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VTT, Bergsmansvägen 5, PB 1000, 02044 VTT
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Abstract

Multibody system simulation, as one area of system simulation, represents
a considerable improvement in predicting machine dynamic performance com-
pared to previous methods that are often based on analytic equations or empir-
ical testing. With multibody system simulation, it is fast and efficient to study
the effects of design variables on the dynamic behaviour of the mechanism com-
pared to the experimental approach. Accordingly, the use of multibody system
simulation in the design process can decrease the need for physical prototypes,
thus accelerating the overall design process and saving resources.

In the product development sense, the interaction between computational
tools can be cumbersome. For this reason, multibody system simulation is
often omitted in terms of the main stream of product development. Due to
the increase of computational resources, the trend is towards extensive usage
of simulation, including multibody system simulation, in the product develop-
ment.

The research emphasis in the field of multibody system dynamics has been
on the areas of improved multibody system formulations, such as recursive
methods, representation of flexible structures, application of multibody sim-
ulation in new areas such as biomechanics, and including multibody simula-
tion into multitechnical and multiphysics simulation. The research on model-
ling data management and integration approaches concerning tools applied in
product design and development has not been in the main stream.

The growth of the World Wide Web and the evolution of Web technologies
have multiplied the amount of data and information available on the Internet.
In this expansion of information, it has become cumbersome to find and distil
the useful information from the data mass. In order to utilise the information
available on the Internet and to sort meaningful information out of the data
mass, the World Wide Web Consortium began a development project for the
next generation Web, the Semantic Web. In this development effort, methods
and technologies based on semantic data representation are developed and
utilised. These methods and technologies are general enough to be applied to
other application areas as well.

This work concentrates on the modelling data management of multibody
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Abstract

system simulation within a simulation-based product process. The main ob-
jectives of this work can be summarised as follows: introduce a procedure for
managing multibody system modelling data using semantic data model and
ontology-based modelling approach, demonstrate that the semantic data model
allows application-based reasoning on the model data, and show that ontology-
based modelling is able to capture domain knowledge by using semantic data
and constraint- and rule-based reasoning.

In this work, the semantic data representation approach is used for describ-
ing modelling data of a multibody system. This is accomplished by developing
a multibody system modelling ontology, i.e. a semantic data model for multi-
body system model description, and then applying this ontology to model an
example multibody system.
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Tiivistelmä

Monikappaledynamiikka, yhtenä systeemisimuloinnin erikoisalueena, edustaa
merkittävää parannusta koneiden ja mekaanisten järjestelmien suorituskyvyn
arvioinnissa verrattuna muihin menetelmiin, jotka usein perustuvat joko ana-
lyyttisiin laskelmiin tai kokeellisiin menetelmiin. Verrattuna kokeellisiin me-
netelmiin monikappaledynaamiikkaa soveltamalla on nopeaa ja tehokasta sel-
vittää eri muuttujien vaikutus mekanismin dynaamisiin ominaisuuksiin. Täten
monikappaledynamiikan soveltaminen suunnitteluprosessissa voi vähentää tar-
vetta todellisten prototyyppien käytölle ja siten nopeuttaa suunnitteluprosessia
kokonaisuutena sekä säästää resursseja.

Laskennallisten ohjelmistojen yhteiskäyttö voi olla hankalaa tuotekehityk-
sen näkökulmasta. Tästä syystä tuotesuunnittelun valtavirrassa usein välte-
tään monikappaledynamiikan käyttöä. Laskennallisten resurssien kasvusta joh-
tuen suuntaus on kuitenkin kohti enenevää simuloinnin käyttöä tuotekehityk-
sessä, mukaan lukien monikappaledynamiikka.

Monikappaledynamiikan tutkimus on painottunut monikappaledynamiikan
formuloinnin, kuten esimerkiksi rekursiivisten menetelmien, kehittämiseen, ra-
kenteellisen joustavuuden huomioimiseen, monikappaledynamiikan soveltami-
seen uusilla tutkimusalueilla, kuten biomekaniikassa, sekä monikappaledyna-
miikan soveltamiseen moniteknisessä ja monifysikaalisessa simuloinnissa. Mo-
nikappaledynamiikan tiedonhallinta sekä tuotekehitykseen käytettyjen lasken-
nallisten ohjelmistojen ja menetelmien integrointi eivät ole kuuluneet keskeisiin
tutkimusalueisiin monikappaledynamiikassa.

Internetin kasvu sekä Web-teknologioiden kehitys ovat moninkertaistaneet
Internetissä tarjolla olevan tiedon määrän. Tämän tiedon määrän kasvun myö-
tä oikean tiedon löytämisestä Internetin tietomassasta on tullut hankalaa. In-
ternetissä tarjolla olevan tiedon paremman hyödynnettävyyden mahdollistami-
seksi World Wide Web Consortium on käynnistänyt kehityshankkeen nimeltä
Semanttinen Web, jossa kehitetään seuraavan sukupolven verkkoa. Kehitys-
hankkeessa kehitetään ja sovelletaan tiedon semanttiseen kuvaukseen perustu-
via menetelmiä ja tekniikoita, jotka ovat riittävän yleisiä sovellettaviksi myös
muille alueille, kuten laskennallisen tiedon hallintaan.

Tässä työssä keskitytään tuotekehitykseen liittyvän monikappaledynamii-
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Tiivistelmä

kan mallitiedonhallintaan. Työn tavoitteet voidaan tiivistää seuraavalla taval-
la: esitellä periaate monikappaledynamiikan mallitiedon hallintaan käyttäen
semanttista tietomallia sekä ontologiapohjaista mallinnusmenetelmää; osoit-
taa, että semanttisen tietomallin soveltaminen mahdollistaa sovelluspohjaisen
päättelyn monikappaledynamiikan mallitiedosta; sekä osoittaa, että ontologia-
pohjainen mallintaminen mahdollistaa myös tietämyksen tallentamisen yhdes-
sä mallitiedon kanssa soveltaen semanttista tietomallia sekä rajoite- ja sään-
töpohjaista päättelyä. Tämä osoitetaan kehittämällä mallinnusontologia moni-
kappaledynamiikan mallitiedon hallintaan ja soveltamalla tätä ontologiaa mo-
nikappaledynaamisen esimerkkitapauksen mallin kuvaukseen.
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Preface

In a short period of technological evolution, the world has seen enormous
changes. We are now heading into a new era of information and knowledge.
Humankind is producing information at a continuously increasing speed – with
the wealth of information available, the challenge now facing us is how to dis-
til the desired information and knowledge out of the huge data masses. The
development of computation, including progress in algorithms, computational
methods, and computer hardware, has provided us with new tools to search
and analyse the data masses. On the other hand, new methods and innova-
tions in computational modelling and simulation have drastically increased the
speed of producing new data, e.g. for product development.

This doctoral thesis concentrates on combining new methods in knowledge
management and system simulation. The former seeks to solve the challenges
rising from the latter in order to ensure further improvements in the overall
efficiency of applying computational methods for purposes such as product
development.
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Nomenclature

Symbols

ᾱ1, ᾱ2, ᾱ3 The components of the angular acceleration vector, expressed
in the body local frame of reference.

ᾱ Angular acceleration vector, expressed in the body local fra-
me of reference.

˜̄α The skew-symmetric matrix of angular acceleration.

θ The vector of generalised orientation coordinates.

λ The vector of Lagrange multipliers.

ρ Density.

Φimi The mth component of the ith atomic formula, where
mi, i > 0.

Ψi The ith atomic formula, where i > 0.

Ω A string of quantifiers.

ω̄1, ω̄2, ω̄3 The components of the angular velocity vector, expressed in
the body local frame of reference.

ω̄ The angular velocity vector, expressed in the body local
frame of reference.

˜̄ω Skew-symmetric matrix of angular velocity.

A Rotation matrix.

a An instance of an ontology class.

ai The ith rule atom in a SWRL rule body or head.

b An instance of an ontology class.

Ci A component of the constraint vector.

C A constraint equation in vector form.
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Nomenclature

Ct The vector of the first partial time derivative of the constraint
equations.

Ctt The vector of the second partial time derivative of the con-
straint equations.

Cqt The matrix of the constraint equations differentiated with
respect to generalised coordinates and time.

Cq A matrix presenting constraint equations expressed in gen-
eralised coordinates. The Jacobian matrix of a multibody
system.

c An instance of an ontology class.

D An object property of an instance.

E An object property of an instance.

Fa The vector of applied forces.

Fe The vector of external forces.

Fi The vector of inertial forces.

G Transformation matrix between time derivative of the orient-
ation coordinates and angular velocities.

Ḡ Transformation matrix between time derivative of the ori-
entation coordinates and angular velocities, expressed in the
body local frame of reference.

I Identity matrix.

Iij Inertia tensor, where indices i and j denote to coordinate
directions X, Y , and Z.

L A positive literal in Horn’s clause.

M Mass matrix.

M Number of dimensions in dimensional space in mathematics.

m Mass.

N Number of dimensions in dimensional space in mathematics.

n Number of generalised coordinates.

nc Number of constraint equations.

O Number of dimensions in dimensional space in mathematics.
Origin of a reference frame.

P Particle of a body. Point of a body. A property in an onto-
logy.

Qc The vector of generalised constraint forces.

Qe The vector of generalised external forces.
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Qi The vector of generalised inertial forces.

Qv Quadratic velocity vector.

q Generalised coordinate.

q The vector of generalised coordinates.

R Dimensional space in mathematics.

R Location of the body local frame of reference presented in
the global frame of reference.

r Position vector in the global frame of reference.

δr Virtual displacement.

S A string of quantifiers.

t Time.

ū1, ū2, ū3 The components of the location vector, expressed in the body
local frame of reference.

ū Location of a point, expressed in the body local frame of
reference.

˜̄u The skew-symmetric matrix notation of the location of a
point.

V Volume.

δW Virtual work.

δWc Virtual work done by the constraint forces.

δWe Virtual work done by the external forces.

δWi Virtual work done by the inertial forces.

X Coordinate direction in Cartesian coordinate system.

x Coordinate value in X direction in Cartesian coordinate sys-
tem.

Y Coordinate direction in Cartesian coordinate system.

y Coordinate value in Y direction in Cartesian coordinate sys-
tem.

Z Coordinate direction in Cartesian coordinate system.

z Coordinate value in Z direction in Cartesian coordinate sys-
tem.

Abbreviations

AI Artificial intelligence.

CFD Computational fluid dynamics.

17



Nomenclature

CWA Closed world assumption.

CAD Computer-aided design.

CAE Computer-aided engineering.

DAMOS-C Data model for multibody systems implemented in C.

DBMS Database management system.

DL Description Logic.

DSL Dynamic System Language.

EL An OWL 2 profile that refers to E++, a description logic
derived from OWL 1.1 DL language.

FEM Finite element method.

IGES Initial Graphics Exchange Specification, which defines the di-
gital representation and exchange of product definition data
among computer-aided design and computer-aided manufac-
turing (CAD/CAM) systems.

IP Internet Protocol.

ISO International Organization for Standardization.

MBS Multibody system.

MECHAMOS An MBS analysis tool based on the object-relational database
system AMOS II. AMOS stands for Active Mediators Object
System.

MbsML Multibody systems Markup Language, a XML-based neutral
data format for multibody system model data representation
and exchange.

OWA Open world assumption.

OWL Web Ontology Language; OWL 2 is the second version of the
language specification.

PDM Product data management.

PLM Product lifecycle management.

QL An OWL 2 profile that refers to Query Language.

RDF Resource Description Framework.

RDF-S Resource Description Framework Schema.

RL An OWL 2 profile that refers to Rule Language.

SEED Simulation environment for engineering design.

SPARQL SPARQL Protocol and RDF Query Language.

SQL Structured Query Language.
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STEP Standard for the exchange of product model data. ISO 10303
standard for product data representation and exchange.

SWRL Semantic Web Rule Language.

SysML System Modelling Language.

TCP Transmission Control Protocol.

UML Unified Modelling Language.

UNA Unique name assumption.

URI Unified resource identifier.

VHDL-AMS VHDL analog and mixed-signal extensions; VHDL stands
for VHSIC Hardware Description Language; VHSIC stands
for a U.S. government program to develop very-high-speed
integrated circuits.

W3C The World Wide Web Consortium.

WWW World Wide Web.

XML Extensible Markup Language.

Typographical Conventions

In this thesis, the following typographical conventions are used for expressing
data model components, the command line input for software applications, and
the output of software applications:

Slated text: Ontology names and class and property names in ontologies.

Typed text: Software code and software run listings.

Sans serif: Modelling component names, e.g. instances of the ontology in a
semantic model.

Roman bold face: In mathematical expressions, the symbol denotes a matrix
or a tensor.

Italics bold face: In mathematical expressions, the symbol denotes a vector.

Otherwise, in mathematical expression, symbols are typed in italics text and
functions in roman text.
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Chapter 1

Introduction

The usage of computational tools for product development has become a stand-
ard approach in mechanical engineering design. The development of a com-
plex high technology product, such as a modern passenger car, an aeroplane,
or a diesel engine (Figure 1.1), is cumbersome without computer-aided design
(CAD) systems, computational analyses, and system simulation. They provide
valuable feedback to the designers about the function and performance of the
product under development. In addition to the product process, modern re-
search and science rely heavily on computer simulation [3, 4]. The use of
modelling and simulation enables researchers to study phenomena that are ex-
perimentally difficult to examine, such as material properties at the atomic
level [5] or an actively controlled magnetic flux inside an electric motor [6]. It
is said in the President’s Information Technology Advisory Committee report
that computational science has become ”the third pillar of scientific inquiry”
together with theory and experimentation [7].

1.1 Multibody System Simulation

Multibody system (MBS) simulation, as one area of system simulation, repres-
ents a considerable improvement in predicting machine dynamic performance
compared to previous methods that are often based on analytic equations or
empirical testing. With multibody system simulation, it is fast and efficient to
study the effects of design variables on the dynamic behaviour of the mechan-
ism compared to the experimental approach. Accordingly, the use of multibody
system simulation in the design process can decrease the need for physical pro-
totypes, thus accelerating the overall design process and saving resources.

The term multibody system simulation refers to the analysis concepts of
a system that is constructed of two or more bodies. A system is a compos-
ition of elements that together form a whole, and have behaviour, structure
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Figure 1.1: Cross-section of the Wärtsilä V32 diesel engine. Image courtesy of
Wärtsilä Corporation.

or topology, and function. A multibody system is generally defined as an as-
sembly of bodies which interact with each other through joints that limit the
motion possibilities of the interconnected bodies relative to each other [8, 9].
Simulation1, in turn, refers to the prediction or imitation of the behaviour of
a system using a typically simplified model of the original system. Based on
the definitions above, it can be concluded that multibody system simulation
is an attempt to predict the behaviour of a mechanical system, consisting of a
collection of interconnected bodies that can move relative to each other.

1The Free On-line Dictionary of Computing: http://foldoc.org/simulation
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1.2. Simulation in Product Process

1.2 Simulation in Product Process

The driving force for applying computational methods in an industrial product
process is fundamentally economical. The need to improve the quality and
functionality of the product requires the implementation of novel and often
more complex subsystems. The pressure from the competitors in the markets
sets demands on getting products more rapidly to the market while keeping
product costs at a reasonable level. The increasing complexity of the product
often compounds the interference of the subsystems and may lead to unfa-
vourable side effects, such as noise and vibration problems or unsatisfactory
performance of the system. For these challenges, the comprehensive applica-
tion of simulation, in other words the use of virtual prototypes, offers a remedy
by enabling designers of different disciplines to obtain feedback on their work
already in the conceptual design phase. Potential problems that are discovered
in the early phases of the product development process are usually easier to
solve than those found later.

The added value of the usage of modelling and simulation comes in several
aspects of the product process. Solely, the modelling of a system helps the
designer to structure the system and understand the relationships of the dif-
ferent parts of it. In addition, modelling, particularly when applied based on
the strict modelling domain principles such as those of the multibody system
domain, is a method to produce compact but detailed documentation of the
structure of the system, its components, and functionality. Furthermore, the
modelling data combined with the simulation results describe both the sys-
tem structure and its performance. The understanding of the system relations
gained from applying system modelling and the understanding of the dynamics
of the system achieved from analysing the results of the simulations together
increase the overall product understanding of the designers.

The evolution of computational methods has influenced the product devel-
opment process and the overall design paradigm. The use of computational
models instead of physical prototypes, i.e. using virtual prototypes, has in-
creased the interaction between different design disciplines and has shortened
the design iteration turnover time. One of the advances of using computational
methods in product development is enabling the interaction and design data
exchange between different disciplines from the early phase of the product pro-
cess and thus providing better premises for concurrent engineering in product
design [10]. Figure 1.2 illustrates an idealised process of applying simulation
and analysis in machine design. In the Figure 1.2 a, a modification is made to
the geometry of a part that radiates a request for update in the multibody sys-
tem model to compute the overall behaviour of the mechanism, and especially,
the loads for the structural analysis. In the Figure, the update process to the
virtual product model is represented with a dash line arrow. Applying a struc-
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Figure 1.2: a) An example of a design iteration using computational tools. b)
The concept of design iterations in a digital product process.

tural analysis for given parts, new design strains and stresses for the part can
be computed. Figure 1.2 b illustrates the design process when a virtual product
model is applied as the tool to manage modelling and simulation through the
product development. For one design iteration, several simulation models and
the results of several simulations and analyses are produced. While there may
be a large number of design iterations during an overall design process, the
amount of both model and results data may become large.

The increasing application of modelling and simulation in the product pro-
cess has given rise to a new set of challenges for computational systems, namely
data management and integration of data sources. To take full advantage of
the computational methods, the data required for model composition and the
data produced as a result of simulations and analyses need to be fed into the
product process seamlessly and efficiently. This has become a critical issue
due to a simultaneous increase in the application of simulation, progress in
the development of computational methods and software, and increase in com-
putational power that together have enhanced the speed at which the data is
produced.

Product data management (PDM) systems have been used for managing
distributed product development data in the product process. This data can be
e.g. design data, a bill of materials, or product documentation. For enterprise
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level and product life cycle length product data management, product life-
cycle management (PLM) systems are used. PDM systems have evolved from
document management systems to general data management systems with in-
terfaces to other information systems involved in the product process. The
scope of PDM systems is to manage the overall information flow related to the
product. Thus, the granularity of the data details is evidently high compared
to the requirements for simulation model data management. Characteristic to
modelling data is the importance of small details and exactness. For design and
product data, the existence and data source linking is important. In addition,
it is noteworthy that the application of PDM systems, as all document-based
systems, often fails to capture the engineering knowledge together with the
data [11]. The unstructured knowledge has to be stored as documents, which
again separates the knowledge from the model data.

1.2.1 Multibody System Simulation Process

Figure 1.3 represents the typical phases of a multibody system simulation pro-
cess. For multibody system simulation software, the most common architecture
for the application package is to have separate software applications for:

• Pre-processing : includes the creation of the model topology, definition
of the model components and their parameters, and often setting the
solving parameters for the numerical solver.

• Solving : the actual computation of numerical results based on the math-
ematical model of the system.

• Post-processing : may include the calculation of additional dependent
variables, visualisation of the simulation results, plotting of the results
components, and analysis of the results.

The pre-processing phase of the simulation process usually requires the most
manual work and is thus the most prone to human errors. In addition, the
pre-processing is usually the most time consuming phase, and due to this fact,
it is the natural choice as the starting point for the improvement of higher sim-
ulation process efficiency. In this work, the emphasis is on the pre-processing
phase and especially on the management of the pre-processing model descrip-
tion data.

Different modelling and design disciplines have their own methods of man-
aging the product data while a large number of different design and modelling
parameters are involved in the process. It is important to note, however, that
all of the simulation models in the process describe features of the same target,
i.e. the product. This means that instead of scattering the data and inform-
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Figure 1.3: Typical phases of a multibody system simulation process.

ation into several sources in different formats, the attempt should be towards
one product model for each product.

Figure 1.4 presents the evolution of the application of simulation in the
product process. In many cases, the application of simulation in an industrial
company begins with solving specific problems in some product detail. This
means that simulation is used as a special tool in some detail of the product
development process and the development process is driven by other factors.
The second phase is to simulate the product by applying virtual prototypes.
A virtual prototype contains all major systems of the product, and it can
simulate the overall functionality of the product. This phase increases the
requirements of the simulation technology compared to the first phase. The
third phase does not require much improvement on the technology but requires
more changes in the development process itself. Instead of using simulation to
validate the development, it is used for specifying requirements for the design
process, i.e. modelling and simulation are driving the process instead of being
in a minor role. The fourth phase is to use simulation to predict the influence of
design decisions on the product life cycle, including technical factors, but also
aspects such as the economical and environmental impact. All this remarkably
increases requirements for data management in the product process. In this
progress, the increase in applying simulation in the product process typically
also requires changes to the process itself to take full advantage of the change.
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Figure 1.4: Evolution of application of simulation in product process and the
increase of the importance of data management.

In the product development sense, the interaction between computational
tools can be cumbersome. For this reason, multibody system simulation is
often omitted in terms of the main stream of product development. Due to
the increase of computational resources, the trend is towards extensive usage
of simulation, including multibody system simulation, in the product devel-
opment. This trend follows the use of finite element method (FEM) tools
that are already integrated into many CAD systems. In this trend, commu-
nication between a software application of multibody system simulation and
a design system, and the data management in particular, becomes crucial. It
is important to note that in the current implementations of software applica-
tion integration, a user is limited to apply the certain existing set of software
application. This may be a problem in a networked design model where for
example designers in the subcontracting chain need to exchange modelling and
design data.

Independent of the technology used, the following requirements hold for
modelling data management:

• knowledge representation: explicitly capture the data, information, and
knowledge of the domain.

• Knowledge mapping : link the domain modelling data with data from
other domains.

• Reasoning : be able to do reasoning on the data to reveal the possibly
hidden implicit information.
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In addition, for general modelling and simulation data management, the fol-
lowing requirements can be set for data representation:

• All the data is preserved : whatever conversion is done to the data it can
always be restored to its original form and content.

• The data representation is flexible and extensible: domain descriptions
evolve and data representation must follow.

• The form and content of the data does not restrict its use: using the
data should be as easy as possible. This includes retrieving, storing,
modifying, mapping, reasoning, and manipulating the data.

There are several methods for doing this, and none of them have proven to be
superior to another. However, on the other hand, none of the methods widely
used so far have proven to meet all of these requirements equally. Because
of the expansion of the use of modelling and simulation in product processes,
the emphasis is moving from the first requirements to the balance of all of the
requirements.

The research emphasis in the field of multibody system dynamics has been
on the areas of improved multibody system formulations, such as recursive
methods, representation of flexible structures, application of multibody simu-
lation in new areas such as biomechanics, and including multibody simulation
into multitechnical and multiphysics simulation [12, 13, 14]. The research on
modelling data management and integration approaches concerning tools ap-
plied in product design and development has not been in the main stream.

Figure 1.5 illustrates the evolution of the communication of engineering
software applications from early-phase stand-alone analysis tools (Figure 1.5
a) to an integration of analysis tools (Figure 1.5 b and c). Although multibody
system simulation is a well-established approach, it can still be seen as a tool
for experts [15]. Software applications of multibody system simulation oper-
ate under the stand-alone principle, according to which interaction with other
tools may be difficult. In practise, the interaction between multibody system
simulation software and other engineering applications can be accomplished by
employing data exchange in which several exchange formats and many data
conversion tools are used. This scenario of the communication of software ap-
plications is depicted in Figure 1.5 a, in which the arrows between applications
represent the data flow and circles represent intermediate exchange formats
and data conversion tools.

Communication barriers between computational tools can be removed by
employing standardisation and open exchange formats. To this end, modelling
and simulation tools can be coupled using simulation tool interfaces in CAD
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Figure 1.5: Evolution in communication of engineering software applications.
a) Independent software applications with specific data formats. b) Unified
document-based data exchange using common data format, for example XML.
c) Unified dynamic data exchange with common modelling database.

systems and geometry exchange with either proprietary formats, such as ACIS2

and Parasolid3, or existing open exchange formats such as ISO 10303 STEP
[16, 17] and IGES [18]. Schielen [12] discusses the data transfer strategies
between software applications and the requirement of a neutral data model
for modelling data transfer. His proposal is based on the use of a document-
based approach and the standardisation of the file formats, such as ISO 10303
STEP. However, it is important to note that the use of these formats does
not solve the main problem, i.e. seamless exchange of modelling and results
data between a set of software applications in the product design process.
The rapidly increasing amount of design data and the need to exchange data
in a networked operating environment require new approaches to enable the
progress in virtual product development.

2Website of Spatial Corporation, ACIS geometry kernel:
http://doc.spatial.com/index.php/Portal:ACIS

3Website of Siemens PLM Software, Parasolid geometry kernel:
http://www.plm.automation.siemens.com/en_us/products/open/parasolid/index.shtml
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The first attempt to create an open specification for an exchange file format
for multibody system simulation models was the design of the MbsML lan-
guage, an Extensible Markup Language (XML) format specification for de-
scribing multibody system simulation models, analysis, and solving methods
[19, 20, 21] (Figure 1.5 b). Instead of specific solutions for each software applic-
ation communication need, a common intermediate file format is used, which
decreases the number of different format and conversion tools needed. This
is depicted in Figure 1.5 b with bidirectional arrows between applications and
common files. The MbsML language has been designed to be clear and self-
explanatory for a user who knows the basics of multibody system formulation.
The structure of the language is simple, and all of the elements in the language
are named such that documents are straightforward to follow. The problem
with the MbsML language is that the user should be an expert in multibody
system simulation in order to adopt the language. This may be particularly
problematic when a software application from another domain needs to commu-
nicate with the software application of the multibody system domain. Another
problem, which this approach omits, is the on-line integration of software ap-
plications. With a document-based exchange strategy, the user actively has to
push the data to and pull the data from other applications. This may lead
to situations where the data is outdated or the same information is stored in
several places.

1.2.2 Data Management Software

Modelica4 is an object-oriented, equation-based language designed specifically
for the modelling and simulation of physical systems [1]. The attempt in the
development of the languages has been to provide a unified representation for
system models and the implementation of formulations. The language is effi-
cient for system modelling but it is not general enough for the efficient capturing
of data, information, and knowledge. Another general language for modelling,
the System Modelling Language (SysML) [22] is an attempt to unify the de-
scription of system models used in systems engineering. The SysML language
is based on the Unified Modelling Language (UML) version 2 [23, 24], and is
implemented as a UML profile. SysML is intended to be a general modelling
language for systems engineering, although the emphasis in its design is on rep-
resenting model hierarchies rather than describing some domain specific models
in detail [25]. There is work in progress to map the model representations in
the SysML and Modelica modelling languages [26, 27].

Shephard et al. [28] introduced a concept of using the supervising software
SEED for design software integration and communication. This approach may
introduce fluent data exchange, but does not capture engineering knowledge

4Website of the Modelica Association: http://www.modelica.org/
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and is related to selected software components, such as CAD systems and
computer-aided engineering (CAE) tools. In addition, the SEED system was
tailored for the design and development of automotive climate control systems,
which is a narrow application area within machine design.

Eben-Chaime et al. [29] introduce a procedure that is based on the usage
of an intermediate software layer between standard simulation tools and data
management solutions. The intermediate layer in the architecture is divided
into three different functional parts: input/output handling, autonomous op-
erations, and control. The input/output handling module enables simulation
definition for a set of separate simulations and manages the input parameter
and analysis output mapping. The autonomous operations part in this archi-
tecture executes the batch runs for simulations that have been set by the user
in the input/output handling. The control module manages the simulation
runs and communicates with external tools, such as simulation solvers. The
proposed architecture seems to lack the ability to store the model data in a
centralised manner. In addition, the flexibility to add new and different kinds
of simulation models related to the previously used is not described.

The use of a common database for model and result data management,
depicted in Figure 1.5 c, resolves many of the problems of the document-based
approach. Applications using a common database have access to data that is
up-to-date, and thus the problem of incoherent design data is solved. In order
to accomplish a common database, a number of designs of a common modelling
database have been proposed. Tisell and Orsborn [30, 31] have proposed an
approach in which the data is stored into a tailored object-relational database
system called MECHAMOS. In this system, the multibody system modelling
data is stored in an analytical form that enables case specific optimisation for
the numerical model of the system. In the prototype implementation of the
MECHAMOS system, external computational tools, such as MATLAB5 and
Maple6, are used as solvers. The proposed system is tailored for multibody
system simulation and is thus not suitable for other simulation disciplines.
Daberkow and Kreuzer [32] have proposed a common modelling kernel called
DAMOS-C for a CAD and dynamic simulation environment in order to integ-
rate different tools. Their approach applies the object-oriented data model for
modelling data exchange between different applications in the modelling and
simulation process, such as CAD software and multibody system solvers. The
DAMOS-C system focuses on the multibody simulation domain including an
interface to external CAD systems.

Kübler and Schiehlen [33] discuss the simulation of complex engineering
systems, concentrating on mechatronic systems and the integration of differ-
ent models and simulation tools. They have divided the model description

5Website of Matlab software: http://www.mathworks.com/products/matlab/
6Website of Maple software: http://www.maplesoft.com/products/Maple/index.aspx

31

http://www.mathworks.com/products/matlab/
http://www.maplesoft.com/products/Maple/index.aspx


Chapter 1. Introduction

into three different levels: physical, mathematical, and behavioural model de-
scription. These levels refer to the description of the modelled system, the
transformation of the system model into a mathematical formulation based on
selected methods, and numerical results of the simulation based on the math-
ematical model, respectively. Several approaches are suggested for representing
the physical model, such as ISO 10303 STEP, VHDL-AMS, and DSL, but none
of these have gained any popularity in the community or among the software
vendors for multibody system simulation. In the article, the focus is on the
block representation of coupled multibody system models at the mathematical
level.

There have been several proposals for model and design data management
in the product development process using a centralised upper level model.
Hoffman and Joan-Arinoy [34] propose a product master model approach to
map the CAD data with, as they call it, downstream application processes,
such as simulations and analyses. Their proposal concentrates on geometry
management, but is not restricted to it. In the proposal, each software tool,
such as the CAD system and the simulation tools, may have their own, possibly
proprietary, model repositories, and only the data that is relevant to other
software tools is communicated. In the approach, each software tool in the
system communicates with the master model, retrieves data from it and sends
modification requests e.g. for the CAD geometry. This approach, even though
flexible as to the often closed proprietary software tools, lacks the ability to
manage the model data in a centralised way. In this approach, all of the detailed
modelling data is managed by the simulation tool in question. In addition, the
system does not capture any additional engineering knowledge that may be
present in the process. Siemers et al. [35] proposed a meta-model approach for
managing the integration and co-simulation of different simulation tools. In this
approach, the simulation software specific data is represented in the format of
the software in question and only the data required for model integration and
the communication between different software tools in simulation is described.
Also this approach lacks the centralised data management and engineering
knowledge capturing features.

1.3 Semantic Data Representation

The concepts of data, information, and knowledge can be defined in a hier-
archical manner. The data is at the lowest level in the hierarchy, and thus
data is defined as being values of parameters or variables, such as dimensions
and quantities. Information is at a higher hierarchical level compared to data.
Information is a collection of data forming a whole and describing a concept
or entity. Thus, data needs to be interpreted to have a meaning. Knowledge

32



1.3. Semantic Data Representation

in this hierarchy is at the highest level. In addition to data and information,
knowledge adds experience to information. The present data management ap-
proaches for modelling and simulation focus on capturing data and, in some
cases, information. The challenge of data representation is to be able to capture
knowledge in the data representation.

The growth of the World Wide Web (WWW) and the evolution of Web
technologies have multiplied the amount of data and information available on
the Internet. In this expansion of information, it has become cumbersome to
find and distil the useful information from the data mass. While the Web
search services develop further, the amount of search mass seems to keep grow-
ing even more rapidly. In order to utilise the information available on the
Internet and to sort meaningful information out of the data mass, the World
Wide Web Consortium (W3C), an organisation to maintain and develop tech-
nologies for WWW, began a development project for the next generation Web,
the Semantic Web. As the name implies, the next generation Web focuses on
the meaning of the data, its semantics, and methods to retrieve the hunted
information out of the data mass. The main effort of the Semantic Web pro-
ject has been to develop a set of fundamental technologies that can be used
within the framework of the existing Internet infrastructure and enable this
vision. The technologies enable software applications to combine and refine
data from a number of sources. The Semantic Web integrates separate data
sources, otherwise loosely connected, into a single network of information [36].
The latest technologies of knowledge representation and data semantics to cre-
ate a framework of specifications, languages, and tools for this purpose are
employed in the Semantic Web project [37]. To this end, concepts and terms
can be defined explicitly and definitions can be domain and context specific.
Definitions can contain rules and validity constraints increasing the value of the
data. The Semantic Web technologies are general enough also to be adopted
to other engineering domains. While the Semantic Web is still evolving, the
technologies developed for it are adopted to different applications, including
product data management [38].

The idea of a thinking machine, artificial intelligence (AI), has been under
research since the early 1950s [39]. The research area has several branches,
such as expert systems, natural language understanding, machine learning,
and knowledge representation [40]. The work in the research area of knowledge
representation concentrates on developing methods to store human knowledge
in machine-usable form. This is the fundamental requirement for all systems
that use knowledge and apply reasoning to it. The research in the knowledge
representation area concentrates on methods to represent and use information
and knowledge formally and in machine-readable form [41]. This is required
in artificial intelligence in which a computer system solves problems based on
available knowledge, in machine-readable form, of a specific domain. Artificial
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intelligence can be applied for example to expert systems to speed up the
solving process of e.g. system maintenance or to provide additional support for
the innovation process. It is important to note that the crucial element of an
expert system is the knowledge database and, particularly, the representation
of human knowledge.

Semantic Web technologies are not ideal for system modelling data man-
agement, as will be discussed in more detail in chapter 2. This is mainly due to
the fundamental objective of being able to capture imperfect data and know-
ledge and thus applying the open world assumption (OWA) e.g. in the Web
Ontology Language (OWL). In addition, some data structures, such as vectors
and arrays, are not included into the built-in data types of the OWL, although
they can be represented as user defined data types. After all, the Semantic
Web technologies have been selected as the implementation foundation of this
work due to their maturity and wide application in research and industry.

1.4 Objectives of the Thesis

In Figure 1.6, a concept of using knowledge representation technologies for
storing data and domain knowledge, and for sharing it in an organisation or
community is illustrated. In this concept, all of the data is in one storage
to keep the data up-to-date and to avoid overlapping and redundancy. Users
and tools, such as solvers and analysis tools, can access the data storage. In
addition, external data sources can be connected to the system. This concept
raises many questions, such as the structure of the data model, access and
version control, the integrity of the data and knowledge, and the scalability of
the system. In this work, the focus is on the main principles of storing modelling
data and knowledge in machine-readable form, and implementation questions
of such a system are bypassed. Implementation and technical solutions for such
a system are a matter of future research.

This work concentrates on the modelling data management of multibody
system simulation within a simulation-based product process. The main ob-
jectives of this work can be summarised as follows:

1. Introduce a procedure for managing multibody system modelling data
using semantic data model and ontology-based modelling approach,

2. Demonstrate that the semantic data model allows application-based reas-
oning on the model data, and

3. Show that ontology-based modelling is able to capture domain knowledge
by using semantic data and constraint- and rule-based reasoning.

To this end, the domain of multibody system dynamics is narrowed to con-
cern rigid bodies only. This is due to the fact that the description of structural
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Figure 1.6: Vision of the model for common data management for modelling
and simulation.

flexibility increases the complexity of the domain description, whereas it does
not introduce new information about the general applicability of the method.
In addition, the developed modelling ontologies are general and simplified, and
they are not designed for practical industrial modelling. In this work, the
emphasis is on the generality and extensibility of the concept.

Although the research deals with multibody system dynamics, the focus of
the study is on modelling data management. For this reason, the mathematical
background associated with multibody dynamics is explained at a general level
only. The numerical examples are used for demonstrating that the objectives
of the study are achieved in multibody dynamics.

1.5 Scientific Contribution

In this work, the semantic data representation approach is used for describing
modelling data of a multibody system. This is accomplished by developing a
multibody system modelling ontology, i.e. a semantic data model for multi-
body system model description, and then applying this ontology to model an
example multibody system. The semantic data model allows the same data
representation method to be used for the data representation of a wide variety
of system models. This, on the other hand, enables the model data from dif-
ferent domains to be mapped together. This work represents a method which
distinguishes the modelling data and the computational tools, such as solvers.
This is an important aspect for data management in terms of preservability,
i.e. the ability to archive and later reuse the valuable information about the
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product and its functionality. Aspects of general system modelling and simula-
tion combined with methods and technologies under research and development
in general knowledge representation and data management are considered. The
particular emphasis of this study is on the future bottlenecks of the application
of modelling and simulation in product development.

The semantic data modelling approach used in this work is general and
it allows different types of data and knowledge to be captured into the same
data representation. The data model provides natural mechanisms to map
the data of one domain with the data of other domains, which is the method
to capture the knowledge into the data system. The principles of semantic
data representation are general enough to represent data in different forms and
structures, whether it is structured in a strict manner or has a complex and
unstructured form. In practice, that could mean e.g. mapping the multibody
system modelling data of a mechanical system with the engineering experience
of that specific application domain.

This study presents a procedure to capture the domain knowledge of mul-
tibody system modelling into the system. The use of semantic data represent-
ation and semantic reasoning technologies enables inferring on modelling data
to e.g. validate the data against modelling rules. In this work, semantic con-
straints, i.e. restrictions of data element connectivity or type, and rules are set
for the semantic modelling data, and reasoning against these rules is applied
to demonstrate the applicability of the method. This work presents a general
semantic validation mechanism for multibody system modelling data, which
enables both general model validation and modelling case specific modelling
constraints.

The methods introduced in this study are general and applicable to other
modelling and simulation domains. The use of semantic data representation
for capturing knowledge is being extensively researched in several fields. This
work applies existing technologies of the Semantic Web to new targets, and
discusses the suitability of the method for modelling data representation and
how the fundamental principles of the semantic data representation, such as
the open world assumption, are related to this purpose.

The scientific contribution of this work can be summarised as follows:

1. The application of semantic data representation is introduced by devel-
oping an ontology for multibody system modelling and applying this on-
tology for modelling a multibody system.

2. The use of one simple but expressive data representation technique for
both plain modelling data and engineering knowledge can be described
using the presented method. The presented method enables the separa-
tion of modelling data and engineering knowledge from the computational
tools, such as solver and analysis tools.
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3. The implementation of both general and case specific modelling rules and
the application of semantic reasoning to the modelling data are repres-
ented and discussed.

1.6 Structure of the Thesis

In the present chapter 1, the overall context of the thesis is described, namely
the data management in a simulation-based product process, as well as its rel-
evance. The mathematical formulation for solving multibody system dynamics
is represented in chapter 2. In chapter 3, a multibody system modelling onto-
logy is developed. In addition, the basic data model of the Modelica MultiBody
library is presented in semantic form. The application of the multibody system
modelling ontology is demonstrated with an example in chapter 4. Then, the
suitability of the semantic approach is discussed and the future work in this
research area is identified in 5. The conclusions of the work are presented in
chapter 6.
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Chapter 2

Multibody System Simulation
and Semantic Data
Management

2.1 Multibody System Simulation

2.1.1 Background

The simulation model of a system is an approximation of the real world system
the model represents. An example of such a simplification is the representa-
tion of a mechanical system in the multibody system simulation domain. The
simplification can been seen as a projection from a real world parameter space
RM to an ideal parameter space RN , i.e.

RM → RN , M > N , (2.1)

where M is the dimension of the real world parameter space and N the di-
mension of the parameter space of the general multibody system modelling
domain. On the other hand, a different numerical formulation of the system in
the same computational domain, in an ideal case, is a conversion from one rep-
resentation to another, where no initial information about the source system
representation is lost, or in another way

RN → RO, N ' O , (2.2)

where O is the dimension of the parameter space of a numerical formulation-
specific modelling domain. In other words, the basic information required for
describing the real world system in some numerical formulation in the simu-
lation domain should be sufficient for describing the same system in another
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Real world mechanical system

Multibody system domain model

Numerical
formulation

A

Numerical
formulation

B

Numerical
formulation

C

Projection of the real mechanical system to the
multibody system domain

Conversion from the multibody system representation
to numerical formulation-specific representation

Figure 2.1: System representation phases from a real mechanical system via
a general multibody system modelling representation to a numerical formula-
tion-specific representation.

numerical formulation in the same simulation domain. This may require the in-
formation to be presented in a different form. Figure 2.1 illustrates the system
representation phases from a real world system to a numerical formulation-
specific representation.

A mechanical system can be classified on the basis of the type and depend-
encies of its constraints. A system is defined as holonomic if all constraints of
the system are holonomic. A constraint is holonomic, if it can be expressed as

f(q1, q2, . . . , t) = 0 , (2.3)

where qi are the generalised coordinates of the connected bodies and t is time.
A constraint that cannot be expressed in this manner is nonholonomic, and a
system having nonholonomic constraints is a nonholonomic system. Further-
more, if a constraint is explicitly dependent on time, it can be classified as
rheonomic, and if the function of a constraint is not explicitly dependent on
time, the constraint can be classified as scleronomic. [42]

Multibody system dynamics relies upon classical mechanics as well as com-
putation dynamics [12]. The equations of motion needed when analysing the
dynamic responses of the multibody system, can be derived by using global
or topological formulations. Global formulations can be implemented to com-
puters in a straightforward manner due to the fact that both open and closed
kinematic loops can be solved with the same algorithms. Global methods are
based on the use of generalised coordinates that describe the position and ori-
entation of each body. The equation of motion of a body can be derived by
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expressing inertial and externally applied forces in terms of generalised coordin-
ates. In practise, this can be accomplished using the concept of virtual work.
In order to study a constrained system of bodies, the constraint equations that
couple the generalised coordinates need to be defined. Constraint equations
can be augmented to the equations of motion by using the penalty method
or the augmented Lagrangian formulation [12, 8, 9]. Alternatively, constraint
equations can be embedded in the equations of motion by using the coordin-
ate partitioning approach [9, 43]. A drawback of global methods is that they
use a large number of generalised coordinates, and for this reason, a global
method may be computationally inefficient. In topological formulations, the
topology of a mechanism is utilised in order to improve numerical efficiency [44].
A topology-based approach uses relative coordinates, allowing the kinematic
analysis to be accomplished recursively. In this kinematic analysis approach,
one body is studied at a time in a kinematic chain. The number of general-
ised coordinates required in the approach is equal to the number of degrees of
freedom in the open kinematic chains of the system [45].

The equations of motion define a multibody system mathematically and
they are the foundation for simulating multibody system behaviour. In the
following sections, the equations of motion are derived for a multibody system
of rigid bodies in three dimensions. These equations will show the fundamental
elements of the formulation of multibody system dynamics and thus the neces-
sary components to be described for the multibody system simulation model.
The formulation follows the principles presented in [46] and [47]. For simplicity,
only holonomic mechanical systems are considered in the following formulation
of the equations of motion. In addition, only global methods are considered,
and e.g. topological methods are not presented, because global methods are
widely used and generally applicable for different kinds of simulation purposes.
The mechanical system formulation presented below does not affect the funda-
mental information required to present a multibody system.

2.1.2 Equations of Motion for a Multibody System

Kinematics of Multibody Systems

In the following, the concept of the local frame of reference for a rigid body is
introduced. Any particle P of a rigid body can be presented using the location
and orientation of the local frame of reference of the body and the location of
the particle in this local frame of reference. Figure 2.2 illustrates the location
of a particle of a rigid body in the global frame of reference as

r = R+ Aū , (2.4)

where r is the location vector of particle P expressed in the global frame of
reference, R is the location vector of the body frame of reference expressed in
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P
body

Figure 2.2: Location of a particle of a rigid body in the global frame of reference.

the global frame of reference, A is the rotation matrix, and ū is the location
of particle P expressed in the body local frame of reference. Due to the as-
sumption of an ideally rigid body, the location of every particle of the body is
constant in the local frame of reference and can be expressed explicitly with
Equation (2.4). To express the location of particle P in the global frame of
reference using the location of the body frame of reference and the constant loc-
ation of particle P in the body local frame of reference, a coordinate conversion
in the form of rotation matrix A has to be used.

There are several methods to present orientation, of which the Euler angles
and quaternions are often used in mechanical engineering. Of these two, Euler
angles are more common in interactive use, due to the intuitive convention of
use. The concept of Euler angles is based on a sequence of single rotation oper-
ations around a rotation axis, in three dimensions X, Y , and Z. The rotation
operations are not commutative, and there are 12 different combinations for
the sequences that can be selected, e.g. X-Y -Z or Z-X-Z [48, 46].

The selection of location coordinates in three-dimensional space is straight-
forward, but for expressing orientations there are more options, such as Euler
angles or quaternions. The location and orientation coordinates together form
the vector of generalised coordinates

q =
[
x y z θT

]T
, (2.5)

where x, y, and z are the location coordinates in X, Y , and Z coordinate
axis direction, respectively, and θ is the vector of orientation coordinates. The
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following representation is independent of the selected generalised coordinates
for orientation.

Rotation matrix A is orthogonal [48], which means that its transpose is its
inverse, and thus ATA = I, where I is the identity matrix. Differentiating this
notation with respect to time and doing some equation manipulation gives

AT Ȧ = −
(
AT Ȧ

)T
. (2.6)

The above says that matrix AT Ȧ is equal to its negative transpose, which
means that this matrix is a skew-symmetric matrix. This skew-symmetric
matrix can be expressed as

AT Ȧ = ˜̄ω =

 0 −ω̄3 ω̄2

ω̄3 0 −ω̄1

−ω̄2 ω̄1 0

 , (2.7)

where ω̄i are the angular velocities expressed in the body local frame of ref-
erence. The components of matrix ˜̄ω can also be expressed as the angular
velocity vector

ω̄ =
[
ω̄1 ω̄2 ω̄3

]T
. (2.8)

From Equation (2.7), the time derivative of the rotation matrix can be written
as

Ȧ = A ˜̄ω . (2.9)

For the formulation of the equations of motion, it is essential to note that the
angular velocity vector ω̄ is not the time derivative of the vector of orientation
coordinates θ̇.

To represent velocity using generalised coordinates q, the angular velocity
vector ω̄ needs to be transformed to the time derivatives of the orientation
coordinates. To this end, transformation matrix Ḡ is introduced, so that

ω̄ = Ḡθ̇ . (2.10)

For transformation matrix Ḡ in the body local frame of reference applies Ḡ =
ATG, where G is the transformation matrix in the global frame of reference.

The definition for the time differential of rotation matrix A in Equation
(2.9) is used for defining the second time derivative of the rotation matrix

Ä = Ȧ ˜̄ω + A ˙̄̃ω

= A ˜̄ω ˜̄ω + A ˜̄α ,
(2.11)

where ˜̄α is a skew-symmetric rotational acceleration matrix

˜̄α =

 0 −ᾱ3 ᾱ2

ᾱ3 0 −ᾱ1

−ᾱ2 ᾱ1 0

 , (2.12)
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where ᾱi are the angular accelerations expressed in the body local frame of ref-
erence. The components of the rotational acceleration matrix can be expressed

as the angular acceleration vector ᾱ =
[
ᾱ1 ᾱ2 ᾱ3

]T
. Rotational accelera-

tion can be derived from the angular velocity differentiating Equation (2.10)
relative to time

ᾱ = ˙̄ω = ˙̄Gθ̇ + Ḡθ̈ , (2.13)

and the angular acceleration vector can expressed as ᾱ =
[

˙̄ω1 ˙̄ω2 ˙̄ω3

]T
.

Velocity in Generalised Coordinates The velocity of particle P of the
body, i.e. the time derivative of location r, presented in Equation (2.4), can be
written as

ṙ = Ṙ+ A ˜̄ωū . (2.14)

Applying Equation (2.10) to the above Equation gives

ṙ = Ṙ−A˜̄uḠθ̇ , (2.15)

where ˜̄u is the skew-symmetric matrix form of the location of particle P in the
body local frame of reference

˜̄u =

 0 −ū3 ū2

ū3 0 −ū1

−ū2 ū1 0

 , (2.16)

where ūi are the components of vector ū expressed in the body local frame of
reference. Partitioning Equation (2.15) on the basis of the generalised coordin-
ates gives for velocity

ṙ =
[
I −A˜̄uḠ

] [Ṙ
θ̇

]
. (2.17)

Acceleration in Generalised Coordinates The acceleration of particle P
of the body, i.e. the second time derivative of location r, can be calculated with
Equation (2.15)

r̈ = R̈− Ȧ˜̄uḠθ̇ −A˜̄u ˙̄Gθ̇ −A˜̄uḠθ̈

= R̈−A ˜̄ω˜̄uḠθ̇ −A˜̄u ˙̄Gθ̇ −A˜̄uḠθ̈ .
(2.18)

By reorganising the above equation and using Equation (2.10), acceleration
can be presented as

r̈ = R̈−A˜̄uḠθ̈ −A ˜̄ω˜̄uḠθ̇ −A˜̄u ˙̄Gθ̇

=
[
I −A˜̄uḠ

] [R̈
θ̈

]
+
[
0 −A ˜̄ω˜̄uḠ−A˜̄u ˙̄G

] [Ṙ
θ̇

]
.

(2.19)
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Dynamics of Multibody Systems

The equations of motion for a multibody system are based on Newton’s second
law of motion and d’Alembert’s principle for virtual work. Newton’s second
law of motion is

Fa =

∫
V
ρr̈ dV , (2.20)

where Fa is the vector of force applied to the particle, ρ is density, and V is
volume. D’Alembert’s principle for virtual work is

δW =
∑(

F T
a −

∫
V
ρr̈T dV

)
δr = 0 , (2.21)

where δW is the virtual work and δr is the virtual displacement. Newton’s
formulation in Equation (2.20) of classical mechanics describes the dynamics
of free particles (unconstrained, noninertial particles with finite mass) and
d’Alembert’s principle considers also the reaction forces in the constraints.
In Equations (2.20) and (2.21), force Fa denotes applied forces expressed in
Cartesian coordinates.

Based on d’Alembert’s principle and Newton’s second law of motion, the
virtual work done by the inertial forces can be written as

δWi = F T
i δr =

∫
V
ρr̈T dV δr , (2.22)

where Fi is the vector of inertial forces, expressed in Cartesian coordinates.
Applying the rule of chain derivation to the virtual displacement relative to
the vector of generalised coordinates

δr =
∂r

∂q
δq (2.23)

and inserting this to Equation (2.22) gives

δWi =

∫
V
ρr̈TdV

∂r

∂q
δq . (2.24)

For generalised inertial forces, acceleration r̈ in Equation (2.24) is expressed in
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generalised coordinates q. Now, the generalised inertial forces become

QT
i =

∫
V

ρ

(
q̈T
[

I
−ḠT ˜̄uTAT

] [
I −A˜̄uḠ

]
+ q̇T

[
0

−ḠT ˜̄uT ˜̄ωTAT − ˙̄GT ˜̄uTAT

] [
I −A˜̄uḠ

])
dV

=

∫
V

ρ

(
q̈T
[

I
−ḠT ˜̄uTAT

] [
I −A˜̄uḠ

]
+
[
−θ̇T ḠT ˜̄uT ˜̄ωTAT− θ̇T ˙̄GT ˜̄uTAT θ̇T ḠT ˜̄uT ˜̄ωT ˜̄uḠ + θ̇T ˙̄GT ˜̄uT ˜̄uḠ

])
dV ,

(2.25)

where Qi is the vector of generalised inertial forces. From this, the following
components can be separated for simplifying the manipulation of the equations
later:

M =

∫
V
ρ

([
I −A˜̄uḠ

−
(
A˜̄uḠ

)T
ḠT ˜̄uT ˜̄uḠ

])
dV (2.26)

Qv = −
∫
V
ρ

([
A ˜̄ω ˜̄ω˜̄u−A˜̄u ˙̄Gθ̇

ḠT ˜̄uT ˜̄u ˙̄Gθ̇ − ḠT ˜̄uT ˜̄ω ˜̄ωū

])
dV , (2.27)

where M is the mass matrix and Qv is the quadratic velocity vector. In Equa-
tion (2.26), the term

∫
V ρ

˜̄uT ˜̄udV is the inertia tensor and it is usually shortened
as Iij , where the terms of the inertia tensor are the moments of inertia of the
body, and indexes i and j denote to coordinate directions X, Y , and Z.

From Equations (2.25), (2.26), and (2.27) it follows that the generalised
inertial forces can be expressed as

QT
i = q̈TM−QT

v . (2.28)

The procedure for defining external forces Fe and further the vector of gen-
eralised external forces Qe corresponds to the above procedure for representing
inertial forces Fi in generalised form Qi.

The equations of motion for a multibody system of rigid bodies can be
obtained by applying d’Alembert’s principle and setting the virtual work done
by inertial forces equal to the virtual work done by external forces

δWi = δWe (2.29)

QT
i δq = QT

e δq , (2.30)

where δWe is the virtual work done by external forces. Combining the state-
ment for the virtual work done by inertial and external forces, and the previous

45



Chapter 2. Multibody System Simulation and Semantic Data Management

equation for inertial forces gives thus(
q̈TM−QT

v −QT
e

)
δq ≡ 0 . (2.31)

The above statement is not unambiguously true due to the fact that the state-
ment does not explicitly define the virtual work done by the forces generated
into the joints connecting bodies. The often used methods to guarantee equal-
ity for the above statement in Equation (2.31) are:

• Augmented Formulation: a method of adding constraint equations using
Lagrange multipliers, which leads to an extended set of equations for the
multibody system. This method is explained in more detail below.

• Embedding Technique: a method of embedding constraint equations into
the original set of equations, which leads to a minimum set of equa-
tions for the multibody system when using generalised coordinates. Even
though the set of equations is smaller, the method requires the same ini-
tial information about the simulated system as augmented formulation.

Augmented Formulation In augmented formulation, the joint forces are
added into the set of equations of motion using Lagrange multipliers. The
equation for virtual work becomes

δW = δWi − δWe − δWc = 0 , (2.32)

where δWc is the virtual work done by constraint forces. The equations of
motion can now be written as(

q̈TM−QT
v −QT

e −QT
c

)
δq = 0

⇒Mq̈ −Qv −Qe −Qc = 0 ,
(2.33)

whereQc is the vector of generalised constraint forces. The vector of constraint
forces is Qc = CT

qλ, where Cq is a vector of constraint equations differentiated
relative to generalised coordinates q, and λ is the vector of Lagrange multipli-
ers. Now, the statement for virtual work is explicitly true, but the formulation
adds a set of new variables in the form of Lagrange multipliers. To fulfil the
set of equations, a set of algebraic constraint equations are added. Altogether,
the equations of motion are

Mq̈ −Qv −Qe −CT
qλ = 0

C = 0

}
. (2.34)

The joints and motion constraints in a multibody system restrict the motion
of the connected bodies relative to each other. These restrictions are described
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P

body 1

body 2

Figure 2.3: Definition of a spherical joint between two bodies using local frames
of reference.

with constraint equations of the form C = C(q, t) = 0. Constraint equations
are additional equations that define e.g. that two bodies have a common loc-
ation in the global frame of reference so that this point P is constant in the
local frame of reference of both bodies. Figure 2.3 illustrates the definition
of a spherical joint between two bodies, body 1 and body 2. The constraint
equation for this case defines the location for point P in the global frame of
reference so that the location for point P is constant in the local frame of
reference of both bodies, i.e. ū1 and ū2 are constants.

The principle of virtual displacement can be applied to multibody system
constraint equations. For that, virtual work on a multibody system is expressed
by using independent generalised coordinates. The derivative of a constraint
equation C respect to generalised coordinates q is

∂C

∂q
δq = 0 . (2.35)

The Jacobian matrix Cq of a multibody system is a partial derivative of the
constraint equations with respect to generalised coordinates q

Cq =


∂C1/∂q1 ∂C1/∂q2 . . . ∂C1/∂qn
∂C2/∂q1 ∂C2/∂q2 . . . ∂C2/∂qn

...
...

. . .
...

∂Cnc/∂q1 ∂Cnc/∂q2 . . . ∂Cnc/∂qn

 , (2.36)

where Ci (i = 1 . . . nc) are the components of the constraint vector, nc is the
number of constraint equations, and n is the number of generalised coordinates.

The equations of motion in Equation (2.34) are a set of differential algebraic
equations, which is difficult to solve with common numerical solvers in a general
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form. The algebraic constraint equations can be transformed to differential
equations by differentiating them twice relative to time

Cqq̇ = −Ct (2.37)

Cqq̈ = −Ctt − (Cqq̇)q q̇ + 2Cqtq̇ , (2.38)

where Ct is the vector of the first partial time derivative of the constraint equa-
tions, Ctt is the vector of the second partial time derivative of the constraint
equations, and Cqt is the matrix of the constraint equations differentiated rel-
ative to the generalised coordinates and time. Combining all the above into a
matrix form, the equations for motion for a rigid body system can be written
as [

M CT
q

Cq 0

] [
q̈
λ

]
=

[
Qe −Qv

Qc

]
. (2.39)

2.1.3 Notes on Multibody System Simulation

The formulation of the equations of motion in the previous sections shows that
a multibody system can be expressed using the following quantities:

• locations and orientations of the local frame of reference for each body
in the system, expressed with generalised coordinates

q =
[
x, y, z,θT

]
,

• mass matrix M; expanding the matrix representation will produce for
each body mass m and an inertia tensor with six components, called
moments of inertia of the body

Iij =

IXX IXY IXZ

IY Y IY Z

Symm. IZZ


and depending on the location of the body centre of mass relative to the
body local frame of reference, quadratic velocity vector Qv,

• locations and orientations of the joints and motion constraints C in the
system, expressed with generalised coordinates q,

• locations and orientations of external forces Qe in the system, expressed
with generalised coordinates q,

• definitions of the force function expressions in the system, and

• additional data that is used for describing the previous elements, such as
additional state functions, variables, and data curves (e.g. in the form of
spline functions) for function expressions.
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Regardless of the applied formalism, the same quantities define the system.
Thus, these quantities are the minimum but sufficient requirement for repres-
enting a multibody system model in a general form. The following sections
present the background for the semantic data model. In addition, the special
features and methods involved in the use of semantic data management, such
as semantic rules and constraints, and semantic reasoning, are covered.

2.2 Semantic Data Management

2.2.1 Background

The fast growth in the amount of Web data, and on the other hand, the con-
tinual progress in Web information technology development has induced the
World Wide Web Consortium (W3C) to embark on a project to design the
next generation Web, the Semantic Web1. The objective of this development
is to create a set of technologies that can be used within the framework of the
existing Internet infrastructure, while enhancing the management and exploit-
ation of the Web content. The Semantic Web presents a set of technologies
that enables storing the meaning of the data within the data itself. This makes
it possible for software applications to combine and refine data from a number
of sources and thus form a single network of information [36]. The present Web
is document-centric. This means that the content in the Web is passive, even
though the content of individual pages may be composed from e.g. a database.
Another feature in the present Web is that the data and the structures are
designed for human manipulation, not for a machine processable form. This
restricts the automatic composition of new Web content based on existing ar-
bitrary Web data.

The same needs as in the Web can be seen in the area of product de-
velopment and the management of modelling and simulation data. Due to
the increase in computers’ numerical computing power and the development of
computational software, the amount of modelling and simulation data involved
in a development process is increasing rapidly. As in the present Web, the mod-
elling and simulation data management practice is document-centric. Model
data is managed by using model files; product data management (PDM) sys-
tems focus on document management. In model files, the content of the model
description is obscure for humans, and automatic information retrieval from
these files for other applications is in most cases impossible. However, the
value of the data is not in the format but in the content, the information. The
dependencies of different design and simulation models in a design process are
illustrated in Figure 2.4. Each tool in the process stores its data in a software

1Website of the Semantic Web: http://www.w3.org/2001/sw/
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Figure 2.4: An example of the dependencies of different design and simulation
models in a design process.

application-specific format. For each model, there may be one or more files to
be saved. For each domain model there may be several model versions, either
for different simulation model development states or for different simulation
purposes.

While the performance of computers and the efficiency of simulation soft-
ware keep increasing, also the process of using simulation in product develop-
ment is changing. As described in chapter 1, the application of a simulation-
based product development process, and especially a simulation-based product
life-cycle process increases the amount of modelling and numerical result data
drastically, compared to the present situation. In addition to the amount of
data, also the complexity of the data and information increases due to the num-
ber of different versions of models needed in the product development process
and the number of simulation cases that are run for understanding the product
under development better. In this trend, the bottleneck of the improvement is
the human being. Our capabilities to distill the valuable information out of the
data mass is limited. The answer to this is to increase the abstraction level of
the managed data. The best solution is to change the plain data into inform-
ation. Thus, the need for a new method to manage the data in the product
process is parallel to the one for the Semantic Web.

The latest technologies of knowledge representation and data semantics are
employed to create a framework of specifications, languages, and tools for the
Semantic Web project [37]. To this end, concepts and terms can be defined
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explicitly and definitions can be domain- and context-specific. In addition, the
definitions can contain rules and validity constraints to increase the value of
the data. The main improvement is, however, that due to the semantics of the
content and its representation in machine-readable form, the information can
be condensed out of the data mass automatically by software.

The origin of knowledge representation as a separate discipline in research
has its roots in the research and development of artificial intelligence [39, 40].
Due to the increase in research activity in the area of the Semantic Web,
the interest in representing knowledge and reasoning on the existing data has
increased. There are many designs of systems and methods for representing
knowledge in a computer-processable form, but, in this thesis the emphasis is
on the technologies developed for the Semantic Web.

The area of knowledge representation can be coarsely divided into two sub-
tasks. On the first one, representing human knowledge in a machine-readable
form including terms, their descriptions, relations, and other constraints are
in focus. In the second subtask, applying reasoning to a mass of knowledge
using well-formed queries is studied. The human knowledge representation can
be seen as hierarchical and layered, starting from fundamental concept defin-
itions, adding new concepts and terms based on them, and mapping related
definitions. This is also the case in the models for knowledge representation,
such as descriptive logic- and frame-based methods, which create a network of
definitions that refines the definition of the subject while enabling tracing back
to the origin of the definition chain.

The often used architecture of a system based on the semantic data model
consists of a special database management system (DBMS) for triple data, the
database itself, i.e. the content, and client applications that use the database.
This can be related to the traditional relational database systems used for ex-
ample in business data management. A database system with query capabilities
can be used for retrieving desired data from the system. In relational database
systems, the most common method is the Structured Query Language (SQL)
[49], which enables simple methods to be used to retrieve relatively complex
data from the database system. Similar capabilities are usually available in
semantic database systems. When more complex rules for data retrieval and
comparison are required, separate reasoning systems, referred to as reasoning
engines, are often used. The major difference of a semantic representation com-
pared to the relational data model used in the traditional database system, is
its flexibility with respect to the content and structure of the data. On the
other hand, one of the challenges associated with semantic data representation
is the requirement for the computational resources of the semantic database
management system.

A fundamental question of how the surrounding world is seen and how it is
treated from the knowledge management point of view affects the procedure of
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how the actual data is handled. For data storing and especially reasoning, the
concepts of open world assumption and closed world assumption are essential.
The following definitions are generally used in knowledge representation and
reasoning:

Open world assumption: In the open world assumption (OWA), a state-
ment is assumed true, if it is not explicitly false. This means that if a
new statement is proposed and there is no information to prove it false,
i.e. the statement is unspecified, then it is true. The open world assump-
tion is well suited for knowledge representation and it is used e.g. in the
Semantic Web approach. [50]

In the open world assumption, something can be said to be true only if it
is always true, no matter if some new additional information is provided.
One can imagine the WWW as the source of information; if something is
to be inferred on the basis of the information available in the Web, no one
can guarantee that the information in hand is the whole and complete
information there is for this specific subject.

Closed world assumption: In the closed world assumption(CWA), a state-
ment is assumed false, if it is not explicitly true. This means that the
definition of the world under attention is explicit and closed. Statements
about the objects in the definition can either be true or false, but state-
ments about objects outside the definition are explicitly false. [50]

The closed world assumption is well suited for describing domains that are
complete and well bounded, which is usually the case e.g. with system
modelling domains. Modelling knowledge and reasoning based on the
closed world assumption is closer to the concept of using object-oriented
methods than when applying the open world assumption.

The Semantic Web relies upon the open world assumption [51]. The open
world assumption is necessary for enabling the description of incomplete know-
ledge and information available in the Web. Modelling domains, on the other
hand, are usually well defined and complete, which would make it appropriate
to use the closed world assumption. To use Semantic Web technologies like
Web Ontology Language (OWL), which make an open world assumption, to
represent the modelling domain, additional rules and constraints have to be
applied to complete the representation and close the definition.

The above assumptions of either the open or the closed world have fun-
damental influence on how the semantic data is interpreted by a semantic
reasoner, a software that does logical reasoning on the semantic data based on
the basic semantics, semantic constraints, and semantic rules. Thus, the fun-
damental and philosophical question of how the surrounding world is seen and
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RDF

A data model for resources and relations between
them, and a simple semantics for this data model.

RDF-S

A vocabulary for describing properties and classes of
RDF resources, including semantics for generalisation
hierarchies of such properties and classes.

OWL

Adds more vocabularies for describing properties and classes: among others,
relations between classes, cardinality, equality, richer typing of properties,
characteristics of properties, and enumerated classes.

SWRL

Adds semantic rules on OWL, which enables e.g. rule-based modelling.

SPARQL

Enables complex database
queries to be applied to
RDF data.

XML

Provides a surface syntax for structured documents,
but imposes no semantic constraints on the meaning
of these documents.

XML Schema

A language for restricting the structure of XML
documents; also extends XML with data types.

Figure 2.5: The layered structure of the enabling core technologies for the
Semantic Web [2].

treated is also fundamental for semantic data management from the practical
point of view.

The concept of the Semantic Web is strongly layered, as illustrated in Figure
2.5. This is also the case for the content of semantic data. The layered form of
semantic data is bounded and finite, so it has to have an origin, a bottom layer
that is used as the basis for other definitions. Fundamental definitions have
been already collected into general ontologies, such as Dublin Core2 [52], Cyc3

[53], and General Formal Ontology4 [54]. These are examples of storages of
fundamental data, common knowledge, which are referred to but do not refer
anywhere.

The W3C has developed and applied several technologies under the um-
brella of the Semantic Web as depicted in Figure 2.5. These technologies
include:

• the Resource Description Framework (RDF), a language for represent-
ing information about resources in the World Wide Web, and the RDF
Schema (RDF-S), a vocabulary description language for RDF,

• the Web Ontology Language (OWL), an ontology description language
developed for the Semantic Web,

• the SPARQL Protocol and RDF Query Language (SPARQL), a query
language developed for the Semantic Web to be used together with RDF,

2Website of Dublin Core: http://dublincore.org/
3Websites of Cyc: http://cyc.com/cyc and OpenCyc.org: http://www.opencyc.org/
4Website of General Formal Ontology: http://www.onto-med.de/ontologies/gfo/
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• the Semantic Web Rule Language (SWRL), an extension to the Web
Ontology Language OWL to introduce Horn-like rules, and

• the Extensible Markup Language (XML) together with the Extensible
Markup Language Schema (XML Schema), a natural choice for data
serialisation for the Semantic Web; the grey background colour and dash
line of the boxes in Figure 2.5 indicate that these technologies are general
serialisation technologies and not specific to semantic data representation.

The most relevant technologies for this work are described briefly in the fol-
lowing sections. There are more technologies that are related to the Semantic
Web, but they do not have relevance for this work.

2.2.2 Resource Description Framework

A number of notations have been developed for knowledge representation in
the computational environment. The subject-predicate-object form, the data
triple, for the description of data entities and their relationships has gained
wide acceptance, due to its straightforward notation. This approach creates
the basis for the data model selected for the Semantic Web [55].

One of the main components for the Semantic Web is the Resource De-
scription Framework (RDF), which is a language for representing information
with respect to resources in the WWW [2, 37, 55, 56]. The RDF language has
a simple structure, making it attractive for storing heterogeneous machine-
readable data. The data model in the RDF consists of data triples: a resource
(subject), a property (predicate), and its value (object); values (objects) may
be either other resources or literals (constant values). In the RDF, resources
(subjects and objects in data triples) as well as properties (predicates in data
triples) are identified using Unified Resource Identifiers (URIs) [57]. Figure 2.6
illustrates a representation of information in the triple form.

The RDF is extensible, making it possible to have a precise description
of the semantics of the data. The language has been widely adopted for the
technology of several semantic data applications, while a number of tools and
application libraries are available for software developers. The RDF specific-
ation describes the triple form for the data model as well as the basic rules
that can be applied to the data. The RDF can also be used for representing
information with respect of issues that can be identified on the Web even when
information cannot be directly retrieved from the Web [37]. This generality
makes the RDF a suitable option also for system modelling data management.

The RDF defines the basic features for the data representation, but it is not
sufficient to be used for generic semantic data representation. The description
of the data model is overly general and does not have structures and mechan-
isms for e.g. defining ontologies and their properties. The Resource Description

54



2.2. Semantic Data Management

hinge_2 link_1
hasMasterMember

(Subject) (Predicate) (Object)

Figure 2.6: An example of the use of the subject-predicate-object, the data
triple, representation of multibody system simulation modelling data.

Framework Schema (RDF-S), the RDF’s vocabulary description language, is
a semantic extension of the RDF. It can be seen as an extension in the sense
of description of the semantics, but, on the other hand, it can be seen as a
restriction to the RDF, which is otherwise open and permissive description.
The RDF-S uses the RDF to describe new features, and thus it can be treated
as an RDF vocabulary defining new concepts. The RDF-S adds the concept
of class into the definition of RDF. The class concept in the RDF-S is similar
to those in object-oriented languages. The RDF-S adds also other concepts to
the RDF, such as a type system, as well as domain and range. The RDF and
RDF-S can be considered as the foundation for upper layers in the Semantic
Web data model.

In a semantic database having a triple-formed data model, all the data is
described in triples, i.e. all component instances, their connections and rela-
tions, and all additional data like component data properties. The advantage
of the triple-formed data model is that it simplifies the design and development
of tools to handle the data. This approach resembles the XML data repres-
entation, which has already proved to be flexible and rich in the number of
tools [20]. Like in the XML representation, the model is independent of the
application area. In this approach, all the tools that are developed for data-
base development and management are available for all application areas. For
example, general semantic ontology development tools, such as Protégé5 and
NeOn Toolkit6, are usable for system modelling ontology development.

2.2.3 Web Ontology Language

The Semantic Web and its knowledge representation are based on the triple-
formed low level data model and the application of ontologies. In the Semantic
Web context, an ontology is a special kind of vocabulary that has object-
oriented features. An ontology consists of definitions of classes, object proper-
ties that connect the instances of the classes, and data properties, which define
the properties of the classes. The classes can have subclasses, which inherit
the properties from the superclass. An object in a data model can be an in-

5Website of Protégé: http://protege.stanford.edu/
6Website of NeOn Toolkit: http://neon-toolkit.org/wiki/Main_Page
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stance of several classes at the same time, but classes can be defined as disjoint
to prevent this. An example of an ontology could be a specification of the
multibody system simulation domain. In that case, the ontology defines basic
entities, such as a rigid body, joints and constraints, forces, and their proper-
ties. For a rigid body, the properties could be the location and orientation of
the body, mass, centre of mass location, and the inertia tensor presented in
a given frame of reference. To use the basic principles of the semantic data
model, the measures and their units can be mapped from another ontology.

The Web Ontology Language (OWL) is an ontology language built on the
RDF and RDF-S. While the RDF gives tools for describing arbitrary things us-
ing one simple formalism, the OWL bounds this permissive and thus difficult-
to-handle domain to a clearly bounded and implementable definition. The
OWL is one of the technologies of the Semantic Web, which has strongly influ-
enced the development of this ontology development language. The first version
of the OWL specification was completed in 2004 [58], and a new version of it,
the OWL 2 Web Ontology Language [59], was completed in 2009. The new
version of the OWL is backwards compatible with the old OWL definition.

The OWL has mechanisms to describe ontologies that are built by using
classes and properties. The classes can be seen similar to the classes in object-
oriented programming languages, such as Java or C++. The subclasses inherit
properties from the superclass, and instances of a subclass are also instances
of the particular superclass. The OWL properties are the predicates in the
data triple, hence they are the connecting predicates between the subjects and
objects. The properties can be either object properties, i.e. they connect class
instances to other class instances, or data properties, when they are used for
connecting RDF literals or typed values to class instances. In addition to the
above basic features, the OWL defines class constructors, such as intersect,
union, and complement, for composing complex classes.

Due to the primary design goal of the Web Ontology Language, it uses the
open world assumption (OWA). This assumption enables incomplete data to
be used for reasoning, which has to be assumed for the data from the Web.
Another feature of the Web Ontology Language, coming from the RDF defin-
ition, is that it does not make unique name assumption (UNA). This means
that e.g. instances of a class with different names may refer to one entity, i.e.
one is an alias of the other.

The OWL 2 specification has two different sublanguages:

1. OWL DL (referring to Description Logic) is the practical subset of the
specification, and

2. OWL Full, which is RDF and RDF-S -compliant; the complexity of OWL
Full restricts its use in practical applications.

In addition to these sublanguages, OWL 2 introduces three language profiles.
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Unclassified data

New knowledge

Classified data

Semantic reasoning

Figure 2.7: Semantic data and its classification.

The language profiles are tailored subsets of the OWL 2 language for specific
purposes to simplify the otherwise unnecessarily difficult implementation. The
profiles are [60]:

1. OWL 2 EL, which is relatively close to OWL 2 DL with just a few sim-
plifications in the data model; OWL 2 EL is designed for large data
sets with structurally complex data models (e.g. in biohealth and system
description),

2. OWL 2 QL, which is designed in such a way that it can be implemented
with relational database systems; the name refers to Query Language,
and

3. OWL 2 RL, which is optimised for reasoning and rule-based modelling;
RL refers to Rule Language.

OWL Features and Characteristics

Developing ontologies, describing knowledge semantically, and reasoning with
the OWL are strongly influenced by the open world assumption made in the
OWL. The class definitions and property restrictions in the language are not
meant for validating if an instance of an ontology class is modelled correctly
from the modelling domain point of view, but to classify the semantic data
based on the applied ontologies. Except for datatype restrictions (e.g. hasMass
some double[≥0], meaning the property of the mass of a body is a datatype of
double, and its value must be greater or equal to zero), the property restrictions
are constructors for complex classes, i.e. they are instructions for the reasoner
to filter the semantic data and classify it according to complex class definitions
(Figure 2.7).

Some fundamental features of the Web Ontology Language which have a
higher importance in this thesis, and some features which are consequences of
the nature of the OWL, are described below.
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Cardinality The number of properties connected to an instance of a class is
not restricted in the OWL. To restrict the number of properties attached to an
instance, either by requiring a minimum, defining a maximum, or defining the
exact number of properties, a cardinality constraint is used. These restrictions
are ObjectMinCardinality, ObjectMaxCardinality, and ObjectExactCardinal-
ity. It is important to note that even though either a minimum or an exact
cardinality restriction is set to an instance, this does not guarantee that the
instance has any properties of a kind. In other words, if there are properties
of a kind, the cardinality restriction sets constraints to the number of such
properties. Related to the cardinality restrictions are existential (ObjectSome-
ValuesFrom) and universal (ObjectAllValuesFrom) restrictions. They define,
respectively, that there has to be at least one property of a kind attached to the
instance and that the only allowed properties are of the specified properties.
[60, 61]

Class Disjointness The disjoint constraint restricts the instances of a class
from being an instance of another, disjoint class. An example of class disjoint-
ness would be the subclasses Man and Woman of the superclass Human. It is
quite natural that an instance of the class Woman cannot at the same time be
an instance of the class Man.

Closure Axiom The open world assumption is made in the OWL specific-
ation. This general assumption may become a problem, if in some specific
occasion a local closed world assumption is required. As an example, in a
multibody system domain, a rigid body can be defined with and only with a
local frame of reference, mass, and inertia tensor. Based on the open world
assumption, if no other restrictions are done, it is a valid statement that a rigid
body has a property temperature, even though it is not relevant in the ideal
rigid multibody system domain. To close the definition of a rigid body, an
additional statement, a closure axiom, is required to define that the mentioned
rigid body properties are the required and the only allowed properties for a
rigid body.

Domain and Range The domain and range constraints in the OWL limit
the set of classes a property may refer from (domain) and may refer to (range).
The domain and range constraints are not strict restriction, but meant for
adding implicit information about the resources the property is connecting. An
example of the added implicit information is the domain and range constraints
for the hasMasterMember property (see chapter 3 for details). For the reasoner,
the domain and range constraints in this case inform that the subject instance
of the data triple is either a force or a constraint, and that the object instance

58



2.2. Semantic Data Management

of the data triple is a body. This information decreases the need for further
inferring and thus speeds up the process. [61]

Functional The OWL Web Ontology Language Guide [51] explains the func-
tional property constraint in a compact manner: if a property D is tagged as
functional, then for all a, b, and c

D(a, b) ∧D(a, c)→ b = c . (2.40)

That is, an instance of a class can have only one value attached by the specified
property. It is important to note that functionality for a property does not
guarantee that there is only one property of the specific kind relating to one
individual. In case there are e.g. two instances of a functional property relating
to the same individual, these two property instances must point to the same
value, or the relation is inconsistent. This is the consequence of the fact that
the RDF and thus the OWL do not make a unique name assumption. If it is
required that there is only one instance of a property relating to one individual,
the cardinality constraint has to be used.

An inverse functional property defines a unique subject for the specified
property in the data triple, i.e. a value of a property can be connected only
from one unique instance of a class. Based on Equation (2.40), this is

D(a, b) ∧D(c, b)→ a = c . (2.41)

Symmetric Symmetric property means that if instance a of some class has
property D with a value of instance b of some class, then instance b has the
same property D with value a

D(a, b)→ D(b, a) . (2.42)

An asymmetric property states explicitly that this is not valid.

2.2.4 Semantic Database System

Implementing a software application that utilises the semantic data model ap-
proach is not a trivial task, especially if the application is meant for managing
large data sets. The concept of storing system modelling data by using a
semantic data model is illustrated in Figure 2.8. In addition to the basic struc-
tures of the data model, i.e. knowledge representation framework and ontology
development languages, a special database management system (DBMS) is
required. In case of triple data, this is called a triplestore. A triplestore is
a specifically designed database system for triple formatted data. For this
reason, it is computationally more efficient to use than for example a relational
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Knowledge description framework Ontology development languages

Triplestore, database management system

Ontologies, knowledge framework

Content, simulation data and knowledge

Enabling
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Content
layer

Figure 2.8: The components for semantic data management of system simula-
tion.

database system applied for this purpose. In Figure 2.8, the dash line and the
grey colour for the triplestore means that this is a real software component
unlike the other, which are language definitions or actual data content. These
three components form the enabling layer, the infrastructure and general tech-
nologies, of the semantic data management system. Using these components,
knowledge can be described and stored into the system. The essential net-
work of ontologies (the knowledge framework) constitutes the basis of common
models of knowledge in a knowledge domain. More specific and case dependent
data models can be created with these knowledge structures. They describe for
example individual simulation models or parts of models. These two compon-
ents form the content layer. The layered, hierarchical structure of the semantic
data model itself encourages building the knowledge framework also hierarch-
ically. This, on the other hand, simplifies the data management and enables
knowledge accumulation into the semantic data management system.

For a general data management application, a database design with a clear
data interface, data storing, manipulation and deleting functions, sophisticated
data query mechanisms, and flexible client software connectivity is a popular
solution. Due to the basic objectives discussed in chapter 1, one of the mo-
tivations to apply the semantic approach is to solve the problem of managing
large and complex data structures. The functionality of a semantic database
system can be compressed to the following:

1. representing and storing data in the semantic form,

2. being able to validate the data and its semantics against given ontologies,

3. applying explicit and implicit reasoning on the data on the basis of given
ontologies,

4. being able to perform complex queries to large data sets, and
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Figure 2.9: The architecture of the Simantics platform.

5. being able to map data on the ontology level and thus provide a projection
from one data representation to another.

An example of a semantic database system for modelling is the Simantics7

platform (Figure 2.9). The software architecture of Simantics is a traditional
server-client model. The semantic database server, Simantics Core, holds all
the semantic data of the system. The client software application, Simantics
Workbench, provides the user interface to the system and is the framework
for all interactive tools, such as model editors, database browser, and ontology
development tools [62]. The third component in the system, Simantics Data-
board, provides an unified interface for different data backends and operates
as a connection framework between the data in Java classes and the semantic
data graph. External simulation applications, such as numerical solvers, are
connected to the client software application as application plug-ins. The ap-
plication plug-ins can have direct connections to the database server and to
each other.

Knowledge Mapping in a Semantic Environment

One of the major design objectives of the Semantic Web and its technologies
has been to enable the mapping of data and information in the Web. The
first generation of the Web introduced the concept of publishing information
electronically and linking it manually with hyperlinks. The concept can be
simplified as publishing information passively in electrical form in the Internet.

7Website of the Simantics platform: https://www.simantics.org/simantics
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Even though there are technologies to compose a web page actively on client’s
(e.g. user’s browser) request and retrieve up-to-date data from a database sys-
tem, the structure and mechanisms are passive and predefined. [36, 63]

The next generation of the Web introduces interactive services. The in-
formation is not only published by pushing it to users, the Web content is
interactive instead, and the users are able to produce and modify the content
to some extent. Examples of the interactive Web are the social media applic-
ations in the Web, such as Wikipedia8. The technologies used in the Web 1.0
and Web 2.0 concepts do not solve the demand of being able to create new con-
tent using multiple data sources and automated procedures to retrieve relevant
data. For this purpose, a project for the next generation Web, the Semantic
Web, has been introduced. [36, 63]

In the Semantic Web, the third generation of the Web, the data concepts
are defined with ontologies. The efficient and rational use of the semantic data
model takes advantage of the existing ontologies and builds on them. This
means that new ontologies are mapped to the existing ones, and if necessary, the
existing ontologies are extended instead of creating completely new ontologies.
An example of using mapping between ontologies is the use of an existing unit
system ontology. The knowledge mapping can be seen as bridging the concepts
of one domain with the concepts of another. [36, 63]

Semantic data mapping, or semantic integration, has also been seen as a
method for integrating data sources in different environments than the Web
[64, 65]. In general, semantic ontology-based data modelling has been seen as a
tool for information integration. Application areas for semantic data mapping
are e.g. database integration and integration of data that is already described
with ontologies, such as biomedical databases [66].

In physical system modelling, such as multibody system and computational
fluid dynamics (CFD), a unit system for quantities is required. The definition
for a unit system, such as SI units, should be explicit and thus reusable. In
addition, conversions between different unit systems, such as the SI unit system
and the English customary unit system, are also explicit and can be system-
atised. To rationalise the development of physical modelling ontologies, the
modelling domain ontologies should be mapped with the general unit system
ontologies. In semantic modelling, there are also other approaches to imple-
ment unit systems than a fully-fledged units ontology, such as using literals
for quantities and units (e.g. length:quantity and mm:unit denoting ”length”
is type of ”quantity” and ”mm” is type of ”unit”).

The mechanism of mapping data in a semantic environment is based on
the fundamental feature of the low level data model. The data triple allows
mappings between practically all kinds of data types. On the upper abstraction

8Website of Wikipedia: http://www.wikipedia.org/
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level, the semantic modelling language, such as the OWL, defines mechanisms
for mappings between ontologies. The mapping can be done by using built-
in mechanisms of the OWL, such as equivalentClass and equivalentProperty
axioms or, in complex mappings, specific mapping ontologies with intermediate
constructing structures for complex classes.

Tool Interoperability in the Semantic Approach

In addition to the data and information mapping discussed in the previous
section, the semantic approach is used for software application data exchange
and integration. In principle, the approach is straightforward. The minimum
requirement is to provide a data flow between software applications and the
semantic environment. To use the semantic approach, the data models of
the connected software applications need to be described semantically, i.e.
also software application-specific ontologies have to be provided. After this,
the software application data is described in the semantic environment, and
all the semantic mapping and data modification features are available. Map-
ping between different software applications can be done straight between the
application-specific ontologies, or they can be done by using domain-specific
ontologies to simplify the mapping between different domain ontologies and
software applications.

The concepts of integrating software applications by mapping application-
specific ontologies directly and by using domain-generic ontology as an inter-
mediate step are illustrated in Figure 2.10. As shown in the Figure, ontologies
can build bridges between the data models. When the modelling is done inside
the ontology database, the database forms the common data model for different
applications.

The concept presented above is applied to modelling time data management
and data transfer between applications. Runtime communication between soft-
ware applications, such as numerical solvers, is a slightly different task. In
addition to just sending and receiving data when the data is modified, runtime
communication requires information about the order of precedence, i.e. which
one of the software applications has the highest priority and which applications
follow the orders.

The actual runtime data transfer can be implemented with several strate-
gies. Direct communication between software applications can be done by
using a selected communication protocol (e.g. TCP/IP) or document-based by
using intermediate files, described as dash line in Figure 2.10. Depending on
the semantic environment capabilities, the runtime data transfer can also be
implemented through the semantic system. This option simplifies the imple-
mentation of several software application integrations even more, due to one
communication interface, but can become complicated on the semantic envir-
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Figure 2.10: The architecture of semantic integration of applications.

onment side.
The advantage of semantic database data exchange compared to the one-to-

one data exchange strategy between modelling and simulation tools, illustrated
in Figure 1.5, is that once the communication capability is created for a new
integrated software application, the whole set of existing integrations are avail-
able. Creating new data mappings inside the ontology database application
does not require any software development, and for this reason it is available
for a simulation user who may not be experienced in programming. As a con-
clusion, a common semantic framework introduces unified tools for data and
knowledge mapping.

2.2.5 Semantic Reasoning and Rule-Based Modelling

In the context of this thesis, semantic reasoning means either checking the
validity of the semantic data on the basis of the ontologies, or implicit infer-
ring of new information on the basis of the existing data. An example of the
former in the modelling and simulation domain could be the validity checking
of the multibody system model based on the ontology definition and possible
additional modelling case restrictions. An example of the latter could be an
analysis of system features based on the modelling data and additional in-
structions about the features under analysis. The use of reasoning is one of
the advantageous features of the use of the semantic data model. It is a tool
for applying smart data analysis methods on the modelling data and thus in-
creasing the value of the data. The motivation for using advanced data models
and data management tools, and on the other hand, the application principle
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of the rule-based modelling approach, are depicted in the following example.
Figure 2.11 presents a simplified example of the phases of the machine

product development process. In the Figure, the subsystems represent e.g. the
mechanical design, hydraulic subsystems, and control systems of the product.
In this example, the design process begins with the concept design phase for
the product, during which the general architecture and structure of the product
are designed. During this phase, the product design is divided into subsystems
and their common interfaces, and the design requirements are set. These can
be seen as the declaration of the main global design variables. The process
continues with the concept phase for the subsystem design, during which the
architecture and implementation of each subsystem are decided so that the
earlier set requirements are met. During this phase, the main global variables
are brought to the subsystem design environment, and a set of subsystem-
specific interfaces and design parameters are declared. The third phase in
the process is the detailed design phase for the subsystem designs. This is a
phase during which both the main global design parameters and the subsystem-
specific design parameters are defined, and possibly more design parameters are
declared. The result of this phase is the overall design of the product, which can
be seen as the set of declared and defined design variables. If the design is good,
the set of variables meets the requirements of the product and its subsystems.
If the requirements cannot be met, the requirements have to be adjusted to
enable it. The fundamental objective for efficient product development is to
minimise the area of the rectangle in Figure 2.11 bounded by the time axis and
the subsystem discipline axis. This can be done by decreasing the time-scale of
the subtasks in the process rectangle and by filling the area with the subtasks
as well as possible to avoid gaps between the consecutive subtasks. Usually the
number of subsystems cannot be decreased.

In the example above, each of the subsystems has its own and established
methods for design practices. For example, mechanical design is nowadays
done mostly three-dimensionally using a CAD system, while automation and
control system design tools are two-dimensional schematic graphs. In addition,
the simulation methods in different engineering disciplines differ remarkably,
which leads to many different modelling and simulation tools and many sep-
arate simulation models, which all describe the same product or part of it.
When the application of simulation-based product development becomes more
attractive and this approach is more widely used, the management of all the
computational models of the product becomes more difficult. The models and
simulation results are connected to each other via the product and its global
design variables and interfaces. Thus, changing a parameter value in one dis-
cipline may have severe influences on other disciplines of the same product
development process. This is a challenge for product data management, espe-
cially in the simulation-based product development process.
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Figure 2.11: Simplified example of the phases of the machine product develop-
ment process.

Figure 2.12 illustrates the application of semantic rules and constraints
for a semantic modelling ontology. In the Figure, the diamonds present the
parameter options for the design, the solid line bounding the diamonds show
the available parameter space, the thick dash line is the applied semantic rule
set, and the thin dot line and the dot line diamonds are the excluded parameter
space. In the beginning of a modelling task, the whole ontology space and all
the parameter values are open for use (Figure 2.12 a). Selecting a domain
ontology, e.g. a multibody system modelling ontology, bounds the options for
modelling based on the general modelling rules and constraints included in the
ontology (Figure 2.12 b). Further, applying case-specific rules and constraints
bounds the ontology space further and gives the modeller the design space for
the current task (Figure 2.12 c). The modelling tools infer the semantic model
during the process and limit the available options for the user. This decreases
the possibility of error and makes it easier for the modeller to use the modelling
tools with fewer options, and thus increases the efficiency of the work. The
advantage of using semantic rules and constraints with reasoning simplifies the
multi-domain modelling and data management. This is due to the fact that
the same data management and rule definition mechanisms are used for all the
modelling data. The difference in the semantic method compared to previously
used methods in modelling data management is that instead of creating the
model validation mechanisms and validation rules in the modelling tool, they
are included in the modelling domain ontology (for generic domain rules) and
individual simulation model (for case specific rules). This enables the use of
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a)

c)

b)

Applying general rules to the model

Applying specific rules to the model

Figure 2.12: Applying rules to the domain ontology. a) Original set of options
and application of general modelling rules. b) General rules-limited set of
options and application of case-specific rules. c) Specific rules-limited set of
options.

strict rules and also combining the model information with information about
the validity of the model. This expansion in included information increases
also the information value of the data. It can be said that this converges the
product modelling data into information.

Semantic Reasoners

A semantic reasoner is a software application that can be used for checking the
consistency of a semantic ontology, as well as for classifying semantic data based
on ontologies. Here, classification means reasoning the data and classifying it
on the basis of the class definitions. The conceptual difference to the object-
oriented approach is that in the case of object-oriented programming, the user
of a object class is restricted to use the methods and datatypes provided by the
class, but in semantic reasoning, the classes are the basis for the classification
and the data either fits a class or not. In semantic data reasoning using the
OWL, there are no restrictions about the content of the data.

In this work, the open source semantic reasoner Pellet9 [67] is used for

9Website of Pellet reasoner: http://clarkparsia.com/pellet/
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checking the consistency of the developed ontologies, as well as for classification
of the data, rule-based reasoning on SWRL rules, and data queries on the
semantic data using SPARQL. The Pellet reasoner is compliant with the OWL
DL version 2.

Constraints and Rules in the Web Ontology Language

The description of data and knowledge in a semantic form can be divided into
two distinct areas:

1. plain description of content, i.e. data, facts, and details; and

2. description of data relations, restrictions, and rules.

The first area provides results especially for explicit knowledge retrieval, an
example of which could be a query for all the bodies in a multibody system
model that have mass equal or over 2 kg. This query does not require much
reasoning or checking any complex validity of rules or constraints, but only
the value of one property of each body in the model. This information is
available as explicit data. The second area of the semantic data and knowledge
representation may result in complex reasoning on the data. An example of
the second area is finding all the bodies in the system that are constraint to the
ground body via one other body, and the chain is done using spherical joints.
This query requires analysis of the topology of the model instead of analysis of
the model component parameters.

The Web Ontology Language includes only limited features for applying
complex semantic rules and restriction on the data. These features are briefly
described in section 2.2.3. The features are:

• existential and universal quantifications (hasSomeValueFrom and hasAll-
ValuesFrom, respectively),

• cardinality restrictions (hasMinCardinality, hasMaxCardinality, hasEx-
actCardinality),

• class disjointness,

• property domain and range restrictions,

• equality and inequality of individuals (class instances),

• data types, and

• property functionality.
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Semantic Web Rule Language

The Web Ontology Language OWL contains only limited mechanisms to set
semantic constraints to the data. These include data restrictions, such as
setting cardinality or domain and range restrictions for properties. The actual
semantic rules are not included in the OWL. For example, defining the following
simple rule is not possible with the OWL: defining properties D and E, such
as if instance a has property D that has the value of instance b and the same
instance a has property E that has the value of instance c, the value instances
b and c have to be different instances

D (a, b) ∧ E (a, c)→ b 6= c .

To fulfil this lack of functionality, a specific rule language has been intro-
duced. The Semantic Web Rule Language (SWRL) is an extension to the
OWL language axioms introducing elements for Horn-like rules [68]. The ori-
ginal Horn clause [69] is written as

L1 . . . Ln ⇒ L (≡ ¬L1 ∨ . . .¬Ln ∨ L) , (2.43)

where L1 to Ln are literals and n ≥ 0, and L to is the only positive literal. A
Horn clause is a definite clause when it has exactly one positive literal. This is
often presented as

Ω
∧
i<n

(Φi0 ∧ · · · ∧ Φimi → Ψi) , (2.44)

where Ω is a string of quantifiers and the Φi0 to Φimi and Ψi are atomic
formulas, and mi, n > 0 [70]. Especially for first-order logic programming, this
is represented in a simpler form as

(S1 ∧ S2 ∧ · · · ∧ Sn)→ S . (2.45)

This can be said as if statements S1 to Sn are true (n > 0), statement S is
true. In the SWRL, the rules are defined in the form

antecedent⇒ consequent ,

where antecedent is the body and consequent is the head of the rule, and both
the body and the head can be conjunctions of atoms a1 ◦ a2 ◦ · · · an, where
n ≥ 0 [68]. In practice, the SWRL rules are as in the following example

father (?a, ?b) ∧ father (?b, ?c)→ grandFather (?a, ?c) ,

where the question mark preceeding a symbol denotes a variable. This example
sets a rule that if instance a has father b and if instance b has father c, then
instance a has grandfather c.

69



Chapter 2. Multibody System Simulation and Semantic Data Management

From the point of view of the system modelling ontology development, the
SWRL provides a mandatory extension to the expressiveness of the OWL. With
semantic rules, modelling ontologies can include valuable statements about the
validity of the semantic model. This is important from the usage point of
view of both algorithmic and manual semantic model. For algorithmic use,
semantic rules add more information for inferring; for manual use, such as
semantic modelling, the rules enable necessary information for on-time model
validation, which increases the efficiency and improves the modelling quality.

2.2.6 Queries in the Semantic Database

Even though semantic reasoning distills the ontology-specified instances out
from the data mass, it is not exactly a database query operation. Semantic
reasoning classifies the provided data based on the ontology information, and
it is thus able to do implicit inferring on the data. For example, a data triple
Mary–hasBrother–Robert implicitly tells that Robert is a man and he is a
sibling of Mary. But for a large data mass, the reasoning-based approach for
retrieving simple data, such as ”print all rigid bodies” may be computationally
too exhausting. For operations like this, a database query is a more convenient
approach.

Similar operations are applied to a semantic database as to e.g. a relational
database. The data is stored in and retrieved from the database, the data
in the database is used, e.g. by mapping, in new applications, and database
queries are applied e.g. to discover new patterns in the data or to use distilled
data from the database. For data queries in the Semantic Web, a special
query language, the SPARQL Protocol and RDF Query Language (SPARQL)
[71, 72], has been developed. The language is similar to the Structured Query
Language SQL [49], the standardised (ISO 9075) query language in relational
database systems. The SPARQL unifies the data retrieval in the Semantic Web
and simplifies the software application development.

A separate language for data queries in the semantic environment, together
with other Semantic Web technologies and languages, forms a solid set of tools
and methods for flexible and scalable data management. In addition, the mod-
ularised structure of tools and methods brings more flexibility to the software
application and system development.

70



Chapter 3

Ontology Development for
Multibody System Modelling

3.1 Design of Domain Ontology for Multibody Sys-
tem Modelling

A domain model for multibody system modelling describes the concepts, terms,
and components for defining a multibody system unambiguously. The design
of the domain model can be based on the requirements for describing some
specific features in the model, or the application area of the model can be the
dictating factor for the design. However, in most cases an important driving
force for the domain model design is the software application implementation.

Even though some effort for the standardisation of multibody system model
representation has been going on [12, 19, 20], there is no common model for
representing multibody systems, and the community has not been able to agree
on a unified, standardised model representation approach. All the widely used
multibody system software in the market, such as LMS Virtual.Lab Motion1,
the Modelica MultiBody2 library, MSC Adams3, and SIMPACK4, have their
own specific formalism to describe a multibody model, and transferring a model
from one system to another has been found cumbersome. The multibody sys-
tem domain models used in these tools differ from each other e.g. in the gran-
ularity of the model components and in the approach of defining component
information. The differences in the numerical formalisms used in the above
mentioned software applications has also a significant influence on the domain
model. Examples of different domain models are the Modelica MultiBody

1Website of LMS Virtual.Lab Motion:
http://www.lmsintl.com/simulation/virtuallab/motion

2Website of Modelica Association: http://www.modelica.org/
3Website of MSC Adams: http://www.mscsoftware.com/Products/CAE-Tools/Adams.aspx
4Website of SIMPACK: http://www.simpack.com/

71

http://www.lmsintl.com/simulation/virtuallab/motion
http://www.modelica.org/
http://www.mscsoftware.com/Products/CAE-Tools/Adams.aspx
http://www.simpack.com/


Chapter 3. Ontology Development for Multibody System Modelling

library [73] and MSC Adams [74]. In the Modelica MultiBody library, the
granularity of the domain is small, whereas in MSC Adams the approach is
to describe the model with generic components. For example, the Modelica
MultiBody library provides thirteen components in its Parts class, while MSC
Adams has two. Still, both these software applications are capable of describing
the same multibody system.

To have a general multibody system modelling ontology, a new domain
model for this work was designed and implemented. This multibody system
domain model does not follow strictly any of the domain models used in com-
monly available software applications, but the applied design concepts are rel-
atively close to those used in MSC Adams. The first version of the developed
modelling ontology was introduced by the present author in [75]. The prin-
ciples for the design of the multibody system modelling domain for this work
are:

• clarity from the system modelling point of view,

• simplicity, and

• minimal number of components.

The management and use of modelling and simulation data and related
product data, although in a concise context, resembles the objectives of the
Semantic Web. Ontology design can be referred to as the design of a database
or the design of an object-oriented software. In both of these cases, classes,
their relations, and packaging are the key to the reusability and clarity of the
design. The fundamental principles and practical aspects of database design
have been described in [76]. For the ontology development of multibody system
modelling, the following steps have been used [77]:

1. Classification: class data type definition and basic design of the ontology.

2. Aggregation: type attributes and composite types.

3. Generalisation: type derivation, data representation from general to spe-
cial.

The used ontology development language is the OWL (version 2), although
it has not been designed for engineering purposes. There are a number of tools
available for OWL ontology development, and in this study Protégé and NeOn
Toolkit are used for constructing the multibody system modelling ontology and
for checking the validity of the ontology. The ontology model in the OWL is
hierarchical, where every class is a subclass of some other class. In order to
accomplish a hierarchical structure, a base class called Thing is provided. The
property that connects subclasses to superclasses, such as Thing, is called is-a.
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3.1.1 Class Hierarchy and Features of the Mbs Ontology

The classes that define the uppermost level of the Mbs ontology are presented
in Figure 3.1. The developed ontology domain is called Mbs. The ontology is a
collection of classes and subclasses, and properties, which define the predicates
that connect the instances of classes. The classes can have data properties
that define parameters for the class instances. The basic classes for the Mbs
ontology are the following:

• Analysis, which collects all the necessary data associated to a simulation
case;

• AuxiliaryCoordinateSystem, which can be used for defining for example
constraints and forces;

• Body, including the general rigid body and the ground body;

• Case, a system simulation case, which holds all the elements of a simula-
tion case organised under the elements model, analysis, and results;

• Constraint, including joints such as spherical joint or revolute joint;

• DataElement, including data elements variable, table, and spline curve
data;

• Force, including vector forces, point-to-point forces, and field forces like
gravity;

• Geometry, which contains parametrised geometries for basic shapes and
a method to use external geometry e.g. from a CAD system;

• Model and SubModel, which collect all the data associated to a mul-
tibody system simulation model and enable modular modelling using
nested submodels; and

• Results, which collects the results data associated with the analyses of
the case.

The use of subclasses is a method to structure the ontology. In addition,
the subclasses inherit assigned properties from the superclass. For instance, for
the class Force, all the subclasses inherit the data properties hasMasterMember
and hasSlaveMember from the superclass. The classes and their subclasses are
described in more detail in the following sections.

Class Analysis The class Analysis includes all the basic information needed
to run a simulation, such as analysis type, duration of the simulated time, and
the size of the time step. One simulation case can have at the most one defined
analysis.
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Figure 3.1: Semantic graph of the classes and subclasses of the Mbs ontology.

Class AuxiliaryComponent The class AuxiliaryComponent contains the
subclasses AuxiliaryCoordinateSytem and AuxiliaryLocation. The former is
used for positioning and orienting and the latter for positioning entities in the
local reference frame of a body. An example is e.g. positioning a constraint.

Class Body The class Body defines all body and reference frame compon-
ents. In this version of the Mbs ontology, only rigid bodies are defined, i.e.
flexible bodies are not included in the ontology definition. There is no technical
reason for excluding the definition of flexible bodies; flexible bodies are not in-
cluded to keep the ontology research simple. Two different body subclasses are
defined, RigidBody and GroundBody. RigidBody is one of the fundamental
modelling components. It defines the local frame of reference for the body,
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the mass, and the inertial tensor. GroundBody defines the global frame of
reference, thus every valid model having instances of the class RigidBody has
to have exactly one instance of the class GroundBody.

Class Case In the modelling hierarchy, the uppermost component in the
domain is the class Case, which consists of at the most one component of the
class Model, at the most one component of the class Analysis, and at the most
one component of the class Results. Thus, the instances of the class Case are
containers for all the modelling, analysis, and results data for one simulation
case. There are no associated data properties for the class Case. The top level
of the simulation case hierarchy is illustrated in Figure 3.2 with an example. In
the example, the vehicleDynamics case contains the vehicle model, the cornering
analysis, and the cornering results components.

vehicleDynamics:Case

vehicle:Model cornering:Analysis cornering:Results

Figure 3.2: An example of simulation case hierarchy. Model components under
Model, Analysis, and Results are omitted.

Class Constraint The class Constraint contains definitions for all the sub-
classes of multibody system joints and primitive joints: CylindricalJoint, Fixed-
Joint, GeneralJoint, GearJoint, SphericalJoint, RevoluteJoint, PrismaticJoint,
and UniversalJoint. All the constraints require definition of two bodies that the
constraint connects, a master member and a slave member, and the location
of the constraint. The master and slave member set the action and reaction
force definition, respectively, for the constraint. In addition, most of the con-
straints require additional information for definition, such as the orientation of
the constraint.

Class DataElement Data elements are designed for storing simulation run-
time variable data. The class DataElement includes three subclasses: DataS-
pline, DataTable, and DataVariable. DataSpline is used for defining continuous
and derivative two- and three-dimensional data as a function of an independent
variable, such as time. The spline control points are defined in a DataTable
element. DataTable is used for storing N dimensional tabular data, e.g. for
defining DataSpline or discrete values that are a function of an independent
variable. DataVariable is used for computing algebraic functions during the
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simulation runtime. The value of an instance of DataVariable can be used e.g.
in force function expressions.

Class Force The class Force contains definitions for all the subclasses of
multibody system forces: FieldForce, GeneralForce, PointForce, PointTorque,
VectorForce, and VectorTorque. In addition to the force classes, there is a class
FunctionExpression that is used for defining the force function expression. The
forces are divided into two fundamentally different types: forces acting between
two points along the connecting line, and forces defined as vector elements.
Forces belonging to the former type are defined between two bodies, using
either the body local frames of reference or the AuxiliaryComponent instances.
Forces belonging to the latter type are defined between two bodies by using
a reference coordinate system, which can be arbitrary (either the local frame
of reference or an instance of an AuxiliaryComponent of some body). The
FunctionExpression of the force instance defines the magnitude of the force.

Class Geometry The class Geometry defines a small set of primitive geo-
metries for modelling. The class contains the following subclasses: BeamGeo-
metry, BlockGeometry, ConeGeometry, EllipseGeometry, and ExternalGeo-
metry. The first four primitive geometries can be used for defining mass prop-
erties (mass and inertia) based on the basic geometrical parameters and dens-
ity. The ExternalGeometry class is used for defining complex geometries using
external sources, such as CAD models.

Class Model The class Model is the container element for all the modelling
components. It includes the definition of the modelled system, its topology and
relation in the modelling state. The class Model has a subclass SubModel for
modular modelling. A model can have an unlimited number of submodels. An
instance of the class Model can also be a reference to another instance of Model
in another simulation case. This enables using one definition of a simulation
model in several analyses and results in other cases, without duplicating the
information. The use of submodels under a model is illustrated in Figure 3.3
with an example. In the example, the vehicle model contains submodels, such as
chassis, powerTrain, and wheelSupport4. The wheelSupport4 submodel contains
other modelling components, such as the upperArm4 body.

Class SubModel The class SubModel is a container element for the sub-
assemblies of a model. A submodel requires always a model as a parent com-
ponent. A simulation model can have an unlimited number of submodels. This
class enables a modular modelling approach by encapsulating parts of a model
into one assembly. Because a submodel is like any body component in the
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vehicle:Model

chassis:SubModel

powerTrain:SubModel

wheelSupport4:SubModel

wheelSupport3:SubModel

wheelSupport2:SubModel

wheelSupport1:SubModel

wheel4:Body

lowerArm4:Body

upperArm4:Body

spring4:Body

Figure 3.3: An example of simulation model hierarchy and use of submodels.

model, it must have location and orientation properties to locate and orient it
under a model.

Class Results The class Results includes the stored simulation results for
the case. The Results class is a container for the numerical data produced by
the numerical solver for the analysis of the case, defined by the instance of the
class Analysis. Thus, a case can have at the most one instance of the class
Results.

3.1.2 Object Properties for the Mbs Ontology

The instances in a semantic model are connected with properties, which form
the predicate in a triple. For force vectors and constraints, the natural choice
for properties are the definitions for acting bodies, and in the case of instances
of VectorForce, VectorTorque, and GeneralForce, also the definition for the
reference coordinate system.

The object properties for the Mbs ontology are listed below. The domain
and range restrictions and property characteristics are summarised in Table
3.1. The characteristics are explained briefly in chapter 2.

hasAuxiliaryComponent: In a model, attaches a local point (a definition of a
location) or local frame of reference to a body.

hasCaseObject: In a modelling case, attaches case objects to the simulation
case.

hasAnalysis: Connects an analysis hierarchically into a simulation case.
A simulation case can have at the most one analysis.
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hasModel: Connects a model hierarchically into a simulation case. A
simulation case can have at the most one model; the model can be
referenced from another simulation case.

hasResults: Connects a results component hierarchically into a simula-
tion case. A simulation case can have at the most one results set.

hasFunction: In a model, attaches a function expression into a force compon-
ent.

hasGeometry : In a model, attaches a geometry into a body. A body may have
several geometries.

hasMasterMember: In a model, defines the reaction force element for a con-
straint or a force. A constraint or a force can have at the most one master
member.

hasSubModel: In a model, attaches a submodel structure into the model. A
model can have several submodels.

hasModelObject: This superclass contains object properties for including mod-
elling components into a model or a submodel. It has the following sub-
properties:

hasBody : Attaches bodies of the model to the model.

hasConstraint: Attaches constraints of the model to the model.

hasDataElement: Attaches data elements of the model to the model.

hasForce: Attaches forces of the model to the model.

hasGroundBody : Attaches the ground body of the model to the model.
The ground body is one of the rigid bodies in the model, except that
it defines the global frame of reference and its mass properties are
neglected.

hasSubModel: Attaches the submodels of the model to the model.

hasReferenceMember: In a model, defines the frame of reference (a body or an
auxiliary coordinate system) for a force.

hasSlaveMember: In a model, defines the action force element for a constraint
or a force. A constraint or a force can have at the most one master
member.
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Table 3.1: Object properties for the Mbs ontology.

Object Property Domain Range Functional
hasAuxiliaryComponent Body AuxiliaryComponent No
hasCaseObject – – No

hasAnalysis Case Analysis Yes
hasModel Case Model Yes
hasResults Case Results Yes

hasFunction Force FunctionExpression Yes
hasGeometry Body Geometry No
hasMasterMember Constraint or Force AuxiliaryComponent or Body Yes
hasModelObject – – No

hasBody Model or SubModel Body No
hasConstraint Model or SubModel Constraint No
hasDataElement Model or SubModel DataElement No
hasForce Model or SubModel Force No
hasGroundBody Model or SubModel GroundBody Yes
hasSubModel Model SubModel No

hasReferenceMember Force AuxiliaryComponent or Body Yes
hasSlaveMember Constraint or Force AuxiliaryComponent or Body Yes

3.1.3 Data Properties for the Mbs Ontology

The data properties define the features and characteristics of a class. The data
properties have a type, which can be an OWL primitive datatype, like a double
(double precision number) or Boolean value (true or false), or the datatype
can be explicitly defined. The OWL allows restrictions to be defined for data
properties. In addition, the datatypes may be restricted to e.g. set the range
for the value. These datatype restrictions are treated as rules, and thus they
can be explicitly reasoned. Restricted data properties can be used for checking
the validity of the ontology, and especially models that are created using the
ontology. As an example of data properties, the data properties for the class
RigidBody are presented in Table 3.2. In the Mbs ontology, some physical
properties are under a reasoning procedure, according to which the mass of a
rigid body has to be zero or positive. In this case, there are data property
restrictions for the mass and inertia properties. These general restrictions can
be used for reasoning the validity of the multibody system simulation model.
The data properties of the class Body are set as functional. Consequently, an
instance of the class RigidBody must have only one of each of these properties.
The data properties of other classes are defined similarly. The full listing of
the Mbs ontology is presented in Appendix A.

3.1.4 Modelling Domain Constraints and Rules in the Mbs On-
tology

The semantic constraints and restrictions in the developed Mbs ontology are
limited mostly to data type constraints, definitions of domains and ranges, and
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setting property characteristics. The constraints and restrictions have two ma-
jor functions. First, they restrict the use of the ontology in such a way that only
limited combinations are allowed, thus guaranteeing the validity of the model
to some extent, and second, they simplify and guide the reasoning process by
providing additional implicit information about the modelled system.

As an example, the restrictions of the class RigidBody are presented in
Table 3.2. Due to the open world assumption used in the OWL, e.g. the
cardinality constraint hasLocationX exactly 1 double does not constrain a
rigid body to have one and only one property hasLocationX, but it defines
that if an instance has a hasLocationX data property, there can be only one
data property of that kind attached to the specific instance. This is one of the
features that make the OWL a questionable tool for system modelling ontology
development.

For the class Analysis of the Mbs Ontology, the restrictions are (in the
OWL Manchester syntax [78]):

Class: Analysis

Annotations:

rdfs:label "Analysis"@

SubClassOf:

hasAnalysisType exactly 1 {"dynamic", "kinematic", "linear", "static"},

hasStartTime max 1 xsd:double[>= 0.0],

hasStopTime max 1 xsd:double[>= 0.0],

hasTimeStep max 1 xsd:double[>= 0.0]

Here, an enumerated list is used for defining the allowed values for hasAna-
lysisType. The object properties in the developed ontology have a domain and
a range restrictions set. For hasGeometry property these restrictions are:

domain: Body
range: Geometry

This means that hasGeometry can relate instances of the class Body (or its
subclasses) to instances of the class Geometry (or its subclasses). If the onto-
logy and also the model based on the ontology have been classified as valid, a
reasoner can infer already from the object property hasGeometry that there is
an instance of the class Geometry attached to an instance of the class Body.

General Modelling Domain Rules in the Mbs Ontology

The ontology restrictions and constraints that can be set with the OWL are
limited, and some essential constraints cannot be defined with it. For example,
defining a general rule for hasMasterMember and hasSlaveMember of the Mbs
ontology so that for a given instance, another instance cannot be related by
both of these properties. This inconsistent relation is illustrated in Figure 3.4,
where the hinge revolute joint is connected to the door rigid body with the
hasMasterMember and hasSlaveMember property.
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hinge:RevoluteJoint door:RigidBody

hasMasterMember

hasSlaveMember

Figure 3.4: Example of an inconsistent relation in the Mbs Ontology.

For the constraints that cannot be modelled with the plain OWL, the SWRL
is used. For example, the inconsistent situation in Figure 3.4 is restricted with
the following rule:

hasMasterMember(?a, ?b),hasSlaveMember(?a, ?c)→ differentFrom(?b, ?c)

This can be read as for any given instance a related to any instance b by
the property hasMasterMember, and for the given instance a related to any
instance c by the property hasSlaveMember, instances b and c must be different
individuals.

3.2 Semantic Representation of the Modelica Mul-
tiBody Library

Modelica5 is an object-oriented, equation-based modelling language for system
modelling [79, 80, 81]. As any other programming language, Modelica has a
formal specification of its semantics and syntax. The language specification
is maintained and further developed by the Modelica Association. A part of
the Modelica Standard Library is the MultiBody library [73]. This library
provides all the fundamental components for the description of a multibody
system in three-dimensional space. The Modelica language and tools support-
ing the language definition are under active development. In addition, there is a
development effort for creating an UML profile, ModelicaML, for the Modelica
language representation.

The approach to defining components in the Modelica MultiBody library
differs from the one used for the Mbs ontology. Instead of defining the min-
imum but general set of components, the Modelica MultiBody library contains
many specific components that are special cases of the general corresponding
component. A example of these are the components in the Parts class, Body-
Box and BodyCylinder, which are rigid body components with a predefined
geometry shape box and cylinder, respectively. The geometry is used for defin-
ing the mass properties, i.e. body mass and inertia, as well as the visualisation

5Website of Modelica Association: http://www.modelica.org/
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for the body. This diversity in the library class components may simplify mod-
elling in some cases, but on the other hand makes model translation from one
representation to another more complex than the approach of a generic minimal
component set.

Modelica is an object-oriented language, which leads to a naturally layered
structure of high-level modelling libraries. One of the strengths of the Modelica
language is its effortless support for encapsulating submodels into one model-
ling component. Another fundamental feature of the Modelica language is the
concept of the connector. Connectors, which are implemented using connect-
equation in Modelica, are the public interface of a component that are typed
and must follow the following restrictions [1]:

• the primitive components of the two connectors must have the same prim-
itive types,

• flow-variables may only connect to other flow-variables, and

• causal variables (input/output) only to causal variables (input/output).

The Modelica MultiBody OWL ontology is modelled only from the relev-
ant parts. The principle of the OWL representation is to capture the structure
and relations of the Modelica representation of the multibody library. In the
OWL representation, the overall class hierarchy is represented, in addition to
those object and data properties that are needed to show the ontology mapping
between the Modelica MultiBody and Mbs ontologies. The Modelica Multi-
body library introduces highly packed and high-abstraction level interface to
the modelling of a mechanical system. This, together with the concept of
typed connection interfaces introduces some challenges to the semantic repres-
entation. Let us consider a simple model of a door with just one hinge (Figure
3.5 a). If the OWL representation of the Modelica MultiBody library is im-
plemented in a straightforward manner, the information about the connection
type has to be included in the predicates of a data triple, in the example that
is for instance has frame b ConnectedTo frame a Of (Figure 3.5 b). As there
are many different types of connectors in the Modelica MultiBody library, and
because also other Modelica libraries can be used together with the MultiBody
library, this approach leads to a large set of object properties. If the Modelica
MultiBody library is opened in some parts and the internals of the modelling
components are exposed to the OWL model, the Modelica MultiBody OWL
ontology becomes easier to understand, and the number of object properties
can be decreased (Figure 3.5 c). The drawback of this approach is that the
component structure of the original Modelica MultiBody library is broken, and
the user of the ontology is required to model instances, such as frames associ-
ated with bodies and joints, that are not explicitly present in the corresponding
model in the Modelica language.
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Hinge

Door Casing

has_frame_a_ConnectedTo_frame_a_Of

has_frame_b_ConnectedTo_frame_a_Of

b)

c)

revolute

frame_a frame_b

body2

frame_a frame_b

has-a

has-a

has-a

has-a

isConnectedTo isConnectedTo

body2

frame_a frame_b

has-a
has-a

Hinge

Door Casing

a)

Door Casing

Hinge

Figure 3.5: An example of the semantics of a Modelica MultiBody model of
a one-hinge door. a) The model of a door with one hinge. b) The model
of a door in a straightforward OWL presentation of the Modelica MultiBody
library. c) The model of a door in an opened OWL presentation of the Modelica
MultiBody library.
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Table 3.3: Object properties of the Modelica MultiBody OWL ontology. All
the combinations of the rows and columns are replaced to the placeholders
<row> and <column> of the template respectively, i.e. 7 × 7 = 49 different
object properties.
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frame a
frame b has <row> ConnectedTo <column> Of
frame ia
frame ib
support

In this work, due to the use of the Modelica MultiBody OWL ontology
for demonstrating ontology mappings, the strict Modelica MultiBody library
representation has been selected. The Modelica MultiBody OWL ontology
class hierarchy is visualised in Figure 3.6 to illustrate the complexity of this
ontology related to the Mbs ontology developed in this work. The class and
subclass structure of the Modelica MultiBody library is listed in Appendix B.
The object properties for the ontology are listed in Table 3.3. As this is just
a partial ontology for the Modelica MultiBody library, and for selected classes
and their typed connectors there are 49 object properties, this indicates that the
selected ontology modelling strategy is probably not efficient and does not lead
to a clear and easy use of the modelling ontology. As an example of attaching
data properties to classes, the data properties for the classes Revolute, World,
and Body are listed in Tables 3.4, 3.5, and 3.6, respectively.
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Table 3.4: Data properties associated with the class Revolute in the Modelica
MultiBody OWL ontology. The descriptions for data properties are from the
Modelica Standard Library version 3.1 documentation [1].

Data property Restriction Description Units

animation exactly 1 boolean True, if animation shall be en-
abled.

–

cylinderColor exactly 1 string Color of cylinder representing
the joint axis.

–

cylinderDiameter exactly 1 double Diameter of cylinder repres-
enting the joint axis.

[m]

cylinderLength exactly 1 double Length of cylinder represent-
ing the joint axis.

[m]

n exactly 1 double Axis of rotation resolved in
frame a.

[1]

specularCoefficient exactly 1 double Reflection of ambient light. –
stateSelect exactly 1 double Priority to use joint angle phi

and w = der(phi) as states.
–

useAxisFlange exactly 1 boolean True, if axis flange is enabled. –
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3.2. Semantic Representation of the Modelica MultiBody Library
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Chapter 4

Semantic Approach in
Multibody System Modelling

In the previous chapter, an OWL ontology was developed for representing mul-
tibody system models. In this chapter, the ontology is used for representing
an example multibody system model of a double pendulum. In addition, the
validation of the model data is demonstrated by first including obvious model-
ling faults and then using semantic reasoning to figure out the validity of the
model. The use of semantic queries and semantic ontology mapping are briefly
demonstrated. Along the demonstrations, details concerning the approach in
general and the selected technology specifically are notified. The suitability of
the semantic data model approach in general and the application of the Se-
mantic Web technologies for multibody system modelling data representation
are discussed in more detail in section 5.1.

4.1 Application of the Mbs Ontology in Multibody
System Modelling

The objective of the example is to present a multibody system so that all the
necessary information is available for formulating a simulation model explicitly.
The necessary information for a multibody simulation model includes:

• the components of the system;

• the parameter values for the component features, such as mass properties
for bodies and location and orientation of bodies, constraints, and force;
and

• the topology of the model, i.e. the connectivity of the components.
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4.1. Application of the Mbs Ontology in Multibody System Modelling

A tailored model data representation method would allow straightforward
description of the domain model, i.e. the design of the modelling ontology and
flexible means for presenting domain restrictions and modelling constraints.
The Web Ontology Language fulfills the requirements for presenting the domain
modelling ontology as well as the additional information that is related to it,
but it lacks of explicitness and simplicity for describing well-defined closed
domains, such as multibody system modelling. With the OWL, the above-
mentioned necessary information for explicit multibody system representation
is presentable, but the additional requirements for model validity checking and
rule-based modelling become more challenging.

4.1.1 The Multibody System Model

The developed Mbs ontology is used for an example of modelling a double
pendulum, to demonstrate the use of the semantic data model. The model
doublePendulum contains two rigid bodies (link 1 and link 2), two revolute joints
(hinge 1 and hinge 2), and the gravitational force gravity. The double pendulum
system is illustrated in Figures 4.1 and 4.2. In the model, the rigid body link 1
is attached to the rigid body ground with the revolute joint hinge 1, where the
axis of rotation is parallel to the global Z coordinate axis and it is defined with
location and direction data properties. The rigid body link 2 is attached to
the rigid body link 1 with the revolute joint hinge 2, where the axis of rotation
is again parallel to the global Z coordinate axis. The direction of gravity is
opposite to the global Y coordinate axis.

The semantic model of the double pendulum in the form of a graph is
presented in Figure 4.3. All the rigid body instances are mapped to model the
instance doublePendulum with hasObject property. The revolute constraint
instances are mapped to rigid body instances with hasMasterMember and
hasSlaveMember properties. The instances, their types and data properties
are presented in Table 4.1. The model properties (predicates) are presented in
Table 4.2.

In a semantic database, all the model data, such as the multibody system
model, and for example the control system model, are represented with the
triple data model. Mappings, i.e. connecting predicates, can be defined between
entities, whether or not they belong to the same domain ontology. This enables
mapping of data from different modelling domains using the same procedure
as within a single domain ontology. For example, in this case the geometry and
mass properties of the rigid bodies link 1 and link 2 could have been retrieved
by mapping the multibody system model to a semantic CAD design model.
Another advantageous feature of the semantic data representation, the use of
rules and constraints and the ontology reasoning based on these, can be used
for increasing the value of the data and, indeed, enabling knowledge of the
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Figure 4.3: Semantic graph of the doublePendulum model as a part of the
example case.

modelled domain to be stored into the semantic model. In the example above,
only simple rules for mass and the mass moment of inertia components have
been set. The same mechanisms of applying rules and constraints could have
been used for setting for example the boundaries for geometrical dimensions.
The use of reasoning with the semantic data model increases the apparent
intelligence of the modelling data system.

4.1.2 Using Modelling Constraints and Rules

The modelling rules for the Mbs ontology were explained in chapter 3. The
modelling rules can be divided into general rules applying in all the semantic
models based on the ontology, and case-specific rules that are applied to the
model during the modelling phase, based on special conditions. The advantage
of using ontology-separate rule sets is to provide more flexibility in applying
reasoning in the data.

The general rules can be used for checking the model validity against the
principles of the specific domain. There are many restrictions in multibody
system dynamics that should be considered. To mention some, e.g. the mass of
the bodies should be zero or positive, and the constraints and forces should be
implemented between the different bodies. Some of the fundamental restric-
tions were modelled in the Mbs ontology in chapter 3.

Modelling case-specific rules can be used for bounding the modelling design
space tighter than what the general modelling rules do. As the general rules
were defined to be used for checking the model validity against general domain
modelling principles, the modelling case-specific rules may restrict also some
physically meaningful features, such as the maximum value for the body mass
or the number of individual bodies in the model. Modelling case-specific rules
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Table 4.2: The predicates that map the instances in the doublePendulum model.

Subject Predicate Object
exampleCase hasAnalysis exampleAnalysis
exampleCase hasModel doublePendulum
exampleCase hasResults exampleResults
doublePendulum hasBody ground
doublePendulum hasBody gravity
doublePendulum hasBody link 1
doublePendulum hasBody link 2
doublePendulum hasConstraint hinge 1
doublePendulum hasConstraint hinge 2
hinge 1 hasMasterMember ground
hinge 1 hasSlaveMember link 1
hinge 2 hasMasterMember link 1
hinge 2 hasSlaveMember link 2

can be defined separately from the main ontology, or they can be applied
during the case modelling. The flexibility to add rule sets on the data allows
the design of special rule sets to be used as stencils to check the model against
the requirements.

To check the consistency of the model, the Pellet1 OWL reasoner (version
2.2.2) is used [67]. First, the modelling ontology consistency is checked:

1 %> pellet consistency mbs_ontology_09_06.owl

2 There are 1 input files:

3 /home/.../Ontologies/mbs_ontology_09_06.owl

4 Start loading

5 Finished loading in 00:00:00.684

6 Input size: Classes = 40, Properties = 109, Individuals = 0

7 Expressivity: ALCHQ(D)

8 Start consistency check

9 Finished consistency check in 00:00:00.031

10 Consistent: Yes

11

12 Timer summary:

13 Name | Total (ms)

14 ==============================

15 main | 1073

16 loading | 684

17 consistency check | 31

The consistency check tells that the modelling ontology, the semantic class
definition for multibody system modelling, is consistent and usable for the
modelling. Next, the general modelling rules are checked for the original model.
In the listing below, the output of the reasoner is presented:

1Website of Pellet reasoner: http://clarkparsia.com/pellet/
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1 %> pellet realize mbs_ontology_09_06.owl 02_testModel.owl

2 Classifying 41 elements

3 Classifying: 100% complete in 00:00

4 Classifying finished in 00:00

5 Realizing 41 elements

6 Realizing: 100% complete in 00:00

7 Realizing finished in 00:00

8

9 owl:Thing

10 mbs:Analysis - (mbstestmodel:exampleAnalysis)

11 mbs:AuxiliaryComponent

12 mbs:AuxiliaryCoordinateSystem

13 mbs:AuxiliaryLocation

14 mbs:Body

15 mbs:GroundBody - (mbstestmodel:ground)

16 mbs:RigidBody - (mbstestmodel:link_2, mbstestmodel:link_1)

17 mbs:Case - (mbstestmodel:exampleCase)

18 mbs:Constraint

19 mbs:CylindricalJoint

20 mbs:FixedJoint

21 mbs:GearJoint

22 mbs:GeneralJoint

23 mbs:PrismaticJoint

24 mbs:RevoluteJoint - (mbstestmodel:hinge_2, mbstestmodel:hinge_1)

25 mbs:SphericalJoint

26 mbs:UniversalJoint

27 mbs:DataElement

28 mbs:DataSpline

29 mbs:DataTable

30 mbs:DataVariable

31 mbs:Force

32 mbs:FieldForce

33 mbs:GeneralForce

34 mbs:PointForce

35 mbs:PointTorque

36 mbs:VectorForce

37 mbs:VectorTorque

38 mbs:FunctionExpression

39 mbs:Geometry

40 mbs:BeamGeometry

41 mbs:BlockGeometry

42 mbs:ConeGeometry

43 mbs:EllipseGeometry

44 mbs:ExternalGeometry

45 mbs:Ground - (mbstestmodel:ground)

46 mbs:Model - (mbstestmodel:doublePendulum)

47 mbs:Results - (mbstestmodel:exampleResults)

48 mbs:SubModel

To demonstrate the usability of the ontology, an inconsistency of a rigid body
mass is created in the model; the mass of link 1 is set to the value −1 kg, and
the reasoning on the model is run again:

1 %> pellet realize mbs_ontology_09_06.owl 03_testModel.owl

2 ERROR: Ontology is inconsistent, run "pellet explain" to get the reason

3

4 %> pellet explain mbs_ontology_09_06.owl 03_testModel.owl

5 Axiom: Thing subClassOf Nothing
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6

7 Explanation(s):

8 1) Functional hasMass

9 link_1 type RigidBody

10 RigidBody subClassOf hasMass exactly 1 double[>= "0.0"^^double]

11 link_1 hasMass "-1.0"^^double

Similarly, the topology of the original double pendulum model is changed so
that the constraint hinge 2 is related twice to link 2:

1 %> pellet realize mbs_ontology_09_06.owl 04_testModel.owl

2 ERROR: Ontology is inconsistent, run "pellet explain" to get the reason

3

4 %> pellet explain mbs_ontology_09_06.owl 04_testModel.owl

5 Axiom: Thing subClassOf Nothing

6

7 Explanation(s):

8 1) hinge_2 hasMasterMember link_2

9 Rule(hasMasterMember(?a, ?b), hasSlaveMember(?a, ?c) -> differentFrom(?b, ?c))

10 hinge_2 hasSlaveMember link_2

The modelling case-specific rules are set to the rigid body mass properties; the
mass value is limited to 2 kg. This rule is not a physical restriction, but limits
the specific design to a given body mass. The modelling case-specific rule is
set by defining to the superclass Body restriction:

hasMass exactly 1 double[<=2.0]

When setting the mass of the rigid body link 2 to be 2.5 kg and checking the
model with the reasoner, the result is:

1 %> pellet realize mbs_ontology_09_06.owl 05_testModel.owl

2 ERROR: Ontology is inconsistent, run "pellet explain" to get the reason

3

4 %> pellet explain mbs_ontology_09_06.owl 05_testModel.owl

5 Axiom: Thing subClassOf Nothing

6

7 Explanation(s):

8 1) Functional hasMass

9 link_2 hasMass "2.5"^^double

10 RigidBody subClassOf hasMass exactly 1 double[<= "2.0"^^double]

11 link_2 type RigidBody

The defined additional rule set can be stored and applied separately from the
general Mbs ontology.

The use of the reasoner above shows some fundamental features of a se-
mantic model applied for a multibody system simulation model. The complex-
ity of the examples is modest, but the principle for applying this approach to
complex models will be the same. It is important to note in the example above
that the procedure for checking the consistency of the modelling ontology –
which is done usually only at the time of developing the ontology – and the
checking of the model validity follow the general approach for ontology-based
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models. In addition, there are general tools, such as ontology development
tools, modelling tools for semantic models and checking and validation tools
(reasoner). For ontology and data representation, standardised or openly spe-
cified data formats are used. In addition to separating the data from the tools,
also the functionality requirement for specific tools, such as a reasoner, is spe-
cified so that the tools in the process chain can be replaced. The description of
data semantics with ontologies realises the requirement for data preservability,
while the flexible and modifiable tool chain realises the requirement for a more
reliable working process.

4.1.3 Queries into the Semantic Modelling Data Database

As the semantic data model is often implemented with a semantic database
system, the natural requirement for such a system is to be able to perform
database queries to it. To provide a general interface for data queries, a query
language and applications implementing the query functionality support the
quest for separating the modelling data and the tools. In the context of the
Semantic Web, the SPARQL query language is the natural choice for describ-
ing the queries. This requires the database system to support the use of the
language. The software architecture introduced in section 2.2.6 enables clear
and open interfaces between the modelling database system and the client soft-
ware. This interface can be used e.g. to perform modelling database queries to
retrieve information about the models and their components.

As an example, a query to retrieve all the database components that are of
the class Body would be:

1 PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>

2 PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>

3 PREFIX mbs: <http://www.simantics.org/ontologies/mbs.owl#>

4 PREFIX owl: <http://www.w3.org/2002/07/owl#>

5 PREFIX sparqldl: <http://pellet.owldl.com/ns/sdle#>

6

7 SELECT ?rigid_bodies

8 WHERE {

9 ?rigid_bodies rdf:type mbs:RigidBody .

10 }

where PREFIX defines the namespace bindings and ”?” denotes a variable. In
the example above, there are five namespace bindings, from which the mbs is
used explicitly in the query statement. The statement says: select (print) all
instances that are type (class) RigidBody in the Mbs ontology. Running this
query with the Pellet reasoner gives:

1 %> pellet query -q 06_query.sparql mbs_ontology_09_06.owl 06_testModel.owl

2 Query Results (2 answers):

3 rigid_bodies

4 ============
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5 link_2

6 link_1

More specific and complex data queries can be applied, which makes this
approach flexible for client software application purposes, especially when large
databases are involved in modelling and simulation process.

4.1.4 Mapping Ontologies and Models

Ontology mapping, or ontology alignment, is the approach to enable model
transformation from one representation format to another. Mappings can be
used to transfer modelling data from one modelling tool to another or to use
simulation results as the input in another application. Software applications in
one simulation domain often use the same methods and principles in computing,
and thus similar data models. An example is the area of multibody system
simulation. As mentioned in chapter 2, to describe a multibody system, certain
basic information about the system has to be provided. With this information,
the case can be formulated for many different software applications used for
multibody system simulation. This is because the data models of these tools
in the multibody simulation domain are close to each other, and in that sense
transforming model data from one application to another is possible. Another
example is the finite element method applied for structural analysis. In this
method, most of the data is transferable from one system to another, including
the computational mesh, definitions of boundary regions, loads and constraints,
initial conditions, and usually element and material types.

Mapping data using ontology mappings become more difficult when the
data transfer is done between tools from different simulation domains. The
disconformity of the data models and, more generally, the lack of overlapping
on the conceptual level of describing systems may cause some required data
to be missing on one domain side, or the presence of contradictory data for
transforming the data from one domain to another. The ontology mapping
procedure using intermediate mapping ontology is illustrated in Figure 4.4.
In this example, six of the nine classes in both modelling domain ontologies
are defined to be equivalent, but the remaining three classes in both ontologies
require more complex mappings, which can be done by creating mapping classes
in the mapping ontology.

Mapping the Mbs Ontology and Modelica MultiBody OWL Onto-
logy

In chapter 3, a multibody system model representation and an ontology based
on it were developed. This representation was based on the principle of hav-
ing a minimum number of components for modelling and, instead of having
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Modelling domain ontology A Modelling domain ontology BMapping ontology

Figure 4.4: Schematic example of ontology mapping using an intermediate
mapping ontology.

different variants of one basic component, the generality of the components
was emphasised. In the same chapter, the partial Modelica MultiBody OWL
ontology was introduced. The ontology implementation follows strictly the
structure and naming of the Modelica MultiBody library. To demonstrate the
fifth fundamental use-case of the semantic modelling data representation, i.e.
data mapping, pointed out in chapter 2 on page 60, a part of the data model
mapping between the Mbs ontology and the Modelica MultiBody OWL onto-
logy is presented. Table 4.3 presents the direct mappings of data properties for
counter classes RigidBody and Body in the Mbs ontology and Modelica Multi-
Body OWL ontology, respectively. The data property equivalences are defined
with the property equivalentProperty. For this particular class mapping, the
table shows good equivalence between the data properties. The data proper-
ties in the lower part of the table are for Modelica model visualisation, and, for
this reason, not important for solving the simulation case. The parameters in
the upper part of the table that have no equivalence, such as angles fixed and
r 0.start x, can either be omitted or have default values for the computation.
Due to the lack of a semantic database system, the function of the mapping
cannot be demonstrated. In the demonstrated ontology class mapping, no data
transformations are required. In case that for instance angular values need to
be mapped from degrees to radians, the mapping class has to define the con-
version which the semantic database system executes at the time when data is
exported from one ontology domain to another.

100



4.1. Application of the Mbs Ontology in Multibody System Modelling

Table 4.3: Ontology mapping between the RigidBody and Body classes of
the Mbs ontology and the Modelica MultiBody OWL ontology, respectively.
The data properties in the lower part of the table are for Modelica model
visualisation.

Mbs ontology Equivalence Modelica MultiBody
OWL ontology

hasLocationX equivalentProperty r CM x
hasLocationY equivalentProperty r CM y
hasLocationZ equivalentProperty r CM z
– (no equivalence) angles fixed (false)
hasOrientationR1 equivalentProperty angles start x
hasOrientationR2 equivalentProperty angles start y
hasOrientationR3 equivalentProperty angles start z
hasRotationSequence equivalentProperty sequence angleStates
hasVelocityX equivalentProperty v 0.start x
hasVelocityY equivalentProperty v 0.start y
hasVelocityZ equivalentProperty v 0.start z
– (no equivalence) w 0 fixed (false)
hasAngularVelocityAlpha equivalentProperty w 0 start x
hasAngularVelocityBeta equivalentProperty w 0 start y
hasAngularVelocityGamma equivalentProperty w 0 start z
hasAccelerationX equivalentProperty a 0.start x
hasAccelerationY equivalentProperty a 0.start y
hasAccelerationZ equivalentProperty a 0.start z
– (no equivalence) z 0 fixed (false)
hasAngularAccelerationAlpha equivalentProperty z 0 start x
hasAngularAccelerationBeta equivalentProperty z 0 start y
hasAngularAccelerationGamma equivalentProperty z 0 start z
hasMass equivalentProperty m
hasMassInertiaIxx equivalentProperty I 11
hasMassInertiaIxy equivalentProperty I 21
hasMassInertiaIxz equivalentProperty I 22
hasMassInertiaIyy equivalentProperty I 31
hasMassInertiaIyz equivalentProperty I 32
hasMassInertiaIzz equivalentProperty I 33
– (no equivalence) r 0.start x
– (no equivalence) r 0.start y
– (no equivalence) r 0.start z
– (no equivalence) sequence start

– (no equivalence) animation (true)
– (no equivalence) sphereDiameter (default)
– (no equivalence) sphereColor (default)
– (no equivalence) cylinderDiameter (default)
– (no equivalence) cylinderColor (default)
– (no equivalence) specularCoefficient (default)
– (no equivalence) enforceStates (false)
– (no equivalence) useQuaternions (true)
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Discussion

5.1 Suitability of the Semantic Approach for Multi-
body System Modelling

The challenges in using computational methods in large-scale and especially
applying a simulation-based product development approach where discussed
briefly in chapters 1 and 2. The main requirements for the future can be
summarized as follows:

• Data and tool separation: the modelling data must be independent of the
tools that are used in the design process, to enable true modelling data
preservability, connectivity, and integrity.

• Knowledge capture: all the relevant domain knowledge should be cap-
tured and linked to the modelling data, including informal silent engin-
eering knowledge, to allow complex reasoning and e.g. model validation.

• Data integration: the original data source should be linked to all possible
data uses; the appearance of redundant data should be avoided.

Even though the scope of this thesis is on multibody system modelling, the
principles can be extended to cover, at least, the system simulation domain in
general. Application of the semantic data model to multibody system mod-
elling is an attempt to solve the above challenges. In the following sections
the suitability of the approach, based on the work described in the previous
chapters, is discussed. Modelling data management, especially in the product
development process, should not be separated from the process context. Data
management and selected methods and tools can be considered as just one part
of the overall field. The process itself, the used practices and other constraints,
such as available resources, influence the results and efficiency of the process.
As mentioned in chapter 1, one of the main reasons for applying simulation on
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product development is the need for concurrent engineering. This, on the other
hand, is much dependent on the prevailing design practices, e.g. design docu-
mentation during the design process. The application of the simulation-based
product development paradigm instead of the traditional design approach re-
quires changes both in tools and data management, and processes and practices.
New tools alone do not create completeness, but they provides good premisses
for it.

The fundamental concept of the open world assumption (OWA) adopted
in the Semantic Web technologies makes it for its part a difficult choice for
system modelling data representation. As mentioned in chapter 2, system
modelling domains are typically well and explicitly defined, and thus suitable
for the closed world approach. Being able to describe data and knowledge with
the closed world assumption enables e.g. closing out irrelevant data, which
might be a problem for model validity checking. The reason for selecting the
Semantic Web technologies for this work was the availability and maturity
of the technologies for semantic data representation. In addition, the fact
that the technologies are already relatively well-known and there is plenty
of material, including technology specifications, software documentation, and
research publications available, makes it a justified choice for research purposes.

5.1.1 Separation of Data and Tools

The separation of the modelling data from the computational tools means that
the data format and representation are independent of the tools that can make
use of it. Practically this means that the data is presented in a format that is
either standardised or specially designed for the purpose.

As computational methods are becoming more important tools in the pro-
duct development process, the ability to select the right computational tool for
different purposes becomes necessary. Different numerical solvers for the same
computational domain, such as structural analysis, have different proficiencies
in some specific detail areas. An example of this is contact modelling and
non-linear phenomena in general in the finite element method for structural
analysis. To be able to exploit the best of the available tools, one should
be able to select the tool at the state of beginning of the solving, not at the
beginning of the overall modelling phase.

Data preservability becomes increasingly important when the amount of
modelling data in the product life-cycle span is increasing and more modelling
data is accumulated. As in the traditional design process based on design
documents, the new design is usually strongly based on the previous designs
and the design history of the organisation, also when the simulation-based
approach is applied. The existing simulation models are used as the basis for
the new design and only necessary parts are updated. This shows the value of
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the modelling data in the long run. In addition, the reusability of the modelling
data is one of the key factors for increasing the efficiency of the modelling
process. In a long period of time, accessibility to tool-specific data decreases
due to changes in software applications. If the modelling data is stored in
a tool-specific format, which is binary, and data model specification is not
available, the retrieval of the information from the data format may become a
laborious effort. Thus, presenting the modelling data in a software-application
independent form and using standardised or openly specified formats would
increase the preservability of the valuable data capital.

There are several solutions for separating the data and the tools using it.
One of the oldest solutions is standardisation. As discussed in chapter 1, there
have also been efforts for standardising the representation multibody model
data, such as the MbsML. Even though semantic data representation may
simplify the integrating of pieces of data, it does not automatically solve the
challenges in differences on the conceptual level. In addition, to be able to
reuse the ontologies and rely on existing knowledge modelling, some ontology
standardisation is required. The standardisation should include definitions for
formal issues, but also guidelines and definitions for conceptual matters.

Another issue that has an influence on the separation of data and the tools
using it is the willingness to support open and reusable data. For the end user,
openness of data formats would be ideal. It would make it possible to add
import and export capabilities for new formats even when using present tech-
niques. However, due to either economical or other business strategic reasons,
some companies prohibit others of having the specifications for the data formats
they use in their products, or even protect their data formats with licensing
constraints or software patents. For requests for data and tool separation con-
cerning situations like this, the application of semantic data representation is
probably not a viable solution.

5.1.2 Knowledge Capture and Reasoning

One of the most important driving forces for the application of computational
methods in product development is fulfilling the multiobjective optimisation
task to produce better products (in quality), in a shorter time (time-to-market),
at a lower price (design and development, and manufacturing) [82, 83]. All
these separate requirements aim at better economical productivity in business.
This is also the main spur to apply the computational approach in product de-
velopment. The use of modelling and simulation together improves the design
process concerning the requirements mentioned above. Modelling itself helps
to understand the structure of the product and the dependencies of substruc-
tures and subsystems. In addition, modelling is a method to document the
product, especially concerning functionality and dynamics. Simulation, on the
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other hand, is a tool to understand the function and dynamics of the overall
system. Thus both phases of the process increase the understanding about
the product, its function, and dynamics. The understanding is especially im-
portant in the development of complex products with several subsystems from
different engineering domains. With modelling and simulation, designers and
engineers can gain understanding of the consequences and influences of their
decisions on the function of the overall product.

5.1.3 Data Integration

When the amount of modelling data involved in a product process increases,
the effort to keep the data solid and valid becomes more difficult. Means to
increase the integrity of the modelling data include e.g. avoiding storage of
unnecessary redundant data, and linking pieces of the data to form an overall
product data model. Application of the simulation-based design paradigm
requires designers from different engineering disciplines to work together and to
use the same source information for building simulation models. To automate
the model update, the pieces of data in the simulation models should be linked
to a common source, so that when the source is updated, either the simulation
model is automatically updated or at least the model user is informed that
the simulation model is not up-to-date. The latter may be required in cases
where the model update is not explicit, but there are choices that cannot be
inferred on the basis of the existing data. As a conclusion, data connectivity
is mandatory for enabling data integrity.

The objectives listed above are easy to underwrite, but already the simple
data mapping between the Mbs ontology and Modelica MultiBody OWL on-
tology demonstrated that the correspondence, even inside a single strict mod-
elling domain, may be partial. The methods developed for general semantic
knowledge representation and ontology alignment are not directly applicable
for a strictly defined system modelling domain. The strictness of system mod-
elling does not give any space for such a concept as class mapping matching
factor, which is common when mapping ontologies concerning common know-
ledge. In the precise modelling and simulation field, the information that e.g.
a concept in one ontology matches 82.3 % of another concept in another onto-
logy does not have other value than the information that the concepts are not
exactly matching and thus some additional mapping operations are needed.
This means that the methods developed for automatic ontology alignment for
common knowledge do not necessarily work in the modelling and simulation
domain, but the ontology alignment is most likely necessary to be done manu-
ally, adding conversion concepts and methods into the intermediate mapping
ontology.

The concept of modelling a master model and its implementation with ad-
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vanced data modelling methods and intelligent tools does not fully solve the
data integration issue in product development by itself. The application of the
model and the related tools, and the fitting of the process to the objectives also
play an important role. The fact that the time constraint in a development
process is one directional and irreversible makes the application of concurrent
engineering using the simulation-based approach a challenging task. Shorten-
ing the product development time by applying concurrent engineering causes
compression to the process and introduces a new risk of wasted resources, due
to wrong decisions based on false conclusions on the simulation results or even
faulty simulation results. This sets new demands for the simulation and data
management system to help the users to estimate the risk and its consequences
on the process. This can be expanded to include also, in addition to technical
and technological aspects, the economical, ecological and environmental, so-
cial, and other aspects that are related to the process and the decisions made.
While simulation-based product life-cycle management is evidently out of the
scope of this thesis, these questions are relevant for designing data management
solutions that will scale up when this kind of implementations are topical.

5.2 Future Work

The purpose of this study was to introduce a new method for representing
multibody system modelling data using semantic data representation and to
demonstrate the use of this representation with an example case. The objective
was to introduce the principle of using semantic data modelling for modelling
data management, not to favour any specific technology to implement it. The
study has left many open questions for further research. The concept of using
semantic data representation for multibody system modelling data manage-
ment was shown useful, but the applied Semantic Web technologies were not
found to be optimal for system simulation modelling data management. An
ontology language, specifically designed for system simulation model repres-
entation, would solve many of the problems pointed out in this thesis, such
as the complexity of defining modelling ontology restrictions due to the open
world assumption, lack of built-in structured data, such as vectors and tables,
and limitations in data reasoning, again due to the open world assumption.
Along with the development of the fundamental concept, also the tools and
software applying the concept and the methods should be developed. This in-
cludes integration of existing modelling and simulation tools to semantic data
management systems and the development of semantic modelling tools, such
as ontology development tools.

Unsystematic application of semantic data management can lead to a situ-
ation of scattered concept ontologies and unnecessary complexity in ontology
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alignment. Thus, standardisation and consensus on common public ontologies
are required. This should be done from the very beginning of applying se-
mantic methods in the industry . This is also necessary to guarantee a strict
separation of modelling data and computational tools. If the modelling data
field is scattered to numerous different ontologies, part of the advantage for
data and software integration will be lost.

This work has shown that ontology mapping, especially related to system
simulation data management, is not very straightforward. The exactness of the
modelling data does not leave much room for approximate matching, where a
concept in one ontology is almost matching to another concept in another on-
tology. Ontology mappings can be done, in principle, manually, but in the case
of large and complex ontologies this is difficult. On the other hand, data trans-
fer between different simulation applications using the present technologies,
i.e. either using file-based direct data transfer between two software applica-
tions or using some standardised intermediate file formats, struggles with the
same problem of mapping two different software-internal data models. This
leaves room for further research, tailored to simulation data management, in
the area of ontology mapping and alignment, including automated methods
and algorithms for defining mappings between ontologies programmatically.
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Conclusions

In this thesis, a new concept for representing multibody system modelling
data was proposed. The concept is based on the use of a semantic data model,
modelling ontologies, and a triplestore, a specific database for triple-formed
semantic data. The concept was demonstrated by developing a simple se-
mantic ontology for multibody system modelling. As an application example
of the developed semantic data modelling approach, the description of a double
pendulum mechanism was studied. In addition, the concept of including se-
mantic modelling rules and constraints into multibody system modelling data
was demonstrated by first adding the rules and constraints into the developed
modelling ontology and then using a semantic reasoner to check the validity of
the created double pendulum model against the rules and constraints.

Semantic Web technologies, such as the Resource Description Framework
(RDF), the Web Ontology Language (OWL), and the Semantic Web Rule
Language (SWRL), were selected for the ontology development, as well as for
demonstrating the concept. This was done even though these technologies, due
to the applied open world assumption and the general design objectives of the
technologies, were known not to be well-suited for system modelling purposes.
These technologies are mature and they are general enough for research pur-
poses. In addition, there exist many tools for e.g. ontology development and
reasoning. As the concept of this approach is new, there does not exist any
commonly known ontology language designed especially for system simulation
modelling data management.

The presented concept can be applied to any kind of multibody system
model having the components and their relations that are available in the de-
veloped modelling ontology. By modifying the ontology, new component types,
such as contacts or flexible bodies, can be presented. Semantic modelling rules
and constraints enable adding validation data for the modelling, both on the
general modelling domain level but also on the modelling case level, e.g. in
the form of product design envelope boundaries. In addition to extending the
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ontology by adding new component types, the ontology can be extended by
adding new modelling constraints and rules. In fact, the presented concept is
applicable to any system modelling domain that is well defined, when a model-
ling ontology for that system domain exists and is available. Moreover, because
all the data is described using the same low-level mechanism, semantic triples,
mapping modelling data between different modelling domains is straightfor-
ward.

The introduced method is versatile in describing both bare modelling data
and also higher-level engineering experience and knowledge of the modelled sys-
tem together with the system model. Compared to direct connections between
modelling and simulation tools, this approach differs fundamentally by having
a common data model for all modelling and simulation tools. The difference
from document-based integration and data sharing is the flexibility of creat-
ing, modifying and using ontologies. The hierarchical nature of the semantic
data model itself encourages ontologies to be applied on top of each other, so
that for example dimensioning rules are applied on the model under devel-
opment. The use of common standardised ontologies unifies the management
of the modelling data and simplifies model exchange between different mod-
elling tools, while allowing local extensions to ontologies to be applied. This,
in turn, allows the local design and modelling practices to be stored into the
modelling data management system in a formalised manner. The proposed
semantic database architecture enables common databases to be used for dis-
tributed modelling and simulation. Mapping other product data with the mod-
elling data increases the integration of all product life-cycle data and enables
functional product models to be used as primary data models for all product
life-cycle data management. The proposed architecture combines flexibility,
impressiveness, and simplicity into the same solution.

The ability to apply reasoning on the available data is one of the design
objectives of the Semantic Web. Reasoning can be used for checking the con-
sistency of the data, e.g. to validate the multibody system modelling data,
but also to infer new implicit information about the data, such as absence of
some specific constructs in the design. This information is not explicitly stored
into the modelling data, but can be inferred from the data on the basis of
the existing class instances and their relations, i.e. object properties. This can
introduce new possibilities to increase the information content, and thus the
value of the modelling data.

As this work has introduced the concept of applying semantic data man-
agement methods for the management of multibody system modelling data,
not all the details and possibilities of the approach have been studied. There
are still many interesting subjects in this area that are open for further studies.
To mention one, the seemingly modest detail of the open world assumption of
the OWL and the consequences of applying this assumption to strictly defined
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system modelling data are still not clear. Related to this, combining engin-
eering knowledge and modelling data, both presented in a semantic form, can
introduce a new challenge of combining semantic data that includes both the
open world assumption and the closed world assumption. How this is treated
by the reasoner would require both basic research and practical implementa-
tion work. Another question that this work has not provided an answer to is
the scalability of the information systems when using the semantic data model.
The triple-formed data representation is known to be computer resource ex-
tensive, thus scaling the data model to cover all the product development data
can require more computational resources than is acceptable for an industrial-
level system. On the other hand, this opens new research topics for semantic
database technologies, which could overcome this challenge.

All the above gives the impression that the presented method of applying
semantic data representation for system modelling data management would
solve most of the presented problems in modelling data management in the
product process. The phases of applying simulation in the product process
presented in chapter 1 Figure 1.4, and especially the fourth phase, i.e. the
simulation-based product process, include tight connection to the process, i.e.
the way how people implement the design work using the available tools and
systems. To get the optimal advantage of the new systems and methods, also
the process has to be adjusted. This is often more difficult to realise, because
the process is not always as well-defined and documented than the information
systems and tools. The presented approach provides methods to utilise the
information systems better and to connect the knowledge to the modelling
data of developed products.
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[27] Süß, J., Fritzson, P., and Pop, A. The impreciseness of UML and im-
plications for ModelicaML. In Fritzson, P., Cellier, F., and Broman, D.,
editors, 2nd International Workshop on Equation-Based Object-Oriented
Languages and Tools, pp. 17–26, July 2008.

[28] Shephard, M. S., Beall, M. W., O’Bara, R. M., and Webster, B. E. To-
ward simulation-based design. Finite Elements in Analysis and Design,
40(12):1575–1598, 2004. The Fifteenth Annual Robert J. Melosh Compet-
ition.

[29] Eben-Chaime, M., Pliskin, N., and Sosna, D. An integrated architec-
ture for simulation. Computers & Industrial Engineering, 46(1):159–170,
March 2004.

113



Bibliography

[30] Tisell, C. and Orsborn, K. A system for multibody analysis based on
object-relational database technology. Advances in Engineering Software,
31(12):971–984, November–December 2000.

[31] Tisell, C. and Orsborn, K. Using an extensible object-oriented query
language in multibody system analysis. Advances in Engineering Software,
32(10-11):769–777, October–November 2001.

[32] Daberkow, A. and Kreuzer, E. An integrated approach for computer
aided design in multibody system dynamics. Engineering with Computers,
15(2):155–170, 1999.
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Appendix A

Definition of the Mbs
Ontology

A.1 Data Properties of the Mbs Ontology

Below are presented the data properties associated with the classes of the
Mbs ontology in the Manchester syntax [78]. The rendering presents the Mbs
ontology only partially, but is more readable than the XML Presentation syntax
(OWL/XML) syntax [84]. The ontology is described in more detail in chapter
3, section 3.1 and listed in whole in section A.2.

1 ...

2 Class: owl:Thing

3 Class: EllipseGeometry

4 Annotations:

5 rdfs:label "EllipseGeometry"@

6 SubClassOf:

7 Geometry,

8 hasMajorRadius exactly 1 xsd:double[>= 0.0],

9 hasMinorRadius exactly 1 xsd:double[>= 0.0]

10 Class: Analysis

11 Annotations:

12 rdfs:label "Analysis"@

13 SubClassOf:

14 hasAnalysisType exactly 1 {"dynamic" , "kinematic" , "linear" , "static"},

15 hasStartTime max 1 xsd:double[>= 0.0],

16 hasStopTime max 1 xsd:double[>= 0.0],

17 hasTimeStep max 1 xsd:double[>= 0.0]

18 Class: Model

19 Annotations:

20 rdfs:label "Model"@

21 Class: CylindricalJoint

22 Annotations:

23 rdfs:label "CylindricalJoint"@

24 SubClassOf:

25 Constraint,

26 hasRotationalDegreesOfFreedom value 1,

27 hasTranslationalDegreesOfFreedom value 1,

28 hasDirectionX exactly 1 xsd:double,

29 hasDirectionY exactly 1 xsd:double,

30 hasDirectionZ exactly 1 xsd:double

31 Class: DataElement

32 Annotations:

33 rdfs:label "DataElement"@

34 Class: Constraint

35 Annotations:

36 rdfs:label "Constraint"@

37 SubClassOf:
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38 hasMasterMember exactly 1 Body,

39 hasSlaveMember exactly 1 Body,

40 hasLocationX exactly 1 xsd:double,

41 hasLocationY exactly 1 xsd:double,

42 hasLocationZ exactly 1 xsd:double

43 Class: ConeGeometry

44 Annotations:

45 rdfs:label "ConeGeometry"@

46 SubClassOf:

47 Geometry,

48 hasBottomRadius exactly 1 xsd:double[>= 0.0],

49 hasLength exactly 1 xsd:double[>= 0.0],

50 hasTopRadius exactly 1 xsd:double[>= 0.0]

51 Class: BeamGeometry

52 Annotations:

53 rdfs:label "BeamGeometry"@

54 SubClassOf:

55 Geometry,

56 hasDepth exactly 1 xsd:double[>= 0.0],

57 hasHeight exactly 1 xsd:double[>= 0.0],

58 hasLength exactly 1 xsd:double[>= 0.0]

59 Class: PrismaticJoint

60 Annotations:

61 rdfs:label "PrismaticJoint"@

62 SubClassOf:

63 Constraint,

64 hasRotationalDegreesOfFreedom value 0,

65 hasTranslationalDegreesOfFreedom value 1,

66 hasDirectionX exactly 1 xsd:double,

67 hasDirectionY exactly 1 xsd:double,

68 hasDirectionZ exactly 1 xsd:double

69 Class: Case

70 Annotations:

71 rdfs:label "Case"@

72 SubClassOf:

73 hasAnalysis max 1 Analysis,

74 hasModel max 1 Model,

75 hasResults max 1 Results

76 Class: VectorTorque

77 Annotations:

78 rdfs:label "VectorTorque"@

79 SubClassOf:

80 Force,

81 hasReferenceMember exactly 1 (AuxiliaryComponent

82 or Body)

83 Class: FieldForce

84 Annotations:

85 rdfs:label "FieldForce"@

86 SubClassOf:

87 Force,

88 hasReferenceMember exactly 1 (AuxiliaryComponent

89 or Body)

90 Class: SubModel

91 Annotations:

92 rdfs:label "SubModel"@

93 SubClassOf:

94 owl:Thing,

95 hasLocationX exactly 1 xsd:double,

96 hasLocationY exactly 1 xsd:double,

97 hasLocationZ exactly 1 xsd:double,

98 hasOrientationR1 exactly 1 xsd:double,

99 hasOrientationR2 exactly 1 xsd:double,

100 hasOrientationR3 exactly 1 xsd:double,

101 hasRotationSequence exactly 1 {

102 "xyx", "xyz", "xzx", "xzy", "yxy", "yxz", "yzx", "yzy", "zxy", "zxz", "zyx", "zyz"}

103 Class: RigidBody

104 Annotations:

105 rdfs:label "RigidBody"@

106 SubClassOf:

107 Body,

108 hasLocationX exactly 1 xsd:double,

109 hasLocationY exactly 1 xsd:double,

110 hasLocationZ exactly 1 xsd:double,

111 hasMass exactly 1 xsd:double[>= 0.0],

112 hasMassInertiaIxx exactly 1 xsd:double[>= 0.0],

113 hasMassInertiaIxy exactly 1 xsd:double[>= 0.0],

114 hasMassInertiaIxz exactly 1 xsd:double[>= 0.0],

115 hasMassInertiaIyy exactly 1 xsd:double[>= 0.0],

116 hasMassInertiaIyz exactly 1 xsd:double[>= 0.0],

117 hasMassInertiaIzz exactly 1 xsd:double[>= 0.0],
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118 hasOrientationR1 exactly 1 xsd:double,

119 hasOrientationR2 exactly 1 xsd:double,

120 hasOrientationR3 exactly 1 xsd:double,

121 hasRotationSequence exactly 1 {

122 "xyx", "xyz", "xzx", "xzy", "yxy", "yxz", "yzx", "yzy", "zxy", "zxz", "zyx", "zyz"},

123 hasAccelerationX max 1 xsd:double,

124 hasAccelerationY max 1 xsd:double,

125 hasAccelerationZ max 1 xsd:double,

126 hasAngularAccelerationAlpha max 1 xsd:double,

127 hasAngularAccelerationBeta max 1 xsd:double,

128 hasAngularAccelerationGamma max 1 xsd:double,

129 hasAngularVelocityAlpha max 1 xsd:double,

130 hasAngularVelocityBeta max 1 xsd:double,

131 hasAngularVelocityGamma max 1 xsd:double,

132 hasVelocityX max 1 xsd:double,

133 hasVelocityY max 1 xsd:double,

134 hasVelocityZ max 1 xsd:double

135 Class: Geometry

136 Annotations:

137 rdfs:label "Geometry"@

138 Class: ExternalGeometry

139 Annotations:

140 rdfs:label "ExternalGeometry"@

141 SubClassOf:

142 Geometry,

143 hasDescription exactly 1 xsd:string

144 Class: PointForce

145 Annotations:

146 rdfs:label "PointForce"@

147 SubClassOf:

148 Force

149 Class: UniversalJoint

150 Annotations:

151 rdfs:label "UniversalJoint"@

152 SubClassOf:

153 Constraint,

154 hasRotationalDegreesOfFreedom value 2,

155 hasTranslationalDegreesOfFreedom value 0,

156 hasMasterAngle exactly 1 xsd:double,

157 hasMasterDirectionX exactly 1 xsd:double,

158 hasMasterDirectionY exactly 1 xsd:double,

159 hasMasterDirectionZ exactly 1 xsd:double,

160 hasSlaveDirectionX exactly 1 xsd:double,

161 hasSlaveDirectionY exactly 1 xsd:double,

162 hasSlaveDirectionZ exactly 1 xsd:double

163 Class: AuxiliaryCoordinateSystem

164 Annotations:

165 rdfs:label "AuxiliaryCoordinateSystem"@

166 SubClassOf:

167 AuxiliaryComponent,

168 hasOrientationR1 exactly 1 xsd:double,

169 hasOrientationR2 exactly 1 xsd:double,

170 hasOrientationR3 exactly 1 xsd:double,

171 hasRotationSequence exactly 1 {

172 "xyx", "xyz", "xzx", "xzy", "yxy", "yxz", "yzx", "yzy", "zxy", "zxz", "zyx", "zyz"}

173 DisjointWith:

174 AuxiliaryLocation

175 Class: FixedJoint

176 Annotations:

177 rdfs:label "FixedJoint"@

178 SubClassOf:

179 Constraint,

180 hasRotationalDegreesOfFreedom value 0,

181 hasTranslationalDegreesOfFreedom value 0

182 Class: DataSpline

183 Annotations:

184 rdfs:label "DataSpline"@

185 SubClassOf:

186 DataElement,

187 hasDataTable exactly 1 xsd:anyType

188 Class: Force

189 Annotations:

190 rdfs:label "Force"@

191 SubClassOf:

192 hasFunction exactly 1 FunctionExpression,

193 hasMasterMember exactly 1 (AuxiliaryComponent

194 or Body),

195 hasSlaveMember exactly 1 (AuxiliaryComponent

196 or Body)

197 Class: FunctionExpression
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198 Annotations:

199 rdfs:label "FunctionExpression"@

200 Class: GearJoint

201 Annotations:

202 rdfs:label "GearJoint"@

203 SubClassOf:

204 Constraint,

205 hasRotationalDegreesOfFreedom value 1,

206 hasTranslationalDegreesOfFreedom value 0,

207 hasGearRatio exactly 1 xsd:double,

208 hasMasterDirectionX exactly 1 xsd:double,

209 hasMasterDirectionY exactly 1 xsd:double,

210 hasMasterDirectionZ exactly 1 xsd:double,

211 hasSlaveDirectionX exactly 1 xsd:double,

212 hasSlaveDirectionY exactly 1 xsd:double,

213 hasSlaveDirectionZ exactly 1 xsd:double

214 Class: RevoluteJoint

215 Annotations:

216 rdfs:label "RevoluteJoint"@

217 SubClassOf:

218 Constraint,

219 hasRotationalDegreesOfFreedom value 1,

220 hasTranslationalDegreesOfFreedom value 0,

221 hasDirectionX exactly 1 xsd:double,

222 hasDirectionY exactly 1 xsd:double,

223 hasDirectionZ exactly 1 xsd:double

224 Class: PointTorque

225 Annotations:

226 rdfs:label "PointTorque"@

227 SubClassOf:

228 Force

229 Class: SphericalJoint

230 Annotations:

231 rdfs:label "SphericalJoint"@

232 SubClassOf:

233 Constraint,

234 hasRotationalDegreesOfFreedom value 3,

235 hasTranslationalDegreesOfFreedom value 0

236 Class: VectorForce

237 Annotations:

238 rdfs:label "VectorForce"@

239 SubClassOf:

240 Force,

241 hasReferenceMember exactly 1 (AuxiliaryComponent

242 or Body)

243 Class: GeneralForce

244 Annotations:

245 rdfs:label "GeneralForce"@

246 SubClassOf:

247 Force,

248 hasReferenceMember exactly 1 (AuxiliaryComponent

249 or Body)

250 Class: DataTable

251 Annotations:

252 rdfs:label "DataTable"@

253 SubClassOf:

254 DataElement,

255 hasDataTable exactly 1 xsd:anyType

256 Class: AuxiliaryComponent

257 Annotations:

258 rdfs:label "AuxiliaryComponent"@

259 SubClassOf:

260 hasLocationX exactly 1 xsd:double,

261 hasLocationY exactly 1 xsd:double,

262 hasLocationZ exactly 1 xsd:double

263 Class: GroundBody

264 Annotations:

265 rdfs:label "Ground"@

266 SubClassOf:

267 Body,

268 hasGravityX exactly 1 xsd:double,

269 hasGravityY exactly 1 xsd:double,

270 hasGravityZ exactly 1 xsd:double

271 Class: Body

272 Annotations:

273 rdfs:label "Body"@

274 Class: DataVariable

275 Annotations:

276 rdfs:label "DataVariable"@

277 SubClassOf:
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278 DataElement,

279 hasDataValue exactly 1 xsd:anyType

280 Class: AuxiliaryLocation

281 Annotations:

282 rdfs:label "AuxiliaryLocation"@

283 SubClassOf:

284 AuxiliaryComponent

285 DisjointWith:

286 AuxiliaryCoordinateSystem

287 Class: Results

288 Annotations:

289 rdfs:label "Results"@

290 Class: BlockGeometry

291 Annotations:

292 rdfs:label "BlockGeometry"@

293 SubClassOf:

294 Geometry,

295 hasDepth exactly 1 xsd:double[>= 0.0],

296 hasHeight exactly 1 xsd:double[>= 0.0],

297 hasLength exactly 1 xsd:double[>= 0.0]

298 Class: GeneralJoint

299 Annotations:

300 rdfs:label "GeneralJoint"@

301 SubClassOf:

302 Constraint,

303 hasLockedRotationX exactly 1 xsd:boolean,

304 hasLockedRotationY exactly 1 xsd:boolean,

305 hasLockedRotationZ exactly 1 xsd:boolean,

306 hasLockedTranslationX exactly 1 xsd:boolean,

307 hasLockedTranslationY exactly 1 xsd:boolean,

308 hasLockedTranslationZ exactly 1 xsd:boolean,

309 hasOrientationR1 exactly 1 xsd:double,

310 hasOrientationR2 exactly 1 xsd:double,

311 hasOrientationR3 exactly 1 xsd:double,

312 hasRotationSequence exactly 1 {

313 "xyx", "xyz", "xzx", "xzy", "yxy", "yxz", "yzx", "yzy", "zxy", "zxz", "zyx", "zyz"}

314 DisjointClasses:

315 Analysis, AuxiliaryComponent, Body, Case, Constraint, DataElement,

316 Force, FunctionExpression, Geometry, Model, Results, SubModel

317 DisjointClasses:

318 BeamGeometry, BlockGeometry, ConeGeometry, EllipseGeometry, ExternalGeometry

319 DisjointClasses:

320 CylindricalJoint, FixedJoint, GearJoint, GeneralJoint, PrismaticJoint,

321 RevoluteJoint, SphericalJoint, UniversalJoint

322 DisjointClasses:

323 FieldForce,GeneralForce,PointForce,PointTorque,VectorForce,VectorTorque

324 DisjointClasses:

325 DataSpline,DataTable,DataVariable

326 ...
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A.2 Mbs Ontology

The whole Mbs ontology in the XML Presentation syntax (OWL/XML) [84]
is listed below. This listing contains all the definitions for the ontology. The
ontology metrics are given in Table A.1.

Table A.1: Mbs ontology metrics.

Metric Value

Class count 39
Object property count 17
Data property count 82
DL expressivity ALCRQ(D)
Subclass axioms count 151
Disjoint axioms classes count 6
Subobject property axioms count 9
Functional object property axioms count 8
Asymmetric object property axioms count 17
Object property domain axioms count 15
Object property range axioms count 14
Subdata property axioms count 67
Functional data property axioms count 49
Data property domain axioms count 10
AnnotationAssertion axioms count 136

A.2.1 Mbs Ontology Listing

<?xml version="1.0"?>

<!-- Copyright (C) Juha Kortelainen 2011 -->

<!DOCTYPE Ontology

[

<!ENTITY xsd

"http://www.w3.org/2001/XMLSchema#" >

<!ENTITY xml

"http://www.w3.org/XML/1998/namespace" >

<!ENTITY rdfs

"http://www.w3.org/2000/01/rdf-schema#" >

<!ENTITY rdf

"http://www.w3.org/1999/02/22-rdf-syntax-ns#" >

]>

<Ontology xmlns="http://www.w3.org/2002/07/owl#"

xml:base="http://www.simantics.org/ontologies/mbs.owl"

xmlns:rdfs="http://www.w3.org/2000/01/rdf-schema#"

xmlns:xsd="http://www.w3.org/2001/XMLSchema#"

xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"

xmlns:xml="http://www.w3.org/XML/1998/namespace"

ontologyIRI="http://www.simantics.org/ontologies/mbs.owl">

<Prefix name="rdf"

IRI="http://www.w3.org/1999/02/22-rdf-syntax-ns#" />

<Prefix name="rdfs"

IRI="http://www.w3.org/2000/01/rdf-schema#" />

<Prefix name="xsd"

IRI="http://www.w3.org/2001/XMLSchema#" />

<Prefix name="owl"

IRI="http://www.w3.org/2002/07/owl#" />

<Declaration>

<Class IRI="#Analysis" />

</Declaration>

<Declaration>

<Class IRI="#AuxiliaryComponent" />

</Declaration>

<Declaration>

<Class IRI="#AuxiliaryCoordinateSystem" />

</Declaration>

<Declaration>

<Class IRI="#AuxiliaryLocation" />

</Declaration>

<Declaration>

<Class IRI="#BeamGeometry" />

</Declaration>

<Declaration>

<Class IRI="#BlockGeometry" />

</Declaration>

<Declaration>

<Class IRI="#Body" />

</Declaration>

<Declaration>

<Class IRI="#Case" />

</Declaration>

<Declaration>

<Class IRI="#ConeGeometry" />
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</Declaration>

<Declaration>

<Class IRI="#Constraint" />

</Declaration>

<Declaration>

<Class IRI="#CylindricalJoint" />

</Declaration>

<Declaration>

<Class IRI="#DataElement" />

</Declaration>

<Declaration>

<Class IRI="#DataSpline" />

</Declaration>

<Declaration>

<Class IRI="#DataTable" />

</Declaration>

<Declaration>

<Class IRI="#DataVariable" />

</Declaration>

<Declaration>

<Class IRI="#EllipseGeometry" />

</Declaration>

<Declaration>

<Class IRI="#ExternalGeometry" />

</Declaration>

<Declaration>

<Class IRI="#FieldForce" />

</Declaration>

<Declaration>

<Class IRI="#FixedJoint" />

</Declaration>

<Declaration>

<Class IRI="#Force" />

</Declaration>

<Declaration>

<Class IRI="#FunctionExpression" />

</Declaration>

<Declaration>

<Class IRI="#GearJoint" />

</Declaration>

<Declaration>

<Class IRI="#GeneralForce" />

</Declaration>

<Declaration>

<Class IRI="#GeneralJoint" />

</Declaration>

<Declaration>

<Class IRI="#Geometry" />

</Declaration>

<Declaration>

<Class IRI="#GroundBody" />

</Declaration>

<Declaration>

<Class IRI="#Model" />

</Declaration>

<Declaration>

<Class IRI="#PointForce" />

</Declaration>

<Declaration>

<Class IRI="#PointTorque" />

</Declaration>

<Declaration>

<Class IRI="#PrismaticJoint" />

</Declaration>

<Declaration>

<Class IRI="#Results" />

</Declaration>

<Declaration>

<Class IRI="#RevoluteJoint" />

</Declaration>

<Declaration>

<Class IRI="#RigidBody" />

</Declaration>

<Declaration>

<Class IRI="#SphericalJoint" />

</Declaration>

<Declaration>

<Class IRI="#SubModel" />

</Declaration>

<Declaration>

<Class IRI="#UniversalJoint" />

</Declaration>

<Declaration>

<Class IRI="#VectorForce" />

</Declaration>

<Declaration>

<Class IRI="#VectorTorque" />

</Declaration>

<Declaration>

<Class abbreviatedIRI="owl:Thing" />

</Declaration>

<Declaration>

<ObjectProperty IRI="#hasAnalysis" />

</Declaration>

<Declaration>

<ObjectProperty IRI="#hasAuxiliaryComponent" />

</Declaration>

<Declaration>

<ObjectProperty IRI="#hasBody" />

</Declaration>

<Declaration>

<ObjectProperty IRI="#hasCaseObject" />

</Declaration>

<Declaration>

<ObjectProperty IRI="#hasContraint" />

</Declaration>

<Declaration>

<ObjectProperty IRI="#hasDataElement" />

</Declaration>

<Declaration>

<ObjectProperty IRI="#hasForce" />

</Declaration>

<Declaration>

<ObjectProperty IRI="#hasFunction" />

</Declaration>

<Declaration>

<ObjectProperty IRI="#hasGeometry" />

</Declaration>

<Declaration>

<ObjectProperty IRI="#hasGroundBody" />

</Declaration>

<Declaration>

<ObjectProperty IRI="#hasMasterMember" />

</Declaration>

<Declaration>

<ObjectProperty IRI="#hasModel" />

</Declaration>

<Declaration>

<ObjectProperty IRI="#hasModelObject" />

</Declaration>

<Declaration>

<ObjectProperty IRI="#hasReferenceMember" />

</Declaration>

<Declaration>

<ObjectProperty IRI="#hasResults" />

</Declaration>

<Declaration>

<ObjectProperty IRI="#hasSlaveMember" />

</Declaration>

<Declaration>

<ObjectProperty IRI="#hasSubModel" />

</Declaration>

<Declaration>

<DataProperty IRI="#hasAcceleration" />

</Declaration>

<Declaration>

<DataProperty IRI="#hasAccelerationX" />

</Declaration>

<Declaration>

<DataProperty IRI="#hasAccelerationY" />

</Declaration>

<Declaration>

<DataProperty IRI="#hasAccelerationZ" />

</Declaration>

<Declaration>

<DataProperty IRI="#hasAnalysisParameter" />

</Declaration>

<Declaration>

<DataProperty IRI="#hasAnalysisType" />

</Declaration>

A7



Appendix A. Definition of the Mbs Ontology

<Declaration>

<DataProperty IRI="#hasAngularAcceleration" />

</Declaration>

<Declaration>

<DataProperty IRI="#hasAngularAccelerationAlpha" />

</Declaration>

<Declaration>

<DataProperty IRI="#hasAngularAccelerationBeta" />

</Declaration>

<Declaration>

<DataProperty IRI="#hasAngularAccelerationGamma" />

</Declaration>

<Declaration>

<DataProperty IRI="#hasAngularVelocity" />

</Declaration>

<Declaration>

<DataProperty IRI="#hasAngularVelocityAlpha" />

</Declaration>

<Declaration>

<DataProperty IRI="#hasAngularVelocityBeta" />

</Declaration>

<Declaration>

<DataProperty IRI="#hasAngularVelocityGamma" />

</Declaration>

<Declaration>

<DataProperty IRI="#hasBottomRadius" />

</Declaration>

<Declaration>

<DataProperty IRI="#hasDataElementValue" />

</Declaration>

<Declaration>

<DataProperty IRI="#hasDataTable" />

</Declaration>

<Declaration>

<DataProperty IRI="#hasDataValue" />

</Declaration>

<Declaration>

<DataProperty IRI="#hasDegreesOfFreedom" />

</Declaration>

<Declaration>

<DataProperty IRI="#hasDepth" />

</Declaration>

<Declaration>

<DataProperty IRI="#hasDescription" />

</Declaration>

<Declaration>

<DataProperty IRI="#hasDirection" />

</Declaration>

<Declaration>

<DataProperty IRI="#hasDirectionX" />

</Declaration>

<Declaration>

<DataProperty IRI="#hasDirectionY" />

</Declaration>

<Declaration>

<DataProperty IRI="#hasDirectionZ" />

</Declaration>

<Declaration>

<DataProperty IRI="#hasGearRatio" />

</Declaration>

<Declaration>

<DataProperty IRI="#hasGeometryParameter" />

</Declaration>

<Declaration>

<DataProperty IRI="#hasGravity" />

</Declaration>

<Declaration>

<DataProperty IRI="#hasGravityX" />

</Declaration>

<Declaration>

<DataProperty IRI="#hasGravityY" />

</Declaration>

<Declaration>

<DataProperty IRI="#hasGravityZ" />

</Declaration>

<Declaration>

<DataProperty IRI="#hasHeight" />

</Declaration>

<Declaration>

<DataProperty IRI="#hasLength" />

</Declaration>

<Declaration>

<DataProperty IRI="#hasLocation" />

</Declaration>

<Declaration>

<DataProperty IRI="#hasLocationX" />

</Declaration>

<Declaration>

<DataProperty IRI="#hasLocationY" />

</Declaration>

<Declaration>

<DataProperty IRI="#hasLocationZ" />

</Declaration>

<Declaration>

<DataProperty IRI="#hasLockedRotation" />

</Declaration>

<Declaration>

<DataProperty IRI="#hasLockedRotationX" />

</Declaration>

<Declaration>

<DataProperty IRI="#hasLockedRotationY" />

</Declaration>

<Declaration>

<DataProperty IRI="#hasLockedRotationZ" />

</Declaration>

<Declaration>

<DataProperty IRI="#hasLockedTranslation" />

</Declaration>

<Declaration>

<DataProperty IRI="#hasLockedTranslationX" />

</Declaration>

<Declaration>

<DataProperty IRI="#hasLockedTranslationY" />

</Declaration>

<Declaration>

<DataProperty IRI="#hasLockedTranslationZ" />

</Declaration>

<Declaration>

<DataProperty IRI="#hasMajorRadius" />

</Declaration>

<Declaration>

<DataProperty IRI="#hasMass" />

</Declaration>

<Declaration>

<DataProperty IRI="#hasMassInertia" />

</Declaration>

<Declaration>

<DataProperty IRI="#hasMassInertiaIxx" />

</Declaration>

<Declaration>

<DataProperty IRI="#hasMassInertiaIxy" />

</Declaration>

<Declaration>

<DataProperty IRI="#hasMassInertiaIxz" />

</Declaration>

<Declaration>

<DataProperty IRI="#hasMassInertiaIyy" />

</Declaration>

<Declaration>

<DataProperty IRI="#hasMassInertiaIyz" />

</Declaration>

<Declaration>

<DataProperty IRI="#hasMassInertiaIzz" />

</Declaration>

<Declaration>

<DataProperty IRI="#hasMasterAngle" />

</Declaration>

<Declaration>

<DataProperty IRI="#hasMasterDirectionX" />

</Declaration>

<Declaration>

<DataProperty IRI="#hasMasterDirectionY" />

</Declaration>

<Declaration>

<DataProperty IRI="#hasMasterDirectionZ" />

</Declaration>

<Declaration>

<DataProperty IRI="#hasMinorRadius" />

</Declaration>

<Declaration>
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<DataProperty IRI="#hasOrientation" />

</Declaration>

<Declaration>

<DataProperty IRI="#hasOrientationQ0" />

</Declaration>

<Declaration>

<DataProperty IRI="#hasOrientationQ1" />

</Declaration>

<Declaration>

<DataProperty IRI="#hasOrientationQ2" />

</Declaration>

<Declaration>

<DataProperty IRI="#hasOrientationQ3" />

</Declaration>

<Declaration>

<DataProperty IRI="#hasOrientationR1" />

</Declaration>

<Declaration>

<DataProperty IRI="#hasOrientationR2" />

</Declaration>

<Declaration>

<DataProperty IRI="#hasOrientationR3" />

</Declaration>

<Declaration>

<DataProperty IRI="#hasRotationSequence" />

</Declaration>

<Declaration>

<DataProperty IRI="#hasRotationalDegreesOfFreedom" />

</Declaration>

<Declaration>

<DataProperty IRI="#hasSlaveDirectionX" />

</Declaration>

<Declaration>

<DataProperty IRI="#hasSlaveDirectionY" />

</Declaration>

<Declaration>

<DataProperty IRI="#hasSlaveDirectionZ" />

</Declaration>

<Declaration>

<DataProperty IRI="#hasStartTime" />

</Declaration>

<Declaration>

<DataProperty IRI="#hasStopTime" />

</Declaration>

<Declaration>

<DataProperty IRI="#hasTimeStep" />

</Declaration>

<Declaration>

<DataProperty IRI="#hasTopRadius" />

</Declaration>

<Declaration>

<DataProperty IRI="#hasTranslationalDegreesOfFreedom" />

</Declaration>

<Declaration>

<DataProperty IRI="#hasVelocity" />

</Declaration>

<Declaration>

<DataProperty IRI="#hasVelocityX" />

</Declaration>

<Declaration>

<DataProperty IRI="#hasVelocityY" />

</Declaration>

<Declaration>

<DataProperty IRI="#hasVelocityZ" />

</Declaration>

<Declaration>

<DataProperty abbreviatedIRI="owl:topDataProperty" />

</Declaration>

<Declaration>

<AnnotationProperty abbreviatedIRI="rdfs:label" />

</Declaration>

<Declaration>

<Datatype abbreviatedIRI="xsd:anyType" />

</Declaration>

<SubClassOf>

<Class IRI="#Analysis" />

<DataExactCardinality cardinality="1">

<DataProperty IRI="#hasAnalysisType" />

<DataOneOf>

<Literal datatypeIRI="&xsd;string">dynamic</Literal>

<Literal datatypeIRI="&xsd;string">kinematic</Literal>

<Literal datatypeIRI="&xsd;string">linear</Literal>

<Literal datatypeIRI="&xsd;string">static</Literal>

</DataOneOf>

</DataExactCardinality>

</SubClassOf>

<SubClassOf>

<Class IRI="#Analysis" />

<DataMaxCardinality cardinality="1">

<DataProperty IRI="#hasStartTime" />

<DatatypeRestriction>

<Datatype abbreviatedIRI="xsd:double" />

<FacetRestriction facet="&xsd;minInclusive">

<Literal datatypeIRI="&xsd;double">0.0</Literal>

</FacetRestriction>

</DatatypeRestriction>

</DataMaxCardinality>

</SubClassOf>

<SubClassOf>

<Class IRI="#Analysis" />

<DataMaxCardinality cardinality="1">

<DataProperty IRI="#hasStopTime" />

<DatatypeRestriction>

<Datatype abbreviatedIRI="xsd:double" />

<FacetRestriction facet="&xsd;minInclusive">

<Literal datatypeIRI="&xsd;double">0.0</Literal>

</FacetRestriction>

</DatatypeRestriction>

</DataMaxCardinality>

</SubClassOf>

<SubClassOf>

<Class IRI="#Analysis" />

<DataMaxCardinality cardinality="1">

<DataProperty IRI="#hasTimeStep" />

<DatatypeRestriction>

<Datatype abbreviatedIRI="xsd:double" />

<FacetRestriction facet="&xsd;minInclusive">

<Literal datatypeIRI="&xsd;double">0.0</Literal>

</FacetRestriction>

</DatatypeRestriction>

</DataMaxCardinality>

</SubClassOf>

<SubClassOf>

<Class IRI="#AuxiliaryComponent" />

<DataExactCardinality cardinality="1">

<DataProperty IRI="#hasLocationX" />

<Datatype abbreviatedIRI="xsd:double" />

</DataExactCardinality>

</SubClassOf>

<SubClassOf>

<Class IRI="#AuxiliaryComponent" />

<DataExactCardinality cardinality="1">

<DataProperty IRI="#hasLocationY" />

<Datatype abbreviatedIRI="xsd:double" />

</DataExactCardinality>

</SubClassOf>

<SubClassOf>

<Class IRI="#AuxiliaryComponent" />

<DataExactCardinality cardinality="1">

<DataProperty IRI="#hasLocationZ" />

<Datatype abbreviatedIRI="xsd:double" />

</DataExactCardinality>

</SubClassOf>

<SubClassOf>

<Class IRI="#AuxiliaryCoordinateSystem" />

<Class IRI="#AuxiliaryComponent" />

</SubClassOf>

<SubClassOf>

<Class IRI="#AuxiliaryCoordinateSystem" />

<DataExactCardinality cardinality="1">

<DataProperty IRI="#hasOrientationR1" />

<Datatype abbreviatedIRI="xsd:double" />

</DataExactCardinality>

</SubClassOf>

<SubClassOf>

<Class IRI="#AuxiliaryCoordinateSystem" />

<DataExactCardinality cardinality="1">

<DataProperty IRI="#hasOrientationR2" />

<Datatype abbreviatedIRI="xsd:double" />

</DataExactCardinality>
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</SubClassOf>

<SubClassOf>

<Class IRI="#AuxiliaryCoordinateSystem" />

<DataExactCardinality cardinality="1">

<DataProperty IRI="#hasOrientationR3" />

<Datatype abbreviatedIRI="xsd:double" />

</DataExactCardinality>

</SubClassOf>

<SubClassOf>

<Class IRI="#AuxiliaryCoordinateSystem" />

<DataExactCardinality cardinality="1">

<DataProperty IRI="#hasRotationSequence" />

<DataOneOf>

<Literal datatypeIRI="&xsd;string">xyx</Literal>

<Literal datatypeIRI="&xsd;string">xyz</Literal>

<Literal datatypeIRI="&xsd;string">xzx</Literal>

<Literal datatypeIRI="&xsd;string">xzy</Literal>

<Literal datatypeIRI="&xsd;string">yxy</Literal>

<Literal datatypeIRI="&xsd;string">yxz</Literal>

<Literal datatypeIRI="&xsd;string">yzx</Literal>

<Literal datatypeIRI="&xsd;string">yzy</Literal>

<Literal datatypeIRI="&xsd;string">zxy</Literal>

<Literal datatypeIRI="&xsd;string">zxz</Literal>

<Literal datatypeIRI="&xsd;string">zyx</Literal>

<Literal datatypeIRI="&xsd;string">zyz</Literal>

</DataOneOf>

</DataExactCardinality>

</SubClassOf>

<SubClassOf>

<Class IRI="#AuxiliaryLocation" />

<Class IRI="#AuxiliaryComponent" />

</SubClassOf>

<SubClassOf>

<Class IRI="#BeamGeometry" />

<Class IRI="#Geometry" />

</SubClassOf>

<SubClassOf>

<Class IRI="#BeamGeometry" />

<DataExactCardinality cardinality="1">

<DataProperty IRI="#hasDepth" />

<DatatypeRestriction>

<Datatype abbreviatedIRI="xsd:double" />

<FacetRestriction facet="&xsd;minInclusive">

<Literal datatypeIRI="&xsd;double">0.0</Literal>

</FacetRestriction>

</DatatypeRestriction>

</DataExactCardinality>

</SubClassOf>

<SubClassOf>

<Class IRI="#BeamGeometry" />

<DataExactCardinality cardinality="1">

<DataProperty IRI="#hasHeight" />

<DatatypeRestriction>

<Datatype abbreviatedIRI="xsd:double" />

<FacetRestriction facet="&xsd;minInclusive">

<Literal datatypeIRI="&xsd;double">0.0</Literal>

</FacetRestriction>

</DatatypeRestriction>

</DataExactCardinality>

</SubClassOf>

<SubClassOf>

<Class IRI="#BeamGeometry" />

<DataExactCardinality cardinality="1">

<DataProperty IRI="#hasLength" />

<DatatypeRestriction>

<Datatype abbreviatedIRI="xsd:double" />

<FacetRestriction facet="&xsd;minInclusive">

<Literal datatypeIRI="&xsd;double">0.0</Literal>

</FacetRestriction>

</DatatypeRestriction>

</DataExactCardinality>

</SubClassOf>

<SubClassOf>

<Class IRI="#BlockGeometry" />

<Class IRI="#Geometry" />

</SubClassOf>

<SubClassOf>

<Class IRI="#BlockGeometry" />

<DataExactCardinality cardinality="1">

<DataProperty IRI="#hasDepth" />

<DatatypeRestriction>

<Datatype abbreviatedIRI="xsd:double" />

<FacetRestriction facet="&xsd;minInclusive">

<Literal datatypeIRI="&xsd;double">0.0</Literal>

</FacetRestriction>

</DatatypeRestriction>

</DataExactCardinality>

</SubClassOf>

<SubClassOf>

<Class IRI="#BlockGeometry" />

<DataExactCardinality cardinality="1">

<DataProperty IRI="#hasHeight" />

<DatatypeRestriction>

<Datatype abbreviatedIRI="xsd:double" />

<FacetRestriction facet="&xsd;minInclusive">

<Literal datatypeIRI="&xsd;double">0.0</Literal>

</FacetRestriction>

</DatatypeRestriction>

</DataExactCardinality>

</SubClassOf>

<SubClassOf>

<Class IRI="#BlockGeometry" />

<DataExactCardinality cardinality="1">

<DataProperty IRI="#hasLength" />

<DatatypeRestriction>

<Datatype abbreviatedIRI="xsd:double" />

<FacetRestriction facet="&xsd;minInclusive">

<Literal datatypeIRI="&xsd;double">0.0</Literal>

</FacetRestriction>

</DatatypeRestriction>

</DataExactCardinality>

</SubClassOf>

<SubClassOf>

<Class IRI="#Case" />

<ObjectMaxCardinality cardinality="1">

<ObjectProperty IRI="#hasAnalysis" />

<Class IRI="#Analysis" />

</ObjectMaxCardinality>

</SubClassOf>

<SubClassOf>

<Class IRI="#Case" />

<ObjectMaxCardinality cardinality="1">

<ObjectProperty IRI="#hasModel" />

<Class IRI="#Model" />

</ObjectMaxCardinality>

</SubClassOf>

<SubClassOf>

<Class IRI="#Case" />

<ObjectMaxCardinality cardinality="1">

<ObjectProperty IRI="#hasResults" />

<Class IRI="#Results" />

</ObjectMaxCardinality>

</SubClassOf>

<SubClassOf>

<Class IRI="#ConeGeometry" />

<Class IRI="#Geometry" />

</SubClassOf>

<SubClassOf>

<Class IRI="#ConeGeometry" />

<DataExactCardinality cardinality="1">

<DataProperty IRI="#hasBottomRadius" />

<DatatypeRestriction>

<Datatype abbreviatedIRI="xsd:double" />

<FacetRestriction facet="&xsd;minInclusive">

<Literal datatypeIRI="&xsd;double">0.0</Literal>

</FacetRestriction>

</DatatypeRestriction>

</DataExactCardinality>

</SubClassOf>

<SubClassOf>

<Class IRI="#ConeGeometry" />

<DataExactCardinality cardinality="1">

<DataProperty IRI="#hasLength" />

<DatatypeRestriction>

<Datatype abbreviatedIRI="xsd:double" />

<FacetRestriction facet="&xsd;minInclusive">

<Literal datatypeIRI="&xsd;double">0.0</Literal>

</FacetRestriction>

</DatatypeRestriction>

</DataExactCardinality>
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</SubClassOf>

<SubClassOf>

<Class IRI="#ConeGeometry" />

<DataExactCardinality cardinality="1">

<DataProperty IRI="#hasTopRadius" />

<DatatypeRestriction>

<Datatype abbreviatedIRI="xsd:double" />

<FacetRestriction facet="&xsd;minInclusive">

<Literal datatypeIRI="&xsd;double">0.0</Literal>

</FacetRestriction>

</DatatypeRestriction>

</DataExactCardinality>

</SubClassOf>

<SubClassOf>

<Class IRI="#Constraint" />

<ObjectExactCardinality cardinality="1">

<ObjectProperty IRI="#hasMasterMember" />

<Class IRI="#Body" />

</ObjectExactCardinality>

</SubClassOf>

<SubClassOf>

<Class IRI="#Constraint" />

<ObjectExactCardinality cardinality="1">

<ObjectProperty IRI="#hasSlaveMember" />

<Class IRI="#Body" />

</ObjectExactCardinality>

</SubClassOf>

<SubClassOf>

<Class IRI="#Constraint" />

<DataExactCardinality cardinality="1">

<DataProperty IRI="#hasLocationX" />

<Datatype abbreviatedIRI="xsd:double" />

</DataExactCardinality>

</SubClassOf>

<SubClassOf>

<Class IRI="#Constraint" />

<DataExactCardinality cardinality="1">

<DataProperty IRI="#hasLocationY" />

<Datatype abbreviatedIRI="xsd:double" />

</DataExactCardinality>

</SubClassOf>

<SubClassOf>

<Class IRI="#Constraint" />

<DataExactCardinality cardinality="1">

<DataProperty IRI="#hasLocationZ" />

<Datatype abbreviatedIRI="xsd:double" />

</DataExactCardinality>

</SubClassOf>

<SubClassOf>

<Class IRI="#CylindricalJoint" />

<Class IRI="#Constraint" />

</SubClassOf>

<SubClassOf>

<Class IRI="#CylindricalJoint" />

<DataHasValue>

<DataProperty IRI="#hasRotationalDegreesOfFreedom" />

<Literal datatypeIRI="&xsd;integer">1</Literal>

</DataHasValue>

</SubClassOf>

<SubClassOf>

<Class IRI="#CylindricalJoint" />

<DataHasValue>

<DataProperty IRI="#hasTranslationalDegreesOfFreedom" />

<Literal datatypeIRI="&xsd;integer">1</Literal>

</DataHasValue>

</SubClassOf>

<SubClassOf>

<Class IRI="#CylindricalJoint" />

<DataExactCardinality cardinality="1">

<DataProperty IRI="#hasDirectionX" />

<Datatype abbreviatedIRI="xsd:double" />

</DataExactCardinality>

</SubClassOf>

<SubClassOf>

<Class IRI="#CylindricalJoint" />

<DataExactCardinality cardinality="1">

<DataProperty IRI="#hasDirectionY" />

<Datatype abbreviatedIRI="xsd:double" />

</DataExactCardinality>

</SubClassOf>

<SubClassOf>

<Class IRI="#CylindricalJoint" />

<DataExactCardinality cardinality="1">

<DataProperty IRI="#hasDirectionZ" />

<Datatype abbreviatedIRI="xsd:double" />

</DataExactCardinality>

</SubClassOf>

<SubClassOf>

<Class IRI="#DataSpline" />

<Class IRI="#DataElement" />

</SubClassOf>

<SubClassOf>

<Class IRI="#DataSpline" />

<DataExactCardinality cardinality="1">

<DataProperty IRI="#hasDataTable" />

<Datatype abbreviatedIRI="xsd:anyType" />

</DataExactCardinality>

</SubClassOf>

<SubClassOf>

<Class IRI="#DataTable" />

<Class IRI="#DataElement" />

</SubClassOf>

<SubClassOf>

<Class IRI="#DataTable" />

<DataExactCardinality cardinality="1">

<DataProperty IRI="#hasDataTable" />

<Datatype abbreviatedIRI="xsd:anyType" />

</DataExactCardinality>

</SubClassOf>

<SubClassOf>

<Class IRI="#DataVariable" />

<Class IRI="#DataElement" />

</SubClassOf>

<SubClassOf>

<Class IRI="#DataVariable" />

<DataExactCardinality cardinality="1">

<DataProperty IRI="#hasDataValue" />

<Datatype abbreviatedIRI="xsd:anyType" />

</DataExactCardinality>

</SubClassOf>

<SubClassOf>

<Class IRI="#EllipseGeometry" />

<Class IRI="#Geometry" />

</SubClassOf>

<SubClassOf>

<Class IRI="#EllipseGeometry" />

<DataExactCardinality cardinality="1">

<DataProperty IRI="#hasMajorRadius" />

<DatatypeRestriction>

<Datatype abbreviatedIRI="xsd:double" />

<FacetRestriction facet="&xsd;minInclusive">

<Literal datatypeIRI="&xsd;double">0.0</Literal>

</FacetRestriction>

</DatatypeRestriction>

</DataExactCardinality>

</SubClassOf>

<SubClassOf>

<Class IRI="#EllipseGeometry" />

<DataExactCardinality cardinality="1">

<DataProperty IRI="#hasMinorRadius" />

<DatatypeRestriction>

<Datatype abbreviatedIRI="xsd:double" />

<FacetRestriction facet="&xsd;minInclusive">

<Literal datatypeIRI="&xsd;double">0.0</Literal>

</FacetRestriction>

</DatatypeRestriction>

</DataExactCardinality>

</SubClassOf>

<SubClassOf>

<Class IRI="#ExternalGeometry" />

<Class IRI="#Geometry" />

</SubClassOf>

<SubClassOf>

<Class IRI="#ExternalGeometry" />

<DataExactCardinality cardinality="1">

<DataProperty IRI="#hasDescription" />

<Datatype abbreviatedIRI="xsd:string" />

</DataExactCardinality>

</SubClassOf>

<SubClassOf>
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<Class IRI="#FieldForce" />

<Class IRI="#Force" />

</SubClassOf>

<SubClassOf>

<Class IRI="#FieldForce" />

<ObjectExactCardinality cardinality="1">

<ObjectProperty IRI="#hasReferenceMember" />

<ObjectUnionOf>

<Class IRI="#AuxiliaryComponent" />

<Class IRI="#Body" />

</ObjectUnionOf>

</ObjectExactCardinality>

</SubClassOf>

<SubClassOf>

<Class IRI="#FixedJoint" />

<Class IRI="#Constraint" />

</SubClassOf>

<SubClassOf>

<Class IRI="#FixedJoint" />

<DataHasValue>

<DataProperty IRI="#hasRotationalDegreesOfFreedom" />

<Literal datatypeIRI="&xsd;integer">0</Literal>

</DataHasValue>

</SubClassOf>

<SubClassOf>

<Class IRI="#FixedJoint" />

<DataHasValue>

<DataProperty IRI="#hasTranslationalDegreesOfFreedom" />

<Literal datatypeIRI="&xsd;integer">0</Literal>

</DataHasValue>

</SubClassOf>

<SubClassOf>

<Class IRI="#Force" />

<ObjectExactCardinality cardinality="1">

<ObjectProperty IRI="#hasFunction" />

<Class IRI="#FunctionExpression" />

</ObjectExactCardinality>

</SubClassOf>

<SubClassOf>

<Class IRI="#Force" />

<ObjectExactCardinality cardinality="1">

<ObjectProperty IRI="#hasMasterMember" />

<ObjectUnionOf>

<Class IRI="#AuxiliaryComponent" />

<Class IRI="#Body" />

</ObjectUnionOf>

</ObjectExactCardinality>

</SubClassOf>

<SubClassOf>

<Class IRI="#Force" />

<ObjectExactCardinality cardinality="1">

<ObjectProperty IRI="#hasSlaveMember" />

<ObjectUnionOf>

<Class IRI="#AuxiliaryComponent" />

<Class IRI="#Body" />

</ObjectUnionOf>

</ObjectExactCardinality>

</SubClassOf>

<SubClassOf>

<Class IRI="#GearJoint" />

<Class IRI="#Constraint" />

</SubClassOf>

<SubClassOf>

<Class IRI="#GearJoint" />

<DataHasValue>

<DataProperty IRI="#hasRotationalDegreesOfFreedom" />

<Literal datatypeIRI="&xsd;integer">1</Literal>

</DataHasValue>

</SubClassOf>

<SubClassOf>

<Class IRI="#GearJoint" />

<DataHasValue>

<DataProperty IRI="#hasTranslationalDegreesOfFreedom" />

<Literal datatypeIRI="&xsd;integer">0</Literal>

</DataHasValue>

</SubClassOf>

<SubClassOf>

<Class IRI="#GearJoint" />

<DataExactCardinality cardinality="1">

<DataProperty IRI="#hasGearRatio" />

<Datatype abbreviatedIRI="xsd:double" />

</DataExactCardinality>

</SubClassOf>

<SubClassOf>

<Class IRI="#GearJoint" />

<DataExactCardinality cardinality="1">

<DataProperty IRI="#hasMasterDirectionX" />

<Datatype abbreviatedIRI="xsd:double" />

</DataExactCardinality>

</SubClassOf>

<SubClassOf>

<Class IRI="#GearJoint" />

<DataExactCardinality cardinality="1">

<DataProperty IRI="#hasMasterDirectionY" />

<Datatype abbreviatedIRI="xsd:double" />

</DataExactCardinality>

</SubClassOf>

<SubClassOf>

<Class IRI="#GearJoint" />

<DataExactCardinality cardinality="1">

<DataProperty IRI="#hasMasterDirectionZ" />

<Datatype abbreviatedIRI="xsd:double" />

</DataExactCardinality>

</SubClassOf>

<SubClassOf>

<Class IRI="#GearJoint" />

<DataExactCardinality cardinality="1">

<DataProperty IRI="#hasSlaveDirectionX" />

<Datatype abbreviatedIRI="xsd:double" />

</DataExactCardinality>

</SubClassOf>

<SubClassOf>

<Class IRI="#GearJoint" />

<DataExactCardinality cardinality="1">

<DataProperty IRI="#hasSlaveDirectionY" />

<Datatype abbreviatedIRI="xsd:double" />

</DataExactCardinality>

</SubClassOf>

<SubClassOf>

<Class IRI="#GearJoint" />

<DataExactCardinality cardinality="1">

<DataProperty IRI="#hasSlaveDirectionZ" />

<Datatype abbreviatedIRI="xsd:double" />

</DataExactCardinality>

</SubClassOf>

<SubClassOf>

<Class IRI="#GeneralForce" />

<Class IRI="#Force" />

</SubClassOf>

<SubClassOf>

<Class IRI="#GeneralForce" />

<ObjectExactCardinality cardinality="1">

<ObjectProperty IRI="#hasReferenceMember" />

<ObjectUnionOf>

<Class IRI="#AuxiliaryComponent" />

<Class IRI="#Body" />

</ObjectUnionOf>

</ObjectExactCardinality>

</SubClassOf>

<SubClassOf>

<Class IRI="#GeneralJoint" />

<Class IRI="#Constraint" />

</SubClassOf>

<SubClassOf>

<Class IRI="#GeneralJoint" />

<DataExactCardinality cardinality="1">

<DataProperty IRI="#hasLockedRotationX" />

<Datatype abbreviatedIRI="xsd:boolean" />

</DataExactCardinality>

</SubClassOf>

<SubClassOf>

<Class IRI="#GeneralJoint" />

<DataExactCardinality cardinality="1">

<DataProperty IRI="#hasLockedRotationY" />

<Datatype abbreviatedIRI="xsd:boolean" />

</DataExactCardinality>

</SubClassOf>

<SubClassOf>

<Class IRI="#GeneralJoint" />

<DataExactCardinality cardinality="1">
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<DataProperty IRI="#hasLockedRotationZ" />

<Datatype abbreviatedIRI="xsd:boolean" />

</DataExactCardinality>

</SubClassOf>

<SubClassOf>

<Class IRI="#GeneralJoint" />

<DataExactCardinality cardinality="1">

<DataProperty IRI="#hasLockedTranslationX" />

<Datatype abbreviatedIRI="xsd:boolean" />

</DataExactCardinality>

</SubClassOf>

<SubClassOf>

<Class IRI="#GeneralJoint" />

<DataExactCardinality cardinality="1">

<DataProperty IRI="#hasLockedTranslationY" />

<Datatype abbreviatedIRI="xsd:boolean" />

</DataExactCardinality>

</SubClassOf>

<SubClassOf>

<Class IRI="#GeneralJoint" />

<DataExactCardinality cardinality="1">

<DataProperty IRI="#hasLockedTranslationZ" />

<Datatype abbreviatedIRI="xsd:boolean" />

</DataExactCardinality>

</SubClassOf>

<SubClassOf>

<Class IRI="#GeneralJoint" />

<DataExactCardinality cardinality="1">

<DataProperty IRI="#hasOrientationR1" />

<Datatype abbreviatedIRI="xsd:double" />

</DataExactCardinality>

</SubClassOf>

<SubClassOf>

<Class IRI="#GeneralJoint" />

<DataExactCardinality cardinality="1">

<DataProperty IRI="#hasOrientationR2" />

<Datatype abbreviatedIRI="xsd:double" />

</DataExactCardinality>

</SubClassOf>

<SubClassOf>

<Class IRI="#GeneralJoint" />

<DataExactCardinality cardinality="1">

<DataProperty IRI="#hasOrientationR3" />

<Datatype abbreviatedIRI="xsd:double" />

</DataExactCardinality>

</SubClassOf>

<SubClassOf>

<Class IRI="#GeneralJoint" />

<DataExactCardinality cardinality="1">

<DataProperty IRI="#hasRotationSequence" />

<DataOneOf>

<Literal datatypeIRI="&xsd;string">xyx</Literal>

<Literal datatypeIRI="&xsd;string">xyz</Literal>

<Literal datatypeIRI="&xsd;string">xzx</Literal>

<Literal datatypeIRI="&xsd;string">xzy</Literal>

<Literal datatypeIRI="&xsd;string">yxy</Literal>

<Literal datatypeIRI="&xsd;string">yxz</Literal>

<Literal datatypeIRI="&xsd;string">yzx</Literal>

<Literal datatypeIRI="&xsd;string">yzy</Literal>

<Literal datatypeIRI="&xsd;string">zxy</Literal>

<Literal datatypeIRI="&xsd;string">zxz</Literal>

<Literal datatypeIRI="&xsd;string">zyx</Literal>

<Literal datatypeIRI="&xsd;string">zyz</Literal>

</DataOneOf>

</DataExactCardinality>

</SubClassOf>

<SubClassOf>

<Class IRI="#GroundBody" />

<Class IRI="#Body" />

</SubClassOf>

<SubClassOf>

<Class IRI="#GroundBody" />

<DataExactCardinality cardinality="1">

<DataProperty IRI="#hasGravityX" />

<Datatype abbreviatedIRI="xsd:double" />

</DataExactCardinality>

</SubClassOf>

<SubClassOf>

<Class IRI="#GroundBody" />

<DataExactCardinality cardinality="1">

<DataProperty IRI="#hasGravityY" />

<Datatype abbreviatedIRI="xsd:double" />

</DataExactCardinality>

</SubClassOf>

<SubClassOf>

<Class IRI="#GroundBody" />

<DataExactCardinality cardinality="1">

<DataProperty IRI="#hasGravityZ" />

<Datatype abbreviatedIRI="xsd:double" />

</DataExactCardinality>

</SubClassOf>

<SubClassOf>

<Class IRI="#PointForce" />

<Class IRI="#Force" />

</SubClassOf>

<SubClassOf>

<Class IRI="#PointTorque" />

<Class IRI="#Force" />

</SubClassOf>

<SubClassOf>

<Class IRI="#PrismaticJoint" />

<Class IRI="#Constraint" />

</SubClassOf>

<SubClassOf>

<Class IRI="#PrismaticJoint" />

<DataHasValue>

<DataProperty IRI="#hasRotationalDegreesOfFreedom" />

<Literal datatypeIRI="&xsd;integer">0</Literal>

</DataHasValue>

</SubClassOf>

<SubClassOf>

<Class IRI="#PrismaticJoint" />

<DataHasValue>

<DataProperty IRI="#hasTranslationalDegreesOfFreedom" />

<Literal datatypeIRI="&xsd;integer">1</Literal>

</DataHasValue>

</SubClassOf>

<SubClassOf>

<Class IRI="#PrismaticJoint" />

<DataExactCardinality cardinality="1">

<DataProperty IRI="#hasDirectionX" />

<Datatype abbreviatedIRI="xsd:double" />

</DataExactCardinality>

</SubClassOf>

<SubClassOf>

<Class IRI="#PrismaticJoint" />

<DataExactCardinality cardinality="1">

<DataProperty IRI="#hasDirectionY" />

<Datatype abbreviatedIRI="xsd:double" />

</DataExactCardinality>

</SubClassOf>

<SubClassOf>

<Class IRI="#PrismaticJoint" />

<DataExactCardinality cardinality="1">

<DataProperty IRI="#hasDirectionZ" />

<Datatype abbreviatedIRI="xsd:double" />

</DataExactCardinality>

</SubClassOf>

<SubClassOf>

<Class IRI="#RevoluteJoint" />

<Class IRI="#Constraint" />

</SubClassOf>

<SubClassOf>

<Class IRI="#RevoluteJoint" />

<DataHasValue>

<DataProperty IRI="#hasRotationalDegreesOfFreedom" />

<Literal datatypeIRI="&xsd;integer">1</Literal>

</DataHasValue>

</SubClassOf>

<SubClassOf>

<Class IRI="#RevoluteJoint" />

<DataHasValue>

<DataProperty IRI="#hasTranslationalDegreesOfFreedom" />

<Literal datatypeIRI="&xsd;integer">0</Literal>

</DataHasValue>

</SubClassOf>

<SubClassOf>

<Class IRI="#RevoluteJoint" />

<DataExactCardinality cardinality="1">

<DataProperty IRI="#hasDirectionX" />
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<Datatype abbreviatedIRI="xsd:double" />

</DataExactCardinality>

</SubClassOf>

<SubClassOf>

<Class IRI="#RevoluteJoint" />

<DataExactCardinality cardinality="1">

<DataProperty IRI="#hasDirectionY" />

<Datatype abbreviatedIRI="xsd:double" />

</DataExactCardinality>

</SubClassOf>

<SubClassOf>

<Class IRI="#RevoluteJoint" />

<DataExactCardinality cardinality="1">

<DataProperty IRI="#hasDirectionZ" />

<Datatype abbreviatedIRI="xsd:double" />

</DataExactCardinality>

</SubClassOf>

<SubClassOf>

<Class IRI="#RigidBody" />

<Class IRI="#Body" />

</SubClassOf>

<SubClassOf>

<Class IRI="#RigidBody" />

<DataExactCardinality cardinality="1">

<DataProperty IRI="#hasLocationX" />

<Datatype abbreviatedIRI="xsd:double" />

</DataExactCardinality>

</SubClassOf>

<SubClassOf>

<Class IRI="#RigidBody" />

<DataExactCardinality cardinality="1">

<DataProperty IRI="#hasLocationY" />

<Datatype abbreviatedIRI="xsd:double" />

</DataExactCardinality>

</SubClassOf>

<SubClassOf>

<Class IRI="#RigidBody" />

<DataExactCardinality cardinality="1">

<DataProperty IRI="#hasLocationZ" />

<Datatype abbreviatedIRI="xsd:double" />

</DataExactCardinality>

</SubClassOf>

<SubClassOf>

<Class IRI="#RigidBody" />

<DataExactCardinality cardinality="1">

<DataProperty IRI="#hasMass" />

<DatatypeRestriction>

<Datatype abbreviatedIRI="xsd:double" />

<FacetRestriction facet="&xsd;minInclusive">

<Literal datatypeIRI="&xsd;double">0.0</Literal>

</FacetRestriction>

</DatatypeRestriction>

</DataExactCardinality>

</SubClassOf>

<SubClassOf>

<Class IRI="#RigidBody" />

<DataExactCardinality cardinality="1">

<DataProperty IRI="#hasMassInertiaIxx" />

<DatatypeRestriction>

<Datatype abbreviatedIRI="xsd:double" />

<FacetRestriction facet="&xsd;minInclusive">

<Literal datatypeIRI="&xsd;double">0.0</Literal>

</FacetRestriction>

</DatatypeRestriction>

</DataExactCardinality>

</SubClassOf>

<SubClassOf>

<Class IRI="#RigidBody" />

<DataExactCardinality cardinality="1">

<DataProperty IRI="#hasMassInertiaIxy" />

<DatatypeRestriction>

<Datatype abbreviatedIRI="xsd:double" />

<FacetRestriction facet="&xsd;minInclusive">

<Literal datatypeIRI="&xsd;double">0.0</Literal>

</FacetRestriction>

</DatatypeRestriction>

</DataExactCardinality>

</SubClassOf>

<SubClassOf>

<Class IRI="#RigidBody" />

<DataExactCardinality cardinality="1">

<DataProperty IRI="#hasMassInertiaIxz" />

<DatatypeRestriction>

<Datatype abbreviatedIRI="xsd:double" />

<FacetRestriction facet="&xsd;minInclusive">

<Literal datatypeIRI="&xsd;double">0.0</Literal>

</FacetRestriction>

</DatatypeRestriction>

</DataExactCardinality>

</SubClassOf>

<SubClassOf>

<Class IRI="#RigidBody" />

<DataExactCardinality cardinality="1">

<DataProperty IRI="#hasMassInertiaIyy" />

<DatatypeRestriction>

<Datatype abbreviatedIRI="xsd:double" />

<FacetRestriction facet="&xsd;minInclusive">

<Literal datatypeIRI="&xsd;double">0.0</Literal>

</FacetRestriction>

</DatatypeRestriction>

</DataExactCardinality>

</SubClassOf>

<SubClassOf>

<Class IRI="#RigidBody" />

<DataExactCardinality cardinality="1">

<DataProperty IRI="#hasMassInertiaIyz" />

<DatatypeRestriction>

<Datatype abbreviatedIRI="xsd:double" />

<FacetRestriction facet="&xsd;minInclusive">

<Literal datatypeIRI="&xsd;double">0.0</Literal>

</FacetRestriction>

</DatatypeRestriction>

</DataExactCardinality>

</SubClassOf>

<SubClassOf>

<Class IRI="#RigidBody" />

<DataExactCardinality cardinality="1">

<DataProperty IRI="#hasMassInertiaIzz" />

<DatatypeRestriction>

<Datatype abbreviatedIRI="xsd:double" />

<FacetRestriction facet="&xsd;minInclusive">

<Literal datatypeIRI="&xsd;double">0.0</Literal>

</FacetRestriction>

</DatatypeRestriction>

</DataExactCardinality>

</SubClassOf>

<SubClassOf>

<Class IRI="#RigidBody" />

<DataExactCardinality cardinality="1">

<DataProperty IRI="#hasOrientationR1" />

<Datatype abbreviatedIRI="xsd:double" />

</DataExactCardinality>

</SubClassOf>

<SubClassOf>

<Class IRI="#RigidBody" />

<DataExactCardinality cardinality="1">

<DataProperty IRI="#hasOrientationR2" />

<Datatype abbreviatedIRI="xsd:double" />

</DataExactCardinality>

</SubClassOf>

<SubClassOf>

<Class IRI="#RigidBody" />

<DataExactCardinality cardinality="1">

<DataProperty IRI="#hasOrientationR3" />

<Datatype abbreviatedIRI="xsd:double" />

</DataExactCardinality>

</SubClassOf>

<SubClassOf>

<Class IRI="#RigidBody" />

<DataExactCardinality cardinality="1">

<DataProperty IRI="#hasRotationSequence" />

<DataOneOf>

<Literal datatypeIRI="&xsd;string">xyx</Literal>

<Literal datatypeIRI="&xsd;string">xyz</Literal>

<Literal datatypeIRI="&xsd;string">xzx</Literal>

<Literal datatypeIRI="&xsd;string">xzy</Literal>

<Literal datatypeIRI="&xsd;string">yxy</Literal>

<Literal datatypeIRI="&xsd;string">yxz</Literal>

<Literal datatypeIRI="&xsd;string">yzx</Literal>

<Literal datatypeIRI="&xsd;string">yzy</Literal>
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<Literal datatypeIRI="&xsd;string">zxy</Literal>

<Literal datatypeIRI="&xsd;string">zxz</Literal>

<Literal datatypeIRI="&xsd;string">zyx</Literal>

<Literal datatypeIRI="&xsd;string">zyz</Literal>

</DataOneOf>

</DataExactCardinality>

</SubClassOf>

<SubClassOf>

<Class IRI="#RigidBody" />

<DataMaxCardinality cardinality="1">

<DataProperty IRI="#hasAccelerationX" />

<Datatype abbreviatedIRI="xsd:double" />

</DataMaxCardinality>

</SubClassOf>

<SubClassOf>

<Class IRI="#RigidBody" />

<DataMaxCardinality cardinality="1">

<DataProperty IRI="#hasAccelerationY" />

<Datatype abbreviatedIRI="xsd:double" />

</DataMaxCardinality>

</SubClassOf>

<SubClassOf>

<Class IRI="#RigidBody" />

<DataMaxCardinality cardinality="1">

<DataProperty IRI="#hasAccelerationZ" />

<Datatype abbreviatedIRI="xsd:double" />

</DataMaxCardinality>

</SubClassOf>

<SubClassOf>

<Class IRI="#RigidBody" />

<DataMaxCardinality cardinality="1">

<DataProperty IRI="#hasAngularAccelerationAlpha" />

<Datatype abbreviatedIRI="xsd:double" />

</DataMaxCardinality>

</SubClassOf>

<SubClassOf>

<Class IRI="#RigidBody" />

<DataMaxCardinality cardinality="1">

<DataProperty IRI="#hasAngularAccelerationBeta" />

<Datatype abbreviatedIRI="xsd:double" />

</DataMaxCardinality>

</SubClassOf>

<SubClassOf>

<Class IRI="#RigidBody" />

<DataMaxCardinality cardinality="1">

<DataProperty IRI="#hasAngularAccelerationGamma" />

<Datatype abbreviatedIRI="xsd:double" />

</DataMaxCardinality>

</SubClassOf>

<SubClassOf>

<Class IRI="#RigidBody" />

<DataMaxCardinality cardinality="1">

<DataProperty IRI="#hasAngularVelocityAlpha" />

<Datatype abbreviatedIRI="xsd:double" />

</DataMaxCardinality>

</SubClassOf>

<SubClassOf>

<Class IRI="#RigidBody" />

<DataMaxCardinality cardinality="1">

<DataProperty IRI="#hasAngularVelocityBeta" />

<Datatype abbreviatedIRI="xsd:double" />

</DataMaxCardinality>

</SubClassOf>

<SubClassOf>

<Class IRI="#RigidBody" />

<DataMaxCardinality cardinality="1">

<DataProperty IRI="#hasAngularVelocityGamma" />

<Datatype abbreviatedIRI="xsd:double" />

</DataMaxCardinality>

</SubClassOf>

<SubClassOf>

<Class IRI="#RigidBody" />

<DataMaxCardinality cardinality="1">

<DataProperty IRI="#hasVelocityX" />

<Datatype abbreviatedIRI="xsd:double" />

</DataMaxCardinality>

</SubClassOf>

<SubClassOf>

<Class IRI="#RigidBody" />

<DataMaxCardinality cardinality="1">

<DataProperty IRI="#hasVelocityY" />

<Datatype abbreviatedIRI="xsd:double" />

</DataMaxCardinality>

</SubClassOf>

<SubClassOf>

<Class IRI="#RigidBody" />

<DataMaxCardinality cardinality="1">

<DataProperty IRI="#hasVelocityZ" />

<Datatype abbreviatedIRI="xsd:double" />

</DataMaxCardinality>

</SubClassOf>

<SubClassOf>

<Class IRI="#SphericalJoint" />

<Class IRI="#Constraint" />

</SubClassOf>

<SubClassOf>

<Class IRI="#SphericalJoint" />

<DataHasValue>

<DataProperty IRI="#hasRotationalDegreesOfFreedom" />

<Literal datatypeIRI="&xsd;integer">3</Literal>

</DataHasValue>

</SubClassOf>

<SubClassOf>

<Class IRI="#SphericalJoint" />

<DataHasValue>

<DataProperty IRI="#hasTranslationalDegreesOfFreedom" />

<Literal datatypeIRI="&xsd;integer">0</Literal>

</DataHasValue>

</SubClassOf>

<SubClassOf>

<Class IRI="#SubModel" />

<Class abbreviatedIRI="owl:Thing" />

</SubClassOf>

<SubClassOf>

<Class IRI="#SubModel" />

<DataExactCardinality cardinality="1">

<DataProperty IRI="#hasLocationX" />

<Datatype abbreviatedIRI="xsd:double" />

</DataExactCardinality>

</SubClassOf>

<SubClassOf>

<Class IRI="#SubModel" />

<DataExactCardinality cardinality="1">

<DataProperty IRI="#hasLocationY" />

<Datatype abbreviatedIRI="xsd:double" />

</DataExactCardinality>

</SubClassOf>

<SubClassOf>

<Class IRI="#SubModel" />

<DataExactCardinality cardinality="1">

<DataProperty IRI="#hasLocationZ" />

<Datatype abbreviatedIRI="xsd:double" />

</DataExactCardinality>

</SubClassOf>

<SubClassOf>

<Class IRI="#SubModel" />

<DataExactCardinality cardinality="1">

<DataProperty IRI="#hasOrientationR1" />

<Datatype abbreviatedIRI="xsd:double" />

</DataExactCardinality>

</SubClassOf>

<SubClassOf>

<Class IRI="#SubModel" />

<DataExactCardinality cardinality="1">

<DataProperty IRI="#hasOrientationR2" />

<Datatype abbreviatedIRI="xsd:double" />

</DataExactCardinality>

</SubClassOf>

<SubClassOf>

<Class IRI="#SubModel" />

<DataExactCardinality cardinality="1">

<DataProperty IRI="#hasOrientationR3" />

<Datatype abbreviatedIRI="xsd:double" />

</DataExactCardinality>

</SubClassOf>

<SubClassOf>

<Class IRI="#SubModel" />

<DataExactCardinality cardinality="1">

<DataProperty IRI="#hasRotationSequence" />

<DataOneOf>
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<Literal datatypeIRI="&xsd;string">xyx</Literal>

<Literal datatypeIRI="&xsd;string">xyz</Literal>

<Literal datatypeIRI="&xsd;string">xzx</Literal>

<Literal datatypeIRI="&xsd;string">xzy</Literal>

<Literal datatypeIRI="&xsd;string">yxy</Literal>

<Literal datatypeIRI="&xsd;string">yxz</Literal>

<Literal datatypeIRI="&xsd;string">yzx</Literal>

<Literal datatypeIRI="&xsd;string">yzy</Literal>

<Literal datatypeIRI="&xsd;string">zxy</Literal>

<Literal datatypeIRI="&xsd;string">zxz</Literal>

<Literal datatypeIRI="&xsd;string">zyx</Literal>

<Literal datatypeIRI="&xsd;string">zyz</Literal>

</DataOneOf>

</DataExactCardinality>

</SubClassOf>

<SubClassOf>

<Class IRI="#UniversalJoint" />

<Class IRI="#Constraint" />

</SubClassOf>

<SubClassOf>

<Class IRI="#UniversalJoint" />

<DataHasValue>

<DataProperty IRI="#hasRotationalDegreesOfFreedom" />

<Literal datatypeIRI="&xsd;integer">2</Literal>

</DataHasValue>

</SubClassOf>

<SubClassOf>

<Class IRI="#UniversalJoint" />

<DataHasValue>

<DataProperty IRI="#hasTranslationalDegreesOfFreedom" />

<Literal datatypeIRI="&xsd;integer">0</Literal>

</DataHasValue>

</SubClassOf>

<SubClassOf>

<Class IRI="#UniversalJoint" />

<DataExactCardinality cardinality="1">

<DataProperty IRI="#hasMasterAngle" />

<Datatype abbreviatedIRI="xsd:double" />

</DataExactCardinality>

</SubClassOf>

<SubClassOf>

<Class IRI="#UniversalJoint" />

<DataExactCardinality cardinality="1">

<DataProperty IRI="#hasMasterDirectionX" />

<Datatype abbreviatedIRI="xsd:double" />

</DataExactCardinality>

</SubClassOf>

<SubClassOf>

<Class IRI="#UniversalJoint" />

<DataExactCardinality cardinality="1">

<DataProperty IRI="#hasMasterDirectionY" />

<Datatype abbreviatedIRI="xsd:double" />

</DataExactCardinality>

</SubClassOf>

<SubClassOf>

<Class IRI="#UniversalJoint" />

<DataExactCardinality cardinality="1">

<DataProperty IRI="#hasMasterDirectionZ" />

<Datatype abbreviatedIRI="xsd:double" />

</DataExactCardinality>

</SubClassOf>

<SubClassOf>

<Class IRI="#UniversalJoint" />

<DataExactCardinality cardinality="1">

<DataProperty IRI="#hasSlaveDirectionX" />

<Datatype abbreviatedIRI="xsd:double" />

</DataExactCardinality>

</SubClassOf>

<SubClassOf>

<Class IRI="#UniversalJoint" />

<DataExactCardinality cardinality="1">

<DataProperty IRI="#hasSlaveDirectionY" />

<Datatype abbreviatedIRI="xsd:double" />

</DataExactCardinality>

</SubClassOf>

<SubClassOf>

<Class IRI="#UniversalJoint" />

<DataExactCardinality cardinality="1">

<DataProperty IRI="#hasSlaveDirectionZ" />

<Datatype abbreviatedIRI="xsd:double" />

</DataExactCardinality>

</SubClassOf>

<SubClassOf>

<Class IRI="#VectorForce" />

<Class IRI="#Force" />

</SubClassOf>

<SubClassOf>

<Class IRI="#VectorForce" />

<ObjectExactCardinality cardinality="1">

<ObjectProperty IRI="#hasReferenceMember" />

<ObjectUnionOf>

<Class IRI="#AuxiliaryComponent" />

<Class IRI="#Body" />

</ObjectUnionOf>

</ObjectExactCardinality>

</SubClassOf>

<SubClassOf>

<Class IRI="#VectorTorque" />

<Class IRI="#Force" />

</SubClassOf>

<SubClassOf>

<Class IRI="#VectorTorque" />

<ObjectExactCardinality cardinality="1">

<ObjectProperty IRI="#hasReferenceMember" />

<ObjectUnionOf>

<Class IRI="#AuxiliaryComponent" />

<Class IRI="#Body" />

</ObjectUnionOf>

</ObjectExactCardinality>

</SubClassOf>

<DisjointClasses>

<Class IRI="#Analysis" />

<Class IRI="#AuxiliaryComponent" />

<Class IRI="#Body" />

<Class IRI="#Case" />

<Class IRI="#Constraint" />

<Class IRI="#DataElement" />

<Class IRI="#Force" />

<Class IRI="#FunctionExpression" />

<Class IRI="#Geometry" />

<Class IRI="#Model" />

<Class IRI="#Results" />

<Class IRI="#SubModel" />

</DisjointClasses>

<DisjointClasses>

<Class IRI="#AuxiliaryCoordinateSystem" />

<Class IRI="#AuxiliaryLocation" />

</DisjointClasses>

<DisjointClasses>

<Class IRI="#BeamGeometry" />

<Class IRI="#BlockGeometry" />

<Class IRI="#ConeGeometry" />

<Class IRI="#EllipseGeometry" />

<Class IRI="#ExternalGeometry" />

</DisjointClasses>

<DisjointClasses>

<Class IRI="#CylindricalJoint" />

<Class IRI="#FixedJoint" />

<Class IRI="#GearJoint" />

<Class IRI="#GeneralJoint" />

<Class IRI="#PrismaticJoint" />

<Class IRI="#RevoluteJoint" />

<Class IRI="#SphericalJoint" />

<Class IRI="#UniversalJoint" />

</DisjointClasses>

<DisjointClasses>

<Class IRI="#DataSpline" />

<Class IRI="#DataTable" />

<Class IRI="#DataVariable" />

</DisjointClasses>

<DisjointClasses>

<Class IRI="#FieldForce" />

<Class IRI="#GeneralForce" />

<Class IRI="#PointForce" />

<Class IRI="#PointTorque" />

<Class IRI="#VectorForce" />

<Class IRI="#VectorTorque" />

</DisjointClasses>

<SubObjectPropertyOf>

<ObjectProperty IRI="#hasAnalysis" />
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<ObjectProperty IRI="#hasCaseObject" />

</SubObjectPropertyOf>

<SubObjectPropertyOf>

<ObjectProperty IRI="#hasBody" />

<ObjectProperty IRI="#hasModelObject" />

</SubObjectPropertyOf>

<SubObjectPropertyOf>

<ObjectProperty IRI="#hasContraint" />

<ObjectProperty IRI="#hasModelObject" />

</SubObjectPropertyOf>

<SubObjectPropertyOf>

<ObjectProperty IRI="#hasDataElement" />

<ObjectProperty IRI="#hasModelObject" />

</SubObjectPropertyOf>

<SubObjectPropertyOf>

<ObjectProperty IRI="#hasForce" />

<ObjectProperty IRI="#hasModelObject" />

</SubObjectPropertyOf>

<SubObjectPropertyOf>

<ObjectProperty IRI="#hasGroundBody" />

<ObjectProperty IRI="#hasModelObject" />

</SubObjectPropertyOf>

<SubObjectPropertyOf>

<ObjectProperty IRI="#hasModel" />

<ObjectProperty IRI="#hasCaseObject" />

</SubObjectPropertyOf>

<SubObjectPropertyOf>

<ObjectProperty IRI="#hasResults" />

<ObjectProperty IRI="#hasCaseObject" />

</SubObjectPropertyOf>

<SubObjectPropertyOf>

<ObjectProperty IRI="#hasSubModel" />

<ObjectProperty IRI="#hasModelObject" />

</SubObjectPropertyOf>

<FunctionalObjectProperty>

<ObjectProperty IRI="#hasAnalysis" />

</FunctionalObjectProperty>

<FunctionalObjectProperty>

<ObjectProperty IRI="#hasFunction" />

</FunctionalObjectProperty>

<FunctionalObjectProperty>

<ObjectProperty IRI="#hasGroundBody" />

</FunctionalObjectProperty>

<FunctionalObjectProperty>

<ObjectProperty IRI="#hasMasterMember" />

</FunctionalObjectProperty>

<FunctionalObjectProperty>

<ObjectProperty IRI="#hasModel" />

</FunctionalObjectProperty>

<FunctionalObjectProperty>

<ObjectProperty IRI="#hasReferenceMember" />

</FunctionalObjectProperty>

<FunctionalObjectProperty>

<ObjectProperty IRI="#hasResults" />

</FunctionalObjectProperty>

<FunctionalObjectProperty>

<ObjectProperty IRI="#hasSlaveMember" />

</FunctionalObjectProperty>

<AsymmetricObjectProperty>

<ObjectProperty IRI="#hasAnalysis" />

</AsymmetricObjectProperty>

<AsymmetricObjectProperty>

<ObjectProperty IRI="#hasAuxiliaryComponent" />

</AsymmetricObjectProperty>

<AsymmetricObjectProperty>

<ObjectProperty IRI="#hasBody" />

</AsymmetricObjectProperty>

<AsymmetricObjectProperty>

<ObjectProperty IRI="#hasCaseObject" />

</AsymmetricObjectProperty>

<AsymmetricObjectProperty>

<ObjectProperty IRI="#hasContraint" />

</AsymmetricObjectProperty>

<AsymmetricObjectProperty>

<ObjectProperty IRI="#hasDataElement" />

</AsymmetricObjectProperty>

<AsymmetricObjectProperty>

<ObjectProperty IRI="#hasForce" />

</AsymmetricObjectProperty>

<AsymmetricObjectProperty>

<ObjectProperty IRI="#hasFunction" />

</AsymmetricObjectProperty>

<AsymmetricObjectProperty>

<ObjectProperty IRI="#hasGeometry" />

</AsymmetricObjectProperty>

<AsymmetricObjectProperty>

<ObjectProperty IRI="#hasGroundBody" />

</AsymmetricObjectProperty>

<AsymmetricObjectProperty>

<ObjectProperty IRI="#hasMasterMember" />

</AsymmetricObjectProperty>

<AsymmetricObjectProperty>

<ObjectProperty IRI="#hasModel" />

</AsymmetricObjectProperty>

<AsymmetricObjectProperty>

<ObjectProperty IRI="#hasModelObject" />

</AsymmetricObjectProperty>

<AsymmetricObjectProperty>

<ObjectProperty IRI="#hasReferenceMember" />

</AsymmetricObjectProperty>

<AsymmetricObjectProperty>

<ObjectProperty IRI="#hasResults" />

</AsymmetricObjectProperty>

<AsymmetricObjectProperty>

<ObjectProperty IRI="#hasSlaveMember" />

</AsymmetricObjectProperty>

<AsymmetricObjectProperty>

<ObjectProperty IRI="#hasSubModel" />

</AsymmetricObjectProperty>

<ObjectPropertyDomain>

<ObjectProperty IRI="#hasAnalysis" />

<Class IRI="#Case" />

</ObjectPropertyDomain>

<ObjectPropertyDomain>

<ObjectProperty IRI="#hasAuxiliaryComponent" />

<Class IRI="#RigidBody" />

</ObjectPropertyDomain>

<ObjectPropertyDomain>

<ObjectProperty IRI="#hasBody" />

<ObjectUnionOf>

<Class IRI="#Model" />

<Class IRI="#SubModel" />

</ObjectUnionOf>

</ObjectPropertyDomain>

<ObjectPropertyDomain>

<ObjectProperty IRI="#hasContraint" />

<ObjectUnionOf>

<Class IRI="#Model" />

<Class IRI="#SubModel" />

</ObjectUnionOf>

</ObjectPropertyDomain>

<ObjectPropertyDomain>

<ObjectProperty IRI="#hasDataElement" />

<ObjectUnionOf>

<Class IRI="#Model" />

<Class IRI="#SubModel" />

</ObjectUnionOf>

</ObjectPropertyDomain>

<ObjectPropertyDomain>

<ObjectProperty IRI="#hasForce" />

<ObjectUnionOf>

<Class IRI="#Model" />

<Class IRI="#SubModel" />

</ObjectUnionOf>

</ObjectPropertyDomain>

<ObjectPropertyDomain>

<ObjectProperty IRI="#hasFunction" />

<Class IRI="#Force" />

</ObjectPropertyDomain>

<ObjectPropertyDomain>

<ObjectProperty IRI="#hasGeometry" />

<Class IRI="#RigidBody" />

</ObjectPropertyDomain>

<ObjectPropertyDomain>

<ObjectProperty IRI="#hasGroundBody" />

<Class IRI="#Model" />

</ObjectPropertyDomain>

<ObjectPropertyDomain>

<ObjectProperty IRI="#hasMasterMember" />

<ObjectUnionOf>
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<Class IRI="#Constraint" />

<Class IRI="#Force" />

</ObjectUnionOf>

</ObjectPropertyDomain>

<ObjectPropertyDomain>

<ObjectProperty IRI="#hasModel" />

<Class IRI="#Case" />

</ObjectPropertyDomain>

<ObjectPropertyDomain>

<ObjectProperty IRI="#hasReferenceMember" />

<Class IRI="#Force" />

</ObjectPropertyDomain>

<ObjectPropertyDomain>

<ObjectProperty IRI="#hasResults" />

<Class IRI="#Case" />

</ObjectPropertyDomain>

<ObjectPropertyDomain>

<ObjectProperty IRI="#hasSlaveMember" />

<ObjectUnionOf>

<Class IRI="#Constraint" />

<Class IRI="#Force" />

</ObjectUnionOf>

</ObjectPropertyDomain>

<ObjectPropertyDomain>

<ObjectProperty IRI="#hasSubModel" />

<Class IRI="#Model" />

</ObjectPropertyDomain>

<ObjectPropertyRange>

<ObjectProperty IRI="#hasAnalysis" />

<Class IRI="#Analysis" />

</ObjectPropertyRange>

<ObjectPropertyRange>

<ObjectProperty IRI="#hasAuxiliaryComponent" />

<Class IRI="#AuxiliaryComponent" />

</ObjectPropertyRange>

<ObjectPropertyRange>

<ObjectProperty IRI="#hasContraint" />

<Class IRI="#Constraint" />

</ObjectPropertyRange>

<ObjectPropertyRange>

<ObjectProperty IRI="#hasDataElement" />

<Class IRI="#DataElement" />

</ObjectPropertyRange>

<ObjectPropertyRange>

<ObjectProperty IRI="#hasForce" />

<Class IRI="#Force" />

</ObjectPropertyRange>

<ObjectPropertyRange>

<ObjectProperty IRI="#hasFunction" />

<Class IRI="#FunctionExpression" />

</ObjectPropertyRange>

<ObjectPropertyRange>

<ObjectProperty IRI="#hasGeometry" />

<Class IRI="#Geometry" />

</ObjectPropertyRange>

<ObjectPropertyRange>

<ObjectProperty IRI="#hasGroundBody" />

<Class IRI="#GroundBody" />

</ObjectPropertyRange>

<ObjectPropertyRange>

<ObjectProperty IRI="#hasMasterMember" />

<ObjectUnionOf>

<Class IRI="#AuxiliaryComponent" />

<Class IRI="#Body" />

</ObjectUnionOf>

</ObjectPropertyRange>

<ObjectPropertyRange>

<ObjectProperty IRI="#hasModel" />

<Class IRI="#Model" />

</ObjectPropertyRange>

<ObjectPropertyRange>

<ObjectProperty IRI="#hasReferenceMember" />

<ObjectUnionOf>

<Class IRI="#AuxiliaryComponent" />

<Class IRI="#Body" />

</ObjectUnionOf>

</ObjectPropertyRange>

<ObjectPropertyRange>

<ObjectProperty IRI="#hasResults" />

<Class IRI="#Results" />

</ObjectPropertyRange>

<ObjectPropertyRange>

<ObjectProperty IRI="#hasSlaveMember" />

<ObjectUnionOf>

<Class IRI="#AuxiliaryComponent" />

<Class IRI="#Body" />

</ObjectUnionOf>

</ObjectPropertyRange>

<ObjectPropertyRange>

<ObjectProperty IRI="#hasSubModel" />

<Class IRI="#SubModel" />

</ObjectPropertyRange>

<SubDataPropertyOf>

<DataProperty IRI="#hasAcceleration" />

<DataProperty abbreviatedIRI="owl:topDataProperty" />

</SubDataPropertyOf>

<SubDataPropertyOf>

<DataProperty IRI="#hasAccelerationX" />

<DataProperty IRI="#hasAcceleration" />

</SubDataPropertyOf>

<SubDataPropertyOf>

<DataProperty IRI="#hasAccelerationY" />

<DataProperty IRI="#hasAcceleration" />

</SubDataPropertyOf>

<SubDataPropertyOf>

<DataProperty IRI="#hasAccelerationZ" />

<DataProperty IRI="#hasAcceleration" />

</SubDataPropertyOf>

<SubDataPropertyOf>

<DataProperty IRI="#hasAnalysisType" />

<DataProperty IRI="#hasAnalysisParameter" />

</SubDataPropertyOf>

<SubDataPropertyOf>

<DataProperty IRI="#hasAngularAcceleration" />

<DataProperty abbreviatedIRI="owl:topDataProperty" />

</SubDataPropertyOf>

<SubDataPropertyOf>

<DataProperty IRI="#hasAngularAccelerationAlpha" />

<DataProperty IRI="#hasAngularAcceleration" />

</SubDataPropertyOf>

<SubDataPropertyOf>

<DataProperty IRI="#hasAngularAccelerationBeta" />

<DataProperty IRI="#hasAngularAcceleration" />

</SubDataPropertyOf>

<SubDataPropertyOf>

<DataProperty IRI="#hasAngularAccelerationGamma" />

<DataProperty IRI="#hasAngularAcceleration" />

</SubDataPropertyOf>

<SubDataPropertyOf>

<DataProperty IRI="#hasAngularVelocity" />

<DataProperty abbreviatedIRI="owl:topDataProperty" />

</SubDataPropertyOf>

<SubDataPropertyOf>

<DataProperty IRI="#hasAngularVelocityAlpha" />

<DataProperty IRI="#hasAngularVelocity" />

</SubDataPropertyOf>

<SubDataPropertyOf>

<DataProperty IRI="#hasAngularVelocityBeta" />

<DataProperty IRI="#hasAngularVelocity" />

</SubDataPropertyOf>

<SubDataPropertyOf>

<DataProperty IRI="#hasAngularVelocityGamma" />

<DataProperty IRI="#hasAngularVelocity" />

</SubDataPropertyOf>

<SubDataPropertyOf>

<DataProperty IRI="#hasBottomRadius" />

<DataProperty IRI="#hasGeometryParameter" />

</SubDataPropertyOf>

<SubDataPropertyOf>

<DataProperty IRI="#hasDataTable" />

<DataProperty IRI="#hasDataElementValue" />

</SubDataPropertyOf>

<SubDataPropertyOf>

<DataProperty IRI="#hasDataValue" />

<DataProperty IRI="#hasDataElementValue" />

</SubDataPropertyOf>

<SubDataPropertyOf>

<DataProperty IRI="#hasDepth" />

<DataProperty IRI="#hasGeometryParameter" />

</SubDataPropertyOf>
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<SubDataPropertyOf>

<DataProperty IRI="#hasDescription" />

<DataProperty IRI="#hasGeometryParameter" />

</SubDataPropertyOf>

<SubDataPropertyOf>

<DataProperty IRI="#hasDirectionX" />

<DataProperty IRI="#hasDirection" />

</SubDataPropertyOf>

<SubDataPropertyOf>

<DataProperty IRI="#hasDirectionY" />

<DataProperty IRI="#hasDirection" />

</SubDataPropertyOf>

<SubDataPropertyOf>

<DataProperty IRI="#hasDirectionZ" />

<DataProperty IRI="#hasDirection" />

</SubDataPropertyOf>

<SubDataPropertyOf>

<DataProperty IRI="#hasGravityX" />

<DataProperty IRI="#hasGravity" />

</SubDataPropertyOf>

<SubDataPropertyOf>

<DataProperty IRI="#hasGravityY" />

<DataProperty IRI="#hasGravity" />

</SubDataPropertyOf>

<SubDataPropertyOf>

<DataProperty IRI="#hasGravityZ" />

<DataProperty IRI="#hasGravity" />

</SubDataPropertyOf>

<SubDataPropertyOf>

<DataProperty IRI="#hasHeight" />

<DataProperty IRI="#hasGeometryParameter" />

</SubDataPropertyOf>

<SubDataPropertyOf>

<DataProperty IRI="#hasLength" />

<DataProperty IRI="#hasGeometryParameter" />

</SubDataPropertyOf>

<SubDataPropertyOf>

<DataProperty IRI="#hasLocationX" />

<DataProperty IRI="#hasLocation" />

</SubDataPropertyOf>

<SubDataPropertyOf>

<DataProperty IRI="#hasLocationY" />

<DataProperty IRI="#hasLocation" />

</SubDataPropertyOf>

<SubDataPropertyOf>

<DataProperty IRI="#hasLocationZ" />

<DataProperty IRI="#hasLocation" />

</SubDataPropertyOf>

<SubDataPropertyOf>

<DataProperty IRI="#hasLockedRotationX" />

<DataProperty IRI="#hasLockedRotation" />

</SubDataPropertyOf>

<SubDataPropertyOf>

<DataProperty IRI="#hasLockedRotationY" />

<DataProperty IRI="#hasLockedRotation" />

</SubDataPropertyOf>

<SubDataPropertyOf>

<DataProperty IRI="#hasLockedRotationZ" />

<DataProperty IRI="#hasLockedRotation" />

</SubDataPropertyOf>

<SubDataPropertyOf>

<DataProperty IRI="#hasLockedTranslationX" />

<DataProperty IRI="#hasLockedTranslation" />

</SubDataPropertyOf>

<SubDataPropertyOf>

<DataProperty IRI="#hasLockedTranslationY" />

<DataProperty IRI="#hasLockedTranslation" />

</SubDataPropertyOf>

<SubDataPropertyOf>

<DataProperty IRI="#hasLockedTranslationZ" />

<DataProperty IRI="#hasLockedTranslation" />

</SubDataPropertyOf>

<SubDataPropertyOf>

<DataProperty IRI="#hasMajorRadius" />

<DataProperty IRI="#hasGeometryParameter" />

</SubDataPropertyOf>

<SubDataPropertyOf>

<DataProperty IRI="#hasMassInertiaIxx" />

<DataProperty IRI="#hasMassInertia" />

</SubDataPropertyOf>

<SubDataPropertyOf>

<DataProperty IRI="#hasMassInertiaIxy" />

<DataProperty IRI="#hasMassInertia" />

</SubDataPropertyOf>

<SubDataPropertyOf>

<DataProperty IRI="#hasMassInertiaIxz" />

<DataProperty IRI="#hasMassInertia" />

</SubDataPropertyOf>

<SubDataPropertyOf>

<DataProperty IRI="#hasMassInertiaIyy" />

<DataProperty IRI="#hasMassInertia" />

</SubDataPropertyOf>

<SubDataPropertyOf>

<DataProperty IRI="#hasMassInertiaIyz" />

<DataProperty IRI="#hasMassInertia" />

</SubDataPropertyOf>

<SubDataPropertyOf>

<DataProperty IRI="#hasMassInertiaIzz" />

<DataProperty IRI="#hasMassInertia" />

</SubDataPropertyOf>

<SubDataPropertyOf>

<DataProperty IRI="#hasMasterDirectionX" />

<DataProperty IRI="#hasDirection" />

</SubDataPropertyOf>

<SubDataPropertyOf>

<DataProperty IRI="#hasMasterDirectionY" />

<DataProperty IRI="#hasDirection" />

</SubDataPropertyOf>

<SubDataPropertyOf>

<DataProperty IRI="#hasMasterDirectionZ" />

<DataProperty IRI="#hasDirection" />

</SubDataPropertyOf>

<SubDataPropertyOf>

<DataProperty IRI="#hasMinorRadius" />

<DataProperty IRI="#hasGeometryParameter" />

</SubDataPropertyOf>

<SubDataPropertyOf>

<DataProperty IRI="#hasOrientationQ0" />

<DataProperty IRI="#hasOrientation" />

</SubDataPropertyOf>

<SubDataPropertyOf>

<DataProperty IRI="#hasOrientationQ1" />

<DataProperty IRI="#hasOrientation" />

</SubDataPropertyOf>

<SubDataPropertyOf>

<DataProperty IRI="#hasOrientationQ2" />

<DataProperty IRI="#hasOrientation" />

</SubDataPropertyOf>

<SubDataPropertyOf>

<DataProperty IRI="#hasOrientationQ3" />

<DataProperty IRI="#hasOrientation" />

</SubDataPropertyOf>

<SubDataPropertyOf>

<DataProperty IRI="#hasOrientationR1" />

<DataProperty IRI="#hasOrientation" />

</SubDataPropertyOf>

<SubDataPropertyOf>

<DataProperty IRI="#hasOrientationR2" />

<DataProperty IRI="#hasOrientation" />

</SubDataPropertyOf>

<SubDataPropertyOf>

<DataProperty IRI="#hasOrientationR3" />

<DataProperty IRI="#hasOrientation" />

</SubDataPropertyOf>

<SubDataPropertyOf>

<DataProperty IRI="#hasRotationSequence" />

<DataProperty IRI="#hasOrientation" />

</SubDataPropertyOf>

<SubDataPropertyOf>

<DataProperty IRI="#hasRotationalDegreesOfFreedom" />

<DataProperty IRI="#hasDegreesOfFreedom" />

</SubDataPropertyOf>

<SubDataPropertyOf>

<DataProperty IRI="#hasSlaveDirectionX" />

<DataProperty IRI="#hasDirection" />

</SubDataPropertyOf>

<SubDataPropertyOf>

<DataProperty IRI="#hasSlaveDirectionY" />

<DataProperty IRI="#hasDirection" />

</SubDataPropertyOf>
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<SubDataPropertyOf>

<DataProperty IRI="#hasSlaveDirectionZ" />

<DataProperty IRI="#hasDirection" />

</SubDataPropertyOf>

<SubDataPropertyOf>

<DataProperty IRI="#hasStartTime" />

<DataProperty IRI="#hasAnalysisParameter" />

</SubDataPropertyOf>

<SubDataPropertyOf>

<DataProperty IRI="#hasStopTime" />

<DataProperty IRI="#hasAnalysisParameter" />

</SubDataPropertyOf>

<SubDataPropertyOf>

<DataProperty IRI="#hasTimeStep" />

<DataProperty IRI="#hasAnalysisParameter" />

</SubDataPropertyOf>

<SubDataPropertyOf>

<DataProperty IRI="#hasTopRadius" />

<DataProperty IRI="#hasGeometryParameter" />

</SubDataPropertyOf>

<SubDataPropertyOf>

<DataProperty IRI="#hasTranslationalDegreesOfFreedom" />

<DataProperty IRI="#hasDegreesOfFreedom" />

</SubDataPropertyOf>

<SubDataPropertyOf>

<DataProperty IRI="#hasVelocity" />

<DataProperty abbreviatedIRI="owl:topDataProperty" />

</SubDataPropertyOf>

<SubDataPropertyOf>

<DataProperty IRI="#hasVelocityX" />

<DataProperty IRI="#hasVelocity" />

</SubDataPropertyOf>

<SubDataPropertyOf>

<DataProperty IRI="#hasVelocityY" />

<DataProperty IRI="#hasVelocity" />

</SubDataPropertyOf>

<SubDataPropertyOf>

<DataProperty IRI="#hasVelocityZ" />

<DataProperty IRI="#hasVelocity" />

</SubDataPropertyOf>

<FunctionalDataProperty>

<DataProperty IRI="#hasAnalysisType" />

</FunctionalDataProperty>

<FunctionalDataProperty>

<DataProperty IRI="#hasBottomRadius" />

</FunctionalDataProperty>

<FunctionalDataProperty>

<DataProperty IRI="#hasDataTable" />

</FunctionalDataProperty>

<FunctionalDataProperty>

<DataProperty IRI="#hasDataValue" />

</FunctionalDataProperty>

<FunctionalDataProperty>

<DataProperty IRI="#hasDepth" />

</FunctionalDataProperty>

<FunctionalDataProperty>

<DataProperty IRI="#hasDescription" />

</FunctionalDataProperty>

<FunctionalDataProperty>

<DataProperty IRI="#hasDirectionX" />

</FunctionalDataProperty>

<FunctionalDataProperty>

<DataProperty IRI="#hasDirectionY" />

</FunctionalDataProperty>

<FunctionalDataProperty>

<DataProperty IRI="#hasDirectionZ" />

</FunctionalDataProperty>

<FunctionalDataProperty>

<DataProperty IRI="#hasGearRatio" />

</FunctionalDataProperty>

<FunctionalDataProperty>

<DataProperty IRI="#hasGravityX" />

</FunctionalDataProperty>

<FunctionalDataProperty>

<DataProperty IRI="#hasGravityY" />

</FunctionalDataProperty>

<FunctionalDataProperty>

<DataProperty IRI="#hasGravityZ" />

</FunctionalDataProperty>

<FunctionalDataProperty>

<DataProperty IRI="#hasHeight" />

</FunctionalDataProperty>

<FunctionalDataProperty>

<DataProperty IRI="#hasLength" />

</FunctionalDataProperty>

<FunctionalDataProperty>

<DataProperty IRI="#hasLocationX" />

</FunctionalDataProperty>

<FunctionalDataProperty>

<DataProperty IRI="#hasLocationY" />

</FunctionalDataProperty>

<FunctionalDataProperty>

<DataProperty IRI="#hasLocationZ" />

</FunctionalDataProperty>

<FunctionalDataProperty>

<DataProperty IRI="#hasLockedRotationX" />

</FunctionalDataProperty>

<FunctionalDataProperty>

<DataProperty IRI="#hasLockedRotationY" />

</FunctionalDataProperty>

<FunctionalDataProperty>

<DataProperty IRI="#hasLockedRotationZ" />

</FunctionalDataProperty>

<FunctionalDataProperty>

<DataProperty IRI="#hasLockedTranslationX" />

</FunctionalDataProperty>

<FunctionalDataProperty>

<DataProperty IRI="#hasLockedTranslationY" />

</FunctionalDataProperty>

<FunctionalDataProperty>

<DataProperty IRI="#hasLockedTranslationZ" />

</FunctionalDataProperty>

<FunctionalDataProperty>

<DataProperty IRI="#hasMajorRadius" />

</FunctionalDataProperty>

<FunctionalDataProperty>

<DataProperty IRI="#hasMass" />

</FunctionalDataProperty>

<FunctionalDataProperty>

<DataProperty IRI="#hasMassInertiaIxx" />

</FunctionalDataProperty>

<FunctionalDataProperty>

<DataProperty IRI="#hasMassInertiaIxy" />

</FunctionalDataProperty>

<FunctionalDataProperty>

<DataProperty IRI="#hasMassInertiaIxz" />

</FunctionalDataProperty>

<FunctionalDataProperty>

<DataProperty IRI="#hasMassInertiaIyy" />

</FunctionalDataProperty>

<FunctionalDataProperty>

<DataProperty IRI="#hasMassInertiaIyz" />

</FunctionalDataProperty>

<FunctionalDataProperty>

<DataProperty IRI="#hasMassInertiaIzz" />

</FunctionalDataProperty>

<FunctionalDataProperty>

<DataProperty IRI="#hasMasterAngle" />

</FunctionalDataProperty>

<FunctionalDataProperty>

<DataProperty IRI="#hasMasterDirectionX" />

</FunctionalDataProperty>

<FunctionalDataProperty>

<DataProperty IRI="#hasMasterDirectionY" />

</FunctionalDataProperty>

<FunctionalDataProperty>

<DataProperty IRI="#hasMasterDirectionZ" />

</FunctionalDataProperty>

<FunctionalDataProperty>

<DataProperty IRI="#hasMinorRadius" />

</FunctionalDataProperty>

<FunctionalDataProperty>

<DataProperty IRI="#hasOrientationQ1" />

</FunctionalDataProperty>

<FunctionalDataProperty>

<DataProperty IRI="#hasOrientationQ2" />

</FunctionalDataProperty>

<FunctionalDataProperty>

<DataProperty IRI="#hasOrientationQ3" />

</FunctionalDataProperty>
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<FunctionalDataProperty>

<DataProperty IRI="#hasRotationalDegreesOfFreedom" />

</FunctionalDataProperty>

<FunctionalDataProperty>

<DataProperty IRI="#hasSlaveDirectionX" />

</FunctionalDataProperty>

<FunctionalDataProperty>

<DataProperty IRI="#hasSlaveDirectionY" />

</FunctionalDataProperty>

<FunctionalDataProperty>

<DataProperty IRI="#hasSlaveDirectionZ" />

</FunctionalDataProperty>

<FunctionalDataProperty>

<DataProperty IRI="#hasStartTime" />

</FunctionalDataProperty>

<FunctionalDataProperty>

<DataProperty IRI="#hasStopTime" />

</FunctionalDataProperty>

<FunctionalDataProperty>

<DataProperty IRI="#hasTimeStep" />

</FunctionalDataProperty>

<FunctionalDataProperty>

<DataProperty IRI="#hasTopRadius" />

</FunctionalDataProperty>

<FunctionalDataProperty>

<DataProperty IRI="#hasTranslationalDegreesOfFreedom" />

</FunctionalDataProperty>

<DataPropertyDomain>

<DataProperty IRI="#hasAnalysisParameter" />

<Class IRI="#Analysis" />

</DataPropertyDomain>

<DataPropertyDomain>

<DataProperty IRI="#hasDegreesOfFreedom" />

<Class IRI="#Constraint" />

</DataPropertyDomain>

<DataPropertyDomain>

<DataProperty IRI="#hasGearRatio" />

<Class IRI="#GearJoint" />

</DataPropertyDomain>

<DataPropertyDomain>

<DataProperty IRI="#hasGeometryParameter" />

<Class IRI="#Geometry" />

</DataPropertyDomain>

<DataPropertyDomain>

<DataProperty IRI="#hasGravity" />

<Class IRI="#GroundBody" />

</DataPropertyDomain>

<DataPropertyDomain>

<DataProperty IRI="#hasLockedRotation" />

<Class IRI="#GeneralJoint" />

</DataPropertyDomain>

<DataPropertyDomain>

<DataProperty IRI="#hasLockedTranslation" />

<Class IRI="#GeneralJoint" />

</DataPropertyDomain>

<DataPropertyDomain>

<DataProperty IRI="#hasMass" />

<Class IRI="#Body" />

</DataPropertyDomain>

<DataPropertyDomain>

<DataProperty IRI="#hasMassInertia" />

<Class IRI="#RigidBody" />

</DataPropertyDomain>

<DataPropertyDomain>

<DataProperty IRI="#hasMasterAngle" />

<Class IRI="#UniversalJoint" />

</DataPropertyDomain>

<DLSafeRule>

<Body>

<ObjectPropertyAtom>

<ObjectProperty IRI="#hasMasterMember" />

<Variable IRI="urn:swrl#a" />

<Variable IRI="urn:swrl#b" />

</ObjectPropertyAtom>

<ObjectPropertyAtom>

<ObjectProperty IRI="#hasSlaveMember" />

<Variable IRI="urn:swrl#a" />

<Variable IRI="urn:swrl#c" />

</ObjectPropertyAtom>

</Body>

<Head>

<DifferentIndividualsAtom>

<Variable IRI="urn:swrl#b" />

<Variable IRI="urn:swrl#c" />

</DifferentIndividualsAtom>

</Head>

</DLSafeRule>

<AnnotationAssertion>

<AnnotationProperty abbreviatedIRI="rdfs:label" />

<IRI>#Analysis</IRI>

<Literal>Analysis</Literal>

</AnnotationAssertion>

<AnnotationAssertion>

<AnnotationProperty abbreviatedIRI="rdfs:label" />

<IRI>#AuxiliaryComponent</IRI>

<Literal>AuxiliaryComponent</Literal>

</AnnotationAssertion>

<AnnotationAssertion>

<AnnotationProperty abbreviatedIRI="rdfs:label" />

<IRI>#AuxiliaryCoordinateSystem</IRI>

<Literal>AuxiliaryCoordinateSystem</Literal>

</AnnotationAssertion>

<AnnotationAssertion>

<AnnotationProperty abbreviatedIRI="rdfs:label" />

<IRI>#AuxiliaryLocation</IRI>

<Literal>AuxiliaryLocation</Literal>

</AnnotationAssertion>

<AnnotationAssertion>

<AnnotationProperty abbreviatedIRI="rdfs:label" />

<IRI>#BeamGeometry</IRI>

<Literal>BeamGeometry</Literal>

</AnnotationAssertion>

<AnnotationAssertion>

<AnnotationProperty abbreviatedIRI="rdfs:label" />

<IRI>#BlockGeometry</IRI>

<Literal>BlockGeometry</Literal>

</AnnotationAssertion>

<AnnotationAssertion>

<AnnotationProperty abbreviatedIRI="rdfs:label" />

<IRI>#Body</IRI>

<Literal>Body</Literal>

</AnnotationAssertion>

<AnnotationAssertion>

<AnnotationProperty abbreviatedIRI="rdfs:label" />

<IRI>#Case</IRI>

<Literal>Case</Literal>

</AnnotationAssertion>

<AnnotationAssertion>

<AnnotationProperty abbreviatedIRI="rdfs:label" />

<IRI>#ConeGeometry</IRI>

<Literal>ConeGeometry</Literal>

</AnnotationAssertion>

<AnnotationAssertion>

<AnnotationProperty abbreviatedIRI="rdfs:label" />

<IRI>#Constraint</IRI>

<Literal>Constraint</Literal>

</AnnotationAssertion>

<AnnotationAssertion>

<AnnotationProperty abbreviatedIRI="rdfs:label" />

<IRI>#CylindricalJoint</IRI>

<Literal>CylindricalJoint</Literal>

</AnnotationAssertion>

<AnnotationAssertion>

<AnnotationProperty abbreviatedIRI="rdfs:label" />

<IRI>#DataElement</IRI>

<Literal>DataElement</Literal>

</AnnotationAssertion>

<AnnotationAssertion>

<AnnotationProperty abbreviatedIRI="rdfs:label" />

<IRI>#DataSpline</IRI>

<Literal>DataSpline</Literal>

</AnnotationAssertion>

<AnnotationAssertion>

<AnnotationProperty abbreviatedIRI="rdfs:label" />

<IRI>#DataTable</IRI>

<Literal>DataTable</Literal>

</AnnotationAssertion>

<AnnotationAssertion>

<AnnotationProperty abbreviatedIRI="rdfs:label" />

<IRI>#DataVariable</IRI>
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<Literal>DataVariable</Literal>

</AnnotationAssertion>

<AnnotationAssertion>

<AnnotationProperty abbreviatedIRI="rdfs:label" />

<IRI>#EllipseGeometry</IRI>

<Literal>EllipseGeometry</Literal>

</AnnotationAssertion>

<AnnotationAssertion>

<AnnotationProperty abbreviatedIRI="rdfs:label" />

<IRI>#ExternalGeometry</IRI>

<Literal>ExternalGeometry</Literal>

</AnnotationAssertion>

<AnnotationAssertion>

<AnnotationProperty abbreviatedIRI="rdfs:label" />

<IRI>#FieldForce</IRI>

<Literal>FieldForce</Literal>

</AnnotationAssertion>

<AnnotationAssertion>

<AnnotationProperty abbreviatedIRI="rdfs:label" />

<IRI>#FixedJoint</IRI>

<Literal>FixedJoint</Literal>

</AnnotationAssertion>

<AnnotationAssertion>

<AnnotationProperty abbreviatedIRI="rdfs:label" />

<IRI>#Force</IRI>

<Literal>Force</Literal>

</AnnotationAssertion>

<AnnotationAssertion>

<AnnotationProperty abbreviatedIRI="rdfs:label" />

<IRI>#FunctionExpression</IRI>

<Literal>FunctionExpression</Literal>

</AnnotationAssertion>

<AnnotationAssertion>

<AnnotationProperty abbreviatedIRI="rdfs:label" />

<IRI>#GearJoint</IRI>

<Literal>GearJoint</Literal>

</AnnotationAssertion>

<AnnotationAssertion>

<AnnotationProperty abbreviatedIRI="rdfs:label" />

<IRI>#GeneralForce</IRI>

<Literal>GeneralForce</Literal>

</AnnotationAssertion>

<AnnotationAssertion>

<AnnotationProperty abbreviatedIRI="rdfs:label" />

<IRI>#GeneralJoint</IRI>

<Literal>GeneralJoint</Literal>

</AnnotationAssertion>

<AnnotationAssertion>

<AnnotationProperty abbreviatedIRI="rdfs:label" />

<IRI>#Geometry</IRI>

<Literal>Geometry</Literal>

</AnnotationAssertion>

<AnnotationAssertion>

<AnnotationProperty abbreviatedIRI="rdfs:label" />

<IRI>#GroundBody</IRI>

<Literal>Ground</Literal>

</AnnotationAssertion>

<AnnotationAssertion>

<AnnotationProperty abbreviatedIRI="rdfs:label" />

<IRI>#Model</IRI>

<Literal>Model</Literal>

</AnnotationAssertion>

<AnnotationAssertion>

<AnnotationProperty abbreviatedIRI="rdfs:label" />

<IRI>#PointForce</IRI>

<Literal>PointForce</Literal>

</AnnotationAssertion>

<AnnotationAssertion>

<AnnotationProperty abbreviatedIRI="rdfs:label" />

<IRI>#PointTorque</IRI>

<Literal>PointTorque</Literal>

</AnnotationAssertion>

<AnnotationAssertion>

<AnnotationProperty abbreviatedIRI="rdfs:label" />

<IRI>#PrismaticJoint</IRI>

<Literal>PrismaticJoint</Literal>

</AnnotationAssertion>

<AnnotationAssertion>

<AnnotationProperty abbreviatedIRI="rdfs:label" />

<IRI>#Results</IRI>

<Literal>Results</Literal>

</AnnotationAssertion>

<AnnotationAssertion>

<AnnotationProperty abbreviatedIRI="rdfs:label" />

<IRI>#RevoluteJoint</IRI>

<Literal>RevoluteJoint</Literal>

</AnnotationAssertion>

<AnnotationAssertion>

<AnnotationProperty abbreviatedIRI="rdfs:label" />

<IRI>#RigidBody</IRI>

<Literal>RigidBody</Literal>

</AnnotationAssertion>

<AnnotationAssertion>

<AnnotationProperty abbreviatedIRI="rdfs:label" />

<IRI>#SphericalJoint</IRI>

<Literal>SphericalJoint</Literal>

</AnnotationAssertion>

<AnnotationAssertion>

<AnnotationProperty abbreviatedIRI="rdfs:label" />

<IRI>#SubModel</IRI>

<Literal>SubModel</Literal>

</AnnotationAssertion>

<AnnotationAssertion>

<AnnotationProperty abbreviatedIRI="rdfs:label" />

<IRI>#UniversalJoint</IRI>

<Literal>UniversalJoint</Literal>

</AnnotationAssertion>

<AnnotationAssertion>

<AnnotationProperty abbreviatedIRI="rdfs:label" />

<IRI>#VectorForce</IRI>

<Literal>VectorForce</Literal>

</AnnotationAssertion>

<AnnotationAssertion>

<AnnotationProperty abbreviatedIRI="rdfs:label" />

<IRI>#VectorTorque</IRI>

<Literal>VectorTorque</Literal>

</AnnotationAssertion>

<AnnotationAssertion>

<AnnotationProperty abbreviatedIRI="rdfs:label" />

<IRI>#hasAcceleration</IRI>

<Literal>hasAcceleration</Literal>

</AnnotationAssertion>

<AnnotationAssertion>

<AnnotationProperty abbreviatedIRI="rdfs:label" />

<IRI>#hasAccelerationX</IRI>

<Literal>hasAccelerationX</Literal>

</AnnotationAssertion>

<AnnotationAssertion>

<AnnotationProperty abbreviatedIRI="rdfs:label" />

<IRI>#hasAccelerationY</IRI>

<Literal>hasAccelerationY</Literal>

</AnnotationAssertion>

<AnnotationAssertion>

<AnnotationProperty abbreviatedIRI="rdfs:label" />

<IRI>#hasAccelerationZ</IRI>

<Literal>hasAccelerationZ</Literal>

</AnnotationAssertion>

<AnnotationAssertion>

<AnnotationProperty abbreviatedIRI="rdfs:label" />

<IRI>#hasAnalysis</IRI>

<Literal>hasAnalysis</Literal>

</AnnotationAssertion>

<AnnotationAssertion>

<AnnotationProperty abbreviatedIRI="rdfs:label" />

<IRI>#hasAnalysisParameter</IRI>

<Literal>hasAnalysisParameter</Literal>

</AnnotationAssertion>

<AnnotationAssertion>

<AnnotationProperty abbreviatedIRI="rdfs:label" />

<IRI>#hasAnalysisType</IRI>

<Literal>hasAnalysisType</Literal>

</AnnotationAssertion>

<AnnotationAssertion>

<AnnotationProperty abbreviatedIRI="rdfs:label" />

<IRI>#hasAngularAcceleration</IRI>

<Literal>hasAngularAcceleration</Literal>

</AnnotationAssertion>

<AnnotationAssertion>

<AnnotationProperty abbreviatedIRI="rdfs:label" />

<IRI>#hasAngularAccelerationAlpha</IRI>
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<Literal>hasAngularAccelerationAlpha</Literal>

</AnnotationAssertion>

<AnnotationAssertion>

<AnnotationProperty abbreviatedIRI="rdfs:label" />

<IRI>#hasAngularAccelerationBeta</IRI>

<Literal>hasAngularAccelerationBeta</Literal>

</AnnotationAssertion>

<AnnotationAssertion>

<AnnotationProperty abbreviatedIRI="rdfs:label" />

<IRI>#hasAngularAccelerationGamma</IRI>

<Literal>hasAngularAccelerationGamma</Literal>

</AnnotationAssertion>

<AnnotationAssertion>

<AnnotationProperty abbreviatedIRI="rdfs:label" />

<IRI>#hasAngularVelocity</IRI>

<Literal>hasAngularVelocity</Literal>

</AnnotationAssertion>

<AnnotationAssertion>

<AnnotationProperty abbreviatedIRI="rdfs:label" />

<IRI>#hasAngularVelocityAlpha</IRI>

<Literal>hasAngularVelocityAlpha</Literal>

</AnnotationAssertion>

<AnnotationAssertion>

<AnnotationProperty abbreviatedIRI="rdfs:label" />

<IRI>#hasAngularVelocityBeta</IRI>

<Literal>hasAngularVelocityBeta</Literal>

</AnnotationAssertion>

<AnnotationAssertion>

<AnnotationProperty abbreviatedIRI="rdfs:label" />

<IRI>#hasAngularVelocityGamma</IRI>

<Literal>hasAngularVelocityGamma</Literal>

</AnnotationAssertion>

<AnnotationAssertion>

<AnnotationProperty abbreviatedIRI="rdfs:label" />

<IRI>#hasAuxiliaryComponent</IRI>

<Literal>hasAuxiliaryComponent</Literal>

</AnnotationAssertion>

<AnnotationAssertion>

<AnnotationProperty abbreviatedIRI="rdfs:label" />

<IRI>#hasBody</IRI>

<Literal>hasBody</Literal>

</AnnotationAssertion>

<AnnotationAssertion>

<AnnotationProperty abbreviatedIRI="rdfs:label" />

<IRI>#hasBottomRadius</IRI>

<Literal>hasBottomRadius</Literal>

</AnnotationAssertion>

<AnnotationAssertion>

<AnnotationProperty abbreviatedIRI="rdfs:label" />

<IRI>#hasCaseObject</IRI>

<Literal>hasCaseObject</Literal>

</AnnotationAssertion>

<AnnotationAssertion>

<AnnotationProperty abbreviatedIRI="rdfs:label" />

<IRI>#hasContraint</IRI>

<Literal>hasContraint</Literal>

</AnnotationAssertion>

<AnnotationAssertion>

<AnnotationProperty abbreviatedIRI="rdfs:label" />

<IRI>#hasDataElement</IRI>

<Literal>hasDataElement</Literal>

</AnnotationAssertion>

<AnnotationAssertion>

<AnnotationProperty abbreviatedIRI="rdfs:label" />

<IRI>#hasDataElementValue</IRI>

<Literal>hasDataElementValue</Literal>

</AnnotationAssertion>

<AnnotationAssertion>

<AnnotationProperty abbreviatedIRI="rdfs:label" />

<IRI>#hasDataTable</IRI>

<Literal>hasDataTable</Literal>

</AnnotationAssertion>

<AnnotationAssertion>

<AnnotationProperty abbreviatedIRI="rdfs:label" />

<IRI>#hasDataValue</IRI>

<Literal>hasDataValue</Literal>

</AnnotationAssertion>

<AnnotationAssertion>

<AnnotationProperty abbreviatedIRI="rdfs:label" />

<IRI>#hasDegreesOfFreedom</IRI>

<Literal>hasDegreesOfFreedom</Literal>

</AnnotationAssertion>

<AnnotationAssertion>

<AnnotationProperty abbreviatedIRI="rdfs:label" />

<IRI>#hasDepth</IRI>

<Literal>hasDepth</Literal>

</AnnotationAssertion>

<AnnotationAssertion>

<AnnotationProperty abbreviatedIRI="rdfs:label" />

<IRI>#hasDescription</IRI>

<Literal>hasDescription</Literal>

</AnnotationAssertion>

<AnnotationAssertion>

<AnnotationProperty abbreviatedIRI="rdfs:label" />

<IRI>#hasDirection</IRI>

<Literal>hasDirection</Literal>

</AnnotationAssertion>

<AnnotationAssertion>

<AnnotationProperty abbreviatedIRI="rdfs:label" />

<IRI>#hasDirectionX</IRI>

<Literal>hasDirectionX</Literal>

</AnnotationAssertion>

<AnnotationAssertion>

<AnnotationProperty abbreviatedIRI="rdfs:label" />

<IRI>#hasDirectionY</IRI>

<Literal>hasDirectionY</Literal>

</AnnotationAssertion>

<AnnotationAssertion>

<AnnotationProperty abbreviatedIRI="rdfs:label" />

<IRI>#hasDirectionZ</IRI>

<Literal>hasDirectionZ</Literal>

</AnnotationAssertion>

<AnnotationAssertion>

<AnnotationProperty abbreviatedIRI="rdfs:label" />

<IRI>#hasForce</IRI>

<Literal>hasForce</Literal>

</AnnotationAssertion>

<AnnotationAssertion>

<AnnotationProperty abbreviatedIRI="rdfs:label" />

<IRI>#hasFunction</IRI>

<Literal>hasFunction</Literal>

</AnnotationAssertion>

<AnnotationAssertion>

<AnnotationProperty abbreviatedIRI="rdfs:label" />

<IRI>#hasGearRatio</IRI>

<Literal>hasGearRatio</Literal>

</AnnotationAssertion>

<AnnotationAssertion>

<AnnotationProperty abbreviatedIRI="rdfs:label" />

<IRI>#hasGeometry</IRI>

<Literal>hasGeometry</Literal>

</AnnotationAssertion>

<AnnotationAssertion>

<AnnotationProperty abbreviatedIRI="rdfs:label" />

<IRI>#hasGeometryParameter</IRI>

<Literal>hasGeometryParameter</Literal>

</AnnotationAssertion>

<AnnotationAssertion>

<AnnotationProperty abbreviatedIRI="rdfs:label" />

<IRI>#hasGravity</IRI>

<Literal>hasGravity</Literal>

</AnnotationAssertion>

<AnnotationAssertion>

<AnnotationProperty abbreviatedIRI="rdfs:label" />

<IRI>#hasGravityX</IRI>

<Literal>hasGravityX</Literal>

</AnnotationAssertion>

<AnnotationAssertion>

<AnnotationProperty abbreviatedIRI="rdfs:label" />

<IRI>#hasGravityY</IRI>

<Literal>hasGravityY</Literal>

</AnnotationAssertion>

<AnnotationAssertion>

<AnnotationProperty abbreviatedIRI="rdfs:label" />

<IRI>#hasGravityZ</IRI>

<Literal>hasGravityZ</Literal>

</AnnotationAssertion>

<AnnotationAssertion>

<AnnotationProperty abbreviatedIRI="rdfs:label" />

<IRI>#hasGroundBody</IRI>
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<Literal>hasGround</Literal>

</AnnotationAssertion>

<AnnotationAssertion>

<AnnotationProperty abbreviatedIRI="rdfs:label" />

<IRI>#hasHeight</IRI>

<Literal>hasHeight</Literal>

</AnnotationAssertion>

<AnnotationAssertion>

<AnnotationProperty abbreviatedIRI="rdfs:label" />

<IRI>#hasLength</IRI>

<Literal>hasLength</Literal>

</AnnotationAssertion>

<AnnotationAssertion>

<AnnotationProperty abbreviatedIRI="rdfs:label" />

<IRI>#hasLocation</IRI>

<Literal>hasLocation</Literal>

</AnnotationAssertion>

<AnnotationAssertion>

<AnnotationProperty abbreviatedIRI="rdfs:label" />

<IRI>#hasLocationX</IRI>

<Literal>hasLocationX</Literal>

</AnnotationAssertion>

<AnnotationAssertion>

<AnnotationProperty abbreviatedIRI="rdfs:label" />

<IRI>#hasLocationY</IRI>

<Literal>hasLocationY</Literal>

</AnnotationAssertion>

<AnnotationAssertion>

<AnnotationProperty abbreviatedIRI="rdfs:label" />

<IRI>#hasLocationZ</IRI>

<Literal>hasLocationZ</Literal>

</AnnotationAssertion>

<AnnotationAssertion>

<AnnotationProperty abbreviatedIRI="rdfs:label" />

<IRI>#hasLockedRotation</IRI>

<Literal>hasLockedRotation</Literal>

</AnnotationAssertion>

<AnnotationAssertion>

<AnnotationProperty abbreviatedIRI="rdfs:label" />

<IRI>#hasLockedRotationX</IRI>

<Literal>hasLockedRotationX</Literal>

</AnnotationAssertion>

<AnnotationAssertion>

<AnnotationProperty abbreviatedIRI="rdfs:label" />

<IRI>#hasLockedRotationY</IRI>

<Literal>hasLockedRotationY</Literal>

</AnnotationAssertion>

<AnnotationAssertion>

<AnnotationProperty abbreviatedIRI="rdfs:label" />

<IRI>#hasLockedRotationZ</IRI>

<Literal>hasLockedRotationZ</Literal>

</AnnotationAssertion>

<AnnotationAssertion>

<AnnotationProperty abbreviatedIRI="rdfs:label" />

<IRI>#hasLockedTranslation</IRI>

<Literal>hasLockedTranslation</Literal>

</AnnotationAssertion>

<AnnotationAssertion>

<AnnotationProperty abbreviatedIRI="rdfs:label" />

<IRI>#hasLockedTranslationX</IRI>

<Literal>hasLockedTranslationX</Literal>

</AnnotationAssertion>

<AnnotationAssertion>

<AnnotationProperty abbreviatedIRI="rdfs:label" />

<IRI>#hasLockedTranslationY</IRI>

<Literal>hasLockedTranslationY</Literal>

</AnnotationAssertion>

<AnnotationAssertion>

<AnnotationProperty abbreviatedIRI="rdfs:label" />

<IRI>#hasLockedTranslationZ</IRI>

<Literal>hasLockedTranslationZ</Literal>

</AnnotationAssertion>

<AnnotationAssertion>

<AnnotationProperty abbreviatedIRI="rdfs:label" />

<IRI>#hasMajorRadius</IRI>

<Literal>hasMajorRadius</Literal>

</AnnotationAssertion>

<AnnotationAssertion>

<AnnotationProperty abbreviatedIRI="rdfs:label" />

<IRI>#hasMass</IRI>

<Literal>hasMass</Literal>

</AnnotationAssertion>

<AnnotationAssertion>

<AnnotationProperty abbreviatedIRI="rdfs:label" />

<IRI>#hasMassInertia</IRI>

<Literal>hasMassInertia</Literal>

</AnnotationAssertion>

<AnnotationAssertion>

<AnnotationProperty abbreviatedIRI="rdfs:label" />

<IRI>#hasMassInertiaIxx</IRI>

<Literal>hasMassInertiaIxx</Literal>

</AnnotationAssertion>

<AnnotationAssertion>

<AnnotationProperty abbreviatedIRI="rdfs:label" />

<IRI>#hasMassInertiaIxy</IRI>

<Literal>hasMassInertiaIxy</Literal>

</AnnotationAssertion>

<AnnotationAssertion>

<AnnotationProperty abbreviatedIRI="rdfs:label" />

<IRI>#hasMassInertiaIxz</IRI>

<Literal>hasMassInertiaIxz</Literal>

</AnnotationAssertion>

<AnnotationAssertion>

<AnnotationProperty abbreviatedIRI="rdfs:label" />

<IRI>#hasMassInertiaIyy</IRI>

<Literal>hasMassInertiaIyy</Literal>

</AnnotationAssertion>

<AnnotationAssertion>

<AnnotationProperty abbreviatedIRI="rdfs:label" />

<IRI>#hasMassInertiaIyz</IRI>

<Literal>hasMassInertiaIyz</Literal>

</AnnotationAssertion>

<AnnotationAssertion>

<AnnotationProperty abbreviatedIRI="rdfs:label" />

<IRI>#hasMassInertiaIzz</IRI>

<Literal>hasMassInertiaIzz</Literal>

</AnnotationAssertion>

<AnnotationAssertion>

<AnnotationProperty abbreviatedIRI="rdfs:label" />

<IRI>#hasMasterAngle</IRI>

<Literal>hasMasterAngle</Literal>

</AnnotationAssertion>

<AnnotationAssertion>

<AnnotationProperty abbreviatedIRI="rdfs:label" />

<IRI>#hasMasterDirectionX</IRI>

<Literal>hasMasterDirectionX</Literal>

</AnnotationAssertion>

<AnnotationAssertion>

<AnnotationProperty abbreviatedIRI="rdfs:label" />

<IRI>#hasMasterDirectionY</IRI>

<Literal>hasMasterDirectionY</Literal>

</AnnotationAssertion>

<AnnotationAssertion>

<AnnotationProperty abbreviatedIRI="rdfs:label" />

<IRI>#hasMasterDirectionZ</IRI>

<Literal>hasMasterDirectionZ</Literal>

</AnnotationAssertion>

<AnnotationAssertion>

<AnnotationProperty abbreviatedIRI="rdfs:label" />

<IRI>#hasMasterMember</IRI>

<Literal>hasMasterMember</Literal>

</AnnotationAssertion>

<AnnotationAssertion>

<AnnotationProperty abbreviatedIRI="rdfs:label" />

<IRI>#hasMinorRadius</IRI>

<Literal>hasMinorRadius</Literal>

</AnnotationAssertion>

<AnnotationAssertion>

<AnnotationProperty abbreviatedIRI="rdfs:label" />

<IRI>#hasModel</IRI>

<Literal>hasModel</Literal>

</AnnotationAssertion>

<AnnotationAssertion>

<AnnotationProperty abbreviatedIRI="rdfs:label" />

<IRI>#hasModelObject</IRI>

<Literal>hasModelObject</Literal>

</AnnotationAssertion>

<AnnotationAssertion>

<AnnotationProperty abbreviatedIRI="rdfs:label" />

<IRI>#hasOrientation</IRI>
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<Literal>hasOrientation</Literal>

</AnnotationAssertion>

<AnnotationAssertion>

<AnnotationProperty abbreviatedIRI="rdfs:label" />

<IRI>#hasOrientationQ0</IRI>

<Literal>hasOrientationQ0</Literal>

</AnnotationAssertion>

<AnnotationAssertion>

<AnnotationProperty abbreviatedIRI="rdfs:label" />

<IRI>#hasOrientationQ1</IRI>

<Literal>hasOrientationQ1</Literal>

</AnnotationAssertion>

<AnnotationAssertion>

<AnnotationProperty abbreviatedIRI="rdfs:label" />

<IRI>#hasOrientationQ2</IRI>

<Literal>hasOrientationQ2</Literal>

</AnnotationAssertion>

<AnnotationAssertion>

<AnnotationProperty abbreviatedIRI="rdfs:label" />

<IRI>#hasOrientationQ3</IRI>

<Literal>hasOrientationQ3</Literal>

</AnnotationAssertion>

<AnnotationAssertion>

<AnnotationProperty abbreviatedIRI="rdfs:label" />

<IRI>#hasOrientationR1</IRI>

<Literal>hasOrientationR1</Literal>

</AnnotationAssertion>

<AnnotationAssertion>

<AnnotationProperty abbreviatedIRI="rdfs:label" />

<IRI>#hasOrientationR2</IRI>

<Literal>hasOrientationR2</Literal>

</AnnotationAssertion>

<AnnotationAssertion>

<AnnotationProperty abbreviatedIRI="rdfs:label" />

<IRI>#hasOrientationR3</IRI>

<Literal>hasOrientationR3</Literal>

</AnnotationAssertion>

<AnnotationAssertion>

<AnnotationProperty abbreviatedIRI="rdfs:label" />

<IRI>#hasReferenceMember</IRI>

<Literal>hasReferenceMember</Literal>

</AnnotationAssertion>

<AnnotationAssertion>

<AnnotationProperty abbreviatedIRI="rdfs:label" />

<IRI>#hasResults</IRI>

<Literal>hasResults</Literal>

</AnnotationAssertion>

<AnnotationAssertion>

<AnnotationProperty abbreviatedIRI="rdfs:label" />

<IRI>#hasRotationSequence</IRI>

<Literal>hasRotationSequence</Literal>

</AnnotationAssertion>

<AnnotationAssertion>

<AnnotationProperty abbreviatedIRI="rdfs:label" />

<IRI>#hasRotationalDegreesOfFreedom</IRI>

<Literal>hasRotationalDegreesOfFreedom</Literal>

</AnnotationAssertion>

<AnnotationAssertion>

<AnnotationProperty abbreviatedIRI="rdfs:label" />

<IRI>#hasSlaveDirectionX</IRI>

<Literal>hasSlaveDirectionX</Literal>

</AnnotationAssertion>

<AnnotationAssertion>

<AnnotationProperty abbreviatedIRI="rdfs:label" />

<IRI>#hasSlaveDirectionY</IRI>

<Literal>hasSlaveDirectionY</Literal>

</AnnotationAssertion>

<AnnotationAssertion>

<AnnotationProperty abbreviatedIRI="rdfs:label" />

<IRI>#hasSlaveDirectionZ</IRI>

<Literal>hasSlaveDirectionZ</Literal>

</AnnotationAssertion>

<AnnotationAssertion>

<AnnotationProperty abbreviatedIRI="rdfs:label" />

<IRI>#hasSlaveMember</IRI>

<Literal>hasSlaveMember</Literal>

</AnnotationAssertion>

<AnnotationAssertion>

<AnnotationProperty abbreviatedIRI="rdfs:label" />

<IRI>#hasStartTime</IRI>

<Literal>hasStartTime</Literal>

</AnnotationAssertion>

<AnnotationAssertion>

<AnnotationProperty abbreviatedIRI="rdfs:label" />

<IRI>#hasStopTime</IRI>

<Literal>hasStopTime</Literal>

</AnnotationAssertion>

<AnnotationAssertion>

<AnnotationProperty abbreviatedIRI="rdfs:label" />

<IRI>#hasSubModel</IRI>

<Literal>hasSubModel</Literal>

</AnnotationAssertion>

<AnnotationAssertion>

<AnnotationProperty abbreviatedIRI="rdfs:label" />

<IRI>#hasTimeStep</IRI>

<Literal>hasTimeStep</Literal>

</AnnotationAssertion>

<AnnotationAssertion>

<AnnotationProperty abbreviatedIRI="rdfs:label" />

<IRI>#hasTopRadius</IRI>

<Literal>hasTopRadius</Literal>

</AnnotationAssertion>

<AnnotationAssertion>

<AnnotationProperty abbreviatedIRI="rdfs:label" />

<IRI>#hasTranslationalDegreesOfFreedom</IRI>

<Literal>hasTranslationalDegreesOfFreedom</Literal>

</AnnotationAssertion>

<AnnotationAssertion>

<AnnotationProperty abbreviatedIRI="rdfs:label" />

<IRI>#hasVelocity</IRI>

<Literal>hasVelocity</Literal>

</AnnotationAssertion>

<AnnotationAssertion>

<AnnotationProperty abbreviatedIRI="rdfs:label" />

<IRI>#hasVelocityX</IRI>

<Literal>hasVelocityX</Literal>

</AnnotationAssertion>

<AnnotationAssertion>

<AnnotationProperty abbreviatedIRI="rdfs:label" />

<IRI>#hasVelocityY</IRI>

<Literal>hasVelocityY</Literal>

</AnnotationAssertion>

<AnnotationAssertion>

<AnnotationProperty abbreviatedIRI="rdfs:label" />

<IRI>#hasVelocityZ</IRI>

<Literal>hasVelocityZ</Literal>

</AnnotationAssertion>

</Ontology>

<!-- Generated by the OWL API (version 3.0.0.1469)

http://owlapi.sourceforge.net -->
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A.3 The doublePendulum Model

The doublePendulum model in the XML Presentation syntax (OWL/XML) [84]
is listed below. This listing contains all the definitions for the semantic model.
The model uses the Mbs ontology listed in section A.2

<?xml version="1.0"?>

<!DOCTYPE Ontology [

<!ENTITY xsd "http://www.w3.org/2001/XMLSchema#" >

<!ENTITY xml "http://www.w3.org/XML/1998/namespace" >

<!ENTITY rdfs "http://www.w3.org/2000/01/rdf-schema#" >

<!ENTITY rdf "http://www.w3.org/1999/02/22-rdf-syntax-ns#" >

]>

<Ontology xmlns="http://www.w3.org/2002/07/owl#"

xml:base="http://www.semanticweb.org/ontologies/2010/0/mbstestmodel.owl"

xmlns:rdfs="http://www.w3.org/2000/01/rdf-schema#"

xmlns:xsd="http://www.w3.org/2001/XMLSchema#"

xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"

xmlns:xml="http://www.w3.org/XML/1998/namespace"

ontologyIRI="http://www.semanticweb.org/ontologies/2010/0/mbstestmodel.owl">

<Prefix name="rdf" IRI="http://www.w3.org/1999/02/22-rdf-syntax-ns#"/>

<Prefix name="rdfs" IRI="http://www.w3.org/2000/01/rdf-schema#"/>

<Prefix name="xsd" IRI="http://www.w3.org/2001/XMLSchema#"/>

<Prefix name="owl" IRI="http://www.w3.org/2002/07/owl#"/>

<Import>http://www.simantics.org/ontologies/mbs.owl</Import>

<Declaration>

<Class IRI="http://www.simantics.org/ontologies/mbs.owl#Analysis"/>

</Declaration>

<Declaration>

<Class IRI="http://www.simantics.org/ontologies/mbs.owl#Case"/>

</Declaration>

<Declaration>

<Class IRI="http://www.simantics.org/ontologies/mbs.owl#Ground"/>

</Declaration>

<Declaration>

<Class IRI="http://www.simantics.org/ontologies/mbs.owl#Model"/>

</Declaration>

<Declaration>

<Class IRI="http://www.simantics.org/ontologies/mbs.owl#Results"/>

</Declaration>

<Declaration>

<Class IRI="http://www.simantics.org/ontologies/mbs.owl#RevoluteJoint"/>

</Declaration>

<Declaration>

<Class IRI="http://www.simantics.org/ontologies/mbs.owl#RigidBody"/>

</Declaration>

<Declaration>

<Class abbreviatedIRI="owl:Thing"/>

</Declaration>

<Declaration>

<ObjectProperty IRI="http://www.simantics.org/ontologies/mbs.owl#hasAnalysis"/>

</Declaration>

<Declaration>

<ObjectProperty IRI="http://www.simantics.org/ontologies/mbs.owl#hasBody"/>

</Declaration>

<Declaration>

<ObjectProperty IRI="http://www.simantics.org/ontologies/mbs.owl#hasContraint"/>

</Declaration>

<Declaration>

<ObjectProperty IRI="http://www.simantics.org/ontologies/mbs.owl#hasGround"/>

</Declaration>

<Declaration>

<ObjectProperty IRI="http://www.simantics.org/ontologies/mbs.owl#hasMasterMember"/>

</Declaration>

<Declaration>

<ObjectProperty IRI="http://www.simantics.org/ontologies/mbs.owl#hasModel"/>

</Declaration>

<Declaration>

<ObjectProperty IRI="http://www.simantics.org/ontologies/mbs.owl#hasResults"/>

</Declaration>

<Declaration>

<ObjectProperty IRI="http://www.simantics.org/ontologies/mbs.owl#hasSlaveMember"/>

</Declaration>

<Declaration>

<DataProperty IRI="http://www.simantics.org/ontologies/mbs.owl#hasDirectionX"/>
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</Declaration>

<Declaration>

<DataProperty IRI="http://www.simantics.org/ontologies/mbs.owl#hasDirectionY"/>

</Declaration>

<Declaration>

<DataProperty IRI="http://www.simantics.org/ontologies/mbs.owl#hasDirectionZ"/>

</Declaration>

<Declaration>

<DataProperty IRI="http://www.simantics.org/ontologies/mbs.owl#hasGravityX"/>

</Declaration>

<Declaration>

<DataProperty IRI="http://www.simantics.org/ontologies/mbs.owl#hasGravityY"/>

</Declaration>

<Declaration>

<DataProperty IRI="http://www.simantics.org/ontologies/mbs.owl#hasGravityZ"/>

</Declaration>

<Declaration>

<DataProperty IRI="http://www.simantics.org/ontologies/mbs.owl#hasLocationX"/>

</Declaration>

<Declaration>

<DataProperty IRI="http://www.simantics.org/ontologies/mbs.owl#hasLocationY"/>

</Declaration>

<Declaration>

<DataProperty IRI="http://www.simantics.org/ontologies/mbs.owl#hasLocationZ"/>

</Declaration>

<Declaration>

<DataProperty IRI="http://www.simantics.org/ontologies/mbs.owl#hasMass"/>

</Declaration>

<Declaration>

<DataProperty IRI="http://www.simantics.org/ontologies/mbs.owl#hasMassInertiaIxx"/>

</Declaration>

<Declaration>

<DataProperty IRI="http://www.simantics.org/ontologies/mbs.owl#hasMassInertiaIxy"/>

</Declaration>

<Declaration>

<DataProperty IRI="http://www.simantics.org/ontologies/mbs.owl#hasMassInertiaIxz"/>

</Declaration>

<Declaration>

<DataProperty IRI="http://www.simantics.org/ontologies/mbs.owl#hasMassInertiaIyy"/>

</Declaration>

<Declaration>

<DataProperty IRI="http://www.simantics.org/ontologies/mbs.owl#hasMassInertiaIyz"/>

</Declaration>

<Declaration>

<DataProperty IRI="http://www.simantics.org/ontologies/mbs.owl#hasMassInertiaIzz"/>

</Declaration>

<Declaration>

<DataProperty IRI="http://www.simantics.org/ontologies/mbs.owl#hasOrientationR1"/>

</Declaration>

<Declaration>

<DataProperty IRI="http://www.simantics.org/ontologies/mbs.owl#hasOrientationR2"/>

</Declaration>

<Declaration>

<DataProperty IRI="http://www.simantics.org/ontologies/mbs.owl#hasOrientationR3"/>

</Declaration>

<Declaration>

<DataProperty IRI="http://www.simantics.org/ontologies/mbs.owl#hasRotationSequence"/>

</Declaration>

<ClassAssertion>

<Class IRI="http://www.simantics.org/ontologies/mbs.owl#Model"/>

<NamedIndividual IRI="#doublePendulum"/>

</ClassAssertion>

<ClassAssertion>

<Class abbreviatedIRI="owl:Thing"/>

<NamedIndividual IRI="#doublePendulum"/>

</ClassAssertion>

<ClassAssertion>

<Class IRI="http://www.simantics.org/ontologies/mbs.owl#Analysis"/>

<NamedIndividual IRI="#exampleAnalysis"/>

</ClassAssertion>

<ClassAssertion>

<Class abbreviatedIRI="owl:Thing"/>

<NamedIndividual IRI="#exampleAnalysis"/>

</ClassAssertion>

<ClassAssertion>

<Class IRI="http://www.simantics.org/ontologies/mbs.owl#Case"/>

<NamedIndividual IRI="#exampleCase"/>

</ClassAssertion>

<ClassAssertion>

<Class abbreviatedIRI="owl:Thing"/>
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<NamedIndividual IRI="#exampleCase"/>

</ClassAssertion>

<ClassAssertion>

<Class IRI="http://www.simantics.org/ontologies/mbs.owl#Results"/>

<NamedIndividual IRI="#exampleResults"/>

</ClassAssertion>

<ClassAssertion>

<Class abbreviatedIRI="owl:Thing"/>

<NamedIndividual IRI="#exampleResults"/>

</ClassAssertion>

<ClassAssertion>

<Class IRI="http://www.simantics.org/ontologies/mbs.owl#Ground"/>

<NamedIndividual IRI="#ground"/>

</ClassAssertion>

<ClassAssertion>

<Class abbreviatedIRI="owl:Thing"/>

<NamedIndividual IRI="#ground"/>

</ClassAssertion>

<ClassAssertion>

<Class IRI="http://www.simantics.org/ontologies/mbs.owl#RevoluteJoint"/>

<NamedIndividual IRI="#hinge_1"/>

</ClassAssertion>

<ClassAssertion>

<Class abbreviatedIRI="owl:Thing"/>

<NamedIndividual IRI="#hinge_1"/>

</ClassAssertion>

<ClassAssertion>

<Class IRI="http://www.simantics.org/ontologies/mbs.owl#RevoluteJoint"/>

<NamedIndividual IRI="#hinge_2"/>

</ClassAssertion>

<ClassAssertion>

<Class abbreviatedIRI="owl:Thing"/>

<NamedIndividual IRI="#hinge_2"/>

</ClassAssertion>

<ClassAssertion>

<Class IRI="http://www.simantics.org/ontologies/mbs.owl#RigidBody"/>

<NamedIndividual IRI="#link_1"/>

</ClassAssertion>

<ClassAssertion>

<Class abbreviatedIRI="owl:Thing"/>

<NamedIndividual IRI="#link_1"/>

</ClassAssertion>

<ClassAssertion>

<Class IRI="http://www.simantics.org/ontologies/mbs.owl#RigidBody"/>

<NamedIndividual IRI="#link_2"/>

</ClassAssertion>

<ClassAssertion>

<Class abbreviatedIRI="owl:Thing"/>

<NamedIndividual IRI="#link_2"/>

</ClassAssertion>

<ObjectPropertyAssertion>

<ObjectProperty IRI="http://www.simantics.org/ontologies/mbs.owl#hasBody"/>

<NamedIndividual IRI="#doublePendulum"/>

<NamedIndividual IRI="#link_2"/>

</ObjectPropertyAssertion>

<ObjectPropertyAssertion>

<ObjectProperty IRI="http://www.simantics.org/ontologies/mbs.owl#hasBody"/>

<NamedIndividual IRI="#doublePendulum"/>

<NamedIndividual IRI="#link_1"/>

</ObjectPropertyAssertion>

<ObjectPropertyAssertion>

<ObjectProperty IRI="http://www.simantics.org/ontologies/mbs.owl#hasContraint"/>

<NamedIndividual IRI="#doublePendulum"/>

<NamedIndividual IRI="#hinge_1"/>

</ObjectPropertyAssertion>

<ObjectPropertyAssertion>

<ObjectProperty IRI="http://www.simantics.org/ontologies/mbs.owl#hasContraint"/>

<NamedIndividual IRI="#doublePendulum"/>

<NamedIndividual IRI="#hinge_2"/>

</ObjectPropertyAssertion>

<ObjectPropertyAssertion>

<ObjectProperty IRI="http://www.simantics.org/ontologies/mbs.owl#hasGround"/>

<NamedIndividual IRI="#doublePendulum"/>

<NamedIndividual IRI="#ground"/>

</ObjectPropertyAssertion>

<ObjectPropertyAssertion>

<ObjectProperty IRI="http://www.simantics.org/ontologies/mbs.owl#hasAnalysis"/>

<NamedIndividual IRI="#exampleCase"/>

<NamedIndividual IRI="#exampleAnalysis"/>

</ObjectPropertyAssertion>
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<ObjectPropertyAssertion>

<ObjectProperty IRI="http://www.simantics.org/ontologies/mbs.owl#hasModel"/>

<NamedIndividual IRI="#exampleCase"/>

<NamedIndividual IRI="#doublePendulum"/>

</ObjectPropertyAssertion>

<ObjectPropertyAssertion>

<ObjectProperty IRI="http://www.simantics.org/ontologies/mbs.owl#hasResults"/>

<NamedIndividual IRI="#exampleCase"/>

<NamedIndividual IRI="#exampleResults"/>

</ObjectPropertyAssertion>

<ObjectPropertyAssertion>

<ObjectProperty IRI="http://www.simantics.org/ontologies/mbs.owl#hasMasterMember"/>

<NamedIndividual IRI="#hinge_1"/>

<NamedIndividual IRI="#ground"/>

</ObjectPropertyAssertion>

<ObjectPropertyAssertion>

<ObjectProperty IRI="http://www.simantics.org/ontologies/mbs.owl#hasSlaveMember"/>

<NamedIndividual IRI="#hinge_1"/>

<NamedIndividual IRI="#link_1"/>

</ObjectPropertyAssertion>

<ObjectPropertyAssertion>

<ObjectProperty IRI="http://www.simantics.org/ontologies/mbs.owl#hasMasterMember"/>

<NamedIndividual IRI="#hinge_2"/>

<NamedIndividual IRI="#link_1"/>

</ObjectPropertyAssertion>

<ObjectPropertyAssertion>

<ObjectProperty IRI="http://www.simantics.org/ontologies/mbs.owl#hasSlaveMember"/>

<NamedIndividual IRI="#hinge_2"/>

<NamedIndividual IRI="#link_2"/>

</ObjectPropertyAssertion>

<DataPropertyAssertion>

<DataProperty IRI="http://www.simantics.org/ontologies/mbs.owl#hasGravityX"/>

<NamedIndividual IRI="#ground"/>

<Literal datatypeIRI="&xsd;double">0.0</Literal>

</DataPropertyAssertion>

<DataPropertyAssertion>

<DataProperty IRI="http://www.simantics.org/ontologies/mbs.owl#hasGravityY"/>

<NamedIndividual IRI="#ground"/>

<Literal datatypeIRI="&xsd;double">-9.80665</Literal>

</DataPropertyAssertion>

<DataPropertyAssertion>

<DataProperty IRI="http://www.simantics.org/ontologies/mbs.owl#hasGravityZ"/>

<NamedIndividual IRI="#ground"/>

<Literal datatypeIRI="&xsd;double">0.0</Literal>

</DataPropertyAssertion>

<DataPropertyAssertion>

<DataProperty IRI="http://www.simantics.org/ontologies/mbs.owl#hasDirectionX"/>

<NamedIndividual IRI="#hinge_1"/>

<Literal datatypeIRI="&xsd;double">0.0</Literal>

</DataPropertyAssertion>

<DataPropertyAssertion>

<DataProperty IRI="http://www.simantics.org/ontologies/mbs.owl#hasDirectionY"/>

<NamedIndividual IRI="#hinge_1"/>

<Literal datatypeIRI="&xsd;double">0.0</Literal>

</DataPropertyAssertion>

<DataPropertyAssertion>

<DataProperty IRI="http://www.simantics.org/ontologies/mbs.owl#hasDirectionZ"/>

<NamedIndividual IRI="#hinge_1"/>

<Literal datatypeIRI="&xsd;double">1.0</Literal>

</DataPropertyAssertion>

<DataPropertyAssertion>

<DataProperty IRI="http://www.simantics.org/ontologies/mbs.owl#hasLocationX"/>

<NamedIndividual IRI="#hinge_1"/>

<Literal datatypeIRI="&xsd;double">0.0</Literal>

</DataPropertyAssertion>

<DataPropertyAssertion>

<DataProperty IRI="http://www.simantics.org/ontologies/mbs.owl#hasLocationY"/>

<NamedIndividual IRI="#hinge_1"/>

<Literal datatypeIRI="&xsd;double">0.0</Literal>

</DataPropertyAssertion>

<DataPropertyAssertion>

<DataProperty IRI="http://www.simantics.org/ontologies/mbs.owl#hasLocationZ"/>

<NamedIndividual IRI="#hinge_1"/>

<Literal datatypeIRI="&xsd;double">0.0</Literal>

</DataPropertyAssertion>

<DataPropertyAssertion>

<DataProperty IRI="http://www.simantics.org/ontologies/mbs.owl#hasDirectionX"/>

<NamedIndividual IRI="#hinge_2"/>

<Literal datatypeIRI="&xsd;double">0.0</Literal>

</DataPropertyAssertion>
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<DataPropertyAssertion>

<DataProperty IRI="http://www.simantics.org/ontologies/mbs.owl#hasDirectionY"/>

<NamedIndividual IRI="#hinge_2"/>

<Literal datatypeIRI="&xsd;double">0.0</Literal>

</DataPropertyAssertion>

<DataPropertyAssertion>

<DataProperty IRI="http://www.simantics.org/ontologies/mbs.owl#hasDirectionZ"/>

<NamedIndividual IRI="#hinge_2"/>

<Literal datatypeIRI="&xsd;double">1.0</Literal>

</DataPropertyAssertion>

<DataPropertyAssertion>

<DataProperty IRI="http://www.simantics.org/ontologies/mbs.owl#hasLocationX"/>

<NamedIndividual IRI="#hinge_2"/>

<Literal datatypeIRI="&xsd;double">0.5</Literal>

</DataPropertyAssertion>

<DataPropertyAssertion>

<DataProperty IRI="http://www.simantics.org/ontologies/mbs.owl#hasLocationY"/>

<NamedIndividual IRI="#hinge_2"/>

<Literal datatypeIRI="&xsd;double">0.0</Literal>

</DataPropertyAssertion>

<DataPropertyAssertion>

<DataProperty IRI="http://www.simantics.org/ontologies/mbs.owl#hasLocationZ"/>

<NamedIndividual IRI="#hinge_2"/>

<Literal datatypeIRI="&xsd;double">0.0</Literal>

</DataPropertyAssertion>

<DataPropertyAssertion>

<DataProperty IRI="http://www.simantics.org/ontologies/mbs.owl#hasLocationX"/>

<NamedIndividual IRI="#link_1"/>

<Literal datatypeIRI="&xsd;double">0.25</Literal>

</DataPropertyAssertion>

<DataPropertyAssertion>

<DataProperty IRI="http://www.simantics.org/ontologies/mbs.owl#hasLocationY"/>

<NamedIndividual IRI="#link_1"/>

<Literal datatypeIRI="&xsd;double">0.0</Literal>

</DataPropertyAssertion>

<DataPropertyAssertion>

<DataProperty IRI="http://www.simantics.org/ontologies/mbs.owl#hasLocationZ"/>

<NamedIndividual IRI="#link_1"/>

<Literal datatypeIRI="&xsd;double">0.0</Literal>

</DataPropertyAssertion>

<DataPropertyAssertion>

<DataProperty IRI="http://www.simantics.org/ontologies/mbs.owl#hasMass"/>

<NamedIndividual IRI="#link_1"/>

<Literal datatypeIRI="&xsd;double">1.346567</Literal>

</DataPropertyAssertion>

<DataPropertyAssertion>

<DataProperty IRI="http://www.simantics.org/ontologies/mbs.owl#hasMassInertiaIxx"/>

<NamedIndividual IRI="#link_1"/>

<Literal datatypeIRI="&xsd;double">5.557941e-04</Literal>

</DataPropertyAssertion>

<DataPropertyAssertion>

<DataProperty IRI="http://www.simantics.org/ontologies/mbs.owl#hasMassInertiaIxy"/>

<NamedIndividual IRI="#link_1"/>

<Literal datatypeIRI="&xsd;double">0.0</Literal>

</DataPropertyAssertion>

<DataPropertyAssertion>

<DataProperty IRI="http://www.simantics.org/ontologies/mbs.owl#hasMassInertiaIxz"/>

<NamedIndividual IRI="#link_1"/>

<Literal datatypeIRI="&xsd;double">0.0</Literal>

</DataPropertyAssertion>

<DataPropertyAssertion>

<DataProperty IRI="http://www.simantics.org/ontologies/mbs.owl#hasMassInertiaIyy"/>

<NamedIndividual IRI="#link_1"/>

<Literal datatypeIRI="&xsd;double">3.288061e-02</Literal>

</DataPropertyAssertion>

<DataPropertyAssertion>

<DataProperty IRI="http://www.simantics.org/ontologies/mbs.owl#hasMassInertiaIyz"/>

<NamedIndividual IRI="#link_1"/>

<Literal datatypeIRI="&xsd;double">0.0</Literal>

</DataPropertyAssertion>

<DataPropertyAssertion>

<DataProperty IRI="http://www.simantics.org/ontologies/mbs.owl#hasMassInertiaIzz"/>

<NamedIndividual IRI="#link_1"/>

<Literal datatypeIRI="&xsd;double">3.287534e-02</Literal>

</DataPropertyAssertion>

<DataPropertyAssertion>

<DataProperty IRI="http://www.simantics.org/ontologies/mbs.owl#hasOrientationR1"/>

<NamedIndividual IRI="#link_1"/>

<Literal datatypeIRI="&xsd;double">0.0</Literal>

</DataPropertyAssertion>
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<DataPropertyAssertion>

<DataProperty IRI="http://www.simantics.org/ontologies/mbs.owl#hasOrientationR2"/>

<NamedIndividual IRI="#link_1"/>

<Literal datatypeIRI="&xsd;double">0.0</Literal>

</DataPropertyAssertion>

<DataPropertyAssertion>

<DataProperty IRI="http://www.simantics.org/ontologies/mbs.owl#hasOrientationR3"/>

<NamedIndividual IRI="#link_1"/>

<Literal datatypeIRI="&xsd;double">0.0</Literal>

</DataPropertyAssertion>

<DataPropertyAssertion>

<DataProperty IRI="http://www.simantics.org/ontologies/mbs.owl#hasRotationSequence"/>

<NamedIndividual IRI="#link_1"/>

<Literal datatypeIRI="&xsd;string">zxz</Literal>

</DataPropertyAssertion>

<DataPropertyAssertion>

<DataProperty IRI="http://www.simantics.org/ontologies/mbs.owl#hasLocationX"/>

<NamedIndividual IRI="#link_2"/>

<Literal datatypeIRI="&xsd;double">0.75</Literal>

</DataPropertyAssertion>

<DataPropertyAssertion>

<DataProperty IRI="http://www.simantics.org/ontologies/mbs.owl#hasLocationY"/>

<NamedIndividual IRI="#link_2"/>

<Literal datatypeIRI="&xsd;double">0.0</Literal>

</DataPropertyAssertion>

<DataPropertyAssertion>

<DataProperty IRI="http://www.simantics.org/ontologies/mbs.owl#hasLocationZ"/>

<NamedIndividual IRI="#link_2"/>

<Literal datatypeIRI="&xsd;double">0.0</Literal>

</DataPropertyAssertion>

<DataPropertyAssertion>

<DataProperty IRI="http://www.simantics.org/ontologies/mbs.owl#hasMass"/>

<NamedIndividual IRI="#link_2"/>

<Literal datatypeIRI="&xsd;double">1.346567</Literal>

</DataPropertyAssertion>

<DataPropertyAssertion>

<DataProperty IRI="http://www.simantics.org/ontologies/mbs.owl#hasMassInertiaIxx"/>

<NamedIndividual IRI="#link_2"/>

<Literal datatypeIRI="&xsd;double">5.557941e-04</Literal>

</DataPropertyAssertion>

<DataPropertyAssertion>

<DataProperty IRI="http://www.simantics.org/ontologies/mbs.owl#hasMassInertiaIxy"/>

<NamedIndividual IRI="#link_2"/>

<Literal datatypeIRI="&xsd;double">0.0</Literal>

</DataPropertyAssertion>

<DataPropertyAssertion>

<DataProperty IRI="http://www.simantics.org/ontologies/mbs.owl#hasMassInertiaIxz"/>

<NamedIndividual IRI="#link_2"/>

<Literal datatypeIRI="&xsd;double">0.0</Literal>

</DataPropertyAssertion>

<DataPropertyAssertion>

<DataProperty IRI="http://www.simantics.org/ontologies/mbs.owl#hasMassInertiaIyy"/>

<NamedIndividual IRI="#link_2"/>

<Literal datatypeIRI="&xsd;double">3.288061e-02</Literal>

</DataPropertyAssertion>

<DataPropertyAssertion>

<DataProperty IRI="http://www.simantics.org/ontologies/mbs.owl#hasMassInertiaIyz"/>

<NamedIndividual IRI="#link_2"/>

<Literal datatypeIRI="&xsd;double">0.0</Literal>

</DataPropertyAssertion>

<DataPropertyAssertion>

<DataProperty IRI="http://www.simantics.org/ontologies/mbs.owl#hasMassInertiaIzz"/>

<NamedIndividual IRI="#link_2"/>

<Literal datatypeIRI="&xsd;double">3.287534e-02</Literal>

</DataPropertyAssertion>

<DataPropertyAssertion>

<DataProperty IRI="http://www.simantics.org/ontologies/mbs.owl#hasOrientationR1"/>

<NamedIndividual IRI="#link_2"/>

<Literal datatypeIRI="&xsd;double">0.0</Literal>

</DataPropertyAssertion>

<DataPropertyAssertion>

<DataProperty IRI="http://www.simantics.org/ontologies/mbs.owl#hasOrientationR2"/>

<NamedIndividual IRI="#link_2"/>

<Literal datatypeIRI="&xsd;double">0.0</Literal>

</DataPropertyAssertion>

<DataPropertyAssertion>

<DataProperty IRI="http://www.simantics.org/ontologies/mbs.owl#hasOrientationR3"/>

<NamedIndividual IRI="#link_2"/>

<Literal datatypeIRI="&xsd;double">0.0</Literal>

</DataPropertyAssertion>
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<DataPropertyAssertion>

<DataProperty IRI="http://www.simantics.org/ontologies/mbs.owl#hasRotationSequence"/>

<NamedIndividual IRI="#link_2"/>

<Literal datatypeIRI="&xsd;string">zxz</Literal>

</DataPropertyAssertion>

<AnnotationAssertion>

<AnnotationProperty abbreviatedIRI="rdfs:label"/>

<IRI>#doublePendulum</IRI>

<Literal>doublePendulum</Literal>

</AnnotationAssertion>

<AnnotationAssertion>

<AnnotationProperty abbreviatedIRI="rdfs:label"/>

<IRI>#exampleAnalysis</IRI>

<Literal>exampleAnalysis</Literal>

</AnnotationAssertion>

<AnnotationAssertion>

<AnnotationProperty abbreviatedIRI="rdfs:label"/>

<IRI>#exampleCase</IRI>

<Literal>exampleCase</Literal>

</AnnotationAssertion>

<AnnotationAssertion>

<AnnotationProperty abbreviatedIRI="rdfs:label"/>

<IRI>#exampleResults</IRI>

<Literal>exampleResults</Literal>

</AnnotationAssertion>

<AnnotationAssertion>

<AnnotationProperty abbreviatedIRI="rdfs:label"/>

<IRI>#ground</IRI>

<Literal>ground</Literal>

</AnnotationAssertion>

<AnnotationAssertion>

<AnnotationProperty abbreviatedIRI="rdfs:label"/>

<IRI>#hinge_1</IRI>

<Literal>hinge_1</Literal>

</AnnotationAssertion>

<AnnotationAssertion>

<AnnotationProperty abbreviatedIRI="rdfs:label"/>

<IRI>#hinge_2</IRI>

<Literal>hinge_2</Literal>

</AnnotationAssertion>

<AnnotationAssertion>

<AnnotationProperty abbreviatedIRI="rdfs:label"/>

<IRI>#link_1</IRI>

<Literal>link_1</Literal>

</AnnotationAssertion>

<AnnotationAssertion>

<AnnotationProperty abbreviatedIRI="rdfs:label"/>

<IRI>#link_2</IRI>

<Literal>link_2</Literal>

</AnnotationAssertion>

</Ontology>

<!-- Generated by the OWL API (version 3.0.0.1469) http://owlapi.sourceforge.net -->
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Modelica MultiBody OWL
Ontology

The Modelica MultiBody library is represented below as an OWL ontology.
The hierarchy and naming conventions are the same as in the Modelica Stand-
ard Library [85].

The Modelica MultiBody library contains the following main modelling
classes:

• World: world coordinate system, gravity field, and default animation
definition;

• Forces: components that exert forces and/or torques between frames;

• Interfaces: connectors and partial models for 3-dimensional mechanical
components;

• Joints: components that constrain the motion between two frames;

• Parts: rigid body components, such as bodies with mass and inertia, and
massless rods;

• Sensors: sensors to measure variables;

• Types: constants and types with choices; and

• Visualizers: 3-dimensional visual objects used for animation.

In addition to the above, the library contains a set for functions in the Frames
class to transform rotational frame quantities, and constant and type defini-
tions in the Types class. The structure of the Modelica MultiBody library is
presented in Table B.1.
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Table B.1: The class and subclass structure of the Modelica MultiBody library.

Forces
WorldForce
WorldTorque
WorldForceAndTorque
Force
Torque
ForceAndTorque
LineForceWithMass
LineForceWithTwoMasses
Spring
Damper
SpringDamperParallel
SpringDamperSeries

Interfaces
Frame
Frame a
Frame b
Frame resolve
FlangeWithBearing
FlangeWithBearingAdaptor
PartialTwoFrames
PartialTwoFramesDoubleSize
PartialOneFrame a
PartialOneFrame b
PartialElementaryJoint
PartialForce
PartialLineForce
PartialAbsoluteSensor
PartialRelativeSensor
PartialVisualizer
ZeroPosition

Joints
Prismatic
Revolute
RevolutePlanarLoopConstraint
Cylindrical
Universal
Planar
Spherical
FreeMotion
SphericalSpherical
UniversalSpherical
GearConstraint
RollingWheel
RollingWheelSet
Assemblies

Parts
Fixed
FixedTranslation
FixedRotation
Body
BodyShape
BodyBox
BodyCylinder
PointMass
Mounting1D
Rotor1D
BevelGear1D
RollingWheel
RollingWheelSet

Sensors
AbsoluteSensor
RelativeSensor
AbsolutePosition
AbsoluteVelocity
AbsoluteAngles
AbsoluteAngularVelocity
RelativePosition
RelativeVelocity
RelativeAngles
RelativeAngularVelocity
Distance
CutForce
CutTorque
CutForceAndTorque
Power
TansformAbsoluteVector
TansformRelativeVector

Visualizers
FixedShape
FixedShape2
FixedFrame
FixedArrow
SignalArrow
Ground
Advanced
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suunnitteluprosessia kokonaisuutena sekä säästää resursseja.
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mahdollistamiseksi World Wide Web Consortium on käynnistänyt kehityshankkeen nimeltä Semant-
tinen Web, jossa kehitetään seuraavan sukupolven verkkoa. Kehityshankkeessa kehitetään ja sovelle-
taan tiedon semanttiseen kuvaukseen perustuvia menetelmiä ja tekniikoita, jotka ovat riittävän yleisiä
sovellettaviksi myös muille alueille, kuten laskennallisen tiedon hallintaan.

Tässä työssä keskitytään tuotekehitykseen liittyvän monikappaledynamiikan mallitiedonhallintaan.
Työn tavoitteet voidaan tiivistää seuraavalla tavalla: esitellä periaate monikappaledynamiikan mal-
litiedon hallintaan käyttäen semanttista tietomallia sekä ontologiapohjaista mallinnusmenetelmää;
osoittaa, että semanttisen tietomallin soveltaminen mahdollistaa sovelluspohjaisen päättelyn moni-
kappaledynamiikan mallitiedosta; sekä osoittaa, että ontologiapohjainen mallintaminen mahdollistaa
myös tietämyksen tallentamisen yhdessä mallitiedon kanssa soveltaen semanttista tietomallia sekä
rajoite- ja sääntöpohjaista päättelyä. Tämä osoitetaan kehittämällä mallinnusontologia monikappale-
dynamiikan mallitiedon hallintaan ja soveltamalla tätä ontologiaa monikappaledynaamisen esimerk-
kitapauksen mallin kuvaukseen.
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Technological evolution has rapidly transformed the world. We are now heading 
into a new era of information and knowledge. Humankind is producing data and 
information at a continuously increasing speed and, instead of finding information 
in general, the challenge is how to distil the desired information and knowledge out 
of the data masses. The development of information technology, including progress 
in algorithms, computational methods and computer hardware, has provided us 
with new tools to search and analyse the data masses. Data semantics, i.e. manag-
ing the meaning of the data, is one of the most promising methods for answering 
this challenge.

From the standpoint of product development, the interaction between computa-
tional tools can be cumbersome. For this reason, multibody system simulation is 
often excluded from the mainstream of product development. But due to the increase 
in computational resources, the trend is towards extensive usage of simulation, 
including multibody system simulation, in product development. This increases the 
pressure to improve data management in multibody system simulation as well.

This doctoral thesis focuses on combining new methods for data and knowledge 
management and system simulation. The former provides solutions to the challenges 
rising from the latter in order to ensure further improvements in the overall efficien-
cy of applying computational methods for purposes such as product development. 
The main contributions of this work can be summarised as follows: it introduces 
a procedure for managing multibody system modelling data using a semantic data 
model and ontology-based modelling approach, demonstrates that the semantic 
data model allows application-based reasoning on the model data, and shows that 
ontology-based modelling is able to capture domain knowledge by using semantic 
data and constraint- and rule-based reasoning.
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