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Numerical and experimental studies of nonlinear wave loads of ships 

Laskennallinen ja kokeellinen tutkimus laivojen epälineaarisista aaltokuormista. 
Timo Kukkanen. Espoo 2012. VTT Science 15. 219 p. 

Abstract 
Extreme wave loads have to be defined in the ultimate strength assessment of 
ship structures. Nonlinearities in extreme wave loads can be significant in high 
waves. Numerical and experimental studies of nonlinear wave loads are presented 
in this work. A nonlinear time domain method has been developed and the fun-
damentals of the method are given. The method is based on the source formula-
tion expressed by means of the transient three-dimensional Green function. The 
exact body boundary condition is satisfied on the instantaneous floating position 
of the body. The free surface boundary condition is linear. The time derivative of 
the velocity potential in Bernoulli’s equation is solved with a similar source for-
mulation to that of the perturbation velocity potential.  
 
The verification of the method is presented for a hemisphere and cones. Wigley 
hull forms are used to validate the calculation method in regular head waves and 
calm water.  
 
Model tests of a roll-on roll-off passenger ship with a flat bottom stern have been 
carried out. Model test results of ship motions, vertical shear forces and bending 
moments in regular and irregular head waves and calm water are given.  
 
The nonlinearities in ship motions and hull girder loads are investigated using the 
calculation method and the model test results. The nonlinearities in the hull girder 
loads have been found to be significant. The calculation method is used to predict 
rigid hull girder loads for the model test ship. It is shown that the time domain 
calculation method can be applied to ship-wave interaction problems to predict 
the nonlinear wave loads. 
 

Keywords wave loads, nonlinear loads, numerical methods, model tests, ship 
strength 
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Laskennallinen ja kokeellinen tutkimus laivojen epälineaarisista  
aaltokuormista 

Numerical and experimental studies of nonlinear wave loads of ships.  
Timo Kukkanen. Espoo 2012. VTT Science 15. 219 s. 

Tiivistelmä 
Aaltokuormat on määritettävä arvioitaessa laivojen äärilujuutta. Epälineaarisuu-
det aaltokuormissa voivat olla merkittäviä kovassa merenkäynnissä. Työssä on 
tutkittu numeerisesti ja kokeellisesti epälineaarisia aaltokuormia. Työssä on kehi-
tetty aikatason laskentamenetelmä vasteiden määrittämiseksi aallokossa. Mene-
telmä perustuu nopeuspotentiaalien ratkaisuun lähdejakautumien avulla rungon 
pinnalla. Lähdejakautumat on esitetty kolmiulotteisen ajasta riippuvan Greenin 
funktion avulla. Rungon pinnalla toteutetaan tarkka runkopinnanreunaehto. Va-
paanpinnanreunaehto on linearisoitu. Paineen Bernoullin yhtälössä esiintyvä 
nopeuspotentiaalin aikaderivaatta ratkaistaan samalla lähdejakautumien ratkaisu-
menetelmällä kuin häiriönopeuspotentiaalin ratkaisu.  
 
Laskentamenetelmä on verifioitu puolipallon ja kartion avulla. Wigley-
runkomuotoja on käytetty laskentamenetelmän validoinnissa tyynessä vedessä 
sekä säännöllisessä vasta-aallokossa eri nopeuksilla.  
 
Työssä esitetään mallikoetulokset tasapohjaperän omaavalle ro-pax-alukselle. 
Mallikokeissa mitattiin aluksen liikkeet ja kiihtyvyydet sekä laivapalkin leikkaus-
voimat ja taivutusmomentit. Kokeet tehtiin tyynessä vedessä eri nopeuksilla sekä 
säännöllisessä ja epäsäännöllisessä vasta-aallokossa nollanopeudella ja nopeudel-
la eteenpäin.  
 
Epälineaarisuuksia liikkeissä ja kuormissa tutkittiin kehitetyn laskentamenetel-
män avulla sekä mallikokeiden tuloksiin perustuen. Tulosten perusteella havait-
tiin, että epälineaarisuudet ovat merkittäviä mallikoelaivalla. Laskentamenetel-
män avulla määritettiin mallikoelaivalle laivapalkin voimat ja momentit. Lasken-
tamenetelmän todetaan soveltuvan hyvin nesterakenne-vuorovaikutusongelmiin 
ennustettaessa laivojen aaltokuormia. 
 

Avainsanat wave loads, nonlinear loads, numerical methods, model tests, ship 
strength 
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1. Introduction 

1.1 Background 

Seaworthiness is an important subject concerning the safety of ships in waves. 
The ship shall be capable of operating safely in high waves, and it has to be de-
signed to withstand wave loads. The mission of the ship and the environmental 
conditions define one of the design bases of ships. The predictions of wave loads 
are based on these environmental and operating conditions. The wave loads can 
range from slowly varying drift loads to slamming loads, and the importance of 
the different wave loads can change between ship types. 
 
The wave-induced loads can be divided into frequency ranges depending on the 
dynamic behaviour of the ship and the structure. For example, the wave-induced 
responses can be divided into low, wave and high frequency ranges. In the low 
frequency range, the second-order wave-exciting forces induce slowly varying 
rigid body motions. Typical responses are large motions in the horizontal plane of 
moored offshore structures such as drift motions. The period of the low frequency 
responses is in the order of 20 seconds and above. Conventional wave frequency 
responses are rigid body motions and accelerations that occur at the same fre-
quencies as the ocean surface waves. The wave periods of the ocean surface 
waves vary from about 3 to 15 seconds. In the high frequency range, typical re-
sponses are, for example, springing and whipping responses that induce dynamic 
responses on hull structures. In the high frequency range, the structural dynamic 
is important. Whipping is defined as a hull girder vibration in the lowest natural 
frequencies due to wave impact. Springing is continuous vibration of the hull 
girder due to encountered wave excitation. The duration of the slamming impact 
can be in the order of one second, and the duration of pressure peaks can clearly 
be shorter. The periods of dynamic responses of structures in the high frequency 
range are in the order of magnitude of one second for a hull girder and lower for 
local structures. 
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The  ship  structure’s  stresses  can  be  divided  into  global  hull  girder  stresses  and  
local structural detail stresses. The global and local stresses are usually called 
primary and secondary stresses or, in more detail, primary, secondary and tertiary 
stresses. For example, the primary stresses affect a hull girder and the secondary 
stresses a whole double bottom. Tertiary stresses affect double bottom longitudi-
nal stiffeners or a bottom plate. Hull girder primary stresses are an important part 
of the total stresses in the structures, and the allowable primary stress level also 
defines  the  sensitiveness  of  a  structure  to  fatigue.  One of  the  starting  points  for  
the structural design and analysis of the ships and marine structures is to define 
environmental and operating conditions. For ultimate strength analyses, extreme 
environmental conditions have to be defined in order to obtain the design loads 
for structural analyses. The extreme condition is typically the most severe sea 
state in the ship’s lifetime that induces the largest stresses in the structural details. 
As different wave conditions and different types of loads may induce large stress-
es, several different conditions have to be considered. In a fatigue analysis, the 
whole operating profile of a ship is needed to obtain all the stress cycles that the 
ship will encounter during her service life. This means that all of the different 
environmental and operating conditions in the ship’s lifetime have to be consid-
ered in analyses. 
 
It is common practice in ship design to determine the wave loads by applying 
rules and standards. However, general standards and rules can sometimes be 
difficult to apply to unconventional ships. For example, the size of ships is in-
creasing and new structural designs have been introduced. For complex structures 
and designs, direct calculation procedures are necessary. The direct calculation of 
wave loads in the structural analysis is now common practice for offshore struc-
tures. However, the direct calculation procedures, especially the calculation of the 
wave loads, are seldom applied to ships. One reason can be the rather great uncer-
tainties in the wave load predictions for ships and the theoretical backgrounds of 
the calculation methods are not necessarily sufficient to obtain reliable predic-
tions.  For  example,  the  forward  speed of  the  ship  is  not  properly  taken into  ac-
count in the methods or the methods are based on linear theory so that the ex-
treme load predictions of the nonlinear responses are not possible. In the rules of 
classification societies, the wave loads and structural responses can be determined 
separately, for example, the external pressures and wave bending moments can be 
determined first, followed by the structural responses to determine structural 
scantlings. In principle, the rule loads can be compared with the loads calculated 
by direct methods. However, rule requirements for loads and structural responses 
can depend on each other to fulfil defined strength criteria for structural scant-
lings. 
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Direct calculations of wave loads in structural analyses of ships are generally 
based on linear theories expressed in the frequency domain. Responses can be 
assumed to be linear with respect to excitation if a change in the magnitude of 
excitation induces the same magnitude change in the responses. In the linear 
methods, the ship motions and wave amplitudes are assumed to be small and the 
body and free surface boundary conditions can be linearized. The linear methods 
cannot take into account the body geometry above the mean water level. Howev-
er, the most frequent waves are relatively low and the linear theory is sufficient to 
predict the frequent load cycles that are important in fatigue analyses of ship 
structures. In high waves, the linearity assumption of wave loads with respect to 
wave height is not usually valid. Recently, several different approaches have been 
developed to take into account nonlinearities in wave load predictions. In the 
nonlinear calculation methods, the hydrodynamic boundary value problem is 
often expressed in the time domain. In nonlinear methods, the exact body bounda-
ry condition is used and the free surface condition is usually linearized.  
 
The predictions of the wave-induced primary stresses are important in the ulti-
mate strength assessment of the hull girder. If the hull girder has compression on 
deck it is called a sagging condition and a hogging condition if a compression is 
on a bottom. The sagging condition occurs if wave crests are at the bow and stern 
and hogging if a wave crest is at midship. The sagging increases if the ship has a 
large bow flare and the ship motions are large with respect to waves. The stern 
form of the ship can have the same effect if the ship has a flat bottom stern close 
to the water level. In the structural design of ships, it is common practice to ex-
press the extreme design wave loads by means of the sagging and hogging bend-
ing moments and shear forces. The sagging and hogging bending moments and 
shear  forces  are  hull  girder  loads.  The  hull  girder  loads  are  internal  forces  and  
moments affecting the cross section of the ship hull. Accurate prediction of ex-
treme wave loads is important in the ultimate strength assessment of the hull 
girder. For ships in heavy seas, the sagging loads are greater than the hogging 
loads. The linear theories cannot predict the differences between sagging and 
hogging loads. 

1.2 Objective 

The objective of this work is to study hydrodynamic loads of ships in waves, with 
the emphasis on nonlinear wave loads. The aim of the work is to increase under-
standing of wave loads for modern ship types by applying a numerical method 
and experimental results and to develop a reliable and practical calculation meth-
od of wave loads in regular and irregular waves that can be applied to ship-wave 
interaction problems in structural analyses. 
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1.3 Previous work 

Direct calculations of wave loads in structural analyses are generally based on 
linear theories, but recently several different approaches have been developed to 
take into account nonlinearities in wave load predictions. A summary of different 
methods in seakeeping computations is given by Beck and Reed (2000). 
 
Linearization of the free surface and the body boundary conditions with respect to 
the wave amplitude means that the wave amplitude is assumed to be small. In 
linear frequency domain methods, the body and free surface boundary conditions 
are linearized. The solution of the linear problem is typically carried out in the 
frequency domain using a frequency domain representation of the Green func-
tions (see, e.g., Chang, 1977; Inglis and Price, 1982; Iwashita and Ohkusu, 1989; 
Iwashita, 1997). When a linear theory is used, all the hydrodynamic quantities are 
calculated up to the undisturbed mean water level. Hence, applying panel meth-
ods, it is sufficient that only the mean wetted surface of the hull is discretized by 
panels.  
 
A two-dimensional method for large-amplitude ship motions and wave loads was 
presented by Fonesca and Guedes Soares (1998). The method was based on a 
strip-theory approach, and the radiation and diffraction forces and moments were 
linear. Nonlinear effects were included in hydrostatic restoring and Froude-
Krylov forces and moments. A quadratic strip theory was applied by Jensen et al. 
(2008) to determine extreme hull girder loads on container ships. The method 
included the flexibility of the hull girder. A simplified procedure was also devel-
oped to analyse the hull girder loads and determine a long-term probability distri-
bution for responses. Matusiak (2000) presented a two-stage approach to ship 
simulation in the time domain. This method included nonlinear effects in hydro-
static restoring and Froude-Krylov forces and moments. 
 
A nonlinear hydroelastic method based on a two-dimensional strip theory was 
presented by Wu and Moan (1996, 2005). Furthermore, a stochastic method was 
described by Wu and Moan (2006) to predict extreme hull girder loads in irregu-
lar waves. Model test results for a container ship in regular and irregular oblique 
waves as well as calculated results were presented by Drummen et al. (2009) and 
Zhu et al. (2011). 
 
Time domain three-dimensional linear and nonlinear methods based on a transient 
Green function were presented by Ferrant (1991), Lin and Yue (1991), Kataoka et 
al. (2002) and Sen (2002). The time domain representation of the Green function 
allows the exact body boundary condition to be applied. This means that pres-
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sures can be solved in the actual floating position of the body and not only on the 
mean wetted surface. For example, Lin and Yue (1991) applied the exact body 
boundary condition in their seakeeping program LAMP (large amplitude motion 
program). The transient Green function can also be solved beforehand to reduce 
the computational time. Ferrant (1991) applied pre-calculated Green function 
values using a bilinear interpolation in the time domain calculation. The transient 
Green function was also applied to impulse response function approaches to solve 
hydrodynamic forces and moments. Bingham et al. (1994) and King et al. (1989) 
used an impulse response function method to solve a linearized boundary value 
problem calculating ship motions at forward speed.  
 
A Rankine source method was applied to the ship motions and wave loads com-
putation by Sclavounos et al. (1993). In the Rankine source methods, the free 
surface is discretized by panels as well as the body surface. A nonlinear Rankine 
source method was presented by Huang and Sclavounos (1998) and a weak-
scatterer hypothesis (Pawlowski, 1992) applied. In the weak-scatterer hypothesis, 
the disturbance due to the ship motions in the wave flow is assumed to be small 
compared with the wave flow due to the incoming wave. Model tests and compu-
tations by the Rankine source method for the motions and loads of the container 
ship were given by Song et al. (2011). Koo and Kim (2004) presented a two-
dimensional non-linear method in which the fluid flow was solved with two-
dimensional Rankine sources. The boundary condition at the free surface was 
nonlinear and the exact body boundary condition was satisfied on the body sur-
face. They applied an acceleration-potential formulation to solve the time deriva-
tive of the velocity potential in Bernoulli’s equation (Tanizawa, 1995). Two- and 
three-dimensional methods based on the Rankine sources were presented by 
Zhang et al. (2010). The exact body boundary condition was used and the free 
surface boundary condition was linear. 
 
A  hybrid  formulation  was  presented  by  Dai  and  Wu  (2008)  and  Weems  et  al.  
(2000). They used the transient Green function on the outer domain and Rankine 
sources in the inner domain to solve the velocity potential. Applying the hybrid 
formulation, the possible instabilities in the transient Green function solution can 
be avoided. Kataoka and Iwashita (2004) presented a hybrid method in which the 
artificial boundary between the outer and inner domain was expressed in the 
space-fixed co-ordinate system. The use of the space-fixed co-ordinate system 
makes the method free from the line integral that appears typically when the mov-
ing artificial boundary is used. 
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Applying the Reynolds averaged Navier-Stokes (RANS) solver, Weymouth et al. 
(2005) calculated heave and pitch motions for a Wigley hull form in head seas. At 
the free surface, a surface-tracking approach was employed. 

1.4 Present work 

This work consists of numerical and experimental investigations. Model tests 
have been carried out to gain an insight into the nonlinear effects on ship motions 
and hull girder loads. A theory for a nonlinear method is presented and a calcula-
tion method has been developed for ship-wave interaction problems.  
 
In particular, the scientific contribution and original features involve the follow-
ing items: 
 
1. The development of a time domain computer program for ship responses in 

regular and irregular waves has been carried out and the calculation method 
is presented in detail.  
 

2. An application of the acceleration potential method to solve the time deriva-
tive of the velocity potential in Bernoulli’s equation is presented. A body 
boundary condition is derived for the acceleration potential. The aim was to 
come up with a reliable solution for hydrodynamic pressures on the hull sur-
face, especially if a ship has a flat bottom stern close to the free surface. 
 

3. A transient Green function is solved using a numerical integration formula. 
The transient Green function is evaluated beforehand, and a finite element 
approximation has been adopted to interpolate the Green function values at 
each time step.  
 

4. A verification of the calculation method is presented for a hemisphere and 
cones, and Wigley hull forms are used in validation. Simple linear and non-
linear solutions for cones are applied to the verifications of the calculation 
method and to the investigations of nonlinear effects. 
 

5. Model tests have been carried out to obtain experimental data on nonlinear 
wave loads for modern ship hull forms, especially for hull forms that have a 
flat bottom stern. The model test results for motions, accelerations and hull 
girder loads are presented in regular and irregular head waves at zero and 
forward speeds and in calm water at different forward speeds. 
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6. Nonlinearities in responses are studied using calculated and model test re-
sults. The calculation method is used to predict motions and hull girder loads 
for the model test ship in regular and irregular head waves at zero and for-
ward  speeds.  Moreover,  steady  hull  girder  loads  in  calm  water  at  forward  
speeds are studied. The calculated motions and hull girder loads are com-
pared with the model test results. A stochastic method is also applied to pre-
dict  extreme values  for  the  hull  girder  loads  in  short-term sea  states  for  the  
model test ship. 

 
This work focuses on wave-induced loads, and the investigations concentrate on 
nonlinear  wave  loads.  The  wave  loads  of  the  model  test  ship  are  studied  with  
integrated external pressure loads and inertia loads, i.e. vertical bending moments 
and shear forces. The vertical bending moments and shear forces are internal 
loads at the cross sections of the hull girder. The hull girder is assumed to be rigid 
and the structural dynamics of the hull girder are not taken into account. This 
study concentrates on the wave loads in the wave frequency range. 
 
In Chapter 2, the theory and numerical procedures of the time domain computer 
program are presented. First, the used coordinate systems are defined, and defini-
tions of the transformation of the vectors between different coordinate systems 
are given. The frequently used notations in this work are also explained. Next, the 
governing equations and the hydrodynamic boundary and initial value problems 
are presented. The boundary and initial value problems for the perturbation veloc-
ity potential are similar to those given by Ferrant (1991), Lin and Yue (1991), and 
Sen (2002). The solution of the boundary value problem is based on source distri-
butions on the body surface. The source distributions are represented with a tran-
sient three-dimensional Green function. The solution of the boundary value prob-
lem is expressed in the space-fixed coordinate system. The time domain computer 
program includes the solutions of the exact and linear body boundary conditions. 
The free surface boundary condition is linear. In the nonlinear calculation, the 
instantaneous position of the ship with respect to the mean water level is updated 
at every time step. Constant panel sizes and panel mesh are applied in the calcula-
tion method.  
 
A method to solve the time derivative of the velocity potential in Bernoulli’s 
equation is presented in this work. The solution is based on the same source for-
mulation and transient Green function as the boundary value problem for the 
perturbation velocity potential but with a different body boundary condition. The 
acceleration potential method has been implemented in the calculation method. 
The acceleration potential method is verified using a hemisphere and cones in 
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harmonic heave motions at free surface. The acceleration-potential method is 
used to solve responses for Wigley hull forms and the model test ship. 
 
A numerical integration of the memory part of the transient Green function is 
presented in this work. The numerical integration of the memory part is based on 
an adaptive Gauss-Kronrod quadrature formula. In order to reduce the computa-
tional time, the memory part is solved beforehand and the results are stored in the 
file. In the beginning of the time domain calculation, the table of the Green func-
tion values is read into the computer’s memory and the Green function values are 
interpolated applying a finite element approximation.  
 
Simple body geometries are used in verifications and validations of the time do-
main computer program. An analytical solution of the hydrodynamic added mass 
and damping coefficients for a hemisphere are used in the verification. Simple 
solutions of hydrodynamic forces for cones in a forced heave motion at free sur-
face are also applied to verify the calculation method. Moreover, nonlinear heave 
radiation forces are approximated using the geometrical similarity of the cones. 
The aim was to obtain an insight into the nonlinearities in radiation and the hy-
drostatic restoring forces. Furthermore, experimental results of Wigley hull forms 
are used to validate the calculation method in regular waves and calm water. The 
analytical solution for the hemisphere and the experimental results for the Wigley 
hull forms have been commonly used in developing seakeeping calculation meth-
ods. 
 
Model tests of a roll-on roll-off passenger (RoPax) ship are presented. The ship 
model has a flat bottom stern at the waterline (counter stern). Model test results of 
ship motions and vertical shear forces, and bending moments in regular and ir-
regular  head  waves  are  given.  In  addition,  model  test  results  in  calm  water  at  
different forward speeds are presented for sinkage of the ship and for steady ver-
tical shear forces and bending moments.  
 
The nonlinear effects on ship motions and hull girder loads are investigated using 
calculated and model test results. The investigations focused on sagging and 
hogging bending moments at midship and shear forces at the fore ship. The calcu-
lation method is applied to solve motions and hull girder loads for the model test 
ship. The calculated responses are compared with the model test results. Proce-
dures to predict the extreme values of wave loads in design sea states are also 
reviewed. A procedure is applied to determine extreme hull girder loads for the 
model test ship. The RoPax model test ship used in this work is the same as that 
used in the earlier investigations in Kukkanen (2009, 2010). However, the earlier 
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calculated results were based on different solutions and numerical algorithms to 
those presented in this work. 
 
Finally, the discussion and conclusions of the results and recommendations for 
further studies are given in the last two chapters. 
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2. Time domain calculation method 

2.1 Definitions 

In the time domain method, two coordinate systems are used: a space-fixed coor-
dinate system Oxyz and a body-fixed coordinate system Ox0y0z0. The coordinate 
systems are shown in Figure 2.1. The space-fixed coordinate system is the inertial 
reference frame. The origin of the space-fixed coordinate system is at the calm 
water plane with the z-axis pointing vertically upwards. The forward speed of the 
body is U0. The forward speed is defined as the speed of the centre of gravity of 
the body and the body moving at speed U0 parallel to the direction of the x-axis if 
the other motions in the y- and z-directions are zero. The longitudinal coordinate 
x0 of the body-fixed coordinate system is pointing to the bow of the body and the 
z0-axis is pointing vertically upwards. The origin of the body-fixed coordinate 
system is at the centre of gravity of the body. The incoming waves are travelling 
with angle c with respect to the x-axis and the heading angle of c = 180 degrees 
corresponds to head sea. The six degrees of freedom body motions are surge (h1), 
sway (h2),  heave (h3),  roll (h4),  pitch (h5) and yaw (h6), defined with respect to 
the space-fixed coordinate system. The translational motions surge, sway and 
heave define the position of the centre of gravity of the body in the space-fixed 
coordinate system. The surge velocity 1h&  includes the forward speed U0. Normal 
vectors are defined as positive, pointing out of the fluid. 
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Figure 2.1. Coordinate systems used in the time domain method. 

The relations between the body and space-fixed coordinate systems are given by 
the Eulerian angles roll, pitch and yaw (see, e.g., Salonen, 1999). All of the vector 
operations are evaluated for the vectors that are expressed in the same reference 
frame. The relation between the space-fixed and body-fixed coordinate systems is 
determined by vector transformations, applying the sequence of rotations yaw, 
pitch and roll. The orientation of the body velocities from the body-fixed coordi-
nate system to the space-fixed coordinate system is obtained using the following 
transformation matrices: 
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Here, u = (u, v, w) is the vector of translational velocities and w = (p, q, r) is the 
vector of the angular velocities expressed in the body-fixed coordinate system. In 
the space-fixed coordinate system, the same velocities are the translational veloci-
ties ( )321 ,, hhh &&&& =Gx  and the rotational velocities ( )654 ,, hhh &&&=Ω . The transfor-
mation matrix is [L] for the translational velocities and [B] for the angular veloci-
ties. The matrices are given as follows: 
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where ci = cos ih , si = sin ih  and t5 = tan 5h . From the space-fixed to body-fixed 
coordinate system, the transformation formulae are given by 

[ ] GxLu &
1-=   (2.5) 

[ ] ΩBω 1-=   (2.6) 

The inverse of the transformation matrices is as follows: 
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The transformation matrix [L] is used to transform directional vectors between 
the body-fixed and space-fixed coordinate systems. The position vector r = (x0, 
y0, z0) from the centre of gravity of the body to the point at (x0, y0, z0) in the body-
fixed coordinate system can be expressed in the space-fixed coordinate system 
using the following transformation 

[ ] GxrLx +=  , (2.9) 
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where xG =  (h1, h2, h3)  is  the  position  of  the  centre  of  gravity  of  the  body  ex-
pressed in the space-fixed coordinate system. The position vector from the space-
fixed coordinate system to the body-fixed coordinate system is given as 

[ ] ( )GxxLr -= -1  . (2.10) 

The orientation of the normal vector can be defined in a body-fixed or space-
fixed coordinate system. From the body-fixed coordinate system to the space-
fixed coordinate system the transformation is given by 

[ ] ),,(),,( 000 zyxzyx nLn = . (2.11) 

Definitions of frequently used notations in this work are given below. 
 
Body linear solution: The body position is not updated during the calculation and 
the wetted surface of the body remains the same as at t = 0. The pressure is solved 
for the mean wetted surface below the mean waterline z = 0. 
 
Body nonlinear solution: The instantaneous position of the body is updated dur-
ing the calculation. The pressure is solved for the instantaneous wetted surface of 
the body below z = 0. 
 
Body-wave nonlinear solution: The solution is the same as the body nonlinear 
solution but includes additional nonlinear effects in Froude-Krylov and hydrostat-
ic restoring forces and moments; see Section 2.4.5. The Froude-Krylov and hy-
drostatic restoring pressures are solved up to the incoming wave elevation z = z. 
 
Constant panel mesh: The panel mesh is not updated during the time domain 
calculation. The geometry and size of the panels remain the same in the calcula-
tion and the panel mesh is the same as at time t = 0. Alternatively, the body sur-
face can be re-panelized at every time step applying spline-fitted mesh to repre-
sent the body surface. The term constant panel mesh shall be distinguished from 
the constant panel method that is used in the numerical solution of the velocity 
potential. 
 
Acceleration potential method: The time derivative of the velocity potential is 
solved using the source formulation. The solution is based on the Green function 
and the body boundary condition defined for the acceleration potential. Details 
are given in Section 2.3.2. Alternatively, the backward difference method can be 
applied to approximate the time derivative of the velocity potential. In the back-
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ward difference method, the velocity potentials at the present and previous time 
steps are used.  

2.2 Governing equations 

The governing equations to describe the fluid flow are given in this section. 
Throughout this work, it is assumed that the fluid is inviscid and the fluid density 
r is constant. The fundamental conservation laws are the conservation of mass 
and momentum to describe the fluid velocity components v1, v2, v3 and the pres-
sure p1. The governing equations presented in this section are given in, for exam-
ple, Stoker (1958), Newman (1977) and Mei (1992). As the fluid density r is 
constant, the fluid is incompressible and the conservation of mass is given by the 
continuity equation as follows: 

0=×Ñ v , (2.12) 

where v is the velocity vector of the fluid, v = (v1, v2, v3). As the fluid is inviscid, 
the conservation of momentum can be given by Euler’s equations as follows: 
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1
1
r

vv , (2.13) 

where g is the gravity acceleration and p1 is the pressure, p1 = p1(x, y, z, t). These 
equations can be further simplified assuming that the flow is irrotational. For 
inviscid fluid, the flow remains irrotational for all times if there is no vorticity at 
the initial time. The vorticity vector is defined as v´Ñ  and the irrotational flow 
as 0=´Ñ v . For the irrotational flow, the fluid velocity is given by the gradient 
of the scalar potential function 

FÑ=v , (2.14) 

where F is the velocity potential. Hence, it follows from the continuity equation 
Laplace’s equation: 

02 =FÑ . (2.15) 

Expressing the fluid velocities with the velocity potential in Euler’s equations and 
integrating them with respect to the space variables, Bernoulli’s equation for the 
pressure is obtained: 



2. Time domain calculation method
 

29 

Cgz
t

p
++FÑ+

¶
F¶

=-
21

2
1

r
. (2.16) 

The integration constant C depends  on  time but  not  on  the  space  variables.  The  
constant can be chosen arbitrarily or omitted and set to C = 0.  
 
In addition to the conservation laws, the fluid has to satisfy boundary conditions 
on the fluid boundaries. A kinematic boundary condition has to be satisfied on 
fixed and moving surfaces. The kinematic boundary condition means that the 
velocity of the fluid particle has the same normal velocity as the boundary surface 
at the same point. The kinematic boundary condition on the moving surface is 
given by 

nU ×=
¶
F¶
n

. (2.17) 

Here, n is the unit normal to surface pointing out of the fluid and U is the instan-
taneous velocity of the surface. If the surface is fixed, the right-hand side of the 
above equation is zero. The term n¶F¶  is the derivative in the normal direction 
and is given by FÑ×=¶F¶ nn .  
 
The kinematic free surface boundary condition can be expressed as follows 
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zyyxxt
zzz          on ),,( tyxz z= , (2.18) 

where z is the free surface elevation. On the free surface, an additional boundary 
condition has to be included because the free surface itself is an unknown moving 
surface. The additional boundary condition is the dynamic free surface boundary 
condition: 

r
z ap

t
g -=FÑ+

¶
F¶

+
2

2
1          on ),,( tyxz z= , (2.19) 

where pa is the atmospheric pressure that is assumed to be constant. 
 
As the free surface boundary condition has to be solved at the instantaneous free 
surface elevation around the body and the body boundary conditions have to be 
solved on the instantaneous wetted surface, the boundary value problem is non-
linear. Linearization of the free surface boundary conditions with respect to the 
wave amplitude means that the wave amplitude is assumed to be small, only 
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linear terms are retained and higher order terms can be ignored. If the linear free 
surface boundary condition is used, the velocity potential can be solved up to the 
undisturbed mean water level z = 0 and not on the actual free surface z=z . The 
linear free surface boundary conditions can be expressed as follows for the kine-
matic free surface condition: 

0=
¶
F¶

-
¶
¶

zt
z          on 0=z , (2.20) 

and for the dynamic free surface condition 
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The kinematic and dynamic conditions can be combined to yield to the following 
free surface boundary condition 
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F¶
z

g
t

         on 0=z . (2.22) 

The time domain calculation method presented in this work is based on the invis-
cid and incompressible fluid, and the fluid flow is irrotational. The exact body 
boundary condition is satisfied and the free surface boundary condition is linear. 

2.3 Theory of the method 

2.3.1 Boundary value problem 

The hydrodynamic forces and moments can be determined after the hydrodynam-
ic boundary value problem has been solved for the body in waves. The hydrody-
namic forces and moments can be calculated if the pressure on the body surface is 
known. The pressure is obtained from Bernoulli’s equation and is expressed by 
means of the velocity potential. In the time domain method presented in this 
work, the velocity potential is expressed as a decomposition of the perturbation 
and incoming wave velocity potentials: 

Iff +=F , (2.23) 

where the perturbation velocity potential is f and the velocity potential of the 
incoming wave is fI.  
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The velocity potential of the incoming wave If  is given by an analytical formula. 
The perturbation velocity potential describes the fluid flow due to the radiation 
and diffraction by a floating body. The perturbation velocity potential f  is repre-
sented by means of source distributions and using Green’s theorem. Green’s 
theorem gives integral equations for the velocity potential where the source dis-
tributions over the body surface are represented using a three-dimensional transi-
ent Green function. The unknown source strengths are obtained satisfying the 
body boundary condition on the hull surface. Once the velocity potentials are 
known, the pressure on the body surface is obtained from Bernoulli’s equation. 
The forces and moments acting on the body can be calculated by integrating the 
pressure over the wetted surface of the body. The accelerations of the body are 
solved from the equations of motion. The motions of the body can be determined 
when the accelerations are known.  
 
In this work, the time derivative of the perturbation velocity potential t¶¶f  in 
Bernoulli’s equation is solved using an acceleration-potential method. The 
boundary value problem for t¶¶f  is otherwise the same as for f  but the body 
boundary condition is different. The body boundary condition in the acceleration 
potential method is presented in Section 2.3.2. The time derivative of the velocity 
potential is the first term on the right-hand side in Bernoulli’s equation (2.16). 
 
Here, the boundary value problem is given for the perturbation velocity potential 
f . The formula for the incoming wave velocity potential If  is also given. The 
boundary value problem is expressed in the space-fixed coordinate system. 
 
The velocity potential f has to satisfy Laplace’s equation: 

02 =Ñ f , (2.24) 

everywhere in the fluid. On the free surface SF, the linear free surface boundary 
condition is given by 
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t
ff ,        on SF, z = 0. (2.25) 

The boundary condition on the body surface SB is given as follows: 
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where n is the unit normal to the body pointing out of the fluid and U is the veloc-
ity of the point on the body surface.  
 
In addition, the boundary condition on the sea bottom is given by the condition: 

0=
¶
¶

n
f ,         z ® –¥. (2.27) 

Hence, an infinite water depth is assumed. The radiation condition takes into 
account that the body-generated waves are progressing outwards and vanishing at 
infinity:  

0®
¶
¶

n
f ,       r ® ¥, (2.28) 

where 22 yxr += .  

 
In addition to the boundary conditions, the boundary value problem has to satisfy 
the following initial conditions: 

0=f  and 0=
¶
¶

t
f       at t = 0, (2.29) 

i.e. the fluid flow is not disturbed by the body at t = 0. 
 
The velocity potential of the incoming wave satisfies Laplace’s equation, the 
linear boundary condition at the free-surface and the bottom boundary condition. 
The velocity potential of the deep water linear wave can be given in the following 
form: 
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f eeeRe sincos , (2.30) 

where a is the wave amplitude, w is the wave frequency, and k is the wave num-
ber, gk w

22 wlp == . The imaginary unit is i. 
 
In the body nonlinear solution, the exact body boundary condition is used and the 
perturbation potential is solved at the actual floating position of the body. The 
body boundary condition is applied to the instantaneous wetted surface SB(t) on z 
< 0. In the body boundary condition (2.26), the instantaneous normal component 
of the velocity of the point on the body surface is given by 
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( ) nrωunU ×´+=× , (2.31) 

where the position vector r and the velocities u and w are given in the body-fixed 
coordinate system and hence the normal vector n is also expressed in the body-
fixed coordinate system. Thus, all the vector operations are performed in the same 
coordinate system. In the body boundary condition (2.26), the fluid velocities of 
the incoming wave IfÑ  are expressed in the space-fixed coordinate system. 
Thus, the normal derivative of the velocity potential of the incoming wave 

nI ¶¶f  = IfÑ×n  is expressed in the space-fixed coordinate system. The orienta-
tion of the normal vector from the body-fixed to the space-fixed coordinate sys-
tem is given by the relation (2.11). 
 
In  the  body linear  solution,  the  wetted  surface  of  the  body SB is independent of 
time and remains the same as at time t = 0. Hence, the body boundary condition is 
applied to the mean wetted surface of the body. However, the motions of the 
body-fixed coordinate system with respect to the space-fixed coordinate system 
are taken into account in the linear sense. In the body boundary condition, the 
velocities of the body in the body-fixed coordinate system are expressed using 
linear forms of the transformation equations (2.5) and (2.6). The linear form of 
the transformation matrix [B] for the angular velocities is the unit matrix, and the 
linear form of the transformation matrix [ ] 1-L  for the translational velocities u is 
given by 
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2.3.2 Boundary condition of the acceleration potential 

The time derivative of the velocity potential tf  = t¶¶f  appears in Bernoulli’s 
equation. The term acceleration potential is also used for the time derivative of 
the velocity potential. The boundary value problem for the velocity potential 
given in the previous section does not give a direct solution for the acceleration 
potential. In the time domain methods, the acceleration potential is often solved 
using numerical methods such as a backward difference method (see, e.g., Lin 
and Yue, 1991; Sen, 2002). In the backward difference method, the acceleration 
potential is approximated by applying the substantial derivative of the velocity 
potential as follows: 
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where fk is the velocity potential at time step k and Dt is the time step size. Hence, 
the solution includes the velocity potentials from present and previous time steps.  
 
The solution of the time derivative of the velocity potential can also be deter-
mined by solving a boundary value problem defined for the acceleration potential. 
Different methods have been developed to solve tf  and the differences in the 
methods depend on the applied boundary conditions and the solution methods, for 
example, Rankine source methods have been used. One method is to solve 

ff Ñ×+ Ut , i.e. solving the substantial derivative of f instead of solving tf  
directly. Vinje and Brevig (1981) applied this method to calculate motions of 
two-dimensional bodies, and Kang and Gong (1990) gave a solution for three-
dimensional free surface problems. Greco (2001) applied a similar approach, 
studying a two-dimensional green water loading. Tanizawa (1995) developed a 
solution for the acceleration potential starting from the fluid acceleration. The 
boundary condition was determined for the acceleration of the fluid particle, 
which has to be the same as the acceleration on the point of the body surface. 
Hence, the fluid particle is followed and not the fluid on a fixed point on the 
body. The fluid acceleration is a nonlinear function of the velocity potential, and 
the potential for the fluid acceleration does not satisfy Laplace’s equation. The 
nonlinear part can be subtracted to obtain a linear function that can be solved 
using the same methods as those used to solve the velocity potential. However, 
higher order derivatives of the velocity potentials have to be solved. The bounda-
ry  condition  also  includes  terms for  which  the  curvature  of  the  body is  needed.  
Wu (1998) derived a boundary condition for the acceleration potential starting 
from the body boundary condition of the velocity potential. The derived boundary 
condition includes higher order derivatives of the velocity potential. A similar 
boundary condition for the acceleration potential was presented by Bandyk and 
Beck (2011). A review and comparison of different acceleration-potential meth-
ods applied to the fluid and body interaction problems were given by Bandyk and 
Beck (2011). They also showed calculation results for two-dimensional bodies for 
which the velocity and acceleration potentials were solved using Rankine sources. 
 
In this work, a boundary condition for the acceleration potential is derived that 
can be used in the time domain method in the body nonlinear and linear solutions. 
The same approach was applied as Kang and Kong(1990) to represent the prob-
lem by the substantial derivative of f instead of solving tf  directly. However, the 
present boundary condition includes also terms due to the incident wave potential 

If .  The  terms  describing  the  body  motions  are  the  same  as  presented  by  
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Wu(1998) and Kang and Kong(1990). Furthermore, the acceleration potential is 
also solved by applying the panel method for which source distributions are ex-
pressed by means of the transient Green function in integral equations. 
 
The boundary condition for the acceleration potential is derived from the body 
boundary condition (2.26). Taking the absolute time derivative in the inertial 
reference frame from both sides of the body boundary condition for the velocity 
potential f , it follows that 

( )[ ]nU ×Ñ-=÷
ø
ö

ç
è
æ

¶
¶

Idt
d

ndt
d ff            on SB. (2.34) 

The left-hand side of the above equation can be written as 

( )ff
Ñ×=÷

ø
ö

ç
è
æ

¶
¶ n

dt
d

ndt
d  = ( ) ff Ñ×+Ñ×

dt
d

dt
d nn . (2.35) 

The time derivative of the normal vector is nωn
´=

dt
d . For the fluid term, the 

time derivative is evaluated following the fluid on the fixed point on the body 
surface. Hence, the time derivative is given by the substantial derivative: 

Ñ×+
¶
¶

= U
tdt

d , (2.36) 

and Equation (2.35) can be written as follows: 

÷
ø
ö

ç
è
æ

¶
¶

ndt
d f  = úû

ù
êë
é Ñ×Ñ×+

¶
¶Ñ

× ff )(Un
t

+ ( ) fÑ×´nω . (2.37) 

The term fÑ×Ñ× )(U  can be given in the following form using a vector identity 
(Milne-Thomson, 1968, p. 46, 2-34 III): 

( ) fÑÑ×U  = ( )fÑ×Ñ U  – ( )U´Ñ´Ñf  – ( )UÑ×Ñf  – ( )fÑ´Ñ´U . (2.38) 

As the flow is irrotational ( )fÑ´Ñ´U  = 0, it follows that 

( ) fÑÑ×U  = ( )fÑ×Ñ U  – ( )U´Ñ´Ñf  – ( )UÑ×Ñf . (2.39) 

The terms ( )U´Ñ´Ñf  and ( )UÑ×Ñf  can be further simplified substituting U = 
rωu ´+  in the two terms in the above equation. This gives the following result: 
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( ) fÑÑ×U  = ( )fÑ×Ñ U  – ω´Ñf2  + ( )ω´Ñf . (2.40) 

Substituting this back into Equation (2.37) gives  

=÷
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¶
¶

ndt
d f

úû
ù

êë
é Ñ´+Ñ×Ñ+

¶
¶Ñ

× fff ωUn )(
t

+ ( ) fÑ×´nω , (2.41) 

and  changing  the  order  of  the  vector  operations  in  the  last  term,  ( ) fÑ×´nω  
= ( )fÑ´×- ωn , the above equation is given as follows: 
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æ

¶
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d f ( )fff
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               = ÷
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Ñ× ff Un
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ø
ö

ç
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æ

¶
¶

dt
d

n
f . (2.42) 

Furthermore, defining a potential function j  as follows: 

ffj Ñ×+
¶
¶

= U
t

 = 
dt
df , (2.43) 

then Equation (2.42) can also be given as follows:  

÷
ø
ö

ç
è
æ

¶
¶

ndt
d f  = 

n¶
¶j . (2.44) 

Hence, the left-hand side of Equation (2.34) is the normal derivative of the poten-
tial function j .  
 
The right-hand side of Equation (2.34) is 

( )[ ]nU ×Ñ-=÷
ø
ö

ç
è
æ

¶
¶

Idt
d

ndt
d ff  = ( )nU ×

dt
d  – ( )n×Ñ Idt

d f . (2.45) 

The velocity of the point on the body surface in the normal direction can be writ-
ten as follows: 

( )nU ×
dt
d  = ( )[ ]nrωu ×´+

dt
d  
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                = ( )( ) ( ) ( )nωrωunrωωrωu ´×´++×´´+´+ &&   

                = ( ) ( ) nuωnrωu ×´-×´+ && , (2.46) 

where the translational acceleration vector of the centre of gravity of the body is 
u&  and the angular acceleration vector of the body is ω& . Furthermore, the veloci-
ty of the incoming wave in the normal direction is given by 

( )Idt
d fÑ×n  = ( )Idt

d fÑ×n  + 
dt
d

I
n

×Ñf   

                   = ÷
ø
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)(Un  + )( nω´×Ñ If   

                   = ÷
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ö
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¶Ñ
× I

I

t
f

f
))(( rωun  – ( )IfÑ´× ωn . (2.47) 

Finally, combining the results from Equations (2.44), (2.46) and (2.47) and sub-
stituting these with the time derivative of the body boundary condition given in 
Equation (2.34) leads to the following condition for the potential function j :  

n¶
¶j  ( ) ( )[ ]uωrωun ´-´+×= &&   

        – ( )( ) ( )úû
ù

êë

é Ñ´-ÑÑ×´++
¶

¶Ñ
× II

I

t
ff

f ωrωun . (2.48) 

This is the body boundary condition for the potential function j  on the body 
surface SB(t). Once the potential function j  and the velocity potential f  are 
known, the time derivative of the velocity potential tf  is given by 

fjff Ñ×-=
¶
¶

= U
tt . (2.49) 

Hence, the hydrodynamic pressure due to the flow that is described by the pertur-
bation velocity potential f  is  given by the  following form of  Bernoulli’s  equa-
tion: 

÷
ø
ö

ç
è
æ Ñ+Ñ×--=

2
1 2

1 ffjr Up . (2.50) 
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The function j  can be solved using the same source formulation that is used to 
solve the perturbation velocity potential f . The source formulation expressed by 
means of the transient Green function is presented in Section 2.3.4. The potential 
function j  can be based on the same solution as the velocity potential f  if it 
satisfies the same boundary value problem otherwise, except that it satisfies dif-
ferent boundary conditions on the body surface SB. Hence, the potential function 
j  has to satisfy the linear free surface boundary condition and be harmonic, i.e. 
satisfy Laplace’s equation. Laplace’s operator is applied to the potential function 
j  as follows: 

÷
ø
ö

ç
è
æ Ñ×+

¶
¶

Ñ=Ñ ffj U
t

22  

          = ( ) ( )ff 22 ÑÑ×+Ñ
¶
¶ U
t

 = 0, (2.51) 

because f2Ñ  = 0. Thus, the potential function j  satisfies Laplace’s equation and 
is a harmonic function. In addition, the linear free surface boundary condition at z 
= 0 is applied to the potential function j  as follows: 
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because 02

2

=
¶
¶

+
¶
¶

z
g

t
ff  on z = 0. Hence, the potential function j  satisfies the 

linear free surface boundary condition. Furthermore, the radiation and bottom 
boundary conditions are satisfied by the transient Green function that is used to 
solve the potential function j . The initial conditions at t = 0 are the same for the 
potential function j  and for the perturbation velocity potential f . 
 
The boundary condition for the potential function j  was derived applying the 
absolute time derivative of the fluid and the body velocities given in the normal 
direction on the point of the body surface. Hence, the first term inside the square 
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brackets on the right-hand side of the condition (2.48) does not give the accelera-
tion of the point on the body surface (term uωrωu ´-´+ && ). Similarly, the se-
cond term on the right-hand side does not give the fluid acceleration of the in-
coming wave. The potential function j  and its derivatives with respect to space 
coordinates do not give the fluid acceleration either. In a general form, the fluid 
acceleration is given by fff ÑÑ×Ñ+¶¶Ñ )(t . On the other hand, the term 

fj Ñ×- U  can be regarded as the rate of change of f  in the moving coordinate 
system, i.e. the rate of change of f  at a fixed point of fluid measuring from a 
moving body of which the velocity is U (Milne-Thomson, 1968, p. 89, 3-61). If 
the body is in constant translational motion, then the body acceleration is zero and 
the first term on the right-hand side in (2.48) is zero. Furthermore, if the body is 
in constant translational motion in calm water then the right-hand side is entirely 
zero. Hence, the potential function j  is also zero. Then, the Bernoulli’s equation 
includes only the term fÑ×-U  from the acceleration potential tf . From this it 
also follows that if the body is in steady motion, the term tf  = t¶¶f  is not zero 
in a space-fixed coordinate system (Batchelor, 1967, p. 404). If the body is trans-
lating at constant forward velocity U0 in calm water and the other motions are 
zero then the term gives fj Ñ×- U  = xU ¶¶- f0 .  
 
Bernoulli’s equation includes the additional term fÑ×-U  because the time de-
rivative of the velocity potential is solved using the potential function j  instead 
of the direct solution of the tf term. The higher order derivatives of f  also do not 
appear in the boundary condition (2.48) because the potential function j  is used. 
The direct solution of the tf  term includes second-order derivatives of f  with 
respect to the space variables; fÑÑ× )(n  (Wu, 1998; Bandyk and Beck, 2011). 
The indirect solution applied to the present time domain method saves computa-
tional time because the evaluation of the higher order derivatives of the transient 
Green function is not needed. 
 
The derivation of the boundary condition for the potential function j  was based 
on the absolute time derivative in the inertial reference frame. The potential func-
tion j  and the boundary condition for j  are scalars. However, the scalar func-
tions include vector operations that have to be performed in the same coordinate 
system. Although the derivation is based on the inertial coordinate system, the 
velocity and acceleration components of the body are expressed in the body-fixed 
coordinate system. Hence, the vectors in the first term on the right-hand side in 
(2.48) are expressed in the body-fixed coordinate system. The transient Green 
function and the solved velocity potentials are expressed in the space-fixed coor-
dinate system. Hence, the velocity potential of the incoming wave If  is also 
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expressed in the space-fixed coordinate system. In the second term on the right-
hand side in (2.48), the body-related vectors are transformed to the space-fixed 
coordinate system expressing the orientation of the vectors in the same coordinate 
system before the vector operations with the terms that include If .  For  the  in-
coming wave term, the body-related vectors are ( rωu ´+ ) and w for which the 
coordinate transformations are performed. In this case, the normal vector is also 
given in the space-fixed coordinate system. The transformation of the translation-
al and angular velocities using the transformation matrices [L] and [B] were giv-
en in Section 2.1.  
 
The body accelerations appear on the right-hand side of the boundary condition 
for the potential function j  in Equation (2.48). However, equations of motion 
have not yet been solved that give the accelerations for the freely floating body, 
i.e. the accelerations are unknown. The acceleration potential exists in Bernoulli’s 
equation that is used to determine the forces and moments on the body. The forc-
es and moments are needed in the equations of motion, and the accelerations are 
not known until the equations of motion are solved. In the present time domain 
method, an iterative solution procedure is applied to solve the accelerations and 
the function j . The applied methods in the time integration are given in Section 
2.4.4. Another technique is to combine the boundary value problem of the accel-
eration potential and the equations of motion to solve the acceleration of the body 
directly (Wu and Eatock Taylor, 1996; Bandyk and Beck, 2011). 

2.3.3 Green function 

The solutions of the perturbation velocity and acceleration potentials are obtained 
by applying Green’s theorem. The potentials are expressed with source distribu-
tions over the body where the source distributions are represented by a transient 
Green function. The transient Green function satisfies the boundary conditions on 
the free surface and far away from the body. The unknown source strengths are 
obtained by satisfying the body boundary conditions on the hull surface. By 
means of Green’s theorem, the potentials are expressed with integral equations 
over the hull surface where the integrand includes the transient Green function. 
The integral equations for the potentials are given in the following section. This 
section presents the transient Green function. 
 
The formulation of the transient Green function is given by Finkelstein (1957), 
Stoker (1958), and Wehausen and Laitone (1960). Here, the transient Green func-
tion is expressed in the following form (Wehausen and Laitone, 1960, p. 491, Eq. 
(13.49)): 
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[ ]ò
¥

¢+ -+
¢

-=
0

0
)( )())(sin(e211 dkkrJtgkgk

RR
G zzk t , (2.53) 

where  222 )()()( zzyyxxR ¢-+¢-+¢-= , 

 222 )()()( zzyyxxR ¢++¢-+¢-=¢ , 

 22 )()( yyxxr ¢-+¢-= . 

The transient Green function is given in the space-fixed coordinate system. In the 
above equation, J0 is the Bessel function of the first kind of order zero. The field 
point P is at the point (x, y, z), and the source point Q is at ( x¢ , y¢ , z¢ ). The image 
source Q¢  is located at the point ( x¢ , y¢ ,– z¢ ). The present time is t and the time 
delay t–t gives the memory effect at time t of the fluid flow at time t.  
 
The transient Green function satisfies Laplace’s equation: 

02 =Ñ G ,                      z < 0,      P ¹ Q,     t ³ t, (2.54) 

the free surface boundary condition: 

02

2

=
¶
¶

+
¶
¶

z
Gg

t
G ,          z = 0, (2.55) 

and the radiation and bottom conditions: 

0®ÑG ,                       z ® –¥,  r ® ¥. (2.56) 

In addition, the transient Green function satisfies the following initial conditions: 

0=G  and 0=
¶
¶

t
G ,       t = t. (2.57) 

The transient Green function can be decomposed as follows: 

)()0( tGGG += , (2.58) 

where the impulsive part is given as 

RR
G

¢
-=

11)0( , (2.59) 



2. Time domain calculation method 
 

42 

and the memory part is 

[ ]ò
¥
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0
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)'()( )())(sin(e2 dkkrJtgkgkG zzkt t . (2.60) 

Derivatives of the memory part of the transient Green function G(t) with respect to 
x, y and z are as follows: 
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Above, J1 is the Bessel function of the first kind of order one. Derivatives of the 
impulsive part G(0) with respect to x, y and z are given as 
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The memory part of the transient Green function )(tG  can be given in a non-
dimensional form. In the non-dimensional form, the Green function and its deriv-
atives can be expressed as a function of two variables b and m. First, the follow-
ing definitions are given for the time and space variables in the memory part: 
 T = t – t 
 X = x – x¢  
 Y = y – y¢  
 Z = z – z¢  Z ¢ = z + z¢  
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The vertical distance Z ¢  between the image source point and field point can be 
expressed with a spherical coordinate q. The coordinate is given as cosq 

=
R
Z

¢
¢

-=m . Hence, m is bounded in the domain 0 £ m £ 1. The parameter m is 

zero if the image source and field points are on the free surface, i.e. Z ¢  = 0. If m 
= 1 the two points are on the same vertical axis. Furthermore, the non-

dimensional time is given by
R
gT
¢

=b . In addition, the integration variable k is 

replaced by Rk ¢=l  and with these definitions the memory part of the Green 
function can be expressed as follows: 
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where the non-dimensional memory part is given by 
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The derivatives with respect to x, y and z can be given in the following form using 
the non-dimensional expressions:  
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The non-dimensional derivatives are as follows: 
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If m = 0 then an analytic solution can be used for )(tG  (Wehausen and Laitone, 
1960; Magee and Beck, 1989). The solution is given in the non-dimensional form 
as follows: 
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 (2.74) 

where nJ  is the Bessel function of order n (Abramowitz and Stegun, 1972). The 

function )0,(ˆ )( =mbtG  is  shown in  Figure  2.2.  The  derivatives  of  the  memory 
part at m = 0 can also be solved and the derivatives expressed as a combination of 
the Bessel functions in similar forms as the above equation.  
 
The Green function term ),(ˆ )( bmtG  is shown in Figure 2.3, and the derivatives 

),(ˆ )( bmxyG  and ),(ˆ )( bmzG  are shown in Figures 2.4 and 2.5 respectively. 
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Figure 2.2. The transient Green function term )(ˆ tG  at m = 0. 
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Figure 2.3. The transient Green function term )(ˆ tG . 

 

Figure 2.4. Derivative term )(ˆ xyG of the transient Green function. 
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Figure 2.5. Derivative term )(ˆ zG  of the transient Green function. 

2.3.4 Velocity and acceleration potentials 

The velocity potential f  and the Green function G can be expressed by means of 
Green’s theorem as follows (see, e.g., Newman, 1977): 

( ) òòòò ÷
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GdVGG f

fff 22 , (2.75) 

where V is the fluid volume inside the boundary surface S. The derivation of the 
integral equations of the velocity potential starting from Green’s theorem is pre-
sented by, for example, Brard (1972), and Guevel and Bougis (1982). In the pre-
sent boundary value problem, the surface S includes the body and free surfaces, 
SB and SF. At infinity and on the sea bottom, the integrals vanish because of the 
boundary conditions. The Green function has a singularity if the field and source 
points have the same coordinates, P = Q. The singularity can be avoided by defin-
ing a small sphere with a surface Se around the singularity point (Newman, 1977). 
Hence, the integral equation can be represented with the velocity potential and the 
Green function on the surfaces where the functions satisfy Laplace’s equation. 
Furthermore, the derived integral equation is integrated with respect to time t and 
the free surface boundary condition is taken into account together with the initial 
conditions at t =  0  and t = t on the surface SF. This derivation for the integral 
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equation is given by Lin and Yue (1991), and Ferrant (1991). They showed that 
the integral equation can be written in the following form: 
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 (2.76) 

The surface and line integrals, SB(t) and GF(t),  as  well  as  the  derivative  in  the  
normal direction are expressed in the source point coordinates Q at ( x¢ , y¢ , z¢ ). 
The first integral depends on time t in the body nonlinear solution because the 
wetted surface of the body is changing. The source and field points P and Q in the 
impulsive part of the Green function )0(G  depend on time t in the body-nonlinear 
solution because the body position is updated during the calculation. In the body-
linear solution, the co-ordinates of the source and field points remain the same 
during the calculation as they were at time t = 0. The line integral GF(t) is evalu-
ated at the intersection of the body and the free surface. The velocity UN = 

NU ×G  is the two-dimensional velocity of GF in the normal direction N = N(Q,t) 
where N is the normal vector of GF at z = 0. 
 
The above equation is the solution to the exterior problem and a similar equation 
can be derived for the interior problem. Adding the exterior and interior problems 
together, the integral equation can be presented with sources and dipoles. The 
integral equation for the velocity potential using only the distribution of sources 
can be written as follows:  
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where the source strength is s. The velocity un = nu ×  is the velocity of the body 
in the normal direction at the intersection of the body and the free surface at 
source point Q at time t. In the body linear solution, the product of the velocities 
can be given as 22

0 xNn NUUu =  where Nx is the component of the normal vector 
of the contour GF in the x-direction. At zero speed, the line integral vanishes. The 
line integral appears for surface-piercing bodies. 
 
From the above equation, the derivatives of the velocity potential with respect to 
the field coordinates x, y and z can be determined as follows: 
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where the operator Ñ is given in the field point coordinates (x, y, z). 
 
In the above integral equations of the velocity potential and its derivatives, the 
source strengths are unknown at time t. The unknown source strengths can be 
solved using the condition of the velocities of the fluid and body on the body 
surface, i.e. the body boundary condition (2.26). The body boundary condition is 

ff Ñ×=¶¶ nn  = ( )nI ¶¶-× fnU . Hence, taking a dot product for n from both 
sides of Equation (2.78) the term fÑ×n  can be replaced by ( )nI ¶¶-× fnU . 
Thus, the unknown source strengths of the velocity potential can be solved from 
the following equation 
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where the normal derivative Ñ×=¶¶ nn is given with respect to the field point 
coordinates (x, y, z). The terms have been rearranged so that the unknown source 
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strengths at time t have been moved to the left-hand side. The source strengths 
from previous times t are known and the memory part of the Green function is 
zero at t = t. Once the source strengths are known, the velocity potential can be 
determined from Equation (2.77) and the derivatives from Equation (2.78). 
 
In the acceleration potential method, the above equations are also valid for the 
potential function j , replacing f  with j . In solving the source strengths for the 
potential function j , the condition jj Ñ×=¶¶ nn  for the acceleration potential 
is applied. Hence, the condition ( )nI ¶¶-× fnU  in the above Equation (2.79) is 
replaced by the condition given by the right-hand side of Equation (2.48): 

( ) ( )[ ]uωrωun ´-´+× &&  – ( )( ) ( )úû
ù

êë

é Ñ´-ÑÑ×´++
¶

¶Ñ
× II

I

t
ff

f ωrωun .  

Thus, applying Equation (2.79) the source strengths for the potential function j  
can be solved and then the potential function j  can be expressed with a similar 
equation to Equation (2.77). The time derivative of the velocity potential is finally 
given by Equation (2.49): fjf Ñ×-= Ut . 

2.3.5 Pressure loads and equations of motion 

The pressure on the body can be determined from Bernoulli’s equation 
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where the velocity potential is the combination of the perturbation and incoming 
wave velocity potentials Iff +=F . Using Iff +  and the acceleration-potential 
solution for tf  given by Equation (2.49), Bernoulli’s equation can be written in 
the following form: 
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where the pressure terms are defined in the space-fixed coordinate system. 
 
Forces and moments on the body are obtained by integrating the pressure over the 
wetted surface of the body. The forces F = (F1, F2, F3) and moments M = (F4, F5, 
F6) can be determined as follows 
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where n0i are components of the normal vectors. The normal vector for the forces 
is given as 

kjin 302010 nnn ++= , (2.83) 

and the generalized normal vector for the moments is defined as follows: 

kjinr 605040 nnn ++=´ . (2.84) 

The position vector from the centre of gravity of the body pointing to the point P0 
on the body surface is r = x0i + y0j + z0k. The point P0 is given in the body-fixed 
coordinate system at (x0, y0, z0). In addition, the vector components in n and nr ´  
are expressed in the body-fixed coordinate system. Thus, the forces and moments 
are expressed in the body-fixed coordinate system. The transformations of the 
position and normal vector between the body-fixed and space-fixed coordinate 
systems are given by Equations (2.9) and (2.11). The pressure is scalar and de-
termined at the centroid of the panel on which the coordinates are known in body-
fixed and space-fixed coordinate systems. Hence, the pressure is known at point 
P0 on the body surface. The forces and moments are expressed in the body-fixed 
coordinate system because the equations of motion given in the coordinate system 
are fixed on the body and the origin is at the centre of gravity. 
 
The accelerations of the body are solved from the equations of motion. The equa-
tions of motion are valid in the inertial coordinate system and the time derivatives 
are absolute time derivatives (Salonen, 1999). Hence, the absolute accelerations 
of the centre of gravity of the body in the body-fixed coordinate system are given 
by 
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where tδδ  means the derivative with respect to time in the body-fixed coordi-
nate system. The equations of motion in the body-fixed coordinate system at the 
centre of gravity of the body can be written as follows 
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or in component form: 
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Here, m is the mass of the body and Iij are the mass moment of inertias of the 
body with respect to the body-fixed coordinate system about the centre of gravity. 
The components of the gravity force FGi in the body-fixed coordinate system are 
given by 

FG = (FG1, FG2, FG3) = –mg [ ] 1-L  
                                   = mg(sinh5, –sinh4cosh5, –cosh4cosh5). (2.88) 

The translational velocity components in the body-fixed coordinate system are u, 
v and w in the x0-, y0- and z0-directions, respectively. The angular velocities in the 
body-fixed coordinate system are p, q and r about the x0, y0 and z0 axis, respec-
tively. The translational and angular velocities are transformed to the space-fixed 
coordinate system using the transformation matrices, Equations (2.1) and (2.2): 

[ ]
[ ]ωBΩ

uLx
=
=G&  (2.89) 

In the above, the vectors of the body velocities are Gx&  = ( )321 ,, hhh &&&  and Ω  = 
( )654 ,, hhh &&&  in the space-fixed coordinate system and u  = ( )wvu ,,  and ω  = 
( )rqp ,,  in the body-fixed coordinate system. 

2.3.6 Hull girder loads 

The rigid hull girder loads are the normal force (V1), lateral shear force (V2), ver-
tical shear force (V3), torsion moment (V4), vertical bending moment (V5) and 
lateral bending moment (V6).  The  hull  girder  loads  are  determined in  the  body-
fixed coordinate system. The positive direction of the forces (V1, V2, V3) is the 
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same as that of the axis of the body-fixed coordinate system. The moments (V4, 
V5, V6) are defined about the axis in the body-fixed coordinate system. The inter-
nal hull girder loads at cross section xp of the body can be determined as follows: 

òò -=
)(
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)(

),(
pBp xS

ip
xV

impi dSnpdmaxtV ,    i = 1, 2, ..., 6, (2.90) 

where ami are the acceleration components of the mass dm. The integrations are 
carried out from the stern of the body to the cross section xp. For the hydrodynam-
ic forces and moments, the integration includes the wetted surface of the body 
SB(xp)  to  a  cross  section  at  xp. The hydrodynamic forces and moments are inte-
grated external pressure loads. For the inertia forces and the moment of inertia 
terms, the integration is performed over the volume V(xp) of the mass distribution 
of the body from the stern to a cross section at xp. In the above equation, npi are 
the components of the generalized normal vectors for the forces and moments. 
The vector definitions for the pressure-induced loads are shown in Figure 2.6 and 
for the accelerations of mass-induced loads in Figure 2.7. For the hydrodynamic 
forces, the components of the normal vector are the same as the components of 
the body normal vector expressed in body-fixed coordinate system as follows 

nkjikji =++=++ 302010321 nnnnnn ppp . (2.91) 

The normal vector n is determined at the same point on the body surface as the 
pressure. The generalized normal vector for the hull girder moments is defined as 

nrrkji ´-=++ )(654 pppp nnn , (2.92) 

where the vector prr -  is  the  position  vector  of  the  body surface  area  dS from 

the point (xp, yp, zp) at the cross section xp.  
 
The acceleration of the mass dm is given as 

( ) grωωrωua -´´+´+= mmm && , (2.93) 

where the vector g = [ ] 1-L (0,0,–g) includes the gravity acceleration components 
in the body-fixed coordinate system. The gravity forces due to g should be under-
stood as external forces and hence it is negative. The sign is then the same as for 
the pressure forces and also the same as for the gravity forces in the equations of 
motion. The vector rm is  the  position  vector  of  the  mass  dm from the  centre  of  
gravity of the body. The acceleration components ami for the forces are given as 
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mmmm aaa akji =++ 321 . (2.94) 

The acceleration components ami for the moments are defined as 

kjiarr 654)( mmmmpm aaa ++=´- , (2.95) 

where pm rr - is the position vector of the mass dm from the point (xp, yp, zp) at 

the cross section xp.  
 
The above formulation includes the hull girder forces and moments due to the 
hydrostatic equilibrium. The still water forces and moment can be subtracted to 
obtain the internal hydrodynamic forces and moments due to the body motions. In 
this work, the still water loads have been subtracted from the hull girder loads. In 
the present time domain method, the hull girder forces and moments are defined 
at rp = xpi, i.e. at the centre line of the body and at the same height as the global 
centre of the gravity of the body. The vertical shear force and bending moment 
can be determined when the longitudinal mass distribution is known. The integra-
tion of the masses is only carried out in the longitudinal x0-direction assuming 
symmetric mass distribution in the y-direction. For example, to obtain the torsion 
moment, the mass distribution or the distribution of the mass moment of inertia 
about the x-axis have to be known.  
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Figure 2.6. Definitions of the position vectors for the hull surface element dS. The 
hull girder loads are defined at the cross section xp. 
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Figure 2.7. Definitions of the position vectors for the mass dm. The hull girder 
loads are defined at the cross section xp. 

2.4 Numerical solutions 

2.4.1 Panel method 

Velocity potentials are expressed by means of the integral equations, as presented 
in Section 2.3.4. The equations include integrals over the body surface. Hence, 
for  complex  body  geometries  the  body  surface  has  to  be  approximated.  In  this  
work, the body surface is discretized by panels and the velocity potential is de-
termined using a constant panel method (Hess and Smith, 1962). The velocity 
potential can be evaluated from Equation (2.77) if the source strengths are known. 
The unknown source strengths can be solved from the integral Equation (2.79). 
This equation can be expressed as a system of linear equations as follows 

[ ] fσA = . (2.96) 

In the present calculation method, the system of linear equations is solved by LU-
decompostion (see, e.g., Press et al., 1997). The unknown source strengths in the 
vector s are js  = ),( tQ js  where j = 1…NP and NP is the number of panels on 

the hull surface. The source strengths are determined at source points Qj at time t. 
The collocation point of the source strengths is at the centroid of the panels. The 
terms in the matrix [A] are given by 

ijA  = –
p4
1

òòÑ×
jS

jjii dSQPG ),()0(n , (2.97) 

where i = 1...NP and j = 1…NP. The integration is performed over the panel area 
Sj. The field points Pi and source points Qj are determined at time t. The operator 
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Ñ is given in the field point coordinates (x, y, z) and the normal vectors are de-
termined at the field points ni = n(Pi, t).  
 
The terms of the vector f are the following: 

if  = – ( )),(),( tPtP iIii fÑ-× Un  
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 (2.98) 

Here, the terms fi, i = 1...NP are evaluated at the centroid of each panel. A trape-
zoidal rule is used in time integration of the convolution integral. The integration 
variable is t and the index in the summation expression is k = 1…Nt – 1. Hence, 
ck = 0.5 if k = 1 and otherwise ck = 1.0 in the trapezoidal rule. The present time is 
t at k = Nt. The memory part of the transient Green function is not defined if t = t 
and hence the time integration ends at Nt – 1. The field point coordinates are 
determined at time t, P = P(t) and the source points at time t, Q = Q(t). The inte-
gral over the single panel area as well as the line integral at the waterline are 
carried out at time t at the source point Q: dS = dS(Q,t) and dG = dG(Q,t). Fur-
thermore, the velocities in the line integral are determined at time t at the source 
point Q, UN = UN(Q, t) and un = un(Q, t). The collocation point of the waterline 
integral is approximated at the centroid of the panels. 
 
In the acceleration potential method, the condition ( )),(),( tPtP iIii fÑ-× Un  is 
replaced by the condition given by the right-hand side of Equation (2.48) in solv-
ing the source strengths for the potential function j . 
 
Once the source strengths are solved for f  and j , the velocity potential f  and 
the potential function j  can be determined using Equation (2.77), which can be 
expressed in a similar form to Equation (2.98). 
 
Quadrilateral or triangular panels can be used in the time domain computer pro-
gram. In the present computer program, the impulsive part )0(G  in the transient 
Green function and the integrals over the panel area are determined by a method 
given by Newman (1986). Numerical integration rules are applied to integrate the 
memory part )(tG of the transient Green function values over a panel area. The 



2. Time domain calculation method 
 

56 

integration over the quadrilateral panel area can be determined using Gauss quad-
ratures: 

»òò
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dSzyxf ),,( åå
= =
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1 1
2121 ),J(),( xxxx  (2.99) 

The Jacobian determinant is |J| to transform integrals to the local panel coordi-
nates ( 21 ,xx ). The number of integration points is NG. If NG = 1 then the integra-

tion is the same as a midpoint rule. In this work, the midpoint rule has been used 
to integrate the memory part unless otherwise stated. The triangular panels are 
integrated with the midpoint rule.  
 
The computational time can be reduced if the time delay t – t is truncated in the 
convolution integral and by not using the whole time history starting from t = 0. 
This means that the number of time steps Nt in the convolution integral is not the 
same as the total number of time steps NT in the calculation. The history of the 
fluid motion from the past time has an effect on the fluid motion at the present 
time t, i.e. the memory effect. The memory effect decreases when the time delay t 
– t increases. Furthermore, the influence of the memory effect depends on the 
damping characteristic of the body motion. It was also noted that the memory 
effect has a greater influence on the responses if the body linear solution was used 
and the responses were moderate compared with the body nonlinear solution and 
if the response amplitudes were large. In this work, the number of oscillation 
cycles of the responses was used as a general guideline to determine the trunca-
tion of the memory effect. In the regular and irregular wave calculation for the 
model test ship, the number of response cycles was roughly at least 5-10 before 
the truncation of the memory effect. The results for the model test ship are pre-
sented in Chapter 4.  
 
A parallel computation is an efficient method to reduce the computational time in 
the panel methods. The most time-consuming part is Equation (2.98) in which the 
integral equations are solved for each panel, i = 1...NP. The integrals for multiple 
panels can be computed simultaneously using parallel algorithms in the computer 
code. In the present computer code, the last two terms on the right-hand side of 
Equation (2.98) and the term in Equation (2.97) have been evaluated using paral-
lel algorithms.  
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2.4.2 Numerical solution of the Green function 

The memory part of the transient Green function was given in a non-dimensional 
form in Equation (2.68) as follows: 
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)( )1()sin(e2),(ˆ lmllblbm lm dJG t . 

The memory part can be expressed as a series expansion. The series expansion 
has been derived and presented by, e.g., Lamb (1932, Art. 255). In numerical 
computations, the series expansion can be used to solve the memory part. For 
large values of b, asymptotic expansions can be applied. The combination of the 
series and asymptotic expansions solving the memory part are given by Newman 
(1992). Applying the series and asymptotic expansions, the solution domain in 
the b-m plane is divided into sub-domains in which the different solution schemes 
are applied (Liapis and Beck, 1985). Polynomial approximations and Filon’s 
integral formulae have been used in addition to the series and asymptotic expan-
sions (Lin and Yue, 1991; Sen, 2002). Clement (1998) showed that the transient 
Green function can also be expressed as a solution of an ordinary differential 
equation. The solution procedures of the ordinary differential equation were pro-
posed by Clement (1998) and the solution for this differential equation using the 
Taylor series expansions was presented by Chuang et al. (2007). 
 
In this work, the memory part of the transient Green function and its derivatives 
are solved using a numerical integration. One benefit of the numerical integration 
is that the whole b-m domain can be solved with the same method. However, the 
accuracy of the numerical solution has to be controlled. The numerical integration 
of the memory part is based on an adaptive Gauss-Kronrod quadrature formula. 
The GN -point Gauss quadrature rule for an integral over an interval [a,b] can be 

expressed as follows (see, e.g., Press et al., 1997): 
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)()( ,           xi Î [a,b], (2.100) 

where Wi are the weight coefficients. In the ordinary Gauss quadrature formulae, 
a constant number of points are used and if the number of the points is increased, 
the previous results cannot be reused. However, according to the Gauss-Kronrod 
rules, the previous function calls can be reused, hence, reducing the computation-
al time and improving the accuracy. In the adaptive integration, the integration 
interval is subdivided into smaller intervals in which the estimated largest errors 
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exist. The interval of the estimated largest error is bisected and the Gauss-
Kronrod rule is applied to each subinterval. The error at each interval is estimated 
by comparing the result between the 21-point Gauss-Kronrod rule and the 10-
point Gauss rule. The absolute and relative errors are given by the following 
formulae: 

GKabs II -=e  (2.101) 

K

GK
rel I

II -
=e  (2.102) 

Subscript K is for the 21-point Gauss-Kronrod rule and G is for the 10-point 
Gauss rule for the estimated integrals. The numerical solution of the Gauss-
Kronrod-based adaptive algorithm was implemented using the QUADPACK 
Fortran code package (Piessens et al., 1983).  
 
In the present numerical integration, the integral given by Equation (2.68) was 
solved over the interval [0, l]. The upper limit was set to l = m30  and hence the 

term lm-e  approaches zero at large l in the numerical integration. As target val-
ues, the absolute and relative errors were set to 0.0 and 1010- , respectively. The 
order of magnitude of the estimated relative error after the numerical integration 
was 1010-  at the large part of the m-b domain. However, at small m values (about 
m < 0.1) and large b values (about b > 10), the relative error was in the order of 

810- . If m was close to zero the numerical integration failed at large b values, 
typically if b > 10 and m < 310- . At m = 0, the memory part )(ˆ tG  and also the 
derivatives )(ˆ xyG  and )(ˆ zG  were determined using the Bessel function expres-
sions as given in Equation (2.74) for )(ˆ tG . 
 
The numerical integration solution based on the adaptive Gauss-Kronrod rule was 
compared with the series solution. The series solution is based on the series ex-
pansion and its asymptotic expansions (Newman, 1992). The series solution was 
calculated in two parts: the series expansion was used at interval b = 0 ...  9 and 
the asymptotic expansion when b > 9. The memory part solved by the numerical 
integral rule and the series solution are shown in Figure 2.8. The memory part is 
given for three different values of m. The lines for the two different solutions are 
indistinguishable in the figures. The absolute difference between the numerical 
integration and the series solution was in the order of 810-  or smaller. Only in the 
vicinity of m = 9 was the order of magnitude in the absolute difference 510- . The 
difference near b = 9 is due to the numerical inaccuracies in the series expansion 
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solution. However, more accurate, and faster solutions, can be used in connection 
with the series expansion than are applied in this work (Newman, 1992). Obvi-
ously, the numerical integration is time-consuming. The rough order of magni-
tude of an average computing time in evaluating the memory part using the nu-
merical integration lasts about 4…5 times longer than the series solution.  
 
In this work, the numerical integration was used to evaluate the memory part of 
the transient Green function beforehand. Hence, the computation time of the 
numerical integration is not crucial in the time domain calculation. The applica-
tion of the pre-calculated memory part in the time domain calculation is explained 
in the next section.  
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Figure 2.8. The memory part )(ˆ tG  of the Green function given at three values of 
m. The solutions are based on the numerical integration rule and the series solu-
tion. The lines of the two solutions are indistinguishable. 
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2.4.3 Interpolation method of the pre-calculated Green function 

The most time-consuming part of the calculation is the solution of the memory 
part of the transient Green function because of the convolution integral. The solu-
tion time of the memory part is proportional to the number of time steps in the 
convolution integral multiplied by the number of panels squared, 2

PNN ´t . At 

every time step, 2
PNN ´t  evaluations of the memory part are necessary in the 

body nonlinear solution. The memory part is a function of the coordinates be-
tween the source and field points and time delay t – t. It does not depend on the 
frequency of the oscillation of the body or the heading and ship speed. Hence, the 
memory part can be evaluated beforehand at several non-dimensional parameters 
b and m. During the calculation in the time domain, the values of the memory part 
can be interpolated from the pre-calculated results by, for example, applying a 
bilinear interpolation (Ferrant, 1991). 
 
In this work, the interpolation algorithm is based on the finite element presenta-
tion of the memory part of the Green function in the b-m plane. The memory part 
is solved beforehand and the results are stored in the file. In the beginning of the 
calculation, the table ),(ˆ )( bmtG  is read into the computer’s memory. During the 
calculation the values of the memory part are interpolated from the table using the 
finite element shape functions. Nine-node quadrilateral elements are used to de-
scribe the shape functions. The finite element approximation for the memory part 
can be given as follows: 
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where the finite element shape functions are the following (Zienkiewicz, 1971): 

))(1)(1(
4
1

21211 xxxx --=N  

))(1)(1(
4
1

21212 xxxx --+=N  

))(1)(1(
4
1

21213 xxxx ++=N  

))(1)(1(
4
1

21214 xxxx -+-=N  

))(1)(1(
2
1

22
2

15 xxx ---=N  (2.104) 

))(1)(1(
2
1

11
2
26 xxx +-=N  



2. Time domain calculation method 
 

62 

))(1)(1(
2
1

22
2

17 xxx +-=N  

))(1)(1(
2
1

11
2
28 xxx ---=N  

)1)(1( 2
2

2
19 xx --=N  

 
The convention of the local node numbers and part of the global finite element 
mesh are shown in Figure 2.9. 
 
In Equation (2.103), the finite element approximation is ),(~

21 xxG  of the memory 

part and the pre-calculated memory part is e
iĜ  at node number i of element e. 

Thus, the pre-calculated memory part is given as a finite element mesh and the 
pre-calculated values have been determined at nodal points b and m. The coordi-
nates 21 ,xx  are the element local coordinates of b and m inside the element e. The 
nodes of the element are at points 11 ±=x  and 12 ±=x . During the calculation, 
the element number where the required b and m lie can be found directly if con-
stant size elements are used in the b-m domain,  i.e.  constant  spacing of  Db and 
Dm. Hence, a time-consuming searching algorithm from the tabulated values is 
not needed. When the element number is known, the corresponding node num-
bers are obtained directly from the connection table of the elements and nodes. At 
the known element, the finite element approximation of the memory part of the 
Green function at the point (b, m) can be determined from Equation (2.103). The 
derivatives ),(ˆ )( bmxyG  and ),(ˆ )( bmzG  are also presented with the finite element 
approximation. 
 
In the presented calculation cases in this work, the constant spacing of the nodes 
b and m were Db = 0.01 and Dm = 0.01. The range of the calculation domain was 
0 £ m £ 1 and 0 £ b £ 40. In the calculation, b is seldom outside b >  40.  The  
memory part of the Green function is also very narrow-banded, close to m = 0 for 
a large b. Outside the tabulated domain, the memory part of the Green function 
was calculated instead of interpolated if b > 40 and m < 0.05; otherwise the 
memory part was set to zero.  
 
The memory part of the transient Green function at three m values as a function of 
b is shown in Figure 2.10. The results are based on the numerical integration and 
interpolation using the finite element approximation. In the figures, the values of 
the memory part were determined at points b and m, which are located at halfway 
between the nodes. Hence, the distances of the points are greatest from the nodes 
where the values of the pre-calculated memory part were evaluated. In this case, 
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the interpolation probably gives the largest error. The integrated values were 
determined at the points b and m. Thus, the figures show the differences between 
the numerical integration and the finite element approximation and hence the 
accuracy of the interpolation. At the two largest m values in the figures, the dif-
ferences between the integrated and interpolated solutions cannot be seen. At the 
smallest m value in the figures, m = 0.005, the interpolation gives somewhat larger 
results for the peak values than the integration if b > 15. At very small m values, 
the difference increases if b increases. In the time domain calculation, the evalua-
tion of the memory part is about 30 times faster using the finite element approxi-
mation than the series solution. 
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Figure 2.9. Element local node number convention. 
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Figure 2.10. The memory part of the Green function at three m values based on 
the numerical integration and interpolation with the finite element approximation.  
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2.4.4 Time integration 

The accelerations of the body at the centre of gravity are solved from the equa-
tions of motion. Once the accelerations are known, the velocities and motions can 
be determined using time integration. In the acceleration potential method, the 
accelerations  of  the  body  have  to  be  known  because  they  appear  in  the  body  
boundary condition of the potential function j. The body motions and velocities 
are predicted by the time integration from the previous time step, but the equation 
of motions that gives the accelerations is not yet solved. In the present time do-
main method, an iterative solution is applied using a predictor-corrector scheme 
in the time integration. 
 
The time integration of the velocities and motions is based on the modified Euler 
method and a predictor-corrector scheme (Isaacson and Keller, 1966, p. 388). For 
the motions and velocities, the predictor part is given as follows:  

tUxx
tauu

kkk

kkk

D+=
D+=

+

+
)1(
1

)1(
1  (2.105) 

and the corrector is given by 
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D
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D
++=

++

++
 (2.106) 

where Dt = tk+1 – tk is the time step size. The velocities uk are ( )rqpwvu ,,,,,  and 
the accelerations ak are ( )rqpwvu &&&&&& ,,,,, . The body motions xk are given in the 
space-fixed coordinate system and the velocity components Uk are expressed as 
( ) ( )654321 ,,,,,, hhhhhh &&&&&&& =ΩxG  in the space-fixed coordinate system. The trans-
formation from the body-fixed to space-fixed coordinate system is given by 
Equations (2.1) and (2.2) for the translational and angular velocities respectively. 
 
The surge velocity has been kept constant during the calculation in the studies 
presented in this work. At forward speed, the constant surge velocity is the same 
as the forward speed U0 of the body. Hence, the surge acceleration is zero and the 
surge motion is the same as the distance of the centre of gravity from the origin of 
the space-fixed coordinate system. 
 
The iteration can be repeated applying the corrector again and solving the equa-
tions of motion until a desired accuracy has been reached. The results presented 
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in this work were calculated using one iteration to save computation time. This 
means that the corrector was calculated once at every time step. The accuracy of 
the time integration was monitored during the calculation, determining an esti-
mate of the error (Isaacson and Keller, 1966, p. 393). The estimate of the error is 
defined as the difference between the solution of the predictor and corrector, and 
it can be given as follows for the motions: 

1
)1(
11 +++ -= kkk xxd . (2.107) 

The estimate of the error is not a true error estimate but gives an insight into the 
accuracy of the time integration after the solution of the corrector. An example of 
the estimate of the error in heave and pitch as a function of non-dimensional time 
is given in Figure 2.11 for the model test ship (details of the model tests are given 
in Chapter 4). The estimate of the error was calculated at every time step, and it is 
given as  a  function  of  time in  the  figures  for  the  heave  and pitch  motions.  The  
heave and pitch motions are divided by the first harmonic component that was 
determined from the time histories of the motions. Hence, the non-dimensional 
estimate of the error gives an estimate for the relative error in the time integration 
of the motions at different time steps. The heave and pitch amplitudes are predict-
ed with the estimate of the relative error in the amplitudes below 1%. 
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Figure 2.11. The estimate of the error for heave (h3) and pitch (h5) determined for 
the model test ship (RoPax ship) in regular waves at forward speed Fn = 0.25. 
The body nonlinear solution at wave amplitude a/L = 0.013 and wave frequency 

gLw  = 2.21. The length of the ship is L. 
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2.4.5 Body linear and nonlinear solutions 

In the body linear solution, the body position is not updated during the calculation 
and the wetted surface of the body is the same as at t = 0 for all t > 0. The pres-
sure is solved for the mean wetted surface below the mean water level z = 0. In 
the body nonlinear solution, the instantaneous position of the body is updated 
during the calculation. The pressure is solved for the instantaneous, wetted sur-
face of the body below z = 0.  
 
In the body linear solution, the impulsive part of the transient Green function is 
solved only once because it does not change during the calculation. The body 
geometry remains the same and the distances between the source and field points 
are the same as they were at the first time step. The matrix [A] in Equation (2.96) 
includes the impulsive part of the transient Green function and the matrix is also 
factorized only once. The factorized form can be used to solve the source 
strengths in the subsequent time steps. It is also possible to reduce the calculation 
time using the calculated results of the memory part from the previous time steps. 
If the memory part is solved once for the time delay t – t, the results can be used 
in the subsequent time steps. The distance between the coordinates of the field 
points and source points does not change for the same values of t – t because the 
body position is not updated. However, this was not applied in the present com-
putations and the calculation was performed in the same way as the body nonlin-
ear solution, i.e. solving the memory part at every time step for all t – t. 
 
The fluid velocity squared term 25.0 FÑ  in Bernoulli’s equation is included in 

the body linear and nonlinear solutions. Hence, the body linear solution is not 
properly linearized. The inclusion of the fluid velocity squared term is not con-
sistent with the linear free surface boundary condition in the body linear and 
nonlinear solutions either. The fluid velocity squared term is a higher order term, 
and it is not included in the dynamic free surface boundary condition. The effect 
of the fluid velocity squared term on responses is presented and discussed in 
detail in Sections 4.4, 4.5.4 and 4.5.6. 
 
Most of the results presented in this work have been calculated using constant 
panel meshes. In the constant panel mesh, the geometry and size of the panels 
remains the same during the calculation and the panel mesh is the same as at time 
t =  0  for  all  t >  0.  The  normal  and  position  vectors  (n and r) of the body ex-
pressed in the body-fixed coordinate system also remain the same during the 
calculation as they were at t = 0. 
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In the body nonlinear solution, and using the constant panel mesh, the body posi-
tion is updated during the calculation and, at every time step, all of the panels are 
checked to find out if they are above or below the free surface level. The panel is 
considered wet if all of the corner points of the panel are below the water level, z 
= 0. Otherwise, the panel is dry and then it is not included in the solution. Hence, 
the number of panels that are included in the solution can be varied in the body 
nonlinear solution. 
 
The line integral at the waterline is determined at the centroid of the panels. The 
centroid of the panels lies some distance, z < 0, below the waterline (unless the 
panel is not exactly horizontal at z = 0). Hence, this is an approximation of the 
line integral because it is not determined at z = 0. In the body nonlinear solution, 
and if the constant panel mesh is used, the line integral is determined for the pan-
els that are wet and closest to the waterline. If one of these panels becomes dry 
the memory effect is lost from this panel. In the body linear solution, the memory 
effect due to the line integral is preserved.  
 
Alternatively, the hull surface can be re-panelized at each time step in the body 
nonlinear solution, fitting the cross sections of the body with cubic splines up to 
the waterline. The number of panels remains the same during the calculation 
unless the cross section is out of the water completely. However, the normal and 
position vectors of the body change during the calculation in the body nonlinear 
solution. The panel size and geometry also change. Thus, the velocity of the cen-
troid  of  the  panel  can  be  different  from  the  velocity  of  the  fixed  point  on  the  
body. Hence, applying the substantial derivative for the fluid on the body point, 
the velocity of the point that is followed is not necessarily the same as the veloci-
ty of the body point. In the spline-fitted mesh, the velocity U of the point on the 
body is determined using the backward difference method in the substantial de-
rivative, i.e. the velocity U in the term fÑ×U . The benefit of spline-fitted mesh 
is that the memory effect in the line integral is not lost because the same panels 
are  located  at  the  waterline,  although  the  body  position  is  updated  during  the  
calculation. However, only part of the studies for cones was calculated using the 
spline-fitted panel mesh. 
 
In addition to the body linear and nonlinear solutions, the time domain method 
includes the option to solve forces and moments using a so-called body-wave 
nonlinear solution. The body-wave nonlinear solution is the same as the body 
nonlinear solution but additional nonlinear effects are included with the Froude-
Krylov and hydrostatic restoring forces and moments. The Froude-Krylov and 
hydrostatic restoring pressures are solved up to the free surface elevation z = z. 
The applied formulation is an extension of the theory that is based on the linear 
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free surface boundary condition. The additional Froude-Krylov and hydrostatic 
restoring forces and moments are approximations and they include a higher order 
error. However, the formulations used in this work are consistent within the linear 
theory (Faltinsen, 1990, p. 21). The free surface elevation is defined up to the 
incoming wave surface, and the radiated-diffracted waves are not taken into ac-
count. The free surface elevation z of the incoming wave is determined from the 
linear dynamic boundary conditions as follows: 

0=
¶

¶
+

t
g If

V . (2.108) 

The velocity potential of the incoming wave fI was given in Equation (2.30). 
Hence, the pressure due to the incoming wave increases exponentially up to the 
wave elevation z = z. For each panel, the panel is checked to find out if it is below 
the free surface z and above z = 0. The additional hydrostatic and Froude-Krylov 
pressures are calculated for these panels. The panel is also checked to find out if it 
is above the free surface z when z < 0 and for this panel the total pressure is set to 
zero. The additional hydrostatic and Froude-Krylov pressures are calculated from 
Bernoulli’s equation for the contributions of the incoming wave and hydrostatic 
pressures. The additional pressures are taken into account in the Froude-Krylov 
and hydrostatic restoring forces and moments in the body-wave nonlinear solu-
tion.  

2.4.6 Computation procedure of the time domain method 

The calculation procedure of the computer program for wave load predictions in 
the time domain (WAVETD) is presented in Figure 2.12. The programming lan-
guage was Fortran 90. 
 
The program includes two options to evaluate the Green function. The Green 
function can be calculated beforehand or solved during the time domain calcula-
tion. The pre-calculated memory part of the Green function and the derivatives of 
it are read into the computer’s memory at the beginning of the calculation. 
 
Before the time domain calculation, the hull surface of the body is discretized by 
panels and the basic hydrostatic calculations are carried out. The time domain 
calculation is performed in the defined operating conditions in regular or irregular 
waves at forward or zero speed at the arbitrary heading angle. All the results 
presented in this work have been calculated in head seas however.  
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The program includes options for the body linear and nonlinear solutions, and the 
body-wave nonlinear solution that includes additional nonlinearities in hydrostat-
ic and Froude-Krylov forces and moments. 
 
At the beginning of the time domain calculation, the impulsive part of the transi-
ent Green function is solved and the matrix [A] of Equation (2.96) is generated. 
The matrix [A] is the same for the perturbation velocity and acceleration poten-
tials. In the body linear solution, the matrix [A] is only generated once in the first 
time step. In the body nonlinear solutions, the floating position of the body is 
updated at every time step, and for this reason the matrix [A] has to be generated 
again at every time step. Next, the boundary conditions for the perturbation veloc-
ity and acceleration potentials are formed, and the memory part is then solved to 
obtain the vector f. The vector f includes the body boundary conditions and the 
memory part with known source strengths from previous time steps. The un-
known source strengths for the perturbation and acceleration potentials are solved 
from the system of linear equations (2.96). After that, the perturbation velocity 
and acceleration potentials can be solved and pressures at each panel can be cal-
culated using Bernoulli’s equation. Forces and moments in the equations of mo-
tion are obtained by integrating pressures over the wetted surface of the body. 
The equations of motion are solved to obtain the six-degree freedom accelera-
tions. Time integration is applied to determine the velocities and motions of the 
body.  
 
The basic results, including, for example, ship motions and accelerations at the 
centre of gravity, are stored in the ASCII file during the calculation. Detailed 
results are stored in the binary file for post-processing purposes. The detailed 
results include the pressures for each panel at every time step. 
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Figure 2.12. Computation procedure of the time domain computer program 
WAVETD. 
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3. Results of simple body geometries 

3.1 Hemisphere 

3.1.1 General 

In this Section 3.1, the body linear solution is applied to calculate an impulse 
response function for a hemisphere. Added mass and damping coefficients can be 
determined with the impulse response function. For the hemisphere, the added 
mass and damping coefficients based on an analytical solution are given by Hul-
me (1982). The calculated added mass and damping coefficients in heave are 
compared with the given analytical results. The comparison gives a basis verifica-
tion of the body linear solution at zero speed in forced heave motion without 
coupling to other modes of motion. 

3.1.2 Impulse response, added mass and damping 

The added mass and damping coefficients can be determined by applying a Fou-
rier transformation for an impulse response function given in the time domain. 
Here, small motions are assumed and the hydrodynamic pressure can be ex-
pressed by a linear form of Bernoulli’s equation without the fluid velocity 
squared term. The velocity potential is the solution of the linear free surface and 
body boundary conditions. The body boundary condition is expressed for a spe-
cific body motion and hence the six degrees of freedom motions are decoupled. In 
this work, the impulse response approach is only applied at zero speed. The de-
tails of the derivation and relations between the frequency and time domain 
methods are given by Cummins (1962) and Ogilvie (1964). King et al. (1989) and 
Bingham et al. (1994) gave a general linear formulation of the impulse response 
method to determine hydrodynamic forces and moments in a body-fixed coordi-
nate system with forward speed. 
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The radiation force in the direction i can be expressed as follows: 
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where i = 1,2,…,6 and ni = n0i, see Equations (2.83) and (2.84). The integration is 
performed over the mean wetted surface S0 because small motions are assumed in 
the body linear solution. Following Wehausen (1971), the radiation velocity po-
tential fi is the convolution of the arbitrary body motion hi and radiation velocity 
potential yi due to impulse: 
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where ih&&  is the body acceleration. The same was given by Cummins (1962) in a 
slightly different form. Using the above Equation in Equation (3.1), the following 
formulae can be derived for the added mass and damping coefficients: 
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The integrals are Fourier cosine and sine transforms of the impulse response 
function Lij(t). The impulse response function Lij(t) is defined as follows: 
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The term Aij(¥) is the added mass at infinity frequency: 
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The radiation velocity potential due to impulse yj can be solved by applying the 
body boundary condition for the unit step velocity: 
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where H(t) is the step function, H(t) = 1 if t > 0, and H(t) = 0 if t < 0 (Derrick and 
Grossman, 1982, p. 251). This boundary condition can be given in another form 
taking the time derivative from both sides and expressing the time derivative of 
the step function by a delta function. Hence, the time derivative of the radiation 
velocity potential due to impulse can be solved directly using the following 
boundary condition: 
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where )(td  is the Dirac delta function, which is zero otherwise, except at t = 0. 

The Dirac delta function has the following property: 1)( =ò
¥

¥-
dttd  (Derrick and 

Grossman, 1982, p. 254). The body boundary condition given by Equation (3.9) 
is used to solve the time derivative of the velocity potential using the source for-
mulation. Hence, the solution is based on the acceleration potential method where 
the potential function is dtiyj ¶= . 
 
The approach of the impulse response function was applied to verify that the time 
domain method solved the radiation problem correctly in forced heave motion at 
zero speed. The added mass and damping coefficients were determined for the 
hemisphere and compared with the analytical solution given by Hulme (1982). 
The analytical solution for the hemisphere has often been used to verify and vali-
date the numerical methods (see, e.g., Lin and Yue, 1991). 
 
In the time domain calculation, the hemisphere was discretized by panels, and the 
number of panels on the half body was 800. The panel mesh of the hemisphere is 
shown in Figure 3.1. The radiation velocity potential due to impulse was solved 
using the boundary condition given in Equation (3.9). The time domain prediction 
for the heave impulse response function L33(t)  is  shown in  Figure  3.2.  The  im-
pulse response function is given in a non-dimensional form as a function of non-
dimensional time. The time step size was LgtD = 0.094 in the calculations. 



3. Results of simple body geometries 
 

76 

The reference length L is the radius of the hemisphere and Ñ is the displacement. 
The heave added mass and damping coefficients are presented in Figures 3.3 and 
3.4, respectively. The calculated impulse response function and the added mass 
and damping coefficients are in good agreement with the analytical solution given 
by Hulme (1982). The oscillation in the calculated impulse response function is 
due to the irregular frequencies (John, 1950). The irregular frequencies can be 
seen clearly in the figures of the added mass and damping coefficients. The first 
irregular frequency for heave exists at approximately kL ≈ 2.5. The irregular fre-
quencies can exist in the integral equations using panel methods for bodies oscil-
lating on the free surface (see, e.g., Lee and Sclavounos, 1989). 
 

 

Figure 3.1. The panel mesh of the hemisphere. 
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Figure 3.2. Heave impulse response function of the hemisphere as a function of 
time. 
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Figure 3.3. Heave added mass of the hemisphere as a function of the wave num-
ber. 
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Figure 3.4. Heave damping of the hemisphere as a function of the wave number. 
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3.2 Cones 

3.2.1 General 

In this Section 3.2, hydrodynamic forces are given for cones in harmonic heave 
motion on the free surface. The body linear solution is applied to calculate im-
pulse response functions for cones with two different deadrise angles of 30 and 
45 degrees. The impulse response function is used to determine the added mass 
and damping coefficients. The added mass and damping coefficients are com-
pared with results obtained from a linear frequency domain method. The time 
domain method is also verified using two simple force formulations for the linear 
heave radiation force. The simple force formulations are based on the added mass 
and damping coefficients and the memory function of heaving cones. These sim-
ple force formulations are based on the same theoretical background as the time 
domain method, which should give the same results for the radiation forces.  
 
The body nonlinear solution is used to study nonlinearities in hydrodynamic forc-
es. Different heave amplitudes and frequencies are used when cones are in har-
monic forced heave motions on the free surface. The aim is to gain an insight into 
the nonlinearities in heave radiation forces that are caused by changes to the wet-
ted surface of the body. The contribution of the different terms in Bernoulli’s 
equation in vertical heave forces is also studied. Moreover, the nonlinear heave 
radiation forces are compared with two simple solutions. The two simple solu-
tions are based on the non-dimensional representation of the linear added mass 
and damping coefficients and the memory function of heaving cones. The non-
dimensional representation of the heave radiation forces are scaled using instan-
taneous displacements to obtain an approximation for the nonlinear heave radia-
tion forces. The approximation methods are justified for cones because of the 
similarity of the cone geometries. 
 
The linear and nonlinear calculation with cones is also carried out to investigate 
the effects of body geometries and panel meshes on the solution. The aim is to 
obtain information on practical calculations of ship hull forms. Spline-fitted panel 
meshes of cones are used in addition to the constant panel mesh approach to de-
termine nonlinear heave radiation forces. This gives an insight into the effect on 
the results if the panel continuously changes piecewise between dry and wet in 
time.  
 
Furthermore, the effects on the results of non-wall-sided body shapes close to the 
free surface are studied with cones. Close to the free surface, the transient Green 
function is a strongly oscillating function. The oscillation of the memory part 
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increases at small values of the parameter m when the non-dimensional time b 
increases. At the free surface z = 0, this parameter is m = 0. The oscillation can 
induce instabilities in the solution, especially if the body has horizontal body 
shapes or the inclination angle of the body shapes are small at the free surface. 
The instability in the transient Green function solution was studied by, for exam-
ple, Duan and Dai (1999), and Datta et al. (2011). In order to avoid the instability 
in the solution, Datta et al. (2011) modified the ship geometry by adding an artifi-
cial vertical row of panels below the waterline. Duan and Dai (1999) developed 
modified integral equations for flared bodies. They applied a separate wall-sided 
surface around the body surface and introduced a new integral equation. Hence, 
the integral equations include both the wall-sided surface and the body surface in 
the solution.  
 
In the present calculations of the cones, the distance of the centroid of the panels 
from the free surface is increased to avoid instabilities. In the calculation, a 
straightforward approach is applied in which the first row of the panels is not 
exactly at the mean water level. This is only applied to the cone with a 30 degree 
deadrise angle. The aim is to obtain information for the practical calculation of 
bodies that have horizontal shapes close to the water plane. In the calculation of 
the model test ship in Chapter 4, a criterion will be set for the vertical distance of 
the centroid of the panel from the free surface if the panel is going to be included 
in the solution. Studies with the cone give an insight into the effect on the results 
if part of the cone geometry close to the free surface is not included in the solu-
tion. 

3.2.2 Impulse response, added mass and damping 

Impulse response functions, and added mass and damping coefficients were de-
termined for two cones with deadrise angles of 30 and 45 degrees. The impulse 
response functions, and the added mass and damping coefficients were deter-
mined in  the  same way as  for  the  hemisphere  in  Section  3.1.2.  Thus,  the  heave  
radiation force includes the ft term and the fluid velocity squared, and the hydro-
static terms were excluded from Bernoulli’s equation. The results shown in this 
section are based on the body linear solution and the acceleration potential meth-
od. The added mass and damping coefficients are compared with the results ob-
tained from the frequency domain method, which is based on the three-
dimensional Green function (Iwashita, 1997).  
 
For the cone with a 45 degree deadrise angle, two different panel meshes were 
used: coarse and fine. The second cone has a deadrise angle of 30 degrees, and a 
rather coarse mesh was used in the calculation to study the effects of the coarse 
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mesh on the radiation forces. In typical ship applications, the panel mesh can be 
coarse in order to reduce the computational time. For the cones with 45 degree 
deadrise angles, the numbers of panels on the half body below the still water level 
were 240 and 800 in the coarse and fine meshes, respectively. The number of 
panels was 180 for the cone with a 30 degree deadrise angle. The panel meshes of 
the cones are shown in Figure 3.5. The fine panel mesh of the 45 degree cone is 
shown in the figure. The radius of the cone at the still water level is rc and the 
height is hc from the apex of the cone to the still water level. The deadrise angle 
of the cone is bc. The reference length L in the non-dimensional forms is the di-
ameter 2rc at the still waterline. The volume of the cone is Ñ = cc hr 231 p . 
 
The impulse response function for the cone of 30 degrees started to oscillate 
strongly at the beginning of the calculation and the calculation gave a divergent 
solution. Thus, it was necessary to increase the vertical distance of the centroid of 
the panels from the free surface. In order to avoid the oscillation due to the panels 
near the free surface, the upper edges of the first row of panels were shifted 
downwards from the free surface. The upper edge of the first panel row that was 
included in the solution was 0.04´hc below the mean water level z = 0. This gave 
a convergent solution. In addition, the memory part of the transient Green func-
tion was integrated over the panels using the 2-point Gaussian quadrature rule to 
increase the accuracy of the solution. On the other hand, the calculations of verti-
cal forces given in Sections 3.2.3 and 3.2.4 gave convergent and stable solutions 
without shifting the panels from the free surface. Trial calculations showed that 
the solution started to be divergent at lower frequencies than those used here to 
calculate the vertical forces. The impulse excites all of the frequencies and, for 
this reason, the low frequencies can cause the divergent solution for the impulse 
response function. Duan and Dai (1999) also observed that with regard to the 
instabilities in the transient Green function solution, the lower frequencies gave a 
worse solution compared with higher oscillation frequencies. However, all of the 
calculations presented here for the cone of 30 degrees are based on the same 
panel mesh in which the upper edges of the first row of panels were shifted 
downwards from the free surface. 
 
In Figure 3.6, the impulse response function, added mass and damping coeffi-
cients are given for the cone with a deadrise angle of 45 degrees. The results are 
given for the coarse and fine panel meshes. The impulse response function with 
the coarse mesh oscillates more than with the fine mesh. However, the coarse and 
fine meshes give nearly the same results for the added mass and damping coeffi-
cients. Differences can be seen in the vicinity of the first irregular frequency 
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gLw  » 2.5. The agreement is good between the time and frequency domain 

methods. 
 
The impulse response function and the added mass and damping coefficients for 
the cone with a deadrise angle of 30 degrees are shown in Figure 3.7. The time 
domain solution of the damping coefficient is close to the frequency domain 
solution. The added mass coefficient is, to some extent, at a higher level than the 
frequency domain result. The irregular frequencies are also located at slightly 
smaller frequencies. One reason for these differences could be due to the in-
creased distance of the panels from the free surface in the time domain solution. 
In the time domain calculation, the increased distance means a small gap between 
the free surface and the cone. Although, the rather coarse mesh can also have an 
effect on the results, and the impulse response function could have been better 
determined if a denser mesh had been used. Smaller panel sizes will improve the 
accuracy of the solution. 
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Figure 3.5. Panel meshes of the cones with deadrise angles of (from top to bot-
tom) 45 and 30 degrees. The characteristic length of the cone is L = 2rc. 
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Figure 3.6. Impulse response function, added mass and damping coefficients for 
the cone with a deadrise angle of 45 degrees. The results are given for two panel 
meshes: the numbers of panels are 240 and 800 on the half body below the still  
water level. 
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Figure 3.7. Impulse response function, added mass and damping coefficients for 
the cone with a deadrise angle of 30 degrees. 
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3.2.3 Linear vertical forces 

The impulse response function and the added mass and damping coefficients can 
be used to determine linear radiation forces. The linear heave radiation force can 
be expressed in terms of added mass and damping coefficients for a harmonic 
motion as follows: 

)()()()()( 3333333 tBtAtFR hwhw &&& --= , (3.10) 

where 3h&  is the heave velocity and 3h&&  is the heave acceleration. The linear heave 
radiation force can also be expressed by means of the impulse response function 
L33(t – t) as follows: 

ò --¥-=
t

R dtLAttF
0

3333333 )()()()()( ttthh &&&& , (3.11) 

where )(33 ¥A  is the heave added mass at the infinity frequency. The heave mo-
tion is given by 

)cos()( 33 ewhh += tt , (3.12) 

where 3h  is the heave amplitude and the phase shift e = –90° was used to start 

the heave motion from zero at t = 0. The cones were in forced heave motion and 
hence the motions, velocities and accelerations were known at every time step. 
Thus, an iterative solution was not necessary for solving the acceleration potential 
in the time domain method.  
 
The method based on the added mass and damping coefficients (Coefficient 
method) and the method based on the impulse response function and the infinity 
added mass in heave (Memory function method) have to give the same results for 
the linear heave radiation force. The direct time domain calculation method (Time 
domain method) has to give the same results as the coefficient and memory func-
tion methods. All of the methods are based on the same boundary conditions. The 
radiation forces based on the coefficient and memory function methods were 
calculated using the time domain results of the added mass and damping, not the 
frequency domain results. The midpoint rule was used to integrate the memory 
part over the panel area in the time domain method. 
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The linear heave radiation force for the cone with deadrise angle of 45 degrees is 
shown in Figure 3.8 at three different heave oscillation frequencies: gLw  = 

0.5, 1.0 and 2.0. The fine mesh was used in the calculations. The results for the 
cone with a deadrise angle of 30 degrees are presented in Figure 3.9. In all of the 
cases in Figures 3.8 and 3.9, the three approaches gave the same results for the 
linear heave radiation forces. At the beginning of the calculations, the coefficient 
method deviates from the time domain and memory function methods because the 
heave velocity is not zero at t = 0. Hence, the radiation forces have a contribution 
from the damping coefficient and heave velocity.  
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Figure 3.8. Linear heave radiation force for a cone with a deadrise angle of 45 
degrees calculated at three different heave oscillation frequencies (from top to 
bottom): gLw  = 0.5, 1.0 and 2.0.  
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Figure 3.9. Linear heave radiation force for a cone with deadrise angle of 30 
degrees calculated at three different heave oscillation frequencies (from top to 
bottom): gLw  = 0.5, 1.0 and 2.0. 
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3.2.4 Nonlinear vertical forces 

Nonlinear heave forces are presented in this section for the cones with deadrise 
angles  of  30  and  45  degrees.  The  body  nonlinear  solution  was  used  when  the  
cones were oscillating at a given heave amplitude and frequency. The radiation 
forces include the time derivative of the velocity potential ft and fluid velocity 
squared 25.0 fÑ  terms in Bernoulli’s equation. Numerical integration of the 

memory part of the Green function over the panel area was performed using the 
midpoint rule. The time domain calculations were carried out using the same 
panel meshes as in the previous section.  
 
The results presented in this section are based on the acceleration potential meth-
od. As the body was in harmonic forced motion in the calculations, the heave 
motions, velocities and accelerations were known at each time step, giving an 
accurate body boundary condition in the acceleration potential method. An itera-
tive algorithm in the time integration of the motion was not necessary.  
 
The backward difference solution for the time derivative of the velocity potential 
gave the same results for linear heave forces as the acceleration potential method. 
For nonlinear heave forces the results were similar in most cases though differ-
ences  exist.  An  example  is  given  in  Figure  3.10,  in  which  the  heave  radiation  
force is given at three heave frequencies, gLw  =  0.5,  1.0  and  2.0,  and  the  

heave amplitude is L3h  =  0.10.  At  the  low  heave  frequencies,  the  solutions  

gave about the same results. At the highest heave frequency, the difference solu-
tion gives lower predictions for the minimum force amplitudes. The peaks in the 
backward difference solution occur when the panels change from wet to dry or 
from dry to wet.  
 
Contributions by the pressure components in Bernoulli’s equation are shown in 
Figure 3.11 for the cone of 30 degrees. The forces were calculated at the heave 
frequencies gLw  =  0.5,  1.0  and 2.0,  and the  heave  amplitude  was  L3h  = 

0.05. The hydrostatic pressure term clearly dominates the total force if the heave 
frequency is low, gLw  = 0.5. The contribution of the time derivative of the 

velocity potential ft is small and the fluid velocity squared term 25.0 fÑ  is al-

most insignificant. At the higher heave frequencies gLw  = 1.0 and 2.0, the 

effect of the pressure term ft becomes significant. The fluid velocities also in-
crease at the higher heave frequencies and, hence, the pressure forces due to the 
fluid velocity squared term increase too.  
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Figure 3.10. Comparison of the nonlinear heave radiation forces for a cone with a 
deadrise angle of 30 degrees calculated with the acceleration potential method 
(Acc. solution) and the backward difference method (Diff. solution). The heave 
oscillation frequencies are (from top to bottom) gLw  = 0.5, 1.0 and 2.0. The 

heave amplitude is L3h  = 0.10. 
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Figure 3.11. Effects of the different pressure components on the nonlinear heave 
force for a cone with a deadrise angle of 30 degrees calculated at three different 
heave oscillation frequencies (from top to bottom): gLw  = 0.5, 1.0 and 2.0. 

The heave amplitude is L3h  = 0.05. 
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Nonlinear heave radiation forces were investigated using the body nonlinear 
solution. The results for the cones together with the linear radiation forces are 
presented in the figures below. The linear radiation forces are given for compari-
son purposes to obtain an insight into the significance of nonlinearities. The fig-
ures for the cone with a deadrise angle of 30 degrees also include results calculat-
ed with the spline-fitted mesh. The solution of the constant panel mesh is discon-
tinuous because the number of panels in the solution depends on whether the 
panels are above or below the free surface. The solution of the spline-fitted panel 
mesh is continuous because the body geometry is updated at every time step and 
the number of the panels on the wetted surface is constant. The comparison gives 
an insight into the effect on results if the solution continuously changes piecewise 
in time. 
 
The nonlinear heave radiation forces for the cone with a deadrise angle of 30 
degrees are shown in Figure 3.12 calculated at the heave oscillation frequencies 

gLw  = 0.5, 1.0 and 2.0. The heave amplitude was L3h  = 0.05. The magni-

tude of the heave radiation forces increases with the heave frequency. The non-
linearities in the heave radiation forces can be seen clearly. In the constant panel 
mesh method, the changes of the panel between wet and dry have an effect on the 
results, and discontinuities in the heave radiation forces can be seen. The solved 
velocity potential has a jump to the next level when a new row of panels becomes 
wet  or  the  row of  panels  becomes  dry.  The  spline-fit  updated  body can  also  be  
seen to give larger negative amplitudes than the constant panel mesh method. 
However, the spline-fitted and constant panel meshes give almost the same pre-
dictions for the heave radiation forces. At a larger heave amplitude L3h  = 0.10, 

the heave radiation forces are shown in Figure 3.13. The differences between the 
linear and nonlinear radiation forces are greater than the smaller heave amplitude 

L3h  = 0.05. The heave radiation forces of the constant and spline-fitted panel 

meshes are again close to each other.  
 
The heave radiation forces for the cone with a deadrise angle of 45 degrees are 
shown in Figures 3.14 and 3.15 at the heave amplitudes L3h  = 0.05 and 0.10, 

respectively. The forces were calculated at the heave frequencies gLw  = 0.5, 

1.0 and 2.0. The nonlinearities increase if the oscillation amplitude increases. 
However, the differences between linear and nonlinear radiation forces are small-
er than for the cone of 30 degrees. The results are based on the constant panel 
mesh and the time histories of the radiation forces are smoother than with the 
cone of 30 degrees. The changes in the fluid velocities on the body surface are 
smaller than with the cone of the smaller deadrise angle. The discontinuities are 
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also smaller because the panel mesh was denser and hence the changes in velocity 
potentials are smaller between panels.  
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Figure 3.12. Nonlinear heave radiation force for a cone with a deadrise angle of 
30 degrees calculated at three different heave oscillation frequencies (from top to 
bottom): gLw  = 0.5, 1.0 and 2.0. The heave amplitude is L3h  = 0.05. 
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Figure 3.13. Nonlinear heave radiation force for a cone with a deadrise angle of 
30 degrees calculated at three different heave oscillation frequencies (from top to 
bottom): gLw  = 0.5, 1.0 and 2.0. The heave amplitude is L3h  = 0.10. 
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Figure 3.14. Nonlinear heave radiation force for a cone with a deadrise angle of 
45 degrees calculated at three different heave oscillation frequencies (from top to 
bottom): gLw  = 0.5, 1.0 and 2.0. The heave amplitude is L3h  = 0.05. 
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Figure 3.15. Nonlinear heave radiation force for a cone with a deadrise angle of 
45 degrees calculated at three different heave oscillation frequencies (from top to 
bottom): gLw  = 0.5, 1.0 and 2.0. The heave amplitude is L3h  = 0.10. 
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Furthermore, the nonlinear heave radiation forces were approximated using two 
simple solutions. The solutions are based on the added mass and damping coeffi-
cients and the impulse response function of heaving cones. The added mass and 
damping coefficients and the impulse response function for the cones were de-
termined in Section 3.2.2. The linear radiation forces are given by Equations 
(3.10) and (3.11), which are based on the added mass and damping and the im-
pulse response function of heaving cones, respectively. In the simple solutions, 
the nonlinear effect due to the changing geometry of the cone below the still 
water level in forced heave motion was taken into account using the instantaneous 
displacement at every time step. The instantaneous displacement of the cone was 
used to represent the non-dimensional forms of the added mass and damping 
coefficients and the memory function to the dimensional forms. This approxima-
tion is applicable to cone-shaped bodies because of the geometrical similarity. 
The body shape of the cone is independent of the instantaneous draught. The 
instantaneous displacement of the cone at time t is given by 

)()(31)( 2 thtrt ccp=Ñ , (3.13) 

and the instantaneous characteristic length of the cone is defined as follows: 

)(2)( trtL c= . (3.14) 

The displacement and length can be calculated directly if the heave motion of the 
body is known. The height and radius of the cone are related by the equation 

btan)()( trth cc = . The applied approach is an approximation because it is based 
on the linear formulation of the radiation forces as given by Equation (3.1). In the 
nonlinear formulation, the integration over the body surface depends on time, S0 = 
S0(t). Hence, scaling the impulse response function using the displacement of the 
cone from the present time step to the past time steps is an approximation. The 
fluid velocity squared term is also not included in the linear hydrodynamic quan-
tities. Here, the hydrodynamic quantities mean the inertia forces due to the added 
mass, the damping forces and the forces due to the impulse response function 
term. However, the simple solutions give an approximation for the order of mag-
nitude of the nonlinear radiation forces. Moreover, the simple solutions give an 
insight into the relative contribution of the different hydrodynamic quantities 
affecting the body.  
 
Approximations of the nonlinear heave radiation forces are shown in Figure 3.16 
for the cone with a deadrise angle of 30 degrees. The approximations are the 
simple solutions of the force based on the added mass and damping coefficients 
(Coefficients), and the impulse response function and the infinity heave added 
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mass coefficient (Memory function). The body linear and nonlinear solutions of 
the force are also shown in the figure. In addition, the forced heave motion, ve-
locity and acceleration are presented in the figures. The non-dimensional force 
and time in the figures are non-dimensionalized by the displacement Ñ and char-
acteristic length L at the initial position when t = 0. The calculations were carried 
out at the heave oscillation frequency gLw  = 1.0 and the heave amplitude 

L3h  = 0.10. The time domain method and the two simple solutions give close 

to the same results. A small difference can be seen when the radiation force has 
the minimum value. The minimum amplitude exists when the body is in the low-
est position where the acceleration has the maximum amplitude and the heave 
velocity is close to zero. Hence, the inertia forces are dominant over the damping 
forces. The maximum force amplitudes exist when the cone is moving down-
wards and the heave motion is passing the zero level where the heave velocity has 
the minimum amplitude. Thus, the damping forces are dominant over the inertia 
forces. 
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Figure 3.16. Nonlinear time domain solution and approximated solutions for the 
heave radiation force (top) and motion, velocity and acceleration (bottom) for a 
cone with a deadrise angle of 30 degrees calculated at a heave frequency gLw  

= 1.0 and heave amplitude L3h  = 0.10.  
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The nonlinear heave radiation force for the cone with a deadrise angle of 30 de-
grees is shown in Figure 3.17 at the heave frequency gLw  = 2.0 and ampli-

tude L3h  = 0.10. Here, the heave amplitude is the same as in Figure 3.16 but 

the frequency is higher. As the frequency is higher, the heave velocities and ac-
celerations are greater. The maximum force occurs when the heave velocity 
reaches the largest negative value at the same time as the body moves down-
wards, e.g. Lgt  » 42. This is related to the impact problem when the body 

enters the water. However, the impact is not taken into account properly because 
of the large panel size and the large time step size. The duration of the impact 
pressure is short and the peak pressure is very local. The peak pressure also oc-
curs  close  to  the  free  surface  elevation.  The  methods  applied  in  this  work  are  
based on the linear free surface condition. The actual free surface elevation is not 
taken into account when the body enters the water. This is the so-called von Kar-
man approach in impact problems (von Karman, 1929). The Wagner approach in 
impact problems takes into account the actual free surface elevation when the 
body enters the water (Wagner, 1932). 
 
An approximation of the nonlinear heave radiation force is also shown in Figure 
3.17. The approximation is based on the simple solution expressed by the infinity 
added mass and the impulse response function of the heaving cone (Memory 
function). The differences between the time domain method and the simple solu-
tion are greater than the results that were obtained at the lower heave frequency. 
The  difference  was  further  studied  to  find  out  if  the  fluid  velocity  squared  term 
could have an effect on results. The force of the simple solution was determined 
without the fluid velocity squared term, but the time domain method included the 
term. The nonlinear heave radiation force calculated with the time domain meth-
od and without the fluid velocity squared term is also presented in the figure. 
Without this term, the maximum amplitude increases and the minimum amplitude 
decreases, though the differences are relatively small. Hence, the fluid velocity 
squared term alone cannot explain the differences between the simple solution 
and the time domain method. However, the differences can explain the approxi-
mated memory effect in the simple solution. The memory effect is approximated 
in the simple solution using the displacement of the cone at the present time in-
stant. Thus, the memory effect in the simple solution does not take into account 
the correct instantaneous displacements and wetted surfaces of past times.  
 
A comparison of the forces calculated with the constant and spline-fitted panel 
meshes is shown in Figure 3.17. The constant panel mesh approach gives some-
what smaller force values than the spline-fitted mesh, especially when the heave 
motion has the maximum value. In the constant panel mesh calculation, part of 
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the panels can be above the water level and hence they are not included in the 
solution. Thus, the wetted surface of the body is smaller than the spline-fitted 
body surface. The smaller wetted surface and hence the smaller surface for pres-
sures can have an effect on the smaller forces in the constant panel mesh ap-
proach. Hence, the constant panel mesh approach can underestimate the radiation 
forces, especially if the panel mesh is coarse. 
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Figure 3.17. Nonlinear heave radiation force (top) and motion, velocity and ac-
celeration (bottom) for a cone with a 30 degree deadrise angle calculated at the 
heave frequency gLw  = 2.0 and heave amplitude L3h  = 0.10. The upper 
figure also includes the approximation of the heave radiation force based on the 
memory function approach. 

3.3 Wigley hull forms 

3.3.1 General 

Wigley hull forms are widely used in validations to develop seakeeping calcula-
tion methods. For example, linear frequency domain results are given by Journee 
(1992) and linear and nonlinear time domain results by, for example, Lin and Yue 
(1991), Kataoka et al. (2002) and Sen (2002). The results in this Section 3.3 for 
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the Wigley hull forms are given to validate the present time domain method. The 
regular wave results are given as transfer functions of heave and pitch, and trans-
fer functions of the heave and pitch exciting forces and moments. Moreover, the 
added mass and damping coefficients in heave and pitch are shown. Convergence 
studies of the time step size and the size of the panel mesh are also presented. The 
calm water results are given as the sinkage of the hull and the wave-making re-
sistance coefficients. The results of the time domain method are compared with 
the existing experimental results. 

3.3.2 Responses in regular head waves with forward speed 

The model test results of the Wigley hull forms were presented by Journee 
(1992). Four different Wigley hull forms were tested and different responses were 
reported including added mass and damping coefficients, motions, and exciting 
forces and moments. In this work, the calculation and comparison with the model 
test results are given for the Wigley III hull form as denoted by Journee (1992). In 
the model tests, the main dimensions of the Wigley III were length L = 3.0 m, 
breadth B = 0.3 m and draught T = 0.1875 m. The midship coefficient was 
0.6667. The same dimensions were used in the calculations. The panel mesh of 
the hull is shown in Figure 3.18. All of the results presented here were calculated 
in head waves. At time t = 0, the wave amplitude was a, the forward speed was 
U0 and the other motions were zero. The results were calculated using the accel-
eration potential method to solve the time derivative of the velocity potential in 
Bernoulli’s equation. In addition to the acceleration potential method, the added 
mass and damping coefficients were determined with the backward difference 
method. 
 
Time histories of the heave and pitch motions calculated with different panel 
meshes are shown in Figure 3.19. Half of the hull was discretized by 180, 320 and 
500 quadrilateral panels. The wave frequency was gLw = 2.24 and the for-

ward speed Fn = 0.30. In the calculations, the number of time steps in one period 
was Te/Dt = 46 where Te was the encounter wave period. The calculation results 
are based on the body linear solution. The figure shows that the different mesh 
sizes have an effect on the convergence of the solution for the heave and pitch 
amplitudes and the amplitudes fluctuate somewhat between the coarse and fine 
meshes. However, the difference in the amplitudes of the heave and pitch is less 
than 3% between the different meshes. In the rest of the calculations, the number 
of panels was 320 on half of the Wigley III hull form.  
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The calculation results using three different time step sizes are presented in Fig-
ure 3.20. The calculations were performed using the number of time steps in one 
encounter period Te/Dt = 23, 46 and 92. The calculated time histories of the heave 
and pitch motions are based on the body linear solution. The wave frequency was 

gLw = 2.24 and the forward speed Fn = 0.30. The number of time steps Te/Dt 
= 46 gives 2% lower heave and pitch amplitudes than the shortest time step size 
for which the number of time steps in one period is Te/Dt =  92.  However,  the  
differences between the longest and shortest time step sizes are 15% and 4% in 
heave and pitch, respectively. The longest time step size gives lower motion am-
plitudes  than  the  shorter  time  step  sizes.  In  the  rest  of  the  calculations  for  the  
Wigley III hull form, the number of time steps in one encounter period was about 
50 to determine the body motions, forces and moments. The used time step size 
gives sufficiently good accuracy with a reasonable calculation time. However, a 
smaller number of time steps in one period was also used to save computation 
time, but only if the motions were small outside the natural periods of heave and 
pitch. 
 

WL

 

Figure 3.18. The panel mesh of the Wigley III hull form. The number of panels 
on the half hull below the still waterline (WL) is 320. 
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Figure 3.19. Time histories of the heave and pitch motions at forward speed Fn = 
0.30 in head waves at wave frequency gLw = 2.24. The number of panels was 
180, 320 and 500 on the half hull. 
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Figure 3.20. Time histories of the heave and pitch motions at forward speed Fn = 
0.30 in head waves at wave frequency gLw = 2.24. The number of time steps 
in one period was Te/Dt = 23, 46 and 92. The number of panels was 320 on the 
half hull.  

The added mass and damping coefficients can be determined by means of the 
impulse response function. The body motions and the velocity potential compo-
nents can be decoupled to formulate the body boundary condition for the different 
six  degrees  of  freedom  motions.  This  was  applied  to  the  hemisphere  and  the  
cones above in the heave motion at zero speed. However, the time domain meth-
od is formulated in the space-fixed coordinate system and the impulse response 
function cannot be applied straightforwardly to determine the added mass and 
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damping coefficients at forward speed (Lin and Yue, 1991). In the body-fixed 
coordinate system, King et al. (1989) and Bingham et al. (1994) applied the im-
pulse response function to determine the hydrodynamic coefficients at forward 
speed. They used a linearized body boundary condition in the body-fixed coordi-
nate  system.  In  this  work,  the  added  mass  and  damping  coefficients  at  forward  
speed were determined from the forced oscillation in calm water. The body was 
oscillating harmonically at the given heave or pitch amplitude and frequency. The 
time histories of the radiation forces and moments in heave and pitch were calcu-
lated and Fourier transforms were performed to define the added mass and damp-
ing coefficients. The added mass is the in-phase component with the body accel-
eration of the radiation force or moment and the damping is the out-of-phase 
component, or the component in phase with the velocity.  
 
The heave and pitch added mass and damping coefficients in heave are shown in 
Figure 3.21 and in pitch in Figure 3.22 at the Froude number Fn = 0.3. The body 
linear and nonlinear solutions for the added mass and damping coefficients are 
given in the figures. In the body nonlinear solution, the oscillation amplitudes 
were the same as in the experiments. The heave amplitude was 0.025 m and the 
pitch amplitude 1.5 degrees. The acceleration potential method was used to solve 
the time derivative of the velocity potential determining the added mass and 
damping coefficients. In addition to the acceleration potential method, the back-
ward difference method was also applied to the body nonlinear solution. The 
acceleration potential and backward difference methods give similar predictions 
for the added mass and damping coefficients. Furthermore, the body linear and 
nonlinear solutions are close to each other. The diagonal coefficients, Aii and Bii, 
are in good agreement with the experiments. Moreover, the predictions for the 
cross-coupling added mass coefficients are satisfactory, but larger differences 
exist in the cross-coupling damping terms. For the pitch added mass and damping 
coefficients, the body nonlinear solution gives better results than the body linear 
solution. In the body nonlinear solution, the forward speed effects are taken into 
account at the instantaneous floating position. Hence, the angle of attack due to 
pitch in the steady flow is determined for the actual body geometry below the 
mean water level. In the body linear solution, the pitch angle and the forward 
speed are taken into account in the body boundary condition on the mean wetted 
surface of the hull, i.e. the coupling of the actual floating position of the body 
geometry and the steady flow is not taken into account.  
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Figure 3.21. Heave and pitch added mass and damping coefficients in heave Fn = 
0.3. The experimental results are from Journee (1992).  
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Figure 3.22. Heave and pitch added mass and damping coefficients in pitch at Fn 
= 0.3. The experimental results are from Journee (1992). 
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The transfer functions of the responses were determined using harmonic analysis 
for the calculated time histories. In the harmonic analysis, a Fourier series is fitted 
to the time history data. The amplitudes of the transfer functions are defined as 
the ratio of the response first harmonic to the wave first harmonic. The response 
phase angles are defined as leads with regard to the wave crest at the centre of 
gravity of the ship. Before the harmonic analyses, time history data were cut at 
the beginning of the calculation until the steady harmonic oscillation was reached. 
 
The transfer functions of the heave force and pitch moment at forward speed Fn = 
0.30 in head waves are shown in Figures 3.23 and 3.24. In the calculation, the 
body motions were set to zero and, hence, the body linear solution was used. The 
incoming wave amplitude was a/L = 0.0083 in the calculation. The exciting heave 
force is well predicted by the calculation method. The pitch moment is also well 
predicted, but near the resonance the pitch moment is at a slightly lower level 
than the model test results.  
 
The transfer functions of the heave and pitch at forward speed Fn = 0.30 in head 
waves  are  shown in  Figures  3.25  and 3.26.  In  the  calculations,  the  wave ampli-
tude was a/L = 0.0067. Calculations were carried out using the body linear and 
nonlinear solutions. In general, the calculated motions are in close agreement 
with the model test results. At the heave resonance, the calculation overestimates 
the heave motion. At the longer waves, the body nonlinear solution gives some-
what  larger  amplitudes  for  the  heave  motion  than  the  body linear  solution.  The  
body linear and nonlinear solutions give good predictions for the pitch. However, 
the body nonlinear solution gives slightly lower amplitudes near the resonance of 
the pitch. The body nonlinear calculations were performed using a constant panel 
mesh, which can have an effect on the results. The hydrodynamic pressure piece-
wise  continued in  time if  the  panels  became wet  or  dry.  This  was  shown in  the  
calculations of the cones in Section 3.2.4. This could be one reason for the small 
differences between the body linear and nonlinear solutions. 
 
The transfer function of the relative motion at the bow is presented in Figure 3.27. 
The relative motion zr was determined at the longitudinal position of 0.85L from 
the stern. The relative motion is defined as the vertical motion between the ship’s 
vertical motion and the incoming wave. The calculated results are clearly below 
the model test results. The ship motions are calculated quite well, so one reason 
could be the wave pattern and the wave elevation at the bow. In the calculation 
method, the actual wave elevation due to the body motion and the forward speed 
of the body is not taken into account. 
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Figure 3.23. Heave force of the Wigley III in head waves at Fn = 0.30. The model 
test results are from Journee (1992). 
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Figure 3.24. Pitch moment of the Wigley III in head waves at Fn = 0.30. The 
model test results are from Journee (1992). 
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Figure 3.25. Heave of the Wigley III in head waves at Fn = 0.30. The model test 
results are from Journee (1992). 
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Figure 3.26. Pitch of the Wigley III in head waves at Fn = 0.30. The model test 
results are from Journee (1992). 
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Figure 3.27. Relative motion of the Wigley III at 0.85L in  head waves  at  Fn = 
0.30. The model test results are from Journee (1992). 

3.3.3 Responses in calm water with forward speed 

The resistance of the Wigley hull forms is widely studied with numerical methods 
and by model testing. For example, comparative studies of the model test re-
sistance predictions are given in ITTC (1984). In this work, model test results for 
residual resistance coefficients are obtained from Matusiak (2001) where the 
Wigley  hull  form  was  the  same  as  in  the  ITTC  (1984)  studies.  The  model  test  
values for sinkage are obtained from ITTC (1984).  
 
The wave-making resistance coefficient is defined as 

wsa
w SU

F
C 2

0

1

5.0 r
= ,  (3.15) 

where Swsa is the wetted surface of the hull. Here, the residual resistance coeffi-
cient from the experiments are compared with the calculated wave-making re-
sistance coefficient. In the experiments, the residual resistance was determined by 
subtracting the frictional resistance from the towing force according to the stand-
ard resistance prediction procedures given by ITTC (International Towing Tank 
Conference).  
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The Wigley hull form in the calm water studies is given by 
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22
.  The  length  of  the  ship  model  in  the  tests  

was L = 7.5, beam B = 0.75 and draught T = 0.47 (Matusiak, 2001). In the calcu-
lation, the half hull below the still water level was discretized by 320 panels, and 
constant panel mesh was used. The calculation was performed using the body 
nonlinear solution. At the beginning of the time domain calculation, a cosine-
squared speed ramp was applied to accelerate the hull from zero to the constant 
forward speed. 
 
Time histories of the forward speed, sinkage and trim, and the wave-making 
resistance are shown in Figure 3.28. The sinkages at the fore and aft perpendicu-
lars are zFP and zAP, respectively. After the transient phase when the forward 
speed has reached the constant value, slowly decaying oscillation can be noticed. 
The oscillation frequency w is given by the frequency parameter 

41== gUwk . If the frequency parameter is 41=k , the generated wave 
system of the moving ship is travelling with the group velocity, which is the same 
as the speed of the ship (see, e.g., Faltinsen, 1990). The effect of the accelerated 
ship on the wave resistance has been studied by Wehausen (1964). The slowly 
decaying oscillation in steady motion when the ship starts at rest was studied 
further with calculations and model tests by Doctors et al. (2008) and with the 
calculations by Lin and Yue (1991). 
 
The wave-making resistance of the Wigley hull form is shown in Figure 3.29 as a 
function of the Froude number. In the same figure, the residual resistance coeffi-
cient from the experiments is also shown. The agreement is relatively good com-
pared with the model test results. At high speed, Froude number above 0.45, the 
calculation method overestimates the wave-making resistance.  
 
The sinkage of the Wigley hull is presented in Figure 3.30. The rather significant 
deviation in the model test results is due to the non-dimensional form when the 
speed of the hull is low and because the magnitude of sinkage is small at low 
Froude numbers. The calculated results are at a slightly higher level than the 
model test results if the Froude number is above 0.20.  
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Figure 3.28. Time histories of the forward speed, motion at fore and aft perpen-
dicular (FP and AP), sinkage and trim, and the wave-making resistance for the 
Wigley hull form accelerating from zero speed to a steady speed of Fn = 0.30. 
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Figure 3.29. Wave-making resistance coefficient for the Wigley hull form. The 
experimental results are from Matusiak (2001). 
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Figure 3.30. The sinkage of the Wigley hull form. The model test results are 
rough upper and lower estimates from the studies given in ITTC (1984). 
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4. Results of the model test ship 

4.1 General 

In this chapter, model tests and model test results for the roll-on roll-off passenger 
(RoPax) ship are presented. The model tests were carried out in calm water and in 
regular and irregular head waves at zero and forward speeds. Motions, accelera-
tions and hull girder loads were measured in the model tests.  
 
Model test results for the RoPax ship are presented together with the calculated 
responses. Responses in calm water and in regular and irregular head waves are 
studied using the model test and calculated results. The calculated responses are 
compared with the model test results.  
 
First, the model test ship and model tests are described, and then the calculation 
parameters and panel meshes for the RoPax ship used in the calculation are given. 
The model test and calculated results are first presented in calm water at different 
forward speeds. After that, the results in regular and irregular head waves are 
given at zero and forward speeds. The short-term predictions of the extreme loads 
are also reviewed, and one approach is applied to predict short-term extreme 
values for hull girder loads. The short-term predictions are given for the RoPax 
ship in the same sea states in which the model tests were carried out.  
 
The RoPax ship used in this work is the same as that used in the earlier investiga-
tions by Kukkanen (2009, 2010). However, the time domain method was based 
on the backward difference method, and only the first attempt tried to solve the 
responses using the acceleration potential method at zero forward speed. The 
numerical algorithms, including a filtering algorithm, were also different, as was 
the panel mesh of the ship hull in the earlier investigations. The model tests were 
also carried out in oblique waves but only the results in head seas are used in this 
work. 
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4.2 Model tests and the model test ship 

The main dimensions and weight data of the RoPax ship used in the model tests 
are given in Table 4.1. The ship has a bulbous bow and a flat bottom stern at the 
waterline. The lines drawings are shown in Figure 4.1. The weight distribution 
and the still water bending moment and shear force distribution along the length 
of the ship are presented in Figure 4.2. In the figure, the vertical shear force is 
positive upwards and the vertical bending moment is positive in hogging.  
 
The model tests were carried out in the towing tank with a length of 130 m. The 
breadth of the tank is 11 m and the depth of the water is 5.5 m. The waves were 
generated by a wedge-type wave maker at the end of the towing tank and ab-
sorbed by a plywood beach at the opposite end of the tank. At zero speed tests,  
the distance of the ship model was 60 m from the wave maker. In head seas tests, 
the attachment of the model to the carriage allowed the model free basic modes of 
motions: pitch, heave and roll. The yaw, sway and surge motions were slightly 
restricted and drifting of the model was prevented.  
 
The ship model was manufactured to a scale of 1:39.024. The height of the ship 
model  was  15.6  m in  full  scale  from the  base  line  to  the  main  deck.  Before  the  
model tests in waves, the radii of the gyrations and the centre of gravity of the 
ship model were adjusted in swing table experiments. 
 
A segmented ship model was used and the force and moment transducers were 
installed in two cut-off sections. The locations of the force and moment transduc-
ers are shown in Figure 4.1. The midship transducer was at frame 4 (x/L = 0.40) 
and the fore ship transducer at frame 6.5 (x/L = 0.65). The characteristic length L 
of the ship is the length between the perpendiculars Lpp. The transducers were 
installed at the centre line and the vertical distance from the base line was the 
same as the centre of gravity of the ship. The transducer measured the six compo-
nent forces and moments. In this work, the results are given for the vertical shear 
force at fore ship and for the vertical bending moment at midship. According to 
the calibration certificate of the force transducers, the measurement uncertainties 
were 4.25% and 3.25% for the shear force and bending moment, respectively. 
Furthermore, the heave and pitch motions were measured at the centre of gravity 
of the ship model, and the vertical accelerations were measured at the aft and fore 
perpendiculars and at the centre of gravity of the ship model. Incoming waves 
were  measured  with  a  wave  sensor  that  was  at  the  front  of  the  ship  model  in-
stalled on the carriage. 
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Impact experiments were carried out in calm water for the ship model to define 
the natural frequency of the foundation and the attachment of the transducers 
between the segments. The measured first natural frequency was about 9 Hz. In 
the measurements, the sampling frequency was 100 Hz and signals were low-pass 
filtered with the cut-off frequency of 5 Hz. All signals were analog-to-digital 
converted and stored on the computer’s hard disk during the measurements. 
 
The model tests were carried out in calm water at five different speeds: Fn = 0.05, 
0.10, 0.20, 0.25 and 0.30. The aim was to obtain model test data for the sinkage 
of the ship and the hull girder loads due to the forward speed of the ship in calm 
water. The model test results in calm water are presented in Section 4.4. 
 
The regular wave tests were carried out in head waves at zero speed (Fn = 0.0) 
and at forward speed Fn = 0.25. The tests were performed at three different wave 
amplitudes and at 5 to 10 different wave frequencies. The relative wave ampli-
tudes related to the ship length were a/L = 0.006, a/L = 0.013 and a/L = 0.019. 
The wave amplitudes were a = 1 m, 2 m and 3 m in full scale. The model test 
results in regular waves are presented in Section 4.5. 
 
The irregular wave tests were conducted at zero speed and at forward speed in 
head waves. The significant wave heights in the irregular waves were Hs = 5.0 m 
and Hs = 9.0 m at forward speed Fn = 0.25 and at zero speed, respectively. The 
irregular wave generation and the irregular wave test results are presented in 
Section 4.6.  
 
All of the model test results are given in non-dimensional form. The responses in 
regular waves are given in the following non-dimensional forms: 
 Heave:  a3h  

 Pitch:  aL ph 25  

 Vertical acceleration: gaLa z  

 Shear force:  gBLaV r3  

 Bending moment: agBLV 2
5 r  

The regular waves are described by a non-dimensional wave amplitude a/L and a 
non-dimensional wave frequency gLw . In the non-dimensional forms, the 

length L is the length between the perpendiculars Lpp, and the breadth B is  the  
waterline breadth Bwl. The vertical bending moments at midship are given at cross 
section x/L = 0.40 and the vertical shear forces at fore ship are given at cross 
section x/L = 0.65. The calculated and model test results for the shear forces and 
bending moments are given at the same cross sections. The shear forces and the 



4. Results of the model test ship
 

117 

bending moments presented in waves do not include the still water shear forces 
and the still water bending moments. In irregular wave results, the non-
dimensional forms of responses are otherwise the same, but the characteristic of 
the wave is defined with the significant wave height Hs instead of the wave am-
plitude a. The irregular waves are described in dimensional form with a signifi-
cant wave height Hs and with a zero crossing wave period Tz (or spectrum peak 
period Tp). 

Table 4.1. Main dimensions and weight data of the RoPax ship. The aft perpen-
dicular is AP at lines drawing frame 0, CL is the centre line and BL is the base 
line. The distance of the aft perpendicular is 6.5 m in full scale from the transom 
of the ship. 

Quantity Symbol Unit Value 

Length over all Loa [m] 171.4 

Length between perpendiculars Lpp [m] 158.0 

Breadth max. at waterline Bwl [m] 25.0 

Draught T [m] 6.1 

Displacement Ñ [m3] 13 766 

Block coefficient CB – 0.55 

Centre of gravity: 

 From AP 

 From CL 

 From BL 

 

xCG 

yCG 

zCG 

 

[m] 

[m] 

[m] 

 

74.9 

0.0 

10.9 

Radius of gyration in pitch kyy/Lpp – 0.25 

Transverse metacentric height GMT0 [m] 2.8 
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Figure 4.1. Lines drawings of the RoPax ship. The longitudinal locations of the 
force transducers are measured from the AP (frame 0). The midship transducer 
was located at frame 4 and the fore ship transducer at frame 6.5. 
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Figure 4.2. Weight distribution (mL) and still water vertical shear force (Qsw) 
bending moment (Msw). 
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4.3 Calculation parameters of the model test ship 

The panel meshes of the RoPax ship are shown in Figure 4.3. The numbers of 
panels on the half hull below the still waterline were 491 and 327 in the fine and 
coarse meshes, respectively. The transom of the ship was not included on the 
panel mesh. Hence, the transom was always dry and the pressure was the same as 
the atmospheric pressure at the transom. The fine mesh was used in the regular 
wave calculation and the coarse mesh in the irregular waves. The transfer func-
tions of the responses calculated by the two different panel meshes are shown in 
Figure 4.4 at zero speed and in Figure 4.5 at forward speed Fn = 0.25. The wave 
amplitude was a/L = 0.006. At zero speed, the results obtained from the two dif-
ferent panel meshes are almost identical. At forward speed Fn = 0.25, the heave 
motion is about the same though small differences exist in pitch, shear force and 
bending moment. With the coarse mesh, the pitch is at a slightly higher level and 
the shear force and bending at a lower level than with the fine mesh. The differ-
ences between the two panel meshes are small however.  
 
The RoPax ship has a flat bottom at the stern and the stern is above the still water 
level from the aft perpendicular to the transom. Hence, a large part of the stern is 
out of the water in the still water condition, but at forward speed the flat bottom 
stern  is  at  least  partly  wet  because  of  the  sinkage  of  the  ship  and the  wave for-
mation. If the RoPax ship is in the waves, the wetted area of the stern varied con-
stantly due to the ship motions, the incoming waves and the waves created by the 
ship. The calculation showed that high pressure peaks occurred on the panels at 
the flat bottom stern at the beginning of the calculation. The ship motions became 
large and the time integration of the motions failed only a few time steps after 
starting the calculation. The oscillation of responses increased exponentially in 
time and the calculation finally broke down. The analyses in connection with the 
cones showed that if the panel is close to the free surface and the inclination angle 
between the panel and the free surface is small, i.e. non-wall-sided panel, the 
solution can start to oscillate. To avoid the unstable oscillation, the vertical dis-
tance of the centroid of the panel was increased from the free surface. Hence, the 
same type of approach was applied to the ship as to the cone to avoid the unstable 
oscillation on the panels close to the free surface. For the model test ship, a crite-
rion was set for the panel distance from the still water level if the panel was con-
sidered wet and the velocity and acceleration potentials were solved for this pan-
el. The panel was wet in the calculation if all the corner points of the panel were 
below z = 0 and the distance of the centroid of the panel was ewet below z =  0.  
However, the incoming wave and the hydrostatic pressures were calculated with-
out the criterion ewet. Hence, this criterion only had an effect on the hydrodynamic 
pressures induced by the perturbation velocity potential f. The criterion ewet for 
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the centroid had an effect on panels that had a small inclination angle with respect 
to the free surface. If the panels had a large inclination angle, the distance of the 
centroid was well below the still water level because the panel corner points also 
had to be below the still water level. For the RoPax ship, the criterion in the pre-
sent calculation was ewet = 0.05´T where T was the draught of the ship. For the 
panel dimensions at the stern, this criterion corresponded to about Pwet Se  = 

0.2 where SP was an average panel area. In still water, this criterion had an effect 
on seven panels at the stern and two at the bow when the ship hull was discretized 
by the fine mesh. Hence, these panels were dry the whole time in the body linear 
solution. In the body nonlinear solution, the panels became wet if the distance of 
the centroid from z = 0 was larger than ewet and all the corner points of the panels 
were below z = 0. 
 
The calculations were carried out using the acceleration potential method. The 
solution of the acceleration potential is based on the body boundary condition in 
which the ship accelerations are required at the same time step as when the ship 
accelerations are solved from the equations of motion. In this work, an iterative 
solution was used to solve the acceleration potential. The solution includes that of 
the ship motions using the time integration and that of the potentials using the 
panel method. The motions of the ship have an effect on the solutions of the po-
tentials and vice versa. In addition, the size of the panels and the time step size 
have an effect on the accuracy of the solution. Smaller panel sizes and a shorter 
time step size will improve the accuracy. However, both will increase the calcula-
tion time. Abrupt changes in the velocity and acceleration potentials can induce 
unwanted changes in ship motions. At the beginning of the calculation, a small 
inaccuracy in the hydrostatic force or moment can induce a rapid change in mo-
tions and the time integration can fail. In the constant panel mesh method, the 
change of the panels from dry to wet or wet to dry can induce unexpected varia-
tions in potentials in the body nonlinear solution. The error in motions and poten-
tials can accumulate in time. In the calculation method, a numerical filter was 
used to smooth the time history signal. The filter was applied to the body motions 
on the terms that appear in the body boundary conditions. The filtered terms were 

nU ×  in the body boundary condition of the velocity potential and 
( ) ( )[ ]uωrωun ´-´+× &&  in the body boundary condition of the acceleration poten-

tial. Hence, the filtering was only performed on the ship motion in terms solving 
the source strengths of the potentials. The time history was low-pass filtered dur-
ing the calculation using a first order Butterworth-type infinite impulse response 
filter  (IIR filter,  see,  e.g.,  Press  et  al.,  1997).  The  used  filter  is  soft  and has  no  
sharp cut-off frequency. The low-order filter proved to be a reliable choice. High-
er order filters were also tested but it was noted that the solution broke down. One 
reason  is  the  phase  shift  of  the  filter,  which  increases  if  the  order  of  the  filter  
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increases. Furthermore, the panel size also limits the highest possible wave fre-
quencies, or wave lengths, that can be taken into account in the calculations. For 
the fine panel mesh of the ship, the panel characteristic length is LS P  = 0.012. 

In here, the area of the panel SP is based on the average of the panel areas from 
the panel mesh. The characteristic length of the panel LS P = 0.012 can be 

compared with the wave length lw/L, which gives gLw = 22.8 (in dimensional 

form w = 5.7 rad/s) for the wave frequency. The calculation results presented here 
are based on the low-pass filtered signals using cut-off frequencies gLcw = 

12.6 and gLcw = 25.2 for zero speed and for forward speed Fn = 0.25, respec-

tively. Obviously, the cut-off frequency has to be lower than the Nyqvist frequen-
cy fs/2 where fs = 1/Dt is the sampling frequency. In Figure 4.6, the heave and 
pitch motions are shown where the responses were low-pass filtered using the 
used cut-off frequency gLcw = 25.2 ( ec ww 7= ) and higher cut-off frequency 
( ec ww 10= ). The maximum heave amplitudes are slightly attenuated at the lower 
cut-off frequency. For pitch, the cut-off frequencies give almost identical results. 
 
The time step used in the calculation was LgtD  = 0.025. At the heave reso-

nance, the numbers of time steps in one period were Te/Dt = 114 and 73 at zero 
speed and at forward speed Fn = 0.25. The heave natural period was about 7 s 
( gLn3w = 3.6). The number of time steps in one period was greater than in the 

Wigley III calculation because of the more complex hull geometry. The larger 
number of the time step in one period was also used at zero speed than the num-
ber used at forward speed because relative motions at the stern were greater at 
zero speed. At zero speed, the flat bottom stern induced pressure peaks when the 
stern entered the waves.  
 
In the calculation, the constant panel mesh was used and the integration of the 
Green function over the panel area was performed using the midpoint rule.  
 
At the beginning of the calculation, the wave ramp was applied to increase the 
wave amplitude monotonically from zero to the target amplitude. A cosine-
squared wave ramp was used and the duration of the ramp was Lgt  = 5 at the 

beginning of the calculation. 
 
The vertical bending moments are given at x/L = 0.40 and the shear forces at x/L 
= 0.65. The ship motions are given at the centre of gravity of the ship. The verti-
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cal accelerations are given at the fore and aft perpendiculars and at the centre of 
gravity of the ship. The locations are the same as in the model tests. 
 

 

 

Figure 4.3. Panel meshes of the RoPax ship in the calculations. The numbers of 
panels are 491 (upper) and 327 (lower) on the half body below the still waterline. 
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Figure 4.4. Heave, pitch, shear force and bending moment at Fn =  0.0  in  head 
seas calculated with two different panel meshes. The wave amplitude was a/L = 
0.006 in the body-wave nonlinear solution. 
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Figure 4.5. Heave, pitch, shear force and bending moment at Fn = 0.25 in head 
seas calculated with two different panel meshes. The wave amplitude was a/L = 
0.006 in the body-wave nonlinear solution. 
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Figure 4.6. Time histories of heave and pitch calculated using two different cut-
off frequencies in the low-pass filter. The forward speed is Fn = 0.25, the wave 
frequency is gLw = 2.21 and the wave amplitude is a/L = 0.006. 
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4.4 Results in calm water 

The aim of the model tests in calm water was to investigate the steady flow ef-
fects on the hull girder loads. Responses in calm water were also calculated with 
the time domain method and the results compared with those of the model tests. 
The body nonlinear solution was used in the calculation. The sinkage at the centre 
of gravity of the ship is shown in Figure 4.7 as a function of the ship speed. The 
vertical shear force at fore ship and the vertical bending moment at midship are 
presented in Figure 4.8. In the figures, the hull girder loads are given without the 
still water shear force and bending moment.  
 
The trends of the calculated sinkage, shear force and bending moment are similar 
to those in the model tests. The vertical bending moment increases with the 
speed. The steady pressure and wave pattern due to the forward speed induce a 
sagging bending moment  on  the  hull  girder.  The  calculated  shear  force  and the  
bending moment deviate from the model test results at the highest speed. In the 
dimensional form, the steady bending moment is –70300 kNm at midship and the 
shear force 1100 kN at fore ship at Fn = 0.25. The values are based on the model 
test results. The steady bending moment is about 11% of the maximum still water 
bending moment and the shear force is about 13% of the maximum still water 
shear force. Thus, the steady hull girder loads are relatively small compared with 
the still water bending moment and shear force. The trim was small in the model 
tests and calculations. At forward speed Fn = 0.25, the trim was 0.14 degrees in 
the model tests and the calculation gave –0.05 degrees.  
 
The calculated results are also shown in the figures without the fluid velocity 
squared term 25.0 fÑ  in Bernoulli’s equation. The fluid velocity squared term 

affects the responses in calm water at forward speed. Comparing the calculated 
responses, the sinkage is greater and the shear force and bending moment smaller 
if the term is included in Bernoulli’s equation. However, the difference is rather 
small, especially for the bending moment. The responses are also slightly closer 
to the model test results if the term is excluded. The sinkage at the highest speed 
Fn = 0.30 is an exception where the time domain method without the fluid veloci-
ty squared term deviates clearly from the model test result. Thus, the fluid veloci-
ty squared term has an effect on the responses in calm water at forward speed but 
the significance is not as great as the effects due to other terms in Bernoulli’s 
equation. In calm water, the other terms are hydrostatic pressure and pressure due 
to the term fj Ñ×- U . The potential function j is  zero  if  the  body  is  in  pure  
constant translational motion in calm water. At forward speed U0, the pressure 
component due to the term xU ¶¶- f0  induces mean shift in the heave force. 
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Hence, this term has an effect on the sinkage of the ship and on the steady hull 
girder loads. It should be noted that the pressure terms in Bernoulli’s equation in 
this work are defined in the space-fixed coordinate system and not with respect to 
a moving frame. The meaning of the pressure term fj Ñ×- U  was discussed in 
Section 2.3.2.  
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Figure 4.7. Sinkage at the centre of gravity of the ship in calm water as a function 
of the ship speed 
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4.5 Results in regular waves 

4.5.1 General 

Motions and hull girder loads were measured and calculated for the model test 
ship in regular head waves and the transfer functions were determined from the 
time histories. The harmonic analysis was performed for the model test time his-
tories and the same procedure was applied for the calculated data. In the harmonic 
analysis, a Fourier series was fitted to the recorded data. The time history of the 
response X in regular waves can be presented as a sum of the harmonic compo-
nents as follows: 

=)(tX ( ))1()1()0( cos ew ++ tXX e  

                    ( ) ( ) ...3cos2cos )3()3()2()2( +++++ ewew tXtX ee , (4.1) 

where X(0) is the mean of the response, X(i) is the ith harmonic component of the 
response, e(i) is the ith phase angle of the ith harmonic response and i = 1, 2, 3, …, 
¥. The encounter frequency is ew . The phase angle of the response is defined as 
leads with respect to the wave crest at the centre of gravity of the ship. The first 
harmonic component gives the linear transfer function for the responses. The 
transfer functions or the response amplitude operators (RAO) are defined as the 
ratio of the response first harmonic to the wave first harmonic. 
 
In addition to the transfer functions, the results are presented in a pseudo-transfer 
function format. The pseudo transfer function includes the maximum and mini-
mum amplitudes obtained directly from the time history data. Hence, the pseudo 
transfer function is given separately for the maximum and minimum amplitudes. 
The pseudo transfer functions are presented in the same non-dimensional form as 
the linear transfer functions but the given pseudo transfer functions are not neces-
sarily linear with respect to the wave amplitude. Furthermore, the results are 
given as the relative magnitude of the higher order harmonic components with 
respect to the first harmonic component. 
 
The results are given at zero speed and forward speed Fn =  0.25  in  head  seas.  
Hull girder loads are presented for the vertical shear force at fore ship and vertical 
bending moment at midship. The calculated responses are given for the body 
linear  and  nonlinear  solutions  as  well  as  for  the  body-wave  nonlinear  solution.  
The model test and calculated results are given as follows: 

1. Transfer functions of responses from model tests at three different wave 
amplitudes 
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2. Transfer functions of responses and comparisons using the body linear 
and nonlinear solutions 

3. Investigations of the responses in the time domain and studies of the ef-
fect of the fluid velocity squared term on responses at forward speed 

4. Comparison of responses obtained with the backward difference and ac-
celeration potential methods 

5. Studies of nonlinearities in loads with transfer functions, pseudo transfer 
functions and higher order harmonic components of responses at differ-
ent wave amplitudes 

4.5.2 Transfer functions from the model tests 

The transfer functions of heave, pitch, vertical shear force and bending moment at 
zero speed in head seas are shown in Figure 4.9. The model test results are shown 
at three wave amplitudes: a/L = 0.006, a/L = 0.013 and a/L = 0.019. However, the 
results for the pitch motion at wave amplitude a/L = 0.006 was omitted because 
of the unreliable data obtained from the model test measurements at zero speed. 
The transfer functions at forward speed Fn = 0.25 in head seas are shown in Fig-
ure 4.10. The mean of the measurements from the different wave amplitudes are 
also shown in the figures. 
 
At zero speed, the model test results for the responses are close to each other at 
the three different wave amplitudes. Hence, the nonlinearities are relatively small 
in the first harmonic components of the responses with respect to the first har-
monic component of the wave amplitude. 
 
At forward speed, the first harmonic components of the responses are relatively 
close to each other at the two lowest wave amplitudes: a/L = 0.006 and a/L = 
0.013. However, the results of the highest wave amplitude a/L = 0.019 clearly 
deviate from the two other wave amplitudes. Hence, nonlinearities increase when 
the wave amplitude is higher than a/L = 0.013. One reason for the nonlinearities 
is the large relative motions that occurred at the highest wave amplitude in the 
tests at forward speed. The motions of the ship model were large and deck wet-
ness and bow slamming occurred. A large part of fore ship was out of the waves 
about the resonance of heave.  
 
In the following sections, in which the calculated transfer functions are compared 
with the model test transfer functions, the model test results in the transfer func-
tions are given as the mean values, as the differences were small between the 
different wave amplitudes. This clarifies the presentation of the model test results 
in the figures. The exception, however, is the highest wave amplitude a/L = 0.019 
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at forward speed Fn = 0.25 for which the mean values are based on the two low-
est wave amplitudes. If the calculated transfer functions are compared with the 
model test transfer functions at the highest wave amplitude at forward speed then 
the model test results are also given at the highest wave amplitude. However, 
other results than the comparison of the calculated and model test transfer func-
tions are given at the defined wave amplitudes. In all other cases, the used wave 
amplitudes are given in the figures in the following sections. 
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Figure 4.9. Model test results for heave and pitch, and vertical shear force and 
bending moment at Fn = 0.0 in head seas at different wave amplitudes a/L. 
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Figure 4.10. Model test results for heave and pitch, and vertical shear force and 
bending moment at Fn = 0.25 in head seas at different wave amplitudes a/L 
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4.5.3 Comparison of the body linear and nonlinear solutions 

At zero speed, the transfer functions are presented in Figure 4.11 for heave, pitch, 
shear force and bending moment. The results using the time domain calculation 
method are given for the body linear and nonlinear solutions. The wave amplitude 
was a/L = 0.006 in the calculation. The body linear and nonlinear solutions give 
almost the same results, and the solutions are in good agreement with the model 
test results. The body nonlinear solution gives a slightly higher prediction for the 
shear force and bending moment. The vertical accelerations at the centre of gravi-
ty, and aft and fore perpendiculars are shown in Figure 4.12. The calculation 
gives somewhat smaller accelerations than the model tests but the trend as a func-
tion of the frequency is the same as in the model tests. 
 
At forward speed Fn = 0.25, the body linear and nonlinear solutions are shown in 
Figure 4.13 for the heave, pitch, shear force and bending moment. The wave 
amplitude was a/L = 0.006 in the calculation.  
 
The body nonlinear solution and the model test results of the shear force and 
bending moment are close to each other at forward speed Fn = 0.25. The transfer 
function of the calculated shear force exists at somewhat lower wave frequencies 
than in the model tests. The pitch motion is also close to the model test results, 
but the calculation gives a rather high heave amplitude at the resonance. Further-
more, vertical accelerations are presented in Figure 4.14 calculated with the body 
nonlinear solution. The calculated accelerations are in close agreement with the 
model test results. It can be seen from the figure that the accelerations are clearly 
larger at the bow than the stern.  
 
The comparison between the body nonlinear solution and the model tests at for-
ward speed showed that the body nonlinear solution gives relatively good predic-
tions for responses. However, the body linear solution clearly overestimates the 
responses at forward speed compared with the model test results. Heave is close 
to the body nonlinear solution but other responses are well above the body non-
linear results. The pitch motion has a high peak at gLw  = 2.21 and the shear 

force and bending moment at gLw  = 2.41. For the Wigley III hull form, the 

body linear and nonlinear solutions gave about the same predictions for heave and 
pitch. The Wigley hull form has a pointed stern and bow and hence the hull ge-
ometry deviates from the RoPax hull, especially at the stern. In the body linear 
solution, the flat bottom stern was out of the waves in the calculation. However, a 
large part of the stern was in the waves in the model tests because of the sinkage, 
ship  motions  and  wave  pattern  due  to  the  steady  flow  at  forward  speed.  In  the  
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body nonlinear solution, the sinkage of the ship and the instantaneous floating 
position due to the ship motions are taken into account.  
 
For the transom stern ships at high forward speed, the high heave and pitch reso-
nance are also observed in the linear frequency domain predictions compared 
with the model test results. However, extended theoretical approaches have been 
developed to take into account the flow pattern properly at the transom stern 
which improved the calculated predictions (Ahmed et al., 2005; Elangovan et al., 
2008). In the linear frequency domain methods, the steady flow is taken into 
account with so-called m-terms in the body boundary condition (see, e.g., New-
man, 1978; Kim, 2005). The m-terms take into account the steady flow effects in 
solving the radiation velocity potentials. In the linear frequency domain methods, 
the velocity potentials due to steady flow, radiation and diffraction are decoupled. 
In the present time domain method expressed in the space-fixed coordinate sys-
tem, the steady flow and flow due to radiation and diffraction are not decoupled. 
In both the linear frequency methods and the linear time domain method, the 
body boundary condition is expressed on the mean wetted surface of the body. 
Hence, the coupling of the actual floating position of the body geometry and the 
steady flow is not taken into account. In the body linear solution, the pitch angle 
and the forward speed are taken into account in the body boundary condition on 
the mean wetted surface of the hull. However, in the body nonlinear solution, the 
instantaneous floating position of the ship is updated at every time step, and the 
coupling of the actual floating position of the body geometry and the steady flow 
is therefore taken into account. In the body linear solution, this is only taken into 
account on the mean wetted surface of the hull.  
 
In order to gain an insight into the floating position of the ship with respect to the 
waves  and  mean  water  level,  the  ship  is  shown  at  four  time  instants  in  Figure  
4.15. The motions were calculated at the forward speed of the ship at Fn = 0.25 
and the wave amplitude and wave frequency were a/L = 0.006 and gLw  = 

2.21, respectively. The floating positions of the ship are given at four time in-
stants for one pitch period. In Figure 4.16, the ship position is otherwise given 
under the same conditions, but the wave amplitude is higher: a/L = 0.013. In the 
figures, the horizontal blue line is the mean waterline at z = 0 and the sinusoidal 
black line is the incoming wave elevation.  
 
At the lower wave amplitude, the mean water level and incoming wave elevation 
are rather close to each other. Thus, it can be assumed that the solution of the 
perturbation velocity potential up to the z = 0 level gives a good approximation 
for the flow velocities. At the higher wave amplitude, however, there is a clear 
difference between the mean water level and the incoming wave elevation. At the 
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time instant t = 0.25T, the incoming wave crest is close to the bottom of the ship 
at the stern and the z = 0 line is clearly below the bottom. Hence, the solutions of 
the velocity potentials are obtained for a smaller area at the stern compared with 
the  area  of  the  stern  that  is  below  the  incoming  wave  elevation.  Moreover,  the  
mean water level is above the incoming wave elevation at time instant t = 0.75T. 
Thus, the velocity potentials are solved for a larger area of the stern than if the 
velocity potential had been solved below the incoming wave elevation. On the 
other hand, the figures only represent the incoming wave elevation and not the 
actual free surface elevations due to the steady and unsteady flows. In the model 
tests, it was observed that a large part of the flat bottom stern was always in the 
waves. The steady flow had a clear effect on the wave formation at the stern. 
Thus, the variation between wet and dry during one encountered wave period was 
larger in the calculation than in the model tests, especially if the ship motions 
were large. 
 
The time histories of relative motions are shown in Figure 4.17 at zero speed and 
in Figure 4.18 at forward speed Fn = 0.25. Model test results for the relative mo-
tions are not available. The relative motion zr is defined as the difference between 
the vertical motion and the incoming wave elevation. Hence, the relative motion 
includes only the incoming wave and not the diffracted and the radiated waves 
due to forward speed and ship motions. The relative motions are given at the aft 
and fore perpendiculars at wave amplitude a/L = 0.013 and wave frequency 

gLw  =  2.21.  The  bottom of  the  fore  perpendicular  is  out  of  the  wave if  the  

non-dimensional relative motion zr/a exceeds 3.1 and the main deck is below the 
wave if zr/a is less than –3.8. The flat bottom stern is at the mean water level and 
hence the aft perpendicular is out of the wave if the non-dimensional relative 
motion is positive, and negative if it is in the wave. At forward speed, the relative 
motion is clearly higher at the bow than the stern. In addition, the relative motion 
at the bow is asymmetric. The relative motion downwards is greater than up-
wards. Hence, the bow enters the waves more deeply than it rises above the 
waves. In the model tests at forward speed, it was observed that the stern was not 
out of the water at small wave amplitudes. At the highest wave amplitude in the 
tests, a/L = 0.019, the emergence of the stern was still moderate and at least part 
of  the  flat  bottom  stern  was  in  the  waves.  A  large  part  of  the  stern  was  in  the  
waves because of the wave formation due to the steady flow at forward speed. 
However, the stern rises out of the waves at zero speed in the model tests. The 
calculation shows that the relative motions at the stern are larger at zero speed 
than at forward speed. Hence, the stern can emerge out of the waves higher and a 
wave impact can occur when the stern enters the waves again. At high wave am-
plitudes, a/L = 0.013 and 0.019, in the model tests, stern impacts occurred when 
the  flat  bottom stern  entered  the  waves.  Based on the  model  tests,  it  was  found 
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that the effect of the impact at the stern was small on the rigid hull girder loads. 
However, the ship model was not dynamically scaled, i.e. the structural dynamics 
of the hull girder were not modelled in the tests. Hence, possible impact-induced 
hull girder loads such as whipping loads were not considered in the model tests. 
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Figure 4.11. Heave, pitch, shear force and bending moment at Fn = 0.0 in head 
seas calculated with the body linear and nonlinear solutions. The wave amplitude 
was a/L = 0.006 in the body nonlinear solution. 
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Figure 4.12. Vertical accelerations at the aft perpendicular (AP), centre of gravity 
(COG) and fore perpendicular (FP) at Fn = 0.0 in head seas calculated with the 
body nonlinear solution at a/L = 0.006. 
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Figure 4.13. Heave, pitch, shear force and bending moment at Fn = 0.25 in head 
seas calculated with the body linear and nonlinear solutions. The wave amplitude 
was a/L = 0.006 in the body nonlinear solution. 
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Figure 4.14. Vertical accelerations at the aft perpendicular (AP), centre of gravity 
(COG) and fore perpendicular (FP) at Fn = 0.25 in head seas calculated with the 
body nonlinear solution at a/L = 0.006. 
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Figure 4.15. Ship motion at Fn = 0.25 in regular waves a/L = 0.006 and gLw  
= 2.21 in head seas. The floating position of the ship is given at four time instants 
for pitch cycle T. 
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Figure 4.16. Ship motion at Fn = 0.25 in regular waves a/L = 0.013 and gLw  
= 2.21 in head seas. The floating position of the ship is given at four time instants 
for pitch cycle T. 
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Figure 4.17. Relative motion at the fore (FP) and aft (AP) perpendiculars at Fn = 
0.0 calculated using the body-wave nonlinear solution at a/L = 0.013 and 

gLw  = 2.21. 
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Figure 4.18. Relative motion at the fore (FP) and aft (AP) perpendiculars at Fn = 
0.25 calculated using the body-wave nonlinear solution at a/L =  0.013  and  

gLw  = 2.21. 
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4.5.4 Comparisons in the time domain 

The model test and calculated time histories of heave and pitch at zero speed are 
shown in Figure 4.19 and the shear force and bending moment in Figure 4.20. 
The calculation was carried out using the body-wave nonlinear solution. The 
wave frequency was gLw  = 2.41 and the wave amplitude a/L = 0.013. It can 

be seen from the figures that the calculated time histories follow the model test 
results well. The shear force is somewhat overestimated by the time domain 
method compared with the model test results. The same can be seen from the 
transfer functions that are presented in Figure 4.32.  
 
At forward speed Fn = 0.25, the time histories from the model test and the calcu-
lation for heave and pitch are presented in Figure 4.21 and for the shear force and 
bending moment in Figure 4.22. The wave frequency was gLw  = 2.41 and the 

wave amplitude a/L = 0.013. The calculation was performed using the body-wave 
nonlinear solution. Heave is overestimated and pitch underestimated by the calcu-
lation compared with the model test results. The mean of the pitch deviates from 
zero and the positive amplitudes are greater and the negative amplitudes smaller 
than in the model tests. The shear force is close to the model test results and the 
bending moment has smaller amplitudes in the calculation than in the model tests.  
 
Hence, the calculation gives better predictions for responses at zero speed than at 
forward speed. The same is noted from the transfer functions of the responses 
presented in the previous section. At forward speed, the free surface elevation 
around  the  ship  is  a  combination  of  the  steady  and  unsteady  wave  patterns,  in  
addition to the incoming waves. The unsteady waves include the radiation and 
diffraction effects due to the ship motions and the scattering of the incoming 
waves. The wave formation of the steady and unsteady flows at the flat bottom 
stern of the ship can have an effect on the calculated predictions at forward speed. 
In the model tests at forward speed, the stern was always at least partly wet be-
cause of the free surface elevation at the stern. The actual free surface elevation is 
not taken into account because the linear free surface boundary condition is ap-
plied in the present method. The linear kinematic and dynamic free surface condi-
tions are given in Equations (2.20) and (2.21), respectively. The fluid velocity 
squared term does not appear in the kinematic condition because the term is a 
higher order term. However, the term is included in Bernoulli’s equation in the 
present calculations to calculate pressures. The calculation was repeated ignoring 
the fluid velocity squared term 25.0 FÑ  in Bernoulli’s equation. The fluid veloc-

ity squared term had an effect on the calm water results presented in Section 4.4. 
However, the effect was rather small on the sinkage, steady shear force and bend-
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ing moment. The time histories of the heave and pitch motions without the fluid 
velocity squared term are shown in Figure 4.23 at forward speed Fn = 0.25. The 
time histories of the shear force and bending moment are presented in Figure 
4.24. The prediction of the heave motion is improved and the calculated time 
history about the same as in the model tests. The prediction for pitch is also im-
proved, but the amplitudes are still slightly smaller than in the model tests. The 
bending moment is also closer to the model test results without the fluid velocity 
squared term. The shear force is slightly increased but still close to the model test 
results. Thus, the responses are closer to the model test results without the fluid 
velocity squared term in Bernoulli’s equation. Ignoring the term in Bernoulli’s 
equation is consistent with the linear free surface boundary condition. This is 
further discussed in Section 4.5.6 in which the effect of the fluid velocity squared 
term in transfer functions of responses is also presented. 
 



4. Results of the model test ship 
 

144 

0 5 10 15 20 25

h3/a

-0.4

-0.3

-0.2

-0.1

0.0

0.1

0.2

0.3

0.4

Model tests
Time domain

 Lgt  

0 5 10 15 20 25

h5L/2pa

-0.6

-0.4

-0.2

0.0

0.2

0.4

0.6

Model tests
Time domain

 Lgt  

Figure 4.19. Time histories of heave and pitch at Fn = 0.0, gLw  = 2.41 and 
a/L = 0.013. Body-wave nonlinear solution. 
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Figure 4.20. Time histories of shear force and the bending moment at Fn = 0.0, 
gLw  = 2.41 and a/L = 0.013. Body-wave nonlinear solution. 
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Figure 4.21. Time histories of heave and pitch at Fn = 0.25, gLw  = 2.41 and 
a/L = 0.013. Body-wave nonlinear solution.  
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Figure  4.22.  Time  histories  of  shear  force  and  bending  moment  at  Fn = 0.25, 
gLw  = 2.41 and a/L = 0.013. Body-wave nonlinear solution.  
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Figure 4.23. Time histories of heave and pitch at Fn = 0.25, gLw  = 2.41 and 
a/L = 0.013. Body-wave nonlinear solution without the fluid velocity squared 
term, 25.0 FÑ  = 0. 
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Figure 4.24. Time histories of the shear force and bending moment at Fn = 0.25, 
gLw  = 2.41 and a/L = 0.013. Body-wave nonlinear solution without the fluid 

velocity squared term, 25.0 FÑ  = 0. 
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4.5.5 Comparison of the acceleration potential and difference methods 

Responses calculated by the acceleration potential and backward difference 
methods are compared when solving the time derivative of the velocity potential 
in Bernoulli’s equation in this section. Transfer functions are given for heave and 
pitch and for the shear force and bending moment. The body nonlinear solution 
was used and the wave amplitude was a/L = 0.006 in the calculation. In the 
backward difference method, the calculation was carried out using the same pa-
rameters as in the acceleration potential method, except that the low-pass filtering 
was performed for the radiation-diffraction pressure term ( )25.0 ffr Ñ+- t . This 

was necessary in order to obtain convergent results for the perturbation velocity 
potential. The filter characteristic and the cut-off frequency were the same as in 
the acceleration potential method. 
 
At  zero  speed,  the  transfer  functions  of  responses  are  shown in  Figure  4.25.  At  
zero speed, the acceleration potential solution gives a better prediction of the 
shear force and bending moment than the model test results. For heave and pitch, 
the differences between the two solutions are quite small.  
 
The two solutions were investigated in more detail by calculating the radiation-
diffraction forces of heave, FP3. The radiation-diffraction force is based on the 
perturbation velocity potential, and the force was determined from the hydrody-
namic pressure of ( )25.0 ffr Ñ+- t . Figure 4.27 presents the heave force FP3 

based on the acceleration potential and backward difference methods. The heave 
forces FP3 are  given  with  the  body  nonlinear  solution  at  wave  amplitude  a/L = 
0.006 and at wave frequency gLw  = 2.21 at zero speed. The body linear solu-

tion is given as a reference. The time histories shown in the figure are similar in 
type to those for the cones. When the heave force FP3 is  negative,  the  bow  is  
moving downwards into the water. The maximum amplitudes of the acceleration 
potential and backward difference methods are almost the same. However, the 
minimum amplitude of the acceleration potential method is greater than of the 
backward difference method. The amplitudes of the nonlinear heave forces FP3 
are close to the linear prediction. 
 
The transfer functions of the responses at forward speed Fn = 0.25 are shown in 
Figure 4.26. The acceleration potential method and the backward difference 
method give similar results for the pitch, shear force and bending moment. How-
ever, the heave motion is predicted better by the backward difference method 
than the acceleration potential method compared with the model test results.  
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Figure 4.25. Heave, pitch, shear force and bending moment at Fn = 0.0 in head 
seas calculated with the acceleration potential (Acc. solution) and the backward 
difference (Diff. solution) methods. The wave amplitude was a/L = 0.006 in the 
calculation. 
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Figure 4.26. Heave, pitch, shear force and bending moment at Fn = 0.25 in head 
seas calculated with the acceleration potential (Acc. solution) and the backward 
difference (Diff. solution) methods. The wave amplitude was a/L = 0.006 in the 
calculation. 
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The differences in heave at forward speed were further investigated by calculat-
ing the radiation-diffraction forces of heave, FP3. The heave forces FP3, based on 
the acceleration potential and difference methods, are shown in Figure 4.28 at 
forward speed Fn = 0.25. The heave forces FP3 are given with the body nonlinear 
solution at wave amplitude a/L = 0.006 and wave frequency gLw  = 2.21. The 

body linear solution is given again as a reference. The acceleration potential 
method gives similar results for heave force FP3 calculated with the body linear 
and nonlinear solutions. However, heave force FP3 calculated with the difference 
method clearly deviates from the solutions of the acceleration potential method. 
Heave force FP3 calculated with the difference method in the body nonlinear 
solution also deviates significantly from the body linear solution. The amplitudes 
of the heave forces FP3 obtained with the difference method are considerably 
smaller in the body nonlinear solution. As the differences between the body linear 
and nonlinear solutions are big, it is questionable whether the difference method 
gave convergent results. More detailed investigations showed that the radiation-
diffraction force of heave with the difference method has noise due to the 

tDDf -term and, hence, the prediction for the force was unreliable. The magni-
tude of the force due to the tDDf -term was small and the radiation-diffraction 
force of heave consisted almost entirely of the term fÑ×U . One reason for the 
unreliable results can be the flat bottom stern that induced abrupt changes in the 
flow when the stern entered the waves. The numerical derivation using the veloci-
ty potentials from present and previous time steps gave peaks when the flow 
pattern changed abruptly. The inaccuracy affected the solutions of source 
strengths and velocity potentials and was accumulated in the time stepping. Peaks 
in the difference solution also occurred when the panels changed from wet to dry 
or  from dry  to  wet.  This  was  shown in  connection  with  studies  with  cones;  see  
Figure 3.10. 
 
The calculation was also repeated to study whether the acceleration potential and 
difference methods could give similar results to those of the body linear solution 
at forward speed. The radiation-diffraction forces of heave, FP3,  are  shown  in  
Figure 4.29 at forward speed Fn = 0.25. With the body linear solution, both the 
acceleration potential and difference methods give about the same results. In 
addition, the time histories of the heave and pitch motions are shown in Figure 
4.30 and the shear force and bending moment in Figure 4.31. In the figures, the 
body linear solutions are shown with the acceleration potential and difference 
methods. The acceleration potential and difference methods give almost the same 
results for the responses, and the differences only exist at the beginning of the 
time histories. 
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Thus, the body linear solution gave about the same prediction for the responses if 
the acceleration potential or backward difference method was used. Nevertheless, 
the body nonlinear solution gave different results. The solution of the backward 
difference method applied in this work included noise due to the tDDf -term 
which induced uncertainty in the response predictions for the model test ship. The 
body nonlinear solution for the radiation-diffraction force of heave clearly also 
deviated from the body linear predictions if the backward difference method was 
used. The prediction for the radiation-diffraction force of heave with the back-
ward difference method in the body nonlinear solution was not consistent with the 
body linear solution. The acceleration potential method gave stable and reliable 
results for the responses and hydrodynamic forces. 
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Figure 4.27. Radiation-diffraction force of heave based on the acceleration poten-
tial and difference methods. Body nonlinear solution at Fn = 0.0, a/L = 0.006 and 

gLw  = 2.21. The body linear solution with the acceleration potential method 
is also given. 
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Figure 4.28. Radiation-diffraction force of heave based on the acceleration poten-
tial and difference methods. Body nonlinear solution at Fn = 0.25, a/L = 0.006 
and gLw  = 2.21. The body linear solution with the acceleration potential 
method is also given.  
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Figure 4.29. Body linear solution for the radiation-diffraction force of heave 
based on the acceleration potential and difference methods at Fn = 0.25 and wave 
frequency gLw  = 2.21. 
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Figure 4.30. Heave and pitch calculated by the acceleration potential and differ-
ence methods at Fn = 0.25. Body linear solution at gLw  = 2.21. 
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Figure 4.31. Shear force and bending moment calculated by the acceleration po-
tential and difference methods at Fn = 0.25. Body linear solution at gLw  = 
2.21. 
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4.5.6 Nonlinearities of responses 

The nonlinearities in the hull girder loads are studied with the model test and the 
calculated results. The studies are presented with transfer functions, pseudo trans-
fer functions and higher order harmonic components of responses at different 
wave amplitudes. The model tests and calculations were carried out using three 
different wave amplitudes in regular head waves. The wave amplitudes were a/L 
= 0.006, a/L = 0.013 and a/L = 0.019. The calculated results are compared with 
the model test results. 
 
At zero speed, the transfer functions of the responses at the three wave amplitudes 
are shown in Figure 4.32 for heave, pitch, shear force and bending moment. The 
responses were calculated with the body-wave nonlinear solution. The body line-
ar solution is also shown in the figures. The transfer functions of heave and pitch 
are practically the same at the three wave amplitudes. The shear force and bend-
ing moment increase slightly if the wave amplitude increases. The body linear 
solution gives the lowest prediction for the shear force and bending moment. 
However, the calculated responses are close to the model test results. Thus, the 
calculation method gives a good prediction for the first harmonic component of 
the responses at zero speed. In the model tests, the transfer functions of heave, 
pitch, shear force and bending moment are close to each other at the three differ-
ent wave amplitudes. The transfer functions of the model tests at the three wave 
amplitudes are shown in Figure 4.9. Hence, based on the model test results and 
the calculated results the nonlinearities in the first harmonic components are rela-
tively small at zero speed. 
 
At forward speed, the transfer functions of heave, pitch, shear force and bending 
moment are shown in Figure 4.33 at wave amplitudes a/L = 0.006 and 0.013. The 
pitch is slightly higher at the higher wave amplitude, but the shear force and 
bending moment are almost the same at the two wave amplitudes. Heave clearly 
has higher amplitudes compared with the model test results. The calculated heave 
amplitude is also higher at a/L =  0.013 than  at  the  lower  wave amplitude  a/L = 
0.006. The high amplitudes in the calculated heave motion have already been 
discussed in Section 4.5.3 where the transfer function based on the body linear 
solution was given. The body linear solution gave high amplitude peaks for the 
responses around the heave resonance. It was concluded that the calculation 
method cannot take into account the steady flow at the stern region properly if the 
stern is a flat bottom stern close to the free surface. However, the calculation 
method takes into account the instantaneous floating position of the ship if the 
body  nonlinear  solution  is  used.  This  improves  the  results  compared  with  the  
body linear solution as the uncertainties in the calculation of the differences in the 
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responses at different wave amplitudes do not necessarily mean that the first 
harmonic components of the responses are nonlinear with respect to the wave 
amplitude. It should also be noted that the model test results for the first harmonic 
components of the responses were close to each other at the wave amplitudes a/L 
= 0.006 and 0.013; see Figure 4.10. 
 
At the wave amplitude a/L = 0.019 and forward speed Fn = 0.25, the transfer 
functions of heave, pitch, shear force and bending moment are shown in Figure 
4.34. The heave is clearly overestimated compared with the model test results. 
The calculated predictions for the shear force and bending moment clearly also 
deviate from the model test results at the heave resonance. One reason for this 
deviation is the high heave amplitude from the calculation, but the discrepancy 
may also indicate that the motions at the high wave amplitude are too violent for 
the calculation method.  
 
In the model tests, at the highest wave amplitude at forward speed Fn = 0.25, the 
motions  of  the  ship  model  were  large  and deck wetness  and bow slamming oc-
curred. A large part of the bow was out of the waves when the relative motions 
were greatest around the resonance of the heave. In the calculation, the time his-
tories included noise, and the prediction for the perturbation velocity potential 
was irregular, including high single peaks from time to time. The large motions 
and, particularly, the large relative motions with respect to the free surface eleva-
tion were discussed in Section 4.5.3. It was concluded that free surface elevation 
due to the steady and unsteady flow, especially at the stern, may have an effect on 
the calculated predictions. The calculation method cannot take into account the 
flow and waves at the stern properly if a large part of the stern varies between wet 
and dry. This can give incorrect predictions for the flow in the calculation. Fur-
thermore, it was shown in Section 4.5.4 that omitting the fluid velocity squared 
term can improve the calculation results. Bernoulli’s equation is then consistent 
with the linear free surface condition. Hence, the same approach was tried here 
and the calculation was repeated excluding the fluid velocity squared term from 
Bernoulli’s equation. The responses calculated without the fluid velocity squared 
term are shown in Figure 4.34. Without the fluid velocity squared term, the heave 
amplitude clearly decreases at the resonance, and the heave amplitudes are close 
to the amplitudes calculated at the lower wave amplitudes that were presented in 
Figure 4.33. The pitch is also somewhat lower and close to the results of the low-
er wave amplitude a/L = 0.013. The calculated shear force and bending moment 
without the fluid velocity squared term are close to the model test results, but 
there is still some scatter in the calculation results, especially in the shear force. 
However, the responses are in line with the model test results and with the calcu-
lated results that were determined at the lower wave amplitudes. The results pre-
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sented below were calculated without the fluid velocity squared term at the high-
est wave amplitude a/L = 0.019 when the ship had a forward speed of Fn = 0.25. 
 
The transfer functions only include the first harmonic component of the response. 
Hence, the transfer functions do not necessarily give the whole picture of the 
responses, which can also include nonlinearities due to the higher order harmonic 
components or due to the mean shift of the responses. For these reasons, the har-
monic analysis was carried out to obtain an insight into the magnitudes of the 
higher order components in the responses. The relative contribution of the three 
lowest harmonic components and the mean with respect to the first harmonic 
component are shown in Figure 4.35 for the shear force and the bending moment 
at zero speed. The second harmonic component is in the order of 5% to 10% of 
the  first  harmonic  component  for  the  bending moment.  For  the  shear  force,  the  
contribution is less, at about 5%. The third harmonic component is small. The 
mean shift in the shear force and bending moment is significant. At forward speed 
Fn = 0.25, the relative contribution of the harmonic components and mean are 
presented in Figure 4.36. The second harmonic component is in the order of 10% 
to 15% of the first harmonic component for the shear force and bending moment. 
The relative contribution of the third harmonic component is less than 5% of the 
first harmonic component. The mean shift is significant. The calculated mean is 
close to the model test results. At the lowest wave frequencies the relative magni-
tude of the mean is large but the amplitudes of the responses are small. 
 
In addition to the harmonic analysis, the pseudo-transfer functions were deter-
mined for the responses. The pseudo-transfer functions were defined directly 
from the time history series. The amplitudes were analysed separately from the 
maximum and minimum peaks. The peaks in the pseudo transfer functions are the 
average of the maximum or minimum peaks obtained from the time series. The 
same procedure was applied when analysing the model test data.  
 
At zero speed, the pseudo-transfer function for the shear force and bending mo-
ment is shown in Figure 4.37. In the sagging condition, the bending moment is 
negative (minimum) and the shear force is positive (maximum). In the hogging, 
the sign of the responses is the opposite. The responses in the figures were deter-
mined using the body-wave nonlinear solution and the body nonlinear solution. 
The comparison of these two methods gives an insight into the nonlinear effects 
due to the additional Froude-Krylov and hydrostatic forces and moments that are 
determined up to the incoming wave elevation. The body-wave nonlinear solution 
gives a better prediction for the bending moment than the body nonlinear solution 
compared with the model test results. For the shear force, the result is not so 
clear. However, the effect due to the additional Froude-Krylov and hydrostatic 
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forces and moments is not large. Although the additional contribution is small, 
this does not mean that the total contribution due to the Froude-Krylov and hy-
drostatic forces and moments is small in the nonlinear loads. Only the effect of 
the additional part is small. The additional force and moment is due to the 
Froude-Krylov and hydrostatic pressure from the mean water level up to the in-
coming wave elevation. Most of the nonlinear Froude-Krylov and hydrostatic 
forces and moments are already included in the pressure because they are calcu-
lated at the actual floating position of the ship. This explains a large part of the 
nonlinearities in the sagging and hogging loads. 
 
The pseudo transfer functions for the shear force and bending moment at forward 
speed Fn = 0.25 are presented in Figure 4.38. The body-wave nonlinear solution 
gives a better prediction for the sagging bending moment than the body nonlinear 
solution. For the hogging bending moment, the body-wave nonlinear solution 
gives somewhat lower peaks than the body nonlinear solution. For the shear 
force, the maximum peaks are predicted slightly better by the body-wave nonlin-
ear solution than the body nonlinear solution.  
 
Furthermore, the maximum and minimum peaks of the bending moment and the 
contribution of the steady bending moment at forward speed Fn = 0.25 are pre-
sented in Figure 4.39. The figure is given in a dimensional form in order to gain 
an insight into the contribution of the steady bending moment to the sagging and 
hogging bending moment. The maximum and minimum peaks are given for two 
wave amplitudes, a/L = 0.006 and 0.013 (a = 1 m and 2 m). It can be noted that 
the mean of the maximum and minimum at the longest and shortest waves is 
about the same as the steady bending moment in calm water. The steady bending 
moment  was  presented  in  Section  4.4,  in  Figure  4.8.  The  contribution  of  the  
steady bending moment also explains a large part of the differences between the 
sagging and hogging bending moment at the lower wave amplitude. However, the 
contribution of the steady bending moment is small at the higher wave amplitude. 
Hence, a large part of the mean of the harmonic components is explained by the 
steady part at low wave amplitudes. At higher wave amplitudes, the steady con-
tribution is small and a large part of the differences in sagging and hogging is due 
to the ship motions in waves. In high waves, the wave loads induce larger loads 
on the hull girder when the bow enters the waves than when the bow moves out 
of the waves. Part of the nonlinearities is due to the higher order harmonic com-
ponents, though their contribution is relatively small compared with the mean of 
the wave loads at the encounter frequency of the waves. At zero speed, the ship 
motions in waves also explain the major part of the nonlinearities. The relative 
motions  were  also  larger  at  the  stern  at  zero  speed  than  at  the  forward  speed,  
giving an additional contribution to the differences in sagging and hogging loads. 
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Hence, the actual floating position of the ship with respect to the waves at the 
encounter frequency explains a large part of the nonlinearities and differences in 
the sagging and hogging responses in high waves.  
 
The  effect  of  the  wave steepness  on  the  sagging and hogging loads  is  shown in  
Figures 4.40 and 4.41. The maximum and minimum peaks of the shear force and 
bending moment as a function of the non-dimensional wave number ka (ka = 

ag)( 2w ) are presented in Figure 4.40 at zero speed. At forward speed Fn = 
0.25, the maximum and minimum peak amplitudes are presented in Figure 4.41. 
The non-dimensional wave number is the same as the wave slope of the regular 
wave. The peak amplitudes are given for three wave frequencies: gLw  = 2.01, 

2.41 and 2.81. For each wave frequency, the responses from the calculation and 
from the model tests were determined at three wave amplitudes: a/L = 0.006, 
0.013 and 0.019. Hence, the responses are also given at three non-dimensional 
wave numbers ka at the given wave frequency. In the figures, the difference in the 
sagging and hogging bending moment and shear force is clear. At zero speed, the 
differences in the shear forces and bending moments at different wave slopes are 
not big. At forward speed, the shear forces and bending moments deviate some-
what at the different wave slopes. The differences are, to some extent, greater at 
the small wave frequencies gLw  = 2.01 and 2.41 than at the highest wave 

frequency gLw  = 2.81. The trends of the sagging and hogging loads are simi-

lar in the model test and calculated results. At zero speed, the agreement with the 
model test results is good, and it is relatively good at forward speed Fn = 0.25. 
 



4. Results of the model test ship
 

163 

 gLw
0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0

|h
3| /a

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Model tests
Body linear
Body-wave nonlin. a/L=0.006
Body-wave nonlin. a/L=0.013
Body-wave nonlin. a/L=0.019

Ph
as

e 
| h

3|

-135
-90
-45

0
45
90

135
180

  gLw

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0

|h
5| L

/(2
pa

)

0.0

0.2

0.4

0.6

Model tests
Body linear
Body-wave nonlin. a/L=0.006
Body-wave nonlin. a/L=0.013
Body-wave nonlin. a/L=0.019

Ph
as

e 
| h

5|

-135
-90
-45

0
45
90

135
180

 

 gLw

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0

|V
3| / r

ga
BL

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

Ph
as

e 
|V

3|

-135
-90
-45

0
45
90

135
180

 
 gLw

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0

|V
5| / r

ga
BL

2

0.000

0.005

0.010

0.015

0.020

0.025

Ph
as

e 
|V

5|

-135
-90
-45

0
45
90

135
180

Figure 4.32. Transfer functions of heave, pitch, shear force and bending moment 
at Fn = 0.0. The body-wave nonlinear solutions are given at three different wave 
amplitudes. 
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Figure 4.33. Transfer functions of heave, pitch, shear force and bending moment 
at Fn =  0.25.  The  body-wave nonlinear  solutions  are  given at  wave amplitudes  
a/L = 0.006 and a/L = 0.013. 
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Figure 4.34. Transfer functions of heave, pitch, shear force and bending moment 
at Fn = 0.25. The body-wave nonlinear solutions are given at wave amplitude a/L 
= 0.019 with and without the fluid velocity squared term ( 25.0 FÑ  = 0). 
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Figure 4.35. Relative contributions of the harmonic components at Fn = 0.0. The 
wave amplitude in the model tests and calculation was a/L = 0.013. The calculat-
ed results are based on the body-wave nonlinear solution. Notice that the mean of 
the shear force is positive. 
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Figure 4.36. Relative contributions of the harmonic components at Fn = 0.25. The 
wave amplitude in the model tests and calculation was a/L = 0.013. The calculat-
ed results are based on the body-wave nonlinear solution. Notice that the mean of 
the shear force is positive. See the legend of the symbols in Figure 4.35. 
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Figure 4.37. Maximum and minimum peaks of the shear force and bending mo-
ment at Fn = 0.0. The wave amplitude in the model tests and calculation was a/L 
= 0.013. The calculation was carried out using the body nonlinear and the body-
wave nonlinear solutions. 
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Figure 4.38. Maximum and minimum peaks of the shear force and bending mo-
ment at Fn = 0.25. The wave amplitude in the model tests and calculation was a/L 
= 0.013. The calculation was carried out using the body nonlinear and the body-
wave nonlinear solutions.  
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Figure 4.39. Maximum and minimum peaks of the bending moment and the con-
tribution of the steady bending moment at Fn = 0.25. The calculation was carried 
out using the body-wave nonlinear solution. The given steady bending moment is 
based on the model test results. 
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Figure  4.40.  Shear  force  and  bending  moment  as  a  function  of  the  non-
dimensional wave number ka at Fn = 0.0. The calculation was carried out using 
the body-wave nonlinear solution at wave frequencies gLw  = 2.01, 2.41 and 
2.81 (from top to bottom). 
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Figure  4.41.  Shear  force  and  bending  moment  as  a  function  of  the  non-
dimensional wave number ka at Fn = 0.25. The calculation was carried out using 
the body-wave nonlinear solution at wave frequencies gLw  = 2.01, 2.41 and 
2.81 (from top to bottom). 
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4.6 Results in irregular waves 

Model tests of the RoPax ship were carried out in different sea states in irregular 
head waves at forward and zero speeds. In this work, calculated responses and a 
comparison with the model test results are presented in sea stets where the signif-
icant wave heights are Hs = 5 m and Hs = 9 m at forward speed Fn = 0.25 and at 
zero speed, respectively. The results are given as statistical quantities, response 
spectra and peak distributions of responses. The responses are the heave and pitch 
motions and the vertical shear force at fore ship and the vertical bending moment 
at midship.  
 
In the model tests and calculations, the irregular waves were generated using the 
modified Pierson-Moskowitz wave spectrum (ISSC wave spectrum). The wave 
spectrum can be expressed as follows (ITTC, 2002): 
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where T1 is the mean wave period. The mean period and the peak period of the 
wave spectrum, Tp, can be given with the zero crossing period Tz as follows: 

zTT 086.11 =  (4.3) 

zp TT 408.1=  (4.4) 

The irregular long-crested waves were described as a sum of regular wave com-
ponents with different amplitudes and phases. In this work, the linear wave theory 
is used and the irregular waves were generated with the following equation: 

( ) ( ){ }å
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tykxk
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jjjj eeat
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isincosiRe)( ewccV , (4.5) 

where M is the number of the regular wave components. The phases ej were a set 
of uniformly distributed random numbers in the range 0 ... 2p.  The wave ampli-
tude was determined from the wave spectrum Sw(w): 

jjwj Sa ww D= )(2  (4.6) 

In order to obtain non-repeating random seas of arbitrary length, the frequencies 
wj of the harmonic wave components were chosen at random in each narrow 
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frequency band, i.e. there was an equal probability of wj having any value in the 
frequency range 1+££ cjjcj www  where wcj is  the  corner  frequency  of  the  fre-

quency band. The time history of the irregular wave was generated in the same 
way in the model tests and the calculation. 
 
At zero speed, the model test and calculated results are given in sea state Hs = 9.0 
m where the zero crossing period was Tz = 10.5 s (Tp = 14.8 s). At forward speed 
Fn = 0.25, the sea state was Hs = 5.0 m and Tz = 8.5 s (Tp = 12.0 s). The duration 
of the irregular sea states in the time domain calculation was 1 h 15 min in both 
sea states Hs = 5.0 m and Hs = 9.0 m. In the model tests, the durations of the sea 
states were 1.6 hours and 0.6 hours in the sea states Hs = 9 m and Hs = 5 m, re-
spectively. In the model tests, the numbers of encountered waves were approxi-
mately 510 and 370 in the sea states Hs = 9 m and Hs = 5 m, respectively.  
 
In the calculation, the coarse panel mesh of the ship was used and the calculation 
was based on the body-wave nonlinear solution. The calculation parameters were 
the same as in the regular wave analyses; see Section 4.3. However, the fluid 
velocity squared term was excluded from Bernoulli’s equation at forward speed 
Fn = 0.25. The reason for excluding the term was explained in Section 4.5.6. 
Examples of the time histories of the shear force and bending moment in irregular 
waves are given in Figure 4.42. 
 
The mean and standard deviation of the responses are shown in Tables 4.2 and 
4.3 at zero speed and forward speed Fn = 0.25, respectively. The standard devia-
tion is 2

xx ss =  where the variance 2
xs  of the process is defined as follows 
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In the above equation, the mean of the process is x  and the number of samples is 
n.  
 
At zero speed in the sea state Hs = 9 m, the standard deviations of heave and pitch 
in the calculation and model tests are close to each other. The standard deviation 
of the bending moment is the same. However, the shear force is about 20% bigger 
in the calculation than in the model tests. In regular waves, the calculated transfer 
function of the shear force is located at smaller wave frequencies than in the 
model tests. The peak frequency of the wave spectrum is about gLw  = 1.7 

and exists at the frequencies at which the differences in the amplitudes were larg-
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est. Thus, the shear force has higher amplitudes at the wave peak frequency in the 
calculation than in the model tests.  
 
At the forward speed in the sea state Hs = 5 m, the standard deviation of the heave 
motion is about 15% greater in the calculation than in the model tests. The stand-
ard deviation of the pitch is about the same. The shear force is about 10% bigger 
and the bending moment 10% smaller in the calculation than in the model tests. 
The  mean of  the  heave  is  of  the  same order  of  magnitude  as  the  sinkage  of  the  
ship in calm water at forward speed Fn = 0.25. 
 
The exceedance probabilities of the wave crests and troughs are shown in Figure 
4.43 in the sea states Hs = 5 m and Hs = 9 m. The wave spectra are presented in 
Figure  4.44.  The  negative  minimum  peaks  are  given  as  absolute  values.  In  the  
calculation results, the crests and troughs of the wave are close to each other. 
However, the maximum peaks are larger than the minimum peaks in the model 
tests. Hence, the waves in the model tests were sharper at the crests and the 
troughs were smoother giving an asymmetric shape for the irregular waves. How-
ever, the frequency contents of the wave spectra are about the same in the model 
tests and calculation. 
 
At zero speed, the exceedance probabilities of heave, pitch, shear force and bend-
ing moment are presented in Figure 4.45 in the sea state Hs = 9 m. The response 
spectra are shown in Figure 4.46. The peak distributions of heave and pitch fol-
low the model test results well. The sagging bending moment deviates at small 
exceedance probability levels from the model test results. In the sagging condi-
tion, the bending moment is negative (minimum) and the shear force is positive 
(maximum). The response spectra of the motions and the bending moment from 
the time domain method are close to the model test results. Furthermore, the peak 
distribution of the shear force is higher in the sagging condition and there are also 
differences in the hogging condition. The same is also visible in the response 
spectrum of the shear force, which is at a higher level in the calculation than in 
the model tests. The differences can explain the different location of the maxi-
mum shear forces on the frequency band. As stated above, the shear force has 
higher amplitudes at the wave peak frequency in the calculation than in the model 
tests.  
 
At forward speed Fn = 0.25, the exceedance probabilities of heave, pitch, shear 
force  and bending moment  are  shown in  Figure  4.47  in  the  sea  state  Hs =  5  m.  
The response spectra are shown in Figure 4.48. The peaks of the minimum heave 
from the calculation are at a somewhat higher level than the model test minimum 
peaks. The overestimated heave in the calculation can also be seen in the response 
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spectrum of heave. The maximum and minimum peaks of pitch are predicted well 
by the calculation. The frequency content of the pitch in the model tests and cal-
culation are also in good agreement with each other. The peak distributions of the 
shear force and bending moment in the sagging condition are quite close to the 
model test results. However, the exceedance probabilities of the peaks deviate in 
the hogging condition. The peaks of the shear force spectra are at about the same 
level in the calculation and model tests. However, the shear force is shifted slight-
ly to the smaller frequencies. The same was also visible in the transfer function of 
the shear force. The frequency content of the bending moment is underestimated 
by the time domain method. 
 
The irregular wave results are in line with the regular wave results at zero and 
forward speeds. However, the asymmetric wave elevation in the model tests can 
have an effect on the comparison between the model test and the calculation re-
sults. The predictions of the shear force and bending moment are probably higher 
in the model tests than in the calculation due to the asymmetric wave elevation. 
The higher wave crests in the model tests can induce higher loads, especially in 
the sagging condition. At forward speed in the model tests, the heave has higher 
maximum peaks at small exceedance probabilities and exceeds the minimum 
peaks at about the exceedance probability of 0.05. In the calculation, the mini-
mum peaks are always at a higher level than the maximum peaks. Hence, the 
highest crests in the model tests increased the maximum heave peaks.  
 
To summarize, heave and pitch are well predicted by the time domain calculation 
method in irregular waves. At zero speed, the bending moment is also well pre-
dicted but there are differences in shear force predictions. At forward speed, the 
calculation gives rather good predictions for the shear force but the bending mo-
ment is underestimated. 
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Table 4.2. Mean and standard deviation (St.Dev.) of responses in sea state Hs = 
9.0 m and Tz = 10.5 s at Fn = 0.0. 

 Time domain  Model tests 

 Mean x  St.dev. sx Mean x  St.dev. sx 

Wave                       a/Hs 0.000 0.246 -0.003 0.251 

Heave                     h3/Hs –0.004 0.141 0.007 0.137 

Pitch                        h5L/(2pHs) 0.002 0.097 0.003 0.096 

Shear force            V3/(rgHsBL) 0.0018 0.0097 0.0014 0.0080 

Bending moment  V5/(rgHsBL2) –0.0007 0.0030 -0.0006 0.0030 

 

Table 4.3. Mean and standard deviation (St.Dev.) of responses in sea state Hs = 
5.0 m and Tz = 8.5 s at forward speed Fn = 0.25. 

 Time domain Model tests 

 Mean St.dev. Mean St.dev. 

Wave                      a/Hs 0.000 0.247 –0.004 0.250 

Heave                     h3/Hs –0.022 0.156 –0.028 0.136 

Pitch                       h5L/(2pHs) 0.006 0.107 0.004 0.107 

Shear force            V3/(rgHsBL) 0.0075 0.0143 0.0082 0.0130 

Bending moment  V5/(rgHsBL2) –0.0027 0.0042 –0.0029 0.0046 
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Figure 4.42. Examples of time histories of the shear force and bending moment at 
forward speed Fn = 0.25 in irregular head waves Hs = 5 m and Tz = 8.5 s. 
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Figure 4.43. Exceedance probabilities of wave crests and troughs in sea state Hs = 
9.0 m and Tz = 10.5 s at Fn = 0.0 (left) and in sea state Hs = 5.0 m and Tz = 8.5 s 
at forward speed Fn = 0.25 (right). 
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Figure 4.44. Wave spectra in sea state Hs = 9.0 m and Tz = 10.5 s at Fn = 0.0 (left) 
and in sea state Hs = 5.0 m and Tz =  8.5  s  at  forward  speed  Fn = 0.25 (right). 
ISSC is the theoretical wave spectrum calculated with Equation (4.2). 
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Figure 4.45. Exceedance probabilities of peaks in sea state Hs = 9.0 m and Tz = 
10.5 s in head seas at Fn = 0.0 
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Figure 4.46. Response spectra as a function of the wave encounter frequency ew  
in sea state Hs = 9.0 m and Tz = 10.5 s in head seas at Fn = 0.0. At zero speed Fn 
= 0.0: ww =e . 
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Figure 4.47. Exceedance probabilities of peaks in sea state Hs = 5.0 m and Tz = 
8.5 s in head seas at forward speed Fn = 0.25.  
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Figure 4.48. Response spectra as a function of the wave encounter frequency ew  
in sea state Hs = 5.0 m and Tz = 8.5 s in head seas at forward speed Fn = 0.25. 
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4.7 Wave load predictions 

4.7.1 Background 

In this work, existing methods and procedures were applied to determine short-
term  predictions  for  hull  girder  loads  of  the  RoPax  ship.  The  theory  of  the  ex-
treme value statistics can be found from, for example, Ochi (1990), and Price and 
Bishop (1974). In this section, the background and review of the design load 
predictions are given. An approach to predict short-term extreme values from 
time history data are described in the next section. The short-term extreme value 
predictions for the RoPax ship are given in the last section. The calculated predic-
tions are based on the same irregular wave conditions as those used in the model 
tests. The comparison of the exceedance probabilities of the response peaks, the 
response spectra and the statistical values in the model tests and calculation were 
given in Section 4.6. 
 
In structural analyses of ships, one of the first design bases is to define environ-
mental and operating conditions. The environmental conditions are described, e.g. 
waves, winds, currents and ice. In this work, the environmental conditions focus 
on waves. The waves and their occurrence probabilities are normally given in the 
form of wave scatter diagrams for different sea areas, for example, in Global 
Wave Statistics (GWS, 1986). For the extreme wave load predictions of the ships, 
the International Association of Classification Societies (IACS, 2001) gives rec-
ommendations to use the wave data of the North Atlantic sea area. In the rules of 
the classification societies, this sea area is usually defined as the worst sea area, 
and it is intended to be used to design ships for unrestricted service.  
 
In ship structural design, the wave load predictions are usually defined at the 
exceedance probability level of 10-8. This corresponds to an occurrence that is 
expected to be encountered once in 20-25 years. In the IACS recommendations 
(IACS, 2001), a return period of at least 20 years, corresponding to about a 10-8 
probability of exceedance per cycle, is recommended for use in designing wave-
bending moments. The return period is defined as an event that is being exceeded 
on average once every n years.  The  return  period  is  often  used  to  define  a  so-
called n-year wave. Thus, the n-year wave is a wave that is being exceeded on 
average once every n years.  
 
The main operating conditions for ships are the speed and heading with respect to 
waves. The operating profile can vary considerably between different ship types. 
Depending of the ship type, other operating conditions should also be taken into 
account, for example, loading conditions. Furthermore, voluntary speed reduc-
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tions or possible restrictions in speed or heading in high waves should be consid-
ered in order to define extreme waves in which the ship can operate safely. 
 
In linear frequency domain methods, the linear superposition principle can be 
applied to obtain response spectra using transfer functions of responses and 
standard wave spectra. Once the response spectrum is known, the spectral mo-
ments can be determined to obtain the statistical properties of the response. The 
statistical properties can be determined at different sea states and in different 
operating conditions in irregular sea states. In linear methods, the wave elevation 
is Gaussian distributed with zero mean, and the derived responses are then also 
Gaussian  with  zero  mean.  Normally,  it  is  assumed  that  the  response  peaks  are  
narrow-banded and, hence, the response peaks follow the Rayleigh distribution. 
The extreme values in certain short-term conditions can be determined by apply-
ing extreme value statistics (see, e.g., Ochi, 1990). In each short-term condition, 
the environmental and operating conditions are constants and the response is a 
stationary random process. For the ship service life, several different conditions 
have to be considered in defining the long-term predictions for responses. Long-
term predictions for responses can be defined using short-term response statistics 
and a joint probability density function of the different operating and environ-
mental conditions (Sagrilo et al., 2011). The linear spectral method based on the 
long-term distribution of the stress responses can also be applied to fatigue pre-
dictions (Kukkanen and Mikkola, 2004).  
 
In  time  domain  methods,  the  calculation  in  irregular  waves  is  carried  out  in  a  
predefined short-term sea state. The sea state is described by the wave height and 
wave period. In extreme load predictions, the sea state is typically the worst sea 
state that gives a maximum response. The choice of the sea state depends on the 
operating sea area of the ship. The speed of the ship and the heading with respect 
to waves should also be estimated where maximum responses can occur. The 
time domain calculation is then performed in the defined sea state and operating 
conditions. The short-term extreme value of the response can be determined if the 
probability distribution of the response peaks is known. Moreover, the long-term 
prediction for the response can be defined from the time domain results if the 
short-term statistics are known. It is time-consuming to use nonlinear time do-
main methods however, as several different conditions have to be considered. 
 
Short-term sea states in extreme load predictions can be defined as a return period 
of an n-year wave, for example, a 20-year wave. The n-year wave can be deter-
mined from the cumulative distribution function of wave heights. The data for the 
cumulative distribution functions of wave heights are available from the wave 
scatter diagrams. However, the cumulative distribution of the wave heights does 
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not give information on the occurrence probabilities of different wave periods. By 
applying a so-called contour line approach, both the wave periods and wave 
heights can be determined at the same probability of exceedance level (Baarholm 
and Moan, 2001). The contour line in the Hs-Tz plane gives an equal exceedance 
probability for sea states. Thus, the n-year wave, for example, a 20-year wave, is 
defined by means of wave heights and wave periods. The distribution functions 
for wave heights and periods are obtained from wave scatter diagrams. Joint 
probability distributions of Hs and Tz are modelled using a Weibull distribution 
for wave heights and a conditional Log-normal distribution for wave periods at a 
given Hs.  To take into account the heavy weather avoidance in the design wave 
predictions, the limit for wave height can be defined, for example, re-scaling the 
Weibull distribution (Baarholm and Moan, 2001). The rescaling means that the 
extreme wave height will be limited to some realistic wave height at which the 
ship can operate safely.  
 
Several different methods and models exist to determine and describe the short-
term probability distribution of the response peaks (see, e.g., Jensen et al., 2000). 
Stochastic methods and different probability density functions for nonlinear re-
sponses in the time domain were studied by Wang and Moan (2004). They ap-
plied Weibull, Generalized Gamma and Pareto distributions for time history data 
of nonlinear bending moments in waves. They concluded that the Weibull distri-
bution was able to represent the sagging and hogging nonlinearities in hull girder 
loads with reasonable accuracy and that the distribution was suitable for nonlinear 
peak value statistics. The simulation length should be long enough to obtain a 
sufficient number of peak values for the distribution to be estimated (Wu and 
Moan, 2006). The probability distribution of response peaks can also be deter-
mined by applying a Hermite transformation model (Winterstein, 1988). The 
probability distribution based on the Hermite transformation can be determined if 
the lowest statistical moments of the response are known. The lowest statistical 
moments are typically mean, variance, skewness and kurtosis.  
 
Applying stochastic methods, the predicted extreme value does not necessarily 
occur in the time history data. The extreme value is a predicted value and typical-
ly also extrapolated from the calculated time history data. Hence, exactly the 
same hydrodynamic loads are not available. The hydrodynamic loads are some-
times needed as pressures that can be used in the structural strength analyses. A 
straightforward approach is to extrapolate a representative sample that can be 
scaled to the predicted extreme value from the time history data. However, this 
approach can lead to unrealistic wave sequences in which the extreme value can 
occur, for example, in breaking waves. Another straightforward procedure is to 
use the so-called design wave approach. In the design wave approach, one regular 



4. Results of the model test ship
 

185 

sinusoidal wave with a wave height H and period T is  defined  for  which  a  re-
sponse has the same extreme value as that obtained from irregular waves. In this 
regular wave, the time domain calculation is repeated to obtain the time histories 
for the responses. For strongly non-linear responses, this is not necessarily as 
simple as it is for linear cases and the regular wave can give different accelera-
tions and pressure loads to irregular waves. Linear frequency domain methods 
can be applied to determine the possible worst sea states for which the response 
can have the maximum values. The linear methods are used in order to reduce the 
number of sea states for which the time-consuming nonlinear calculation should 
be performed. Recently, methods have been developed to determine so-called 
critical wave episodes that give extreme values for responses in the time domain 
(see, e.g., Jensen, 2009). The critical wave episode is a short sequence of irregular 
waves that gives the extreme value prediction for a response in the time domain. 
The critical wave episode can be determined using first linear frequency domain 
methods. Applying linear frequency domain methods, the time history of irregular 
wave episodes is determined where the extreme value occurs. Using linear meth-
ods, several different conditions can be analysed before the time domain calcula-
tion and hence the computational time can be reduced.  
 
In the following section, the short-term probability distribution of the response 
peaks is briefly explained and the probability distributions of the peaks for the 
RoPax ship are given. In this work, the Weibull distribution function is used to 
determine the probability distribution of the peaks in short-term sea states. The 
short-term extreme value predictions for the RoPax ship are given in the last 
section. The calculations and predictions are given in the same states as those in 
which the model tests were carried out. Hence, the used sea states are not neces-
sarily the worst sea states for the design loads. The design sea states are not de-
fined in this work. The design sea state for the RoPax ship was discussed briefly 
by Kukkanen (2009). It was assumed that the world-wide operation of the ship 
and the Hs-Tz contour lines were determined and that the sea states of different 
return periods were presented. The return period of a 1-year wave was about 10 
m. Hence, the Hs = 9 m wave used in the present work is rather close to the 1-year 
wave. However, it is less than the 20- or 25-year wave, which is the normal de-
sign life of the ships. In model tests,  the wave periods were selected so that the 
wave peak period of the shorter wave period, Tz = 8.5 s,  was close to the maxi-
mum of the transfer function of the vertical bending moment at forward speed Fn 
= 0.25. This maximum value was based on the first calculations that were per-
formed using a linear frequency domain method. The longer zero crossing wave 
period, Tz = 10.5 s, was based on the scatter diagrams, and a period was selected 
at which the highest waves typically occur. The wave height of 5 m was also 
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assumed to be an approximation of the highest wave height at which the ship 
could maintain the forward speed Fn = 0.25. 

4.7.2 Short-term predictions of responses 

Peak distribution is a probability function of maximum values that occur in sam-
ple data. The single extreme value is the maximum of all of the maximum peaks. 
However, the single extreme value can vary between different sample time histo-
ries even if they are calculated in the same conditions, for example, in the same 
irregular waves. This is due to the random nature of the irregular waves. Hence, 
the extreme values for one sample follow its probability distribution. The most 
probable extreme value is defined as an extreme value at which the extreme value 
distribution has the most probable value. However, the exceedance probability of 
the most probable value is high. The extreme value can also be defined using a 
so-called risk parameter or safety factor that defines the probability level at which 
the extreme value can be exceeded, for example, using a 1% exceedance proba-
bility level for the extreme value.  
 
In this work, the peak distributions are determined using a three-parameter 
Weibull cumulative distribution function. The Weibull distribution is given by 
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where the three parameters aw, bw and gw determine the scale, shape and location 
of the distribution, respectively. From the Weibull distribution, the most probable 
extreme value (MPEV) can be derived as follows: 

( ) wNx ww bag
1

ln+=) , (4.9) 

where N is the number of response cycles. The extreme value with the exceed-
ance probability level ar can also be derived from the Weibull distribution. The 
equation is finally the same as that above but using N/ar instead of N in Equation 
(4.9).  
 
In this work, the parameters in the Weibull distribution were determined using 
parameter estimation of moments: mean and variance. The first two moments for 
the Weibull distribution are given in, for example, Ochi (1990). The goodness of 
fit can be studied with a so-called quantile-quantile plot (q-q plot). In the q-q plot, 
the original data are given on the x-axis  and  the  fitted  data  on  the  y-axis. The 
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fitted data are determined with the estimated parameters from the inverse of the 
peak distribution function, i.e. solving x from Equation (4.8). The cumulative 
probability F(x) is based on the original probabilities of the peaks. If the data fit 
the peak distribution perfectly, the q-q plot is a straight line, i.e. y = x. The q-q 
plots of the wave and the vertical bending moment at midship are shown in Fig-
ure 4.49. The figures are given separately for the maximum and minimum peaks, 
i.e. for the wave crests and troughs and for the hogging and sagging bending 
moments. The negative minimum peaks are given as absolute values. The calcu-
lation was performed at the forward speed of the ship Fn = 0.25 in head seas. The 
irregular sea state was Hs = 5 m and Tz = 8.5 s. It can be noted that the peaks of 
the wave follow the Weibull distribution well. However, the bending moment 
deviates from the Weibull distribution, especially the tail of the bending moment 
peaks. On the other hand, the tail part is significant for the extreme value predic-
tions. The so-called peak-over-threshold method (Wu and Moan, 2006) can be 
applied to improve the estimate of the tail part in the peak distribution. In the 
peak-over-threshold method, only the peaks over a threshold are taken into ac-
count in fitting the probability distribution to the response peaks. Hence, the 
weight of the tail can be increased in estimating the parameters to the peak distri-
bution. In this work, the parameters in the Weibull distribution were estimated 
using 90% of the highest peaks. Hence, the threshold levels for the responses 
were rather low. The threshold level was kept at a low level in order to obtain a 
large number of sample peaks in the parameter estimation. The statistical confi-
dence decreases if the number of samples decreases. However, the threshold level 
can be increased if the duration of the sea state in the calculation is longer and a 
larger number of sample peaks are available. 
  
The q-q plot of the shear force and bending moment are shown in Figure 4.50 at 
zero speed and Figure 4.51 at forward speed Fn = 0.25. The sea states in the cal-
culation were Hs = 9 m and Hs = 5 m at zero and forward speeds, respectively. 
The plots are based on 90% of the highest peak values. At the forward speed, the 
tail part is closer to the line y = x than if all the peaks were included. Hence, the 
highest peaks are better modelled in the Weibull distribution. At zero speed, the 
calculated peaks follow the Weibull distribution better than at forward speed. 
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Figure 4.49. Goodness of fit of the Weibull distribution for the wave and bending 
moment given as a q-q plot. In the figures, the forward speed of the ship was Fn = 
0.25, and the wave height and period were Hs = 5 m and Tz = 8.5 s. The wave and 
bending moment are given in non-dimensional forms: wave |z|/Hs and bending 
moment |V5|/(rgBL2Hs). 
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Figure 4.50. The q-q plot based on 90% of the highest peaks for the maximum 
and minimum shear force and the bending moment at Fn = 0.0 in sea state Hs = 9 
m and Tz = 10.5 s. The shear force and bending moment are given in non-
dimensional forms: shear force |V3|/(rgBLHs) and bending moment 
|V5|/(rgBL2Hs). 
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Figure 4.51. The q-q plot based on 90% of the highest peaks for the maximum 
and minimum shear force and the bending moment at forward speed Fn = 0.25 in 
sea state Hs = 5 m and Tz = 8.5 s. The shear force and bending moment are given 
in non-dimensional forms: shear force |V3|/(rgBLHs) and bending moment 
|V5|/(rgBL2Hs). 

 



4. Results of the model test ship
 

191 

4.7.3 Short-term predictions for the model test ship 

The most probable extreme values (MPEV) of the shear force at the fore ship and 
the bending moment at midship were determined from the results of the time 
domain method and from the model tests. The extreme value predictions are 
based on the Weibull distribution. The predictions were determined for the sea 
state duration of three hours. The MPEV predictions from the model test results 
were determined in the same way as the calculated extreme values. The peak 
values and extreme value predictions of the shear force and bending moment are 
given as absolute values. In the sagging condition, the bending moment is nega-
tive (minimum) and the shear force is positive (maximum). In the hogging condi-
tion, the signs of the force and moment are opposite. The linear distributions 
given in  the  figures  below are  based  on  the  Rayleigh  distribution  of  peaks.  The  
linear predictions were determined using the transfer functions of the shear force 
and the bending moment. The transfer functions were based on the body-wave 
nonlinear solution at wave amplitude a/L = 0.013. The transfer functions were 
multiplied by the wave spectra to obtain the response spectra. The variances of 
the responses that are needed in the Rayleigh distribution were determined from 
these response spectra. 
 
In  Table  4.4,  the  MPEV  predictions  are  given  for  the  hull  girder  loads  at  zero  
speed in the sea state Hs = 9 m and Tz = 10.5 s. The MPEV predictions from the 
time domain method for the bending moment are close to the model test predic-
tions. However, the predictions for the shear force with the time domain method 
are overestimated. The same trend was also observed in Section 4.6 comparing 
the response spectra and peak distributions between the time domain method and 
model tests. The peak distributions of the calculated hull girder loads are present-
ed in Figure 4.52. The difference between the linear and nonlinear predictions is 
significant. 
 
At forward speed Fn = 0.25, the MPEV predictions are given in Table 4.5 at the 
sea state Hs = 5 m and Tz = 8.5 s. The MPEV prediction with the time domain 
method for the sagging bending moment (minimum) is the same as the model test 
prediction. The prediction for the shear force with the time domain method in the 
sagging condition (maximum) is also quite close to the model test prediction. 
However, the time domain method overestimates the predictions in the hogging 
condition for the shear force and the bending moment. The peak distributions 
based on the calculation are presented in Figure 4.53.  
 
At zero speed, the ratios of the MPEV sagging and hogging bending moment are 
1.6 and 1.5 in the calculation and model tests, respectively. The ratios of the shear 
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force are 1.5 and 1.4 in the calculation and model tests, respectively. Thus, the 
time domain method overestimates slightly the ratios between the sagging and 
hogging bending moment and shear force.  
 
At forward speed, the ratios of the MPEV sagging and hogging bending moment 
are 1.9 and 1.6 in the calculation and model tests, respectively. Furthermore, the 
ratios  for  the  shear  force  are  2.0  and 1.5  in  the  calculation  and model  tests,  re-
spectively. The differences between the ratios of the time domain method and 
model tests are mainly due to the underestimated hogging shear forces and bend-
ing moments obtained from the calculated time histories.  
 
The ratio of the sagging and hogging loads is greater at forward speed than at 
zero speed. In the model tests at forward speed, the relative motions at the bow 
were larger and hence the nonlinear effects due to the changes in hull geometry 
during water entry and exit were also larger. This increased the nonlinearities in 
the hull girder loads. At zero speed, in addition to the loads on the bow, the flat 
bottom stern entered the waves, which can increase the sagging forces and mo-
ments. The calculation and model test results show that the hydrodynamic loads 
on the bow due to the forward speed induce greater differences in the sagging and 
hogging loads than the loads on the bow and the stern at zero speed. However, the 
wave impact loads can induce dynamic responses on the hull girder, i.e. hull 
girder vibrations in addition to the rigid hull girder responses. However, the pos-
sible effects of the stern impacts cannot be seen directly in the results presented 
here  because  the  hull  girder  was  assumed  to  be  rigid  in  the  calculation.  In  the  
model tests, the dynamic of the ship model was not scaled and the time histories 
were also low-pass filtered. 
 
The rules of the classification societies give the sagging and hogging bending 
moments and shear forces for ships. Hence, it is possible to compare the predicted 
sagging and hogging loads with the values obtained from the rules. The ratios of 
the sagging and hogging loads for the bending moment at midship and for the 
shear force at fore ship are the same in the rules (IACS, 2010). From the rules, the 
ratio of sagging and hogging is 1.3. Thus, the rule gives a lower estimate for the 
sagging and hogging ratio. At zero speed, the calculated ratios are closer to those 
of the rule. However, the rule can set special requirements for the bending mo-
ment and shear force if the ship’s main dimensions are unconventional or the 
forward speed is high. For this particular ship, the block coefficient is lower than 
the lower limit in the rules. For the RoPax ship, the block coefficient is CB = 0.55 
and the coefficient should be CB > 0.6 in the rules. The speed is also one factor in 
the rules that can cause special requirements for the ship. These can increase the 
rule bending moment and shear force values in sagging or in both sagging and 
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hogging. It should also be noted that the calculated results are only based on two 
speeds at two sea states, and different extreme values can be obtained from other 
sea states. Hence, the ratio between calculated sagging and hogging moments and 
shear forces can also be different. Furthermore, to obtain the extreme design 
values for the hull girder loads, several sea states should be included in the anal-
yses, especially higher waves and different wave periods. Moreover, the reliabil-
ity of the predictions depends on the duration of the sea state. The reliability of 
the predictions can be improved using a longer duration of the sea state in both 
the calculation and model tests. 

Table 4.4. Most probable extreme value (MPEV) of the bending moment and 
shear force in the sea states of three hours, Hs = 9.0 m and Tz = 10.5 s, Fn = 0.0 in 
head seas. 

 Time domain 
Minimum 

Time domain 
Maximum 

Model tests 
Minimum 

Model tests 
Maximum 

Bending (|V5|/rgBL2Hs) 0.013 0.008 0.012 0.008 

Shear (|V3|/rgBLHs) 0.027 0.041 0.023 0.033 

 

Table 4.5. Most probable extreme values (MPEV) of the bending moment and 
shear force in the sea states of three hours, Hs = 5.0 m and Tz = 8.5 s, speed Fn = 
0.25 in head seas. 

 Time domain 
Minimum 

Time domain 
Maximum 

Model tests 
Minimum 

Model tests 
Maximum 

Bending (|V5|/rgBL2Hs) 0.021 0.011 0.021 0.013 

Shear (|V3|/rgBLHs) 0.034 0.068 0.041 0.062 
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Figure 4.52. Peak distributions of shear force and bending moment at Fn = 0.0 in 
sea state Hs =  9  m  and  Tz =  10.5  s.  The  dots  are  the  maximum  and  minimum  
peaks from the time domain calculation. 
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Figure 4.53. Peak distributions of shear force and bending moment at forward 
speed Fn = 0.25 in sea state Hs = 5 m and Tz = 8.5 s. The dots are the maximum 
and minimum peaks from the time domain calculation. 
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5. Discussions 

5.1 Calculation method 

The time domain method presented in this work is based on an inviscid and in-
compressible fluid and an irrotational flow. Hence, the fluid flow can be present-
ed by means of the velocity potential. The velocity potential satisfies boundary 
conditions on the body surface and free surface and far away from the body at 
infinity. The boundary value problem is expressed in the space-fixed coordinate 
system. The exact body boundary condition is used in the body nonlinear solu-
tion. The free surface boundary condition is linear. The free surface boundary 
condition is satisfied on the mean free surface and the exact body boundary con-
dition on the instantaneous wetted surface of the body. The amplitudes of the 
body motions can be large but the wave amplitudes are assumed to be small. The 
velocity potential is solved using the transient Green function in the time domain 
and the numerical solution is based on the source formulation, applying the con-
stant panel method. 
 
The time derivative of the perturbation velocity potential in Bernoulli’s equation 
is solved with the acceleration potential method. The time derivative of the veloc-
ity potential is expressed using the potential function j. The potential function 
otherwise satisfies the same boundary conditions as the perturbation velocity 
potential but the body boundary condition is different. The potential function j is 
solved with a similar source formulation as the perturbation velocity potential.  
 
In the acceleration potential method, the body accelerations are not yet solved 
from the equations of motion when they are needed in the boundary condition of 
the potential function. In the present time domain method, the acceleration poten-
tial method is based on an iterative solution. A predictor-corrector scheme is used 
in the time integration of motions and the corrector is applied once at every time 
step in solving the equations of motion. The iteration can be repeated by applying 
the corrector again and solving the equations of motion until a desired accuracy 
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has  been reached.  However,  only  one  iteration  cycle  was  used  in  this  work.  In-
creasing the number of iterations will increase the calculation time. 
 
The given acceleration potential method can be further developed. In the expres-
sion of the perturbation velocity potential, Equation (2.77), the integral equation 
that includes the memory part of the Green function can be differentiated analyti-
cally with respect to time. Hence, the contribution of the time derivative of the 
velocity potential from the memory part can be obtained directly. Thus, only the 
time derivative of the impulsive part needs to be solved with the source formula-
tion. The time derivative of the impulsive part can be solved by deriving a bound-
ary condition for the term and applying a source formulation in the same manner 
as that used in the present acceleration potential method. The solution of the ac-
celeration potential can also be coupled with the forces and moments in the equa-
tions of motion as presented by Wu and Eatock Taylor (1996), and Bandyk and 
Beck (2011). This could give a single representation for the unknown body accel-
erations that can be solved without iteration. However, this requires a further 
study of how this approach can be implemented in the present time domain meth-
od. 
 
The memory part of the transient Green function is solved by applying a numeri-
cal integration. The numerical integration is based on the adaptive Gauss-Kronrod 
quadrature formulae. The numerical integration gives the desired accuracy and 
the numerical integration can be applied to the whole integration domain on the 
b-m plane. However, the numerical integration is time-consuming compared with 
the series and asymptotic solutions. The accuracy of the numerical integration can 
also be worse if the parameter m is approaching zero, i.e. the vertical coordinates 
of the source and field points are approaching the free surface. In the present 
calculation method, the Bessel function solution for the memory part and its de-
rivatives are used when m = 0. 
 
In the present calculation method, the values of the memory part of the transient 
Green function are interpolated from the pre-calculated table during the calcula-
tion. The interpolation algorithm is based on the finite element approximation of 
the memory part in the b-m plane. The use of the pre-calculated Green function 
values reduces the computation time considerably. The finite element representa-
tion gives satisfactory approximation for the values of the memory part of the 
transient Green function in the practical computation. 
 
The memory part of the transient Green function is a highly oscillating function 
close to the free surface. The oscillation of the memory part increases at small 
values of the parameter m when the non-dimensional time b increases. If the pan-
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els are non-wall-sided close to the free surface, the parameter m takes small val-
ues. This can cause instabilities in the solution, and the solution can be divergent 
in the time integration. The memory part is also integrated over the panel area 
using midpoint or Gauss quadrature rules that give an approximation for the inte-
gral. The integration accuracy of the memory part can be improved using higher 
order integration rules. However, further studies are needed to investigate reasons 
and possible solutions for the instabilities. 
 
In the calculation method, the body surface is discretized by panels, and numeri-
cal algorithms are used to solve the hydrodynamic boundary value problem. In 
the body nonlinear solution, the floating position of the body is updated at every 
time step. The pressure is determined on the instantaneous wetted surface of the 
body up to the mean water level. In the body linear solution, the floating position 
of the body is not updated and the pressure is determined on the mean wetted 
surface of the body. Furthermore, the time integrations are applied to solve the 
motions and the convolution integral of the transient Green function. Hence, the 
accuracy of the numerical solution depends on the applied numerical algorithms 
and the panel and time step sizes, i.e. the spatial and temporal discretization. 
 
The constant panel mesh approach is used in the calculation method where the 
panel sizes and geometries are constants during the calculation. As the panel 
mesh is not updated during the calculation, the velocities and accelerations on the 
body surface can be evaluated exactly. If the panel mesh is updated during the 
calculation, the distortions of the panels have to be taken into account to deter-
mine the velocities and accelerations. 
 
The line integral appears in the integral equations and the collocation points of 
the sources are approximated at the centroid of the panels. The line integral is 
also not taken into account properly in the constant panel mesh approach in the 
body nonlinear solution because it is solved for the panels that are closest to the 
mean water level. Hence, the line integral is not solved continuously on the mean 
waterline at the intersection of the body and the free surface. The influence of the 
memory effect is lost when a panel becomes dry. Further studies are needed to 
investigate the effect of the line integral on the response predictions and how to 
implement the line integral correctly to the constant panel mesh approach in the 
body nonlinear solution. 
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5.2 Simple body geometries 

The time domain method was verified by calculating the added mass and damp-
ing coefficients in the heave for a hemisphere with the body linear solution. The 
calculated added mass and damping coefficients are in good agreement with an 
analytical solution. The presence of the irregular frequencies can be seen in the 
results of the added mass and damping coefficients. The irregular frequencies can 
exist in the integral equation solutions for bodies oscillating on the free surface. 
Methods have been developed to remove the irregular frequencies (see, e.g., Lee 
and Sclavounos, 1989; Lee et al., 1996). The methods for removing irregular 
frequencies are based on an additional integral representation for the interior 
problem, i.e. inside the body at the mean water level. However, removing the 
irregular frequencies in the body nonlinear solution is not necessarily straightfor-
ward because the body position is updated at every time step. The panel mesh for 
the interior problem should be updated at every time step on the mean water level 
and for this reason the constant panel mesh approach cannot be applied. 
 
The calculation method was also verified by calculating the linear heave radiation 
forces for two heaving cones. The linear heave radiation forces were determined 
using the time domain method and two simple solutions when the cones were in 
the forced heave motion at the free surface in calm water. The time domain meth-
od gives the same results as the two simple solutions. The two simple solutions 
are based on the added mass and damping coefficients and the impulse response 
function of heaving cones. The time domain method and the two simple solutions 
have to give the same results because the solutions of these different methods 
have been derived from the same boundary value problem.  
 
The body nonlinear solution was also used to study nonlinearities when the cones 
were forced to oscillate with different heave frequencies and amplitudes at the 
free surface in calm water. The studies show that the time domain method can 
predict nonlinearities in heave forces and that the nonlinearities increase if the 
heave amplitude increases. The nonlinearities are greater for the cone with the 
smaller deadrise angle. Experimental results for cones in harmonic heave motions 
are not available. However, cones are simple bodies to investigate with calcula-
tion methods, and nonlinear effects can be studied with different deadrise angles. 
Experiments of cones in harmonic heave motions are recommended to obtain 
validation data for nonlinear hydrodynamic forces. 
 
Furthermore, the acceleration potential method gives a smooth prediction for the 
heave radiation forces of the cones. However, the forces from the backward dif-
ference method include sharp spikes in time histories. A calculation was also 
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carried out to study the differences between the constant and spline-fitted panel 
meshes. Time histories calculated with the constant panel mesh include disconti-
nuities. The discontinuities exist when a panel row changes from dry to wet or 
vice versa, i.e. panels are included or excluded from the solution. However, the 
amplitude predictions of the heave forces with the constant and spline-fitted panel 
meshes are close to each other.  
 
Motions, exciting forces and moments, and added mass and damping coefficients 
were determined for a Wigley hull form to validate the calculation method. The 
calculated heave, pitch and exciting forces and moments are in close agreement 
with the experimental results. However, the relative motion at the bow deviates 
from the experimental results. One reason for the poor prediction could be body-
induced  steady  and  unsteady  bow  waves  that  are  not  taken  into  account  in  the  
calculation method. The diagonal terms of the added mass and damping coeffi-
cients in the heave and pitch are in good agreement with the experimental results. 
The biggest deviations exist in the cross-coupling damping terms. The accelera-
tion potential and backward difference methods give equivalent results for the 
added mass and damping coefficients. 
 
The steady flow effects on sinkage and the wave-making resistance were studied 
using a Wigley resistance hull form, and comparisons between the calculation and 
model test results are presented. The comparisons show that the time domain 
method can predict sinkage and the wave-making resistance for the Wigley hull 
form.  

5.3 Model test ship 

Model tests were carried out for the RoPax ship in calm water and in regular and 
irregular head waves. The ship represents a typical hull form for roll-on roll-off 
and passenger ships. The model test ship has a bulbous bow and a flat bottom 
stern. Model test results for the ship motions and, especially, for the hull girder 
loads are seldom presented for this type of hull forms. In the model tests, the ship 
motions, accelerations and hull girder loads were measured. The vertical bending 
moment was measured at midship and the vertical shear force at fore ship. The 
responses were determined with the time domain method in the same conditions 
as in the model tests.  
 
The RoPax ship has a flat bottom stern and a large part of the stern is above the 
still water level. In the time domain method, the hull of the ship is discretized by 
panels, and the stern panels of the RoPax ship are almost horizontal above the 
still water level. At forward speed, the flat bottom stern is at least partly in the 
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waves because of the sinkage of the ship and the wave formation. In waves, the 
wetted surface of the stern varies constantly due to the ship motions and waves. If 
the horizontal panels are close to the free surface, the solution can begin to oscil-
late and the oscillation can finally lead to a divergent solution. To avoid unstable 
oscillation, a criterion is applied for the vertical distance of the centroid of the 
panel  from the  free  surface.  This  criterion  was  applied  with  the  body nonlinear  
solution in the given calculation results for the RoPax ship.  
 
Low-pass filtering of the time series is also necessary in order to obtain a conver-
gent solution for the motions of the RoPax ship. The variation in the wetted sur-
face of the hull with respect to the mean water level can induce abrupt and rapid 
changes to the fluid flow and, consequently, to the solution of the velocity poten-
tial. The abrupt and rapid changes can induce noise to the solution. The low-pass 
filter is applied to smooth the time histories of the motion terms that appear in the 
boundary conditions of the velocity and acceleration potentials. Hence, the ap-
plied low-pass filtering gives a smooth solution for the source strengths, and the 
velocity and acceleration potentials. This also improves the accuracy of the time 
integration of the motions. However, the cut-off frequency of the filter should be 
at least about five times higher than the oscillation frequency of the response in 
order to avoid attenuation of the response; though, the attenuation depends on the 
filter type and the characteristics of the filter. 
 
Furthermore,  small  panel  sizes  should  be  used  and the  time step  size  should  be  
short if the body has non-wall-sided panels close to the free surface. The accuracy 
of the integrals over the panel areas can be improved by increasing the number of 
points in the Gauss quadratures. The midpoint rule is sufficient if the geometry of 
the hull is smooth and wall-sided close to the free surface. Higher order integra-
tion rules should be applied to body geometries that have small inclination angles 
close to the free surface. However, the computational time increases if the num-
ber of integration points increases. In this work, the results given for the RoPax 
ship were calculated with the midpoint rule. 
 
The acceleration potential and backward difference methods give the same pre-
dictions for the motions and hull girder loads with the body linear solution. How-
ever, the two methods give different predictions at forward speed in the case of 
the body nonlinear solution. Furthermore, the calculations show that the accelera-
tion potential and difference methods give different predictions for the heave 
radiation-diffraction forces. The radiation-diffraction force calculated by the 
applied backward difference method with the body nonlinear solution is not con-
sistent with the body linear solution. The radiation-diffraction force also deviates 
clearly compared with the results of the acceleration potential method. The accel-
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eration potential method gives a similar type of radiation-diffraction force in the 
body linear and nonlinear solutions. The acceleration potential method also gives 
stable and reliable results for the responses and hydrodynamic forces. 
 
Irregular frequencies were not detected as existing for the RoPax ship in the fre-
quency ranges used in this work. This was confirmed by the heave and pitch 
added mass and damping coefficients calculated with a linear frequency domain 
method. 
 
In calm water, loads and motions were calculated and measured in the model 
tests. The agreement with the calculations and model tests is quite good for the 
steady loads and sinkage of the ship. The shear forces and bending moments 
increase when the speed increases. The forward speed effects induce sagging 
loads on the hull girder. The steady bending moment and the shear force are both 
in the order of about 10% of the still water values. The calculation in calm water 
was also repeated without the fluid velocity squared term 25.0 fÑ  in Bernoulli’s 

equation. The terms in Bernoulli’s equation are expressed in the space-fixed co-
ordinate system, and the meaning of the terms was discussed at the end of Section 
2.3.2. It was pointed out that the term t¶¶f  is  not  zero  for  bodies  in  steady  
translational motion if the term is defined in the space-fixed coordinate system. 
The fluid velocity squared term has an effect on sinkage and the hull girder loads 
at forward speed but the significance is not great compared with the effects due to 
the  other  terms  in  Bernoulli’s  equation.  In  calm  water,  the  other  terms  are  the  
hydrostatic pressure and the pressures due to the terms j and fÑ×-U .  The po-
tential function j is zero if the body is on pure constant translational motion in 
calm water. At constant forward velocity U0, the component xU ¶¶- f0  induces 
mean shift in the heave force and, for this reason, the term has an effect on the 
sinkage of the ship and further on the steady hull girder loads. It should be noted 
that  the  pressure  terms  in  Bernoulli’s  equation  in  this  work  are  defined  in  the  
space-fixed coordinate system and not with respect to a moving frame. In the 
moving coordinate system, the pressure equation has been derived by, for exam-
ple, Milne-Thomson (1968, p. 89, 3-61). The linearized pressure equation with 
steady pressure terms formulated in the moving coordinate system at the forward 
speed of ships has been presented by, for example, Kim (2005). 
 
In regular waves, the time domain method generally gives good predictions for 
the motions and hull girder loads compared with the model test results. The calcu-
lated predictions are better at zero speed than at forward speed. The body nonlin-
ear solution also gives better results than the body linear solution at forward 
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speed. The time domain method can predict the differences between sagging and 
hogging bending moments and shear forces.  
 
The body linear solution overestimates motions and loads at forward speed. The 
body nonlinear solution gives improved predictions. In the body nonlinear solu-
tion, the exact body boundary condition is used and the instantaneous floating 
position of the ship is updated at every time step. Thus, the coupling of the actual 
floating position of the body geometry and the steady flow is taken into account 
in the body nonlinear solution. In the body linear solution, this is only taken into 
account on the mean wetted surface of the hull.  
 
A large part of the stern is also above the mean water level in the body linear 
solution. As the floating position is not updated in the body linear solution, this 
part is not included in the solution. However, the flat bottom stern can induce an 
additional damping effect that is not taken into account in the body linear solu-
tion. Furthermore, the calculated vertical accelerations are higher at the bow 
compared with the model test results. Hence, it is possible for the ship model to 
pitch about an axis that is farther astern in the calculation than in the model tests. 
Hence, the heave at the centre of gravity of the ship is greater with the same pitch 
angle. This can be partly explained by the overestimated heave in the calculation 
at forward speed.  
 
At forward speed, the free surface elevation around the ship is a combination of 
the steady and unsteady wave patterns, in addition to the incoming waves. The 
wave formation due to the steady and unsteady flow at the stern of the ship can 
have an effect on the calculated predictions at forward speed. In the model tests at 
forward speed, the stern was always at least partly in the waves because of the 
ship motions and the free surface elevation at the stern. The actual free surface 
elevation is not taken into account in the calculation method because the linear 
free surface boundary condition is satisfied at the mean water level. The calcula-
tions show that ignoring the fluid velocity squared term 25.0 FÑ  in Bernoulli’s 

equation improves the predictions for the motions and loads. Ignoring the term in 
Bernoulli’s equation is consistent with the linear free surface boundary condition. 
It is possible that the fluid velocity squared term gives an inaccurate prediction 
for the motions and loads because of the fluid flow at the stern and the large mo-
tions, at the same time. The rapid changes in the wetted surface of the flat bottom 
stern can have an effect on the solution accuracy. The free surface elevation at the 
stern  has  an  effect  on  the  flow  and  the  method  does  not  take  into  account  the  
actual free surface elevation at the stern. Hence, the calculated solution may give 
an  incorrect  prediction  for  the  fluid  flow,  especially  for  the  steady  flow  at  the  
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stern. However, further studies are needed to investigate the effect of the steady 
and unsteady flow and the wave formation at the flat bottom stern.  
 
In the body nonlinear solution, the floating position of the ship is updated at every 
time step, and the exact body boundary condition is satisfied on the actual wetted 
surface below z = 0. Hence, the time domain method can predict the nonlineari-
ties that arise from the changes in the hull geometry when the ship is oscillating at 
the free surface. The bow of the ship model entered the waves and the pressures 
acting on the bow increased the sagging loads. At zero speed, the relative motion 
induced rapid changes in the wetted surface area of the flat bottom stern, increas-
ing the nonlinearities. The harmonic analysis shows that the relative contribution 
of the zero-order harmonic component, i.e. the mean, has a greater effect on the 
differences between the sagging and hogging loads than the higher order harmon-
ic components. A large part of the mean of the harmonic components is also ex-
plained by the steady part at low wave amplitudes. At higher wave amplitudes, 
the steady contribution is small, and the largest contribution in the differences of 
the sagging and hogging loads is due to the ship motions in waves. Nevertheless, 
the results from regular waves do not include the effects due to the sum and dif-
ference frequencies, i.e. the excitation forces and moments from other frequencies 
than the encountered wave frequency. The irregular wave results include the 
nonlinear effects due to the sum and difference frequencies. The contribution of 
the sum and difference effects on nonlinearities of loads in irregular waves was 
not studied in this work. However, the harmonic analysis showed that the contri-
butions of the higher order harmonic components are relatively small, and it can 
be assumed that the major part in nonlinearities occurs at the encountered wave 
frequencies, and the sum frequency effects are small.  
 
In the model tests at forward speed, it was observed that the stern was not out of 
the waves at small wave amplitudes. At the highest wave amplitude in the tests, 
the emergence of the stern was still moderate and at least part of the flat bottom 
stern was in the waves. However, at zero speed and high wave amplitudes, the 
stern impacts occurred when the flat bottom stern entered the waves. The impacts 
at the flat bottom stern can influence the sagging loads in the model test results. 
However, at forward speed, the submergence of the bow into the waves has a 
greater effect on the differences between the sagging and hogging loads than the 
zero-speed stern impacts. Based on the model test results, the effect of the im-
pacts was small on the rigid hull girder loads. However, the stern impacts at zero 
speed can induce dynamic responses on the hull girder. In this work, the hull 
girder is assumed to be rigid and the dynamics of the hull girder is not taken into 
account. Further studies are needed to include the wave impact loads in the calcu-
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lation method, and investigations should be carried out to study the effect of wave 
impact loads on hull girder loads and dynamic responses. 
 
Furthermore, the highest wave height in the regular wave tests is perhaps too high 
for the calculation method at forward speed Fn = 0.25. The wave height is per-
haps also too high for the ship because a large part of the bottom of the bow rises 
out  of  the  waves.  In  heavy  weather,  the  ship  will  reduce  the  speed  if  there  are  
excessive ship motions. The bow emergence out of the waves and the deck wet-
ness could also have increased the uncertainties in the model test results. 
 
In irregular head waves, the comparisons between the calculated and model test 
results are presented at zero and forward speeds. The results are given for sea 
states at which the significant wave heights are Hs = 9 m and Hs = 5 m at zero and 
forward speeds, respectively. The comparisons are presented as statistical values, 
peak distributions of response amplitudes and response spectra. In the peak distri-
butions, the differences in the sagging and hogging shear force and the bending 
moment are clear. The ratio of sagging and hogging is also greater at forward 
speed than at zero speed. The irregular wave results are in line with the regular 
wave results at zero and forward speeds. In irregular waves, heave and pitch are 
well predicted with the time domain method. At zero speed, the bending moment 
is well predicted, but there are differences in shear force predictions. At forward 
speed, the calculation gives rather good predictions for the shear force, but the 
bending moment is underestimated.  
 
In the model tests, the crests of the irregular waves were higher than the absolute 
values of the troughs, especially in the sea state Hs = 5 m where the tests at for-
ward speed were carried out. This can have an effect on the comparison between 
the model test and the calculation results. One reason for the asymmetric wave 
profile could be the capability of the wave-maker to generate sinusoidal waves in 
the model basin (Mikkola, 2006). However, the calculation method is based on 
the  linear  wave theory,  and higher  order  waves  are  not  taken into  account.  The  
nonlinearities in waves will increase if the wave heights increase and the waves 
are becoming steeper. Hence, the wave profile can include higher order compo-
nents  that  increase  the  wave  crests,  and  the  troughs  become  smoother.  Higher  
order wave theories in the calculation method should be investigated starting 
from, for example, a second-order wave theory. Thus, the effects of the higher 
order waves on the hull girder loads could be further studied.  
 
Short-term extreme value predictions are given for the shear force and the bend-
ing moment at two sea states: Hs = 5 m and Hs = 9 m. The extreme value predic-
tions are based on the Weibull distribution. The extreme values are given as the 
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most probable extreme values in three-hour sea states. The ratios between the 
most probable extreme values of the sagging and hogging bending moments are 
greater at forward speed than at zero speed. Based on the calculation, the ratios of 
the sagging and hogging bending moment are 1.6 and 1.9 at zero and forward 
speeds, respectively. Furthermore, based on the model tests, the ratios of the 
sagging and hogging bending moment are 1.5 and 1.6 at zero and forward speeds, 
respectively. At zero speed, the calculated prediction is close to the model test 
result. The differences in the calculated and model test ratios are mainly due to 
the underestimated loads in the hogging condition. At forward speed, the relative 
motions at the bow are greater and, for this reason, the nonlinear effects due to 
the changes in the hull geometry during water entry and exit are also greater. This 
increases the nonlinearities in the hull girder loads. At zero speed, the flat bottom 
stern enters the waves, which increase the sagging shear force and bending mo-
ment. However, the hydrodynamic loads at the bow due to the forward speed 
induce greater differences into the sagging and hogging loads than the loads due 
to the stern at zero speed. 
 
It  should  be  noted  that  the  predictions  of  the  extreme values  are  based  on  only  
two speeds at two sea states, and different results will be obtained in other condi-
tions. The ratios between calculated sagging and hogging moments and shear 
forces may be different. Furthermore, to obtain the extreme design values for the 
hull girder loads, several sea states should be included in the analyses. The loads, 
especially those at different wave periods in higher waves, should be investigated. 
Moreover, the confidence of the stochastic predictions depends on the duration of 
the sea state. The confidence of the predictions can be improved using a longer 
duration of sea states in the calculation and model tests.  
 
The nonlinear time domain method is time-consuming if it is applied to predict 
extreme values of responses in several different operating and environmental 
conditions. Linear frequency domain methods are still important to define the 
extreme values and design sea states for different responses. The number of sea 
states in which the time domain calculation should be carried out can be reduced 
by means of the linear predictions. The linear methods can also be applied to 
determine the critical wave episodes where the nonlinear time domain analyses 
can be performed to obtain time histories for the nonlinear extreme values. 
 
In this work, the calculation results are only presented in head seas. Model test 
results are also available for the RoPax ship in oblique waves at zero speed. The 
developed time domain method includes all of the six degrees of freedom at arbi-
trary heading angles. However, the verification and validation of the calculation 
method in oblique waves are missing. Hence, verification and validation in 
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oblique waves should be performed so that the developed time domain method 
can be applied to different kinds of wave load predictions in structural analyses. 
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6. Conclusions 
 
In this work, wave loads of ships were studied by applying a numerical method 
and experimental results. The aim of the work was to increase understanding of 
wave loads for modern ship types and to develop a reliable and practical calcula-
tion method for wave loads in regular and irregular waves that can be applied to 
ship-wave interaction problems in structural analyses. 
 
In this work, a time domain calculation method for linear and nonlinear hydrody-
namic loads of floating bodies in waves is presented. The perturbation velocity 
potential is solved using source distributions on the body surface in the constant 
panel method. The source distributions are represented by means of the transient 
Green function. The time derivative of the velocity potential in Bernoulli’s equa-
tion is solved using an acceleration potential method. In the acceleration potential 
method, a potential function is solved with a similar source formulation to that of 
the perturbation velocity potential. The acceleration potential method gives a 
reliable and stable solution for the hydrodynamic pressure. The calculated results 
show that the time domain method can be applied to ship-wave interaction prob-
lems to obtain linear and nonlinear wave loads in the wave frequency range. 
 
The memory part of the transient Green function is solved by a numerical integra-
tion applying an adaptive Gauss-Kronrod quadrature formula. Comparisons with 
the series and asymptotic solutions show that the numerical integration is accurate 
but time-consuming. In the time domain calculation, the values of the memory 
part of the transient Green function are determined from the pre-calculated solu-
tions. The pre-calculated solutions are presented as a finite element approxima-
tion of the memory part with correct solutions at the nodal points. Using the pre-
calculated values of the memory part, the computational time is reduced consid-
erably.  
 
The verification of the method is presented for a hemisphere and cones, and 
Wigley hull forms are used in the validation. For the hemisphere, the time domain 
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method gives similar results for the heave added mass and damping coefficients 
as an analytical solution. For two cones with different deadrise angles, linear 
heave radiation forces were determined by applying two simple solutions in addi-
tion to the time domain method. The two simple solutions were based on the 
added mass and damping coefficients, and the impulse response function of the 
cones in forced heave motions. It has been proved that the time domain method 
gives the same results as the two simple solutions. The nonlinear effects of heave 
radiation force were also investigated. It is shown that the nonlinearity in the 
heave radiation force of the cones is significant compared with the linear predic-
tions. For the Wigley hull form, the comparison between the existing experi-
mental results and the time domain method shows good agreement of added mass 
damping coefficients, exciting forces and moments, and the heave and pitch mo-
tions. The calculated sinkage and wave-making resistance coefficients of the 
Wigley resistance hull form in calm water are also close to the experimental re-
sults. 
 
In this work, model test results for a roll-on roll-off passenger ship are presented. 
The model test results are given for the ship motions, vertical shear forces at fore 
ship, and vertical bending moments at midship in regular and irregular head 
waves at zero and forward speeds. The time domain method was applied to pre-
dict responses and the calculated predictions were compared with the model test 
results.  In  addition  to  the  tests  in  waves,  model  tests  were  carried  out  in  calm  
water to study the steady flow effects on responses. 
 
In calm water, the model test results show that the steady bending moment and 
shear force increase if the forward speed increases. The calculated results are in 
good agreement with the model test results but the uncertainty of the calculated 
predictions increases if the forward speed exceeds Fn = 0.20. For the model test 
ship, the steady hull girder loads are in the order of 10% of the still water loads at 
forward speed Fn = 0.25. The contribution of the steady bending moment is sig-
nificant in the differences of the sagging and hogging bending moments in low 
wave amplitudes but the contribution decreases when the wave amplitude in-
creases.  
 
The model test results show that differences between the sagging and hogging 
shear force and the bending moment are significant. The nonlinearities are greater 
at forward speed than at zero speed. The time domain method can predict the 
nonlinearities in the sagging and hogging shear forces and bending moments in 
regular and irregular waves. In the body nonlinear solution, the floating position 
of the ship is updated at every time step and the exact body boundary condition is 
satisfied on the actual wetted surface. Thus, the time domain method can predict 



6. Conclusions
 

209 

the nonlinearities that arise from the changes in hull geometry when the ship is 
oscillating in waves.  
 
The acceleration potential method gives a reliable and stable solution for hydro-
dynamic forces and moments. Moreover, the acceleration potential method gives 
consistent predictions in body linear and nonlinear solutions for heave radiation-
diffraction forces. However, the applied backward difference method gives clear-
ly different results, and the predictions for the model test ship include uncertainty 
in the body nonlinear solution if the ship has forward speed and the motions are 
large. The acceleration potential and backward difference methods give similar 
predictions for hydrodynamic forces and moments with the body linear solution. 
 
In regular waves at zero speed, the time domain method gives good prediction for 
the motions and hull girder loads compared with the model test results. At for-
ward speed, the body nonlinear solution gives better predictions than the body 
linear solution. In the body nonlinear solution, the instantaneous floating position 
of the ship is updated at every time step and the coupling of the actual body ge-
ometry and the steady flow are taken into account. In the body linear solution, the 
floating position of the ship is not updated and the steady flow is only calculated 
on the mean wetted surface of the hull.  
 
Furthermore, the free surface elevation around the ship is a combination of the 
steady and unsteady wave patterns due to the ship’s motions, in addition to the 
incoming waves. However, the velocity potential is only solved up to the undis-
turbed mean water level. The actual free surface elevation is not taken into ac-
count in the time domain method. The free surface boundary condition is linear-
ized at the mean water level. In the linear form of the free surface condition, the 
fluid velocity squared term does not appear because it is a higher order term. The 
calculation shows that ignoring the fluid velocity squared term in Bernoulli’s 
equation  improves  the  predictions  for  the  responses.  Ignoring  the  term  in  Ber-
noulli’s equation is consistent with the linear free surface boundary condition.  
 
In irregular waves, the calculated heave and pitch motions are in close agreement 
with the model test results, comparing the peak distributions, response spectra 
and statistical values. At zero speed, the time domain method gives good predic-
tions for the bending moment, but the shear force deviates from the model test 
results. At forward speed, the calculated shear force is close to the model test 
results but the bending moment is underestimated. The short-term extreme values 
were also predicted for the shear forces and bending moments in short-term sea 
states. The extreme values were determined using the time histories from the 
model tests and from the calculation. Based on the model test results, the ratios of 
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the extreme values between the sagging and hogging shear force and bending 
moment vary from 1.4 to 1.6.  
 
Further studies are needed to investigate the effect of the steady and unsteady 
flows and waves at the flat bottom stern. Moreover, the time domain method 
should be further improved to develop the solution of the acceleration potential 
method. The acceleration potential can be decoupled to the memory and impul-
sive parts and only the impulsive part has to be solved with the panel method. 
Further studies are also needed to include the impact loads in the time domain 
method and to investigate the effect of the impact loads on hull girder loads and 
dynamic responses. The calculation method should also be verified and validated 
in oblique waves. 
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Numerical and experimental studies of nonlinear 
wave loads of ships  
 

The prediction of wave loads is an important subject in the structural 
safety of ships. Extreme wave loads have to be defined in the ultimate 
strength assessment of the ship hull. In severe seas, nonlinearities in 
wave loads have to be taken into account.
 
This publication discusses hydrodynamic loads of ships in waves and 
considers, especially, nonlinear wave loads. Nonlinearities in wave loads 
are studied with numerical methods and using experimental results. 
Model tests have been carried out to gain an insight into nonlinearities 
in hull girder loads and to obtain validation data for a calculation method. 
A time domain method has been developed and applied to ship-wave 
interaction problems in regular and irregular waves.
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