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Erno Lindfors. Network Biology. Applications in medicine and biotechnology [Verkkobiologia. Lääke-
tieteellisiä ja bioteknisiä sovelluksia]. Espoo 2011. VTT Publications 774. 81 p. + app. 100 p. 
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Abstract 
The concept of systems biology emerged over the last decade in order to address 
advances in experimental techniques. It aims to characterize biological systems 
comprehensively as a complex network of interactions b etween t he s ystem’s 
components. Network b iology has become a core r esearch domain o f systems 
biology. It uses a graph theoretic approach. Many advances in complex network 
theory have contributed to this approach, and it has led to practical applications 
spanning from disease elucidation to biotechnology during the last few years. 

Herein we applied a network approach in order to model heterogeneous biological 
interactions. We developed a system called megNet for visualizing heterogeneous 
biological data, and showed its utility by biological network visualization examples, 
particularly in a biome dical context. In addition, we developed a novel biologica l 
network a nalysis method ca lled E nriched Molecular Path d etection m ethod ( EM-
Path) t hat detects phenotypic specific molecular paths in a n i ntegrated molecular 
interaction network. We showed its utility in the context of insulitis and autoimmune 
diabetes in the non-obese diabetic (NOD) mouse model. Specifically, ether phosho-
lipid b iosynthesis was down-regulated in early insulitis. This result was consistent 
with a previous study (Oreši  et al., 2008) in w hich serum metabolite samples were 
taken from children who later progressed to type 1 diabetes and from children who 
permanently remained healthy. As a result, ether lipids were diminished in the type 1 
diabetes pr ogressors. Also, in t his thes is we performed topological ca lculations t o 
investigate whether ubiquitous complex network properties are present in biological 
networks. R esults were consistent with r ecent critiques of t he ubiquitous complex 
network pr operties describing t he biological net works, which gave motivation t o 
tailor another method called Topological Enrichment Analysis for Functional Sub-
networks (TEAFS). This method ranks topological activities of modules of an inte-
grated biological network under a dynamic response to external stress. We showed 
its utility b y exposing a n i ntegrated yeast network to oxidat ive str ess. Results 
showed that oxidative stress leads to accumulation of toxic lipids. 
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Tiivistelmä 
Järjestelmäbiologian käsite syntyi yli kymmenen vuotta si tten vastauksena ko-
keellisten menetelmien kehitystyöhön. T ämä lähestymistapa pyrkii kuvaamaan 
biologisia järjestelmiä kattavasti kompleksisena vuorovaikutusverkkona, joka 
koostuu j ärjestelmän k omponenttien välisistä vuorovaikutuksista. Verkkobiolo-
giasta on tullut tärkeä järjestelmäbiologian tutkimuskohde, ja se k äyttää graafi-
teoreettista lähestymistapaa. Kompleksisten verkkojen t eorian kehitystyö on 
edistänyt tätä lähestymistapaa, ja se o n j ohtanut moniin käytännön sovelluksiin 
aina sairauksien selventämisestä bioteknologiaan viimeisten parin vuoden aikana. 

Tässä väitöskirjassa sovellettiin verkkobiologista lähestymistapaa heterogeenisten 
biologisten vuorovaikutusten mallintamiseen. Siinä kehitettiin heterogeenisen 
biologisen tiedon vi sualisointityökalu megNet, jonka hyödyllisyys osoitettiin biolo-
gisten verkkojen visualisointiesimerkein, e rityisesti biolääketieteellisessä k on-
tekstissa. Tämän lisäksi väitöstutkimuksessa kehitettiin uusi b iologisten verkkojen 
analysointimenetelmä, rikastettujen molekyylipolkujen havaitsemismenetelmä, 
joka havaitsee fenotyyppikohtaisia molekyylipolkuja integroidusta molekyyli-
vuorovaikutusverkosta. Tämän menetelmän hyödyllisyys osoitettiin insuliitiksen 
ja autoimmuunidiabeteksen kontekstissa käyttäen laihojen diabeteshiirien mallia. 
Erityisesti eetterifosfolipidibiosynteesi oli alisäädelty insuliitiksen varhaisessa 
vaiheessa. Tämä tulos oli yhteensopiva aikaisemman tutkimuksen (Oreši  et al., 2008) 
kanssa, jossa mitattiin myöhemmin tyypin 1 diabetekseen sairastuneiden lasten ja 
pysyvästi terveiden lasten seerumin aineenvaihduntatuotteidenpitoisuuksia. Tässä 
tutkimuksessa havaittiin, että eetterilipidipitoisuudet olivat sairastuneilla lapsilla alhai-
semmat kuin t erveillä lapsilla. Tässä väitöskirjassa laskettiin myös topologialaskuja, 
joiden avulla voitiin s elvittää, noudattavatko b iologiset verkot kaikkialla läsnä 
olevia kompleksisten verkkojen ominaisuuksia. Tulokset olivat yhteensopivia kaik-
kialla läsnä olevien kom pleksisten verkkojen ominaisuuksiin viime aikoina koh-
distuneen kritiikin kanssa. Tämä loi m otivaatiota räätälöidä topologista rikasta-
misanalyysia funktionaalisille a liverkoille, joka etsii topologisesti aktiivisimmat 
moduulit integroidusta b iologisesta verkosta dynaamisen stressin alaisuudessa. Tä-
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män menetelmän hyödyllisyys osoitettiin altistamalla integroitu hiivaverkko oksida-
tiiviselle stressille. Tulokset osoittivat, että oksidatiivinen stressi aiheuttaa toksisten 
lipidien kasaantumisen. 
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Preface 
This the sis was carried ou t in the Q uantitative Biology a nd Bioin formatics 
(QBIX) group at VTT Technical Research Centre of Finland from 2006 to 2010. 
The ma in funding sources were Na tional Graduate School in Informational and 
Structural Biology (IS B) t hat provided me t hree-year graduate studen t grant 
from 2007 t o 2010, T RANSCENDO pr oject of t he Tekes MASI P rogram that 
funded my six-month exchange visit to International Computer Science Institute 
(ICSI) Berkeley (CA, USA) in 2006 and 2007, a nd DIAPREPP EU FP7 project 
that provided additional funding for my research. I am grateful t o all of t hese 
funding organizations. 

I am indebted to many people that have contributed to this thesis both scientif-
ically and non -scientifically. The biggest gratitude goe s t o m y in structor R e-
search Professor Matej Oreši  for making me a sc ientist. Without his persistent 
encouragement and enthusiasm I would never have dared to embark on my PhD 
thesis. During the whole thesis work he h as professionally supervised my work 
on daily basis and maintained scientifically stimulating atmosphere in the whole 
QBIX group and provided solid funding for us. Also, I am grateful to my super-
visor  Professor  Kimmo  Kaski,  Head  of  the  Centre  of  Excellence  in  Computa-
tional C omplex Systems Research, Vice D ean of Aalto S chool of Science, for 
accepting me as a PhD student at Aalto University, and for his invaluable help in 
finalizing the thesis and wrapping up everything into covers, and also for helping 
me with many practical issues. Also, I would like to thank the pre-examiners of 
this thesis Docent Juho Rousu and Docent Tero Aittokallio for carefully reading 
the manuscript and for their invaluable comments that helped improve the quali-
ty  of  the  thesis.  I  am  also  grateful  to  Professor  Samuel  Kaski  and  Dr.  Jari  
Saramäki for b eing on my advisory board in the ISB graduate school. Both of 
them have provided invaluable comments in annual meetings. From VTT man-
agement level I would like to th ank T echnology Manager Dr . Richard Fage r-
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ström, Vice President (R&D) Dr. Anu Kaukovirta-Norja, former Vice President 
(R&D) (currently Vice President, Business Development) Dr. Juha Ahvenainen, 
Professor Hans Söderlund, and P rofessor Johanna Buchert for providing excel-
lent research environment. 

The QBIX group was founded by Matej, and in the beginning of 2009 it w as 
split in t wo g roups: M etabolomics gr oup a nd Bio systems M odeling gro up. I 
work in the latter group. I would like to t hank a ll people from t hese groups for 
excellent scientific company. Especially, I would l ike to thank my group leader 
Dr. Marko Sysi-Aho a nd my former group leaders Dr. Mika Hilvo, Mr. Pekka 
Savolahti and Dr. Kim Ekroos for their continuous support and for pushing me 
to finish my PhD thesis.  Also,  I  am deeply indebted to my close colleague Dr.  
Venkata Gopalacharyulu Peddinti for his excellent work dur ing the years, espe-
cially his contribution to megNet’s databases has been crucial. Also, many dis-
cussions with him have been very invaluable opening up always new scientific 
aspects, and he h as been alw ays very helpful and showed capabil ity to explain 
challenging issues in s imple way. I would also like to thank my other close col-
league Laxmana Rao Yetukuri for fruitful collaboration on lipid pathway recon-
struction, and c ontinuously pushing me t o f inish my PhD thesis. Also, I would 
like to thank Dr. Tuulia Hyötyläinen and Dr. Tuulikki Seppänen-Laakso for their 
collaboration on li pidomics studies, a nd Ms. Sa ndra Castillo, Mr . Artturi Koi-
vuniemi, Mr. Matti Kankainen, Dr. Tijana Marinkovi , Dr. Jing T ang, and Mr. 
Brudy H an Z hao f or excellent company i n daily life a t VTT, a nd M s. Anna-
Kaarina Hakala and Ms. Si rpa Nygrén for their s ecretarial help with practical 
issues. 

I have continuously b een exposed to working with people from different 
background at VTT, which has been very rewarding. First of all, I would like to 
thank Dr. Jyrki Lötjönen and Mr. Jussi Mattila from VTT Signal and Image Pro-
cessing group, as well the other members of the group for fruitful collaboration 
on studying biological networks in the context of m edical images. Especially, I 
would like to thank Jussi for developing a desktop user interface for megNet and 
teaching me many useful aspects in software engineering. Also, I would like to 
thank Research Professor Merja Penttilä, Dr. Laura Ruohonen, Dr. Mikko Arvas, 
Dr. Juha-Pekka Pitkänen, Dr. Merja Oja, Dr. Paula Jouhten and Dr. Eija Rintala 
from VTT Cell Factory for collaboration on studying biological networks in the 
context of metabolic eng ineering, and Dr. Harri S iitari, Dr. A rho V irkki, Dr. 
Vidal Fey, Dr. Sampo Sammalisto and Dr. Timo Pulli for collaboration efforts to 
commercialize VTT’s bioinformatics tools. 
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This thesis is composed of s ix jointly publ ished scien tific pub lications. I 
would like to thank all coauthors of these publications. I have mentioned most of 
them earlier in this preface. Those not mentioned I would like to thank Dr. Eran 
Halperin, Dr. Catherine Bounsaythip, Dr. Teemu Kivioja, Dr. Jaakko Hollmén, 
Mr. Jarkko Miettinen, Dr. Antti Pesonen, and Dr. Vidya R. Velagapudi for their 
contribution, especially Eran for supervising my work while visiting his group at 
ICSI Berkeley, and Jaa kko f or supervising my Mast er’s thesis which initiated 
the research topic of this thesis. 

In addition, I would like to thank all other people of t his world. We are com-
posed of a complex network of interactions, so a ll of you have dir ectly or indi-
rectly interacted with me, and thus made this thesis a reality. Thank you all very 
much! 
 
 
September 23, 2011, Espoo, Finland 

 
Erno Lindfors 
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Author’s contribution 
I. Publication I introduces the Enriched M olecular Path detection method 

(EMPath), an d shows i ts utility in the context of type 1 diabetes mouse 
models leading to interesting findings in terms of medical biology. The au-
thor of this t hesis designed the method together with Eran Halperin (EH). 
The author  implemented the method,  and used it  in  a  type 1 diabetes  case 
study. The author and Matej Oreši  (MO) wrote the main parts of the man-
uscript. Also, Peddinti V. Gopalacharyulu (PVG) and EH contributed to the 
writing. PVG designed and p erformed functional and gene set enrichment 
analyses for the type 1 diabetes case study. MO interpreted the results of the 
type 1 diabetes case study. EH and MO supervised and conceived the study. 

II. Publication II introduces a heterogeneous data integration and visualization 
system called megNet. The utility of t his system is demonstrated by two ex-
amples: an e xample in w hich there is c ross-talk1 between two different 
stages of metabolism and a n e xample in which a conceptual g raph i s 
mapped into two dimensions. The author designed and implemented the al-
gorithm logic in the middle tier, integrated biological entities and m odeled 
them as a biological network re presentation, a nd implem ented the Sam-
mon’s mapping method. Also, he implemented a user interface for the sys-
tem, and w rote these parts in the m anuscript. P VG designed the system, 
performed data modeling, developed the schemas for the databases, and ac-
quired and incorporated most of the data into the databases. Also, he wrote 
the first draft of the manuscript which was then im proved by the other au-
thors. Catherine Bounsaythip (CB) designed the conceptual spaces f or the 
system. Laxman Yetukuri (L Y) a cquired t he c ompound data a nd incorpo-
rated it into the databases. Teemu Kivioja (TK) participated in database de-
sign a nd d iscussed efficiencies of database qu eries. Jaakko H ollmén (JH) 
participated in discussion of mapping methods. MO con ceived and super-
vised the study, and interpreted the results. 

                                                   

1 The concept of cr oss-talk wil l be used widely in th is thesis. In broad sense, this con -
cept means connections between different biological processes (e.g. stages of metabo-
lism). In usual case, more than one ‘omics’ technologies are involved in this , for ex-
ample protein-protein interactions can make signaling between different stages of me-
tabolism or between transcriptional regulation and metabolism. 
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and methods for to pological cal culations and co-expre ssion ne twork c on-
struction. The utility of these methods is shown by three practical examples: 
a generic topological study in a yeast metabolic network, a mapping exam-
ple in the context of a specific biological process and a co -expression net-
work example in w hich transcriptomics data is integrated with interaction 
data. The author designed and implemented the topological study, imple-
mented and designed most of the middle tier, and wrote some parts of the 
manuscript. PVG developed t he ideas c oncerning integration of tran-
scriptomics d ata to networks and implemented the analyses of these net-
works, and wrote the first draft of the manuscript. The author and PVG con-
tributed equally to this work. Jarkko Miettinen (JaM) implemented the Cur-
vilinear Component Analysis (CCA) and Curvilinear Distance Analysis 
(CDA) mapping me thods a nd im proved t he Sa mmon’s mapping me thod. 
Also, he improved the us er interface and middle tier software design a nd 
implementation, and wrote the mapping method part of the manuscript. CB 
designed the co nceptual spaces and contributed to the w riting. MO con-
ceived and sup ervised the study, interpreted the results and contributed to 
the writing. 

IV. Publication IV describes the de tails of network representation and the dis-
tances used in the megNet’s network. It contains three practical examples: 
an example demonstrating how megNet retrieves and visualizes a metabolic 
network, an example that demonstrates how a mapping can be used to study 
the structure of an integrated metabolic and protein-protein interaction net-
work, and a context based mapping example demonstrating how d istances 
between biological entities change based on the biological context. The au-
thor designed the network representation and distance matrix, implemented 
the Sammon’s mapping me thod, and cre ated the pra ctical examples. The 
author and CB wrote the main parts of the manuscript. All authors contrib-
uted to the writing. PVG provided biological details of the data. JH partici-
pated in discussion of mapping methods. MO conceived and supervised the 
study. 

V. Publication V describes  the  latest  status  of  the  megNet  system.  It  extends  
Publications II and III by introducing a desktop user interface for visualiz-
ing biological networks in thr ee dimensions, and a web us er interface for 
taking input parameters from the user, and an in-house text mining system 
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that utilizes existing knowledge. The practical utility of the latest megNet is 
demonstrated by a case study in which lipidomics data from our laboratory 
is integrated with interaction data from many sources leading to interactions 
that could possibly explain our previous associations between biological da-
ta and medical images. The author created the practical examples, interpret-
ed the results, designed and implemented most of the algorithm logic in the 
middle tier, designed and i mplemented the web us er interface, and wrote 
the main parts of the m anuscript. T he author a nd Jussi Mattila (JuM) de -
signed interfaces between the middle tier and user interfaces. JuM designed 
and implemented the desktop a pplication, and contri buted to t he w riting. 
PVG maintained the databases, designed and implemented correlation cal-
culations and gene expression data n ormalization in the middle tier, incor-
porated UMLS annotation into gene expression data sets, and contributed to 
the w riting. Antti Pesonen (A P) designed and implemented the in -house 
text mining system. Jyrki Lötjönen (JL) and MO conceived and supervised 
the study, and contributed to the writing. MO finalized the manuscript. 

VI. Publication IV i ntroduces t he T opological E nrichment Analysis of F unc-
tional Subnetworks method (TEAFS), and shows its utility by a case study 
in which a yeast biological network is exposed to oxidative stress in dynam-
ic manner. The a uthor constructed t he n etworks for the case study, per-
formed topological calculations on reconstructed ne tworks unde r the dy-
namic stress, implemented topological calculations in megNet’s middle tier 
that were used in parts of the TEAFS method, implemented the statistical 
test of the TEA FS method and contributed to the writing. PVG developed 
the main ideas and implemented parts of the TEAFS method, performed the 
data analyses a nd wrote t he ma nuscript. Vidya R. Velagapudi ( VRV) p er-
formed metabolic experiments a nd da ta analysis, and wr ote the experi-
mental methods a nd biologi cal de tails in the m anuscript. PVG and V RV 
contributed equally to this publication. EH provided ideas for the statistical 
test, and contributed to the writing. MO conceived and supervised the study 
and contributed to the writing. 
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1. Introduction 
The systems biology approach considers the biological system such as cell as a 
holistic system that comprises several types of molecules and in teractions (Ide-
ker et a l., 2001; Kitano 2002a, b). T his a pproach has been developed over the 
past decade, with network biology emerging as one of its core domains (Chuang 
et al., 2010). The network approach has already led to practical applications for 
example in disease elucidation (C huang et al., 2007; I deker & S haran, 2008; 
Schadt, 2009) and in biotechnology (Luscombe et al., 2004). The basic idea is to 
model biological phenomena as networks in whi ch nodes are biological entities 
(e.g. proteins, genes, metabolites) a nd edges interactions (e.g. protein-protein 
interactions, metabolic reactions). These methods are based on advances in com-
plex network methods across many fields (Barabási & Albert, 1999; Shen-Orr et 
al., 2002; Milo e t al., 2002, 2004). Ubiquitous complex network properties 
stemmed from this work have lately obtained some critiques but they have re-
mained a s a powerful framework for network b iology (Lima-Mendez & Helden, 
2009). 

One challenge of systems biology is the heterogeneity of biological data: there 
have been m any advances in biological measurement techniques over the past 
decade, which has generated a huge a mount of heterogeneous b iological data 
(Demir et al., 2010). In order to translate this into practical utility, it is necessary to 
integrate data from various sources into an integrated platform and enable an easy 
visualization of this data (Gehlenborg et al., 2010; O’Donoghue et al., 2010). 

1.1 Aims of the thesis 

The aim of this thesis is to address the a bove-mentioned challenges of systems 
biology. More specifically the main aims are listed below, and they are summa-
rized in Figure 1.1. 
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 We set up a system called megNet for visualizing heterogeneous biolog-
ical data in order to model various types of biological interactions as ho-
listic networks (Publications II–V) and assign an appropriate distance 
metric for the biological entities (Publication IV). More specifically, the 
author o f this the sis has de signed and im plemented m ost of the algo-
rithm logic of this system. Also, he im plemented the first desktop user 
interface of this system, and a web interface for taking input parameters 
from the user. The practical utility of this system is demonstrated first by 
a cross-talk example via different stages of y east metabolism (Publica-
tion II) and by a context based mapping example in a yeast metabolic 
network (Publication III). Then we used similar approaches to study bi-
ological networks in the context of medical images, and we found inter-
actions that could po ssibly explain o ur previous associations between 
lipidomics profiles and medical image parameters (Publication V). 

 As a main me thodological c ontribution we de velop a graph theoretic 
method called Enriched Molecular Path detection method (EMPath). We 
show the utility of this method by using it in the context of type 1 diabe-
tes mouse models leading to interesting results in terms of medical biol-
ogy (Publication I). 

 This thesis contributes to topological analyses of biological networks. 
We first performed topological calculations on a generic yeast metabolic 
network (Publication III), and then on reconstructed yeast networks un-
der dynamic stress (Publication VI) to investigate whe ther ubiquitous 
complex network properties are present in these networks. These results 
showed that these laws are not present, which is consistent with the re-
cent critiques to them. It thus indicated that we cannot gain our biologi-
cal understanding much from generic topological studies and t hus gave 
motivation to tailor the Topological Enrichment Analysis for Functional 
Subnetworks method (TEAFS) so that it analyzes modules of networks. 
This method was developed in Publication VI. In this publication we 
showed the utility of this method by exposing a yeast biological network 
to oxidative stress. As a re sult we found that toxic lipids were accumu-
lated under dynamic r esponse t o oxidative stress, which was validated 
by in-house metabolomic a nalysis. I n the development of t his method 
the author of this t hesis pr ovided help in network construction, a nd i n 
statistical and topological calculations. 
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Figure 1.1. Schematic diagram summarizing the main aims of this thesis. 
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2. Literature review 
In order to better understand the background of network biology, in this chapter 
we describe how it has evolved during the l ast few decades. W e can r oughly 
divide this process in three main parts as illustrated in Figure 2.1. In the first part 
solid theory for complex networks was created. In the beginning not much com-
putational resources were available. Some preliminary models were created, but 
they we re mainly ba sed on in tuition while lacking pra ctical e vidence. Then 
gradually more com putational powe r became a vailable. This enabled t esting 
models on r eal data, which introduced ubiquitous c omplex network properties 
across many f ields. In t he s econd part a huge a mount of experimental data be-
came available. This enabled considering several components simultaneously as 
a holistic s ystem le ading t o ‘systems biology’ ( Ideker et al., 2001; Kitano 
2002a, b). During the last few years these models have been used in real biologi-
cal contexts. This has led to some critiques towards the ubiquitous complex net-
work properties. However, specific tools and concepts of complex network theo-
ry have remained as a powerful framework in network biology leading to many 
practical applications. 
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Complex
network theory

• most networks
tacitly believed to
be random

• lack of biological
data and real
evidence

• computational
power available
and ubiquitous
complex network
properties considered

• experimental data
and computational
power became
available

• the concept of 
systems biology
introduced

• models used in real
biological contexts

• ubiquitous complex network
properties criticized

• powerful framework
remains in network biology

• practical applications
emerging

Biological data Contemporary 
biological applications

1999 2005… 1950 2030 …  

Figure 2.1. Main parts of network biology. 

2.1 Complex network theory 

During the last decade there have been many advances in complex network theo-
ry (Albert & Barabási, 2002). In these efforts phenomena from many fields are 
modeled by networks. In biology these networks comprise nodes that are biolog-
ical entities (e.g. proteins, metabolites) and edges that are interactions (e.g. pro-
tein-protein interactions, metabolic reactions). 

Until 1999 most networks were tacitly believed to follow an Erd s-Rényi ran-
dom network model ( Erd s & Rényi, 1959, 1960). Math ematical details of this 
model are described in Section 3.3. Briefly the idea is th at nodes are connected 
randomly to each other. However, the assumption that most networks follow this 
model was mainly bas ed on in tuition: the re were not practical appl ications to 
validate this assumption. 

In the beginning of this millennium more computational power became avail-
able, which enabled t esting models on r eal data. I t led t o a power-law degree 
distribution model which was first demonstrated by practical e xamples fro m 
outside biology (Barabási & Albert, 1999) and then also in biological networks 
such as in metabolic networks (Jeong et al., 2000) and in protein-protein interac-
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tion ne tworks (J eong e t a l., 2001; Wagner, 2001; Giot et a l., 2003; Li et a l., 
2004). T hen another model call ed hierarchical network model was in troduced 
(Ravasz et al., 2002; Ravasz & Barabási, 2003), and it was shown that biological 
networks such as metabolic networks (Ravasz et a l., 2002) and pro tein-protein 
interaction networks ( Yook e t al., 2004) fo llow this mode l, a s we ll many net-
works from outside biology (Ravasz & Barabási, 2003). Therefore, some scientists 
considered the power-law degree distribution and hierarchical models as ubiqui-
tous c omplex network properties, since they were applied a cross many f ields. 
The mathematical details of these models are also described in Section 3.3. 

The ubiquitous complex network properties introduced important concepts for 
network biology. F or example robustness: a power-law network is robust to a 
random attack to a node and lethal to a targeted attack to a highly connected hub 
node (Jeong et al., 2000, 2001). The network can thus keep its structure if a ran-
dom node is collapsed, but it ge ts fragmented if a highly connected hub node is 
collapsed. Another important concept is modularity: biological networks tend be 
organized in modules, a nd inside each module biological entities interact with 
each o ther in order to c arry out a di stinct b iological f unction (Hartwell e t al., 
1999; Qi & Ge, 2006). However, this is not usually ideally the case, for example 
there are connections between modules via hierarchy levels (Ravasz et al., 2002; 
Ravasz & Barabási, 2003). Also, as an important concept to study the biological 
meaning of modules a network motif3 was introduced as a significantly recurring 
pattern in a network about ten years ago, first by showing that a transcriptional 
interaction network in Escherichia coli is composed of biologically meaningful 
motifs (Shen-Orr et a l., 2002). T hen this concept was generalized b y showing 
that complex networks fr om m any o ther fields (e.g. neurology, ecology, and 
engineering) are also composed of meaningful motifs (Milo et al., 2002). A few 
years later the unive rsality of this c oncept was shown: sim ilar motifs a cross 
many fi elds were found, for example i n t ranscription net works in m icro-
organisms, World Wide Web and social networks, and word adjacency networks 
from different languages (Milo et a l., 2004). However, the concept of network 
motif has been criticized by stating that some motifs tend to be results from spa-
tial clustering rather than ubiquitous evolutionary properties (Artzy-Randrup et 
al., 2004). 

                                                   

3 Analogously the con cept of mot if h ad been used in sequence an alysis as recurring 
nucleotide or amino-acid patterns. 
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A growth and pr eferential att achment process is a nother interesting concept 
related to the ubiquitous complex network properties (Yule, 1925; Simon, 1955; 
Price, 1976; Barabási & Albert, 1999; Newman, 2005). It is a stochastic process 
that is assumed to generate the power-law degree distribution model. In brief, it 
is based on the following two assumptions. 

1. The network grows over time: new nodes continuously join the network. 

2. A new node prefers to link to a highly connected node: the higher num-
ber of links a node has the higher probability is that it gets a new link. 

In a network biology r eview B arabási & Olt vai (2004) they explain how t he 
growth a nd p referential a ttachment process is associated with gene duplication 
in protein-protein interaction networks. Briefly, the idea is that in gene duplica-
tion one or several genes are copied twice. This is manifested as a new interact-
ing partner in protein-protein interaction network. The more l inks a protein has 
the higher probability is that it in teracts with a protein of d uplicated genes, and 
thus gets a new interacting partner. 

In Albert & Barabási (2002) they mention that the growth and preferential at-
tachment process could generate networks also i n other fields. For example, 
when we create a new page in the World Wide Web, we tend to create a link to a 
popular page (e.g. Google Web Search page). Therefore a highly connected page 
tends to get linked to a new page when the World Wide Web grows. In a citation 
network a highly cited publication tends t o get a ne w citation, since it is well 
known and thus has scientific credibility. 

2.2 Biological data 

Gradually early this millennium many high-throughput technologies emerged for 
many types of interactions. As a result, we have a huge amount of heterogeneous 
biological interaction d ata available, which has revolutionized t he b iological 
research. Traditionally we were interested in single molecules (e.g. genes), 
whereas now i t is possible t o con sider several com ponents simultaneously i n 
integrated manner via several t ypes of interactions. This approach has led t o a 
new concept called ‘systems biology’ (Ideker et al., 2001; Kitano 2002a, b). 

As high-throughput t echnology examples, two techniques for detecting pro-
tein-protein interactions were developed: a yeast two-hybrid method (Uetz et al., 
2000; Ito e t al., 2000; Fields, 2005) and affinity purification coupled with mass 
spectrometry (Ho et a l., 2002; Gavin e t a l., 2002, 2006; Kr ogan et a l., 2006). 
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Both of these technologies enable detecting thousands of protein-protein interac-
tions s imultaneously. T he former detects binary in teractions. T he later detects 
interaction complexes. These methods have generated a huge amount of protein-
protein in teraction d ata. Man y d atabases h ave been e stablished to colle ct this 
data, for example DIP (X enarios et al., 2002), MINT (Ceol e t al., 2010), a nd 
BIND ( Bader et al., 2003). T hough t hese d atabases provide promising initial 
framework for studying networks in protein level, they still have many challeng-
es ahead, for example it has been estimated that protein i nteraction maps are 
50% complete for a model organism Saccharomyces cerevisiae yeast and 10% 
complete for human, and t hey contain a high number of f alse-positive i nterac-
tions (Hart et al., 2006). 

During the last 10–20 years many genomes have been completed, most notably 
the human genome project (Lander et al., 2001; Venter et al., 2001) . Many or-
ganism specific metabolic model s ha ve been constructed from these genomes. 
For example, KEGG is a database comprising metabolic pathway maps for more 
than one hundred species (Kanehisa et al., 2004). Also, many genome-wide met-
abolic models have been constructed for model organisms such as yeast Saccha-
romyces cerevisiae (Förster et al., 2003; Duarte et al., 2004; Herrgård et al., 2008), 
Escherichia coli (Feist & Palsson, 2008), mouse (Sheikh et a l., 2005; Quek & 
Nielsen, 2008), and also for human (Duarte et al., 2007; Ma et al., 2007). 

Also, many microarray technologies emerged by the early millennium (Schul-
ze & Downward, 2001). This has enabled simultaneous study of several genes in 
a phenotypic context by taking gene expression measurements for example from 
disease and healthy samples. Some systematic efforts have been made to collect 
this data. For example, GEO is a public database where biologists ca n sub mit 
their gene expression exp eriments (Barrett et a l., 2009). As a r esult, the re are 
several thousand s of samples from different conditions that researchers can 
freely use. In addition, several other b iological databases have been established 
during the l ast decade. More extensive list of the se databases is pr esented for 
example in Demir et al. (2010). 

2.3 Contemporary biological applications 

Since the concept of systems biology has existed for a while, biologically mean-
ingful a pplications have emerged, which i n t urn has shed also s ome critiques 
towards the ubiquitous complex network properties that were made in the early 
times of c omplex network theo ry. Especially, the pr esence of the power-law 
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degree distribution4 in biolog ical networks has been criticized. For example, in 
Khanin & Wit  (2006) they took a rigorous approach to this  question.  This  was 
based on an observation that it is usually tempting to come up with a conclusion 
that a distribution follow s the p ower-law always when i t is decreasing. They 
used a maximum likelihood method to investigate rigorously whether distribu-
tions of 1 0 b iological networks ( e.g. protein-protein i nteractions, gene i nterac-
tions, synthetic lethal interactions, metabolic interactions) follow the power-law. 
As a result, none of these distributions f ollowed ideally the p ower-law degree 
distribution model. In a ddition, they inve stigated how consi stent t he same 10 
biological net works ar e wi th a truncated power-law degree distribution model 
which defined rigorously in Equation 3.4 i n Section 3.3. The results were more 
promising: a ll networks f ollowed t he truncated power -law deg ree di stribution 
model  with  quite  small  cut-off  coefficients.  This  gave  a  hint  that  it  seems  that  
biological networks follow the power-law degree distribution model only in very 
small degrees. Actually already in Jeong et al. (2001) there was supporting evi-
dence stating t hat biological networks f ollow be tter the truncated powe r-law 
degree distribution model than the ‘normal’ power-law degree distribution mod-
el. In addition, some o ther a lternative models to the power-law degree distribu-
tion model have emerged. For example, in Pržulj e t al. (2004) th ey introduced a 
geometric ra ndom m odel. In Pržulj (2007) they showed that many protein-
protein i nteraction networks are m ore c onsistent with this model than with t he 
power-law degree distribution model. Based on all of these findings we can con-
clude that it seems that the power-law degree distribution model is not present in 
the ideal form suggested by the theory in biological networks, and also there has 
been evidence stating that these models contain sampling artifacts, i.e. if a sub-
network follows the power-law degree distribution model, it does not imply that 
the whole network follows it (Aittokallio & Schwikowski, 2006). 

A recent network biology review (Lima-Mendez & Helden, 2009) p oints out 
the above-mentioned weaknesses of ubiquitous complex network properties but 
it a lso points out that complex network t heory has cr eated important tools a nd 
concepts such as hub, robustness a nd modularity that have tur ned out to b e a 
powerful fra mework in practical applications in ne twork b iology. Especially, it 
points out the importance of l ocal modules and mot ifs. The same issue is elevat-

                                                   

4 This d istribution is de fined f ormally in Se ction 3.3 in a b ullet e ntitled “ Power-law 
degree distribution model”. 
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ed also in another network biology review (Qi & Ge, 2006) in w hich they point 
out that the modularity i s an im portant concept when studying biological ne t-
works in dynamic manner. 

During the last few years useful biological applications have emerged. For ex-
ample Luscombe et al. (2004) developed a method called Statistical Analysis of 
Network Dynamics (SANDY). This method has biological novelty, since it han-
dles a biological ne twork in dyn amic manner: pr eviously biolog ical ne tworks 
were studied in static m anner. T his method u ses t ime-varying tra nscriptomics 
data from multiple conditions. For each condition it calculates topological 
measures ( e.g. node deg rees), i dentifies most i mportant hubs and mo tifs. T hey 
showed the utility of the method by a case study in which a cell was exposed to 
inter-cellular processes in two conditions and to environmental changes in three 
conditions. T hey found that transcription factor combinations a re complex a nd 
highly inter-connected under inter-cellular processes, whereas they ar e simple 
and loosely connected under environmental changes. 

As a local modularity approach Chuang et al. (2007) developed a method that 
searches sub- networks in t he context of gene expression d ata. T hey used this 
method t o s earch s ub-networks in a protein-protein i nteraction n etwork t o d is-
criminate patients with breast cancer metastasis. As a re sult, they de tected sub-
networks t hat pr ovided novel hy potheses for pat hways involved in tumor pr o-
gression. These networks contained genes that were not differentially expressed 
whereas they importantly interconnected differentially expressed genes. This 
indicated the importance of the network a pproach: the gene expression data 
alone would not have been able to detect the interconnecting genes. 

In addition, visualization has been an important topic during t he last few 
years. T here is a huge a mount of heterogeneous b iological data available an d 
there are several good single tools for visualizing and analyzing heterogeneous 
biological data, for example Cytoscape (Cline et al., 2007), PATIKA (Demir et 
al., 2002), ONDEX (Köhler et al., 2006), Medusa (Hooper & Bork, 2005), Os-
prey (Br eitkreutz et a l., 2003), BioLayout Express(3D) (F reeman et a l., 2007), 
ProViz (Iragne et al., 2005), PIVOT (Orlev et al., 2004), COPASI (Hoops et al., 
2006), GEPASI (Mendes, 1993, 1997), E-CELL (Tomita et al. , 1999), COBRA 
Toolbox (Becker et al., 2007). However, the ba sic pr oblem t hat the biol ogist 
faces is the u sability: databases and t ools tend t o b e s eparated fr om ea ch other 
(Gehlenborg et a l., 2010; O’Donoghue et a l., 2010), and they are usually quite 
difficult to use in a real b iological context (Saraiya et al., 2005; Pavlopoulos et 
al., 2008). Therefore, there is need for integrated platforms that allow easy visu-
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alization and analysis of heterogeneous data (e.g. signaling, regulatory, metabol-
ic) across multiple l evels (e.g. from molecular to anatomical level) in d ifferent 
contexts ( e.g. cellular localizations, disease versus healthy state). T raditionally 
this has been quite a formidable challenge, but efforts towards this direction are 
underway. 
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3. Methods 
In this chapter we describe the methods us ed in t his thesis. In S ection 3.1 w e 
describe a heterogeneous biological data visualization system called megNet that 
constitutes  the set  up for  the research of  this  thesis.  In Section 3.2 we describe 
the Enriched Molecular Path detection method (EMPath) that is the main method 
developed in this thesis. In Section 3.3 we go through the most commonly used 
topological methods of biological networks a nd briefly de scribe how we us e 
them in thi s thesis. In Sec tion 3. 4 we de scribe t he T opological E nrichment 
Analysis for Functional Subnetworks method (TEAFS) to which this thesis con-
tributes. 

3.1 megNet – Heterogeneous biological data 
visualization system 

In Publications II–V we h ave developed a heterogeneous bi ological vi sualiza-
tion system called megNet in order to a ddress the needs of systems biology: 
model various b iological interaction types as holistic sy stems (Ideker et al., 
2001; Kitano 2002a, b). The main aim is to provide easy visualization of hetero-
geneous biological data (Gehlenborg et al., 2010; O’Donoghue e t al., 2010). 
This system is described in de tail in these publications. In this chapter we de -
scribe it briefly. More specifically, in Section 3.1.1 we present its overall idea. In 
Section 3.1.2 we briefly describe its technical architecture and main algorithms. 

3.1.1 Overall idea 

An overall conceptual framework of megNet is presented in Figure 1 of Publica-
tion V.  Several  single  biological  databases  exist.  The  basic  idea  is  to  integrate  
these databases into an integrated platform, and thus translate the work made on 
these databases into practical utility. Once the d ata is integrated, t he user then 
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models it a s a ne twork: biological entities as nodes (e.g. proteins, metabolites) 
and interactions as edges (e.g. protein-protein interactions, metabolic reactions). 

Once the us er has cre ated the network model, he or she then uses megNet to 
construct networks that are usually quite large for reasonable interpretation. He or 
she therefore needs to study them in a specific context that can be for example a 
medical image or a physiological condition from a yeast culture. Then he or she 
uses computational methods to extract con text sp ecific information from t he 
network.  He or  she can use for  example a  context  based mapping that  we will  
briefly describe in Section 3.1.2. Alternatively he or she can export the network to 
other tools for example to the Enriched M olecular Path detection method (EM-
Path) (Se ction 3 .2), or to the To pological En richment A nalysis of Function al 
Subnetworks method (TEAFS) (Section 3.4). In addition, he or she can browse 
the network manually, a nd use the human eye to detect for example cross-talk 
between different stages of biological processes. T he utility of this approach is 
demonstrated by practical examples in Sections 4.1.1 and 4.1.3. Also, we have 
made an online demo in http://sysbio.vtt.fi/megNet_demo/index.html5 that brief-
ly shows a few use-case examples. 

3.1.2 Technical architecture and main algorithms 

The technical architecture of megNet is described in detail in Publications II–V. 
It can be divided in three main components: client, middle tier and database tier 
that are presented in Figure 3.1. Next we will describe how the middle tier im-
plements the ma in a lgorithms of megNet. Also, we will b riefly describe t he 
basic functionalities of the client and the overall content of the database tier. 

                                                   

5 If  this  link  expires,  please  contact  the  author  of  this  thesis  (Erno.Lindfors@vtt.fi) to 
request an updated link. 

http://sysbio.vtt.fi/megNet_demo/index.html5
mailto:Erno.Lindfors@vtt.fi
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Figure 3.1. Main components of megNet. 

Middle tier 

The purpose of middle tier is t o process t he algorithm logic of megNet. More 
specifically, it constructs ne tworks, p erforms t ext mining, context based m ap-
ping a nd topology calc ulations. In t his s ection we will describ e how megNe t 
implements these algorithms. 

The middle t ier is implemented in Java programming language by using JVM 
v.1.6.16 (Oracle, Inc.), and it is r unning on a JBo ss Application Server (JBoss, 
Inc.). It uses a Tamino Java API and Oracle JDBC Thin drivers to communicate 
with t he d atabases, and Simple Objec t Access P rotocol (SOA P) messages t o 
communicate  with  the  user  interfaces  by  using  internal  XML schemas  that  are  
represented as diagrams in Figures 3.2–3.12. 
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Network construction 

Network construction is t he most central algorithm that the middle tier imple-
ments, since most of the o ther algorithms use the network. It takes a graph c on-
struction request (Figure 3.2) as in put. This message comprises many elements 
which enables constructions of networks of many types. Most of these elements 
are optional which means that the m iddle tier can con struct the network f rom 
only a few input para meters. Next we w ill briefly desc ribe each o f these ele -
ments. 

 QueriedDatabases. This element comprises t he names of the databases 
from which t he middle tier retrieves interactions a nd reactions f or the 
network. 

 Species. This ele ment c omprises t he species in which the m iddle tier 
constructs the network. 

 UniProtAccessionNumbers. This element comprises the UniProt acces-
sion numbers (UniProt Consortium, 2010) of pr oteins for which t he 
middle tier retrieves interactions and reactions. 

 UniProtEntryNames. T his element comprises the UniProt entry na mes 
(UniProt Con sortium, 2010) o f pro teins for w hich the m iddle tier r e-
trieves interactions and reactions. 

 EcNumbers. T his element comprises t he EC numbers (Webb, 1992) of 
proteins for which the middle tier retrieves interactions and reactions. 

 EmblIds.  This  element  comprises  the  EMBL  identifiers  (Cochrane  &  
Galperin, 2010) of genes for which the middle tier retrieves interactions 
and reactions. 

 KeggMetabolicPathways. Thi s e lement com prises the n ames of m eta-
bolic pathways that the middle tier retrieves from K EGG (Kanehisa et 
al., 2004) and integrates them with other selected databases. 

 YeastNetMetabolicPathways. This element comprises the names of met -
abolic pathways that the m iddle tier retrieves from Yeast 1 .0 (Herrgård 
et al., 2008) and integrates them with other selected databases. 

 GeneNames. This element comprises t he na mes of genes for which th e 
middle tier retrieves interactions and reactions. 
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 GoAccessions. This element comprises the GO (Gene Ontology Consor-
tium, 2008) accessions of biological processes for which the middle tier 
retrieves interactions and reactions. 

 CompoundNames. This element comprises the names of compounds for 
which the middle tier retrieves interactions and reactions. 

 KeggCompoundIds. This element comprises the KEGG identifiers 
(Kanehisa et al., 2004) of compounds for which the middle tier retrieves 
interactions and reactions. 

 Depth. T his element c omprises t he depth of the ne twork construction, 
which means how many nearest neighbors the middle tier r etrieves for 
given proteins, genes and/or metabolic pathways. 

 CorrCoeffs. This element comprises correlation c oefficients for gene 
pairs for which the middle tier constructs a co-expression network and 
integrates it with interactions and reactions retrieved from other selected 
databases. 

 BarDataSets. This element comprises gene expression datasets that the 
middle tier associate with genes so the client visualizes them as bars in-
side gene nodes. 

 UseComp. T his element defines whether the middle tie r constructs a 
compartmentalized or non- compartmentalized network. 
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Figure 3.2. XML schema for graph construction request. 
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Once the middle tier has con structed the network, i t r eturns it as a g raph con-
struction response (Figures 3.3–3. 5). This message comprises t hree m ain ele -
ments that we will briefly describe below. 

 ConnectionTypes. T his element comprises connection types that the 
network comprises. It has three attributes: the first one defines whether 
the connection is uni-, bi-, or non-direc tional, the second one def ines a 
shortened name for the connection type (e.g. PROT_INT) and the third one 
defines a longer name for the connection type (e.g. “protein interaction”). 

 Nodes. This element comprises nodes that the network comprises (Fig-
ure 3.4). Each sub-element represents one node type (e.g. protein, gene). 
Each of these elements comprises more specific data about the node. For 
example, the protein comprises many identifiers that describe it in detail 
(e.g. UniProt Identifiers, EC number) as described in Figure 3.4. 

 Edges. T his element comprises edges t hat the ne twork comprises (F ig-
ure 3.5). Each sub-element represents one edge type (e.g. protein-protein 
interaction, KEGG). Each of these elements comprises more specific da-
ta about the edge. For example, the protein-protein interaction comprises 
source databases from which the interaction was retrieved as described 
in Figure 3.5. 

 

Figure 3.3. XML sche ma f or the m ain elements of graph const ruction r esponse. The 
nodes and edges elements are opened in Figures 3.4 and 3.5 respectively. 
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Figure 3.4. XML schema for the nodes element of graph construction response. 
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Figure 3.5. XML schema for the edges element of graph construction response. 
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Text mining 

The text mining algorithm takes a text mining request (Figure 3.6) as input. This 
message comprises elements f or databases a nd species. T he purposes of t hese 
elements are similar as in the graph construction request: they define from which 
database and in which species the midd le tier retrieves data. Also, there is a n 
element that defines keyword(s) (e.g. diabetes, oxygen) for the retrieval. 

 

Figure 3.6. XML schema for text mining request. 

The middle tier retrieves gene expression microarray data sets and proteins that 
are a nnotated with t he keyword f rom GEO (Barrett et al., 2009) a nd UniProt 
(UniProt Consortium, 2010) r espectively, and includes them in the text mining 
response (Figure 3.7). The retrieved proteins are included the ProteinNodes element, 
which is identical to this element in the graph construction response (Figure 3.4). 
The retrieved datasets are included in the DataSets element. This element com-
prises a data type called ExperimentDataType. This data type comprises an 
experiment specific data (e.g. textual description, title, keywords, medical anno-
tations). In addition, the DataSets element comprises a Samples element that 
contains also the ExperimentDataType which in tu rn defines a sample specific 
data. In the DataSets element there is a Channel attribute that defines whether 
the data set is o f single ( Lockhart et a l., 1996) o r of dual (Schena et a l., 1995) 
channel microarray. 
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Figure 3.7. XML schema for text mining response. 

Context based mapping 

The purpose of the context based mapping algorithm is to map internal distances 
of nodes of a biological network into low a dimensional output space (usually 
two or three). Figure 1 of Publication IV illustrates how the in ternal distances 
are calculated. The internal distances and the output space have some discrepan-
cy that we call mapping error. The purpose of the mapping algorithm is to iterate 
the output space so that the m apping error is m inimized. The middle tier com-
prises three mapping methods: Sammon’s Non-Linear Mapping (Sammon, 
1969), CCA  (Dem artines & Hérault, 1997) a nd CDA (Lee et a l., 2004). The 
mapping algorithm comprises three messages: initialize mapping request (Figure 
3.8), mapping response (Figure 3.9) and iterate mapping (Figure 3.10). Next we 
will briefly describe the content of each of these messages and h ow the m iddle 
tier interacts with them. 

The purpose of the initialize mapping request is to initialize a mapping for a 
network. It comprises a Graph element, which is identical to this element in the 
graph construction response (F igure 3.3), and it comprises a network for which 
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the mapping will be initialized. This network comprises weights of the edges as 
illustrated in t he graph c onstruction r esponse (F igure 3 .5). They are t aken into 
account when calculating the internal distances of the nodes. Also, the initialize 
mapping request comprises input parameters elements for each mapping types: 
CdaParameters, CcaParameters and SammonsParameters element. All of these 
elements comprise a ResponseDimension attribute that defines the dimension of 
the output space and a StartingIterations attribute that defines how many times 
the mapping is iterated in the initialization. The CdaParameters and CcaParam-
eters elem ents c omprise additional mapping par ameters that are de scribed in 
detail in Publication III. 
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Figure 3.8. XML schema for initialize mapping request. 

When receiving an initialize mapping request, the middle tier first calculates the 
internal di stances, a nd the n ini tializes the ou tput space b ased o n the m apping 
parameters. It includes t he mapping error between the initi alized output spa ce 
and internal distances in a MappingError element and the coordinates of th e 
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initialized output space in a Coordinates element (Figure 3.9). This element has 
a Coordinate child element that defines coordinates for one node of the biologi-
cal n etwork of which internal n odes are b eing mapped. PosX, PosY and PosZ 
attributes defines the position of the node in the output space. The NodeId attribute 
links the node to the Graph element of the initialize mapping request (Figure 3.8). 

 

Figure 3.9. XML schema for mapping response. 

The purpose of the iterate mapping request (Figure 3.10) is to request the middle 
tier to iterate the output space. It c omprises elements for coordinates and map-
ping parameters that are identical to the corresponding element in the mapping 
response (Fig ure 3.9). T hese ele ments c omprise the coordinates of t he o utput 
space before these iterations and mapping parameters that will be used in these 
iterations. In addition, the iterate mapping r equest comprises a n Iterations e le-
ment and a MappingType e lement. The former defines the number of iterations 
that will be performed and the latter defines the type of the mapping method that 
will  be  used  in  these  iterations.  When  the  middle  tier  has  performed  the  itera-
tions, it includes the iterated output space in a mapping response (Figure 3.9). 



3. Methods 

41 

 

Figure 3.10. XML schema for iterate mapping request. 

Topology calculations 

The purpose of the topology calculation algorithm is t o calculate the cl ustering 
coefficient, in- a nd o ut-degree d istributions f or a gene ric biologi cal network. 
The mathematical de tails of these di stributions ar e described i n E quations 3.2 
and 3.3 in Section 3.3. This algorithm was used in a topology example in a yeast 
metabolic network (Section 4.3.1) and in a topological enrichment example un-
der oxidative stress (Section 4.3.2). The topology calculation algorithm compris-
es a topology calculation req uest a nd response. Next we w ill brief ly de scribe 
these messages and how the middle tier interacts with them. 

The topol ogy calculation r equest (Figure 3. 11) c omprises a Graph element, 
which is identical to this element in the graph construction response (Figure 3.3), 
and it comprises a network for which the topology calculation will be performed. 
Also,  it  comprises  a  TopologyCalculationParameters element  that  comprises  a  
Boolean attribute describing whether the distribution will b e calculated for in- 
and out-degrees and another Boolean attribute describing whether the di stribu-
tion will be calculated for clustering coefficients. 
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Figure 3.11. XML schema for topology calculation request. 

When receiving a topology calculation request, the middle tier calculates select-
ed distribution type(s), and includes the calculated distribution(s) in the topology 
calculation response (Figure 3.12). More specifically it includes degree and clus-
tering coefficient pairs in a DegreeAndClustCoeffPair element and in- and out-
degree occurrences in InDegree and OutDegree elements. All of t hese elements 
comprise attributes for node ids that link them to the nodes in the Graph element 
of the topology calculation request (Figure 3.11). 

 

Figure 3.12. XML schema for topology calculation response. 
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Client 

The purpose of the client component is to provide user interfaces for visualizing 
networks and for p erforming a context based mapping. We have had three sepa-
rate user interfaces. In Publications II–IV we developed a desktop user interface 
implemented in Java environment, and the network visualization was imple-
mented by Tom Sawyer Visualization Toolkit 6.0 (Tom Sawyer, Inc.). In Publi-
cation V we developed an improved user interface. T his is al so a desktop user 
interface but i t visualizes networks in three dimensions. I t is a Mic rosoft Win-
dows application developed in C# 2.0. It uses Microsoft .NET Framework Ver-
sion 2.0. T he three dim ensional visualization i s implemented in Mi crosoft’s 
DirectX 9.0c platform. Also, in Publication V we developed a web user interface 
by using G oogle Web T oolkit ( http://code.google.com/intl/fi/webtoolkit). This 
user interface takes input parameters from the user, and then uses the middle tier 
for network construction. The constructed network can be exported to the desk-
top us er interface fo r visualization o r alternatively to Cy toscape (Cline et a l., 
2007) which a popular generic biological network visualization tool. 

Database tier 

The database tier comprises all databases that are incorporated in megNet. Most 
of them are presented in an XML format and they are stored in a Tamino XML 
server (Software AG) in a Redh at Linux Advanced Server v2.1 environment. In 
addition, some of the data is presented in a relational database format, and they 
are stored in an Oracle 10g database server (Oracle, Inc.). In Publications II–V 
we have described in detail for example how the databases have been incorpo-
rated, and how the middle tier retrieves data from them. In Table 3.1 we briefly 
list all database s we currently have in m egNet. M ore extensive d escription of 
this data is p resented in P eddinti V. Gopalacharyulu’s PhD dissertation ( Go-
palacharyulu, 2010). 

http://code.google.com/intl/fi/webtoolkit
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Table 3.1. megNet’s databases. 

Database type Database names 

Protein-protein interaction databases  BioGRID (Reguly et al., 2006) 
 DIP (Xenarios et al., 2002) 
 MINT (Ceol et al., 2010) 
 BIND (Bader et al., 2003) 

Metabolic pathway databases  KEGG (Kanehisa et al., 2004) 
 genome-scale yeast metabolic models  

(Herrgård et al., 2008; Dobson et al., 2010) 

Transcriptional regulatory databases  TransFac (Matys et al., 2003) 

Signal transduction databases  TransPath (Krull et al., 2006) 

Compound databases  PubChem (Wang et al., 2009) 
 KEGG compounds (Kanehisa et al., 2004) 

Ontological databases  GO (Gene Ontology Consortium, 2008) 
 OAT (Timonen & Pesonen, 2008) 

Gene expression databases  GEO (Barrett et al., 2009) 

Protein and gene sequence databases  UniProt (UniProt Consortium, 2010) 

 EMBL (Cochrane & Galperin, 2010) 

 

3.2 EMPath – Enriched Molecular Path detection method 

In Publication I we have developed t he E nriched Molecular Path detection 
method (EMPath) and showed its utility i n the context of type 1 diabetes mouse 
models. Figure 3.13 shows a schematic pipeline of this method. 
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Figure 3.13. The schematic pipeline of the EMPath method. 

This method is based on a molecular interaction network t hat is described in 
detail in Publications II–V. Briefly the idea is that the nodes are biological enti-
ties (e.g. proteins, metabolites) and t he edges are interactions (e.g. protein-
protein interactions, metabolic reactions). 

We put the network in a phenotypic context by assigning weights to the nodes. 
Usually this is based on transcriptomics data since it is most easily available, but it 
can be based on any phenotypic specific data. Also, we assign weights to the edges 
based on their reliabilities (e.g. reliabilities of protein-protein interactions). 

The actual path detection is based on a c olor coding a lgorithm (Alon et al., 
1995) that was developed to detect optimal paths in a complex network. T his 
method is generic and it is applicable to be used in a complex network of many 
types. To my knowledge in biology it was first used to detect signaling cascades 
in a protein-protein interaction network in yeast Saccharomyces cerevisiae 
(Scott et al., 2006). In Publication I we tailored this method so that it is suitable 
for detecting paths in a pheno typic cont ext. Next we will briefly de scribe our 
approach to use this method. 
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Figure 3.14. The scoring and coloring of the EMPath method. 

In the beginning we define the length of the path that will be detected. It can be 
any integer. Let us denote it by k . In order to score the path, we assign the phe-
notypic weights to the nodes and the reliability weights to the edges as illustrated 
in Figure 3.14. Exact scoring formulas are presented in Equations (1–3) of Pub-
lication I a s follows. First we multiply the edge we ights, so a long cascade of 
unreliable edges gets enough penalty. Then we sum up the node weights. In the 
end we calculate the total weight by multiplying the edge product and the node 
sum. 

The basic idea of the path search strategy is that we assign colors to the nodes 
(Figure 3.14) and we allow the detected path to contain a same color only once, 
which guara ntees that t he detected path i s simple and makes the se arch algo -
rithm non-greedy since it does not go through all possible branches which would 
be time-consuming especially in a dense network. T he path search stra tegy is 
described rigorously in the equation on the next page. 
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 (3.1) 

If we do not manage t o detect a path by using the procedure described in t he 
previous pa ragraph, we use a sliding window ( Figure 3.14). T he ide a is t hat 
when we are detecting a path, we have a window in which we have most recent-
ly taken nodes. The single color requirement applies only to the nodes t hat are 
inside the window. For example in Figure 3.14 we have a window of size two 
that contains grey and pink colo rs. We have blue in the detected path but th e 
corresponding node is outside t he window, s o we can a dd another b lue to the 
detected path. The sliding window makes the path detection faster since there are 
less denied colors. However, in the end we have to check th at the detected path 
does not c ontain any cycle, a nd discard it if i t contains. We fi rst tr y the path 
detection by using 1k  as window size. If we do not manage to find a path, we 
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decrease the window size by one. We continue this until the window size is one. 
If we do not manage to find a path with this window size, we conclude that we 
did not manage to detect a path. 

In order to assess the statistical significance of the detected path, we calculate 
a p-value for it. We shuffle the edge and node weights of the origin al network 
10 000 times. After each shuffle we use the same pa th detection proc edure t o 
detect an optimal in the shuffled network. However, it does not make sense to 
make all 10 000 sh uffles for pa ths for which the p-value does not look promis-
ing. Therefore after each shuffle we check how promising the p-value looks by 
calculating the percent of shuffles in which the o ptimal path score is higher i n 
the shuffled network t han in the original network. If the p ercent is greater than 
0.025, we discard the path and jump to the next path. 

In the end we ca lculate the p- value for a path for which we managed to p er-
form all 10 000 permutations in the same way as described in the preceding par-
agraph. If the o btained p-value is less than 0.025, we conclude that the path is 
statistically significant. Otherwise, we discard the path. 

We consider that the network is harvested if its all statistically significant 
paths are de tected. However, there is not a ny rigorous way t o investigate this. 
Therefore, we take a heuristic approach by assuming that the network is harvest-
ed if we come up with a predefined number (e.g. 50) of consecutive iterations in 
which  the  detected  path  is  already  detected.  Also,  we  restrict  the  algorithm  to  
take only a lim ited number of significant path s ( e.g. 2), s ince it is tim e-
consuming to calculate a p-value for a significant path. We therefore quit detect-
ing paths if we come up with a conclusion that the network is harvested or if we 
have detected enough statistically significant paths. 

We can perform the above-described path detection procedure by using differ-
ent path lengths (e.g. from 3 to 12). After that we can interpret results by study-
ing t he detected paths individually and b y p erforming a functional enrichment 
analysis to associate the detected paths with previously known pathways. 

3.3 Topological methods of biological networks 

The purpose of this s ection is to introduce most commonly used complex net-
work concepts in the c ontext of biologic al networks. In mathematical terms we 
model a biological network as a graph ENG ,  in which N  is a set of nodes 
and E  is a se t of edges that connect two elements of N : 2NE . The b io-
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logical network can be directed or undirected: in a directed network the order of 
edge’s nodes matters, whereas undirected network it is irrelevant. 

Next, I will brie fly de scribe m ost comm only used topological me asures of 
biological networks that have been summarized for example in a network biolo-
gy review (Barabási & Oltvai, 2004). 

 Degree. T his measure defines how m any edges a n ode has. Let us d e-
note it by k. In a directed network we usually use two separate measures: 
in-degree and out-degree.  Let  us  denote  them by  ink  and outk  r espec-
tively. The former stands for the number of edges that are targeted to the 
node, a nd the latter stands for the n umber of edges starting from t he 
node. 

 Clustering coefficient. T his measure desc ribes the density of node’s 
neighborhood connections. Let us denote it by C. More specifically, for 
a node i  it is obtained by dividing the number of edges that connect the 
neighbor nodes of the node i  (henceforth in ) by the number of all pos-
sible edges between the neighbor nodes of the node i . In mathematical 
terms it is defined by 1*/2 kknC ii . In extreme case this meas-
ure obtains one if there are edges between all neighbor nodes, and in the 
opposite ext reme it obt ains zero if t here is not a ny edge b etween t he 
neighbor nodes. 

Based on the above-mentioned topological measures we can derive the follow-
ing distributions that have been commonly used in topol ogical analyses of bio-
logical  networks.  These  concepts  are  also  summarized  in  Barabási  &  Oltvai  
(2004). 

 Degree distribution. This distribution defines the probability that a ran-
domly selected node from a ne twork has a certain degree. It is usua lly 
defined s eparately for in-degrees and out-degrees. These distribution s 

kinP  and koutP  are defined more formally in the equation below. 
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 Clustering coefficient distribution. This distribution stands for the prob-
ability t hat a random ly s elected no de from the ne twork has a certain 
clustering coefficient. It is defined only for an undirected network. This 
distribution kC  is more formally presented in the equation below. 
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Next, I will briefly describe a few wide ly used biological network models t hat 
use the above-mentioned distributions. These models are also described in detail 
in  Barabási & Oltvai (2004) except that the truncated power-law is described in 
Khanin & Wit (2006). 

 Erd s-Rényi random network model. In the Erd s-Rényi random net-
work model (Erd s & Rényi, 1959; 1960) totN  nodes are connected 
randomly to each other with pr obability p. T he degree distributions of 
this model kinP  and koutP  are rapidly increasing and decreasing bell 
shaped curves having a sm all average value (e.g. 2–3). This means that 
almost all nodes have only a few links, and there are no highly connect-
ed nodes. The clustering coefficient distribution kC  is a straight hori-
zontal line in this model, which means that the cl ustering coefficient is 
independent of a node’s degree. 

(3.3) 
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 Power-law degree distribution model6. In the power-law degree distribu-
tion model (B arabási & Albe rt, 1999) the deg ree distr ibutions kinP  
and koutP  differ from the degree distributions of the Erd s-Rényi ran-
dom network model, and they are of form ke-k , in which  is a 
degree exponent. These deg ree distribution s a re l inearly decreasing in 
log-log scale. Like in the Erd s-Rényi random network model the clus-
tering coefficient distribution kC  is a straight horizontal line meaning 
that also in this model t he c lustering coe fficient is independent of a 
node’s degree. 

 Truncated power-law degree distribution model. This distribution is a 
truncated version of the power-law degree distribution model: it follows 
the power-law only in small numbers, which means that the network fol-
lows the power-law within the r ange ckk1 . This distribution is de-
fined more rigorously in the equation below. 
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 Hierarchical network model. The hierarchical network model (Ravasz et 
al., 2002; Ra vasz & Barabási, 2003) combines the powe r-law degree 
distribution, modularity and local clustering into one m odel. T he basic 
idea  is  that  the  network  has  a  pyramid  structure  in  which  modules  are  
organized in a hierarchical m anner: in the low level the re are hi ghly 
connected modules, and in the uppe r level there are loosely connected 
modules. The cl ustering coefficient distribution kC  is thus linearly 
decreasing in log-log scale. The degree distributions kinP  and koutP  
are also linearly decreasing in log-log scale since in the high level there 
are only few highl y connected nodes, whereas in the lower level there 
are quite many loosely connected nodes. 

                                                   

6  In some contexts this model is called scale-free network model. However, it is pointed 
out that th e con cept of s cale-free t ends to b e a mbiguous (Lima-Mendez & Hel den, 
2009), so I do not use it in this thesis. 
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3.4 TEAFS – Topological Enrichment Analysis for 
Functional Subnetworks 

In Publication VI we have developed the Topologi cal Enrichment Analysis of 
Functional Subnetworks method (TEAFS) and showed its ut ility in the context 
of oxidative str ess in yeast Saccharomyces cerevisiae. Figure 3.15 shows a 
schematic pipeline of this method. 

 

Figure 3.15. The schematic pipeline of the TEAFS method. 

The TEAFS pipeline starts from a construction of a megNet network: integration 
various interaction types into one network. This network can comprise any type 
of molecular interactions, for example pro tein-protein in teractions, metabolic 
reactions, transcriptional regulations. 

We reconstruct n etworks at tim e points by using a time series of a tran -
scriptomics data set. This is based on a method that was introduced in a dynamic 
network topology study (Luscombe et al., 2004). We first reconstruct a reference 
network at tim e point t(0) by taking all protein nodes of which encoding genes 
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are in the transcriptomics data set. Then at each time points t(1), t(2), …, t(n) we 
reconstruct a network by removing protein nodes and their incident edges based 
on the expressions of their encoding genes. This requires that the transcriptomics 
data set is of dual channel (Schena et al., 1995). In order to decide whether we 
remove a protein node and its incident edges, we first divide the log-transformed 
values of the contro l channel intensities in high, medium and low by using a k-
means clustering algorithm (Lloyd, 1982). T hen we use a change between t he 
case a nd c ontrol intensities, and deduce t hat it is either up, constant or down. 
Then based on the control condition intensity level and change between case and 
control intensities we use T able 4 of Publication VI t o decid e wh ether we re-
move the protein node and its incident edges. 

We divide the networks in functional modules based on a biological criterion. 
It can be for example based on protein’s and gene’s involvement in GO biologi-
cal pr ocesses (Gene Ontology Conso rtium, 2008) or in metabolic pathways 
(Kanehisa et al., 2004). 

We rank the functional modules based on their activities in terms of three top-
ological measures: in-degree, out-degree and clustering coefficient that a re de-
scribed in more detail  in  Section 3.3 More specifically,  we first  calculate  a  de-
activation ratio for each module at each time interval [t(i), t(i+1)] by dividing the 
sum of a topological measure of proteins that are present at time t(i) but absent at 
time  t(i+1)  by  the  sum of  proteins  that  are  present  at  time  point  t(i).  Then  for  
each module we p erform 10 000 p ermutations in t erms of each topologi cal 
measure in order to calculate p- values rejecting t he n ull hypothesis stating t hat 
proteins are deactivated uniformly in the whole network. In each permutation we 
create a ‘ra ndom module’ by removing each protein at e ach time interval with 
probability of the corresponding de-activation r atio. The p -value is obtained b y 
dividing the number of permutations in which the activity of the topological meas-
ure in the random module is at least as much as it is in the original module by the 
number of all permutations (10 000). Then we correct the p-values from multiple 
comparisons by using Bonferroni correction, and ca lculate False Discover Rate 
(FDR) q-values. We consider modules of which q-value is less than 0.05 as sta-
tistically significant. 

In the end we validate the results: figure out if the detected activities of func-
tional modules under the given condition make sense. We can do this for exam-
ple by in-house metabolomic experiments or by literature survey. 
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4. Results and discussion 
In this chapter we present the main results of this thesis. In Section 4.1 we show 
a few integrative biological data visualization examples in megNet. In Section 
4.2 we show the utility of the Enriched Molecular Path detection method (EM-
Path) in the context of type 1 diabetes. In Section 4.3 we show network topology 
studies carried out in this thesis. 

4.1 Integrative biological data visualization in megNet 

In this section we show the basic idea of megNet: the ability to visualize biolog-
ical data across multiple interaction levels and the ability to enable context based 
inference.  In  Section  4.1.1  we  show  that  megNet  has  potential  for  interesting  
novel hypotheses by an example in which a protein-protein interaction connects 
two enzymes that are from each other in metabolic level in yeast Saccharomyces 
cerevisiae. In Section 4.1.2 we show that megNet can be used for context based 
mapping b y an example in which a Gene Ontology biologi cal pr ocess (Gene 
Ontology C onsortium, 2008) cat egorizes biological entities involved i n yeast 
metabolism i nto t wo groups. In S ection 4.1.3 we apply t hese approaches to a 
medical context: we show cross-talk and context based mapping examples in the 
context of medical i mage da ta leading t o i nteresting a ssociations b etween b io-
logical networks and medical image data. 

4.1.1 Cross-talk in yeast metabolism 

There h as been ev idence th at between different biological in teraction le vels 
there is cross-talk leading to interesting phenotypes (Papin & Palsson, 2004; Lee 
et al., 2008; Li et al., 2010). In Public ation II we showed how megN et can b e 
used to find this kind of cross-talk by constructing an integrated metabolic 
(KEGG; Kanehisa et al., 2004) and protein-protein interactions (MINT; Ceol et 
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al., 2010, BIND; Bader et al., 2003) network in yeast Saccharomyces cerevisiae. 
We included Glycolysis/Gluconeogenesis, Pentose phosphate pathway and Cit-
rate cycle metabolic pathw ays a long with thei r protein-protein in teractions in 
this network. As a result we obtained a network that is visualized in Figure 5 of 
Publication II. We can see that there are quite much protein-protein interactions 
making cross-talk be tween dif ferent sta ges of metabolism. For example, t here 
are two enzymes: phosphoglycerate kinase and acetate-CoA ligase that are quite 
far fr om e ach o ther in m etabolic level: the former is invol ved in the starting 
point of citrate cycle, whereas the latter is involved in the second phase of gly-
colysis. However, both of these enzymes interact with an SRB2 protein detected 
by the yeast two-hybrid method (Uetz et al., 2000; Ito et al., 2000; Fields, 2005). 
There is evidence that the SRB2 protein is i nvolved in transcriptional initiation 
(Thompson et al., 1993), which could be a sign that the se two enzymes are co-
regulated at different stages of metabolism. However, it is good to keep in mind 
that the yeast two-hybrid method notoriously produces quite much false-positive 
protein-protein interactions (Mrowka et al., 2001). However, we believe that this 
cross-talk can shed light on novel hypotheses. 

4.1.2 Context based visualization in yeast metabolism 

In Publication III we integrated Gene Ontology biological process terms (Gene 
Ontology Consortium, 2008) with a metabolic pathway network (KEGG; 
Kanehisa et al., 2004) in yeast Saccharomyces cerevisiae by using megNet. In 
Figure 6 of Publication III there is a zoomed region from the neighborhood of a 
citrate cycle biological process term. We performed a context based mapping by 
assigning low weigh ts t o the incident edges of the citrate cycle biological process 
term and then mapping the internal distances into two dimensions by using th e 
CDA mapping method. The results are presented in Figure 7 of Publication III. 
We can see that there are two clusters. This may be a sign that the citrate cycle 
biological process divides metabolic reactions in two main groups: one group of 
reactions that are strongly involved in citrate cycle and another group of reactions 
that are weakly involved in citrate cycle. 

4.1.3 Network visualization in context of medical image data 

It is becoming clear that there is need to integrate biological networks with med-
ical images (Walter et al., 2010), and as a practical example it recently came out 
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a publication in which biological networks were studied in the context of human 
brain images (Bassett et a l., 2011). In Publication V w e c ontinued t hese direc-
tions by visualizing biological networks in megNet in the context of Lamin A/C 
image data. As a background s tudy, we had previously derived Magnetic Reso-
nance (MR) image parameters from Lamin A/C mutation patients (Koikkalainen 
et al., 2008). In a follow-up study we had performed lipidomics analysis in the 
same patients, and developed a statistical model to find associations between the 
lipidomics profiles and medical im age parameters (Sysi-Aho e t al., 2011). In 
order to understand these associations better, in Publication V we used megNet 
to construct a biological network in the con text of the same lipidomics profiles. 
More specifically, we first constructed glycerophospho-, glycero- and sphin-
golipid metabolic pathways from KEGG (Kanehisa et al., 2004) in homo sapi-
ens, and mapped mol ecular lipid sp ecies to t heir generic lipid names on t hese 
pathways by using the biochemical knowledge of the side chain length and satu-
ration, as described in Yetukuri et al. (2007). Then we integrated these pathways 
with p rotein-protein i nteractions from B ioGrid (R eguly et a l., 2006), DIP (Xe-
narios et al., 2002) and MINT (Ceol et al., 2010), ontological relationships from 
OAT (Timonen & Pesonen, 2008) and GO (Gene Ontology Consortium, 2008), 
and gene-protein relationships from EMB L (C ochrane & Ga lperin, 2010). T he 
constructed network is visualized in Figure 6 of Publication V. In the same vein 
as in the example in Section 4.1.1 we can see that also between metabolic reac-
tions in this figure there is quite dense cross-talk via many interaction levels. 

A cross-talk example is visualized in Figure 7 of Publication V. There seems 
to be signaling between two isoforms of phospholipase A2 (Coffey et al., 2004). 
One  of  these  isoforms  catalyzes  a  metabolic  reaction  in  which  a  product  com-
prises molecular lipid sp ecies that correlated quite strongly with image parame-
ters in our previous case study (Sysi-Aho et al., 2011), whereas the other isoform 
catalyzes a metabolic re action in which a substrate comprises molecular lipid 
species  for  which  the  correlation  was  not  so  obvious.  Maybe  the  signaling  be-
tween the isoforms of phospholipase A2 has some role in these correlations. For 
example, it may regulate the activities of the phospholipases. 

Another cross-talk example is visualized in Figure 8 of Publ ication V. In this 
figure there a re two isoforms of endothelial lipase: one of them breaks down 
1,2-Diacyl-sn-glycerol and the o ther one br eaks down triacylglycerol.  Both  of  
these lipases are involved in the cholesterol transport and homeostasis biologi-
cal proce sses. In o ur previous ca se study (Sy si-Aho et al., 2011) trigl yceride 
molecular lipid sp ecies were associated with increased end-diastolic wall t hick-
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ness. This may be a sign that cholesterol metabolism has some role in this asso-
ciation: i t may b e associated wi th the inc reased e nd-diastolic w all thickne ss. 
Also, from this f igure we c an see that between the endothelial lipases there are 
associations that have been detected by our in-house text mining s ystem OAT 
(Timonen & P esonen, 2008). T his syst em detected one ar ticle suggesting that 
these lipases are associated with diabetes prevention (Mizuno e t al., 2004), and 
another article suggesting that they ar e associated with maintenance of cell ho-
meostasis (Mi et al., 2004). Fr om the former observation we could make tenta-
tive con clusion that the end-diastolic w all t hickness prevents type 1 diabetes, 
and from the l atter ob servation we could conclude that the e nd-diastolic w all 
thickness may h ave im portant r ole in the maintenance of cell hom eostasis i n 
diabetes development. 

In order t o gain our understanding of the role cholesterol metabolism in the 
association between triacylglycerol a nd end -diastolic wall thickness, we per-
formed a mapping in the context of cholesterol metabolism, in the same vein as 
we p erformed a mapping in t he c ontext of citrate cycle in Section 4.1.2. More 
specifically, we assigned low weights to the incident edges of the nodes corre-
sponding to the cholesterol biological pro cesses t hat were associated w ith the 
endothelial lipase s in the previous paragraph. T he results of thi s mapping ar e 
presented in Figure 9 of Publication V in which there is a zoom from the neigh-
borhood of triacylglycerol.  This  figure  comprises  for  example  a  kinase  and  a  
receptor signaling biological process, which could give a hint t hat maybe a r e-
ceptor signaling cascade st imulates the triacylglycerol to participate in choles-
terol metabolism and in turn associates it with the in creased end-diastolic wall 
thickness. Also, this figure comprises a ‘regulation of macrophage activation’ 
biological process. As supporting evidence there has been discussion that mac-
rophages may pl ay critical role in the pathogenesis of t ype 1 di abetes ( Yang, 
2008). Also, this c ould be related to the observation that we made in the previ-
ous pa ragraph sugge sting t hat the end-d iastolic wall thickness might prevent 
type 1 diabetes. 

4.2 Enriched molecular path detection case study in type 
1 diabetes 

In Publication I we used the Enriched Molecular Path detection method (EM-
Path) in an integrated protein-protein interaction (BIND; Bader et al., 2003, 
MINT; Ceol et al., 2010, DIP; Xenarios et al., 2002), signal transduction 
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(TransPath; Krull e t al., 2006) and me tabolic network (KEGG; Kanehisa et al., 
2004) in the context of tra nscriptomics data from Non-Obese Diabetic (NOD) 
mouse models (Vukkadapu et al., 2005). This data set comprises measurements 
from  pancreas  of  four  NOD  mouse  strains  from  3  week  old  animals:  
BDC2.5/NOD, NOD, BDC2.5/NOD.scid, and NOD.scid. These st rains have 
differences in t erms of insulitis7 and ty pe 1 diabetes development. We detected 
molecular paths i n two case-control settings. In one case -control s etting we 
compared BDC2.5/NOD versus NOD, si nce the BDC2.5/NOD has more accel-
erated in sulitis development. In the other case-control se tting we compared 
BDC2.5/NOD.scid versus NOD. scid, si nce BDC2.5/NOD.scid has more accel-
erated type 1 diabetes development. So, in these case-control settings our pur-
pose was to detect pancreas specific paths that are associated with early insulitis 
and type 1 diabetes development. In both case-control settings we detected sepa-
rately up- a nd down-regulated paths. In Vukkadapu et a l. (2005) these str ains 
were studies in the context of type 1 diabetes related genes. Our purpose was to 
gain understanding of these genes by detecting their interactions. 

The mathematical details of thi s method are described in Section 3.2. In this 
case study we obtained the node weights for pr otein nodes by calculating gene 
expression intensities between case and con trol strains of their encoding genes. 
We obtained the edge weights based on the evidence that a pro tein interaction 
from BIND (Bader et al., 2003) is quite unreliable (Futsch ik et a l., 2007), and 
interactions and reactions from the other databases are r eliable. Therefore, we 
assigned 0.33 to a p rotein-protein interaction edge if the interaction was curated 
only into the BIND database (Bader et al., 2003). We assigned 1.0 to edges from 
the all ot her databases (MINT; Ceol e t a l., 2010, DIP; Xen arios et a l., 2002, 
KEGG; Kanehisa et al., 2004, TransPath; Krull et al., 2006). In the network har-
vesting we used 50 a s the maximum number of consecutively detected paths and 
2 as the maximum number of statistically significant paths. 

As a r esult we o btained several statistically signifi cant up- and down-
regulated paths in both case-control settings. As a most surprising finding many 
lipid pa ths were down-regulated in early insulitis. Especially, an ether phospho-
lipid s ynthesis path was down-regulated. This is an interesting finding, since 
serum ether lipids were diminished children who later progressed to type 1 dia-
betes in com parison with he althy c hildren in a pr evious st udy (Oreši  et a l., 

                                                   

7  Pre-state of type 1 diabetes when pancreatic beta cells get inflammated. 
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2008). The ether phospholipids synthesis path contained plasmalogens that have 
previously found to protect cellular functions from oxidative damage (Zoeller et 
al., 1999; Zoeller et al., 2002). Also, there is evidence that pancreatic beta cells 
are particularly susceptible to oxidative damage (Lenzen et a l., 1996; Cnop et 
al., 2005). Maybe this is a sign that oxidative stress destroys pancreatic beta cells 
during the progression to type 1 diabetes. 

In order to elucidate the biological meaning of the detected paths, we associat-
ed their enrichment with previously known pathways in a Molecular Signature 
Database (Subramanian et al., 2005). As a result we obtained a summary for the 
whole case study. In early insulitis phosphorilation pathways were up-regulated 
that is probably associated with altered cell signaling, and lipid metabolism was 
down-regulated. In type diabetes development paths rel ated to cell communica-
tion were up-regulated, and n ucleotide and nucleoside metabolism were down-
regulated that was probably related to cell cycle and DNA repair. 

4.3 Network topology studies 

In this section we go through network topology studies carried out in this thesis. 
In Section 4.3.1 we show an example in which we performed topological calcu-
lations on a static ye ast metabolic network t o inve stigate whe ther ubiquitous 
complex network properties a re pr esent. In Section 4. 3.2 we describe how we 
develop the T opological Enrichment Analysis for Functional Subnetworks 
method (TEAFS). We first show how we investigated whether ubiquitous com-
plex network properties are present in reconstructed yeast networks under a time 
series of an o xidative stress gene expression data set. Al so in this s ection we 
describe how these results gave motivation to tailor the TEAFS method in order 
to gain our biological understanding by analyzing modules of networks. 

4.3.1 Topology example in yeast metabolism 

In Publication III we con structed a complete metabolic network for yeast Sac-
charomyces cerevisiae from KEGG ( Kanehisa et al., 2004). T he con structed 
network is visualized in Fig ure 3 of Publ ication III. As briefly mentioned in 
Section 3.3 linearly decreasing degree distribution in log-log scale and constant 
clustering coefficient are considered to imply that a biological network follows 
the powe r-law de gree di stribution model, and line arly decreasing de gree and 
clustering coefficient distributions as the hie rarchical network model. Therefore 
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in Publication III we calculated these distributions for the yeast metabolic net-
work, which are presented in Figures 4 and 5 of this publication. We can see that 
the degree distribution is not linearly decreasing, and that the clustering coeffi-
cient distribution is not linearly decreasing and not constant. It th us seems that 
this network does not follow the power-law degree distribution and hierarchical 
network models that were initially ob served to b e present in many b iological 
networks: metabolic networks (Jeong et al., 2000) and protein-protein interaction 
networks (J eong et a l., 2001; Wagner, 2001; Giot et al., 2003; Li e t a l., 2004; 
Yook et al., 2004). Our observation supports the critiques presented in Khanin & 
Wit (2006) stati ng that most biological networks actually do not ideally follow 
the ubiquitous complex network properties. 

4.3.2 Topological enrichment in yeast under oxidative stress 

In the previous section we demonstrated that ubiquitous complex network prop-
erties cannot really be applied to biological networks. In this section we use the 
Topological Enrichment Analysis for Functional Subnetworks method (TEAFS) 
to study topological properties of a yeast network. This method is biologi cally 
more meaningful than the example in the previous section. Firstly, the example 
in the previous section was done in static manner. However, in reality in biology 
everything i s dynamic, so the curr ent t rend is to study ne twork pr operties i n 
dynamic manner (Luscombe et al., 2004; Klipp, 2007). The TEAFS method 
addresses this issue by enabling using a time series of a transcriptomics data set 
when studying topological properties. More specifically, we used a tr anscriptomics 
data set from oxidative stress (Gasch et al., 2000). In addition, another limitation 
of t he example in the previous s ection was the fact th at it w as done sole ly on 
metabolic l evel. However, there has been evidence that in biology phenotypes 
usually result from interplay of many interaction levels (Papin & Palsson, 2004; 
Lee et al., 2008; Li et al., 2010). We also addressed this issue by taking protein-
protein interactions a nd transcriptional r egulations along wi th metabolic level. 
More specifically, we took all metabolic reactions from KEGG (Kanehisa et al., 
2004), tr anscriptional regulations from TransFac (Mat ys et a l., 2003) and protein-
protein in teractions from DIP (Xen arios et a l., 2002) in ye ast Saccharomyces 
cerevisiae. In this network nodes a re prot eins, metabolites, genes and DN A 
binding sites, and edges are interactions and reactions. 

We first reconstructed a reference network and networks at time points in the 
way as described in Section 3.4. We investigated whether these networks follow 
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the power-law degree distribution and hierarchical network models by studying 
their degree and clustering coefficient distributions. We came up with the same 
observation as in the example in the previo us s ection: none of t hese networks 
followed the above-mentioned models. The results are visualized in Figure 4.1–4.38 
comprising in- a nd out-deg ree a nd clust ering coeffi cient distributions f or the 
reference and networks at time points. From all of these networks we can see the 
same result as we saw in the static yeast metabolic network in the previous sec-
tion: the degree distribution is not linearly decreasing, and the clustering coeffi-
cient distribution is not linearly decreasing and not constant. We therefore con-
cluded that we cannot apply the previous findings related to the ubiquitous com-
plex network properties (Barabási & Oltvai, 2004) t o this cas e study, and we 
realized that it is good to tailor the method. Therefore, we decided to divide the 
network in functional modules based on their Gene Ontology biological process 
(Gene On tology Cons ortium, 2008) mem berships in the w ay as described i n 
Section 3 .4. The modularity ha s been s hown t o b e a n important concept when 
studying biological networks in dynamic manner (Qi & Ge, 2006). 

                                                   

8 These results are not included in Publication III because of lack of space. They have 
been placed here in order to elevate their importance. 
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Figure 4.1. In-degree distributions for reference and networks at time points. 
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Figure 4.2. Out-degree distributions for reference and networks at time points. 
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Figure 4.3. Clustering coefficient distributions for reference and networks at time points. 

Before starting the actual TEAFS method we calculated average clustering coef-
ficient over the time series for each module. We selected modules of which av-
erage clustering coefficient were significantly more than zero for fur ther analy-
sis.  After  that  we  performed  the  TEAFS method  for  the  remaining  modules  in  
the way as described in Section 3.4. 

As a r esult of t he module activity analysis, we found for example that l ipid 
metabolism and phospholipid biosynthesis modules were highly active. We vali-
dated our results by performing in-house metabolomic analysis under dynamic 
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response to oxidative stress in our laboratory. As a result, we found that the con-
centrations of precursors of ceramide biosynthesis increased over time. We ma y 
thus conclude that it s eems that dynamic modules lead to the acc umulation of 
toxic lipids such as ceramides under oxidative stress. 
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5. Summary and conclusions 
In the research related to this t hesis we used a network biological appr oach to 
address various present day challenges of systems biology. We set up a visuali-
zation system for heterogeneous b iological data to address biologists’ need for 
integrative visualization (Gehlenborg et al., 2010; O’Donoghue et al., 2010). We 
showed the utility of this s ystem by a few examples. First we showed how pro-
tein-protein i nteractions make cross-talk b etween different sta ges o f y east me-
tabolism leading to novel hypotheses. In the second example we used a context 
based mapping to show how a Gene Ontology biological process term (Gene On-
tology Consortium, 2008) categorizes yeast metabolism into two parts. Then we 
applied these approaches to a medical context: we showed a case study in which 
we int egrated our in-house l ipidomics data into a biological network. We 
showed two examples demonstra ting how interactions between metabolic reac-
tions could p ossibly explain our previous associations b etween biological data 
and medical images, and one example demonstrating how biological entities are 
related to each other in a medical context. 

In addition , we develo ped the E nriched Molecular Path de tection method 
(EMPath). We showed a case study in which this method was used in the context 
of t ype 1 diabe tes mouse mode ls. As a most interesting result, we found that 
ether p hospholipid biosynthesis w as down- regulated in early in sulitis, con sist-
ently with a previous study in which serum ether lipids were diminish in children 
who later progressed to t ype 1 diabetes in c omparison with healthy children, 
which indicates that this method is capable for novel findings in molecular level. 
In addition , we performed topologi cal calculations on biological networks t o 
investigate whether they follow ubiquitous complex network properties, and in 
contrast to initial tentative findings in complex network theory we observed that 
the ubiquitous c omplex network pr operties a re not present in t hese networks, 
which is consistent with rec ent critiques to the ubi quitous complex ne twork 
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properties (Lima-Mendez & Helden, 2009). We ther efore tailored a method 
called Topological Enrichment Analysis of Functional Subnetworks (TEAFS) so 
that it analyzes modules of networks. We showed that this method is capable of 
predicting the accumulation of t oxic lipids in yeast Saccharomyces cerevisiae, 
which we validated by in-house metabolomic analysis. 

Naturally there are many remaining challenges. For example, megNet has po-
tential to be extended to other usages. One possible direction is t o progress in 
integration with lipid pathway reconstruction methods that are p resented in 
Laxmana R. Yetukuri’s PhD disse rtation (Ye tukuri, 2010). We have a lready 
done some preliminary work in this direction, for example in the medical data 
image data case study (S ection 4.1.3) we used m egNet t o integrate l ipidomics 
data into a molecular interaction network. 

Also, I believe the EMPath method can be used in the context of any pheno-
type. In this thesis we showed its utility in the context of type 1 diabetes mouse 
models but the same should work in many other case studies. We have already 
been using it in the context of microbial and other type 1 diabetes mouse strains. 
Preliminary results have shown that this method seems to be capable of making 
interesting findings also in these studies. For example, we have used it to detect 
metabolic paths a ssociated with the correlation of gene expression and protein 
production rate in a fungal species (Arvas et al., submitted). 

In addition, I think megNet would benefit from bei ng p ublicly available a s 
pointed out in Publication V. It is probably not reasonable t o make the whole 
megNet publicly available because of e. g. restrictions in database licenses. How-
ever, it would make sense to make parts of megNet publicly available, for example 
network construction could be implemented as an open source Cytoscape plug-in, 
which could lead to good complementary efforts between Cytoscpape (Cline et al., 
2007) and megNet: Cytoscape is a popular generic network visualization tool and 
megNet would provide a data integration framework for Cytoscape. Also, the 
EMPath method would probably benefit from b eing publicly available. This 
would enable anybody in the systems biology community to use the method in the 
context of his or her data, which would probably lead to many novel findings. For 
example, Gene Set Enrichment Analysis method (GSEA) (Subramanian et al., 
2005) is publicly available, and it is widely used in the systems biology community. 

In addition, megNet would probably benefit from b etter usability. In o rder to 
address this challenge, we have been implementing user interfaces as web appli-
cations. As first step towards this effort, we separated a part of the user interface 
into a web application in Publication V. 
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Abstract

Recent clinical evidence suggests important role of lipid and amino acid metabolism in early pre-autoimmune stages of type
1 diabetes pathogenesis. We study the molecular paths associated with the incidence of insulitis and type 1 diabetes in the
Non-Obese Diabetic (NOD) mouse model using available gene expression data from the pancreatic tissue from young pre-
diabetic mice. We apply a graph-theoretic approach by using a modified color coding algorithm to detect optimal
molecular paths associated with specific phenotypes in an integrated biological network encompassing heterogeneous
interaction data types. In agreement with our recent clinical findings, we identified a path downregulated in early insulitis
involving dihydroxyacetone phosphate acyltransferase (DHAPAT), a key regulator of ether phospholipid synthesis. The
pathway involving serine/threonine-protein phosphatase (PP2A), an upstream regulator of lipid metabolism and insulin
secretion, was found upregulated in early insulitis. Our findings provide further evidence for an important role of lipid
metabolism in early stages of type 1 diabetes pathogenesis, as well as suggest that such dysregulation of lipids and related
increased oxidative stress can be tracked to beta cells.
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Introduction

Type 1 diabetes (T1D) is an autoimmune disease that results in

destruction of insulin-producing beta cells of the pancreas [1]. The

early stages of T1D pathogenesis are characterized by insulitis, an

inflammation of the islets of Langerhans of the pancreas caused by

the lymphocyte infiltration. Although the seroconversion to islet

autoantibody positivity has been the first detectable signal for the

onset of autoimmunity and progression towards diabetes [2], the

initiators of autoimmune response, mechanisms regulating pro-

gress toward beta cell failure and factors determining time of

presentation of clinical diabetes are poorly understood.

We recently investigated changes in the serum metabolome

prospectively in a unique cohort of children at genetic risk for

T1D. Intriguingly, we detected multiple changes related to

dysregulation of lipid and amino acid metabolism preceding the

autoimmunity and overt T1D [3]. In order to better understand

the early diabetes pathogenesis, it would have been therefore of

great importance to study the molecular mechanisms behind the

early metabolic dysregulation as related to the autoimmune

response, an area so far neglected in T1D research.

Motivated by our clinical findings, here we study molecular paths

associated with the incidence of type 1 diabetes (T1D) and insulitis in

the Non-Obese Diabetic (NOD) mouse model using the available

gene expression data from young pre-diabetic mice [4]. The NOD

mouse is a strain whose immune system shares many similarities with

human’s immune system as well as the autoimmune response [5]. It

is therefore widely used in studies aiming to elucidate T1D, although

it is also clear that this experimental model may only in part reflect

the the immune system and T1D pathogenesis in human [6]. We

introduce a method EMPath (Enriched Molecular Path detection) for

detection of molecular paths of physical interactions in an integrated

network of protein-protein interactions, signal transduction maps

and metabolic pathways by applying a modified version of the color

coding algorithm [7]. The color coding algorithm was applied

previously to detect signaling pathways derived from protein

interaction networks [8]. In our approach the phenotype context is

achieved by the introduction of path weights based on the network

structure combined with the mRNA expression data. Our aim is to

detect paths in an integrated network such that up- or down-

regulated protein nodes, as estimated by the gene expression data,

are significantly over-represented on the path in comparison with the

rest of the network (Figure 1).

Results and Discussion

Detection of molecular paths associated with insulitis
and type 1 diabetes incidence

We applied the EMPath method to an integrated network of

protein-protein interactions, signal transduction maps and meta-

bolic pathways where the nodes are proteins or metabolites and

the edges are interactions or reactions. In order to study the

network in the biological context, we used gene expression

information to weight the corresponding protein nodes.

Since our primary aim as related to T1D was to study tissue-

specific changes of molecular paths during the early disease
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pathogenesis, the appropriate study design should include young

pre-diabetic mice with selected controls. We searched the

T1DBase [9] which hosts T1D related genetic and expression

data and identified the study by Vukkadapu et al. [4] as the only

suitable for our analysis. In addition to that study, there were two

other studies available in T1DBase; Chaparro et al. [10] and

Stanford RoadMap of NOD Type 1 Diabetes (http://fathmanlab.

stanford.edu/roadmap_study_design.html). However, we found

that Vukkadapu et al is more suitable for our analysis than these

studies. Chaparro et al. contains data from 6-, 9- and 15 week old

mice, whereas Vukkadapu et al. investigated 3 week old mice. The

young mice are more informative for the goals of our study since

insulitis is known to occur until 3 or 4 week of age [5]. Standford

RoadMap has not yet been published in any journal as of August

2009. However, once available this data will include young mice

and will probably provide relevant data in the context of early

disease pathogenesis in NOD mice.

In the study by Vukkadapu et al. [4], the pancreatic tissue gene

expression data is available for four NOD mouse strains from 3

week old animals: BDC2.5/NOD, NOD, BDC2.5/NOD.scid,

and NOD.scid. The data analysis in the primary publication was

focusing primarily on known T1D-related genes associated with

the autoimmune response and inflammation [4]. The four

experimental models studied by Vukkadapu et al. have differences

in the incidence of insulitis and T1D. The BDC2.5/NOD and

NOD mice have accelerated and slow insulitis development,

respectively. Therefore, comparison of these mouse models may

provide information about the pathways associated with early

insulitis although as a limitation one should also keep in mind that

this not an ideal comparison since genetic factors associated with

e.g. age and growth are not controlled for. The BDC2.5/NOD.scid

model has extremely high diabetes incidence, which develops

already at 3–4 weeks of age, whereas the NOD.scid does not

develop diabetes. The pathways associated with differences

between these two mouse models may thus provide information

about mechanisms specific to late insulitis and T1D.

We performed path detection for the two comparisons: (1)

BDC2.5/NOD vs. NOD (early insulitis) and (2) BDC2.5/NOD.vs.

NOD.scid (late insulitis and early T1D). We detected multiple

optimal paths at p,0.025 threshold in both case-control

combinations (Figures S2–S5). Selected high scoring paths are

shown in Figure 2. Two serine/threonine-protein phosphatases,

2A (PP2A) and 5 (PP5) were members of the most upregulated

paths in early insulitis (Figure S2). PP2A and PP5 are known to

interact [11], and PP2A is associated with the autoimmune

response in systemic lupus erythematosus [12]. Interestingly, PP2A

is also a regulator of insulin secretion in pancreatic beta cells [13]

and its activation is required for repression of PPARa, a key

regulator of genes involved in beta cell fatty acid oxidation [14].

Several paths including lipid metabolism enzymes were found

downregulated in early insulitis (Figure S3, Table S1). Lipid

phosphate phosphohydrolase 3 (LPP3) hydrolizes specific phos-

pholipids in the lipid membrane, leading to production of e.g.

diacylglycerols and ceramides [15]. Two of the enzymes of

carnitine metabolism, carnitine O-palmitoyltransferase I (CPT1)

and 4-trimethyl aminobutyraldehyde dehydrogenase (TMA-

BADH), were also downregulated in the BDC2.5/NOD mice.

Interestingly, the dihydroxyacetone phosphate acyltransferase

(DHAPAT; Uniprot ID P98192), a key regulator of ether

phospholipid synthesis [16], was found in a downregulated path

in close proximity of CPT1 (Figure S3).

Two interacting members of the cytochrome P450 family,

CYP1B1 and CYP1A1, were found upregulated and present in

multiple paths associated with late insulitis and T1D (Figure S4),

while basigin (CD147 antigen, also named extracellular matrix

metalloproteinase inducer) was found in several downregulated

paths (Figure S5). CD147 is a receptor of cyclophilins and is an

important messenger of intercellular communication involved also

in recruitment of leukocytes from the periphery into tissues during

inflammatory responses [17].

As a potential limitation of our approach, in the path detection

method presented here we assign weights to nodes based on

mRNA expression data and not on protein concentration or direct

interaction data. The protein-level data would be ideal for our

approach, but such data is generally not available at the global

scale such as in transcriptomics studies. We thus use the protein

encoding mRNA expression as an approximation, although it is

well known that mRNA and corresponding protein level do not

always correlate [18]. Although approximate, we believe that use

of mRNA expression when protein-level data is unavailable or too

sparse is justified and can still provide useful hints about the

molecular paths associated with the investigated phenotypes.

Functional characterization of molecular paths
To better understand the paths detected by EMPath in the

context of known pathways, we assessed the functional enrichment

of detected paths similarly as previously described [8]. We cross-

classified the proteins from a molecular path according to whether

or not their encoding genes belong to gene sets obtained from the

Molecular Signature Database (MSigDB) [19] and tested if the

number of those genes associated with the path is larger than

expected by chance using the hypergeometric test. We corrected

the p-values for multiple comparisons using the False Discovery

Rate (FDR) q-values. By setting the statistical significance level at

FDR q,0.05, we identified multiple gene sets over-represented

among the detected molecular paths (Table S2). As a summary,

the top ten enriched pathways in each of the case-control settings

are shown in Table 1.

It is evident from Table 1 that early insulitis (i.e. BDC2.5/NOD

strain, as compared to NOD) is associated with altered cell

signaling since multiple (de)phosphorilation pathways are affected.

In contrast, the lipid metabolism is diminished. The paths

associated with late insulitis and T1D in BDC2.5/NOD.scid

strain are related to cell communication and related processes,

Figure 1. Enriched molecular path detection concept. Illustrative
example of path detection in a complex network of interacting entities.
An enriched path of 6 entities is highlighted.
doi:10.1371/journal.pone.0007323.g001

Pathways en Route to Type 1

PLoS ONE | www.plosone.org 2 October 2009 | Volume 4 | Issue 10 | e7323

I/2

http://fathmanlab.stanford.edu/roadmap_study_design.html
http://fathmanlab.stanford.edu/roadmap_study_design.html
http://www.plosone.org


Figure 2. Selected paths significant in different case-control settings. Upregulated (A) and downregulated (B) paths related to insulitis.
Upregulated (C) and downregulated (D) paths related to late insulitis and T1D.
doi:10.1371/journal.pone.0007323.g002
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while the nucleotide and nucleoside metabolism, i.e., likely related

to cell cycle and DNA repair, is impaired.

Comparison of path detection with pathway analysis
We performed Gene Set Enrichment Analysis (GSEA) [19] for

both case-control comparisons. Table 2 contains the top scored

pathways for each strain at FDR q,0.05, while a full list of affected

pathways at recommended q,0.25 is shown in Tables S3–S6. In

agreement with earlier analyses [4], both EMPath (Table 1) and

GSEA analyses confirmed multiple inflammatory and T cell

activation pathways in pancreatic tissue in late insulitis and early

T1D. The cell proliferation, division, as well as nucleotide synthesis

pathways were found diminished, confirming increasing cell death

and DNA damage at this late stage of disease pathogenesis.

In accordance with path detection results, lipid metabolism

related pathways (fatty acid metabolism and bile acid synthesis) are

downregulated in insulitis, while the cell cycle related pathways are

downregulated in T1D (Table 2). The CPT1 and TMABADH

Table 1. Top enriched pathways in insulitis and type 1 diabetes as derived from detected paths.

Gene set Source n(P & G) n(G) Nominalp-value FDR q-value

Enriched in upregulated paths (BDC2.5/NOD vs. NOD)

PTDINSPATHWAY BioCarta 3 19 0.000004 0.000103

HSA00051_FRUCTOSE_AND_MANNOSE_METABOLISM KEGG 3 27 0.000012 0.000155

HSA00530_AMINOSUGARS_METABOLISM KEGG 2 16 0.000025 0.000280

GALACTOSE_METABOLISM GenMAPP 2 20 0.000596 0.003099

HSA00052_GALACTOSE_METABOLISM KEGG 2 24 0.000863 0.003738

GLUCONEOGENESIS GenMAPP 2 39 0.002286 0.006604

GLYCOLYSIS GenMAPP 2 39 0.002286 0.006604

HSA04630_JAK_STAT_SIGNALING_PATHWAY KEGG 4 100 0.000118 0.008023

HSA04664_FC_EPSILON_RI_SIGNALING_PATHWAY KEGG 3 62 0.000150 0.008426

GHPATHWAY BioCarta 2 24 0.000863 0.016104

Enriched in downregulated paths (BDC2.5/NOD vs. NOD)

GLYCEROLIPID_METABOLISM GenMAPP 3 24 ,1026 0.000011

STATIN_PATHWAY_PHARMGKB GenMAPP 2 16 0.000152 0.000557

HSA00565_ETHER_LIPID_METABOLISM KEGG 2 21 0.000441 0.002093

HSA00071_FATTY_ACID_METABOLISM KEGG 2 29 0.000847 0.002311

HSA00120_BILE_ACID_BIOSYNTHESIS KEGG 2 20 0.000399 0.002311

HSA00220_UREA_CYCLE_AND_METABOLISM_OF_AMINO_GROUPS KEGG 2 21 0.000441 0.002311

HSA00310_LYSINE_DEGRADATION KEGG 2 29 0.000847 0.002311

HSA00340_HISTIDINE_METABOLISM KEGG 2 19 0.000359 0.002311

HSA00410_BETA_ALANINE_METABOLISM KEGG 2 17 0.000286 0.002311

HSA00620_PYRUVATE_METABOLISM KEGG 2 28 0.000789 0.002311

Enriched in upregulated paths (BDC2.5/NOD.scid vs. NOD.scid)

EGFPATHWAY BioCarta 4 25 ,1026 0.000040

HSA04630_JAK_STAT_SIGNALING_PATHWAY KEGG 5 100 0.000002 0.000102

HSA05213_ENDOMETRIAL_CANCER KEGG 4 42 0.000004 0.000128

HSA05223_NON_SMALL_CELL_LUNG_CANCER KEGG 4 43 0.000004 0.000128

CTLA4PATHWAY BioCarta 3 15 0.000008 0.000131

ERK5PATHWAY BioCarta 3 16 0.000010 0.000131

HSA05214_GLIOMA KEGG 4 50 0.000007 0.000131

PTENPATHWAY BioCarta 3 16 0.000010 0.000131

NGFPATHWAY BioCarta 3 17 0.000012 0.000140

IGF1PATHWAY BioCarta 3 18 0.000014 0.000149

Enriched in downregulated paths (BDC2.5/NOD.scid vs. NOD.scid)

PYRIMIDINE_METABOLISM GenMAPP 3 43 0.000010 0.000061

HSA00230_PURINE_METABOLISM KEGG 3 90 0.000096 0.000334

NDKDYNAMINPATHWAY BioCarta 2 16 0.000898 0.006367

HSA05110_CHOLERA_INFECTION KEGG 1 31 0.039815 0.046451

Top ten enriched gene sets at FDR q,0.05 defined in the Molecular Signature Database [19], using the gene lists derived from the detected paths (Figures S2–S5). The
p-value is obtained from the hypergeometric test. Column legend: n(P&G), number of common genes in the detected path and the gene set; n(G), number of genes in
the gene set.
doi:10.1371/journal.pone.0007323.t001
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found in downregulated paths associated with early insulitis (Table

S1) were both among the leading edge genes in the fatty acid

metabolism gene set, while TMABADH was also the leading edge

in the bile acid synthesis module.

Meta analysis of findings using T1DBase
To investigate how genes detected by EmPath change in gene

expression analyses seen in several other studies, we used the Meta

Analysis tool of the T1DBase (http://www.t1dbase.org/page/Meta-

Home) [9]. As a result, we selected the genes found in the significant

molecular paths (Figure 2) and visualized their differential expression

across multiple studies available in T1Dbase (Figures S6–S9).

We can see some interesting observations regarding the genes

that were involved in our detected paths. DHAPAT (often

abbreviated as GNPAT), a gene that was found in paths

downregulated in early insulitis in paths detected by EmPath, was

also down-regulated in mice deficient for transcriptional regulators

FoxA2 and Sox4 [20,21]. PP2 (also abbreviated as PPP2CA), a gene

that was upregulated in early insulitis and type 1 diabetes in paths

detected by EmPath, was also upregulated in FoxA2 deficient

mouse [20]. Another interesting observation is that the up-/down-

regulation of molecular paths in early insulitis in our study matches

particularly well with the data from the FoxA2 deficient mouse

(Figures S6–S7 and reference [20]). FoxA2 is a transcription factor

involved in the regulation of insulin sensitivity [22].

Ether lipids and oxidative stress in beta cells
As a most surprising finding from our study, multiple lipid

pathways were downregulated in early insulitis (BDC2.5/NOD vs.

NOD comparison), including the ether lipid metabolism (Table 1).

Ether phospholipid synthesis, including synthesis of plasmalogens,

starts in peroxisomes and involves esterification of dihydroxyace-

tone phosphate (DHAP) with a long-chain acyl-CoA ester [16,23]

(Figure 3). This first reaction is catalyzed by dihydroxyacetone

phosphate acyltransferase (DHAPAT, EC 2.3.1.42). This reaction

appears to be affected in early insulitis, since the path involving

DHAPAT is diminished (Tables 1 and S1, Figure S3). The

plasmalogens are the most abundant ether phospholipids and may

protect cellular functions from oxidative damage [24,25]. The ether

lipids were also found consistently diminished in serum of children

who later progressed to type 1 diabetes [3]. Diminished protection

against the reactive oxygen species is relevant for T1D since

pancreatic beta cells are particularly susceptible to oxidative

damage [26,27]. Further supporting the role of lipids in early

Table 2. Top scored pathways in GSEA.

Gene set Size Enrichment Score Nominal p-value FDR q-value Source

Downregulated paths (BDC2.5/NOD vs. NOD)

HSA03010_RIBOSOME 44 20.61 0.000466 0.0027 KEGG

WNTPATHWAY 22 20.63 0.002375 0.0252 BioCarta

HSA00071_FATTY_ACID_METABOLISM 29 20.58 0.001845 0.0291 KEGG

CALCINEURINPATHWAY 17 20.64 0.007370 0.0392 BioCarta

PROTEASOMEPATHWAY 21 20.61 0.004710 0.0418 BioCarta

BILE_ACID_BIOSYNTHESIS 15 20.65 0.007466 0.0425 GenMAPP

Upregulated paths (BDC2.5/NOD.scid vs. NOD.scid)

HSA04610_COMPLEMENT_AND_COAGULATION_CASCADES 52 0.62 ,10–5 0.0022 KEGG

HSA04612_ANTIGEN_PROCESSING_AND_PRESENTATION 33 0.66 ,10–5 0.0038 KEGG

HSA04620_TOLL_LIKE_RECEPTOR_SIGNALING_PATHWAY 74 0.54 ,10–5 0.0107 KEGG

HSA04060_CYTOKINE_CYTOKINE_RECEPTOR_INTERACTION 169 0.47 ,10–5 0.0183 KEGG

NKCELLSPATHWAY 15 0.71 0.002838 0.0310 BioCarta

HSA04940_TYPE_I_DIABETES_MELLITUS 20 0.66 0.002753 0.0353 KEGG

Downregulated paths (BDC2.5/NOD.scid vs. NOD.scid)

CELL_CYCLE_KEGG 58 20.57 ,10–5 0.0031 GenMAPP

CELL_CYCLE 53 20.56 ,10–5 0.0073 GO

UBIQUITIN_MEDIATED_PROTEOLYSIS 20 20.67 0.000937 0.0096 GenMAPP

G1_TO_S_CELL_CYCLE_REACTOME 54 20.53 ,10–5 0.0112 GenMAPP

HSA00190_OXIDATIVE_PHOSPHORYLATION 86 20.49 ,10–5 0.0113 KEGG

P53PATHWAY 16 20.70 0.001388 0.0144 BioCarta

PROTEASOMEPATHWAY 21 20.64 ,10–5 0.0174 BioCarta

HSA04120_UBIQUITIN_MEDIATED_PROTEOLYSIS 25 20.62 0.000473 0.0177 KEGG

HSA04110_CELL_CYCLE 82 20.47 0.000553 0.0211 KEGG

CARM_ERPATHWAY 19 20.63 0.004144 0.0279 BioCarta

MRNA_PROCESSING_REACTOME 83 20.46 ,10–5 0.0312 GenMAPP

HSA00510_N_GLYCAN_BIOSYNTHESIS 24 20.59 0.003738 0.0356 KEGG

G2PATHWAY 18 20.62 0.004585 0.0475 BioCarta

This table contains top scored gene sets in GSEA for each strain (FDR q,0.05). The gene sets studies are the same as in the analysis for Table 1. None of the pathways
were significantly upregulated in the BDC2.5/NOD vs. NOD comparison using the FDR q,0.05 threshold.
doi:10.1371/journal.pone.0007323.t002
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insulitis, the enzymes of carnitine metabolism and fatty acid

transport to mitochondria (CPT1 and TMABADH) were found in

downregulated paths as well.

Previous genetic studies have shown that defective plasmalogen

synthesis associates with impaired membrane trafficking [28]

although the implications for type 1 diabetes remain to be

established [29]. Plasmalogen synthesis-related genes such as

DHAPAT clearly need to be evaluated as potential type 1 diabetes

susceptibility genes. The complete depletion of ether lipids via a

genetic DHAPAT knock-out model leads to a severe phenotype,

including arrest of spermatogenesis, development of cataract and

defects in central nervous system myelination [30]. In order to

study the physiological consequences of altered ether lipid levels as

observed in pre-diabetes, one would therefore need to establish

experimental models with partial depletion of ether lipids.

Conclusions
We demonstrated that graph-theoretic approaches such as

EMPath are a useful tool for detecting pathways of physical

interactions associated with specific disease phenotypes. Our

findings from the study of paths associated with early insulitis and

T1D are consistent with recent findings from a large scale clinical

metabolomics study, suggesting an important role of lipid

metabolism in the early stages of T1D pathogenesis. We provide

evidence that such dysregulation of lipid metabolism and related

oxidative stress may be tracked to beta cells and may thus explain

the beta cell loss due to increased oxidative stress. The genes

identified as important in early insulitis such as DHAPAT or PP2A

clearly need to be investigated further in the context of early T1D

pathogenesis as well as for their therapeutic potential.

Materials and Methods

Construction of integrated network
We constructed an integrated interaction network by combining

protein-protein interactions, signal transduction maps and meta-

bolic pathways in mouse as described previously [31,32]. The

integrated network nodes stand for proteins or metabolites, and

edges stand for interactions between nodes. We retrieved protein-

protein interactions from BIND [33], MINT [34] and DIP [35],

signal transduction interactions from TransPath [36] and biochem-

ical reactions from KEGG [37]. We excluded highly connected

cofactors from the network since they do not participate in the

actual metabolic conversions as substrates or products. Therefore,

their inclusion would connect many metabolically distant enzymes.

The excluded cofactors are listed in the Supplementary Table S7.

Gene expression data
We obtained normalized gene expression data from the T1D

dataset [4] from NCBI Gene Expression Omnibus (GEO)

database [38] series accession number: GSE1623. We used the

samples GSM27446 (BDC2.5/NOD1), GSM27451 (BDC2.5/

NOD.scid_1), GSM27453 (NOD.scid1) and GSM27456 (NOD1)

in all the analyses presented in this paper. In the source mouse

model experiments [4], RNA hybridization was done on

Affymetrix gene chip platform MGU74AV2.

Edge and node weights
The color coding algorithm used in [8] was not suitable for

detecting paths in phenotypic context, since they did not have any

phenotypic weights. Their weights were solely based on reliabilities

of interactions. We modified the color coding algorithm so that it

works in phenotypic manner by assigning weights to nodes. We

did the weight assignment for each mouse model comparison

separately. In order to find the up-regulated paths, we assigned

case-control ratios. And to find down-regulated paths, we assigned

control-case ratios as weights to nodes. We can thus use the color

coding algorithm to find maximum paths in both cases.

We assigned equal weights of 1.0 to all edges from MINT, DIP,

KEGG and TransPath, while the edges from BIND were set to

0.33, reflecting large database size of BIND and its reliability of

interactions [39].

Path scoring
The path score is computed as follows. In order to give high penalty

for a cascade of unreliable edges, we first multiply all edge weights. In

order to reward inclusion of high weight nodes, we sum up all node

weights. In the end, we multiply the edge product and the node sum.

More precisely, the path scoring scheme is presented in Figure S10 and

Formulas (1)–(3) below. We thus move forward on a path by selecting a

node and edge so that the total weight is maximized. However, we are

not allowed to move forward to a node if its color is inside the sliding

window (read more in the next paragraph).

w edgeProdð Þ~w E12ð Þ�w E23ð Þ�w E23ð Þ� ::: �w E n{1ð Þnð Þ ð1Þ

w nodeSumð Þ~ w N1ð Þzw N2ð Þzw N3ð Þz:::zw Nnð Þ ð2Þ

w totð Þ~ w edgeProdð Þ � w nodeSumð Þ ð3Þ

We used a color coding algorithm for detecting optimal paths

[7]. The basic idea of this algorithm is to assign colors (i.e., integers)

Figure 3. Schematic representation of the steps involved in the
biosynthesis of ether phospholipids, including plasmalogens. The
lipids found consistently downregulated in serum of children who later
developed type 1 diabetes [3] are shown in green box. DHAPAT enzyme is
found in the downregulated paths in early insulitis in the present study
(green arrow). The first three reactions in the pathway take place in
peroxisomes, while the others are catalyzed by microsomal enzyme systems.
Other routes for the formation of ether phospholipids may exist [16].
doi:10.1371/journal.pone.0007323.g003
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to nodes randomly and detect paths which do not contain same color

twice. The restriction on colors guarantees that the detected path is a

simple path. When the network is very large, the applicability of this

algorithm is challenged by the large computer memory requirements.

To address this limitation, we extended the algorithm by using a sliding

window so that the distinct color requirement applies only to nodes that

are inside the window (Figure S1). That is, unlike the original algorithm

which allows no two nodes in a path to have the same color, our

algorithm allows no two nodes within the length of the sliding window

to have the same color. We first tried to detect a path by using a

window length that is equal to the length of detected path. If we did not

find a path, we decreased the window length by 1 until we found a path

or the window length became 1. This modification improves the

performance because it avoids storing of the whole path in computer

memory. The algorithm is thus faster and it is capable of detecting

longer paths. It is thus more applicable to integrated networks that are

usually very large. However, in principle the original version could be

used in integrated networks, but it is more probable that there appear

memory problems.

Statistical significance of a path
In order to test for the null hypothesis that the detected path is

obtained by chance, we calculated the p-values. In order to

calculate one p-value, we shuffled node and edge weights 10,000

times. For the purpose of computational efficiency, we first tested

how promising the p-value looks after each shuffle based on the

pre-specified cutoff criterion (p-value ,0.025), then jumped into

the next path if the criterion was not met. The full algorithm for

the p-value calculation is described in the Supplementary Text S1.

Network harvesting
A network is considered harvested if all optimal paths in the

network are detected. However, there is not any rigorous way to

define when the network is harvested, so we took a heuristic

approach by assuming that the network is harvested if we come up

with 50 consecutive iterations in which the detected path is

previously detected. However, since the p-value calculation for an

optimal path is computationally expensive, we also limited

ourselves to finding at most two optimal paths of the same length

in each network (i.e., in each mouse model comparison). It is easy

to increase this number of paths if required. The algorithm is

described in the Supplementary Text S2.

Characterization of paths
We used a hypergeometric test to identify gene sets from the

MSigDB [19] that are over-represented in the molecular paths

detected by the EMPath method. First, as a quality control criterion,

we restricted the searches to gene sets compiled from pathway

databases KEGG, BioCarta, GenMAPP, and GO. Next, we defined

the Gene Symbol Universe by taking the union of all genes in the selected

gene sets. Next, we translated the Swissprot accession numbers of

protein nodes of the molecular paths to the Gene Symbols of their

encoding genes. These translations are done using Affymetrix

annotations of the mouse gene chip platform MGU74Av2, the

platform used for NOD mice gene expression experiments. Finally, by

using the function phyper of the R stats package [40] we tested for

enrichment of each gene set in each molecular path. In order to

account for multiple comparisons, the Benjamini and Hochberg’s

method for controlling the false discovery rate was applied [41].

Gene Set Enrichment Analysis
We performed Gene Set Enrichment Analysis (GSEA) of the

T1D gene expression data [4] using Java desktop version of the

software (February 2006 release). We performed GSEA separately

for the two selected phenotype comparisons. Since there was only

one sample per phenotype, giving one gene expression value per

gene per phenotype, we used the ratio of classes statistic of the GSEA

for ranking genes. We accessed the gene sets defined in the

MSigDB [19] and annotations for the Affymetrix gene chip

platform MGU74AV2 via ftp pages of GSEA from within the

software interface. The GSEA statistics were computed using

5,000 gene set permutations.

T1DBase Meta Analysis
First, we selected proteins from the paths detected by EmPath

(Figures S2–S5). They were annotated by Uniprot identifiers. We

then used EMBL database to find EMBL identifiers for

corresponding genes. The NCBI Entrez gene database (http://

www.ncbi.nlm.nih.gov/sites/entrez?db=gene) was then searched

to find Entrez gene identifiers for those genes. We used these

identifiers on the web user interface of the T1DBase Meta analysis

tool (http://www.t1dbase.org/page/MetaHome). We performed

the expression comparison by using all studies that were available

in the Beta Cell Biology Consortium.

Supporting Information

Text S1 The algorithm for calculating significance of optimal

paths detected by EMPath method (p-value calculation).

Found at: doi:10.1371/journal.pone.0007323.s001 (0.04 MB

DOC)

Text S2 Network harvesting algorithm.

Found at: doi:10.1371/journal.pone.0007323.s002 (0.03 MB

DOC)

Table S1 Genes found in downregulated paths in insulitis.

Found at: doi:10.1371/journal.pone.0007323.s003 (0.04 MB

DOC)

Table S2 Significantly enriched pathways in insulitis and type 1

diabetes as derived from detected paths.

Found at: doi:10.1371/journal.pone.0007323.s004 (1.06 MB

DOC)

Table S3 Enriched upregulated pathways in insulitis.

Found at: doi:10.1371/journal.pone.0007323.s005 (0.03 MB

DOC)

Table S4 Enriched downregulated pathways in insulitis.

Found at: doi:10.1371/journal.pone.0007323.s006 (0.09 MB

DOC)

Table S5 Enriched upregulated pathways in type 1 diabetes.

Found at: doi:10.1371/journal.pone.0007323.s007 (0.05 MB

DOC)

Table S6 Enriched downregulated pathways in type 1 diabetes.

Found at: doi:10.1371/journal.pone.0007323.s008 (0.08 MB

DOC)

Table S7 Excluded cofactors.

Found at: doi:10.1371/journal.pone.0007323.s009 (0.08 MB

DOC)

Figure S1 Use of a sliding window to optimize the path

detection. The distinct color requirement applies only inside the

window. We therefore do not need store the whole path in

memory, which makes the detection process faster. In this figure

we have an example in which our window size is 2. Our path

detection is at a stage in which we have traversed from A- to B to
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C. And we have {2,3} in denied colors. We can thus continue to

either D or E.

Found at: doi:10.1371/journal.pone.0007323.s010 (1.00 MB

DOC)

Figure S2 Upregulated paths in BDC2.5/NOD vs. NOD

comparison. The nodes are colored using the same color code as

in Figure 2. Edge annotations related to the source database: K,

KEGG; M, MINT.

Found at: doi:10.1371/journal.pone.0007323.s011 (1.30 MB

DOC)

Figure S3 Downregulated paths in BDC2.5/NOD vs. NOD

comparison. The nodes are colored using the same color code as in

Figure 2. Edge annotations related to the source database: K,

KEGG; M, MINT.

Found at: doi:10.1371/journal.pone.0007323.s012 (1.30 MB

DOC)

Figure S4 Upregulated paths in BDC2.5/NOD.scid vs. NOD.s-

cid comparison. The nodes are colored using the same color code

as in Figure 2. Edge annotations related to the source database: K,

KEGG; M, MINT.

Found at: doi:10.1371/journal.pone.0007323.s013 (1.30 MB EPS)

Figure S5 Downregulated paths in BDC2.5/NOD.scid vs.

NOD.scid comparison. The nodes are colored using the same

color code as in Figure 2. Edge annotations related to the source

database: K, KEGG; M, MINT.

Found at: doi:10.1371/journal.pone.0007323.s014 (1.26 MB EPS)

Figure S6 Meta-analysis for upregulated genes in BDC2.5/

NOD vs. NOD comparison. Genes are presented as rows and

study group comparisons as columns.

Found at: doi:10.1371/journal.pone.0007323.s015 (1.87 MB EPS)

Figure S7 Meta-analysis for downregulated genes in BDC2.5/

NOD vs. NOD comparison. Genes are presented as rows and

study group comparisons as columns.

Found at: doi:10.1371/journal.pone.0007323.s016 (1.86 MB EPS)

Figure S8 Meta-analysis for upregulated genes in BDC2.5/

NOD.scid vs. NOD.scid comparison. Genes are presented as rows

and study group comparisons as columns.

Found at: doi:10.1371/journal.pone.0007323.s017 (2.25 MB EPS)

Figure S9 Meta-analysis for downregulated genes in BDC2.5/

NOD.scid vs. NOD.scid comparison. Genes are presented as rows

and study comparisons as columns.

Found at: doi:10.1371/journal.pone.0007323.s018 (1.67 MB EPS)

Figure S10 Path scoring method. In order to calculate the score

for the path, the edge weights are multiplied. All node weights are

then summed up. In the end, the edge product and the node sum

are multiplied. The total path score is thus (w(E12)* w(E23)*..*

w((n-1)N)))*(W(N1)+ W(N2)+..+ W(Nn)).

Found at: doi:10.1371/journal.pone.0007323.s019 (1.00 MB EPS)
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ABSTRACT
Motivation: Integration of heterogeneous data in life sciences
is a growing and recognized challenge. The problem is not only
to enable the study of such data within the context of a biolo-
gical question but also more fundamentally, how to represent
the available knowledge and make it accessible for mining.
Results: Our integration approach is based on the premise
that relationships between biological entities can be repres-
ented as a complex network. The context dependency is
achieved by a judicious use of distance measures on these
networks. The biological entities and the distances between
them are mapped for the purpose of visualization into the lower
dimensional space using the Sammon’s mapping. The system
implementation is based on a multi-tier architecture using a
native XML database and a software tool for querying and visu-
alizing complex biological networks. The functionality of our
system is demonstrated with two examples: (1) A multiple path-
way retrieval, in which, given a pathway name, the system finds
all the relationships related to the query by checking available
metabolic pathway, transcriptional, signaling, protein–protein
interaction and ontology annotation resources and (2) A pro-
tein neighborhood search, in which given a protein name,
the system finds all its connected entities within a specified
depth. These two examples show that our system is able to
conceptually traverse different databases to produce testable
hypotheses and lead towards answers to complex biological
questions.
Contact: matej.oresic@vtt.fi

1 INTRODUCTION
Historically, the decomposition of biology into different dis-
ciplines was necessary to tackle the complexity of life science
systems by ‘reducing’ the degree of complexity down to the
most basic level. With the advent of ‘omics’ revolution and
systems biology, such separation of biology is becoming arti-
ficia (Blagosklonny and Pardee, 2002). In order to utilize the

∗To whom correspondence should be addressed.

diverse life science knowledge, one firs needs to address sev-
eral practical and fundamental challenges of data integration.
For example, different domain-specifi naming conventions
and vocabularies have been utilized both at the low level, such
as genes and proteins, and the more complex entities, such as
biological concepts. In order to be able to integrate data, one
should therefore enable traversing across such diverse sources
of information in an automated way.
From the early days of bioinformatics, several approaches

for biological data integration have been developed. Well-
known approaches include rule-based links, such as SRS
(Etzold and Argos, 1993; Etzold et al., 1996), federated mid-
dleware frameworks, such as Kleisli system (Davidson et al.,
1997; Chung and Wong, 1999), as well as wrapper-based
solution using query optimization, such as IBM Discovery
Link (Hass et al., 2001). In parallel, progress has been
made to organize biological knowledge in a conceptual way
by developing ontologies and domain-specifi vocabularies
(Ashburner et al., 2000; Bard and Rhee, 2004; Bodenreider,
2004). With the emergence of XML and Semantic Web
technologies, the ontology-based approach to life science
data integration has become more ostensible. In this con-
text, data integration comprises problems like homogenizing
the data model with schema integration, combining multiple
database queries and answers, transforming and integrat-
ing the latter to construct knowledge based on underlying
knowledge representation.
However, the ontology-based approach alone cannot resolve

the practical problem of evolving concepts in biology, and
its best promise lies in specialized domains and environ-
ments where concepts and vocabularies can be well con-
trolled (Searls, 2005; Oresic et al., 2005). Neither can
the ontologies alone resolve the problem of context, i.e.
what may appear closely related in one context, may be
further apart or unrelated in another (Gärdenfors, 2000).
In this paper, we present our approach to data integra-
tion and context-based mining of biological data, which is
based on the premise that relationships between biological
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entities can be represented as a complex network, with
nodes being either low level (e.g. genes, compounds) or
more complex entities, such as concepts (cell localization,
biological processes), and with edges being relationships
between them, either physical interactions or more complex
relationships.
The paper is organized as follows: in Section 2, we describe

the practical implementation of our three-tier data integration
system and the design of the Java-based tool we developed
for querying the data and visualizing complex relationships.
In Section 3, we demonstrate the utility of the system with
two query examples: (1) an integrated pathway retrieval and
(2) a protein neighborhood search. In Section 4, we discuss
the design and performance of the system as well as its future
developments.

2 SYSTEMS AND METHODS

2.1 System design
Our data integration and visualization system is composed
of three layers in which the data constitutes the back-end
layer (Fig. 1). Schema mappings, ontology definition and
conceptual learning implementations occupy the middle tier
and the user interface constitutes the front-end layer. The
middle tier also comprises sets of algorithms and modules
that process and display results of the query. Most of our
local data are represented in XML format. The data are
stored using XML data management system Tamino XML
server (Software AG) in a Redhat Linux Advanced Server
v2.1 environment. The databases are queried using Tamino
XQuery (Fiebig and Schöning, 2004) which is an imple-
mentation of XQuery language. The queries are enabled
through the Tamino Java API. For storing more voluminous
data, such as gene-expression data and in house produced
mass spectrometry data, we use Oracle 10g database server
(Oracle, Inc.).

2.2 Design of the network visualization tool
ThemegNet software is a Java-based tool which affords paral-
lel retrieval across multiple databases, with results displayed
as a network. Edge attributes contain information about types
of relationships, possibly quantitative or semantic informa-
tion (e.g. ‘is located in’ in case of linking a protein with a
complex entity, such as cell organelle). The tool retrieves bio-
logical data from the Tamino databases using Tamino Java
API and data from Oracle databases using JDBC. The user
interface is implemented using Java Swing libraries, with the
graphs created using Tom Sawyer Visualization Toolkit 6.0
(Tom Sawyer, Inc.). The basic layout of the user interface is
divided into four parts (Fig. 2):

• query section,
• network display section,

Fig. 1. Architecture of our bioinformatics data integration and
visualization system.

• text area displaying information on currently selecting
entity and

• distance mapping section, displaying the mapping of the
distance matrix into 2D space.

A mouse left click on a node or on an edge displays the
biological information in the text area located on the right
hand side. The information displayed in this text area contains
the data retrieved from locally installed databases and links
to external databases. The nodes can be selected to change
options, such as set a new search depth for the neighbors. In
the resultant graph, shape conventions are used to distinguish
the type of entity underlying a node. Similarly, color codes
are used to distinguish the type of relationship underlying an
edge. Each node and edge shown can be checked for original
source information. The resulting graph can be extracted and
saved in the XML format.

2.3 Databases and data curation
Data from various public data sources were collected into our
local database. Table 1 lists the data sources utilized in the
examples of this paper.
In order to add a specifi bioinformatics database into our

system, it has to be passed firs through a curation stage. A
typical data curation fl w is explained below in the form of a
pseudoalgorithm:

(1) Decide on a data source to be set up and download
the data typically using ftp. If the downloaded data are
already in XML format go to step (3) otherwise go
to (2).
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Fig. 2. Screenshot of the megNet network visualization tool. Node shapes represent their types (e.g. protein, gene), and edge colors represent
types of relationships. The Sammon’s mapping window displays the mapping based on specifie distance metrics.

(2) Study the structure of the non-XML data and defin
XML schemas to capture the logical structure of the
data. Go to step (4).

(3) If the document structures have been define using
DTD then convert the DTD to W3C Schema. If the
XML schema is available from the source itself, if
necessary, make changes to it to fi the requirements of
the implementation (e.g. change the target namespace
to Tamino namespace and defin a prefi for the
original target namespace).

(4) Defin physical properties, such as indices and doc-
type for the logical schema to construct a Tamino
Schema Definitio document, i.e. TSD schema.
If the previous step was (2) go to (5) or else
go to (6).

(5) Develop parsers to convert the non-XML data
into an XML format. A typical development
phase is always followed by several test and
feedback loops that involve an extensive use of
XML data validation as well as human reading.
Go to (7).

(6) Develop parsers to convert the distributedXML format
to the required XML format.

(7) Load the resulting XML documents using mass-
loading tool of the Tamino Server.

It must be noted that not every fiel in the source data-
base is integrated. It is the task of the curator to cap-
ture its relevant subparts as well as to defin appropriate
semantics for the integrated database. Table 1 shows the
XML Document Classes captured from databases used in
this paper. In the course of implementing the above steps
we make use of XMLSPY software (Altova, Inc.) and
Tamino Schema Editor software (Software AG) for the con-
struction and validation of logical and physical schemas,
respectively. The development of parsers is usually imple-
mented in Perl programming language and in some cases
using Java.

2.4 Database traversals with schema maps
Resolving even simple biological relationships containing
only a few biomolecular components often requires traversing
multiple databases (Fig. 3). In order to enable such traver-
sals within our system, we developed a database of schema
maps (henceforth called maps database), which maps across
different names used for the same entities acrossmultiple data-
bases. At the current state of development, the maps database
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Table 1. Databases used in the present study

Database Version or release date XML document class No. of entries

Uniprot/Swiss-Prot (Bairoch et al., 2005) 44.0 Uniprot 153 871
NCBI PubChema (NCBI, 2004) January 4, 2005 PC-substances 788 730
KEGG (Kanehisa et al., 2004) August 2004 Pathways 11 380
LIGAND (Goto et al., 2002) Gene 705 802

Enzyme 4327
Compound 11 116
Glycan 10 302

TRANSFAC (Matys et al., 2003) 8.4 Gene 7796
Factor 5919
Site 14 782

TRANSPATH (Krull et al., 2003) 5.3 Network 72 769
Logical classes of data
and entries:
Pathway—333
Gene—4989
Molecule—20 164
Reaction—23 065
Annotation—24 218

BIND (Bader et al., 2003) August 27, 2004 BIND-submit 90 580
MINT (Zanzoni et al., 2002) 2.1 Entryset 18 951
IntAct (Hermjakob et al., 2004) September 7, 2004 Entryset 37
Gene Ontology (Ashburner et al., 2000) January 4, 2004 GO 18 078
assocdb XML version

aNCBI PubChem (Accessed on January 10, 2005) http://pubchem.ncbi.nlm.nih.gov/

contains protein entities, indexed by UniProt identifiers An
example of such a map is shown in the XML code in Table 2.
For creating such a map, we developed a Perl program to
extract data from the Uniprot XML documents. We further
extended this data with the GenInfo identifier used in the
BIND database (Bader et al., 2003) for each interacting
protein. This data is obtained by applying the ‘SeqHound-
GetDefline function of the SeqHound API (Michalickova
et al., 2002). The HTTP method call for this ‘SeqHound’
function has been implemented using LWPmodule of the Perl
programming language.
The database traversals can be achieved by applying simple

join operations involving the maps database. Since the maps
database records contain identifier and names of an entity
from all databases, it is ensured that the join operation
between appropriate databases and rightly chosen entities
would always return a non-empty result. The querying of
a database independent of the names used in it can be
achieved by writing queries to firs search the maps data-
base to fin out the name/Id number of the entity in the
original database and then search the original database with
the correct name/Id number. Considerable challenge for any
biological data integration is the often-changing structures
of the data in the public databanks (Critchlow et al., 2000).
We address this problem at the ‘Logical schema construc-
tion level’ of our data curation cycle by keeping our logical
schemas to be as minimal as possible, yet useful enough

to be able to observe the associations between all the data
sources.

2.5 Similarity measures and graph projection
Property of similarity plays an essential role in human per-
ception and formation of new concepts. The problem of eval-
uating similarity (or inversely, distance) between two entities
or concepts appears more difficul when considering several
‘quality dimensions’ (Gärdenfors, 2000). In the domain of
biology, the ‘quality dimensions’ could mean relationships of
different types, i.e. chemical reactions, protein–protein inter-
actions, gene sequence comparison or more complex relation-
ships like protein localization, gene–phenotype association or
compound properties.
Although distances within the molecular networks can be

intuitively set to the length of the shortest path between
the molecules, distance measure is less obvious for rela-
tionships, such as in ontologies. It was shown that Gene
Ontology (GO) could be represented as a graph, and the
distance measures in such a case were already studied (Lee
et al., 2004). For the ontology trees, we assign a distance
based on the closest common ancestor in the graph. When
combining multiple relationships and corresponding distance
measures, reasonable normalization of distance values has
to be set in order to be able to compare across hetero-
geneous data sources. The distances between entities that
do not have a direct relationship are then calculated as the
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Fig. 3. (A) Schematic representation of relationships between
two compounds and two proteins. (B) Same representa-
tion as hypothetically resolved via traversals across multiple
databases.

lengths of the shortest paths with the distance-weighted edges
(Fig. 4). The normalization of distances for each new data
source is, in practice, handled by the bioinformaticians per-
forming data curation. This assures that the system users
do not need to know the specific of the underlying data
representation.
After distance normalization, it is ultimately up to the user

to assign importance and therefore distance bias to any par-
ticular relationship type, by which context sensitivity can be
achieved (Gärdenfors, 2000), as illustrated in Figure 4. When
visualizing such complex data, we often need to project them
into a lower dimensional space. In doing so it is important
to preserve distances, i.e. two samples that are close to each
other in the original space have to stay close when projected,
or vice versa, two entities that are close to each other in the
projected space must have come from the samples that were
close to each other in the original space. It is the idea behind
Sammon’s mapping (Sammon Jr, 1969), which is implemen-
ted in our visualization tool. Visual configuratio of entities
is estimated with a gradient descent type of algorithm on a
cost function based on the interpoint distances between the
entities in the original space and the introduced discrepan-
cies when applying the dimensionality-reducing mapping. In
this way, the visual configuratio approximates the original
relationships in the complex networks. This kind of distance
preservation is also used in the Kohonen’s self-organizing

Table 2. XML document from maps database for Uniprot protein entry
AG35_VACCV, with links to indices from databases, such as EMBL, PIR,
INTERPRO and Pfam

<?xml version="1.0" encoding="utf-8"?>
<protein created="1988-04-01" dataset="Swiss-Prot" ino:id="3426"
updated="2004-07-05">
<primaryid>P07242</primaryid>
<entry>AG35_VACCV</entry>
<name>Envelope protein</name>
<synonym>Protein H5</synonym>
<synonym>Protein H6</synonym>
<organism>
<name>Vaccinia virus (strain WR)</name>
<dbref id="10254" type="NCBI Taxonomy"/>

</organism>
<gene>
<name>AG35</name>
<synonym>H5R</synonym>

<dbref id="M13209" type="EMBL">
<property type="protein sequence ID"
value="AAB59841.1"/>
</dbref>
<dbref id="M23648" type="EMBL">
<property type="protein sequence ID"
value="AAA47962.1"/>

</dbref>
</gene>
<dblinks>
<dbref id="F24481" type="PIR">
<property type="entry name" value="QQVZH6"/>
</dbref>
<dbref id="IPR004966" type="InterPro">
<property type="entry name" value="Pox_Ag35"/>
</dbref>
<dbref id="PF03286" type="Pfam">
<property type="entry name" value="Pox_Ag35"/>
</dbref>
<dbref id="138380" type="GenInfo"/>
</dblinks>
</protein>

maps (Kohonen, 2001) and multi-dimensional scaling
(Torgerson, 1952).

3 EXAMPLES

3.1 Integrated pathway retrieval
Metabolic pathways and protein interaction networks have
been studied extensively in the context of topology and
modularity (Jeong et al., 2000, 2001). When attempting
to model real biological phenomena, it is becoming clear
that one needs to understand the cross-talk across differ-
ent levels of biological organization, for example, between
metabolic pathways and cell signaling (Papin and Palsson,
2004).
One of the primary motivations for the development of our

bioinformatics system was the need to facilitate the study of
available information in the context of biological questions.
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Fig. 4. Illustrative example of using graph projection in exploratory
analysis of biological networks. In CONTEXT1 we are weighting
all types of relationships similarly, so the nodes are clustered based
on shortest path length between the edges. In CONTEXT2, we are
interested only in concept cpt2, and assign lower distance value
to nearest neighbors in metabolic pathways compared with other
interactions.

One such application is the study of metabolic pathways,
enriched with information about known molecular interac-
tions at the level of protein–protein interactions, regulatory
and signaling networks. As an example, we created the fol-
lowing query: ‘Glycolysis/Gluconeogenesis AND Pentose
phosphate pathway AND TCA cycle IN S.cerevisiae’. The
query was set up to firs search the KEGG and retrieve the
primary components of the pathways, i.e. enzymes and com-
pounds. The database traversals were then used to search
protein–protein interaction databases BIND and MINT for
interactions of the enzymes with the nearest neighbor pro-
teins (i.e. interaction search depth was set to 1). The resulting
networks show surprisingly high level of connectivity across
different stages of linear metabolic pathways via protein–
protein interactions (Fig. 5). Specificall , in the zoomed-in
region of Figure 5, we focus on two enzymes from the gly-
colysis pathway: phosphoglycerate kinase (PGK; EC 2.7.2.3)
and acetate-CoA ligase (ACS; EC 6.2.1.1). ACS catalyzes
formation of acetyl-CoA from acetate, which is a starting
point in the TCA cycle, while PGK catalyzes acetylation
of 3-phospho-d-glycerate, which is a part of the second
phase of glycolysis. Both enzymes appear to aggregate with
SRB2, based on the evidence from the yeast two-hybrid pool-
ing approach (Ito et al., 2001). Notably, SRB2 is involved
in transcriptional initiation (Thompson et al., 1993). This
could mean that PGK and ACS, enzymes at two different
stages of glycolysis, are coregulated. While the evidence

from high-throughput yeast two-hybrid assays needs to be
taken with caution due to possibly high number of false
positive aggregation hits (Mrowka et al., 2001), our res-
ults do point toward a testable hypothesis for the future
research.

3.2 Protein neighborhood search
Assignment of protein function is a non-trivial task owing
to the fact that the same proteins may be involved in
different biological processes, depending on the state of
the biological system and protein localization (Camon
et al., 2004). Therefore, protein function is context
dependent.
The ‘protein neighborhood’, i.e. the entities of the network

close to the protein, mode provide an insight about the pro-
tein function and its mode of action. The entities in our case
can be molecules, genes or more complex concepts, and the
proximity is measured by applying the distance measure. As
an example, we searched the neighborhood of mannose-6-
phosphate isomerase for Saccharomyces cerevisiae (PMI40;
UniProt Id: P29952), which catalyzes the conversion between
fructose 6-phosphate and mannose 6-phosphate and thus con-
nects glycolysis with the cell wall synthesis in S.cerevisiae
(Smith et al., 1992). The search involved concurrent retrieval
of relationships for the following databases: UniProt, KEGG,
BIND, MINT and GO Biological Process. For any nearest
neighbor protein–protein association, such as protein–protein
interaction or sharing the same GO class at the lowest level,
the distance was set to 1. In the case of metabolic path-
ways, weight of each edge was set to 0.5 in the direction
of possible reaction. The search depth was set to two nearest
proteins if the firs of the edges was a protein–protein inter-
action, and to the nearest protein otherwise. This included
cases where the nearest protein was connected to the search
protein via the compound in metabolic pathways or the low-
est level GO term. Figure 6 shows the resulting graphs
and Sammon’s mapping of the nearest protein neighbors of
PMI40.
The zoomed-in window shows one region of potential

interest, which includes protein–protein interactions between
the PMI40 and NUP100 (UniProt Id: Q02629), a subunit
of the nuclear pore complex, as well as between alpha-
1,6-mannosyltransferase (MNN10; UniProt Id: P50108) and
NUP100. According to GO (GO:0000032), both PMI40 and
MNN10 are also involved in cell wall mannoprotein syn-
thesis. While PMI40 is a ‘gate’ between cell wall synthesis
and glycolysis, i.e. cell decision point between growth or
energy production, MNN10 is a part of the protein complex
in mannoprotein synthesis toward the end of the cell wall bio-
synthesis pathways. Examination of interaction entries (BIND
Ids 137 955 and 137 823) suggests that NUP100 protein,
which is a part of nuclear pore complex, binds to the PMI40
andMNN10 open reading frames (Casolari et al., 2004). This
and other evidence by Casolari et al. provide support for the
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Fig. 5. Integrated pathway retrieval using megNet network visualization tool, with the query for ‘Glycolysis/Gluconeogenesis AND Pentose
phosphate pathway AND TCA cycle IN S.cerevisiae’. Metabolic pathways are shown with blue edges, protein–protein interactions with pink.
Proteins are represented with squares, compounds with circles. Surprisingly, high level of connectivity via protein–protein interactions is
found across different modules of the metabolism. The zoomed-in region shows a specifi connection between Acetate-CoA ligase (ACS)
and Phosphoglycerate kinase (PGK) via interactions with SRB2, which is known to be involved in transcriptional initiation. The interactions
discussed are highlighted for clarity.

Fig. 6. Network neighborhood of mannose-6-phosphate isomerase
(PMI40) in S.cerevisiae. Metabolic pathway relationships are shown
in blue, protein–protein interactions in red, and GO associations in
green. Both PMI40 and MNN10 are involved in cell wall manno-
protein synthesis (GO:0000032). NUP100 protein, which is part of
the nuclear pore complex, appears to interact with the PMI40 and
MNN10 genes.

‘gene-gating’ hypothesis, which suggests that the interaction
of the nuclear pore complex with different genes might serve
as a level of gene regulation (Blobel, 1985). It remains to be
tested whether PMI40 and MNN10 are indeed coregulated in
relation to cell decision-making between energy production
versus growth.

4 DISCUSSION
Our integration approach is based on the premise that rela-
tionships between biological entities can be represented as a
complex network. The information in such networks forms
a basis for exploratory mining. Distances between different
nodes in an integrated network play a central role in our frame-
work. In order to calculate distances, one firs needs to defin
distance measures across heterogeneous types of information.
We are taking a pragmatic approach by letting the user defin
the distances as a part of the query. This is reasonable since the
distance basically define the context of the questions posed
by the user and allows biasing the similarity toward particu-
lar types of relationships, or toward relationships in a specifi
context. Once the distance measure is specified we can map
the nodes of the graph into a lower dimensional space. As the
mapping is approximate, there will be some distortion while
doing themapping. Therefore, in our opinion the exact formof
distance measure is not a critical issue, so long as it underlines
the relationships in the concept graph. In fact, selection of dis-
tance measure may reflec a subjective choice and as such will
be subject to debate. It is ultimately the end result of mining
that determines the utility of specifi distance measure.
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Presently, we are usingSammon’smapping for that purpose,
which maps the graph non-linearly into lower dimensional
space while preserving the internode distances across the
network. One disadvantage of Sammon’s mapping is that
addition of the nodes requires new computation of the map-
ping on the complete network, and is therefore not well suited
for interactive addition of new nodes. Othermappings, such as
other types of multidimensional scaling methods (Torgerson,
1952) or self organizing maps (Kohonen, 2001), are also
considered for future implementations. In particular, we will
investigate the non-metric multidimensional scaling method
(Cox andCox, 2001), which is focused on preserving the order
of similarities.
The two illustrative examples shown in the paper provide

evidence for the usefulness of our approach. In the case
of integrated pathway retrieval, we found large level of
interconnectivity across different stages and modules of the
metabolic pathways via protein–protein interactions, which
raises questions about merit of studying the topology of meta-
bolic networks outside the scope of other biological networks.
Specificall , we found evidence of possible coregulation of
enzymes at early and late stages of glycolysis pathway, which
needs to be further investigated experimentally. In the case
of protein neighborhood search, we were able to retrieve
relationships and potential mechanisms that would not have
been easily found through browsing databases separately.
We believe our protein neighborhood search is a powerful tool
for visual protein annotation in a context dependent manner.
Our approach is not limited to pathway databases and

ontologies alone. We are currently extending the system in
two directions. First, we aim at complementing the know-
ledge extracted from structured and semistructured data with
the knowledge extracted from literature. Currently, we are
implementing a text mining tool to retrieve from literat-
ure relationships between entities of interest, with primary
focus on biomedical domain (Oresic et al., 2005). The dis-
covered relationships will be, similarly as described in this
paper, represented as a network. Second, genome information
and experimental data such as metabolic profile or gene-
expression data can also be included. The distancemeasures in
such cases are related to the level of association (e.g. correla-
tion coefficient or in the case of gene sequence comparison, to
the alignment score. Combining molecular profil data with
ontology information using database traversals has already
been attempted (Oresic et al., 2004), but without the distance
calculations.
We have presented an integrated database and software

system that enables retrieval and visualization of biological
relationships across heterogeneous data sources. We have
demonstrated its merit on two practical examples: protein
neighborhood search and integrated pathway retrieval. Owing
to light-weight design of the system, it is relatively easy
to incorporate new types of information and relationships.
We believe our approach facilitates discovery of novel or

unexpected relationships, formulation of new hypotheses,
design of experiments, data annotation, interpretation of new
experimental data, and construction and validation of new
network-based models of biological systems.
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1 Introduction 

The omics revolution has empowered us with technologies to study the biological 
systems by measuring a large number of molecular components in parallel, therefore 
enabling the systems approach (Ideker et al., 2001; Kitano, 2002). The wealth of new 
information, combined with existing repositories of knowledge dispersed across 
numerous databases and literature, demand new solutions for management and 
integration of life science data. This has already been recognised in a variety of 
application domains relying on life science research. Knowledge management and data 
integration are recognised bottlenecks in drug discovery domain and current solutions are 
not yet capable of taking the full advantage of the information delivered by the modern 
omics technologies (Searls, 2005). More fundamentally, the ability to collect molecular 
information from biological systems in parallel is also challenging the ways we represent 
the biological systems and related knowledge, as well as the ways we design experiments 
to address specific biological questions. 

Several approaches for biological data integration have been developed. Well-known 
examples include rule-based links such as SRS (Etzold and Argos, 1993; Etzold et al., 
1996), federated middleware frameworks such as Kleisli system (Davidson et al., 1997; 
Chung and Wong, 1999), as well as wrapper-based solution using query optimisation 
such as IBM Discovery Link (Hass et al., 2001). In parallel, progress has been made to 
organise biological knowledge in a conceptual way by developing ontologies and 
domain-specific vocabularies (Ashburner et al., 2000; Bard and Rhee, 2004; Bodenreider, 
2004). The emergence of XML and Semantic Web technologies has fostered the 
ontology-based approach to life science data integration. In this context, data integration 
comprises problems like homogenising the data model with schema integration, 
combining multiple database queries and answers, transforming and integrating the latter 
to construct knowledge based on underlying knowledge representation. However, the 
ontology-based approach alone cannot resolve the practical problem of evolving concepts 
in biology, and its best promise lies in specialised domains and environments where 
concepts and vocabularies can be well controlled. Neither can the ontologies alone 
resolve the problem of context, i.e., what may appear closely related in one context,  
may be further apart or unrelated in another (Gärdenfors, 2000). 

Biological systems are characterised by the complexity of interactions of their 
internal parts and also with the external environment; integrating such information may 
result in a huge and heterogeneous network of biological entities. The visualisation  
of these networks poses many challenges (Herman et al., 2000). The problem is not only 
to display them, but also to represent them in a way that would enable easy interpretation 
of these huge networks. Our goal is to alleviate this problem by using context-based 
mining. 

Biological network visualisation tools abound in many flavours, but few of  
them have met important requirements that enable real biological interpretation  
(Saraiya et al., 2005). Contextuality is one of those requirements. There are some tools 
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that provide contextuality by attaching notes to visualised entities (Shannon et al., 2003; 
Dahlquist et al., 2002). However, this approach does not resolve the interpretation 
problem especially when the networks become complex. Therefore, the context-based 
mining is needed to eliminate some dimensions that are not contextually relevant. 

Our approach to enable context-based mining is based on non-linear projection 
methods. Heterogeneous high-dimensional data are projected to a lower-dimensional 
space (two or three dimensions) in such a way that all similarity relationships are 
preserved as much as possible. This is quite challenging to implement in practice due to 
the heterogeneity of the entities and relationship types. The best compromise is to choose 
which kinds of relationships to visualise and what type of metrics to use in order to 
ensure the reliability and biological interpretability of the visualised data. Therefore, 
special attention should be put also on the data representation when integrating different 
types of information. 

In this paper, we present a data integration and mining approach based on network 
representation models, which support an advanced visualisation system. As reported in 
our initial studies, the system has the capability to enable bioinformatics studies in a 
context dependent way (Gopalacharyulu et al., 2004, 2005). Section 2 introduces the 
general architecture of our database system, its implementation and methods. Section 3 
describes our methods for network data representation and mining. Section 4 illustrates 
our approach on three different applications: metabolic network topology study,  
context-dependent protein annotation, and visualisation of Type 1 Diabetes gene 
expression dataset in the context of known pathways and ontologies. In the last section 
we discuss the current status of our research, persistent challenges, and future goals. 

2 Integrated database system 

2.1 Architectural design 

The core architecture of our data integration and visualisation system, called megNet, is 
composed of three layers; back-end, middle tier and front-end (Figure 1). The data, 
schema maps, ontology definitions constitute the back-end layer. Most of our local data 
are represented in XML or RDF formats. The data is stored using XML data management 
system Tamino XML server (Software AG) in a Redhat Linux Advanced Server v3.0 
environment. The databases are queried using Tamino X-Query which is based on  
XPath 1.0 specification. The queries are enabled through the Tamino Java API.  
For storing more voluminous data such as gene expression data and in house produced 
mass spectrometry data, we use Oracle 10g database server (Oracle, Inc.). The Oracle 
queries are performed using Oracle JDBC Thin drivers. The results obtained from queries 
to Tamino and Oracle are combined at the Java programming level in the middle tier. 

The middle tier comprises the business logic of our system. Business logic  
events, such as graph constructions, distance data projections, topology calculations are 
implemented as stateless session beans. They are processed as web services. The session 
beans are the end points of the web services. They receive their request messages from 
the client for performing a business logic event. In the end of their life cycle they send the 
response to the client. 
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Figure 1 Three-tier architecture of the bioinformatics data integration and visualisation system. 
Back end tier consists of source biological data, schema mappings and ontologies. 
Middle tier is a suite of algorithms for business logic events (e.g., network 
constructions, data projections). Front end is a Java based user interface for 
visualisation the biological data and interacting with the user 

 

The middle tier resides physically in a JBoss 4.04 Application Server (JBoss, Inc.).  
The business logic events are processed in the EJB Container of JBoss. The client and 
server communicate through SOAP messages. The SOAP messages are converted to Java 
objects by the middle tier after it has received a request message from the front-end client 
and Java objects are converted to SOAP messages before they are sent back as a  
response message. These conversions are implemented by using Apache Axis 1.4 
(Apache Software Foundation). They are processed in Apache Tomcat 5.5 Servlet 
Container. 

The front-end comprises the user interface for visualising and interacting with the  
end user. It is implemented in the Java environment. 

2.2 Database curation 

A system-wide life science data mining requires concurrent use of several databases,  
each of them likely having their own data schema, interface, address, and software tools. 
A database access tool is therefore needed that affords mining of several databases within 
one single interface. A fundamental step towards the integration of biological databases is 
to identify the ‘atoms of information’ and to develop solutions that resolve the naming 
conflicts as well as data structures. This is the task of a database ‘curator’. For every 
database (either containing annotations or information about entity relationships) the 
database curator develops a data schema that enables mapping to other databases. 

Data from various public and commercial data sources were set up in our database 
system. Table 1 lists those data sources which were utilised in the examples of this paper. 
A typical data curation flow is explained below in the form of a pseudo-algorithm: 

1 Decide on a data source to be set up and download the data typically using ftp.  
If the downloaded data is already XML format go to step (3) otherwise go to (2). 

2 Study the structure of the non-XML data and define XML schemas to capture the 
logical structure of the data. Go to step (4). 
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3 If the document structures have been defined using DTD, then convert the DTD to 
W3C Schema. If the XML schema is available from the source itself, if necessary, 
make changes to it to fit the requirements of the implementation (e.g., change the 
target name space to Tamino name-space and define a prefix for the original target 
namespace). 

4 Define physical properties such as indices, doc-type etc. for the logical schema to 
construct a Tamino Schema Definition document, i.e., TSD schema. If the previous 
step was (2) go to (5) else go to (6). 

5 Develop parsers to convert the non-XML data into an XML format. A typical 
development phase is always followed by several test and feed-back loops that 
involve an extensive use of XML data validation as well as human eye reading.  
Go to step (7). 

6 Develop parsers to convert the distributed XML format to the required XML format. 

7 Load the resulting XML documents using mass-loading tool of the Tamino Server. 

Table 1 Databases incorporated into the system 

Database Version or release date No. of entries 
UniProt/Swiss-Prot (Bairoch et al., 2005) 44.0 153871 
NCBI PubChem (http://pubchem.ncbi.nlm.nih.gov/) – 
Substance 

January 4, 2005 
788730 

KEGG (Kanehisa et al., 2004) – 
Pathways 11380 
LIGAND (Goto et al., 2002) – 
Genes 705802 
Enzymes 4327 
Compounds 11116 
Glycans 

August, 2004 

10302 
TRANSFAC (Matys et al., 2003) – 
Gene 7796 
Factor 5919 
Site 

June, 2005 

14782 
TRANSPATH (Krull et al., 2003) – 
Pathway 333 
Gene 4989 
Molecule 20164 
Reaction 23065 
Annotation 

June, 2005 

24218 
BIND (Bader et al., 2003) August, 2004 90580 
MINT (Zanzoni et al., 2002) 2.1 18951 
IntAct (Hermjakob et al., 2004) September, 2004 37 
Gene Ontology (Gene Ontology Consortium, 2000) 
assocdb XML version 

May, 2005 18078 

As not every field in the original databases is integrated, it is the task of the curator to 
capture the relevant subparts of it as well as to define appropriate semantics for the 
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integrated database. In the course of implementing the above steps we make use of 
XMLSPY software (Altova, Inc.) and Tamino Schema Editor software (Software AG)  
for the construction and validation of logical and physical schemas, respectively.  
The development of parsers is usually implemented in the Perl programming language 
and in some cases using Java. 

2.3 Database traversals with schema maps 

Even resolving simple biological relationships containing only a few biomolecular 
components often requires traversing multiple databases. In order to enable such 
traversals within our system, we developed a database of schema maps (henceforth called 
maps database), which maps across different names used for the same entities across 
multiple databases (Gopalacharyulu et al., 2005). For example, the maps database for 
protein entities is indexed by UniProt identifiers. For creating such a map, we developed 
a Perl program to extract data from the UniProt XML documents. 

The database traversals can be achieved by applying simple join operations involving 
the maps database. Since the maps database records contain identifiers and names of an 
entity from all databases, it is ensured that the join operation between appropriate 
databases and rightly chosen entities would always return a non-empty result.  
The querying of a database independent of the names used in it can be achieved by 
writing queries to first search the maps database to find out the name/Id number of the 
entity in the original database and then search the original database with the correct 
name/Id number. Considerable challenge for any biological data integration is the  
often-changing structures of the data in the public databanks (Critchlow et al., 2000).  
We address this problem at the “Logical schema construction level” of our data curation 
cycle by keeping our logical schemas to be as minimal as possible, yet useful enough to 
be able to observe the associations between all the data sources. 

3 Data visualisation and mining methods 

3.1 Network visualisation 

In life sciences, everything is connected; even entities believed to be unrelated in some 
context might associate with each other in some other contexts. Thus, an integrated 
network of interacting entities of a biological system will necessarily contain many 
different types of entities and attributes arising from a number of disparate data sources, 
including literature databases. 

The user interface of our system is capable of visualising these integrated networks in 
interactive manner (Figure 2). It constitutes the following sections: 

• query parameters section 

• network visualisation section 

• display information section 

• menu bar 

• Non-Linear Mapping (NLM) window. 
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Figure 2 User interface of megNet, developed in Java 

 

The ‘query parameters’ section consists of database, species, and query parameter menus. 
The database menu enables multiple selections from a list of all databases and the species 
menu enables multiple selections from a list of all species available in the system.  
The query parameter menu provides a collection of input boxes for entering a variety of 
parameters such as, protein names/ids, concept ids, metabolic pathway names, gene 
expression data set ids, initial depth of search etc. In addition, there is a button for 
launching the query. 

The ‘network visualisation’ section is the place where the resulting network  
of a graph construction request is displayed. This interface provides options for 
interactively visualising or modifying the network. Typical examples of user interaction 
in this section include zooming in and out of the network, moving the network using pan 
tool, selecting a node to display its annotations in the display information section, 
selecting some parts of the network either to delete that part or to modify weights of the 
edges under selection etc. 

The ‘display information’ section displays annotations of the selected node or edge. 
The information displayed reflects the annotations that exist in the databases. This section 
also provides hyperlinks to the source database of the entity under selection so as to 
enable the user to get more information on this entity. 

The ‘menu bar’ enables interaction within our system in many ways. Typical example 
features enabled through its items include saving the network result or loading the 
network (in XML format), modifying weights of various types of interactions i.e., edge, 
projecting network into lower dimensional space and performing topological calculations 
on the networks. 

The ‘NLM window’ displays the lower dimensional projection space. This interface 
also allows interactive features such as zooming in and out. Additionally, selecting  
a point in the projection space highlights the corresponding network node in the  
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‘network visualisation’ section. This enables viewing annotations of this entity in the 
‘display information’ section. 

When the user starts using the user interface, he can either load a previously saved 
network from XML document or he can construct a new network. In the former case he 
can open a file chooser from the upper menu for selecting the XML document. In the 
latter case he can assign query parameters to the network construction in the query 
parameter section that constitutes different menus on the bottom. In the database menu he 
can select from which databases he wants to retrieve entities and relationships. In the 
species menu, he selects in which species he wants to construct the network. In the query 
parameter menu, he can assign more parameters for the query. For example, he can  
type a protein name (e.g., PMI40) or identifier to visualise the neighbourhood of a certain 
protein. Or he can type a metabolic pathway name (e.g., Pentose phosphate pathway) to 
visualise all entities and interactions involved in a certain pathway or to investigate its 
neighbourhood of various types of interactions. When the user has assigned all query 
parameters, he can click on the ‘Query’ button to launch the query. 

Once the network is constructed upon assigned query parameters or loaded from 
XML document, it is visualised on the middle part of the user interface (i.e., in Network 
visualisation section). The network is portrayed by using Tom Sawyer Visualisation 6.0 
(Tom Sawyer Software, Oakland, CA, USA) symmetric layout algorithm. In the 
displayed network, shape conventions are used to distinguish the type of entity 
underlying a node. Similarly, colour codes are used to distinguish the type of the 
relationship underlying an edge. The user can make inferences from the network by 
zooming in and out. The user can save this network in XML format by opening a file 
chooser from the upper menu. A mouse left click on a node displays the biological 
information in the text area located on the right hand side. The information displayed in 
this text area contains the data retrieved from locally installed databases and links to 
external databases. 

There are many ways to represent the data structure of a network (Bollobás, 1998).  
In our approach, a biological network is represented as a directed weighted graph where 
biological entities are nodes that are connected to each other through edges which are 
interactions or relationships between the entities. The shape of the nodes is coded 
differently depending on the type of an entity (e.g., squares stand for proteins, circles 
stand for compounds). The edges can be bidirectional or unidirectional, depending on the 
nature of the relationships. For example, in the case of protein-protein interaction 
network, we would relate the neighbouring proteins by searching all possible pathways 
among them, including their regulating genes. The generated nodes and edges then show 
the proteins and their interactions, respectively. In the case of metabolic network, we 
need to relate entities that are involved in each reaction. The substrates, products and 
enzymes are represented as nodes. As reactions can be either reversible or irreversible, 
unidirectional edges are used to distinguish the direction of an irreversible reaction and 
bidirectional edges are used to represent reversible reaction. 

If the user wants to project the internal distances of the network into 2-dimensional 
space, she can assign appropriate bias by modifying the edge weights. After that she 
selects one of the available projection methods (Sammon’s NLM, Curvilinear 
Component Analysis (CCA), Curvilinear Distance Analysis (CDA)) from the upper menu 
(Each of these methods is described in detail in Section 3.2). After that the selected 
projection method is performed. As a result we obtain coordinates of the network nodes 
in the 2-dimensional projection space. These coordinates are displayed on a separate 
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window that is opened after the projection method is finished. When the user clicks on a 
node on the two-dimensional projection window, the corresponding node on the network 
is highlighted and vice versa. 

While distances within the molecular networks can be intuitively set to the length of 
the shortest path between the molecules, distance measure is less obvious for conceptual 
relationships such as in ontologies. One way to approach this is to consider an ontology 
as a graph and the distance measure is based on the shortest path to a common ancestor 
(Lee et al., 2004b). In the case of gene expression network which consists only of genes, 
the similarity measure is based on the gene expression profile distance between the genes 
(e.g., Euclidean or related). 

The user can also perform topology calculations on the network and modify the 
network (e.g., removing some nodes according to their presence in an experimental 
condition). Our system uses a variety of methods for such studies. Below, we describe 
few that have been utilised in the examples of the paper. 

3.2 Topology of a network 

The molecular entities of the cell form a very complicated and dynamic interacting 
system. One of the major challenges of contemporary biology is to understand  
the structure of this complex web of interactions. The network structure and their 
dynamics is believed to have a significant effect on the structure and function of the cell 
(Barabasi and Oltvai, 2004). 

The biological networks at the molecular level can be divided into different  
types of networks such as metabolic pathways, protein-protein interaction and regulatory 
networks. These networks are mutually interdependent and it has been demonstrated that 
they share some common network properties, e.g., the presence of single modularity 
networks (Barabasi and Oltvai, 2004; Han et al., 2004; Guimera and Amaral, 2005). 
However, the presence of the modularity in highly integrated biological networks is not 
self-evident as it lacks quantitative support (Ravasz and Barabási, 2003). There is thus a 
need for tools that afford the parallel study of multiple biological networks. 

In order to study these topological properties we can formalise the network 
representation as a graph. Therefore, we apply mathematical methods used in graph 
theory. 

Let us denote by G = (X, U) a graph containing two sets where 
X = {x1, x2, …, xn, … xN}|X|=N, the set of nodes and U = {u1, u2, …, um, … UM}|U|=M the  
set of edges, where u = [xi, xi+1]i=1…N. A weighted graph is denoted by G = (X, U, W) 
where W: U → ℜ. 

The distances between the biological entities can be derived from the path lengths 
within a graph. A path µ of length q is a sequence of edges U(µ) = {u1, u2, …, uq}.  
In a weighted graph the length of the path µ is obtained by summing up all weights of the 
edges of U(µ). In graphs, there are often many alternative paths between two nodes. 
Therefore, in practice one is mainly interested in the shortest path length between the 
selected nodes. We can obtain an average path length by calculating the shortest path 
between every pair of nodes of a graph and dividing the result by total number of nodes. 
This average value quantitatively characterises a graph by describing how close to each 
other its nodes are. 
 

III/9



 

 

   

 

   

    An integrative approach for biological data mining and visualisation 63    
 

    
 
 

   

 

 

       
 

A graph can be characterised by its degree distribution Px(k) defining the probability 
that an arbitrary node x is connected to k neighbours. For metabolic networks, it was 
demonstrated that Px(k) decays as a power law Px(k) ≈ k–γ with γ  ≅ 2.2 in all organism 
(Jeong et al., 2000). This type of decay function characterises a scale-free network 
topology. This type of distribution is applicable only to a graph where all edges are 
bidirectional. For the case of networks containing some unidirectional edges, we would 
be interested in an in-degree distribution and out-degree distribution, which define the 
number of in-coming and out-going edges a node x has, respectively. 

Another way to characterise a graph is to calculate its clustering coefficient Cx(k) 
which is the density of connections in the neighbourhood of a node x (Dorogovtsev and 
Mendes, 2003). It is defined as the ratio between the total number n of the edges 
connected to its k nearest neighbours and the total number of all possible edges between 
all these nearest neighbours Cx(k) = 2n/k(k – 1). A high clustering coefficient Cx(k) would 
suggest a modular organisation. 

It has been shown that most of complex networks (e.g., biological networks,  
world wide web, actor networks) are scale free networks with high clustering coefficient 
(Ravasz and Barabási, 2003). This means that there are few dominating hubs which  
lead to properties such as high tolerance to random failures. On the other hand, the 
network can collapse if one eliminates as few as 5–15% of its highly connected hubs. 
Recent studies showed that metabolic networks contain a hierarchical modularity 
(Kanehisa et al., 2004). This modularity combines two features into one network type. 
According to this modularity study, graph’s in- and out-degree distributions follow power 
law Px(k) ≈ k–γ, with a constant γ ∈ ℜ, and the dependence of the clustering coefficient 
follows the power law Cx(k) ≈ k–γ as well. 

3.3 Network projections 

The main purpose of data projection is to map a high dimensional data to a lower 
dimensional space in order to be able to visualise them in a context-based manner.  
The methods implemented in our system so far are the Sammon’s NLM (Sammon, 1969), 
CCA (Demartines and Hérault, 1997) and CDA (Lee et al., 2004a). 

All projection methods we used share common features: 
Let *

ijd  denote distance, by some metric, between two points i and j in the original  
K-dimensional input space A and let dij denote the distance between points i and j in the 
L-dimensional (where L < K) output space B. In addition, every projection method  
we have used has an error function Err(.) which includes these two distances and  
some weight function which decides on how much smaller or larger distances we  
try to preserve. 

All methods try to minimise an error function iteratively, either by steepest gradient 
descent (NLM) or stochastic gradient descent (CCA and CDA). 

3.3.1 Sammon’s Non-Linear Mapping (NLM) 
Sammon’s NLM (Sammon, 1969) error function is the following: 

2*( )1Err .**

K
ij ij

K
i j ijiji j

d d
dd <

<

−
= ∑
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NLM algorithm tries to minimise Err by always descending towards the steepest gradient. 
It may thus end up in a local minimum and the convergence may be slow.  
Its time-complexity is of O(n²). Therefore it may be too slow for data with tens of 
thousands of points, especially when the original dimensionality K is large, and is not 
appropriate for interactive work. 

3.3.2 Curvilinear Component Analysis (CCA) 
CCA attempts to preserve local topology by favouring first short distances, and long 
distances afterwards. The error function is formalised as follows:  

21 *Err ( ) ( , ( ))
2 ij ij ij

i i j
d d F d kλ

≠

= −∑∑  

where F(dij, λ(k)) is the weighting neighbourhood function that decreases with its 
arguments, thus favours local topology preservation. Computationally CCA is lighter 
than NLM because CCA reduces the computational cost of finding minima by using 
stochastic gradient descent and by optionally using vector quantisation to create centroids 
that approximate some groups of points in K-space. Without quantisation CCA’s  
time-complexity is of O(n²) and with vector quantisation O(n*n′) where n′ is the number 
of centroids created in vector quantisation. Therefore, the time-complexity becomes 
O(n²) with inefficient vector quantisation. 

3.3.3 Curvilinear Distance Analysis (CDA) 
Instead of calculating Euclidean distances between points of an object, CDA calculates 
curvilinear distances, denoted by δij, between points of a structure by creating a graph out 
of centroids. After that it calculates the shortest path between two prototypes of the 
codebook after quantisation and linking of the prototypes. The curvilinear distances are 
used instead of Euclidean distances. The error function becomes then: 

21 *Err ( ) ( , ( )).
2 ij ij ij

i i j
F d kδ δ λ

≠

= −∑∑  

CDA’s time-complexity is of O(n′e + n′2ln(n′)), where e is number of edges created 
between centroids, n′ number of centroids and n number of data-points. This follows 
from the complexity of Dijkstra’s (1959) shortest path algorithm that is used for every 
centroid. That becomes O(n.e + n2ln(n)) with inefficient vector quantisation. 

In the worst case the runtimes of CDA may seem to be very long compared to that of 
CCA or NLM. However, in practice its runtime is near that of CCA which is much 
shorter than that of NLM. The use of curvilinear distance measure provides much better 
results than CCA when K-space has complex features. In the following section, we will 
apply CDA projection method to visualise the metabolic network in a context-based 
manner. 
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4 Applications 

4.1 Network retrieval and topology study 

The topological properties of biological networks have been an intense topic of 
computational biology research (Jeong et al., 2000, 2001; Arita, 2004; Barabasi and 
Oltvai, 2004). A practical step necessary to retrieve specific networks involved in such 
studies requires development of parsers to retrieve those networks from appropriate 
databases. Since it is becoming clear the topology of biological network may also need to 
be viewed in the context of systems dynamics (Luscombe et al., 2004), the future 
research in this domain would benefit from ability to retrieve biological networks 
corresponding to different biological states easily from the life science databases and 
experimental data. 

A simple example of a network retrieved from our database is presented in Figure 3, 
showing a result from a query for the complete metabolic network from KEGG 
(Kanehisa et al., 2004) for S. cerevisiae species. This network can then be investigated 
for local structures, links to other networks and biological entities, as well as for  
the global studies such as analyses of network scaling properties. Figure 4 shows the 
calculated degree distribution of the yeast metabolic network retrieved from KEGG, with 
the nodes being the enzymes and the edges connections between the enzymes via 
metabolites as substrates or products. Figure 5 shows the calculated degree distribution  
as a function of node degree for the same network. It appears that neither of these 
distributions follows the power law ideally, which is in contrast with previous  
findings stating that the hierarchical modularity is present in metabolic networks  
(Jeong et al., 2000). We can see from Figure 3 that there is one large metabolic island 
which contains most nodes of the graph. The presence of several small islands may be 
explained by the lack of the connectivity data in KEGG. These islands affect the total 
distributions. 

Figure 3 Result of a retrieval of complete yeast metabolic network from megNet using a simple 
query for KEGG and S. cerevisiae 
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Figure 4 Degree distribution of the yeast metabolic network shown in Figure 3.  
It appears that the degree distribution does not follow the power law which means  
that there is no hierarchical modularity in this metabolic network 

 

Figure 5 Clustering coefficient as a function of node degree for the yeast metabolic network. 
Here the clustering coefficient does not seem to follow the power law either,  
which suggests that there is no hierarchical modularity in our network 

 

In order to demonstrate the use of context for visualisation with CDA projection 
algorithm, we retrieved a KEGG metabolic pathway with Gene Ontology (Ashburner  
et al., 2000) annotations for S. cerevisiae species. Figure 6 shows zoomed in result of that 
retrieval in the neighbourhood of the tricarboxylic acid cycle biological process, while 
the CDA projection of that graph is shown in Figure 7. In this projection the tricarboxylic 
acid cycle biological process is biased so that its incident edges have lower weights than 
the other edges of the graph. We can see that in this projection there are two main 
clusters. In one cluster there are the tricarboxylic acid cycle Gene Ontology term 
(Number 1) and its neighbour nodes. Therefore, we may conclude that in this metabolic 
pathway there is a group of enzymes and compounds that are strongly involved in the 
tricarboxylic acid cycle biological process and there is another group that is weakly 
involved in this process. 
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Figure 6 A zoom of a yeast metabolic pathway in the neighbourhood of tricarboxylic acid (TCA) 
cycle (GO:0006099). Proteins involved in the TCA cycle biological process are 
clustered near the TCA cycle Gene Ontology term 

 

Figure 7 A Curvilinear Distance Analysis projection biasing tricarboxylci acid cycle. The 
projection was obtained by lowering the distance of all connected edges to TCA node 
(number 1) in the above graph 

 

4.2 Protein neighbourhood search as a context dependent annotation 

Assignment of protein function is a nontrivial task due to the fact that the same proteins 
may be involved in different biological processes, depending on the state of the biological 
system and protein localisation. Therefore, protein function is context dependent.  
Protein databases such as UniProt (Bairoch et al., 2005) contain information on protein 
function in text format. For example, PPAR gamma (UniProt id: P37231) is annotated as 
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“Receptor that binds peroxisome proliferators such as hypolipidemic drugs and 
fatty acids. Once activated by a ligand, the receptor binds to a promoter 
element in the gene for acyl-CoA oxidase and activates its transcription.  
It therefore controls the peroxisomal beta-oxidation pathway of fatty acids.  
Key regulator of adipocyte differentiation and glucose homeostasis.” 
(http://www.expasy.org/cgi-bin/niceprot.pl?P37231) 

Such information may not be satisfactory if interested in the role of this protein in context 
of specific disease (PPARγ is known to be involved in a variety of diseases, such as 
diabetes, osteoporosis, and cancer), tissue localisation (PPAR gamma actually has two 
main isoforms, 1 and 2, of which PPAR gamma 1 is expressed in all tissues, while PPAR 
gamma 2 is mainly expressed in adipose tissue; we have been recently involved in the 
characterisation of the latter (Medina-Gomez et al., 2005), or relationship with a specific 
group of proteins. We have previously proposed the network based approach to annotate 
proteins in context dependent manner by using the ‘protein neighbourhood search’ 
(Gopalacharyulu et al., 2005), i.e., exploring the local relationships of proteins with other 
biological entities such as proteins, genes, biological processes etc. 

As an illustration of the utility of the approach, we queried a select set of proteins 
related to regulation of energy homeostasis and to insulin signalling. The following 
human proteins have been queried: 

• Peroxisome proliferator activated receptor gamma (PPARγ; UniProt id: P37231) 

• Peroxisome proliferator activated receptor alpha (PPARα; UniProt id: Q07869) 

• Peroxisome proliferator activated receptor gamma coactivator 1 alpha (PGC1α; 
UniProt id: Q9UBK2) 

• Sterol regulatory element binding protein 2 (SREBP – 2; UniProt id: Q12772) 

• Putative G protein-coupled receptor GPR40 (GPR40; O14842) 

• Putative G protein-coupled receptor GPR41 (GPR41; O14843) 

• Probable G protein-coupled receptor GPR43 (GPR43; O15552). 

The resulting network is shown in Figure 8. Short descriptions of select entities in the 
network are presented in Table 2. While detailed study of the retrieved protein 
neighbourhood lies beyond the scope of this paper, we will show its use on one example. 
The entity numbered 10 (Protein arginine N-methyltransferase 2) does not have well 
assigned function. The UniProt resource lists the protein function as 

“Probably methylates the guanidino nitrogens of arginyl residues in some 
proteins. May play a role in transcriptional coactivation.” (http://www. 
expasy.org/cgi-bin/niceprot.pl?P55345) 

Our data suggests the protein is binding with PPARγ, and so may be related to regulation 
of energy homeostasis. This provides a hypothesis for designing new experiments to 
address the function of a protein that would have more likely escaped attention otherwise. 
The topic of transcriptional co-regulators involved in energy homeostasis is a topic of 
intense research in domains of diabetes and metabolic syndrome (Lin et al., 2005). 
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Figure 8 Query for proteins PPAR gamma, PPAR alpha, PGC1, SREBP 2, GPR40, GPR41,  
GPR43 in HUMANS. The numbered nodes are listed in Table 3. Grey lines are Gene 
Ontology relations, dark grey the regulatory networks, light grey the protein-protein 
interactions 

 

Table 2 Short description of select entities from the network shown in Figure 8 

Label Name 
ID (UniProt/GO 
accession) 

Important 
interactions/associations 
(Identified by Labels 1–32) 

1 Lipid metabolism GO:0006629 – 
2* Sterol regulatory element 

binding protein-2 (SREBP-2) 
Q12772 3, 4 (MINT); 1 (GO) 

3 Transcription factor SP1 P08047 2* (MINT) 
4 Hepatocyte nuclear factor 4 

aplha 
P41235 2*(MINT); 1 (GO) 

5* Peroxisome proliferator 
activated receptor alpha  

Q07869 5* (BIND); 6, 7 (MINT);  
1, 8, 26 (GO) 

6 Retinoic acid receptor  
RXR – alpha 

P19793 5 *(MINT); 9* 
(TRANSFAC – interacting 
factor) 

7 Nuclear receptor corepressor 2 Q9Y618 5* (MINT) 
8 Fatty acid metabolism GO:0006631 5* (GO) 

III/16



 

 

   

 

   

   70 P.V. Gopalacharyulu et al.    
 

    
 
 

   

 

 

       
 

Table 2 Short description of select entities from the network shown in Figure 8 (continued) 

Label Name 
ID (UniProt/GO 
accession) 

Important 
interactions/associations 
(Identified by Labels 1–32) 

9* Peroxisome proliferator 
activated receptor gamma 

P37231 10 (BIND); 6,13,14,15 
(TRANSFAC – interacting 
factors); 1,16,17,26 (GO) 

10 Protein arginine  
N-methyltransferase 2 

P55345; EC: 2.1.1 9* (BIND) 

11 Nuclear factor of activated  
T-cells, cytoplasmic 4 

Q14934 9* (TRANSFAC  
– transcription factor of) 

12 CCAAT/enhancer binding 
protein alpha 

P49715 9* (TRANSFAC  
– transcription factor of) 

13 Nuclear factor of activated  
T-cells, cytoplasmic 1 

O95644 9* (TRANSFAC  
– interacting factor) 

14 Nuclear receptor coactivator 1 O00150; EC: 2.3.1.48 9* (TRANSFAC  
– interacting factor) 

15 CREB-binding protein Q92793; EC: 2.3.1.48 9* (TRNASFAC  
– interacting factor) 

16 White fat cell differentiation GO:0050872 9* (GO) 
17 Response to nutrients GO:0007584 9*, 18, 19 (GO) 
18 Somatostatin precursor P61278 17, 20 (GO) 
19 Guanine nucleotide-binding 

protein G(i), alpha-2 subunit 
P04899 17, 20 (GO) 

20 G-protein coupled receptor 
protein signalling pathway 

GO:0007186 18, 19, 21*, 22*, 23*,  
24, 25 (GO) 

21* Putative G protein-coupled 
receptor GPR40 

O14842 20 (GO) 

22* Putative G protein-coupled 
receptor GPR41 

O14843 20 (GO) 

23* Probable G protein-coupled 
receptor GPR43 

O15552 20 (GO) 

24 Vasopressin V1a receptor P37288 20, 26 (GO) 
25 Melanin-concentrating 

hormone receptor 1 
Q99705 20, 26 (GO) 

26 Generation of precursor 
metabolites and energy 

GO:0006091 5*, 9*, 24, 25, 32 (GO) 

27* Peroxisome proliferator 
activated receptor gamma 
coactivator 1 alpha 

Q9UBK2 28, 30, 31 (GO) 

28 Gluconeogenesis GO:0006094 27*, 29 (GO) 
29 Glucose metabolism GO:0006006 32 (GO) 
30 Positive regulation of histone 

acetylation 
GO:0035066 27* (GO) 

31 Thermoregulation GO:0001659 27* (GO) 
32 Insulin precursor P01308 26, 29 (GO) 

*Denotes an entity used in making the query for network construction. 
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Table 3 Short description of a few select entities from the network presented in Figure 6 

Label Name/description 
ID (UniProt/GO 
accession/EC number) 

1 tricarboxylic acid cycle GO:0006099 
2 alpha-4-beta-4 subunit of mitochondrial isocitrate 

dehydrogenase 1 
P28834, 1.1.1.41 

3 alpha-ketoglutarate dehydrogenase P20967, 1.2.4.2 
4, 5 Aconitase, mitochondrial P19414, 4.2.1.3 
6 NAD+-dependent isocitrate dehydrogenase P28241, 1.1.1.41 
7 Mitochondrial isoform of citrate synthase P43635, 2.3.3.1 
8 Fumarase; converts fumaric acid to L-malic acid in the TCA 

cycle. The GI molecule identifier below refers to the protein 
encoded by this gene 

P08417, 4.2.1.2 

9 alpha subunit of succinyl-CoA ligase (synthetase;  
ATP-forming), a mitochondrial enzyme of the TCA cycle 

P53598, 6.2.1.4 

10 citrate synthase. Nuclear encoded mitochondrial protein P00890, 2.3.3.1 
11 alpha-ketoglutarate dehydrogenase P20967, 1.2.4.2 
12 dihydrolipoyl transsuccinylase component of  

alpha-ketoglutarate dehydrogenase complex in mitochondria 
P19262, 2.3.1.61 

4.3 Type 1 Diabetes gene expression data 

The network edges drawn in previous examples were based on existing knowledge 
resources such as pathways and ontologies. However, the network representation affords 
extension to other relationships, such as gene sequence similarity or co-regulation of 
molecules based on profiling experiments (or collection of multiple experiments).  
The former may be particularly useful when building metabolic models of species  
with unannotated genomes based on the existing metabolic models from well annotated 
species. The latter may be utilised to interpret the data obtained from molecular  
profiling experiments. For example, applications have been reported linking the  
gene co-expression obtained from micro-array experiments to functional modules in 
cancer cells (Segal et al., 2004). We have previously utilised the correlation network 
approach to integrate across metabolite, protein, and gene level experimental profile data 
(Oresic et al., 2004). 

As an illustration of combining gene expression data with the existing pathways and 
ontologies, we utilised gene expression data from mouse congenic strains in a study 
related to Type 1 Diabetes (Eaves et al., 2002). We processed this data as explained 
below in order to construct the query. The resulting network is shown in Figure 9.  
Some relevant entities in network are indicated with their names. The gene expression 
data is incorporated as follows: 

• Normalised dataset is downloaded from the NCI GEO database 
(www.ncbi.nlm.gov/geo). GEO accession number of the data is GDS10. 

• Pearson correlation coefficients are calculated for every pair of genes. 

• Based on distribution of correlation coefficients a cut-off correlation of 0.997  
is set to select only highly correlated pairs (the cut-off can be varied as part of the 
exploratory analysis). One hundred and sixty six gene pairs pass this cut off. 
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• These gene pairs and their correlation values are defined as a relational table  
in Oracle database. 

• We compared the Diabetic strain data with Non diabetic strain data from Spleen.  
The procedure for calculating the intensity ratios is explained below: 

• The Average Intensity values (AI) contain negative values. Hence these values are 
shifted so that the least AI value becomes 1. AI values in all samples are shifted by a 
constant value of 49. 

• Average of each group of samples is calculated. 

• Ratio between average corresponding to diabetic samples is taken over average 
corresponding to non diabetic samples. 

• These values are then visualised such that down regulated genes appear in green,  
up-regulated genes appear in red and expression level of each gene determines a 
colour between these two extremes. 

The largest upregulated cluster is clearly related to lipid and glucose metabolism, but 
perhaps most curious finding being the upregulated BRCA1 and BRCA2 genes within 
this cluster. BRCA genes are associated with breast cancer, but are known to be highly 
expressed in spleen and associated with immune response. How these genes specifically 
relate to Type 1 Diabetes is unclear, and certainly this finding is worthy of further study. 
In another upregulated small cluster of genes we found association with beta-cell 
proliferation, which is a known response to increased rate of beta-cell apoptosis in Type 1 
Diabetes. 

Figure 9 Correlation network of gene expression data related to Type 1 Diabetes  
from Eaves et al. (2002) 
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5 Discussion 

In this paper we introduced an approach and a system which affords integration, mining, 
and visualisation of systems biology data. Three examples were given in domains of 
network topology studies, context-dependent protein annotation, and integration of gene 
co-expression data with available pathway knowledge. It is evident that the studies of 
complex organisms such as mammals, for example in the context of drug discovery, 
generate datasets representing physiological processes at multiple spatial and temporal 
levels. This necessitates the data integration solutions that facilitate mining of such 
diverse data (Gopalacharyulu et al., 2005; Oresic et al., 2004; van der Greef and 
McBurney, 2005; Searls, 2005). Depending on availability of data, this may include 
building associations and dependencies across biological entities, either based on 
available knowledge such as ontologies or on mathematical models. As we have shown in 
this paper, these two approaches are not mutually exclusive. 

Our integration approach is based on the premise that relationships between 
biological entities can be represented as a complex network. The information in such 
networks forms a basis for exploratory mining, as well as for development of predictive 
models. Distances between different nodes in an integrated network play a central role.  
In order to calculate distances, one first needs to define distance measures across 
heterogeneous types of information. We are taking a pragmatic approach by letting the 
user define the distances as a part of the query. This is reasonable since the distance 
basically defines the context of the questions posed by the user and allows biasing the 
similarity toward particular types of relationships, or towards a relationship in a specific 
context. Once the distance measure is specified, we can map the nodes of the graph into a 
lower dimensional space. We introduced and implemented three methods to perform such 
mappings: Sammon’s mapping, CCA and CDA. As these mappings are approximate, 
there will be some distortion while doing the mapping. Therefore, in our opinion the 
exact form of distance measure is not a critical issue, as far as it underlines the 
relationships in the concept graph. In fact, selection of distance measure may reflect a 
subjective choice and as such will be subject to debate. It is ultimately the end result of 
mining that determines the utility of specific distance measure. 

The three examples described in this paper demonstrate the utility of our approach. 
We show how the study of global network properties is facilitated using our approach. 
Similarly, the local properties of networks can be studied, as well as the properties of 
integrated networks (i.e., cross-talk between metabolism and cell signalling). Related to 
the second example, current annotation of proteins using e.g., Gene Ontology or UniProt 
do not take into account the complexity and context-dependency of protein function  
and interactions. We introduced a visual approach which enables context dependent 
interpretation. For example, in a query of six proteins related to energy homeostasis and 
insulin signalling we found a potential function for currently poorly annotated protein. 
We also extended the data integration framework to include experimental data. As a third 
example, we performed exploratory data analysis that linked clusters of gene expression 
profiles from spleen of NOD mouse model of Type 1 Diabetes to known interactions, 
regulatory pathways and ontologies related to the gene products within the clusters. 
While the ‘pathway analysis’ (Curtis et al., 2005) has already been widely utilised for 
analyses of gene expression data, our approach affords analysis across both physical 
interaction information (i.e., regulatory networks, protein-protein interactions, metabolic 
networks) as well as across known pathway annotations. As such it enables visual 
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exploration of patterns found in data, facilitating to answer the first question any biologist 
is after when attempting to interpret high-dimensional micro-array data, i.e., what appears 
to be going on in the system based on the experimental evidence. 

The pathway integration framework described in this paper is not limited only to the 
static biological pathways. Other models can be incorporated as well, as long as they are 
represented in the exchangeable schemas such as SBML or CellML. Our framework then 
affords further model refinement using interaction and ontology information from diverse 
sources. In addition, the metabolic models from well characterised species such as yeast 
(Förster et al., 2003) can be extended to less characterised related species. The data 
mining methods described in the paper are largely focused on integration across 
heterogeneous sources and mapping of complex networks into lower-dimensional space 
for the purpose of visualisation. What is needed is incorporation of more advanced data 
mining methods for statistical analysis and modelling of data. We believe the network 
framework opens new possibilities for analyses of complex heterogeneous life  
science data. 

Currently our system is able to visualise data at molecular level. One of the remaining 
challenges would be to visualise multiple levels (Saraiya et al., 2005). This kind of 
approach would enable us to investigate how a small change at the molecular level affects 
the higher abstract level (e.g., tissue or organ level). Another appealing challenge would 
be to visualise biological networks in three dimensions (Changsu Lee and Park, 2002; 
Férey et al., 2005). 

6 Conclusions 

We presented an integrated database software system that enables retrieval  
and visualisation of biological relationships across heterogeneous data sources.  
We demonstrate the utility of our approach in three applications: full metabolic network 
retrieval with network topology study, exploration of properties and relationships  
of a specific set of proteins, and combined visualisation and exploration of gene 
expression data with related pathways and ontologies. We believe our approach facilitates 
discovery of novel or unexpected relationships, formulation of new hypotheses, design of 
experiments, data annotation, interpretation of new experimental data, and construction 
and validation of new network-based models of biological systems. 
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ABSTRACT

Biological phenomena are usually described by rela-
tional model of interactions and dependencies between
different entities. Therefore, a network-based knowledge
representation of biological knowledge seems to be an
obvious choice. In this paper, we propose such a repre-
sentation when integrating data from heterogeneous life
science data sources, including information extracted
from biomedical literature. We show that such a repre-
sentation enables explanatory analysis in a context de-
pendent manner. The context is enabled by a judicious
assignment of weights on the quality dimensions. Analy-
sis of clusters of nodes and links in the context of under-
lying biological questions may provide emergence of
new concepts and understanding. Results are obtained
with our megNet software, an integrative platform based
on a multi-tier architecture using a native XML data-
base.

1. INTRODUCTION

The primary goal of knowledge representation is to en-
able computer to assist humans in analyzing complex
forms of data to discover useful information. This has
resulted in a wide range of techniques and tools. How to
represent knowledge depends largely on the way reason-
ing can be done with that knowledge. For example, early
works have been mainly focused on logic-based repre-
sentation. Recently, techniques combining machine
learning, pattern recognition, statistics, and artificial in-
telligence have been employed. Although these are well-
developed disciplines, their applications in life science
have been limited [1][2][3].

Biology is a data rich discipline. The problem is that
this source of knowledge is stored in a large number of
different data sources which need to be mined in paral-
lel. Integrating all this information and its efficient min-
ing is a challenge with huge application potential [4][5].
Moreover, each database may have its own interface that
users may not have time to adequately learn to use them
efficiently. A tool which can integrate the mining as well
as visualization of heterogeneous life science data would
therefore open new possibilities for the exploration of

biological knowledge and possibly lead to novel discov-
eries.

As biological systems are characterized by the com-
plexity of interactions of their internal parts and also
with the external environment, integrating such interact-
ing information may result in a large connected graph
with nodes and edges of heterogeneous types. This
makes such information hard to visualize, and sophisti-
cated methods have been developed for analyzing such
complex networks [6][7][8][9]. The most important as-
pect in visualizing high-dimensional data in a lower di-
mensional space is how to preserve the proximity rela-
tionships. In practice, it is very difficult if not impossible
to project hundreds of dimensional data to a smaller di-
mensional space (2 or 3 dimensions) in such a way that
all similarity relationships are preserved. Therefore, in
order to enable effective reasoning, the challenge is to
find the best compromises by choosing which kinds of
relationships to visualize and with what type of metrics
to use in order to ensure the trustworthiness of the visu-
alized data [10].

Another way to enable effective reasoning is to limit
the scope of deliberations to a small context associated
with the domains under consideration. This may be ap-
proached by assigning weights to the “quality dimen-
sions” [11] under consideration (gene-centric, tissue-
centric, compound-centric, disease-centric etc.)

The above criteria have been our motivations to de-
velop an integrated visualization tool, megNet, that uses
topological analysis of complex networks to visualize
query results in a single interface. It also enables con-
text-based information display from our integrated data-
base system (see [12]).

This paper discusses the representation and visualiza-
tion aspects of our integration platform. It is organized
as follows: Section 2 discusses about the network repre-
sentation and clustering methods, including the notion of
distance and context. Section 3 gives examples of visual-
izing a protein-protein interaction network.

2. BIOLOGICAL NETWORKS
With the growing trend towards systems biology, inte-
grated biological networks contain many different types
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of entities and attributes arising from a growing number
of disparate data sources, including literature databases.
These databases have been created by different scientific
communities, for different purposes, and covered differ-
ent aspects. All that led to a high level of structural and
semantic heterogeneity. The structural and semantic in-
tegration aspects of these databases have been reported
in our previous papers [12][13]. Here we will focus on
the retrieval and visualization of these heterogeneous
data. We are mainly interested in the data from the fol-
lowing databases:

• Protein-protein interaction databases:
BIND [14], DIP [15], and MINT [16].

• Biochemical pathways database: KEGG [17].
• TransFac is a database on DNA binding ele-

ments and their transcription factors [18].
• TransPath, an extension of TransFac, contains

signal transduction pathways that regulate the
activity of transcriptional factors in different
species [19].

• GeneOntology (GO) is a database of three
structured controlled vocabularies that describe
gene products in terms of their associated bio-
logical processes, cellular components and mo-
lecular functions in a species-independent man-
ner [20].

The first step after retrieving all the massive informa-
tion from databases is to build the network. The objects
in network are then clustered based on some similarity
measure for the display. The definition of the similarity
measure is thus a crucial step.

2.1. Network representation

The graph representation contains nodes and edges
[21][22]. The nodes include various kinds of molecules,
e.g., proteins, compounds, genes, mRNAs etc. For ex-
ample, in the case of protein-protein interaction network,
we would relate the neighboring proteins by searching
all the possible pathways among them, including their
regulating genes. The generated nodes and edges show
the proteins and their interactions, respectively.

Our biological network is presented as a directed
weighted graph where biological entities are nodes that
are connected to each other through edges which are in-
teractions between the entities. The shape of the nodes
will be coded differently depending on the type of an en-
tity. The edges can be directed or undirected depending
on the nature of the interactions (Figure 1).

A metabolic network consists of reactions. In one re-
action there are substrates, products and at least one en
zyme that catalyzes the reaction. The substrates, products
and enzymes are presented as nodes. The substrates and
products are presented as circles and the enzymes are
presented as squares. Since some reactions are reversible
and other reactions are irreversible, directed edges are
used to distinguish the direction of a reaction. But in a
protein-protein interaction network, interactions between
the proteins are represented with undirected edges, be-
cause the interaction is mutual.

Figure 1: Example of our integrated network rep-
resentation used. The distance between the enti-
ties A and B, is the same as for B to A. If there is
not any path between two nodes, we assume that

the distance between them is infinity.

The shortest path length between each entity is ob-
tained by using Tom Sawyer Java analysis toolkit (Tom
Sawyer, Inc.). The distances between each entity in both
directions are calculated, based on the cost of connection
types. In Figure 1, the cost of a metabolic interval is de-
noted by y, and x is the cost of a protein-protein interac-
tion. By changing these cost parameters we can investi-
gate how protein-protein interactions affect the structure
of metabolic pathways.

2.2. Clustering of biological networks

The molecular entities of the cell form a very compli-
cated and dynamic interacting system. Yet, it has been
demonstrated that this complex interactions shared some
common network properties, e.g. the presence of single
modularity networks [24][25][26]. However, the pres-
ence of the modularity in highly integrated biological
networks is not self-evident as it lacks quantitative sup-
port [24]. There is thus a need for tools to identify the
modularity of a biological network and to identify the
modules and their relationships. Clustering is a mathe-
matical method which allows the identification of key
connectivity patterns of a network. The most common
methods used when investigating the structure of com-
plex networks are hierarchical clustering tree, Koho-
nen’s Self-Organizing Maps (SOM) [28], and Sammon’s
mapping [29][30].

All clustering algorithms share the basic steps:
1. Compute distance matrix;
2. Find closest pair of clusters;
3. Update distance matrix.

First, the distance matrix must be computed. The dis-
tance matrix define distances from one entity to the other
entities. The distance matrix from the graph represented
in Figure 1 is:
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If the purpose of the distance calculations is to inves-
tigate the structure of metabolic pathways, the distance
matrix would not take into account metabolites and other
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proteins that do not belong to the metabolic pathway
(e.g. entities F and G in Figure 1).

After the distance matrix has been obtained, we can
apply clustering algorithm which will merge objects in
the same cluster based on the self-similarity. The self-
similarity of a group of elements is defined as the aver-
age pairwise similarity between the elements. One may
also choose other criteria such that the pair of clusters
maximizes the minimum similarity or minimize the
maximum similarity.

Since the purpose of the distance matrix is to de-
scribe the proximity of the entities, the more similar dis-
tance vectors are, the closer are corresponding biological
entities. In our current implementation, we use the
Sammon’s mapping algorithm to investigate the similari-
ties of the distance vectors.

2.2.1. Similarity measure
For integrated network where entities are of complex na-
ture, evaluating similarity is not a trivial task. While dis-
tances within the molecular networks can be intuitively
set to the length of the shortest path between the mole-
cules, distance measure is less obvious for relationships
such as in ontologies. It was shown that GeneOntology
can be represented as a graph, and the distance measures
based on the shortest path to a common ancestor were
already studied [31]. In the case of gene expression net-
work which consists only of genes, the similarity meas-
ure is based on the gene expression level.

The challenge is to combine topology metrics and the
quantitative information from the data. For instance, one
can combine the gene expression level and the topology
of the network in the same distance function such as in
[32]: )( exp netfd δδ += .

Given a set of data points xi, let us note by d(xi, xj)
being the distance between two data points.

If we consider the gene expression level Gik as a log-
ratio gene expression of gene gi,, the distance function
could be based on the Pearson correlation coefficient:
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with i and i are mean and standard deviation of the
transformed time series data of gi .

The correlation coefficient is then converted to a dis-
tance function as a degree of dissimilarity with:

),(),(exp jiji gggg ρδ −= 1 . We obtain the combined
distance function:

),(),((.),( exp jinetjiji vvggxxd δδ +×−= 501

The network distance function could be based on the
shortest path and the weighting function based on the
degree of vertices.

It is supposed that this combined function may lead
to increased stability of clustering solution when the
gene expression levels support the relations in the net-
works and vice versa [32].

In our current implementation, gene expression data-
bases are not yet fully operational for integrated mining.

2.2.2. Data projection and nonlinear mapping
The main purpose of data projection is to transform a
high dimensional data to a lower dimensional space in
order to be able to visualize them. The Kohonen’s self-
organizing map (SOM) [28] is one popular method. But
the delicate part of SOM is that the user needs to set
control parameters carefully that may require sometimes
a priori knowledge about the data. We have chosen the
Sammon’s mapping [29] as is easier to implement.

Like the SOM algorithm, the basic idea of the
Sammon’s mapping algorithm is to arrange all the data
points on a 2-dimensional plane in such a way, that the
distances between the data points in this output plane re-
semble the distances in vector space as defined by some
metric as faithfully as possible. Unlike SOM algorithm,
the Sammon’s mapping algorithm tries to preserve inter-
nal distances in the input data that the human eye can
easily detect. The structure of the input data is thus pre-
served through the mapping.

More formally, let dij be an element of a distance ma-
trix D in input space, let oi be the image of the data item
xj in the 2-dimensional output space. With O we denote
the distance matrix containing the pairwise distances be-
tween images as measured by the Euclidean vector norm

ji oo − . The goal is to place the oi in such a way that

the distance matrix O resembles as closely as possible
matrix D, i.e. to optimize an error function E by follow-
ing an iterative gradient-descent process:
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The resulting visualization depicts clusters in input
space as groups of data points mapped close to each
other in the output plane. Thus, the inherent structure of
the original network can be derived from the structure
detected in the 2-dimensional visualization.

2.3. Context

When a representation includes several domains, one
must take into account the context in which what do-
mains appear more or less important (or salient) [9].

Including context can be achieved by assigning
weights to each domain. The relative weight of a domain
will depend on the context.

2.3.1. Weights as context dependent variables
In the previous section, the distance function could be
weighted as follows:

∑
=

=
n

k
ijkkij dwD

1

The weights wk can be seen as contextdependent
variables that represent the relative degree of salience
for each dimension. This aspect has been used in the
subspace clustering algorithms which assume that cluster
may exist in different subspaces of different sizes. For
example, in the COSA algorithm [33], the weights are
assigned to each dimension for each instance, not each
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cluster. Higher weights are assigned to those dimensions
that have a smaller dispersion within the knearest
group. The neighborhoods for each instance become it-
eratively enriched with instances belonging to its own
cluster. The dimension weights are refined as the dimen-
sions relevant to a cluster receive larger weights. This
process enables some dimensions to emerge by different
the clustering criteria. However, in the COSA algorithm,
the number of dimensions to be included in a cluster
cannot be set directly by the user, it is done through a
parameter , which controls the incentive for clustering
on more dimensions.

This COSA distance was shown to be more powerful
than traditional Euclidean distance.

Therefore, the choice of the similarity measure can
affect greatly the quality of the visualization in the pro-
jection space. When we change dimension in the visuali-
zation, the degree of similarity between two data points
changes with the salience of the dimensions of the ob-
jects. This aspect was investigated in [9].

It must be noticed also that the knowledge and inter-
est of the user may influence the “salience weights” as it
is assumed that people can have different “perspectives”.
Therefore it is important that the user has also the possi-
bility to influence this parameter in the visualization
tool.

2.3.2. The effect of context in knowledge discovery
With the explosion of information resources on the Web,
ontologies have been extensively developed to facilitate
the understanding, sharing, re-use and integration of
knowledge through the construction of an explicit do-
main model. In life science, the efforts in building on-
tologies across domains still have many challenges to go
through [34][35]. Gene Ontology (GO) is the only on-
tology that has been extensively used in bioinformatics
[36][37]. However, GO seems to be more a taxonomy
rather than a well-formed ontological structure that
would enable traditional rule-based reasoning [38]. An-
other drawback of GO and other Ontologies in general,
is their static structure and thus, when used as a structure
for reasoning, they can only produce monotonic infer-
ence. Such a mode of reasoning may hinder or possibly
even prevent the discovery and exploration of new pos-
sibilities [39].

While in a context-based reasoning, the conceptuali-
zation associated to the “cluster” that has emerged from
the context, is nonstatic. For example, when we inter-
pret clusters obtained from gene expression data, we
must take into account the context of underlying bio-
logical models e.g., from which tissue and what was en-
vironmental history which has led to that state.

3. EXAMPLES
In this section we would like to give an example of net-
work clustering of data retrieved from metabolic path-
ways and protein-protein interaction databases. As an
example, we create a network based on the KEGG meta-
bolic pathway from the query: “Glycolysis / Gluconeo-
genesis, Pentose phosphate and Citrate cycle pathways”,

for S.  cerevisiae (Figure 2). The enzymes are then en-
riched with protein-protein interaction (MINT, DIP).The
query results are shown in Figure 3. We can see from the
Sammon’s mapping that there are two main clusters in
these pathways, a strongly connected cluster and
sparsely connected cluster (Figure 3). Sparsely con-
nected proteins are highlighted with gray marks, which
appear to be mostly located at the border of the graph.
Based on the concept of hierarchical modularity, we may
conclude that the proteins of the strongly connected
cluster are in higher hierarchy level than those of the
sparsely connected cluster.

Another example of search is performed for protein-
protein interaction with the set of proteins {P41940,
O15305, P29952} which are involved in the glycosyla-
tion and mannosylation pathways in S. cerevisiae, refer-
enced in GeneOntology Biological process “GDP-
mannose biosynthesis” with GO:0009298. Results are
shown in Figure 5. Clustering examples with different
contexts (different weight assignments) are given in
Figure 6 and Figure 7. In Figure 6, all the edges have
equal weights. We can see that he neighborhood of
GO:0009298 consist of proteins C05345 and C00275,
which denote that in this context, they have stronger
connection to GO:0009298. In Figure 7, the neighbors
of GO:0009298 have larger weights, this has resulted in
the clustering of proteins of the query set {P41940,
O15305, P29952}.

We can “experiment” with the weight assignment for
different context and notice that relative proximity of
nodes changes. This might suggest new hypotheses that
these entities might be involved in the same process or
pathways reflected by the context.

Figure 2: KEGG metabolic pathways for “Glyco-
lysis / Gluconeogenesis , Pentose phosphate and

Citrate cycle pathways.
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Figure 3: Metabolic pathway (KEGG) enriched
with protein-protein interactions from MINT and
DIP databases for “Glycolysis / Gluconeogenesis,
Pentose phosphate and Citrate cycle pathways,.
The proteins loosely connected are highlighted

with gray marks.

Figure 4: Clusters from Sammon’s mapping of
the previous graph. Two main clusters emerged,

one strongly connected and one loosely con-
nected.

Figure 5: Search result of pathway query for
mannose synthesis GO:0009298.

Figure 6: Sammon’s mapping of the previous
network for ”Context 1: Every edge has equal

weight”.

Figure 7: The Sammon’s mapping for “Context
2: The neighborhood edges of GO:0009298 have

higher weights than the other edges”.

4. CONCLUSION

In this paper we have discussed about the heterogeneity
of biological data and resources and existing methodolo-
gies to analyze those data. We introduced our approach
to represent integrated biological data for enabling visual
exploratory analysis. At the current phase, we have im-
plemented the Sammon’s mapping clustering with a dis-
tance function that incorporates the notion of context,
which can be controlled by the user. Our experiments
have shown that the Sammon’s mapping algorithm is not
very suitable for a large number of input vectors. There-
fore, in our biological networks consisting of a large
number of nodes, clustering time is rather long. Second,
one cannot always rely totally on the output by the
Sammon’s mapping clustering due to the trustworthiness
of distance function. Therefore, it is up to the user to
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look for insight and experiment with the dimension sali-
ence to see if it makes any sense and always reconnect to
the original hypothesis and background knowledge.
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tissa käyttäen laihojen diabeteshiirien mallia. Er ityisesti eetterifosfolipidibiosynteesi ol i alisää-
delty insuliitiksen varhaisessa vaiheessa. Tämä tulos oli yhteensopiva aikaisemman tutkimuk-
sen kanssa, j ossa mitattiin myöhemmin tyypin 1 diabetekseen sairastuneiden lasten ja pysy-
västi terveiden lasten seerumin aineenvaihduntatuotteidenpitoisuuksia. Tässä tutkimuksessa 
havaittiin, että eetterilipidipitoisuudet olivat sairastuneilla lapsilla alhaisemmat kuin terv eillä 
lapsilla. Tässä väitöskirjassa lasketaan myös topologialaskuja, joiden avulla voidaan selvittää, 
noudattavatko biologiset verkot kaikkialla läsnä olevia kompleksisten verkkojen ominaisuuksia. 
Tulokset olivat y hteensopivia kaikkialla läsnä olevien kompleksisten verkkojen ominaisuuksiin 
viime aikoina kohdistuneen kritiikin kanssa. Tämä loi motivaatiota räätälöidä topologista rikas-
tamisanalyysia funktionaalisille aliverkoille, joka etsii topologisesti aktiivisimmat moduulit integ-
roidusta biologisesta verkosta dynaamisen stressin alaisuudessa. Tämän menetelmän hyödyl-
lisyys osoitettiin altistamalla integroitu hiivaverkko oksidatiiviselle stressille. Tulokset osoittivat, 
että oksidatiivinen stressi aiheuttaa toksisten lipidien kasaantumisen. 
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Network biology uses a graph theoretic approach to characterize biological systems 
comprehensively as a complex network of interactions. This approach has led to 
practical applications spanning from disease elucidation to biotechnology during 
the last few years.

In this thesis we applied a network approach in order to model heterogene-
ous biological interactions. We developed a system for visualizing heterogeneous 
biological data, and showed its utility by biological network visualization exam-
ples. In addition, we developed a novel biological network analysis method that 
detects phenotypic specific molecular paths in an integrated molecular interaction 
network. We showed the utility of this method in the context of type 1 diabetes 
mouse models, and found that ether phospholipid biosynthesis was down-regulated 
in early state of type 1 diabetes, which was consistent with recent clinical findings. 
Also, we performed topological calculations on biological networks, and obtained 
consistent results with recent critiques of ubiquitous complex network properties 
describing the biological networks. This gave motivation to tailor a topological 
enrichment analysis method. We showed the utility of this method by exposing an 
integrated yeast network to oxidative stress. Results showed that oxidative stress 
leads to accumulation of toxic lipids.
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