly, features “Wrist day activity” and
“Wrist day activity SD” represent those of the day time.

Illumination data were first preprocessed (clear outliers were
replaced with NaNs). Then average, median, and variance were
computed for the night time data.

HRV features were computed from ambulatory beat-to-beat
heartbeat recordings. Analysis was carried out by using the First-
beat PRO WAS. It computes stress and relaxation states of the
autonomic nervous system by using HR and HRV signals, and
indexes derived from these. The software segments the record-
ing into stationary segments of sports, stress, and relaxation.
“Stress time” feature gives the time the body is in a stress state,
and the sympathetic nervous system activity is dominating over
parasympathetic activation. “Relaxation time” feature gives the
time the body is in a relaxed state and parasympathetic activation
is dominating.

Features “Scored sleep length” and “Scored sleep quality”
are the sleep length and sleep quality as assessed by a medical
doctor by examining in one plot the activity monitor signal,
bed presence signal, and the WD self-reported sleep onset and
wakeup times [28].

An example (Fig. 4) of one case shows changes in selected
variables. Self-reported stress is higher in the beginning as the
participant is working. The daily stress level falls during rehabil-
itation, but DSPtss increases even despite the summer holiday.
Diastolic morning blood pressure decreases during summer hol-
iday (from 80 to 70 mmHg). Wrist sleep length feature varies
more during work and rehabilitation than during summer holi-
day. Bed time between 20 and 10 O’clock (during night) is in
many nights 1–2 h longer than detected sleep length. This could
indicate sleeping problems, although this person sleeps normally
6–9 h per night. HR stress time is detected from daytime HR
recordings. Stress time per day is shortest during rehabilitation.
Elsewhere, there seems to be 200–700 min of stress daily, as

Fig. 4. Example of collected data from one case. Selected features from top to
bottom. (1) Busyness/stress/pressure [0–10]. (2) DSPtss. (3) Workday (black),
rehabday (dark gray), freeday (light gray). (4) WD BP diastolic morning [in
millimeter of mercury]. (5) Wrist sleep length [in hours]. (6) Bed time 20–
10 [in hours]. (7) HR stress time [in minutes]. (8) WD steps. Horizontal axis
represents calendar time [month/day].

detected using HR recordings. Walking (or running) has been
done a lot during rehabilitation. Step counts exceed 15 000 steps
during a couple of days in the rehabilitation period.

III. RESULTS

A. Self-Assessed Stress and Psychophysiological Variables

Spearman correlations were computed between assessed
busyness/stress/pressure and the measured variables. Only
workdays were included in this correlation calculation, because
the focus was on work-related stress, not on holiday stress. The
personal average of the variable value was subtracted first before
pooling the data together. Only case-wise significant (p < 0.05)
correlations are shown (Table III). Mathematical computations
were done using Matlab (The Mathworks, Inc., Natick, MA).

The psychophysiological variables that have the most signif-
icant correlation with self-assessed stress level (from Wellness
Diary) also show a visually apparent change when ordered by
stress level (Fig. 5). The median of the ordered feature sig-
nals over 15 days was computed to highlight level change in
feature signals as function of stress level. Sleep length, both
self-assessed and wrist-activity-monitor-detected, decreases by
ca. 1 h when comparing the least stressful (on the left) and the
most stressful days (on the right). Also, SD of day activity as
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TABLE III
OVERALL AND CASEWISE SPEARMAN CORRELATIONS, ρ (WITH SIGNIFICANCE, p) TO BUSYNESS/STRESS/PRESSURE SELF-ASSESSMENT FOR SELECTED FEATURES

Fig. 5. Feature signals sorted by busyness/stress/pressure [0–10]. Personal
average has been subtracted before pooling data together. (1) Busyness/stress/
pressure. (2) WD sleep length [in hours]. (3) Wrist activity monitor sleep length
[in hours]. (4) Wrist day activity SD [activity count]. Feature signals are median
filtered (15 days) to highlight changes in signal level as a function of stress. Data
include working days only. Horizontal axis represents working days in order of
increasing stress level.

TABLE IV
STATISTICALLY SIGNIFICANT CORRELATIONS TO DSPtss

measured using the wrist activity monitor decreases on the most
stressful days.

B. DSP and Psychophysiological Variables

Correlations to DSPtss points were obtained by computing the
median of psychophysiological variables over seven days (the
day people filled in the DSP questionnaire and six days before).
Significant (p < 0.05) Spearman correlations were found in five
variables (Table IV). The personal average was not subtracted,
before pooling the data from different cases together, because
there are at most four DSPtss measurements per case.
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Fig. 6. Average night HR as measured using the bed sensor (y) plotted versus
DSPtss (x) (p = 0.03, ρ = 0.59). Regression line and 95% confidence interval
for regression line are shown.

Fig. 7. Busyness/stress/pressure (y) plotted versus DSPtss (x) (p = 0.64, ρ =
0.07). Regression line and 95% confidence interval for regression line are shown.

Average night HR as measured using the bed sensor showed
the highest significant correlation with DSPtss (Fig. 6). This
variable is not available in the data of all of the cases as the
measurement of HR using the bed sensor was started only in the
latter part of the measurements. Even if there are fewer samples
in this data, it shows the highest significant correlation with the
self-assessed stress level.

C. Correlation of References (DSP, Self-Assessment)

Correlation of DSPtss and self-assessed stress level is visual-
ized in Fig. 7. Self-assessed stress level is computed by taking a
seven-day median over six days before and the day when DSP
questionnaire is answered.

D. Effect of Rehabilitation

Effect of the two-week intervention (rehabilitation) was as-
sessed by comparing daily stress level (from WD) before and
after rehabilitation. The values for comparison were average
computed over seven days before intervention and 14 days after
intervention. “Busyness/stress/pressure” changes from prereha-
bilitation 0.90 above personal average to postrehabilitation 0.02
above personal average. Similarly, e.g., sleep length as detected
by wrist activity monitor changes from −0.11 h to +0.11 h.

Fig. 8. Average busyness/stress/pressure over all participants—effect of reha-
bilitation. Rehabilitation periods are on weeks 3 and 4. The personal average
was subtracted before pooling data together. Scale is that of WD self-assessment
[0–10].

Fig. 9. DSPtsss as function of time. Each graph represents one case. Reha-
bilitation periods are shown on bottom of each panel (black horizontal line).
The Y -axis range is from 0 to 75 DSP points (grid line at 50 points). Increased
DSPtss (≥50) was found in cases 3, 6, 7, 8, 13, 14, 16, and 17 at least in one
of the measurements. X -axis scale is indicated at the bottom panels (month of
year 2005).

Weekly changes in busyness/stress/pressure of all users were
aligned so that weeks 3 and 4 are rehabilitation weeks. Aver-
age busyness/stress/pressure over all participants is low during
rehabilitation, and shows a decreasing trend after rehabilitation
(Fig. 8).

The individual DSPtss changes during the study show de-
crease in 9 of 17 cases possible (Fig. 9).

IV. DISCUSSION

The measurements used in this study were well applicable
to monitoring during a rehabilitation program. Even the current
prototype, consisting of many devices from different manufac-
turers, was seen by the clinical expert as an applicable tool pro-
viding extra information about the patients. The patients were
mostly excited about the prototype, and felt that it gave them
objective information about their health.
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A. Self-Assessed Stress and Psychophysiological Variables

The results show moderate, but significant overall correla-
tions to daily stress level on working days and DSPtss. Even
moderate correlations can be considered important in case of
these kinds of data [29]. However, it must be kept in mind that
many of the variables (e.g., BP variables) are not independent.
Thus, when the value of one variable changes, the dependent
variable changes as well. Strong correlations can be found at
individual level, but the correlations of different individuals can
even be conflicting, which weakens the overall correlations.
Thus, based on the results of this study, it can be said that stress
is an individual phenomenon. Different people react to stress
in different ways. One person may react with blood pressure,
while another reacts with disturbed sleep, etc. Thus, finding very
specific variables that always indicate stress, when it is present,
is a demanding task for future research.

WD self-assessments “trouble/irritation/anger,” “tiredness,”
and “tension/anxiety/fear” positively correlate with “busy-
ness/stress/pressure.” This is natural because all four assess-
ments were done usually at the same time. However, the par-
ticipants gave feedback on daily stress level self-assessment,
saying that it was rather difficult to give a number to one’s
own stress level. They mentioned that the number given to a
certain stress level could have changed over time as they got
used to assessing their stress level. Self-assessed sleep length
(WD sleep length) also shows significant negative correlation
with daily stress level. High stress levels are associated with
shorter sleep length the night before the stressful day according
to self-reported sleep length, wrist activity monitor sleep length,
and sleep length as scored by the MD. Individual correlations
between stress and sleep length are highly significant. However,
the changes in body weight do not significantly correlate with
daily stress level. Lower number of exercise entries on stressful
days is probably associated with long working hours and tired-
ness at home, and thus, less exercise. WD self-assessments also
show that stressful days are associated with poorer sleep quality
the night before. Higher diastolic morning blood pressure is also
associated with higher daily stress level later on the day.

Bed sensor variables do not show significant overall correla-
tions with daily stress level. However, there are strong individual
correlations, but with different signs. Before stressful days, some
people go to bed earlier, some later than normally. Also, time
spent in bed before a stressful day is for some people longer and
for others, shorter than normally. Features from the bed sensor
indicate the time spent in bed, not the time slept. Other sleep
length features aim at measuring the total sleep time.

Wrist activity monitor features include features about both
day and night. Higher daily stress level is significantly associated
with shorter sleep length the night before, and less day activity
and day activity deviation on the stressful day. The day activity
changes may indicate longer working days and less exercise.

HR features “sport time,” “relaxation time,” and “stress time”
show significant correlations to daily stress level. Sport time
clearly decreases on stressful days. Both stress and relaxation
time increase on stressful days. Stress time is natural, but longer
relaxation time may be caused by inactivity.

Illumination features correlate significantly with daily stress
level. The median of night illumination decreases, while average
and variance of night illumination increase when stress level in-
creases. This indicates more stress during darker autumn nights,
more lights on during night, and thus, wake ups during night.

Some hardware problems were experienced with the con-
tinuously measuring devices during the study. The problems
encountered caused breaks in the measurement process or data
transmission (e.g., a modem was broken due to a thunder storm).
Missing data may weaken the significance of observed correla-
tions of variables.

B. DSP and Psychophysiological Variables

Significant correlations between DSPtss and psychophysio-
logical variables were found in five features. High DSP score
correlates strongly with higher night HR as measured with the
bed sensor. The night HR feature has fewer samples than other
variables (HR measurement was not available in all bed sen-
sors). High DSPtss is also associated with larger daytime and
nighttime SD of activity. This may indicate more restless be-
havior when DSPtss is high. Higher DSPtss is also associated
with less exercise and increasing weight. The DSPtss was cor-
related to seven-day median of the feature variables. The set of
significantly correlating variables does not remain the same if
the representing value is computed over a different time range
(say 14 days). This indicates that the actual changes are small
compared to noise.

C. Correlation of References (DSP, Self-Assessment)

Correlation between DSPtss and daily stress level self-
assessment from WD is poor. This may indicate that the two
self-assessments measure different things. WD busyness/stress/
pressure is a self-assessment of one day’s stress level. However,
DSP measures more long-term stress level and even personality.
When filling in the questionnaire, the participant assesses how
she/he usually behaves, not how she/he behaved today. How-
ever, it is not clear which time interval DSP reflects. Knowing
this would ease selecting the time range over which to compute
the representative values. Also, DSP was seldom measured in
this study, only once per month.

D. Effect of Rehabilitation

Two-week rehabilitation that contains, e.g., lectures about
stress management and exercise, had an effect on self-assessed
stress level. Stress level is clearly lower during rehabilitation
than before it. Also, after rehabilitation, stress level is lower
than before rehabilitation. A decreasing trend can be found in
stress level after the rehabilitation.

E. Comparison to Other Studies

The findings on DSP are in line with [19]. In that study,
DSPtss did not correlate significantly with HR in different stress-
ful tasks: 1) counting backwards; 2) cold pressor task; and 3)
oral presentation. The authors conclude that in reality, DSP does
not measure stress as a dynamic process, but considers stress as
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a static phenomenon. They mention that DSP should be accom-
panied with instructions that tie an individual’s responses to a
particular situation.

Correlations between mental strain and HR variables used
in this study have also been studied in [30]. In that study,
mental strain and HR variables, computed using Firstbeat PRO
WAS, were compared on postal workers. HR was monitored for
24 h, starting from the beginning of a working day. Self-reported
mental strain was collected after the recordings by asking the
participants to draw a graph of their mental strain during the
day on a paper. Of 27 participants, self-reported mental strain
was found to have a significant positive Pearson correlation
with absolute stress vector (ASV) for 18 participants, and non-
significant or negative correlation for 9 participants. ASV is
a second-by-second index vector that is computed from HR,
HRV high-frequency power, HRV low-frequency power, and
respiratory variables derived from HRV. Similarly, there is an
absolute relaxation vector (ARV). ASV represents activity of
the sympathetic nervous system and ARV that of parasympa-
thetic nervous system. Thus, the findings are in line with the
findings of our study. In our study, stress time and relaxation
time variables were found to have significant, positive Spear-
man correlation (p < 0.01, ρ = 0.15) with self-reported busy-
ness/stress/pressure.

Short stress tests were performed in [31]. The authors found
HRV to be a more sensitive and selective measure of mental
stress than blood pressure. Our findings partially support these
findings. HR variables have stronger groupwise correlation with
self-reported stress than blood pressure variables. Our findings
also show that of blood pressure variables, diastolic morning
pressure has the strongest correlation with self-reported stress.
According to [32], after 7.5 years, cumulative job strain in-
creased systolic blood pressure modestly, but significantly. The
change was stronger for men than for women.

Activity monitoring was used in [33] together with cortisol
and subjective stress and sleepiness scaling. High-stress and
low-stress weeks were compared. Results show that during the
high-stress week, total sleep time decreased and restlessness
at bedtime was significantly increased. Our findings support
these findings. In our study, before stressful days, sleep length
measured with wrist activity monitor was short, and day activity
during a stressful day was low.

In future research, our aim is to concentrate on measurement
of recovery periods (sports, night, etc.). The recovery periods
play an important role in successful stress management. We
believe that any improvement in measurement of these would
improve accuracy of automatic stress measurements.

V. CONCLUSION

Psychophysiological variables measured with unobtrusive
wireless sensors in a home environment show significant, but
modest, overall correlation with self-assessed stress level when
data from different participants are pooled together. Correla-
tions are strong, but sometimes conflicting on individual level.
On a daily basis, sleep length variables have moderate negative
correlation with self-reported busyness/stress/pressure of the

following day. On a longer term basis, higher seven-day aver-
age night HR was associated with higher stress level as reflected
by the DSPtss. Overall, the nighttime variables and daytime ex-
ercise variables gave promising correlations with stress level,
highlighting the importance of recovery periods after periods
of stress. Further developments in measurement of recovery
periods might improve the accuracy of automatic stress mea-
surements. In conclusion, psychophysiological wellbeing may
be monitored at home and by using wireless sensors in long-
term settings, but data interpretation requires focus on individual
patterns rather than a groupwise approach.
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A. Aromaa, and J. Lönnqvist, “The association between burnout and physi-
cal illness in the general population—Results from the Finnish health 2000
study,” J. Psychosom. Res., vol. 61, pp. 59–66, 2006.

[16] F. Jones and B. C. Fletcher, “An empirical study of occupational stress
transmission in working couples,” Hum. Relat., vol. 46, no. 7, pp. 881–
903, 1993.
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M. Partinen, “Automatic sleep-wake and nap analysis with a new wrist
worn online activity monitoring device Vivago Wristcare,” Sleep, vol. 26,
no. 1, pp. 86–90, 2003.

[27] E. Tuulari, “Enabling ambient intelligence research with soapbox plat-
form,” Ercim News, no. 47, Oct. 2001.

[28] J. Merilahti, A. Saarinen, J. Parkka, K. Antila, E. Mattila, and I. Korhonen,
“Long-term subjective and objective sleep analysis of total sleep time
and sleep quality in real life settings,” in Proc. 29th Annu. Int. Conf.
IEEE/EMBS, EMBC 2007, Lyon, France, Aug. 22–26, pp. 5202–5205.

[29] K. Antila, M. van Gils, J. Merilahti, and I. Korhonen, “Associations of
psychological self-assessments and HRV in long-term measurements at
home,” presented at the IFMBE, EMBEC 2005 Conf., Prague, Czech
Repulic, Nov. 20–25, vol. 11.

[30] M.-L. Kinnunen, H. Rusko, T. Feldt, U. Kinnunen, T. Juuti, T. Myllymäki,
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