
•V
IS

IO
N

S•
SCIENCE•TEC

H
N

O
L

O
G

Y
•RESEARCHHIGHLI

G
H

T
S

Dissertation 

6

Global software 
engineering
Challenges and solutions framework

Päivi Parviainen





 

 

VTT SCIENCE 6 

Global software engineering 
Challenges and solutions framework 

Päivi Parviainen 
 

 

 

Thesis for the degree of Doctor of Philosophy to be presented with due 
permission for public examination and criticism in auditorium IT116, at 
University of Oulu, Linnanmaa, on the 25th of May, 2012, at 12 noon. 

 



 

2 

ISBN 978-951-38-7459-9 (soft back ed.) 
ISSN 2242-119X (soft back ed.) 

ISBN 978-951-38-7460-5 (URL: http://www.vtt.fi/publications/index.jsp) 
ISSN 2242-1203 (URL: http://www.vtt.fi/publications/index.jsp) 

Copyright © VTT 2012 

 

JULKAISIJA – UTGIVARE – PUBLISHER 

VTT 
PL 1000 (Vuorimiehentie 5, Espoo) 
02044 VTT 
Puh. 020 722 111, faksi 020 722 4374 

VTT 
PB 1000 (Bergsmansvägen 5, Esbo) 
FI-2044 VTT 
Tfn. +358 20 722 111, telefax +358 20 722 4374 

VTT Technical Research Centre of Finland 
P.O. Box 1000 (Vuorimiehentie 5, Espoo) 
FI-02044 VTT, Finland 
Tel. +358 20 722 111, fax + 358 20 722 4374 

 

Kopijyvä Oy, Kuopio 2012 

  

http://www.vtt.fi/publications/index.jsp
http://www.vtt.fi/publications/index.jsp


 

3 

Global software engineering 
Challenges and solutions framework 

[Globaali ohjelmistokehitys. Kehikko haasteista ja ratkaisuista] 
Päivi Parviainen. Espoo 2012. VTT Science 6. 106 p. + app. 150 p. 

Abstract 
The increasingly complex and competitive market situation has resulted in Global 
Software Engineering (GSE) becoming more and more common practice. Compa-
nies need to use their existing resources as effectively as possible. In addition, 
they need to employ resources on a global scale from different sites within the 
company and even from partner companies throughout the world, in order to pro-
duce software at a competitive level. Thus, the ability to collaborate effectively has 
become a critical factor in today’s software development. The main expected 
benefits from GSE are improvements in development time, being closer to the 
customers and having flexible access to better specialized and less costly re-
sources. In practice, however, the productivity in distributed software development 
drops up to 50 per cent compared to single site software development. Main rea-
sons behind this productivity drop are misunderstood or mismatched processes 
between teams, and poor visibility into and control of the development activities at 
all sites involved. The purpose of this thesis is to analyse in more detail why this is 
the case and what could be done to improve the situation in practice in the com-
panies’ daily work. 

In this thesis, the challenges in GSE are discussed based on their root causes and 
then summarised into the GSE framework. The root causes are time difference 
and distance, multiple partners, lack of communication, coordination breakdown, 
different backgrounds, and lack of teamness and trust. Then solutions for these 
challenges are discussed from people, process and technology viewpoints and 
summarised into the GSE framework. As a more detailed example of challenges to 
a subprocess, requirements engineering (RE) in GSE is presented. RE is discussed 
similarly as the GSE in general, first challenges are discussed and then solutions 
to the challenges are presented. 

The work reported in this thesis is based on extensive empirical work, carried 
out over several years. The empirical work was carried out in several phases: in 
the first phase, an industrial inventory was made, including industrial experience 
reported in the literature. Based on this, an initial framework for GSE was developed, 
consisting of the main challenges to be addressed in GSE projects. After this first 
phase, two sets of industrial cases were carried out, addressing a wide set of GSE 
aspects and challenges by trying out the GSE solutions to challenges identified in 
companies and validating the GSE framework. Altogether, 52 industrial cases 
relating to distributed development were carried out during the projects over the 
years 2004–2011. 



 

4 

This thesis shows that although GSE is common, it is still challenging and com-
panies should carefully weigh the benefits and costs of doing the work in distributed 
setting vs. doing it single site. This thesis is a step towards better, more productive 
and higher quality GSE, as it helps companies to be aware and address potential 
challenges early via the GSE framework. The work presented also helps companies 
to find validated solutions to address the challenges in their practice. 
 

Keywords global software engineering, requirements engineering, best practices, 
industrial case studies, ICT 



 

5 

Globaali ohjelmistokehitys 
Kehikko haasteista ja ratkaisuista 

[Global software engineering. Challenges and solutions framework]  
Päivi Parviainen. Espoo 2012. VTT Science 6. 106 s. + liitt. 150 s. 

Tiivistelmä 
Jatkuva tuotteiden monimutkaistuminen ja kiihtyvä kilpailutilanne ovat johtaneet 
siihen, että globaali ohjelmistokehitys (GSE) on yhä yleisempää. Yritysten täytyy 
hyödyntää mahdollisimman tehokkaasti sekä omia että globaaleja resursseja 
ympäri maailman ollakseen kilpailukykyisiä. Globaalin ohjelmistokehityksen poten-
tiaalisia hyötyjä ovat lyhyemmät tuotekehitysajat, läheisyys asiakkaan kanssa 
sekä mahdollisuus käyttää erikoistuneita ja edullisempia resursseja joustavasti. 
Käytännössä hajautetun ohjelmistokehityksen tuottavuus kuitenkin laskee jopa 50 
prosenttia verrattuna paikalliseen ohjelmistokehitykseen. Tämä johtuu mm. vää-
rinymmärretyistä tai yhteensopimattomista prosesseista tiimien välillä sekä eri 
paikkakunnilla tehtävän kehityksen hallitsemattomuudesta. Tutkimuksen tarkoitus 
on selvittää tarkemmin, miksi näin tapahtuu ja mitä voitaisiin tehdä käytännössä 
tilanteen parantamiseksi yritysten päivittäisessä toiminnassa. 

Tässä työssä esitetään globaalin ohjelmistokehityksen haasteita sekä niiden 
aiheuttajia ja ratkaisuja. Haasteet esitetään osana globaalin ohjelmistokehityksen 
kehikkoa. Haasteita aiheuttavat aikaero ja etäisyys, useat osapuolet, kommuni-
koinnin puute, hallinnan hajautuminen, erilaiset taustat sekä tiimiyden ja luotta-
muksen menetys. Tutkimuksessa myös esitetään ratkaisuja näihin haasteisiin 
ihmisten, prosessin ja teknologian näkökulmasta, ja myös ne liitetään mukaan 
globaalin ohjelmistokehityksen kehikkoon. Tarkempana esimerkkinä GSE:n vaiku-
tuksista osaprosessin näkökulmasta esitetään vaatimusmäärittely ja -hallinta glo-
baalissa ohjelmistokehityksessä. Vaatimusmäärittely ja -hallinta esitetään samalla 
tavalla kuin globaali ohjelmistokehitys: ensin esitetään haasteita ja sitten ratkaisuja 
näihin haasteisiin. 

Tutkimus perustuu laajaan empiiriseen aineistoon, jota on koottu usean vuoden 
aikana ja useassa vaiheessa. Ensimmäisessä vaiheessa tehtiin yritysten GSE-
käytäntöjen nykytilan selvitys, joka sisältää kirjallisuudessa raportoidut yritysten 
kokemukset. Tämän perusteella laadittiin ensimmäinen versio globaalin ohjelmis-
tokehityksen kehikosta. Kehikko sisälsi päähaasteet, jotka tulee ottaa huomioon 
globaaleissa ohjelmistokehitysprojekteissa. Ensimmäisen vaiheen jälkeen vietiin 
läpi kaksi joukkoa teollisia tapaustutkimuksia. Nämä tutkimukset kohdistuivat laa-
jaan joukkoon globaalin ohjelmistokehityksen asioita ja haasteita. Tapaustutki-
muksissa kokeiltiin ratkaisuja yrityksissä tunnistettuihin haasteisiin ja samalla 
validoitiin globaalin ohjelmistokehityksen kehikkoa. Yhteensä vietiin läpi 52 teollista 
tapaustutkimusta vuosien 2004–2011 aikana useassa eri projektissa. 



 

6 

Tämä tutkimus osoittaa, että vaikka globaali ohjelmistokehitys on yleistä, se on 
edelleen haastavaa ja yritysten täytyy huolellisesti punnita sen mahdollisia hyötyjä 
ja kustannuksia verrattuna paikalliseen kehittämiseen. Tämä tutkimus on askel 
kohti parempaa, tuottavampaa ja laadukkaampaa globaalia ohjelmistokehitystä, 
sillä se auttaa yrityksiä huomaamaan mahdollisia ongelmia ja reagoimaan niihin 
aikaisin käyttämällä globaalin ohjelmistokehityksen kehikkoa. Tutkimus myös 
auttaa yrityksiä löytämään hyviä ja kokeiltuja ratkaisuja käytännössä kohtaamiinsa 
ongelmiin. 
 

Avainsanat global software engineering, requirements engineering, best practices, 
industrial case studies, ICT 



 

7 

Preface 
This research was carried out at VTT mainly as part of the European research 
projects MERLIN (Embedded Systems Engineering in Collaboration) and PRISMA 
(Productivity in Collaborative Systems Development) during 2004–2011. 

Many people have helped me during this process. First of all I mention my su-
pervisor Professor Markku Oivo. Markku already became my thesis supervisor in 
the 1996, when there was some vague idea about a thesis related to measure-
ments. Over time, the topic has matured into Global Software Engineering, and 
now the work is ready. I wish to thank Markku for helping to define the scope of 
the thesis, encouragement during the writing, and sometimes even a light push 
forward. Without his support this work would not have been possible. 

I would also like to thank the reviewers of the thesis, Professor Kai Koskimies 
and Professor Stefan Biffl for their valuable comments. I’m also grateful for VTT 
for giving me the opportunity to work on such an interesting topic and to complete 
my thesis in research projects. I would also like to thank Tekes for funding these 
research projects. 

Over the years, I’ve worked with many great people, both at VTT and in the 
companies participating in the projects, many thanks to you all! Special thanks go 
to the core project team of Merlin and Prisma projects at VTT, especially Maarit 
Tihinen. Together we struggled through many academic publication processes, 
motivating each other for “yet another revision” based on review comments. Maa-
rit, I hope I can return the favour with your thesis process! I’m also grateful to my 
parents and family for their continuous support and encouragement during my 
whole life.  

Finally, I would like to thank Rob, my husband, for all his support. Your support 
has been invaluable both outside the academic world as well as with the thesis 
itself; talking with you has helped to make sense of things like nothing else. You 
mean more to me than words can ever express, I am so happy you are in my life. 

 
 
 
 

Espoo, April 2012 
Päivi Parviainen 

 



 

8 

Academic dissertation 
Supervisor Professor Markku Oivo 

University of Oulu 
Department of Information Processing Science  
P.O. Box 3000, 90014 University of Oulu, Finland 
 

Reviewers Professor Kai Koskimies 
Tampere University of Technology,  
Department of Software Systems  
Box 553, FIN-33101 Tampere 
 
Professor Stefan Biffl 
Institut für Softwaretechnik und Interaktive Systeme  
Technische Universität Wien 
Favoritenstr. 9/188, A-1040 Wien Austria 

 
Opponent Professor June Verner 

School of Computing and Mathematics, Keele University 
Staffordshire ST5 5BG, 
United Kingdom  



 

9 

List of papers 
This thesis is based on the following original papers which are referred to in the 
text as I–VIII. The publications are reproduced with kind permission from the pub-
lishers. 

I Hyysalo, J., Parviainen, P. & Tihinen, M. (Alphabetical order.) Collaborative 
embedded systems development: Survey of state of the practice. In: Pro-
ceedings of the 13th Annual IEEE International Conference and Workshop 
on the Engineering of Computer Based Systems (ECBS), 27–30 March, 
2006, Potsdam, Germany. 

II Kommeren, R. & Parviainen, P. Philips experiences of global distributed 
software development. Empirical Software Engineering Journal, 12(6), 
2007, pp. 647–660.  

III Parviainen, P., Eskeli, J., Kynkäänniemi, T. & Tihinen, M. Merlin collabora-
tion handbook: The challenges and solutions in global collaborative product 
development. In: Proceedings of the Third International Conference on 
Software and Data Technologies. Porto, Portugal, 5–8 July, 2008. Special 
Session on Global Software Development: Challenges and Advances on 
ICSOFT 2008. INSTICC. Pp. 339–346. 

IV Parviainen, P. & Tihinen, M. Knowledge related challenges and solutions in 
GSD: Expert systems. The Journal of Knowledge Engineering,  
Wiley-Blackwell. Article first published online: 28 June, 2011.  
DOI: 10.1111/j.1468-0394.2011.00608.x. 

V Parviainen, P., Tihinen, M., van Solingen, R. & Lormans, M. Requirements 
engineering: Dealing with the complexity of sociotechnical systems devel-
opment. Chapter 1. In: Silva, A. & Mate, J. (Eds.). Requirements Engineering 
for Sociotechnical Systems. Information Science / IGI Global, 2005. Pp. 1–
20. 

VI Parviainen, P. & Tihinen, M. A survey of existing requirements engineering 
technologies and their coverage. International Journal of Software Engi-
neering and Knowledge Engineering (IJSEKE), 17(6), 2007, pp. 1–24. 



 

10 

VII Heck, P. & Parviainen, P. Experiences on analysis of requirements quality. 
In: Proceedings of the Third International Conference on Software Engi-
neering Advances. ICSEA 2008. Sliema Malta, 26–31 October, 2008. IEEE 
computer society. Pp. 367–372. 

VIII Pesola, J.-P., Eskeli, J., Parviainen, P., Kommeren, R. & Gramza, M. Expe-
riences of tool integration: Development and alidation. In: Mertins K., Rug-
gaber R., Popplewell K. & Xu X. (Eds). Enterprise Interoperability III – New 
Challenges and Industrial Approaches. International Conference on In-
teroperability of Enterprise, Software and Applications. Berlin, German.  
25–28 March, 2008. Springer, 2008. Pp. 499–510. 



 

11 

Contents 
Abstract ........................................................................................................... 3 

Tiivistelmä ....................................................................................................... 5 

Preface ............................................................................................................. 7 

Academic dissertation ..................................................................................... 8 

List of papers ................................................................................................... 9 

Terminology ................................................................................................... 14 

1. Introduction ............................................................................................. 16 
1.1 Research questions and scope ......................................................... 17 
1.2 Research design............................................................................... 17 
1.3 Outline of the thesis .......................................................................... 21 

2. Global software engineering ................................................................... 23 
2.1 GSE benefits and risks ..................................................................... 23 
2.2 Global software engineering modes .................................................. 25 
2.3 General GSE challenges................................................................... 29 

3. GSE challenges ....................................................................................... 32 
3.1 Industrial expressions of challenges .................................................. 32 
3.2 Root causes of the challenges .......................................................... 35 
3.3 Example situation to highlight challenges........................................... 38 
3.4 GSE challenges framework ............................................................... 40 

4. GSE solutions ......................................................................................... 44 
4.1 Process solutions ............................................................................. 46 

4.1.1 Management practices in GSE ............................................... 46 
4.1.2 Engineering practices in GSE ................................................. 48 
4.1.3 Supporting practices in GSE .................................................. 50 
4.1.4 Process solutions summary .................................................... 52 

4.2 Technology solutions ........................................................................ 54 
4.3 People solutions ............................................................................... 60 



 

12 

5. Requirements engineering in GSE.......................................................... 64 
5.1 Requirements engineering ................................................................ 64 
5.2 Globally distributed requirements engineering.................................... 66 

6. Improving global requirements engineering .......................................... 70 
6.1 Challenges ....................................................................................... 70 

6.1.1 Basic GSE circumstances ...................................................... 70 
6.1.2 Derivative GSE causes .......................................................... 72 
6.1.3 Consequent cause ................................................................. 72 
6.1.4 Example situation .................................................................. 73 

6.2 Solutions .......................................................................................... 74 
6.2.1 Process related solutions ....................................................... 74 
6.2.2 Technology related solutions .................................................. 75 
6.2.3 People related solutions ......................................................... 75 

6.3 Summary of RE challenges and solutions .......................................... 76 

7. Empirical results ..................................................................................... 79 
7.1 Industrial inventory ........................................................................... 79 
7.2 Industrial cases ................................................................................ 81 

7.2.1 First set of industrial cases ..................................................... 81 
7.2.2 Second set of industrial cases ................................................ 83 
7.2.3 Summary of the contribution from industrial cases .................. 85 

8. Reporting the results .............................................................................. 87 
8.1 PAPER I: Collaborative embedded systems development:  

Survey of state of the practice ........................................................... 88 
8.2 PAPER II: Philips experiences of global distributed software 

development..................................................................................... 89 
8.3 PAPER III: Merlin collaboration handbook: Challenges and  

solutions in global collaborative product development ........................ 89 
8.4 PAPER IV: Knowledge related challenges and solutions in GSD ........ 90 
8.5 PAPER V: Requirements engineering: Process, methods and 

techniques ........................................................................................ 90 
8.6 PAPER VI: A Survey of existing requirements engineering  

technologies and their coverage ........................................................ 91 
8.7 PAPER VII: Experiences on evaluating requirements quality .............. 91 
8.8 PAPER VIII: Experiences of tool integration: Development and  

validation .......................................................................................... 92 

9. Discussion .............................................................................................. 93 
9.1 Evaluation of the results .................................................................... 93 
9.2 Validity of the research ..................................................................... 94 



 

13 

10. Summary and conclusions ..................................................................... 97 

References ..................................................................................................... 99 

Appendices 

Appendix A: GSE interview framework 
Appendix B: GSE questionnaire 
Appendix C: Papers I–VIII 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Appendix C: Papers II and VIII, are not included in the PDF version.  
Please order the printed version to get the complete publication 
(http://www.vtt.fi/publications/index.jsp). 
 
 
 

http://www.vtt.fi/publications/index.jsp


 

14 

Terminology 

Software Engineering. (1) The application of a systematic, disciplined, quantifia-
ble approach to the development, operation, and maintenance of soft-
ware; that is, the application of engineering to software. (2) The study of 
approaches as in (1). (IEEE, 1990.) 

Software development. The development of a software product in a planned and 
structured process. Often used as synonymous to software engineering. 

Collaboration. Product development activity that involves two or more companies, 
departments or customers that combine their competencies and tech-
nologies to create new shared value while, at the same time, managing 
their respective costs and risks. The entities can combine in any one of 
several different business relationships and for very different periods of 
time, ranging from some duration needed to exploit a particular innovation 
or business opportunity, to a much longer term on-going relationship. 
(Adapted from Welborn & Kasten 2003.) 

Embedded software. Software that is part of a larger system and performs some 
of the requirements of that system; for example, software used in an 
aircraft or rapid transit system (IEEE, 1990). 

Embedded software engineering. Application of engineering to embedded software, 
which is different than software engineering because of the specific 
constraints such as hard timing constraints, limited memory and power 
use, predefined hardware platform technology, and hardware costs 
(adapted from Graaf et al., 2003). 

Licensor. An entity that grants the right to use a specific patented technology in 
return for a payment to another entity (company or individual) (adapted 
from Duysters & Hagedoorn, 2000). 

Supplier. Supplier is the organization that provides the software work to the cus-
tomer. The software work can be requirements based subcontracting, 
body-shopping or modifying COTS (Commercial-off-the-shelf) compo-
nents or open source software) (adapted from Duysters & Hagedoorn, 
2000). 



 

15 

Synchronous and asynchronous work. Synchronous work is work at the same 
time on the same data. Modifications on one shared object are carried 
out immediately and observed in a real time by other team members. 
Asynchronous work is work at different time on the same data. Modifi-
cations on shared objects are observed by other members later. (Molli 
et al., 2002.) 

Tacit knowledge. Tacit knowledge is personal and context-specific knowledge, 
and it is hard to formalize and share it with others. Explicit knowledge is 
transmittable in formal, systematic language. Individuals occupy creat-
ed knowledge and their knowledge must be made visible to others at 
organisation. (Adapted from Nonaka & Takeuchi 1995.) 

OEM. Original Equipment Manufacturer, manufactures products or components 
that are purchased by a company and retailed under that purchasing 
company's brand name. OEM refers to the company that originally 
manufactured the product. (Adapted from Seppänen et al., 2001.) 

 



1. Introduction 
 

16 

1. Introduction 

The increasingly complex and competitive market situation places intense de-
mands on companies, requiring them to respond to customer needs, and to deliver 
more functionality and higher quality software faster. Companies need to use their 
existing resources as effectively as possible, and they also need to employ re-
sources on a global scale from different sites within the company and from partner 
companies throughout the world. This has resulted in global software engineering 
(GSE) becoming increasingly common and the ability to collaborate effectively has 
become a critical factor in the software development life cycle. In fact, GSE of 
software intensive systems is the reality in most software projects: up to 80 or 90 
per cent of software projects are now globally distributed and distributed develop-
ment (e.g., outsourcing, one mode of distributed development) will continue to 
grow (Fryer & Gothe, 2008, Forrester, 2010). The current global economic slow-
down has meant that efficiency and cost control are even more important for com-
panies. Thus, organisations need to understand and evaluate globally distributed 
development comprehensively: not only focusing on the cost but also taking into 
account other aspects such as experience, reliability and continuity (i.e., the low-
est hourly rate will not always give the best value in terms of investment). 

The main expected benefits from GSE are improvements in development time 
efficiency, being close to the customers and having flexible access to greater and 
less costly resources. However, there are a number of problems that still remain to 
be solved before the full potential of GSE can be reached. One of the main prob-
lems is that development technologies are insufficiently prepared for distributed 
development. This leads to productivity in a distributed project dropping by as 
much as 50 per cent, with rework two to five times greater than for a collocated 
project (Fryer & Gothe, 2008; Paper II). 

Reasons behind this productivity drop are multiple and have been discussed in 
Paper II from a company viewpoint. For example, misunderstood or mismatched 
processes between teams can lead to mistakes in work transfer and thus to in-
creased rework. Also, according to Simons (2006), a team separated by as little as 
100 meters can have communication reduced by as much as 95%. Distance al-
ways plays a role in GSE, but other conditions complicate the situation even more. 
Cultural issues, such as language barriers and differences in working or communi-
cation styles, can cause delays and affect working relationships. Visibility into and 

 



1. Introduction
 

17 

control of the development activities at all sites can be challenging, especially 
when collaborating with different time zones. In addition, political issues both with-
in the company and externally in the country or region can lead to hidden agendas 
and conflicting goals. For example, there may be a fear of losing jobs to the other 
sites. Also, the collaborating organisations may not share the same objectives, 
especially when reporting through different management chains or different com-
panies, leading to competition and mistrust between parties, for example (Fryer & 
Gothe, 2008; Paper I; Paper III). 

1.1 Research questions and scope 

As discussed, the potential benefit of GSE is large, but companies do not often 
gain the expected benefits. The purpose of this thesis is to analyse in more detail 
why this is the case and what could be done to improve the situation in practice in 
the companies’ daily work. Research on GSE practices and improvement exists, 
but it mostly concerns single company experiences or studies of specific aspects 
of GSE. However, for practitioners, a more comprehensive picture of GSE is 
needed. Thus, the research questions of this thesis are as follows: 

 What are the main challenges faced by companies when doing GSE? 
How can these challenges be categorised? 

 Are there solutions to address these challenges? How can these solu-
tions be categorised in order to support locating the suitable ones for 
each situation? 

 What are the critical activities/subprocesses in GSE? Are there solutions 
that support implementing these critical subprocesses? 

In order to study the critical subprocesses, requirements engineering (RE) was 
chosen as an example. RE is chosen as it is distributed by nature as there are 
usually external stakeholders (e.g., users and customers), and already complex 
even within a single site. Distributed development complicates RE even more, as it 
involves a lot of interaction between the development parties. The success of the 
RE process has a high impact on the success of the end product, and in distribut-
ed development, the leverage effect of multiple levels of control causes the errors 
in RE to have a multiplied effect in terms of the dependant activities, causing ex-
tensive delays and extra effort. 

1.2 Research design 

The research methods in this thesis involved a literature study to define the pro-
ject’s basis and gather other researchers’ views on the topic, and case studies and 
action research in order to investigate the state of actual practice in companies. 

The literature study was carried out in two phases. Firstly, to develop the basis 
for the work by studying what others had published about GSE, and secondly, to 



1. Introduction 
 

18 

find solutions to the identified challenges to try out in the cases under considera-
tion. In the first phase a broad literature search was carried out through well-
known databases such as INSPEC and IEEE Xplore. The search terms were quite 
wide, practically anything related to GSE, with a specific focus on practical experi-
ence related to GSE. In the second phase the search area was the same, but the 
terms were specific for cases; for example, if challenge was related to project 
management in GSE, the search terms were defined accordingly. The literature 
study was a continuous activity, but the broad study was carried out in two main 
phases: in 2004 and in 2009. 

Based on the first literature study, a framework was defined to collect infor-
mation from industry. The industrial inventory framework (Appendix A) was devel-
oped through the extensive literature study about GSE challenges and practices 
reported by others and by using CMMI (2006) as a general framework to group 
items. All CMMI topics were included and few additional ones (collaboration man-
agement, conditions for collaboration, and sharing information) were added. GSE 
related subtopics were then defined for each topic. This inventory framework 
formed the basis of the GSE framework; the main result of this thesis. The GSE 
framework includes GSE challenges that should be addressed in order succeed 
with GSE and indication of type of solutions that can be used to take care of the 
challenges. The GSE framework is intended to help industry to take into account 
the potential challenges beforehand in order to enable addressing them in prac-
tice. Industrial sources for the study were companies participating in the Merlin 
(2004–2007) project, as well as companies that had published reports on their 
GSE experience. The inventory was carried out by performing interviews and 
studying the existing material from the companies, including process descriptions, 
templates, guidelines etc. Material and interviewees for the study were selected 
with the help of the company’s main contact person, who knew the roles and re-
sponsibilities within their company. Interviews were carried out using the GSE 
framework (Appendix A). For each interviewed company, a more detailed and 
confidential report was written and reviewed by the interviewees and the compa-
ny’s main contact person. A total of 12 interviews with senior managers, project 
managers, software developers and testers from five different companies were 
carried out. In addition, two of the Merlin industrial partners filled in a questionnaire 
(Appendix B) instead of undertaking interviews. The questionnaire was also filled 
in for the five interviewed companies, resulting in a total of seven company re-
sponses. The companies represented several divergent embedded software busi-
ness areas: mobile and wireless systems, embedded data-management solutions, 
telecommunications, embedded SW subcontracting, and consumer electronics. 

Topics addressed in general included: 

 Management practices, including issues such as collaboration strategy, 
contracts, project management, risk management, collaboration man-
agement and quality management. 



1. Introduction
 

19 

 Engineering practices, including issues such as requirements develop-
ment, requirements management, architecture design, software design, 
software implementation, integration, testing and maintenance. 

 Support practices, including issues such as configuration management, 
change management, quality assurance, documentation, improvement 
processes, human-resource management, infrastructure and co-operative 
work. 

Each of these topics had more detailed GSE-specific questions, to help in ad-
dressing all the relevant topics. In addition, the interviewees were asked if some 
important topic was not included in the interview questions. In addition to the inter-
views and questionnaire, 15 industrial cases from the literature were included in 
the industrial inventory. These cases were included in the inventory based on what 
was available during the survey time (spring 2005) and on the quality of the case 
description in the publication (a detailed description of the challenge and solutions 
used in the case). The inventory results are discussed in Paper I and from re-
quirements engineering viewpoint in Paper V. 

Based on the industrial inventory, the most important challenges for GSE were 
identified. Then solutions for these challenges were searched for and trialled in 
industrial practice. One company experiences from GSE are presented in Paper II 
and two other cases in Papers VI and VIII. These challenges and solutions were 
then collected in a Merlin collaboration handbook (Paper III). This handbook was 
evaluated by several external users using a structured evaluation framework. 

The next phase of the research was carried out for the Prisma (2009–2011) 
project. In this project, in addition to two of the same companies that participated 
in Merlin, seven other companies participated. In order to collect data on the state-
of-the- practice in these companies, several workshops were held to define chal-
lenges that were relevant for them. Solutions for these challenges were then de-
fined and tried out. One of the cases, related to requirements quality, is described 
in Paper VII. These challenges and solutions were then included in the 2nd version 
of the GSE framework, which is described in this thesis and which is also docu-
mented as a wiki (Prisma, 2011) due to the large amount of information involved. 
Parts of the framework are presented in Paper IV, from knowledge engineering 
viewpoint. 

Figure 1 presents a summary of the research design. 



1. Introduction 
 

20 

 

Figure 1. Research design. 

During the Merlin and Prisma projects, from 2004 to 2011, a total of 54 industrial 
case studies were carried out. The author has actively participated in some of the 
cases (action research) and evaluated the results of the others (case study). Due 
to that the research goal was to understand the GSE and its challenges and solu-
tions in practice, empirical work was carried out in real life industrial projects. In 
real life industrial projects, the ability to isolate as a basis for repetitive experi-
ments is impossible, due to the nature of real life industrial work. As the purpose of 
the work was to understand the GSE challenges in industry as a whole, not some 
specific aspect of it, the real life industrial projects were seen as necessary. 

A case study research method was used for the creation and trialling of new 
practices or other kinds of solutions relating to the identified challenges and prob-
lems that the companies were facing in terms of GSE. Each case study has been 
documented in a structured way as an experience report. Some of the empirical 
work was carried out as action research, as the work entailed software process 
improvement and technology transfer studies. According to Yin (2003), a case 
study is an empirical inquiry that investigates a contemporary phenomenon within 
its real-life context, especially when the boundaries between the phenomenon and 
the content are not clearly evident. This method was chosen for the research as 
the case study methodology is well suited for many kinds of software engineering 
research, as the objects of study are contemporary phenomena, which are difficult 
to study in isolation (Easterbrook et al., 2007; Runeson & Höst, 2009). Case stud-
ies are especially appropriate for situations where the context is expected to play a 
role in the phenomena (e.g., if the stresses of a real project affect developers’ 



1. Introduction
 

21 

behaviour), or where effects are expected to be wide ranging or are expected to 
take a long time (e.g., weeks, months, years) to appear (Easterbrook et al., 2007) 
which was the case in this research. 

In action research, the researchers attempt to solve a real-world problem while 
simultaneously studying the experience of solving the problem (Davison et al., 
2004). While most empirical research methods attempt to observe the world as it 
currently exists, action researchers aim to intervene in the studied situations with 
the explicit purpose of improving the situation (Easterbrook et al., 2007). Action 
research is closely related to case studies: a case study is purely observational, 
while action research is focused on and involved in the change process. Action 
research consists of a five-phase cyclical process-based approach (Susman & 
Evered, 1978; Baskerville, 1997, Casey & Richardson, 2008) as follows: (1) diag-
nosing, (2) action planning, (3) action taking, (4) evaluation, and (5) specifying 
learning. Action research method was chosen for this research in order to give the 
researcher a closer look into the daily realities in a GSE project and thus to gain 
deeper understanding about the topic. Combination of these research methods 
are seen as best for this type of research, as the more detailed understanding 
from action research would be complemented with case study results providing a 
comprehensive view on the research questions. 

The main new contributions of this work include: 

 A comprehensive view on GSE challenges and solutions based on ex-
tensive empirical work in real industrial product development projects. 
Previously only scattered publications, focusing on a specific challenge or 
solution, or on the other hand discussing theoretical analysis of GSE 
challenges, has been available. 

 Industrial viewpoint to GSE, i.e., challenges faced by industry have been 
mapped to the general GSE theory, thus making it easier for industry to 
find relevant solutions from the research results. 

 New or enhanced solutions to challenges faced by industry in cases, that 
did not previously have published solutions (these are described in detail 
in the sameroomspirit.org wiki (Prisma, 2011)). 

1.3 Outline of the thesis 

Section 2 discusses GSE in general, including the benefits and risks of the GSE, 
GSE modes, and general challenges in GSE as presented in the literature. 

Section 3 begins the empirical work and starts with industrial expressions of 
challenges in contracting and requirements definition, project planning and track-
ing, architecture analysis, design, and integration. Next, the root causes of the 
challenges are discussed and an example practical situation is depicted. Finally, 
this section presents maps the industrial challenges to the root causes. 

Section 4 focuses on the solutions to the GSE challenges. The solutions are 
discussed from process, technology and people viewpoints. For each of these 



1. Introduction 
 

22 

areas the solutions are also mapped to the challenges using the GSE framework 
structure. Together with section 3 this section describes the GSE framework, the 
main result of this work. 

In section 5 the chosen subprocess, requirements engineering, is discussed 
from GSE viewpoint. First requirements engineering is introduced in general and 
then the GSE impacts on the RE are discussed based on literature. Section 6 then 
presents the empirical work related to global requirements engineering by discussing 
the challenges and solutions in the globally distributed requirements engineering. 

Section 7 summarises the empirical results of the work presented in the thesis 
by giving overview of the industrial inventory and the industrial cases carried out. 
For each of the cases a brief introduction, including the addressed topic from GSE 
viewpoint is given. 

Section 8 presents the papers that this thesis summarises and extends and 
section 9 discusses the research results, including evaluation of the results with 
respect to the research goals and validity of the research. Finally, section 10 pre-
sents the summary and conclusions of the work. 
 



2. Global software engineering
 

23 

2. Global software engineering 

GSE means software engineering that is carried out in globally distributed settings 
in various geographical locations. The work can be done either within a company 
(multi-site development) or in collaboration between two or more companies in 
different locations. GSE, as used in this thesis, means product-development activity 
that involves two or more companies, departments or teams that combine their 
competencies and technologies to create new shared value while, at the same 
time, managing their respective costs and risks. The entities can combine in any 
one of several different business relationships and for very different periods of 
time (adapted from Welborn & Kasten 2003). An important aspect with respect to 
this thesis is that the work is done in distributed settings, involving sites in various 
geographical locations, thus incorporating asynchronous and synchronous interac-
tion between the parties. An equally commonly used term for GSE is global soft-
ware development. GSE was chosen to be used in this thesis due to the fact that 
the definition of software engineering is more suited to the topic of this thesis, as it 
covers a wider area of activities than software development. Also, the main con-
ference of the topic uses GSE term and not GSD (ICGSE, IEEE International 
Conference on Global Software Engineering). 

This section presents the GSE in general as presented in literature. Thus the 
terminology is not always unambiguous and some terms can be overlapping. This 
also makes clear that the GSE research is not yet mature. The terminology used 
in the GSE framework, main result of this work, is explained in section 3. 

2.1 GSE benefits and risks 

GSE has a number of potential benefits, including shortening time-to-market cy-
cles by using time-zone differences and improving the ability to quickly respond to 
local customer needs. Globally distributed software engineering also allows organ-
isations to benefit from access to a larger qualified resource pool with the promise 
of reduced development costs. Another potentially positive impact of globally dis-
tributed engineering is innovation, as the mix of developers with different cultural 
backgrounds may trigger new ideas (Ebert & De Neve, 2001; Herbsleb & Moitra, 
2001; Damian et al., 2004). According to the industrial practice inventory (reported 

 



2. Global software engineering 
 

24 

in Paper I), the most common reasons for collaboration were to reduce develop-
ment costs, to acquire competence (technology competence or knowledge of a 
specific market) and to avoid investing in a company’s non-core competence areas. 
Further reasons included potential timesaving, the establishment of new business 
opportunities with new partners, flexibility with respect to the number of in-house 
resources and overcoming problems of availability of in-house resources. In some 
cases the company’s whole business can be based on collaboration; for example, 
if the company is developing a component that is meant to be used as part of 
another product such as a COTS (commercial-off-the-shelf) product, or if it is 
offering human resources, i.e., developers (expertise providers and consulting 
companies). 

There are also several risks involved in GSE. The general risks mentioned in 
the survey of state-of-the-practice (Paper I) had to do with the openness of com-
munication between partners; for example, problem-hiding may be an issue in 
customer–supplier relations. Furthermore, unclear assignments, lack of trust be-
tween partners, difficulties in agreeing on intellectual property rights and the unre-
liability of the partners’ development schedule were seen as risk factors for any 
mode of collaboration. From the supplier’s or licensor’s viewpoint, the risks men-
tioned concerned the continuation of the collaboration in the future and predicting 
the most saleable product features correctly during road-mapping. On the other 
hand, from the customer’s point of view, the quality of the acquired product (e.g., 
reliability and performance) and becoming too dependent on one partner were 
seen as risks. Finally, competence issues, such as the competence of new partners 
and a weakening of one’s own competence were also mentioned as risks. These 
risks are similar to those that other authors have highlighted. For example, Ebert 
et al. (2008) have identified a top-ten risk list for GSE projects over the past decade 
in a multitude of GSE projects and situations covering four continents. They are 
not specific to particular industries or company sizes, but rather to the underlying 
life-cycle processes and management practices. The risk list is as follows: 

1. Project-delivery failures, the risk of being late or over budget amplifies in 
probability and impact due to the difficulties of managing a global devel-
opment team. 

2. Insufficient quality, in GSE, many work products are moved across plac-
es and teams with the risk of insufficient quality due to that, the teams 
suppose that there will still be sufficient validation “downstream” so that 
quality deficiencies accumulate. 

3. Distance and culture clashes, GSE is highly impacted by work organiza-
tion and effective work split. GSE causes overheads for planning and 
managing people, e.g., due to language and cultural barriers. 

4. Staff turnover (mostly for captive centres), is a specific risk especially in 
Asian countries due to abundant job opportunities in the respective econ-
omies. High turnover requires more investment in training and monitoring 
of the work. 



2. Global software engineering
 

25 

5. Poor supplier services (only for outsourced GSE), a frequent risk with 
third party suppliers is not meeting the expectations in terms of quality 
and delivery schedule. 

6. Instability with overly high change rates, often being present in different 
markets with individual engineering teams means that each of the teams 
first of all looks to needs of the local market. When products and features 
are assembled, inconsistencies appear which cause late requirements 
changes. 

7. Insufficient competences, is amplified in GSE by the bigger dependen-
cies given the globally distributed team combined with less visibility on 
resource planning and skills availability. 

8. Wage and cost inflation, the global fight for software engineering talent 
creates a major risk of wage inflation, causing it more expensive to keep 
the required competences working in the project. 

9. Lock-in (only for outsourced GSE), with GSE supplier competition on a 
global market, external suppliers often start with rather low rates and 
once the projects are sufficiently large clients might be forced to lock-in 
with them due to progress of product development and knowledge transi-
tion. In the least we may have to face increasing cost inflation. 

10. Inadequate IPR management, software is not patented and copyrights 
are not enforced equally in all regions of the world. Further risks are re-
lated to improper use of external software (e.g., OSS) and careless han-
dling of confidential information. 

These risks are partly challenges as presented in section 3, and partly conse-
quences if the challenges are not addressed well. 

2.2 Global software engineering modes 

There is no commonly accepted definition for GSE or collaboration modes. In-
stead, there are a multitude of terms that are used which mean some mode of 
GSE. This section will explain a few of these modes. These modes were chosen in 
order to give different viewpoints of the GSE modes. First, modes differentiated by 
the type of agreement will be presented. Next, other categorisations presented in 
the literature are discussed, including equity and non-equity collaborations, up-
stream, horizontal and downstream collaboration, dyadic alliances, alliance con-
stellations and alliance networks and explorative and exploitative collaboration. 

A way to group the modes is based on the type of agreement (i.e., the contract 
defining the relationship and product ownership), which can be placed into one of 
four main categories (adapted from Duysters & Hagedoom, 2000; Williamson, 
1996; Hagedoorn, 2000): 



2. Global software engineering 
 

26 

1. In customer–supplier relationships, the customer is the organisation that 
is buying the software work (or technology or knowledge) from the sup-
plier. Work may be based on requirements given or on the modification of 
existing COTS products or open-source code. The customer may also 
hire workers from a supplier in so-called body-shopping. The supplier is 
the organisation that provides the software work to the customer. Three 
main types of relationships are identified: requirements-based subcon-
tracting, body-shopping and MOTS (modified-off-the-shelf) components. 

2. With technology exchange/licensing, a company is granted the right to 
use a specific patented technology in return for a payment. Companies 
may also define open interfaces for products that allow any interested 
party to create software/services for the product. Types of technology ex-
change/licensing include: COTS components, open-source software and 
open architectures. 

3. Joint research and development (R&D or partnering) includes either joint 
ventures that are organisational units created and controlled by two or 
more parent companies or joint development agreements that cover 
technology and R&D sharing between two or more companies in a joint 
research or joint development project. 

4. In-house distributed development where development is organised within 
one company (legal entity), usually without contracts, but often organised 
over different sites, which can be located in different countries and conti-
nents. 

This categorisation is used throughout this thesis, and the main focus is on cus-
tomer–supplier relations and in-house distributed development, as those have 
been the most commonly used models in the case organisations and in the avail-
able related work. 

To further describe the various modes, four different ways to distinguish the 
modes of collaboration between collaborating organisations are presented 
(Faems, 2003): equity and non-equity collaborations, upstream, horizontal and 
downstream collaboration, dyadic alliances, alliance constellations and alliance 
networks and explorative and exploitative collaboration. 

Equity and non-equity collaborations. In equity arrangements each partner has 
an equity position and expects a proportional share of the dividend as compensation. 
Joint ventures and minority equity investments are examples of such arrangements. 
Contractual arrangements (non-equity) refer to a wide array of inter-firm linkages 
such as joint R&D and strategic R&D alliances. 

Upstream, horizontal and downstream collaboration. Upstream, horizontal and 
downstream collaboration refers to the relative position of the involved organisations. 
Collaboration with universities, research institutes, government laboratories and 
suppliers are examples of upstream alliances. Alliances with clients, distribution or 
marketing companies are downstream examples. Horizontal collaboration embodies 
the alliances with competitors or complementors. This is also sometimes called 



2. Global software engineering
 

27 

vertical and horizontal integration, where vertical integration covers upstream and 
downstream integration (Lindström, 2003). Lindström (2003) also discusses virtual 
integration where partners’ businesses are joined with OEMs (original-equipment 
manufacturers) and the suppliers are treated as if they were inside the company. 

Dyadic alliances, alliance constellations and alliance networks. In a dyadic alliance 
only two organisations collaborate and alliance constellations involve more than 
two partners. An alliance network refers to a collection of an organisation’s dyadic 
alliances and alliance constellations. An alliance means that two or more firms 
create a unique organisational entity, in which each firm retains its individual identity 
and internal control. The purpose of an alliance is to (1) achieve joint strategic 
goals, (2) reduce risk while increasing rewards, and/or (3) leverage resources. 

Explorative and exploitative collaboration. Explorative and exploitative collabo-
ration can be distinguished by the collaboration objectives. For example, R&D joint 
ventures, research consortia and joint R&D agreements are mostly long-term 
strategic alliances, while technology exchange agreements or customer–supplier 
relationships are more often categorised as short-term cost-economising or reve-
nue-generating alliances. 

The following table shows the relationship between the first categorisation (type 
of agreement) of collaboration mode with the other classifications. 

Table 1. Collaboration-mode classifications. 

 Equity and 
non-equity 

Upstream, 
horizontal 
and down-
stream 

Dyadic alliances, 
alliance constel-
lations and 
alliance networks 

Explorative 
and exploita-
tive 

Customer–supplier 
relationships Non-equity All None Exploitative 

Technology  
exchange/licensing Non-equity All All Exploitative 

Joint R&D Equity All All Explorative 

In-house distributed 
development Equity - - Explorative and 

exploitative 

 
These different categorisations show how many different kinds of collaboration 
modes exist in GSE. The applicable mode depends on the situation, with one 
mode being more suited to a specific situation than another. For example, 
Lindström (2003) presents a decision matrix to help in choosing the mode (see 
Table 2). 



2. Global software engineering 
 

28 

Table 2. Strategic-alliance model decision-making matrix (Lindström 2003). 

M
A

R
K

ET A
N

D
 D

EM
A

N
D

 

NEW AND 
UNFAMILIAR 

Joint venture 
Horizontal/Virtual 
integration 

Horizontal/Virtual 
integration 
Licensing 
Equity investment 

Equity investment 
Joint venture 
Research consortia 

NEW BUT 
FAMILIAR 

Supplier integration 
Short- and medium-
term purchasing 
agreements 

Vertical/Virtual 
integration 
Licensing 

Technology  
partnership 
Standardization 
efforts 

KNOWN 

International  
development 
Long-term purchas-
ing agreements 

Supplier  
integration 
Joint R&D 
Licensing 

Technology  
exchange 
Technology  
partnership 
Research consortia 

  EXISTING NEW BUT 
FAMILIAR  

NEW AND 
UNFAMILIAR 

  TECHNOLOGY 

 
The commonly used GSE terms such as distributed development, multi-site de-
velopment, outsourcing, off-shoring and inter-company collaboration are usually 
customer–supplier types of modes. Table 3 explains the specifics of these modes. 

Table 3. Commonly used terms to describe GSE modes. 

Mode Description Mapping 

Distributed 
development 

General term meaning development that happens 
in at least two different geographical sites.  

Can include any 
of the collabora-
tion modes 

Multi-site 
development 

Development that happens within one company in 
at least two different geographical sites. Is some-
times also used to refer to distributed development 
in general. 

In-house 
distributed 
development 

Outsourcing Outsourcing is usually used to mean the contract-
ing out of a business function to an external pro-
vider. Multisourcing means provisioning and blend-
ing services from the optimal set of internal and 
external providers in the pursuit of business goals. 
Outsourcing is one of the GSE modes, main dis-
tinguishing aspect being that one company is 
buying work or parts of product from some other 
company and this is specified in a contract. 

Customer–
supplier mode 

Off-shoring, 
offshore 
outsourcing 

Outsourcing to suppliers outside the nation. There 
is also a derivate of this called nearshoring, which 
means that the business has shifted work to a 
lower cost organisation within its region. 

Customer–
supplier mode 

 



2. Global software engineering
 

29 

Within these modes, the work may be carried out on different interaction levels. 
Thompson (2001) stated that there are at least four different interaction modes: 

1. Hierarchical (also the formal-process or assembly-line model). Individuals 
perform the tasks assigned to them in isolation from each other. In the 
hierarchical model, authority is usually singular. 

2. Swap meet (also division of labour). Individuals perform tasks in isolation 
but come back together to review or revise. 

3. Asymmetrical. Collaborators cannot be viewed as equal (e.g., teacher–
student collaboration). 

4. Dialogic (also integrative, integrated-team or symphony model). Tasks 
are performed together by all members of the group. 

The level of required interaction depends on the type of work that is done; for 
example, the ability to divide work so that there is little interaction needed and 
consideration as to the level of know-how of the different parties. In practice, the 
interaction is usually a mix of these, so that some tasks are done individually and 
some are carried through in a more dialogic mode. In order to avoid too many 
dependencies between sites and partners, the work should be divided purposefully. 
According to Grinter et al. (1999), modes for coordinating R&D work across multiple 
sites include: 

 Functional areas of expertise: Expertise for a specific functional area in-
volved in development of the product is located at a single site. 

 Product structure: Organisation is split among sites along lines suggested 
by the product architecture. 

 Process steps: Work is broken up into process steps such as systems 
engineering and testing and these steps are used as handoffs among vari-
ous locations. 

 Customisation: One geographical site owns the core code for the product 
and other sites make changes to the code base such as adding features 
and enhancements for a specific customer base. 

2.3 General GSE challenges 

GSE challenges are discussed in many publications from various perspectives. 
Silva et al. (2010) carried out a systematic literature review of distributed devel-
opment challenges, best practices, models and tools. They analysed 54 papers 
and found that the top-five challenges appeared in 120 pieces of evidence (45%) 
out of a total of 266 for all 30 identified challenges. These five challenges were 
effective communication, cultural differences, coordination, time-zone differences 
and trust. Similar to these findings and a commonly referenced classification for 



2. Global software engineering 
 

30 

challenges caused by globally distributed development is (Carmel, 1999; Carmel & 
Tija, 2005): 

 Communication breakdown (loss of communication richness) 
 Coordination breakdown 
 Control breakdown (geographical dispersion) 
 Cohesion barriers (loss of “teamness”) 
 Culture clash (cultural differences). 

These challenges affect all aspects of product development and different authors 
have studied these aspects in more detail either from certain process viewpoints 
or from the challenge viewpoint. Next, each of these aspects is discussed in more 
detail based on Carmel (1999), Carmel and Tija (2005) and Paper I. 

Communication breakdown (loss of communication richness). Human be-
ings communicate best when they are communicating face-to-face. A software 
engineer would usually prefer to conduct a difficult design session face-to-face 
because people communicate with more than mere words (e.g., drawings on 
whiteboards, body language etc.). Communication over distance frequently leads 
to misinterpretation and that often leads to errors in development. In a distributed 
project, people cannot communicate well due to language barriers and the una-
vailability of resources. In addition, according to Herbsleb et al. (2001), distribution 
may hinder informal or unplanned communication. In distributed development, all 
this has to be managed and supported with tools such as groupware and by en-
suring the quality of documentation. 

Coordination breakdown. Software development is a complex task that re-
quires on-going adjustments and coordination of shared tasks. In geographically 
distributed projects, the small adjustments usually made in face-to-face contact do 
not take place or it is not easy to make adjustments. Thus, problem solving gets 
delayed or the project goes down the wrong track until it becomes very expensive 
to x. GSE also sets additional requirements for planning; for example, the need 
for coordination between teams and the procedures and contacts for how to work 
with partners need to be defined (Damian & Zowghi, 2002; Paasivaara & Lassenius, 
2003; Herbsleb & Mockus, 2003). Wahyudin et al. (2007) also state that GSE 
demands more from project management: in addition to project manager, also the 
project members such as testers, technical leader, and developers also need to be 
kept informed and notified for certain information and events which are relevant to 
their roles’ objectives in timely manner and provide basis for in-time decision mak-
ing. Coordination breakdown can also cause a number of specific problems; for 
example, Battin et al. (2001) reported a number of software integration problems, 
which were due to a large number of independent teams. 

Control breakdown (geographical dispersion). GSE means that manage-
ment by walking around the development team is not feasible and, instead, tele-
phones, E-mail and other communication means (e.g., chat servers) have to be 
used. This kind of communication is less effective and cannot always give a clear 
and correct status of the development site. Also, dividing the tasks and work 
across development sites, and managing the dependencies between sites is difficult 



2. Global software engineering
 

31 

due to the restraints of the available resources, the level of expertise and the in-
frastructure (Herbsleb & Moitra, 2001; Welborn & Kasten, 2003; Battin et al., 
2001). According to Holmstrom et al. (2006), despite flexible working hours and 
communication technologies that enable asynchronous communication, creating 
the overlap in time between different sites is challenging. Lack of overlap leads to 
a delay in responses with a feeling of “being behind”, “missing out” and even losing 
track of the overall work process. 

Cohesion barriers (loss of “teamness”). In working groups that are composed 
of dispersed individuals, the team is unlikely to form tight social bonds, which are a 
key to a project success. Lack of informal communication, different processes and 
practices have a negative impact on teamness (Damian & Zowghi, 2002; Herbsleb & 
Mockus, 2003; Battin et al., 2001). Casey and Richardson (2008) outlined that fear 
(e.g., of losing one’s job to the other site) directly impacted negatively on trust, team-
building co-operation and knowledge transfer, even where good relationships exist-
ed beforehand. They also stated that fear and lack of trust negatively impacted on 
the building of effective distributed teams, resulting in clear examples of not wanting 
to cooperate and share knowledge with remote colleagues. Al-Ani and Redmiles 
(2009) discuss the role that the existing tools can play in developing trust and provid-
ing insights on how future tools can be designed to promote trust. They found that 
tools can promote trust by sharing information derived from each developer’s activi-
ties and their interdependencies, leading to a greater likelihood that team members 
will rely on each other and thus leading to a more effective collaboration. Holmstrom 
et al. (2006) found that establishing and maintaining teamness in a distributed de-
velopment environment is difficult: while websites with photos and individual profiles 
serve a purpose, the common solution still seems to be travelling between sites. 

Culture clash (cultural differences). Each culture has different communication 
norms. The result of these differences is that in any cross-cultural communication 
the receiver is more likely to misinterpret messages or cues. Hence, the miscom-
munication across cultures is always present. Borchers (2003) discusses observa-
tions of how cultural differences impacted the software engineering techniques 
used in the case projects. The cultural indexes, power distance (degree of inequal-
ity of managers vs. subordinates), uncertainty avoidance (tolerance for uncertainty 
about the future) and individualism (strength of the relationship between an indi-
vidual and their societal group), discussed by Hofstede (2001), were found to be 
relevant from the software engineering viewpoint. Holmstrom et al. (2006) discuss 
the inherent challenge of creating a mutual understanding between people from 
different backgrounds. Often, general understanding in terms of English is consid-
ered as good, but more subtle issues, such as political or religious values, cause 
misunderstandings and conflicts during projects. 

Cultural differences are also discussed in general (not specifically from a soft-
ware engineering viewpoint) in several publications (e.g., Hofstede, 2001; 
Trompenaars & Hampden-Turner, 1997). 

These general challenges are used (adapted) in the discussion of challenges and 
problems faced by the case companies in practice in the remainder of this thesis. 
 



3. GSE challenges 
 

32 

3. GSE challenges 

The previous section focused on GSE challenges on a general level, as discussed 
in the GSE literature. Based on the empirical work carried out during the Merlin 
and Prisma projects, several concrete challenges have been identified that make 
GSE less productive in companies in practice. The industrial companies express 
the challenges differently than theory, thus the GSE framework presented in this 
thesis (Sections 3 and 4) is needed to help companies in finding relevant solutions 
to the challenges they are facing. 

3.1 Industrial expressions of challenges 

The most critical points in global software engineering, based on the industrial 
inventory and expressed by the Merlin and Prisma partners in workshops, were 
the contracting and requirements definition, project planning and tracking, archi-
tecture analysis and design and integration. These points are discussed next in 
more detail and are described in more detail in Paper I. 

Contracting and requirements definition: The more detailed the prepared speci-
fication of the work is, the better (within a reasonable degree of effort). Thus, if all 
collaboration partners have the same view/shared understanding of what is to be 
done and if that is documented well, fewer conflicts will occur. Challenges and 
problem expressions relating to this point were: 

 “My supplier delivers things I didn’t ask for or it’s always a surprise what I 
get from my supplier.” 

 “The integration of the parts developed by the supplier takes a lot of effort.” 

 “It’s not clear what my assignment is (supplier viewpoint).” 

 “My customer changes the assignment continuously.” 

 “My customer’s requests are unclear and vague and not communicated.” 

 “We have trouble with varying interpretations of the requirements when 
the definition process is distributed.” 

 



3. GSE challenges
 

33 

 “Management of the changes made to the requirements by different par-
ties of the project is difficult.” 

 “Validating each individual project stakeholder’s interpretation of the re-
quirements before the implementation takes place is difficult.” 

 “It’s challenging to prioritise requirements correctly and effectively when 
some stakeholders are ‘louder’ than others.” 

Project planning and tracking: It is important to clearly define status-reporting 
practices and change management procedures, including the details on reporting 
channels, decision authorities and escalation channels. Other important issues in 
collaborative project planning are the identification of dependencies between partners 
– for example, the interdependencies of the subsystem deliveries – and taking 
these into account in project schedules. Challenges and problem expressions 
relating to this point were: 

 “I don’t know what is happening, what my partners are doing.” 

 “It is impossible for the project manager to get an overview of the status 
of the software.” 

 “I’m not sure whether the resources are used optimally.” 

 “Management has high difficulty in determining project status when not 
present on the same site as the project.” 

 “The suppliers’ work is often delayed.” 

 “Reporting the progress of the project to the managers at the right level 
(not too much, not too little) is difficult.” 

 “It’s challenging to communicate the ‘project vision’ with a clear enough 
scope to get a project started in the early phases.” 

 “We suffer from delays caused by having to wait for input from other 
teams.” 

Architecture analysis/design: Architecture is one of the key disciplines enabling 
successful collaboration. In particular, a lack of sound architecture leads to poor 
integrability. Ensuring that all partners understand the architecture correctly is 
difficult and the required level of communication is often underestimated. Chal-
lenges and problem expressions relating to this point were: 

 “It’s difficult to know when there is too little design and when is there 
‘analysis paralysis’.” 

 “The interfaces between the subsystem assigned to my team and sub-
systems assigned to other teams are poorly defined.” 

 “How can we establish a common understanding of architecture in all of 
the development sites?” 



3. GSE challenges 
 

34 

Integration and testing: While integration is often the most time- and effort-
consuming activity even in in-house product development, GSE brings additional 
complexity; for example, new actors and communication requirements. Challenges 
and problem expressions relating to this point were: 

 “The quality of supplied parts is low.” 

 “We have trouble with poor quality and reusability of existing code in dis-
tributed development.” 

 “We have problems at integration when remote programmers throw their 
build code ‘over the wall’ to a build manager who must resolve conflicts.” 

 “Integration of the software takes place at different locations and is poorly 
coordinated, finally leading to a non-buildable product.” 

 “It’s not traceable whether the product meets the requirements in GSE.” 

 “It’s not clear who is responsible for resolving issues (defects, mismatching 
parts) detected in integration.” 

Co-operative work: Good, that is, timely and accurate communication is regarded 
as a crucial success factor for projects. Openness of communication and multi-
site/multi-partner culture were considered as very important for collaboration suc-
cess. Challenges and problem expressions relating to this point were: 

 “How can I order/arrange the information flow for a project so that some-
one else can also find that information later on (documents/e-mails/phone 
calls/etc.)?” 

 “How can I communicate/filter the requirements that are in the of-
fer/agreement to different participants in the project team?” 

 “We have problems with unsolicited and ad hoc changes.” 

 “I would like to minimise the learning curve for my partners to learn new 
tools, methods and technologies. How can I do it?” 

 “When moving data from the requirements’-management tool to the test 
tooling, defects are introduced.” 

 “How can I improve trust and confidence between the teams implementing 
different code lines?” 

 “My partner uses different tools and there are difficulties transferring data 
from one tool to another.” 

 “Coordinating the information flow when subcontractors are in different 
time zones is difficult.” 

 “We have difficulties dealing with conflict between team members who 
are not face-to-face.” 



3. GSE challenges
 

35 

 “We have problems coordinating people across multiple sites and also 
across multiple projects.” 

 “It is not clear what modules and tests are affected when we accept this 
change request.” 

In addition to these issues, product road-mapping was also seen as one of the 
most important areas from the component-supplier viewpoint because taking into 
account and prioritising the customers’ future requests is a complex task, especially 
when there are several customers with varying requests. 

These expressions are partly challenges and partly problems when challenges 
have not been addressed properly. These expressions and industrial inventory 
were used as a basis for the GSE framework challenges that are discussed in the 
following sections. 

3.2 Root causes of the challenges 

As becomes clear from section 3.1, the companies face many problems and chal-
lenges, and their expressions of them are varying: the companies express the 
issues as problems or challenging areas, using different terminology, overlapping 
with other issues, and in a scattered way. Thus, in order to gain a more compre-
hensive view on the GSE challenges in general, a structure to depict the problem 
and challenge area is needed. The challenges discussed in section 3.1 and the 
other GSE challenges identified in the cases and literature experience can be 
related to root causes of the problems in GSE. These root causes are presented in 
Figure 2. 

 

 

Figure 2. Root causes of problems in GSE. 



3. GSE challenges 
 

36 

The root causes were identified from various literature sources and in the em-
pirical work. Root causes are the fundamental reasons behind the challenges in 
GSE, i.e., they cause challenges that can be addressed via specific solutions 
(e.g., practices). Some of them are not necessarily GSE specific, such as multiple 
parties/stakeholders, but they are causes that are present in every GSE project. 
Root causes are things that cause multiple challenges in GSE, challenges can be 
addressed by solutions and if they are not properly addressed, problems appear. 
These root causes are derived from two sources: 1. literature, by analysing what 
other researchers have proposed as causes and their relations, and 2. from chal-
lenges expressed by industry and the causes behind them. 

The root causes are discussed from three aspects – people, processes and 
technology – in order to gain a comprehensive understanding of the causes. The 
root causes have been discussed in the literature review, as presented in section 2.3. 
However, they have been presented in various papers in a disorganised manner 
and have not yet been analysed systematically, as presented here. Also, they 
have not been connected to the industrial problems and challenges; that is, indus-
try faces problems caused by these issues, not from these issues themselves. For 
example, a company does not state as a problem that there is a challenges of 
differences in backgrounds or coordination breakdown, but that they get bad quality 
deliveries from the other sites. Moreover, the root causes are interconnected and 
the relations are marked with lines in Figure 2. In summary, time difference and 
distance can lead to a lack of communication and coordination breakdown, multi-
ple partners may cause a lack of communication and coordination breakdown, and 
the people involved have different backgrounds and, thus, different tacit 
knowledge. These causes together – if not properly addressed – lead to a lack of 
“teamness” and trust. Next, each of these root causes is discussed in more detail 
(B1, B2, D1, D2, D3, C1 and C2 are identifications of the causes used as refer-
ences in the remainder of the thesis). 

The basic GSE circumstances include matters that are an intrinsic natural 
part of GSE. They directly complicate GSE as well as cause further challenges. 
The basic circumstances are: 

 Multiple parties (B1), meaning two or more different teams and sites (lo-
cations) of a company or different companies. When multiple parties are 
involved, different working cultures and backgrounds usually play a role. 

 Time difference and distance (B2) are caused by the geographical distri-
bution of the parties. Distance is always present in GSE and the extent of 
the distance seems to be less relevant, as research has shown that a 
team separated by as little as 100 meters can have communication re-
duced by as much as 95% (Simons, 2006). However, time difference 
may not always be present in distributed development if the parties are in 
the same or in nearby time zones. 

Example problems that are directly caused by these basic circumstances include 
issues such as unclear roles and responsibilities for the different stakeholders in 



3. GSE challenges
 

37 

different parties/locations, knowing the contact persons (responsibilities, authori-
ties and knowledge) from different locations and establishing and ensuring a 
common understanding across distance. The basic circumstances can also cause 
poor transparency and control of remote activities, difficulties in managing de-
pendencies over distance, problems in coordination and control of the distributed 
work and integration problems, for example. Basic circumstances may also cause 
problems in terms of accessing remote databases and tools, they may generate 
data-transfer problems caused by the various data formats between the tools or 
different versions of the tools used by the different teams and the basic circum-
stances may also cause problems with data security and access to databases or 
another organisation's resources. Although these issues are directly caused by the 
basic circumstances, they may be amplified by the derivative causes. 

Derivative GSE causes (see Figure 2) are causes that may not be present in 
every GSE situation and their effects can often be avoided with proper practices 
and ways of working. The derivative causes are: 

 Lack of communication (D1): Communication is difficult in geographically 
distributed development. For example, if there is a lack of overlapping 
working hours due to the time-zone differences, arranging face-to-face 
meetings is complicated and expensive. Distribution may also hinder in-
formal or unplanned communication as all this has to be managed and 
supported through communication tools, and still the richness of commu-
nication (e.g., due to body language not being visible) may suffer. The 
loss of communication richness also creates miscommunication. Addi-
tionally, the problems in distributed development are not solved as effec-
tively as in co-located development because of the communication-
related issues. 

 Coordination breakdown (D2): Dividing and coordinating the tasks and 
work across development sites is difficult due to the restraints in the 
available resources, differences in levels of expertise and infrastructure, 
for example. 

 Different backgrounds (D3) may imply that the ways in which teams work 
are not the same as are assumed and this can cause problems. Different 
backgrounds also involve differences in tacit knowledge causing misun-
derstandings and wrong assumptions. 

Example problems coming from these causes include, for example, ineffective use 
of resources as competences are not known from other sites, obstacles in resolv-
ing seemingly small problems and faulty work products due to a lack of compe-
tence or background information. These causes can also lead to a lack of trans-
parency in the other parties’ work, misunderstood assignments and, thus, faulty 
deliveries from parties, delays caused by waiting for the other parties’ input and 
duplicate work or uncovered areas. Further problems that can be caused by these 
issues include differences in tool use or practices in storing information, misplaced 
restrictions on the access to data and unsuitable infrastructure for the distributed 



3. GSE challenges 
 

38 

setting. If these issues are not addressed well, the appearance of consequent 
problems is more likely. 

Consequent causes are causes that are not always present in GSE, but if they 
are, they have a major impact on the distributed software development project. 
The basic circumstances and derivative causes increase the chance of these 
problems being present. By addressing the derivative causes well, these problems 
may be avoided. Consequent causes include: 

 Lack of teamness (C1) refers to a lack in the creation and maintenance of a 
common bond and identity in a team. Teamness helps a team to work better 
together as it improves co-operation and commitment to the team’s goals. 
Different processes, practices and cultures tend to diminish teamness. 

 Lack of trust (C2) refers to mistrusting partners, manifesting as an unwill-
ingness to help each other and the placing of blame instead of working 
together towards a common target. The role of trust is always significant 
in collaboration as it is very difficult, if not impossible, to make “perfect” 
contracts, covering all aspects of a relationship. 

Example problems coming from these causes include hiding problems and an 
unwillingness to ask for clarification from others, expending a lot of effort in trying 
to find that the cause of problems (defects) has occurred in the other parties’ 
workplace, an unwillingness to help others and an unwillingness to share infor-
mation and work products until specifically requested to do so. These causes may 
also appear as difficulties in agreeing about the practices to be used and then not 
following the process and practices as agreed, for example. Further problems 
caused by these issues include the use of other tools than those agreed to for the 
project and plentiful technical issues that hinder communication and use of the 
tools, as agreed. 

3.3 Example situation to highlight challenges 

A simplified situation of globally distributed product development is presented as 
an example of the challenges in Figure 3. In this situation, company 1 is responsi-
ble for the product development and has subcontracted part of the development to 
other companies: companies 2 and 3 are software suppliers and company 4 pro-
vides system-testing services. Company 1 defines the requirements and architec-
ture of the product, makes some part of the software in-house, integrates the 
product and releases the product once testing results are satisfactory. Each of the 
companies is in a different location and company 1 has several teams in-house 
working on the product. 



3. GSE challenges
 

39 

 

Figure 3. Example GSE situation and some of its challenges. 

In the example situation, several problems are likely to appear. For example, 
threats are included in the figure and are explained next. 

Unclear requirements causing misunderstandings: Requirements are the basis 
(main input) for work for the component developers and for the system testers. If 
requirements are not stated clearly and unambiguously, parties may make their 
own interpretations of the requirements. This, in turn, may result in poor design 
decisions and may lead to a delay in the integration phase of the project. The 
effect of unambiguous and changing requirements is higher in GSE because of 
the leverage effect caused by the multiple levels of control (errors may be repeat-
ed on various levels and with different involved parties) and information transfer. 
The misunderstandings may be found only during integration when the pieces 
from different parties are put together. Basically, this problem is caused by the fact 
that there are multiple parties (B1) in different locations (B2) with different back-
grounds (D3) making different interpretations and assumptions about the require-
ments. There may also not have been enough communication (D1) about the 
requirements. 

Mismatching interfaces and inappropriate functionality of components: Mis-
matching interfaces will cause difficulties in integration, as parts developed by 
different parties will not work together as intended. Also, fixing the problems is 
difficult and laborious, as tracking the source of problems from parts made by 
various parties is difficult. Inappropriate functionality can mean missing, duplicate 
or unnecessary functionality of the software, leading to a product not meeting its 
requirements. This problem is caused by the basic circumstances (B1 and B2), 
and by different backgrounds (D3) (different ways of working), coordination break-
down (D2) dividing the responsibility of product development and by a lack of 



3. GSE challenges 
 

40 

communication (D1) of the requirements, architecture and intermediate work 
products. 

Delays and overlapping work: In distributed settings it is more difficult to keep 
track of other partners’ work due to a lack of insight into the partners’ work. Keeping 
track is important in order to enable a fast reaction to and prevention of problems 
during development. Also, dependencies between partners may not be obvious 
and may need to be managed in order to prevent parties needing to wait for each 
other. Overlapping work may come about if the requirements and architecture are 
not defined clearly and unambiguously. Moreover, not enough communication 
may have taken place so as to enable one partner to view how the other partner’s 
work is developing. This problem is caused by the basic circumstances (B1, B2), 
and the derivative causes of coordination breakdown (D2) and a lack of communi-
cation (D1). 

Incorrect analysis of the impact of changes: Analysing the impact of changes is 
more difficult in distributed development, as the work of others may not be known 
in much detail and there is a chance of an extended impact. Incorrect impact anal-
ysis leads to increased effort and frustration when bouncing change requests back 
and forth as well as to the potential for mismatches in functionality of the parts 
developed by different parties. This challenge is caused by the basic circumstances 
(B1, B2) and the derivative causes of different backgrounds (D3), when all partners 
do not have the same understanding of the product and may make wrong as-
sumptions of the impact of the change. It is also caused by coordination break-
down (D2), as it might not be so clear as to what the other partners were doing 
and what dependencies they have. 

These were just a few examples of challenges and problems illustrated in a 
simplified case. Many others, such as suboptimal use of resources, perceived low 
quality of supplied parts and sharing the correct level of information (right time, 
right amount to right people) may also occur. 

3.4 GSE challenges framework 

This chapter summarises the discussion of the GSE challenges and problems 
presented in the previous chapters. The structure used to present the challenges 
and problems is the same as the industrial inventory framework (Appendix A), and 
is based on CMMI, complemented with some GSE practices. The complementary 
GSE practices are collaboration management and co-operative work, and also 
each CMMI subarea has been described from GSE viewpoint. The summary of 
challenges is meant to help in identifying the challenges that are relevant for a 
given situation. The table is based on the discussion in Sections 3.1 and 3.2, 
bringing together the industrial expressions of challenges (the industrial inventory, 
industrial cases and workshops) as well as the discussion of challenges caused by 
the root causes. The table structure is based on literature and was also used as 
the industrial inventory framework. 



3. GSE challenges
 

41 

Table 4. GSE challenges’ summary. 

 Basic GSE 
circumstances 
- Multiple parties/ 

stakeholders 
- Time difference 

and distance 

Derivative GSE 
causes 
- Lack of 

communication 
- Coordination 

breakdown 
- Different 

backgrounds  

Consequent 
causes 
- Lack of teamness 

and trust 

Management practices 

Collaboration 
strategy 

Ineffective 
collaboration due to 
unsuitable 
collaboration mode 

Delays and problems 
in co-operation due to 
ad hoc way of 
working 

Lack of collaborative 
work culture due to 
not paying attention 
to collaborative work 
requirements 

Contracting 
practices 

Unclear or non-
existent agreements 
between partners 

Gaps and/or 
duplicate items in 
contracts coverage 

Lengthy and 
troublesome 
contracting process 

Conditions for 
collaboration 

Delays and wasted 
effort due to 
inappropriate project 
organisation or 
missing collaborative 
practices and tools 

Lack of visibility of 
partners’ work 

Unwillingness to 
collaborate and help 
each other. Mistrust 
of each other’s work 
results 

Supplier 
management 

Gaps or duplicate 
work caused by 
unclear assignments, 
delays caused by 
unmanaged 
dependencies 

No or not enough 
visibility of suppliers’ 
work. 
Unexpected 
deliveries (content or 
timing). 
Misunderstood 
requirements 

Supplier not 
receiving the support 
(e.g., input, 
feedback) needed. 
No openness to 
share problems or 
ask questions  

Project    
management 

Unclear status of 
project. 
Delays caused by 
unclear decision-
making authorities 
and practices 

Delays caused by 
unaligned teams. 
Mismatching work 
results caused by 
misunderstood goals. 
Unavailable 
resources 

Mistakes due to 
wasted effort caused 
by missing 
information. 
Wasted time caused 
by checking each 
other’s work 
needlessly 



3. GSE challenges 
 

42 

Engineering practices 

Requirements 
engineering 

Difficulties in 
prioritising 
requirements due to 
various views, unclear 
requirement 
documentation, 
difficulties in 
establishing and 
managing traceability 

Misunderstood 
requirements causing 
unfitting deliveries. 
Problems caused by 
non-communicated 
changes to 
requirements. 
Inconsistencies 
between 
requirements and 
further work products 

Lack of clarity in 
requirements that 
are not 
communicated but 
where (wrong) 
assumptions are 
made 

Architecture Unsuitable 
architecture (not 
supporting distributed 
development) 

Unclear, non-
communicated or 
misunderstood 
architecture 

Architecture and 
architectural rule 
violations 

Design and 
coding 

Difficulties in 
communicating design 
rationale causing 
mistakes in design 
decisions 

Different coding 
styles and standards 
affecting 
understandability of 
design and code by 
others 

Mistrust towards 
design and code 
made by others 
causing unnecessary 
effort in checking the 
work 

Integration Delays in responses 
for issues found in 
integration, 
unavailability of 
information 

Problems during 
integration caused by 
mismatching pieces 
or unsynchronised 
deliveries 

Delays in integration 
due to lack of 
commitment from 
implementers (code 
is ready only when it 
is integrated into the 
product) 

Testing  Difficulties in 
replicating defects 
found in testing, lack 
of visibility in testing 
the progress 

Duplicate testing 
efforts, inadequate 
testing (due to lack of 
knowledge), 
ineffective testing 
caused by 
unsynchronised 
deliveries 

Blaming other 
parties for the defect 
sources rather than 
constructively finding 
out the source of the 
defect, taking test 
results personally 

Supporting practices 

Configuration 
management 

Complex 
configuration-
management 
practices. 
Difficulties in finding 
correct versions 

Use of wrong 
versions, problems in 
builds, unclear status 
of development work 

Unwillingness to 
follow defined rules 
and use the tools as 
agreed, unjustified 
complaining about 
the rules and tools 

Quality 
assurance 

Different and 
unknown practices of 
partners 

Unknown 
responsibilities for 
quality assurance, 
differences in quality 
of work 

Unnecessary 
duplicate quality 
assurance due to not 
trusting others’ work 



3. GSE challenges
 

43 

Sharing 
information 

Difficulties in knowing 
who has the relevant 
information and who 
needs it when. 
Difficulties in defining 
appropriate means for 
information sharing 

Difficulties in knowing 
what information 
should be 
communicated and 
how (what is already 
known and what not). 
Unclear 
responsibilities for 
information sharing  

Unnecessary 
confidentiality, 
meaning all needed 
information is not 
available to all, 
unwillingness to ask 
for information if not 
easily found 

Infrastructure Different incompatible 
tools used by 
partners, problems in 
availability of tools 

Different ways of 
using tools, inability 
to use 
communication tools 
effectively 

Blaming tools for 
problems in the 
project, 
unwillingness to use 
the shared 
infrastructure  

Competence 
management 

Unawareness of what 
competence is 
available and where 

Suboptimal use of 
resources, 
unavailable  required 
competence 

Favouring the 
“known” members of 
the project although 
better competence 
might be available 
from other sites 

Continuous 
improvement 

Different and 
unknown practices of 
partners, unclear 
responsibilities and 
authorities for 
improvement work 

Unshared information 
about lessons 
learned and best 
practices 

Unwillingness to 
share learning or 
adopt best practices 
from other partners 

 
 
 



4. GSE solutions 
 

44 

4. GSE solutions 

In this section, example solutions for the challenges and problems are presented 
based on the literature and on the author’s empirical work; that is, the industrial 
cases that were carried out (see details in Section 7). Solutions have been defined 
for each identified GSE challenge from three sources: (1) adapting from literature, 
(2) identifying best practices from industrial cases, or (3) by defining new ones if 
none were available from the first two sources. The first draft of the solutions was 
presented in the Merlin handbook (Paper III). Updates have been made based on 
empirical work and new literature sources. The solutions discussed in this section 
are relevant to all collaboration modes. Supplier-management-related issues are 
mostly relevant in the customer–supplier relationship, but some of the practices 
(e.g., co-operation capability, the quality system and roles and responsibilities) are 
also useful in other collaboration modes such as in multi-site development within a 
single company and joint ventures. 

The solutions are presented from the three viewpoints of technology, processes, 
and people and for each of the causes presented in section 3. These three view-
points were chosen as they are commonly accepted as the main viewpoints to 
consider when improving software engineering or other development practices. 
The solutions are presented using the same structure as the challenges in Table 4. 
Table 8, Table 10 and Table 12 together present a comprehensive view of GSE 
problems/challenges and solutions, i.e., the GSE framework. Figure 4 presents the 
relationship of the causes and the three viewpoints for solutions. 

 



4. GSE solutions
 

45 

 

Figure 4. Solution categories’ relationship to root causes of challenges. 

The figure is based on literature and on the empirical work and it’s an indication of 
the relationship between the types of solutions to the causes of challenges. It does 
not mean to say that technology solutions are not at all relevant for the challenges 
caused by different backgrounds and tacit knowledge or that people solutions are 
not relevant for challenges caused by time difference and distance and lack of 
communication. The point lies in showing what types of solutions are most rele-
vant to challenges caused by various root causes. The technology solutions can 
mostly support the challenges caused by time difference and distance and lack of 
communication, but also, together with process solutions, they can also support 
the challenges caused by multiple parties/stakeholders and coordination break-
down. People-related solutions can especially support challenges caused by dif-
ferent backgrounds and tacit knowledge, but also other challenges. Relating to 
lack of communication people related solutions are also relevant, but usually need 
also technology or process support in GSE (i.e., communication tools, or sharing 
information practice), Process solutions can support all challenges, but technology 
and people solutions are needed as well. Furthermore, all types of solutions are 
needed to address the challenges caused by a lack of teamness and trust. 

Next, the solutions are discussed according to the three viewpoints. First, the 
solutions are discussed in general and then example solutions are presented in a 
table using the GSE framework structure. 



4. GSE solutions 
 

46 

4.1 Process solutions 

Process-related solutions can help to address all of the root causes for the problems 
and challenges in GSE. One solution is usually a partial solution to the problem 
and should be used in combination with other solutions to completely solve the 
problem. There is no specific GSE process model available that would address 
GSE as a whole. Such a model would also not be practical, as it would usually 
require a complete change in the way of working within a company. Instead, new 
practices or enhancements of practices are proposed. These practices can be 
incorporated into any process model, but details of how to address them in practice 
may vary, for example, Välimäki et al. (2009) propose a pattern based approach to 
integrate the good practices that support GSE in the company’s process and 
Hossain et al. (2009) discuss how agile practices can help in GSE. The solutions 
are discussed here according to the GSE framework structure 

4.1.1 Management practices in GSE 

The GSE view in terms of management practices includes organisational-level 
activities and project-level activities. These activities are additional activities needed 
in order to success in GSE. In addition basic activities as presented, e.g., in project 
management frameworks such as PRINCE2, PMBOK etc. are needed (those are 
not discussed here). Firstly, a collaboration strategy should be defined, including 
applicable models for collaboration. Collaboration models include, for example, 
subcontracting, multi-site development, joint ventures etc. (see Section 2.2). A com-
pany should have a strategy for which modes to use in which situation, also con-
sidering the organisational structure and culture. The organisation should also 
define a reward policy for collaboration efforts. Collaboration efforts should be 
rewarded in order to encourage, for example, supporting and helping each other, 
as these may often be seen as extra work, or work that not enough attention is 
paid to naturally. Collaboration should also be taken into account in long-term 
planning and road-mapping: supplier agreements and long-term framework 
agreements should be used as the input for road-mapping and it could also be 
useful to consider involving the customers or suppliers in road-mapping, especially 
in long-term strategic relationships. 

Contracting practices are another important topic at the management-practice 
level, especially in multi-company collaboration efforts. Issues such as ensuring 
that the contracts are signed at the start of the co-operative venture, involving 
technical people in the contracting process to ensure that technically realistic 
agreements are made and agreeing to the change procedures and decision points 
should be included in the contracting process. During the contracting process all 
involved parties or stakeholders, with the required authorities, should be involved. 

Conditions for collaboration should be established for the organisation as well as 
for each distributed project. These conditions include communicating the motivation 
and rationale for collaboration to all parties, establishing a collaboration culture 



4. GSE solutions
 

47 

where collaboration becomes a natural way of working, identifying cultural differences 
between partners and dividing work across sites or partners in a meaningful way. 
Basically, all topics discussed in this section are relevant with respect to establish-
ing the conditions for collaboration. Also, defining the confidentiality of the data 
and allowing or restricting access to it accordingly is important in order to ensure 
that the required information is available to all those who need it (i.e., not restricting 
access to all data just in case). This helps in sharing information between partners, 
when it is clear what can be shared and what cannot be shared. 

At management-practice level, practices to manage the supplier also need to 
be defined. Supplier selection should be carried out in a defined and controlled 
manner, including developing definite criteria for selecting suppliers, analysing 
suppliers’ co-operation capability, and their quality system beforehand and per-
forming supplier audits. Agreements with the supplier should be made in enough 
detail and technical people should be involved, as they can ensure the technical 
quality of the agreements. The supplier should also be required to deliver a plan 
with an acceptable level of detail, enabling the monitoring of the progress of the 
supplied work. The roles and responsibilities, including the general role of the 
partners in the project, should be defined clearly and communicated well. The 
general roles incorporate, for example, mutual responsibilities in partner-to-partner 
business development vs. a clearly defined implementation or test partner. Roles, 
responsibilities and authorities on a more detailed level should be defined, including 
escalation paths in case of issues that are unsolvable at the level under considera-
tion. In addition to these agreements, tracking of the progress of the work during 
execution is equally important. Paying attention to the supplier, in terms of the 
planning effort and the time for it, is easily overlooked, so defining explicit tasks 
and responsibilities for tracking the suppliers’ work during the project is needed. 
This also includes defining acceptance procedures for mutual deliveries and, finally, 
validation of the supplier’s work/results against stated criteria and the evolution of 
the supplier’s performance. 

Project management also requires specific attention when doing GSE. The pro-
ject’s organisation should be defined purposefully and functionally for the situation, 
meaning that the work is distributed between sites so that dependencies between 
sites are minimised, still utilising the best competencies across sites for various 
tasks. Project goals need to be explicitly and unambiguously stated and communi-
cated to all teams involved in the project, including the possible partner-specific 
goals, to enable mutual trust and understanding between partners to develop. 
Roles, responsibilities and decision authorities should be defined and communi-
cated, including escalation channels in case of issues that are not resolvable at 
the decision level. Also, critical resources of the sites/partners should be defined 
and managed. Status reporting and problem-solving practices, including channels 
and decision authorities should be defined. An important aspect relating to GSE 
project management is alignment between teams and partners, meaning that the 
dependencies between teams are identified and managed proactively and that 
procedures for dealing with deviations are defined. Communication is an important 
aspect, and communication items, roles and channels (including appropriate tools) 



4. GSE solutions 
 

48 

should be defined and potential communication bottlenecks identified and man-
aged. Collaboration-specific risks should be identified and managed as part of the 
general risk management of the project. Also, shared change-management practices 
should be defined and communicated to all partners. 

As a summary, in Table 5 examples of detailed solutions for how to address the 
important activities discussed above, in practice, are given. More details of the 
solutions are presented in the SameRoomSpirit wiki (Prisma, 2011). These kinds 
of solutions are needed to take care of the important items discussed in this section. 
The solutions can be specific processes, practices or tools, for example. 

Table 5. Sample of detailed solutions to management practices. 

Topic Solution name Solution description 

Collaboration 
strategy 

Characteristics of 
collaboration 
modes 

Describes main characteristics of selected 
collaboration modes in order to help in 
understanding the different modes when 
choosing them. 

Contracting 
practices 

Checklist for 
subcontracting 
agreements 

List of items to check when making 
subcontracting agreements; for example, 
covering IPR issues and acceptance of 
deliveries. 

Conditions for 
collaboration 

Project-initiation 
practices 

Practices to carry out at the start of the project 
to ensure good conditions to start the project; for 
example, identification of cultural differences. 

Supplier  
management 

Template for 
supplier reporting 

Template describing what suppliers should be 
reporting in various stages of the project and 
attention points for detecting potential problems 
early. 

Project    
management 

Project-
management 
milestones  

Description of milestones from the GSE 
viewpoint to track project progress and 
guidelines for reacting to deviations when 
reaching the milestones. 

4.1.2 Engineering practices in GSE 

Specific attention points regarding engineering practices when doing GSE projects 
are largely related to establishing a common understanding; for example, the 
requirements and architecture of the product to be made. It is also important that 
different sites work on the same baseline for the various work items (requirements, 
architecture, design, code, test material). 

Requirements and architecture should be defined clearly, including the non-
functional requirements. The relevant experts from all parties should be involved in 
requirements analysis and prioritisation, and architecture design. Involving per-
sons from each site in the core group defining the requirements and architecture is 
also useful for ensuring the common understanding and availability of expertise at 



4. GSE solutions
 

49 

all sites. Requirements and architecture should also be continuously communicated 
and defined clearly and unambiguously in order to ensure a common understanding 
about them. 

Prioritisation rules and practices/trade-off of the requirements as well as practices 
for identifying and dealing with ambiguous and conflicting requirements should be 
defined clearly and communicated well. Requirements management practices 
should also be defined, including change management of the requirements and 
traceability to enable the tracking of the consistency between requirements and 
further work products. RE is discussed in more detail as an example area in Sec-
tion 6. 

The architecture should be defined so that it takes into account the collaboration 
mode, thus enabling the sharing of work between sites. Special attention should 
be paid to defining the interfaces clearly. Also, the maintenance and evolution of 
the architecture should be defined and managed. 

Relating to design and coding, GSE has less impact than for requirements and 
architecture as the work has less dependencies, and the possible dependencies 
should have been addressed at the architectural level. However, it is useful to 
define common design and implementation rules between partners and participate 
in design and code reviews across sites in order to share information and ensure 
that the rules are followed. 

In integration the parts developed by the different teams of the project are 
brought together and often problems in the common understanding of the re-
quirements and architecture are revealed only then. In order to make integration 
work easier, the integration strategy should be defined and communicated, the 
required expertise should be defined and its availability during integration ensured, 
sufficient time and capacity for integration should be planned and responsibilities 
for resolving problems should be clearly assigned. 

In testing it is most important to share information and data between partners; 
for example, the need for a shared test environment between partners should be 
identified, and its availability ensured and test cases shared when applicable. 
Sharing information about the performed tests and the test results is also im-
portant in order to avoid duplicate work between sites or grey areas that nobody 
tests. Relating to the releasing of the product, the costs for non-quality should be 
taken into account, including the costs for non-quality of the various suppliers. 

This discussion is summarised in Table 6, presenting a sample of solutions for 
engineering practices. 



4. GSE solutions 
 

50 

Table 6. Sample of detailed solutions to engineering practices. 

Topic Solution name Solution description 

Requirements 
engineering 

Common 
understanding of 
requirements 

Describes practices for identifying ambiguous 
requirements or differences in the understanding 
of the requirements between partners. 

Architecture  Common 
understanding of 
architecture 

Practices for ensuring a common understanding 
of the architecture among partners; for example, 
by utilising various architectural views and 
design principles. 

Design and 
coding 

Common rules Description of common design and 
implementation rules that should be followed by 
the partners in order to ensure a common quality 
and understandability of work done by others; 
for example, design patterns to be used. 

Integration  Integration 
strategies 

Description of different integration strategies, 
that helps in choosing the right one for the 
project. 

Testing Sharing test 
information 

Practices that support sharing test information 
(test cases, test results, test data) between 
partners. 

4.1.3 Supporting practices in GSE 

Supporting practices should be adjusted to support GSE. United configuration 
management (CM) practices between teams and partners are essential for GSE 
success and they should be defined and trained and their use ensured on a regular 
basis across sites. Competence in using the CM tool should be available. Also, the 
release and traceability practices that support the traceability of customer-version-
feature/requirement information should be defined and followed across sites. 

Common practices for quality assurance should also be defined, including, for 
example, checking the quality of the work on reaching the defined milestones, 
common reviews and acceptance criteria. However, the common process across 
sites/partners should be as narrow as possible and forced as little as possible. 
Also, each partner should have in-house quality practices in place according to the 
quality requirements of the project. 

Sharing information between sites is a specifically important aspect in GSE. 
One aspect of information sharing is sharing documentation, and practices for that 
should be in place, including where and when the documents are available or 
shared and for whom. In order to ease information sharing via documents, common 
terminology should be used and used abbreviations should be defined. Also, 
common templates should be defined and used where applicable. 

Good infrastructure is one of the key aspects for enabling successful GSE. 
From a process viewpoint, this includes defining the infrastructure needs from 



4. GSE solutions
 

51 

various sites’ viewpoints and defining a shared way of working with the infrastructure 
and tools; for example, where certain information is stored and by whom. 

It is also important to ensure that enough competencies are available for the 
project. Thus, the necessary competences should be identified, and potential 
competence gaps filled with training or through acquiring persons with the right 
competence. It is especially important to ensure that basic management capabilities 
are present in teams. Also, the social and communicative skills of project members, 
especially project leaders, should be considered. For example, ensuring that project 
members have sufficient language skills is important. In order to ease dealing with 
the difficulties caused by cultural differences, the differences should be identified 
and prepared for. Long-term visits between sites help in creating understanding of 
the other site’s culture and way of working. Also, the importance of continuous 
communication should be emphasised. 

As in any development effort, in GSE it is also important to continuously learn 
and improve the practices. Thus, the effectiveness of collaboration should be 
evaluated, for example, as part of post-mortem project evaluations. The best prac-
tices should be recorded and used between partners. Also, in long-term relation-
ships it is useful to agree upon shared process-improvement work. 

This discussion is summarised in Table 7, presenting a sample of solutions for 
supporting practices. 

Table 7. Sample of detailed solutions to supporting practices. 

Topic Solution name Solution description 

Configuration 
management 

Unified CM 
practices 

Describes the configuration-management 
practices that should be common between all 
partners. 

Quality 
assurance 

Unified QA 
practices 

Describes the quality management practices 
that should be common between all partners. 

Sharing 
information 

Documentation 
practices 

Documentation practices that make sharing 
information in distributed projects easier 
(understandability and availability of 
documentation). 

Infrastructure Infrastructure 
checklist 

Checklist that helps to ensure that the 
infrastructure is adequate for the GSE situation 
in question. 

Competence 
management 

Team development Practices for what to consider when building a 
team; for example, adequate competences and 
building a team atmosphere. 

Continuous 
improvement 

Evaluating 
collaboration 
effectiveness 

Metrics and measurement practices that provide 
information during and after the project about 
the effectiveness of the collaboration. 

 



4. GSE solutions 
 

52 

4.1.4 Process solutions summary 

The following table (Table 8) summarises the challenges and process-related 
solutions. Table 8 together with tables Table 10 and Table 12 form the GSE 
framework. 

Table 8. Summary of process solutions for GSE challenges. 

Management practices 

Collaboration strategy: 
- Ineffective collaboration due to unsuitable 

collaboration mode. 
- Delays and problems in co-operation due to 

ad hoc way of working. 

- Practices for selecting collaboration mode. 
- Collaboration-mode characterisations. 
- Defining purposeful project organisation, and 

collaboration practices fitting to the 
collaboration mode. 

- Involving partners in road-mapping to establish 
trust and co-operative culture. 

Contracting practices:  
- Unclear or non-existent agreements between 

partners. 
- Gaps and/or duplicate items in contracts’ 

coverage. 

- Practices for establishing good contracts, 
contract templates. 

- Practices for agreeing issues not included in the 
contract, contract change management. 

Conditions for collaboration: 
- Delays and wasted effort due to 

inappropriate project organisation or missing 
collaborative practices and tools. 

- Lack of visibility of partner’s work. 

- Practices for information sharing, escalation 
and change management. 

- Defined responsibilities and authorities, and 
contact persons for each site. 

- Defined proactive status-reporting practices and 
frequent communication. 

Supplier  management: 
- Gaps or duplicate work caused by unclear 

assignments, delays caused by unmanaged 
dependencies. 

- No or not enough visibility of suppliers’ work. 
- Unexpected deliveries (content or timing). 
- Misunderstood requirements. 

- Practices for supplier management, including 
responsibilities, checkpoints, contacts and tasks 
alignment. 

- Defined supplier-selection practices also taking 
into account suppliers’ collaboration 
experience. 

- Explicit attention placed on managing the 
suppliers. 

Project management: 
- Unclear status of project. 
- Delays caused by unclear decision-making 

authorities and practices. 
- Delays caused by unaligned teams. 
- Mismatching work results caused by 

misunderstood goals. 
- Unavailable resources. 

- Defining a project plan and management 
structure, including tasks, responsibilities, 
dependencies and planned effort and 
schedules. 

- Practices for aligning teams’ and partners’ 
work, practices for managing dependencies 
between partners, critical resource 
management. 



4. GSE solutions
 

53 

Engineering practices 

Requirements engineering: 
- Difficulties in prioritising requirements due to 

various views. 
- Unclear requirement documentation. 
- Difficulties in establishing and managing 

traceability. 
- Misunderstood requirements causing 

unfitting deliveries. 
- Problems caused by non-communicated 

changes to requirements. 
- Inconsistencies between requirements and 

further work products. 

- Requirements prioritisation practices. 
- Requirements document template covering 

good requirements quality aspects. 
- Requirements engineering process for 

distributed setting. 
- Practices for identifying and dealing with 

ambiguous requirements, for resolution of 
conflicting requirements. 

- Uniform requirements management practices 
between teams, including clear requirements 
change management practices. 

Architecture: 
- Unsuitable architecture (not supporting 

distributed development). 
- Unclear, non-communicated or 

misunderstood architecture. 

- Architecture definition practices including 
checklist for defining architecture for distributed 
development. 

- Clearly defined maintenance and evolution of 
the architecture. 

- Taking into account the collaboration modes 
when defining the architecture. 

Design and coding: 
- Difficulties in communicating design rationale 

causing mistakes in design decisions. 
- Different coding styles and standards 

affecting understandability of design and 
code by others. 

- Design and coding guidelines (including design 
and coding principles). 

- Review practices to ensure design choices are good. 
- Shared documentation practices. 
- Review checklist to ensure standard quality of 

design and coding. 

Integration: 
- Delays in responses for issues found in 

integration, unavailability of information. 
- Problems in integration caused by 

mismatching pieces or unsynchronised 
deliveries. 

- Defined responsibilities for integration and 
problem solving.  

- Defined integration strategy. 
- Continuous integration practices. 

Testing: 
- Difficulties in replicating defects found in 

testing. 
- Lack of visibility in testing progress. 
- Duplicate testing efforts, inadequate testing 

(due to lack of knowledge). 
- Ineffective testing caused by unsynchronised 

deliveries. 

- Defined testing practices for distributed 
settings, defined responsibilities. 

- Sharing of test cases. 
- Practices to share information about the 

performed tests and the test results. 
- Clear responsibilities and authorities. 

Supporting practices 

Configuration management: 
- Complex configuration-management 

practices. 
- Difficulties in finding correct versions. 
- Use of wrong versions causing problems in 

builds. 
- Unclear status of development work. 

- Configuration management process supporting 
distributed development, including version 
naming, communication of changes and roles 
and responsibilities. 



4. GSE solutions 
 

54 

Quality assurance: 
- Different and unknown practices of partners. 
- Unknown responsibilities for quality 

assurance. 
- Differences in quality of work between 

partners. 

- Shared process between partners for certain 
parts, such as configuration management, 
change management, requirements 
management and project management. 

- Defined interfaces to partners. 
- Common process for relevant items across 

sites/partners. 
- Managing collaboration-related risks. 

Sharing information: 
- Difficulties in knowing who has the relevant 

information and who needs it when. 
- Difficulties in defining appropriate means for 

information sharing. 
- Difficulties in knowing what information 

should be communicated and how (what is 
already known and what is not). 

- Unclear responsibilities for information 
sharing. 

- Defined information-sharing practices including 
what, when, from whom, to whom and using 
what media. 

- Defined contacts from each partner. 
- Agreement between partners as to how 

changes affect contracts. 
- Practices for assessing impact of change on 

other parties’ work. 
 

Infrastructure: 
- Different incompatible tools used by 

partners. 
- Problems in availability of tools. 
- Different ways of using tools. 
- Inability to use communication tools 

effectively. 

- Defined infrastructure needs, defined way of 
working with the infrastructure. 

- Defined way of working with tools, regular 
monitoring of tool-usage practices. 

- Virtual-meeting practices. 

Competence management: 
- Unawareness of what competence is 

available and where. 
- Suboptimal use of resources. 
- Unavailable required competence. 

- Practices to analyse the competence needs as 
well as for identifying available competences 
over sites. 

- Practices for utilising best available 
competences for the task despite of the 
competence location. 

Continuous improvement: 
- Different and unknown practices of partners, 

unclear responsibilities and authorities for 
improvement work. 

- Unshared information about lessons learned 
and best practices. 

- Practices for sharing best practices and lessons 
learned over sites, clear authorities to decide 
the practices to be used in the project. 

- Evaluating the effectiveness of collaboration. 

4.2 Technology solutions 

Technology solutions for GSE are mostly helpful in addressing the challenges 
caused by time difference and distance and lack of communication. They are also 
helpful in other challenges, but the main solutions to those are in process- and 
people-related aspects. Also, technology solutions alone cannot usually solve the 
challenges, but they need process- or people-related solutions to support them. 
For example, availability of communication tools does not automatically mean that 
communication takes place, but their absence hinders communication across sites 
effectively. Technology solutions are mainly tools and infrastructure issues; for 



4. GSE solutions
 

55 

example, networks and tools that can help in information sharing between partners. 
The GSE infrastructure should include tools that are available, reliable and usable. 
Sufficient tools for communication and shared repositories are also very important 
for successful GSE. The resources should be accessible to all that need them and 
they should be compatible between partners where needed. Also, the network 
connections should be usable and reliable. In GSE projects, specific attention 
should be paid to issues caused by time difference; for example, that appropriate 
tools for sharing information are available and that the transition between syn-
chronous and asynchronous work is managed. 

The tools used in GSE are the same as in single-site development with the ad-
dition of communication tools and shared repositories over sites. Important as-
pects when choosing the tools are the normal requirements for tools, such as 
usability and fitness for the purpose, but they have to be considered from the GSE 
viewpoint, meaning that multiple partners with different backgrounds need to be 
taken into account. Also, partners may have legacy tools, which cannot be 
changed without huge investments, so interoperability of tools is an important 
aspect in GSE. Systematic evaluation and selection of tools for GSE project is 
important, for example, Poston and Sexton (1992) present a workflow for tool 
evaluation with respect to testing tools that was extended by Winkler et al. (2010) 
to evaluate pair programming tools for distributed projects. This workflow consists 
of five steps, analysis and classification of requirements (1), search and categori-
zation of candidate tools (2), evaluation framework definition (3), scenario brain-
storming (4), tool evaluation and assessment (5), and can be used in evaluating 
other tools for GSE as well. 

In selecting tools, the following items should be considered (Kanstren et al., 2007): 

 Usability, simplicity and customisation: The tool is easy to use and it does 
not complicate development work. The tool deployment does not require 
extensive customisation. 

 Multi-platform support: The ability to support multiple operating systems. 

 Tool integration: Integration with the other tools (SW development, test-
ing, project management) requires that as a minimum the tools should 
have import/export facilities. 

 Web access: The tool has a web interface that makes it unnecessary to 
install a client application for occasional users. 

 Access control: The tool provides access control; thereby each partici-
pant has appropriate access to the data (e.g., role-based, project-based 
or task-based access control). 

 Information sharing: The tool supports information sharing and data 
availability. Thereby all participants can be up to date (e.g., central repos-
itory, e-mail notifications, news groups, discussion forums, replication, 
remote access etc.). 



4. GSE solutions 
 

56 

 Simultaneous usage: Many users can access to same system and work 
on the same data securely. 

These criteria are common for all tools; for specific-purpose tools, additional re-
quirements should be considered. For example, for project-management tools the 
following criteria have been defined (adapted from Ahmad & Laplante, 2006): 

 Communication and interaction: The tool supports both asynchronous 
and synchronous communication. Interaction between project members 
(negotiation of goals, task allocation, co-work etc.) needs to be supported. 

 Detection of critical paths: Support for identifying critical paths is needed. 

 Managing of dependencies: In scheduling, the tool supports identifying 
and managing dependencies. 

 Managing of critical resources: The tool supports identifying and manag-
ing critical resources. 

 Levelling of plans: It is possible to make plans reflecting the project levels 
(overall project, teams, sites etc.). 

 Ability to provide central knowledge repository for file storage, tasks, 
timelines and resource tracking. 

 Ability to create, share, review and redline project documents, check cal-
endars, coordinate schedules and review tasks by project members. 

 Permit editing of a document in a parallel manner by project members. 

 Support both synchronous and asynchronous group problem solving and 
decision making. 

Ensuring availability of data for all in a globally distributed project can be done by 
either unifying the tool set between both sites of the project and tools used in 
different activities by acquiring a bundled tool set from a specific vendor or by 
building interoperability between various tools used in the project. Several bundled 
tool sets from various vendors are available, but that often creates a vendor lock 
and requires that some of the partners change their tools. Changes are usually 
risky and costly, so creating tool integration is a better potential solution to address 
GSE challenges from the tool viewpoint. 

Interoperability of the development tools is an important aspect even in single-
site development as the data in tools is connected and the manual transfer of data 
between tools is laborious and error prone. In GSE it is even more important. This 
is due to the fact that multiple sites and/or partners are working together, usually 
using several tools for the same purpose. For example, sites can be using different 
CM tools or testing tools due to various reasons. However, the data in these tools 
needs to be connected to other tools and at least needs to be easily available for 
different sites. 



4. GSE solutions
 

57 

As discussed in Paper VIII, the interoperability of tools increases the efficiency 
and transparency of embedded system development; it reduces the amount of 
laborious and time-consuming manual effort, the number of (manually introduced) 
errors and reduces the chance of different and incorrect interpretations by provid-
ing access to the same data to all parties without needing to replicate it to different 
tools. Proper tool integration can increase the effectiveness and efficiency of the 
product development, as it can, for example, improve traceability. Good traceabil-
ity helps in ensuring that the requirements are explicitly covered by tests, and that 
the engineering tasks are consistent through the synchronisation and status over-
views of successive engineering tasks. Tool integration can also increase the 
transparency of the project by providing insight into the total project for all involved 
parties and real-time access of the same data across sites. As a summary, in 
Table 9 examples of detailed solutions for how to address the important activities 
discussed above, in practice, are given. 

Table 9. General technical solutions. 

Topic Solution name Solution description 

Development tools 
GSE support 

GSE tool 
requirements 

List of requirements that are specific for 
tools to be used in GSE situation 

Data sharing between 
sites 

Tool 
interoperability 

Guidelines and framework for building tool 
interoperability  

 
The following table (Table 10) summarises the challenges and technology related 
solutions for each of the GSE framework topics. 

Table 10. Summary of technical solutions. 

Management practices 

Collaboration strategy: 
- Ineffective collaboration due to unsuitable 

collaboration mode. 
- Delays and problems in co-operation due to ad 

hoc way of working. 

- Discussion forums for questions and 
answers (that are stored). 

- Project website introducing project 
members (with pictures). 

Contracting practices:  
- Unclear or non-existent agreements between 

partners. 
- Gaps and/or duplicate items in contracts’ coverage. 

- None 

Conditions for collaboration: 
- Delays and wasted effort due to inappropriate 

project organisation or missing collaborative 
practices and tools. 

- Lack of visibility of partners’ work. 

- Establishing working infrastructure, 
including at least shared configuration 
management, document sharing and 
communication tools between partners. 

- Access to partners’ tools for real-time 
status information. 



4. GSE solutions 
 

58 

Supplier management: 
- Gaps or duplicate work caused by unclear 

assignments, delays caused by unmanaged 
dependencies. 

- No or not enough visibility of suppliers’ work. 
- Unexpected deliveries (content or timing). 
- Misunderstood requirements. 

- Access to suppliers’ tools for real-time 
status information. 

Project management: 
- Unclear status of project. 
- Delays caused by unclear decision-making 

authorities and practices. 
- Delays caused by unaligned teams. 
- Mismatching work results caused by 

misunderstood goals. 
- Unavailable resources. 

- Establishing project management tools 
over sites, such as effort- and task-
progress tracking, project-information site. 

- Shared project management tools, 
automated indicators for project progress. 

Engineering practices 

Requirements engineering: 
- Difficulties in prioritising requirements due to 

various views. 
- Unclear requirement documentation. 
- Difficulties in establishing and managing 

traceability. 
- Misunderstood requirements causing unfitting 

deliveries. 
- Problems caused by non-communicated changes 

to requirements. 
- Inconsistencies between requirements and 

further work products. 

- Requirements engineering tools that 
support multi-site working, especially those 
establishing traceability. 

- Interoperability of development tools to 
enable traceability. 

- Shared requirements repository to ensure 
availability of correct versions and changes. 

Architecture: 
- Unsuitable architecture (not supporting 

distributed development). 
- Unclear, non-communicated or misunderstood 

architecture. 

- Shared repository where correct 
architecture versions are available. 

- Discussion forum to share architecture 
knowledge. 

Design and coding: 
- Difficulties in communicating design rationale 

causing mistakes in design decisions. 
- Different coding styles and standards affecting 

understandability of design and code by others. 

- Shared repository where correct design 
versions and design rationale decisions are 
available. 

- Discussion forum to share design rationale. 

Integration: 
- Delays in responses for issues found in 

integration, unavailability of information. 
- Problems in integration caused by mismatching 

pieces or unsynchronised deliveries. 

- Shared configuration management tool. 
- Discussion forum to share integration 

issues. 
- Defect management tool to communicate 

and track defects. 
- Integration tools and shared automated test 

sets providing immediate feedback for 
developers. 



4. GSE solutions
 

59 

Testing: 
- Difficulties in replicating defects found in testing. 
- Lack of visibility in testing progress. 
- Duplicate testing efforts, inadequate testing 

(due to lack of knowledge). 
- Ineffective testing caused by unsynchronised 

deliveries. 

- Shared configuration management. system 
to ensure use of correct version. 

- Shared test environment. 

Supporting practices 

Configuration management: 
- Complex configuration management practices. 
- Difficulties in finding correct versions. 
- Use of wrong versions, causing problems in 

builds. 
- Unclear status of development work. 

- Configuration management tool that 
supports distributed development. 

- Shared websites to share information. 

Quality assurance: 
- Different and unknown practices of partners. 
- Unknown responsibilities for quality assurance. 
- Differences in quality of work between partners. 

- Shared repositories for QA results. 

Sharing information: 
- Difficulties in knowing who has the relevant 

information and who needs it when. 
- Difficulties in defining appropriate means for 

information sharing. 
- Difficulties in knowing what information should 

be communicated and how (what is already 
known and what is not). 

- Unclear responsibilities for information sharing. 

- Shared repositories and functional 
communication tools. 

- Change management tools. 

Infrastructure: 
- Different incompatible tools used by partners. 
- Problems in availability of tools. 
- Different ways of using tools. 
- Inability to use communication tools effectively. 

- Interoperability solutions for tools, shared 
tools for shared work items. 

Competence management: 
- Unawareness of what competence is available 

and where. 
- Suboptimal use of resources. 
- Unavailable required competence. 

- Shared repository for competences and their 
contact information in the project. 

Continuous improvement: 
- Different and unknown practices of partners, 

unclear responsibilities and authorities for 
improvement work. 

- Unshared information about lessons learned 
and best practices. 

- Shared repository of best practices and 
lessons learned. 

 



4. GSE solutions 
 

60 

4.3 People solutions 

People-related solutions are mostly helpful in addressing challenges caused by 
different backgrounds and tacit knowledge. People issues are important to ad-
dress in all challenges, as software engineering is highly people intensive work, 
and thus everything is affected by people aspects. The solutions in this category 
are mainly related to the competences and training of the people, communication 
and ensuring people’s motivation and attitude for co-operative work, including 
identifying cultural differences and taking them into account. Solutions relating to 
these general topics are discussed in Table 11. 

As discussed in Paper IV, GSE is very knowledge intensive and there are mul-
tiple challenges related to knowledge engineering. The general knowledge engi-
neering technologies can also help in GSE projects. For example, in GSE, the 
differences in teams’/partners’ tacit knowledge should be understood. In order to 
address the different backgrounds and tacit knowledge, knowledge engineering 
activities relating to knowledge capture are relevant and to bridge the gaps, 
knowledge engineering technologies for sharing knowledge are useful. Also, in 
order to address the motivation of the partners, well-defined roles and activities for 
reviewing and, thus, sharing the knowledge of the goals of the project are helpful. 
During the GSE project, a great deal of knowledge is created and needs to be 
shared between the partners. Thus, solutions that increase communication, trust, 
openness, and awareness, as well as solutions that make knowledge available in 
an explicit form are needed. Sharing knowledge can be supported by activities 
related to negotiating, brainstorming freely and reaching a consensus that can 
also help in creating a better understanding of each other. In GSE, individual and 
shared understanding, that is, knowledge creation, requires lots of communication, 
as communication increases mutual trust between partners. Also, the role of in-
formal communication is important, as it helps to create trust and teamness be-
tween partners. Establishing a collaborative culture can be supported by practices 
for getting to know each other, such as face-to-face meetings (as they make it 
easier to contact the people in the future), team building practices, rewarding 
collaboration efforts, and by assigning explicit tasks and responsibilities for com-
munication over sites. 

Relating to people competences, identifying the needs for training and arranging 
them in a timely manner is important. Also, seniors reviewing juniors’ work is helpful 
and the competences should be taken into account in task allocation over sites. 
Also, critical competences should be identified and managed as part of managing 
the critical resources. 



4. GSE solutions
 

61 

Table 11. General people-related solutions for GSE. 

Topic Solution name Solution description 

Knowledge Knowledge 
engineering 

Knowledge engineering technologies to 
capture and share knowledge at different 
sites 

Competence Competence 
building 

Description of how to support competence 
building; for example, via training and peer 
support 

Motivation Collaborative 
culture 

Description of techniques that help in 
establishing a collaborative culture 

 
The following table (Table 12) summarises the challenges and technology related 
solutions for each of the GSE framework topics. 

Table 12. Summary of people-related solutions. 

Management practices 

Collaboration strategy: 
- Ineffective collaboration due to unsuitable 

collaboration mode. 
- Delays and problems in co-operation due to ad 

hoc way of working. 

- Training people for various collaboration 
modes. 

- Communication about collaboration strategy. 
- Ensuring collaboration competence and 

attitude. 

Contracting practices:  
- Unclear or non-existent agreements between 

partners. 
- Gaps and/or duplicate items in contracts’ 

coverage. 

- Training and communicating (creating 
awareness) about the agreements. 

- Ensuring contracting competence. 

Conditions for collaboration: 
- Delays and wasted effort due to inappropriate 

project organisation or missing collaborative 
practices and tools. 

- Lack of visibility of partners’ work. 

- Motivating people for collaboration via, for 
example, rewards. 

- Analysing and preparing for cultural 
differences between partners. 

- Practices for getting to know each other and 
for getting used to working as a team. 

Supplier  management: 
- Gaps or duplicate work caused by unclear 

assignments, delays caused by unmanaged 
dependencies. 

- No or not enough visibility of suppliers’ work. 
- Unexpected deliveries (content or timing). 
- Misunderstood requirements. 

- Communication about the partners’ roles in 
the project, and about the right level of 
confidentiality. 

- Face-to-face meetings. 
- Supplier representatives’ involvement in 

requirements definition to ensure availability 
of requirements competence at the supplier’s 
site. 

Project management: 
- Unclear status of project. 
- Delays caused by unclear decision-making 

authorities and practices. 

- Identifying the required competences and 
establishing a plan to close possible gaps. 

- Communicating project goals. 
- Identifying critical competences and creating 

backups. 



4. GSE solutions 
 

62 

- Delays caused by unaligned teams. 
- Mismatching work results caused by 

misunderstood goals. 
- Unavailable resources. 

- Ensuring availability of knowledge of the 
project goals. 

Engineering practices 

Requirements engineering: 
- Difficulties in prioritising requirements due to 

various views. 
- Unclear requirement documentation. 
- Difficulties in establishing and managing 

traceability. 
- Misunderstood requirements causing unfitting 

deliveries. 
- Problems caused by non-communicated 

changes to requirements. 
- Inconsistencies between requirements and 

further work products. 

- Training on requirements engineering 
practices. 

- Ensuring that people with the best 
competence define the requirements. 

- Communication of the defined requirements. 
- Right level and enough involvement of all 

parties in validation of produced system 
requirements. 

- Ensuring competence of requirements and 
product structure. 

Architecture: 
- Unsuitable architecture (not supporting 

distributed development). 
- Unclear, non-communicated or misunderstood 

architecture. 

- Using architectural views to ease 
understanding of architecture. 

- Training of GSE effects on architecture. 
- Development of the architecture by the right 

people. 
- Ensuring availability of architecture expertise 

at all sites. 

Design and coding: 
- Difficulties in communicating design rationale 

causing mistakes in design decisions. 
- Different coding styles and standards affecting 

understandability of design and code by others. 

- Availability of expertise at all sites. 
- Communication and training of the 

architecture, design rationale and principles. 
- Availability of the right competences in the 

reviews. 

Integration: 
- Delays in responses for issues found in 

integration, unavailability of information. 
- Problems in integration caused by mismatching 

pieces or unsynchronised deliveries. 

- Ensuring integration competence and 
availability of developers to solve problems 
found in integration. 

- Creating awareness of integration 
responsibilities. 

- Availability of architecture expertise at all 
sites. 

Testing: 
- Difficulties in replicating defects found in 

testing. 
- Lack of visibility in testing progress. 
- Duplicate testing efforts, inadequate testing 

(due to lack of knowledge). 
- Ineffective testing caused by unsynchronised 

deliveries. 

- Ensuring availability of testing expertise. 
- Creating a positive attitude towards testing 

(not personal evaluation). 
- Availability of testing expertise and product 

knowledge at the testing site. 



4. GSE solutions
 

63 

Supporting practices 

Configuration management: 
- Complex configuration management practices. 
- Difficulties in finding correct versions. 
- Use of wrong versions causing problems in 

builds. 
- Unclear status of development work. 

- Ensuring availability of configuration 
management competence. 

- Training on configuration management 
practices. 

Quality assurance: 
- Different and unknown practices of partners. 
- Unknown responsibilities for quality assurance. 
- Differences in quality of work between 

partners. 

- Motivation for quality assurance over sites. 
- Communication of practices. 
- Ensuring availability of QA competence. 

Sharing information: 
- Difficulties in knowing who has the relevant 

information and who needs it when. 
- Difficulties in defining appropriate means for 

information sharing. 
- Difficulties in knowing what information should 

be communicated and how (what is already 
known and what is not). 

- Unclear responsibilities for information sharing. 

- Creating awareness of the importance of 
information sharing and the motivation for 
doing it. 

- Social and communicative skills of project 
leaders. 

Infrastructure: 
- Different incompatible tools used by partners. 
- Problems in availability of tools. 
- Different ways of using tools. 
- Inability to use communication tools effectively. 

- Training for the use of the infrastructure. 
- Availability of competence for solving 

problems in the infrastructure. 
- Communication (and other tools) tools 

training. 
- Virtual meeting training. 

Competence management: 
- Unawareness of what competence is available 

and where. 
- Suboptimal use of resources. 
- Unavailable required competence. 

- Creating awareness of competences over 
sites and motivation for involving not-known 
people with the right competences to the 
tasks. 

Continuous improvement: 
- Different and unknown practices of partners, 

unclear responsibilities and authorities for 
improvement work. 

- Unshared information about lessons learned 
and best practices. 

- Training for the used practices. 
- Creating motivation to share problems, best 

practices and lessons learned. 

 
 



5. Requirements engineering in GSE 
 

64 

5. Requirements engineering in GSE 

In this section RE in general is discussed first and then the challenges in globally 
distributed RE are discussed as presented in the literature. The RE process is 
explained in more detail in Paper V. In Section 6, improving RE in GSE is dis-
cussed based on the author’s empirical work. 

5.1 Requirements engineering 

RE means activities involved in discovering, analysing, documenting and maintain-
ing a set of requirements for a system (Sommerville & Sawyer, 1997). Require-
ments management takes care of changes to agreed requirements, relationships 
between requirements, and dependences between the requirements document 
and other documents produced during the systems- and software engineering 
process (Kotonya & Sommerville, 1998). Requirements traceability refers to the 
ability to describe and follow the life of a requirement, in both a forwards and 
backwards direction (i.e., from its origins, through its analysis and specification, to 
its subsequent deployment and use, and through all periods of on-going refine-
ment and iteration) (Gotel & Finkelstein, 1994). 

RE is generally accepted to be the most critical and complex process within the 
software intensive systems development (Firesmith, 2005; Martin, 1984; Damian, 
2002; Standish Group, 2006; Juristo et al., 2002). It is critical, as the quality of the 
systems is strongly affected by the quality of the requirements, and complex as in 
RE the most diverse set of product demands from the most diverse set of stake-
holders has to be considered. However, in practice, proper RE is not an established 
practice. As a consequence, many errors are introduced in the requirements’ 
phase, caused by poorly written, ambiguous, unclear or missed requirements. 
Failure to correctly specify the requirements can lead to major delays, cost over-
runs, layoffs and even loss of lives. 

The basic RE activities include requirements gathering, high-level analysis, al-
location and flow-down, detailed requirements analysis, requirements validation 
and verification and requirements management. 

 



5. Requirements engineering in GSE
 

65 

 

Figure 5. Requirements engineering process. 

Requirements gathering (also called elicitation) involves identifying the stakeholders 
of the system and collecting their requirements for the product (raw requirements). 
Also, standards and constraints (e.g., the legacy systems) should be addressed. 
Figure 5 shows the different viewpoints that should be considered while gathering 
requirements. During the gathering of requirements, some analysis (e.g., cost -
benefit and technical-feasibility analysis) is also done. 

High-level analysis involves negotiation, agreement, communication and priori-
tisation of the raw requirements. The analysed requirements need to be docu-
mented to enable communication with stakeholders and future maintenance of the 
requirements and the system. Requirements documentation also includes describing 
the relations between requirements. During requirements analysis, it gives added 
value to record the rationale behind the decisions made to ease future change 
management and decision making. 

Allocation and flow-down involves allocating requirements to system compo-
nents and then defining and validating the detailed subsystem requirements. This 
activity aims to make sure that all system requirements are fulfilled by a subsys-
tem or by a set of subsystems collaborating together. Top-level system require-
ments need to be organised hierarchically, helping the parties to view and manage 
information at different levels of abstraction. Allocation is architectural work carried 
out in order to design the structure of the system and to issue the top-level system 
requirements to subsystems. Architectural models provide the context for defining 



5. Requirements engineering in GSE 
 

66 

how applications and subsystems interact with one another to meet the require-
ments of the system. Flow-down consists of writing requirements for the lower 
level elements in response to the allocation. When a system requirement is allo-
cated to a subsystem, the subsystem must have at least one requirement (usually 
more) that responds to the allocation. Allocation and flow-down may be done for 
several hierarchy levels. The activity starts as a multi-disciplinary activity; that is, 
subsystems may contain hardware, software, and mechanics but they are first 
considered as one subsystem. As the allocation and flow-down proceeds down 
the hierarchy levels, mono-disciplinary subsystems are defined. 

Detailed requirements analysis is part of the allocation and flow-down activity, 
and it enables the specification of the product functions and performance and the 
establishment of design constraints that the software must meet. Requirements 
are analysed and documented in more detail in iterations until sufficient detail is 
reached to enable design. 

Requirements validation and verification include validating the system require-
ments against raw requirements and verifying the correctness of the system re-
quirements documentation. Common techniques for validating requirements are 
requirements reviews with the stakeholders and prototyping. 

Requirements management includes requirement traceability and change man-
agement. Requirement traceability means identifying requirements; that is, giving 
each requirement a unique ID, and then following the life of a requirement in both 
a forward and backward direction (requirements’ source, requirement versions, 
related requirements, further work products and their versions). Traceability is an 
important tool for providing information to change management; for example, for 
analysing the impact of a change proposal, as it helps to define what modules and 
tests are affected when a change is accepted. 

In practice, these activities interleaf with each other and with other product-
development areas and are done in iterations. Figure 5 shows RE process activi-
ties and their relation to the other product development activities. RE is an iterative 
process that will go into more detail during each iterative cycle during development 
phases (iteration is illustrated with the round symbol in the figure). In all phases 
and iterations, requirements identification and traceability have to be taken into 
account and the requirements specifications of the different levels should be doc-
umented. Traceability is illustrated with the arrow in the figure and the traceability 
items are listed next to the arrow. The figure also shows the traceability that 
should be established between requirement levels and other work products. The 
process is described in more detail in Papers V and VI. There are also various 
methods supporting these activities and those are discussed in Paper VI. 

5.2 Globally distributed requirements engineering 

Globally distributed development complicates the RE process, due to the presence 
of more stakeholders with different backgrounds, for example. Creating a common 
understanding of the requirements is already a complex task within one company 



5. Requirements engineering in GSE
 

67 

at one site, but it is even harder when the stakeholders have different tacit 
knowledge, and time difference makes communication harder. Global software 
development also further complicates RE due to social and cultural aspects asso-
ciated with gathering and managing requirements (Hanisch & Corbitt, 2004). 
López et al. (2009) defined sources for risks of requirements engineering in GSE 
to be communication and distance, that is, risks derived from the dispersion of the 
stakeholders across countries and time zones; knowledge management and 
awareness, that is, risks derived from the difficulties of keeping awareness, cohe-
sion and coherence of knowledge when different working groups try to access it 
concurrently; cultural differences, that is, risks derived from the interaction among 
groups where people have cultural backgrounds which vary greatly; management 
and project coordination, that is, risks derived from the establishment of organisa-
tional structures, role definition and coordination procedures; tools which support 
the processes, that is, risks derived from the lack of suitable tools which fully sup-
port the RE process; and clients, that is, risks derived from the interaction with 
distributed clients. 

Several publications have discussed RE challenges in GSE. For example, 
Cheng and Atlee (2007) give an update to the 2000 RE roadmap paper written by 
Nuseibeh and Easterbrook (2000) based on extensive state-of-the-art study. In 
their paper, they have identified globalisation as one of the hot research topics for 
RE. According to them, globalisation poses two main challenges to the RE re-
search community. The first challenge is that new or extended RE techniques are 
needed to support the outsourcing of downstream development tasks such as 
design, coding and testing. Distance complicates the development, particularly if 
the teams are from different organisations, have different cultures or have different 
work environments. Poorly defined requirements are likely to be misinterpreted, 
resulting in a system that does not meet the stakeholders’ needs. The second 
challenge is to enable effective distributed RE. Requirements activities are, and 
will be globally distributed, since requirements analysts are usually working with 
geographically distributed stakeholders and distributed development teams may 
work with in-house customers. As such, practitioners need techniques to facilitate 
and manage distributed RE, not just geographically distributed but distributed in 
terms of time zone, culture and language. However, there are not many studies of 
the RE methods and tools from the GSE perspective; that is, how well they sup-
port GSE. 

Bhat et al. (2006) state that RE teams working in client–vendor outsourcing re-
lationships face challenges that traditional software engineering practices do not 
directly address. The first common characteristic is that a vendor typically faces 
two stakeholders from the client organisation: the client’s IT group and its business 
community (managers and users). The second common characteristic is the exist-
ence of multiple RE processes and tools across organisations and locations. This 
impacts RE in two ways. Having multiple tools, templates and methodologies that 
do not integrate or interoperate can lead to wasteful RE rework or loss of data 
during transfer from one tool to another, which can increase requirements’ defects. 
The third common characteristic is the differences in organisational culture or 



5. Requirements engineering in GSE 
 

68 

location-specific work cultures between the client and vendor teams. The fourth 
common characteristic is ad hoc staffing of client and vendor team formations 
leading to multiple transitions across locations between the outgoing and incoming 
team members. 

Yousuf et al. (2008) have studied the existing requirements validation tech-
niques. Their results show that some of the existing requirement validation tech-
niques require extensive informal communication that is not convenient in GSE, 
while other techniques which can be applied effectively in GSE are not yet very 
mature. 

Damian and Zowghi (2003) report findings of a case study of two multi-site de-
velopment organisations where groups of customer, product-management and 
engineering-specified requirements come from remote locations. They describe the 
challenges faced by the stakeholders in activities such as requirements elicitation, 
analysis, negotiation and specification. These challenges are depicted in Figure 6 
with their relationship to RE activities and known problems in GSE. 

 

 

Figure 6. Challenges and impacted RE activities (Damian & Zowghi, 2003). 

Next, these known problems are discussed in more detail, including similar chal-
lenges reported by others. 

Cultural diversity: Differences in stakeholders’ language and national culture 
affect global collaboration. An additional important aspect is the impact of differ-
ences on the organisational and functional culture. These factors contribute to a 
fundamental problem in RE: requirements being expressed using diverse termi-
nologies and levels of detail, thus making the analysis for consistencies, conflicts 
and redundancies difficult (Damian & Zowghi, 2002). Learning to combine RE 
techniques across national, cultural and language borders presents unique chal-
lenges for developers. Cultural differences have been studied by many researchers 
with similar conclusions to Brockmann and Thaumüller (2009), who report that 



5. Requirements engineering in GSE
 

69 

team members with similar cultural expectations, such as those from different 
western European countries, had less difficulty working together. The larger the 
cultural distance between team members, such as those between China and 
Germany, the more difficulty they had in coordinating their different styles of com-
munication, conflict-management strategies and especially in how individual 
members dealt with criticism and ambiguity. 

Inadequate communication: RE requires a higher degree of communication 
than the other systems development activities, making it more complex in global 
teams. Problems occur with requirements changes in global software development 
because “it is hard for the formal mechanisms of communication, such as specifi-
cation documents, to react quickly enough” (Mockus & Herbsleb, 2001; Hanisch & 
Corbitt, 2004). Distance complicates informal and face-to-face communication, as 
the stakeholders’ communication is often dependent on the quality of using syn-
chronous or asynchronous electronic communication tools. Furthermore, the inter-
play between culture and distance impacts on the ability to reconcile different 
viewpoints with regards to requirements as well as requirements processes. The 
resolution of conflicts not only requires good communication during the project but 
also an understanding of these cultural differences and how they can be overcome 
(Damian & Zowghi, 2003). Hanisch and Corbitt (2004) describe experiences of 
large distributed projects. According to their study, the main impediment to RE 
during global software engineering is communication. Communication issues may 
be further described in terms of four categories: distribution of the clients and the 
development team, distribution of the development team, cultural differences be-
tween the clients and the development team and cultural differences among the 
development team. 

Knowledge management: Sharing the large amount of information and 
knowledge about requirements from multiple sources at remote customer sites is 
difficult to share appropriately with the developers. Also, if experienced developers 
are not available at all sites, miscommunication and misinterpretation of require-
ments are likely to occur at the location where team members are less experi-
enced. Availability of the key users may also be an issue in distributed develop-
ment; if they are not available, the requirements may be easily biased towards the 
users who are available (Damian & Zowghi, 2003). 

Time difference: Large time-zone differences allow little overlap for synchro-
nous collaboration. Hence, asynchronous channels have to be predominant in the 
communication, complemented by regular teleconferencing calls. Thus, when time 
difference is high, there is a tendency to rely on written documentation, which has 
been found to be a very poor way in which to communicate requirements clearly 
(Damian & Zowghi, 2003). Time difference may also cause high communication 
overheads (Hanisch & Corbitt, 2004). 



6. Improving global requirements engineering 
 

70 

6. Improving global requirements 
engineering 

The challenges in globally distributed RE were discussed at a general level in 
Section 5.2. In this section, the RE challenges are first discussed and elaborated 
based on literature presented in Section 5.2 and the empirical work carried out by 
the author. Second, relevant solutions for RE in GSE are discussed. This section 
describes RE viewpoint of GSE framework in more detailed level, the challenges 
of requirements engineering activities are presented from the GSE root causes 
viewpoint, in order to identify solutions for RE in GSE. 

6.1 Challenges 

In this section, the impact of basic and derivative circumstances and consequent 
causes are discussed according to the main RE activities (requirements gathering, 
high-level analysis, requirements allocation and flow-down (detailed analysis), 
requirements validation and verification and requirements management [identifica-
tion, traceability, change management]). 

6.1.1 Basic GSE circumstances 

The basic GSE circumstance of time difference and distance affects requirements 
gathering by limiting the possibilities for face-to-face discussions about the require-
ments, and thus putting higher demands on the documentation of the requests. On 
the other hand, if requirements gathering is distributed, it offers the possibility of 
gathering requirements from a wide set of stakeholders from various places 
through face-to-face discussions. However, the knowledge of the requests is then 
also distributed and needs to be shared. Multiple partners/stakeholders affect 
requirements gathering so that on the one hand, more time is required to address 
their needs, and on the other hand it enables a wider view of the needs regarding 
the product to be built. Also, identifying the stakeholders and their priorities (whose 
requirements should be most important) is more challenging when there are many 
stakeholders to consider and multiple partners giving their opinion on the matter. 

 



6. Improving global requirements engineering
 

71 

High-level analysis is more complicated due to time difference and distance, 
because the availability of more information concerning the raw requirements that 
is gathered may not be available on site, but in some other location. This makes 
the requirements’ analysis more vulnerable to interpretations and assumptions 
that may not always be correct, thus leading to the wrong requirements or the 
wrong emphasis on the requirements. Also, there is a challenge that the require-
ments from stakeholders who are closer are unjustifiably prioritised as being more 
valued than the others. Multiple partners/stakeholders affect high-level analysis of 
the requirements by giving multiple views on the requests. This can be both posi-
tive and negative: positive in the respect that more views are involved in the anal-
ysis, making the analysis more comprehensive, but negative because the views 
and needs of the stakeholders and partners may be contradictory, requiring more 
time and compromises to reach an agreement on the requirements. Also, com-
municating and establishing a common understanding of the requirements among 
the partners requires more efforts than in single-site development. 

In allocation and flow-down (detailed analysis), time difference and distance 
and multiple partners/stakeholders cause similar challenges as in high-level anal-
ysis. However, the availability of further information from stakeholders may be of 
less importance if the high-level analysis is done properly. Also, in allocation and 
flow-down the distribution should be taken into account to avoid unnecessary 
dependencies between sites, for example. Additionally, if the analysis work is 
distributed over sites, time difference and distance affects the ability to communi-
cate with other analysts. Multiple partners/stakeholders mean that the analysis 
results may not be the same, and may not be understandable to the others and 
also that the relevant knowledge may not be available to all partners. 

Requirements validation and verification (V&V) are affected by time differ-
ence and distance so that involving all of the relevant stakeholders from different 
sites in the V&V work is difficult. Thus, again, the role of documentation is im-
portant. Also, sharing work between multiple partners/stakeholders needs atten-
tion in order to utilise the best competences and resources optimally; that is, to 
avoid duplicate work. 

Regarding requirements management, time difference and distance and mul-
tiple partners/stakeholders, challenges are created regarding traceability, as de-
veloping the traceability requires knowledge about the product structure and the 
development process artefacts, which may need to be shared over sites. Good 
management of traceability is important, so that the work is done based on the 
correct information, when the background understanding of the people involved is 
not necessarily the same. Creating and maintaining traceability is also easily ne-
glected, and thus communication about the importance of proper traceability is 
essential. Also, various tools used by the different partners/stakeholders may 
complicate the situation. Analysing the impact of changes becomes more compli-
cated when more sites in different time zones are involved; for example, due to the 
availability of the required competences. Also, implementing and communicating 
about the changes requires more effort in distributed settings. 



6. Improving global requirements engineering 
 

72 

6.1.2 Derivative GSE causes 

The derivative GSE cause of a lack of communication affects requirements gath-
ering by adding problems to the work-sharing and documentation aspects of the 
raw requirements. Coordination breakdown can cause duplicate work or gaps in 
requirements gathering. Different backgrounds and tacit knowledge can cause 
problems in the identification of requirements (e.g., what is a requirement and 
what is not, and assumptions on what is truly a part of the product based on previous 
versions of the product) and description of the gathered requirements. 

Lack of communication during high-level analysis can cause misinterpretations 
of the requirements, wrong prioritisations of the requirements and ambiguous or 
conflicting requirement descriptions. Coordination breakdown can cause subopti-
mal use of resources in the analysis (e.g., distributing analysis work suboptimally 
with respect to the availability of stakeholders), duplicate work or gaps in covering 
the requirements. Different backgrounds and tacit knowledge can cause misinter-
pretations of the requirements and their priorities, wrong assumptions, as well as 
requirements descriptions that are not of high enough quality or that contain too 
many (technical) details. Also, effort may be wasted if the work is not properly 
coordinated. The effect of these circumstances in allocation and flow-down 
(detailed analysis) is the same as in high-level analysis. 

In requirements validation and verification, a lack of communication can 
have an affect so that V&V results are not shared, meaning that the corrective 
actions are not taken, or that V&V work is done on the wrong version of the re-
quirements. Coordination breakdown can affect V&V so that resources are not used 
optimally; for example, V&V work is waiting for some other task to be completed or 
the best competence for V&V is not available in a timely fashion. Different back-
grounds and tacit knowledge can affect the quality of the V&V work as well as the 
interpretations of the requirements and thus can lead to wrong conclusions being 
made based on V&V results. 

Requirements management is affected by a lack of communication in many 
ways; for example, requirements traceability may not be implemented, changes to 
requirements may come as a surprise later on, thus leading to incorrect implementa-
tion, non-communicated assumptions or interpretations of requirements made may 
lead to incorrect implementation and so on. Coordination breakdown has a similar 
impact and different backgrounds and tacit knowledge affect change-impact anal-
ysis, where the wrong assumptions of non-impact can be made and can affect 
traceability, where the wrong or inadequate traceability links may be created. 

6.1.3 Consequent cause 

The consequent cause of lack of teamness and trust can affect  all  RE activities  
severely, as it hinders the openness to share both the knowledge of the product 
development, including the stakeholders’ needs, and of problems encountered 
during the project. For example, if there is no trust between teams, the teams are 



6. Improving global requirements engineering
 

73 

neither willing to help each other, nor willing to ask for help or show their uncer-
tainty over something. This affects RE so that teams would rather make their own 
– possibly wrong – assumptions on ambiguous requirements rather than ask for 
clarifications. Also, in the case of problems that are found in requirements V&V, 
the teams would rather blame each other than constructively try to find the cause 
of the problems and learn from them. 

6.1.4 Example situation 

A simplified picture of RE activities is presented in Figure 7 along with challenges 
that may appear during the activities. As can be seen from the figure, there are 
more challenges as more interaction with various partners is needed. 

 

Figure 7. Example requirements engineering challenges. 

These challenges were discussed earlier in this section, and as can be seen, 
some of the challenges appear in multiple places during RE activities. For example, 
a clear description of requirements (5) and availability of information (10) affect the 

Status tracking

Change management

Partner 1

Partner 2 (integrator)

Partner 3

Requirements 
gathering

High level 
analysis

- priorisation
-allocation

Detailed 
analysis

- documentation

Verification and 
validation

I
m

p
l

e
m

e
n

t
a

t
i

o
n

1. Gathering requirements from all relevant 
stakeholders
2. Prioritising requirements correctly 
3. Communication of changes
4. Change impact analysis
5. Clear description of requirements

6. Dividing work (based on requirements) wisely
7. Visibility to partners work
8. Ensuring correct understanding of requirements
9. Availability and use of correct versions
10. Availability of information

10

2
1

3 4

5

6

6

6

6

7

8

8

8

8

9

8

8

10

10

10

5

5



6. Improving global requirements engineering 
 

74 

entire process. Both of these challenges are basically caused by multiple partners, 
who have generated an increased need for communication and coordination of the 
work. If specific attention is not paid to communication and coordination, more 
challenges appear. 

6.2 Solutions 

In this section, solutions for the challenges caused by GSE to RE are discussed 
from process, people and technology viewpoints. The solutions are based on 
literature and empirical work (industrial case) as the solutions discussed in section 4. 

6.2.1 Process related solutions 

Requirements gathering and high-level analysis: Distributed development 
limits possibilities for face-to-face discussions about the requirements, thus plac-
ing higher demands on the documentation of the requests. As discussed in Paper 
VII, several templates and criteria for good requirements documentation exist and 
can also be utilised in globally distributed RE without specific tailoring for GSE. 
Templates that help to address relevant topics when gathering stakeholders’ 
needs are helpful because they ensure standard practice in collecting the needs 
and thus the work can be shared between partners. Techniques that help in identi-
fying the stakeholders and their priorities (whose requirements should be the most 
important) have also been created (examples, such as QFD (Revelle et al., 1998), 
SCRAM (Sutcliffe, 1998) and Volere (Robertson & Robertson, 1999), are dis-
cussed in Paper VI). These techniques also then help to prioritise requirements 
based on calculated weights including stakeholder priorities, thus giving an objec-
tive view of the priorities, instead of a subjective estimate of a person. They also 
help in taking into account the multiple viewpoints that need to be addressed in 
prioritisation. Also, communicating priorities to other sites is important, so that the 
work is done based on the correct priorities.  

Allocation and flow-down (detailed analysis) and requirements V&V: En-
suring availability of information to all partners can be supported by identifying 
information needs and information owners, as well as communication responsibili-
ties and means. Good requirement descriptions are very important in GSE, as 
they are an important means of sharing information. Thus, proper requirements 
documentation practices, including defining properties of a good requirement 
description and the relevant requirement attributes are helpful. These aspects are 
discussed in Paper VII. Describing non-functional requirements well is even more 
important in GSE, so that they will be taken into account in everyone’s work. Non-
functional requirements are vulnerable to different kinds of interpretations, which 
are more likely in GSE due to the different backgrounds of the people involved. 
Avoiding and identifying ambiguities, conflicts, wrong interpretations and assumptions 
and ensuring a common understanding of the requirements can be supported by 
common terminology, document templates and reviewing each other’s work over 



6. Improving global requirements engineering
 

75 

sites. Also, requirements V&V technologies, such as prototyping, simulation and 
reviews are helpful. 

Requirements management: Analysing the impact of changes can be sup-
ported by proper traceability. Establishing full traceability is, however, laborious. 
Heindl & Biffl (2006) address requirements tracing options and propose concepts 
for enhanced requirements tracing that include the rationale for requirements, 
related decisions, their history, and stakeholder value propositions. They also 
present a cost-benefit model that helps the project manager to understand what 
tracing approach is worthwhile to address requirements risk in a project. Use of 
checklists and defined procedures can also help in discovering any possible impli-
cations of a change. When multiple teams or partners are involved, a levelling of 
the change-requests’ analysis is important in order to optimise the use of re-
sources and to ensure an adequate level of communication, meaning that changes 
are managed at their level of impact. For example, changes that affect only a 
subsystem can be managed at that subsystem level, but changes that are imple-
mented only in a subsystem, but affect its interface to another system, need to be 
managed at a level where the affected subsystems are also represented. Thus, a 
clear definition of what change or problem is to be handled at what level, including 
criteria to transfer these to other levels, should be made. Also, the presence of 
enough competence when making these decisions should be ensured. 

6.2.2 Technology related solutions 

In order to address all the stakeholders’ needs, many tools that support requirements 
gathering are available. Also, many requirements management tools exist. In 
order to support RE in GSE, an RE tool should include features such as a general 
repository, import/export facilities, communication capabilities, access-control 
mechanisms, change-control mechanisms and information sharing mechanisms. 
Compatibility of the various tools used by the different partners/stakeholders 
should be ensured. Tool interoperability is discussed in Paper VIII. 

Avoiding the use of the wrong versions of requirements or background infor-
mation can be supported by shared repositories and interoperable tools that ensure 
that the correct versions are available for everybody. However, communication of 
the changes and correct document versions and their locations are still needed. 

Change management tools can help in sharing information as well as with the 
implementation work among partners. They can also help in monitoring the pro-
gress of implementation, when information from the tools can be shown to all in 
real time. 

6.2.3 People related solutions 

In GSE, the knowledge of the requests is distributed and needs to be shared and 
there are often multiple views on the requests. Sharing this knowledge can be 
supported by frequent communication and discussion of the requirements. Also, 



6. Improving global requirements engineering 
 

76 

involving people from each site in requirements analysis helps to share infor-
mation and ensures the availability of on-site expertise about the requirements. 
Likewise, analysing the impact of changes can be supported by involving the rele-
vant experts in the change analysis. 

In order to utilise the best competences and resources optimally, they should 
be identified and managed as part of the project management. People from different 
cultures and backgrounds do not necessarily understand things in the same way, 
so it is essential that requirement descriptions are unambiguous, consistent and 
clear. This can be supported by requirements analysis and documentation training. 
Also, ensuring a common understanding is important, although challenging, as part-
ners may not be willing to communicate on unclear issues, or they may not be 
aware of different interpretations of the requirements until late in the project. 

Validation of each individual project stakeholder’s interpretation of the require-
ments before implementation takes place can be supported by frequent communi-
cation and by ensuring the availability of relevant expertise. This is all very 
knowledge intensive; it requires proper knowledge creation and, specifically, the 
correct transfer of knowledge in the distributed development situation. This is 
discussed in more detail in Paper IV. 

6.3 Summary of RE challenges and solutions 

As a summary, in Table 13 examples of relevant solutions for how to address the 
important activities discussed above, in practice, are given. Detailed practices are 
described in the SameRoomSpirit wiki (Prisma, 2011). 



6. Improving global requirements engineering
 

77 

Table 13. Summary of RE challenges and solutions. 

Challenges 
Time difference and distance (B1), multiple 
parties/stakeholders (B2), lack of communication 
(D1), coordination breakdown (D2), different 
backgrounds (D3), lack of teamness and trust (C1) 

Solutions 
Process (PR), people (PE), technology (T) 

Requirements gathering 
- Limited possibilities for face-to-face 

discussions (B1) 
- More time required to address all 

stakeholders (B2 
- Plentiful set of requirements (B2) 
- Problems in work sharing and 

documentation of the raw requirements (D1) 
- Duplicate work or gaps (D2) 
- Problems in identification of requirements (D3) 

- Techniques to identify all relevant 
stakeholders and set their priorities (PR) 

- Communication tools and guidelines  
(T, PR) 

- Identifying information needs and owners 
and defining communication 
responsibilities and means (PR) 

- Tools for distributed requirements’ 
gathering and shared repositories (T) 

- Frequent communication (PE) 

High-level analysis 
- Availability of information (B1) 
- Interpretations and misunderstandings (B1) 
- Multiple views on requirements and their 

priorities (B2) 
- More effort required to establish a common 

understanding (B2) 
- Misinterpretations of the requirements (D1, D3) 
- Wrong prioritisation of the requirements 

(D1, D3) 
- Ambiguous or conflicting requirement 

descriptions (D1, D3) 
- Suboptimal use of resources (D2) 
- Duplicate work or gaps (D2) 
- Incorrect assumptions about requirements 

(C1) 

- Common terminology and templates for 
requirements documentation (PR) 

- Distributed review practices (PR) 
- Information management practices (PR) 
- Prioritisation techniques and tools (PR, T) 
- Involving people from each site (PR) 
- Requirements for RE tools in distributed 

environment (T) 
- Shared repositories (T) 
- Frequent communication (PE) 
- Training (PE) 

Allocation and flow-down (incl. detailed 
analysis) 
- Less possibility to communicate with other 

analysts (B1, B2) 
- Differences in analysis results (B2) 
- More effort required to establish common 

understanding (B2) 
- Misinterpretations of the requirements (D1, D3) 
- Wrong prioritisation of the requirements 

(D1, D3) 
- Ambiguous or conflicting requirement 

descriptions (D1, D3) 
- Suboptimal use of resources (D2) 
- Duplicate work or gaps (D2) 
- Incorrect assumptions about requirements 

(C1) 

- Common terminology and templates for 
requirements documentation (PR) 

- Information management practices (PR) 
- Distributed review practices (PR) 
- Involving people from each site (PR) 
- Shared repositories (T) 
- Frequent communication (PE) 
- Establishing a collaborative culture (PE) 
- Training (PE) 



6. Improving global requirements engineering 
 

78 

Requirements V&V 
- Involving all relevant stakeholders from 

different sites (B1) 
- Challenging to utilise the best competences 

and resources optimally (B2) 
- Non-implemented corrective actions (D1) 
- Use of wrong versions (D1) 
- Delays caused by needing to wait for other 

parties’ input (D2) 
- Suboptimal use of resources (D2) 
- Duplicate work or gaps (D2) 
- Poor quality of V&V work (D3) 
- Poor quality of releases (D3) 
- Problems in finding defect causes (C1) 

- Managed dependencies between parties 
(PR)\ 

- Requirements validation and verification 
technologies such as prototyping, 
simulation and reviews (PR) 

- Information management practices (PR) 
- Shared repositories (T) 
- Interoperability of tools (T) 
- Frequent communication (PE) 
- Competence management practices 

(PE) 
- Establishing a collaborative culture (PE) 
- Training (PE) 

Requirements management 
- Availability of product knowledge (to make 

the right traceability links) (B1) 
- Establishing and maintaining traceability 

over partners’ borders (B2, D1, D2, D3) 
- Analysing impact of changes and informing 

about the changes (B1, B2, D1, D2, D3) 

- Checklists for requirements change-
impact analysis (PR) 

- Practices for levelling of change requests 
(PR) 

- Information management practices (PR) 
- Shared repositories (T) 
- Requirements for RE tools in distributed 

environment (T) 
- Compatibility of RE and development 

tools (T) 
- Shared change management tools (T) 
- Frequent communication (PE) 
- Establishing a collaborative culture (PE) 
- Training (PE) 

 



7. Empirical results
 

79 

7. Empirical results 

The empirical results are from two phases: in first phase an industrial inventory, 
including industrial experience reported by others in the literature was carried out. 
Based on this, an initial structure for the GSE framework was developed, including 
the main challenges to be addressed in GSE projects and solutions for them. 

Next, industrial cases were carried out for specific GSE challenges. These cas-
es are introduced in Table 14. The experiences and solutions tried out in the cas-
es were then incorporated into the framework, creating the first version of the GSE 
framework (Merlin collaboration handbook), which is discussed in Paper III. Then 
another set of industrial cases were defined in the Prisma project with different 
companies, sometimes addressing the same topics as in the first set, thus validat-
ing the first version of the framework but also addressing different challenges and 
solutions, thus adding to the framework. These experiences were then incorpo-
rated into the framework, creating the second version of the GSE framework. 
Altogether, 52 industrial cases relating to distributed development were carried out 
during the projects over the years 2004–2011. The cases are discussed in detail in 
section 7.2. 

7.1 Industrial inventory 

The industrial inventory addressed GSE practices and challenges in seven com-
panies via a questionnaire and interviews. A total of five companies participated in 
the inventory and 12 interviews with senior managers, project managers, software 
developers and testers were carried out. In addition to the interviews, two compa-
nies filled in a questionnaire, which was also filled in for the five interviewed com-
panies. The industrial partners represent several divergent embedded SW busi-
ness areas: embedded data-management solutions, telecommunications, embed-
ded SW subcontracting, and consumer electronics. In addition to this, an exten-
sive study of the literature concerning GSE experiences was carried out. Based on 
this literature study, practices and challenges from 15 cases reported by others 
were included. The findings of this inventory were the basis of the industrial cases 
and also provided a first set of challenges and solutions for GSE documented in 
the first version of the GSE framework. The inventory was based on a framework 

 



7. Empirical results 
 

80 

defined in the GSE literature using CMMI as the basic structure. The items cov-
ered included management practices (e.g., contracts, project management, col-
laboration management), engineering practices (e.g., RE, architecture, integration, 
testing) and supporting practices (e.g., configuration management, change man-
agement, infrastructure, co-operative work). Also, general information about the 
GSE environment was addressed such as collaboration modes used and the 
motivation for collaboration. The most common collaboration mode was product 
structure-based subcontracting; that is, work was subcontracted to a 3rd party 
based on requirements or on the implementation of a product part. The most 
common motivations for collaboration were to reduce costs, to acquire compe-
tence (technology or knowledge of a certain market) and to avoid investing in a 
company’s non-core competence areas. The main risks in GSE were seen to be a 
lack of trust and openness of communication between partners, unclear assign-
ments or specifications of work in contracts, the collaboration lasting in the future, 
the quality of the acquired product, for example, reliability and performance, be-
coming too dependent on one partner, for example, getting enough priority and 
that one’s own competence weakens when development has been outsourced. 
Also, critical factors for collaboration to be successful were identified, including the 
mutual benefit from collaboration and partners complementing each other’s expertise. 

The most important/complex points in GSE were seen to be taking into account 
and prioritising the customers’ future requests or suppliers’ future directions, defin-
ing as detailed a specification of the work as possible (with reasonable effort), the 
good management of dependencies, status-reporting practices and change-
management procedures, for example, channels and escalation, developing and 
implementing an efficient integration strategy taking into account the added com-
plexity (e.g., new actors) and change management, due to, for example, the scope 
of impact assessment, communication and relevant viewpoints in decision making. 

Relating to solutions, the most commonly defined collaboration practices in the 
inventoried companies were change management, progress reporting, customer-
support processes (suppliers) and, sometimes, meeting practices and participating 
roles and common version management practices. Usually there were no specific 
tools for collaborative development and e-mail and phone were the tools for com-
munication. However, the companies used the same tools between partners for 
defect management, configuration management, requirements management and 
change management and it was said that most tools did not support collaborative 
development well. The most important items or areas that were seen as needing 
most development work or a further search for solutions were explicit statements 
of project goals, clear task assignments and responsibilities, managing critical 
resources, defining and ensuring the right level of confidentiality, defining clear 
and fixed requirements, clear prioritisation rules and practices for the requirements 
in the case of many interest groups, the effective sharing of a test environment, 
results and resources and choosing the right integration and testing strategy. 



7. Empirical results
 

81 

7.2 Industrial cases 

7.2.1 First set of industrial cases 

In the first phase (see Table 14), 36 cases were carried out to evaluate the solu-
tions identified for the challenges revealed in the industrial inventory. For each 
case, the topic, GSE challenges addressed, solutions tried out, company domain 
and author’s role in the case are presented. 

Table 14. Overview of the first set of industrial cases. 

Topic and GSE viewpoint Solutions Company domain and 
author role 

Cases 1, 2, 3 and 4 
Improving the distributed requirements 
engineering process from various viewpoints; 
for example, flexible and easy to tailor to 
specific development 
approaches/environments of different 
customers, and a specific focus on 
performance requirements. 
Quality of requirements descriptions is 
essential in GSE as it is often the main input 
for the work carried out at different sites. 

Requirements 
engineering 
practices for 
distributed 
development. 

Four cases in four large 
companies from 
telecommunications, IT 
services and real-time 
embedded-system 
domains. 
Author has been actively 
involved in three of the 
cases (action research); 
one case is included based 
on an experience report. 

Cases 5, 6 and 7 
Define solutions for early RE phases 
(gathering, prioritisation and recording 
methods, and gaining a better understanding 
of customers’ and other stakeholders’ needs). 
The challenge is that the multiple 
stakeholders’ viewpoints should be taken into 
account with the correct weighting and 
understood correctly.  

Prioritisation 
methods and  
tools. 

Three cases in two SMEs in 
data-management solutions 
and sensor-development 
domains. 
Author has been actively 
involved in two of the cases 
(action research) and one 
case is included based on  
a case report. 

Cases 8, 9, 10 and 11 
Improving requirements management, 
including better traceability, especially in 
partnering and subcontracting business 
situations. 
In a multi-site project it is more difficult to 
establish traceability over sites and the 
quality and timing (right time input) of the 
requirements description is essential. 

Requirements 
management 
practices for 
distributed project, 
experiment on 
automating 
requirement 
management. 

Four cases in three large 
companies in semi-
conductor, consumer 
electronics and 
telecommunications 
domains. 
Author has been actively 
involved in two of the cases 
(action research); two cases 
are included based on 
experience reports. 

Cases 12, 13 and 14 
Improving the handling and evaluation of 
non-functional requirements in collaborative 
projects. 

Non-functional 
requirements 
identification and 
description 
techniques. 

Three cases in two SMEs 
from mobile and wireless 
systems and data 
management solutions 
domains. 



7. Empirical results 
 

82 

Good description of non-functional 
requirements is essential in GSE, as 
otherwise interpretations and assumptions 
will be made.  

Author has been actively 
involved in one of the cases 
(action research); two cases 
are included based on 
experience reports. 

Cases 15, 16, 17 and 18 
Improving architecture definition, including 
improving the description and validation of 
requirements for the architecture. Improving 
architecture adaptability. 
Architecture should support multi-site 
development and be understandable to all 
partners. 

Utilising 
architecture 
adaptability 
mechanisms. 
Architecture 
evaluation 
framework to 
ensure 
architecture 
quality. 

Four cases in three large 
and one SME company 
from IT services, real-time 
embedded systems, 
telecommunications and 
mobile and wireless 
systems domains. 
These cases are included 
based on the case reports. 

Cases 19, 20, 21 and 22 
Improving requirements documentation and 
design documentation to contain the 
essential information. 
In multi-site projects, documentation is an 
important means of information sharing, and 
thus should be usable. 

Design method 
and tool that help 
in systematic 
design description 

Four cases in three large 
and one SME companies 
from consumer electronics, 
semiconductors, 
telecommunications and 
electricity network 
equipment domains. 
Author has been actively 
involved in one of the cases 
(action research); three 
cases are included based 
on experience reports. 

Case 23 
To define and test methods, techniques and 
tools for product and process measurements 
with an emphasis on automating the 
measurements. 
Measurements are especially important in 
GSE, as they can provide accurate and real-
time information from the various sites. 

Metrics and tools 
as well as 
measurement and 
analysis process 
adapted to GSE 
environment. 

One case in an SME from 
the data management 
domain. 
This case is included based 
on the case experience 
report. 

Cases 24, 25, 26, 27 and 28 
To improve the quality, controllability, 
efficiency and affordability of collaboration 
with partners and to enhance the ability of 
distributed teams to collaborate more 
effectively. Improve description of statement 
of work. 
Teams’ ways of working in GSE in general. 
Statement of work is often the basis for work 
of subcontractors and thus it is very 
important that it is defined well. 

A framework to 
assess the 
subcontractor from 
quality and 
process 
perspectives. 
Merlin 
collaboration 
handbook to find 
solutions for the 
situation in this 
case. Statement of 
work checklist. 

Five cases in one large and 
one SME company from 
telecommunications and 
data management domains. 
Author has been actively 
involved in three of the 
cases (action research); two 
cases are included based 
on experience reports. 

Cases 29, 30 and 31 
Improving tool support from testing viewpoint 
in distributed projects. 
A lot of effort is wasted in GSE on testing, 
when different/wrong versions are used in 

Automated build 
and test suite. 
Tool integration 
platforms and 
solutions. 

Three cases in two large 
and one SME company 
from consumer electronics 
and data management 
domains. 



7. Empirical results
 

83 

replicating defects or when similar tests are 
run due to not knowing what tests others 
have performed. 

These cases are included 
based on the case reports. 

Case 32 
To improve defect management practices 
and tool support in distributed projects. 
Defect analysis is more difficult in distributed 
development; also communication of the 
defects with partners is more challenging.  

Defect 
management 
practices for GSE, 
tool requirements 
for GSE-supporting 
tools. 

One case in an SME from 
mobile and wireless 
systems domain. 
This case is included based 
on the case experience 
report. 

Case 33 
Improve managing IPRs in collaborative 
software development. 
Proper IPR management is important in 
order to ensure proper confidentiality and 
thus trust. 

IPR management 
practices 

One case in large company 
in telecommunications 
domain. 
This case is included based 
on the case experience 
report. 

Case 34 
Improve configuration management in 
distributed collaborative projects. 
Shared configuration management between 
partners/sites is very important in GSE as it 
helps to ensure consistency of work, to 
detect problems early and to track progress 
of work. 

Configuration 
management 
practices in GSE, 
configuration 
management tool 
requirements from 
GSE viewpoint. 

One case in large company 
in consumer-electronics 
domain. 
Author has been actively 
involved in the case (action 
research). 

Case 35 
Improve the release planning process 
through analysis of past experiences. 
In GSE it is also important to take into 
account learning and best practices from  
all partners. 

Structured 
technologies to 
analyse learning 
taking into account 
the GSE situation. 

One case in large company 
in telecommunications 
domain 
This case is included based 
on the case experience 
report. 

Case 36 
Improving tool support for collaborative 
projects. 
Tools are important for information sharing  
in GSE and integrated tools are important  
to avoid manual errors and to provide 
transparency. 

Tool 
interoperability 
techniques from 
GSE viewpoint, 
Merlin ToolChain. 

One case in a large 
company from consumer-
electronics domain. 
Author has been actively 
involved in the case (action 
research). 

 

7.2.2 Second set of industrial cases 

In the second phase (Table 15), 16 cases were carried out in order to validate the 
updated solutions and to evaluate new solutions for existing challenges or to try 
out solutions for a new set of challenges. 



7. Empirical results 
 

84 

Table 15. Overview of second set of industrial cases. 

Topic and GSE viewpoint Solutions Company domain and 
author role 

Case 37 
Define solutions for early RE phases (gathering, 
prioritising and recording methods) and gain a 
better understanding of customers’ and other 
stakeholders’ needs. 
Multiple stakeholders whose viewpoints should 
be taken into account with the correct 
weighting, and understood correctly. 

Requirements 
gathering and 
high-level analysis 
methods. 

One case in a large 
company in tele-
communications domain. 
Author has been actively 
involved in the case 
(action research). 

Case 38 
Improving integrated tool support from a testing 
viewpoint in distributed projects. 
A lot of effort is wasted in GSE on testing, when 
different/wrong versions are used in replicating 
defects, or similar tests are run due to not 
knowing what tests others have performed. 

Automated build 
and test suite. 
Tool integration 
platforms and 
solutions. 

One case in a large 
company from IT services 
domain. 
This case is included 
based on the case 
experience report. 

Case 39 
To support integration and verification in 
collaborative development from the integrator’s 
viewpoint. 
Integration is the phase where all partners’ work 
comes together and often the problems are 
identified only then. 

Integration and 
V&V practices in 
GSE. 

One case in a large 
company in 
telecommunications 
domain. 
This case is included 
based on the case 
experience report. 

Cases 40 and 41 
To improve resource management in distributed 
development. 
Optimal use of resources from various sites 
over several projects is challenging. 

Resource 
management 
practices and 
tools. 

Two cases in large 
companies in IT services 
and electricity network 
equipment domains. 
These cases are included 
based on the case 
experience reports. 

Cases 42 and 43 
Improving the sharing of information and 
knowledge about the on-going projects and 
other related information in distributed 
development environments. 
Information sharing and status monitoring in 
GSE environments. 

Techniques to 
identify 
information needs 
and sources in 
GSE. 

Two cases in a large 
company in electricity 
network equipment 
domain. 
These cases are included 
based on the case 
experience reports. 

Cases 44, 45, 46, 47 and 48 
Improving tool support for collaborative projects. 
Tools are important for information sharing in 
GSE, integrated tools are important to avoid 
manual errors. The added value of tool 
integration in GSE is to enable full transparency 
and traceability of project tasks, requirements, 
related source codes and build and test status 
over partners/sites. 

Tool interoperability 
techniques, tool 
requirements from 
GSE viewpoint. 

Five cases in three large 
and two SME companies 
from consumer 
electronics, IT services, 
telecommunications, 
telematic engineering  
and multimedia content 
domains. 
 



7. Empirical results
 

85 

Topic and GSE viewpoint Solutions Company domain and 
author role 

Author has been actively 
involved in one of the 
cases (action research); 
four cases are included 
based on experience 
reports. 

Case 49 
Improving risk management in distributed 
projects via surveys. 
Risk management is complicated due to the 
distribution; stakeholders have more restricted 
lines of communication and management by 
“walking around” is difficult. 

Risk management 
practices and 
typical risk list for 
GSE.  

One case in a large 
company in IT services 
domain. 
Author has been actively 
involved in the case 
(action research). 

Case 50, 51 and 52 
Improve collaborative development in general.  

Identifying 
challenges and 
solutions from 
Prisma wiki. 

Three cases in two large 
and one SME company in 
electricity network 
equipment and IT 
services domains. 
These cases are included 
based on the case 
experience reports. 

 

7.2.3 Summary of the contribution from industrial cases 

All of these cases have been documented in a structured way and the experiences 
have been incorporated in the GSE framework described in sections 3 and 4. The 
cases have covered the GSE framework areas well as there were cases to all 
sections of the GSE framework. There were several cases relating to manage-
ment practices. Five cases (cases 24–28) addressed collaboration management 
and one case (case 33) addressed IPR management. Five cases (cases 42, 43, 
40, 41 and 49) addressed project management issues, two cases, especially from 
the information sharing viewpoint, one case from the risk management viewpoint 
and two from resource management viewpoint. 

Relating to engineering practices, fifteen cases (cases 1–14 and 37) have ad-
dressed various problems in RE, and in addition to that, four cases (cases 19–22) 
addressed requirements and design documentation. Architectural aspects were 
addressed in four cases (cases 15–18). Integration and testing practices were 
addressed in five cases (cases 29–31, 38 and 39), specifically from the tool support 
point of view in four cases and from an integration practice viewpoint in one case. 
Release planning was addressed in one case (case 35). 

Relating to supporting practices, there was one case addressing defect man-
agement (case 32), configuration management (case 34) and improvement pro-
cesses from the measurement viewpoint (case 23). Six cases (cases 36, 44–48) 



7. Empirical results 
 

86 

addressed integrated tool support for GSE. Also, many of these cases addressed 
communication issues as part of them. 

In addition to these, there were three cases (cases 50–52) that addressed GSE 
in general, and utilised the developed GSE framework (one case used the Merlin 
handbook and two cases used the second version of the framework) to address 
various GSE challenges in the companies concerned. Based on the large number 
of industrial cases addressing the GSE framework comprehensively, the frame-
work can be seen to be largely based on industrial experience. 



8. Reporting the results
 

87 

8. Reporting the results 

This section describes the research performed in the attached publications. The 
publications bring up novel innovations for global software engineering. Eight 
publications are included. Their topics are the following: 

I Survey of the state-of-the-practice of collaborative embedded systems’ 
development 

II A more detailed description of the challenges and experience of GSE in a 
company, namely Philips 

III Overview of the Merlin collaboration handbook: The challenges and solu-
tions in global collaborative product development 

IV Knowledge-related challenges and solutions in GSD 

V Introduction to the RE process in systems’ development 

VI A survey of existing RE technologies and their coverage 

VII Experiences in evaluating requirements’ quality 

VIII Experiences of tool integration: Development and validation. 

Each of the publications discusses topics related to the research questions of this 
thesis. The first two papers describe the current state of the GSE practices in 
industry, thus addressing research question 1. The third paper addresses re-
search question 2, and presents the first version of the GSE framework intended 
to help in finding appropriate solutions for the GSE challenges in a given situation. 
Paper IV discusses GSE challenges and solutions from a knowledge viewpoint, as 
knowledge aspects are specifically important in GSE. Papers V–VIII each discuss 
example solutions to address GSE challenges; Papers V–VII from an RE view-
point and Paper VIII from a tool-integration viewpoint. 

The author has been the main contributor and coordinator of the work reported 
in Papers I and III–VI. For the work reported in Paper II, the author was responsi-
ble for gathering the experience in a structured format, gathering the data via 
interviews in co-operation with the company representatives, and ensuring the 
coverage of the relevant topics in GSE. For Paper VII, the author was responsible 

 



8. Reporting the results 
 

88 

for the study of other available methods and application of the LSPCM method for 
a case involving requirements analysis in a company doing distributed develop-
ment. For Paper VIII, the author was the coordinator of the work reported in the 
paper with the specific responsibility of collecting requirements and making deci-
sions about the features to be implemented in the tool chain. Details of the contri-
butions are discussed for each paper in the following sections. 

8.1 PAPER I: Collaborative embedded systems development: 
Survey of state of the practice 

Collaborative embedded systems development: Survey of state of the practice 
sets the basis for the GSE improvement work described in this thesis. The paper 
was published in the 13th Annual IEEE International Conference and Workshop 
on the Engineering of Computer Based Systems (ECBS) held from March 27–30 
2006 in Potsdam, Germany. The research problem of the publication is to present 
the state of the practice in global embedded software development; that is, to 
identify the challenges faced by industry in GSE and some solutions available to 
tackle these challenges. The study presented was based on both industrial sur-
veys (interviews) and a survey of the literature concerning industrial practice. The 
findings were that the most common collaboration mode was product structure-
based subcontracting, while the main motivation for collaboration was most often 
to save money. However, acquiring competence not available in-house was an-
other common motivation. While the areas that were seen as critical in collabora-
tive product development varied, those most commonly items that were perceived 
as critical were contracting, change management, requirements development and 
requirements management. The areas that were most commonly seen as non-
critical were software implementation within engineering practices and improve-
ment process and human-resource management within support practices. This 
survey revealed that the approaches represented by the literature, on the one 
hand, and industrial practitioners, on the other, towards problems related to col-
laborative work are different. Industry emphasises technical aspects and detailed 
problems concerning engineering practices, while the literature focuses on solutions 
for more general issues such as communication and team building. The findings 
also included that a lot of solutions are available especially for management and 
support practices but that only a few solutions could be found for engineering 
practices. 

The author is a co-author of the publication, where Jarkko Hyysalo was responsible 
for the literature survey part, and the author and Maarit Tihinen for the industrial 
survey part. The industrial survey part included carrying out the interviews and the 
analysis of the findings. The author was also the main contributor in the discussion 
and conclusions of the paper and the coordinator of the inventory work in general. 



8. Reporting the results
 

89 

8.2 PAPER II: Philips experiences of global distributed 
software development 

Philips experiences of global distributed software development discusses a company 
example of GSE challenges and potential solutions in more detail, providing more 
in-depth knowledge of the challenges presented in Paper I at a high level. The 
paper was published in the Empirical Software Engineering Journal, December, 2007.  

The experience described comes from more than ten years of global distributed 
development at Philips, derived from dozens of projects. The main lessons 
learned were that explicit agreements and ways of working should be defined for 
the following areas needing the most attention; team coordination and communi-
cation, requirements and architectures, integration and configuration manage-
ment. The main lesson learned from subcontracting software development was 
the need for explicit attention and ways of working with respect to selection of 
suppliers, specification of the work to be subcontracted and the establishment and 
content of the contract. 

The author is a co-author of this paper and was responsible for gathering the 
experience in a structured format, ensuring coverage of the relevant topics in 
GSE. The author was also responsible for reporting the experiences in publication 
format, ensuring the background information adequacy. Rob Kommeren (co-
author) provided the access to the experience; both his own experience and that 
of others at Philips. He also provided his contribution to the analysis of the data 
from the viewpoint of a thorough knowledge of the company. 

8.3 PAPER III: Merlin collaboration handbook: Challenges 
and solutions in global collaborative product 
development 

This paper introduces the Merlin collaboration handbook. The handbook defined 
the basic structure for GSE improvement and was the first version of the GSE 
framework. The purpose of the handbook is to support operational collaborative 
development; that is, to help companies to take care of all the critical aspects 
during various phases of the collaborative project. In practice, this would be done 
by collecting and structuring these critical aspects as well as ways to address 
them, the solutions, into a handbook. The solutions were based on the literature, 
especially for management and support practices, and on the collection of best 
practices from Merlin industrial partners via focused interviews on selected topics. 
Results of these focused interviews were then included as solutions and experi-
ences related to them in the handbook. Finally, the research and development 
work done during the Merlin project was also added to the handbook as solutions. 

The author was the main contributor of this paper and also the coordinator and 
owner of the Merlin collaboration handbook, which is introduced in this paper. The 
co-authors Juho Eskeli, Tanja Kynkäänniemi and Maarit Tihinen, each contributed 
to the handbook development in specific areas and also reported these in this 



8. Reporting the results 
 

90 

paper. The paper was published in the Third International Conference on Software 
and Data Technologies. Porto, Portugal, 5–8 July 2008. Special Session on Global 
Software Development: Challenges and Advances on ICSOFT 2008. 

8.4 PAPER IV: Knowledge related challenges and solutions 
in GSD 

This paper discusses GSE from a knowledge viewpoint, where the key focus is on 
discussing the challenges that are knowledge intensive and how the knowledge-
engineering activities are related to them and, thus, could help in addressing the 
challenges. This paper mainly brings forward the people aspect in GSE improvement. 

A number of knowledge-related challenges may complicate the work in global 
software development (GSE) projects. In practice, even a small amount of missing 
knowledge may cause an activity to fail to create and transfer information which is 
critical to later functions, causing these later functions to fail. Thus, knowledge 
engineering holds a central role in order to succeed with globally distributed prod-
uct development. This paper discussed the challenges and solutions based on an 
extensive literature study and practical experience gained in several international 
projects over the last decade. The paper analysed the challenges identified in the 
cases introduced in section 7.2 from a cognitive perspective for bridging and 
avoiding the knowledge gaps and, based on this analysis, example solutions to 
address the challenges during the GSE projects were presented. This paper 
summarises the cases examined from a knowledge-intensive viewpoint. 

The author is a co-author of this paper, with the responsibility of analysing the 
GSE challenges; Maarit Tihinen incorporated the knowledge-engineering view-
point. The paper was published in Expert Systems, the Journal of Knowledge 
Engineering in 2011. 

8.5 PAPER V: Requirements engineering: Process, methods 
and techniques 

This paper introduces the RE process in general. The paper focuses on RE activi-
ties making the distributed nature of the RE clear. The paper was published in a 
book on RE for Sociotechnical Systems, Eds. Silva, A. & Mate, J., Idea Group, Inc. 
2005. The main conclusion of the paper was that RE is a complex process that 
considers product demands from a vast number of viewpoints, roles, responsibili-
ties and objectives. Thus, RE is generally thought of as the most critical and com-
plex process within the development of embedded systems and it practically al-
ways involves some GSE aspects. This paper explains the RE terminology and 
describes the RE process in detail, with examples of available methods for the 
main process activities. The main activities described include system requirements 
development, requirements allocation and flow-down, software requirements de-
velopment and continuous activities, including requirements documentation, re-
quirements validation and verification and requirements management. 



8. Reporting the results
 

91 

The author is the main author of this paper, and was the coordinator of the work 
in the project where this paper reports the results. Maarit Tihinen also contributed 
to the process definition, especially from the available-methods’ viewpoint. Marco 
Lormans and Rini van Solingen contributed to the work, especially from the indus-
trial state-of-the-practice viewpoint. 

8.6 PAPER VI: A Survey of existing requirements 
engineering technologies and their coverage 

This paper describes technologies that are available for RE and their shortcom-
ings. These technologies are not specifically analysed from a GSE viewpoint in 
this paper, but the paper describes RE and the important activities in it that need 
technology support. This is especially relevant in GSE, as requirements have a 
pivotal role in sharing work and information within the GSE project. Thus, although 
the technologies are not GSE specific, they are still very relevant for GSE suc-
cess, as many of the RE challenges in GSE are related to regular RE practice, 
such as documenting the requirements clearly, addressing the stakeholders’ 
needs equally or managing the changes properly. These topics are covered by the 
RE technologies and are presented in the paper. The paper discusses the results 
of an inventory of the available RE technologies, while also looking into their sup-
port in terms of RE. 

The author is the main contributor of this paper and coordinator of the work of 
which this paper is the summary. The methods’-analysis work was shared with 
Maarit Tihinen, who is the co-author of this paper. The paper was published in the 
International Journal of Software Engineering and Knowledge Engineering 
(IJSEKE), 2006. 

8.7 PAPER VII: Experiences on evaluating requirements 
quality 

This paper describes example solutions relevant for GSE in more detail. The solu-
tions discussed are related to improving requirements documentation quality. This 
is specifically relevant in GSE, as the work done at different sites often relies on 
requirements documentation. Also, as the different backgrounds complicate estab-
lishing a common understanding of things it is very important that the descriptions 
are as clear and unambiguous as possible. The quality of any product depends on 
the quality of the basis of making it; that is, the quality of the requirements has a 
strong effect on the quality of the end products. In practice, however, the quality of 
requirement specifications is poor; in fact, it is a primary reason why so many 
projects continue to fail. The paper presents a method called LSPCM, developed 
for certifying software product quality, and describes experiences when using the 
method for analysing requirements’ quality in three cases. The three different 
cases show that the checks in the LSPCM are useful for finding inconsistencies in 



8. Reporting the results 
 

92 

requirements specification, regardless of the application domain. The paper is not 
specifically written from a GSE viewpoint, but the cases are from projects carried 
out in distributed settings. 

The author is a co-author of this paper that was published in the Third Interna-
tional Conference on Software Engineering Advances. ICSEA 2008. Petra Heck is 
the developer of the method that the author applied for the case and Petra also 
documented two cases in the paper. The author studied other available similar 
methods and applied the LSPCM method for a case that involved requirements 
analysis in a company doing distributed development. 

8.8 PAPER VIII: Experiences of tool integration: 
Development and validation 

This paper describes another example solution relevant for GSE in more detail. 
The paper discusses tool interoperability, which is very important in GSE, as it can 
help in sharing information in a timely manner, monitoring status over sites and 
managing dependencies. The paper was published in the Proceedings of the 
International Conference on Interoperability of Enterprise, Software and Applications. 
Berlin, German. March 25–28, 2008. 

Generally, in software development, there is a need to link the development-
work products with each other; that is, to link the requirements with the corre-
sponding design artefacts to the resulting software and associated test cases. This 
enables, for instance, efficient change impact analysis and reporting facilities 
during the different phases of the software development life cycle. Establishing 
and maintaining these links manually is a laborious and error-prone task, so tool 
support is needed. This paper describes a configurable tool-integration solution 
(the Merlin ToolChain) that integrates project management, requirements manage-
ment, configuration management and the testing of tools. The paper introduces the 
architecture of the ToolChain as well as describing the development and validation 
activities that were carried out. Experiences from a real-life industrial case showed 
that the ToolChain works and is useful in collaborative software development. 

The author is a co-author and the coordinator of the work reported in this paper, 
with the responsibility of collecting the requirements and making decisions about 
the features. Jukka-Pekka Pesola and Juho Eskeli were responsible for imple-
menting the ToolChain and writing the implementation description in the paper. 
Rob Kommeren and Martin Gramza represented Philips and provided the evaluation 
environment and experience for the ToolChain trial. 



9. Discussion
 

93 

9. Discussion 

In this section the results of the work are evaluated according to the research 
questions. Then the validity of the research is discussed. 

9.1 Evaluation of the results 

The main contribution of this work lies in providing the first comprehensive frame-
work addressing the critical issues in GSE. There are many publications about 
GSE, but they usually focus on some specific topic or on a single company expe-
rience. This thesis brings together these publications as well as many other cases 
from industry, structured into a framework that helps to comprehensively analyse 
challenges and thus identify relevant solutions for the various GSE situations. 

Relating to the first research question: 

 What are the main challenges faced by companies when doing GSE? 
How can these challenges be categorised? 

There are multiple challenges that companies face during GSE projects, but simi-
larities could be identified in the challenges and root causes behind the challenges 
could be traced to three main groups: basic GSE circumstances (time difference 
and distance, multiple partners/stakeholders), derivative GSE causes (lack of 
communication, coordination breakdown and different backgrounds and tacit 
knowledge) and consequent GSE causes (lack of teamness and trust). Also, a 
framework for identifying challenges covering management, engineering and sup-
porting practices was described. The main challenges faced by companies vary, 
as was discussed in section 3.1. 

The second research question was: 

 Are there solutions to address these challenges? How can these solu-
tions be categorised in order to support finding the suitable ones for each 
situation? 

For each of the challenges identified in industry, solutions were developed or 
identified and adapted from the literature. These solutions were presented using 
three dimensions: process, technology and people and the basic structure of the 

 



9. Discussion 
 

94 

GSE framework. This enables the finding of solutions to the relevant challenges 
for each case. These solutions have been validated in industrial cases and action 
research and made available in the SameRoomSpirit Wiki. In total, in the current 
version of the wiki, the solutions are based on more than 130 published scientific 
articles. The solution descriptions are based purely on the industrial partners’ 
experience (27%), purely on literature (46%) and on a combination of both experi-
ence and literature (27%). However, the solutions are partly overlapping; that is, 
separate solutions can have similar topics, and thus, more than 30% of the solu-
tions are addressed both in the literature as well as in the industrial cases. 

The third research question was: 

 What are the critical activities/subprocesses in GSE? Are there solutions 
that support implementing these critical subprocesses? 

The most critical activities/subprocesses were identified and discussed in section 3.1. 
RE was chosen as an example of a critical subprocess because it was identified 
as one of the most critical ones by industry and also by other researchers. RE 
challenges and solutions were identified by utilising the developed framework as 
an example of how GSE practices can be improved in practice. Also, several cases 
were examined relating to RE in GSE. 

9.2 Validity of the research 

The research methods used in the thesis were a literature study, case studies and 
action research. According to Easterbrook et al. (2007), the major weakness of 
case studies is that the data collection and analysis is more open to interpretation 
and researcher bias. For this reason, an explicit framework is needed for selecting 
cases and collecting data. Although an individual case study often reveals deep 
insights, the validity of the results depends on a broader framework of empirical 
induction. For example, in confirmatory case studies, evidence builds when sub-
sequent case studies also support the theory and/or fail to support rival theories. 
To address this challenge, several industrial cases were carried out, both by the 
author and by other researchers, and the results from these cases were used 
together. The results were also then reviewed by industrial representatives and 
other researchers. Also, an established and commonly accepted framework, 
CMMI was used as a basis to develop the structure of the GSE framework. 

Commonly used criteria to evaluate the validity of research (Easterbrook et al., 
2007; Runeson & Höst, 2009) include construct validity, internal validity, external 
validity and reliability. Construct validity focuses on whether the theoretical con-
structs are interpreted and measured correctly. Problems with construct validity 
occur when the measured variables do not correspond to the intended meanings 
of the theoretical terms. If, for example, the constructs discussed in the interview 
questions are not interpreted in the same way by the researcher and the inter-
viewed persons, there is a threat to the construct validity. Means to improve con-
struct validity (Yin, 2003) include, for example, multiple sources of evidence and 



9. Discussion
 

95 

having key informants review draft case-study reports. The research covered 
several case studies in several companies, as well as experience reports pub-
lished by others, thus having multiple sources of evidence. Also, all the interview 
reports and case reports were reviewed by the company representatives. Also, the 
first complete framework, the Merlin handbook, was evaluated by 16 external 
testers who used the handbook and provided feedback and secondly the hand-
book was used in an industrial case to support improving subcontracting efficiency 
in a company. 

Internal validity focuses on the study design and particularly on whether the re-
sults really do follow from the data. When the researcher is investigating whether 
one factor affects an investigated factor there is a risk that the investigated factor 
is also affected by a third factor. If the researcher is not aware of the third factor 
and/or does not know to what extent it affects the investigated factor, there is a 
threat to the internal validity. As the cases involved real-life projects and not labor-
atory settings, the factors affecting the results cannot be isolated. Due to that the 
research goal was to understand the GSE and its challenges and solutions in 
practice the real life industrial projects were seen as necessary.  However, the 
internal validity has been supported in that the results have been analysed and 
validated by several persons: the author, company representative, external re-
viewers and the case participants. The company representatives and case partici-
pants have evaluated the impact of the tried practices in the cases. This increases 
the internal validity, as they were independent of the author and had a good un-
derstanding of the possible other factors that may have affected the case. In case 
of those factors, they have also been described in the experience reports and 
taken into account in the GSE framework. Also, similar results have been found in 
several cases that have been carried out by several different persons within the 
Merlin and Prisma projects as well as in independent companies that have been 
published in research papers. 

External validity focuses on whether claims for the generality of the results are 
justified. Often, this depends on the nature of the sampling used in a study. During 
analysis of external validity, the researcher tries to analyse to what extent the 
findings are of relevance for other cases. This is supported by the multiple case 
studies on similar topics in several companies. Also, in the two phases of industrial 
cases, the second set of cases partly validated the results of the first set of cases 
by addressing the same or similar challenges and by evaluating the framework 
documented in the SameRoomSpirit Wiki. 

Reliability focuses on whether the study yields the same results if other re-
searchers replicate it. Problems occur if the researcher introduces bias, perhaps 
because the tool being evaluated is one that the researcher herself has a stake in. 
The case studies included in this research were also carried by other researchers 
than the author, providing evidence of reliability. 

According to Easterbrook et al. (2007), two key criteria for judging the quality of 
action research are whether the original problem is authentic (i.e., whether it is a 
real and important problem that needs solving) and whether there are authentic 
knowledge outcomes for the participants. Relating to the authenticity, the problems 



9. Discussion 
 

96 

addressed in the industrial work have been defined by the companies themselves, 
not by the author. Relating to the authenticity of the knowledge, the work was 
carried out in real industrial projects, and the conclusions were reached in co-
operation with the industrial representatives and were also reviewed by more 
members from the companies involved. Also, the results documented in the GSE 
framework versions have been reviewed by external company representatives and 
researchers. Action research is also characterised by a commitment to effect real 
change and by an iterative approach to problem solving. The biggest challenge for 
action research is its immaturity as an empirical method. Although frameworks for 
evaluating action research have been proposed (e.g., Lau, 1999), they tend to be 
vague or subjective, leading to accusations that action research is ad hoc (Easterbrook 
et al., 2007). Because of this, the action research was carried out in combination with 
the case studies, thus, the action research results can be claimed to be valid. 

The used methods are primarily qualitative and these methods rely on field-
work, using techniques such as participant observation and interviews. Key chal-
lenges include preparing good questions for structured or semi-structured inter-
views and finding the time and resources needed to collect and analyse potentially 
large sets of data (Easterbrook et al., 2007). Furthermore, as stated by Easter-
brook et al. (2007), all research conducted in industrial settings brings a number of 
challenges. It can be very hard to gather data to find out what practitioners actually 
do or what needs to be improved in the organisation, rather than what practitioners 
say they do or what they think requires improvement. In return for access to the 
organisation, the researcher usually has to give up some control. For example, it is 
hard to observe and document findings without interfering with the observed situa-
tion, especially when the industrial partners want to know in advance what the 
expected outcomes are. It is often difficult to know if changes are made through 
involvement in the research or if they would have occurred anyway. 

As a conclusion, the main weakness of the work is that the topic of the thesis is 
so vast that it is not possible to cover all of the issues in great detail. However, the 
strength of the work is in the large number of industrial cases that the author has 
participated in at various levels and that are also supported by the experience 
reported in publications by others. Also, a more specific area, namely RE, was 
addressed in more detail. 



10. Summary and conclusions
 

97 

10. Summary and conclusions 

This thesis summarises and extends eight original publications about challenges 
and solutions for GSE. The main contribution of this work lies in providing the first 
comprehensive framework addressing the critical issues in GSE from manage-
ment, engineering and supporting practices viewpoints. There are many publica-
tions about GSE, but they usually focus on some specific topic or on a single 
company experience. This thesis brings together these publications as well as 
many other cases from industry, structured into a framework that helps to compre-
hensively analyse challenges and thus identify relevant solutions for the various 
GSE situations. 

GSE means software engineering that is carried out in globally distributed settings 
at various geographical locations. The work can be done either within a company 
(multi-site development) or in collaboration between companies at different locations. 
Under the current market pressures, companies need to use their existing re-
sources as effectively as possible and they also need to utilise the global resource 
and expertise pool. This has resulted in GSE becoming increasingly common and 
the ability to collaborate effectively has become a critical factor in the software 
development life cycle. The main expected benefits from GSE are improvements 
in time-to-market efficiency, being close to the customers and having flexible ac-
cess to greater and less costly resources. However, there are also a number of 
problems, which lead to the full benefits of GSE not being reached. This means 
that productivity in a distributed project can drop by up to 50 per cent, with rework 
of two to five times more than for a collocated project. The thesis discussed various 
collaboration modes and its main focus was on customer–supplier relations and 
in-house distributed development, as those have been the most commonly used 
models in the case organisations and in the available related work. 

The thesis analysed the main challenges faced by the companies when doing 
GSE, and identified solutions to the challenges from people, process and technol-
ogy viewpoints. RE in GSE was discussed as an example of how GSE affects a 
critical subprocess. The research methods in this thesis involved a literature study 
to define the basis and to gather other researchers’ views on the topic, and case 
studies and action research to investigate real-life situations in companies. Based 
on the empirical work, the most challenging areas were identified to be contracting 

 



10. Summary and conclusions 
 

98 

and requirements definition, project planning and tracking, architecture analy-
sis/design, the integration phase (testing) and co-operative work in general. 

The challenges were then discussed based on their root causes, using three 
levels – basic GSE circumstances, derivative GSE causes and consequent causes – 
and then summarised in a table using the GSE framework structure. Then GSE 
solutions were discussed from people, process and technology viewpoints and 
summarised again into the GSE framework. As an example, RE was first dis-
cussed in general and then the challenges were discussed as presented in the 
literature. Then the RE challenges were discussed and elaborated based on the 
empirical work according to the same structure; that is, as basic GSE circum-
stances, derivative GSD causes and consequent causes and then summarised in 
a table. Then solutions for RE challenges were discussed from process, people 
and technology viewpoints. The work reported in this thesis is based on extensive 
empirical work, carried out over several years. The empirical work was carried out 
in several phases: in the first phase, an industrial inventory, including industrial 
experience reported by others in the literature, was studied. Based on this, an 
initial framework for GSE was developed, including the main challenges to be 
addressed in GSE projects and the solutions for them. After this, two sets of indus-
trial cases were examined, addressing a wide set of GSE aspects and challenges. 
Altogether, 52 industrial cases were examined during the projects over the years 
2004–2011 relating to distributed development. 

The topic of the thesis is very wide, so the GSE framework does not necessari-
ly cover all the challenging aspects of GSE. However, it covers things that have 
been seen as important in most of the case companies. In addition to the cases, 
the framework has also been validated via several reviews and feedback from 
other researchers and practitioners. Thus, it can be claimed that the topics ad-
dressed in the GSE framework are the topics that should be addressed in the 
companies in order to succeed with GSE. 

Currently, GSE is a fact of life in software-intensive systems development and it 
will become even more common, making it rather an exception to work at a single 
site. This thesis has shown clearly that GSE is challenging and companies need to 
realise that the savings gained by cheaper hourly rates are not direct savings for 
the company, as there are usually overheads that are caused by the distribution. 
This should be taken into account when making the decisions to distribute work. 
The potential benefits of GSE are, however, high; it can enable a company to 
remain competitive in the ever-tougher markets by enabling a focus on the core 
competences and on innovating new products and business instead of spending 
time on simpler tasks. The work presented in this thesis is a step towards better, 
more productive and higher quality GSE. In the future the GSE framework could 
be extended to a phased model, which would describe the most essential activities 
and the activities to be done next in order to enable companies to improve their 
practice step by step. Also, the emerging collaboration modes, such as joint ventures 
or utilising open communities in commercial product development, need more 
attention. They were not addressed much in this thesis, as the case companies 
were not yet utilising these models. 



 

99 

References 

Ahmad, N. & Laplante, P. A. 2006. Software project management tools: Making a 
practical decision using AHP. In: Proceedings of the 30th Annual 
IEEE/NASA Software Engineering Workshop, Columbia, Maryland, USA, 
pp. 76–84. ISBN 0-7695-2624-1, DOI 10.1109/SEW.2006.30.  

Al-Ani, B. & Redmiles, D. 2009. Trust in distributed teams: Support through con-
tinuous coordination. IEEE Software, Vol. 26, No. 6, pp. 35–40. 
DOI 10.1109/MS.2009.192. 

Baskerville, R.L., 1997, Distinguishing action research from participative case 
studies, Journal of Systems and Information Technology, Vol. 1, No. 1, 
pp. 25–45. DOI 10.1108/13287269780000733. 

Battin, R., Crocker, R., Kreidler, J. & Subramanian, K. 2001. Leveraging Re-
sources in Global Software Development, IEEE Software, Vol. 18, No. 2, 
March/April 2001, pp. 70–77. DOI 10.1109/52.914750. 

Bhat, J. M., Gupta, M. & Murthy, S., N. 2006. Overcoming requirements engineering 
challenges: Lessons from offshore outsourcing. IEEE Software, Vol. 23, 
No. 5, September/October 2006, pp. 38–44. DOI 10.1109/MS.2006.137. 

Borchers, G. 2003. The software engineering impacts of cultural factors on multi-
cultural software development teams. In: Proceedings of the 25th International 
Conference on Software Engineering (ICSE’03), IEEE, pp. 540–545. 
ISBN 0-7695-1877-X, DOI 10.1109/ICSE.2003.1201234. 

Brockmann, P. S. & Thaumüller, T. 2009. Cultural aspects of global requirements 
engineering: An empirical Chinese-German case study. In: Proceedings 
of the fourth IEEE International Conference on Global Software Engi-
neering, Limerick, Ireland, 13–16 July 2009, pp. 353–357. ISBN 978-0-
7695-3710-8, DOI 10.1109/ICGSE.2009.55. 

Carmel, E. 1999. Global software teams: Collaborating across borders and time 
zones. Prentice-Hall, Upper Saddle River, N.J. ISBN-13: 978-0139242182. 

Carmel, E. & Tija, P. 2005. Offshoring information technology: Sourcing and out-
sourcing to a global workforce. Cambridge University Press. ISBN-13  
978-0521843553. 



 

100 

Casey, V. & Richardson, I. 2008. Virtual teams: Understanding the impact of fear. 
Software process improvement and practice, Vol. 13, Issue 6, pp. 511–526. 
DOI: 10.1002/spip.404. 

Cheng, B. H. & Atlee, J. M. 2007. Research directions in requirements engineering. 
In: Future of Software Engineering, 2007. FOSE ’07, 23–25 May 2007, 
pp. 285–303.  ISBN 0-7695-2829-5, DOI 10.1109/FOSE.2007.17. 

CMMI. 2006. CMMI for development, version 1.2., Technical Report CMU/SEI-
2006-TR-008. 

da Silva, F.Q.B., Costa, C., Frana, A.C.C. & Prikladinicki, R. 2010. Challenges and 
solutions in distributed software development project management: A sys-
tematic literature review. In: Global Software Engineering (ICGSE) 2010. 
5th IEEE International Conference on Global Software Engineering, Recife, 
Brazil, pp. 87–96. ISBN 978-1-4244-7619-0, DOI 10.1109/ICGSE.2010.18. 

Damian, D. 2002. The study of requirements engineering in global software devel-
opment: as challenging as important. In: Proceedings of Global Software 
Development, Workshop #9. Organized in the International Conference on 
Software Engineering (ICSE) 2002, Orlando, FL, ISBN 1-86365-699-5. 

Damian, D., Lanubile, F., Hargreaves, E. & Chisan, J. 2004. The 3rd international 
workshop on global software development. In: Proceedings of ICSE 
2004. International Conference on Software Engineering, Edinburgh, 
Scotland, May 2004, pp. 756–757. ISBN 0-7695-2163-0, DOI 
10.1109/ICSE.2004.1317521. 

Damian, D. E. & Zowghi, D. 2002. An insight into the interplay between culture, conflict 
and distance in globally distributed requirements negotiations. In: Proceedings 
of the 36th Hawaii International Conference on System Sciences (HICSS’03). 
ISBN 0-7695-1874-5, DOI 10.1109/HICSS.2003.1173665. 

Damian, D. & Zowghi, D. 2003. Requirements engineering challenges in multi-site 
software development organizations. Requirements Engineering Journal, 
Vol. 8, No. 3, pp. 149–160. DOI: 10.1007/s00766-003-0173-1. 

Davison, R. M., Martinsons, M. G., & Kock, N., 2004, Principles of Canonical Ac-
tion Research, Information Systems Journal, Vol. 14, No. 1, pp. 65–86, 
DOI DOI: 10.1111/j.1365-2575.2004.00162.x.  



 

101 

Duysters G. & Hagedoorn J. 2000. A note on organizational modes of strategic 
technology partnering. Journal of Scientific and Industrial Research, Vol. 58, 
August/September 2000, pp. 640–649. 

Easterbrook, S. M., Singer, J., Storey, M. & Damian, D. 2007. Selecting empirical 
methods for software engineering research. In: Shull, F. & Singer, J., 
(Eds.). Guide to Advanced Empirical Software Engineering. Springer, 
2007, pp. 285–311.  DOI 10.1007/978-1-84800-044-5_11. 

Ebert, C. & De Neve, P. 2001. Surviving global software development. IEEE Software, 
Vol. 18, No. 2, March/April 2001, pp. 62–69. DOI 10.1109/52.914748. 

Ebert, C., Murthy, B. K. &  Jha, N. N. 2008. Managing risks in global software engi-
neering: Principles and practices. In: Proceedings of the IEEE International 
Conference on Global Software Engineering, 17–20 August 2008, pp. 
131–140. ISBN 978-0-7695-3280-6, DOI 10.1109/ICGSE.2008.12. 

Faems, D. 2003. Linking technological innovation and inter-organizational collabora-
tion: An overview of major findings. Working Paper Steunpunt OOI: March 
2003. http://www.ondernemerschap.be/Upload/Documents/STOOI/Working 
%20Papers/2003/linking_techn_innovation.pdf. Available 19 March 2012. 

Firesmith, D. G. 2005. Quality requirements checklist. Journal of Object Technology, 
Vol. 4, No. 9, November–December 2005, pp. 31–38. http://www.jot.fm/ 
issues/issue_2005_11/column4, Available 19 March 2012. 

Forrester 2010. Making collaboration work for the 21st century’s distributed work-
force, White paper, Forrester Research Inc., November 2010. 

Fryer, K. & Gothe, M. 2008. Global software development and delivery: Trends 
and challenges, 15 January 2008, White paper. http://www.ibm.com/ 
developerworks/rational/library/edge/08/jan08/fryer_gothe/index.html. 
Available 30 March 2012. 

Gotel, O. & Finkelstein, A. 1994. An analysis of the requirements traceability prob-
lem. In: Proceedings of the First International Conference on Require-
ments Engineering, 18–22 April 1994, pp. 94–101. ISBN 0-8186-5480-5, 
DOI 10.1109/ICRE.1994.292398. 

Graaf, B., Lormans, M. & Toetenel, H. 2003. Embedded software engineering: 
state of the practice. IEEE Software Magazine, Vol. 20, No. 6, pp. 61–69. 
DOI 10.1109/MS.2003.1241368. 

http://www.ondernemerschap.be/Upload/Documents/STOOI/Working%20Papers/2003/linking_techn_innovation.pdf
http://www.jot.fm/issues/issue_2005_11/column4
http://www.ibm.com/developerworks/rational/library/edge/08/jan08/fryer_gothe/index.html


 

102 

Grinter, R. E., Herbsleb, J. D. & Perry, D. E. 1999. The geography of coordination: 
Dealing with distance in R&D work. In: Proceedings of the International 
ACM SIGGROUP Conference on Supporting Group Work, 1999, pp. 
306–315. ISBN 1-58113-065-1, DOI 10.1145/320297.320333. 

Hagedoorn, J. 2000. Inter-firm R&D partnerships – An overview of major trends 
and patterns since 1960. Research Policy, Vol. 31, Issue 4, May 2002, 
pp. 477–492. DOI 10.1016/S0048-7333(01)00120-2. 

Hanisch, J. & Corbitt, B. 2004. Requirements engineering during global software 
development: Some impediments to the requirements engineering process 
– a case study. In: Leino T., Saarinen T. & Klein, S. (Eds.). Proceedings 
of the Twelfth European Conference on Information Systems, pp. 628–
640. ISBN 951-564-192-6. 

Heindl, M. & Biffl, S. 2006. Effective risk management with tracing the rationale of soft-
ware requirements in highly distributed projects. Proc. of the Global Software 
Development Workshop at the Int. Conf. on Software Engineering, Shanghai, 
China, May  2006. ISBN 1-59593-404-9, DOI 10.1145/1138506.1138512. 

Herbsleb, J. & Mockus, A. 2003. An empirical study of speed and communication 
in globally distributed software development. IEEE Transactions on Soft-
ware Engineering, Vol. 29, No. 6, June 2003, pp. 481–494. DOI 
10.1109/TSE.2003.1205177. 

Herbsleb, J., Mockus, A., Finholt, T. & Grinter, R. 2001. An empirical study of global 
software development: Distance and speed. In: Proceedings of the Interna-
tional Conference on Software Engineering, 2001, Toronto, Canada, May 
15–18, pp. 81–90. ISBN 0-7695-1050-7, DOI 10.1109/ICSE.2001.919083. 

Herbsleb, J. & Moitra, D. 2001. Global software development. IEEE Software, Vol. 18, 
No. 2, March/April 2001, pp. 16–20. DOI 10.1109/52.914732. 

Hofstede, G. 2001. Culture’s consequences. Comparing Values, Behaviors, Insti-
tutions, and Organizations Across Nations. Sage Publications, London. 
2nd edition. ISBN-13: 978-0803973244. 

Holmstrom, H., Conchuir, E. O., Ågerfalk, P. J. & Fitzgerald, B. 2006. Global soft-
ware development challenges: A case study on temporal, geographical 
and socio-cultural distance. In: Proceedings of IEEE International Confer-
ence on Global Software Engineering (ICGSE’06), October 2006, IEEE, 
pp. 3–11. ISBN 0-7695-2663-2, DOI 10.1109/ICGSE.2006.261210. 



 

103 

Hossain, E., Ali Babar, M. & June Verner, J. 2009. How can agile practices minimize 
global software development co-ordination risks? In: Software Process 
Improvement, Communications in Computer and Information Science. 
Vol. 42, Part 3, pp. 81–92. ISBN 978-3-642-04132-7. 

IEEE 1990. Software Engineering. IEEE Standard 610.12-1990. IEEE Standard 
Collection. DOI 10.1109/IEEESTD.1990.101064. 

Juristo, N., Moreno, A. M. & Silva, A. A. 2002. Is the European industry moving 
toward solving requirements engineering problems? IEEE Software, Vol. 19, 
No. 6, pp. 70–77. DOI 10.1109/MS.2002.1049395. 

Kanstren, T., Kääriäinen, J., Soininen, S., Takalo, J., Heinonen, S. & Teppola, S. 
2007. Merlin White paper: Technical implementations: Tool analysis. 
http://virtual.vtt.fi/virtual/proj1/projects/merlin/handbook/merlinhandbook_w
hite%20paper_technicalimplementationstoolanalysis_final.pdf. Available 
30 March 2012. 

Kotonya, G. & Sommerville, I. 1998. Requirements engineering: Process and 
techniques. John Wiley & Sons. ISBN-13: 978-0471972082. 

Lau, F. 1999. Toward a framework for action research in information systems 
studies. Information Technology & People, Vol. 12, No. 2, pp. 148–176. 
DOI 10.1108/09593849910267206. 

Lindström, M. 2003. Ensuring availability and access to new and existing technologies 
in cellular terminal business. Dissertation. Helsinki University of Technology. 
ISBN 951-22-6521-4. 

López, A., Nicolás, J. & Toval, A. 2009. Risks and safeguards for the requirements 
engineering process in global software development. In: Proceedings of 
the fourth IEEE International Conference on Global Software Engineering, 
Limerick, Ireland, 13–16 July 2009, pp. 394–399. ISBN 978-0-7695-
3710-8, DOI 10.1109/ICGSE.2009.62. 

Martin, J. 1984. An Information systems manifesto. Prentice Hall, ISBN-13: 978-
0134647692. 

Merlin, 2004–2007. ITEA project, Embedded Systems Engineering in Collaboration. 
http://virtual.vtt.fi/virtual/proj1/projects/merlin/index.html. Available 15 July 
2011. 

http://virtual.vtt.fi/virtual/proj1/projects/merlin/handbook/merlinhandbook_whttp://virtual.vtt.fi/virtual/proj1/projects/merlin/handbook/merlinhandbook_white%20paper_technicalimplementationstoolanalysis_final.pdf
http://virtual.vtt.fi/virtual/proj1/projects/merlin/index.html


 

104 

Mockus, A. & Hersleb, J. 2001. Challenges of global software development. In: Pro-
ceedings of 7th International Software Metrics Symposium, 4–6 April 2001, 
pp. 182–184. ISBN 0-7695-1043-4, DOI 10.1109/METRIC.2001.915526. 

Molli, P., Skaf-Molli, H., Oster, G. & Jourdain, S. 2002. SAMS: Synchronous, Asyn-
chronous, Multi-Synchronous Environments. The 7th International Confer-
ence on Computer Supported Cooperative Work in Design, 2002, IEEE, 
pp. 80–84. ISBN 85-285-0050-0, DOI 10.1109/CSCWD.2002.1047653. 

Nonaka, I. & Takeuchi, H. 1995. The knowledge-creating company. Oxford Uni-
versity Press, New York, USA. ISBN-13: 978-0195092691. 

Nuseibeh, N. B. & Easterbrook, S. 2000. Requirements engineering: a roadmap. In: 
Proceedings of the IEEE International Conference on Software Engineering 
(ICSE), pp. 35–46. ISBN 1-58113-253-0, DOI 10.1145/336512.336523. 

Paasivaara, M. & Lassenius, C. 2004. Collaboration practices in global inter-
organizational software development projects. Software Process Improve-
ment and Practice, Vol. 8, No. 4, pp. 183–199. DOI 10.1002/spip.187. 

Poston, R. M. & Sexton, M. P. 1992. Evaluating and selecting testing tools. IEEE 
Software, Vol. 9, No. 3, pp. 33–42. DOI 10.1109/52.136165. 

Prisma 2009–2011. ITEA2 project. Productivity in Collaborative Systems Devel-
opment. URL: http://www.prisma-itea.org (Accessed 19 March 2012). 

Prisma 2011. The same room spirit wiki. http://www.sameroomspirit.org. (Accessed 
19 March 2012). 

Revelle, J. B., Moran, J. W. & Cox, C. A. 1998.The QFD Handbook. John Wiley & 
Sons. ISBN-13: 978-0471173816. 

Robertson, S. & Robertson, J. 1999, Mastering the requirements process. Addison-
Wesley, ISBN-13: 978-0201360462 

Runeson, P. & Höst, M. 2009. Guidelines for conducting and reporting case study 
research in software engineering. Empirical Software Engineering, 14, 
pp. 131–164, DOI 10.1007/s10664-008-9102-8. 

Seppänen, V., Helander, N., Niemela, E. & Komi-Sirviö, S. 2001. Original software 
component manufacturing: survey of the State-of-the-Practice. In: Pro-
ceedings of the 27th Euromicro Conference, 2001, pp. 138–145. ISBN 0-
7695-1236-4, DOI 10.1109/EURMIC.2001.952448. 

http://www.prisma-itea.org
http://www.sameroomspirit.org


 

105 

Simons, M. 2006. Distributed agile development and the death of distance. Sourcing 
and Vendor Relationships Advisory Service, Executive Report, Vol. 5, 
No. 4. Arlington, MA, USA, Cutter Consortium. 

Sommerville, I. & Sawyer, P. 1997. Requirements engineering: A good practice 
guide. John Wiley & Sons. ISBN-13: 978-0471974444. 

Standish Group 2006. The CHAOS Report, published on 
http://www.standishgroup.com 1996, 1998, 2000, 2002, 2004 and 2006. 
The Standish Group International, Inc. 

Susman, G.I. and Evered, R.D., 1978, An assessment of the scientific merits of 
action research, Administrative Science Quarterly, Vol. 23, No. 4, pp. 582–603. 
Article Stable URL: http://www.jstor.org/stable/2392581. 

Sutcliffe, A. 1998. Scenario-based requirement analysis. Requirements Engineering 
Journal, Vol.  3, No. 1, pp. 48–65. DOI 10.1007/BF02802920. 

Thompson, I. 2001. Collaboration in technical communication: A qualitative content 
analysis of journal articles, 1990–1999. IEEE Transactions on Professional 
Communication, Vol. 44, No. 3, September 2001. DOI 10.1109/47.946462. 

Trompenaars, F. & Hampden-Turner, C. 1997. Riding the waves of culture. 2nd 
edition. McGraw-Hill. ISBN-13: 978-1857881769. 

Välimäki, A., Kääriäinen, J. & Koskimies, K. 2009. Global software development 
patterns for project management. In: Proceedings of EuroSPI 2009, 
Springer, September 2009, pp. 137–148, DOI 10.1007/978-3-642-04133-4_12. 

Wahyudin, D. M., Heindl, S., Biffl, A. & Schatten, B. R. 2007. In-time project status 
notification for all team members in global software development as part 
of their work environments. In: Proceeding of SOFPIT Workshop 2007, 
SOFPIT/ICGSE, Munich, pp. 20–25. 

Welborn, R. & Kasten, V. 2003. The Jericho Principle, how companies use strate-
gic collaboration to find new sources of value. John Wiley & Sons, Inc., 
Hoboken, New Jersey. ISBN-13: 978-0471327721. 

Williamson, O. E. 1996. The mechanisms of governance. Oxford, Oxford  University 
Press. ISBN-13: 978-0195132601. 

Winkler, D., Biffl, S. & Kaltenbach, A. 2010. Evaluating tools that support pair pro-
gramming in a distributed engineering environment. In: Proc. Conference 
on Evaluation and Assessment in Software Engineering (EASE), Keele, 

http://www.standishgroup.com
http://www.jstor.org/stable/2392581
http://ewic.bcs.org/content/ConWebDoc/34785


 

106 

Great Britain, 12–13 April 2010, pp. 1–10. http://ewic.bcs.org/content/ 
ConWebDoc/34785. Available 19 March 2012. 

Yin, R. K. 2003. Case study research: Design and methods. 3rd edition. Sage, Newbury 
Park, CA, USA. October 2008. ISBN-13: 9780761925521. 

Yousuf, F., Zaman, Z. & Ikram, N. 2008. Requirements validation techniques in GSD: 
A survey. In: Proceedings of Multitopic Conference, 2008. INMIC 2008. IEEE 
International, Publication Date: 23–24 December 2008, pp. 553–557. ISBN 
978-1-4244-2823-6, DOI, 10.1109/INMIC.2008.477780. 

http://ewic.bcs.org/content/ConWebDoc/34785


Appendix A: GSE interview framework
 

A1 

Appendix A: GSE interview framework 
This appendix describes industrial inventory framework for the Merlin project. This 
framework intends to cover company collaboration widely, thus all topics in the 
framework may not be addressed with every company. Topics to be addressed 
are selected in co-operation with the industrial partner and VTT, based on indus-
trial partner’s interests and coverage of the framework in general, meaning, that 
some additional topics may be addressed with a company so that the whole 
framework is covered at least by one company inventory. In any case, all topics 
that are seen important by the company are addressed. 

With every topic, also discuss, is the current way of working good or should it be 
improved and reasoning for that. Also, improvement ideas should be discussed. 

1. General 

 What kind of collaboration modes does your organisation currently have, 
or you have been involved with? 

 Are there differences in importance and effect in different collaboration 
modes? 

 What is the general motivation for collaboration (to save money, to save 
time, to focus on own competence areas, to share risks, to enhance ex-
isting products,  to develop new products, etc.)? 

 Is information exchange planned and documented (e.g. information flows 
between collaborative partners)? Is this important? 

 Who selects the collaboration mode (project level, organization wide, etc.)? 
How and in what level? 

 Who is responsible of defining and improving common practices between 
collaboration partners? 

2. Management practices 

 How do organisational changes affect collaboration? 
 How is the impact of organisational changes mitigated? 

2.1 Collaboration strategy 

 Do you have a specific (sub)strategy for company collaboration? 

 What kind of impact does the strategy have on different collaboration 
modes (joint research, subcontracting, technology exchange)? 

 



Appendix A: GSE interview framework 

 

A2 

 How is the company collaboration visible in business models? 

 Does business model implicitly include co-operation with other compa-
nies as part of business model? 

 What kind of impact does the business model have on different collabora-
tion modes (joint research, subcontracting, technology exchange)? 

 What options are considered during make/buy analysis (make yourself, 
buy COTS component, buy development work from supplier)? 

 What analysis methods or techniques are used during make/buy analysis? 

 What kind of information is available (concerning the product and suppli-
ers) during make/buy analysis? 

 What are the main criteria used in the make or buy analysis? 

 What kind of information is available concerning the suppliers for supplier 
selection? 

 How are the suppliers selected? 

 What are the main criteria for supplier selection? 

 What kinds of methods/techniques/tools are used for supplier selection? 

 Are the customers prioritised, how? 

 What are the main criteria for customer priorisation? 

 What kinds of methods/techniques/tools are used for customer priorisation? 

 Are company dependencies identified? How strong are the dependencies 
(importance of selected customers/suppliers to company)? 

 What kind of alternative strategies/customers/suppliers exist? 

 What kinds of mitigation strategies exist to handle company dependency? 

 Technology refreshment: 

– Are products planned to be refreshed? 
– What kinds of technology refreshment strategies do you have? 

2.2 Contracts 

 How are the intellectual property rights (IPRs) handled in the contracts? 

 What kind of contract is established? Do you use legal counseling to help 
with contracts? 

 Who owns the developed product/code? 



Appendix A: GSE interview framework
 

A3 

 Do you have any long-term agreements with suppliers or customers? Do 
any of these contracts/agreements have built in price adjustments? 

 Does contracting process efficiency affect collaboration? 

 Do you incentivize software quality (in addition to schedule and cost)? 

2.3 Project management process 

 How are collaboration modes taken into account in project scheduling 
(dependencies to supplier, requirements from customers)? 

 How are collaboration modes taken into account in project efforts estima-
tion (saved effort form using existing material (COTS), additional effort for 
development of glueware)? And human resource planning? 

 How are collaboration modes taken into account in project costs estimation? 

 How and what information and material is shared during project planning? 
What information is needed from supplier/customer for project planning? 

 Are practices, formats and responsibilities for exchanging information be-
tween partners defined and agreed between partners? Is this important? 

 Is there a need to have specific roles for collaboration management? 

 What collaboration practices need to be agreed with parties? 

 How is project plan approved between collaboration parties? 

 How is the progress of product development tracked during the project 
(what kind of meetings, reports etc.)? 

 Who is responsible of tracking project in joint projects? 

 How is project tracking done between collaboration parties? (Are 
plans/estimates compared to actuals, what happens if there are devia-
tions, are identified problems tracked?) 

 How are changes to project (schedule, scope, people) managed and 
communicated? 

 Is there control over changes made by other collaboration parties (e.g., 
from acquirer to COTS provider release schedule)? 

 What authority is needed? 

2.4 Risk management 

 How do risk management and analysis differ between collaboration and 
in-house development? 



Appendix A: GSE interview framework 

 

A4 

– Are there risks that are caused by work done in collaborative way? 

 Can monitoring or controlling the collaboration (e.g., metrics) support risk 
management? 

– Do you continuously follow and update collaboration risks? 

2.5 Collaboration management 

 How is communication between collaboration parties organised? Are re-
sponsibilities defined? Are following roles named or part of some other role: 

– Subcontract managers 
– Collaborator coordinator 
– Product integrator (person)? 

 How is interface with collaboration parties work defined and agreed? 

Customer–subcontractor relationship 

 How is the subcontractor/customer management organised? 

– Do you have designated person(s) that are responsible of commu-
nications to the subcontractor? 

 How are subcontractors selected? What kind of information is available 
regarding them? 

 What are the main criteria for subcontractor selection? 

 What kinds of methods/techniques/tools exist for subcontractor selection? 

 How is the work to be subcontracted defined and planned? 

 Are periodic technical interchanges held with subcontractors? 

 Are the results and performance of the software subcontractor tracked 
against their commitments? 

 Who does the tracking (roles and responsibilities)? 

 How are changes to subcontractors work agreed? 

 How are subcontracted work products accepted? 

 Are subcontractor assessments done, what topics are included, what 
methods, techniques or tools are used? 

 Do you evaluate software capability of subcontractors (SPICE, CMMI)? 

 Do you evaluate the software process proposed/practiced by the subcon-
tractor in subcontracting? 

 Do you share effort and cost information (direct materials, direct labor etc.)? 



Appendix A: GSE interview framework
 

A5 

 How is the customer support organized? 

 What kind of feedback is received from the customer? 

 Do you integrate system acquisition and software acquisition? 

 Do you know software capability of subcontractor's teams? 

 What kinds of estimates are defined for the subcontractors (size, effort, 
cost, schedule)? 

 Which deliverables are required from the subcontractors (plans, require-
ments, architecture, test plans, metrics, maintenance)? 

 What kind of criteria is used for selection open source software (docu-
mentation, support)? 

Customer–supplier (licensor) relationship 

 Who keeps track of existing/acquired COTS, open source, suppliers etc.? 

 How are suppliers selected? What kind of information is available regard-
ing the suppliers? 

 What are the main criteria for supplier selection? 

 What kinds of methods/techniques/tools exist for supplier selection? 

 Do you have named person(s) that are responsible for communications 
to the supplier? 

 What kinds of processes or guidelines exist for customer acceptance? 

 How have authorization and responsibilities been agreed with the supplier? 

 Do you analyse and follow-up financial status of the suppliers? 

 Are supplier assessments done, what topics are included? 

 What kind of methods, techniques or tools do you use in supplier assessment? 

 How do you rate your suppliers? 

 Do you share effort and cost information (direct materials, direct labor etc.)? 

 How is the customer support organized? 

 What kind of feedback is received form the customer? 

 Do you have a specific contract for customer support or is that part of de-
velopment agreement? 

Joint development relationship 

 Do you have named person(s) that are responsible for communications 
to the partner? 



Appendix A: GSE interview framework 

 

A6 

 How are partners selected? 

2.6 Quality management 

 Do the quality goals differ between in-house and collaboration develop-
ment? What kind of differences can be recognised? 

 Quality monitoring: How can “quality” be monitored/controlled during the 
collaborative development (e.g., quality of work products, errors, bugs, 
delays)? 

– Are some quality issues (or development phases) more critical than 
others in collaboration project? How are they different from in-house 
development, and why? 

– What kinds of metrics can be defined for monitoring quality of work 
products (or progressing of the development process)? 

3. Engineering practices 

 When is the decision made on which product parts will be developed ex-
ternally and what are critical competence to the company and should be 
made in-house? 

 When are make-or-buy decisions made, what technical reasoning is used? 

 How are the different collaboration modes taken into account in release 
strategy? 

 How are responsibilities shared and agreed in joint product development? 

 Are collaboration decisions and rationale documented? 

 What should you know before you can decide collaboration mode? 

 Do you have some framework for selecting licensed (COTS, OS) components? 

3.1 Requirements development 

Requirements gathering 

 How are the collaboration parties involved in requirements gathering? 

– Are requirements gathered also from the involved collaboration par-
ties (in addition to in-house)? 

– Are all gathered requirements shared with collaboration parties? 
What information is shared? 

– How are requirements gathered from customers (by COTS provider)? 



Appendix A: GSE interview framework
 

A7 

High level analysis of system requirements (incl. prioritising requirements) 

 Who does the high level analysis in different collaboration modes? Are 
responsibilities and authority clear? 

 How are the requirements, proposed solution, and their relationships com-
municated to all affected parties (specific description technique etc.)? 

 How can the common understanding be ensured? 

 When is applicability of the existing (licensed) parts analysed against re-
quirements? 

 Can possibilities of acquired material be taken into account (change re-
quirements so that something “almost fitting” can be used)? 

 Do priorities of requirements affect make-or-buy decisions or selection of 
collaboration mode? 

 How are the effects of using licensed parts analysed? 

 How do the licensed parts affect high-level analysis (priorities)? 

 Are the produced system requirements validated? How, who participates?  

 Is the (to be) acquired software taken into account when analysing sys-
tem requirements? 

Detailed analysis of requirements 

 Who does the detailed analysis in different collaboration modes? 

 How (who, based on what) is this done with licensed components? What 
documentation is needed? 

 Are uniform documentation practices needed between collaboration parties? 

 How are requirements validated? 

Allocation and flow-down 

 Should the solution already at this level include also descriptions of what 
will be developed in-house and what not? 

 How are non-functional requirements allocated to the parties? 

 How can it be ensured that, e.g., the latest versions of design or require-
ments documents are available for each sub-system? Especially, if 
changes have been done in some sub-system that will have influence on 
other sub-systems?  

 Should the interfaces between parts developed by the parties be defined 
and in what detail? 

 Is needed wrapper or glueware identified and specified? 



Appendix A: GSE interview framework 

 

A8 

Non-functional requirements 

 Are there some non-functional requirements of specific importance in 
company-collaboration: integrability, testability? 

 How are the non-functional requirements communicated to affected par-
ties? How affected parties are identified? 

 How fulfillment of non-functional requirements is verified from parts de-
veloped by the different parties? 

3.2 Requirements management 

 Can consistency between requirements and further work products be 
tracked during the development (when development is done externally)? 
Is there a need for that? 

 Is there a need for uniform requirements management practices between 
collaboration parties (requirement ID’s, traceability, change control)? 

 When are RM practices planned? Is there need for RM plan? 

 Does the used requirements management tool support company collabo-
ration? What kind of support is needed? 

Requirements documentation 

 Are there criteria or requirements for how requirements should be docu-
mented (format, content, traceability)? 

 How can it be ensured, that requirements documentation (definitions) is 
understood at the same way by each partner (training, terminology, 
workshops, communication, etc.)? 

Requirements change management 

 Is the number of changed requirements similar to in-house projects? 

 How do different collaboration modes affect change management in gen-
eral? (Phases: How are change requests done and delivered? How is the 
evaluation of changes done (impacts to other parts of software etc., 
costs, schedule, resources…)? How is the decision made to implement 
the change or not? How is the notification of accepted or rejected changes 
done? Implement: How is the change closed? 

 How do different collaboration modes affect change decision making (au-
thority, etc.)? 

 How does different collaboration modes affect change impact analysis? 

 How are changes communicated? 



Appendix A: GSE interview framework
 

A9 

 How can it be ensured that the latest updated requirements documentation 
is used by each partner? 

3.3 Architecture design process 

 Should the architecture take into account the collaboration mode? 

 Who is responsible for the architecture as a whole? (specially in joint de-
velopment) 

 Are architecture trade studies done? 

 Do you determine realistic, independent estimates based on architec-
ture? (for COTS, in-house, 3rd party development) 

 Does buying components affect architecture? 

 How can architecture design support different collaboration modes, part-
nering, etc. (be flexible, adaptable to anticipate changes in acquired parts)? 

 Are licensed parts (COTS, OS) possible effects considered on high level 
architecture? 

 Are licensed components integration issues analysed? 

 Is glueware defined for selected licensed components? 

 How is product line architecture opened for suppliers? 

 How do you assure the security of product line architecture in collaboration? 

 What is the meaning of system and SW architecture in practice? 

 What kind of methods, techniques, tools or frameworks do you and your 
partners use in architecture design, evaluation and validation work? 

 What kinds of differences and/or difficulties are found when general purpose 
architecture design and evaluation methods are used in collaboration? 

 How do different collaboration modes affect to system and application ar-
chitecture? 

 What kinds of architectural viewpoints do you and your partners use and 
need in design activities? 

 What kind of rationales do you and your partners attach to architecture 
description? 

 What are the conditions and constraints for creating and designing archi-
tecture in large SW projects? 



Appendix A: GSE interview framework 

 

A10 

3.4 Software design process 

 What are the differences between different collaboration modes vs. in-
house development? 

 Are there requirements for used design technique and/or tool? 

3.5 Software construction process 

 Is there anything different in different collaboration modes vs. in-house 
development? 

 How collaboration affects in-house coding (schedule, tailoring, integra-
tion, maintenance, experience of employees)? 

 Are there requirements for used coding language and/or tool? 

3.6 Integration process 

 How are dependencies to other suppliers taken into account? 

 Do you have integration plan? How are collaboration modes affecting it? 

 Are there specific tools that support integration in collaboration? 

 Are responsibilities and authority defined and clear? 

 Who performs the integration; are representatives from all parties pre-
sent? Should they be? 

 How is integration environment developed (in house, developed together 
with collaboration parties)? 

3.7 Testing process 

 Are there specific tools that support testing in collaboration? 

 What tests are performed and by whom? 

 Are responsibilities, information sharing (confidentiality issues) defined 
and clear? 

 How is acceptance criteria defined? 

 Are test cases shared? 

 Who plans test cases and in which development phase(s)? (e.g., should 
test cases planned while developing requirements?) 

 Are test environment shared? 



Appendix A: GSE interview framework
 

A11 

 How are test results communicated (to the other collaboration parties)? 

 How is defect management arranged (impact analysis, prioritization, 
communication)? 

 Does the verification process differ between collaboration and in-house 
project? 

– Does implementation (by each sub-system) fulfill all specified require-
ments? (Verifying with customers, suppliers, other stakeholders etc.) 

 Does the validating process (the system requirements against raw re-
quirements) differ between collaboration and in-house projects? (How 
can it be ensured that raw requirements are understood the right way?) 

3.8 Maintenance process 

 Does the maintenance process differ while product has been produced 
by collaboration project (warranty, upgrading, resourcing…)? 

 Should maintenance activities be recognized and considered in the plan-
ning phase of the collaboration project, or is there some critical phases 
when maintenance requirements should be checked during the project 
life-cycle? 

 How are the responsibilities defined? 

 Does a mitigation/alternative plan exist in case of problems? 

 What kinds of mechanisms are used in case there are operational faults? 

 How is the maintenance defined and agreed in contracts? 

4. Support practices 

4.1 Configuration management 

 What kind of configuration management practices or tools should be 
agreed at the beginning phase of the collaboration project (e.g., common 
tools, databases, licenses, what details should be included also in con-
tracts etc.)? 

 When should CM practices be agreed (contract negotiations / project 
planning)? Is there need for documented CM plan? 

 How can it be ensured that, e.g., the right version of the design or re-
quirements documents, are used by each partner? 



Appendix A: GSE interview framework 

 

A12 

 How are sub-contracted parts treated in customer’s CM process and tool 
(identification, traceability, change management)? Are they treated differ-
ently than artifacts produced by in-house development? 

 If different configuration management tools or practices between custom-
er and supplier are used, does the situation cause problems? If yes, de-
scribe problems. 

 How are the contents of releases defined? What kind of information and 
documents each deliverable (e.g. SW sub-system package from sub-
contractor) should contain? Are there any differences if product is devel-
oped by in-house or collaboration process? 

4.2 Change management process 

 How do problem reporting and handling process differ in collaboration vs. 
in-house development? 

 How are change requests and changes communicated? 

 How are decisions made (authority, who has a say, etc.)? 

 How are change impacts analysed? 

 Does the impact analysis of internal changes take into account the ef-
fects to other requirements and collaboration parties work? 

4.3 Quality assurance 

 How is quality assurance process implemented in collaboration? 

– How does the process differ from one implemented in the in-house 
development? (e.g., content of project plan, steering group meet-
ings, members, acceptance process, etc.) 

– Does each partner have separate quality assurance processes? 

– How can a customer ensure that a supplier uses appropriate quality 
assurance process? 

– What quality assurance issues need to be agreed and planned in 
collaboration? 

 How (and why) does the reviewing process differ between collaboration 
project and in-house project (e.g., in-house reviews, acceptance re-
views)? 

– Are there separate review processes and practices applied by each 
partner? 



Appendix A: GSE interview framework
 

A13 

– Which reviews should be held together (e.g. acceptance reviews)? 
Who is responsible to arrange them? 

– How and when are decisions made about participants of review 
sessions from each partner (planning phase, during some develop-
ment phase)? 

– Is review criteria specified (/checklist) for acceptance? 

– How is it reviewed that supplier follows necessary standards (tele-
communications etc.)? 

– Do you identify high risk areas of supplied software? 

– Are reviews focused based on risk analysis? 

– Are end users (operators etc.) included to technical reviews of the 
supplier produced code? 

 What work products should be reviewed in which level / by each partner / 
with both partners? Member of steering group, members of review group 
and how those groups differ between in-house and collaboration projects? 

4.4 Documentation 

 How (and why) do the documentation management practices differ be-
tween partners? 

– Which documents will be shared between customer and supplier, 
and how (e.g., documentation management system, common or dis-
tributed (replicated) databases (/areas), licenses, access to custom-
er’s information system? 

– Are there needs to develop new document templates (or update 
current templates with new parts or items) in collaboration project? 

 How do documents (templates) differ from  the ones produced either in 
collaboration or in-house developing? For example, 

– Contract: What should be agreed; e.g., deliverables of each part-
ners, ownership and rights of use, NDA information, security policies 
in general, documentation formats for deliverables (e.g. editable 
formats like “.doc” or “.xls” or view only like “html” or “pdf”)? 

– Project plan: Detailed planning includes (deliverables by partners 
and detailed timetable during life-cycle of developing), review and 
acceptance process, change request and handling process, etc. 

– Release notes (e.g., changes done, features added, template for 
notes): By whom content and issues of release notes should be de-



Appendix A: GSE interview framework 

 

A14 

termined? What kind of information is important from viewpoint of 
customer (tracking, change handling…)? 

– Other document templates? Which ones? 

4.5 Improvement process 

 Are there shared processes with parties? 

 Is there shared process improvement work? 

 Is effectiveness of collaboration evaluated on a regular basis? 

 Are there dependencies between the partners’ processes? 

 Are there new processes needed in different collaboration modes? Are 
they identified and described? Are they assessed on regular basis? Are 
improvement actions taken accordingly? 

4.6 Human resource management process 

 Are new roles and skills required because of company collaboration? 

 Are subcontractors trained? 

 Do COTS providers provide training? 

 Is any other special training arranged or needed because of collaboration 
(co-operation skills, leadership skills, collaboration tools)? 

 How can effective interaction between individuals and groups be supported? 

 Is group and individual performance monitored to provide performance 
feedback and to enhance performance? 

4.7 Infrastructure process 

 Are there specific tools that support collaboration (development and in-
formation management/exchange tools (and technologies))? 

 What requirements do different collaboration modes bring to infrastructure? 

 Are there any means of control for other parties infrastructures (tools 
used, etc.)? Is it needed? 

4.8 Co-operative work practices 

 What kind of methods, techniques and tools exist for co-operative work? 



Appendix A: GSE interview framework
 

A15 

 How mature is the organisation towards co-operative work (coupling of 
work, collaboration readiness, technology readiness)? 

 Are the costs and benefits of co-operative work analysed? 

 How are the co-operative work teams organised? 

 How are the communications arranged in co-operative work? 

 How does the distance and cultural issues affect the co-operative work? 

5. Other 

 Anything else important related company collaboration? 

 If you could change one thing in company collaboration, what would it be? 

 What do you see as the strengths in company collaboration in your or-
ganisation? 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 





Appendix B: GSE questionnaire
 

B1 

Appendix B: GSE questionnaire 

Background information 
This questionnaire is part of industrial inventory carried out in the MERLIN project 
in order to gather existing experiences, problems and solutions of company col-
laboration. Answers are treated confidentially and will be used as input for indus-
trial inventory summary report of the MERLIN project. Before sharing the results 
with the MERLIN project consortium in the summary report, you’ll have opportunity 
to review the report.    

 
Organisation:  

Name:  

Position/role (describe your  
responsibilities briefly): 

 

Phone:  
E-mail:  

 

General collaboration practices 

What kind of collaboration modes does your organisation use? 
- Are there differences in importance and effect in different collaboration modes? 

Collaboration modes (one viewpoint based on organizational 
interdependency): 

 L
ot

s 
of

 

S
om

e 

N
on

e 

Comments: 

- Joint R&D (or partnering):     

o Joint ventures. Joint ventures are organisational 
units created and controlled by two or more parent-
companies.  

    

o Joint development agreements. Joint development 
agreements cover technology and R&D sharing be-
tween two or more companies in combination with 
joint research or joint development project. 

    

- Customer - Supplier relationships. In customer-supplier 
relationships, customer is the organisation that is buying 
the software work (and technology and knowledge) from 
the supplier. Work may be based on requirements giv-
en, or modification of existing COTS or open source 
code. Customer may also hire workers from supplier in 
so called body-shopping. Supplier is the organization 
that provides the software work to the customer.  We 
have identified three main types of relationships: 

    

 



Appendix B: GSE questionnaire 

 

B2 

o Requirements based subcontracting     

o Body-shopping     

o MOTS, (COTS), (open source)     

- Technology exchange/Licensing. By technology ex-
change/licensing, company is granted the right to use a 
specific patented technology in return for a payment. 
Companies may also define open interfaces to products 
that allow any interesting party to create soft-
ware/services to the product. Types of technology ex-
change/licensing include: 

    

o COTS     

o Open source     

o Open architectures     

Other, what?     

Above categorization is one view to company collaboration, other view is to identify collaboration 
from equity or non-equity perspective. Collaboration can also be horizontal or vertical, indicating 
relative positions of the participating companies on the value-chain. In practice, however, product 
development is typically a mixture of the above, but when analyzing the effects of the collaboration, 
the above categorization is useful, as it provides different viewpoints to support the analysis. 
Please, write your further comments here: 

 

What is the general motivation for collaboration? 
(E.g., to acquire expertise, to save money, to save time, not to invest to non-core competence 
areas, to share risks) 

 

What are the main risks and problems in collaboration?  

 

Who, how and in what level selects the collaboration mode? 
(E.g., project manager for a project according to a defined process, product manager for the prod-
uct-line, steering group for the organization, ad-hoc case by case etc.) 

 

Do you have specific roles and responsibilities for collaborative development? What, please de-
scribe responsibilities? (For example, collaboration manager, sub-contract managers, product 
integrator) 

 

Are communication practices and subjects (e.g., change management) defined in collaborative 
development? What are the subjects? 

 

At which points of R & D are collaboration issues taken into account (project planning, require-
ments specification, architecture analysis, etc.)? 

 



Appendix B: GSE questionnaire
 

B3 

Is company collaboration taken into account in your organisation’s internal processes? How? 

 

Are the process interfaces defined with collaboration parties in co-operation? 

 

Are there specific tools used for collaborative development? 

 

Would you need specific tools for collaborative development? For what purposes? 

 

 

Critical points in collaboration 

Please consider your company’s experiences relating to collaboration in SW de-
velopment and rate the criticality of the following topics. See descriptions of the 
topics from enclosure 1. 

 

Which are the "critical points" when dealing 
with collaboration? 

N
ot

 a
t a

ll 
cr

iti
ca

l 

N
ot

 c
rit

ic
al

 

C
rit

ic
al

 

V
er

y 
cr

iti
ca

l Comments / reasoning for 
rating (comment also, if 
rating is specific for certain 
collaboration mode) 

Management practices      

- Collaboration strategy      

- Contracts      

- Project management      

- Risk management      

- Collaboration management      

- Change management      

- Quality management.      

Engineering practices      

- Requirements development      

- Requirements management      

- Architecture design      

- Software design      

- Software implementation      



Appendix B: GSE questionnaire 

 

B4 

- Integration      

- Testing      

- Maintenance      

Support practices      

- Configuration management      

- Quality assurance      

- Documentation      

- Improvement process      

- Human resource management      

- Infrastructure      

- Co-operative work       

Thank you very much for completing this questionnaire! 
All answers will be handled confidentially. 

 
 
 
 
 
 
 
 
 
 
 
 
 

 
Appendix C: Papers II and VIII, are not included in the PDF version.  
Please order the printed version to get the complete publication 
(http://www.vtt.fi/publications/index.jsp). 

http://www.vtt.fi/publications/index.jsp


PAPER I

Collaborative embedded systems 
development

Survey of state of the practice

In: Proceedings of the 13th Annual IEEE International 
Conference and Workshop on the Engineering of 
Computer Based Systems (ECBS), March 27–30, 

2006, Potsdam, Germany.
Copyright 2006 IEEE.

Reprinted with permission from the publisher.



I/1



I/1

Collaborative Embedded Systems Development: Survey of State of the Practice 

Jarkko Hyysalo  
University of Oulu 
Jarkko.Hyysalo@oulu.fi 

Päivi Parviainen 
VTT Technical Research 
Centre of Finland 
Paivi.Parviainen@vtt.fi 

Maarit Tihinen  
VTT Technical Research 
Centre of Finland 
Maarit.Tihinen@vtt.fi

Abstract 
This paper describes the results of a survey about the 

problems of and solutions for collaborative SW 
development. The survey was done through several 
interviews of companies doing collaborative development 
and also through a literature search to find already 
published experiences and solutions. As a result, we found 
that the literature focuses on solutions for more general 
issues like communication and team building, and 
industrial problems are related to specific engineering 
tasks. Mapping and practical examples of general 
solutions to specific tasks are needed to support 
collaborative software development. 

1. Introduction 

The development of embedded systems is a 
multidisciplinary and highly complicated process with 
tight time-to-market requirements. Thus, nowadays, 
embedded products are typically not developed by a 
single company alone, but instead globally in 
collaboration between subcontractors, third party 
suppliers and in-house developers.  

This kind of collaborative product development offers 
many opportunities, such as potential savings in 
development times and costs, and being close to several 
customers. However, collaborative development is at the 
same time highly challenging; for example, the 
development teams are usually dispersed and this alone 
places high demands on communication, teamwork and 
working methods. In addition, different time zones and 
distances make communication more difficult than in 
local development. Thus, the whole development process, 
in general, differs significantly from local (single-site) 
development process.

The purpose of this paper is to describe the state of the 
practice in collaborative embedded systems development 
from a multi-company viewpoint, though applicable 
single-company experiences are also included.  The main 
goal of our work was to gain a view of current 
collaborative practices; what the most problematic or 
critical issues relating to collaborative work are and what 
the most important areas are that should be the focus of 

research activities. The work was done as part of a large 
research project, called Merlin1, in the year 2005. Merlin is 
a three year ITEA project, comprising of industrial and 
research partners from three countries. The main aim of the 
project is to support effective collaboration between 
companies via developing and tailoring supporting 
technologies and processes.  This paper presents these 
findings. 

The majority of existing publications focus on 
distributed development within a single company, i.e., 
multi-site development. See for example, Motorola [1], 
Alcatel [2], and Lucent Technologies [3, 4]. Some studies 
focus on the effect of or solutions provided by distributed 
development for a specific issue, such as requirements 
engineering [5], software configuration management tool 
support [6], or process support system [7]. A more detailed 
discussion on the published experiences and solutions is to 
be found in sections 3 and 4. 

1.1. Background 

In this paper, collaboration refers to product 
development activities that involve two or more companies, 
departments or customers combining their competencies 
and technologies to create new shared value while, at the 
same time, managing their respective costs and risks. The 
entities can combine in any one of the several different 
business relationships and for highly different periods of 
time, ranging from short periods needed for exploiting a 
particular innovation or business opportunity, to long-term 
on-going relationships. (Adapted from [8].) 

There is no established definition for collaboration 
modes. Collaboration modes, as used in our survey, 
(adapted from [9]) include the following: 

- Customer - Supplier relationships. In customer-
supplier relationships, customer is the organisation 
that is buying the software work (and technology 
and knowledge) from the supplier. The work may 
be based on specified requirements, or modification 
of existing COTS or open source code. The 

                                               
1 The Merlin project: Embedded Systems Engineering in 
Collaboration, 2004-2007.  
URL: http//www.merlinproject.org/

Proceedings of the 13th Annual IEEE International Symposium and Workshop on Engineering of Computer Based Systems (ECBS’06) 
0-7695-2546-6/06 $20.00 © 2006 IEEE 

mailto:Jarkko.Hyysalo@oulu.fi
mailto:Paivi.Parviainen@vtt.fi
mailto:Maarit.Tihinen@vtt.fi
http://www.merlinproject.org/


I/2 I/3

customer may also hire workers from the supplier, 
which is referred to as “body-shopping”. Supplier 
is the organisation that provides the software work 
to the customer. Three main types of relationships 
are identified: 

o Product structure based subcontracting. 
o Body-shopping.  
o MOTS (Modified-Off-The-Shelf). 

- Technology exchange/Licensing. By technology 
exchange/licensing, a company is granted the right 
to use a specific patented technology in return for 
a payment [9]. Companies may also define open 
interfaces for products that allow any interested 
party to create software/services for the product. 
The types of technology exchange/licensing 
include: 

o COTS 
o Open source 
o Open architectures 

- Joint R&D (or partnering)  
o Joint ventures. Joint ventures are 

organisational units created and controlled 
by two or more parent-companies. [10] 

o Joint development agreements. Joint 
development agreements cover technology 
and R&D sharing between two or more 
companies in combination with a joint 
research or joint development project. [11] 

The above categorisation is one way of viewing 
collaboration; another would be to identify collaboration 
from an “equity or non-equity” perspective. Collaboration 
can also be horizontal or vertical, indicating the relative 
positions of the participating companies on the value 
chain. While, in practice, product development is
typically a mixture of the above, when analysing the 
effects of the collaboration, the above categorisation is
useful as it provides different viewpoints to support the 
analysis. 

In the following sections, we first explore the findings 
of our industrial survey and the experiences gathered from
literature to gain an insight into the state of the practice in 
collaborative embedded systems development. The 
suggested solutions are mapped to related problem issues 
to find out what areas are covered and what the needs are 
for further improvement. That is also our main research 
question: What are the areas that need improvement in 
collaborative development in the embedded systems 
domain? 

1.2. Inventory scope 

The industrial part of the survey was carried out by 
performing interviews and studying the existing material 
of the companies participating in the Merlin project, 
including process descriptions, templates, and guidelines. 
The interviews were carried out using a specific 

framework. A total of 6 companies participated in the 
inventory and 12 interviews of senior managers, project 
managers, software developers and testers were carried out. 
The industrial partners represent several divergent 
embedded SW business areas: mobile and wireless 
systems, data management solutions, telecommunications, 
IT services, and consumer electronics. 

The addressed topics are introduced on a general level in 
Table 1. 

Table 1. Inventory topics 

Collaboration strategy 
Contracts 
Project management 
Risk management  
Collaboration management 

Management practices 

Quality management 
Requirements development 
Requirements management 
Architecture design 
Software design 
Software implementation 
Integration 
Testing 

Engineering practices 

Maintenance 
Configuration management 
Change management 
Quality assurance 
Documentation 
Improvement process 
Human resource management 
Infrastructure 

Support practices 

Co-operative work 

In addition to the industrial survey at Merlin partners, 
literature was also searched for published experiences and 
solutions regarding collaboration. Literature was surveyed 
for subjects ranging from development issues and success 
factors to tool support in collaboration. The experiences 
found from literature are mostly from distributed 
development within a single company, but some multi-
company efforts are also reported [e.g., 12, 13, 14, 15, 16, 
17]. 

2. General findings  

In this section, the general findings of the industrial 
survey based on the interviews at the Merlin companies are 
presented and discussed.  

2.2. Collaboration modes  

The most common collaboration mode was product 
structure based subcontracting (the organisation was split 

Proceedings of the 13th Annual IEEE International Symposium and Workshop on Engineering of Computer Based Systems (ECBS’06) 
0-7695-2546-6/06 $20.00 © 2006 IEEE 



I/3

into sites along the lines derived from product 
requirements or architecture [18]). The companies also 
showed a lot of body-shopping and distributed (or multi-
site) development. 

Joint ventures were not a common practice, none of the 
companies were using them. Joint development 
agreements with other companies were a lot more 
common, especially the bigger companies were using this 
strategy to some extent or to a great extent. The use of 
COTS was also relatively common, though there was a lot 
of variation between the different companies: while 
SME’s seemed to use COTS to a lesser extent, bigger 
companies turned out to make more use of them. 
However, also SME’s were expected to increase their use 
of COTS in the future.  

The use of open source software also varied a lot 
between the different companies; some didn’t use them at 
all, whereas some made extensive use of them. The 
reasons for not using open source software included, for 
example, a principle that all that’s in the product should 
be owned by the company itself; licensing and public 
releasing are likely to reduce competitive advantage and 
also problems in responsibilities. 

The following collaboration activities were also 
identified among the Merlin partners: 

- Co-operation with experts of the domain (not 
software experts). 

- Joined company with two other companies that, 
for example, offers a shared resource pool for 
subcontracting, hold shared trainings and support 
each other in specialised expertise areas. 

- Participation in domain specific forums, e.g., to 
influence standards.  

- Outsourcing of maintenance. 
- Subcontracting hardware development to third 

parties. 

The decision to choose this collaboration mode was 
mostly done case-by-case and no clear rules or guidelines 
seemed to exist in any of the companies. Subcontracting 
was also most often done with proven subcontractors. 

2.2. Motivation and risks  

The three most commonly mentioned reasons for 
collaboration were:  

1. To reduce development costs.  
2. To acquire competence (technology competence 

or knowledge of a specific market). 
3. To avoid investing in company’s non-core 

competence areas. 

Further reasons included potential timesaving, 
establishment of new business opportunities with new 
partners, flexibility with respect to the number of in-house 
resources, and availability of in-house resources. In some 

cases, e.g. regarding COTS developers or consulting 
companies, the whole business is collaborative.  

The general risks mentioned had to do with the openness 
of communication between partners; for example, problem 
hiding may be a problem in customer-supplier relations. 
Further, unclear assignments, trust between partners, 
agreeing on intellectual property rights and the reliability of 
the partners’ development schedule were seen as risk 
factors for any mode of collaboration. From the supplier’s 
or licensor’s viewpoint, the risks mentioned concerned the 
continuation of the collaboration in the future and 
predicting the most sales-boosting features right during 
roadmapping. On the other hand, from the customer’s point 
of view, the quality of the acquired product (e.g., reliability 
and performance) and becoming too dependent on one 
partner were seen as risks. Finally, competence issues, such 
as competence of new partners, and weakening of one’s 
own competence were also mentioned as risks.  

2.3. Success factors 

The success factors for collaboration and co-operation 
were also discussed with the interviewees. The following 
success factors for collaboration were mentioned 

- Fluency of co-operation, e.g., a face-to-face kick-
off meeting helps in establishing this.  

- Good understanding between partners of each 
other’s work.  

- Mutual benefit from collaboration, i.e., real need for 
co-operation.  

- Partners complementing each others’ expertise 
when, for example, it has been easy to reach an 
agreement on work distribution and decision 
authorities. 

2.4. Collaboration tools

In most cases no specific tools were used for 
collaborative development. However, same tools for 
specific activities were often used between partners. These 
included tools for defect management, configuration 
management, requirements management and change 
management. This would often mean that the customer’s 
(or integrator’s) tools were used, but not in every case, as 
sometimes the subcontractor might be so influential or 
significant, that the customer just could not think of 
demanding the use of any specific tools. Some work may 
also require using highly specialised tools, e.g., in 
integration testing, so that the work needs to be done with 
customer/integrator tools and sometimes even at the 
customer’s/integrator’s premises. 

Some companies also use a shared intranet area in 
collaborative work. On the other hand, some other 
companies do not recommend allowing outside companies 
to access the intranet.  

Proceedings of the 13th Annual IEEE International Symposium and Workshop on Engineering of Computer Based Systems (ECBS’06) 
0-7695-2546-6/06 $20.00 © 2006 IEEE 



I/4 I/5

For communication, e-mail and phone were the most 
commonly used tools.  

Most tools were reported not to support collaborative 
development well enough. Especially the need for better 
change management tools was often mentioned. 
Regardless of the fact that specific collaboration tools 
were not used much, there was an apparent need for 
awareness tools, especially in managing the transition 
between synchronous and asynchronous work [19].  

3. Critical points and problems 

In this section, the critical points and problems 
presented in literature and determined through the 
industrial inventory are discussed. 

3.1. Industrial inventory  

One important viewpoint in the interviews was to gain 
knowledge of the most critical points in collaboration. 
According to the interviews, the most important/complex 
points were: 

- road-mapping 
- contracting and requirements definition 
- project planning 
- architecture analysis/design 
- integration 
- change management 
- co-operative work 

The list shows that the industry focuses on problems 
from a technical view of point. Each of the listed points is 
discussed in more detail below, including solutions when 
available.  

Roadmapping: Taking into account and prioritising 
the customers’ future requests or suppliers’ future 
directions is a complex task, especially for several 
customers with varying requests. 

Contracting and requirements definition: The more 
detailed the prepared specification of the work is, the 
better (within a reasonable degree of effort). Thus, all 
collaboration partners have the same view/shared 
understanding of what is to be done and if that is written 
down well, fewer conflicts will occur. 

Project planning: It is important to clearly define 
status reporting practices and change management 
procedures, including the details on reporting channels, 
decision authorities and escalation channels. Further 
important issues in collaborative project planning are the 
identification of dependencies between partners - e.g., the 
interdependencies of the subsystem deliveries - and taking 
these into account in project schedules. 

Architecture analysis/design: Architecture is one of 
the key technologies enabling successful collaboration. In 
particular, integrability is a key issue. The responsibilities 
and authorities should also be explicitly assigned 

regarding architectural analysis, design and changes. 
Ensuring that all partners understand the architecture 
correctly is difficult and the required level of 
communication is often underestimated.  

Integration phase (testing): While integration is often 
the most time- and effort-consuming activity even in in-
house product development, collaborative product 
development brings additional complexity, e.g., new actors, 
and communication requirements. An efficient integration 
strategy should be defined and communicated to everyone. 
Establishing an integration culture (source code is only 
finished when it has been integrated) was also 
recommended. Continuous integration should be pursued 
whenever possible and big bang integration avoided as 
continuous integration is likely to reveal problems earlier. 
In addition, allocating a sufficient amount of time and 
capacity for integration is of great importance. On the other 
hand, the availability of the same test environment among 
the partners and the availability of required expertise may 
be an issue. 

Change management: The change management 
process should be adjusted to the collaborative 
development environment (e.g., proposals, scope of impact 
assessment, communication, viewpoints that need to be 
taken into account in decision making). 

Co-operative work: No specific methods, techniques or 
tools are used for co-operative work. E-mail and phone 
discussion were the most commonly used practices. 
However, communication was seen crucial for the success 
of the project. Openness of communication and multi-
site/multi-partner culture were considered very important 
for collaboration success. 

The following causes of problems in co-operation were 
mentioned: problems with time difference, cultural 
differences, and knowledge of the product not being at a 
high enough level. Ensuring a common understanding was 
also found a complicated issue. 

The working practices deemed useful based on the 
multi-site development experiences include face-to-face 
meetings at the beginning of the project and regular 
meetings during the project between partners (architects, 
configuration managers, (sub)project leaders). 

3.2. Problems derived from literature 

The reported literature findings are categorised 
according to Carmel’s [12] classification: 

- loss of communication richness 
- coordination breakdown 
- geographical dispersion 
- loss of “teamness” 
- cultural differences 

In addition to the above, we also found some topics that 
did not fit into any of Carmel’s categories. The Carmel 
classification was selected as the reported problems were 

Proceedings of the 13th Annual IEEE International Symposium and Workshop on Engineering of Computer Based Systems (ECBS’06) 
0-7695-2546-6/06 $20.00 © 2006 IEEE 



I/5

quite universal and they were closely linked to co-
operative work. The literature approaches were not as 
technical-centred as industrial inventory interviews. In the 
following, the listed points are discussed in more detail. 

Loss of communication richness: Shared artefacts 
(e.g., flip charts, whiteboards, tack boards, and walls) can 
normally be used to show the work in progress or as 
reference material [20]. In addition, distribution may 
hinder informal or unplanned communication [3]. In 
distributed development, all this has to be managed and 
supported through groupware or the like, or else the 
richness of communication will suffer. A loss of 
communication richness makes it necessary to concentrate 
on the quality of documentation; poor and inadequate 
documentation is likely to cause inefficiency in 
collaborative development [14]. 

Coordination breakdown: Different practices and 
processes of teams cause problems while working in 
distributed settings. The need of specific practices and 
processes for collaboration was also often underestimated. 
Collaboration also sets additional requirements for 
planning; for example, the needs for coordination between 
teams and the procedures for how to work with partners 
were often not paid enough attention to in planning 
collaborative projects [5, 15, 22]. Difficulties in 
identifying distant colleagues and problems with not 
knowing whom to contact across sites were also reported 
[22]. Battin et al. [1] reported a number of software 
integration problems which were due to a large number of 
independent teams. The authors also stated that software 
configuration management is a challenging task in 
globally distributed development. 

Geographical dispersion: Overall, communication is 
difficult in geographically distributed development, for 
example, if there is a lack of overlapping working hours 
due the time zone differences [5]. Distribution also causes 
challenges to requirements development [5, 22]. For 
example, it’s more difficult to establish common 
understanding when different stakeholder groups specify 
requirements across distances. Dividing the tasks and 
work across development sites is also difficult due to the 
restrains of the available resources, the level of expertise, 
and the infrastructure, for example [14]. 

There can also be great differences in governance, 
which makes it more difficult to manage inter-site work 
dependencies and to coordinate and control the distributed 
work [8, 1]. Furthermore, lack of vendor support is a 
problem in distributed development as some third-party 
tools do not have worldwide support [1].  

Loss of "teamness": The role of trust is always 
significant in collaboration and contracting, because it is 
very difficult, if not impossible, to make perfect contracts. 
Lack of informal communication has negative impact on 
knowledge management and other issues, such as trust [5, 
22]. In addition, different processes and practices tend to 
diminish teamness [1]. 

Cultural differences:  If the distribution crosses 
cultural boundaries, the implications for legal issues, 
knowledge-transfer, development and project management 
and quality management may be amplified, while language, 
time, and infrastructure issues can make the process even 
more challenging. [5, 23] 

There are differences in tacit knowledge consisting often 
of habits and culture that we do not recognise in us. By 
definition, tacit knowledge is not easily shared, causing, for 
example, reluctance to use international developers and 
resistance towards global software development [1, 14]. 

Other problems: Uncertain requirements and 
implementation technologies were also deemed 
problematic; for example, lack of clarity about who is a 
stakeholder, disparity of power and/or resources among 
stakeholders, and complex problems that are not well 
defined. [16] 

Collaborating companies are typically operating in a 
nexus of contracts. The business relation between the 
parties consists of the trading relation made up by 
numerous interactions, some of which may involve 
contracts, but often will consist of enquiries, discussions of 
plans, and sorting out problems [24]. From a contractual 
point of view, there are several types of contracts that are 
granting rights or creating liabilities. It is essential for a 
company to be aware of all these rights and liabilities and a 
mixture of them.  

The roles and responsibilities of different stakeholders 
should be clearly defined. This takes a lot of time and 
requires various kind of expertise from the company. [25] 

Inadequate tools, i.e., which are not synchronised 
seamlessly, not efficient enough, or not spontaneous 
enough to support informal communication, were often 
reported as a problem. Other problems related to tools are: 
it is difficult to access databases, the quality is not high 
enough, data formats may vary, and different teams may 
have different versions of the same tool. [2, 26, 21, 27, 3, 
14]

3.3. Discussion  

In this section, the results of industrial and literature 
inventory - congruent and divergent findings - are 
discussed together. The findings are discussed from the 
viewpoint provided by the Carmel categories. 

Loss of communication richness is related to physical 
distance and time zone differences. Both literature and 
industrial interviews named distance as an issue. Physical 
distance hinders face-to-face communication effectively 
and creates other obstacles, such as complicated use of 
shared artefacts, and lessening of the amount of informal 
communication. The loss of communication richness also 
creates miscommunication. In addition to these issues, 
different views of remote teams cause real, intangible 
problems to development. These are not solved as easily in 
distributed settings as in collocated development because 
of all the communications related issues. For example, it is 

Proceedings of the 13th Annual IEEE International Symposium and Workshop on Engineering of Computer Based Systems (ECBS’06) 
0-7695-2546-6/06 $20.00 © 2006 IEEE 



I/6 I/7

were considered important, while IPR management was 
referred to as the primary tool for managing these issues. 

Project management practices are in a central role 
while solving problems in collaborative work. 
Development strategies should be planned properly with 
visible goals [31]. It should be defined at the beginning 
which teams are involved and what they will do in each 
location [2]. Synchronisation of main milestones between 
partners/sites with clear entry and exit criteria is one of 
the practices facilitating collaboration [17]. At project 
start, the respective project targets, such as quality, 
milestones, content, and resource allocation should be 
agreed on and communicated to the relevant parties [2]. In 
order to enhance the decision-making practices for 
collaboration management, defining the correct forums 
for different types of decisions, informing stakeholders 
about decisions and arranging network level steering 
group meetings are suggested [4]. In addition, project 
level coordination should be used as a supporting 
structure, for example, by creating a project level steering 
group with members from all organisations and sites [4]. 
There should also be inter-organisational groups with 
weekly meetings (project level, team level, etc.) via 
appropriate means (e.g. by teleconferencing). During 
meetings, problem solving and decision-making should be 
facilitated as they provide transparency and facilitate later 
electronic communication [4]. It is also useful to ensure 
that commitments exist in written and controlled form [2]. 

Herbsleb & Mockus [23] recommend decoupling the 
work across different sites so that these can work as 
independently as possible. The authors suggest different 
ways to do this, for example, by process steps or dividing 
the product according to its structure and developing 
different parts in different places, which results in an 
organisational structure that follows the product structure. 

Ebert & De Neve [2] suggest having one project leader
or responsible for achieving project targets and assigning 
this person a project management team representing the 
major cultures within the project. It is further suggested 
that the teams should be fully accountable and responsible 
for their results. Reifer [32] also acknowledges the 
importance of relationship management and proposes for 
projects to assign a dedicated relationship manager for 
key suppliers. Several relationship building practices are 
suggested: All communication, especially face-to-face 
meetings help to build a good cooperative relationship. 
Face-to-face contacts are needed also with distant sites to 
give "faces" to distant sites. Further, organisational charts 
help to recognise persons. A common kick-off meeting is 
a good start. Other recommended practices are, for 
example, circulating meetings or trainings, and planning 
or problem solving meetings. [18, 4] 

Informing and monitoring practices comprise a 
number of different practices, such as weekly meetings, 
progress reports, and a travelling steering group. 
Informing and monitoring should be followed-up in all 
directions [18]. The parties should comment all the points 

in the follow-up reports that include tasks done, open 
questions, problems, and future outlook. Weekly meetings 
inside a subgroup are also proposed [4]. The key risk 
factors should be identified and an approach should be 
developed to mitigate them, while continuous monitoring 
of the key risk factors is also recommended [1, 2]. 

Engineering practices: Architectural principles as a 
solution for architectural issues and actively working 
towards “architecture lite” are proposed as useful practices 
[1, 33]. Architecture lite refers to low coupling among 
network elements, well defined interfaces, and concise 
semantics for the network element behaviours. This kind of 
architecture describes the system architecture at a high 
level of abstraction, including both static and dynamic 
views. System metaphor can be used to guide the 
development. 

Frequent deliveries of code, and several iteration cycles
and builds help in creating transparency for the process. In 
addition, frequent and incremental integration and testing 
are suitable for distributed use. Early checking ensures that 
all parties have understood their tasks correctly. This is 
especially useful during the software development phase 
[18, 1]. All documentation is also recommended to be 
revised and updated to reflect the current state of the 
development [17]. 

Support practices: Herbsleb and Moitra [17] point that 
configuration management involving transmission of 
critical data and multisite production must be well planned 
and executed in collaborative work. A common software 
configuration management tool with multisite replication 
and a centralised bug repository in useful in distributed 
development [1].  

Collaborating companies do not have to switch over to a 
single common process if they have good processes of their 
own, but instead they should focus on synchronising the 
main milestones, and use iteration cycles of similar length 
and frequent builds. Common milestones and work 
products synchronise communication, also facilitating both 
follow-up and communication. The collaborating 
companies being able to use their own development 
processes provides a faster start for a project, while also 
making it easier for several companies to collaborate [18, 
4, 1]. The decision about using separate processes should 
be made at the beginning of the collaboration in order to 
benefit the whole development process. An interactive 
process model based on accepted best practices that allows 
tailoring the development process for the specific needs of 
a project or even a team was reported to be useful [2].  

It is obvious that sufficient communication means should 
be provided [2] i.e., proper tools and support for them. 
Furthermore, it is suggested to integrate the heterogeneous 
tools for system development, not only for abstract 
concerns (e.g., analysis), but also for concrete activities 
(e.g., programming, unit testing, conducting workshops), 
and to provide support for the relationships between 
activities and concerns [30]. International support contracts 
are needed in order to have reliable support for tools from 

Proceedings of the 13th Annual IEEE International Symposium and Workshop on Engineering of Computer Based Systems (ECBS’06) 
0-7695-2546-6/06 $20.00 © 2006 IEEE 

difficult to bring about synchronous communication and 
this creates obstacles in resolving miscommunication, 
misunderstandings and small problems as they cannot be 
resolved asynchronously as easily as in synchronous 
communication [32].  

There are differences between our findings and the 
problem issues referred to in literature and industrial 
experiences. In the surveyed industrial experiences no 
references were made to the lack of informal or 
unplanned communication or poor documentation, and 
literature did not name miscommunication or different 
views as problems. This indicates that different projects 
face different problems and not all of the listed problems 
are issues in all of the projects. 

Coordination breakdown revealed many similar 
problem issues in literature and in industrial settings. 
Team coordination is clearly an issue as are also 
integration related problems. Project planning seems to be 
a significant problem, which is also reflected in an 
underestimated need of collaboration practices and 
processes. 

The differences between literature findings and our 
industrial experiences are noticeable. Literature suggests 
that different practices and processes used by different 
teams complicate the coordination efforts and, if there is a 
need to find contact persons across sites, it may be 
difficult as it is not clear who is responsible for what. 
Difficulties in configuration management are a further 
hindrance to coordination efforts. On the other hand, our 
industrial experiences brought up some work monitoring 
related problems. 

Geographical dispersion did not reveal similar 
problems in literature and in industrial experiences. 
Literature discussed the difficulties of work and task 
allocation across sites and also the delay caused by the 
distributedness of the project. Distance complicates the 
arrangement of face-to-face meetings and they cannot be 
arranged as often as they are needed. Furthermore, great 
time zone differences create a lack of overlapping 
working hours, which in turn hinders, for example, 
communication and exchange of shared artefacts. 
Although, in theory, this could be used as an advantage to 
enable work around the clock, literature did not mention 
any successful experiences on this.  

Industrial interviews revealed problems related to the 
availability of resources. It was mentioned that it felt 
easier when the same people were working together  
through the whole project, but when many sites were 
participating in a project it was likely that some changes 
in personnel would happen. 

Loss of "teamness", both literature and industrial 
experiences found trust to be an important factor. Lack of 
trust is clearly an issue that calls for action; however as 
creating relationships and trust takes time, it is often 
difficult to tackle this problem. 

Cultural differences related issues could be found 
both in literature and in industrial experiences. 

Requirements specification over distance was already 
mentioned, but across cultural boundaries this task 
becomes even more demanding. This is also related to 
differences in tacit knowledge and cultural boundaries in 
general (language etc.). Literature also discussed the 
reluctance of using international developers, which was, 
however, not revealed in our interviews. 

A number of further problems were revealed by the 
review of literature and industrial experiences. These are 
uncertain requirements and implementation technologies, 
the high number of different contracts and interactions, 
insufficient definition of roles and responsibilities, different 
tools or versions, inadequate tools, synchronised problems 
and problems with data security and access to databases or 
another organisation's resources etc. Besides these, the 
interviews revealed further issues, such as reluctance to 
changes (as changes usually cost money), and lack of 
commitment. As not every organisation or team is fully 
committed to the project, this may be reflected in the 
development and also in the end product. Furthermore, 
since architecture related problems were one of the major 
issues according to our interviews, they should be taken 
into serious consideration when working in distributed 
settings. 

4. Potential solutions 

There are plenty of solutions for collaborative work in 
the literature. In this section, the solutions are presented 
according to industrial inventory topics (Table 1): 

- Management practices 
o IPR management
o Development strategies 
o Synchronisation of main milestones  
o Clear decision-making practices 
o Decoupling the work across different sites 
o One project leader 
o Fully accountable teams 
o Relationship management 
o Informing and monitoring practices

- Engineering practices 
o Architectural principles, “architecture lite” 
o Frequent deliveries 
o Several iteration cycles 
o Frequent and incremental integration 
o Up-to-date documentation 

- Support practices 
o Multi-site configuration management  
o Interactive process  
o Sufficient communication means 
o Proper network-infrastructure 
o Establishment of peer-to-peer links 
o Cultural awareness 

Management practices: Contracts and other legal 
aspects, e.g., contract management, legislation and legality 

Proceedings of the 13th Annual IEEE International Symposium and Workshop on Engineering of Computer Based Systems (ECBS’06) 
0-7695-2546-6/06 $20.00 © 2006 IEEE 



I/7

were considered important, while IPR management was 
referred to as the primary tool for managing these issues. 

Project management practices are in a central role 
while solving problems in collaborative work. 
Development strategies should be planned properly with 
visible goals [31]. It should be defined at the beginning 
which teams are involved and what they will do in each 
location [2]. Synchronisation of main milestones between 
partners/sites with clear entry and exit criteria is one of 
the practices facilitating collaboration [17]. At project 
start, the respective project targets, such as quality, 
milestones, content, and resource allocation should be 
agreed on and communicated to the relevant parties [2]. In 
order to enhance the decision-making practices for 
collaboration management, defining the correct forums 
for different types of decisions, informing stakeholders 
about decisions and arranging network level steering 
group meetings are suggested [4]. In addition, project 
level coordination should be used as a supporting 
structure, for example, by creating a project level steering 
group with members from all organisations and sites [4]. 
There should also be inter-organisational groups with 
weekly meetings (project level, team level, etc.) via 
appropriate means (e.g. by teleconferencing). During 
meetings, problem solving and decision-making should be 
facilitated as they provide transparency and facilitate later 
electronic communication [4]. It is also useful to ensure 
that commitments exist in written and controlled form [2]. 

Herbsleb & Mockus [23] recommend decoupling the 
work across different sites so that these can work as 
independently as possible. The authors suggest different 
ways to do this, for example, by process steps or dividing 
the product according to its structure and developing 
different parts in different places, which results in an 
organisational structure that follows the product structure. 

Ebert & De Neve [2] suggest having one project leader
or responsible for achieving project targets and assigning 
this person a project management team representing the 
major cultures within the project. It is further suggested 
that the teams should be fully accountable and responsible 
for their results. Reifer [32] also acknowledges the 
importance of relationship management and proposes for 
projects to assign a dedicated relationship manager for 
key suppliers. Several relationship building practices are 
suggested: All communication, especially face-to-face 
meetings help to build a good cooperative relationship. 
Face-to-face contacts are needed also with distant sites to 
give "faces" to distant sites. Further, organisational charts 
help to recognise persons. A common kick-off meeting is 
a good start. Other recommended practices are, for 
example, circulating meetings or trainings, and planning 
or problem solving meetings. [18, 4] 

Informing and monitoring practices comprise a 
number of different practices, such as weekly meetings, 
progress reports, and a travelling steering group. 
Informing and monitoring should be followed-up in all 
directions [18]. The parties should comment all the points 

in the follow-up reports that include tasks done, open 
questions, problems, and future outlook. Weekly meetings 
inside a subgroup are also proposed [4]. The key risk 
factors should be identified and an approach should be 
developed to mitigate them, while continuous monitoring 
of the key risk factors is also recommended [1, 2]. 

Engineering practices: Architectural principles as a 
solution for architectural issues and actively working 
towards “architecture lite” are proposed as useful practices 
[1, 33]. Architecture lite refers to low coupling among 
network elements, well defined interfaces, and concise 
semantics for the network element behaviours. This kind of 
architecture describes the system architecture at a high 
level of abstraction, including both static and dynamic 
views. System metaphor can be used to guide the 
development. 

Frequent deliveries of code, and several iteration cycles
and builds help in creating transparency for the process. In 
addition, frequent and incremental integration and testing 
are suitable for distributed use. Early checking ensures that 
all parties have understood their tasks correctly. This is 
especially useful during the software development phase 
[18, 1]. All documentation is also recommended to be 
revised and updated to reflect the current state of the 
development [17]. 

Support practices: Herbsleb and Moitra [17] point that 
configuration management involving transmission of 
critical data and multisite production must be well planned 
and executed in collaborative work. A common software 
configuration management tool with multisite replication 
and a centralised bug repository in useful in distributed 
development [1].  

Collaborating companies do not have to switch over to a 
single common process if they have good processes of their 
own, but instead they should focus on synchronising the 
main milestones, and use iteration cycles of similar length 
and frequent builds. Common milestones and work 
products synchronise communication, also facilitating both 
follow-up and communication. The collaborating 
companies being able to use their own development 
processes provides a faster start for a project, while also 
making it easier for several companies to collaborate [18, 
4, 1]. The decision about using separate processes should 
be made at the beginning of the collaboration in order to 
benefit the whole development process. An interactive 
process model based on accepted best practices that allows 
tailoring the development process for the specific needs of 
a project or even a team was reported to be useful [2].  

It is obvious that sufficient communication means should 
be provided [2] i.e., proper tools and support for them. 
Furthermore, it is suggested to integrate the heterogeneous 
tools for system development, not only for abstract 
concerns (e.g., analysis), but also for concrete activities 
(e.g., programming, unit testing, conducting workshops), 
and to provide support for the relationships between 
activities and concerns [30]. International support contracts 
are needed in order to have reliable support for tools from 

Proceedings of the 13th Annual IEEE International Symposium and Workshop on Engineering of Computer Based Systems (ECBS’06) 
0-7695-2546-6/06 $20.00 © 2006 IEEE 



I/8 I/9

requirements in a multi-site organization” published in 
the Proceedings of the IEEE Int’l Conference on 
Requirements Engineering, 2002 

[6] Surjaputra, R., Maheswari, P. A Distributed Software 
Project Management Tool. In IEEE Proceedings of the 
8th International Workshops on Enabling 
Technologies: Infrastructure for Collaborative 
Enterprises, USA, 1999. 

[7] Gianpalo, C., Ghezzi, C. Design and Implementation 
of PROSYT: A Distributed Process Support System. 
In IEEE Proceedings of the 8th International 
Workshops on Enabling Technologies: Infrastructure 
for Collaborative Enterprises, USA, 1999. 

[8] Welborn, R. & Kasten, V., 2003, The Jericho 
Principle, How Companies Use Strategic 
Collaboration to Find New Sources of Value, John 
Wiley & Sons, Inc, Hoboken, New Jersey. 

[9] Duysters G. and Hagedoorn J. A note on 
organizational modes of strategic technology 
partnering. Journal of Scientific and Industrial 
Research. Volume 58, August September 2000, pp. 
640-649. 

[10] Williamson, O.E, 1996. The mechanisms of 
governance. Oxford, Oxford  University Press 

[11] Hagedoorn, J., "Inter-firm R&D Partnerships—An 
Overview of Major Trends and Patterns since 1960," 
paper presented to the Workshop on Strategic 
Research Partnerships sponsored by the National 
Science Foundation and convened at SRI 
International, Washington, D.C., October 13, 2000. 

 [12] Carmel, E., 1999, Global Software Teams: 
Collaborating Across Borders and Time Zones, 
Prentice-Hall, Upper Saddle River, N.J. 

[13] Paasivaara, M., 2003, Communication needs, 
practices, and supporting structures in global inter-
organisational development. In ICSE International 
Workshop on Global Software Development, 
Portland, Oregon, 2003, IEEE Computer Society. 

[14] Herbsleb, J. & Moitra, D., 2001, Global Software 
Development. In IEEE Software, March/April 2001. 
pp. 16-20. 

[15] Paasivaara, M. & Lassenius, C., 2004, Collaboration 
Practices in Global Inter-organizational Software 
Development Projects. In Software Process 
Improvement and Practice, 2003; 8. pp. 183-199.  

[16] Gray, B., 1989, Collaborating: Finding Common 
Ground for Multiparty Problems. San Francisco: 
Jossey-Bass. 

[17] Gulati, R., 1998, Alliances and networks. Strategic 
Management Journal 19: 293-317. 

[18] Grinter, R. E., Herbsleb J. D., & Perry, D. E., The 
Geography of Coordination: Dealing with Distance in 
R&D Work, In proceedings of the international ACM 
SIGGROUP conference on supporting group work, 
1999, pages 306-315 

[19] Wierba, E. Finholt, T. & Steves, M., 2002, Challenges 
to Collaborative Tool Adoption in a Manufacturing 
Engineering Setting: A Case Study. In Proceedings of 
the 38th Hawaii International Conference on System 
Sciences 2002 (HICSS-35'02). 

[20] Olson, J., Covi, L., Rocco, E., Miller, W. & Allie, P., 
1998, A Room of Your Own: What Would it Take to 
Help Remote Groups Work as Well as Collocated 

Groups? In CHI 98 018-23 APRIL 1998. ACM ISBN l-
581 13-028-7  

[21] Bekker, M., Olson, J. & Olson, G., 1995, Analysis of 
gestures in face-to-face design teams provides guidance 
for how to use groupware in design. In Proceedings of 
the Symposium on Designing Interactive Systems, 
DIS’95, 157- 166. 

[22] Herbsleb, J. & Mockus, A., 2003, An Empirical Study 
of Speed and Communication in Globally Distributed 
Software Development. In IEEE Transactions on 
Software Engineering, Vol. 29, NO. 6, June 2003. pp. 
481-494. 

[23] Kobitzsch, W., Rombach, D., & Feldmann, R.L., 2001, 
Outsourcing in India (software development). Software, 
IEEE, Volume: 18, Issue: 2, March-April 2001. pp. 78-
86. 

[24] Collins, H., 1999, Regulating contracts. Oxford 
university press. ISBN: 0199258015 

[25] Tiikkaja, M., 2002, Experience report: Case: COTS SW 
Component Acquisition and Management Process. 
Minttu project. 

[26] Braun, P., 2003, Metamodel-based Integration of Tools. 
In Proceedings of TIS 2003 Workshop on Tool 
Integration in System Development. ESEC/FSE 2003 
9th European Software Engineering Conference and 
11th ACM SIGSOFT Symposium on the Foundations 
of Software Engineering Helsinki, Finland September 
1-5, 2003. 

[27] Maznevski, M. & Chudoba, K., 2000, Bridging space 
over time: Global virtual team dynamics and 
effectiveness. Organization Science 11, 5 (May 2000), 
473–492. 

 [28] Bjerknes, G. & Mathiassen, L., 2000, Improving 
Customer-Supplier Relation in IT Development. 
Proceedings of the 33rd Hawaii International 
Conference on System Sciences. 2000. 

[29] Reifer, D., 2004, Seven Hot Outsourcing Practices. In 
IEEE SOFTWARE January/February 2004 

[30] Coleman, D., 2000, Architecture for Planning Software 
Product Platforms. Tutorial presented at the First 
Software Product Line, Denver, Colo., Aug. 30–Sept. 1, 
2000. 

[31] Hansen, K., 2003, Activity-Centred Tool Integration 
Using Type-Based Publish/Subscribe for Peer-to-Peer 
Tool Integration. In Proceedings of TIS 2003 Workshop 
on Tool Integration in System Development. ESEC/FSE 
2003 9th European Software Engineering Conference 
and 11th ACM SIGSOFT Symposium on the 
Foundations of Software Engineering Helsinki, Finland 
September 1-5, 2003. 

[32] Carmel, E. and Agarwal, R. 2001. Tactical Approaches 
for Alleviating Distance in Global Software 
Development. In IEEE Software March/April 2001. pp. 
22-29. 

Proceedings of the 13th Annual IEEE International Symposium and Workshop on Engineering of Computer Based Systems (ECBS’06) 
0-7695-2546-6/06 $20.00 © 2006 IEEE 

third-party vendors. In addition, centralised bug reporting 
system for bugs found in (third-party) tools and products 
improves the vendor’s responsiveness, as it alleviates 
version management and overcomes the lack of local 
vendor support. [1] 

Proper network-infrastructure enables fast 
data/information exchange between sites. A replication of 
project repository is often needed. Furthermore, 
distributed working requires establishing common rules 
and procedures as well as problem solving practices (e.g., 
how to use configuration management systems and how 
to escalate problems). Furthermore, setting up a project 
homepage summarising project contents, progress 
metrics, planning information and team specific 
information is suggested [2]. 

Strategies like communicating internally, maintaining 
contact with all participants help in building trust [31].  
Establishing peer-to-peer links is suggested, denoting, for 
example, communication link persons or liaisons between 
companies established at all organisational levels, e.g., 
subcontracting managers, project managers, and also 
developers [18]. An organisation chart and roles help to 
find the correct person to contact. The roles should 
include communication requirements and identify which 
roles need to communicate with each other between 
companies. Other possible beneficial practices are setting 
up a mailbox for questions, chat between developers, 
discussion lists, and project wide mailing list with well-
explained questions. These are useful practices especially 
in the implementation phase. [18, 4] 

Also cultural awareness should be created involving 
all the cultures represented in the development teams. 
This can be done, for example, by circulating 
management across sites and cultures ("cultural liaison") 
or by setting up mixed teams of different cultures to 
create an awareness for cultural diversity. This will also 
give ideas for how to cope with the diversity along with 
creating team spirit. [2] 

Finally, it should be noted that competence and 
experience in general are likely to improve the chances 
for successful collaboration [1]. 

5. Conclusions  

Based on our survey, the most common collaboration 
mode was product structure based subcontracting while 
the main motivation for collaboration was most often to 
save money. However, acquiring competence not 
available in-house was another common motivation. 
While the areas seen critical in collaborative product 
development varied, those most commonly perceived as 
critical were contracting, change management, 
requirements development and requirements 
management. The areas most commonly seen as non-
critical were software implementation within engineering 
practices and improvement process and human resource 
management within support practices. 

This survey revealed that the approaches represented by 
literature, on one hand, and industrial practitioners, on the 
other, towards problems related to collaborative work are 
different. The industry emphasizes technical aspects and 
detailed problems concerning engineering practices, while 
the literature focuses on solutions for more general issues 
like communication and team building. Our survey 
establishes that there are a lot of solutions available 
especially for management and support practices. In the 
literature, then again, we could only find few solutions for 
engineering practices. 

Based on the survey of the state of the practice, our 
future work will concentrate on defining practical solutions 
for the most critical areas and activities in collaborative 
embedded software development. We will make an attempt 
to apply the generic solutions found in literature to real life 
problems and report the experiences from these cases. For 
example, communication is considered to have quite a 
central role, so the communication needs and points have to 
be identified and concerned. This means that practical 
solutions should include, for example, a development 
process that describes the roles and responsibilities of the 
different parties, mapping these to each development phase 
and/or activity within the big picture of organisations 
developing software in collaboration.

6. Acknowledgements  

This paper was written within the Merlin 
(http://www.merlinproject.org) project, which is an ITEA 
project, number 03010. The authors would like to thank the 
support of ITEA (http://www.itea-office.org/index.php) 
and Tekes (http://www.tekes.fi/eng/).   

References 

[1] Battin, R., Crocker, R., Kreidler, J. & Subramanian, K., 
2001, Leveraging Resources in Global Software 
Development. In IEEE Software March/April 2001. 

[2] Ebert, C. & De Neve, P., 2001, Surviving Global 
Software Development. In IEEE Software March/April 
2001. pp. 62-69. 

[3] Herbsleb, J., Mockus, A., Finholt, T. & Grinter, R., 
2001, An Empirical Study of Global Software 
Development: Distance and Speed. In Proceedings of 
the International Conference on Software Engineering, 
2001, Toronto, Canada, May 15-18. pp. 81-90. 

[4] Karlsson, E-A., Andersson, L-G., and Leion, P. Daily 
build and feature development in large distributed 
projects. In the Proceedings of International Conference 
on Software Engineering (ICSE) 2000. ACM Press, 
Limerick, Ireland. 

[5] Damian, D. & Zowghi, D., 2002, Requirements 
Engineering challenges in multi-site software 
development organizations. In Requirements 
Engineering Journal, 8, pp. 149-160, 2003. The paper is 
a revised version of the paper entitled "The impact of 
stakeholders’ geographical distribution on managing 

Proceedings of the 13th Annual IEEE International Symposium and Workshop on Engineering of Computer Based Systems (ECBS’06) 
0-7695-2546-6/06 $20.00 © 2006 IEEE 

http://www.merlinproject.org
http://www.itea-office.org/index.php
http://www.tekes.fi/eng/


I/9

requirements in a multi-site organization” published in 
the Proceedings of the IEEE Int’l Conference on 
Requirements Engineering, 2002 

[6] Surjaputra, R., Maheswari, P. A Distributed Software 
Project Management Tool. In IEEE Proceedings of the 
8th International Workshops on Enabling 
Technologies: Infrastructure for Collaborative 
Enterprises, USA, 1999. 

[7] Gianpalo, C., Ghezzi, C. Design and Implementation 
of PROSYT: A Distributed Process Support System. 
In IEEE Proceedings of the 8th International 
Workshops on Enabling Technologies: Infrastructure 
for Collaborative Enterprises, USA, 1999. 

[8] Welborn, R. & Kasten, V., 2003, The Jericho 
Principle, How Companies Use Strategic 
Collaboration to Find New Sources of Value, John 
Wiley & Sons, Inc, Hoboken, New Jersey. 

[9] Duysters G. and Hagedoorn J. A note on 
organizational modes of strategic technology 
partnering. Journal of Scientific and Industrial 
Research. Volume 58, August September 2000, pp. 
640-649. 

[10] Williamson, O.E, 1996. The mechanisms of 
governance. Oxford, Oxford  University Press 

[11] Hagedoorn, J., "Inter-firm R&D Partnerships—An 
Overview of Major Trends and Patterns since 1960," 
paper presented to the Workshop on Strategic 
Research Partnerships sponsored by the National 
Science Foundation and convened at SRI 
International, Washington, D.C., October 13, 2000. 

 [12] Carmel, E., 1999, Global Software Teams: 
Collaborating Across Borders and Time Zones, 
Prentice-Hall, Upper Saddle River, N.J. 

[13] Paasivaara, M., 2003, Communication needs, 
practices, and supporting structures in global inter-
organisational development. In ICSE International 
Workshop on Global Software Development, 
Portland, Oregon, 2003, IEEE Computer Society. 

[14] Herbsleb, J. & Moitra, D., 2001, Global Software 
Development. In IEEE Software, March/April 2001. 
pp. 16-20. 

[15] Paasivaara, M. & Lassenius, C., 2004, Collaboration 
Practices in Global Inter-organizational Software 
Development Projects. In Software Process 
Improvement and Practice, 2003; 8. pp. 183-199.  

[16] Gray, B., 1989, Collaborating: Finding Common 
Ground for Multiparty Problems. San Francisco: 
Jossey-Bass. 

[17] Gulati, R., 1998, Alliances and networks. Strategic 
Management Journal 19: 293-317. 

[18] Grinter, R. E., Herbsleb J. D., & Perry, D. E., The 
Geography of Coordination: Dealing with Distance in 
R&D Work, In proceedings of the international ACM 
SIGGROUP conference on supporting group work, 
1999, pages 306-315 

[19] Wierba, E. Finholt, T. & Steves, M., 2002, Challenges 
to Collaborative Tool Adoption in a Manufacturing 
Engineering Setting: A Case Study. In Proceedings of 
the 38th Hawaii International Conference on System 
Sciences 2002 (HICSS-35'02). 

[20] Olson, J., Covi, L., Rocco, E., Miller, W. & Allie, P., 
1998, A Room of Your Own: What Would it Take to 
Help Remote Groups Work as Well as Collocated 

Groups? In CHI 98 018-23 APRIL 1998. ACM ISBN l-
581 13-028-7  

[21] Bekker, M., Olson, J. & Olson, G., 1995, Analysis of 
gestures in face-to-face design teams provides guidance 
for how to use groupware in design. In Proceedings of 
the Symposium on Designing Interactive Systems, 
DIS’95, 157- 166. 

[22] Herbsleb, J. & Mockus, A., 2003, An Empirical Study 
of Speed and Communication in Globally Distributed 
Software Development. In IEEE Transactions on 
Software Engineering, Vol. 29, NO. 6, June 2003. pp. 
481-494. 

[23] Kobitzsch, W., Rombach, D., & Feldmann, R.L., 2001, 
Outsourcing in India (software development). Software, 
IEEE, Volume: 18, Issue: 2, March-April 2001. pp. 78-
86. 

[24] Collins, H., 1999, Regulating contracts. Oxford 
university press. ISBN: 0199258015 

[25] Tiikkaja, M., 2002, Experience report: Case: COTS SW 
Component Acquisition and Management Process. 
Minttu project. 

[26] Braun, P., 2003, Metamodel-based Integration of Tools. 
In Proceedings of TIS 2003 Workshop on Tool 
Integration in System Development. ESEC/FSE 2003 
9th European Software Engineering Conference and 
11th ACM SIGSOFT Symposium on the Foundations 
of Software Engineering Helsinki, Finland September 
1-5, 2003. 

[27] Maznevski, M. & Chudoba, K., 2000, Bridging space 
over time: Global virtual team dynamics and 
effectiveness. Organization Science 11, 5 (May 2000), 
473–492. 

 [28] Bjerknes, G. & Mathiassen, L., 2000, Improving 
Customer-Supplier Relation in IT Development. 
Proceedings of the 33rd Hawaii International 
Conference on System Sciences. 2000. 

[29] Reifer, D., 2004, Seven Hot Outsourcing Practices. In 
IEEE SOFTWARE January/February 2004 

[30] Coleman, D., 2000, Architecture for Planning Software 
Product Platforms. Tutorial presented at the First 
Software Product Line, Denver, Colo., Aug. 30–Sept. 1, 
2000. 

[31] Hansen, K., 2003, Activity-Centred Tool Integration 
Using Type-Based Publish/Subscribe for Peer-to-Peer 
Tool Integration. In Proceedings of TIS 2003 Workshop 
on Tool Integration in System Development. ESEC/FSE 
2003 9th European Software Engineering Conference 
and 11th ACM SIGSOFT Symposium on the 
Foundations of Software Engineering Helsinki, Finland 
September 1-5, 2003. 

[32] Carmel, E. and Agarwal, R. 2001. Tactical Approaches 
for Alleviating Distance in Global Software 
Development. In IEEE Software March/April 2001. pp. 
22-29. 

Proceedings of the 13th Annual IEEE International Symposium and Workshop on Engineering of Computer Based Systems (ECBS’06) 
0-7695-2546-6/06 $20.00 © 2006 IEEE 





III/1

PAPER III

Merlin collaboration handbook
The challenges and solutions in global 

collaborative product development

In: Proceedings of the Third International Conference 
on Software and Data Technologies. Porto, Portugal, 
5–8 July, 2008. Special Session on Global Software 

Development: Challenges and Advances on  
ICSOFT 2008. Pp. 339–346.

Copyright 2008 INSTICC.
Reprinted with permission from the publisher.



III/1



III/1

Merlin collaboration handbook: Challenges and Solutions in Global
Collaborative Product Development

Päivi Parviainen, Juho Eskeli, Tanja Kynkäänniemi, Maarit Tihinen

VTT Technical Research Centre of Finland,Kaitoväylä 1, Oulu, Finland
paivi.parviainen@vtt.fi, juho.eskeli@vtt.fi, tanja.kynkaanniemi@vtt.fi,

maarit.tihinen@vtt.fi,

Abstract: Global, collaborative and distributed development is increasingly common in software
development. However, the traditional product and software development technologies do not support this
way of working well, e.g., time and cultural differences cause new requirements for these technologies. In
this paper, we introduce a public web-based handbook, collecting the challenges encountered in global
collaborative development by the companies, and also a large number of solutions that help in tackling these
challenges. The handbook was implemented using an ontology editor and generating HTML pages. In the
final phase of the development the handbook was validated by several external testers, with main feedback
being that the handbook was found useful, but more practical solutions would be welcome. Handbook was
also updated based on the feedback.

1 Introduction

In the perspective of growing size and complexity of embedded systems, companies are not able to develop all
the required functionality by themselves. As a result, suppliers specialize in specific functionality or specific
skills which they can sell to others. This is clearly visible in the growing numbers of the outsourcing
constructions in the past years. For example, a survey [1] found that 74% of the participated companies had
more than one development location. 48% had four or more locations and 26 % had more than 20 locations.
Furthermore, a major survey carried out by the Software & Information Industry Association  (in January 2007)
indicates that companies are increasing their global development efforts: 57% of the survey participants have
significantly  increased  offshore  work  in  the  past  18  months  and  many  plan  to  add  still  more  in  the  next  18
months. Growth strategy was cited as an important or critical driver for 84% of respondents, while increasing
speed to market and productivity were the next most important drivers. Collaborative engineering of embedded
systems  has  become  a  fact  of  life,  and  currently  there  is  no  way  back  anymore;  companies  have  already
outsourced large parts of their developments to other companies, resulting in no longer having the related skills
available in their own organisations. Instead, the companies need to manage a complex situation of many
partners, sub-contractors, suppliers, software platforms and so on.

Practice has shown that the traditional single company development technologies do not support
collaborative product development well. For example, another survey shows that 80% of companies are
unsatisfied with their overall collaborative development efforts. Survey respondents expressed as main
problems the poor foundation for collaboration and poor management of partner relationships. These problems
are often caused by, e.g., time difference and geographical distribution that cause new requirements to the ways
of working and tools. Also, understanding each other is not straightforward due to different backgrounds, e.g.,
different terminologies, cultures etc. but needs to be supported by technologies.

There are some experience reports about challenges companies have faced in collaboration, for example,
Philips [2], Siemens [3], Motorola [4], Alcatel [5], and Lucent Technologies [6]. Also several books that are
discussing the problematics in collaboration and solutions to address them have been published [7. 8. 9. 10 &
11]. There are also conferences and workshops such as ICGSE (International Conference on Global Software
Engineering) dedicated to global software engineering. However, these sources cover only some viewpoints of
collaborative software development and until now no comprehensive collection of challenges and solutions for
product development in collaboration could be found. Still, all these sources have been used as input for the
Merlin Collaboration Handbook.

In this paper collaboration means that two or more entities work together to create mutual value. These
entities can be companies, departments or even teams and they can combine in any one of several different

mailto:paivi.parviainen@vtt.fi
mailto:juho.eskeli@vtt.fi
mailto:tanja.kynkaanniemi@vtt.fi
mailto:maarit.tihinen@vtt.fi


III/3III/2 III/3

Fig. 1. Merlin collaboration handbook structure

The handbook structure is formed using topics; three main topics, namely management, engineering and
support practices and 21 subtopics, such as collaboration management, requirements definition, testing,
configuration management, and co-operative work. Each subtopic has number of important items, altogether
about 80 of them, such as product roadmapping, conditions for collaboration, practices for resolution of
conflicting requirements, sharing of test cases, unified CM practices, cultural differences, etc. Items are then
still refined to questions, that further detail the item. For example, “Are supplier agreements and long-term
framework agreements used as input for roadmapping?” is a question under “product roadmapping” item. The
challenges faced by industry are especially visible in the items and questions of the handbook; they were first
gathered in the industrial inventory and critically refined during the handbook development. The topics are
mainly general, following CMMI structure to a large degree and the collaboration specific issues are visible in
the item, question and solution level; we included only items, that are either specific for collaborative
development or as in most cases are more difficult and complex to manage in collaborative situation.

In addition to topics, items and questions, also roles are defined. There are both responsible role and main
participating roles defined for each item. The roles include all common product development roles, for
example, senior manager, project manager, chief architect, etc.  By roles, a checklist of questions the role is
responsible for can be retrieved from the handbook. For example, Table 1 shows the checklist for the role
Quality manager.

For each item also solutions are included in the handbook. Solutions are methods, techniques, tools, and
practices that help in taking care of important items and they are classified according to their level of
validation:

Academic case, meaning that the solution is proposed in literature, often with academic case
studies. These types of solutions were included also to provide ideas for items that were not so
well covered with industrially proven solutions.
Industrial case, meaning that the solution is proposed in literature or developed in Merlin with
industrial case studies.
Legislation or standards.

Each solution has also a standard description including ID, name, summary, description, evidence of
suitability (level of validation), type of solution, collaboration dimensions, and references to further
information.

3.2 Example of contents

An example of contents of the handbook is requirements engineering. In the handbook requirement engineering
is divided to two topics, requirements development and requirements management. Requirements development
has eight important items and requirement management has three important items defined in the handbook.

business relationships and for very different periods of time. Importantly, the entities are physically in different
locations, i.e., the development is distributed.

This paper is organized as follows: first, in chapter 2 we discuss the process of writing the handbook. Next
we present the contents of the handbook in general level, including the structure and technical implementation
of the handbook in chapter 3. In chapter 4 we discuss the validation of the handbook and end the paper with
some conclusions and thoughts for further work.

2 Merlin Handbook Development

The purpose of the handbook - defined in co-operation with the Merlin project consortium - is to support
operational collaborative development, i.e., help companies to take care of all critical aspects during various
phases of the collaborative project. In practice this would be done by collecting, listing and structuring these
critical aspects as well as ways to address them, called solutions into a handbook. Furthermore, in order to
make the handbook usable, ways to access parts of the contents based on user’s interests should be made easy.

The building of the handbook started by defining it’s structure; an initial framework for the structure of the
handbook was derived from literature. CMMI [12] was used as the basic structure due to its wide acceptance in
software world and challenges reported by others grouped according to the CMMI structure. Based on the
initial framework an industrial inventory was carried out, including interviewing the industrial partners of the
Merlin project. These interviews lead to many refinements to the framework, especially in the details, although
several of the challenges encountered by the interviewed companies were also mentioned in literature. We have
discussed these differences in [13], main being that the approaches represented by literature, on one hand, and
industrial practitioners, on the other, towards problems related to collaborative work are different. The industry
emphasizes technical aspects and detailed problems concerning engineering practices, while the literature
focuses on solutions for more general issues like communication and team building. We found plenty of
solutions for management and support practices in the literature but only few solutions for engineering
practices. Thus, in order to provide more content to the handbook, collection of best practices from Merlin
industrial partners was also done via focused interviews on selected topics. Results of these focused interviews
were then included as solutions and experiences related to them in the handbook. Finally, also the research and
development work done during the Merlin project was added to the handbook as solutions.

In order to support usability, e.g., the different views, and due to very large amount of content, the
handbook was not implemented as a physical book, but a structured documentation solution was used to
support readability. Implementation is discussed in more detail in section 3.3.

In practice, the handbook was developed in bi-monthly workshops with the Merlin consortium to refine
implementation and contents of the handbook based on prototypes. The workshops had also representatives
with experience on such repositories and usability, for example. Also, in the last phase of the project, the
Handbook was validated by 16 external testers (this is discussed more in section 4).

3 Handbook Contents

This section describes the contents of the handbook in general level. The complete handbook is available in the
internet (http://www.merlinhandbook.org).

3.1 Structure

The handbook structure is presented in the following Figure 1.

http://www.merlinhandbook.org


III/3III/3

Fig. 1. Merlin collaboration handbook structure

The handbook structure is formed using topics; three main topics, namely management, engineering and
support practices and 21 subtopics, such as collaboration management, requirements definition, testing,
configuration management, and co-operative work. Each subtopic has number of important items, altogether
about 80 of them, such as product roadmapping, conditions for collaboration, practices for resolution of
conflicting requirements, sharing of test cases, unified CM practices, cultural differences, etc. Items are then
still refined to questions, that further detail the item. For example, “Are supplier agreements and long-term
framework agreements used as input for roadmapping?” is a question under “product roadmapping” item. The
challenges faced by industry are especially visible in the items and questions of the handbook; they were first
gathered in the industrial inventory and critically refined during the handbook development. The topics are
mainly general, following CMMI structure to a large degree and the collaboration specific issues are visible in
the item, question and solution level; we included only items, that are either specific for collaborative
development or as in most cases are more difficult and complex to manage in collaborative situation.

In addition to topics, items and questions, also roles are defined. There are both responsible role and main
participating roles defined for each item. The roles include all common product development roles, for
example, senior manager, project manager, chief architect, etc.  By roles, a checklist of questions the role is
responsible for can be retrieved from the handbook. For example, Table 1 shows the checklist for the role
Quality manager.

For each item also solutions are included in the handbook. Solutions are methods, techniques, tools, and
practices that help in taking care of important items and they are classified according to their level of
validation:

Academic case, meaning that the solution is proposed in literature, often with academic case
studies. These types of solutions were included also to provide ideas for items that were not so
well covered with industrially proven solutions.
Industrial case, meaning that the solution is proposed in literature or developed in Merlin with
industrial case studies.
Legislation or standards.

Each solution has also a standard description including ID, name, summary, description, evidence of
suitability (level of validation), type of solution, collaboration dimensions, and references to further
information.

3.2 Example of contents

An example of contents of the handbook is requirements engineering. In the handbook requirement engineering
is divided to two topics, requirements development and requirements management. Requirements development
has eight important items and requirement management has three important items defined in the handbook.

business relationships and for very different periods of time. Importantly, the entities are physically in different
locations, i.e., the development is distributed.

This paper is organized as follows: first, in chapter 2 we discuss the process of writing the handbook. Next
we present the contents of the handbook in general level, including the structure and technical implementation
of the handbook in chapter 3. In chapter 4 we discuss the validation of the handbook and end the paper with
some conclusions and thoughts for further work.

2 Merlin Handbook Development

The purpose of the handbook - defined in co-operation with the Merlin project consortium - is to support
operational collaborative development, i.e., help companies to take care of all critical aspects during various
phases of the collaborative project. In practice this would be done by collecting, listing and structuring these
critical aspects as well as ways to address them, called solutions into a handbook. Furthermore, in order to
make the handbook usable, ways to access parts of the contents based on user’s interests should be made easy.

The building of the handbook started by defining it’s structure; an initial framework for the structure of the
handbook was derived from literature. CMMI [12] was used as the basic structure due to its wide acceptance in
software world and challenges reported by others grouped according to the CMMI structure. Based on the
initial framework an industrial inventory was carried out, including interviewing the industrial partners of the
Merlin project. These interviews lead to many refinements to the framework, especially in the details, although
several of the challenges encountered by the interviewed companies were also mentioned in literature. We have
discussed these differences in [13], main being that the approaches represented by literature, on one hand, and
industrial practitioners, on the other, towards problems related to collaborative work are different. The industry
emphasizes technical aspects and detailed problems concerning engineering practices, while the literature
focuses on solutions for more general issues like communication and team building. We found plenty of
solutions for management and support practices in the literature but only few solutions for engineering
practices. Thus, in order to provide more content to the handbook, collection of best practices from Merlin
industrial partners was also done via focused interviews on selected topics. Results of these focused interviews
were then included as solutions and experiences related to them in the handbook. Finally, also the research and
development work done during the Merlin project was added to the handbook as solutions.

In order to support usability, e.g., the different views, and due to very large amount of content, the
handbook was not implemented as a physical book, but a structured documentation solution was used to
support readability. Implementation is discussed in more detail in section 3.3.

In practice, the handbook was developed in bi-monthly workshops with the Merlin consortium to refine
implementation and contents of the handbook based on prototypes. The workshops had also representatives
with experience on such repositories and usability, for example. Also, in the last phase of the project, the
Handbook was validated by 16 external testers (this is discussed more in section 4).

3 Handbook Contents

This section describes the contents of the handbook in general level. The complete handbook is available in the
internet (http://www.merlinhandbook.org).

3.1 Structure

The handbook structure is presented in the following Figure 1.



III/4 III/5

its functionality via plugins. A special purpose plugin was written which exports the OWL/RDF information
into  easily  usable  XML  format.  In  the  new  format  the  data  is  structured  as  a  tree,  that  is,  on  top  there  is  a
practice with its attributes, a practice has items with their own attributes and so on.

The next challenge was how to represent the information to users via web interface. Major requirement
specified for the HTML Handbook was to have a possibility to scope the content according to user
specifications in order to offer different views into the contents.

Scoped view into handbook was achieved by defining scoping parameters which can be used to bring out
the different views. When entering the handbook, the user is first presented with a form in which he/she can
tick suitable parameters to trigger the scoping process. Consequently, the same parameters are inserted in the
Handbook ontology as attributes. These attributes make it possible to scope the content by using the XML data
file generated by the Protégé converter and the Java servlets which ultimately render the selected content for
the user. The following Figure 2 illustrates how handbook operates.

This approach makes the handbook content management simple; after the updated content has been defined
in Protégé, it is only necessary to run the converter plugin and to deploy the new XML file to handbook web
pages. This solution also guarantees that all the web pages have uniform layout.

From the usability point of view the scoping alone was not enough for navigating the handbook data.
Therefore the handbook offers a search mechanism for its users by the means of Apache Lucene search-engine.
Lucene offers many powerful features, most notable being the offline indexing support. Initially several other
search engines were tested, but these were deemed too slow, mainly because they lacked the offline indexing
feature and instead relied on to dynamical crawling. Because Lucene is available as open source it could be
easily modifed to support the special features of handbook, namely the scoping.

The handbook was developed iteratively; bi-monthly workshops were arranged where the development
versions of the handbook were presented to project members. Most of the feedback received from these
sessions were improvements to the user interface (UI) and general usability, but also the scoping mechanism
was defined in the workshops. These workshops were found to be especially important for the developers so
they could see they were on the right track and could receive further guidance when needed. Also, they
provided the project members continuous updates to current situation and opportunities to influence the
Handbook.

Prótége XML
converter plugin

Handbook in
OWL/RDF format

Protégé conversion

terminal
Generated HTML
pages

XML data file

Handbook server

Scoping servlet

Client

Fig. 2. Merlin Handbook data flow

Table 1. Quality manager’s checklist

A. Management practices
Are relationships between common quality management process and partners own quality practices defined? Responsible

Does the contracting process take into account all involved parties or stakeholders and do they have the
required power of authority or signing?

Participates

Are suppliers or customers co-operation capability analysed beforehand? Participates

Are the partners processes and quality management system of enough maturity? Participates

B. Engineering practices
Are the costs for non-quality taken into account while releasing the product. Have the costs for non-quality of
the various suppliers been estimated?

Participates

Are performed tests and test results communication practices between partners defined and followed? Participates

Are practices for incorporating feedback from customers to requirements development process defined and
working?

Participates

Have the results of acceptance testing been taken adequately into account? Participates

C. Support practices
Is common process across sites or partners as thin as possible and forced as little as possible? Responsible

Is the in-house review process defined and followed by each partner? Responsible

Are best practices recoded and used between partners? Responsible

Are common practices for quality assurance defined? Responsible

Is shared process improvement work defined and agreed upon in long term relationships? Responsible

Are common templates defined and used where applicable? Participates

Is the effectiveness of collaboration evaluated for example as part of end-of-project evaluations? Participates

An example of important item for requirements development is “Clear prioritization rules and practices /
trade-off of the requirements”. This item has five solutions in the handbook that help taking care of priorisation.
These solutions are methods that base on giving values to different requirements (pairwise comparisons, e.g.
AHP), negotiation approaches that base on the idea that the priority is determined by reaching agreement
between the different stakeholders and dedicated requirements priorisation methods and techniques specifically
supporting collaboration.

Another example of topic is collaboration management. For this topic nine important items have been
defined, including for example, “establishing / evaluating conditions for collaboration” and “clear agreements
with suppliers”. The latter has four solutions, e.g., guidelines for acceptance criteria definition and creating a
contract.

3.3 Technical implementation

Handbook data is stored and managed using Protégé. In general, Protégé is an open platform tool for ontology
modelling and knowledge acquisition framework [14]. It offers a way to manage the cross-references in a mass
of textual data in a RDF/OWL format [15]. There are predefined ontologies available on the web, which can be
imported into Protégé and can then be used as a basis for other ontologies.

To develop the Handbook with Protégé, a data model of the Handbook was created. This was done by
studying the structure of the Handbook (practices, topics, etc.), their relationships and the requirements for
categorizing  scopes.  According to  this  study,  the  data  model  was  designed.  A decision  was  made to  use  the
owl: Tool -ontology as a basis for the Handbook ontology. The Tool -ontology was chosen because it’s content
and link structure closely resembled that of the handbook. The Tool -ontology was then modified to reflect the
Handbook data model. When the structure was finalised, the instances, that is, the content of the Handbook
with their relationship information, was inserted into the ontology.

In order to be able to represent the Handbook data in web format, conversion from OWL/RDF format into
something more suitable for our purposes was needed. This was done by using Protégé’s possibility to extend



III/5

its functionality via plugins. A special purpose plugin was written which exports the OWL/RDF information
into  easily  usable  XML  format.  In  the  new  format  the  data  is  structured  as  a  tree,  that  is,  on  top  there  is  a
practice with its attributes, a practice has items with their own attributes and so on.

The next challenge was how to represent the information to users via web interface. Major requirement
specified for the HTML Handbook was to have a possibility to scope the content according to user
specifications in order to offer different views into the contents.

Scoped view into handbook was achieved by defining scoping parameters which can be used to bring out
the different views. When entering the handbook, the user is first presented with a form in which he/she can
tick suitable parameters to trigger the scoping process. Consequently, the same parameters are inserted in the
Handbook ontology as attributes. These attributes make it possible to scope the content by using the XML data
file generated by the Protégé converter and the Java servlets which ultimately render the selected content for
the user. The following Figure 2 illustrates how handbook operates.

This approach makes the handbook content management simple; after the updated content has been defined
in Protégé, it is only necessary to run the converter plugin and to deploy the new XML file to handbook web
pages. This solution also guarantees that all the web pages have uniform layout.

From the usability point of view the scoping alone was not enough for navigating the handbook data.
Therefore the handbook offers a search mechanism for its users by the means of Apache Lucene search-engine.
Lucene offers many powerful features, most notable being the offline indexing support. Initially several other
search engines were tested, but these were deemed too slow, mainly because they lacked the offline indexing
feature and instead relied on to dynamical crawling. Because Lucene is available as open source it could be
easily modifed to support the special features of handbook, namely the scoping.

The handbook was developed iteratively; bi-monthly workshops were arranged where the development
versions of the handbook were presented to project members. Most of the feedback received from these
sessions were improvements to the user interface (UI) and general usability, but also the scoping mechanism
was defined in the workshops. These workshops were found to be especially important for the developers so
they could see they were on the right track and could receive further guidance when needed. Also, they
provided the project members continuous updates to current situation and opportunities to influence the
Handbook.

Prótége XML
converter plugin

Handbook in
OWL/RDF format

Protégé conversion

terminal
Generated HTML
pages

XML data file

Handbook server

Scoping servlet

Client

Fig. 2. Merlin Handbook data flow



III/7III/6 III/7

4  Handbook validation

During the project, the handbook was validated in two different ways in addition to the workshops that gave
continuous feedback for the development. Firstly, 16 external testers used the handbook and provided feedback
and secondly the handbook was used in an industrial case to support improving subcontracting efficiency in a
company. Both of these are discussed in this chapter.

4.1 External testers

In the final phase of the Merlin project, the handbook was tried out by external testers. These testers were found
by asking the Merlin industrial partners to find persons in their organizations that have not been involved in the
Merlin project but who are knowledgeable in the topic, i.e., collaborative product development. Another source
for these external testers was the public seminars, where the handbook prototypes were presented and
volunteers for testing asked for. The users were typically project managers that had experience in collaborative
projects and altogether 16 external users were granted access to the handbook during development.

During  the  validation,  the  external  users  were  asked  to  think  of  a  typical  problem  they  would  have  in
collaborative product development and try to find answers and help from the handbook to address this topic.
No further instructions on using the handbook were given at first. Also, the feedback was to be given in free
format including the chosen problem and the findings and other comments.

Feedback from the external users related mainly to the usability or the content of the handbook. Based on
the testers’ experiences, the handbook looked nice and worked fine. Also, one of the testers noted that
handbook had very clear page lay-out. However, some handbook mechanisms needed explanations or
guidelines for use. For instance scope selection page was not self-explanatory (e.g., what was meant by item,
type of source, agreement base, etc.). Also, bookmark mechanism was not explained, thus it was not clear
where the bookmarks were accessible.

The comments to the content of the handbook, related to new solutions that should be added to handbook.
As one of the testers reported, on many problem area’s underlying documentation was not yet given. Thus, it
was suggested that following information should be added to the handbook: reporting practices, multi-site peer
reviews, selecting configuration management tools, interactive process model based on best practices, and data
on measurements. Also, one of the testers reported that the handbook included too little information on
measurements, metrics, reporting and follow-up in both management and project management. It was also
requested that the handbook should answer to following questions: what are readiness assessments or checklists
for collaboration, and why to work collaboratively?

Furthermore, according to one of the testers, the overall information in the handbook tended to be quite
theoretical. Hence, for practitioners, practical or implementation examples were missing, meaning that findings
remained abstract and theoretical. Some guidelines were provided in the handbook, but it could not be found
how to do that in practice. It  was also pointed out by another tester that the usage of proven practices was a
good idea, since a larger number of examples would bring additional value to the handbook.

It was also pointed out by one of  the tester’s that references to Google and Scholar Google sites should be
improved, e.g., to include the key words of the specific publication in the URL, so that the users wouldn’t have
to retype the words themselves. It was also noticed that common terminology for the handbook should be
provided in order to avoid inconsistency of the terms used in the handbook.

Based on these comments by external testers, handbook usability and content has been improved. Now, the
handbook is faster and easier to use. For instance, help texts and terminology have been added to the handbook
in order to facilitate the use. Also, information is much easier to find, then before the users comments, since
scoping and search operations have been added to the handbook. With the scoping operation, the content of the
handbook can be shown based on user’s needs and situations and with the search operation specific topics,
items or solutions can be easily found from the handbook. Also, based on the external testers’ comments and
wishes, the content of the handbook has been improved, for instance, new solutions have been created. User
experiences also affected to the content of the solutions, e.g., what attributes (i.e. geographical distance,
cultural differences, time difference, etc.) are taken into account in the solutions. Also, solutions’ references
have been updated. Furthermore, at the end of Merlin project, all results from the project have been written in



III/7III/6 III/7

solution format, so that the content of the handbook would be more extensive and to include more experience-
based solutions than before, as the users requested.

4.2 Industrial case

The Merlin Handbook was used to first analyse and then to improve the subcontracting practices of a company
participating in the Merlin project. The aim of the case was specifically to improve controllability and
efficiency of the subcontracting. The Handbook structure of items and questions was used as interview
framework to find out the strengths and weaknesses of the current practices. This resulted in several
improvement areas for the current practices but also to some additions to the Handbook items, as some
challenges identified were not yet included in the Handbook. Then the handbook was used to find solutions to
the improvement areas. Several solutions were found and were then applied to the company’s needs.

The Handbook helped especially in gaining confidence to change as the solutions and experiences
presented in the handbook supported the company’s own ideas. Use of handbook helped also in minimizing
risks, as the handbook could help in providing proven guidelines that can then be applied to own situation.
Also, instead of having to reinvent the wheel the knowledge gained by larger network of people could be
utilized. That saved time, due to avoiding using effort on basic issues and being able to focus on adapting
proven solutions to own needs.

As a result, due to the improved, more effective practices, the number of the subcontracted personnel could
be significantly increased, meaning that more work can now be subcontracted, freeing the company’s own
personnel to other tasks.

5 Conclusions and further work

In this paper we have introduced a public web-based handbook, collecting the challenges encountered in global
collaborative development by the companies, and also a large number of solutions that help in tackling these
challenges. The handbook was implemented using an ontology editor and generating HTML pages. In the final
phase of the development the handbook was validated by several external testers, with main feedback being
that the handbook was found useful, but more practical solutions would be welcome. Handbook was also
updated based on the feedback. The Handbook was also found useful in improving a company’s subcontracting
practices, especially as it provided confidence to change.

The handbook is a collection of both literature and industrial experience. Especially the structure of the
handbook, the topics, items and questions are based on challenges faced by industry. We have then made a
collection of available solutions to these challenges and provided sources for further information. Many of the
solutions are based on industrial experience, however, this is always situation dependent and it is up to the user
to consider the usefulness of the solution to his/her situation. Also, the topic and different usage situations to be
covered by the handbook is very large. Thus, we realize we could not cover everything during this three year
project. However, based on the feedback from the users of the handbook so far, we can say that the handbook is
helpful for a company working in collaboration with others; it can at least give ideas and triggers to consider
while doing the work, and even provide complete, validated solutions to tackle the faced challenges.

In order to further advance the handbook, we have included an opportunity in the handbook to add new
solutions by the users. However, these new solutions will first be reviewed by the Merlin project partners
before they are accepted to the handbook. We also welcome other feedback. The handbook is publicly available
from http://www.merlinhandbook.org.

Acknowledgements

The work described in this paper has been carried out in the Merlin1 ITEA2 project in co-operation with the
whole consortium. The authors would like to thank the Merlin project members for the active participation in
the handbook development.

1 http://www.merlinproject.org

http://www.merlinhandbook.org
http://www.merlinproject.org


III/8 IV/1

References

1. VA Software, 2005, Application Development and Open Source Process Trends: Survey Analysis and Findings, white
paper, January 2005, available from: http://www.vasoftware.com/gateway/pollresults.php

2. Kommeren, R., Parviainen, P.: Philips experiences in global distributed software development. Empirical Software
Engineering Journal. Vol. 12, No. 6 -- 647-660 (2007)

3. Bass, M., Paulish, D.: Global software development process research at Siemens. In: The 3rd international workshop on
global software development, May 24, 2004, In proceedings of ICSE 2004, International Conference on Software
engineering, Edinburgh, Scotland, May (2004)

4. Battin, R.D., Crocker, R., Kreidler, J., Subramanian, K.: Leveraging Resources in Global Software Development. IEEE
Software, March/April 2001, pp 70–77 (2001)

5. Ebert, C,, De Neve, P. : Surviving global software development, IEEE Software, March/April 2001, pp 62–69 (2001)
6. Herbsleb, J.D., Mockus, A., Finholt, T.A., Grinter, R.E. An empirical study of global software development: distance

and speed. In the Proceedings of 23rd International Conference on Software Engineering, IEEE, Toronto, 2001.Also in.
IEEE Trans Softw Eng 29(6):481–494, June 2003 (2001, 2003)

7. Karolak, D.W.: Global Software Development: Managing Virtual Teams and Environments, Wiley-IEEE Computer
Society Pr; 1st edition (December 27, 1998)

8. Carmel, E.: Global Software Teams: Collaborating Across Borders and Time Zones, Prentice Hall (December 1998)
9. Sahay, S., Nicholson, B., Krishna, S.: Global IT Outsourcing: Software Development across Borders, Cambridge

University Press (January 12, 2004)
10.Carmel, E., Tjia, P.: Offshoring Information Technology: Sourcing and Outsourcing to a Global Workforce, Cambridge

University Press (June 13, 2005)
11. D. Damian. Stakeholders in Global Requirements Engineering: Lessons learned from practice. IEEE Software, Mar/Apr

2007.
12.CMMI for development, version 1.2., Technical Report CMU/SEI-2006-TR-008. (2006)
13.Hyysalo, J., Parviainen, P. and Tihinen, M.: Collaborative Embedded Systems Development: Survey of State of the

Practice. Proceedings of 13th Annual IEEE International Symposium and Workshop on Engineering of Computer Based
Systems (ECBS 2006). pp. 130–138. (2006)

14.Protégé web pages: http://protege.stanford.edu/
15.RDF pages: RDF/XML Syntax Specification http://www.w3.org/TR/rdf-syntax-grammar/.

2 http://www.itea-office.org

http://www.vasoftware.com/gateway/pollresults.php
http://protege.stanford.edu/
http://www.w3.org/TR/rdf-syntax-grammar/
http://www.itea-office.org


IV/1

References

1. VA Software, 2005, Application Development and Open Source Process Trends: Survey Analysis and Findings, white
paper, January 2005, available from: http://www.vasoftware.com/gateway/pollresults.php

2. Kommeren, R., Parviainen, P.: Philips experiences in global distributed software development. Empirical Software
Engineering Journal. Vol. 12, No. 6 -- 647-660 (2007)

3. Bass, M., Paulish, D.: Global software development process research at Siemens. In: The 3rd international workshop on
global software development, May 24, 2004, In proceedings of ICSE 2004, International Conference on Software
engineering, Edinburgh, Scotland, May (2004)

4. Battin, R.D., Crocker, R., Kreidler, J., Subramanian, K.: Leveraging Resources in Global Software Development. IEEE
Software, March/April 2001, pp 70–77 (2001)

5. Ebert, C,, De Neve, P. : Surviving global software development, IEEE Software, March/April 2001, pp 62–69 (2001)
6. Herbsleb, J.D., Mockus, A., Finholt, T.A., Grinter, R.E. An empirical study of global software development: distance

and speed. In the Proceedings of 23rd International Conference on Software Engineering, IEEE, Toronto, 2001.Also in.
IEEE Trans Softw Eng 29(6):481–494, June 2003 (2001, 2003)

7. Karolak, D.W.: Global Software Development: Managing Virtual Teams and Environments, Wiley-IEEE Computer
Society Pr; 1st edition (December 27, 1998)

8. Carmel, E.: Global Software Teams: Collaborating Across Borders and Time Zones, Prentice Hall (December 1998)
9. Sahay, S., Nicholson, B., Krishna, S.: Global IT Outsourcing: Software Development across Borders, Cambridge

University Press (January 12, 2004)
10.Carmel, E., Tjia, P.: Offshoring Information Technology: Sourcing and Outsourcing to a Global Workforce, Cambridge

University Press (June 13, 2005)
11. D. Damian. Stakeholders in Global Requirements Engineering: Lessons learned from practice. IEEE Software, Mar/Apr

2007.
12.CMMI for development, version 1.2., Technical Report CMU/SEI-2006-TR-008. (2006)
13.Hyysalo, J., Parviainen, P. and Tihinen, M.: Collaborative Embedded Systems Development: Survey of State of the

Practice. Proceedings of 13th Annual IEEE International Symposium and Workshop on Engineering of Computer Based
Systems (ECBS 2006). pp. 130–138. (2006)

14.Protégé web pages: http://protege.stanford.edu/
15.RDF pages: RDF/XML Syntax Specification http://www.w3.org/TR/rdf-syntax-grammar/.

2 http://www.itea-office.org

PAPER IV

Knowledge related challenges and 
solutions in GSD

In: Expert Systems. The Journal of Knowledge 
Engineering (2011). 

Copyright 2011 John Wiley & Sons.
Reprinted with permission from the publisher.

DOI: 10.1111/j.1468-0394.2011.00608.x



IV/2 IV/1



IV/2 IV/1

Knowledge-related challenges and solutions in
GSD

Päivi Parviainen and Maarit Tihinen
VTT Technical Research Centre of Finland, Finland
Email: paivi.parviainen@vtt.fi

Abstract: A number knowledge-related challenges may complicate the work in global software development

(GSD) projects. In practice, even a small amount of missing knowledge may cause an activity to fail to create
and transfer information which is critical to later functions, causing these later functions to fail. Thus,
knowledge engineering holds a central role in order to succeed with globally distributed product development.

Furthermore, examining the challenges faced in GSD from a cognitive perspective will help to find solutions that
take into account the knowledge needs of different stakeholders in GSD and thus help to establish conditions for
successful GSD projects. In this paper, we will discuss these challenges and solutions based on an extensive

literature study and practical experience gained in several international projects over the last decade.
Altogether, over 50 case studies were analysed. We analysed the challenges identified in the cases from a
cognitive perspective for bridging and avoiding the knowledge gaps and, based on this analysis, we will present
example solutions to address the challenges during the GSD projects. We will conclude that through

understanding both the nature of GSD and the KE challenges in depth, it will be possible for organizations to
make their distributed operations successful.

Keywords: knowledge engineering, global software development, industrial challenges

1. Introduction

Trends in global product developments show

that the size and complexity of software inten-

sive systems will continue to grow, making it

difficult for companies to develop all of the

required functionality alone (van Solingen

et al., 2008). Thus, the products are being

increasingly developed in a globally distributed

fashion (Carmel & Agarwal, 2001; Hyysalo

et al., 2006; Noll et al., 2010). At the same time,

several papers have reported that software pro-

jects miss their schedules, exceed their budgets,

and deliver software products of poor quality or

in the worst cases, even with the wrong func-

tionality (The CHAOS Reports, 1996, 1998,

2000, 2002, 2004 and 2006; Olson & Olson,

2000; Herbsleb et al., 2001; Damian & Zowghi,

2002; Bhat et al., 2006; Jimènez et al., 2009).

Furthermore, the traditional product and soft-

ware development technologies (practices, pro-

cesses, tools) do not support globally distributed

product developments well. For example, the

development teams are usually dispersed geo-

graphically and this alone causes new require-

ments for used technologies; such as higher

demands on communication and teamwork

methods (Aranda et al., 2006; Layman et al.,

2006). Furthermore, in global software develop-

ments (GSDs), different time zones and dis-

tances make communication more difficult than

in a local (single-site) development. The physical

distance between the development sites alone,

causes problems in task coordination, project

DOI: 10.1111/j.1468-0394.2011.00608.x

Article _____________________________

c� 2011 Blackwell Publishing Ltd Expert Systems 1

mailto:paivi.parviainen@vtt.fi


IV/2 IV/3

management and communication tasks (Olson

&Olson, 2000; Carmel&Agarwal, 2001;Herbsleb

& Moitra, 2001; Damian & Zowghi, 2002; De

Souza et al., 2002; Herbsleb, 2007; Jimènez

et al., 2009). Moreover, the understanding of

each other is not straightforward, due to differ-

ent backgrounds in the terms of terminologies

and cultures (Komi-Sirviö & Tihinen, 2005;

Noll et al., 2010). Thus, the whole product

development process differs significantly from

the local development process and everything

needs to be supported by technologies.

The role of knowledge and knowledge engi-

neering (KE) is crucial in product developments,

but it is even more important in global product

developments due to distance and cultural as-

pects, for example. Davenport and Prusak

(1998) describe knowledge as a dynamic blend

of experience, values, contextual information

and expert insight. This kind of knowledge

provides a framework for evaluating and incor-

porating new experiences and information.

Furthermore, Noble (2004) points out that a

cognitive perspective is a fundamental factor of

success for teams in collaboration. He describes

both, the kind of knowledge which is important

to team effectiveness, and how teams employ

this knowledge to coordinate, make decisions,

and achieve consensus. Thus, KE and knowl-

edge-related challenges hold a central role, while

developing solutions for supporting globally

distributed product developments.

This paper introduces knowledge-related

challenges in GSDs that need to be understood

and addressed in order to enable the success of

the GSD projects. Some practical solutions

(methods, practices, tools) that have been devel-

oped to overcome these problems are also de-

scribed in the paper. The discussed challenges

and solutions have been gathered during

research performed in several international

projects at VTT Technical Research Centre

of Finland (VTT, 2011) over the last decade.

We argue that the examination of challenges

from a cognitive perspective will help to estab-

lish solutions that take into account the knowl-

edge needs from the viewpoint of different

stakeholders in GSD.

2. Background and related work

The terms, data, information and knowledge

can be understood to be overlapping concepts.

When considering their levels of abstraction,

data is the lowest level, information is the next

level, and knowledge is at the highest level of the

three. Data are defined to be facts about events,

without any interpretation about the event.

Information can be described as a message from

a sender to a receiver. The main purpose of

information is to have an impact on the recei-

ver’s judgement and behaviour. Davenport and

Prusak (1998) pointed out that knowledge is

more; it is a dynamic blend of experience,

values, contextual information and expert in-

sights. Nonaka (1994) distinguished these two

dimensions of knowledge: explicit and tacit

knowledge. Explicit knowledge is understood

to be knowledge that can be articulated, codified

or stored in a certain media. It can also be

transmitted to others. To a large degree, tacit

knowledge is knowledge that cannot be articu-

lated. In the knowledge management (KM)

domain, the conversion of tacit knowledge to

explicit knowledge is seen as a highly critical

process, since tacit knowledge consists of such

habits and culture that we do not possess our-

selves. This means that an effective and success-

ful transfer of tacit knowledge requires extensive

personal contacts and trust.

Davenport and Prusak (1998) define knowl-

edge as follows: ‘Knowledge is a fluid mix of

framed experience, values, contextual informa-

tion, and expert insight that provides a frame-

work for evaluating and incorporating new

experiences and information. It originates and

is applied in the minds of knowers. In organiza-

tions, it often becomes embedded, not only in

documents or repositories but also in organiza-

tional routines, processes, practices, and norms.’

Thus, knowledge can and should be evaluated

by the decisions or actions to which it leads. For

example, improved knowledge increases the ef-

fectiveness of product developments and pro-

duction. Knowledge can be used for making

wiser decisions about strategies, potential custo-

mers, main competitors, distribution channels,

2 Expert Systems c� 2011 Blackwell Publishing Ltd

products and services (Davenport & Prusak,

1998).

2.1. KE for bridging knowledge gaps in GSD

KE is a relatively new branch of software

engineering. KE is an evolutionary process of

engineering artefacts and using them to gain

new understandings, and these new understand-

ings are then used to further engineer or modify

artefacts, whereupon the process continues.

Over recent years, common awareness has been

created about that, a strong interplay exists

between software engineering andKE, and stu-

dies have been directed as to how KE methods

can be applied to software engineering, and vice

versa. Noble (2004) illustrated the relationship

between knowledge (‘Individual and Shared

Understandings’) and some key team activities,

as shown in Figure 1.

All teams perform all of the team activities

described above, generally moving from left to

right, but also switching back and forth among

the activities, depending on their immediate

needs. According to Noble (2002), the team

leader analyses the mission and determines the

required members and resources, and then re-

cruits the team, and assigns tasks and resources

during a ‘set up and adjustment’ process. The

team revises its set up whenever members decide

to change their team organization, tasks, or

infrastructure. Some of this knowledge can be

written down, but a large amount will remain as

tacit knowledge in the minds of the team mem-

bers. They will need this knowledge while carry-

ing out their ‘group problem solving’ process,

while team members may brainstorm, critique

and enrich, evaluate and prioritize, discover

differences, negotiate, reach a consensus, identi-

fy solutions, and make decisions. In ‘synchro-

nize and act’, they draw on their knowledge to

coordinate and help each other. This coordina-

tion enables the team as a whole to realize the

benefits of teamwork. These include the en-

abling of task continuity over time and space

through coordinated handoffs, increasing phy-

sical impacts through the massing of effects,

improved efficiency by team members laying

Figure 1: The relationship between Knowledge and Team Activities (Noble, 2004).

c� 2011 Blackwell Publishing Ltd Expert Systems 3



IV/2 IV/3

products and services (Davenport & Prusak,

1998).

2.1. KE for bridging knowledge gaps in GSD

KE is a relatively new branch of software

engineering. KE is an evolutionary process of

engineering artefacts and using them to gain

new understandings, and these new understand-

ings are then used to further engineer or modify

artefacts, whereupon the process continues.

Over recent years, common awareness has been

created about that, a strong interplay exists

between software engineering andKE, and stu-

dies have been directed as to how KE methods

can be applied to software engineering, and vice

versa. Noble (2004) illustrated the relationship

between knowledge (‘Individual and Shared

Understandings’) and some key team activities,

as shown in Figure 1.

All teams perform all of the team activities

described above, generally moving from left to

right, but also switching back and forth among

the activities, depending on their immediate

needs. According to Noble (2002), the team

leader analyses the mission and determines the

required members and resources, and then re-

cruits the team, and assigns tasks and resources

during a ‘set up and adjustment’ process. The

team revises its set up whenever members decide

to change their team organization, tasks, or

infrastructure. Some of this knowledge can be

written down, but a large amount will remain as

tacit knowledge in the minds of the team mem-

bers. They will need this knowledge while carry-

ing out their ‘group problem solving’ process,

while team members may brainstorm, critique

and enrich, evaluate and prioritize, discover

differences, negotiate, reach a consensus, identi-

fy solutions, and make decisions. In ‘synchro-

nize and act’, they draw on their knowledge to

coordinate and help each other. This coordina-

tion enables the team as a whole to realize the

benefits of teamwork. These include the en-

abling of task continuity over time and space

through coordinated handoffs, increasing phy-

sical impacts through the massing of effects,

improved efficiency by team members laying

Figure 1: The relationship between Knowledge and Team Activities (Noble, 2004).

c� 2011 Blackwell Publishing Ltd Expert Systems 3



IV/4 IV/5

the groundwork for each other, and an in-

creased reliability by team members backing

each other up. Figure 1 shows that any knowl-

edge gap within the team can grow into larger

problems and may lead to the poor sharing of

information or lack of knowledge of what to do.

Software development is a very knowledge-in-

tensive field of engineering, as in each develop-

ment phase, efficient knowledge creation,

knowledge transfer, knowledge storing and=or
knowledge sharing activities are vital. Thus, all

of the problems faced and the challenges in GSD

should be analysed from a cognitive perspective

for bridging and avoiding the knowledge gaps.

This analysis will also enable the identification

of the best available solutions to the challenges

during the work.

2.2. The role of knowledge in GSD

Several articles have been published where KM

based challenges have been discussed in more

detail. For example, Rus and Lindvall (2002)

provided an overview of over 40 submitted

papers presenting the Software Engineering ap-

plications of KM. Furthermore, Rus and Lind-

vall (2002) and Desouza et al. (2006) introduced

a large number of knowledge needs and chal-

lenges during the software development. They

also present how these activities should be

systematically approached in the context of

distributed software development, via a propo-

sal that an organization must construct a con-

certed global KM strategy. Rus and Lindvall

(2002) discuss the importance of individuals

having access to the correct information and

knowledge when they need to complete a task or

make a decision. Knowledge must be managed

in all the stages of software development: from

the encapsulation of requirements, to the crea-

tion and testing of a program, to the software’s

installation and maintenance and even extend-

ing to the improvement of organizational soft-

ware development processes and practices.

These tasks are more complicated in a distrib-

uted development than that which is local. Also,

Damian and Moitra (2006) point out several

improvement areas in GSD that are KE related,

including KM strategies, distributed software

development, requirements engineering, distrib-

uted requirements, and managing offshore col-

laborations. However, there are only a small

number of papers where knowledge-related

challenges in GSD have been discussed.

Furthermore, most of these papers focus on

building a KM system or a strategy for an

organization, or on the other hand, the intro-

duction of experiences gathered from a tool-

based solution of sharing information, experi-

ences or documents, inside and over the pro-

jects. The importance of socio-technical or

cognitive aspects of the challenges identified in

GSD were only discussed in a few articles

(Aranda et al., 2006; Noll et al., 2010). In this

article, we will focus on introducing the chal-

lenges faced in the industry during a global

product development, how these challenges are

knowledge related, and what kind of solutions

are available to solve these challenges. We will

use the model of Noble (2004) for identifying

and analysing the knowledge needs of distribu-

ted teams and stakeholders. This approach

increases the visibility of knowledge based

requirements and challenges, thus making it

possible to take them into account while carry-

ing out improvement actions, and utilizing gen-

eral KM solutions more extensively to solve

GSD challenges.

2.3. Research design

Our research results, presented in this paper, are

based on the following main sources:

� A survey (Komi-Sirviö & Tihinen, 2005)

showed that the challenges of distributed

software developments must be recognized

when the objective is to minimize the chance

of development failures and maximize the

possibilities for success.

� The MERLIN (2004–2007) ITEA project,

where a more detailed study about the pro-

blems and solutions for collaborative SW

development was carried out. During the

project, several industrial cases were also

performed, aimed at improving GSD in the

participating companies.

4 Expert Systems c� 2011 Blackwell Publishing Ltd

� The PRISMA (2009–2011) ITEA2 project,

where an update of both the state of the art

and the state of the practice was made and

further industrial case studies are carried out.

First, we used a questionnaire to survey the most

problematic areas and knowledge based chal-

lenges in distributed software development

(Komi-Sirviö & Tihinen, 2005). The semi-struc-

tured questionnaire was posted to 44 organiza-

tions in Finland and it was also e-mailed to over

200 organizations around the world (the ques-

tionnaire was also accessible via the Internet).

The total number of responses was 31, represent-

ing 21 different organizations. This survey estab-

lished a base for further research investments.

During the MERLIN project, we examined

the most critical issues related to collaboration

work and identified the most important areas

for future research activities. The results of the

study were published in Hyysalo et al. (2006).

The study was carried out by performing inter-

views and reviewing existing material, including

the process descriptions, templates, and guide-

lines, of the companies participating in the

MERLIN project. The interviews were carried

out using a specific framework. A total of 12

interviews of senior managers, project man-

agers, software developers and testers from six

different companies were carried out. The in-

dustrial partners represent several divergent

embedded SW business areas: mobile and wire-

less systems, data management solutions, tele-

communications, IT services, and consumer

electronics.

A case study research method was used for

the creation and trialling of new practices or

other kinds of solutions against identified chal-

lenges and problems in collaboration. Accord-

ing to Yin (2003), a case study is an empirical

inquiry that investigates a contemporary phe-

nomenon within its real-life context, especially

when the boundaries between the phenomenon

and the content are not clearly evident. During

the MERLIN and PRISMA projects, from 2004

to 2010, a total of 54 industrial case studies were

carried out. In our context, an industrial case

means a trial of a new or enhanced practice,

method, technique or tool(s), carried out in

industrial settings, i.e., in product development

projects. Each case study has been documented

in a structured way as an experience report.

In addition, a literature search was performed

to find experiences and solutions published

by others.

Thereafter, we have studied and analysed all

54 cases with respect to the knowledge inten-

siveness of the addressed challenges and tried

solutions. Although all of the cases were some-

what knowledge related – as all activities in

product developments are – we identified 40

cases from 12 different companies that were

intensively knowledge related. In this paper, we

have grouped these 40 cases into the following

classes: (1) requirements engineering, (2) archi-

tecture and design, (3) integration and testing,

(4) management and (5) support practices. The

classification was made to assist the facilitation

and clarification of the presentation of the

results. After that, we summarized and identi-

fied challenges in GSD, according to the key

team activities introduced by Noble (2004).

Finally, we have collected solutions to address

the challenges identified in the cases. These

solutions have been tried out in the industrial

cases, and have often been presented in litera-

ture by others. In this paper, the solutions are

presented using the Noble’s model for empha-

sizing the knowledge needs of each perspective.

More solutions (including these and more de-

tails for them) are described in the MERLIN

Collaboration Handbook (2007) – a collection

of the best practices that support collaborative

software developments (Parviainen et al., 2008).

The background for the handbook was litera-

ture, and the surveys and industrial cases carried

out during the MERLIN project. For example,

Philips’ experiences and lessons learned over 10

years of global distributed development at Phi-

lips, derived from about 200 projects (Komme-

ren & Parviainen, 2007), were included in the

collaboration handbook. During the PRISMA

project, the collaboration handbook has been

further developed and a new wiki-based imple-

mentation is being developed. In total, in the

current version of the wiki, the solutions are

c� 2011 Blackwell Publishing Ltd Expert Systems 5



IV/4 IV/5

� The PRISMA (2009–2011) ITEA2 project,

where an update of both the state of the art

and the state of the practice was made and

further industrial case studies are carried out.

First, we used a questionnaire to survey the most

problematic areas and knowledge based chal-

lenges in distributed software development

(Komi-Sirviö & Tihinen, 2005). The semi-struc-

tured questionnaire was posted to 44 organiza-

tions in Finland and it was also e-mailed to over

200 organizations around the world (the ques-

tionnaire was also accessible via the Internet).

The total number of responses was 31, represent-

ing 21 different organizations. This survey estab-

lished a base for further research investments.

During the MERLIN project, we examined

the most critical issues related to collaboration

work and identified the most important areas

for future research activities. The results of the

study were published in Hyysalo et al. (2006).

The study was carried out by performing inter-

views and reviewing existing material, including

the process descriptions, templates, and guide-

lines, of the companies participating in the

MERLIN project. The interviews were carried

out using a specific framework. A total of 12

interviews of senior managers, project man-

agers, software developers and testers from six

different companies were carried out. The in-

dustrial partners represent several divergent

embedded SW business areas: mobile and wire-

less systems, data management solutions, tele-

communications, IT services, and consumer

electronics.

A case study research method was used for

the creation and trialling of new practices or

other kinds of solutions against identified chal-

lenges and problems in collaboration. Accord-

ing to Yin (2003), a case study is an empirical

inquiry that investigates a contemporary phe-

nomenon within its real-life context, especially

when the boundaries between the phenomenon

and the content are not clearly evident. During

the MERLIN and PRISMA projects, from 2004

to 2010, a total of 54 industrial case studies were

carried out. In our context, an industrial case

means a trial of a new or enhanced practice,

method, technique or tool(s), carried out in

industrial settings, i.e., in product development

projects. Each case study has been documented

in a structured way as an experience report.

In addition, a literature search was performed

to find experiences and solutions published

by others.

Thereafter, we have studied and analysed all

54 cases with respect to the knowledge inten-

siveness of the addressed challenges and tried

solutions. Although all of the cases were some-

what knowledge related – as all activities in

product developments are – we identified 40

cases from 12 different companies that were

intensively knowledge related. In this paper, we

have grouped these 40 cases into the following

classes: (1) requirements engineering, (2) archi-

tecture and design, (3) integration and testing,

(4) management and (5) support practices. The

classification was made to assist the facilitation

and clarification of the presentation of the

results. After that, we summarized and identi-

fied challenges in GSD, according to the key

team activities introduced by Noble (2004).

Finally, we have collected solutions to address

the challenges identified in the cases. These

solutions have been tried out in the industrial

cases, and have often been presented in litera-

ture by others. In this paper, the solutions are

presented using the Noble’s model for empha-

sizing the knowledge needs of each perspective.

More solutions (including these and more de-

tails for them) are described in the MERLIN

Collaboration Handbook (2007) – a collection

of the best practices that support collaborative

software developments (Parviainen et al., 2008).

The background for the handbook was litera-

ture, and the surveys and industrial cases carried

out during the MERLIN project. For example,

Philips’ experiences and lessons learned over 10

years of global distributed development at Phi-

lips, derived from about 200 projects (Komme-

ren & Parviainen, 2007), were included in the

collaboration handbook. During the PRISMA

project, the collaboration handbook has been

further developed and a new wiki-based imple-

mentation is being developed. In total, in the

current version of the wiki, the solutions are

c� 2011 Blackwell Publishing Ltd Expert Systems 5



IV/6 IV/7

based on more than 130 published scientific

articles. The solution descriptions are based

purely on the industrial partners’ experience

(30%), purely on literature (50%) and a combi-

nation of both experience and literature (30%).

However, the solutions are partly overlapping,

i.e., separate solutions can have similar topics,

and thus, more than the 30% of the solutions

are addressed both in literature as well as in the

industrial cases.

3. Knowledge-related challenges in GSD

In this section, knowledge-related challenges in

GSD are introduced. First, the challenges that

came up based on the surveys carried out in the

projects mentioned earlier are presented. Then

the challenges from the industrial cases are

discussed according to the product development

activity that they are part of. Finally, the identi-

fied challenges are discussed via their knowledge

based perspective based on the Noble’s key team

activities.

3.1. Challenges based on surveys

The survey (Komi-Sirviö & Tihinen, 2005) was

conducted, relating to knowledge based chal-

lenges in distributed software development. The

survey results showed (Figure 2) that the most

problematic area was tools and the environ-

ment, and more specifically, the incompatibility

of the tools and versions used by the different

development sites. This problem was empha-

sized most by large organizations employing

more than 500 persons.

Problems relating to communication and con-

tacts appeared to be very common within all of

the organizations; this problem area was ranked

as the second toughest. A closer analysis of the

responses showed that the role played by com-

munication was even greater than it appeared at

first: the lack or poor quality of communication

was often mentioned as a root cause behind

other problems. One respondent described the

problem: ‘Sometimes, the level of English does

not even allow for phone-conferences’. In addi-

tion, requirements engineering (RE) appeared

highly problematic for distributed development

projects, causing a large number of errors

(Komi-Sirviö & Tihinen, 2005).

Another study about the problems and their

solutions in collaborative SW development was

carried out during the MERLIN project. The

main challenges in the collaboration, as seen by

the partners, varied including:

� The openness of communication between

partners, e.g., problem hiding may be an

issue.

� Unclear assignments=specifications of the

work in contracts and establishing good

understanding between the partners con-

cerning each others work: When all of the

collaboration partners have the same view=a
shared understanding of what is to be done

Figure 2: Problem areas in distributed SW development (Komi-Sirviö & Tihinen, 2005).

6 Expert Systems c� 2011 Blackwell Publishing Ltd

and if that’s written down well, fewer con-

flicts will occur.

� Trust between the partners. If trust is not

there, more formal practices for a follow-up

need to be applied, resulting in more work.

� The reliability of the partners’ development

schedule, especially when there are depen-

dencies in the partner’s work.

� A real need for co-operation, that is, a

mutual benefit from the collaboration. Part-

ners who complement each others expertise

makes, e.g., agreements concerning the shar-

ing of work and decision authorities easier.

� Becoming too dependent on one partner,

e.g., when a partner has strong competence

in something you do not have in-house, it is

essential to accurately prioritize that part-

ner’s work, for example, in order to get the

required features in the partner’s future

releases as there may not be any other way

to get those features into the product.

3.2. Challenges based on industrial cases

In this subsection, the challenges based on

industrial cases are introduced according to

their main activity area in collaborative SW

development. The identified challenges are dis-

cussed in detail from KE viewpoint.

3.2.1. Requirements engineering Requirements

engineering contains a set of activities for dis-

covering, analysing, documenting, validating

and maintaining a set of requirements for a

system (Sommerville & Sawyer, 1997). The ana-

lysis is based on 16 cases in 11 different compa-

nies as well as several workshops arranged in the

PRISMA project.

Requirements gathering and prioritization: Sev-

eral challenges have been identified relating to

requirements gathering from various stake-

holders, high level analysis and the prioritization

of requirements by product management, and

transferring the requirements to R&D. For ex-

ample, improving the understanding of the cus-

tomer needs, and the requirement acquisition

and recording methods to improve the quality

of recorded information have been addressed.

These were seen as important topics in order to

enable detecting when insufficient knowledge of

the application and needs could result in wrong

decisions and design errors. These challenges are

very knowledge intensive, for example, knowl-

edge is needed of the relevant stakeholders and

their importance, so that the loudest do not

automatically obtain the highest priority. As a

company stated: ‘There often seems to be more

ideas and possibilities for a new product than

what is feasible. Among other things, there are

numerous internal stakeholders who view the

market from different perspectives, customers

have their own priorities and competition always

needs to be regarded.’ Also, communicating

priorities to other sites is important, so that the

work is performed based on correct priorities.

Furthermore, describing requirements so that

they are understood similarly by all stakeholders

– with different backgrounds and tacit knowl-

edge – is important, but challenging.

Requirements traceability: Requirement trace-

ability means identifying requirements and then

following their lifecycle, both forwards and

backwards (Gotel & Finkelstein, 1994). Distrib-

uted development brings additional challenges

to creating and maintaining the traceability, as it

may need to be performed over company bor-

ders and to various tools. Traceability is impor-

tant for providing information to change

management, for example, for analysing the

impact of a change proposal, as it is easier to

define which modules and tests are affected when

a change is accepted. Traceability has been

addressed in the cases from the viewpoint of

establishing and automating requirements trace-

ability. In order to manage the traceability, one

requires knowledge about how things are related

to each other. This requires knowledge about the

product structure and the development process

artefacts, for example. A good management of

traceability is important, so that the work is

performed based on correct information, when

the background understanding of the people

involved is not necessarily the same.

Requirements communication=transfer=flow-
down: Requirements communication, transfer

and flowdown mean describing the requirements

c� 2011 Blackwell Publishing Ltd Expert Systems 7



IV/6 IV/7

and if that’s written down well, fewer con-

flicts will occur.

� Trust between the partners. If trust is not

there, more formal practices for a follow-up

need to be applied, resulting in more work.

� The reliability of the partners’ development

schedule, especially when there are depen-

dencies in the partner’s work.

� A real need for co-operation, that is, a

mutual benefit from the collaboration. Part-

ners who complement each others expertise

makes, e.g., agreements concerning the shar-

ing of work and decision authorities easier.

� Becoming too dependent on one partner,

e.g., when a partner has strong competence

in something you do not have in-house, it is

essential to accurately prioritize that part-

ner’s work, for example, in order to get the

required features in the partner’s future

releases as there may not be any other way

to get those features into the product.

3.2. Challenges based on industrial cases

In this subsection, the challenges based on

industrial cases are introduced according to

their main activity area in collaborative SW

development. The identified challenges are dis-

cussed in detail from KE viewpoint.

3.2.1. Requirements engineering Requirements

engineering contains a set of activities for dis-

covering, analysing, documenting, validating

and maintaining a set of requirements for a

system (Sommerville & Sawyer, 1997). The ana-

lysis is based on 16 cases in 11 different compa-

nies as well as several workshops arranged in the

PRISMA project.

Requirements gathering and prioritization: Sev-

eral challenges have been identified relating to

requirements gathering from various stake-

holders, high level analysis and the prioritization

of requirements by product management, and

transferring the requirements to R&D. For ex-

ample, improving the understanding of the cus-

tomer needs, and the requirement acquisition

and recording methods to improve the quality

of recorded information have been addressed.

These were seen as important topics in order to

enable detecting when insufficient knowledge of

the application and needs could result in wrong

decisions and design errors. These challenges are

very knowledge intensive, for example, knowl-

edge is needed of the relevant stakeholders and

their importance, so that the loudest do not

automatically obtain the highest priority. As a

company stated: ‘There often seems to be more

ideas and possibilities for a new product than

what is feasible. Among other things, there are

numerous internal stakeholders who view the

market from different perspectives, customers

have their own priorities and competition always

needs to be regarded.’ Also, communicating

priorities to other sites is important, so that the

work is performed based on correct priorities.

Furthermore, describing requirements so that

they are understood similarly by all stakeholders

– with different backgrounds and tacit knowl-

edge – is important, but challenging.

Requirements traceability: Requirement trace-

ability means identifying requirements and then

following their lifecycle, both forwards and

backwards (Gotel & Finkelstein, 1994). Distrib-

uted development brings additional challenges

to creating and maintaining the traceability, as it

may need to be performed over company bor-

ders and to various tools. Traceability is impor-

tant for providing information to change

management, for example, for analysing the

impact of a change proposal, as it is easier to

define which modules and tests are affected when

a change is accepted. Traceability has been

addressed in the cases from the viewpoint of

establishing and automating requirements trace-

ability. In order to manage the traceability, one

requires knowledge about how things are related

to each other. This requires knowledge about the

product structure and the development process

artefacts, for example. A good management of

traceability is important, so that the work is

performed based on correct information, when

the background understanding of the people

involved is not necessarily the same.

Requirements communication=transfer=flow-
down: Requirements communication, transfer

and flowdown mean describing the requirements

c� 2011 Blackwell Publishing Ltd Expert Systems 7



IV/8 IV/9

so that they are understandable for others,

transferring them to other partners, and flowing

them down to subsystems. A common challenge

that has been addressed in the cases has been to

improve requirements documentation practices.

A company expressed: ‘We have trouble with

requirements being interpreted, when the defini-

tion process is distributed.’ Good requirement

descriptions are very important in GSD, as they

are important means of sharing information,

e.g., the work performed by different si-

tes=partners is often based on the requirement

documents. People from different cultures and

backgrounds do not necessarily understand the

things the same way, so it is essential that

requirement descriptions are unambiguous, con-

sistent and clear. For example, in a company, a

challenge was stated as follows ‘Our subcontrac-

tor does not always ask for clarifications of

unclear requirements, but instead, they have

invented their own solutions that have subse-

quently not fitted with the rest of the product.’

On the other hand, the time and resources

available for the requirements definition are

limited, so a challenge is to know the correct

level of requirement descriptions. Also, ensuring

the common understanding is challenging, as

partners may be unwilling to communicate the

unclear issues, or they are not aware of the

different interpretations of the requirements un-

til late in the project. As a company stated: ‘It is

challenging to validate each stakeholder’s inter-

pretation of requirements before the implemen-

tation takes place. Validation is typically

performed with the delivery of a prototype or

early build; this may result in wasted time and

effort.’ This is all very knowledge intensive; it

requires proper knowledge creation and specifi-

cally a correct transfer of knowledge in the

distributed development situation.

Several cases addressed challenges relating to

non-functional requirements, often referred to as

the qualities, for example, usability, maintain-

ability and performance. Few cases have ad-

dressed the challenge of what methods and tools

can be used to handle non-functional require-

ments in a multi-partner embedded software

project. Non-functional requirements are vul-

nerable to different kinds of interpretations,

which are more likely in GSD, due to different

backgrounds of people. Thus, describing non-

functional requirements well is even more im-

portant in GSD, so that they will be taken into

account in everyone’s work.

3.2.2. Architecture and design In this section,

we will discuss challenges based on five cases in

five different companies. A common challenge

has been to establish a good architecture for a

product or product-line. The design of good

architecture is a very knowledge intensive activ-

ity. As one of the purposes of architecture

description is to facilitate communication, simi-

lar challenges apply as with requirements. Es-

tablishing a common understanding over

sites=partners is challenging due to different

backgrounds, for example. Architecture should

also be designed so that it supports the division

of work to the various partners, which requires

knowledge of the partners’ capabilities and

product requirements. The working culture

may cause architectural differences in collabora-

tion as the architectural views for problem sol-

ving can differ quite a great deal, for example,

due to different foci (e.g., efficiency vs. imple-

mentation).

A related challenge has been to define a ‘good

enough’ level of design in order to result in a

reasonable level of documentation, while still

providing the necessary information to all sta-

keholders, i.e., to detect a too little design or

‘analysis paralysis’. In order to define what is

necessary information in the design documents,

knowledge about the stakeholders and their

work is required. This is especially important in

GSD, as the role of documentation is more

important in knowledge sharing than in a single

site. Furthermore, it is more complicated to

define the relevant information for the stake-

holders that are not so well known to you,

and that can have different backgrounds and

tacit knowledge. Some cases have also focused

on validating the current architecture to im-

prove the product architecture itself from de-

fined viewpoints, e.g., the adaptability of the

architecture: ‘How software systems can adapt

8 Expert Systems c� 2011 Blackwell Publishing Ltd

to multiple platforms at an architecture level

and how adaptability mechanisms can be added

to architectures of software systems developed

in collaborative work?’ Good architecture and

communication about the architecture are im-

portant, so that the parts which are made in

different sites can be integrated together well,

and so that there is no duplicate work or areas

which are not covered.

3.2.3. Integration and testing Four cases from

five companies (one shared case between com-

panies) have addressed integration and testing.

Several cases addressed integration issues, such

as when the integration of the software takes

place at different locations, it often finally lead

to a non-buildable product, or as stated by a

company: ‘We have problems at integration,

when remote programmers throw their build

code ‘‘over the wall’’ to a build manager who

must resolve conflicts’. Also, the required ex-

pertise and its availability during integration

have been addressed in the cases. From a KE

viewpoint, it is important to make sure that the

integrator has enough competence, when pro-

duct parts are made in remote sites and the

integrator does not have continuous visibility

with the work. Also, the developers should

know that their work is only done when the

product is integrated.

Some cases have addressed challenges related

to that testing in a collaborative embedded soft-

ware development is perceived to be inefficient,

taking a too high portion of the total develop-

ment effort. These cases have focused on devel-

oping common test practices (including test sets,

and tool environments) usable for distributed

projects. For example, extra effort can be caused

by, e.g., repeating the defects due to the non-

transparent and different view of the status of

the software, due to working with tools which

are not probably connected. Another example is

related to sharing information: ‘Tests done and

their results are not known by the component

provider’s customers that run their own regres-

sion tests with their test data. I.e., the customers

have limited knowledge of the tests already run

and the impact of the changes made vs. previous

versions, thus resulting in overlapping tests and

duplicate work.’ From a KE viewpoint, sharing

information about the test plans, test environ-

ment, and the tests that have been carried out

between partners is important to avoid dupli-

cate work. Defining effective testing for a dis-

tributed project requires knowledge of the

product, work distribution and schedules, test

methods etc. and the discipline and tools to

share the information between the partners.

3.2.4. Management The discussion in this sec-

tion is based on 12 cases from 10 companies. In

a distributed development, significantly more

effort is required for up-front planning and

follow-up activities in order to be able to man-

age a project successfully. The manager in a

GSD project has to have a large amount of

abilities and knowledge in addition to technical

competence, such as cultural knowledge and

communication skills and particularly good

project management capabilities. As a company

stated: ‘In GSD, a project manager may be far

away from the development groups, which creates

a visibility problem, and makes it easier to hide

problems.’ In other words, distribution makes the

project progress more difficult to estimate and

control due to the decreased visibility.

Identification of the dependencies between

partners – e.g., the interdependencies of the sub-

system deliveries – and taking them into account

in project schedules was seen as a critical issue.

The dependencies should also bemade explicit, by

defining the responsibilities for the delivery

(who, what, when, to whom), the authority to

accept, as well as the acceptance procedure. The

status of the dependencies should then be checked

pro-actively.

Communication and information sharing: The

challenge of sharing information and knowledge

about the ongoing projects and other related

information in GSD was also addressed in four

industrial cases. Communication with the peers

located on different sites was mentioned as a

specific challenge. Additionally, the diminished

contact with a dedicated project owner meant

that the project team did not possess sufficient

vision or one-on-one guidance to make important

c� 2011 Blackwell Publishing Ltd Expert Systems 9



IV/8 IV/9

to multiple platforms at an architecture level

and how adaptability mechanisms can be added

to architectures of software systems developed

in collaborative work?’ Good architecture and

communication about the architecture are im-

portant, so that the parts which are made in

different sites can be integrated together well,

and so that there is no duplicate work or areas

which are not covered.

3.2.3. Integration and testing Four cases from

five companies (one shared case between com-

panies) have addressed integration and testing.

Several cases addressed integration issues, such

as when the integration of the software takes

place at different locations, it often finally lead

to a non-buildable product, or as stated by a

company: ‘We have problems at integration,

when remote programmers throw their build

code ‘‘over the wall’’ to a build manager who

must resolve conflicts’. Also, the required ex-

pertise and its availability during integration

have been addressed in the cases. From a KE

viewpoint, it is important to make sure that the

integrator has enough competence, when pro-

duct parts are made in remote sites and the

integrator does not have continuous visibility

with the work. Also, the developers should

know that their work is only done when the

product is integrated.

Some cases have addressed challenges related

to that testing in a collaborative embedded soft-

ware development is perceived to be inefficient,

taking a too high portion of the total develop-

ment effort. These cases have focused on devel-

oping common test practices (including test sets,

and tool environments) usable for distributed

projects. For example, extra effort can be caused

by, e.g., repeating the defects due to the non-

transparent and different view of the status of

the software, due to working with tools which

are not probably connected. Another example is

related to sharing information: ‘Tests done and

their results are not known by the component

provider’s customers that run their own regres-

sion tests with their test data. I.e., the customers

have limited knowledge of the tests already run

and the impact of the changes made vs. previous

versions, thus resulting in overlapping tests and

duplicate work.’ From a KE viewpoint, sharing

information about the test plans, test environ-

ment, and the tests that have been carried out

between partners is important to avoid dupli-

cate work. Defining effective testing for a dis-

tributed project requires knowledge of the

product, work distribution and schedules, test

methods etc. and the discipline and tools to

share the information between the partners.

3.2.4. Management The discussion in this sec-

tion is based on 12 cases from 10 companies. In

a distributed development, significantly more

effort is required for up-front planning and

follow-up activities in order to be able to man-

age a project successfully. The manager in a

GSD project has to have a large amount of

abilities and knowledge in addition to technical

competence, such as cultural knowledge and

communication skills and particularly good

project management capabilities. As a company

stated: ‘In GSD, a project manager may be far

away from the development groups, which creates

a visibility problem, and makes it easier to hide

problems.’ In other words, distribution makes the

project progress more difficult to estimate and

control due to the decreased visibility.

Identification of the dependencies between

partners – e.g., the interdependencies of the sub-

system deliveries – and taking them into account

in project schedules was seen as a critical issue.

The dependencies should also bemade explicit, by

defining the responsibilities for the delivery

(who, what, when, to whom), the authority to

accept, as well as the acceptance procedure. The

status of the dependencies should then be checked

pro-actively.

Communication and information sharing: The

challenge of sharing information and knowledge

about the ongoing projects and other related

information in GSD was also addressed in four

industrial cases. Communication with the peers

located on different sites was mentioned as a

specific challenge. Additionally, the diminished

contact with a dedicated project owner meant

that the project team did not possess sufficient

vision or one-on-one guidance to make important

c� 2011 Blackwell Publishing Ltd Expert Systems 9



IV/10 IV/11

design choices during the development. There

were also knowledge based goals in the analysed

industrial trials, such as improving the collabora-

tive skills in projects development, and identifying

problems which occurred during the case project

related to the supporting tools, process and com-

munication.

Resource Management: From a KE viewpoint,

resource management is specifically challenging

in a distributed development, for example, know-

ing what expertise is available in different sites

over time requires specific attention (e.g., being

aware of changes in project schedules and re-

source loads, when some expert can suddenly be

available for other projects etc.). In practice, pro-

ject managers prefer to use known resources –

people they know to be good or experts in the

topic, instead of finding out the available resources

from other sites. Thismay result in the sub-optimal

use of resources and expertise in projects.

Measurements and analysis: In GSD, it is im-

portant to get real-time and accurate information

on projects while thework is performed in different

sites or even by different companies. Two cases

(from two companies) addressed measurements

and analysis challenges in a collaboration situa-

tion. In both cases, KE was recognized to be in a

vital role: in the analysis and interpretation of the

measurements, knowledge sharing and lessons

learned have to be taken into consideration, in

order to make correct conclusions from the data.

Subcontract management: Subcontracting is a

very typical activity in GSD and many of the

challenges which are described in previous sections

are also relevant in subcontracting. Five industrial

cases from two companies have been carried out,

where subcontracting practices were the targets of

improvement actions. Generally, the cases focused

on strengthening the companies’ subcontracting

practices or finding new practices for carrying out

subcontracting, in order to improve the subcon-

tracted outputs as well as the controllability and

efficiency of the subcontracting. As a company

stated: ‘We have noticed that the subcontracting

R&D projects in the HW SW development area is

a challenging issue. SW is an abstract thing which

can be difficult to specify comprehensively. The

synchronization of simultaneous HW and SW

projects, so that they are ready to be integrated on

time, is quite demanding. The different back-

grounds of project members and the distance of

locations and the time difference can be significant.

These things cause extra challenges in projects

where the technical content itself is demanding.

Therefore, it is not surprising that misunderstand-

ings, delays, conflicts etc. can happen in collabora-

tion projects.’

KE and management were considered to be

highly significant aspects. Firstly, knowledge holds

a major role when selecting a subcontractor: a

company can complement its own knowledge via

subcontracting or a company can decide that some

knowledge will be outsourced. Second, subcon-

tracting management is very knowledge intensive:

differences in skills and knowledge between the

partners need to be managed, and real-time and

exact information sharing has to be ensured. In

practice, the effort required by the subcontracting

party to manage the subcontractor has often been

underestimated: ‘We had underestimated the time

and effort that would have been needed from our

own people to monitor and guide the subcontrac-

tor. As that time was not allocated, the subcon-

tracted work was not as we had hoped.’ Proper

subcontracting management is exclusively possible

if KE aspects such as knowledge gathering, trans-

ferring and sharing have been addressed.

3.2.5. Support practices Support practices

mean all those activities that occur as ongoing

or cross-section practices during a project’s life-

cycle. Several cases were somehow related to the

support practices in collaboration. In three cases

from three companies, KE aspects were in a

major role. One case focused on ensuring effec-

tive configuration management in a situation

where the work was distributed based on devel-

opment phases and the project involved people

of various backgrounds. There were, for exam-

ple: ‘Agreeing about the configuration manage-

ment tool was difficult, as there were sites with

different backgrounds and preferences. It is

clear that selecting a configuration manage-

ment tool and practices causes a great deal of

sentimental arguing, some people like a certain

tool and others some other and there is often no

10 Expert Systems c� 2011 Blackwell Publishing Ltd

real factual reasoning.’ Another case was fo-

cused on the defect management process: ‘Re-

porting about the defects found during product

development has been troublesome, as there are

no general guidelines or common tools for doing

that. Communication is performed via email

and by the phone between the resellers, integra-

tor and subcontractor.’ In the third case, intel-

lectual property right (IPR) management was

addressed, especially from the communication

and agreement of IPR in the GSD viewpoint.

All of these cases are knowledge intensive, as

they involve sharing information that can be

interpreted differently due to the different back-

grounds of involved people. Thus, the practices

related to these topics should be defined utilizing

KE principles.

3.3. The summary of challenges

In this section, we will summarize the identified

knowledge-related industrial challenges by pre-

senting the knowledge needs from the viewpoint

of the key team activities illustrated by Noble

(2004). Noble’s model was used since it was the

best model that we found concerning knowledge

intensive software production from a cognitive

perspective, whereas, the models which are pre-

sented in literature usually focus on the KM and

strategy viewpoint. Noble’s model illustrates

activities for effectively identifying knowledge

needs and sharing knowledge during the colla-

boration in practice. This way, the cognitive

perspectives of the challenges can be better

perceived, enabling the identification of solu-

tions to the challenges.

3.3.1. The challenges for ‘Team Set Up and

Adjustment’ activities ‘The Team Set Up and

Adjustment’ covers activities such as team form-

ing, goals reviewing, tasks identifying and roles

determining that have to be continuously up-

dated to reflect the new knowledge which has

been gathered and shared during GSD. In the

following table (Table 1), the identified knowl-

edge intensive challenges will be presented,

along with examples from cases.

The factors behind the challenges were identi-

fied as described in Figure 3. Factors are the

causes of the challenges and can be addressed

with practices that take them into account. The

relation of the factors to the activities defined by

Noble is also shown in the figure, so that the KE

solutions can be identified to address these

factors and thus the challenges.

In GSD, the partners’ tacit knowledge, relat-

ing to the different backgrounds, competencies

and motivations of the stakeholders, have to be

addressed during the ‘team set up and adjust-

ment’ process. These factors should be ad-

dressed while identifying potential solutions for

the challenges. In order to address the different

backgrounds and tacit knowledge, KE activities

related to forming teams and reviewing goals are

relevant. On the other hand, in order to address

the motivation of the partners, well defined roles

and activities for reviewing and thus sharing the

Table 1: A summary of the challenges for ‘Team Set Up and Adjustment’

Identified challenges Examples from cases

Setting up the project, e.g., the selection of a
partner (either external companies, or sites
within a company)
Defining the roles of different parties
The optimal use of resources and competences
over sites
Dividing work, so that unnecessary
dependencies over a distance can be avoided
Describing the goals clearly and
understandably
The communication and social skills of
project members

Agreeing about IPR
Establishing good understanding between partners about
requirements
Ensuring mutual benefit between partners
Managing dependency to the component provider
Documenting non-functional requirements
Establishing good architecture (distribution support) and
shared understanding about it
The identification of dependencies between partners
Resource allocation in GSD
Selecting a subcontractor

c� 2011 Blackwell Publishing Ltd Expert Systems 11



IV/10 IV/11

real factual reasoning.’ Another case was fo-

cused on the defect management process: ‘Re-

porting about the defects found during product

development has been troublesome, as there are

no general guidelines or common tools for doing

that. Communication is performed via email

and by the phone between the resellers, integra-

tor and subcontractor.’ In the third case, intel-

lectual property right (IPR) management was

addressed, especially from the communication

and agreement of IPR in the GSD viewpoint.

All of these cases are knowledge intensive, as

they involve sharing information that can be

interpreted differently due to the different back-

grounds of involved people. Thus, the practices

related to these topics should be defined utilizing

KE principles.

3.3. The summary of challenges

In this section, we will summarize the identified

knowledge-related industrial challenges by pre-

senting the knowledge needs from the viewpoint

of the key team activities illustrated by Noble

(2004). Noble’s model was used since it was the

best model that we found concerning knowledge

intensive software production from a cognitive

perspective, whereas, the models which are pre-

sented in literature usually focus on the KM and

strategy viewpoint. Noble’s model illustrates

activities for effectively identifying knowledge

needs and sharing knowledge during the colla-

boration in practice. This way, the cognitive

perspectives of the challenges can be better

perceived, enabling the identification of solu-

tions to the challenges.

3.3.1. The challenges for ‘Team Set Up and

Adjustment’ activities ‘The Team Set Up and

Adjustment’ covers activities such as team form-

ing, goals reviewing, tasks identifying and roles

determining that have to be continuously up-

dated to reflect the new knowledge which has

been gathered and shared during GSD. In the

following table (Table 1), the identified knowl-

edge intensive challenges will be presented,

along with examples from cases.

The factors behind the challenges were identi-

fied as described in Figure 3. Factors are the

causes of the challenges and can be addressed

with practices that take them into account. The

relation of the factors to the activities defined by

Noble is also shown in the figure, so that the KE

solutions can be identified to address these

factors and thus the challenges.

In GSD, the partners’ tacit knowledge, relat-

ing to the different backgrounds, competencies

and motivations of the stakeholders, have to be

addressed during the ‘team set up and adjust-

ment’ process. These factors should be ad-

dressed while identifying potential solutions for

the challenges. In order to address the different

backgrounds and tacit knowledge, KE activities

related to forming teams and reviewing goals are

relevant. On the other hand, in order to address

the motivation of the partners, well defined roles

and activities for reviewing and thus sharing the

Table 1: A summary of the challenges for ‘Team Set Up and Adjustment’

Identified challenges Examples from cases

Setting up the project, e.g., the selection of a
partner (either external companies, or sites
within a company)
Defining the roles of different parties
The optimal use of resources and competences
over sites
Dividing work, so that unnecessary
dependencies over a distance can be avoided
Describing the goals clearly and
understandably
The communication and social skills of
project members

Agreeing about IPR
Establishing good understanding between partners about
requirements
Ensuring mutual benefit between partners
Managing dependency to the component provider
Documenting non-functional requirements
Establishing good architecture (distribution support) and
shared understanding about it
The identification of dependencies between partners
Resource allocation in GSD
Selecting a subcontractor

c� 2011 Blackwell Publishing Ltd Expert Systems 11



IV/12 IV/13

knowledge of the goals of the project are useful.Relating to sharing knowledge of the compe-tences of the project partners over sites definingroles and tasks clearly are helpful.

3.3.2. The challenges for ‘Group Problem Solving’activities ‘Group Problem Solving’ covers activ-ities such as brainstorming, prioritizing, discoveringdifferences, negotiating, and reaching a consensus,for example. In the following table (Table 2), theidentified knowledge intensive challenges are pre-sented, along with examples from cases.The main knowledge based factors causing thechallenges were identified as shown in Figure 4.

The relation of these factors to the activities definedby Noble is also shown in the figure.In the ‘group problem solving’ process, a teamengages in its ‘collaborative dialog’ to reach aconsensus and decide what to do. If the identifiedfactors have not been recognized and minimized,they can cause wrong conclusions and decisions.There is a great deal of tacit knowledge behind thefactors and thus, solutions that increase commu-nication, trust, openness and the awareness of eachother, as well as solutions that make knowledgeavailable in an explicit form, have to be emphasizedin GSD. Activities such as prioritizing and nego-tiating help to address complications caused by

Team Set Up andAdjustment

The partner competencies may not be so well known from distance sites (andit’s common to favour people you know, even though their competences may  not be the best available for the task at hand). 

The partners’ backgrounds and thus tacit knowledge are different, causing different interpretations of ambiguous or undefined issues. 

The motivation to be in the project may vary Form teamReview goalsIdentify tasksDetermine roles

Figure 3: Main knowledge based factors for ‘Team Set Up and Adjustment’.

Table 2: Summary of the challenges for ‘Group Problem Solving’Identified challenges Examples from casesIdentifying problems or potential problems earlyThe brainstorming of problems or design issues over adistanceThe negotiation of conflictsSufficient communication about design rationale anddecisionsThe availability and correct interpretation ofmeasurement data

Identifying differences in requirementinterpretationsRepeating defects found in tests effectivelyResource management in GSDUn-communicated changes made by otherpartners

Group ProblemSolving

Openness and trust between the partners may not be optimal, and not all problems or potential problems may be communicated openly

Distances complicate working together and involving e.g., the best experts from various sites. Problems, and interpretation differences’ may only occur during integration

Communication over distances often lacks the “body language”, whichcomplicates sharing feelings and thus understanding each other. 

BrainstormPrioritizeDiscover differencesNegotiateReach consensus

Figure 4: Main knowledge based factors for ‘Group Problem Solving’.

12 Expert Systems c� 2011 Blackwell Publishing Ltd

distances, and interpretation differences can be

addressed by brainstorming,making priorities clear

and actively discovering differences. The establish-

ing of openness and trust can be supported by

activities related to negotiating, brainstorming

freely and reaching a consensus that can also help

in creating a better understanding of each other.

3.3.3. The challenges for ‘Synchronize and Act’

activities ‘Synchronize and Act’ covers activities

such as mass effects, laying the groundwork,

hand-off tasks, backups, cueing to a situation,

for example. In the following table (Table 3), the

identified knowledge intensive challenges are pre-

sented, along with examples from cases.

The main knowledge based factors causing the

challenges were analysed and identified as shown

in Figure 5. The relation of these factors to

the activities defined by Noble is also shown in

the figure.

In the ‘synchronize and act’ process, team

members coordinate and help each other to

achieve the most benefits from the teamwork.

This coordination will fail in so far as the identi-

fied challenges and factors are not addressed. In

GSD, it is important to recognize that, e.g.,

practices for follow-up and tracking work, knowl-

edge sharing methods and tools, and the quality

of documentation has been established. The qual-

ity of the documentation can be addressed via a

proper laying of groundwork for other team

members, and different interpretations can be

avoided through good and coordinated hand-offs

and the laying of groundwork. Sufficient commu-

nication can be ensured via backups, cueing to the

situation and the massing of effects. Any chal-

lenges caused by distances can be addressed via

proper hand-offs and cueing to the situation, so

that the relevant information and knowledge is

shared between partners.

3.3.4. The challenges for ‘Individual and

Shared Understanding’ activities ‘Individual

and Shared Understanding’ (�knowledge)

Table 3: Summary of the challenges for ‘Synchronize and Act’

Identified challenges Examples from cases

The follow-up and tracking of work and dependencies
A good level of communication
A shared understanding of the basis of the work (e.g.,
requirements, architecture) and dependencies
Ensuring the availability of required information

The reliability of partners’ schedules
Creating and maintaining traceability
Ensuring the shared understanding of
requirements
Synchronization with the integrator and
component supplier
Sharing test information
The availability of required integration
competence
Subcontract management

Figure 5: Main knowledge based factors for ‘Synchronize and Act’.

c� 2011 Blackwell Publishing Ltd Expert Systems 13

knowledge of the goals of the project are useful.

Relating to sharing knowledge of the compe-

tences of the project partners over sites defining

roles and tasks clearly are helpful.

3.3.2. The challenges for ‘Group Problem Solving’

activities ‘Group Problem Solving’ covers activ-

ities such as brainstorming, prioritizing, discovering

differences, negotiating, and reaching a consensus,

for example. In the following table (Table 2), the

identified knowledge intensive challenges are pre-

sented, along with examples from cases.

The main knowledge based factors causing the

challenges were identified as shown in Figure 4.

The relation of these factors to the activities defined

by Noble is also shown in the figure.

In the ‘group problem solving’ process, a team

engages in its ‘collaborative dialog’ to reach a

consensus and decide what to do. If the identified

factors have not been recognized and minimized,

they can cause wrong conclusions and decisions.

There is a great deal of tacit knowledge behind the

factors and thus, solutions that increase commu-

nication, trust, openness and the awareness of each

other, as well as solutions that make knowledge

available in an explicit form, have to be emphasized

in GSD. Activities such as prioritizing and nego-

tiating help to address complications caused by

Team Set Up and
Adjustment

The partner competencies may not be so well known from distance sites (and
it’s common to favour people you know, even though their competences may  
not be the best available for the task at hand). 

The partners’ backgrounds and thus tacit knowledge are different, causing 
different interpretations of ambiguous or undefined issues. 

The motivation to be in the project may vary 

Form team

Review goals

Identify tasks

Determine roles

Figure 3: Main knowledge based factors for ‘Team Set Up and Adjustment’.

Table 2: Summary of the challenges for ‘Group Problem Solving’

Identified challenges Examples from cases

Identifying problems or potential problems early
The brainstorming of problems or design issues over a
distance
The negotiation of conflicts
Sufficient communication about design rationale and
decisions
The availability and correct interpretation of
measurement data

Identifying differences in requirement
interpretations
Repeating defects found in tests effectively
Resource management in GSD
Un-communicated changes made by other
partners

Group Problem
Solving

Openness and trust between the partners may not be optimal, and not all 
problems or potential problems may be communicated openly

Distances complicate working together and involving e.g., the best experts 
from various sites. 

Problems, and interpretation differences’ may only occur during integration

Communication over distances often lacks the “body language”, which
complicates sharing feelings and thus understanding each other. 

Brainstorm

Prioritize

Discover differences

Negotiate

Reach consensus

Figure 4: Main knowledge based factors for ‘Group Problem Solving’.

12 Expert Systems c� 2011 Blackwell Publishing Ltd



IV/12 IV/13

distances, and interpretation differences can be

addressed by brainstorming,making priorities clear

and actively discovering differences. The establish-

ing of openness and trust can be supported by

activities related to negotiating, brainstorming

freely and reaching a consensus that can also help

in creating a better understanding of each other.

3.3.3. The challenges for ‘Synchronize and Act’

activities ‘Synchronize and Act’ covers activities

such as mass effects, laying the groundwork,

hand-off tasks, backups, cueing to a situation,

for example. In the following table (Table 3), the

identified knowledge intensive challenges are pre-

sented, along with examples from cases.

The main knowledge based factors causing the

challenges were analysed and identified as shown

in Figure 5. The relation of these factors to

the activities defined by Noble is also shown in

the figure.

In the ‘synchronize and act’ process, team

members coordinate and help each other to

achieve the most benefits from the teamwork.

This coordination will fail in so far as the identi-

fied challenges and factors are not addressed. In

GSD, it is important to recognize that, e.g.,

practices for follow-up and tracking work, knowl-

edge sharing methods and tools, and the quality

of documentation has been established. The qual-

ity of the documentation can be addressed via a

proper laying of groundwork for other team

members, and different interpretations can be

avoided through good and coordinated hand-offs

and the laying of groundwork. Sufficient commu-

nication can be ensured via backups, cueing to the

situation and the massing of effects. Any chal-

lenges caused by distances can be addressed via

proper hand-offs and cueing to the situation, so

that the relevant information and knowledge is

shared between partners.

3.3.4. The challenges for ‘Individual and

Shared Understanding’ activities ‘Individual

and Shared Understanding’ (�knowledge)

Table 3: Summary of the challenges for ‘Synchronize and Act’

Identified challenges Examples from cases

The follow-up and tracking of work and dependencies
A good level of communication
A shared understanding of the basis of the work (e.g.,
requirements, architecture) and dependencies
Ensuring the availability of required information

The reliability of partners’ schedules
Creating and maintaining traceability
Ensuring the shared understanding of
requirements
Synchronization with the integrator and
component supplier
Sharing test information
The availability of required integration
competence
Subcontract management

Figure 5: Main knowledge based factors for ‘Synchronize and Act’.

c� 2011 Blackwell Publishing Ltd Expert Systems 13

knowledge of the goals of the project are useful.

Relating to sharing knowledge of the compe-

tences of the project partners over sites defining

roles and tasks clearly are helpful.

3.3.2. The challenges for ‘Group Problem Solving’

activities ‘Group Problem Solving’ covers activ-

ities such as brainstorming, prioritizing, discovering

differences, negotiating, and reaching a consensus,

for example. In the following table (Table 2), the

identified knowledge intensive challenges are pre-

sented, along with examples from cases.

The main knowledge based factors causing the

challenges were identified as shown in Figure 4.

The relation of these factors to the activities defined

by Noble is also shown in the figure.

In the ‘group problem solving’ process, a team

engages in its ‘collaborative dialog’ to reach a

consensus and decide what to do. If the identified

factors have not been recognized and minimized,

they can cause wrong conclusions and decisions.

There is a great deal of tacit knowledge behind the

factors and thus, solutions that increase commu-

nication, trust, openness and the awareness of each

other, as well as solutions that make knowledge

available in an explicit form, have to be emphasized

in GSD. Activities such as prioritizing and nego-

tiating help to address complications caused by

Team Set Up and
Adjustment

The partner competencies may not be so well known from distance sites (and
it’s common to favour people you know, even though their competences may  
not be the best available for the task at hand). 

The partners’ backgrounds and thus tacit knowledge are different, causing 
different interpretations of ambiguous or undefined issues. 

The motivation to be in the project may vary 

Form team

Review goals

Identify tasks

Determine roles

Figure 3: Main knowledge based factors for ‘Team Set Up and Adjustment’.

Table 2: Summary of the challenges for ‘Group Problem Solving’

Identified challenges Examples from cases

Identifying problems or potential problems early
The brainstorming of problems or design issues over a
distance
The negotiation of conflicts
Sufficient communication about design rationale and
decisions
The availability and correct interpretation of
measurement data

Identifying differences in requirement
interpretations
Repeating defects found in tests effectively
Resource management in GSD
Un-communicated changes made by other
partners

Group Problem
Solving

Openness and trust between the partners may not be optimal, and not all 
problems or potential problems may be communicated openly

Distances complicate working together and involving e.g., the best experts 
from various sites. 

Problems, and interpretation differences’ may only occur during integration

Communication over distances often lacks the “body language”, which
complicates sharing feelings and thus understanding each other. 

Brainstorm

Prioritize

Discover differences

Negotiate

Reach consensus

Figure 4: Main knowledge based factors for ‘Group Problem Solving’.

12 Expert Systems c� 2011 Blackwell Publishing Ltd



IV/14 IV/15

activities combine information and knowledge

perceiving from each of the three key team

activities, as well as an interactive shared under-

standing of team adjustments, problem settings

and synchronized situations. In the following

table (Table 4), the knowledge intensive chal-

lenges are presented, along with examples from

cases.

The main knowledge based factors causing

the challenges were analysed and identified as

shown in Figure 6. The relation of these factors

to the activities defined by Noble is also shown

in the figure.

Individual and shared understanding, i.e.,

knowledge creation requires communication,

communication and again communication, as

communication increases mutual trust between

partners. This means that informal communica-

tion is necessary and that is why selected tools

should support asynchronous communication

as well as the knowledge sharing process.

4. Proposed solutions

In this section, we will discuss example solutions

according to the identified challenges with the

perspectives proposed by Noble (2004). The

presented solutions are typically things that

need to be considered when carrying out a

GSD project, as well as some practical way of

working descriptions, which help to take into

account the things mentioned. The solutions

presented in this section have also usually been

described in other publications, and have been

chosen to be discussed here as they address the

KE viewpoint well.

4.1. Solutions relating to ‘Team Set Up and

Adjustment’

In this section, solutions for ‘Team Set Up and

Adjustment’ activities will be discussed. Figure 7

shows the relation of the Noble’s activities to the

example practical solutions explained here.

Conditions for collaboration: An organiza-

tion should base its business=project decisions
on a collaboration strategy, and it should under-

stand the consequences and impact of colla-

boration decisions on its business (benefits and

disadvantages=risks). Each partner should un-

derstand their role in the project (e.g., resource

provider vs. strategic partner), as that helps in

Table 4: Summary of the challenges for ‘Individual and Shared Understanding’

Identified challenges Examples from cases

Creating a shared understanding
Knowing what individual knowledge each participant
possesses
Documentation is an important means to share
information, and its quality is essential for success

Communication with remote peers
The incompatibility of tools
The openness of communication
Establishing trust
Ensuring sufficient knowledge to base the work
and decisions on
An adequate level of design
Interpreting measurement data in GSD

Figure 6: Main knowledge based factors for ‘Individual and Shared Understanding’.

14 Expert Systems c� 2011 Blackwell Publishing Ltd

defining the required interaction and goals for

the work. A rewarding policy helps to increase

awareness and motivation for collaborations.

Also, the creation of a functional and purpose-

ful project organization is important for GSD

project success.

Clear agreement roles, responsibilities and

authorities: The roles of all of the parties in-

volved should be clearly described and commu-

nicated, e.g., the responsibilities and authorities,

including the escalation path, should be defined

and communicated. Example roles include the

project leader=responsible for achieving the pro-
ject targets, a project management team repre-

senting the major cultures within the project, a

supplier=relationship manager, team leaders

and teams which are fully accountable and

responsible for their results, in addition to a

project level steering group including members

from all of the organizations and sites.

An explicit statement of the project goals

ensures that all of the project partners work on

the same basis. In order to define the goals

explicitly, the following aspects should be con-

sidered: the scope of the work to be performed,

the risks to be incurred, the resources to be

required, the tasks to be accomplished, the mile-

stones to be tracked, the effort (cost) to be

expended, and the schedules to be followed.

Before a project can be planned, the objectives

and scope should be established, alternative solu-

tions should be considered and the technical and

management constraints should be identified.

Communication about the design rationale,

e.g., the information concerning why some de-

sign decision has been made, and why some

other decision is not acceptable is important

knowledge in order to avoid conflicting

decisions made by other partners of the project.

These are worthwhile to include in the architec-

ture documentation, including the recom-

mended design patterns.

Managing resources and aligning teams, in

order to effectively utilize critical resources, they

need to be identified, and knowledge of their

availability needs to be updated and communi-

cated continuously. In order to align the teams’

work, communication (what, when, who, how),

and responsibilities and dependencies within

and between the teams need to be defined.

Understanding each other: In GSD, the project

manager requires specific skills in addition to

the usual project management and technical

knowledge, namely communication skills, and

knowledge of the cultures (countries, or compa-

nies), and competencies involved in the project.

It is also good to analyse the different cultures

who are involved in the project in the beginning,

in order to become aware of the differences and

thus be able to take them into account during

the project.

4.2. Solutions relating to ‘Group Problem

Solving’

In this section, solutions for ‘Group Problem

Solving’ activities are discussed. The relations of

these solutions to the activities of the Noble

model are shown in Figure 8. In addition to

these solutions, some of the solutions addressed

in the previous section are also valid concerning

this topic, e.g., ‘managing resources and align-

ing teams’ and ‘understanding each other’.

Escalation channels: Acceptance procedures

and decision authorities need to be agreed upon

in order to enable the management of problems

Figure 7: Solutions relation to ‘Team Set Up-up and Adjustment’ activities.

c� 2011 Blackwell Publishing Ltd Expert Systems 15



IV/14 IV/15

defining the required interaction and goals for

the work. A rewarding policy helps to increase

awareness and motivation for collaborations.

Also, the creation of a functional and purpose-

ful project organization is important for GSD

project success.

Clear agreement roles, responsibilities and

authorities: The roles of all of the parties in-

volved should be clearly described and commu-

nicated, e.g., the responsibilities and authorities,

including the escalation path, should be defined

and communicated. Example roles include the

project leader=responsible for achieving the pro-
ject targets, a project management team repre-

senting the major cultures within the project, a

supplier=relationship manager, team leaders

and teams which are fully accountable and

responsible for their results, in addition to a

project level steering group including members

from all of the organizations and sites.

An explicit statement of the project goals

ensures that all of the project partners work on

the same basis. In order to define the goals

explicitly, the following aspects should be con-

sidered: the scope of the work to be performed,

the risks to be incurred, the resources to be

required, the tasks to be accomplished, the mile-

stones to be tracked, the effort (cost) to be

expended, and the schedules to be followed.

Before a project can be planned, the objectives

and scope should be established, alternative solu-

tions should be considered and the technical and

management constraints should be identified.

Communication about the design rationale,

e.g., the information concerning why some de-

sign decision has been made, and why some

other decision is not acceptable is important

knowledge in order to avoid conflicting

decisions made by other partners of the project.

These are worthwhile to include in the architec-

ture documentation, including the recom-

mended design patterns.

Managing resources and aligning teams, in

order to effectively utilize critical resources, they

need to be identified, and knowledge of their

availability needs to be updated and communi-

cated continuously. In order to align the teams’

work, communication (what, when, who, how),

and responsibilities and dependencies within

and between the teams need to be defined.

Understanding each other: In GSD, the project

manager requires specific skills in addition to

the usual project management and technical

knowledge, namely communication skills, and

knowledge of the cultures (countries, or compa-

nies), and competencies involved in the project.

It is also good to analyse the different cultures

who are involved in the project in the beginning,

in order to become aware of the differences and

thus be able to take them into account during

the project.

4.2. Solutions relating to ‘Group Problem

Solving’

In this section, solutions for ‘Group Problem

Solving’ activities are discussed. The relations of

these solutions to the activities of the Noble

model are shown in Figure 8. In addition to

these solutions, some of the solutions addressed

in the previous section are also valid concerning

this topic, e.g., ‘managing resources and align-

ing teams’ and ‘understanding each other’.

Escalation channels: Acceptance procedures

and decision authorities need to be agreed upon

in order to enable the management of problems

Figure 7: Solutions relation to ‘Team Set Up-up and Adjustment’ activities.

c� 2011 Blackwell Publishing Ltd Expert Systems 15



IV/16 IV/17

and conflicts. In particular, when multiple com-

panies are involved, explicit and predefined

escalation channels are required to cope with

problems that cannot be controlled by the pro-

ject itself, as it requires the involvement of the

(authorized) management of basically all of the

partners. There are two major categories of

conflicts; technical, such as conflicts in design

approaches and design implementations, and

business, non-technical conflicts, such as sche-

dules and task priorities.

Status reporting practices: The reporting for-

mat, reporting channels, decision authorities, and

problem solving practices should be defined. The

following reporting practices have been found to

be useful in a distributed development:

� Distributing drafts of schedules and task

assignments for each incremental release.

� Weekly task reports and meetings within a

subgroup.

� Delivery reports (a description of the chan-

ges=features that are checked in).

� Quarterly sync-up meetings (the developers

meet together face-to-face for a week).

� Revising all of the documents to reflect the

current state of the development.

� Frequent deliveries of codes and several

iteration cycles and builds.

� Frequent and incremental integration and

testing.

Adequate communication means and information

sharing: Adequate communication means, facil-

ities and information sharing have a major

impact in collaboration, due to the need for

intensified communication. Active communica-

tion and information sharing supports the

fast establishment of fluent co-operation. The

communication items and roles should be de-

fined, communication channels and tools should

be defined and the availability ensured, potential

communication bottlenecks should be identified

and the mechanisms for managing them defined.

Managing collaboration related risks: Colla-

boration related risks should be managed as part

of a normal risk management. It is necessary to

look at the sources of technical, organizational

and communication risks. Typically, risks are

related to unclear assignments or specifications

of work in the contract, the openness of commu-

nication, trust between the partners, and the

reliability of the partner’s development schedule.

Defined and shared change management prac-

tices: InGSD, the scope of the impact assessment,

information sharing, and viewpoints that need to

be taken into account in decision making, are

affected by collaborative environment. When

multiple teams or partners are involved, the level-

ling of change requests analysis is important to

optimize the use of resources and to ensure an

adequate level of communication, meaning that

the changes are managed at their level of impact.

Practices for the resolution of conflicting re-

quirements: A generic requirements interrela-

tionship model can be used when identifying

conflicts between the requirements. When the

conflicting requirements have been identified,

different stakeholders must decide upon which

quality attributes are favoured over others, and

these priorities need to be consistently respected

when making decisions.

4.3. Solutions relating to ‘Synchronize and Act’

In this section, solutions for ‘Group Problem

Solving’ activities are discussed. The relations of

Figure 8: Solutions relation to ‘Group Problem Solving’ activities.

16 Expert Systems c� 2011 Blackwell Publishing Ltd

these solutions to the activities of the Noble

model are shown in Figure 9. Some of the

solutions which were addressed in the previous

section are also valid relating to this topic, e.g.,

‘escalation channels’, ‘status reporting prac-

tices’, ‘adequate communication means and in-

formation sharing’, ‘managing resources and

aligning teams’ and ‘understanding each other’

help to achieve fluent co-operation during the

project.

Clear and fixed requirements: The effect of

unambiguous and changing requirements is

higher in GSD due to the leverage effect caused

by the multiple levels of control. In order to

avoid misunderstandings and create a mutual

vision of a project, specifications should be

unambiguous and clear. It is also important to

ensure that people with enough competence

are involved in the requirements analysis

(from all of the partners). Establishing a com-

mon understanding can be supported via con-

tinuous communication about the requirements,

and by using an agreed upon structure for

the requirements.

A common=shared understanding of the archi-

tecture: The establishment of a common under-

standing can be supported via continuous

communication about the architecture, via good

architecture documentation, including recom-

mended design patterns and by architects re-

viewing the further work products made by

other members of the project.

Information about the performed tests and test

results: The responsibilities and authority for

test reporting coordination and acceptance

should be defined and the practices for the

communication of the performed tests and

test results followed. Common tools and

repositories assist in the sharing of information

process.

The compatibility of the partners’ development

tools and environments: In GSD, it is not possi-

ble to select or determine what development

tools and environments each partner shall use.

That is why it is important to recognize and

define, for example, what kind of visibility is

needed for another partner’s work or how

communication and data sharing can be sup-

ported between the partners during the project.

This is discussed in more detail in the following

section (4.4).

Cultural differences: The identification of cul-

tural differences in a GSD project is important

in order to better understand each other and to

avoid problems and conflicts. Several publica-

tions exist, giving examples of differences be-

tween various cultures. It is important not to

assume that the motivations, actions, and rea-

soning of those from other countries match

yours. Failing to recognize the differences be-

tween cultures may result in some serious con-

sequences. Note that there can also be different

cultures between different companies.

4.4. Solutions relating to ‘Individual and Shared

Understanding’

The solutions presented in earlier sections are

also all relevant from the ‘Knowledge: Individual

and Shared Understanding’ viewpoint, but in

this section, we will focus on one specific solu-

tion, namely the Compatibility of partners’ devel-

opment tools and environments. This is because it

has become clear, through several of the cases,

that if the development tools and environments

are not compatible, several knowledge-related

Figure 9: Solutions relation to ‘Synchronize and Act’ activities.

c� 2011 Blackwell Publishing Ltd Expert Systems 17



IV/16 IV/17

these solutions to the activities of the Noble

model are shown in Figure 9. Some of the

solutions which were addressed in the previous

section are also valid relating to this topic, e.g.,

‘escalation channels’, ‘status reporting prac-

tices’, ‘adequate communication means and in-

formation sharing’, ‘managing resources and

aligning teams’ and ‘understanding each other’

help to achieve fluent co-operation during the

project.

Clear and fixed requirements: The effect of

unambiguous and changing requirements is

higher in GSD due to the leverage effect caused

by the multiple levels of control. In order to

avoid misunderstandings and create a mutual

vision of a project, specifications should be

unambiguous and clear. It is also important to

ensure that people with enough competence

are involved in the requirements analysis

(from all of the partners). Establishing a com-

mon understanding can be supported via con-

tinuous communication about the requirements,

and by using an agreed upon structure for

the requirements.

A common=shared understanding of the archi-

tecture: The establishment of a common under-

standing can be supported via continuous

communication about the architecture, via good

architecture documentation, including recom-

mended design patterns and by architects re-

viewing the further work products made by

other members of the project.

Information about the performed tests and test

results: The responsibilities and authority for

test reporting coordination and acceptance

should be defined and the practices for the

communication of the performed tests and

test results followed. Common tools and

repositories assist in the sharing of information

process.

The compatibility of the partners’ development

tools and environments: In GSD, it is not possi-

ble to select or determine what development

tools and environments each partner shall use.

That is why it is important to recognize and

define, for example, what kind of visibility is

needed for another partner’s work or how

communication and data sharing can be sup-

ported between the partners during the project.

This is discussed in more detail in the following

section (4.4).

Cultural differences: The identification of cul-

tural differences in a GSD project is important

in order to better understand each other and to

avoid problems and conflicts. Several publica-

tions exist, giving examples of differences be-

tween various cultures. It is important not to

assume that the motivations, actions, and rea-

soning of those from other countries match

yours. Failing to recognize the differences be-

tween cultures may result in some serious con-

sequences. Note that there can also be different

cultures between different companies.

4.4. Solutions relating to ‘Individual and Shared

Understanding’

The solutions presented in earlier sections are

also all relevant from the ‘Knowledge: Individual

and Shared Understanding’ viewpoint, but in

this section, we will focus on one specific solu-

tion, namely the Compatibility of partners’ devel-

opment tools and environments. This is because it

has become clear, through several of the cases,

that if the development tools and environments

are not compatible, several knowledge-related

Figure 9: Solutions relation to ‘Synchronize and Act’ activities.

c� 2011 Blackwell Publishing Ltd Expert Systems 17



IV/18 IV/19

problems have occurred. For example, if the

data in different tools is not connected, whether

the product meets the requirements in a colla-

borative development becomes untraceable, the

sharing of the test environment and results is not

possible if partners use different tools, and the

visibility of the collaborative development sta-

tus beyond the partner borders is lacking, in so

far as the data is spread out between various

isolated tools. These challenges have been ad-

dressed in many of the cases discussed in this

paper.

In order to support the sharing of informa-

tion during a GSD project, development tool

interoperability and the accessibility of data are

important topics to address. Over several years,

we have been working on tool interoperability

concepts and have developed prototypes for

tool integration. These solutions aim to provide

an enhanced awareness and synchronization of

assets in a GSD environment, by enabling the

interoperability of various software develop-

ment tools in collaborative settings. The tool

integration solution has been carried out in

co-operation with the participating companies:

the requirements have been derived from the

companies and from the cases in particular.

Also, the implemented solution has been vali-

dated in the industrial cases. One important

aspect of our solution is that it enables the use

of a company’s legacy development tools, con-

figurable for an individual partner or project

needs, in order to minimize the costly and risky

changes in a tool environment.

Figure 10 presents the idea behind the tool

integration solution: meaning that the integra-

tion layer connects the data from different tools

and provides the same view to the data for all

partners. This enables the use of the same ver-

sions in different sites, as well as seeing the

progress that other partners are making online.

Currently, we are also working on context

aware communication support, e.g., seeing who

are working on related topics online, and estab-

lishing communication with them. Also, knowl-

edge storing, meaning the storing of relevant

communication records, so that they are avail-

able for those who didn’t participate in the

actual communication situation, but need the

information for their work, is an interesting

topic. We also aim to support the creation of

awareness at the workspace, i.e., finding out

Figure 10: Tool integration concepts.

18 Expert Systems c� 2011 Blackwell Publishing Ltd

easily what has happened since a person was last

online.

First, the complete ToolChain was developed

in the Merlin project (Heinonen et al., 2007) and

(Pesola et al., 2008). The main goal for the

Merlin ToolChain was to evaluate and validate

the concept of tool integration supporting a

globally distributed development, i.e., when the

work of several partners is distributed around

the world, using various development tools, and

needing to share information. Merlin Tool-

Chain demonstrated that the integration of

tools from different vendors is possible, and it

also answered directly to the identified chal-

lenges in collaboration. Further developments

of the ToolChain are reported in Eskeli &

Parviainen (2010) and in the seminar presenta-

tion (Eskeli, 2010).

The experience of using the tool integration

solution in industrial cases has shown that the

tool integration has enabled a full transparency

on real-life project data, and has provided a

unified user-interface for various views (tasks,

requirements, code, build & test). This has been

beneficial for the projects, as it has improved the

knowledge sharing while doing the same work

as before, i.e., not adding extra tasks.

5. Discussion

In this article, we have introduced the challenges

that companies have faced in GSD, discussed

their KE aspects, and presented example solu-

tions for addressing the challenges. In GSD, the

effective and successful transfer of tacit knowl-

edge requires extensive personal contacts, com-

munication and trust. Cognitive perspectives

have been presented as a fundamental success

factor for teams in collaboration. Any knowl-

edge gap within the team can expand into big

Figure 11: Knowledge based factors relation to the team activities and solutions.

c� 2011 Blackwell Publishing Ltd Expert Systems 19



IV/18 IV/19

easily what has happened since a person was last

online.

First, the complete ToolChain was developed

in the Merlin project (Heinonen et al., 2007) and

(Pesola et al., 2008). The main goal for the

Merlin ToolChain was to evaluate and validate

the concept of tool integration supporting a

globally distributed development, i.e., when the

work of several partners is distributed around

the world, using various development tools, and

needing to share information. Merlin Tool-

Chain demonstrated that the integration of

tools from different vendors is possible, and it

also answered directly to the identified chal-

lenges in collaboration. Further developments

of the ToolChain are reported in Eskeli &

Parviainen (2010) and in the seminar presenta-

tion (Eskeli, 2010).

The experience of using the tool integration

solution in industrial cases has shown that the

tool integration has enabled a full transparency

on real-life project data, and has provided a

unified user-interface for various views (tasks,

requirements, code, build & test). This has been

beneficial for the projects, as it has improved the

knowledge sharing while doing the same work

as before, i.e., not adding extra tasks.

5. Discussion

In this article, we have introduced the challenges

that companies have faced in GSD, discussed

their KE aspects, and presented example solu-

tions for addressing the challenges. In GSD, the

effective and successful transfer of tacit knowl-

edge requires extensive personal contacts, com-

munication and trust. Cognitive perspectives

have been presented as a fundamental success

factor for teams in collaboration. Any knowl-

edge gap within the team can expand into big

Figure 11: Knowledge based factors relation to the team activities and solutions.

c� 2011 Blackwell Publishing Ltd Expert Systems 19



IV/20 IV/21

problems and may lead to the poor sharing of

information or a lack of knowledge about what

to do. We used the model of Noble (2004) to

emphasize the knowledge needs of distributed

teams and stakeholders by analysing the chal-

lenges encountered in GSD from the KE view-

point. This enabled us to find relevant solutions

to address these challenges and to further utilize

KE principles to solve GSD challenges. Figure

11 summarizes the knowledge based factors

(discussed in section 3.3) and their relation to

the team activities and the related solutions

(discussed in section 4).

This article pointed out that a successful

distributed software development requires both

structured and disciplined software engineering

and KM solutions. Communication manage-

ment and the utilization of effective substitutes

for face-to-face communication have an impor-

tant role in GSD, to ensure knowledge sharing.

A careful execution of project start-up activities

– including the planning (dividing work, sche-

dule, mutual deliveries), the exact definition and

agreement of common rules, responsibilities,

and tools used – can greatly contribute to a

successful implementation. Also, ensuring the

availability of information during the project to

all of the parties is essential for a successful

project. By understanding the nature and de-

mands of the GSD, as well as the KE challenges

in depth, software organizations will be able to

reduce the risk of failure and to make their

operations successful.

Acknowledgements

This paper was written within the PRISMA

project (http://www.prisma-itea.org/), which is

an ITEA 2 project, number 07024. The authors

would like to thank the support of ITEA (http://

www.itea2.org/) and Tekes – the Finnish Fund-

ing Agency for Technology and Innovation

(http://www.tekes.fi/eng/).

References

ARANDA, G.N., A. VIZCAINO, A. CECHICH and M.
PIATTINI (2006) Technology selection to improve
global collaboration, in Proceedings of International

Conference on Global Software Engineering ICGSE
’06, Florianopolis, Brazil, pp. 223–232.

BHAT, J.M., G. MAYANK and S.N. MURTHY (2006)
Overcoming requirements engineering challenges:
lessons from offshore outsourcing, Journal of IEEE
Software, IEEE Computer Society, 23, 38–44.

CARMEL, E. and R. AGARWAL (2001) Tactical ap-
proaches for alleviating distance in global software
development, Journal of IEEE Software, IEEE Com-
puter Society, 18, 22–29.

CHAOS Reports (1996, 1998, 2000, 2002, 2004 and
2006) the Standish Group International Inc. Avail-
able at http://www.standishgroup.com (accessed 10
January 2011)

CMMI for development, version 1.2. (2006) Tech-
nical Report CMU=SEI-2006-TR-008. Available at
http://www.sei.cmu.edu/cmmi/ (accessed 10 January
2011)

DAMIAN, D. and D. MOITRA (2006) Global software
development: How far have we come?, Journal of
IEEE Software, 23, 17–19.

DAMIAN, D.E. and D. ZOWGHI (2002) The impact of
stakeholders’ geographical distribution on managing
requirements in a multi-site organization, in Pro-
ceeding of IEEE Joint International Conference on
Requirements Engineering. pp. 319–328.

DAVENPORT, T.H. and L. PRUSAK (1998) Working
Knowledge, Boston, USA: Harvard Business School
Press.

DE SOUZA, C.R.B., S.D. BASAVESWARA and D.F. RED-

MILES (2002) Supporting Global Software Develop-
ment with Event Notification Servers, in Proceedings
of Global Software Development, Workshop #9,
organized in the International Conference on Soft-
ware Engineering (ICSE) 2002, Orlando, Florida,
USA.

DESOUZA, K.C., Y. AWAZU and P. BALOH (2006) Mana-
ging knowledge in global software development
efforts: issues and practices, Journal of IEEE Soft-
ware, 23, 30–37.

ESKELI, J. (2010) Tools for breaking the walls, Same-
RoomSpirit seminar presentation. Available at:
http://conference.erve.vtt.fi/srs2010/files/EskeliJuho_
Tools_for_breaking_the_walls_20100506.pdf (acces-
sed 10 January 2011)

ESKELI, J. and P. PARVIAINEN (2010) Supporting Hard-
ware-related Software Development with Integra-
tion of Development Tools, in Proceedings of Fifth
International Conference on Software Engineering
Advances ICSEA’10, August 22–27, 2010, Nice,
France, pp. 353–358.

GOTEL, O. and A. FINKELSTEIN (1994) An Analysis of
the Requirements Traceability Problem, in Proceed-
ings of the 1st International Conference on Require-
ments Engineering, April 18–22, 1994, pp. 94–101.

HEINONEN, S., J. KÄÄRIÄINEN and J. TAKALO (2007)
Challenges in Collaboration: Tool Chain Enables

20 Expert Systems c� 2011 Blackwell Publishing Ltd

Transparency Beyond Partner Borders, in Proceed-
ings of 3rd International Conference Interoperability
for Enterprise Software and Applications 2007, Fun-
chal, Portugal.

HERBSLEB, J.D. (2007) Global Software Engineering:
the future of socio-technical coordination, in Pro-
ceedings of Future of Software Engineering FOSE
’07, May 23–25, 2007 IEEE Computer Society.

HERBSLEB, J.D., A. MOCKUS, T.A. FINHOLT and R.E.
GRINTER (2001) An Empirical Study of Global Soft-
ware Development: Distance and Speed, in Proceed-
ings of the 23rd International Conference on Software
Engineering (ICSE), May 12–19, 2001, Toronto,
Ontario, Canada, pp. 81–90.

HERBSLEB, J.D. and D. MOITRA (2001) Global software
development, Journal of IEEE Software, 18, 16–20.

HYYSALO, J., P. PARVIAINEN and M. TIHINEN (2006)
Collaborative Embedded Systems Development:
Survey of State of the Practice, in Proceedings of
ECBS’06, 13th Annual IEEE International Confer-
ence on the Engineering of Computer Based Sys-
tems, March 27–30, Germany 2006.

JIMÈNEZ, M., M. PIATTINI and A. VIZCAÍNO (2009)
Challenges and Improvements in Distributed Soft-
ware Development: A Systematic Review. Hindawi
Publishing Corporation, Advances in Software En-
gineering Volume 2009, Article ID 710971, 14pp.

KOMI-SIRVIÖ, S. andM. TIHINEN (2005) Lessons learned
by participants of distributed software development,
Journal of Knowledge and Process Management, 12,
108–122.

KOMMEREN, R. and P. PARVIAINEN (2007) Philips ex-
periences in global distributed software develop-
ment, Journal of Empirical Software Engineering,
12, 647–660.

LAYMAN, L., L. WILLIAMS, D. DAMIAN and H. BURES

(2006) Essential communication practices for Ex-
treme Programming in a global software develop-
ment team. Information and Software Technology
Volume 48, Issue 9, September 2006, Special Issue
Section: Distributed Software Development, pp.
781–794.

MERLIN (2004-2007) ITEA project, Embedded Sys-
tems Engineering in Collaboration, Available at
http://virtual.vtt.fi/virtual/proj1/projects/merlin/in-
dex.html (accessed 10 January 2011)

MERLIN Collaboration Handbook (2007) Available
at http://www.merlinhandbook.org (accessed 10
January 2011)

NOBLE, D. (2002) A Cognitive Description of Colla-
boration and Coordination to Help Teams Identify
and Fix Problems, in Proceedings of 7th International
Command and Research Control and Technology
Symposium, September 16–20, Quebec, Canada.

NOBLE, D. (2004) Knowledge Foundations of Effective
Collaboration, in Proceedings of 9th Interna-
tional Command and Control Research and Technol-

ogy Symposium, September 14–16, Copenhagen,
Denmark.

NOLL, J., S. BEECHAM and I. RICHARDSON (2010) Global
software development and collaboration: barriers
and solutions, Journal of ACM Inroads, 1, 66–78.

NONAKA, I. (1994) A dynamic theory of organisational
knowledge creation, Organisation Science, 5, 14–37.

OLSON, G.M. and J.S. OLSON (2000) Distance matters,
Human-Computer Interaction, 15, 139–178.

PARVIAINEN, P., J. ESKELI, T. KYNKÄÄNNIEMI and M.
TIHINEN (2008) Merlin Collaboration Handbook:
Challenges and Solutions, in Proceedings of the 3rd
International Conference on Software and Data Tech-
nologies ICSOFT 2008. Porto, Portugal, 5–8 July
2008. INSTICC. Vol. SE (2008), No: GSDCA=M=,
339–346.

PESOLA, J-P., J. ESKELI, P. PARVIAINEN, R. KOMMEREN

and M. GRAMZA (2008) Experiences of tool integra-
tion: development and validation, in Enterprise In-
teroperability III – New Challenges and Industrial
Approaches, K. Mertins, R. Ruggaber, K. Popplewell
and X. Xu (eds), London, UK: Springer, 499–510.

PRISMA (2009-2011) ITEA2 project, Productivity in
Collaborative Systems Development, Available at:
http://www.prisma-itea.org (Accessed 10 January
2011)

RUS, I. and M. LINDVALL (2002) Knowledge manage-
ment in software engineering, IEEE Journal of Soft-
ware, 19, 26–38.

SOMMERVILLE, I. and P. SAWYER (1997) Requirements
Engineering: A Good Practice Guide, Chichester:
John Wiley & Sons.

VAN SOLINGEN, R., P. PARVIAINEN and M. TIHINEN

(2008) Solutions for challenges in global collabora-
tive product development, ITEA Innovation report,
March 2008, available at http://www.itea2.org/at-
tachments/428/innovation_report_MERLIN.pdf
(accessed 10 January 2011)

VTT (2011) VTT Technical Research Centre of Fin-
land, available at http://www.vtt.fi/?lang¼ en (ac-
cessed 10 January 2011)

YIN, R.K. (2003) Case Study Research: Design and
Methods, Third Edition, Applied Social Research Meth-
ods Series, Vol. 5, USA, Sage Publications Inc.,
181pp.

The authors

Päivi Parviainen

Päivi Parviainen is a Principal Scientist and team

manager in the Software Technologies center

at VTT Technical Research Centre of Finland.

She has worked at VTT since 1995. She has

c� 2011 Blackwell Publishing Ltd Expert Systems 21

http://www.prisma-itea.org/
http://www.itea2.org/
http://www.itea2.org/
http://www.tekes.fi/eng/
http://www.standishgroup.com
http://www.sei.cmu.edu/cmmi/
http://conference.erve.vtt.fi/srs2010/files/EskeliJuho_


IV/20 IV/21

Transparency Beyond Partner Borders, in Proceed-
ings of 3rd International Conference Interoperability
for Enterprise Software and Applications 2007, Fun-
chal, Portugal.

HERBSLEB, J.D. (2007) Global Software Engineering:
the future of socio-technical coordination, in Pro-
ceedings of Future of Software Engineering FOSE
’07, May 23–25, 2007 IEEE Computer Society.

HERBSLEB, J.D., A. MOCKUS, T.A. FINHOLT and R.E.
GRINTER (2001) An Empirical Study of Global Soft-
ware Development: Distance and Speed, in Proceed-
ings of the 23rd International Conference on Software
Engineering (ICSE), May 12–19, 2001, Toronto,
Ontario, Canada, pp. 81–90.

HERBSLEB, J.D. and D. MOITRA (2001) Global software
development, Journal of IEEE Software, 18, 16–20.

HYYSALO, J., P. PARVIAINEN and M. TIHINEN (2006)
Collaborative Embedded Systems Development:
Survey of State of the Practice, in Proceedings of
ECBS’06, 13th Annual IEEE International Confer-
ence on the Engineering of Computer Based Sys-
tems, March 27–30, Germany 2006.

JIMÈNEZ, M., M. PIATTINI and A. VIZCAÍNO (2009)
Challenges and Improvements in Distributed Soft-
ware Development: A Systematic Review. Hindawi
Publishing Corporation, Advances in Software En-
gineering Volume 2009, Article ID 710971, 14pp.

KOMI-SIRVIÖ, S. andM. TIHINEN (2005) Lessons learned
by participants of distributed software development,
Journal of Knowledge and Process Management, 12,
108–122.

KOMMEREN, R. and P. PARVIAINEN (2007) Philips ex-
periences in global distributed software develop-
ment, Journal of Empirical Software Engineering,
12, 647–660.

LAYMAN, L., L. WILLIAMS, D. DAMIAN and H. BURES

(2006) Essential communication practices for Ex-
treme Programming in a global software develop-
ment team. Information and Software Technology
Volume 48, Issue 9, September 2006, Special Issue
Section: Distributed Software Development, pp.
781–794.

MERLIN (2004-2007) ITEA project, Embedded Sys-
tems Engineering in Collaboration, Available at
http://virtual.vtt.fi/virtual/proj1/projects/merlin/in-
dex.html (accessed 10 January 2011)

MERLIN Collaboration Handbook (2007) Available
at http://www.merlinhandbook.org (accessed 10
January 2011)

NOBLE, D. (2002) A Cognitive Description of Colla-
boration and Coordination to Help Teams Identify
and Fix Problems, in Proceedings of 7th International
Command and Research Control and Technology
Symposium, September 16–20, Quebec, Canada.

NOBLE, D. (2004) Knowledge Foundations of Effective
Collaboration, in Proceedings of 9th Interna-
tional Command and Control Research and Technol-

ogy Symposium, September 14–16, Copenhagen,
Denmark.

NOLL, J., S. BEECHAM and I. RICHARDSON (2010) Global
software development and collaboration: barriers
and solutions, Journal of ACM Inroads, 1, 66–78.

NONAKA, I. (1994) A dynamic theory of organisational
knowledge creation, Organisation Science, 5, 14–37.

OLSON, G.M. and J.S. OLSON (2000) Distance matters,
Human-Computer Interaction, 15, 139–178.

PARVIAINEN, P., J. ESKELI, T. KYNKÄÄNNIEMI and M.
TIHINEN (2008) Merlin Collaboration Handbook:
Challenges and Solutions, in Proceedings of the 3rd
International Conference on Software and Data Tech-
nologies ICSOFT 2008. Porto, Portugal, 5–8 July
2008. INSTICC. Vol. SE (2008), No: GSDCA=M=,
339–346.

PESOLA, J-P., J. ESKELI, P. PARVIAINEN, R. KOMMEREN

and M. GRAMZA (2008) Experiences of tool integra-
tion: development and validation, in Enterprise In-
teroperability III – New Challenges and Industrial
Approaches, K. Mertins, R. Ruggaber, K. Popplewell
and X. Xu (eds), London, UK: Springer, 499–510.

PRISMA (2009-2011) ITEA2 project, Productivity in
Collaborative Systems Development, Available at:
http://www.prisma-itea.org (Accessed 10 January
2011)

RUS, I. and M. LINDVALL (2002) Knowledge manage-
ment in software engineering, IEEE Journal of Soft-
ware, 19, 26–38.

SOMMERVILLE, I. and P. SAWYER (1997) Requirements
Engineering: A Good Practice Guide, Chichester:
John Wiley & Sons.

VAN SOLINGEN, R., P. PARVIAINEN and M. TIHINEN

(2008) Solutions for challenges in global collabora-
tive product development, ITEA Innovation report,
March 2008, available at http://www.itea2.org/at-
tachments/428/innovation_report_MERLIN.pdf
(accessed 10 January 2011)

VTT (2011) VTT Technical Research Centre of Fin-
land, available at http://www.vtt.fi/?lang¼ en (ac-
cessed 10 January 2011)

YIN, R.K. (2003) Case Study Research: Design and
Methods, Third Edition, Applied Social Research Meth-
ods Series, Vol. 5, USA, Sage Publications Inc.,
181pp.

The authors

Päivi Parviainen

Päivi Parviainen is a Principal Scientist and team

manager in the Software Technologies center

at VTT Technical Research Centre of Finland.

She has worked at VTT since 1995. She has

c� 2011 Blackwell Publishing Ltd Expert Systems 21

http://virtual.vtt.fi/virtual/proj1/projects/merlin/in-dex.html
http://virtual.vtt.fi/virtual/proj1/projects/merlin/in-dex.html
http://virtual.vtt.fi/virtual/proj1/projects/merlin/in-dex.html
http://www.merlinhandbook.org
http://www.prisma-itea.org
http://www.itea2.org/at-tachments/428/innovation_report_MERLIN.pdf
http://www.itea2.org/at-tachments/428/innovation_report_MERLIN.pdf
http://www.itea2.org/at-tachments/428/innovation_report_MERLIN.pdf
http://www.vtt.fi/?lang�en
http://www.vtt.fi/?lang�en
http://www.vtt.fi/?lang�en


IV/22 IV/23

experience in software process improvement,

measurement, software reuse, software develop-

ment tools and their integration, systems and

software requirements engineering and global

software development practices, for example.

Maarit Tihinen

Maarit Tihinen is a Research Scientist and

Quality Manager at VTT (VTT Technical

Research Centre of Finland). Before joining

VTT at year 2000, she worked as a mathe-

matics and information technology teacher

at Kemi-Tornio Polytechnic during the

nineties. Her research interests are focused on

software processes, especially, on improving

software processes as well as measurements and

metrics.

22 Expert Systems c� 2011 Blackwell Publishing Ltd



IV/22 IV/23

PAPER V

Requirements engineering
Dealing with the complexity of sociotechnical 

systems development

In: Requirements Engineering for Sociotechnical 
Systems. Chapter 1, pp. 1–20.

Copyright 2005 Information Science / IGI Global.
Reprinted with permission from the publisher.



V/1



V/1

Requirements Engineering: Sociotechnical Systems Development   1

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Chapter I

Requirements
Engineering:

Dealing with the
Complexity of

Sociotechnical Systems
Development

Päivi Parviainen,
VTT Technical Research Centre of Finland, VTT Electronics, Finland

Maarit Tihinen,
VTT Technical Research Centre of Finland, VTT Electronics, Finland

Marco Lormans, Delft University of Technology, The Netherlands

Rini van Solingen,
LogicaCMG Technical Software Engineering (RTSE1), The Netherlands

Abstract

This chapter introduces requirements engineering for sociotechnical systems.
Requirements engineering for sociotechnical systems is a complex process that considers
product demands from a vast number of viewpoints, roles, responsibilities, and
objectives. This chapter explains the requirements engineering terminology and
describes the requirements engineering process in detail, with examples of available
methods for the main process activities. The main activities described include system
requirements development, requirements allocation and flow-down, software



V/2 V/3

2   Parviainen, Tihinen, Lormans and van Solingen

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

requirements development, and continuous activities, including requirements
documentation, requirements validation and verification, and requirements
management. As requirements engineering is the process with the largest impact on the
end product, it is recommended to invest more effort in both industrial application as
well as research to increase understanding and deployment of the concepts presented
in this chapter.

Introduction1

The concept of sociotechnical systems was established to stress the reciprocal interre-
lationship between humans and machines and to foster the program of shaping both
theoretical and social conditions of work (Ropohl, 1999). A sociotechnical system can
be regarded as a theoretical construct for describing and explaining technology gener-
ally. This chapter helps to describe a multidisciplinary role of requirements engineering
as well as the concept of workflow and patterns for social interaction within the
sociotechnical systems research area.
Requirements engineering is generally accepted as the most critical and complex process
within the development of sociotechnical systems (Juristo, Moreno, & Silva, 2002; Komi-
Sirviö & Tihinen, 2003; Siddiqi, 1996). The main reason is that the requirements
engineering process has the most dominant impact on the capabilities of the resulting
product. Furthermore requirements engineering is the process in which the most diverse
set of product demands from the most diverse set of stakeholders is being considered.
These two reasons make requirements engineering complex as well as critical.
This chapter first introduces background information related to requirements engineer-
ing, including the terminology used and the requirements engineering process in general.
Next a detailed description of the requirements engineering process, including the main
phases and activities within these phases, is presented. Each phase will be discussed in
detail, with examples of useful methods and techniques.

Background

A requirement is a condition or capability that must be met or possessed by a system or
system component to satisfy a contract, standard, specification, or other formally
imposed documents (IEEE Std 610.12, 1990). A well-formed requirement is a statement of
system functionality (a capability) that must be met or possessed by a system to satisfy
a customer’s need or to achieve a customer’s objective, and that is qualified by
measurable conditions and bounded by constraints (IEEE Std 1233, 1998).



V/3

Requirements Engineering: Sociotechnical Systems Development   3

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Requirements are commonly classified as (IEEE Std 830, 1998):

• Functional: A requirement that specifies an action that a system must be able to
perform, without considering physical constraints; a requirement that specifies
input/output behavior of a system.

• Non-functional: A requirement that specifies system properties, such as environ-
mental and implementation constraints, performance, platform dependencies,
maintainability, extensibility, and reliability. Non-functional requirements are
often classified into the following categories:

• Performance requirements: A requirement that specifies performance character-
istics that a system or system component must possess, for example, max. CPU-
usage, max. memory footprint.

• External interface requirements: A requirement that specifies hardware, software,
or database elements with which a system or system component must interface or
that sets forth constraints on formats, timing, or other factors caused by such an
interface.

• Design constraints: A requirement that affects or constrains the design of a system
or system component, for example, language requirements, physical hardware
requirements, software development standards, and software quality assurance
standards.

• Quality attributes: A requirement that specifies the degree to which a system
possesses attributes that affect quality, for example, correctness, reliability,
maintainability, portability.

Requirements engineering contains a set of activities for discovering, analyzing, docu-
menting, validating, and maintaining a set of requirements for a system (Sommerville &
Sawyer, 1997). Requirements engineering is divided into two main groups of activities,
requirements development and requirements management. Requirement development
includes activities related to discovering, analyzing, documenting, and validating
requirements, where as requirement management includes activities related to mainte-
nance, namely identification, traceability, and change management of requirements.
Requirements validation consists of activities that try to confirm that the behaviour of
a developed system meets its user needs. Requirements verification consists of those
activities that try to confirm that the product of a system development process meets its
technical specifications (Stevens, Brook, Jackson, & Arnold, 1998). Verification and
validation include:

• Defining the verification and validation requirements, that is, principles on how the
system will be tested.

• Planning the verification and validation.
• Capturing the verification and validation criteria (during requirements definition).

2   Parviainen, Tihinen, Lormans and van Solingen

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

requirements development, and continuous activities, including requirements
documentation, requirements validation and verification, and requirements
management. As requirements engineering is the process with the largest impact on the
end product, it is recommended to invest more effort in both industrial application as
well as research to increase understanding and deployment of the concepts presented
in this chapter.

Introduction1

The concept of sociotechnical systems was established to stress the reciprocal interre-
lationship between humans and machines and to foster the program of shaping both
theoretical and social conditions of work (Ropohl, 1999). A sociotechnical system can
be regarded as a theoretical construct for describing and explaining technology gener-
ally. This chapter helps to describe a multidisciplinary role of requirements engineering
as well as the concept of workflow and patterns for social interaction within the
sociotechnical systems research area.
Requirements engineering is generally accepted as the most critical and complex process
within the development of sociotechnical systems (Juristo, Moreno, & Silva, 2002; Komi-
Sirviö & Tihinen, 2003; Siddiqi, 1996). The main reason is that the requirements
engineering process has the most dominant impact on the capabilities of the resulting
product. Furthermore requirements engineering is the process in which the most diverse
set of product demands from the most diverse set of stakeholders is being considered.
These two reasons make requirements engineering complex as well as critical.
This chapter first introduces background information related to requirements engineer-
ing, including the terminology used and the requirements engineering process in general.
Next a detailed description of the requirements engineering process, including the main
phases and activities within these phases, is presented. Each phase will be discussed in
detail, with examples of useful methods and techniques.

Background

A requirement is a condition or capability that must be met or possessed by a system or
system component to satisfy a contract, standard, specification, or other formally
imposed documents (IEEE Std 610.12, 1990). A well-formed requirement is a statement of
system functionality (a capability) that must be met or possessed by a system to satisfy
a customer’s need or to achieve a customer’s objective, and that is qualified by
measurable conditions and bounded by constraints (IEEE Std 1233, 1998).



V/4 V/5

4   Parviainen, Tihinen, Lormans and van Solingen

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

• Planning of test methods and tools.
• Planning and conducting reviews.
• Implementing and performing the tests and managing the results.
• Maintaining traceability.
• Auditing.

In sociotechnical systems software is understood as a part of the final product. System
requirements are captured to identify the functioning of the system, from which software
requirements are derived. Deciding which functionality is implemented where, and by
which means (software, hardware, mechanics, and so forth) is merely a technical decision
process in which feasibility, dependability, and economics play a role. A well-structured
and technically sound requirements engineering process is, therefore, of utmost impor-
tance.

Requirements Engineering Process

Figure 1 describes a requirements engineering process where the main processes of
system and software requirements engineering are depicted. Requirements engineering
activities cover the entire system and software development lifecycle. On the other hand
the requirements engineering process is iterative and will go into more detail in each
iteration. In addition the figure indicates how requirements management (RM) is under-
stood as a part of the requirements engineering process. The process is based on
Kotonya and Sommerville (1998), Sailor (1990), Thayer and Royce (1990).
The process describes requirements engineering for sociotechnical systems, where
software requirements engineering is a part of the process. Traditionally requirements
engineering is performed in the beginning of the system development lifecycle (Royce,
1970). However, in large and complex systems development, developing an accurate set
of requirements that would remain stable throughout the months or years of development
has been realized to be impossible in practice (Dorfman, 1990). Therefore requirements
engineering is an incremental and iterative process, performed in parallel with other
system development activities such as design.
The main high-level activities included in the requirements engineering process are:

1) System requirements development, including requirements gathering/elicitation
from various sources (Figure 1 shows the different sources for requirements),
requirements analysis, negotiation, priorisation and agreement of raw require-
ments, and system requirements documentation and validation.

2) Requirements allocation and flow-down, including allocating the captured re-
quirements to system components and defining, documenting, and validating
detailed system requirements.

Requirements Engineering: Sociotechnical Systems Development   5

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Requirements
Management

RM Planning

Traceability

Allocation

Detailed System Requirements

Traceability

Identification

Change
control

Requirements
documentation

Validation and
verification

Flow-down

System requirements
specification

IEEE Std 1233-1998

Software requirements
specification

IEEE Std 830-1998

Validation:
- user requirements

- customer requirements

Verification:
- implementation (code)

-architecture
-design

Traceability

Constraints

Business requirements Customer requirements

User requirements

Other SW development phases

Standards

HW Req.

Software Req.

HW Req.

Software Req.

HW Req.

Software Req.

Mechanics

HW Req.

Software Req.

In house inventions

High-level analysis

Detailed analysis

Gathering
System
Requirements
development Traceability

Traceability

3) Software requirements development, including analyzing, modeling and validat-
ing both the functional and quality aspects of a software system, and defining,
documenting, and validating the contents of software subsystems.

4) Continuous activities, including requirements documentation, requirements vali-
dation and verification, and requirements management.

Each of these high-level activities will be further detailed in the following sections.

System Requirements Development

The main purpose of the system requirements development phase is to examine and
gather desired objectives for the system from different viewpoints (for example, cus-
tomer, users, system’s operating environment, trade, and marketing). These objectives
are identified as a set of functional and non-functional requirements of the system. Figure
2 shows the context for developing system requirements specification (SyRS).

1. Requirements Gathering/Elicitation from Various Sources

Requirements gathering starts with identifying the stakeholders of the system and
collecting (that is, eliciting) raw requirements. Raw requirements are requirements that

Figure 1. System and software requirements engineering (Parviainen, Hulkko,
Kääriäinen, Takalo, & Tihinen, 2003)



V/5

4   Parviainen, Tihinen, Lormans and van Solingen

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

• Planning of test methods and tools.
• Planning and conducting reviews.
• Implementing and performing the tests and managing the results.
• Maintaining traceability.
• Auditing.

In sociotechnical systems software is understood as a part of the final product. System
requirements are captured to identify the functioning of the system, from which software
requirements are derived. Deciding which functionality is implemented where, and by
which means (software, hardware, mechanics, and so forth) is merely a technical decision
process in which feasibility, dependability, and economics play a role. A well-structured
and technically sound requirements engineering process is, therefore, of utmost impor-
tance.

Requirements Engineering Process

Figure 1 describes a requirements engineering process where the main processes of
system and software requirements engineering are depicted. Requirements engineering
activities cover the entire system and software development lifecycle. On the other hand
the requirements engineering process is iterative and will go into more detail in each
iteration. In addition the figure indicates how requirements management (RM) is under-
stood as a part of the requirements engineering process. The process is based on
Kotonya and Sommerville (1998), Sailor (1990), Thayer and Royce (1990).
The process describes requirements engineering for sociotechnical systems, where
software requirements engineering is a part of the process. Traditionally requirements
engineering is performed in the beginning of the system development lifecycle (Royce,
1970). However, in large and complex systems development, developing an accurate set
of requirements that would remain stable throughout the months or years of development
has been realized to be impossible in practice (Dorfman, 1990). Therefore requirements
engineering is an incremental and iterative process, performed in parallel with other
system development activities such as design.
The main high-level activities included in the requirements engineering process are:

1) System requirements development, including requirements gathering/elicitation
from various sources (Figure 1 shows the different sources for requirements),
requirements analysis, negotiation, priorisation and agreement of raw require-
ments, and system requirements documentation and validation.

2) Requirements allocation and flow-down, including allocating the captured re-
quirements to system components and defining, documenting, and validating
detailed system requirements.

Requirements Engineering: Sociotechnical Systems Development   5

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Requirements
Management

RM Planning

Traceability

Allocation

Detailed System Requirements

Traceability

Identification

Change
control

Requirements
documentation

Validation and
verification

Flow-down

System requirements
specification

IEEE Std 1233-1998

Software requirements
specification

IEEE Std 830-1998

Validation:
- user requirements

- customer requirements

Verification:
- implementation (code)

-architecture
-design

Traceability

Constraints

Business requirements Customer requirements

User requirements

Other SW development phases

Standards

HW Req.

Software Req.

HW Req.

Software Req.

HW Req.

Software Req.

Mechanics

HW Req.

Software Req.

In house inventions

High-level analysis

Detailed analysis

Gathering
System
Requirements
development Traceability

Traceability

3) Software requirements development, including analyzing, modeling and validat-
ing both the functional and quality aspects of a software system, and defining,
documenting, and validating the contents of software subsystems.

4) Continuous activities, including requirements documentation, requirements vali-
dation and verification, and requirements management.

Each of these high-level activities will be further detailed in the following sections.

System Requirements Development

The main purpose of the system requirements development phase is to examine and
gather desired objectives for the system from different viewpoints (for example, cus-
tomer, users, system’s operating environment, trade, and marketing). These objectives
are identified as a set of functional and non-functional requirements of the system. Figure
2 shows the context for developing system requirements specification (SyRS).

1. Requirements Gathering/Elicitation from Various Sources

Requirements gathering starts with identifying the stakeholders of the system and
collecting (that is, eliciting) raw requirements. Raw requirements are requirements that

Figure 1. System and software requirements engineering (Parviainen, Hulkko,
Kääriäinen, Takalo, & Tihinen, 2003)



V/6 V/7

6   Parviainen, Tihinen, Lormans and van Solingen

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

have not been analyzed and have not yet been written down in a well-formed requirement
notation. Business requirements, customer requirements, user requirements, constraints,
in-house ideas and standards are the different viewpoints to cover. Typically specifying
system requirements starts with observing and interviewing people (Ambler, 1998). This
is not a straightforward task, because users may not possess the overview on feasibilities
and opportunities for automated support. Furthermore user requirements are often
misunderstood because the requirements collector misinterprets the users’ words. In
addition to gathering requirements from users, standards and constraints (for example,
the legacy systems) also play an important role in systems development.

2. Requirements Analysis and Documentation

After the raw requirements from stakeholders are gathered, they need to be analyzed
within the context of business requirements (management perspective) such as cost-
effectiveness, organizational, and political requirements. Also, the requirements rela-
tions, that is, dependencies, conflicts, overlaps, omissions, and inconsistencies, need
to be examined and documented. Finally the environment of the system, such as external
systems and technical constraints, need to be examined and explicated.
The gathering of requirements often reveals a large set of raw requirements that, due to
cost and time constraints, cannot entirely be implemented in the system. Also the
identified raw requirements may be conflicting. Therefore, negotiation, agreement,
communication, and priorisation of the raw requirements are also an important part of the
requirements analysis process.
The analyzed requirements need to be documented to enable communication with
stakeholders and future maintenance of the requirements and the system. Requirements
documentation also includes describing the relations between requirements. During
requirements analysis it gives added value to record the rationale behind the decisions
made to ease future change management and decision making.

Figure 2. Context for developing SyRS (IEEE Std 1233, 1998)

CUSTOMER

ENVIRONMENT
TECHNICAL
COMMUNITY

DEVELOP
SYSTEMS

REQUIREMENTS
COLLECTION

TECHNICAL FEEDBACK

CONSTRAINT
/ INFLUENCE

TECHNICAL
REPRESENTATION

CUSTOMER REPRESENTATION

CUSTOMER
FEEDBACK

RAW REQUIREMENT

Requirements Engineering: Sociotechnical Systems Development   7

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

3. System Requirements Validation and Verification

In system requirements development, validation and verification activities include
validating the system requirements against raw requirements and verifying the correct-
ness of system requirements documentation. Common techniques for validating require-
ments are requirements reviews with the stakeholders and prototyping.
Table 1 contains examples of requirements engineering methods and techniques used
during the system requirements development phase. The detailed descriptions of the
methods have been published in Parviainen et al. (2003).
Several methods for gathering, eliciting, and analyzing requirements from users and other
stakeholders can be used. Table 1 includes several observing methods (for example,

Table 1. System requirements development methods
Activity Example methods Description 
Gathering 
requirements 

Ethnography (Suchman, 1983)  
Protocol Analysis (Ericsson & Simon, 
1993)

Observing methods use techniques that may
help to understand the thoughts and needs 
of the users, even when they cannot 
describe these needs or they do not exactly 
know what they want.

Focus groups (Maguire, 1998)  
JAD (Joint Application Development) 
(Ambler, 1998)

Meeting techniques cover separate 
techniques for meetings and workshops for 
gathering and developing requirements 
from different stakeholders.

Volere (Robertson & Robertson, 1999) Provides a generic process for gathering 
requirements, ways to elicit them from 
users, as well as a process for verifying 
them.

Requirements 
analysis 

QFD (Quality Function Deployment) 
(Revelle, Moran, Cox, & Moran, 1998)

Identifying customer needs, expectations, 
and requirements, and linking them into the
company's products. 

SCRAM (Scenario-based Requirements 
Engineering) (Sutcliffe, 1998) 

Develop requirements (whole RE) using 
scenarios. The scenarios are created to 
represent paths of possible behavior through
use cases, and these are then investigated to
develop requirements. 

SSADM (Structured System Analysis and
Design Methodology) (Ashworth & 
Goodland, 1990) 

Can be used in the analysis and design 
stages of systems development. It specifies 
in advance the modules, stages, and tasks 
that have to be carried out, the deliverables 
to be produced, and the techniques used to 
produce those deliverables. 

Negotiation and 
priorisation 

CORE (Controlled Requirements 
Expression) (Mullery, 1979)  
WinWin approach (Bose, 1995) 

The purpose of viewpoint-oriented methods
is to produce or analyze requirements from 
multiple viewpoints. They can be used 
while resolving conflicts or documenting 
system and software requirements. 

System 
requirements 
documentation 

IEEE Std 1233-1998 Standards define the contents of a SyRS.

VDM (Vienna Development Model) 
(Björner & Jones, 1978)  
Specification language Z (Sheppard, 
1995) 

In formal methods, requirements are written
in a statement language or in a formal -- 
mathematical -- way. 

HPM (Hatley-Pirbhai Methodology) 
(Hatley & Pirbhai, 1987) 

Gives support for documenting and 
managing of system requirements.  

VORD (Viewpoint-Oriented 
Requirements Definition) (Kotonya & 
Sommerville, 1996) 

Helps to identify and prioritize requirements
and also can be utilized when documenting 
system and software requirements.  



V/7

6   Parviainen, Tihinen, Lormans and van Solingen

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

have not been analyzed and have not yet been written down in a well-formed requirement
notation. Business requirements, customer requirements, user requirements, constraints,
in-house ideas and standards are the different viewpoints to cover. Typically specifying
system requirements starts with observing and interviewing people (Ambler, 1998). This
is not a straightforward task, because users may not possess the overview on feasibilities
and opportunities for automated support. Furthermore user requirements are often
misunderstood because the requirements collector misinterprets the users’ words. In
addition to gathering requirements from users, standards and constraints (for example,
the legacy systems) also play an important role in systems development.

2. Requirements Analysis and Documentation

After the raw requirements from stakeholders are gathered, they need to be analyzed
within the context of business requirements (management perspective) such as cost-
effectiveness, organizational, and political requirements. Also, the requirements rela-
tions, that is, dependencies, conflicts, overlaps, omissions, and inconsistencies, need
to be examined and documented. Finally the environment of the system, such as external
systems and technical constraints, need to be examined and explicated.
The gathering of requirements often reveals a large set of raw requirements that, due to
cost and time constraints, cannot entirely be implemented in the system. Also the
identified raw requirements may be conflicting. Therefore, negotiation, agreement,
communication, and priorisation of the raw requirements are also an important part of the
requirements analysis process.
The analyzed requirements need to be documented to enable communication with
stakeholders and future maintenance of the requirements and the system. Requirements
documentation also includes describing the relations between requirements. During
requirements analysis it gives added value to record the rationale behind the decisions
made to ease future change management and decision making.

Figure 2. Context for developing SyRS (IEEE Std 1233, 1998)

CUSTOMER

ENVIRONMENT
TECHNICAL
COMMUNITY

DEVELOP
SYSTEMS

REQUIREMENTS
COLLECTION

TECHNICAL FEEDBACK

CONSTRAINT
/ INFLUENCE

TECHNICAL
REPRESENTATION

CUSTOMER REPRESENTATION

CUSTOMER
FEEDBACK

RAW REQUIREMENT

Requirements Engineering: Sociotechnical Systems Development   7

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

3. System Requirements Validation and Verification

In system requirements development, validation and verification activities include
validating the system requirements against raw requirements and verifying the correct-
ness of system requirements documentation. Common techniques for validating require-
ments are requirements reviews with the stakeholders and prototyping.
Table 1 contains examples of requirements engineering methods and techniques used
during the system requirements development phase. The detailed descriptions of the
methods have been published in Parviainen et al. (2003).
Several methods for gathering, eliciting, and analyzing requirements from users and other
stakeholders can be used. Table 1 includes several observing methods (for example,

Table 1. System requirements development methods
Activity Example methods Description 
Gathering 
requirements 

Ethnography (Suchman, 1983)  
Protocol Analysis (Ericsson & Simon, 
1993)

Observing methods use techniques that may
help to understand the thoughts and needs 
of the users, even when they cannot 
describe these needs or they do not exactly 
know what they want.

Focus groups (Maguire, 1998)  
JAD (Joint Application Development) 
(Ambler, 1998)

Meeting techniques cover separate 
techniques for meetings and workshops for 
gathering and developing requirements 
from different stakeholders.

Volere (Robertson & Robertson, 1999) Provides a generic process for gathering 
requirements, ways to elicit them from 
users, as well as a process for verifying 
them.

Requirements 
analysis 

QFD (Quality Function Deployment) 
(Revelle, Moran, Cox, & Moran, 1998)

Identifying customer needs, expectations, 
and requirements, and linking them into the
company's products. 

SCRAM (Scenario-based Requirements 
Engineering) (Sutcliffe, 1998) 

Develop requirements (whole RE) using 
scenarios. The scenarios are created to 
represent paths of possible behavior through
use cases, and these are then investigated to
develop requirements. 

SSADM (Structured System Analysis and
Design Methodology) (Ashworth & 
Goodland, 1990) 

Can be used in the analysis and design 
stages of systems development. It specifies 
in advance the modules, stages, and tasks 
that have to be carried out, the deliverables 
to be produced, and the techniques used to 
produce those deliverables. 

Negotiation and 
priorisation 

CORE (Controlled Requirements 
Expression) (Mullery, 1979)  
WinWin approach (Bose, 1995) 

The purpose of viewpoint-oriented methods
is to produce or analyze requirements from 
multiple viewpoints. They can be used 
while resolving conflicts or documenting 
system and software requirements. 

System 
requirements 
documentation 

IEEE Std 1233-1998 Standards define the contents of a SyRS.

VDM (Vienna Development Model) 
(Björner & Jones, 1978)  
Specification language Z (Sheppard, 
1995) 

In formal methods, requirements are written
in a statement language or in a formal -- 
mathematical -- way. 

HPM (Hatley-Pirbhai Methodology) 
(Hatley & Pirbhai, 1987) 

Gives support for documenting and 
managing of system requirements.  

VORD (Viewpoint-Oriented 
Requirements Definition) (Kotonya & 
Sommerville, 1996) 

Helps to identify and prioritize requirements
and also can be utilized when documenting 
system and software requirements.  



V/8 V/9

8   Parviainen, Tihinen, Lormans and van Solingen

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

ethnography), meeting techniques (for example, focus groups) and analyzing techniques
(for example, QFD) that can be used to gather requirements and avoid misunderstandings
of users needs. The methods help in identifying needs of individuals and converting them
into requirements of a desired product. At the same time social actions and workflows,
safety-critical aspects, or technical constraints have to be taken into consideration. The
results of the system requirements development phase are captured as top-level system
requirements that are used as input for the allocation and flow-down phase.

Allocation and Flow-Down

The requirements allocation and flow-down process’ purpose is to make sure that all
system requirements are fulfilled by a subsystem or by a set of subsystems collaborating
together. Top-level system requirements need to be organized hierarchically, helping to
view and manage information at different levels of abstraction. The requirements are
decomposed down to the level at which the requirement can be designed and tested; thus,
allocation and flow-down may be done for several hierarchy levels. The level of detail
increases as the work proceeds down in the hierarchy. That is, system-level requirements
are general in nature, while requirements at low levels in the hierarchy are very specific
(Leffingwell & Widrig, 2000; Stevens et al., 1998).
The top-level system requirements defined in the system requirements development
phase (see previous subsection) are the main input for the requirements allocation and
flow-down phase. In practice, system requirements development and allocation and
flow-down are iterating; as the system level requirements are being developed, the
elements that should be defined in the hierarchy should also be considered. By the time
a draft of the system requirements is complete, a tentative definition of at least one and
possibly two levels of system hierarchy should be available (Dorfman, 1990).

1. Requirements Allocation

Allocation is architectural work carried out in order to design the structure of the system
and to issue the top-level system requirements to subsystems. Architectural models
provide the context for defining how applications and subsystems interact with one
another to meet the requirements of the system. The goal of architectural modeling, also
commonly referred to as high-level modeling or global modeling, is to define a robust
framework within which applications and component subsystems may be developed
(Ambler, 1998).
Each system level requirement is allocated to one or more elements at the next level (that
is, it is determined which elements will participate in meeting the requirement). Allocation
also includes allocating the non-functional requirements to system elements. Each
system element will need an apportionment of the non-functional requirements (for
example, performance requirement). However, not all requirements are allocable; non-
allocable requirements are items such as environments, operational life, and design
standards, which apply unchanged across all elements of the system or its segments. The

Requirements Engineering: Sociotechnical Systems Development   9

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

allocation process is iterative; in performing the allocation, needs to change the system
requirements (additions, deletions, and corrections) and/or the definitions of the ele-
ments can be found (Dorfman, 1990; Nelsen, 1990; Pressman, 1992; Sailor, 1990).
The overall process of the evaluation of alternative system configurations (allocations)
includes:

• Definition of alternative approaches.
• Evaluation of alternatives.
• Selection of evaluation criteria; performance, effectiveness, life-cycle cost factors.
• Application of analytical techniques (for example, models).
• Data generation.
• Evaluation of results.
• Sensitivity analysis.
• Definition of risk and uncertainty.
• Selection of the configuration (Blanchard & Fabrycky, 1981; Pressman, 1992).

Once the functionality and the non-functional requirements of the system have been
allocated, the system engineer can create a model that represents the interrelationship
between system elements and sets a foundation for later requirements analysis and
design steps. The decomposition is done right when:

• Distribution and partitioning of functionality are optimized to achieve the overall
functionality of the system with minimal costs and maximum flexibility.

• Each subsystem can be defined, designed, and built by a small or at least modest-
sized team.

• Each subsystem can be manufactured within the physical constraints and tech-
nologies of the available manufacturing processes.

• Each subsystem can be reliably tested as a subsystem subject to the availability
of suitable fixtures and harnesses that simulate the interfaces to the other system.

• Appropriate regard is given to the physical domain – the size, weight, location, and
distribution of the subsystems – that has been optimized in the overall system
context (Leffingwell & Widrig, 2000).

2. Requirements Flow-Down

Flow-down consists of writing requirements for the lower-level elements in response to
the allocation. When a system requirement is allocated to a subsystem, the subsystem
must have at least one requirement that responds to the allocation. Usually more than
one requirement will be written. The lower-level requirement(s) may closely resemble the
higher-level one or may be very different if the system engineers recognize a capability



V/9

8   Parviainen, Tihinen, Lormans and van Solingen

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

ethnography), meeting techniques (for example, focus groups) and analyzing techniques
(for example, QFD) that can be used to gather requirements and avoid misunderstandings
of users needs. The methods help in identifying needs of individuals and converting them
into requirements of a desired product. At the same time social actions and workflows,
safety-critical aspects, or technical constraints have to be taken into consideration. The
results of the system requirements development phase are captured as top-level system
requirements that are used as input for the allocation and flow-down phase.

Allocation and Flow-Down

The requirements allocation and flow-down process’ purpose is to make sure that all
system requirements are fulfilled by a subsystem or by a set of subsystems collaborating
together. Top-level system requirements need to be organized hierarchically, helping to
view and manage information at different levels of abstraction. The requirements are
decomposed down to the level at which the requirement can be designed and tested; thus,
allocation and flow-down may be done for several hierarchy levels. The level of detail
increases as the work proceeds down in the hierarchy. That is, system-level requirements
are general in nature, while requirements at low levels in the hierarchy are very specific
(Leffingwell & Widrig, 2000; Stevens et al., 1998).
The top-level system requirements defined in the system requirements development
phase (see previous subsection) are the main input for the requirements allocation and
flow-down phase. In practice, system requirements development and allocation and
flow-down are iterating; as the system level requirements are being developed, the
elements that should be defined in the hierarchy should also be considered. By the time
a draft of the system requirements is complete, a tentative definition of at least one and
possibly two levels of system hierarchy should be available (Dorfman, 1990).

1. Requirements Allocation

Allocation is architectural work carried out in order to design the structure of the system
and to issue the top-level system requirements to subsystems. Architectural models
provide the context for defining how applications and subsystems interact with one
another to meet the requirements of the system. The goal of architectural modeling, also
commonly referred to as high-level modeling or global modeling, is to define a robust
framework within which applications and component subsystems may be developed
(Ambler, 1998).
Each system level requirement is allocated to one or more elements at the next level (that
is, it is determined which elements will participate in meeting the requirement). Allocation
also includes allocating the non-functional requirements to system elements. Each
system element will need an apportionment of the non-functional requirements (for
example, performance requirement). However, not all requirements are allocable; non-
allocable requirements are items such as environments, operational life, and design
standards, which apply unchanged across all elements of the system or its segments. The

Requirements Engineering: Sociotechnical Systems Development   9

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

allocation process is iterative; in performing the allocation, needs to change the system
requirements (additions, deletions, and corrections) and/or the definitions of the ele-
ments can be found (Dorfman, 1990; Nelsen, 1990; Pressman, 1992; Sailor, 1990).
The overall process of the evaluation of alternative system configurations (allocations)
includes:

• Definition of alternative approaches.
• Evaluation of alternatives.
• Selection of evaluation criteria; performance, effectiveness, life-cycle cost factors.
• Application of analytical techniques (for example, models).
• Data generation.
• Evaluation of results.
• Sensitivity analysis.
• Definition of risk and uncertainty.
• Selection of the configuration (Blanchard & Fabrycky, 1981; Pressman, 1992).

Once the functionality and the non-functional requirements of the system have been
allocated, the system engineer can create a model that represents the interrelationship
between system elements and sets a foundation for later requirements analysis and
design steps. The decomposition is done right when:

• Distribution and partitioning of functionality are optimized to achieve the overall
functionality of the system with minimal costs and maximum flexibility.

• Each subsystem can be defined, designed, and built by a small or at least modest-
sized team.

• Each subsystem can be manufactured within the physical constraints and tech-
nologies of the available manufacturing processes.

• Each subsystem can be reliably tested as a subsystem subject to the availability
of suitable fixtures and harnesses that simulate the interfaces to the other system.

• Appropriate regard is given to the physical domain – the size, weight, location, and
distribution of the subsystems – that has been optimized in the overall system
context (Leffingwell & Widrig, 2000).

2. Requirements Flow-Down

Flow-down consists of writing requirements for the lower-level elements in response to
the allocation. When a system requirement is allocated to a subsystem, the subsystem
must have at least one requirement that responds to the allocation. Usually more than
one requirement will be written. The lower-level requirement(s) may closely resemble the
higher-level one or may be very different if the system engineers recognize a capability



V/10 V/11

Requirements Engineering: Sociotechnical Systems Development   11

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

system elements may be found. These are then fed back to the system requirements
development process. Allocation and flow-down starts as a multi-disciplinary activity,
that is, subsystems may contain hardware, software, and mechanics. Initially they are
considered as one subsystem; in later iterations the different disciplines are considered
separately. Software requirements development will be described in detail in the next
section.

Software Requirements Development

The software requirements development process is the activity determining which
functionality of the system will be performed by software. Documenting this function-
ality together with the non-functional requirements in a software requirements specifi-
cation is part of this phase. Through the system mechanism of flow-down, allocation, and
derivation, a software requirements specification will be established for each software
subsystem, software configuration item, or component (Thayer & Royce, 1990).

1. Software Requirements Analysis

Software requirements analysis is a software engineering task that bridges the gap
between system-level software allocation and software design. Requirements analysis
enables the specification of software functions and performance, an indication of the
software interfaces with other system elements, and the establishment of design
constraints that the software must meet. Requirements analysis also refines the software
allocation and builds models of the process, data, and behavioral domains that will be
treated by software. Prioritizing the software requirements is also part of software
requirements analysis. To support requirements analysis, the software system may be
modelled, covering both functional and quality aspects.

2. Software Requirements Documentation

In order to be able to communicate software requirements and to make changes to them,
they need to be documented in a software requirements specification (SRS). An SRS
contains a complete description of the external behavior of the software system. It is
possible to complete the entire requirements analysis before starting to write the SRS.
However it is more likely that as the analysis process yields aspects of the problem that
are well understood, the corresponding section of the SRS is written.

3. Software Requirements Validation and Verification

Software requirements need to be validated against system-level requirements, and the
SRS needs to be verified. Verification of SRS includes, for example, correctness,
consistency, unambiguousness, and understandability (IEEE Std 830, 1998).

10   Parviainen, Tihinen, Lormans and van Solingen

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without writtenpermission of Idea Group Inc. is prohibited.

that the lower-level element must have to meet the higher-level requirements. In the lattercase, the lower-level requirements are often referred to as “derived” (Dorfman, 1990).Derived requirements are requirements that must be imposed on the subsystem(s). Theserequirements are derived from the system decomposition process. As such alternativedecompositions would have created alternative derived requirements. Typically thereare two subclasses of derived requirements:

• Subsystem requirements that must be imposed on the subsystems themselves butdo not necessarily provide a direct benefit to the end user.• Interface requirements that arise when the subsystems need to communicate withone another to accomplish an overall result. They will need to share data or poweror a useful computing algorithm (Leffingwell & Widrig, 2000).

In the allocation and flow-down phase, requirements identification and traceability haveto be ensured both to higher-level requirements as well as between requirements on thesame level. Also the rationale behind design decisions should be recorded in order toensure that there is enough information for verification and validation of the next phases’work products and change management.The flowing down of the top-level system requirements through the lower levels of thehierarchy until the hardware and software component levels are reached in theoryproduces a system in which all elements are completely balanced, or “optimized.” In thereal world, complete balance is seldom achieved due to fiscal, schedule, and technologi-cal constraints (Sailor, 1990; Nelsen, 1990).Table 2 includes few examples of methods available for the allocation and flow-down.The results of allocation and flow-down are detailed system-level requirements and the“architectural design” or “top-level design” of the system. Again needs to change thesystem requirements (additions, deletions, and corrections) and/or the definitions of the

Table 2. Allocation and flow-down methodsActivity Example methods Description Allocation  SRA (System Requirements Allocation Methodology) (Hadel & Lakey, 1995) A customer-oriented systems engineering approach for allocating top-level quantitative system requirements. It aims atcreating optimized design alternatives, which correspond to the customer requirements using measurable parameters.ATAM (Architecture Trade-off Analysis Method) (Kazman, Klein, Barbacci, Longstaff, Lipson, & Carriere, 1998) Helps for performing trade-off analysis andmanaging non-functional requirements during allocation. HPM (Hatley-Pirbhai Methodology) (Hatley & Pirbhai, 1987) Verifies requirements allocation and manages changes during allocation phase. QADA (Matinlassi & Niemelä, 2002)  FAST (Weiss & Lai, 1999) Methods for architecture design and analysis. See more from Dobrica & Niemelä, 2002. Flow-down ATAM (Architecture Trade-off Analysis Method) (Kazman et al., 1998)  HPM (Hatley & Pirbhai, 1987) Facilitates communication between stakeholders for gaining a rationale of requirements flow-down. 

10   Parviainen, Tihinen, Lormans and van Solingen

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

that the lower-level element must have to meet the higher-level requirements. In the latter
case, the lower-level requirements are often referred to as “derived” (Dorfman, 1990).
Derived requirements are requirements that must be imposed on the subsystem(s). These
requirements are derived from the system decomposition process. As such alternative
decompositions would have created alternative derived requirements. Typically there
are two subclasses of derived requirements:

• Subsystem requirements that must be imposed on the subsystems themselves but
do not necessarily provide a direct benefit to the end user.

• Interface requirements that arise when the subsystems need to communicate with
one another to accomplish an overall result. They will need to share data or power
or a useful computing algorithm (Leffingwell & Widrig, 2000).

In the allocation and flow-down phase, requirements identification and traceability have
to be ensured both to higher-level requirements as well as between requirements on the
same level. Also the rationale behind design decisions should be recorded in order to
ensure that there is enough information for verification and validation of the next phases’
work products and change management.
The flowing down of the top-level system requirements through the lower levels of the
hierarchy until the hardware and software component levels are reached in theory
produces a system in which all elements are completely balanced, or “optimized.” In the
real world, complete balance is seldom achieved due to fiscal, schedule, and technologi-
cal constraints (Sailor, 1990; Nelsen, 1990).
Table 2 includes few examples of methods available for the allocation and flow-down.
The results of allocation and flow-down are detailed system-level requirements and the
“architectural design” or “top-level design” of the system. Again needs to change the
system requirements (additions, deletions, and corrections) and/or the definitions of the

Table 2. Allocation and flow-down methods

Activity Example methods Description 
Allocation  SRA (System Requirements Allocation 

Methodology) (Hadel & Lakey, 1995)
A customer-oriented systems engineering 
approach for allocating top-level 
quantitative system requirements. It aims at
creating optimized design alternatives, 
which correspond to the customer 
requirements using measurable parameters.

ATAM (Architecture Trade-off Analysis 
Method) (Kazman, Klein, Barbacci, 
Longstaff, Lipson, & Carriere, 1998) 

Helps for performing trade-off analysis and
managing non-functional requirements 
during allocation. 

HPM (Hatley-Pirbhai Methodology) 
(Hatley & Pirbhai, 1987)

Verifies requirements allocation and 
manages changes during allocation phase. 

QADA (Matinlassi & Niemelä, 2002)  
FAST (Weiss & Lai, 1999) 

Methods for architecture design and 
analysis. See more from Dobrica & 
Niemelä, 2002. 

Flow-down ATAM (Architecture Trade-off Analysis 
Method) (Kazman et al., 1998)  
HPM (Hatley & Pirbhai, 1987)

Facilitates communication between 
stakeholders for gaining a rationale of 
requirements flow-down. 



V/11

Requirements Engineering: Sociotechnical Systems Development   11

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

system elements may be found. These are then fed back to the system requirements
development process. Allocation and flow-down starts as a multi-disciplinary activity,
that is, subsystems may contain hardware, software, and mechanics. Initially they are
considered as one subsystem; in later iterations the different disciplines are considered
separately. Software requirements development will be described in detail in the next
section.

Software Requirements Development

The software requirements development process is the activity determining which
functionality of the system will be performed by software. Documenting this function-
ality together with the non-functional requirements in a software requirements specifi-
cation is part of this phase. Through the system mechanism of flow-down, allocation, and
derivation, a software requirements specification will be established for each software
subsystem, software configuration item, or component (Thayer & Royce, 1990).

1. Software Requirements Analysis

Software requirements analysis is a software engineering task that bridges the gap
between system-level software allocation and software design. Requirements analysis
enables the specification of software functions and performance, an indication of the
software interfaces with other system elements, and the establishment of design
constraints that the software must meet. Requirements analysis also refines the software
allocation and builds models of the process, data, and behavioral domains that will be
treated by software. Prioritizing the software requirements is also part of software
requirements analysis. To support requirements analysis, the software system may be
modelled, covering both functional and quality aspects.

2. Software Requirements Documentation

In order to be able to communicate software requirements and to make changes to them,
they need to be documented in a software requirements specification (SRS). An SRS
contains a complete description of the external behavior of the software system. It is
possible to complete the entire requirements analysis before starting to write the SRS.
However it is more likely that as the analysis process yields aspects of the problem that
are well understood, the corresponding section of the SRS is written.

3. Software Requirements Validation and Verification

Software requirements need to be validated against system-level requirements, and the
SRS needs to be verified. Verification of SRS includes, for example, correctness,
consistency, unambiguousness, and understandability (IEEE Std 830, 1998).



V/12 V/13

12   Parviainen, Tihinen, Lormans and van Solingen

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

A requirements traceability mechanism to generate an audit trail between the software
requirements and final tested code should be established. Traceability should be
maintained to system-level requirements, between software requirements, and to later
phases, for example, architectural work products.

Table 3. Software requirements development methods

Activity Example methods Description 
Software 
requirements 
analysis

OMT (Object Modeling Technique) 
(Bourdeau & Cheng, 1995)  
Shlaer-Mellor Object-Oriented Analysis 
Method (Shlaer & Mellor, 1988)  
UML (Unified Modeling Language) 
(Booch, Jacobson, & Rumbaugh, 1998)

Object-oriented methods model systems in 
an object-oriented way or support object-
oriented development in the analysis and 
design phases.

SADT (Structured Analysis and Design 
Technique) (Schoman & Ross, 1977)  
SASS (Structured Analysis and System 
Specification) (Davis, 1990) 

Structured methods analyze systems from 
process and data perspective by structuring 
a project into small, well-defined activities 
and specifying the sequence and interaction
of these activities. Typically diagrammatic 
and other modeling techniques are used 
during analysis work.

B-methods (Schneider, 2001)  
Petri Nets (Girault & Valk, 2002; Petri, 
1962) 

Formal methods are often used for safety-
critical systems.

XP (Extreme Programming) (Beck, 1999) Agile methods are not specially focused on 
RE, but they have an integral point of view 
where RE is one of the activities of the 
whole cycle. See more from Abrahamsson 
et al., 2002.

CARE (COTS-Aware Requirements 
Engineering) (Chung, Cooper, & Huynh,,
2001) 
OTSO (Off-the-Shelf Option) (Kontio, 
1995) 

Specific methods for RE when using COTS
(Commercial off-the-shelf). COTS is a 
ready-made software product that is 
supplied by a vendor and has specific 
functionality as part of a system. 

Planguage (Gilb, 2003) Consists of a software systems engineering 
language for communicating systems 
engineering and management specifications,
and a set of methods providing advice on 
best practices. 

Requirements 
documentation 

IEEE Std 830-1998 IEEE defines contents of an SRS. The 
standard doesn't describe sequential steps to
be followed but defines the characteristics 
of a good SRS and provides a structure 
template for the SRS. This template can be 
used in documenting the requirements and 
also as a checklist in other phases of the 
requirements engineering process. 

Requirements 
validation 

Volere (Robertson & Robertson, 1999) Provides process for gathering/eliciting and
validating both system and software 
requirements. 

Storyboard Prototyping (Andriole, 1989) Sequences of computer-generated displays, 
called storyboards, are used to simulate the 
functions of the formally implemented 
system beforehand. This supports the 
communication of system functions to the 
user and makes the trade-offs non-
functional and functional requirements 
visible, traceable and analyzable. 

 Also several other methods, such as 
object-oriented methods, provide some 
support for validation and verification 



V/13

Requirements Engineering: Sociotechnical Systems Development   13

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

The outcome of the software requirements development phase is a formal document
including a baseline of the agreed software requirements. According to SPICE (1998), as
a result of successful implementation of the process:

• The requirements allocated to software components of the system and their
interfaces will be defined to match the customer’s stated needs.

• Analyzed, correct, and testable software requirements will be developed.
• The impact of software requirements on the operating environment will be under-

stood.
• A software release strategy will be developed that defines the priority for imple-

menting software requirements.
• The software requirements will be approved and updated as needed.
• Consistency will be established between software requirements and software

designs.
• The software requirements will be communicated to affected parties.

Table 3 gives examples of methods or techniques available for software requirements
development.

Continuous Activities

Documentation, validation, and verification of the continuous activities are included in
the main process phase where the activity is mentioned the first time. Only requirements
management viewpoints (identification, traceability, and change management) are dis-
cussed in this section.
 Requirements management controls and tracks changes of agreed requirements, rela-
tionships between requirements, and dependencies between the requirements docu-
ments and other documents produced during the systems and software engineering
process (Kotonya & Sommerville, 1998). Requirements management is a continuous and
cross-section process that begins from requirements management planning and contin-
ues via activities of identification, traceability, and change control during and after
requirements development process phases. Requirements management continues also
after development during maintenance, because the requirements continue to change
(Kotonya & Sommerville, 1998; Lauesen, 2002). Each of the requirements management
activities is introduced in the following.

1. Requirements Identification

Requirements identification practices focus on the assignment of a unique identifier for
each requirement (Sommerville & Sawyer, 1997). These unique identifiers are used to refer

12   Parviainen, Tihinen, Lormans and van Solingen

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

A requirements traceability mechanism to generate an audit trail between the software
requirements and final tested code should be established. Traceability should be
maintained to system-level requirements, between software requirements, and to later
phases, for example, architectural work products.

Table 3. Software requirements development methods

Activity Example methods Description 
Software 
requirements 
analysis

OMT (Object Modeling Technique) 
(Bourdeau & Cheng, 1995)  
Shlaer-Mellor Object-Oriented Analysis 
Method (Shlaer & Mellor, 1988)  
UML (Unified Modeling Language) 
(Booch, Jacobson, & Rumbaugh, 1998)

Object-oriented methods model systems in 
an object-oriented way or support object-
oriented development in the analysis and 
design phases.

SADT (Structured Analysis and Design 
Technique) (Schoman & Ross, 1977)  
SASS (Structured Analysis and System 
Specification) (Davis, 1990) 

Structured methods analyze systems from 
process and data perspective by structuring 
a project into small, well-defined activities 
and specifying the sequence and interaction
of these activities. Typically diagrammatic 
and other modeling techniques are used 
during analysis work.

B-methods (Schneider, 2001)  
Petri Nets (Girault & Valk, 2002; Petri, 
1962) 

Formal methods are often used for safety-
critical systems.

XP (Extreme Programming) (Beck, 1999) Agile methods are not specially focused on 
RE, but they have an integral point of view 
where RE is one of the activities of the 
whole cycle. See more from Abrahamsson 
et al., 2002.

CARE (COTS-Aware Requirements 
Engineering) (Chung, Cooper, & Huynh,,
2001) 
OTSO (Off-the-Shelf Option) (Kontio, 
1995) 

Specific methods for RE when using COTS
(Commercial off-the-shelf). COTS is a 
ready-made software product that is 
supplied by a vendor and has specific 
functionality as part of a system. 

Planguage (Gilb, 2003) Consists of a software systems engineering 
language for communicating systems 
engineering and management specifications,
and a set of methods providing advice on 
best practices. 

Requirements 
documentation 

IEEE Std 830-1998 IEEE defines contents of an SRS. The 
standard doesn't describe sequential steps to
be followed but defines the characteristics 
of a good SRS and provides a structure 
template for the SRS. This template can be 
used in documenting the requirements and 
also as a checklist in other phases of the 
requirements engineering process. 

Requirements 
validation 

Volere (Robertson & Robertson, 1999) Provides process for gathering/eliciting and
validating both system and software 
requirements. 

Storyboard Prototyping (Andriole, 1989) Sequences of computer-generated displays, 
called storyboards, are used to simulate the 
functions of the formally implemented 
system beforehand. This supports the 
communication of system functions to the 
user and makes the trade-offs non-
functional and functional requirements 
visible, traceable and analyzable. 

 Also several other methods, such as 
object-oriented methods, provide some 
support for validation and verification 



V/14 V/15

14   Parviainen, Tihinen, Lormans and van Solingen

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

to requirements during product development and management. Requirements’ identifi-
cation support can be divided into the three classes (Berlack, 1992; Sommerville &
Sawyer, 1997):

1. Basic numbering systems
• Significant numbering
• Non-significant numbering

2. Identification schemes
• Tagging
• Structure-based identification
• Symbolic identification

3. Techniques to support and automate the management of items
• Dynamic renumbering
• Database record identification
• Baselining requirements

2. Requirements Traceability

Requirements traceability refers to the ability to describe and follow the life of a
requirement and its relations with other development artefacts in both forward and
backward direction (Gotel, 1995). This is especially important for trade-off analysis,
impact analysis, and verification and validation activities. If traceability is not present,
it is very difficult to identify what the effects of proposed changes are and whether
accepted changes are indeed taken care of.

3. Requirements Change Management

Requirements change management refers to the ability to manage changes to require-
ments throughout the development lifecycle. Change management, in general, includes
identifying, analyzing, deciding on whether a change will be implemented, implementing
and validating change requests. Change management is sometimes said to be the most
complex requirements engineering process (Hull, Jackson, & Dick, 2002). A change can
have a large impact on the system, and estimating this impact is very hard. Requirements
traceability helps making this impact explicit by using downward and upward traceability.
For every change, the costs and redevelopment work have to be considered before
approving the change. Change management has a strong relationship with baselining.
After requirements’ baselining, changes to the requirements need to be incorporated by
using change control procedures (Hooks & Farry, 2001). Examples of requirements
management methods, techniques, or approaches have been listed in Table 4.



V/15

Requirements Engineering: Sociotechnical Systems Development   15

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Requirements management tools have been developed because of the problems of
managing unstable requirements and the large amount of data collected during require-
ments engineering process. A large set of tools – both commercial and non-commercial)
– is available; for examples, see Parviainen et al, 2003. Requirements management tools
collect together the system requirements in a database or repository and provide a range
of facilities to access the information about the requirements (Kotonya & Sommerville,
1998). According to Lang & Duggan (2001), software requirements management tools
must be able to:

• Maintain unique identifiable description of all requirements.
• Classify requirements into logical user-defined groups.
• Specify requirements with textual, graphical, and model-based description.
• Define traceable associations between requirements.
• Verify the assignments of user requirements to technical design specifications.
• Maintain an audit trail of changes, archive baseline versions, and engage a

mechanism to authenticate and approve change requests.
• Support secure, concurrent co-operative work between members of a

multidisciplinary development team.
• Support standard systems modeling techniques and notations.
• Maintain a comprehensive data dictionary of all project components and require-

ments in a shared repository.

Table 4. Requirements management methods

Activity Example methods Description 
Requirements 
traceability 

Cross reference,  
traceability matrices,  
automated traceability links  
(Sommerville & Sawyer, 1997) 

Techniques can be used for presenting and 
managing requirements as separate entities 
and describing and maintaining links 
between them, for example, during 
allocation, implementation, or verification. 

 IBIS derivatives (Pinheiro, 2000) 
Document -centred models  
Database guided models 
(Pinheiro, 2000)  
RADIX (Yu, 1994)  
QFD (West, 1991) 

Methods present traces and provide 
information to capture design rationale, for 
example, by providing automated support 
for discussion and negotiation of design 
issues. 

 Languages, for example, ALBERT 
(Dubois, Du Bois, & Petit, 1994) or RML
(Requirements Modeling Language) 
(Greenspan, Mylopoulos, & Borgida, 
1994) 

Traceability can be supported by using 
languages or notations. 

Change 
management 

Olsen’s ChM model (Olsen, 1993)  
V-like model (Harjani & Queille, 1992) 
Ince's ChM model (Ince, 1994) 

Change management process models and 
approaches. 

14   Parviainen, Tihinen, Lormans and van Solingen

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

to requirements during product development and management. Requirements’ identifi-
cation support can be divided into the three classes (Berlack, 1992; Sommerville &
Sawyer, 1997):

1. Basic numbering systems
• Significant numbering
• Non-significant numbering

2. Identification schemes
• Tagging
• Structure-based identification
• Symbolic identification

3. Techniques to support and automate the management of items
• Dynamic renumbering
• Database record identification
• Baselining requirements

2. Requirements Traceability

Requirements traceability refers to the ability to describe and follow the life of a
requirement and its relations with other development artefacts in both forward and
backward direction (Gotel, 1995). This is especially important for trade-off analysis,
impact analysis, and verification and validation activities. If traceability is not present,
it is very difficult to identify what the effects of proposed changes are and whether
accepted changes are indeed taken care of.

3. Requirements Change Management

Requirements change management refers to the ability to manage changes to require-
ments throughout the development lifecycle. Change management, in general, includes
identifying, analyzing, deciding on whether a change will be implemented, implementing
and validating change requests. Change management is sometimes said to be the most
complex requirements engineering process (Hull, Jackson, & Dick, 2002). A change can
have a large impact on the system, and estimating this impact is very hard. Requirements
traceability helps making this impact explicit by using downward and upward traceability.
For every change, the costs and redevelopment work have to be considered before
approving the change. Change management has a strong relationship with baselining.
After requirements’ baselining, changes to the requirements need to be incorporated by
using change control procedures (Hooks & Farry, 2001). Examples of requirements
management methods, techniques, or approaches have been listed in Table 4.



V/16 V/17

16   Parviainen, Tihinen, Lormans and van Solingen

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

• Generate predefined and ad-hoc reports.
• Generate documents that comply with standard industrial templates.
• Connect seamlessly with other tools and systems.

Conclusion

Requirements engineering for sociotechnical systems is a complex process that consid-
ers product demands from a vast number of viewpoints, roles, responsibilities, and
objectives. In this chapter we have explained the activities of requirements engineering
and their relations to the available methods. A large set of methods is available, each with
their specific strengths and weaknesses. The methods’ feasibility and applicability do,
however, vary between phases or activities. Method descriptions also often lack the
information of the methods’ suitability to different environments and problem situations,
thus making the selection of an applicable method or combination of methods to be used
in a particular real-life situation complicated.
Requirements engineering deserves stronger attention from practice, as the possibilities
of available methods are largely overlooked by industrial practice (Graaf, Lormans, &
Toetenel, 2003). As requirements engineering is the process with the largest impact on
the end product, it is recommended to invest more effort in industrial application as well
as research to increase understanding and deployment of the concepts presented in this
chapter.
This chapter has only listed a few examples of methods. For a more comprehensive listing
of methods see Parviainen et al. (2003).

References

Abrahamsson, P., Salo, O., Ronkainen, J. & Warsta, J. (2002). Agile software development
methods: Review and analysis. Espoo: Technical Research Centre of Finland, VTT
Publications.

Ambler, S. W. (1998). Process patterns. building large-scale systems using object
technology. Cambridge University Press.

Andriole, S. (1989). Storyboard prototyping for systems design: A new approach to user
requirements analysis. Q E D Pub Co.

Ashworth, C., & Goodland, M. (1990). SSADM: A practical approach. McGraw-Hill.
Beck, K. (1999). Extreme programming explained: Embrace change. Reading, MA:

Addison-Wesley.
Berlack, H. (1992). Software configuration management. John Wiley & Sons.



V/17

Requirements Engineering: Sociotechnical Systems Development   17

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Björner, D., & Jones, C.B. (Eds.). (1978). The Vienna development method: The meta-
language: volume 61 of lecture notes in computer science. Springer-Verlag.

Blanchard, B.S., & Fabrycky, W.J. (1981). Systems engineering and analysis. Prentice-
Hall.

Booch, G., Jacobson, I., & Rumbaugh, J. (1998). The unified modeling language user
guide. Addison-Wesley.

Bose, P. (1995). A model for decision maintenance in the winwin collaboration framework.
Proceedings of the 10th Conference on Knowledge-Based Software Engineering,
105-113.

Bourdeau, R.H., & Cheng, B.H.C. (1995). A formal semantics for object model diagrams.
IEEE Transactions on Software Engineering, 21(10), 799–821.

Chung, L., Cooper, K., & Huynh, D.T. (2001). COTS-aware requirements engineering
Technique. Proceedings of the 2001 Workshop on Embedded Software Technol-
ogy (WEST’01).

Davis, A. M. (1990). Software requirements: Analysis and specification. Prentice Hall.
Dobrica, L., & Niemelä, E. (2002). A survey on software architecture analysis methods.

IEEE Transactions on Software Engineering, 28(7), 638-653.
Dorfman, M. (1990). System and software requirements engineering. In R.H. Thayer &

M. Dorfman (Eds.) IEEE system and software requirements engineering, IEEE
software computer society press tutorial. Los Alamos, CA: IEEE Software Society
Press.

Dubois, E., Du Bois, P., & Petit, M. (1994). ALBERT: An agent-oriented language for
building and eliciting requirements for real-time systems. Vol. IV: Information
systems: Collaboration technology organizational systems and technology. Pro-
ceedings of the Twenty-Seventh Hawaii International Conference on System
Sciences, 713 -722.

Ericsson, K.A., & Simon, H. A. (1993). Protocol analysis - revised edition. MIT Press.
Gilb, T. (2003). Competitive Engineering. Addison-Wesley.
Girault, C., & Valk, R. (2002). Petri nets for system engineering: A guide to modeling,

verification and applications. Springer-Verlag.
Gotel, O. (1995). Contribution structures for requirements traceability. PhD thesis,

Imperial College of Science, Technology and Medicine, University of London.
Graaf , B.S., Lormans, M., & Toetenel, W.J. (2003). Embedded software engineering: state

of the practice [Special issue]. IEEE Software magazine, 20(6), 61-69.
Greenspan, S., Mylopoulos, J., & Borgida, A. (1994). On formal requirements modelling

languages: RML revisited. Proceedings of ICSE-16, 16th International Confer-
ence on Software Engineering, 135-147.

Hadel, J.J., & Lakey, P.B. (1995). A customer-oriented approach for optimising reliability-
allocation within a set of weapon-system requirements. Proceedings of the Annual
Symposium on Reliability and Maintainability, 96-101.

16   Parviainen, Tihinen, Lormans and van Solingen

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

• Generate predefined and ad-hoc reports.
• Generate documents that comply with standard industrial templates.
• Connect seamlessly with other tools and systems.

Conclusion

Requirements engineering for sociotechnical systems is a complex process that consid-
ers product demands from a vast number of viewpoints, roles, responsibilities, and
objectives. In this chapter we have explained the activities of requirements engineering
and their relations to the available methods. A large set of methods is available, each with
their specific strengths and weaknesses. The methods’ feasibility and applicability do,
however, vary between phases or activities. Method descriptions also often lack the
information of the methods’ suitability to different environments and problem situations,
thus making the selection of an applicable method or combination of methods to be used
in a particular real-life situation complicated.
Requirements engineering deserves stronger attention from practice, as the possibilities
of available methods are largely overlooked by industrial practice (Graaf, Lormans, &
Toetenel, 2003). As requirements engineering is the process with the largest impact on
the end product, it is recommended to invest more effort in industrial application as well
as research to increase understanding and deployment of the concepts presented in this
chapter.
This chapter has only listed a few examples of methods. For a more comprehensive listing
of methods see Parviainen et al. (2003).

References

Abrahamsson, P., Salo, O., Ronkainen, J. & Warsta, J. (2002). Agile software development
methods: Review and analysis. Espoo: Technical Research Centre of Finland, VTT
Publications.

Ambler, S. W. (1998). Process patterns. building large-scale systems using object
technology. Cambridge University Press.

Andriole, S. (1989). Storyboard prototyping for systems design: A new approach to user
requirements analysis. Q E D Pub Co.

Ashworth, C., & Goodland, M. (1990). SSADM: A practical approach. McGraw-Hill.
Beck, K. (1999). Extreme programming explained: Embrace change. Reading, MA:

Addison-Wesley.
Berlack, H. (1992). Software configuration management. John Wiley & Sons.



V/18 V/19

18   Parviainen, Tihinen, Lormans and van Solingen

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Harjani, D.R., & Queille, J.P. (1992). A process model for the maintenance of large space
systems software. Proceedings of Conference on Software Maintenance, Los
Alamitos: IEE Computer, 127-136.

Hatley, D.J., & Pirbhai, I.A. (1987). Strategies for real-time system specification. Dorset
House.

Hooks, I., & Farry, K. (2001). Customer-centred products. Amacom.
Hull, M.E.C., Jackson, K., & Dick, A.J.J. (2002). Requirements Engineering. Berlin:

Springer-Verlag.
HUSAT Reasearch Institute. (1998). User centred-requirements handbook (Version 3.2).

[Handbook]. Loughborough, Leicestestershire, UK: Maguire.
Ince, D. (1994). Introduction to software quality assurance and its implementation.

McGraw-Hill.
Institute of Electrical and Electronics Engineering, Inc. (1990). IEEE Standard Glossary

of Software Engineering Terminology (IEEE Std 610.12).
Institute of Electrical and Electronics Engineering, Inc. (1998). IEEE Guide for Developing

System Requirements Specifications (IEEE Std 1233).
Institute of Electrical and Electronics Engineering, Inc. (1998). IEEE Recommended

Practice for Software Requirements Specifications (IEEE Std 830).
International Organisation for Standardisation. (Ed.). (1998). Information technology

software process assessment part 2: A reference model for processes and process
capability. (SPICE: ISO/IEC TR 15504-2). Geneva, Switzerland: ISO.

Juristo, N., Moreno A.M., & Silva, A. (2002). Is the European industry moving toward
solving requirements engineering problems? IEEE Software, 19(6), 70-77.

Kazman, R., Klein, M., Barbacci, M., Longstaff, T., Lipson, H., & Carriere, J. (1998). The
architecture tradeoff method. Proceedings of the fourth IEEE International
Conference on Engineering of Complex Computer Systems, 68-78.

Komi-Sirviö, S., & Tihinen M. (2003, July 1-3). Great challenges and opportunities of
distributed software development - an industrial survey. Proceedings of Fifteenth
International Conference on Software Engineering and Knowledge Engineer-
ing, SEKE2003, San Francisco.

Kontio, J. (1995). OTSO: a systematic process for reusable software component selec-
tion, version 1.0. The Hughes Information Technology Corporation and the EOS
Program.

Kotonya, G., & Sommerville, I. (1996). Requirements engineering with viewpoints.
Software Engineering Journal, 11(1), 5-11.

Kotonya, G., & Sommerville, I. (1998). Requirements engineering: process and tech-
niques. John Wiley & Sons.

Lang, M., & Duggan, J. (2001). A tool to support collaborative software requirements
management. Requirements Engineering, 6(3), 161–172.

Lauesen, S. (2002). Software requirements: styles and techniques. Addison-Wesley.
Leffingwell, D., & Widrig, D. (2000). Managing software requirements - a unified

approach. Addison-Wesley.



V/19

Requirements Engineering: Sociotechnical Systems Development   19

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Matinlassi, M. & Niemelä, E. (2002). Quality-driven architecture design method. Inter-
national Conference of Software and Systems Engineering and their Applications
(ICSSEA 2002), Paris, France.

Mullery, G.P. (1979). CORE – A method for controlled requirement specification. Pro-
ceedings of IEEE Fourth International Conference on Software Engineering.

Nelsen, E. D. (1990). System engineering and requirement allocation. In R.H. Thayer &
M. Dorfman, IEEE system and software requirements engineering, IEEE software
computer society press tutorial. Los Alamos, CA: IEEE Software Society Press.

Olsen, N. (1993). The software rush hour. IEEE Software Magazine, 29-37.
Parviainen, P., Hulkko, H., Kääriäinen, J., Takalo, J., & Tihinen, M. (2003). Requirements

Engineering. Inventory of Technologies. Espoo: VTT Publications.
Petri, C.A. (1962). Kommunikation mit Automaten. Bonn Institut für Instrumentelle

Mathematik. Schriften des IIM Nr. 2.
Pinheiro, F. (2000). Formal and informal aspects of requirements tracing. Proceedings of

III Workshop on Requirements Engineering, Rio de Janeiro, Brazil.
Pressman, R. S. (1992). Software engineering, a practitioner’s approach, third edition.

McGraw-Hill Inc.
Revelle, J.B., Moran, J.B., Cox, C.A., & Moran, J.M. (1998). The QFD handbook. John

Wiley & Sons.
Robertson, S., & Robertson, J. (1999). Mastering the requirements process. Addison-

Wesley.
Ropohl, G. (1999). Philosophy of sociotechnical systems. Society for Philosophy and

Technology 4(3). Retrieved May 5, 2004, from http://scholar.lib.vt.edu/ejournals/
SPT/v4_n3pdf/ROPOHL.PDF.

Royce, W. W. (1970). Managing the development of large software systems. Proceed-
ings of IEEE Wescon, August 1970. Reprinted in Proceedings of 9th Int’l Conference
Software Engineering 1987, 328-338, Los Alamitos: CA.

Sailor, J. D. (1990). System engineering: an introduction. In R.H. Thayer & M. Dorfman,
IEEE system and software requirements engineering, IEEE software computer
society press tutorial. IEEE Software Society Press.

Schneider, S. (2001). The B-method: an introduction. Palgrave.
Schoman, K., & Ross, D.T. (1977). Structured analysis for requirements definition. IEEE

Transactions on Software Engineering 6–15.
Sheppard, D. (1995). An introduction to formal specification with Z and VDM. McGraw-

Hill.
Shlaer, S., & Mellor, S. (1988). Object-oriented system analysis: modeling the world in

data (Yourdon Press computing series). Prentice-Hall.
Siddiqi, J. (1996). Requirement engineering: the emerging wisdom. IEEE Software, 13(2),

15-19.
Sommerville, I., & Sawyer, P. (1997). Requirements engineering: A good practise guide.

John Wiley & Sons.

18   Parviainen, Tihinen, Lormans and van Solingen

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Harjani, D.R., & Queille, J.P. (1992). A process model for the maintenance of large space
systems software. Proceedings of Conference on Software Maintenance, Los
Alamitos: IEE Computer, 127-136.

Hatley, D.J., & Pirbhai, I.A. (1987). Strategies for real-time system specification. Dorset
House.

Hooks, I., & Farry, K. (2001). Customer-centred products. Amacom.
Hull, M.E.C., Jackson, K., & Dick, A.J.J. (2002). Requirements Engineering. Berlin:

Springer-Verlag.
HUSAT Reasearch Institute. (1998). User centred-requirements handbook (Version 3.2).

[Handbook]. Loughborough, Leicestestershire, UK: Maguire.
Ince, D. (1994). Introduction to software quality assurance and its implementation.

McGraw-Hill.
Institute of Electrical and Electronics Engineering, Inc. (1990). IEEE Standard Glossary

of Software Engineering Terminology (IEEE Std 610.12).
Institute of Electrical and Electronics Engineering, Inc. (1998). IEEE Guide for Developing

System Requirements Specifications (IEEE Std 1233).
Institute of Electrical and Electronics Engineering, Inc. (1998). IEEE Recommended

Practice for Software Requirements Specifications (IEEE Std 830).
International Organisation for Standardisation. (Ed.). (1998). Information technology

software process assessment part 2: A reference model for processes and process
capability. (SPICE: ISO/IEC TR 15504-2). Geneva, Switzerland: ISO.

Juristo, N., Moreno A.M., & Silva, A. (2002). Is the European industry moving toward
solving requirements engineering problems? IEEE Software, 19(6), 70-77.

Kazman, R., Klein, M., Barbacci, M., Longstaff, T., Lipson, H., & Carriere, J. (1998). The
architecture tradeoff method. Proceedings of the fourth IEEE International
Conference on Engineering of Complex Computer Systems, 68-78.

Komi-Sirviö, S., & Tihinen M. (2003, July 1-3). Great challenges and opportunities of
distributed software development - an industrial survey. Proceedings of Fifteenth
International Conference on Software Engineering and Knowledge Engineer-
ing, SEKE2003, San Francisco.

Kontio, J. (1995). OTSO: a systematic process for reusable software component selec-
tion, version 1.0. The Hughes Information Technology Corporation and the EOS
Program.

Kotonya, G., & Sommerville, I. (1996). Requirements engineering with viewpoints.
Software Engineering Journal, 11(1), 5-11.

Kotonya, G., & Sommerville, I. (1998). Requirements engineering: process and tech-
niques. John Wiley & Sons.

Lang, M., & Duggan, J. (2001). A tool to support collaborative software requirements
management. Requirements Engineering, 6(3), 161–172.

Lauesen, S. (2002). Software requirements: styles and techniques. Addison-Wesley.
Leffingwell, D., & Widrig, D. (2000). Managing software requirements - a unified

approach. Addison-Wesley.

http://scholar.lib.vt.edu/ejournals/


V/20 V/21

20   Parviainen, Tihinen, Lormans and van Solingen

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Stevens, R., Brook, P., Jackson, K., & Arnold, S. (1998). Systems engineering - Coping
with complexity. London: Prentice Hall.

Suchman, L. (1983). Office procedures as practical action. ACM Transactions on Office
Information Systems, 320-328.

Sutcliffe, A. (1998). Scenario-based requirement analysis. Requirements Engineering
Journal, 3(1), 48-65.

Thayer, R. H., & Royce, W. W. (1990). Software systems engineering. In R.H. Thayer &
M. Dorfman, M. (Eds.), IEEE system and software requirements engineering, IEEE
software computer society press tutorial. Los Alamos, CA: IEEE Software Society
Press.

Weiss, D., & Lai, C. (1999). Software product-line engineering: A family-based software
development process. Reading, MA: Addison-Wesley.

West, M. (1991, May 1-7). Quality function deployment in software development.
Proceedings of IEEE Colloquium on Tools and Techniques for Maintaining
Traceability During Design.

Yu, W. D. (1994). Verifying software requirements: a requirement tracing methodology
and its software tool-RADIX. IEEE Journal on Selected Areas in Communica-
tions, 12(2), 234 -240.

Endnote

1 This chapter describes the requirements engineering process based on work done
in the MOOSE (Software engineering methodologies for embedded systems)
project (ITEA 01002). The authors would like to thank the partners in the MOOSE
project (http://www.mooseproject.org/), as well as the support from ITEA and the
national public authorities.

http://www.mooseproject.org/


V/21

20   Parviainen, Tihinen, Lormans and van Solingen

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Stevens, R., Brook, P., Jackson, K., & Arnold, S. (1998). Systems engineering - Coping
with complexity. London: Prentice Hall.

Suchman, L. (1983). Office procedures as practical action. ACM Transactions on Office
Information Systems, 320-328.

Sutcliffe, A. (1998). Scenario-based requirement analysis. Requirements Engineering
Journal, 3(1), 48-65.

Thayer, R. H., & Royce, W. W. (1990). Software systems engineering. In R.H. Thayer &
M. Dorfman, M. (Eds.), IEEE system and software requirements engineering, IEEE
software computer society press tutorial. Los Alamos, CA: IEEE Software Society
Press.

Weiss, D., & Lai, C. (1999). Software product-line engineering: A family-based software
development process. Reading, MA: Addison-Wesley.

West, M. (1991, May 1-7). Quality function deployment in software development.
Proceedings of IEEE Colloquium on Tools and Techniques for Maintaining
Traceability During Design.

Yu, W. D. (1994). Verifying software requirements: a requirement tracing methodology
and its software tool-RADIX. IEEE Journal on Selected Areas in Communica-
tions, 12(2), 234 -240.

Endnote

1 This chapter describes the requirements engineering process based on work done
in the MOOSE (Software engineering methodologies for embedded systems)
project (ITEA 01002). The authors would like to thank the partners in the MOOSE
project (http://www.mooseproject.org/), as well as the support from ITEA and the
national public authorities.

PAPER VI

A survey of existing requirements 
engineering technologies and their 

coverage

In: International Journal of Software Engineering and 
Knowledge Engineering (IJSEKE) 17(6),  

pp. 1–24.
Copyright 2007 World Scientific.

Reprinted with permission from the publisher.



VI/1

International Journal of Software Engineering and Knowledge Engineering 
 World Scientific Publishing Company 

1

A SURVEY OF EXISTING REQUIREMENTS ENGINEERING TECHNOLOGIES 
AND THEIR COVERAGE

PÄIVI PARVIAINEN 

VTT, Technical Research Centre of Finland 
P.O. BOX 1100, 90571 Oulu, Finland  

Paivi.Parviainen@vtt.fi 

MAARIT TIHINEN 

VTT, Technical Research Centre of Finland 
P.O. BOX 1100, 90571 Oulu, Finland 

Maarit.Tihinen@vtt.fi 

Received (17 December 2005) 
Revised (9 June 2006) 

Accepted (1 November 2006) 

Requirements engineering is  a process in which a most diverse set  of product demands from a most 
diverse set of stakeholders has to be considered. Thus, requirements engineering is generally thought 
of as the most critical and complex process within the development of embedded systems. Over the 
years, a lot of requirements engineering research has been carried out and reported, but still it seems 
clear that the industry is struggling with requirements engineering. Why is that, and what should be 
done to support the industry in tackling its problems? Develop a new method, tailor the existing 
ones, or better inform the industry of what is available that could help them in their problems? To 
find some answers, we carried out an inventory of the available requirements engineering 
technologies, while also looking into their support for requirements engineering. This paper 
describes the survey and reports our findings indicating that what is most urgently needed is 
information and evidence of the applicability of the available technologies in different situations, 
though further development of the technologies is also required. 

Keywords: Requirements engineering; embedded systems; requirements engineering technologies; 
requirement management; requirements management technologies. 

1.   Introduction 

Requirements engineering (RE) is generally accepted to be the most critical and 
complex process within the development of embedded systems, see, for example, [1], [2] 
and [3]. One reason for this is that in requirements engineering the most diverse set of 
product demands from the most diverse set of stakeholders has to be considered, making 
the requirements engineering process both multidisciplinary and complex. Thus, 
methods, techniques and tools are needed for supporting requirements engineering in 
order to ensure effective development and high quality of the products.  

Several focused surveys and papers about requirements engineering methods, their 
evaluation, and the current state of industrial practices have been published. For example, 



VI/1

International Journal of Software Engineering and Knowledge Engineering 
 World Scientific Publishing Company 

1

A SURVEY OF EXISTING REQUIREMENTS ENGINEERING TECHNOLOGIES 
AND THEIR COVERAGE

PÄIVI PARVIAINEN 

VTT, Technical Research Centre of Finland 
P.O. BOX 1100, 90571 Oulu, Finland  

Paivi.Parviainen@vtt.fi 

MAARIT TIHINEN 

VTT, Technical Research Centre of Finland 
P.O. BOX 1100, 90571 Oulu, Finland 

Maarit.Tihinen@vtt.fi 

Received (17 December 2005) 
Revised (9 June 2006) 

Accepted (1 November 2006) 

Requirements engineering is  a process in which a most diverse set  of product demands from a most 
diverse set of stakeholders has to be considered. Thus, requirements engineering is generally thought 
of as the most critical and complex process within the development of embedded systems. Over the 
years, a lot of requirements engineering research has been carried out and reported, but still it seems 
clear that the industry is struggling with requirements engineering. Why is that, and what should be 
done to support the industry in tackling its problems? Develop a new method, tailor the existing 
ones, or better inform the industry of what is available that could help them in their problems? To 
find some answers, we carried out an inventory of the available requirements engineering 
technologies, while also looking into their support for requirements engineering. This paper 
describes the survey and reports our findings indicating that what is most urgently needed is 
information and evidence of the applicability of the available technologies in different situations, 
though further development of the technologies is also required. 

Keywords: Requirements engineering; embedded systems; requirements engineering technologies; 
requirement management; requirements management technologies. 

1.   Introduction 

Requirements engineering (RE) is generally accepted to be the most critical and 
complex process within the development of embedded systems, see, for example, [1], [2] 
and [3]. One reason for this is that in requirements engineering the most diverse set of 
product demands from the most diverse set of stakeholders has to be considered, making 
the requirements engineering process both multidisciplinary and complex. Thus, 
methods, techniques and tools are needed for supporting requirements engineering in 
order to ensure effective development and high quality of the products.  

Several focused surveys and papers about requirements engineering methods, their 
evaluation, and the current state of industrial practices have been published. For example, 

mailto:Paivi.Parviainen@vtt.fi
mailto:Maarit.Tihinen@vtt.fi


VI/2 VI/3

A Survey of Existing Requirements Engineering Methods and their Coverage 3

engineering activities. Due to the large number of available technologies (including 
different methods, techniques, models and languages), an experimental evaluation would 
have been too large a task for the whole set. Thus, the survey presented in this paper is 
based on published experiences and descriptions found. A subjective evaluation was 
made by four research scientists; each of them making their own evaluation for each 
technology against predefined criteria based on available literature. The criteria were 
developed during several workshops within the research and industrial partners of the 
MOOSE project. First, the research partners defined general criteria and those criteria 
were then analysed with industrial partners of the MOOSE project. Secondly, system and 
software requirements engineering process [8], [9] was defined by the researchers and at 
the same time both phase and activity specific criteria were defined. These were then 
analysed and refined in project’s workshop meetings with industrial partners. After the 
subjective evaluation done by the researchers, the results were reviewed by the industrial 
and research partners of the MOOSE project. In addition, some more detailed 
experimental evaluations of some of the methods were carried out and the results have 
been included in this survey. Examples of those cases were 

a study of how scenarios and Goal-Oriented Requirements Engineering (GORE) can 
be combined to achieve a stable set of requirements [10],  
experiences from scenario-based architecting where software architecture was 
created to meet the goals (and related requirements and qualities) by using Quality 
driven Architecture Design and Analysis (QADA) [11],  
experiences and lessons learned of using UML-RT to develop embedded printer 
software [12],  
a study of software requirements implementation and management [13] and 
experiences of managing evolving requirements in an outsourcing context [14];  

This paper is organized as follows: First, in Section 2, background information 
related to the requirements engineering process and activities within it are introduced as a 
basis for the coverage analysis. Second, in Section 3, a general survey of available 
methods and techniques based on literature is presented, and in Section 4, detailed study 
against the defined criteria is introduced. Section 5 discusses issues affecting method 
selection and further development needs of existing methods. Last, the main findings of 
the survey are discussed in the conclusion. 

2.   Requirements Engineering Process 

Requirements engineering is divided into two main groups of activities, requirements 
development and requirements management. Requirements development includes 
activities related to discovering, analysing, documenting and validating requirements, 
whereas requirements management includes activities related to maintenance, namely 
identification, traceability and change management of requirements. Traditionally, RE 
has been performed in the beginning of software development lifecycle [15], but at 
present, RE is understood to be an iterative process, closely linked with other system 
development phases, such as design, implementation and testing. Fig. 1 describes a 

Parviainen Päivi, Tihinen Maarit 2

2

Neill and Laplante [4] have studied how widely a set of technologies was used for 
requirements elicitation and modelling in industry. Ardis et al. [5] have evaluated seven 
specification languages against predefined criteria through the various phases of the 
traditional waterfall model of software development. Haywood and Dart [6], in turn, have 
developed seven different classes for requirements representing technologies (goal 
hierarchy, state chart, hypertext, domain network, use case hierarchy, logic and 
conceptual state machine) and criteria for each class, against which methods can then be 
analyzed. Furthermore, White [7] has presented a comparative analysis of eight methods 
for modelling complex computer systems. However, we could not find any published 
research giving the “big picture” of the available methods; that is, describing how the 
available methods support and cover the requirements engineering activities as a whole. 
Such a picture is important from two viewpoints. First, knowing what solutions are 
already available makes it possible to direct future research and technology development 
work to the problems not yet solved. Second, as there are many different technologies 
available in the market, finding out what is available and what requirements engineering 
activities they support is a laborious task, often not justifiable for industry in practice. 
Thus, an inventory of the available requirements engineering technologies, including an 
overview of  them and  their  support  for  different  RE activities  as  well  as  references  for  
further information, is likely to make finding the potentially existing methods easier. 
Accordingly, the selection of methods for a certain situation can be done based on a 
wider base of technologies, giving a better chance of selecting the best available 
technology.  

The focus of this paper is on understanding how well the available requirements 
engineering technologies cover the different requirements engineering activities. The 
purpose of the survey is not to determine or point out the weaknesses or strengths of the 
various methods. Instead, the aim is to gain an overall view of the available requirements 
engineering technologies and to find the needs for tailoring or combining the available 
methods and techniques in order to provide effective and feasible support for the different 
activities of the RE process as a whole. Furthermore, this paper discusses issues to 
consider when selecting a technology or a combination of methods for real-life 
organisations and projects, mapping the available methods by the requirements 
engineering activities they support. 

The survey is based on an extensive inventory of the available technologies as 
discussed in literature; the results of the study are published in detail in [8] and [9]. The 
inventory was made as part of a large research project, called MOOSEa, in the year 2003. 
We not only considered specific RE technologies, but also more generic software 
engineering technologies as they also often include support for the RE activities. Over 
one hundred refereed papers were studied for gaining as comprehensive a picture as 
possible of available RE technologies and their support for different requirements 

a MOOSE (Software Engineering Methodologies for Embedded Systems) 



VI/3

A Survey of Existing Requirements Engineering Methods and their Coverage 3

engineering activities. Due to the large number of available technologies (including 
different methods, techniques, models and languages), an experimental evaluation would 
have been too large a task for the whole set. Thus, the survey presented in this paper is 
based on published experiences and descriptions found. A subjective evaluation was 
made by four research scientists; each of them making their own evaluation for each 
technology against predefined criteria based on available literature. The criteria were 
developed during several workshops within the research and industrial partners of the 
MOOSE project. First, the research partners defined general criteria and those criteria 
were then analysed with industrial partners of the MOOSE project. Secondly, system and 
software requirements engineering process [8], [9] was defined by the researchers and at 
the same time both phase and activity specific criteria were defined. These were then 
analysed and refined in project’s workshop meetings with industrial partners. After the 
subjective evaluation done by the researchers, the results were reviewed by the industrial 
and research partners of the MOOSE project. In addition, some more detailed 
experimental evaluations of some of the methods were carried out and the results have 
been included in this survey. Examples of those cases were 

a study of how scenarios and Goal-Oriented Requirements Engineering (GORE) can 
be combined to achieve a stable set of requirements [10],  
experiences from scenario-based architecting where software architecture was 
created to meet the goals (and related requirements and qualities) by using Quality 
driven Architecture Design and Analysis (QADA) [11],  
experiences and lessons learned of using UML-RT to develop embedded printer 
software [12],  
a study of software requirements implementation and management [13] and 
experiences of managing evolving requirements in an outsourcing context [14];  

This paper is organized as follows: First, in Section 2, background information 
related to the requirements engineering process and activities within it are introduced as a 
basis for the coverage analysis. Second, in Section 3, a general survey of available 
methods and techniques based on literature is presented, and in Section 4, detailed study 
against the defined criteria is introduced. Section 5 discusses issues affecting method 
selection and further development needs of existing methods. Last, the main findings of 
the survey are discussed in the conclusion. 

2.   Requirements Engineering Process 

Requirements engineering is divided into two main groups of activities, requirements 
development and requirements management. Requirements development includes 
activities related to discovering, analysing, documenting and validating requirements, 
whereas requirements management includes activities related to maintenance, namely 
identification, traceability and change management of requirements. Traditionally, RE 
has been performed in the beginning of software development lifecycle [15], but at 
present, RE is understood to be an iterative process, closely linked with other system 
development phases, such as design, implementation and testing. Fig. 1 describes a 

Parviainen Päivi, Tihinen Maarit 2

2

Neill and Laplante [4] have studied how widely a set of technologies was used for 
requirements elicitation and modelling in industry. Ardis et al. [5] have evaluated seven 
specification languages against predefined criteria through the various phases of the 
traditional waterfall model of software development. Haywood and Dart [6], in turn, have 
developed seven different classes for requirements representing technologies (goal 
hierarchy, state chart, hypertext, domain network, use case hierarchy, logic and 
conceptual state machine) and criteria for each class, against which methods can then be 
analyzed. Furthermore, White [7] has presented a comparative analysis of eight methods 
for modelling complex computer systems. However, we could not find any published 
research giving the “big picture” of the available methods; that is, describing how the 
available methods support and cover the requirements engineering activities as a whole. 
Such a picture is important from two viewpoints. First, knowing what solutions are 
already available makes it possible to direct future research and technology development 
work to the problems not yet solved. Second, as there are many different technologies 
available in the market, finding out what is available and what requirements engineering 
activities they support is a laborious task, often not justifiable for industry in practice. 
Thus, an inventory of the available requirements engineering technologies, including an 
overview of  them and  their  support  for  different  RE activities  as  well  as  references  for  
further information, is likely to make finding the potentially existing methods easier. 
Accordingly, the selection of methods for a certain situation can be done based on a 
wider base of technologies, giving a better chance of selecting the best available 
technology.  

The focus of this paper is on understanding how well the available requirements 
engineering technologies cover the different requirements engineering activities. The 
purpose of the survey is not to determine or point out the weaknesses or strengths of the 
various methods. Instead, the aim is to gain an overall view of the available requirements 
engineering technologies and to find the needs for tailoring or combining the available 
methods and techniques in order to provide effective and feasible support for the different 
activities of the RE process as a whole. Furthermore, this paper discusses issues to 
consider when selecting a technology or a combination of methods for real-life 
organisations and projects, mapping the available methods by the requirements 
engineering activities they support. 

The survey is based on an extensive inventory of the available technologies as 
discussed in literature; the results of the study are published in detail in [8] and [9]. The 
inventory was made as part of a large research project, called MOOSEa, in the year 2003. 
We not only considered specific RE technologies, but also more generic software 
engineering technologies as they also often include support for the RE activities. Over 
one hundred refereed papers were studied for gaining as comprehensive a picture as 
possible of available RE technologies and their support for different requirements 

a MOOSE (Software Engineering Methodologies for Embedded Systems) 



VI/4 VI/5

A Survey of Existing Requirements Engineering Methods and their Coverage 5

validated. Allocation is architectural work carried out in order to design the structure of 
the system and to issue the top-level system requirements to subsystems. Flow-down 
consists of writing requirements for the lower level elements in response to the allocation. 
When a system requirement is allocated to a subsystem, the subsystem must have at least 
one requirement (usually more) that responds to the allocation. In the allocation and flow-
down phase, requirements identification and traceability have to be taken into account 
and both system and software requirements specifications will be documented 
(continuous activities). Note that allocation and flow-down may be done for several 
hierarchy levels and that it starts as a multi-disciplinary activity, i.e., subsystems may 
contain hardware, software, mechanics but they are first considered as one subsystem. As 
the allocation and flow-down proceeds down the hierarchy levels, mono-disciplinary 
subsystems are defined. 

During software requirements development (3) phase, the requirements set for the 
software are analyzed. Typically, both functional and quality aspects of the software 
system  are  modelled,  and  the  contents  of  the  subsystems  are  defined.  Furthermore,  the  
phase includes validation, verification and documentation of SW requirements 
specification, along with establishing and maintaining traceability, and change 
management (continuous activities).  

Continuous activities (4) include requirements documentation, requirements 
validation and verification and requirements management. The analyzed requirements 
need to be documented to enable communication with stakeholders and future 
maintenance of the requirements and the system. Describing the relations of the 
requirements to each other is also a part of requirements documentation. Requirements 
validation consists of actions targeted to confirm that the behaviour of the developed 
system meets the user needs. Requirements verification consists of those actions aiming 
at confirming that the product of the system development process meets its technical 
specifications [20]. Requirements management is a continuous and cross-section process 
within requirements engineering. Requirements management begins along with planning 
and continues through the different activities related to identification, requirements 
traceability, and change control during and after the requirements development process. 
Requirements management activities, especially concerning traceability, should be 
performed as a part of the requirements development process, not as a separate task 
afterwards. 

3.   General Analysis of the Available RE Technologies 

This section discusses the general analysis of the available RE technologies based on 
literature studies, i.e., published experiences and descriptions of the technologies. 
Because of the multi-disciplinary dimensions of RE, and since RE is a long-lasting 
process within SW development, the gathered RE technologies cover various 
methodologies, methods, techniques and languages. We did not only consider specific RE 

Parviainen Päivi, Tihinen Maarit 4

4

system and software requirements engineering process based on [16], [17] and [18]. As 
stated by Zowghi [19], writing down a generic sequential plan of activities that could 
adequately describe what has to occur in RE is very difficult. Thus Fig. 1 aims at 
illustrating and clarifying the iterative and nondeterministic nature of the RE process, and 
is mainly aimed at showing the relations of the different RE activities. The process was 
used as a framework for which technology-support was searched and analyzed. 

Requirements
Management

RM Planning

Traceability

Allocation

Detailed System Requirements

Identification

Change
control

Requirements
documentation

Validation and
verification

Flow-down

System requirements
specification

IEEE Std 1233-1998

Software requirements
specification

IEEE Std 830-1998

Validation:
- user requirements

- customer requirements

Verification:
- implementation (code)

-architecture
-design

Traceability

Constraints

Business requirements Customer requirements

User requirements

Other SW development phases

Standards

HW Req.

Software
Req.

HW Req.

Software
Req.

HW Req.

Software
Req.

Mechanics
HW Req.

Software
Req.

In house inventions

High-Level analysis

Detailed analysis

Gathering
System
Requirements
development Traceability

Traceability

1

2

3

4

4

4

4 4

Change
control

Fig. 1. System and Software requirements engineering [8] 

Requirements engineering is an iterative process which will go into more detail 
during each iterative cycle. The main phases included in the RE process are (1) System 
requirements development, (2) Requirements allocation and flow-down, (3) Software 
requirements development, and (4) continuous activities.  

The System requirements development (1) phase starts by gathering and eliciting 
requirements from various sources, e.g., users, customers, standards and marketing (see 
Fig. 1). The gathered raw requirements are first analysed at high level; the resulting high 
level analysis includes, e.g., a cost-benefit or technical feasibility analysis for a set of 
agreed raw requirements. After that, the requirements are analysed in detail, including 
trade-off analysis. In this step, the rationale behind the decisions is documented, and the 
system requirements are validated (continuous activities). In addition, traceability 
between requirement sources, raw requirements and system requirements needs to be 
established and maintained.  

In the next phase, allocation and flow-down (2),  the  captured  requirements  will  be  
allocated to system components and the detailed system requirements are defined and 



VI/5

A Survey of Existing Requirements Engineering Methods and their Coverage 5

validated. Allocation is architectural work carried out in order to design the structure of 
the system and to issue the top-level system requirements to subsystems. Flow-down 
consists of writing requirements for the lower level elements in response to the allocation. 
When a system requirement is allocated to a subsystem, the subsystem must have at least 
one requirement (usually more) that responds to the allocation. In the allocation and flow-
down phase, requirements identification and traceability have to be taken into account 
and both system and software requirements specifications will be documented 
(continuous activities). Note that allocation and flow-down may be done for several 
hierarchy levels and that it starts as a multi-disciplinary activity, i.e., subsystems may 
contain hardware, software, mechanics but they are first considered as one subsystem. As 
the allocation and flow-down proceeds down the hierarchy levels, mono-disciplinary 
subsystems are defined. 

During software requirements development (3) phase, the requirements set for the 
software are analyzed. Typically, both functional and quality aspects of the software 
system  are  modelled,  and  the  contents  of  the  subsystems  are  defined.  Furthermore,  the  
phase includes validation, verification and documentation of SW requirements 
specification, along with establishing and maintaining traceability, and change 
management (continuous activities).  

Continuous activities (4) include requirements documentation, requirements 
validation and verification and requirements management. The analyzed requirements 
need to be documented to enable communication with stakeholders and future 
maintenance of the requirements and the system. Describing the relations of the 
requirements to each other is also a part of requirements documentation. Requirements 
validation consists of actions targeted to confirm that the behaviour of the developed 
system meets the user needs. Requirements verification consists of those actions aiming 
at confirming that the product of the system development process meets its technical 
specifications [20]. Requirements management is a continuous and cross-section process 
within requirements engineering. Requirements management begins along with planning 
and continues through the different activities related to identification, requirements 
traceability, and change control during and after the requirements development process. 
Requirements management activities, especially concerning traceability, should be 
performed as a part of the requirements development process, not as a separate task 
afterwards. 

3.   General Analysis of the Available RE Technologies 

This section discusses the general analysis of the available RE technologies based on 
literature studies, i.e., published experiences and descriptions of the technologies. 
Because of the multi-disciplinary dimensions of RE, and since RE is a long-lasting 
process within SW development, the gathered RE technologies cover various 
methodologies, methods, techniques and languages. We did not only consider specific RE 

Parviainen Päivi, Tihinen Maarit 4

4

system and software requirements engineering process based on [16], [17] and [18]. As 
stated by Zowghi [19], writing down a generic sequential plan of activities that could 
adequately describe what has to occur in RE is very difficult. Thus Fig. 1 aims at 
illustrating and clarifying the iterative and nondeterministic nature of the RE process, and 
is mainly aimed at showing the relations of the different RE activities. The process was 
used as a framework for which technology-support was searched and analyzed. 

Requirements
Management

RM Planning

Traceability

Allocation

Detailed System Requirements

Identification

Change
control

Requirements
documentation

Validation and
verification

Flow-down

System requirements
specification

IEEE Std 1233-1998

Software requirements
specification

IEEE Std 830-1998

Validation:
- user requirements

- customer requirements

Verification:
- implementation (code)

-architecture
-design

Traceability

Constraints

Business requirements Customer requirements

User requirements

Other SW development phases

Standards

HW Req.

Software
Req.

HW Req.

Software
Req.

HW Req.

Software
Req.

Mechanics
HW Req.

Software
Req.

In house inventions

High-Level analysis

Detailed analysis

Gathering
System
Requirements
development Traceability

Traceability

1

2

3

4

4

4

4 4

Change
control

Fig. 1. System and Software requirements engineering [8] 

Requirements engineering is an iterative process which will go into more detail 
during each iterative cycle. The main phases included in the RE process are (1) System 
requirements development, (2) Requirements allocation and flow-down, (3) Software 
requirements development, and (4) continuous activities.  

The System requirements development (1) phase starts by gathering and eliciting 
requirements from various sources, e.g., users, customers, standards and marketing (see 
Fig. 1). The gathered raw requirements are first analysed at high level; the resulting high 
level analysis includes, e.g., a cost-benefit or technical feasibility analysis for a set of 
agreed raw requirements. After that, the requirements are analysed in detail, including 
trade-off analysis. In this step, the rationale behind the decisions is documented, and the 
system requirements are validated (continuous activities). In addition, traceability 
between requirement sources, raw requirements and system requirements needs to be 
established and maintained.  

In the next phase, allocation and flow-down (2),  the  captured  requirements  will  be  
allocated to system components and the detailed system requirements are defined and 



VI/6 VI/7

A Survey of Existing Requirements Engineering Methods and their Coverage 7

the RE process? 

Activity coverage How well does the technology cover the different activities 
of the RE process phases? 

In this paper, the term shortcoming is used to denote the inability of a requirements 
engineering technology, method, technique or approach to fulfil the set criteria. In a 
broader sense, the term is also used when referring to the overall limitations of the set of 
technologies to cover and provide support for the RE process. The shortcomings analysis 
is a subjective, and by no means a comprehensive one. The analysis presented in this 
paper is based on published experiences and descriptions of found journals and papers. 
The evaluation is of subjective nature and it was made by four research scientists; each of 
them making their own evaluation for each technology against the criteria described 
above. After the subjective evaluation, the results were also reviewed by the industrial 
and research partners of the MOOSE project. Due to the large number of available RE 
technologies, an experimental evaluation would be too large a task for the whole set. 
Experimental evaluation is, however, important and should be carried out for a few 
technologies. A number of experimental evaluations of some of the methods have been 
published (e.g., [10], [11], [12], [13] and [14]); the results of which have also been 
included in the analysis. The following table (Table 2) presents how each technology 
meets the set criteria.  

Parviainen Päivi, Tihinen Maarit 6

6

technologies, but also more generic software engineering technologies as they also often 
include support for the RE activities. The purpose of the study was to provide as broad a 
view as possible on the different technologies available. The results of the analysis were 
evaluated by both industrial and research partners of the MOOSE project in workshops 
and reviews. Detailed descriptions and references of the analysed technologies are 
published in [8]. 

The criteria used include three categories: 1) general, 2) availability of information 
and 3) RE process coverage. The criteria are a result of several workshops with Moose 
project partners, aiming at defining criteria that could be used to analyze all RE 
technologies. This was not a straightforward task because the available RE methods, 
techniques or languages are very different and heterogeneous; they have been developed 
for different purposes and from different perspectives and even for different disciplines, 
which makes comparing them a complex exercise. Therefore, also sub-criteria were 
defined for each general criterion (see appendix A). The criteria used are introduced in 
Table 1. 

Table 1. Criteria used in general analysis 

General criteria: 

Established and well 
known

Is the technology widely known and actively studied and 
tested? 

Understandable and 
usable

Does the technology have an understandable structure and 
provide guidelines of use in order to ensure effective 
utilisation also among inexperienced users? 

Flexible and modifiable Is the technology applicable to different environments and 
purposes of use? 

Embedded viewpoint Does the technology take the special characteristics of 
embedded software development into account? 

Support for different 
requirement types

Is the technology suitable for handling different types of 
requirements from different sources? 

Availability of up-to-date publications (~Publication year):

Up-to-date information Are there recent scientific publications related to the 
technology available? 

Up-to-date experiences Are there recently published experiences on the use of the 
technology available? 

RE process coverage:

Phase coverage How well does the technology cover the different phases of 



VI/7

A Survey of Existing Requirements Engineering Methods and their Coverage 7

the RE process? 

Activity coverage How well does the technology cover the different activities 
of the RE process phases? 

In this paper, the term shortcoming is used to denote the inability of a requirements 
engineering technology, method, technique or approach to fulfil the set criteria. In a 
broader sense, the term is also used when referring to the overall limitations of the set of 
technologies to cover and provide support for the RE process. The shortcomings analysis 
is a subjective, and by no means a comprehensive one. The analysis presented in this 
paper is based on published experiences and descriptions of found journals and papers. 
The evaluation is of subjective nature and it was made by four research scientists; each of 
them making their own evaluation for each technology against the criteria described 
above. After the subjective evaluation, the results were also reviewed by the industrial 
and research partners of the MOOSE project. Due to the large number of available RE 
technologies, an experimental evaluation would be too large a task for the whole set. 
Experimental evaluation is, however, important and should be carried out for a few 
technologies. A number of experimental evaluations of some of the methods have been 
published (e.g., [10], [11], [12], [13] and [14]); the results of which have also been 
included in the analysis. The following table (Table 2) presents how each technology 
meets the set criteria.  

Parviainen Päivi, Tihinen Maarit 6

6

technologies, but also more generic software engineering technologies as they also often 
include support for the RE activities. The purpose of the study was to provide as broad a 
view as possible on the different technologies available. The results of the analysis were 
evaluated by both industrial and research partners of the MOOSE project in workshops 
and reviews. Detailed descriptions and references of the analysed technologies are 
published in [8]. 

The criteria used include three categories: 1) general, 2) availability of information 
and 3) RE process coverage. The criteria are a result of several workshops with Moose 
project partners, aiming at defining criteria that could be used to analyze all RE 
technologies. This was not a straightforward task because the available RE methods, 
techniques or languages are very different and heterogeneous; they have been developed 
for different purposes and from different perspectives and even for different disciplines, 
which makes comparing them a complex exercise. Therefore, also sub-criteria were 
defined for each general criterion (see appendix A). The criteria used are introduced in 
Table 1. 

Table 1. Criteria used in general analysis 

General criteria: 

Established and well 
known

Is the technology widely known and actively studied and 
tested? 

Understandable and 
usable

Does the technology have an understandable structure and 
provide guidelines of use in order to ensure effective 
utilisation also among inexperienced users? 

Flexible and modifiable Is the technology applicable to different environments and 
purposes of use? 

Embedded viewpoint Does the technology take the special characteristics of 
embedded software development into account? 

Support for different 
requirement types

Is the technology suitable for handling different types of 
requirements from different sources? 

Availability of up-to-date publications (~Publication year):

Up-to-date information Are there recent scientific publications related to the 
technology available? 

Up-to-date experiences Are there recently published experiences on the use of the 
technology available? 

RE process coverage:

Phase coverage How well does the technology cover the different phases of 



VI/8 VI/9

A Survey of Existing Requirements Engineering Methods and their Coverage 9

Furthermore, it was found that none of the methods were able to cover all the RE process 
activities; thus in order to achieve full support, combinations of technologies are needed. 
In practice, however, the technologies are of stand-alone type and independent, and very 
few descriptions of their relations or applicability with other methods or techniques was 
found in literature. Consequently, it proved difficult to gain an understanding of how to 
form feasible and effective combinations of the technologies. 

The technology descriptions found in the literature were not precise, thus in order to 
be able to use the methods in practice, interpretation was needed. The overall comparison 
of the technologies also proved to be difficult, due to the fact that they had different focus 
areas and purposes of use, and they had been described at different levels of granularity 
in literature. For example, some technology descriptions only presented suggestive 
phases to be followed, while others described detailed steps, tasks and roles and provided 
different tools and templates to facilitate the support and performance of the tasks.  

The results of the shortcomings analysis (Table 2) can also be used to assist 
organisations in the selection of suitable technologies by, for example, first identifying 
the needs of the company and then selecting applicable technologies for further analysis 
with the help of the table. 

4.   Detailed Analysis against Process Activities 

In this section, the selected set of technologies is analyzed in more detail. The 
selected technologies are shown in the white rows in Table 2. The selection of 
technologiesb for detailed analysis was mainly based on the availability of information; 
technologies showing more up-to-date information were favoured over those with older 
information, and technologies with published experiences on their use (especially from 
embedded systems) were favoured over those without any published experiences.  
Covering every phase of the RE process was also considered equally important. In 
addition to the basic rationale, also other aspects affected the selection; from among the 
different technology groups (e.g., formal methods) only few – those meeting the rationale 
best – were selected and some specific-purpose technologies with little information were 
left out, e.g., Soft System Methodology (SSM) [40] and WinWin [41]. 

b The technologies included in the analysis are ATAM [21], Ethnography [23], Extreme programming XP [24], 
Hatley-Pirbhai [25], HOORA Hierarchical Object Oriented Requirement Analysis [26], PetriNets [27], 
Planguage [28], Quality Function Deployment  QFD [29], Rational United Process RUP [30], Structured 
Analysis and Design Technique SADT [31], Software Cost Reduction method SCR [32], Scenario-based 
Requirements Engineering SCRAM [33], Shlaer-Mellor Object-Oriented Analysis Method [34], Structured 
System Analysis and Design Methodology SSADM [35], Unified Modeling Language UML [36], Volere [37], 
Viewpoint-Oriented Requirements Definition VORD [38] and Z –language [39]. 

Parviainen Päivi, Tihinen Maarit 8

8

Table 2. Technologies, their scope and availability of recent information 

GENERAL CRITERIA RE PROCESS COVERAGE Up-To-Date
- Phases /Activities Publication

System Requirements 
Development 

Allocation 
&

Flowdown
SW requirements 

development

METHOD Es
ta

bl
is

he
d

&
W

el
l-

kn
ow

n

U
nd

er
st

an
da

bl
e

&
U

sa
bl

e

Fl
ex

ib
le

&
M

od
ifi

ab
le

Em
be

dd
ed

vi
ew

po
in

t

Su
pp

or
tf

or
di

ffe
re

nt
re

qu
ire

m
en

tt
yp

es

G
at

he
rin

g

To
p

le
ve

la
na

ly
si

s

D
et

ai
le

d
an

al
ys

is

D
oc

um
en

ta
tio

n

V
al

id
at

io
n&

V
er

ifi
ca

tio
n

A
llo

ca
tio

n

Fl
ow

-d
ow

n

H
ig

h
le

ve
la

na
ly

si
s

D
et

ai
le

d
an

al
ys

is

D
oc

um
en

ta
tio

n

V
al

id
at

io
n&

V
er

ifi
ca

tio
n

C
ha

ng
e

m
gm

t

U
p-

to
-d

at
e

in
fo

rm
at

io
n

U
p-

to
-d

at
e

ex
pe

rie
nc

es

ATAM F F P P P X X X 2002 2002
B-method F P N N X X X X 2001 1999
Booch P X X X X 1995 1997
CARE N N 2002 --
CORE P P P P F X X 1979 1992
Ethnography P F P N/A P X X X 1999 2001
Extreme progr. (agile) F F F N/A P X X X X X X 2002 2002
Hatley-Pirbhai F F P P F X X X X X X 2000 1994
HOORA P F F N F SW X X X X 2003 1997
Jacobson N SW X X X X X 1992 --
JAD P P P N/A N X 1995 1998
MPARN N N/A P X 2002 --
OMT P F N P X X 1999 1995
OTSO N F P N 1996 1996
Petri Nets F P P P P X X X X X X X X X 2002 2002
Planguage P F F N/A F X X X X X X X 2003 --
Protocol an. N X 1993 --
QFD F F F N/A P X X X X X X 2002 2002
REVEAL N X X X 2001 --
RUP F F N/A SW X X X X X 2003 --
SADT P F P N N X X X 1993 2000
SASS N F N P P X X 1979 --
SCR N F P P X X X X X X 2000 2000
SCRAM N P N N X X X X X X X 1998 1998
Shlaer-Mellor P F N P F X X X X 1998 1998
SRA P P N P X X X 1995 --
SREM N P N P SW X X X X 1990 1985
SSADM P P N P X X X X X X 2002 --
SSM F F P N/A P X 2001 1997
Storyboarding P F P N P SW X X 1992 1992
UML F F P P P SW X X X 2002 2002
VDM F P X X X X 1997 2000
WinWin F F N/A P X 2000 2001
Volere F F F N P X X X X X X X 2001 --
VORD P F P N F X X X X X X 2000 1999
VOSE N X 1994 --
Z F P N N X X X 2002 2000

Legend: F: Full, P: Partial, N: None, 
              N/A: Not applicable, 
              X: support, SW: support to software reqs Publication 

year

Table 2 shows that the technology coverage is not sufficient for all the defined 
requirements engineering activities. For example, there are only two methods (ATAM, 
Architecture Tradeoff Analysis Method [21] and SRA, System Requirements Allocation 
Methodology [22]) providing support for performing requirements flow-down, and from 
which one (namely, SRA) showed no experiences of use, and the information found was 
outdated. On the other hand, there were plenty of supporting methods available for some 
phases of the RE process (e.g., gathering and documenting software requirements). 



VI/9

A Survey of Existing Requirements Engineering Methods and their Coverage 9

Furthermore, it was found that none of the methods were able to cover all the RE process 
activities; thus in order to achieve full support, combinations of technologies are needed. 
In practice, however, the technologies are of stand-alone type and independent, and very 
few descriptions of their relations or applicability with other methods or techniques was 
found in literature. Consequently, it proved difficult to gain an understanding of how to 
form feasible and effective combinations of the technologies. 

The technology descriptions found in the literature were not precise, thus in order to 
be able to use the methods in practice, interpretation was needed. The overall comparison 
of the technologies also proved to be difficult, due to the fact that they had different focus 
areas and purposes of use, and they had been described at different levels of granularity 
in literature. For example, some technology descriptions only presented suggestive 
phases to be followed, while others described detailed steps, tasks and roles and provided 
different tools and templates to facilitate the support and performance of the tasks.  

The results of the shortcomings analysis (Table 2) can also be used to assist 
organisations in the selection of suitable technologies by, for example, first identifying 
the needs of the company and then selecting applicable technologies for further analysis 
with the help of the table. 

4.   Detailed Analysis against Process Activities 

In this section, the selected set of technologies is analyzed in more detail. The 
selected technologies are shown in the white rows in Table 2. The selection of 
technologiesb for detailed analysis was mainly based on the availability of information; 
technologies showing more up-to-date information were favoured over those with older 
information, and technologies with published experiences on their use (especially from 
embedded systems) were favoured over those without any published experiences.  
Covering every phase of the RE process was also considered equally important. In 
addition to the basic rationale, also other aspects affected the selection; from among the 
different technology groups (e.g., formal methods) only few – those meeting the rationale 
best – were selected and some specific-purpose technologies with little information were 
left out, e.g., Soft System Methodology (SSM) [40] and WinWin [41]. 

b The technologies included in the analysis are ATAM [21], Ethnography [23], Extreme programming XP [24], 
Hatley-Pirbhai [25], HOORA Hierarchical Object Oriented Requirement Analysis [26], PetriNets [27], 
Planguage [28], Quality Function Deployment  QFD [29], Rational United Process RUP [30], Structured 
Analysis and Design Technique SADT [31], Software Cost Reduction method SCR [32], Scenario-based 
Requirements Engineering SCRAM [33], Shlaer-Mellor Object-Oriented Analysis Method [34], Structured 
System Analysis and Design Methodology SSADM [35], Unified Modeling Language UML [36], Volere [37], 
Viewpoint-Oriented Requirements Definition VORD [38] and Z –language [39]. 

Parviainen Päivi, Tihinen Maarit 8

8

Table 2. Technologies, their scope and availability of recent information 

GENERAL CRITERIA RE PROCESS COVERAGE Up-To-Date
- Phases /Activities Publication

System Requirements 
Development 

Allocation 
&

Flowdown
SW requirements 

development

METHOD Es
ta

bl
is

he
d

&
W

el
l-

kn
ow

n

U
nd

er
st

an
da

bl
e

&
U

sa
bl

e

Fl
ex

ib
le

&
M

od
ifi

ab
le

Em
be

dd
ed

vi
ew

po
in

t

Su
pp

or
tf

or
di

ffe
re

nt
re

qu
ire

m
en

tt
yp

es

G
at

he
rin

g

To
p

le
ve

la
na

ly
si

s

D
et

ai
le

d
an

al
ys

is

D
oc

um
en

ta
tio

n

V
al

id
at

io
n&

V
er

ifi
ca

tio
n

A
llo

ca
tio

n

Fl
ow

-d
ow

n

H
ig

h
le

ve
la

na
ly

si
s

D
et

ai
le

d
an

al
ys

is

D
oc

um
en

ta
tio

n

V
al

id
at

io
n&

V
er

ifi
ca

tio
n

C
ha

ng
e

m
gm

t

U
p-

to
-d

at
e

in
fo

rm
at

io
n

U
p-

to
-d

at
e

ex
pe

rie
nc

es

ATAM F F P P P X X X 2002 2002
B-method F P N N X X X X 2001 1999
Booch P X X X X 1995 1997
CARE N N 2002 --
CORE P P P P F X X 1979 1992
Ethnography P F P N/A P X X X 1999 2001
Extreme progr. (agile) F F F N/A P X X X X X X 2002 2002
Hatley-Pirbhai F F P P F X X X X X X 2000 1994
HOORA P F F N F SW X X X X 2003 1997
Jacobson N SW X X X X X 1992 --
JAD P P P N/A N X 1995 1998
MPARN N N/A P X 2002 --
OMT P F N P X X 1999 1995
OTSO N F P N 1996 1996
Petri Nets F P P P P X X X X X X X X X 2002 2002
Planguage P F F N/A F X X X X X X X 2003 --
Protocol an. N X 1993 --
QFD F F F N/A P X X X X X X 2002 2002
REVEAL N X X X 2001 --
RUP F F N/A SW X X X X X 2003 --
SADT P F P N N X X X 1993 2000
SASS N F N P P X X 1979 --
SCR N F P P X X X X X X 2000 2000
SCRAM N P N N X X X X X X X 1998 1998
Shlaer-Mellor P F N P F X X X X 1998 1998
SRA P P N P X X X 1995 --
SREM N P N P SW X X X X 1990 1985
SSADM P P N P X X X X X X 2002 --
SSM F F P N/A P X 2001 1997
Storyboarding P F P N P SW X X 1992 1992
UML F F P P P SW X X X 2002 2002
VDM F P X X X X 1997 2000
WinWin F F N/A P X 2000 2001
Volere F F F N P X X X X X X X 2001 --
VORD P F P N F X X X X X X 2000 1999
VOSE N X 1994 --
Z F P N N X X X 2002 2000

Legend: F: Full, P: Partial, N: None, 
              N/A: Not applicable, 
              X: support, SW: support to software reqs Publication 

year

Table 2 shows that the technology coverage is not sufficient for all the defined 
requirements engineering activities. For example, there are only two methods (ATAM, 
Architecture Tradeoff Analysis Method [21] and SRA, System Requirements Allocation 
Methodology [22]) providing support for performing requirements flow-down, and from 
which one (namely, SRA) showed no experiences of use, and the information found was 
outdated. On the other hand, there were plenty of supporting methods available for some 
phases of the RE process (e.g., gathering and documenting software requirements). 



VI/10 VI/11

A Survey of Existing Requirements Engineering Methods and their Coverage 11

Documenting system requirements, including requirement dependencies, 
requirement identification and traceability to raw requirements, and technical 
description of requirements. 
Validating the requirements, for example, validating against requirement sources, 
ensuring un-ambiguity, or detecting possible conflicts, overlaps and dependencies. 
Making the final selection of requirements for the product. 
Managing requirement changes throughout the product lifecycle. 

The studied technologies and the analysis results for the system requirements 
development phase are presented in Table 3. Technologies primarily designed for 
software development activities (e.g., XP and RUP) but also providing support for system 
requirements development activities are also included here.  

Table 3. Support of selected technologies to system requirements development activities. 

Gathering 
/elicitation from 
various sources

Describing in 
understandable 

way

Cost-
benefit 

analysis
Facilitates 

communication Priorisation
Recording 
of rationale

System
requirements  

documentation
Verification 
& Validation

Final 
selection of 

requirements

Managing 
requirements 

changes

Average support 
of technology 

(%)
Ethnography XX XX XX X 35 %

Extreme 
programming

X X XX X X 30 %

Hatley-Pirbhai XX XX X XX 35 %
Planguage X X XX XX X 35 %

QFD X XX XX X XX XX XX XX 70 %
RUP X X X X XX 30 %
SCR XX XX 20 %

SCRAM X X X XX X XX X 45 %
Scrum XX X X X X X 35 %

SSADM X X X X 20 %
UML XX XX 20 %

Volere XX X X X XX XX XX XX 65 %
VORD XX XX XX XX XX X 55 %

Average 
support of 
criteria (%)

35 % 46 % 8 % 31 % 35 % 35 % 65 % 54 % 27 % 46 %

Legend: XX = Provides considerable support to the activity
 X = Provides some support to the activity

As Table 3 shows, there are several technologies that provide some level of support 
for system requirements development activities. The most supported activities are system 
requirements documentation, validation and management of changes. For validation of 
requirements (especially software requirements), also techniques such as consistency 
checking [42], default reasoning [43] and metrics [44] can be used. On the other hand, 
only few technologies cover cost-benefit analysis, recording a rationale and performing 
the final selection of requirements. In addition, only few technologies give support over 
half of the system requirements development activities: those are QFD (70%c), Volere 
(65%) and VORD (55%). 

c Average support percentage (%) was calculated based on rating as follows: no support (empty cell) was given 
a value zero (0), some evidence of support (rating with X) was given a value one (1) and clear support (rating 
with XX) was given a value two (2). The value two (2) was the maximal value in each cell. 

Parviainen Päivi, Tihinen Maarit 10

10

Next, each of the main RE process activities and the technologies supporting them are 
discussed separately. This is accompanied by a subjective evaluation of the level of 
support of the technologies for each activity. The analysis is based merely on literature, 
i.e. published information describing the technologies and experiences of their use. The 
tables summarise the support using the single X for limited support and the double X, 
(XX), for considerable support. A blank cell suggests that no corresponding evidence of 
support has been found in literature. The rating X is meant to indicate that some evidence 
of support for the criterion was found in the description of the method or in published 
experiences and the rating XX is meant to indicate that clear support, e.g., steps to carry 
out that support the criterion was found. The rating and rationale for the rating was first 
given by four research scientists; each of them making their own separate evaluation for 
each technology against predefined criteria. The agreed evaluation results were then also 
reviewed by the industrial and research partners of the Moose project. For example, for 
systems requirements engineering, Ethnography was given double X, (XX), in the 
column “Gathering /eliciting requirements from various sources”. The rationale for this 
was that ethnography uses an ethnographer observing the users carrying out their normal 
work, and in this way eliciting user requirements (especially those related to work 
procedures and tasks to be performed). Ethnography also includes three presentation 
viewpoints and a presentation framework, which have been designed to facilitate 
communication between ethnographers and designers by structuring the ethnographic 
data. In Extreme Programming, by contrast, customer requirements are gathered using 
story cards, in which the customers write out the features they wish to have in the 
program release. This was rated with one X for the reason that only customer 
requirements are gathered. The ratings are not meant to be explicit, but they are merely 
given so as to support industrial companies in the selection of technologies for further 
analysis.

4.1.    System Requirements Development 

In this subsection, a detailed analysis of the selected technologies support for system 
requirements development phase is presented. The activities of this phase include:  

Gathering and eliciting requirements of different types from various sources, i.e., 
Constraints, Business requirements, Customer requirements, User requirements, 
Standards, In-house ideas. 
Describing the raw requirements in a way that is understandable to all stakeholders. 
Performing cost-benefit analysis for the requirements. 
Communication between stakeholders, i.e., requirement sources, developers and 
decision-makers. 
Prioritizing requirements. 
Recording a rationale of decisions made (also for those requirements that are left 
out). 



VI/11

A Survey of Existing Requirements Engineering Methods and their Coverage 11

Documenting system requirements, including requirement dependencies, 
requirement identification and traceability to raw requirements, and technical 
description of requirements. 
Validating the requirements, for example, validating against requirement sources, 
ensuring un-ambiguity, or detecting possible conflicts, overlaps and dependencies. 
Making the final selection of requirements for the product. 
Managing requirement changes throughout the product lifecycle. 

The studied technologies and the analysis results for the system requirements 
development phase are presented in Table 3. Technologies primarily designed for 
software development activities (e.g., XP and RUP) but also providing support for system 
requirements development activities are also included here.  

Table 3. Support of selected technologies to system requirements development activities. 

Gathering 
/elicitation from 
various sources

Describing in 
understandable 

way

Cost-
benefit 

analysis
Facilitates 

communication Priorisation
Recording 
of rationale

System
requirements  

documentation
Verification 
& Validation

Final 
selection of 

requirements

Managing 
requirements 

changes

Average support 
of technology 

(%)
Ethnography XX XX XX X 35 %

Extreme 
programming

X X XX X X 30 %

Hatley-Pirbhai XX XX X XX 35 %
Planguage X X XX XX X 35 %

QFD X XX XX X XX XX XX XX 70 %
RUP X X X X XX 30 %
SCR XX XX 20 %

SCRAM X X X XX X XX X 45 %
Scrum XX X X X X X 35 %

SSADM X X X X 20 %
UML XX XX 20 %

Volere XX X X X XX XX XX XX 65 %
VORD XX XX XX XX XX X 55 %

Average 
support of 
criteria (%)

35 % 46 % 8 % 31 % 35 % 35 % 65 % 54 % 27 % 46 %

Legend: XX = Provides considerable support to the activity
 X = Provides some support to the activity

As Table 3 shows, there are several technologies that provide some level of support 
for system requirements development activities. The most supported activities are system 
requirements documentation, validation and management of changes. For validation of 
requirements (especially software requirements), also techniques such as consistency 
checking [42], default reasoning [43] and metrics [44] can be used. On the other hand, 
only few technologies cover cost-benefit analysis, recording a rationale and performing 
the final selection of requirements. In addition, only few technologies give support over 
half of the system requirements development activities: those are QFD (70%c), Volere 
(65%) and VORD (55%). 

c Average support percentage (%) was calculated based on rating as follows: no support (empty cell) was given 
a value zero (0), some evidence of support (rating with X) was given a value one (1) and clear support (rating 
with XX) was given a value two (2). The value two (2) was the maximal value in each cell. 

Parviainen Päivi, Tihinen Maarit 10

10

Next, each of the main RE process activities and the technologies supporting them are 
discussed separately. This is accompanied by a subjective evaluation of the level of 
support of the technologies for each activity. The analysis is based merely on literature, 
i.e. published information describing the technologies and experiences of their use. The 
tables summarise the support using the single X for limited support and the double X, 
(XX), for considerable support. A blank cell suggests that no corresponding evidence of 
support has been found in literature. The rating X is meant to indicate that some evidence 
of support for the criterion was found in the description of the method or in published 
experiences and the rating XX is meant to indicate that clear support, e.g., steps to carry 
out that support the criterion was found. The rating and rationale for the rating was first 
given by four research scientists; each of them making their own separate evaluation for 
each technology against predefined criteria. The agreed evaluation results were then also 
reviewed by the industrial and research partners of the Moose project. For example, for 
systems requirements engineering, Ethnography was given double X, (XX), in the 
column “Gathering /eliciting requirements from various sources”. The rationale for this 
was that ethnography uses an ethnographer observing the users carrying out their normal 
work, and in this way eliciting user requirements (especially those related to work 
procedures and tasks to be performed). Ethnography also includes three presentation 
viewpoints and a presentation framework, which have been designed to facilitate 
communication between ethnographers and designers by structuring the ethnographic 
data. In Extreme Programming, by contrast, customer requirements are gathered using 
story cards, in which the customers write out the features they wish to have in the 
program release. This was rated with one X for the reason that only customer 
requirements are gathered. The ratings are not meant to be explicit, but they are merely 
given so as to support industrial companies in the selection of technologies for further 
analysis.

4.1.    System Requirements Development 

In this subsection, a detailed analysis of the selected technologies support for system 
requirements development phase is presented. The activities of this phase include:  

Gathering and eliciting requirements of different types from various sources, i.e., 
Constraints, Business requirements, Customer requirements, User requirements, 
Standards, In-house ideas. 
Describing the raw requirements in a way that is understandable to all stakeholders. 
Performing cost-benefit analysis for the requirements. 
Communication between stakeholders, i.e., requirement sources, developers and 
decision-makers. 
Prioritizing requirements. 
Recording a rationale of decisions made (also for those requirements that are left 
out). 



VI/12 VI/13

A Survey of Existing Requirements Engineering Methods and their Coverage 13

Analyzing allocated requirements from the sub-system viewpoint. 
Recording a rationale of decisions made (also for requirements that are left out). 
Documenting sub-system requirements, including requirements identification & 
traceability to top-level system requirements, and recording the dependencies 
between requirements. 
Verification of requirements against top-level system requirements, ensuring un-
ambiguity, performing consistency checking, and coverage of allocated 
requirements. 
Management of requirement changes. 

We could only find one method – the Architecture Tradeoff Analysis Method 
(ATAM) – to provide support for the requirements flow-down activities, or to be exact, 
one of the activities. While support was provided for “the recording of a rationale”, none 
the other flow-down activities were supported. Software requirements development is a 
part of the flow-down activity, but as flow-down refers to multidisciplinary subsystems 
here, and not only software subsystems, also technologies are analysed separately for the 
flow-down. A software specific analysis is presented in the next section. 

4.3.    Software Requirements Development 

This subsection discusses the shortcomings analysis for software requirements 
development technologies. Activities which should be covered by software requirements 
development technologies include: 

Gathering and eliciting software requirements from various sources. 
Analyzing the software requirements in detail so that sufficient input for design can 
be provided, including defining interfaces with other (sub)systems, checking inter-
dependencies and conflicts, analyzing contradictory requirements, if found, and 
identifying design constraints. 
Modelling the software system. Models are developed to help understand the 
requirements, to reveal inconsistencies and incompletenesses and to add information 
to natural language descriptions of requirements in requirements documentation. 
Verifying the software requirements specification, including verification against 
system requirements, ensuring unambiguousness, performing consistency checking, 
checking the coverage of allocated requirements, and ensuring the completeness of 
the specification. 
Documenting the software requirements specification, including, e.g., requirements 
identification & traceability to higher level requirements, and recording the 
dependencies between requirements. 
Managing requirement changes. 

The shortcomings analysis for technologies supporting software requirements 
development is summarized in Table 5. Note that the criteria of gathering and eliciting 
software requirements from various sources has been analysed in section 4.1. In addition, 
the activity of managing requirement changes will be introduced in the subsection 4.4. 

Parviainen Päivi, Tihinen Maarit 12

12

4.2.    Requirements Allocation and Flow-down 

In this subsection, a detailed shortcomings analysis is presented from the viewpoint of 
requirements allocation and flow-down. 

Requirements Allocation. The activities that should be covered by requirements 
allocation methods cover include: 

Performing trade-off analysis. 
Management of non-allocable requirements, i.e., items such as environments, 
operational life and design standards, which apply unchanged across all the elements 
of the system or its segments. 
Allocation and management of non-functional (or quality) requirements (e.g., 
performance, reliability). 
Verification of requirement allocation, including verifying that each requirement is 
allocated to at least one subsystem and each subsystem has at least one requirement 
allocated to it. 
Management of changes to the initial system requirements. 

Note: Allocation is architectural work, thus not all of its aspects are evaluated from 
the viewpoint of RE. 

The requirements allocation technologies included in the shortcomings analysis are 
listed in Table 4. The table summarizes the technology support to the activities of the 
requirements allocation phase. 

Table 4. Support of selected technologies to requirements allocation activities. 

Trade-off analysis
Management of non-

allocable requirements
Management of non-

functional requirements
Verification of 

requirement allocation Management of changes
Average support of 

technology (%)

ATAM XX XX 40 %
Hatley-Pirbhai XX XX XX 60 %

HOORA XX 20 %

Average support 
of criteria (%)

33 % 0 % 67 % 67 % 33 %

Legend: XX = Provides considerable support to the activity
 X = Provides some support to the activity

As Table 4 shows, there are only three methods that partially cover the requirements 
allocation activities. None of the studied technologies covered all of the allocation 
activities. Furthermore, none of the methods provides any support for the management of 
non-allocable requirements. However, software architecture analysis methods, which are 
outside the scope of this analysis, do provide a more comprehensive support for the 
allocation activities. Further information on software architecture analysis methods can 
be found in, for instance, the survey by [45]. 

Requirements Flow-down. Activities which should be covered by requirements flow-
down technologies cover include: 

Identification and management of derived requirements, i.e., requirements caused by 
the collection and organisation of requirements into a particular system configuration 
and solution. 



VI/13

A Survey of Existing Requirements Engineering Methods and their Coverage 13

Analyzing allocated requirements from the sub-system viewpoint. 
Recording a rationale of decisions made (also for requirements that are left out). 
Documenting sub-system requirements, including requirements identification & 
traceability to top-level system requirements, and recording the dependencies 
between requirements. 
Verification of requirements against top-level system requirements, ensuring un-
ambiguity, performing consistency checking, and coverage of allocated 
requirements. 
Management of requirement changes. 

We could only find one method – the Architecture Tradeoff Analysis Method 
(ATAM) – to provide support for the requirements flow-down activities, or to be exact, 
one of the activities. While support was provided for “the recording of a rationale”, none 
the other flow-down activities were supported. Software requirements development is a 
part of the flow-down activity, but as flow-down refers to multidisciplinary subsystems 
here, and not only software subsystems, also technologies are analysed separately for the 
flow-down. A software specific analysis is presented in the next section. 

4.3.    Software Requirements Development 

This subsection discusses the shortcomings analysis for software requirements 
development technologies. Activities which should be covered by software requirements 
development technologies include: 

Gathering and eliciting software requirements from various sources. 
Analyzing the software requirements in detail so that sufficient input for design can 
be provided, including defining interfaces with other (sub)systems, checking inter-
dependencies and conflicts, analyzing contradictory requirements, if found, and 
identifying design constraints. 
Modelling the software system. Models are developed to help understand the 
requirements, to reveal inconsistencies and incompletenesses and to add information 
to natural language descriptions of requirements in requirements documentation. 
Verifying the software requirements specification, including verification against 
system requirements, ensuring unambiguousness, performing consistency checking, 
checking the coverage of allocated requirements, and ensuring the completeness of 
the specification. 
Documenting the software requirements specification, including, e.g., requirements 
identification & traceability to higher level requirements, and recording the 
dependencies between requirements. 
Managing requirement changes. 

The shortcomings analysis for technologies supporting software requirements 
development is summarized in Table 5. Note that the criteria of gathering and eliciting 
software requirements from various sources has been analysed in section 4.1. In addition, 
the activity of managing requirement changes will be introduced in the subsection 4.4. 

Parviainen Päivi, Tihinen Maarit 12

12

4.2.    Requirements Allocation and Flow-down 

In this subsection, a detailed shortcomings analysis is presented from the viewpoint of 
requirements allocation and flow-down. 

Requirements Allocation. The activities that should be covered by requirements 
allocation methods cover include: 

Performing trade-off analysis. 
Management of non-allocable requirements, i.e., items such as environments, 
operational life and design standards, which apply unchanged across all the elements 
of the system or its segments. 
Allocation and management of non-functional (or quality) requirements (e.g., 
performance, reliability). 
Verification of requirement allocation, including verifying that each requirement is 
allocated to at least one subsystem and each subsystem has at least one requirement 
allocated to it. 
Management of changes to the initial system requirements. 

Note: Allocation is architectural work, thus not all of its aspects are evaluated from 
the viewpoint of RE. 

The requirements allocation technologies included in the shortcomings analysis are 
listed in Table 4. The table summarizes the technology support to the activities of the 
requirements allocation phase. 

Table 4. Support of selected technologies to requirements allocation activities. 

Trade-off analysis
Management of non-

allocable requirements
Management of non-

functional requirements
Verification of 

requirement allocation Management of changes
Average support of 

technology (%)

ATAM XX XX 40 %
Hatley-Pirbhai XX XX XX 60 %

HOORA XX 20 %

Average support 
of criteria (%)

33 % 0 % 67 % 67 % 33 %

Legend: XX = Provides considerable support to the activity
 X = Provides some support to the activity

As Table 4 shows, there are only three methods that partially cover the requirements 
allocation activities. None of the studied technologies covered all of the allocation 
activities. Furthermore, none of the methods provides any support for the management of 
non-allocable requirements. However, software architecture analysis methods, which are 
outside the scope of this analysis, do provide a more comprehensive support for the 
allocation activities. Further information on software architecture analysis methods can 
be found in, for instance, the survey by [45]. 

Requirements Flow-down. Activities which should be covered by requirements flow-
down technologies cover include: 

Identification and management of derived requirements, i.e., requirements caused by 
the collection and organisation of requirements into a particular system configuration 
and solution. 



VI/14 VI/15

A Survey of Existing Requirements Engineering Methods and their Coverage 15

Traceability to additional information must be available (RT_4). 
Change management  
Support for SW engineering life cycle (e.g., development or maintenance) (CHM_1). 
Basic phases of change management must be supported (CHM_2). 

The following table (Table 6) summarizes the analysis of requirements management 
technologies. 

Table 6. Technologies support to requirements management activities 
ACTIVITY

METHOD ID_1 ID_2 ID_3 ID_4 RT_1 RT_2 RT_3 RT_4 CHM_1 CHM_2
ID ID

Significant numbering X X X 15 %
Non-significant numbering X 5 %

Structure based naming/numbering X X X X 20 %
Symbolic identification X X 10 %

Dynamic renumbering in document based requirements’ identification X X X X X 25 %
Database record identification (see also "automated traceability links) XX XX XX XX XX XX XX XX X 85 %

Baselining requirements X XX 15 %
RT RT

Cross reference XX XX X X 30 %
RT matrixes: Table XX XX XX X X 40 %

RT matrixes: List XX X XX X 30 %
Automated traceability links (see also "database record identification") XX XX XX XX XX 50 %

REMAP X X X X 20 %
Low- and High-end RT REFERENCE MODELS X XX X X 25 %

Contribution structures for requirements traceability X X X 15 %
HYDRA X XX X 20 %

Multiview++ XX XX X XX XX X 50 %
VORD X XX X X X X X 40 %

Hatley-Pirbhai X X X 15 %
SCRAM X 5 %

DSDM X X 10 %
RUP X X X XX XX X 40 %

XP X XX X X X X 35 %
QFD XX XX XX X X 40 %

RADIX (RT methodology and its SW tool) XX XX XX X 35 %
RChM RChM

Olsen’s ChM model X 5 %
V-like model X 5 %

Ince's change management model X 5 %
AMES process model X 5 %

Spiral-like change management model XX 10 %
Generic ChM process model XX 10 %

Using CM for RM XX XX XX XX X XX XX 65 %
Using metrics to support requirement change management X 5 %

Legend:  XX = Provides considerable support to the activity
 X = Provides some support to the activity

Average support 
of technology (%)

Requirements identification is an essential activity for requirements management; it 
can be considered a pre-requisite for requirements traceability and change management. 
The basic systems for identification are significant and non-significant numbering. These 
systems and baselining are well-known concepts. However, it seems that identification 
has been given just minor attention in literature. This may be due to the fact that 
identification can be embedded into a certain technology or that it is quite a self-evident 
part of the documentation, and at the same time, it is an important pre-requisite for 
requirements traceability and change management.  

Our survey shows that the basic techniques are well-known and provide good support 
for traceability. For example, pre- and post-traceability are supported when using 
traceability matrices or cross-referencing. These techniques are also applied in many 
practical solutions (e.g., tools) or approaches. For example, the RADIX [48] method uses 
the cross-reference traceability technique and QFD [29] utilizes traceability matrices.  

Parviainen Päivi, Tihinen Maarit 14

14

Table 5. Support of selected technologies to software requirements development activities. 

Analysing the 
requirements for SW at 

detailed level
Modelling the software 

system Validation & Verification

SW requirements 
specification 

documentation
Average support 
of technology (%)

Extreme 
Programming

X
13 %

HOORA XX XX X X 75 %
Petri Nets X XX XX X 75 %

RUP XX X X X 63 %
SADT XX XX X X 75 %
SCR X XX X X 63 %

Shlaer-Mellor XX XX XX X 88 %
SSADM X X X X 50 %

UML XX XX 50 %
Z X X XX XX 75 %

Average support of 
criteria (%) 60 % 75 % 55 % 60 %

Legend: XX = Provides considerable support to the activity
 X = Provides some support to the activity

There are several technologies providing support for the different activities involved 
in the software requirements development process. The most widely supported activities 
are modelling the software system, analysing the requirements for software in detail, and 
verifying the software requirements specification. One of the least supported activities is 
documenting the software specification. However, other support for documentation is 
available in the standards defining the contents and characteristics of requirements 
specification, e.g., IEEE Std 1233 [46] and IEEE Std 830 [47].  

4.4.    Requirements Management  

This subsection introduces a detailed analysis from the viewpoint of requirements 
management (RM). Within the MOOSE project, several RM related technologies were 
researched; the respective descriptions are available in [8]. A detailed analysis of the 
selected RM methods, techniques and models started with the definition of the evaluation 
criteria. The criteria were divided into three categories according to the main RM 
activities: 1) identification, 2) traceability and 3) change management. The used criteria 
included: 

Identification  
Requirements and their versions should be uniquely identified (ID_1). 
Recording additional information about requirements should be possible (ID_2). 
Managing requirements hierarchically should be possible (ID_3). 
Baselining requirements should be possible (ID_4). 

Traceability  
Allocating and tracing requirements in requirement levels should be possible (RT_1). 
Forward and backward traceability must be available (RT_2). 
Post- and pre-traceability must be available (RT_3). 



VI/15

A Survey of Existing Requirements Engineering Methods and their Coverage 15

Traceability to additional information must be available (RT_4). 
Change management  
Support for SW engineering life cycle (e.g., development or maintenance) (CHM_1). 
Basic phases of change management must be supported (CHM_2). 

The following table (Table 6) summarizes the analysis of requirements management 
technologies. 

Table 6. Technologies support to requirements management activities 
ACTIVITY

METHOD ID_1 ID_2 ID_3 ID_4 RT_1 RT_2 RT_3 RT_4 CHM_1 CHM_2
ID ID

Significant numbering X X X 15 %
Non-significant numbering X 5 %

Structure based naming/numbering X X X X 20 %
Symbolic identification X X 10 %

Dynamic renumbering in document based requirements’ identification X X X X X 25 %
Database record identification (see also "automated traceability links) XX XX XX XX XX XX XX XX X 85 %

Baselining requirements X XX 15 %
RT RT

Cross reference XX XX X X 30 %
RT matrixes: Table XX XX XX X X 40 %

RT matrixes: List XX X XX X 30 %
Automated traceability links (see also "database record identification") XX XX XX XX XX 50 %

REMAP X X X X 20 %
Low- and High-end RT REFERENCE MODELS X XX X X 25 %

Contribution structures for requirements traceability X X X 15 %
HYDRA X XX X 20 %

Multiview++ XX XX X XX XX X 50 %
VORD X XX X X X X X 40 %

Hatley-Pirbhai X X X 15 %
SCRAM X 5 %

DSDM X X 10 %
RUP X X X XX XX X 40 %

XP X XX X X X X 35 %
QFD XX XX XX X X 40 %

RADIX (RT methodology and its SW tool) XX XX XX X 35 %
RChM RChM

Olsen’s ChM model X 5 %
V-like model X 5 %

Ince's change management model X 5 %
AMES process model X 5 %

Spiral-like change management model XX 10 %
Generic ChM process model XX 10 %

Using CM for RM XX XX XX XX X XX XX 65 %
Using metrics to support requirement change management X 5 %

Legend:  XX = Provides considerable support to the activity
 X = Provides some support to the activity

Average support 
of technology (%)

Requirements identification is an essential activity for requirements management; it 
can be considered a pre-requisite for requirements traceability and change management. 
The basic systems for identification are significant and non-significant numbering. These 
systems and baselining are well-known concepts. However, it seems that identification 
has been given just minor attention in literature. This may be due to the fact that 
identification can be embedded into a certain technology or that it is quite a self-evident 
part of the documentation, and at the same time, it is an important pre-requisite for 
requirements traceability and change management.  

Our survey shows that the basic techniques are well-known and provide good support 
for traceability. For example, pre- and post-traceability are supported when using 
traceability matrices or cross-referencing. These techniques are also applied in many 
practical solutions (e.g., tools) or approaches. For example, the RADIX [48] method uses 
the cross-reference traceability technique and QFD [29] utilizes traceability matrices.  

Parviainen Päivi, Tihinen Maarit 14

14

Table 5. Support of selected technologies to software requirements development activities. 

Analysing the 
requirements for SW at 

detailed level
Modelling the software 

system Validation & Verification

SW requirements 
specification 

documentation
Average support 
of technology (%)

Extreme 
Programming

X
13 %

HOORA XX XX X X 75 %
Petri Nets X XX XX X 75 %

RUP XX X X X 63 %
SADT XX XX X X 75 %
SCR X XX X X 63 %

Shlaer-Mellor XX XX XX X 88 %
SSADM X X X X 50 %

UML XX XX 50 %
Z X X XX XX 75 %

Average support of 
criteria (%) 60 % 75 % 55 % 60 %

Legend: XX = Provides considerable support to the activity
 X = Provides some support to the activity

There are several technologies providing support for the different activities involved 
in the software requirements development process. The most widely supported activities 
are modelling the software system, analysing the requirements for software in detail, and 
verifying the software requirements specification. One of the least supported activities is 
documenting the software specification. However, other support for documentation is 
available in the standards defining the contents and characteristics of requirements 
specification, e.g., IEEE Std 1233 [46] and IEEE Std 830 [47].  

4.4.    Requirements Management  

This subsection introduces a detailed analysis from the viewpoint of requirements 
management (RM). Within the MOOSE project, several RM related technologies were 
researched; the respective descriptions are available in [8]. A detailed analysis of the 
selected RM methods, techniques and models started with the definition of the evaluation 
criteria. The criteria were divided into three categories according to the main RM 
activities: 1) identification, 2) traceability and 3) change management. The used criteria 
included: 

Identification  
Requirements and their versions should be uniquely identified (ID_1). 
Recording additional information about requirements should be possible (ID_2). 
Managing requirements hierarchically should be possible (ID_3). 
Baselining requirements should be possible (ID_4). 

Traceability  
Allocating and tracing requirements in requirement levels should be possible (RT_1). 
Forward and backward traceability must be available (RT_2). 
Post- and pre-traceability must be available (RT_3). 



VI/16 VI/17

A Survey of Existing Requirements Engineering Methods and their Coverage 17

The methods are stand-alone and independent, and very few descriptions of their 
relations and applicability to being used with other methods were found in literature. 

On the other hand, the method descriptions available in literature and the Internet 
were ambiguous: 

Some of the methods are obsolete with no new information or published experiences 
available. 
An overall comparison of the methods is difficult, because they have different focus 
areas and purposes of use, and they have been described at different levels of 
granularity in literature. 
The method descriptions found in the literature are not explicit, thus in order to be 
able to use the methods in practice, interpretation and further guidelines are needed. 

Another issue, perhaps the greatest obstacle for the application of the new methods by 
the industry, is the availability of information and evidence of the applicability of the 
methods to different kinds of products, projects and environments. Unfortunately, most of 
the method descriptions were found to concentrate on defining the process, steps and 
deliverables of the method rather than discussing the applicability, scope or limitations of 
the method, or its practical adoption. According to Fowler and Swatman [52], another 
common weakness of the existing RE approaches is that their developers have been 
concentrating solely on the theoretical foundations, or pragmatics, throughout the entire 
development process. This shortcoming makes the selection of an appropriate method 
difficult.  

In the following, we discuss issues affecting the selection of a method or a 
combination of methods to be utilised in real-life organisations and projects. Identifying 
the specific characteristics of a given environment, project or product (situation) 
facilitates the selection of a RE method conforming to the particular situation best. Next, 
several issues, gathered from literature and the workshops held during the project, are 
listed that can be used to characterise embedded system or software development projects 
and products. The list is divided into two main categories: 1) characteristics of the 
development project, and 2) characteristics of the product being developed. Examples on 
how the different characteristics affect the RE method are also presented. 

Characteristics of the development project 
Total number of requirements. For example, prioritization of requirements becomes 
more important if the number of requirements is high. Likewise, the analysis of 
requirement relations and documenting and maintaining descriptions of the relations 
will become more complex if more requirements need to be addressed.  
Number of developers and/or stakeholders involved in the project. For example, 
documentation needs are higher if the number of developers or stakeholders is high. 
Change management procedures also need to be more formal if more developers 
and/or stakeholders are involved. Prioritization and agreement of requirements will 

Parviainen Päivi, Tihinen Maarit 16

16

Manual solutions for traceability, such as manual traceability tables and manual 
cross-referencing in requirements document, are rather error prone and hard to maintain. 
The automated traceability links technique enables easier traceability and reporting of 
information. In practice, this means that requirements are managed in, for example, the 
RM tool and the tool implements an appropriate traceability model (e.g., tailored 
REMAP  [49]  or  RT  reference  model  [50]).  However,  automation  may  require  
considerable system investment, development and maintenance effort.  

The basic techniques do not introduce any information elements (items and relations) 
which need to be traceable, while they still provide means for tracing them. On the other 
hand, practical models aim to show which items and relations should be traced. 
According to the survey, they have just one or few implementations or show few case 
experiences and thus the evaluation of their applicability is difficult. Some models also 
make an attempt to dictate items which should be managed (e.g. MULTIVIEW++ [51]). 
Among all the models considered in this survey, the so-called “RT reference models” 
seem to have the best empirical and practical level of traceability models. The survey also 
shows that there are well-known methods that also include some features for 
requirements traceability (e.g., XP, QFD, and RUP).  

Efficient requirements change management (ChM) presupposes requirements 
identification and traceability. Different ChM models and approaches have different 
focuses on the product life cycle. They provide relatively coarse models for ChM (usually 
just main steps) and need to be adapted for different organisations. It is, however, 
difficult to find information concerning the practical implementation of the models with 
respect of requirements management. 

5.   Discussion 

As can be seen in the previous sections, there are plenty of requirements engineering 
methods and techniques available. The purpose of our analysis was not to compare the 
different RE / RM methods or techniques with each other, but to find out how well the 
different requirements engineering activities are covered by the existing methods, and to 
gain a picture of the available method support in general. This was done for two reasons; 
to help direct our future research work and to support industry by means of providing 
information of what is available. It was found that not all the activities of our reference 
requirements engineering process were covered. In general, the analysis revealed the 
following findings regarding the coverage of requirements engineering activities: 

Not all the different activities of the RE process have sufficient method support; this 
was found inadequate especially in the cases of requirements allocation and flow-
down activities. 
None of the found methods cover all the phases of the RE process (system 
requirements development, allocation & flow-down and software requirements 
development), or all the activities within a phase. Thus, in order to achieve full 
support of the activities, the methods need to be combined. 



VI/17

A Survey of Existing Requirements Engineering Methods and their Coverage 17

The methods are stand-alone and independent, and very few descriptions of their 
relations and applicability to being used with other methods were found in literature. 

On the other hand, the method descriptions available in literature and the Internet 
were ambiguous: 

Some of the methods are obsolete with no new information or published experiences 
available. 
An overall comparison of the methods is difficult, because they have different focus 
areas and purposes of use, and they have been described at different levels of 
granularity in literature. 
The method descriptions found in the literature are not explicit, thus in order to be 
able to use the methods in practice, interpretation and further guidelines are needed. 

Another issue, perhaps the greatest obstacle for the application of the new methods by 
the industry, is the availability of information and evidence of the applicability of the 
methods to different kinds of products, projects and environments. Unfortunately, most of 
the method descriptions were found to concentrate on defining the process, steps and 
deliverables of the method rather than discussing the applicability, scope or limitations of 
the method, or its practical adoption. According to Fowler and Swatman [52], another 
common weakness of the existing RE approaches is that their developers have been 
concentrating solely on the theoretical foundations, or pragmatics, throughout the entire 
development process. This shortcoming makes the selection of an appropriate method 
difficult.  

In the following, we discuss issues affecting the selection of a method or a 
combination of methods to be utilised in real-life organisations and projects. Identifying 
the specific characteristics of a given environment, project or product (situation) 
facilitates the selection of a RE method conforming to the particular situation best. Next, 
several issues, gathered from literature and the workshops held during the project, are 
listed that can be used to characterise embedded system or software development projects 
and products. The list is divided into two main categories: 1) characteristics of the 
development project, and 2) characteristics of the product being developed. Examples on 
how the different characteristics affect the RE method are also presented. 

Characteristics of the development project 
Total number of requirements. For example, prioritization of requirements becomes 
more important if the number of requirements is high. Likewise, the analysis of 
requirement relations and documenting and maintaining descriptions of the relations 
will become more complex if more requirements need to be addressed.  
Number of developers and/or stakeholders involved in the project. For example, 
documentation needs are higher if the number of developers or stakeholders is high. 
Change management procedures also need to be more formal if more developers 
and/or stakeholders are involved. Prioritization and agreement of requirements will 

Parviainen Päivi, Tihinen Maarit 16

16

Manual solutions for traceability, such as manual traceability tables and manual 
cross-referencing in requirements document, are rather error prone and hard to maintain. 
The automated traceability links technique enables easier traceability and reporting of 
information. In practice, this means that requirements are managed in, for example, the 
RM tool and the tool implements an appropriate traceability model (e.g., tailored 
REMAP  [49]  or  RT  reference  model  [50]).  However,  automation  may  require  
considerable system investment, development and maintenance effort.  

The basic techniques do not introduce any information elements (items and relations) 
which need to be traceable, while they still provide means for tracing them. On the other 
hand, practical models aim to show which items and relations should be traced. 
According to the survey, they have just one or few implementations or show few case 
experiences and thus the evaluation of their applicability is difficult. Some models also 
make an attempt to dictate items which should be managed (e.g. MULTIVIEW++ [51]). 
Among all the models considered in this survey, the so-called “RT reference models” 
seem to have the best empirical and practical level of traceability models. The survey also 
shows that there are well-known methods that also include some features for 
requirements traceability (e.g., XP, QFD, and RUP).  

Efficient requirements change management (ChM) presupposes requirements 
identification and traceability. Different ChM models and approaches have different 
focuses on the product life cycle. They provide relatively coarse models for ChM (usually 
just main steps) and need to be adapted for different organisations. It is, however, 
difficult to find information concerning the practical implementation of the models with 
respect of requirements management. 

5.   Discussion 

As can be seen in the previous sections, there are plenty of requirements engineering 
methods and techniques available. The purpose of our analysis was not to compare the 
different RE / RM methods or techniques with each other, but to find out how well the 
different requirements engineering activities are covered by the existing methods, and to 
gain a picture of the available method support in general. This was done for two reasons; 
to help direct our future research work and to support industry by means of providing 
information of what is available. It was found that not all the activities of our reference 
requirements engineering process were covered. In general, the analysis revealed the 
following findings regarding the coverage of requirements engineering activities: 

Not all the different activities of the RE process have sufficient method support; this 
was found inadequate especially in the cases of requirements allocation and flow-
down activities. 
None of the found methods cover all the phases of the RE process (system 
requirements development, allocation & flow-down and software requirements 
development), or all the activities within a phase. Thus, in order to achieve full 
support of the activities, the methods need to be combined. 



VI/18 VI/19

A Survey of Existing Requirements Engineering Methods and their Coverage 19

technologies prevents them from being applied in industrial environments [53]. 
Furthermore, some reported surveys have established that there is a gap between research 
and practice and that companies need guidelines on how to use the existing research 
results [1], [54], [55]. Another reason for not adopting available methods or tools is that 
industry does not necessarily know what is available and where the available methods are 
applicable, and thus, selecting and introducing a new technology in real-life projects 
appears too laborious and risky. The reasons are to be found in the wide variety of 
characteristics of the product and the development project, and also in the broad range of 
activities involved in the RE process, including the support needs for each of these 
activities. The results of the survey described in this paper can be used to support the 
selection of applicable technologies for industrial needs; this paper gives a starting point 
for finding the most suitable solution from the viewpoint of an individual organisation.   

This paper has described a survey of available technology support for requirements 
engineering activities. Main findings of the survey indicate, that not all the different 
activities of the RE process have sufficient method support, none of the found methods 
cover all the phases of the RE process or all the activities within a phase, and the methods 
are stand-alone and independent, and very few descriptions of their relations and 
applicability to being used with other methods was found in literature. The aim of the 
work described in this paper was to provide a “big picture” of available technology 
support for RE, not to determine or point out the weaknesses or strengths of the various 
technologies. This “big picture” helps to direct future research efforts to the most critical 
areas, while also providing the industry with an insight into what solutions are available 
for their requirements engineering problems. Based on the survey, we conclude, that what 
is most urgently needed is information and evidence of the applicability of the available 
technologies in different situations, though further development of the technologies is 
also required. 

The fact is, as Kaindl et al. [56] argue, that the RE practice is most likely to remain 
immature until, for example, the researchers build on what others have done, rather than 
invent yet another modelling technique, and more practical formalisations are available 
and adopted by practitioners.  

Acknowledgements 

This paper has been written within the MOOSE (Software engineering methodologies 
for embedded systems) project, which is an ITEA project number 01002. The authors 
would like to thank all MOOSE partners for their valuable comments regarding our 
research results during the project [57]. We would like to give special thanks to Hanna 
Hulkko, Jukka Kääriäinen and Juha Takalo at VTT [58] for their contribution on the 
research  work  of  which  this  paper  is  a  summary.  Furthermore,  we  would  also  like  to  
express our gratitude for the support of the ITEA project [50] and Tekes [60].  

Parviainen Päivi, Tihinen Maarit 18

18

become more complicated if more stakeholders are involved, as there is a higher 
chance of conflicting interests. 
Policies and maturity of the existing requirements engineering process of the 
organisation. For example, the feasibility and investment cost of adopting new 
processes or tools depend on the maturity of the organisation and the existing process 
where the new process or tool needs to be integrated.  
Type of working environment (distributed, centralized). For example, documentation 
needs are higher if the work is distributed. Also, with larger teams and especially 
when operating in different sites, formal traceability policies are needed. 

Characteristics of the product being developed 
Safety criticality of the product. For example, more formal practices are commonly 
accepted to lead to more reliable products. Critical systems also require better 
traceability policies to enable analyzing the impact of changes in detail. 
Real-time requirements and constraints. For example, requirements analysis methods 
should provide means for modelling state behaviour, timing and response time 
requirements, so that the real-time requirements can be taken into account as early as 
in the phase of requirements analysis.  
Length of the product lifecycle. For example, traceability policies should be more 
comprehensive when the system lifecycle is long.  
Amount of legacy data (both software and hardware). For example, requirements 
analysis should provide mechanisms for combining new design elements to legacy 
data easily or engineering legacy data to meet the new requirements.  
Software/hardware ratio. For example, if both SW and HW are involved, 
documentation needs to be understandable to both SW and HW developers, and 
change management should include procedures for changes between hardware and 
software requirements. In this case, hardware constraints on software (e.g., limited 
use of memory and power consumption) should also be taken into account in 
requirements development. 

Future research should, in addition to providing new, more effective solutions to 
requirements engineering, provide information and evidence on the applicability of the 
methods for different situations.  

6.   Conclusions 

A large number of methods, techniques and tools are already available for 
requirements engineering, as seen in the sections above. However, as the Moose 
industrial inventory has shown, in practice industry uses rather common software 
engineering methods and tools [53]. The reasons for this are, for example, that new 
technologies often fail to take legacy artefacts into account, new technologies are often 
not mature enough to be applied in real-life applications, there is no adequate evidence of 
the benefits of the new technologies, and the complexity of some new development 



VI/19

A Survey of Existing Requirements Engineering Methods and their Coverage 19

technologies prevents them from being applied in industrial environments [53]. 
Furthermore, some reported surveys have established that there is a gap between research 
and practice and that companies need guidelines on how to use the existing research 
results [1], [54], [55]. Another reason for not adopting available methods or tools is that 
industry does not necessarily know what is available and where the available methods are 
applicable, and thus, selecting and introducing a new technology in real-life projects 
appears too laborious and risky. The reasons are to be found in the wide variety of 
characteristics of the product and the development project, and also in the broad range of 
activities involved in the RE process, including the support needs for each of these 
activities. The results of the survey described in this paper can be used to support the 
selection of applicable technologies for industrial needs; this paper gives a starting point 
for finding the most suitable solution from the viewpoint of an individual organisation.   

This paper has described a survey of available technology support for requirements 
engineering activities. Main findings of the survey indicate, that not all the different 
activities of the RE process have sufficient method support, none of the found methods 
cover all the phases of the RE process or all the activities within a phase, and the methods 
are stand-alone and independent, and very few descriptions of their relations and 
applicability to being used with other methods was found in literature. The aim of the 
work described in this paper was to provide a “big picture” of available technology 
support for RE, not to determine or point out the weaknesses or strengths of the various 
technologies. This “big picture” helps to direct future research efforts to the most critical 
areas, while also providing the industry with an insight into what solutions are available 
for their requirements engineering problems. Based on the survey, we conclude, that what 
is most urgently needed is information and evidence of the applicability of the available 
technologies in different situations, though further development of the technologies is 
also required. 

The fact is, as Kaindl et al. [56] argue, that the RE practice is most likely to remain 
immature until, for example, the researchers build on what others have done, rather than 
invent yet another modelling technique, and more practical formalisations are available 
and adopted by practitioners.  

Acknowledgements 

This paper has been written within the MOOSE (Software engineering methodologies 
for embedded systems) project, which is an ITEA project number 01002. The authors 
would like to thank all MOOSE partners for their valuable comments regarding our 
research results during the project [57]. We would like to give special thanks to Hanna 
Hulkko, Jukka Kääriäinen and Juha Takalo at VTT [58] for their contribution on the 
research  work  of  which  this  paper  is  a  summary.  Furthermore,  we  would  also  like  to  
express our gratitude for the support of the ITEA project [50] and Tekes [60].  

Parviainen Päivi, Tihinen Maarit 18

18

become more complicated if more stakeholders are involved, as there is a higher 
chance of conflicting interests. 
Policies and maturity of the existing requirements engineering process of the 
organisation. For example, the feasibility and investment cost of adopting new 
processes or tools depend on the maturity of the organisation and the existing process 
where the new process or tool needs to be integrated.  
Type of working environment (distributed, centralized). For example, documentation 
needs are higher if the work is distributed. Also, with larger teams and especially 
when operating in different sites, formal traceability policies are needed. 

Characteristics of the product being developed 
Safety criticality of the product. For example, more formal practices are commonly 
accepted to lead to more reliable products. Critical systems also require better 
traceability policies to enable analyzing the impact of changes in detail. 
Real-time requirements and constraints. For example, requirements analysis methods 
should provide means for modelling state behaviour, timing and response time 
requirements, so that the real-time requirements can be taken into account as early as 
in the phase of requirements analysis.  
Length of the product lifecycle. For example, traceability policies should be more 
comprehensive when the system lifecycle is long.  
Amount of legacy data (both software and hardware). For example, requirements 
analysis should provide mechanisms for combining new design elements to legacy 
data easily or engineering legacy data to meet the new requirements.  
Software/hardware ratio. For example, if both SW and HW are involved, 
documentation needs to be understandable to both SW and HW developers, and 
change management should include procedures for changes between hardware and 
software requirements. In this case, hardware constraints on software (e.g., limited 
use of memory and power consumption) should also be taken into account in 
requirements development. 

Future research should, in addition to providing new, more effective solutions to 
requirements engineering, provide information and evidence on the applicability of the 
methods for different situations.  

6.   Conclusions 

A large number of methods, techniques and tools are already available for 
requirements engineering, as seen in the sections above. However, as the Moose 
industrial inventory has shown, in practice industry uses rather common software 
engineering methods and tools [53]. The reasons for this are, for example, that new 
technologies often fail to take legacy artefacts into account, new technologies are often 
not mature enough to be applied in real-life applications, there is no adequate evidence of 
the benefits of the new technologies, and the complexity of some new development 



VI/20 VI/21

A Survey of Existing Requirements Engineering Methods and their Coverage 21

- Interruption and exception handling
- External behavior of software modules 

- Supports the engineering of real-time requirements (e.g., 
prioritization over other requirements) 

- Supports effective change management between SW and 
HW requirements 

- Provides high effectiveness to pre-release change 
identification. 

- Takes hardware constraints on software (e.g., limited 
memory usage and power consumption) into account.

Technology provides 
support for different 
requirement types. 

The technology is suitable for handling different types of 
requirements from different sources.
- Functional requirements and non-functional requirements. 
- Constraints (e.g. domain-specific, legacy SW & HW). 

Technology has up-to-
date information 
available. 

Technology has up-to-date information available, e.g., 
- scientific publications related to the technology and 
- published experiences on the use of the technology, 

Technology gives 
support for whole RE 
process 

Technology gives support for 
- different phases of  RE process and 
- different activities of RE process phases. 

References 

1. Juristo, N., Moreno,  A.M., and Silva, A.A. 2002. Is the European Industry Moving Toward 
Solving Requirements Engineering Problems? IEEE Software 19(6): 70-77. 

2. Komi-Sirviö, S, and Tihinen, M. 2003. Great Challenges and Opportunities of Distributed 
Software Development - An Industrial Survey. In proceedings of the 15th International 
Conference on Software Engineering and Knowledge Engineering, SEKE2003, San 
Francisco, USA pp. 489 – 496. 

3. Siddigi, J. 1996. Requirement Engineering: The Emerging Wisdom. IEEE Software 13(2): 15-
19. 

4. Neill, C.J., and  Laplante, P.A. 2003. Requirements Engineering: The State of the Practice, 
IEEE Software 20(6): 40-45. 

5. Ardis, M.A., Chaves, J.A., Jagadeesan, L.J., Mataga, P., Puchol, C., Staskauskas, M.G., and 
von Olnhausen, J. 1996. A Framework for Evaluating Specification Methods for Reactive 
Systems Experience Report, IEEE Transactions on Software Engineering 22(6): 378-389. 

6. Haywood, E., and Dart, P. 1996. Analysis of Software System Requirements Models. In 
Proceedings of Australian Software Engineering Conference, IEEE Computer Society Press, 
pp. 131-138. 

7. White, S.M. 1994. Comparative Analysis of Embedded Computer System Requirements 
Models. In Proceedings of the First International Conference on Requirements Engineering, 
IEEE Computer Society Press, pp. 126-134. 

8. Parviainen, P., Hulkko, H., Kääriäinen, J., Takalo, J. and Tihinen, M. 2003. Requirements 
engineering, Inventory of technologies. VTT Publications 508, VTT Technical Research 

Parviainen Päivi, Tihinen Maarit 20

20

Appendix A.   General criteria description 

Criteria Description 

Technology is 
established and well 
known. 

The technology is widely known and actively studied and 
tested to assure optimal results of use. 
- Is developed by a recognized source. 
- Previous experiences of technology’s usage have been 

published (incl. usage environment descriptions). 
- Is well documented. 
- Complies with standards (both industrial and 

organizational).

Method is 
understandable and 
usable. 

The technology has to have understandable structure and usage 
guidelines in order to assure effective utilization and avoid 
misinterpretations also among inexperienced users. 
- Has defined, structured and systematic steps to be taken. 
- Has a set of defined roles together with their areas of 

responsibility. 
- Defines and/or uses uniform terminology common to all 

stakeholders.  
- Support and training for adoption are available. 
- Has reasonable adoption effort. 
- Is tool supported? 
- Usage experience, adoption guidelines and usage 

guidelines are available. 

Technology is 
flexible and 
modifiable 

The technology has to be applicable to different environments 
and purposes of use.  
- Is modular, i.e., composed of interdependent parts, from 

which the applicable ones for the particular project can be 
selected? 

- Can be used together with other RE methods, tools and 
techniques. 

- Can be used in different application domains. 
- Possible adoption limitations, problems and technology’s 

suitability for different application domains have been 
documented. 

- Adaptation effort and time in particular project can be 
predicted.

Technology takes the 
embedded viewpoint 
into account. 

The technology takes the special characteristics of embedded 
software development into consideration: 
- Provides effective means for modeling: 

- State behavior 
- Timing and response time requirements 
- Hardware/software interface 



VI/21

A Survey of Existing Requirements Engineering Methods and their Coverage 21

- Interruption and exception handling
- External behavior of software modules 

- Supports the engineering of real-time requirements (e.g., 
prioritization over other requirements) 

- Supports effective change management between SW and 
HW requirements 

- Provides high effectiveness to pre-release change 
identification. 

- Takes hardware constraints on software (e.g., limited 
memory usage and power consumption) into account.

Technology provides 
support for different 
requirement types. 

The technology is suitable for handling different types of 
requirements from different sources.
- Functional requirements and non-functional requirements. 
- Constraints (e.g. domain-specific, legacy SW & HW). 

Technology has up-to-
date information 
available. 

Technology has up-to-date information available, e.g., 
- scientific publications related to the technology and 
- published experiences on the use of the technology, 

Technology gives 
support for whole RE 
process 

Technology gives support for 
- different phases of  RE process and 
- different activities of RE process phases. 

References 

1. Juristo, N., Moreno,  A.M., and Silva, A.A. 2002. Is the European Industry Moving Toward 
Solving Requirements Engineering Problems? IEEE Software 19(6): 70-77. 

2. Komi-Sirviö, S, and Tihinen, M. 2003. Great Challenges and Opportunities of Distributed 
Software Development - An Industrial Survey. In proceedings of the 15th International 
Conference on Software Engineering and Knowledge Engineering, SEKE2003, San 
Francisco, USA pp. 489 – 496. 

3. Siddigi, J. 1996. Requirement Engineering: The Emerging Wisdom. IEEE Software 13(2): 15-
19. 

4. Neill, C.J., and  Laplante, P.A. 2003. Requirements Engineering: The State of the Practice, 
IEEE Software 20(6): 40-45. 

5. Ardis, M.A., Chaves, J.A., Jagadeesan, L.J., Mataga, P., Puchol, C., Staskauskas, M.G., and 
von Olnhausen, J. 1996. A Framework for Evaluating Specification Methods for Reactive 
Systems Experience Report, IEEE Transactions on Software Engineering 22(6): 378-389. 

6. Haywood, E., and Dart, P. 1996. Analysis of Software System Requirements Models. In 
Proceedings of Australian Software Engineering Conference, IEEE Computer Society Press, 
pp. 131-138. 

7. White, S.M. 1994. Comparative Analysis of Embedded Computer System Requirements 
Models. In Proceedings of the First International Conference on Requirements Engineering, 
IEEE Computer Society Press, pp. 126-134. 

8. Parviainen, P., Hulkko, H., Kääriäinen, J., Takalo, J. and Tihinen, M. 2003. Requirements 
engineering, Inventory of technologies. VTT Publications 508, VTT Technical Research 

Parviainen Päivi, Tihinen Maarit 20

20

Appendix A.   General criteria description 

Criteria Description 

Technology is 
established and well 
known. 

The technology is widely known and actively studied and 
tested to assure optimal results of use. 
- Is developed by a recognized source. 
- Previous experiences of technology’s usage have been 

published (incl. usage environment descriptions). 
- Is well documented. 
- Complies with standards (both industrial and 

organizational).

Method is 
understandable and 
usable. 

The technology has to have understandable structure and usage 
guidelines in order to assure effective utilization and avoid 
misinterpretations also among inexperienced users. 
- Has defined, structured and systematic steps to be taken. 
- Has a set of defined roles together with their areas of 

responsibility. 
- Defines and/or uses uniform terminology common to all 

stakeholders.  
- Support and training for adoption are available. 
- Has reasonable adoption effort. 
- Is tool supported? 
- Usage experience, adoption guidelines and usage 

guidelines are available. 

Technology is 
flexible and 
modifiable 

The technology has to be applicable to different environments 
and purposes of use.  
- Is modular, i.e., composed of interdependent parts, from 

which the applicable ones for the particular project can be 
selected? 

- Can be used together with other RE methods, tools and 
techniques. 

- Can be used in different application domains. 
- Possible adoption limitations, problems and technology’s 

suitability for different application domains have been 
documented. 

- Adaptation effort and time in particular project can be 
predicted.

Technology takes the 
embedded viewpoint 
into account. 

The technology takes the special characteristics of embedded 
software development into consideration: 
- Provides effective means for modeling: 

- State behavior 
- Timing and response time requirements 
- Hardware/software interface 



VI/22 VI/23

A Survey of Existing Requirements Engineering Methods and their Coverage 23

26. Gennaro, G. 1995. Hierarchical Object Oriented Requirements Analysis (HOORA). Preparing 
for the Future 5(4), European Space Agency. 
http://esapub.esrin.esa.it/pff/pffv5n4/genv5n4.htm (Available 09.06.2006). 

27. Schneeweiss, W.G. 2001. Tutorial: Petri Nets as a Graphical Description Medium for Many 
Reliability Scenarios. IEEE Transactions on Reliability 50(2): 159 - 164.  

28. Gilb, T. 2003. Competitive Engineering. Addison-Wesley.  
29. Revelle, J.B., Moran, J.W., and Cox, C.A.1998.The QFD Handbook, John Wiley & Sons.  
30. Kruchten, P. 1998. The Rational Unified Process, Addison-Wesley.  
31. Schoman, K., and Ross, D.T. 1977. Structured Analysis for Requirements Definition. IEEE 

Transactions on Software Engineering, pp. 6-15.    
32. Kirby, J.Jr., Archer, M., and Heitmeyer, C. 1999. Applying Formal Methods to an Information 

Security Device: An Experience Report. Proceedings of the 4th IEEE International 
Conference on High Assurance Systems Engineering, pp. 81-88.    

33. Sutcliffe, A. 1998. Scenario-Based Requirement Analysis. Requirements Engineering Journal 
3(1): 48-65. 

34. Shlaer, S., and Mellor, S. 1988. Object-Oriented System Analysis: Modeling the World in 
Data. Yourdon Press Computing Series, Prentice-Hall.   

35. Ashworth, C., and Goodland, M. 1990. SSADM: A Practical Approach. McGraw-Hill.   
36. Booch, G., Jacobson, I., and Rumbaugh, J. 1998. The Unified Modeling Language User 

Guide. Addison-Wesley.  
37. Robertson, S., and Robertson, J. 1999. Mastering the Requirements Process, Addison-Wesley. 
38. Kotonya, G., and Sommerville, I. 1996. Requirements Engineering with Viewpoints. Software 

Engineering Journal 11(1): 5-11.  
39. Sheppard, D. 1995. An Introduction to Formal Specification with Z and VDM. McGraw-Hill 

Publications 
40. Checkland, P. 1981. Systems Thinking, Systems Practice, John Wiley & Sons, London.  
41. Boehm, B., Egyed, A., Kwan, J., Port, D., Shah, A., and Madachy, R. 1998. Using the 

WinWin Spiral Model: A Case Study. IEEE Computer 31(7): 33-44.  
42. Heitmeyer, C.L., Jeffords, R.D., and Labaw, B.G. 1996. Automated Consistency Checking of 

Requirements Specifications, ACM Transactions on Software Engineering and Methodology 
5(3): 231-261. 

43. Zowghi, D., Gervasi, V., and McRae, A., 2001. Using Default Reasoning to Discover 
Inconsistencies in Natural Language Requirements, Eighth Asia-Pacific Software Engineering 
Conference (APSEC 2001), pp. 133-140. 

44. Davis, A., Overmyer, S., Jordan, K., Caruso, J., Dandashi, F., Dinh, A., Kincaid, G., 
Ledeboer, G., Reynolds, P., Sitaram, P., Ta, A., and Theofanos, M. 1993. Identifying and 
Measuring Quality in a Software Requirements Specification, Proceedings of the First 
International Software Metrics Symposium, pp.141-152. 

45. Dobrica,  L.,  and  Niemelä,  E.  2002.  A  Survey  on  Software  Architecture  Analysis  Methods.  
IEEE Transactions on Software Engineering 28(7): 638-653. 

46. IEEE Std 1233, 1998. IEEE Guide for Developing System Requirements Specifications. 
Institute of Electrical and Electronics Engineering Inc. 

47. IEEE Std 830, 1998. IEEE Recommended Practice for Software Requirements Specifications. 
Institute of Electrical and Electronics Engineering. 

48. Yu, W.D. 1994. Verifying software requirements: a requirement tracing methodology and its 
software tool-RADIX, IEEE Journal on Selected Areas in Communications 12(2): 234-240.  

49. Ramesh, B., and Dhar, V. 1992. Supporting systems development by capturing deliberations 
during requirements engineering, IEEE Transactions on Software Engineering 18(6): 498-510.  

50. Ramesh, B., and Jarke, M. 2001. Toward reference models for requirements traceability, IEEE 
Transactions on Software Engineering 27(1): 58 –93.  

Parviainen Päivi, Tihinen Maarit 22

22

Centre of Finland. Available from: http://www.vtt.fi/inf/pdf/publications/2003/P508.pdf 
(Available 09.06.2006). 

9. Parviainen, P., Tihinen, M., van Solingen, R., and Lormans, M. 2005. Requirements 
Engineering: Dealing with the Complexity of Sociotechnical Systems Development, Chapter 
1, pages 1-20 in J.L. Mate, A. Silva (eds): Requirements Engineering for Sociotechnical 
Systems, Idea Group Inc. in 2005 

10. Delnooz, C., and Vrijnsen, L. 2003. Experiences with scenarios and Goal-Oriented RE. In 
proceedings of LACS2003 (Landelijk Architectuur Congres), Netherlands. 

11. Delnooz, C., Vrijnsen, L., Somers, L., and Hammer, D. 2003. Experiences with Scenario-
based Architecting. In proceedings of International Conference on "Software and System 
Engineering and their Applications", ICSSEA2003, Paris, France. 

12. Dohmen, L. A. J. and Somers, L. J. 2002. Experiences and Lessons Learned Using UML-RT 
to Develop Embedded Printer Software. In Oivo, M. & Komi-Sirviö, S. (eds.) proceedings of 
PROFES’2002 (Product Focused Software Process Improvement), LNCS 2559, Springer-
Verlag, pp. 475-484.  

13. Jäälinoja, J., and Oivo, M. 2004. Software Requirements Implementation and management. In 
proceedings of the 17th International Conference on "Software and System Engineering and 
their Applications", ICSSEA'2004. Paris, France. 

14. Lormans, M., van Dijk, H., van Deursen, A., Nöcker, E., and de Zeeuw, A. 2004. Managing 
evolving requirements in an outsoucring context: An industrial experience report. In 
Proceedings of IWPSE’04 (International Workshop on Principles of Software Evolution). pp. 
149-158. 

15. Royce, W.W. 1970. Managing the Development of Large Software Systems. Proceedings of 
IEEE Wescon. Reprinted in Proceedings 9th Int’l Conference Software Engineering (1987). 
IEEE Computer Society Press, Los Alamitos, California, pp. 328-338. 

16. Kotonya, G., and Sommerville, I. 1998. Requirements Engineering: Process and Techniques. 
John Wiley & Sons. 

17. Sailor, J.D. 1990. System Engineering: An Introduction. In IEEE System and Software 
Requirements Engineering. Edited by Thayer, R.H., and Dorfman, M. IEEE Software 
Computer Society Press, Los Alamitos, California, USA. pp. 35-47. 

18. Thayer, R.H., and Royce, W.W. 1990. Software Systems Engineering. In IEEE System and 
Software  Requirements  Engineering.  Edited  by  Thayer,  R.H.,  and  Dorfman,  M.  IEEE  
Software Computer Society Press. Los Alamitos, California, USA. pp. 77-116. 

19. Zowghi, D. 2000. A Requirements Engineering Process Model Based on Defaults and 
Revisions. Database and Expert Systems Applications, Proceedings. 11th International 
Workshop. pp. 966-70. 

20. Stevens, R., Brook, P., Jackson, K., and Arnold, S. 1998. Systems Engineering -Coping with 
Complexity. Prentice Hall, London. 

21. Kazman, R., Klein, M., Barbacci, M., Longstaff, T., Lipson, H., and Carriere, J. 1998. The 
Architecture Tradeoff Method. Proceedings of the fourth IEEE International Conference on 
Engineering of Complex Computer Systems, pp. 68-78. 

22. Hadel, J.J., and Lakey, P.B. 1995. A customer-oriented approach for optimising reliability-
allocation within a set of weapon-system requirements. Proceedings of the annual symposium 
on Reliability and Maintainability, pp. 96-101. 

23. Viller, S., and Sommerville, I. 1999. Social analysis in the requirements engineering process: 
from ethnography to method. Requirements Engineering, 1999. Proceedings. IEEE 
International Symposium on, pp. 6 -13.  

24. XP homepage. URL: http://www.extremeprogramming.org/  (Available 09.06.2006). 
25. Hatley, D.J., and Pirbhai, I.A. 1988. Strategies for Real-Time System Specification. Dorset 

House, New York. 

http://www.vtt.fi/inf/pdf/publications/2003/P508.pdf
http://www.extremeprogramming.org/


VI/23

A Survey of Existing Requirements Engineering Methods and their Coverage 23

26. Gennaro, G. 1995. Hierarchical Object Oriented Requirements Analysis (HOORA). Preparing 
for the Future 5(4), European Space Agency. 
http://esapub.esrin.esa.it/pff/pffv5n4/genv5n4.htm (Available 09.06.2006). 

27. Schneeweiss, W.G. 2001. Tutorial: Petri Nets as a Graphical Description Medium for Many 
Reliability Scenarios. IEEE Transactions on Reliability 50(2): 159 - 164.  

28. Gilb, T. 2003. Competitive Engineering. Addison-Wesley.  
29. Revelle, J.B., Moran, J.W., and Cox, C.A.1998.The QFD Handbook, John Wiley & Sons.  
30. Kruchten, P. 1998. The Rational Unified Process, Addison-Wesley.  
31. Schoman, K., and Ross, D.T. 1977. Structured Analysis for Requirements Definition. IEEE 

Transactions on Software Engineering, pp. 6-15.    
32. Kirby, J.Jr., Archer, M., and Heitmeyer, C. 1999. Applying Formal Methods to an Information 

Security Device: An Experience Report. Proceedings of the 4th IEEE International 
Conference on High Assurance Systems Engineering, pp. 81-88.    

33. Sutcliffe, A. 1998. Scenario-Based Requirement Analysis. Requirements Engineering Journal 
3(1): 48-65. 

34. Shlaer, S., and Mellor, S. 1988. Object-Oriented System Analysis: Modeling the World in 
Data. Yourdon Press Computing Series, Prentice-Hall.   

35. Ashworth, C., and Goodland, M. 1990. SSADM: A Practical Approach. McGraw-Hill.   
36. Booch, G., Jacobson, I., and Rumbaugh, J. 1998. The Unified Modeling Language User 

Guide. Addison-Wesley.  
37. Robertson, S., and Robertson, J. 1999. Mastering the Requirements Process, Addison-Wesley. 
38. Kotonya, G., and Sommerville, I. 1996. Requirements Engineering with Viewpoints. Software 

Engineering Journal 11(1): 5-11.  
39. Sheppard, D. 1995. An Introduction to Formal Specification with Z and VDM. McGraw-Hill 

Publications 
40. Checkland, P. 1981. Systems Thinking, Systems Practice, John Wiley & Sons, London.  
41. Boehm, B., Egyed, A., Kwan, J., Port, D., Shah, A., and Madachy, R. 1998. Using the 

WinWin Spiral Model: A Case Study. IEEE Computer 31(7): 33-44.  
42. Heitmeyer, C.L., Jeffords, R.D., and Labaw, B.G. 1996. Automated Consistency Checking of 

Requirements Specifications, ACM Transactions on Software Engineering and Methodology 
5(3): 231-261. 

43. Zowghi, D., Gervasi, V., and McRae, A., 2001. Using Default Reasoning to Discover 
Inconsistencies in Natural Language Requirements, Eighth Asia-Pacific Software Engineering 
Conference (APSEC 2001), pp. 133-140. 

44. Davis, A., Overmyer, S., Jordan, K., Caruso, J., Dandashi, F., Dinh, A., Kincaid, G., 
Ledeboer, G., Reynolds, P., Sitaram, P., Ta, A., and Theofanos, M. 1993. Identifying and 
Measuring Quality in a Software Requirements Specification, Proceedings of the First 
International Software Metrics Symposium, pp.141-152. 

45. Dobrica,  L.,  and  Niemelä,  E.  2002.  A  Survey  on  Software  Architecture  Analysis  Methods.  
IEEE Transactions on Software Engineering 28(7): 638-653. 

46. IEEE Std 1233, 1998. IEEE Guide for Developing System Requirements Specifications. 
Institute of Electrical and Electronics Engineering Inc. 

47. IEEE Std 830, 1998. IEEE Recommended Practice for Software Requirements Specifications. 
Institute of Electrical and Electronics Engineering. 

48. Yu, W.D. 1994. Verifying software requirements: a requirement tracing methodology and its 
software tool-RADIX, IEEE Journal on Selected Areas in Communications 12(2): 234-240.  

49. Ramesh, B., and Dhar, V. 1992. Supporting systems development by capturing deliberations 
during requirements engineering, IEEE Transactions on Software Engineering 18(6): 498-510.  

50. Ramesh, B., and Jarke, M. 2001. Toward reference models for requirements traceability, IEEE 
Transactions on Software Engineering 27(1): 58 –93.  

Parviainen Päivi, Tihinen Maarit 22

22

Centre of Finland. Available from: http://www.vtt.fi/inf/pdf/publications/2003/P508.pdf 
(Available 09.06.2006). 

9. Parviainen, P., Tihinen, M., van Solingen, R., and Lormans, M. 2005. Requirements 
Engineering: Dealing with the Complexity of Sociotechnical Systems Development, Chapter 
1, pages 1-20 in J.L. Mate, A. Silva (eds): Requirements Engineering for Sociotechnical 
Systems, Idea Group Inc. in 2005 

10. Delnooz, C., and Vrijnsen, L. 2003. Experiences with scenarios and Goal-Oriented RE. In 
proceedings of LACS2003 (Landelijk Architectuur Congres), Netherlands. 

11. Delnooz, C., Vrijnsen, L., Somers, L., and Hammer, D. 2003. Experiences with Scenario-
based Architecting. In proceedings of International Conference on "Software and System 
Engineering and their Applications", ICSSEA2003, Paris, France. 

12. Dohmen, L. A. J. and Somers, L. J. 2002. Experiences and Lessons Learned Using UML-RT 
to Develop Embedded Printer Software. In Oivo, M. & Komi-Sirviö, S. (eds.) proceedings of 
PROFES’2002 (Product Focused Software Process Improvement), LNCS 2559, Springer-
Verlag, pp. 475-484.  

13. Jäälinoja, J., and Oivo, M. 2004. Software Requirements Implementation and management. In 
proceedings of the 17th International Conference on "Software and System Engineering and 
their Applications", ICSSEA'2004. Paris, France. 

14. Lormans, M., van Dijk, H., van Deursen, A., Nöcker, E., and de Zeeuw, A. 2004. Managing 
evolving requirements in an outsoucring context: An industrial experience report. In 
Proceedings of IWPSE’04 (International Workshop on Principles of Software Evolution). pp. 
149-158. 

15. Royce, W.W. 1970. Managing the Development of Large Software Systems. Proceedings of 
IEEE Wescon. Reprinted in Proceedings 9th Int’l Conference Software Engineering (1987). 
IEEE Computer Society Press, Los Alamitos, California, pp. 328-338. 

16. Kotonya, G., and Sommerville, I. 1998. Requirements Engineering: Process and Techniques. 
John Wiley & Sons. 

17. Sailor, J.D. 1990. System Engineering: An Introduction. In IEEE System and Software 
Requirements Engineering. Edited by Thayer, R.H., and Dorfman, M. IEEE Software 
Computer Society Press, Los Alamitos, California, USA. pp. 35-47. 

18. Thayer, R.H., and Royce, W.W. 1990. Software Systems Engineering. In IEEE System and 
Software  Requirements  Engineering.  Edited  by  Thayer,  R.H.,  and  Dorfman,  M.  IEEE  
Software Computer Society Press. Los Alamitos, California, USA. pp. 77-116. 

19. Zowghi, D. 2000. A Requirements Engineering Process Model Based on Defaults and 
Revisions. Database and Expert Systems Applications, Proceedings. 11th International 
Workshop. pp. 966-70. 

20. Stevens, R., Brook, P., Jackson, K., and Arnold, S. 1998. Systems Engineering -Coping with 
Complexity. Prentice Hall, London. 

21. Kazman, R., Klein, M., Barbacci, M., Longstaff, T., Lipson, H., and Carriere, J. 1998. The 
Architecture Tradeoff Method. Proceedings of the fourth IEEE International Conference on 
Engineering of Complex Computer Systems, pp. 68-78. 

22. Hadel, J.J., and Lakey, P.B. 1995. A customer-oriented approach for optimising reliability-
allocation within a set of weapon-system requirements. Proceedings of the annual symposium 
on Reliability and Maintainability, pp. 96-101. 

23. Viller, S., and Sommerville, I. 1999. Social analysis in the requirements engineering process: 
from ethnography to method. Requirements Engineering, 1999. Proceedings. IEEE 
International Symposium on, pp. 6 -13.  

24. XP homepage. URL: http://www.extremeprogramming.org/  (Available 09.06.2006). 
25. Hatley, D.J., and Pirbhai, I.A. 1988. Strategies for Real-Time System Specification. Dorset 

House, New York. 

http://esapub.esrin.esa.it/pff/pffv5n4/genv5n4.htm


VI/24 VI/25

Parviainen Päivi, Tihinen Maarit 24

24

51. Toranzo, M., and Castro, J. 1999. Multiview++ Environment: Requirements Traceability from 
the perspective of different stakeholders, WER99 - II IberoAmerican Workshop on 
Requirements Engineering, Buenos Aires.  

52. Fowler, D.C., and Swatman, P.A. 1998. Building information systems development methods: 
synthesising from a basis in both theory and practice. Software Engineering Conference, 
Proceedings. Australian, pp. 110-117. 

53. Graaf, B., Lormans,  M., and Toetenel, H. 2003. Embedded Software Engineering: state of the 
practice. IEEE Software 20(6): 61-69. 

54. Davies,  P.,  Sensors,  T.,  &  INCOSE  RWG,  The  State  of  the  Union  in  Requirements  
Engineering, INCOSE-UK Autumn Assembly 2001, 
http://www.incose.org.uk/Downloads/AA01-4-1_RE_Overview.pdf  (Available 09.06.2006). 

55. Nikula, U., Sajaniemi, J. and Kälviäinen, H., A State-of-the-Practice Survey on Requirments 
Engineering in Small- and Medium-Sized Enterprises, Technical report, 2000. Telecom 
Business Research Center (TBRC) http://www.tbrc.fi/pubfilet/TBRC_500000146.pdf  
(Available 09.06.2006). 

56. Kaindl,  H.,  Brinkkemper,  S.,  Bubenko,  J.A  Jr.,  Farbey,  B.,  Greenspan,  S.J.,  Heitmeyer,  L:  
Sampaio do Prado Leite, J.C., Mead, N.R., Mypoulos, J., and Siddiqi, J. 2002.  Requirements 
Engineering and Technology Transfer: Obstacles, Incentives and Improvement Agenda. 
Springer-Verlag London Limited. Requirements Engineering volume 7: 113-123. 

57. MOOSE homepage. MOOSE (Software engineering methodologies for embedded systems), 
URL: http://www.mooseproject.org (Available 09.06.2006). 

58. VTT homepage. VTT Technical Research Centre of Finland, VTT Electronics, URL: 
http://www.vtt.fi/ (Available 09.06.2006). 

59. ITEA homepage. ITEA, Information Technology for European Advancement, URL: 
http://www.itea-office.org/ (Available 09.06.2006). 

60. Tekes homepage. Tekes, National Technology Agency of Finland, URL: 
http://www.tekes.fi/eng/ (Available 09.06.2006). 

http://www.incose.org.uk/Downloads/AA01-4-1_RE_Overview.pdf
http://www.tbrc.fi/pubfilet/TBRC_500000146.pdf
http://www.mooseproject.org
http://www.vtt.fi/
http://www.itea-office.org/
http://www.tekes.fi/eng/


VI/25

Parviainen Päivi, Tihinen Maarit 24

24

51. Toranzo, M., and Castro, J. 1999. Multiview++ Environment: Requirements Traceability from 
the perspective of different stakeholders, WER99 - II IberoAmerican Workshop on 
Requirements Engineering, Buenos Aires.  

52. Fowler, D.C., and Swatman, P.A. 1998. Building information systems development methods: 
synthesising from a basis in both theory and practice. Software Engineering Conference, 
Proceedings. Australian, pp. 110-117. 

53. Graaf, B., Lormans,  M., and Toetenel, H. 2003. Embedded Software Engineering: state of the 
practice. IEEE Software 20(6): 61-69. 

54. Davies,  P.,  Sensors,  T.,  &  INCOSE  RWG,  The  State  of  the  Union  in  Requirements  
Engineering, INCOSE-UK Autumn Assembly 2001, 
http://www.incose.org.uk/Downloads/AA01-4-1_RE_Overview.pdf  (Available 09.06.2006). 

55. Nikula, U., Sajaniemi, J. and Kälviäinen, H., A State-of-the-Practice Survey on Requirments 
Engineering in Small- and Medium-Sized Enterprises, Technical report, 2000. Telecom 
Business Research Center (TBRC) http://www.tbrc.fi/pubfilet/TBRC_500000146.pdf  
(Available 09.06.2006). 

56. Kaindl,  H.,  Brinkkemper,  S.,  Bubenko,  J.A  Jr.,  Farbey,  B.,  Greenspan,  S.J.,  Heitmeyer,  L:  
Sampaio do Prado Leite, J.C., Mead, N.R., Mypoulos, J., and Siddiqi, J. 2002.  Requirements 
Engineering and Technology Transfer: Obstacles, Incentives and Improvement Agenda. 
Springer-Verlag London Limited. Requirements Engineering volume 7: 113-123. 

57. MOOSE homepage. MOOSE (Software engineering methodologies for embedded systems), 
URL: http://www.mooseproject.org (Available 09.06.2006). 

58. VTT homepage. VTT Technical Research Centre of Finland, VTT Electronics, URL: 
http://www.vtt.fi/ (Available 09.06.2006). 

59. ITEA homepage. ITEA, Information Technology for European Advancement, URL: 
http://www.itea-office.org/ (Available 09.06.2006). 

60. Tekes homepage. Tekes, National Technology Agency of Finland, URL: 
http://www.tekes.fi/eng/ (Available 09.06.2006). 

PAPER VII

Experiences on analysis of 
requirements quality

In: Proceedings of the Third International Conference 
on Software Engineering Advances (ICSEA) 2008. 
Sliema Malta,  26–31 October 2008. Pp. 367–372.

Copyright 2008 IEEE.
Reprinted with permission from the publisher.



VII/1

 

Experiences on Analysis of Requirements Quality 
 
 

Petra Heck 
Consultant and Researcher 

Laboratory for Quality Software (NL) 
info@laquso.com, petraheck@hotmail.com 

 
  
 

Päivi Parviainen 
Senior Research Scientist 

VTT Technical Research Centre of Finland 
Paivi.Parviainen@vtt.fi 

 

Abstract 
 
The quality of any product depends on the quality of 

the basis of making it, i.e., the quality of the 
requirements has strong effect on the quality of the end 
products. In practice, however, the quality of 
requirement specifications is poor, in fact a primary 
reason why so many projects continue to fail. Thus, the 
current approaches as applied in practice are clearly 
not enough to develop high quality requirements 
specifications. Also, the poor quality of the 
requirements is typically not recognized during 
requirements development. In this paper we present a 
method called LSPCM developed for certifying 
software product quality. We also describe experiences 
from using the method for analyzing requirements 
quality in three cases. The three different cases show 
that the checks in the LSPCM are useful for finding 
inconsistencies in requirements specifications, 
regardless of the application domain. 
 

 
1. Introduction 

 
The importance and effect of software intensive 

systems increase continuously as more and more 
applications depend on the reliability, availability, and 
integrity of software. These systems are also becoming 
more and more complex, causing that the development 
of quality systems has become a major scientific and 
engineering challenge. The quality of the systems is 
strongly affected by the quality of the requirements but 
proper requirements engineering is not an established 
practice within the software developing community [1]. 
This causes that most errors are introduced in the 
requirements phase and are caused by poorly written, 
ambiguous, unclear or missed requirements, as 
reported by several studies [1, 2, 3]. Failure to correctly 
specify the requirements can lead to major delays, cost 
overruns, commercial consequences including the loss 
of money or property, layoffs, and even the loss of 
lives.  

Requirements engineering (RE) is generally 
accepted to be the most critical and complex process 
within the development of embedded systems, see, for 

example, [4, 5, 6]. One reason for this is that in 
requirements engineering the most diverse set of 
product demands from the most diverse set of 
stakeholders has to be considered, making the 
requirements engineering process both 
multidisciplinary and complex.  

In this paper we focus on verification of the 
requirements, meaning checking the quality of the 
requirements descriptions. We describe a method 
developed for certifying software product quality, 
focusing on the requirements part of the method. We 
also describe experiences from using the method in 
three cases in different application domains.  

 
1.1. Requirements Quality  
 

According to the IEEE Guide for Developing 
System Requirements Specifications [7], a well-formed 
requirement is "a statement of system functionality (a 
capability) that can be validated, that must be 
possessed by a system to solve a customer problem or 
to achieve a customer objective, and that is qualified by 
measurable conditions and bounded by constraints". 
Capabilities are the fundamental requirements of the 
system, representing the features or functions needed 
by the stakeholders. Conditions and constraints are 
attributes that are stipulated by a capability.  

When requirements are expressed in natural 
language, descriptions should be written by using 
simple and concise language in order for them to be 
understandable for all stakeholders. However, in 
practice the quality of requirement specifications is 
poor, the requirements are ambiguous, incomplete, 
unverifiable, inadequately prioritized, and mutually 
inconsistent [8]. In fact, this poor quality of the 
requirements (incomplete and changing requirements) 
is a primary reason why so many projects continue to 
fail [9]. Thus, the current approaches as applied in 
practice are clearly not enough to develop high quality 
requirements specifications. Furthermore, the poor 
quality of the requirements is typically not recognized 
during requirements development; the requirements 
may be reviewed, but many of the defects are not 
found, causing that the defects replicate in the 
following work. The later these errors are found, the 

The Third International Conference on Software Engineering Advances

978-0-7695-3372-8/08 $25.00 © 2008 IEEE
DOI 10.1109/ICSEA.2008.32

367

The Third International Conference on Software Engineering Advances

978-0-7695-3372-8/08 $25.00 © 2008 IEEE
DOI 10.1109/ICSEA.2008.32

367



VII/1

 

Experiences on Analysis of Requirements Quality 
 
 

Petra Heck 
Consultant and Researcher 

Laboratory for Quality Software (NL) 
info@laquso.com, petraheck@hotmail.com 

 
  
 

Päivi Parviainen 
Senior Research Scientist 

VTT Technical Research Centre of Finland 
Paivi.Parviainen@vtt.fi 

 

Abstract 
 
The quality of any product depends on the quality of 

the basis of making it, i.e., the quality of the 
requirements has strong effect on the quality of the end 
products. In practice, however, the quality of 
requirement specifications is poor, in fact a primary 
reason why so many projects continue to fail. Thus, the 
current approaches as applied in practice are clearly 
not enough to develop high quality requirements 
specifications. Also, the poor quality of the 
requirements is typically not recognized during 
requirements development. In this paper we present a 
method called LSPCM developed for certifying 
software product quality. We also describe experiences 
from using the method for analyzing requirements 
quality in three cases. The three different cases show 
that the checks in the LSPCM are useful for finding 
inconsistencies in requirements specifications, 
regardless of the application domain. 
 

 
1. Introduction 

 
The importance and effect of software intensive 

systems increase continuously as more and more 
applications depend on the reliability, availability, and 
integrity of software. These systems are also becoming 
more and more complex, causing that the development 
of quality systems has become a major scientific and 
engineering challenge. The quality of the systems is 
strongly affected by the quality of the requirements but 
proper requirements engineering is not an established 
practice within the software developing community [1]. 
This causes that most errors are introduced in the 
requirements phase and are caused by poorly written, 
ambiguous, unclear or missed requirements, as 
reported by several studies [1, 2, 3]. Failure to correctly 
specify the requirements can lead to major delays, cost 
overruns, commercial consequences including the loss 
of money or property, layoffs, and even the loss of 
lives.  

Requirements engineering (RE) is generally 
accepted to be the most critical and complex process 
within the development of embedded systems, see, for 

example, [4, 5, 6]. One reason for this is that in 
requirements engineering the most diverse set of 
product demands from the most diverse set of 
stakeholders has to be considered, making the 
requirements engineering process both 
multidisciplinary and complex.  

In this paper we focus on verification of the 
requirements, meaning checking the quality of the 
requirements descriptions. We describe a method 
developed for certifying software product quality, 
focusing on the requirements part of the method. We 
also describe experiences from using the method in 
three cases in different application domains.  

 
1.1. Requirements Quality  
 

According to the IEEE Guide for Developing 
System Requirements Specifications [7], a well-formed 
requirement is "a statement of system functionality (a 
capability) that can be validated, that must be 
possessed by a system to solve a customer problem or 
to achieve a customer objective, and that is qualified by 
measurable conditions and bounded by constraints". 
Capabilities are the fundamental requirements of the 
system, representing the features or functions needed 
by the stakeholders. Conditions and constraints are 
attributes that are stipulated by a capability.  

When requirements are expressed in natural 
language, descriptions should be written by using 
simple and concise language in order for them to be 
understandable for all stakeholders. However, in 
practice the quality of requirement specifications is 
poor, the requirements are ambiguous, incomplete, 
unverifiable, inadequately prioritized, and mutually 
inconsistent [8]. In fact, this poor quality of the 
requirements (incomplete and changing requirements) 
is a primary reason why so many projects continue to 
fail [9]. Thus, the current approaches as applied in 
practice are clearly not enough to develop high quality 
requirements specifications. Furthermore, the poor 
quality of the requirements is typically not recognized 
during requirements development; the requirements 
may be reviewed, but many of the defects are not 
found, causing that the defects replicate in the 
following work. The later these errors are found, the 

The Third International Conference on Software Engineering Advances

978-0-7695-3372-8/08 $25.00 © 2008 IEEE
DOI 10.1109/ICSEA.2008.32

367

The Third International Conference on Software Engineering Advances

978-0-7695-3372-8/08 $25.00 © 2008 IEEE
DOI 10.1109/ICSEA.2008.32

367

mailto:info@laquso.com
mailto:petraheck@hotmail.com
mailto:Paivi.Parviainen@vtt.fi


VII/2 VII/3

Although the current goal of the model is to hand out 
certificates to customers, its framework and checks can 
just as well be used by anyone that needs to check the 
quality of requirements. Next we will explain how 
LaQuSo hands out certificates. 

If an organization wants confidence in a software 
artifact a LaQuSo certificate can be requested. Being 
part of universities, LaQuSo is an independent 
evaluator. Certification is a check that the artifact 
fulfils a defined set of properties and the certificate will 
always refer to the properties that were used. The 
certificate covers only the product quality, not the 
management and development processes. The quality 
certificate consists of a diagnosis report and verdict 
document. Certification may also be an iterative 
process where the customer delivers improved versions 
of an artifact until a certificate is achieved. Each 
certification case has its own goals and a specific 
certification plan (steps to take and techniques to 
apply) is made for each project. In this paper we 
describe three projects in which the goal was to grant a 
"Consistency of User Requirements" certificate. This 
certificate has the following characteristics: 

 
Table 1. Certificate characteristics 

Product Area  User Requirements  
Properties  Consistency  
Level  Manually verified  
Description  Check on the internal consistency 

of the requirements  
Input  Natural language requirements 

specification  
  
Next, we’ll describe the elements we consider to be 

part of a complete user requirements specification:  
• Functional requirements or Use-cases. Functional 

requirements describe the functionality of the 
system from the perspective of the user in plain 
text or in the form of use-cases. A use-case is a 
named "piece of functionality" as seen from the 
perspective of an actor. For each use-case several 
use-case scenario's are given (sequences of 
actions, events or tasks), the permitted or desired 
ones as well as the forbidden ones. 

• Objects. Many types of entities play a role in the 
environment processes and some of them have to 
be represented in the system. Only these are 
collected. The object description can be informal 
in the form of a glossary, or more advanced in the 
form of a data dictionary or object model.  

• Behavioral Properties. General behavioral 
properties that should hold, such as properties 
expressing that certain conditions may never occur 
or that certain conditions should always hold. 
Usually these properties have a temporal aspect 
and therefore it is possible to express them in 
temporal logic, although a translation in natural 
language is essential for most stakeholders. 

• Non-functional requirements. A set of different 
types of quality attributes that can be used to judge 
the operation of a system. 

 
2.2. Requirement Checks 

 
In this section we suggest a necessarily incomplete 

list for the User Requirements PA. The specific criteria 
(SC) are a direct translation of the three general 
certification criteria to the user requirements PA: 
describe the requirements as detailed and as formal as 
possible (CC1 -> SC1), comply with requirements 
engineering standards (CC2 -> SC2), and maintain 
correct and consistent relations between the elements in 
the requirements description (CC3 -> SC3a) and with 
the context analysis (CC3 -> SC3b). From this set of 
elements and the specific criteria we derive a number 
of specific checks (based on literature, standards and 
our own experience).  

 
Table 2. The requirement checks 

Category Check
SC1.1 
Required 
Elements 

• Functional requirements describe the 
functionality of the system from the 
perspective of the user.  

• Non-functional requirements i.e., quality 
requirements are described (e.g., 
performance and security measures). 

• Glossary defines the entities that have 
to be represented in the system.  

SC1.2 Semi-
formal 
Elements 

• Data dictionary or object model that 
contains data elements’ definitions and 
representations including semantics for 
data elements. The semantic 
components focus on creating precise 
meaning of data elements.  

• Use cases (with scenarios) are defined 
and for each use case several use case 
scenarios are given (sequences of 
actions, events or tasks), the permitted 
or desired and the forbidden ones. 

• Behavioural properties, i.e., the 
constraints on the behaviour of the 
system are defined. The constraints 
express that e.g. certain conditions may 
never occur or certain conditions should 
always hold. Usually behavioural 
properties have a temporal aspect. 

SC1.3 
Formal 
Elements 

• Relational diagram of data/object model 
is used to describe conceptual data 
models by providing graphical notations 
for entities and their relationships, and 
the constraints that bind them. 
Examples of diagramming techniques 
are UML class diagram and ER-diagram

• Process model of use case scenarios 
describe the relations between the 
steps in the use case scenarios in a 
formal language like Petri Nets. 

• Behavioral properties specifications are 
expressed in a formal language. If they 
e.g. have a temporal aspect, temporal 

369369

more impact they have on work products quality and 
the more costly they are to fix, i.e., according to 
Boehm [10] finding and fixing a software problem 
after delivery is often 100 times more expensive than 
finding and fixing it during the requirement and design 
phase. 

 
1.2. Related Work 

 
Many checklists and questionnaires for ensuring the 

quality of requirements of varying degrees of 
completeness and usefulness are described in 
requirements engineering books [1, 11, 12, 13]. There 
are also several guidelines and standards published 
addressing the requirements quality [7, 14, 15, 16]. 
Thus, the theory of writing high quality requirements is 
well established. However, in practice, the 
requirements are developed by people who have had 
little or no training in requirements engineering [8], 
often lacking knowledge of the published theory. Also, 
evaluating requirements quality based on standards is 
not straightforward, as understanding the practical 
meaning of the terms used in the standards is not 
simple. There are also some tools that can help in the 
analysis of the quality of requirements written in 
natural language such as ARM [17], CICO [18] and 
QuARS [19]. These tools analysis is based on 
predefined quality criteria and elements of (English) 
language. 

The LaQuSo Software Product Certification Model 
(LSPCM) was developed because we did not find any 
other practical method or framework for checking the 
quality of software artifacts, e.g., requirements 
specifications. We needed a method that would yield 
similar results regardless of who performed the quality 
check and which is also application domain 
independent. The framework is based on literature and 
own experiences, main new contribution being that the 
framework brings together information that was 
scattered over different sources. 

 
2. LSPCM Overview 

 
 For the certification of software product quality the 

Laboratory for Quality Software (LaQuSo) has 
developed the Software Product Certification Model 
(LSPCM) [20]. Benefit from this certification is for 
example that the issues found during certification 
directly point to issues in the software product. Solving 
issues leads to a higher quality product. Another 
benefit of the certification is that in the certification the 
software product is investigated on a number of 
predefined criteria. These same criteria can later be 
used during the development of new products. In this 
way the organization learns from the certification: what 
is a good software product and how can we check our 
software products ourselves? The LSPCM has a similar 
structure as the well known models GQM (Goal 
Question Metric) and FCM (Feature Criteria Metric), 
as requirements are certified according to certification 

criteria (= Goal in GQM or = Feature in FCM), 
categories (= Question in GQM or = Criteria in FCM) 
and checks (= Metric in both GQM and FCM). 

 Software artifacts include in addition to the final 
software product (the source code or working system), 
also intermediate deliverables like user requirements 
and detailed design. Each major deliverable is a 
Product Area in the LSPCM. Each area can be further 
divided into subparts, called elements. These elements 
can be separate artifacts, a chapter within a document, 
or different parts of a larger model. For instance, the 
user manual will be a separate artifact delivered with 
the system, the non-functional requirements will be a 
separate section of the user requirements document, 
and the stakeholders can be described as part of the 
business process description.  

 Certification Criteria (CC) are criteria that apply 
to each Product Area (PA). For each of the CC’s 
different Achievement Levels (AL) can be established. 
There are three CC, generic for all Product Areas: 
• Completeness (CC1): All required elements in the 

Product Area (see section 2.2 for examples) should 
be present and as formalized as possible. The 
completeness of a PA can be basic or extra 
elements may have been added. These elements 
can be semi-formal (AL2) or formal (AL3), which 
refers to the fact that they are specified in a formal 
language. The more formal an element is, the 
easier it can be subject to formal verification (less 
transformation is needed). 

• Uniformity (CC2): The style of the elements in the 
PA should be standardized. The uniformity of a 
PA can be only within the PA itself (AL1), with 
respect to a company standard (AL2), or with 
respect to an industry standard (AL3), meaning a 
general accepted description technique that is not 
specific for the company like the use of UML 
diagrams for design documents. 

• Conformance (CC3): All elements should conform 
to the property that is subject of the certification. 
The conformance of the PA to a property can be 
established with different means that increase 
confidence: manually (AL1), with tool support 
(AL2), or by formal verification (AL3).    

For each of these Certification Criteria different 
Achievement Levels can be established and the 
Certification Criteria can be translated into Specific 
Criteria (SC) per Product Area that indicate what 
completeness (CC1), uniformity (CC2), and 
conformance (CC3) mean for that Product Area. The 
Specific Criteria indicate what the required elements 
and checks are to achieve a certain level of the 
Certification Criteria. In this article we focus on the 
User Requirements Product Area of the LSPCM and 
the specific criteria for it. 

 
  2.1. Analysis Process 

 
This section explains the general idea behind the 

LaQuSo Model, more details can be found in [20]. 

368368



VII/3

Although the current goal of the model is to hand out 
certificates to customers, its framework and checks can 
just as well be used by anyone that needs to check the 
quality of requirements. Next we will explain how 
LaQuSo hands out certificates. 

If an organization wants confidence in a software 
artifact a LaQuSo certificate can be requested. Being 
part of universities, LaQuSo is an independent 
evaluator. Certification is a check that the artifact 
fulfils a defined set of properties and the certificate will 
always refer to the properties that were used. The 
certificate covers only the product quality, not the 
management and development processes. The quality 
certificate consists of a diagnosis report and verdict 
document. Certification may also be an iterative 
process where the customer delivers improved versions 
of an artifact until a certificate is achieved. Each 
certification case has its own goals and a specific 
certification plan (steps to take and techniques to 
apply) is made for each project. In this paper we 
describe three projects in which the goal was to grant a 
"Consistency of User Requirements" certificate. This 
certificate has the following characteristics: 

 
Table 1. Certificate characteristics 

Product Area  User Requirements  
Properties  Consistency  
Level  Manually verified  
Description  Check on the internal consistency 

of the requirements  
Input  Natural language requirements 

specification  
  
Next, we’ll describe the elements we consider to be 

part of a complete user requirements specification:  
• Functional requirements or Use-cases. Functional 

requirements describe the functionality of the 
system from the perspective of the user in plain 
text or in the form of use-cases. A use-case is a 
named "piece of functionality" as seen from the 
perspective of an actor. For each use-case several 
use-case scenario's are given (sequences of 
actions, events or tasks), the permitted or desired 
ones as well as the forbidden ones. 

• Objects. Many types of entities play a role in the 
environment processes and some of them have to 
be represented in the system. Only these are 
collected. The object description can be informal 
in the form of a glossary, or more advanced in the 
form of a data dictionary or object model.  

• Behavioral Properties. General behavioral 
properties that should hold, such as properties 
expressing that certain conditions may never occur 
or that certain conditions should always hold. 
Usually these properties have a temporal aspect 
and therefore it is possible to express them in 
temporal logic, although a translation in natural 
language is essential for most stakeholders. 

• Non-functional requirements. A set of different 
types of quality attributes that can be used to judge 
the operation of a system. 

 
2.2. Requirement Checks 

 
In this section we suggest a necessarily incomplete 

list for the User Requirements PA. The specific criteria 
(SC) are a direct translation of the three general 
certification criteria to the user requirements PA: 
describe the requirements as detailed and as formal as 
possible (CC1 -> SC1), comply with requirements 
engineering standards (CC2 -> SC2), and maintain 
correct and consistent relations between the elements in 
the requirements description (CC3 -> SC3a) and with 
the context analysis (CC3 -> SC3b). From this set of 
elements and the specific criteria we derive a number 
of specific checks (based on literature, standards and 
our own experience).  

 
Table 2. The requirement checks 

Category Check
SC1.1 
Required 
Elements 

• Functional requirements describe the 
functionality of the system from the 
perspective of the user.  

• Non-functional requirements i.e., quality 
requirements are described (e.g., 
performance and security measures). 

• Glossary defines the entities that have 
to be represented in the system.  

SC1.2 Semi-
formal 
Elements 

• Data dictionary or object model that 
contains data elements’ definitions and 
representations including semantics for 
data elements. The semantic 
components focus on creating precise 
meaning of data elements.  

• Use cases (with scenarios) are defined 
and for each use case several use case 
scenarios are given (sequences of 
actions, events or tasks), the permitted 
or desired and the forbidden ones. 

• Behavioural properties, i.e., the 
constraints on the behaviour of the 
system are defined. The constraints 
express that e.g. certain conditions may 
never occur or certain conditions should 
always hold. Usually behavioural 
properties have a temporal aspect. 

SC1.3 
Formal 
Elements 

• Relational diagram of data/object model 
is used to describe conceptual data 
models by providing graphical notations 
for entities and their relationships, and 
the constraints that bind them. 
Examples of diagramming techniques 
are UML class diagram and ER-diagram

• Process model of use case scenarios 
describe the relations between the 
steps in the use case scenarios in a 
formal language like Petri Nets. 

• Behavioral properties specifications are 
expressed in a formal language. If they 
e.g. have a temporal aspect, temporal 

369369

more impact they have on work products quality and 
the more costly they are to fix, i.e., according to 
Boehm [10] finding and fixing a software problem 
after delivery is often 100 times more expensive than 
finding and fixing it during the requirement and design 
phase. 

 
1.2. Related Work 

 
Many checklists and questionnaires for ensuring the 

quality of requirements of varying degrees of 
completeness and usefulness are described in 
requirements engineering books [1, 11, 12, 13]. There 
are also several guidelines and standards published 
addressing the requirements quality [7, 14, 15, 16]. 
Thus, the theory of writing high quality requirements is 
well established. However, in practice, the 
requirements are developed by people who have had 
little or no training in requirements engineering [8], 
often lacking knowledge of the published theory. Also, 
evaluating requirements quality based on standards is 
not straightforward, as understanding the practical 
meaning of the terms used in the standards is not 
simple. There are also some tools that can help in the 
analysis of the quality of requirements written in 
natural language such as ARM [17], CICO [18] and 
QuARS [19]. These tools analysis is based on 
predefined quality criteria and elements of (English) 
language. 

The LaQuSo Software Product Certification Model 
(LSPCM) was developed because we did not find any 
other practical method or framework for checking the 
quality of software artifacts, e.g., requirements 
specifications. We needed a method that would yield 
similar results regardless of who performed the quality 
check and which is also application domain 
independent. The framework is based on literature and 
own experiences, main new contribution being that the 
framework brings together information that was 
scattered over different sources. 

 
2. LSPCM Overview 

 
 For the certification of software product quality the 

Laboratory for Quality Software (LaQuSo) has 
developed the Software Product Certification Model 
(LSPCM) [20]. Benefit from this certification is for 
example that the issues found during certification 
directly point to issues in the software product. Solving 
issues leads to a higher quality product. Another 
benefit of the certification is that in the certification the 
software product is investigated on a number of 
predefined criteria. These same criteria can later be 
used during the development of new products. In this 
way the organization learns from the certification: what 
is a good software product and how can we check our 
software products ourselves? The LSPCM has a similar 
structure as the well known models GQM (Goal 
Question Metric) and FCM (Feature Criteria Metric), 
as requirements are certified according to certification 

criteria (= Goal in GQM or = Feature in FCM), 
categories (= Question in GQM or = Criteria in FCM) 
and checks (= Metric in both GQM and FCM). 

 Software artifacts include in addition to the final 
software product (the source code or working system), 
also intermediate deliverables like user requirements 
and detailed design. Each major deliverable is a 
Product Area in the LSPCM. Each area can be further 
divided into subparts, called elements. These elements 
can be separate artifacts, a chapter within a document, 
or different parts of a larger model. For instance, the 
user manual will be a separate artifact delivered with 
the system, the non-functional requirements will be a 
separate section of the user requirements document, 
and the stakeholders can be described as part of the 
business process description.  

 Certification Criteria (CC) are criteria that apply 
to each Product Area (PA). For each of the CC’s 
different Achievement Levels (AL) can be established. 
There are three CC, generic for all Product Areas: 
• Completeness (CC1): All required elements in the 

Product Area (see section 2.2 for examples) should 
be present and as formalized as possible. The 
completeness of a PA can be basic or extra 
elements may have been added. These elements 
can be semi-formal (AL2) or formal (AL3), which 
refers to the fact that they are specified in a formal 
language. The more formal an element is, the 
easier it can be subject to formal verification (less 
transformation is needed). 

• Uniformity (CC2): The style of the elements in the 
PA should be standardized. The uniformity of a 
PA can be only within the PA itself (AL1), with 
respect to a company standard (AL2), or with 
respect to an industry standard (AL3), meaning a 
general accepted description technique that is not 
specific for the company like the use of UML 
diagrams for design documents. 

• Conformance (CC3): All elements should conform 
to the property that is subject of the certification. 
The conformance of the PA to a property can be 
established with different means that increase 
confidence: manually (AL1), with tool support 
(AL2), or by formal verification (AL3).    

For each of these Certification Criteria different 
Achievement Levels can be established and the 
Certification Criteria can be translated into Specific 
Criteria (SC) per Product Area that indicate what 
completeness (CC1), uniformity (CC2), and 
conformance (CC3) mean for that Product Area. The 
Specific Criteria indicate what the required elements 
and checks are to achieve a certain level of the 
Certification Criteria. In this article we focus on the 
User Requirements Product Area of the LSPCM and 
the specific criteria for it. 

 
  2.1. Analysis Process 

 
This section explains the general idea behind the 

LaQuSo Model, more details can be found in [20]. 

368368



VII/4 VII/5

logic can be used. 
SC2.1 
Compliance 
w. Industry 
Standards 

• ERD diagram for object/data model; 
• UML diagrams for use cases. 

SC3a.1 
Internal 
Correctness 

• No two requirements or use cases 
contradict each other. 

• No requirement is ambiguous. 
• Functional requirements specify what, 

not how. 
• Each requirement is testable. 
• Each requirement is uniquely identified. 
• Each requirement is atomic. 
• The glossary definitions are non-cyclic. 
• Use case diagrams correspond to use 

case text. 
SC3a.2 
Automated 
Correctness 
Checks 

• Requirements are stored in a 
requirements management tool which 
uniquely identifies them. 

SC3a.3 
Formally 
Verified 
Correctness 

• Verify use case scenario models for e.g. 
correct workflow (no deadlocks or dead 
tasks) and mutual consistency. 

• Check data model diagram for normal 
form. 

SC3b.1 
External 
Consistency 

• Each ambiguous or unclear term is 
contained in the glossary. 

• The use cases or functional 
requirements are a detailing of the 
environment description in the context 
analysis (no contradictions). Each step 
in a business process that involves the 
system has been included. Each task 
that the system should fulfil for its 
environment has been included. All 
actors of the context analysis have been 
included in the requirements. 

• Each object is mentioned in the 
requirements and all objects mentioned 
in the requirements are contained in the 
object model. 

• The requirements do not contradict the 
behavioural properties. 

• The use case or functional requirements 
do not conflict with the non-functional 
requirements. 

SC3b.2 
Automated 
Consistency 
Checks 

• Requirements and glossary/objects are 
stored in a requirement mgmt tool 
showing the requirements, scenarios, 
actors, and objects relations. 

SC3b.3 
Formally 
Verified 
Consistency 

• Verify use case scenario models for e.g. 
compliance with behavioral properties 
and non-functional requirements. 

• Verify that the requirements description 
complies with the environment 
description from the context analysis. 

 
3. Case experiences 

 

In this section we describe three cases where the 
method has been used to analyse requirements. For 
each of the cases, the findings are presented on a 
general level, including a reference to the check 
category that resulted in the finding. 

 
3.1. Central Registration System 

 
The system is a central point where new 

identification numbers are generated, distributed and 
registered. We were asked to judge the quality of the 
functional design, which consisted of functional 
requirements, 15 use case descriptions with UML 
activity diagrams, a process model of the business 
processes, a functional architecture (logical module 
structure), an object model, a glossary and a 
supplementary specification (all non-functional 
requirements such as legal, security, performance etc.). 

The following types of inconsistencies were found: 
• A number of spelling and structural errors were 

found. [SC3a.1] 
• Some post-conditions of use cases were not 

consistent with the main scenario. [SC3a.1] 
• Activity diagrams did not use the correct (UML) 

symbols: e.g. included states as activities. [SC2.1] 
• The object model did not use ERD symbols 

correctly and did not contain much description for 
the attributes. [SC1.3 and SC2.1] 

• The glossary contained only abbreviations. 
[SC1.1] 

• The activity diagrams did not always match the 
use case text (especially not for the alternative 
flows). [SC3a.1] 

• One of the actors was not used in a consistent 
manner (mix between human and nonhuman). 
[SC3a.1] 

• One use case mentions two options in the 
summary and illustrates only one in the scenarios. 
[SC3a.1] 

• Use cases described system features that were not 
mentioned in the other documents. [SC3b.1] 

• There was an overview document that did not 
contain all use cases and their relations. [SC3b.1] 

• Some components to support the use cases were 
missing in the functional architecture. [SC3b.1] 

• Use cases for administration functions such as user 
management were missing. [SC3b.1] 

 
All major inconsistencies were solved before the 

design was handed over to the developers of the 
system. This minimized the input needed from the 
designers during the development phase and reduces 
the risk for confusion and misinterpretation. 

 
3.2. Counter Automation Solution 

 
The company operates many offices with multiple 

counters were customers come for various transaction 
types. The system is a central registration system for all 

370370

counter transactions that take place. Client applications 
support the counter workers. We were asked to judge 
the quality of the functional design, which consisted of 
200+ use case descriptions with flow charts, 
supplementary specifications (all requirements that 
were not specific to one single use case) and a glossary.  

The following types of inconsistencies were found:  
• There were around 200 use cases without a clear 

overview of the use cases and their relations. 
[SC1.2] 

• Use case structures were not always applied 
correctly. E.g. the name of a use case should be 
noun + verb and a use case should have a clear 
trigger. [SC2.1] 

• Paragraphs in use cases that summarize 
information from the rest of the documents did not 
always include all relevant items. [SC3b.1] 

• Not all referenced documents were included in the 
baseline. [SC1.1] 

• There were many open points (“to be decided”) in 
the documents. [SC3a.1] 

• The overview and reference documents in the 
supplementary specifications were not consistent 
with the separate use cases. [SC3b.1] 

• Many times it was not clear if ‘N/A’ (not 
applicable) was correctly filled in. [SC3a.1] 

• The content of a document or paragraph did not 
always match its purpose. [SC3a.1] 

• Not all use case documents had the same layout. 
[SC3a.1] 

• Flowcharts were not always consistent with the use 
case text. [SC3a.1] 

• The glossary did not contain all terms and missed a 
clear list of translations English – Dutch. [SC1.1] 

• Many system management functions were not 
specified. [SC3b.1] 

• The only structure in the document set was 
sequentially numbered per release (1 till 5) 
[SC3a.1] 

 
With so many inconsistencies the document set was 

not suitable for system maintenance. It was not 
possible or very time-consuming to assess the impact 
of future change requests. The document set was 
adjusted according to the findings as much as time and 
budget permitted. The rest of the findings were used as 
cautions in the use of the documents for 
implementation of change requests. 

 
3.3. Embedded Systems Case 

 
The target of the analysis was system requirements 

for a large embedded system. This was also the first 
time the method was used by some one not familiar 
with the method beforehand. 

The provided material included over 200 
requirements. As the amount of requirements was high, 
not all of them could be checked according to the check 
list. Instead a sub-set of requirements was selected for 

the analysis. Altogether the analysis covered about 50 
requirements. Requirements were selected randomly 
individually and as all requirements belonging to a 
feature. 

The LSPCM method had so far been used mainly 
for software-only information systems and certain 
documentation was expected (user requirements, 
software requirements, high-level design). In this case, 
the checks defined by the method needed to be tailored. 
In practice, a combination of the checks for user 
requirements and high level design was done, however, 
not all checks of high-level design were included (as 
they were design issues). Also, in addition to the 
aspects indicated by the method, two additional checks 
were added based on discussion with the company’s 
representative, namely stakeholders and acceptance 
criteria. 

The following types of inconsistencies were found:  
• Requirements relations / references to each other 

were unclear. [SC3a.1] 
• No non-functional requirements were defined. 

[SC1.1] 
• Various different ways to describe the 

requirements, from one line descriptions to several 
pages of use case steps, sequence charts, etc. 
[SC2.1] 

• Lot of unclear abbreviations were used. [SC1.1, 
SC3a.1, SC3b.1] 

• Not defining “what” but also a lot of “how”, i.e., 
lot of design level issues. [SC3a.1] 

• Ambiguities in requirement definitions. [SC3a.1, 
SC3b.1] 

• No stakeholders defined for the requirements. 
[SC3a.1] 

 
4. Discussion and Lessons Learnt 

 
The three different projects show that the checks in 

the LSPCM are useful for finding inconsistencies in 
requirements specifications, regardless of the 
application domain. The checks that mostly found 
issues were the manual level checks [SC1.1, SC2.1, 
SC3a.1 and SC3b.1], as there were little formal 
elements defined for the requirements in all three cases. 
That some projects need tailoring of the LSPCM is 
already foreseen in the model; one could argue that the 
LSPCM is more a general framework to define specific 
checks per project than a rigid model. Within this 
general framework one can predefine rigid certificates 
by combining different checks. 

As expected the three projects all lead to new 
general checks to be added to the list that is already 
included in the LSPCM. The idea is that this list 
will continue to grow with new experiences, literature 
and standards appearing. 

The projects also taught us that requirements 
validation remains expert work. It is hard to explain in 
written text how to do this or what to look for. The idea 
of the LSPCM is to give some guidance to evaluators, 
but more details and examples need to be included in 

371371



VII/5

counter transactions that take place. Client applications 
support the counter workers. We were asked to judge 
the quality of the functional design, which consisted of 
200+ use case descriptions with flow charts, 
supplementary specifications (all requirements that 
were not specific to one single use case) and a glossary.  

The following types of inconsistencies were found:  
• There were around 200 use cases without a clear 

overview of the use cases and their relations. 
[SC1.2] 

• Use case structures were not always applied 
correctly. E.g. the name of a use case should be 
noun + verb and a use case should have a clear 
trigger. [SC2.1] 

• Paragraphs in use cases that summarize 
information from the rest of the documents did not 
always include all relevant items. [SC3b.1] 

• Not all referenced documents were included in the 
baseline. [SC1.1] 

• There were many open points (“to be decided”) in 
the documents. [SC3a.1] 

• The overview and reference documents in the 
supplementary specifications were not consistent 
with the separate use cases. [SC3b.1] 

• Many times it was not clear if ‘N/A’ (not 
applicable) was correctly filled in. [SC3a.1] 

• The content of a document or paragraph did not 
always match its purpose. [SC3a.1] 

• Not all use case documents had the same layout. 
[SC3a.1] 

• Flowcharts were not always consistent with the use 
case text. [SC3a.1] 

• The glossary did not contain all terms and missed a 
clear list of translations English – Dutch. [SC1.1] 

• Many system management functions were not 
specified. [SC3b.1] 

• The only structure in the document set was 
sequentially numbered per release (1 till 5) 
[SC3a.1] 

 
With so many inconsistencies the document set was 

not suitable for system maintenance. It was not 
possible or very time-consuming to assess the impact 
of future change requests. The document set was 
adjusted according to the findings as much as time and 
budget permitted. The rest of the findings were used as 
cautions in the use of the documents for 
implementation of change requests. 

 
3.3. Embedded Systems Case 

 
The target of the analysis was system requirements 

for a large embedded system. This was also the first 
time the method was used by some one not familiar 
with the method beforehand. 

The provided material included over 200 
requirements. As the amount of requirements was high, 
not all of them could be checked according to the check 
list. Instead a sub-set of requirements was selected for 

the analysis. Altogether the analysis covered about 50 
requirements. Requirements were selected randomly 
individually and as all requirements belonging to a 
feature. 

The LSPCM method had so far been used mainly 
for software-only information systems and certain 
documentation was expected (user requirements, 
software requirements, high-level design). In this case, 
the checks defined by the method needed to be tailored. 
In practice, a combination of the checks for user 
requirements and high level design was done, however, 
not all checks of high-level design were included (as 
they were design issues). Also, in addition to the 
aspects indicated by the method, two additional checks 
were added based on discussion with the company’s 
representative, namely stakeholders and acceptance 
criteria. 

The following types of inconsistencies were found:  
• Requirements relations / references to each other 

were unclear. [SC3a.1] 
• No non-functional requirements were defined. 

[SC1.1] 
• Various different ways to describe the 

requirements, from one line descriptions to several 
pages of use case steps, sequence charts, etc. 
[SC2.1] 

• Lot of unclear abbreviations were used. [SC1.1, 
SC3a.1, SC3b.1] 

• Not defining “what” but also a lot of “how”, i.e., 
lot of design level issues. [SC3a.1] 

• Ambiguities in requirement definitions. [SC3a.1, 
SC3b.1] 

• No stakeholders defined for the requirements. 
[SC3a.1] 

 
4. Discussion and Lessons Learnt 

 
The three different projects show that the checks in 

the LSPCM are useful for finding inconsistencies in 
requirements specifications, regardless of the 
application domain. The checks that mostly found 
issues were the manual level checks [SC1.1, SC2.1, 
SC3a.1 and SC3b.1], as there were little formal 
elements defined for the requirements in all three cases. 
That some projects need tailoring of the LSPCM is 
already foreseen in the model; one could argue that the 
LSPCM is more a general framework to define specific 
checks per project than a rigid model. Within this 
general framework one can predefine rigid certificates 
by combining different checks. 

As expected the three projects all lead to new 
general checks to be added to the list that is already 
included in the LSPCM. The idea is that this list 
will continue to grow with new experiences, literature 
and standards appearing. 

The projects also taught us that requirements 
validation remains expert work. It is hard to explain in 
written text how to do this or what to look for. The idea 
of the LSPCM is to give some guidance to evaluators, 
but more details and examples need to be included in 

371371



VII/6 VII/7

the future to make it usable for people not so 
experienced in requirements engineering. For example, 
the statement "each ambiguous term is included in the 
glossary" will lead to different scores by each assessor, 
but at least it gives them a hint to pay attention to the 
link between the requirements text and the glossary.   

For some of the projects it was necessary to first 
make a translation of the input material to the elements 
as described in the model. Each requirements 
document in practice will have a different structure. 
This means the start of each project needs to consist of 
creating a picture of the structure of the input 
requirements specification: what are the elements in the 
structure and what are their interrelations?  

Another remarkable finding is that the better the 
quality of the input requirements, the more 
inconsistencies we can find. With really poorly written 
requirements, it is best to start again at the beginning 
working with the original analyst to identify the 
different elements in the specification and reconstruct 
them in a new document.  

  
5. Conclusions 

 
We have presented a method called LSPCM and 

experiences of using the method for certifying software 
product quality focusing on the requirements part of it. 
We have described experiences from using the method 
in three cases and described the general findings 
relating to the requirement descriptions quality. The 
three projects show that the checks in the LSPCM are 
useful for finding inconsistencies in requirements 
specification, regardless of the application domain. 
However, it is clear that requirements verification and 
validation remains expert work. The idea of the 
LSPCM is to give some guidance to evaluators, but 
more details and examples need to be included in the 
future to make it usable by people not so experienced 
in requirements engineering. That will be the focus of 
our future work. 

 
References 
 
[1] Firesmith, D. G., “Quality Requirements Checklist”, in 
Journal of Object Technology, vol. 4, no. 9 November - 
December 2005, pp. 31 - 38, 
http://www.jot.fm/issues/issue_2005_11/column4 
 
[2] Martin, J, 1984, An Information Systems Manifesto, 
Prentice Hall 
 
[3] Damian D. 2002. The study of requirements engineering 
in global software development: as challenging as important. 
In Proceedings of Global Software Development, Workshop 
#9, organized in the International Conference on Software 
Engineering (ICSE) 2002, Orlando,FL.  
 
[4] Komi-Sirviö, S, & Tihinen, M., 2005, Lessons learned by 
participants of distributed software development, Knowledge 

and Process Management, vol. 12, no. 2, pp. 108-122 
 
[5] Juristo, N., Moreno, A.M., and Silva, A.A. 2002. Is the 
European Industry Moving Toward Solving Requirements 
Engineering Problems? IEEE Software 19(6): 70-77. 
 
[6] Siddigi, J. 1996. Requirement Engineering: The Emerging 
Wisdom. IEEE Software 13(2): 15-19. 
 
[7] "IEEE Std 1233 1998 Edition, Guide for Developing 
System Requirements Specifications," The Institute of 
Electrical and Electronics Engineers, Inc. 1998.  
 
[8] Donald G. Firesmith: “Specifying Good Requirements”, 
in Journal of Object Technology, vol. 2, no. 4, July-August 
2003, pp. 77-87.  
http://www.jot.fm/issues/issue_2003_07/column7  
 
[9] The Standish Group International, Inc. The CHAOS 
Report, published on www.standishgroup.com 1996, 1998, 
2000, 2002, 2004 and 2006.  
 
[10] Boehm, 2001 B. Boehm, Software defects reduction top 
10 list, IEEE Computer 34 (2001) (1), pp. 135–137. 
 
[11] R. R. Young, The Requirements Engineering Handbook. 
Norwood, MA: Artech House, 2004.  
 
[12] K. E. Wiegers, Software Requirements, 2nd edition. 
Redmond, Washington: Microsoft Press, 2003. 
 
[13] Ian Sommerville and Pete Sawyer: Requirements 
Engineering: A Good Practices Guide, John Wiley & Sons, 
1997. 
 
[14] IEEE Std 830 1998 Edition, IEEE Recommended 
Practice for Software Requirements Specifications, The 
Institute of Electrical and Electronics Engineers, Inc. 1998.  
 
[15] IEEE Std 1061-1998, IEEE Standard for a Software 
Quality Metrics Methodology [23] 
 
[16] IEEE Std 1362-1998, IEEE Guide for Information 
Technology System Definition Concept of Operations 
(ConOps) Document [1] 
 
[17] ARM, http://satc.gsfc.nasa.gov/tools/arm/, Wilson, W. 
M., Rosenberg, L.H. & Hyatt, L. E., Automated Quality 
Analysis Of Natural Language Requirement Specifications, 
NASA, SATC  
 
[18] CICO, http://circe.di.unipi.it/Cico/ e.g., Gervasi, V., & 
Nuseibeh, B., Lightweight validation of natural language 
requirements, Software: Practice & Experience, 32(2):113-
133, Feb. 2002. 
 
[19] QuARS, http://quars.isti.cnr.it/, Lami, G., QuARS: A 
Tool for Analyzing Requirements, Technical Report, 
CMU/SEI-2005-TR-014  
 
[20] Petra Heck, Marko van Eekelen. The LaQuSo Software 
Product Certification Model, CS-Report 08-03, Technical 
University Eindhoven, 2008. 

372372

http://www.jot.fm/issues/issue_2005_11/column4
http://www.jot.fm/issues/issue_2003_07/column7
http://www.standishgroup.com
http://satc.gsfc.nasa.gov/tools/arm/
http://circe.di.unipi.it/Cico/
http://quars.isti.cnr.it/


 

 

 

 Series title and number 
VTT Science 6 

Title Global software engineering 
Challenges and solutions framework 

Author(s) Päivi Parviainen 

Abstract The increasingly complex and competitive market situation has resulted in Global 
Software Engineering (GSE) becoming more and more common practice. Compa-
nies need to use their existing , as well as global resources Thus, the ability to 
collaborate effectively has become a critical factor in today’s software develop-
ment. The main expected benefits from GSE are improvements in development 
time, being closer to the customers and having flexible access to better specialized 
and less costly resources. In practice, however, the productivity in distributed 
software development drops up to 50 per cent compared to single site software 
development. Main reasons behind this productivity drop are misunderstood or 
mismatched processes between teams, and poor visibility into and control of the 
development activities at all sites involved. The purpose of this thesis is to analyse 
in more detail why this is the case and what could be done to improve the situation 
in practice in the companies’ daily work. 

In this thesis, the challenges in GSE are discussed based on their root causes 
and then summarised into the GSE framework. The root causes are time difference 
and distance, multiple partners, lack of communication, coordination breakdown, 
different backgrounds, and lack of teamness and trust. Then solutions for these 
challenges are discussed from people, process and technology viewpoints and 
summarised into the GSE framework. As a more detailed example of challenges to 
a subprocess, requirements engineering (RE) in GSE is presented. RE is dis-
cussed similarly as the GSE in general, first challenges are discussed and then 
solutions to the challenges are presented. 

The work reported in this thesis is based on extensive empirical work, carried 
out over several years. The empirical work was carried out in several phases: in 
the first phase, an industrial inventory was made, including industrial experience 
reported in the literature. Based on this, an initial framework for GSE was devel-
oped, consisting of the main challenges to be addressed in GSE projects. After this 
first phase, two sets of industrial cases were carried out, addressing a wide set of 
GSE challenges by trying out the GSE solutions identified in companies and vali-
dating the GSE framework. Altogether, 52 industrial cases relating to distributed 
development were carried out during the projects over the years 2004–2011. 

This thesis shows that although GSE is common, it is still challenging and com-
panies should carefully weigh the benefits and costs of doing the work in distribut-
ed setting vs. doing it single site. This thesis is a step towards better, more produc-
tive and higher quality GSE, as it helps companies to be aware and address poten-
tial challenges early via the GSE framework. The work presented also helps com-
panies to find validated solutions to address the challenges in their practice. 

ISBN, ISSN ISBN 978-951-38-7459-9 (soft back ed.) 
ISSN 2242-119X (soft back ed.) 
ISBN 978-951-38-7460-5 (URL: http://www.vtt.fi/publications/index.jsp) 
ISSN 2242-1203 (URL: http://www.vtt.fi/publications/index.jsp) 

Date April 2012 

Language English, Finnish abstract 

Pages 106 p. + app. 150 p. 

Publisher VTT Technical Research Centre of Finland 
P.O. Box 1000, FI-02044 VTT, Finland, Tel. 020 722 111 

 

http://www.vtt.fi/publications/index.jsp
http://www.vtt.fi/publications/index.jsp




 

 

 

 Julkaisun sarja ja numero 
VTT Science 6 

Nimeke Globaali ohjelmistokehitys 
Kehikko haasteista ja ratkaisuista 

Tekijä(t) Päivi Parviainen 

Tiivistelmä Jatkuva tuotteiden monimutkaistuminen ja kiihtyvä kilpailutilanne ovat johtaneet 
siihen, että globaali ohjelmistokehitys (GSE) on yhä yleisempää. Globaalin ohjel-
mistokehityksen potentiaalisia hyötyjä ovat lyhyemmät tuotekehitysajat, läheisyys 
asiakkaan kanssa sekä mahdollisuus käyttää erikoistuneita ja/tai edullisempia 
resursseja joustavasti. Käytännössä hajautetun ohjelmistokehityksen tuottavuus 
kuitenkin laskee jopa 50 prosenttia paikalliseen ohjelmistokehitykseen verrattuna. 
Tämä johtuu mm. väärinymmärretyistä tai yhteensopimattomista prosesseista 
tiimien välillä sekä eri paikkakunnilla tehtävän kehityksen hallitsemattomuudesta. 
Tutkimuksen tarkoitus on selvittää tarkemmin, miksi näin tapahtuu ja mitä voitaisiin 
tehdä käytännössä tilanteen parantamiseksi yritysten päivittäisessä toiminnassa. 

Tässä työssä esitetään globaalin ohjelmistokehityksen haasteita ja niiden rat-
kaisuja. Haasteiden aiheuttajat esitetään, ja sitten haasteet esitetään osana glo-
baalin ohjelmistokehityksen kehikkoa. Haasteiden aiheuttajia ovat aikaero ja etäi-
syys, useat osapuolet, kommunikoinnin puute, hallinnan hajautuminen, erilaiset 
taustat ja tiimiyden ja luottamuksen menetys. Tutkimuksessa myös esitetään rat-
kaisuja näihin haasteisiin ihmisten, prosessin ja teknologian näkökulmasta, ja myös 
ne liitetään mukaan globaalin ohjelmistokehityksen kehikkoon. Esimerkkinä osa-
prosessin näkökulmasta esitetään vaatimusmäärittely ja -hallinta globaalissa oh-
jelmistokehityksessä.  

Tutkimus perustuu laajaan empiiriseen aineistoon, jota on koottu usean vuoden 
aikana. Empiirinen työ tehtiin useassa osassa. Ensimmäisessä vaiheessa tehtiin 
yritysten GSE-käytäntöjen nykytilan selvitys sisältäen kirjallisuudessa raportoidut 
yritysten kokemukset. Tämän perusteella laadittiin ensimmäinen versio globaalin 
ohjelmistokehityksen kehikosta, joka sisälsi päähaasteet, jotka tulee ottaa huomi-
oon globaaleissa ohjelmistokehitysprojekteissa. Ensimmäisen vaiheen jälkeen 
vietiin läpi kaksi joukkoa teollisia tapaustutkimuksia. Nämä tutkimukset kohdistuivat 
laajaan joukkoon globaaliin ohjelmistokehitykseen liittyviä asioita. Tapaustutkimuk-
sissa kokeiltiin ratkaisuja yrityksissä tunnistettuihin haasteisiin ja samalla validoitiin 
globaalin ohjelmistokehityksen kehikkoa. Yhteensä vietiin läpi 52 teollista tapaus-
tutkimusta vuosien 2004–2011 aikana useassa eri projektissa. 

Tutkimus osoittaa, että vaikka GSE on yleistä, se on edelleen haastavaa ja yri-
tysten täytyy huolellisesti punnita sen mahdollisia hyötyjä ja kustannuksia verrattu-
na paikalliseen kehittämiseen. Tämä työ on askel kohti parempaa, tuottavampaa ja 
laadukkaampaa globaalia ohjelmistokehitystä, sillä se auttaa yrityksiä huomaa-
maan mahdollisia ongelmia ja reagoimaan niihin aikaisin käyttämällä globaalin 
ohjelmistokehityksen kehikkoa. Tulokset myös auttavat yrityksiä löytämään hyviä ja 
kokeiltuja ratkaisuja käytännössä kohtaamiinsa ongelmiin. 

ISBN, ISSN ISBN 978-951-38-7459-9 (nid.) 
ISSN 2242-119X (nid.) 
ISBN 978-951-38-7460-5 (URL: http://www.vtt.fi/publications/index.jsp) 
ISSN 2242-1203 (URL: http://www.vtt.fi/publications/index.jsp) 

Julkaisuaika Huhtikuu 2012 

Kieli Englanti, suomenkielinen tiivistelmä 

Sivumäärä 106 s. + liitt. 150 s. 

Julkaisija VTT 
PL 1000, 02044 VTT, Puh. 020 722 111 

 

http://www.vtt.fi/publications/index.jsp
http://www.vtt.fi/publications/index.jsp


V
T

T
 S

C
IE

N
C

E
  6

 
      G

lo
b

a
l so

ftw
a
re

 e
n

g
in

e
e
rin

g
. C

h
a
lle

n
g

e
s a

n
d

 so
lu

tio
n

s fra
m

e
w

o
rk

 

ISBN 978-951-38-7459-9 (soft back ed.)  
ISBN 978-951-38-7460-5 (URL: http://www.vtt.fi/publications/index.jsp)
ISSN 2242-119X (soft back ed.)  
ISSN 2242-1203 (URL: http://www.vtt.fi/publications/index.jsp)

Global software engineering. Challenges and 
solutions framework  
 

Globally distributed product development has become more and 
more common practice. In addition to own resources, companies 
need to employ resources on a global scale even from partner 
companies throughout the world, in order to produce software at 
a competitive level. In practice, the productivity in distributed 
software development drops up to 50% compared to single site 
software development. Main reasons behind this productivity drop 
are misunderstood or mismatched processes between teams, and 
poor visibility into and control of the development activities at all 
sites involved. The purpose of this thesis is to analyse in more 
detail why this is the case and what could be done to improve the 
situation in practice. 

This thesis shows that although GSE is common, it is still challenging 
and companies should carefully weigh the benefits and costs of 
doing the work in distributed setting vs. doing it single site. This 
thesis is a step towards better, more productive and higher quality 
GSE, as it helps companies to be aware and address potential 
challenges early. Although the work is done in software intensive 
system development context, the results are largely applicable also 
for companies doing globally distributed development in other 
domains.

http://www.vtt.fi/publications/index.jsp
http://www.vtt.fi/publications/index.jsp

	Abstract
	Tiivistelmä
	Preface
	Academic dissertation
	List of papers
	Contents
	Terminology
	1. Introduction
	1.1 Research questions and scope
	1.2 Research design
	1.3 Outline of the thesis

	2. Global software engineering
	2.1 GSE benefits and risks
	2.2 Global software engineering modes
	2.3 General GSE challenges

	3. GSE challenges
	3.1 Industrial expressions of challenges
	3.2 Root causes of the challenges
	3.3 Example situation to highlight challenges
	3.4 GSE challenges framework

	4. GSE solutions
	4.1 Process solutions
	4.1.1 Management practices in GSE
	4.1.2 Engineering practices in GSE
	4.1.3 Supporting practices in GSE
	4.1.4 Process solutions summary

	4.2 Technology solutions
	4.3 People solutions

	5. Requirements engineering in GSE
	5.1 Requirements engineering
	5.2 Globally distributed requirements engineering

	6. Improving global requirementsengineering
	6.1 Challenges
	6.1.1 Basic GSE circumstances
	6.1.2 Derivative GSE causes
	6.1.3 Consequent cause
	6.1.4 Example situation

	6.2 Solutions
	6.2.1 Process related solutions
	6.2.2 Technology related solutions
	6.2.3 People related solutions

	6.3 Summary of RE challenges and solutions

	7. Empirical results
	7.1 Industrial inventory
	7.2 Industrial cases
	7.2.1 First set of industrial cases
	7.2.2 Second set of industrial cases
	7.2.3 Summary of the contribution from industrial cases


	8. Reporting the results
	8.1 PAPER I: Collaborative embedded systems development:Survey of state of the practice
	8.2 PAPER II: Philips experiences of global distributedsoftware development
	8.3 PAPER III: Merlin collaboration handbook: Challengesand solutions in global collaborative productdevelopment
	8.4 PAPER IV: Knowledge related challenges and solutionsin GSD
	8.5 PAPER V: Requirements engineering: Process, methodsand techniques
	8.6 PAPER VI: A Survey of existing requirementsengineering technologies and their coverage
	8.7 PAPER VII: Experiences on evaluating requirementsquality
	8.8 PAPER VIII: Experiences of tool integration:Development and validation

	9. Discussion
	9.1 Evaluation of the results
	9.2 Validity of the research

	10. Summary and conclusions
	References
	Appendix A: GSE interview framework
	Appendix B: GSE questionnaire
	PAPER I: Collaborative embedded systems development. Survey of state of the practice
	PAPER III: Merlin collaboration handbook. The challenges and solutions in global collaborative product development
	PAPER IV: Knowledge related challenges and solutions in GSD
	PAPER V: Requirements engineering. Dealing with the complexity of sociotechnical systems development
	PAPER VI: A survey of existing requirements engineering technologies and their coverage
	PAPER VII: Experiences on analysis of requirements quality



