
  
•V

IS
IO

N
S•

SCIENCE•TEC
H

N
O

L
O

G
Y

•RESEARCHHIGHLI
G

H
T

S

Dissertation 

      32 

V
T

T
 S

C
IE

N
C

E
  3

2
 

      N
u

m
e
ric

a
l m

e
th

o
d

s fo
r n

u
c
le

a
r fu

e
l b

u
rn

u
p

 c
a
lc

u
la

tio
n

s

ISBN 978-951-38-7999-0 (soft back ed.)
ISBN 978-951-38-8000-2 (URL: http://www.vtt.fi/publications/index.jsp)
ISSN-L 2242-119X
ISSN 2242-119X (Print)
ISSN 2242-1203 (Online)

Numerical methods for nuclear fuel burnup 
calculations
 

The material composition of nuclear fuel changes constantly due to 
nuclides transforming to other nuclides via neutron-induced 
transmutation reactions and spontaneous radioactive decay. The 
objective of burnup calculations is to simulate these changes over time. 
They are formulated around two basic equations in reactor physics: 
neutron transport criticality equation and burnup equations. This thesis 
considers the numerical solution of burnup equations based on 
computing the burnup matrix exponential, and the uncertainty analysis 
of neutron transport criticality equation based on perturbation theory.

In this thesis, the mathematical properties of burnup matrices are 
studied and the Chebyshev rational approximation method (CRAM) is 
proposed as a novel method for solving the burnup equations. The 
results suggest that the proposed approach is capable of providing a 
robust and accurate solution to the burnup equations with a very short 
computation time. Secondly, the propagation of neutron interaction 
data uncertainty through the criticality equation is studied on a fuel 
assembly level. The considered approach is deterministic and utilizes 
the adjoint system of the criticality equation, which allows propagating 
these uncertainties in an efficient manner. 
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Numerical methods for nuclear fuel burnup calculations

Maria Pusa. Espoo 2013. VTT Science 32. 86 p. + app. 78 p.

Abstract
The material composition of nuclear fuel changes constantly due to nuclides trans-
forming to other nuclides via neutron-induced transmutation reactions and sponta-
neous radioactive decay. The objective of burnup calculations is to simulate these
changes over time. This thesis considers two essential topics of burnup calcula-
tions: the numerical solution of burnup equations based on computing the burnup
matrix exponential, and the uncertainty analysis of neutron transport criticality equa-
tion based on perturbation theory.

The burnup equations govern the changes in nuclide concentrations over time.
They form a system of first order differential equations that can be formally solved by
computing the matrix exponential of the burnup matrix. Due to the dramatic variation
in the half-lives of different nuclides, the system is extremely stiff and the problem
is complicated by vast variations in the time steps used in burnup calculations. In
this thesis, the mathematical properties of burnup matrices are studied. It is de-
duced that their eigenvalues are generally confined to a region near the negative
real axis. Rational approximations that are accurate near the negative real axis, and
the Chebyshev rational approximation method (CRAM) in particular, are proposed as
a novel method for solving the burnup equations. The results suggest that the pro-
posed approach is capable of providing a robust and accurate solution to the burnup
equations with a very short computation time.

When a mathematical model contains uncertain parameters, this uncertainty is
propagated to responses dependent on the model. This thesis studies the propaga-
tion of neutron interaction data uncertainty through the criticality equation on a fuel
assembly level. The considered approach is based on perturbation theory, which
allows computing the sensitivity profiles of a response with respect to any number
of parameters in an efficient manner by solving an adjoint system in addition to the
original forward problem. The uncertainty related to these parameters can then be
propagated deterministically to the response by linearizing the response.

Keywords burnup equations, Chebyshev rational approximation, CRAM, matrix exponential,
sensitivity analysis, uncertainty analysis
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1. Introduction

1.1 Background

In an operating nuclear reactor, the material composition of a nuclear fuel changes
constantly. In nuclear fission, the original nucleus splits into lighter nuclides, releas-
ing secondary particles and energy. In addition, nuclides transform to other nuclides
through other neutron-induced transmutation reactions and spontaneous radioactive
decay. The radioactive decay process continues even when nuclear fuel is removed
from the reactor.

In many applications, it is essential to be able to predict the changes in the nuclear
fuel composition. For example, the safety and economy of a reactor core loading
depend heavily on the changes in nuclide concentrations and how these changes are
compensated for. This is relevant when designing new reactor concepts and when
optimizing the reactor core loading of existing reactors alike. Also, it is important to
assess the material decomposition of spent fuel after removing it from the reactor
and at any time afterwards. Final deposition applications necessitate predicting the
nuclide concentrations at time steps of the order of thousands of years.

In practice, the changes in nuclear fuel material composition are evaluated by
dedicated burnup calculation codes. Unfortunately, it is extremely difficult to simulate
the problem in the true time-dependent form, due to the coupling between nuclide
concentrations and neutron density distribution—the transmutation rates of neutron-
induced reactions depend on the neutron density distribution in the system, and the
neutron density distribution, on the other hand, is strongly dependent on the isotopic
compositions of the fissile material.

Burnup calculations are based upon the assumption that nuclide concentrations
can be assumed constant when solving the neutron density distribution. They are
formulated around two central equations in reactor physics, which are the neutron
transport equation and the burnup equations. The neutron transport equation is es-
sentially a balance equation for the neutron density. In burnup calculations, it is
modeled as a time-independent eigenvalue problem, called the criticality equation,
in which case the solution comprises of neutron density distribution and the multi-
plication factor, which characterizes the time dependence of the system. Based on
the neutron density distribution solution, it is possible to compute the rates at which
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1. Introduction

nuclides transform to other nuclides. These reaction rates can be used to form the
burnup equations, which govern the changes in nuclide concentrations over time.
Burnup calculations form a cyclic process, where the system is modeled forward
in time by solving the criticality equation and the burnup equations in a sequential
manner.

1.2 Research objectives

Due to the special demands related to the target of application, it is crucial that the
computational methods related to burnup calculations are constantly developed and
refined, and that their accuracy and efficiency are improved. In addition, uncertainty
analysis methods are needed for evaluating the reliability of the calculation results.

1.2.1 Numerical solution of burnup equations

There are generally various numerical methods for solving the neutron transport
equation. However, notably little interest and research effort has been previously
shown towards the solution of burnup equations. The burnup equations form a sys-
tem of first order differential equations, which can be formally solved by computing
the matrix exponential of the burnup matrix. Since the half-lives of different nuclides
vary dramatically, the system is extremely stiff. It is also difficult that the time steps
used in burnup calculations generally vary from less than a day at the beginning
of the irradiation cycle to a few hundred days at the end. For these reasons, the
computation of the matrix exponential has been previously considered impossible
for the full burnup system. Instead, simplified burnup chains have been used, or the
most short-lived nuclides have been treated separately when computing a matrix
exponential solution.

The focus of this thesis was to examine if it is possible to solve a detailed burnup
system containing over a thousand nuclides by a single matrix exponential method.
The motivation for this was the development of the burnup calculation routines in the
Serpent Monte Carlo reactor physics code developed at VTT. 1

In this thesis, the mathematical properties of burnup matrices are studied sys-
tematically for the first time. It turns out that the eigenvalues of burnup matrices are
confined to a region near the negative real axis and that they are connected with the
class of M-matrices. These properties can be utilized in solving the burnup equations
by employing rational approximations that are accurate near the negative real axis.
The Chebyshev rational approximation method (CRAM), defined as the best rational
approximation on the negative real axis, is proposed as a novel method for solv-
ing the burnup equations. In addition, rational approximation based on quadrature
formulas derived from complex contour integrals is proposed. The proposed meth-
ods are compared to established numerical methods and highly accurate reference
solutions.

1A complete and up-to-date description of the Serpent code is found at the project website.
(http://montecarlo.vtt.fi)
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1. Introduction

1.2.2 Propagation of uncertainty through criticality equation

In addition to numerical error, the reliability of calculation results is affected by un-
certain parameter values utilized in the computations. In particular, reactor physics
calculations employ large nuclear data libraries containing the interaction data be-
tween neutrons and nuclei. These nuclear data libraries are believed to be one of the
most significant sources of uncertainty in all reactor physics calculations, including
burnup calculations. In order to evaluate the reliability of the calculation results, this
parameter uncertainty needs to be propagated through the calculations. Since the
libraries typically contain at least tens of thousands of uncertain parameters, calcu-
lation times often inhibit the use of statistical approaches in practical applications.

In this thesis, uncertainty analysis is applied to the criticality equation, which is
one of the two equations that are solved sequentially during burnup calculations.
The considered uncertainty analysis method is based on perturbation theory, which
allows efficiently propagating the uncertainty related to a nuclear data library to the
response of interest by solving an adjoint system in addition to the original forward
problem. The described work was done in a context other than burnup calcula-
tions, but it forms a theoretical background for propagating nuclear data uncertainty
through the criticality equation to parameters needed in burnup equations.

13





2. Burnup calculations

The objective of burnup calculations is to simulate the long-term time behavior of
a nuclear reactor. The neutronic properties of nuclear fuel depend strongly on the
isotopic composition of the fissile materials. In an operating reactor, these material
compositions change constantly due to neutron-induced reactions and spontaneous
radioactive decay. The rates of the former reactions depend on the neutron den-
sity distribution in the system. Unfortunately, it is not possible to solve the coupled
problem for neutron density distribution and nuclide concentrations in a truly time-
dependent form, and approximations are required.

Burnup calculations are based on the assumption that the neutron density dis-
tribution and the changes in the nuclide concentrations can be solved sequentially
in a cyclic manner by alternating the two computation steps, and using results from
the previous step. During the first step, the neutron density distribution is computed
assuming that the nuclide concentrations are fixed. This requires solving the neu-
tron transport equation, which is essentially a balance equation for neutrons. Based
on the neutron density distribution, the rates of the neutron-induced reactions can
be computed. During the second step, the changes in the nuclide concentrations
are solved from the burnup equations assuming constant reaction rates. This cal-
culational strategy can be further refined by means of predictor–corrector methods,
which aim at predicting the most representative averages for the reaction rates ap-
proximated as constants during the solution of burnup equations. 2 The following
subsections introduce the two basic equations—the criticality equation and the bur-
nup equations—on which burnup calculations are based.

2.1 Neutron transport and criticality equation

The neutron transport equation is a balance equation for the neutron density distribu-
tion N(r , Ω, E, t), defined in a six-dimensional phase space as the expected number
of neutrons in a volume dV about the point r , traveling in the cone of directions dΩ
about the direction Ω, with energies in the interval [E, E + dE] at the time instant t.
In nuclear reactors, neutron–neutron interactions can be neglected, and the neutron

2The use of predictor–corrector methods does not affect the solution of the criticality equation nor the
burnup equations.
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2. Burnup calculations

density distribution depends solely on the interactions between neutrons and matter.
The interaction probabilities between neutrons and matter are described by quan-

tities called neutron cross-sections. These probabilities depend on the target nu-
cleus, the type of the interaction, and the energy of the neutron. The microscopic
cross-section σi,x(E) characterizes the probability that a neutron with energy E inter-
acts with nuclide i through reaction x. It has the dimensions of area and it can be
interpreted as the effective cross-sectional area per nucleus seen by a neutron. The
macroscopic cross-section is defined as the microscopic cross-section multiplied by
nuclide density. In a medium consisting of several nuclides, the macroscopic cross-
section for reaction x may be written

Σx(r , E) =
n∑

i=1

ni (r)σi,x(E) , (2.1)

where ni denotes the concentration of nuclide i. A macroscopic cross-section can
be interpreted physically as the interaction probability per path length traversed by a
neutron.

There are various reactions through which neutrons and nuclides may interact.
These reactions can be divided into fission, capture and scattering reactions. Cap-
ture reactions include all of the reactions, where no secondary neutrons are emitted.
It is customary to include both fission and capture reactions in absorption. The total
cross-section Σt(r , E) corresponds to the probability of any type of reaction.

In scattering reactions, it is necessary to specify the probability distributions for
the energy and direction of the scattered neutron. The differential scattering cross-
section

Σs(r , E → E′, Ω · Ω′)
corresponds to the probability that the scattered neutron will have the direction Ω′ and
energy E′. Scattering collisions can be divided into elastic and inelastic reactions.
The latter may result in the emission of multiple secondary neutrons.

In fission, it can be approximated that secondary neutrons are produced isotrop-
ically and that their energy spectrum is independent of the energy of the neutron
causing the fission. Therefore, only two additional quantities need to be specified in
addition to the fission cross-section Σf(r , E). These quantities are the mean number
of fission neutrons produced in a fission caused by a neutron with energy E, denoted
by ν(E), and the fission neutron energy spectrum, denoted by χ(E).

Neutron transport problems are most often formulated in terms of the neutron flux
Φ, which is defined

Φ(r , Ω, E, t) = v N(r , Ω, E, t) ,
where v is the neutron velocity. The scalar flux is obtained by integrating the angular
flux Φ over all directions:

ϕ(r , E) =
∫

dΩ Φ(r , Ω, E) . (2.2)

The time-dependent transport equation for the neutron flux can now be written
1
v
∂Φ

∂t + Ω · ∇rΦ + ΣtΦ =
∫

dE′
∫

dΩ′ Σ′
s Φ

′ + χ(E)
4π

∫
dE′ ν(E′)Σ′

f ϕ
′ , (2.3)
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2. Burnup calculations

where

• Φ = Φ(r , Ω, E, t)

• Φ′ = Φ(r , Ω′, E′, t)

• ϕ′ = ϕ(r , E′)

• Σt = Σt(r , E)

• Σ′
s = Σs(r , E′ → E, Ω′ · Ω)

• Σ′
f = Σf(r , E′)

Equation (2.3) can be written in operator form as

1
v
∂Φ

∂t + AΦ = BΦ , (2.4)

where AΦ includes all terms, except for the time derivative and the fission source
term BΦ.

In most cases the time-dependence of the neutron transport equation is not
treated explicitly, but the problem is solved as a criticality eigenvalue problem. Phys-
ically it is clear that by adjusting the number of fission neutrons emitted, it is possible
to obtain a system in which the rate of neutron production is equal to the losses
by absorption and leakage. Therefore, Eq. (2.3) can be written as an eigenvalue
problem called the criticality equation

AΦ = 1
k BΦ , (2.5)

to which a non-negative solution is guaranteed to exist, corresponding to the largest
eigenvalue k. This eigenvalue is called the multiplication factor and it characterizes
the time behavior of the system. If k > 1, the neutron flux will increase with time,
and the system is called supercritical. The case k = 1 corresponds to a truly time-
independent solution, in which case the system is called critical. Finally, if k < 1,
the neutron flux will decrease with time, and the system is called subcritical. Since
Eq. (2.5) is homogeneous, it allows an arbitrary normalization of the solution. In
burnup calculations the flux solution is typically normalized to coincide with the power
of the system.

There exists a variety of computational methods for solving the criticality equa-
tion and they can be divided into deterministic methods and Monte Carlo simulation.
Traditionally, burnup calculations have been performed in two dimensions using de-
terministic methods. A review of the different methods falls outside the scope of this
thesis, but practically all deterministic methods use similar strategies for dealing with
the energy and angular dependence of the criticality equation, and these techniques
are explained briefly in the following.

The angular dependence of the scattering source in Eq. (2.5) is most often han-
dled by expanding it as a truncated series of spherical harmonics. In this case, the
truncation order zero corresponds to isotropic scattering. After this, there are two
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2. Burnup calculations

established practices to deal with the angular dependence of the neutron flux. In the
discrete ordinates method, the criticality equation is evaluated and solved in discrete
angular directions {Ωj}N

j=1. In the spherical harmonics method, on the other hand,
the angular flux is expanded as a truncated series of spherical harmonics.

The energy discretization procedure is virtually always based on the multi-group
approximation. In this approach, the considered energy interval [Emin, Emax] is di-
vided into groups, [Eg, Eg−1], g = 1, ... , G, with E0 = Emax and EG = Emin. After
expanding the scattering source in the base of spherical harmonics, the multi-group
criticality equation for group g may be obtained by integrating Eq. (2.5) over the in-
terval [Eg, Eg−1]. Assuming isotropic scattering, this leads to a system of the form

Ω · ∇Φg(r , Ω) + ΣgΦg(r , Ω)

= 1
4π

G∑
h=1

Σh→g
s ϕh(r) + χg

4πk

G∑
h=1

ν̄ Σh
f ϕ

h(r) , g = 1, ... , G , (2.6)

where the multi-group quantities are defined as

Σg(r) =
∫

g Σ(r , E)ϕ(r , E) dE∫
g ϕ(r , E) dE , (2.7)

Σg′→g
s (r) =

∫
g′
∫

g Σs(r , E′ → E)ϕ(r , E′) dE′ dE∫
g′ ϕ(r , E′) dE′ , (2.8)

χg =
∫

g
χ(E) dE , (2.9)

and the multi-group flux as

Φg(r , Ω) =
∫

g
Φ(r , Ω, E) dE . (2.10)

Of course, solving the multi-group flux from Eq. (2.6) requires that the multi-group
cross-sections are known. In practice, this requires computing the multi-group cross-
sections approximatively before the actual transport calculation in the true geome-
try has been carried out. Depending on the number of energy groups used in the
transport calculation, this may require a series of calculations based on different
computational strategies.

The Monte Carlo method is a stochastic solution scheme, in which the random
walk of individual neutrons is simulated by drawing samples from probability distribu-
tions. In a simple Monte Carlo simulation, neutrons are tracked through geometries
by sampling their free path lengths. If the sampled free path length does not cross
material boundaries, it determines the next collision site for the neutron. In this case,
also the interaction nuclide and type are sampled from appropriate probability distri-
butions. The interaction between the neutron and the nuclide can either be an ab-
sorption or a scattering reaction. If the neutron is absorbed, its history is terminated.
In case of a scattering reaction, the energy and direction of the scattered neutron
are sampled from appropriate distributions. When a material boundary is crossed,
the simulation proceeds by sampling a new free path length in the entered material,
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2. Burnup calculations

starting from the boundary. The history of a neutron consists of these tracks from
the initial emission to the final absorption or escape from the system. The simulation
results can then be used to compute statistical estimates for reaction rates and other
quantities of interest, without the need to explicitly solve the flux distribution. The
main advantage of the Monte Carlo approach is that it can easily deal with complex
three dimensional geometries. It is also useful that the latest available knowledge on
neutron interactions can readily be utilized in Monte Carlo calculations. The draw-
back of the method, on the other hand, is the high computational cost, which often
becomes a practical limitation.

2.2 Burnup equations

Burnup equations describe the changes in the concentrations of the nuclides con-
sidered in a burnup calculation. They form a system of first order linear differential
equations that can be written

n′
i (t) = −ri ni (t) +

∑
j ̸=i

rj→i nj (t) , ni (0) = ni
0 , i = 1 ... , n , (2.11)

where ri is the total rate density at which nuclide i is transformed to other nuclides,
rj→i is the rate density at which nuclide j ̸= i is transformed to nuclide i, and ni

0 is the
initial concentration of nuclide i. Equation (2.11) can be written in matrix form as

n′ = An , n(0) = n0 , (2.12)

where A ∈ Rn×n is called the burnup matrix and n ∈ Rn is the nuclide concentration
vector. The diagonal elements aii = −ri of the burnup matrix correspond to the total
loss rates, and the off-diagonal elements aij = rj→i to the production rates.

Nuclides can transform to other nuclides through neutron-induced reactions and
spontaneous radioactive decay. As previously explained, burnup equations are
formed based on the assumption that the reaction rates of the neutron-induced reac-
tions can be approximated as fixed constants. After solving the neutron flux, the rate
for a particular neutron reaction can be computed by integrating the flux multiplied
by the corresponding microscopic cross-section over space and energy.

Let us first consider reactions other than fission, and let σji denote the microscopic
cross-section for the neutron reactions that transform nuclide j to nuclide i. The
corresponding average transmutation rate density can be computed as

V−1
∫ Emax

Emin

dE
∫

V
dV σji (E)ϕ(r , E) = σij ϕ , (2.13)

where

σji =
∫ Emax

Emin
dE

∫
V dV σji (E)ϕ(r , E)∫ Emax

Emin
dE

∫
V dVϕ(r , E)

(2.14)

and
ϕ = V−1

∫ Emax

Emin

dE
∫

V
dV ϕ(r , E) (2.15)
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2. Burnup calculations

Figure 2.1. Independent fission product yields for 235U.

is the energy and region averaged flux, normalized to coincide with the power of the
system.

In the case of fission, the transmutation rate j → i can written

V−1
∫ Emax

Emin

dE
∫

V
dV γji (E)σj,f(r , E)ϕ(r , E) = γji σj,f ϕ , (2.16)

where γji is the yield of the fission product nuclide i.
In addition to neutron reactions, nuclides can transform to other nuclides via spon-

taneous radioactive decay. Let λji denote the decay constant corresponding to ra-
dioactive decay j → i. The total rate at which nuclide j is transformed to nuclide i
can now be written

rj→i = σjiϕ + γjiσj,fϕ + λji , (2.17)
and the total loss rate correspondingly

rj =
∑
k ̸=j

σjk + σj,f +
∑
k ̸=j

λjk . (2.18)

Let Z denote the atomic number and A the mass number of a nuclide. Table 2.1
lists the most relevant decay and neutron-induced reactions in burnup calculations.
Figure 2.1 shows a plot of the fission product yields for 235U.

When forming the burnup equations, it is possible to take into account the pro-
duction of by-product nuclides. In this case, for example, the reaction rate for each
(n, p) reaction contributes to the production rate of 1H. Traditionally, the production
of nuclides as by-products has been ignored [1, 2]. Therefore, the term augmented
burnup matrix will be used to refer to the case, where the production of by-product
nuclides has been taken into account when constructing the burnup matrix.
Definition 2.2.1 (Augmented burnup matrix). A burnup matrix A ∈ Rn×n is called
augmented, when it has been constructed such that the reactions, in which by-
products are emitted, also contribute to the production rates of the by-product nu-
clides.
In the absence of neutron irradiation, nuclides transform only through radioactive
decay, and the burnup equations reduce to decay equations. In this case, the burnup
matrix is called a decay matrix.
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2. Burnup calculations

Table 2.1. The most relevant decay and neutron-induced reactions in burnup calcu-
lations for a nuclide with atomic number Z and mass number A.

Mode of decay Daughter nuclide By-product nuclide

α decay (Z − 2, A − 4) 4He
Proton emission (Z − 1, A − 1) 1H

Neutron emission (Z , A − 1) -
β− decay (Z + 1, A) -
β+ decay (Z − 1, A) -

(n, 2n) (Z , A − 1) -
(n, 3n) (Z , A − 2) -
(n, 4n) (Z , A − 3) -
(n, γ) (Z , A + 1) -
(n, p) (Z − 1, A) 1H
(n, d) (Z − 1, A − 1) 2H
(n, t) (Z − 1, A − 2) 3H

(n,3He) (Z − 2, A − 2) 3He
(n,α) (Z − 2, A − 3) 4He

Fission fission product nuclides -
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3. Matrix exponential solution of burnup
equations

The burnup equations according to Eq. (2.12) can be formally solved by the matrix
exponential method yielding the simple solution

n(t) = eAt n0 , (3.1)

where the exponential of the matrix At can be defined as the power series expression

eAt =
∞∑
k=0

1
k! (At)k , (3.2)

with the additional definition A0 = I. There are generally various numerical meth-
ods for computing the matrix exponential. However, the suitability of a particular
method depends substantially on the characteristics of the problem at hand. The
mathematical properties of (augmented) burnup matrices are studied systematically
in Section 3.1. The characteristics and numerical computation of the burnup matrix
exponential are then considered in Section 3.2. Rational approximations accurate
near the negative real axis are proposed as a novel method for solving the burnup
equations and this framework is considered in Section 3.3.

3.1 Mathematical properties of burnup matrices

In order to select a well-suited method for computing the matrix exponential solution,
it is necessary to consider the mathematical characteristics of burnup matrices.

First of all, burnup matrices are relatively large and sparse. The total number
of nuclides depends both on the employed nuclear data library and the criterion for
selecting the nuclides. The evaluated nuclear data library JEFF-3.1 [3], for example,
contains neutron interaction data for 381 nuclides and decay data for 3852 nuclides.
The nuclides to be considered in a burnup calculation are chosen based on the
transmutation chains originating from the initial nuclides, possibly accompanied with
a probabilistic criterion, the resulting total number of nuclides typically being between
1200 and 1700.
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3. Matrix exponential solution of burnup equations
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Figure 3.1. Sparsity pattern of an augmented burnup matrix corresponding to a sys-
tem with 1606 nuclides.

When constructing the burnup matrix, the nuclides can be indexed arbitrarily. The
burnup matrix becomes nearly upper triangular if the nuclides are indexed in an as-
cending order with respect to their ZAI index, defined as ZAI = 10 000 Z + 10 A + I,
where Z is the atomic number, A is the mass number of the nuclide and I is the iso-
meric state number. In this case, the non-zero elements are concentrated around
the diagonal, and fission product distributions on the right hand side. The matrix ele-
ments below the diagonal correspond to reactions where the ZAI index increases, the
only considered reactions being β− decay and the (n, γ) reaction. Figure 3.1 shows
the sparsity pattern of a typical burnup matrix for a system with 1606 nuclides. The
matrix elements on the first subdiagonal correspond to the (n, γ) reaction, in which
the mass number of the nuclide increases by one. The non-zeros below the first
subdiagonal, on the other hand, correspond to β− decay with each arc correspond-
ing to the isotopes of a single element. The sparsity pattern follows from that β−

decay generally occurs in neutron-rich nuclides only. Empty columns in the matrix
correspond to nuclides which are stable and do not elicit any neutron reactions.

As explained in Section 2.2, the diagonal elements of the burnup matrix are non-
positive, and the element −aii characterizes the total rate at which nuclide i is trans-
formed to other nuclides. The off-diagonal elements, on the other hand, are non-
negative, and the element aij describes the rate by which nuclide j is transformed to
nuclide i. This simple sign pattern connects the burnup matrices with the class of
Z -matrices.
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3. Matrix exponential solution of burnup equations

Definition 3.1.1. A matrix Z ∈ Rn×n is called a Z -matrix if its off-diagonal elements
are non-positive, i.e. zij ≤ 0 for i ̸= j. The class of Z -matrices is denoted by

Zn = {Z ∈ Rn| zij ≤ 0, i ̸= j} . (3.3)

Based on this definition, it is evident that the negatives of burnup matrices belong
to Z -matrices. This observation is interesting, because it suggests connections with
the theory of non-negative matrices. Especially, every Z ∈ Zn can be expressed in
the form

Z = sI − B , s > 0 , B ≥ 0 , (3.4)

where B ≥ 0 denotes Bij ≥ 0 for i, j = 1, ... , n. This is further discussed in Sec-
tion 3.1.2, where the spectral properties of burnup matrices are considered.

Nuclides may transform to other nuclides through spontaneous radioactive decay
and neutron-induced reactions. The measured nuclide half-lives corresponding to
radioactive decay can vary from 10−24 seconds to billions of years, which introduces
elements of both extremely small and large magnitude to the burnup matrix, making
the system numerically extremely stiff. The highly unstable nuclides, whose decay
constants can be of the order of 1021 s−1, are numerically the most difficult. An ex-
ample of such nuclide is the boron isotope 7B, which decays to the beryllium isotope
6Be by proton emission with a half-live of the order of 10−22 s. Since

∥A∥1 ≥ max
i,j

|aij | ,

this reaction alone increases the burnup matrix norm to be at least of the order of
1021.

The magnitudes of neutron-induced reaction rates vary significantly less. In accor-
dance with Eqs. (2.13) and (2.16), their values are bounded by the maximum values
of the cross-sections and the normalization of the neutron flux by power. One of the
largest known cross-sections is the capture cross-section of 135Xe, whose maximum
value is of the order of 10−16 cm2. The highest ever measured neutron fluxes are
of the order ∼ 1016/(cm2 s), the record being ∼ 3 × 1016 neutrons/(cm2 s) achieved
in the High Flux Isotope Reactor at Oak Ridge National Laboratory. Therefore, the
magnitudes of neutron-induced reactions can be conservatively bounded from above
by unity in reactor conditions.

To illustrate the extensive variations in the decay and transmutation rates, Fig. 3.2
shows a plot of the absolute values of a 1606 × 1606 augmented burnup matrix.
Figure 3.3 is a close-up from Fig. 3.2, showing A(1 : 36, 1 : 30) and corresponding to
the 36 lightest nuclides, ranging from the hydrogen isotope 1H to the oxygen isotope
18O.
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Figure 3.2. A plot illustrating the (10-base) logarithmic variations in the absolute
values of burnup matrix elements for a test case with 1606 nuclides.
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Figure 3.3. A close-up of the matrix in Fig. 3.2 corresponding to the 36 lightest
nuclides ranging from 1H to 18O.
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3. Matrix exponential solution of burnup equations

3.1.1 Graph-theoretical approach

Some insight into the numerical properties of burnup matrices can be gained by
considering their graphs. In this context, the column and row indices of A are referred
to as vertices. When aij ̸= 0, there exists an edge from vertex i to vertex j, and the
notation i → j is used. A path of length m from node i to node k is defined as
a sequence of non-zero vertices [i = i1, i2, i3 ... , im, im+1 = k], such that in → in+1 for
n = 1, ... , m+1. The physical interpretation for this is that there exists a transmutation
path of length m from nuclide k to nuclide i.

A graph is called acyclic, if the paths related to it do not form closed cycles. In
this case, the vertices can be ordered topologically, meaning that if i → j, the vertex
i appears before j in the ordering. An acyclic graph corresponds to a matrix that
can be permuted to lower triangular form. When a graph is not acyclic, it can be
divided into strongly connected components (SCCs). A strongly connected compo-
nent is defined as a set of vertices, for which there exists a path from each vertex
to every other vertex. After dividing a graph into strongly connected components,
these components can be ordered topologically in the same manner as the vertices
of an acyclic graph, after which the corresponding systems of differential equations
can be solved independently in this order. This corresponds to permuting the matrix
to lower block triangular form with irreducible diagonal blocks.

In the case of a burnup matrix, a strongly connected component corresponds to
a set of nuclides for which there exists a transmutation path from every nuclide to
every other nuclide. In this context, it should be noted that measured nuclear data
does not exist for all reactions that are unlikely but possible in theory. The consid-
erations in this section are based on evaluated nuclear data libraries and the library
JEFF-3.1 [3] in particular. Some general conclusions can be drawn from studying
the transmutation paths of nuclides. First of all, the only reactions increasing the ZAI
index are the (n, γ) reaction and β− decay. Therefore, a closed cycle must neces-
sarily contain at least one of these reactions. Nuclides that do not undergo either of
these reactions, form SCCs whose size is one. It can also be deduced that fissile
nuclides and fission product nuclides belong to different SCCs, since transmutation
paths from fission products to fissile nuclides are extremely unlikely under reactor
conditions. 3

Interestingly, the nuclides produced as by-products, i.e. 1H, 2H, 3H, 3He and 4He,
always form a sink in the augmented burnup matrix, meaning that there is no out-
bound edge from this set of vertices. This is due to the fact that these nuclides do
not elicit any reactions that would produce nuclides outside this group. The nuclide
4He is stable and elicits no neutron reactions corresponding to a zero column in the
burnup matrix, whereas the rest of the by-product nuclides form a single SCC.

Let us again consider the augmented burnup matrix plotted in Figures 3.1 and
3.2. This matrix corresponds to a burnup system with 1606 nuclides, ranging from

3Interestingly, these paths are theoretically possible if data based on nuclear models rather than mea-
surements is considered. For example, the nuclear data library TENDL-2011 [4] produced with the nuclear
reaction program Talys [4] contains data that enables paths from fission products to fissile nuclides. However,
since these transmutation paths are extremely unlikely, they are not further considered here.
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Figure 3.4. Burnup matrix permuted to lower block triangular form. The diagonal
blocks with size greater than one have been plotted with magenta, red, green or
cyan. For the three largest blocks, the nuclides with the smallest and the greatest
ZAI indices in the SCC have been indicated.

1H to 245Cm when ordered according to their ZAI index. For this matrix, the number of
SCCs is 896. However, only twelve of these components include more than a single
nuclide. The source SCC, i.e. a SCC without any inbound edges, consists 83 nuclides
ranging from 222Fr to 245Cm. The largest SCC comprises 463 nuclides ranging from
69Cu to 159Dy. Figure 3.4 depicts the SCCs of the test case burnup matrix by showing
a plot of the matrix permuted to block lower triangular form.

3.1.2 Spectrum

Real parts of eigenvalues

When considering the spectral properties of burnup matrices, it is important to dis-
tinguish between classically defined and augmented burnup matrices. In the case
of conventional burnup matrices, the number of nuclides does not increase in all
reactions except fission. As explained in Section 3.1.1, there are generally no trans-
mutation chains from fission product nuclides to fissile nuclides. Therefore, the con-
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3. Matrix exponential solution of burnup equations

Table 3.1. Possible decay and neutron reactions for the by-product nuclides.

Nuclide Possible reactions
1H (n,γ)
2H (n,γ) (n,2n)
3H β− (n,2n)

3He (n,p) (n,d) (n,t)
4He

centrations of all nuclides must remain bounded at all times [I]. In this case, the
following theorem ([5], p. 165) gives a useful characterization of the real parts of the
burnup matrix eigenvalues.

Theorem 3.1.2. Every solution n of system (2.12) remains bounded as t → ∞ if
and only if the following holds

(i) Re (λ) ≤ 0 ∀ λ ∈ Λ(A)

(ii) Every λ ∈ Λ(A) with Re (λ) = 0 is a semisimple eigenvalue, i.e. the geometric
and algebraic multiplicities agree.

Here Λ(A) denotes the set of the eigenvalues of A.

However, the situation changes slightly for the augmented burnup matrix. In this
case, the number of nuclides increases in all reactions that produce a by-product
nuclide in addition to the daughter nuclide. In this context, it is not evident that all
nuclide concentrations remain bounded as t → ∞. This follows from that neutrons
are not assumed to be part of the burnup system but they are supposed to be added
constantly to the system. However, as discussed in Section 3.1.1, the only nuclides
produced as by-products are 1H, 2H, 3H, 3He and 4He. The vertices corresponding
to these nuclides always form a sink in the burnup matrix graph. It follows that no
nuclides are produced from these nuclides, and that the concentrations of all nuclides
except for these by-product nuclides must remain bounded at all times.

Fortunately, the eigenvalues related to the by-product nuclides can be separated
from the rest of the eigenvalues of the augmented burnup matrix, remembering that
the spectrum of a block triangular matrix is the union of the spectra of the diagonal
blocks, i.e.

Λ(A) =
∪

j

Λ(Ajj ) , (3.5)

where Ajj are the irreducible diagonal blocks. Here each diagonal block corresponds
to the set of nuclides forming a SCC. Therefore, it can be concluded that Theo-
rem 3.1.2 applies to all eigenvalues of an augmented burnup matrix except for the
ones related to the diagonal block corresponding to the nuclides 1H, 2H, 3H and
3He. This submatrix, denoted by Ã ∈ R4×4, and its spectrum are considered in the
following.

Table 3.1 lists the reactions that are possible for the by-product nuclides. From
the perspective of eigenvalues, it is noteworthy that 3He elicits (n, p), (n, d), and (n, t)
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3. Matrix exponential solution of burnup equations

Figure 3.5. Nuclide concentrations corresponding the solution of x ′ = Ãx.

reactions (in this case, (n, p) and (n, t) are actually the same reaction) producing
either one 3H and one 1H nuclide or two 2H nuclides Therefore, the number of nu-
clides increases in both of these reactions. As can be seen from Table 3.1, there
are transmutation paths from 1H, 2H and 3H to 3He, meaning that also the number of
3He nuclides increases as a function of time. Considering this, it is evident that the
nuclide concentrations of the by-product nuclides grow unboundedly when t → ∞.
This clearly unphysical behavior stems from the assumption of constant rates for the
neutron-induced reactions during the burnup step. According to this assumption,
neutrons are added to the system constantly and, in the β− decay of 3H to 3He, neu-
trons are converted to protons, increasing the amount of matter as a function of time.
Therefore, the eigenvalues related to Ã can have positive real parts.

In reality, of course, all nuclide concentrations remain bounded at all times. There-
fore, the dynamical behavior of the subsystem x ′ = Ãx reflects the validity of the
assumption of constant reaction rates during the burnup step. Therefore, λt ≫ 1
for any λ ∈ Λ(Ã) would indicate the invalidity of this assumption for the time step t.
Figure 3.5 shows the nuclide concentrations as a function of time for a PWR pin-cell
test problem. In this test case, Ã has a single positive eigenvalue which is of the
order of 10−12. It can be seen from this figure that the nuclide concentrations begin
to increase unrealistically when λt → 1. It should also be noted that although the
rate for the β− decay is constant, the magnitudes of the neutron reactions are ulti-
mately determined by the normalization of the neutron flux by power. Increasing the
power by a factor of 10 000, for example, increases the sole positive eigenvalue from
the order of 10−12 only to the order of 10−10. This extreme example illustrates that
the theoretical mathematical instability of this subsystem does not pose a problem
in practice.

Imaginary parts of eigenvalues

The characterization of the imaginary parts of the burnup eigenvalues is more diffi-
cult. It is again useful to consider the SCCs separately. It is evident, that the eigenval-
ues corresponding to SCCs consisting of a single vertex coincide with the respective
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3. Matrix exponential solution of burnup equations

diagonal elements of the matrix.
From a physical standpoint, the imaginary part ω of an eigenvalue corresponds

to an oscillation with period T = 2π/ω. Some insight on the interactions’ underlying
oscillatory behavior can be gained by considering a small system that can be solved
analytically. First of all, it is easy to show that a system consisting of two nuclides
cannot have non-real eigenvalues. Therefore, the following closed-cycle system con-
sisting of three nuclides can be regarded as a model problem in this context:

n′
1

n′
2

n′
3

 =


−µ1 0 µ3

µ1 −µ2 0

0 µ2 −µ3




n1

n2

n3

 . (3.6)

For this system, a necessary condition for the existence of a non-real eigenvalue is
that the constants µi satisfy

√
µ1 −

√
µ2 <

√
µ3 <

√
µ1 + √

µ2 . (3.7)

Furthermore, the absolute value of the imaginary part ω attains its maximum value

ωmax = √
µ1µ2 (3.8)

when µ3 = µ1 + µ2. When µ1 ≫ µ2, the left-hand and right-hand sides of the in-
equality (3.7) approach √

µ1, and µ3 must be arbitrarily close to µ1 in order to induce
a complex eigenvalue. Assuming, for example, µ1 ∼ 10−2 and µ2 ∼ 10−8, the
first 4 decimals of µ1 and µ3 must coincide in order for this system to have non-real
eigenvalues.

The principles related to this model problem can be generalized to more complex
closed-cycle systems. Non-real eigenvalues are most likely to occur, when the rates
of the reactions forming a closed cycle are of the same magnitude. When some of
the reactions are significantly more likely than others, they can be considered instant.
Physically, it is intuitive that the imaginary parts must be of the same order as the
rates for the least likely reactions in the cycle.

As discussed in the beginning of Section 3.1, the values of the decay constants
vary extensively, whereas the rates for neutron reactions are relatively slow. In a
thermal reactor operating at full power, most of the transmutation coefficients are of
order ≤ 10−8 s−1. In a fast reactor, the flux is higher but most of the neutron reactions
are less likely, which results in most of the reaction rates being even smaller than in
a thermal reactor. Based on computing the eigenvalues for a wide range of burnup
matrices, it seems that they are generally confined to a region near the negative
real axis. For every burnup matrix that we have considered, this has also been the
case. When the power level is decreased, the transmutation coefficients become
smaller. In this case the absolute values of the imaginary parts of the eigenvalues
decrease as well. It seems that the oscillations are most likely to occur for reduced
power cases where the greatest transmutation coefficients are of order ≤ 10−12. In
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general, the eigenvalues of the burnup matrix appear to remain bounded near the
negative real axis in all conceivable burnup calculation cases with imaginary parts
at the most of the order of 10−8.

It was stated previously that the negatives of burnup matrices belong to Z -
matrices. This property can be exploited in deriving a wedge condition for the burnup
matrix eigenvalues. Let Z ∈ Zn, in which case we can write Z = sI − B with s > 0
and B ≥ 0. Since B ≥ 0, it follows from the Perron–Frobenius theorem that B has
a real eigenvalue λ ≥ 0 such that |µ| ≤ λ ∀ µ ∈ Λ(B). Therefore, λ corresponds to
the spectral radius of B, denoted by ρ(B).

Definition 3.1.3 (M-matrix). Let Z ∈ Zn so that it can be written in the form Z = sI−B
with s > 0 and B ≥ 0. If s ≥ ρ(B), Z is called an M-matrix. If s = ρ(B), the M-matrix
is singular, and if s > ρ(B), it is non-singular.

M-matrices can be characterized by various equivalent properties (see Theorem 2.3
in [6]), of which the following three are of special interest:

Theorem 3.1.4. Let A ∈ Zn Then the following properties are equivalent

1. A is an M-matrix

2. A + εI is a non-singular M-matrix for any ε > 0

3. Every eigenvalue of the matrix A has a non-negative real part

From the third property we directly obtain the following theorem.

Theorem 3.1.5. The negatives of (conventional) burnup matrices belong to the class
of M-matrices.

The connection between burnup matrices and M-matrices is interesting because it
gives a wedge condition to the non-real eigenvalues of burnup matrices.

Theorem 3.1.6 (Eigenvalues of singular M-matrix). Let M ∈ Rn×n be a singular
M-matrix with n ≥ 2. Then its eigenvalues are confined to the closed wedge

W n =
{

z = reiθ | r > 0 , |θ| ≤ π

2 − π

n

}
. (3.9)

Proof. It has been proven that the eigenvalues of non-singular M-matrices belong
to the open wedge

Wn =
{

z = reiθ | r > 0 , |θ| < π

2 − π

n

}
(3.10)

if n > 2 and in (0,∞) if n = 2 [7]. Based on property 2 in Theorem 3.1.4, for any
ε > 0, the matrix M+εI is a non-singular M-matrix whose eigenvalues are confined to
the region Wn. However, since the eigenvalues of a matrix depend continuously on
the matrix, it follows that the eigenvalues of the singular matrix M must be confined
to the wedge W n.
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Notice that Theorem 3.1.6 can also be applied to the irreducible diagonal blocks
corresponding to the SCCs of a burnup matrix. In this case, the wedge Wn can be
narrowed to correspond to the size of the largest SCC of the matrix. When consid-
ering augmented burnup matrices, it is evident that all diagonal blocks—apart from
the one corresponding to the by-product nuclides—are M-matrices to which these
wedge conditions can be applied. The block matrix Ã ∈ R4×4 corresponding to the
by-product nuclides may have eigenvalues with a positive real part. However, any
of its 2 × 2 principal submatrix is an M-matrix. This can be attributed to the fact that
removing any two nuclides from the respective burnup chain cuts off the feedback
mechanism necessary for the nuclide concentrations to increase as a function of
time. Therefore, we can identify Ã with the following class of matrices [8]:

Definition 3.1.7. A ∈ Lk
0 if and only if A is a Z -matrix and each k × k principal

sub-matrix of A is an M-matrix, but there is at least one (k + 1) × (k + 1) principal
sub-matrix that is not an M-matrix.

Based on this definition, −Ã ∈ Ln−2
0 = L2

0. From [8] we now obtain the following
characterization: Ã has exactly one eigenvalue on the positive real axis with all the
other eigenvalues having non-positive real parts.

We can now summarize the estimates obtained for the eigenvalues of augmented
burnup matrices:

Theorem 3.1.8. (Eigenvalues of augmented burnup matrices) Let A ∈ Rn×n be an
augmented burnup matrix. If n = 2,

Λ(A) ⊂ (−∞, 0] .

Otherwise, if the nuclides 1H, 2H, 3H, and 3He are included to the burnup system,
A has four eigenvalues corresponding to them. Exactly one of these eigenvalues
is real-valued and positive, while the other three eigenvalues have non-positive real
parts. The remaining eigenvalues of A are confined to the wedge

Wn =
{

z = reiθ ∣∣ r > 0 , |θ| ≥ π

2 + π

n

}
(3.11)

around the negative real axis.

Figure 3.6 shows an example of the spectrum of an augmented burnup matrix for a
system with 1606 nuclides. This is the same matrix that was plotted in Figures 3.1
and 3.2. Figure 3.7 shows a close-up from Figure 3.6 together with the wedge esti-
mate from Theorem 3.1.8.

Eigenvalue decomposition

A matrix A ∈ Rn×n is called diagonalizable, if it has the eigenvalue decomposition

A = T Λ T−1 , (3.12)

where Λ is a diagonal matrix containing the eigenvalues of A, and T is an invertible
matrix containing the respective eigenvectors. Therefore, in order for the matrix A
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3. Matrix exponential solution of burnup equations

Figure 3.6. Plot of the eigenvalues z ∈ {z ∈ C | z ∈ Λ(A), Re z < 0} of an aug-
mented burnup matrix A for a system with 1606 nuclides. In addition, the matrix has
a single positive eigenvalue z+ ≈ 4.15 × 10−12 and zero as a 29-fold eigenvalue.

Figure 3.7. Close-up of the eigenvalues plotted in Fig. 3.6 near the origin, together
with the wedge estimate from Theorem 3.1.8.

to be diagonalizable, it must have n linearly independent eigenvectors that span the
space Cn. This happens especially if the matrix has n distinct eigenvalues.

If a nuclide is stable and does not elicit any neutron reactions, it always induces
a zero eigenvalue to the burnup matrix. For this reason, burnup matrices are nearly
always singular with zero as a multiple eigenvalue. However, according to Theo-
rem 3.1.2, the eigenvalue zero is semi-simple meaning that its geometric and alge-
braic multiplicities agree. Therefore, in order for a burnup matrix to be defective, it
should have a non-zero eigenvalue, whose geometric multiplicity is smaller than its
algebraic multiplicity.

For a single nuclide forming a SCC of unit size, the respective eigenvalue coincides
with its removal rate. When considering a SCC consisting of several nuclides, an
eigenvalue can no longer be connected with a particular nuclide but they all represent
the set of nuclides and their effective removal rates taking the feedback mechanisms
(i.e. closed cycles) into consideration. Since the decay and transmutation constants
of different nuclides are never precisely equal, a repeated non-zero eigenvalue is
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3. Matrix exponential solution of burnup equations

theoretically extremely unlikely. Therefore, burnup matrices should ideally be diago-
nalizable with zero as the only multiple eigenvalue. Nonetheless, as recently noted
in [9], the half-lives of some short-lived nuclides have not been measured accurately,
which results in identical estimates for some of them. 4 This imprecision of the decay
data may cause a burnup matrix to have multiple eigenvalues in practise. In addition
to these multiple eigenvalues resulting from inaccurate decay data, burnup matrices
typically have many nearly confluent eigenvalues, which complicates their numerical
computation. 5

In some cases, the condition of an eigenvalue problem may be a sign of that
the eigenvalues are not meaningful, and the pseudospectra of the matrix should be
studied instead [10]. The ε-pseudospectrum σε(A) of A is defined as the set z ∈ C
such that

∥ (zI − A)−1 ∥ > 1/ε , (3.13)

where the matrix (zI−A)−1 is called the resolvent of A at z. In the previous definition,
it is assumed that ∥ (zI − A)−1 ∥ = ∞ when z ∈ Λ(A) so that the spectrum of A is
contained in the ε-pseudospectrum for every ε > 0. It can be shown that when
matrix A is perturbed by a matrix E such that ∥E∥ < ε, the eigenvalues of A + E are
confined to σε(A) [10]. Therefore, the ε-pseudospectrum characterizes the sensitivity
of the eigenvalue problem to perturbations.

When computing the eigenvalues of a burnup matrix, problems are typically faced
due to the algorithm not being able to distinguish between the nearly confluent eigen-
values. Also, round-off errors may induce small positive eigenvalues, which are
clearly nonphysical. From a practical point of view, these errors are not acceptable
since they change the character of the problem. However, the absolute magnitudes
of the errors are generally of the order of the arithmetic precision used in the compu-
tation, suggesting that the eigenvalue problem is not especially sensitive to perturba-
tions. The study of the pseudospectra of burnup matrices supports this conclusion.
Figure 3.8 shows the boundaries of the 2-norm ε-pseudospectra for a burnup matrix
that was formed by selecting only the most important actinides and fission products,
totalling in 219 nuclides. The norm of the respective burnup matrix is of the order of
10−4. It can be seen from Fig. 3.8 that at distance δ from the eigenvalues, the norm
∥ (zI − A)−1 ∥ is of the order of δ−1.

3.2 Matrix exponential

3.2.1 Definitions of matrix functions

There are many equivalent ways to define the matrix exponential eAt in addition to the
power series definition of Eq. (3.2). In this context, it is useful to consider definitions
for general matrix functions first. Two definitions of particular interest are presented

4It should be noted that in [9] the focus is on the identical eigenvalues resulting from linearizing the closed
cycles in the burnup chain rather than identical eigenvalues of burnup matrices.

5The computation of the eigenvalues becomes significantly better-conditioned if the SCCs of the matrix
are formed first and the eigenvalues are then computed for each diagonal block corresponding a SCC.
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Figure 3.8. Pseudospectra of a small burnup matrix corresponding to a system with
219 nuclides. The outer boundaries of σε(A) are plotted for selected values between
ε = 10−5 and ε = 10−3. The eigenvalues of the matrix are marked with black dots.
The plot was computed with the Eigtool package for Matlab [11].

here—the definition based on Jordan canonical form, and the definition based on
the Cauchy integral formula.

It is well-known that any matrix A ∈ Cn×n can be written in the Jordan canonical
form

A = T J T−1 , (3.14)
where J is a diagonal block matrix

J = diag
[
Jm1 (λ1), ... , Jmp (λp)

]
and λ1, ... ,λp are eigenvalues of A. The matrix J is unique up to the order of the
diagonal blocks, whereas the transformation matrix T is in general not unique. The
diagonal blocks are of the form

Jmj (λj ) =



λj 1 0 · · · 0

λj 1
. . .

...

λj
. . . 0

0
. . . 1

λj


= λj I + Smj ∈ Cmj×mj (3.15)

with
∑p

j=1 mj = n. The number of Jordan blocks corresponding to λj is equal to the
number of linearly independent eigenvectors related to that eigenvalue. Let Ij denote
the index of λj , defined as the size of the largest Jordan block corresponding to λj .
In order to define the matrix function f (At) based on Jordan canonical form, we need
the following definition [12].

Definition 3.2.1. A function f is defined on the spectrum of At if the values

f (i)(tλj ) , i = 0 ... , Ij − 1 , j = 1, ... , s (3.16)

exist. Here {λ1, ... ,λs} are the distinct eigenvalues of A.
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We can now formulate the following definition for the matrix function f (At).

Definition 3.2.2. Let the function f be defined on the spectrum of At ∈ Cn×n and let
A = T J T−1 denote the Jordan decomposition of A. Then

f (At) = T diag
[
f (Jm1 (tλ1)), · · · , f (Jmp (tλp))

]
T−1 , (3.17)

where

f
(
Jmj (tλj )

)
=

mj−1∑
ν=0

f (ν)(tλj)
ν! Sν

mj . (3.18)

Notice that when the matrix A is diagonalizable, the Jordan decomposition reduces
to the eigenvalue decomposition and f (At) can be computed simply as

f (At) = T f (Λt) T−1 . (3.19)

Definition 3.2.2 and Eq. (3.19) are useful because they directly show the connection
between the eigenvalues and the exponential of a matrix. It should be noticed that
since the exponential function is analytic everywhere in the complex plane, the matrix
function eAt is defined for all At ∈ Cn×n.

Another interesting definition for the matrix function f (At) is based on a general-
ization of the Cauchy integral theorem.

Definition 3.2.3. Let A ∈ Cn×n and let f be analytic inside the closed contour Γ that
winds once around the spectrum of At. Then

f (At) = 1
2πi

∫
Γ

f (z) (zI − At)−1 dz . (3.20)

In the previous definition, the resolvent of At can be written in the form

(zI − At)−1 = B(z)
det (zI − At) , (3.21)

where
B(z) = zn−1B0 + zn−2B1 + ... + zBn−2 + Bn−1 (3.22)

with B0, B1, ... , Bn−1 matrices with constant elements [13].

3.2.2 Application to burnup matrices

Some interesting properties of the burnup matrix exponential E(t) = eAt can be de-
duced based on physical considerations. First of all, for each value of t, the element
Eij (t) characterizes the contribution from nuclide j to nuclide i during time step t.
Therefore, it is clear that all elements of E(t) must be non-negative at all times. In-
terestingly, this same conclusion follows directly from the fact that the negatives of
(augmented) burnup matrices are Z -matrices. The following theorem is from [12]:

Theorem 3.2.4. eAt ≥ 0 for all t ≥ 0 if and only if −A is a Z -matrix.
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Figure 3.9. Plot of the matrix elements E = eAt with t ≈ 8.64 × 105 s on a loga-
rithmic scale. The matrix E was computed with Matlab’s Symbolic toolbox using
high-precision arithmetics.

Due to the previous theorem, the negatives of Z -matrices are sometimes called es-
sentially non-negative. Figure 3.9 shows a plot of the matrix exponential for an aug-
mented burnup system with 1606 nuclides. Notice that a zero element Eij = 0 in the
figure means that there is no transmutation path from nuclide j to nuclide i. Espe-
cially, the rows 2, ... , 6 corresponding to the by-product nuclides have zero elements,
since no nuclides are produced from these nuclides. It can also be seen from the fig-
ure that the elements with the greatest magnitude are gathered around the diagonal.
This in accordance with the reasoning that the longer and more complex a partic-
ular transmutation path, the less likely it is to contribute to the respective nuclide
concentration.

In some cases, it is useful to consider the norm ∥eAt∥ as a function of time. For
non-normal matrices, it is possible that the transient behavior of the system differs
from the behavior at t → ∞. The following theorem from [10] gives a useful relation-
ship between eAt and the resolvent (zI − A)−1.

Theorem 3.2.5. Let A ∈ Cn×n and let ω ∈ R and M ≥ 1 be such that

∥eAt∥ ≤ Meωt ∀ t ≥ 0 . (3.23)
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For any z ∈ C with Re z > ω in the resolvent set of A it holds

(zI − A)−1 =
∫ ∞

0
e−zsesA ds , (3.24)

and
∥ (zI − A)−1 ∥ ≤ M

Re z − ω
. (3.25)

In the case of conventional burnup matrices, the number of nuclides increases only
through fission. As explained in Section 3.1.1, there are generally no transmutation
paths from fission product nuclides back to fissionable nuclides. Therefore, the total
number of nuclides in the system is bounded. The element Eij (t) of E(t) = eAt is equal
to the concentration of nuclide i at time t, assuming nuclide j is the only nuclide
with a non-zero initial concentration and that this concentration is equal to unity.
The column sum,

∑n
i=1 Eij (t), on the other hand, corresponds to the total number of

nuclides in the system at time t, assuming an initial condition consisting of a single
nuclide j. The norm ∥eAt∥1 is defined as the maximum absolute column sum of the
matrix. Therefore, we can state that

∥eAt∥1 ≤ C , (3.26)

where C is a constant equal to the maximum number of nuclides that can result from
an initial state consisting of a single nuclide. In practise, there are always reactions
competing with fission, for which reason the previous inequality holds for C smaller
than the maximum number of fission product nuclides. However, C can always be
chosen as the maximum number of nuclides produced in a fission.

Based on Theorem 3.2.5, we now obtain the following bound for the resolvent in
1-norm:

Theorem 3.2.6. Let A ∈ Rn×n be a (conventional) burnup matrix. Then for any
Re z > 0

∥ (zI − A)−1 ∥1 ≤ C
Re z . (3.27)

3.2.3 Numerical computation

In general, there are various numerical methods for computing the matrix exponen-
tial. However, the suitability of a particular method depends on the characteristics
of the problem under consideration. When considering the efficiency of a particular
method, there are a few cases that should be distinguished. First of all, computing
eAt for a single value of t is different from computing it for several values of t. Also,
the case where the full matrix eAt is required differs from the case where only the
action of the matrix exponential on a vector is needed, i.e. eAt y for some y ∈ Rn.

In burnup calculations, the objective is generally to compute the nuclide concen-
trations at time step t, i.e. the product eAt n0 for a single value of t and a single nuclide
initial concentration vector n0. The full matrix exponential is occasionally needed in
special applications, where it is important to know the contributions from individual
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nuclides. As mentioned previously, the time steps used in burnup calculations typi-
cally vary from a few days at the beginning of the irradiation cycle to a few hundred
days at the end. When considering nuclear fuel outside the reactor, the burnup equa-
tions reduce to equations describing radio-active decay, and the time steps can in
principle extend to thousands of years.

Due to the extensive variations in the magnitudes of the burnup matrix elements,
the computation of matrix exponential has previously been considered infeasible for
entire burnup systems. Instead, simplified burnup chains have been used, or the
most short-lived nuclides have been treated separately when computing a matrix
exponential solution. For example, in the ORIGEN [14] code, the matrix exponential
is computed with the truncated Taylor series method with scaling and squaring, after
excluding short-lived nuclides from the burnup matrix to be treated separately. In
the AEGIS code, a Krylov subspace method is applied to a simplified burnup chain
with 221 nuclides, in which case the burnup matrix norm is of the order of 10−2 [15].
These frameworks are considered briefly in the following.

Truncated Taylor series is perhaps the most obvious numerical method for com-
puting the matrix exponential. The main limitation of this approach is related to round-
off errors. In some cases, even increasing the number of terms does not improve
accuracy due to the accuracy limitations in the computer arithmetics. The applica-
bility range of the method can be extended by the method of scaling and squaring,
which is based on the identity

eAt =
(

eAt/m
)m

, (3.28)

where m can be taken as a power of two, m = 2k , so that the norm ∥A/m∥ becomes
sufficiently small. In this context is should be pointed out that the method of scaling
and squaring is only applicable to computing the full matrix eAt and it cannot be
applied, when only the vector eAty is desired. 6 Unfortunately, the squaring phase
of the scaling and squaring method may lead to a loss of accuracy due to round-off
errors in the canceling of large elements [16]. In ORIGEN [14], the fastest transitions
are removed from the burnup system in order for the matrix norm to meet the criterion

min {∥At∥1, ∥At∥∞} < −2 log (0.001) ≈ 13.8155

before the computation of the matrix exponential. This corresponds to removing
nuclides i for which eaii t < 0.001 [14].

In Krylov methods, the computation of the product eAtn0 is made more affordable
by projecting the matrix A to a lower-dimensional Krylov subspace. The projection
can be carried out with the Arnoldi iteration, which results in m iteration steps to the
partial Hessenberg reduction

A Qm = Qm Hm + hm+1,m qm+1 eT
m , (3.29)

6When computing eAty , the norm of At can only be reduced by dividing the time step t into smaller sub-
steps and by repeating the computation for each sub-step.
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where Qm ∈ Rn×m is orthogonal, Hm ∈ Rm×m is a Hessenberg matrix, and m < n.
The matrix exponential solution can then be approximated as

eAtn0 ≈ ∥n0∥Qm eHmte1 , (3.30)

where the product eHm te1 for the small and dense matrix Hm can be computed by
any suitable algorithm. The eigenvalues of Hm, called the Ritz values, are typically
close to the eigenvalues of A near the edge of the spectrum. The accuracy of the
Krylov approximation may be compromised if these extreme eigenvalues are not
representative of the original problem, which clearly is the case with burnup matrices.
Besides, Krylov subspace methods are generally motivated by the original problem
being too large to be solved directly, the typical applications including matrices arising
from the discretization of a differential equation. In this context, burnup matrices can
be regarded relatively small considering that polynomial or rational approximations
can easily be applied directly to them. Therefore, the solution of burnup equations
falls out of the scope of the application area of Krylov subspace methods.

The methods described above have been previously used for solving the burnup
equations. In addition to these, another method worth mentioning is the rational
Padé approximation of the exponential function. Padé approximation with scaling
and squaring can be considered the most established matrix exponential method,
and it is the method implemented in Matlab’s matrix exponential function expm [17].
The (k, m) Padé approximant of the exponential function is defined as the rational
function rkm(x) = pkm(x)/qkm(x) such that

pkm =
k∑

j=0

(k + m − j)! k!
(k + m)! (k − j)!

x j

j! (3.31)

and

qkm =
m∑

j=0

(k + m − j)! m!
(k + m)! (m − j)!

(−x)j

j! . (3.32)

This approximation can be shown to fit the exponential function ex to the order (m+n)
at the origin, i.e. (

d j rkm(x)
dx j

)
x=0

= 1 , j = 0, 1, ... , m + n . (3.33)

The accuracy of the approximant is restricted near the origin, and for this reason
it is generally applied together with the method of scaling and squaring. When the
matrix A is not diagonalizable and the matrix exponential is defined based on the
Jordan decomposition according to Eq. (3.2.2), it is advantageous that the accuracy
of the Padé approximation extends to the derivatives in the vicinity of the origin.
However, without scaling and squaring the method yields poor results for matrices
with eigenvalues far from the origin, and therefore this approach is not well-suited
for solving the burnup equations, where the matrix norm is large and only the vector
eAt n0 is desired.
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3.3 Solution based on rational approximations near the negative real
axis

The matrix exponential can be computed based on a rational function r(z) that is
known to be a good approximation to the function ez in some region in the complex
plane C. According to Definition 3.2.3, the matrix exponential can be defined as a
contour integral, with the integration path winding around the spectrum of the matrix.
Therefore, calculating eAt is essentially equivalent to evaluating contour integrals of
the form

(eAt)kl = 1
2πi

∫
Γ

ezRkl(z) dz , (3.34)

where R = (zI − At)−1, Rkl = O(1) when z → −∞, and the singularities of Rkl

are the eigenvalues of At. Since the eigenvalues of (augmented) burnup matrices
are confined to a region near the negative real axis, the integration contour can be
extended to a parabolic or hyperbolic shape in the left complex plane. Because the
integrand will decrease exponentially, these contour integrals can be approximated
efficiently using quadrature formulas [18]. Interestingly, the quadrature formulas can
be associated with rational functions, whose poles and residues are the nodes and
weights of the numerical integration formula, respectively [18]. In addition, every
rational function can be correspondingly interpreted as a quadrature formula applied
to a contour integral in the left complex plane. This interpretation gives the following
expression for the approximation error [18]:

I − IN = 1
2πi

∫
Γ′

(
ez − r(z)

)
Rkl(z) dz , (3.35)

where Γ
′ is a contour that extends from −∞ towards the origin, encircles the origin

while remaining to the left of the poles of r, and then extends back to −∞ without
crossing the negative real axis at any point.

In Eq. (3.35), IN denotes the integral of Eq. (3.34) approximated by some quadra-
ture rule with N points. When deriving Eq. (3.35), the integration contour Γ is as-
sumed to encircle the eigenvalues of At. Therefore, the accuracy of the rational
approximation may suffer a break-down if the eigenvalues of At fall outside the con-
tour defined by the poles of the rational function. Interestingly, this phenomenon is
not visible when only Definition 3.2.2 is considered.

The framework based on Cauchy integral formula has been considered in detail
in the context of burnup equations [I, II]. This has drawn attention to the non-real
eigenvalues of burnup matrices. Especially, the accuracy of a rational approximation
optimal on the negative real axis is expected to be affected by the magnitudes of the
eigenvalues’ imaginary parts. Also, the method may suffer a break-down if some of
the eigenvalues fall outside the integration contour implicitly defined by the rational
approximation.
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3.3.1 Partial fraction decomposition form

When approximating the matrix exponential, it is usually advantageous to employ
the partial fraction decomposition (PFD) form of the rational function. Let πk,l denote
the set of rational functions rk,l(x) = pk(x)/ql(x), where pk is a polynomial of order k
and qk is a polynomial of order l. For a rational function rk,k with simple poles, the
partial fraction decomposition is of the form

rk,k(z) = α0 +
k∑

j=1

αj

z − θj
, (3.36)

where α0 is the limit of the function rk,k at infinity, and αj are the residues at the poles
θj :

αj = pk(θj )
q′

k(θj )
. (3.37)

Also, rational functions in πk−1,k that have simple poles can be written in this form
with α0 = 0.

When the coefficients of rk,k are real, its poles form conjugate pairs, so that the
computational cost can be reduced to half for a real variable x:

rk,k(x) = α0 + 2 Re

 k/2∑
j=1

αj

x − θj

 (3.38)

and for a real matrix A ∈ Rn×n, the rational function may be computed as

rk,k(At)n0 = α0n0 + 2 Re

 k/2∑
j=1

αj (At − θj I)−1n0

 . (3.39)

It can be seen from Eq. (3.39) that computing a rational approximation rk,k(At) re-
quires solving k/2 linear systems.

When no nuclides are excluded from the burnup computation, the dimensions
of the burnup matrix are generally between 1200 and 1700, making the linear sys-
tems relatively large. The numerical characteristics of burnup matrices, discussed
in Section 3.1, may compromise the accuracy of widely used iterative solvers, many
of which are based on Krylov subspace techniques whose convergence is ultimately
related to the spectral properties of the matrix at hand. Luckily, the nearly upper tri-
angular sparsity pattern of burnup matrices, depicted in Fig. 3.1 for example, can be
utilized by employing a direct method. A method based on sparse Gaussian elim-
ination has been implemented to the reactor physics code Serpent. The suitability
and characteristics of this method in the context of burnup equations are analyzed
in detail in [IV].

3.3.2 Chebyshev rational approximation method (CRAM)

In Chebyshev Rational Approximation Method (CRAM), the rational function r̂(z) is
chosen as the best rational approximation of the exponential function on the negative
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Figure 3.10. Plot of log10 |ez − r̂16,16(z)| illustrating the accuracy of CRAM of order
16 in the complex plane. The poles of r̂16,16 have been marked with black asterisks.

real axis R−. Let π denote the set of rational functions rk,k(x) = pk(x)/qk(x), where
pk and qk are polynomials of order k. The CRAM approximation of order k is defined
as the unique rational function r̂k,k = p̂k(x)/q̂k(x) satisfying

ε̂k,k ≡ sup
x∈R−

|r̂k,k(x) − ex | = inf
rk,k∈πk,k

{
sup

x∈R−

|rk,k(x) − ex |

}
. (3.40)

The asymptotic convergence of this approximation on the negative real axis is re-
markably fast, with the convergence rateO(H−k), where H = 9.289 025 49 ... is called
the Halphen constant [19]. It was recently discovered by Stahl and Schmelzer [20]
that this convergence extends to compact subsets on the complex plane and also to
Hankel contours in C \R−, i.e. to contours that extend from −∞ around the origin
clockwise back to −∞ without crossing the negative real axis. Figure 3.10 illustrates
the accuracy of CRAM of order 16 in the left complex plane. It should be noticed that
the accuracy of the approximation is not confined merely to the negative real axis,
but extends to a wide region near it. Also, the function is relatively flat in the direction
of the imaginary axis.

On the negative real axis, the deviation between the approximation r̂k,k and the
exponential function equioscillates between −ε̂k,k and ε̂k,k . As x → −∞, the ex-
ponential function tends to zero, whereas CRAM of order k stabilizes to ε̂k,k . This
is illustrated in Figure 3.11 which shows a plot of r̂16,16 on the negative real axis.
Therefore, as x → −∞, the relative accuracy of r̂k,k deteriorates. This is illustrated
in Figure 3.12, which shows the relative error of CRAM of order 16 on the negative
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Figure 3.11. Plot of r̂16,16(x) on the negative real axis.

Figure 3.12. Plot of |ex − r̂16,16(x)| e−x illustrating the relative accuracy of CRAM of
order 16 on the negative real axis.

real axis. In this context, it should be mentioned that it is generally impossible to
derive best approximations with respect to relative error.

The main difficulty in using CRAM is determining the coefficients of the rational
function for a given k. In principle, the polynomial coefficients of p̂k and q̂k can be
computed with Remez-type methods, but this requires delicate algorithms combined
with high-precision arithmetics. Fortunately, these coefficients have been computed
to a high accuracy by Carpenter et al. for approximation orders k = 0, 1, ... , 30, and
they are provided in [21]. Although the PFD coefficients can in principle be computed
from the polynomial coefficients, the computation of the polynomial roots may be ill-
conditioned and requires great care. The PFD coefficients for approximation orders
10 and 14 have been provided in [22], and the given coefficients for k = 14 have
been used in several applications, including the matrix exponential computing pack-
age EXPOKIT [23]. However, it was recently observed that the coefficients reported
in [22] contain errors and do not correspond to the true best approximation [II]. Af-
ter discovering the erroneous behavior induced by the coefficients from [22], partial
fraction coefficients for approximation orders k = 14 and k = 16 were computed from
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the polynomial coefficients provided in [21] and subsequently reported in [II] and [III].
The application of CRAM to computing the matrix exponential was originally made

famous by Cody, Meinardus, and Varga in 1969 in the context of rational approxima-
tion of e−x on [ 0, ∞), and it was recently resurfaced by Trefethen, Weideman, and
Schmelzer [18]. The application of CRAM to burnup equations was first considered
in [I] and [II] and it was later compared to other depletion algorithms in [24]. The
main conclusions are briefly summarized here. Overall, CRAM has been shown to
give a robust and accurate solution to burnup equations with high computational effi-
ciency. In contrast to other matrix exponential methods considered previously, CRAM
can be applied to large burnup problems containing over thousand nuclides and with
the matrix norm being of the order of 1021. In this context, CRAM has been demon-
strated to allow time steps of the order of 107 s, which can be considered to be the
maximum feasible time step in burnup calculations. The convergence rate of CRAM,
when applied to burnup equations, has been close to the asymptotic convergence
rate on the negative real axis. [II]

It has been observed that the accuracy of CRAM depends relatively little on the
characteristics of the problem at hand, such as the nuclear fuel or the neutron spec-
trum in the system [24]. However, it has been noticed that CRAM gives less accurate
results for fresh fuel cases compared to depleted fuel cases [24]. It has been sug-
gested that the reduced relative accuracy is related to the longer and more complex
burnup chains being computed less accurately with CRAM [24]. When the fuel is
fresh, only a few elements of n0 are nonzero, and all the nuclides are produced
solely from these initial nuclides. For a large part of nuclides, this means both long
and complex transmutation chains being emphasized in the result. This reasoning
was later supported based on computing the full matrix r̂16,16(At) explicitly [II].

As discussed in Section 3.1.2, burnup matrices are generally diagonalizable, al-
though the imprecision of decay data may compromise this property in some cases.
It is nonetheless fruitful to study the approximation error of CRAM from this perspec-
tive. Assuming a diagonal decomposition according to Eq. (3.19), we obtain the
following expression for the approximation error of CRAM of order k, when applied to
burnup equations:

εk,k(t) = T
(

eΛt − r̂k,k(Λt)
)
β , (3.41)

where β = T−1n0. Let us consider this error as a function of time. When the eigen-
values of A are located strictly on the negative real axis, the elements of εk,k are
expected to oscillate until r̂k,k(λj t) has stabilized to ε̂k,k for all the eigenvalues λj .
Otherwise, as t increases, the non-real eigenvalues of At shift along lines, whose
slopes are determined by the ratio of their real and imaginary parts. In theory, the
error according to Eq. (3.41) may increase as a function of time if the eigenvalues
shift to a region where the accuracy of the approximation r̂k,k is notably worse than
on the negative real axis. In particular, in accordance with Definition 3.2.3, the ap-
proximation error increases significantly when the contour implicitly defined by the
rational approximation is crossed. However, based on discussion in Section 3.1.2,
this scenario seems highly unlikely. Therefore, it can be deduced that the absolute
error related to a CRAM solution to burnup equations is not expected to increase as
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3. Matrix exponential solution of burnup equations

a function of time.
If the burnup matrix is not diagonalizable due to a multiple eigenvalue λ̃ with index

l, the error related to this eigenvalue can be traced back to the deviation between
the exponential function and the derivatives r̂k,k(λ̃), r̂ ′k,k(λ̃), ... , r̂ (l−1)

k,k (λ̃). However, the
previous reasoning still applies in the sense that the absolute approximation error is
not expected to increase as a function of time.

We are usually interested in the relative accuracy of the solution, i.e. we want
to know how many of its digits are correct. Based on previous discussion, the ab-
solute error of the solution is not expected to increase, but oscillate as a function of
time. Therefore, the time behavior of the relative error depends mainly on the nuclide
concentration ni(t). It is clear that if a nuclide concentration diminishes significantly
during the time step considered, the relative accuracy of the CRAM solution may be
compromised.

To further study the accuracy of CRAM in the context of burnup equations, CRAM
of order 16 was applied to two test cases, which are considered in the following. The
first test case considers a small burnup system, which allows the approximation error
to be analyzed in more detail. The second test case considers a decay system, i.e.
burnup equations in the absence of neutron irradiation.

Application to a small test problem

In this section CRAM is applied to a small burnup system, which was formed by
selecting the 36 lightest nuclides (from 1H to 18O) from the burnup chain of 1606
nuclides corresponding to a PWR pin-cell with fuel irradiated to 0.1 MWd/kgU burnup.
The corresponding burnup matrix is shown in Fig. 3.3. For this test case, the burnup
matrix norm is of the order of 1021, the shortest transition being the decay of of 7B
whose half-life is of the order of 10−24 seconds.

The spectrum of this small test case matrix captures well the relevant properties
of burnup matrices. The matrix has a single positive eigenvalue, z+ ≈ 4.15× 10−12,
and zero as a threefold eigenvalue. The rest of the eigenvalues are plotted in Fig-
ure 3.13. The two eigenvalues with non-zero imaginary parts are related to the sub-
matrix Ã ∈ R4×4 corresponding to the by-product nuclides 1H, 2H, 3H, and 3He. In
accordance with Theorem 3.1.8, the eigenvalue zero is semisimple and the matrix
is diagonalizable.

The exponential of the burnup matrix is depicted in Fig. 3.14, and the relative error
of CRAM of order 16 applied to the same matrix is shown in Fig. 3.15 on a logarithmic
scale. It can be seen from Fig. 3.15 that the approximation is very accurate for
almost all matrix elements. The three greatest errors, (D23,23 ≈ 2.44×10−1, D18,18 ≈
4.11 × 10−2 and D23,18 ≈ 3.76 × 10−4), plotted in red, correspond to nuclides 12Be
(index 23) and 12B (index 18) that are both short-lived, with half-lives of the order of
milliseconds.

In this test case, the nuclide 12B is not formed from any other nuclide and it forms
its own strongly connected component. The relative accuracy of the matrix element
Ê18,18 is determined solely by the relative accuracy of r̂16,16 at the corresponding
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Figure 3.13. A plot of the eigenvalues z ∈ {z ∈ C | z ∈ Λ(A), Re z < 0} for the
test case with 36 nuclides. In addition, the matrix has a single positive eigenvalue,
z+ ≈ 4.15 × 10−12, and zero as a threefold eigenvalue.

eigenvalue z1 = A18,18 ≈ −32.5. The nuclide 12Be forms a SCC with 6 other nuclides,
and the matrix element E23,18 is a linear combination of eight different modes, 7 of
them corresponding to the SCC, and one to the decay of 12B to 12Be. When consid-
ering the element E23,18, the eigenvalues corresponding to the transition 12B→12Be
and the effective removal rate of the nuclide are the most important. Therefore, the
accuracy of the Ê23,18 is dominated by the relative accuracy of r̂16,16 at these two
eigenvalues z1 ≈ −32.5 and z2 ≈ −34.3. The same reasoning applies to the el-
ement Ê23,23, for which the most significant mode corresponds to the eigenvalue
z2 ≈ −34.3.

As can be seen from Figs. 3.14 and 3.15, there is a clear trend in that the relative
errors tend to be greater for the matrix elements with smaller values. However, even
arbitrarily small matrix elements can be captured with amazing accuracy by CRAM, if
the relative accuracy of the approximation is good at the eigenvalues corresponding
to the relevant modes. For example, the matrix element E17,23 ≈ 1.73 × 10−69 is
computed to 8 correct digits with CRAM of order 16. The index 17 corresponds to the
nuclide 10Be which belongs to the same SCC as 12Be. For this matrix element, the
most significant modes correspond to eigenvalues z ∈ [−10−13,−10−14].

Figure 3.16 shows the test case nuclide concentrations and Fig. 3.17 the respec-
tive approximation error of r̂16,16 as a function of time between 10 s and 1012 s
≈ 32 000 years. The reference solutions were computed with Matlab’s Symbolic
Toolbox using high-precision arithmetics. As can be seen from the the figure, for
t ∈ [10, 1010] s, the approximation error is the greatest for nuclides, whose concen-
trations diminish the most rapidly. The trend that these errors begin to diminish for
time steps greater than 106 s is explained by the fact that after this time the respective
nuclide concentrations begin to increase as a function of time. It should be pointed
out that the concentration of 12Be falls to zero so rapidly that its concentration and
the respective approximation error were not included in the plots. It is interesting that
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Figure 3.14. Plot of the matrix elements E = eA on a logarithmic scale. The matrix
E was computed with Matlab’s Symbolic Toolbox with high-precision arithmetics.

Figure 3.15. Relative error of CRAM of order 16 when applied to the burnup matrix
corresponding the test case with 36 nuclides, i.e. plot of matrix D defined as Dij =

log10

(
Eij (1)−Êi,j (1)

Eij (1)

)
, where Ê = r̂16,16(A).
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Figure 3.16. Nuclide concentrations corresponding the small test case with 36 nu-
clides.

Figure 3.17. The relative errors of CRAM solution of order 16 for the nuclide con-
centrations corresponding to the small test case with 36 nuclides.

although the approximation error is comparatively large for the matrix element Ê18,23,
corresponding the transition 12Be→12B, the error is much smaller for the concentra-
tion of 12B. This is due to the accuracy of the solution being dominated by the matrix
elements corresponding to the greatest initial nuclide densities. When t → 1012 s,
z+t → 1, and the accuracy of the approximation begins to deteriorate for the by-
product nuclides 1H, 2H, 3H, and 3He corresponding to the positive eigenvalue z+.
This results from the accuracy of r̂16,16 quickly deteriorating on the positive real axis.

The test case nuclide concentrations and the approximation error of CRAM of order
16 for time steps between t = 1012 s ≈ 32 000 years and t = 1020 s ≈ 3.2×1012 years
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are shown in Figures 3.20 and 3.21. Time steps of this magnitude are clearly not
feasible in burnup calculations, but they are considered here to further study the
characteristics of the approximation. As can be seen from Figure 3.20, the con-
centrations of the by-product nuclides begin to increase very rapidly for time steps
greater than 1012 s. This increase is not captured by the CRAM approximation that
virtually breaks down on the positive real axis. Therefore, the relative error of the by-
product nuclide concentrations quickly stabilizes to unity. For time steps greater than
1014 s, these concentrations are rounded off to infinity in computer arithmetics, after
which the respective relative errors are no longer well-defined. Large oscillations in
the error curves after t = 1015 s ≈ 7.6 × 108 years are explained by the oscillation
of r̂16,16 around the negative real axis. The stabilized nuclide concentrations, plotted
in green and blue, correspond to 12C and 18O, which do not elicit any neutron nor
decay reactions based on the data used in the test case.

Application to a decay system

In the absence of neutron irradiation, nuclides transform to other nuclides merely
through radioactive decay and the burnup equations reduce to decay equations. The
decay paths do not form closed cycles and therefore the decay matrix can be per-
muted to upper triangular form. It follows that the eigenvalues of decay matrices
are known to be strictly confined to the negative real axis. The lack of closed loops
causes a great part of the nuclide concentrations to diminish rapidly in comparison
to burnup cases. Based on the previous discussion, this is expected to affect the
relative accuracy of the CRAM solution.

In this section, CRAM is applied to a decay system consisting of 1531 nuclides.
Compared to the burnup cases considered previously, the decay matrix is signifi-
cantly sparser. Figure 3.20 shows the nuclide concentrations of the test case ac-
tinides as a function of time. The reference solutions were computed with Matlab’s
Symbolic Toolbox using high-precision arithmetics. As can be seen from the figure,
several of the nuclide concentrations fall quickly to zero after the time step t ∼ 104 s,
and this trend becomes stronger as t increases. Figure 3.21 shows the relative error
of CRAM of order 16 for the respective nuclide concentrations. By comparing these
figures, it is evident that the relative accuracy of the CRAM solution deteriorates as
the nuclide concentrations diminish.

Let us consider the approximation error of CRAM as a function of time assuming
the diagonalizability of the decay matrix in which case the error satisfies Eq. (3.41).
As explained previously, the CRAM approximation of order k approaches ε̂k,k as x →
−∞, whereas the exponential function falls to zero. If a nuclide concentration ni (t)
diminishes drastically during the time step t, it can be anticipated that −λj t ≫ 1 for all
the relevant eigenvalues. In this case, it can be approximated eλj t − r̂16,16(λj t) ≈ ε̂k,k

for all these eigenvalues (see also Figure 3.12), and the following estimate can be
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Figure 3.18. Nuclide concentrations corresponding the small test case with 36 nu-
clides for time steps greater than t = 1012 s.

Figure 3.19. The relative errors of CRAM solution of order 16 for the nuclide concen-
trations corresponding to the small test case with 36 nuclides for time steps greater
than t = 1012 s.

derived for the approximation error:

εi(t)
ni (t)

=
|
∑n

j=1 Tij
(
eλj t − r̂k,k(λj t)

)
βj |

ni (t)

=
|
∑n

j=1
∑n

m=1 Tij
(
eλj t − r̂k,k(λj t)

)
T−1

jm nm(0)|
ni (t)

≈
| − ε̂k,k

∑n
m=1

∑n
j=1 Tij T−1

jm nm(0)|
ni (t)

= ε̂k,k
ni (0)
ni(t)

. (3.42)

Equation (3.42) suggests that the relative accuracy of the CRAM solution deteriorates
significantly if ni (t) becomes smaller than ε̂k,k ni (0). In other words, the value ε̂k,k im-
plicitly defines a numerical cut-off for the results. Therefore, concentrations n̂i (t)
smaller than ε̂k,k nj (0) (as given by CRAM of order k) should be treated as zero. How-
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Figure 3.20. Concentrations of the actinides corresponding the decay system test
case with 1531 nuclides.

Figure 3.21. Relative error of the CRAM of order 16 solution for the actinides corre-
sponding the decay system test case with 1531 nuclides.

ever, it should be emphasized that CRAM may also yield a reduced relative accuracy
for the solution in other situations. Nonetheless, it is clear that nuclide concentra-
tions smaller than ε̂k,k nj (0) have a poor relative accuracy when computed with CRAM
of order k.

Figure 3.22 shows the nuclide concentrations for the time step t = 107 s ≈
116 days, together with the concentrations given by CRAM of order 16. At this time,
1007 of the 1531 nuclides have concentrations smaller than ε̂16,16 times their initial
concentrations. Let n̂ denote the solution given by CRAM of order 16. It can be clearly
seen from the figure that the values of n̂j saturate to ε̂16,16nj (0) when the reference
solution nj becomes smaller than this value.

Compared to the burnup cases considered previously in [I, II] and in [24], CRAM
yields significantly less accurate results for this decay system. This clearly results
from the nuclide concentrations diminishing faster than in burnup cases, where the
nuclide chains contain more closed cycles. This supports the conclusion that the
non-real eigenvalues of burnup matrices are not as relevant to the accuracy of CRAM
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Figure 3.22. Test case nuclide concentrations for the time step t = 107 s given by a
highly accurate reference solution and CRAM of order 16.

after all. Furthermore, CRAM should be used with caution in conjunction with decay
systems. It should also be noted that the decay equations can be solved analytically
by the linear chain method [25, 26]. In the development version of Serpent 2, the
analytical method is used by default in the absence of neutron irradiation. Of course,
problems can be encountered in reduced power cases, where an analytical solution
cannot be found, but the nuclide concentrations diminish rather rapidly due to the
neutron reactions being unlikely. In these applications, the length of the time step
should be kept sufficiently small in order to guarantee the accuracy of the solution.

3.3.3 Rational approximations from contour integrals

As explained previously, the burnup matrix exponential can be defined as an inte-
gral along a contour with, for example, a parabolic or hyperbolic shape in the left
complex plane. Because the integrand will decrease exponentially, these contour
integrals can be approximated efficiently using quadrature formulas. These quadra-
ture formulas can furthermore be interpreted as rational approximations that can be
used to approximate the matrix exponential, the poles and residues of the function
being the nodes and weights of the numerical integration formula [18]. This approach
was first applied to the solution of burnup equations in [II].

As discussed previously, the application of these numerical integration schemes
requires that the singularities of the integrand lie inside the contour. Therefore, the
respective rational approximation is expected to give poorer results when the eigen-
values of At fall outside the contour. This phenomenon is studied more closely in
the context of burnup equations in the following subsection.
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Figure 3.23. A plot of log10 |r31,32(z) − ez| in the complex plane. The 32 quadrature
points (i.e. poles of r31,32) have been marked with black dots in the plot.

Application to a test problem with 219 nuclides

In this section, a quadrature-based rational approximation is applied to a small bur-
nup test case formed by selecting only the most important actinides and fission prod-
ucts, totalling in 219 nuclides. The test case represents a PWR pin-cell lattice in which
the fuel has been irradiated to 25 MWd/kgU burnup. The chosen rational approxi-
mation is based on the following contour, suggested by Weideman [27] and later
considered in [II]:

ϕ : R → C , ϕ(x) = N(0.1309 − 0.1149 x2 + i 0.2500 x) . (3.43)

This contour is asymptotically optimal with the convergence rate of O(2.85−N), when
singularities are located on the negative real axis. In this study, N = 32 quadrature
points were chosen, which resulted in the rational function r31,32 ∈ π31,32. The ap-
proximation error related to this rational function is shown in Figure 3.23.

The spectrum of the (conventional) burnup matrix corresponding to this test case
is plotted in Figure 3.24. The burnup matrix has four pairs of eigenvalues with non-
zero imaginary parts, the smallest of them being of the order of 10−13 and the largest
of the order of 10−8. As t increases, the eigenvalues of At shift along lines, whose
slopes are determined by the ratio of their real and imaginary parts. This is illustrated
in Figure 3.25, which shows the lines corresponding to the four complex eigenvalues
of A together with the parabolic contour for N = 32. As can be seen from the figure,
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Figure 3.24. A plot of the eigenvalues z ∈ {z ∈ C | z ∈ Λ(A), Re z < 0} for the test
case with 219 nuclides. In addition, the matrix has zero as a twofold eigenvalue.

Figure 3.25. A plot of the lines z = λt (dashed line) for the four complex eigenvalues
λ ∈ Λ(A) and the parabolic contour of Eq. (3.43) (solid line) for N = 32.

two of the eigenvalues cross the contour when t is of the order of 109 s≈ 32 years
and one when t is of the order of 1011 s ≈ 3200 years. The eigenvalue with the
smallest imaginary part crosses the contour when t ∼ 1013 s ≈ 0.32 million years.

Figure 3.26 shows the matrix exponential eAt and the relative error related to
r31,32(At) for t = 108 s ≈ 3.2 years, and Figure 3.27 the mean and maximum rel-
ative errors of the nuclide concentrations as a function of time. The error begins
to increase notably when t → 1011 s. Figure 3.28 shows the relative errors plotted
against the reference nuclide concentrations for the values t ∼ 108 s and t ∼ 1011 s.
Based on this figure, it appears that the increase in the relative error is again due to
some of the nuclide concentrations tending to zero when t → ∞. The impact of the
eigenvalues shifting over the integration contour could not be detected by studying
the error related to the elements of the matrix r31,32(At) at different time steps.

The fact that the complex eigenvalues are not manifested in the accuracy of the
solution can be explained by investigating the rational approximation more closely.
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(a)

(b)

Figure 3.26. Plot of (a) the matrix elements E = eAt , and (b) the relative error related
to r32,31(At) for t = 108 s ≈ 3.2 years on a logarithmic scale.
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Figure 3.27. Mean and maximum relative errors of the quadrature-based solution
as a function of time for the small test case with 219 nuclides.

Figure 3.28. Plot of the relative error of the quadrature-based solution for time steps
t ≈ 108 s and t ≈ 1011 s for the small test case with 219 nuclides.

In accordance with Definition 3.2.3, it is clear that the integral along the contour of
Eq. (3.43) no longer represents the matrix exponential, if some of the eigenvalues
are located outside the contour. However, after applying the quadrature rule, the part
of the contour extending beyond the quadrature points becomes irrelevant. There-
fore, if the eigenvalues lying outside the contour are located far from the quadrature
points (in the direction of the negative real axis), they are not expected to affect the
accuracy of the solution. It can also be seen from Figure 3.23 that the accuracy of
the approximation diminishes rapidly outside the contour near the quadrature points.
However, on the left of the quadrature points the error function is basically flat. In
this test case, the eigenvalues of At fall outside the contour of Eq. (3.43) so far from
the quadrature points that it is clear that this is not significant to the accuracy of the
solution.

When the approximation order is increased, the part of the contour spanned by
the quadrature points becomes greater. However, also the contour becomes broader
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according to Eq. (3.43). For this test case, there is actually no approximation order
for which the eigenvalues cross the contour in the part spanned by the respective
quadrature points. It follows that the quadrature-based method does not break down
due to the complex eigenvalues at any time step. However, as discussed previously,
the relative accuracy of the solution diminishes as t increases. The complex eigen-
values of this small burnup matrix are very representative of the spectrum of burnup
matrices in general. Therefore, this study supports the previous observation of the
complex eigenvalues with small imaginary parts not being relevant to the accuracy
of the quadrature-based solution in the context of burnup equations [II].
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4. Perturbation theory based sensitivity and
uncertainty analysis applied to criticality
equation

When uncertain parameters are utilized in computations, also the calculation re-
sults contain uncertainty. In order to estimate the reliability of these calculations, it
is necessary to develop uncertainty analysis methods enabling the propagation of
parameter uncertainty through the calculations.

In recent years, the interest towards sensitivity and uncertainty analysis has in-
creased notably in the field of nuclear engineering. In 2006, the OECD/NEA expert
group on Uncertainty Analysis in Modelling decided to prepare a benchmark titled
Uncertainty Analysis in Best-Estimate Modelling (UAM) for Design, Operation and
Safety Analysis of LWRs [28] to establish the current state and needs of sensitivity
and uncertainty analysis. The goal of the benchmark is to propagate uncertainty
through all stages of coupled neutronics/thermal hydraulics calculations. The im-
precision of neutron interaction data is likely one of the most significant sources of
uncertainty in these calculations, and therefore the propagation of this uncertainty is
considered to be the main priority at the moment. As a first step, this requires de-
veloping sensitivity and uncertainty analysis methods for fuel assembly codes that
are used to produce homogenized data for coupled neutronics/thermal-hydraulics
calculations.

This chapter describes the implementation of uncertainty analysis capability to the
fuel assembly burnup calculation code CASMO-4 [29] in the context of the UAM bench-
mark. The developed uncertainty analysis methodology is deterministic, meaning
that the uncertainties are computed based on the sensitivity profiles and covariance
matrices for the uncertain nuclear data parameters. Sensitivity analysis studies the
changes in system responses due to perturbations in the parameters. Perturba-
tion theory provides an efficient technique to compute sensitivity profiles by utiliz-
ing the adjoint system of the original forward problem. At the time of launching the
benchmark, the generally employed reactor physics codes did not have uncertainty
analysis capabilities, and the modified CASMO-4 was one of the first fuel assembly
programs that enabled sensitivity and uncertainty analysis based on perturbation
theory.
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4.1 Background for sensitivity and uncertainty analysis

Let us consider a mathematical model containing uncertain parameters. The objec-
tive of uncertainty analysis is to estimate how the uncertainty in these parameters is
propagated to a response dependent on the solution of the problem under consid-
eration. In this thesis the considered mathematical model is the neutron transport
eigenvalue problem called the criticality equation, i.e. Eq. (2.5), which can be written
in operator form as

AΦ = 1
k BΦ , (4.1)

where Φ ∈ HΦ is the neutron flux, HΦ is a Hilbert space, and k is the multiplication
factor. The uncertain parameters consist of neutron cross-section data and they are
denoted by the vector σ ∈ Eσ, where Eσ is a normed linear space. It should be
noted that both the continuous-energy criticality equation and the various systems
derived from it in numerical computations can be written in the form of Eq. (4.1). For
continuous-energy criticality equation, the Hilbert space under consideration is L2.
The considered responses are the critical eigenvalue k and ratios of the form

R(e) = ⟨Φ, Σ1⟩
⟨Φ, Σ2⟩

, (4.2)

where Σ1, Σ2 ∈ HΦ. Therefore, only functional responses are considered in this
thesis. For example, few-group cross-sections homogenized over a geometry can
be written in the form of Eq. (4.2).

The uncertainty of the parameters σ should be understood in terms of the
Bayesian probability interpretation [30]. In this framework, probability is defined as a
subjective measure that characterizes the plausibility of various hypotheses. When
estimating parameters, all knowledge about a parameter σj is assumed to be incor-
porated into its marginal probability distribution p(σj). This distribution is defined so
that the integral

∫ b
a p(σj ) dσj corresponds to the (Bayesian) probability that the value

of σj belongs to the interval [a, b]. The distribution p(σ) can then be used to form
an estimate σ̂ for the parameters and their associated uncertainties. In most cases
either the mean value or the mode are chosen as σ̂. Typically, the variance of the dis-
tribution is chosen to give a numerical value to the related uncertainty. When several
parameters are considered simultaneously, the probability distribution under consid-
eration is their joint distribution p(σ), and the covariance matrix of this distribution
may be chosen as the descriptive statistic for the uncertainty.

In Bayesian formalism, the outcome of the uncertainty analysis should ideally be
the full posterior distribution p(R) for the response vector R ∈ RJ . However, deter-
mining p(R) analytically is usually not feasible, and therefore approximations need to
be made. Uncertainty analysis methods can be divided into statistical and determin-
istic methods according to the chosen strategy. In statistical methods, the values of
the uncertain parameters are sampled from their probability distribution, after which
these values are used to compute a set of values for the responses. In this manner,
the distribution p(R) is simulated point-wise. In deterministic uncertainty analysis,
the objective is not to form the entire distribution p(R), but to compute an estimate
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Figure 4.1. The self-shielded 40-group fission cross-section of 235U for a BWR fuel
assembly test problem.

for the covariance matrix Cov [R], after which the distribution can be assumed to be
Gaussian. Most often this is based on the linearization of the responses with re-
spect to the uncertain parameters. This requires computing the local sensitivities of
the responses at the parameters’ best-estimate values.

The local sensitivity of response R is defined as the directional derivative in the
direction of the perturbation δσ. When considering the continuous-energy eigen-
value problem, the cross-sections are functions of energy and location, and the
appropriate derivative is the functional directional derivative called the Gâteaux-
variation [31]. It follows that the sensitivity of R with respect to the perturbation
h = [δΦ, δσ] ∈ D = HΦ × Eσ at the point ê = [Φ̂, σ̂] ∈ D may be defined as:

δR(ê; h) = lim
t→0

R(ê + th) − R(ê)
t . (4.3)

The local relative sensitivity is defined as S(ê; h) = δR(ê; h)/R(ê), respectively.
The objective of sensitivity analysis is to compute these derivatives with respect

to all uncertain parameters in the mathematical model. When solving the criticality
equation, the utilized nuclear data typically contains tens of thousands of uncertain
parameters. Since neutron cross-sections are functions of energy and position, the
local sensitivities need to be computed with respect to cross-section values at each
energy and mesh point in the calculation. In reactor physics applications, the num-
ber of responses is typically small compared to the number of uncertain parameters.
For example, the fuel assembly burnup calculation program CASMO-4 [29], utilized
in this work, computes by default a few dozen responses that are passed on to sub-
sequent codes simulating the full core. These responses include the following as-
sembly homogenized two-group cross-sections: transport, absorption, production,
fission, scattering and κ-fission. The two-group homogenized cross-sections can be
written in the form of Eq. (4.2) and they have been considered as responses in this
thesis. To illustrate the uncertainty related to nuclear data parameters, Figure 4.1
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Figure 4.2. The relative covariance matrix of the 235U fission cross-section taken
from the SCALE 6.1 covariance library and modified to the 40 energy group structure
of CASMO-4.

shows the 40-group fission cross-section of 235U for a BWR fuel assembly test prob-
lem as computed with CASMO-4. The corresponding multi-group covariance matrix
is shown in Figure 4.2.

The large number of uncertain parameters in reactor physics applications usually
inhibits statistical uncertainty analysis in practise. Fortunately, the sensitivities can
be computed deterministically in an efficient manner by exploiting the adjoint of the
eigenvalue problem. This framework, referred to as perturbation theory in the context
of reactor physics, is considered in Section 4.2.

After computing the sensitivities and linearizing the response vector, R ≈ R(σ̂) +
Sσ, where S ∈ RJ×K is the sensitivity matrix containing the derivatives with respect
to all considered uncertain parameters, the covariance matrix of the response can
be simply computed using the identity

Cov [R] ≈ Cov [R(σ̂) + Sσ] = S Cov [σ] ST (4.4)

known as the first-order uncertainty propagation formula or the Sandwich rule. It is
noteworthy that in the case where R depends linearly on the parameters and p(σ) is
a Gaussian distribution, the Sandwich rule yields the exact posterior distribution, i.e.

η = c + Sσ ∼ N( c + Sσ̂, S Cov [σ] ST ) , (4.5)

where c ∈ RK is a constant vector.
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4.2 Perturbation theory

The objective of sensitivity analysis is to compute the derivatives of system re-
sponses with respect to all uncertain parameters in the mathematical model. In
perturbation theory, these derivatives are computed in an efficient manner by uti-
lizing the adjoint system of the original forward problem. This approach was first
considered in reactor analysis in [32,33].

Consider the eigenvalue system given by Eq. (4.1). When the parameters σ are
perturbed, also the solution Φ changes, and therefore the computation of the sen-
sitivity δR(ê; h) according to Eq. (4.3) requires that the perturbation δΦ is known.
In principle, δΦ can be computed to first order from the following forward sensitivity
system:

δA(ê; h) = − 1
k2 δk(ê; h) BΦ + 1

k δB(ê; h)

⇔ A′
σ(ê) δσ + A(ê) δΦ = − 1

k2 δk(ê; h) BΦ + 1
k B′

σ(ê) δσ + 1
k B(ê) δΦ , (4.6)

which can be derived by taking the Gâteaux variation of system (4.1) with respect
to a perturbation h on both sides. However, when computing several sensitivities,
this approach would require the repetitive solving of Eq. (4.6). The adjoint system of
Eq. (4.1) is defined as the system that satisfies the following relation: 7⟨

AΦ − 1
k BΦ, Ψ

⟩
=
⟨

Φ, A∗Ψ − 1
k B∗Ψ

⟩
, (4.7)

where the brackets ⟨·, ·⟩ denote an inner product. When considering the continuous-
energy criticality equation, it is customary to employ the L2 inner product [34, 35].
The solution to the adjoint problem(

A∗ − 1
k B∗

)
Ψ = 0 (4.8)

is called the fundamental adjoint. Physically, the solution to this system can be in-
terpreted to represent the average contribution, i.e. importance of a neutron to the
multiplication factor. Interestingly, the adjoint system of Eq. (4.8) can be derived
solely based on this physical interpretation [36].

By utilizing Eqs. (4.7) and (4.8), it is straightforward to obtain the following expres-
sion for the relative sensitivity of the multiplication factor with respect to a perturbation
δσ (For derivation, see e.g. [37] or [V]):

δk(ê; h)
k = −

⟨
(A′

σ(σ̂)Φ − 1
k B′

σ(σ̂)Φ) δσ, Ψ
⟩⟨ 1

k BΦ, Ψ
⟩ . (4.9)

Sensitivity analysis of the critical eigenvalue based on Eq. (4.9) is known as classical
perturbation theory in reactor physics.

7In some cases the adjoint relation needs to be written in the form
⟨
AΦ − 1

k BΦ, Ψ
⟩

=
⟨
Φ, A∗Ψ −

1
k B∗Ψ

⟩
+
[
P(Ψ, Φ)

]
x∈∂Ω

, where
[
P(Ψ, Φ)

]
x∈∂Ω

is a bilinear form associated with the system. We will only
consider cases where it is straightforward to force this term to vanish.
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For responses of the form of Eq. (4.2), the generalized adjoint can be defined as
the solution to the following inhomogeneous system(

A∗ − 1
k B∗

)
Γ = ∇ΦR

R , (4.10)

where ∇ΦR is the Fréchet derivative of R, also called the gradient. The general-
ized adjoint Γ (r , Ω, E) can be physically interpreted as the average contribution of
an additional neutron at the phase space point [r , Ω, E] to the response under con-
sideration. It is noteworthy that when considering the generalized adjoint problem,
the eigenvalue k is fixed to correspond to the solution of Eq. (4.1), and the operator
A∗− 1

k B∗ is singular. Therefore, in order for the solution Γ to exist, the gradient ∇ΦR
needs to be orthogonal to the forward solution

⟨∇ΦR, Φ⟩ = 0 . (4.11)

Responses satisfying Eq. (4.11) are called allowable for generalized perturbation
theory [37]. It is easy to show that for responses of the form of Eq. (4.2), the relative
gradient becomes

∇ΦR
R = Σ1

⟨Φ, Σ1⟩
− Σ2

⟨Φ, Σ2⟩
. (4.12)

and that Eq. (4.11) is satisfied. Also, when a solution Γ0 to Eq. (4.10) exists, there
exists an infinite amount of solutions of the form

Γ = Γ0 + aΨ , a ∈ R . (4.13)

In this case, it is possible to choose a solution orthogonal to the (forward) fission
source. This particular solution can be written

Γp = Γ0 −
⟨Γ0, BΦ⟩
⟨Ψ, BΦ⟩ Ψ

= Γ0 −
⟨B∗Γ0, Φ⟩
⟨B∗Ψ, Φ⟩ Ψ . (4.14)

Based on Eqs. (4.10), (4.7), (4.6) and (4.14), the following expression can be derived
for the relative sensitivity of the response R with respect to a perturbation δσ [VI]:

δR(ê, h)
R = R′

σ(ê) δσ
R −

⟨
Γp,

(
A′

σ(σ̂)Φ − 1
k B′

σ(σ̂)Φ
)
δσ

⟩
Φ

. (4.15)

Sensitivity analysis based on this equation is known as generalized perturbation the-
ory in reactor physics

4.2.1 Numerical computation

In practice, the criticality equation and the corresponding adjoint equations are
solved numerically, which introduces some complications in the perturbation theory
formalism. Ideally, the discretizations should be performed in a consistent manner,
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so that the respective adjoint relations are satisfied at all stages of the computa-
tion [31]. However, as discussed in more detail in [V], this is usually infeasible in
reactor physics calculations and therefore it is customary to take the eigenvalue prob-
lem discretized with respect to energy and direction as the starting point for sensitivity
analysis.

Assuming isotropic scattering and the discrete ordinates approximation for angu-
lar dependence, the forward problem becomes

Ωm · ∇Φg(r , Ωm) + Σg Φg(r , Ωm)

= 1
4π

G∑
h=1

Σh→g
s ϕh(r) + χg

4πk

G∑
h=1

ν Σh
f ϕ

h(r) , g = 1, ... , G , (4.16)

where {Ωm}M
m=1 are the considered angular directions, and the scalar flux is approx-

imated by the quadrature formula

ϕh(r) =
M∑

m=1

ωm Φh(r , Ωm) . (4.17)

Equation (4.16) follows from Eq. (2.6) after the discrete ordinates approximation.
In fuel assembly calculations, the boundary conditions are usually assumed to be
reflective to simulate an infinite lattice, i.e.

Φ(r , Ωm, E) = Φ(r , Ω′
m, E) , r ∈ Γ , Ωm · n < 0 , (4.18)

where Ωm = Ω′
m − 2(n · Ω′

m) n is the reflection direction.
In order to form the adjoint system of Eq. (4.16), the corresponding inner product

needs to be defined. As mentioned previously, the continuous energy eigenvalue
problem is typically considered in the space L2. The inner product corresponding to
the discretization employed in Eq. (4.16) can be defined in a consistent manner as

⟨Φ, Ψ⟩ =
G∑

g=1

M∑
m=1

ωm

∫
D

d3r Φg(r , Ωm) Ψg(r , Ωm) . (4.19)

It is now straightforward to show that the following system

−Ωm · ∇Ψg(r , Ωm) + Σg Ψg(r , Ωm)

= 1
4π

G∑
h=1

Σg→h
s ψh(r) + ν Σg

f
4πk

G∑
h=1

χh ψ
h(r) , g = 1, ... , G (4.20)

with the boundary conditions

Ψ(r , Ωm, E) = Ψ(r , Ω′
m, E) , r ∈ Γ , Ωm · n > 0 (4.21)

satisfies the adjoint relation of Eq. (4.7) with respect to the inner product defined by
Eq. (4.19).
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The generalized adjoint problem for a response of the form of Eq. (4.2) can be
written, respectively

−Ωm · ∇Γg(r , Ωm) + Σg Γg(r , Ωm) = 1
4π

G∑
h=1

Σg→h
s γh(r) +

+ ν Σg
f

4πk

G∑
h=1

χh γ
h(r) + Σg

1(r)
⟨Φ, Σ1⟩

−
Σg

2(r)
⟨Φ, Σ2⟩

, g = 1, ... , G , (4.22)

where the generalized adjoint scalar flux in has been denoted by γh(r).
The numerical solution of the fundamental adjoint from Eq. (4.20) has been

considered in [V], and the computation of the generalized adjoint functions from
Eq. (4.22) in [VI]. In both cases, it is advantageous that the adjoint systems are
of the same form as the forward problem, which can be utilized in numerical com-
putations. After computing the necessary adjoint functions, the sensitivities can be
computed according to Eqs. (4.9) and (4.15). In this context, it is customary to further
discretize the inner product of Eq. (4.19) as

⟨Φ, Ψ⟩ ≈
I∑

i=1

G∑
g=1

M∑
m=1

ωm Vi Φ
g,i,m

Ψ
g,i,m , (4.23)

where i denotes the mesh index and Φ
g,i,m and Ψ

g,i,m denote the average fluxes.

4.3 Application to CASMO-4

CASMO-4 is a two-dimensional fuel assembly burnup calculation program developed
by Studsvik Scandpower [29]. It can be used for burnup calculations on boiling wa-
ter reactor (BWR) and pressurized water reactor (PWR) pin cells or assemblies. The
main purpose of fuel assembly transport calculations is to obtain the detailed neu-
tron flux in the system, and to use this flux to compute homogenized parameters,
which can then be passed on to the following full core computations. Because the
properties of the fuel assemblies do not change sharply in the axial direction for the
most part, it is generally sufficient to perform these computations in two dimensions.
The boundary conditions of fuel assemblies are usually assumed to be reflective in
order to represent the model as an infinite lattice.

In the 2-D transport calculation module of CASMO-4, Eq. (4.16) is solved with the
method of characteristics [38]. The transport calculation is performed in the true het-
erogeneous geometry of the assembly, but the number of energy groups is typically
reduced before the computation. The cross-section libraries of CASMO-4 contain 70
energy groups (14 fast groups, 13 resonance groups, and 43 thermal groups) and
they include the following cross-sections: absorption, fission, production, scattering
and total. After computing the macroscopic cross-sections based on microscopic
cross-sections and the nuclide densities for the assembly under consideration, the
cross-sections of the important resonance absorbers are self-shielded based on tab-
ulated effective resonance integrals. In the following micro group calculation, the
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Figure 4.3. Outline of the CASMO-4 calculations.

detailed flux is solved for each pin cell type in the assembly by the method of colli-
sion probabilities, and the flux is used to homogenize the pin cells. These steps are
followed by the macro group calculation, where the flux spectra is solved over the
assembly using the homogenized pin cells and the response matrix method. The
macro group calculation is performed using 40 energy groups by default. The flux
spectra obtained from this computation are used to collapse the energy groups to
the final group structure used in the 2-D transport calculation.

The implementation of perturbation theory according to the principles presented
in Section 4.2.1 required modifications to several modules of CASMO-4. Figure 4.3
shows the flow diagram of the modified code. In order to be able to compute the
sensitivities with respect to nuclide-specific cross-sections, they needed to be stored
and collapsed to the energy group structure used in the 2-D transport calculation. It
was decided to keep 40 energy groups in the transport calculation in order to obtain
sufficiently detailed sensitivity profiles.

The solution of the fundamental adjoint and the generalized adjoint functions
corresponding to the homogenized two-group cross-sections were implemented to
the 2-D transport calculation module according to the guidelines presented in [V]
and [VI]. After computing the necessary adjoint functions, the sensitivities of the
multiplication factor and system responses are computed according to perturbation
theory. The sensitivities are computed with respect to fission spectrum χ, the aver-
age number of fission neutrons ν, and the multi-group cross-sections present in the
nuclear data library of CASMO-4.

In order to enable uncertainty analysis, the covariance matrices from
ZZ-SCALE6.0/COVA-44G [39] were processed for compatibility with CASMO-4. The
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Table 4.1. Parameters for which there exists covariance data in the SCALE library.

Parameter MT number

σt 1
σe 2
σi 4

σn,2n 16
σf 18
σγ 102
σn,p 103
σn,d 104
σn,t 105
σn,He 106
σn,α 107
ν 456
χ 1018

library is based on evaluations from various sources (including ENDF/B-VII, ENDF/B-
VI, JENDL-3.1) and approximate covariance data. The covariances in the library are
given in relative terms, and therefore the library is intended to be used with all cross-
section libraries, including the ones that are inconsistent with the evaluations. While
this is not strictly correct, it is considered to be acceptable due to the scarcity of com-
prehensive covariance data, among other reasons [40]. In the covariance library, the
available covariance matrices are given in a 40-group structure for the parameters
listed in Table 4.1. It should be emphasized that there is no covariance data for the
group-to-group transfer cross-sections.

The covariance matrices from ZZ-SCALE6.0/COVA-44G were first transformed to
the 40-group structure used in the 2-D transport calculation. The employed proce-
dure, based on simple mathematical techniques, is described in detail in [V]. The
use of the Sandwich rule for uncertainty analysis necessitates that the sensitivities
and covariance matrices are formed with respect to the same parameters. There-
fore, a problem was faced due to the covariance matrices being given for individual
capture and scattering reactions, whereas the cross-section libraries of CASMO-4
only contain data for the total capture and scattering reactions. The cross-section
model used in CASMO-4 is characteristic for several fuel assembly codes [41–43] and
this issue affects the uncertainty analysis irrespective of the method used, whether
deterministic or statistical. As a solution to this discrepancy, a technique for combin-
ing the covariance matrices of the individual subreactions was devised [V]. Since
the relationships between the total and individual capture and scattering reactions
are linear, the covariance matrices corresponding to the total capture and scattering
reactions can be computed with the Sandwich rule without introducing any approx-
imation. However, the sensitivity profiles with respect to the individual and the total
scattering cross-sections cannot be defined in a consistent manner, and this pro-
duces some systematic differences to the results. This is explained in the following.

As mentioned previously, there is no cross-section data for the transfer cross-
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sections σh→g,j
x but only for σg,j

x =
∑G

h=1 σ
g→h,j
x , where x refers to a scattering reaction

(e.g., elastic, inelastic) and j is the nuclide index. Therefore, in order to use the
scattering covariance data, the sensitivity profiles should be computed with respect
to σg,j

x . Because of the scattering source term in Eq. (4.16), however, the derivative
with respect to σg,j

x is not mathematically well-defined without additional constraints.
Typically it is assumed that the probabilities of transfers to various groups are fixed,
i.e.

σg→h,j
x = σg,j

x pg→h,j
x , (4.24)

where pg→h
x is the proportion of neutrons scattered from energy group g to energy

group h, which is assumed to remain fixed, even if the scattering cross-section σg,j
x

is perturbed [44]. Based on this assumption, the scattering source in Eq. (4.16) can
be written

Sg = 1
4π

G∑
h=1

Σh→g
s ϕh = 1

4π
∑

x

∑
j

N j
G∑

h=1

σh,j
x ph→g

x ϕh , (4.25)

where the summations over x include all scattering reactions. After this assumption,
the derivative with respect to σg,j

x is well-defined and can be computed as usual. How-
ever, the sensitivity with respect to the total scattering cross-section σj

s =
∑

x σ
j
x is

not well-defined, if the constraint (4.24) is enforced. In order to define this sensitivity,
fixed transfer rates must be assumed for the total scattering cross-section. Since the
two assumptions required to compute the individual and total scattering sensitivities
are inconsistent, the chain rule of derivation does not apply to them, and, for exam-
ple, although σg,j

s = σg,j
e + σg,j

i holds, dR
dσg,j

e
̸= dR

dσg,j
s

dσg,j
s

dσg,j
e

. Since the assumption of fixed
transfer rates for the total scattering is clearly stricter than Eq. (4.24), the method-
ology employed in CASMO-4 typically produces smaller uncertainties, when multiple
scattering reactions are present [V,VI]. However, it should be kept in mind that both
of these approaches are in fact based on simplifications of the true problem, and are
likely to underestimate the uncertainty related to scattering cross-sections.
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This chapter summarizes the main results of the publications included in this thesis.

5.1 Publication I: Computing the matrix exponential in burnup
calculations

Burnup equations describe the changes in the nuclide concentrations due to radioac-
tive decay and neutron-induced transmutation reactions. They form a system of first
order linear differential equations that can in principle be solved by computing the
burnup matrix exponential. Due to the decay and transmutation constants of the
nuclides varying extensively, the system is extremely stiff, which complicates the nu-
merical computation of the matrix exponential solution. The short-lived nuclides are
especially problematic, inducing eigenvalues of extremely large magnitude, and can
lead to the burnup matrix norm being of the order of 1021. These difficulties have
traditionally been solved by using simplified burnup chains or by treating the most
short-lived nuclides separately, when computing a matrix exponential solution.

In this paper, this problem is approached for the first time by studying the spectral
properties of burnup matrices. Based on physical constraints related to the problem,
the eigenvalues of burnup matrices can be deduced to be generally confined to a
region near the negative real axis. The established matrix exponential methods for
solving the burnup equations are introduced and their suitability is discussed from
this perspective. Based on the eigenvalues being located near the negative real
axis, the Chebyshev rational approximation method (CRAM) is proposed as a novel
method for solving the burnup equations. CRAM can be characterized as the best
rational approximation on the negative real axis and it is highly accurate in the region
where the burnup matrix eigenvalues are located.

The introduced matrix exponential methods are applied to two test cases rep-
resenting an infinite pressurized water reactor pin-cell lattice. In addition, the test
cases are solved with the semi-analytical linear chain method, in which the compli-
cated transmutation chains are resolved into a set of linear sub-chains that can be
solved analytically. The first test case was designed to be well-behaved in terms
of the burnup matrix size and norm, whereas the second test case corresponds to
a full burnup system with over a thousand nuclides with rather extreme numerical
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characteristics. In the first test case, all matrix exponential methods gave consis-
tent results. In the second test case, however, all other matrix exponential methods
suffered a breakdown, whereas the results obtained with CRAM remained consistent
with those given by the linear chain method to the same degree as in the first test
case. In terms of computational efficiency, CRAM clearly outperformed all the other
methods. The results suggest that CRAM is a very promising method for solving the
burnup equations with a low computational cost.

5.2 Publication II: Rational approximations to the matrix exponential
in burnup calculations

The topic of the paper is solving the burnup equations using dedicated rational ap-
proximations accurate near the negative real axis. The burnup equations describe
the changes in nuclide concentrations due to radioactive decay and neutron-induced
transmutation reactions. They form a system of first order linear differential equa-
tions which is extremely stiff due to the decay constants of the nuclides varying ex-
tensively. In Publication [I], it was discovered that although the numerical properties
of burnup matrices are otherwise rather difficult, their eigenvalues are generally con-
fined to a region near the negative real axis. This observation prompted proposing
the Chebyshev rational approximation method (CRAM) as a novel method for solving
the burnup equations.

In this paper, two different types of rational approximation are considered for com-
puting the exponential of a burnup matrix. The previously introduced CRAM, which
can be characterized as the best rational approximation on the negative real axis, is
analyzed in more detail. In addition, a method based on quadrature rules applied to
a contour integral around the negative real axis is proposed. The motivation for intro-
ducing the latter method is that the computation of higher order CRAM approximations
can become rather involved. In the quadrature-based approach, the approximation
order can easily be adjusted to suit the needs for accuracy or efficiency. Further-
more, it was discovered that the previous literature values for coefficients of CRAM
of order 14 contain errors, and result in relative accuracy two orders of magnitude
poorer than expected by theory. To rectify this, new partial fraction decomposition
coefficients for CRAM of order 14 and 16 were computed based on polynomial coef-
ficients given in literature and provided in this paper.

The accuracy and convergence of both methods are studied and they are tested
against highly accurate reference solutions computed with high-precision arith-
metics. The sources of approximation error are analyzed and the previously ob-
served difference in resulting accuracy for fresh and depleted fuel is explained.
Based on the study, both methods appear to yield convergence rates close to the
respective asymptotic convergence rates on the negative real axis when applied to
burnup equations. In addition, the test cases indicate that both methods are capable
of providing a very accurate and robust solution to the burnup equations.
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5.3 Publication III: Correction to partial fraction decomposition
coefficients for Chebyshev rational approximation on the
negative real axis

The purpose of this note is to provide correct partial fraction decomposition (PFD)
coefficients for the Chebyshev rational approximation method (CRAM) of order 14
and 16 on the negative real axis. The note was prompted by the observation that
the literature values given previously for approximation order 14 by Gallopoulos and
Saad in [22] are erroneous.

CRAM of order k can be characterized as the rational function yielding the smallest
maximum deviation between the exponential function and any rational function of the
same degree on the entire negative real axis. The asymptotic convergence rate of
CRAM is remarkably fast, and it can be a viable method for computing the matrix
exponential for matrices with eigenvalues in the vicinity of the negative real axis.

The main difficulty in using CRAM for computing the matrix exponential is deter-
mining the coefficients of the rational function for a given approximation order. For
higher approximation orders the computation of the coefficients becomes rather in-
volved and requires delicate algorithms combined with high-precision arithmetics. In
addition, it is generally advantageous to employ the rational function in its PFD form
which requires computing its poles, residues and limit at Re z → −∞.

The PFD coefficients for CRAM of order 14 have been previously provided in lit-
erature, and therefore they have been used in several applications. In [II], these
coefficients were discovered to contain errors that resulted in 102 times poorer accu-
racy than expected by theory. In this note, the correct PFD coefficients are provided
for approximation orders 14 and 16. The correct coefficients were computed based
on literature values for the polynomial coefficients of the respective rational functions.
The theory for computing the PFD coefficients from the polynomial is reviewed and
the employed computational procedure is described. The approximation accuracy
resulting from erroneous poles and residues is analyzed.

5.4 Publication IV: Solving linear systems with sparse Gaussian
elimination in the Chebyshev rational approximation
method (CRAM)

The topic of this paper is the solving of the linear systems arising when comput-
ing the matrix exponential solution to burnup equations with the Chebyshev rational
approximation method (CRAM). The burnup matrices have difficult numerical char-
acteristics that may compromise the accuracy of some iterative methods used for
solving the linear systems. In this paper, a direct method is considered to overcome
this difficulty.

The numerical properties of burnup matrices are reviewed. The proposed di-
rect method is based on sparse Gaussian elimination in which the sparsity pattern
of the resulting upper triangular matrix is determined before the numerical elimina-
tion phase. The stability of Gaussian elimination is discussed and, based on the
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properties of burnup matrices, it is shown that the proposed method is well-suited
for solving the linear systems. Suitable algorithms are presented for computing the
symbolic factorization and numerical elimination. The accuracy and efficiency of the
described technique are demonstrated by computing the CRAM approximations for
a large test case with over 1600 nuclides.

5.5 Publication V: Incorporating sensitivity and uncertainty
analysis to a lattice physics code with application to CASMO-4

The topic of this paper is the implementation of classical perturbation theory based
sensitivity and uncertainty analysis features to the fuel assembly burnup calculation
program CASMO-4 in the context of the UAM benchmark [28], whose first stage aims
at propagating the uncertainty related to nuclear data through fuel assembly calcu-
lations. The benchmark was prepared in 2006 to establish the current state and
needs of sensitivity and uncertainty analysis, with the ultimate goal of being able to
propagate uncertainty through all stages in a coupled neutronics/thermal hydraulics
calculation. At that time, the generally employed reactor physics codes did not have
uncertainty analysis capabilities, and the modified CASMO-4 was one of the first fuel
assembly programs that enabled sensitivity and uncertainty analysis based on per-
turbation theory.

Classical perturbation theory studies the changes in the multiplication factor due
to perturbations in system parameters. In this framework, the critical eigenvalue
sensitivities to uncertain nuclear data parameters are computed efficiently by utiliz-
ing the adjoint system of the eigenvalue problem. After computing the sensitivities,
the uncertainty related to these parameters can be propagated deterministically to
the multiplication factor. Both the theoretical background as well as practical consid-
erations for implementing classical perturbation theory to a reactor physics code are
reviewed and discussed in detail in the paper.

In the process of modifying CASMO-4, a problem was faced due to the incom-
patibility of the cross-section models between the covariance libraries and the code
itself. In this paper, a technique for overcoming this difficulty by combining the covari-
ance matrices is proposed. The sensitivities can then be computed with respect to
the combined reactions. The proposed technique accurately combines the capture
reactions in a consistent manner, but results in systematic differences for the scatter-
ing reactions. The issue is analyzed and the difference is explained by incompatible
constraints in the two calculation strategies.

Numerical results are presented for two of the benchmarks fuel pin-cell test prob-
lems representing a PWR and a GEN-III core with MOX fuel, and the results are com-
pared against TSUNAMI-1D. The comparison supports the observations made on the
developed methodology, i.e. the results are consistent except for scattering reactions,
where systematic differences appear in cases with multiple scattering reactions.
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5.6 Publication VI: Perturbation-theory-based sensitivity and
uncertainty analysis with CASMO-4

This paper considers the implementation of generalized perturbation theory based
sensitivity and uncertainty capability to the fuel assembly burnup calculation pro-
gram CASMO-4. The motivation for the described work has been the participation
in the UAM benchmark [28]. Initially, classical perturbation theory was implemented
to CASMO-4, which allowed the sensitivity analysis with respect to the multiplication
factor. This work was reported in [V].

Generalized perturbation theory studies the changes in responses that can be
represented as reaction rate ratios. For each response, the computation of the sen-
sitivity profiles with respect to all parameters of interest requires solving one gener-
alized adjoint system. This is computationally efficient, when the number of param-
eters is large, as is the case in reactor physics applications. After computing the
sensitivity profiles, the uncertainty related to nuclear data can be propagated deter-
ministically to the response under consideration by approximating the relationship
between the parameters and the response to be linear.

The mathematical background as well as the physical interpretation of the gener-
alized adjoint solutions are reviewed in the paper, and practical guidelines are given
for modifying a deterministic transport code to solve the generalized adjoint systems
needed in sensitivity analysis. The theory for computing the sensitivity profiles is
presented both from the perspective of function space analysis and numerical com-
putations.

Numerical results are presented for a lattice physics test problem in the bench-
mark, and they are compared to the results given by the TSUNAMI-2D sequence in
SCALE 6.1. Two-group homogenized cross-sections are considered as responses
in the generalized perturbation theory framework. The results are in accordance
with theoretical considerations. In particular, they are consistent for the thermal re-
sponses, whereas some systematic differences are observed for fast responses.
These differences are explained by the incompatible constraints in defining the sen-
sitivities, an issue which was analyzed in detail in [V].
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The objective of burnup calculations is to simulate the changes in the composition
of nuclear fuel over time. Due to safety considerations related to the target of appli-
cation, it is important that the applied calculation methods are constantly improved.
In addition, uncertainty analysis methods are needed for evaluating the reliability of
the calculation results.

Burnup calculations are built upon solving the neutron transport criticality equation
and burnup equations sequentially in a cyclic manner. This thesis focused on two
areas essential for burnup calculations: the numerical solution of burnup equations
based on computing the burnup matrix exponential and the uncertainty analysis of
the criticality equation based on perturbation theory.

Matrix exponential solution of burnup equations

The burnup equations govern the changes in nuclide concentrations over time. They
form a system of first order differential equations, which can be formally solved by
computing the matrix exponential of the burnup matrix. Due to the dramatic variation
in the half-lives of different nuclides, the system is extremely stiff, and the problem is
complicated by the vast range of time steps used in burnup calculations. Because
of these characteristics, the computation of the burnup matrix exponential has been
previously considered impossible for the full burnup system. Instead, simplified bur-
nup chains have been used, or the most short-lived nuclides have been treated sep-
arately when computing a matrix exponential solution.

In Publication [I], the spectral properties of burnup matrices were studied for the
first time. It was reasoned that although the magnitudes of the eigenvalues of burnup
matrices vary extensively, they are generally confined to a region near the negative
real axis. The observation was based on considering the physical constraints related
to burnup equations and studying the strongly connected components of the burnup
matrix graph.

In Chapter 3.1 of this thesis, the mathematical properties of burnup matrices were
further studied. Firstly, the negatives of burnup matrices were identified to belong
to the class of Z -matrices, which guarantees the non-negativity of the burnup ma-
trix exponential, for example. To further study the eigenvalues, burnup matrices were
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categorized into conventional and augmented burnup matrices based on whether the
production of by-product nuclides was taken into account when constructing them.
The negatives of conventional burnup matrices were then recognized as M-matrices,
which gave a wedge condition to their spectrum around the negative real axis. Aug-
mented burnup matrices, on the other hand, can be permuted to block triangular
form, with the eigenvalues of the matrix comprising of the eigenvalues of the di-
agonal blocks. Apart from the block corresponding to the by-product nuclides, the
diagonal blocks were shown to be M-matrices. The block corresponding to the by-
product nuclides was identified with the matrix class L2

0, meaning that it has a single
positive eigenvalue.

The observation about the burnup matrix eigenvalues being located near the neg-
ative real axis prompted proposing rational approximations that are accurate on the
negative real axis for solving the burnup equations [I,II]. In Publication [I], the Cheby-
shev rational approximation method (CRAM), which can also be characterized as
the best rational approximation on the negative real axis, was introduced with very
promising results. In contrast to other matrix exponential methods considered previ-
ously, CRAM was demonstrated to be applicable to large burnup problems containing
over a thousand nuclides and with a matrix norm of the order of 1021. In addition,
CRAM was shown to allow time steps of the order of 107 s, which can be considered
the maximum feasible time step in burnup calculations. Based on these results,
CRAM was implemented to the reactor physics code Serpent developed at VTT. In
addition to CRAM, rational approximations based on quadrature rules applied to con-
tour integrals around the negative real axis were suggested as an alternative solution
method [II]. This approach has the advantage that the order of approximation can
be easily adjusted.

The accuracy and convergence of CRAM were further studied in [II] by comparing
the results against highly accurate reference solutions computed with high-precision
accuracy. The results supported the assessment of CRAM being capable of pro-
viding a very accurate and robust solution to the burnup equations at a very low
computational cost.

The application of CRAM requires determining the partial fraction decomposition
coefficients (PFD) of the rational function for a given approximation order. Unfor-
tunately, the computation of these coefficients is difficult and requires delicate al-
gorithms combined with high-precision accuracy. The PFD coefficients for CRAM of
order 14 have been previously provided in literature, and have therefore been used in
several applications. In Publication [II], these coefficients were discovered to contain
errors that resulted in 102 times poorer accuracy than expected by theory. The cor-
rect PFD coefficients for approximation order 14 and 16 were then computed based
on literature values for the polynomial coefficients of the respective rational functions.
These coefficients were first reported in [II] and later in [III] with a more detailed de-
scription and an analysis of the approximation accuracy deterioration resulting from
the erroneous coefficients.

In practise, the application of CRAM to solving the burnup equations requires a
linear solver in addition to the PFD coefficients. Due to the difficult numerical char-
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acteristics of burnup matrices, the accuracy of some iterative solution methods may
be compromised. In [IV] a direct method based on sparse Gaussian elimination was
considered. It was demonstrated that the characteristics of burnup matrices allow
using Gaussian elimination without pivoting, which enables computing the symbolic
LU factorization of the matrix before starting the numerical elimination phase. Due
to the sparsity pattern of burnup matrices, the linear systems arising during CRAM
can be solved both efficiently and accurately with this approach [IV].

Uncertainty analysis of the criticality equation based on perturbation theory

When uncertain parameters are utilized in a computation, the calculation results also
contain uncertainty. The imprecision of neutron interaction data is considered to be
one of the most significant sources of uncertainty in all reactor physics calculations,
including burnup calculations.

In this thesis, uncertainty analysis was applied to the criticality equation on a fuel
assembly level. The motivation for this work was participating in the UAM bench-
mark [28] whose goal is to propagate the uncertainty in the nuclear data through a
coupled neutronics/thermal-hydraulics calculation. The first phase of the benchmark
aims at propagating uncertainty through fuel assembly calculations, which are used
to produce homogenized data for the following coupled calculations. The objective
of the first phase can be considered ambitious, since the generally used fuel assem-
bly codes did not have uncertainty analysis capabilities when the benchmark was
started.

Due to vast number of uncertain nuclear data in fuel assembly calculations, per-
turbation theory was chosen as the framework for the uncertainty analysis. The fuel
assembly burnup calculation code CASMO-4 [29] was chosen as the development
platform. Perturbation theory allows computing the sensitivity profiles of a response
with respect to any number of parameters in an efficient manner by solving an adjoint
system in addition to the original forward problem. The uncertainty related to these
parameters can then be propagated deterministically by linearizing the response.

Initially, classical perturbation theory was implemented to CASMO-4, which en-
abled the uncertainty analysis of the multiplication factor [V]. In the process of
modifying CASMO-4, a problem was faced due to the incompatibility of the cross-
section models between the covariance libraries containing the neutron interaction
uncertainty data and the code itself. In publication [V], a technique for overcoming
this issue by combining the covariance matrices was devised. The proposed ap-
proach accurately combines the capture reactions whereas it results in systematic
differences for the scattering reactions. The issue was analyzed and the difference
was explained by the incompatible constraints implicitly assumed in the two calcu-
lation strategies [V]. The uncertainty analysis methodology was later extended to
responses that can be represented as reaction rate ratios [VI]. This framework is
called generalized perturbation theory and it was applied to two-group homogenized
cross-sections.
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Abstract – The topic of this paper is the computation of the matrix exponential in the context of burnup
equations. The established matrix exponential methods are introduced briefly. The eigenvalues of the
burnup matrix are important in choosing the matrix exponential method, and their characterization is
considered. Based on the characteristics of the burnup matrix, the Chebyshev rational approximation
method (CRAM) and its interpretation as a numeric contour integral are discussed in detail. The intro-
duced matrix exponential methods are applied to two test cases representing an infinite pressurized water
reactor pin-cell lattice, and the numerical results are presented. The results suggest that CRAM is capable
of providing a robust and accurate solution to the burnup equations with a very short computation time.

I. INTRODUCTION

The neutronic properties of a reactor fuel are strongly
dependent on the isotopic compositions of the fissile ma-
terials. The changes in the material compositions must
be taken into account in all reactor physics calculations.
This is in practice handled by burnup calculation codes.
An essential part of a burnup calculation is the solving
of the burnup equations that describe the rates by which
the concentrations of the various nuclides change. The
burnup equations form a system of first-order linear dif-
ferential equations that can be written

dNj

dt
�(

i�j

lij Ni � lj Nj , Nj ~0!� N0 , j � 1, . . . , n ,

~1!

where

Nj � concentration of nuclide j

n � total number of nuclides

lij � coefficients characterizing the rates of neutron-
induced reactions and spontaneous radioactive
decay.

In this paper we consider the burnup system under the
assumption that these coefficients are fixed constants.
The burnup equations can then be written in matrix no-
tation as

n ' � An , n~0!� n0 , ~2!

where

n~t ! � Rn � nuclide concentration vector

A � Rn�n � burnup matrix containing the decay and
transmutation coefficients of the nu-
clides under consideration.

Equation ~2! can be formally solved by the matrix expo-
nential method yielding the simple solution

n~t ! � eAtn0 , ~3!

where the exponential of the matrix At is defined as the
power series expression

eAt � (
k�0

` 1

k!
~At !k , ~4!

with the additional definition A0 � I.
There are numerous algorithms for computing the

matrix exponential, but many of them are computation-
ally expensive or of dubious numerical quality.1 Because
the decay constants and reaction rates of the nuclides
vary extensively, the burnup matrix has a wide spectrum*E-mail: Maria.Pusa@vtt.fi
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tation as

n ' � An , n~0!� n0 , ~2!
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transmutation coefficients of the nu-
clides under consideration.

Equation ~2! can be formally solved by the matrix expo-
nential method yielding the simple solution

n~t ! � eAtn0 , ~3!

where the exponential of the matrix At is defined as the
power series expression

eAt � (
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with the additional definition A0 � I.
There are numerous algorithms for computing the
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not contain any closed cycles, the size of every strongly
connected component is one, and the solution of system
~2! can be calculated by solving n ordinary linear differ-
ential equations. The nonreal eigenvalues can therefore
be identified with certain cyclic parts in the burnup tran-
sition chain.

We have computed the eigenvalues for a wide range
of burnup matrices, and based on our experiments, it
seems that they are generally confined to a region near
the negative real axis. Based on our observations it ap-
pears that a prerequisite for a nonreal eigenvalue is that
the majority of the reactions involved in a closed cycle
have transition rates that are of the same order. In this
scenario the slowest reactions appear to have the most
significance for the period of the oscillation. This seems
reasonable from a physical standpoint, as well. The cy-
cle that is most likely to induce oscillations appears to
consist of an alpha decay followed by successive ~n,g!
and b� reactions. An example of this kind of loop is the
transition cycle resulting from the alpha decay of 242Cm.
The decay constant of this reaction is of order 10�8 10s
~half-life 162 days!, and in a thermal reactor operating at
full power, the corresponding cycle typically induces three
pairs of complex eigenvalues with imaginary parts of
order �10�8.

The shortest half-lives encountered in reactor calcu-
lations are generally of the order of milliseconds, al-
though there are some even more short-lived nuclides.
The half-lives corresponding to neutron-induced reac-
tions are considerably longer. In a thermal reactor oper-
ating at full power, most of the transmutation coefficients
are of order �10�8 10s, and they are even smaller in a
fast reactor. Therefore, it can be expected that the imag-
inary parts of the burnup eigenvalues are at most of this
order. For every burnup matrix that we have considered,
this has also been the case. When the power level is
decreased, the transmutation coefficients become smaller.
In this case the absolute values of the imaginary parts of
the eigenvalues decrease as well. It seems that the oscil-
lations are most likely to occur for reduced power cases
where the greatest transmutation coefficients are of or-
der �10�12. In general, the eigenvalues of the burnup
matrix appear to remain bounded near the negative real
axis in all conceivable burnup calculation cases. This
observation is exploited in the construction of the matrix
exponential method, whose framework is considered in
Sec. IV.

III. ESTABLISHED METHODS

III.A. Approximation near Origin

The most obvious approach is to calculate the ex-
ponential directly from the definition ~4! using a trun-
cated Taylor series. This approximation is naturally most
accurate near the origin, so it is ill-suited for burnup

calculations, where the matrix norm 7At 7 can become
arbitrarily large. In some cases even increasing the num-
ber of terms does not improve the approximation be-
cause of the accuracy limitations in the computer
arithmetics.1 The accuracy of the series method can be
improved by using the method of scaling and squaring,
which is based on the identity

eAt � ~eAt0m !m , ~6!

where m can be taken as a power of two, m � 2k , so that
the norm 7A0m7 becomes sufficiently small. The trun-
cated series is then calculated for the scaled matrix, and
the result is squared by repeated multiplications. The
accuracy of this technique may be compromised, if the
elements of eAt grow before they decay, as t increases.
Numerical problems are faced when this so-called “hump”
is located between t0m and t ~Ref. 1!. The series method
with scaling and squaring is implemented in the ORI-
GEN code6 by excluding short-lived nuclides from the
burnup matrix and treating them separately.

The most well-established method for calculating
the matrix exponential is probably the rational Padé ap-
proximation with scaling and squaring. For example, the
matrix exponential function expm in MATLAB is based
on this approach. Although this method generally out-
performs the truncated Taylor series approach, it shares
the requirement of 7At 7 remaining relatively small.1 Ac-
cordingly, numerical problems are faced when 7A7 �� 1
and t; 106 s, both of which are plausible values in the
context of burnup calculation.

III.B. Krylov Subspace Approach

Various Krylov subspace algorithms are currently
very popular, and they have also been recently applied to
burnup calculations.7 In this framework, the original large
and sparse matrix A is projected to a lower-dimensional
Krylov subspace, and the matrix exponential is then
calculated using the series method or the Padé approxi-
mation. The projection can be carried out with the well-
known Arnoldi iteration, which results in m iteration steps
to the partial Hessenberg reduction

AQm � Qm Hm � hm�1, m qm�1 em
T , ~7!

where Qm � Rn�m is orthogonal, Hm � Rm�m is a Hes-
senberg matrix, and m � n. The matrix exponential so-
lution can then be approximated as

eAtn0 � 7n07Qm eHm te1 . ~8!

This approach appears to be suitable for burnup problems
because Krylov subspace methods tend to approximate bet-
ter the eigenvalues located in the outermost part of the spec-
trum. These eigenvalues related to the short-lived nuclides
are the ones that cause difficulties in most algorithms.
Yamamoto, Tatsumi, and Sugimura7 calculated the ma-
trix exponential using Krylov subspace techniques and
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of eigenvalues, making the approximation of the matrix
exponential more difficult. Short-lived nuclides are es-
pecially problematic because they can induce eigen-
values of arbitrarily large magnitude. These difficulties
have traditionally been solved by using simplified burnup
chains or by treating the most short-lived nuclides sep-
arately when computing a matrix exponential solution.
The selection of a suitable matrix exponential method
depends substantially on the characteristics of the prob-
lem at hand. For example, the norm and eigenvalue spec-
trum of the burnup matrix as well as the length of the
time step are the key aspects that should be taken into
consideration when choosing the matrix exponential
method. However, notably little interest and research ef-
fort have been shown toward this topic.

The focus of our study was to examine if it is possi-
ble to solve a detailed burnup system containing thou-
sands of nuclides by a single matrix exponential method.
The motivation for this was the development of the burnup
calculation routines in the PSG20Serpent Monte Carlo
reactor physics code.2 The current burnup calculation
implementation in Serpent is based on the TTA method,3

in which the complicated transmutation chains are re-
solved into a set of linear subchains that can be solved
analytically. The main advantage of this method is that it
can handle the extensive variations in the transmutation
and decay coefficients and is relatively easy to imple-
ment in its basic form using a recursive loop. The most
significant problem with the TTA method is that the com-
putation time can easily become excessive if all chains
are followed until a stable nuclide is encountered, and
cutoffs have to be enforced to terminate insignificant
chains. In addition, the current implementation of the
method cannot treat chains that form a closed cycle, but
the trajectory is terminated if the same nuclide is encoun-
tered twice in a single chain.

II. EIGENVALUES OF THE BURNUP MATRIX

In solving the burnup equations with the matrix
exponential method, it is beneficial to estimate the char-
acter of the matrix eigenvalues, e.g., whether they are
real-valued or complex-valued, and, in the latter case,
the magnitude of the eigenvalues’ imaginary parts.

II.A. Real Parts of Eigenvalues

It is known that the general solution of system ~2! is
a linear combination of functions of the form

t keat cos~vt !a , t leat sin~vt !b , a, b � Rn , ~5!

where l� a� iv runs through all the eigenvalues of A
with v� 0 and k, l � m~l!�1, where m~l! denotes the
algebraic multiplicity of eigenvalue l ~for proof, see
Ref. 4!. If all eigenvalues of the burnup matrix are real,

the concentration of each nuclide is a linear combination
of functions of the form f ~t ! � t keat . In this case the
eigenvalue determines the rate of exponential growth or
decay of the function f. On the other hand, an eigenvalue
with a nonzero imaginary part v indicates that the solu-
tion has an oscillating component with period T � 2p0v.

Some understanding of the burnup eigenvalues can
be gained by considering the physical constraints related
to system ~2!. For example, it is evident that the concen-
tration of each nuclide must remain bounded at all times.
The following theorem ~Ref. 4, p. 165! therefore gives a
useful characterization of the real parts of the burnup
eigenvalues.

Theorem: Every solution n of system ~2! remains
bounded as tr ` if and only if the following hold:

~i! Re~l! � 0 � l � L~A!;

~ii! Every l� L~A!with Re~l!� 0 is a semisimple
eigenvalue; i.e., the geometric and algebraic mul-
tiplicities agree.

Here, L~A! denotes the set of the eigenvalues of A.

The real parts of the eigenvalues of the burnup ma-
trix must therefore all be nonpositive. A purely imagi-
nary eigenvalue would correspond to a nondamped
oscillation, which is physically unrealistic in the context
of burnup calculation. It can thus be deduced that the
real parts of the nonzero eigenvalues of the burnup ma-
trix are always negative.

II.B. Imaginary Parts of Eigenvalues

The characterization of the imaginary parts of the
burnup eigenvalues is more difficult. If the burnup chain
does not contain any closed cycles—i.e., no paths from
any vertex back to itself exist in the burnup matrix—the
matrix can be permuted into a triangular form. In this
case the eigenvalues are the diagonal elements, and hence,
all are real-valued and negative. The nonreal eigen-
values result from closed transition cycles occurring in
the burnup chain. However, not all closed transition cy-
cles induce nonreal eigenvalues, and in practice only a
fraction of the eigenvalues of the burnup matrix have
nonzero imaginary parts.

A suitable mathematical method for establishing a
link between the structure and eigenvalues of a matrix is
the computation of the strongly connected components
of the graph of the matrix.5 A strongly connected com-
ponent is defined as a set of vertices such that there
exists a path from each vertex to every other vertex. If
all of the strongly connected components of a matrix are
sorted topologically, the corresponding systems of dif-
ferential equations can be solved independently in this
order. The different cyclic components of a burnup chain
can therefore be studied conveniently by calculating its
strongly connected components. If the burnup matrix does
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not contain any closed cycles, the size of every strongly
connected component is one, and the solution of system
~2! can be calculated by solving n ordinary linear differ-
ential equations. The nonreal eigenvalues can therefore
be identified with certain cyclic parts in the burnup tran-
sition chain.

We have computed the eigenvalues for a wide range
of burnup matrices, and based on our experiments, it
seems that they are generally confined to a region near
the negative real axis. Based on our observations it ap-
pears that a prerequisite for a nonreal eigenvalue is that
the majority of the reactions involved in a closed cycle
have transition rates that are of the same order. In this
scenario the slowest reactions appear to have the most
significance for the period of the oscillation. This seems
reasonable from a physical standpoint, as well. The cy-
cle that is most likely to induce oscillations appears to
consist of an alpha decay followed by successive ~n,g!
and b� reactions. An example of this kind of loop is the
transition cycle resulting from the alpha decay of 242Cm.
The decay constant of this reaction is of order 10�8 10s
~half-life 162 days!, and in a thermal reactor operating at
full power, the corresponding cycle typically induces three
pairs of complex eigenvalues with imaginary parts of
order �10�8.

The shortest half-lives encountered in reactor calcu-
lations are generally of the order of milliseconds, al-
though there are some even more short-lived nuclides.
The half-lives corresponding to neutron-induced reac-
tions are considerably longer. In a thermal reactor oper-
ating at full power, most of the transmutation coefficients
are of order �10�8 10s, and they are even smaller in a
fast reactor. Therefore, it can be expected that the imag-
inary parts of the burnup eigenvalues are at most of this
order. For every burnup matrix that we have considered,
this has also been the case. When the power level is
decreased, the transmutation coefficients become smaller.
In this case the absolute values of the imaginary parts of
the eigenvalues decrease as well. It seems that the oscil-
lations are most likely to occur for reduced power cases
where the greatest transmutation coefficients are of or-
der �10�12. In general, the eigenvalues of the burnup
matrix appear to remain bounded near the negative real
axis in all conceivable burnup calculation cases. This
observation is exploited in the construction of the matrix
exponential method, whose framework is considered in
Sec. IV.

III. ESTABLISHED METHODS

III.A. Approximation near Origin

The most obvious approach is to calculate the ex-
ponential directly from the definition ~4! using a trun-
cated Taylor series. This approximation is naturally most
accurate near the origin, so it is ill-suited for burnup

calculations, where the matrix norm 7At 7 can become
arbitrarily large. In some cases even increasing the num-
ber of terms does not improve the approximation be-
cause of the accuracy limitations in the computer
arithmetics.1 The accuracy of the series method can be
improved by using the method of scaling and squaring,
which is based on the identity

eAt � ~eAt0m !m , ~6!

where m can be taken as a power of two, m � 2k , so that
the norm 7A0m7 becomes sufficiently small. The trun-
cated series is then calculated for the scaled matrix, and
the result is squared by repeated multiplications. The
accuracy of this technique may be compromised, if the
elements of eAt grow before they decay, as t increases.
Numerical problems are faced when this so-called “hump”
is located between t0m and t ~Ref. 1!. The series method
with scaling and squaring is implemented in the ORI-
GEN code6 by excluding short-lived nuclides from the
burnup matrix and treating them separately.

The most well-established method for calculating
the matrix exponential is probably the rational Padé ap-
proximation with scaling and squaring. For example, the
matrix exponential function expm in MATLAB is based
on this approach. Although this method generally out-
performs the truncated Taylor series approach, it shares
the requirement of 7At 7 remaining relatively small.1 Ac-
cordingly, numerical problems are faced when 7A7 �� 1
and t; 106 s, both of which are plausible values in the
context of burnup calculation.

III.B. Krylov Subspace Approach

Various Krylov subspace algorithms are currently
very popular, and they have also been recently applied to
burnup calculations.7 In this framework, the original large
and sparse matrix A is projected to a lower-dimensional
Krylov subspace, and the matrix exponential is then
calculated using the series method or the Padé approxi-
mation. The projection can be carried out with the well-
known Arnoldi iteration, which results in m iteration steps
to the partial Hessenberg reduction

AQm � Qm Hm � hm�1, m qm�1 em
T , ~7!

where Qm � Rn�m is orthogonal, Hm � Rm�m is a Hes-
senberg matrix, and m � n. The matrix exponential so-
lution can then be approximated as

eAtn0 � 7n07Qm eHm te1 . ~8!

This approach appears to be suitable for burnup problems
because Krylov subspace methods tend to approximate bet-
ter the eigenvalues located in the outermost part of the spec-
trum. These eigenvalues related to the short-lived nuclides
are the ones that cause difficulties in most algorithms.
Yamamoto, Tatsumi, and Sugimura7 calculated the ma-
trix exponential using Krylov subspace techniques and
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I �
1

2pi
�

�`

`

ef~u! f ~f~u!!f '~u! du . ~15!

This integral can be approximated by the trapezoid rule
with N points uk spaced regularly on the interval @�p,p#
~chosen here for simplicity! yielding the approximation

IN � ~iN !�1 (
k�1

N

ezk f ~zk !wk � �(
k�1

N

ck f ~zk ! , ~16!

where

zk � f~uk ! ,

wk � f '~uk ! ,

and

ck � �~iN !�1ezkwk � iN�1ezkwk .

By the Cauchy integral formula, this sum can be written

IN �
1

2pi
�

C
r~z! f ~z! dz , ~17!

where r~z! is a rational function of the form

r~z! � (
k�1

N ck

z � zk

~18!

and C is a negatively oriented closed contour that lies
in the region of analyticity of f and encloses all the
poles zk .

Let G ' denote the contour that has the same shape as
G but lies between the contours C and G. Here, f ~z! �
O~1! so that r~z! f ~z!� O~6z 6�1 ! as 6z 6r `. It follows
that the contour C can be deformed to a contour consist-
ing of the union of G ' and a large circular arc with radius
R so that

lim
Rr`

�
CR

r~z! f ~z! dz � 0 . ~19!

This gives the quadrature rule error estimate

I � IN �
1

2pi
�
G '
~ez � r~z!! f ~z! dz , ~20!

which implies that r~z! is a good approximation to ez

near R�. Therefore, any quadrature formula can be in-
terpreted as a rational approximation. In the same way,
every rational approximation can be viewed as a quad-
rature formula for a contour in the complex plane.

The selection of the contour and quadrature formula
has been studied extensively in the context of inverse
Laplace transforms. For the case where all of the singu-
larities of f lie on the negative real axis, quite impressive
convergence rates have been recently derived.14 For ex-
ample, for a cotangent contour originally suggested by

Talbot,15 a convergence rate O~3.89�N ! can be achieved
by using a trapezoid rule. Of course, it should be kept in
mind that the selection of optimal contour and quadra-
ture formula are related to the singularities of the func-
tion f.

IV.C. Best Rational Approximation

Another approach to rational approximation is to cal-
culate the best approximation on some subset of the com-
plex plane. This approach was made famous by Cody,
Meinardus, and Varga16 in 1969 in the context of ratio-
nal approximation of e�x in @0,`!. Let pk, l denote the
collection of all real rational functions rk, l ~x! of the form

rk, l �
pk~x!

pl ~x!
, ~21!

where pj is a polynomial of degree j or less.
It is known from approximation theory that there

exists a unique [rk, l � pk, l such that

sup
�`�x�0

6 [rk, l ~�x!� ex 6

� inf
rk, l�pk, l

� sup
�`�x�0

6rk, l ~�x!� ex 6� , k � l .

~22!

Establishing this approximation for given k and l is not
easy, but it can be done with the Remes algorithm or the
Carathéodory-Fejér method. It has been shown that this
Chebyshev rational approximation [rk,k converges approx-
imately at the rate 9.3�k ~Ref. 17!. The contour plot of
6ez � [r14,14~�z!6 is shown in Fig. 1, from which it can be
seen that this approximation is remarkably accurate in a
wide region in the left complex plane. From a computa-
tional point of view, it is advantageous that the poles
$u1, . . . ,uk % of the rational function [rk,k are distinct, so
that it can be computed as a partial fraction expansion10

[rk, k~z! � a0 �(
i�1

k ai

z � ui
, ~23!

where a0 is the limit of the function at infinity and the
scalars ai are the residues at the poles ui . Therefore, the
values of ai and ui depend on k. Equation ~23! can be
derived by noting that ~ [rk,k �a0 !� pk�1,k for which the
result readily follows from the residue theorem. It should
be noted that the poles of [rk,k come in conjugate pairs, so
that for a real-valued variable x � R, the computational
cost can be reduced to half:

[rk, k~x! � a0 � Re�(
i�1

k02 ai

x � ui
� . ~24!
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diagonal Padé approximation with EXPOKIT ~Ref. 8!.
They reported promising results in the case where the short-
est half-life is;30 s ~106Rh!. In this case the burnup ma-
trix norm was approximately 7A7� 2.3 �10�2 .

The m-dimensional Krylov subspace approximation
of the matrix exponential is mathematically equivalent
to approximating eAtn0 with a polynomial of degree
m � 1 that interpolates the exponential function in the
Hermite sense at the eigenvalues of the Hessenberg ma-
trix according to their multiplicities.9 Consequently, it is
evident that the approximation does not work well if
the eigenvalues lie far apart from each other, even if the
dimension of the subspace is increased. Therefore, the
burnup time step must usually be split into smaller sub-
steps in order to keep the eigenvalues located closer to
each other.

Selecting the time step is probably the most chal-
lenging issue in applying the Krylov subspace approach.
Most error estimates are derived from those of truncated
Taylor series,9,10 which leads to highly pessimistic esti-
mates and accordingly impractically short time steps when
7A7 �� 1 and t;106 s. We found that in such cases error
estimation based on the concept of generalized residu-
al11 gave the most realistic results. However, even when
the time step is chosen to be as large as possible, the
computation time can easily become prohibitively long.
Based on our experiments, it seems that the Krylov sub-
space approximation alone is not practical for burnup
calculations when 7A7 �� 1. However, if the nuclides
with the shortest half-lives are excluded from the burnup
matrix, this approximation could be a viable replace-
ment for mere Padé approximation with scaling and squar-
ing, for example. Numerical examples are presented in
Sec. V.

IV. QUADRATURE FORMULAS AND
RATIONAL APPROXIMATION

As mentioned in Sec. II, the eigenvalues of the burnup
matrix appear to be generally confined to the vicinity of
the negative real axis R�. This observation is exploited
in the matrix exponential method that is described in
detail in this section.

IV.A. Relation to Contour Integrals

By the Cauchy integral formula, the solution of sys-
tem ~2! can be represented as a contour integral,

n~t ! � eAtn0 �
1

2pi
�
G

ez~zI � At !�1n0 dz , ~9!

where G is a closed contour winding once around the
spectrum of At. The resolvent of the matrix At can be
written in the form

~zI � At !�1 �
B~z!

det~zI � At !
, ~10!

where

B~z! � z n�1B0 � z n�2B1 � {{{� zBn�2 � Bn�1 ~11!

with B0, B1, . . . , Bn�1 matrices with constant elements.12

It follows that every element of the resolvent is a proper
rational function of z with the same denominator poly-
nomial det~zI � At !. Hence, the poles of these rational
functions are the eigenvalues of the matrix At, and cal-
culating n~t ! is essentially equivalent to evaluating con-
tour integrals of the form

I �
1

2pi
�
G

ez f ~z! dz , ~12!

where f � O~1! when zr �`, and the singularities of f
are the eigenvalues of At.

Integrals of this type are also encountered in the
context of Laplace transforms, where they are usually
written in the form

G~t ! �
1

2pi
�
G

estg~s! ds �
1

2pi
�
G

ezg~zt�1 !t�1 dz .

~13!

It should be noted that the solution of system ~2! can also
be written as an inverse Laplace transform of the form

n~t ! �
1

2pi
�

B
est~sI � A!�1n0 ds

�
1

2pi
�

B
ez~zt�1I � A!�1t�1n0 dz , ~14!

where B denotes the Bromwich contour running from
�i` to �i`.

IV.B. Rational Approximation

When the contour G lies in the region of analyticity
of f, integral ~12! is independent of G under mild assump-
tions. When all of the singularities of function f are con-
fined to a region near the negative real axis, G can be
widened out to a parabolic or hyperbolic shape in the left
complex plane. Because the integrand will decrease ex-
ponentially, these contour integrals can be efficiently ap-
proximated using numerical methods. These quadrature
formulas can be associated with rational functions whose
poles are the nodes and residues are the weights of the
numerical integration formula. The proof can be found,
e.g., in Ref. 13 and is repeated here.

Let f~u! be an analytic function that maps the real
line R onto the contour G that encloses the eigenvalues
of matrix At. Integral ~12! can then be written
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I �
1

2pi
�

�`

`

ef~u! f ~f~u!!f '~u! du . ~15!

This integral can be approximated by the trapezoid rule
with N points uk spaced regularly on the interval @�p,p#
~chosen here for simplicity! yielding the approximation

IN � ~iN !�1 (
k�1

N

ezk f ~zk !wk � �(
k�1

N

ck f ~zk ! , ~16!

where

zk � f~uk ! ,

wk � f '~uk ! ,

and

ck � �~iN !�1ezkwk � iN�1ezkwk .

By the Cauchy integral formula, this sum can be written

IN �
1

2pi
�

C
r~z! f ~z! dz , ~17!

where r~z! is a rational function of the form

r~z! � (
k�1

N ck

z � zk

~18!

and C is a negatively oriented closed contour that lies
in the region of analyticity of f and encloses all the
poles zk .

Let G ' denote the contour that has the same shape as
G but lies between the contours C and G. Here, f ~z! �
O~1! so that r~z! f ~z!� O~6z 6�1 ! as 6z 6r `. It follows
that the contour C can be deformed to a contour consist-
ing of the union of G ' and a large circular arc with radius
R so that

lim
Rr`

�
CR

r~z! f ~z! dz � 0 . ~19!

This gives the quadrature rule error estimate

I � IN �
1

2pi
�
G '
~ez � r~z!! f ~z! dz , ~20!

which implies that r~z! is a good approximation to ez

near R�. Therefore, any quadrature formula can be in-
terpreted as a rational approximation. In the same way,
every rational approximation can be viewed as a quad-
rature formula for a contour in the complex plane.

The selection of the contour and quadrature formula
has been studied extensively in the context of inverse
Laplace transforms. For the case where all of the singu-
larities of f lie on the negative real axis, quite impressive
convergence rates have been recently derived.14 For ex-
ample, for a cotangent contour originally suggested by

Talbot,15 a convergence rate O~3.89�N ! can be achieved
by using a trapezoid rule. Of course, it should be kept in
mind that the selection of optimal contour and quadra-
ture formula are related to the singularities of the func-
tion f.

IV.C. Best Rational Approximation

Another approach to rational approximation is to cal-
culate the best approximation on some subset of the com-
plex plane. This approach was made famous by Cody,
Meinardus, and Varga16 in 1969 in the context of ratio-
nal approximation of e�x in @0,`!. Let pk, l denote the
collection of all real rational functions rk, l ~x! of the form

rk, l �
pk~x!

pl ~x!
, ~21!

where pj is a polynomial of degree j or less.
It is known from approximation theory that there

exists a unique [rk, l � pk, l such that

sup
�`�x�0

6 [rk, l ~�x!� ex 6

� inf
rk, l�pk, l

� sup
�`�x�0

6rk, l ~�x!� ex 6� , k � l .

~22!

Establishing this approximation for given k and l is not
easy, but it can be done with the Remes algorithm or the
Carathéodory-Fejér method. It has been shown that this
Chebyshev rational approximation [rk,k converges approx-
imately at the rate 9.3�k ~Ref. 17!. The contour plot of
6ez � [r14,14~�z!6 is shown in Fig. 1, from which it can be
seen that this approximation is remarkably accurate in a
wide region in the left complex plane. From a computa-
tional point of view, it is advantageous that the poles
$u1, . . . ,uk % of the rational function [rk,k are distinct, so
that it can be computed as a partial fraction expansion10

[rk, k~z! � a0 �(
i�1

k ai

z � ui
, ~23!

where a0 is the limit of the function at infinity and the
scalars ai are the residues at the poles ui . Therefore, the
values of ai and ui depend on k. Equation ~23! can be
derived by noting that ~ [rk,k �a0 !� pk�1,k for which the
result readily follows from the residue theorem. It should
be noted that the poles of [rk,k come in conjugate pairs, so
that for a real-valued variable x � R, the computational
cost can be reduced to half:

[rk, k~x! � a0 � Re�(
i�1

k02 ai

x � ui
� . ~24!
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negative real axis. Another fact worth noticing in Eq. ~25!
is that the order of the approximation can be adjusted
according to needs for accuracy without significant im-
pact on the computational cost as the amount k02 of
sparse matrix inversions is directly proportional to the
order k of the approximation. However, it should be kept
in mind that a rigorous mathematical analysis concern-
ing the convergence properties of this approximation for
other than self-adjoint negative semidefinite matrices has
not been performed.

V. NUMERICAL RESULTS

The different matrix exponential methods and the
TTA method were compared to each other by applying
them to several burnup matrices. The two cases pre-
sented here can be thought to represent the extreme
cases—in terms of matrix size and norm—that were en-
countered, and they were chosen for evaluating the per-
formance of the different matrix exponential methods.

Both test cases represent an infinite pressurized wa-
ter reactor ~PWR! pin-cell lattice in which the fuel has
been irradiated to 25 MWd0kg U burnup. Test case 1
was formed by selecting only the most important acti-
nides and fission products in the calculation, totaling
219 nuclides ~41 actinides, 178 fission products and light
nuclides!. For this case the matrix norm is sufficiently

small, 7A7� 7.3 � 10�4 , so that 7At 7� 7.9 � 103. This
case is a simplification of test case 2, which contains
1532 nuclides ~75 actinides, 1457 fission products and
light nuclides!. The burnup matrix norm for this case is
approximately 7A7� 2.8 �1021 so that the norm of At is
of order 1028. The time step in both test cases was 125 days
corresponding to 5 MWd0kg U burnup.

The TTA results were obtained directly from the Ser-
pent code, and the Chebyshev rational approximation
method ~CRAM! of order k � 14 was implemented as a
separate C code that was later added to Serpent. This
order for the Chebyshev approximation was chosen be-
cause it is generally considered sufficiently accurate22

and because the partial fraction coefficients for this case
are conveniently listed in Ref. 10. The Krylov subspace
approximation with adaptive time step and subspace di-
mension selection was implemented as a MATLAB script.
Finally, the standard MATLAB function expm was used
for the Padé approximation with scaling and squaring.

The numerical results for test case 1 are shown in
Fig. 3, from which it can be seen that all results are in
good accordance with each other. In particular, the Padé
approximation, the Krylov subspace method, and CRAM
give almost identical results for this case, as can be seen
from Fig. 4, where the absolute values of the relative
differences are plotted. For example, the largest relative
difference between the Chebyshev and Padé approxima-
tion solutions is ;0.00068% for the concentration of
252Cf, for which N' 2.17 � 10�19 ~b cm!�1.

The nuclide concentrations in test case 2 are shown
in Fig. 5. The Krylov subspace method could not be
applied to this case because the time step selection based
on local error estimation became practically impossible.
The Padé approximation also faced severe numerical prob-
lems producing completely unrealistic results, as can be
seen from Fig. 5. On the other hand, the solutions calcu-
lated with the TTA method and CRAM are consistent to
the same degree as in test case 1. The comparison be-
tween these numerical results for the most important nu-
clides is presented in Table I.

The small differences between the TTA and the
CRAM solutions can be attributed to the fact that the
closed cycles are terminated in the current implementa-
tion of the TTA method. This is supported by the fact
that all the concentrations calculated with CRAM are
slightly greater, as can be physically expected consider-
ing that the feedback transitions are ignored in the TTA
calculation. Also, the largest differences occur for nu-
clides for which the closed transition cycles are signifi-
cant. In test case 1, for example, the largest relative
difference, 0.84%, occurs for the hydrogen isotope 3H,
which forms one strongly connected component with the
nuclides 1H, 2H, and 3He.

As is pointed out in Sec. IV, the accuracy of CRAM
depends on the magnitudes of the imaginary parts of the
eigenvalues of At. In this test case the power density in
the fuel was 40 kW0kg U, which results in a neutron flux

Fig. 2. The structure of the burnup matrix in test case 2
described in Sec. V. The nuclides have been indexed in ascend-
ing order with respect to their mass number. The result is that
the nonzero elements are concentrated around the diagonal
with fission product distributions on the right side.
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The sets of coefficients for the Chebyshev rational
function [rk,k have been reported for various approxima-
tion orders k, so the implementation of this method is
relatively straightforward. For example, in Ref. 18 the
polynomial coefficients are provided for k � 30. The
partial fraction coefficients ai and ui for each value of k
can then be calculated from these polynomial coeffi-
cients with the help of a polynomial root finder. The
partial fraction coefficients for the cases k � 10 and k �
14 have been directly given in Ref. 10. They can also be
computed with the Carathéodory-Fejér method for k �
14 with good accuracy, and there is a MATLAB script
provided for this purpose in Ref. 13.

Interestingly, the Chebyshev rational approximation
[rk,k can also be interpreted as a quadrature formula for a

contour integral of type ~12!, so the error estimate ~20!
remains valid.13 This suggests that the rational approxi-
mation could be used for computing the matrix exponen-
tial eAt when the eigenvalues of At are located near the
negative real axis. This has also been experimentally
verified.9 From this point of view, the accuracy of the
approximation is affected by the magnitudes of the imag-
inary parts of the eigenvalues of A as long as the eigen-
values remain within the integration contour. However, if
the eigenvalues fall outside the contour, Eq. ~20! is no lon-
ger valid, and this method may yield poor results.

The Chebyshev rational approximation has previ-
ously been only occasionally used in scientific applica-
tions involving self-adjoint and negative semidefinite

matrices.8,16,19 Equation ~20! implies, however, that this
approximation is also applicable to non-Hermitian ma-
trices with eigenvalues near R�. The formal conver-
gence analysis of this special case forms an interesting
future research topic.

For the burnup system ~2!, the matrix exponential
solution based on the Chebyshev rational approximation
[rk,k can be computed as

n~t ! � eAtn0 � [rk, k~�At !n0

� a0 n0 � Re�(
i�1

k02

~ui I � At !�1ai n0� , ~25!

where the last form follows directly from Eq. ~24! by
replacing x with �At. Using this formula, the concentra-
tion vector can be calculated simply by solving k02 sparse
linear systems. When the burnup matrix is formed by
indexing the nuclides in ascending order with respect to
their mass number, these systems can be solved effi-
ciently by first calculating the symbolic lower-upper ~LU!
factorization of A ~Ref. 20! and then performing a Gauss-
ian elimination on this factorization.21 The structure of a
typical large burnup matrix generated in this manner is
shown in Fig. 2.

It should be noted that this approximation is ideally
suited for decay transmutation calculations, where the
absence of closed cycles in the transition chains confines
all eigenvalues of the decay matrix to lie strictly on the

Fig. 1. Contour plot of 6ez � [r14,14~�z!6.
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negative real axis. Another fact worth noticing in Eq. ~25!
is that the order of the approximation can be adjusted
according to needs for accuracy without significant im-
pact on the computational cost as the amount k02 of
sparse matrix inversions is directly proportional to the
order k of the approximation. However, it should be kept
in mind that a rigorous mathematical analysis concern-
ing the convergence properties of this approximation for
other than self-adjoint negative semidefinite matrices has
not been performed.

V. NUMERICAL RESULTS

The different matrix exponential methods and the
TTA method were compared to each other by applying
them to several burnup matrices. The two cases pre-
sented here can be thought to represent the extreme
cases—in terms of matrix size and norm—that were en-
countered, and they were chosen for evaluating the per-
formance of the different matrix exponential methods.

Both test cases represent an infinite pressurized wa-
ter reactor ~PWR! pin-cell lattice in which the fuel has
been irradiated to 25 MWd0kg U burnup. Test case 1
was formed by selecting only the most important acti-
nides and fission products in the calculation, totaling
219 nuclides ~41 actinides, 178 fission products and light
nuclides!. For this case the matrix norm is sufficiently

small, 7A7� 7.3 � 10�4 , so that 7At 7� 7.9 � 103. This
case is a simplification of test case 2, which contains
1532 nuclides ~75 actinides, 1457 fission products and
light nuclides!. The burnup matrix norm for this case is
approximately 7A7� 2.8 �1021 so that the norm of At is
of order 1028. The time step in both test cases was 125 days
corresponding to 5 MWd0kg U burnup.

The TTA results were obtained directly from the Ser-
pent code, and the Chebyshev rational approximation
method ~CRAM! of order k � 14 was implemented as a
separate C code that was later added to Serpent. This
order for the Chebyshev approximation was chosen be-
cause it is generally considered sufficiently accurate22

and because the partial fraction coefficients for this case
are conveniently listed in Ref. 10. The Krylov subspace
approximation with adaptive time step and subspace di-
mension selection was implemented as a MATLAB script.
Finally, the standard MATLAB function expm was used
for the Padé approximation with scaling and squaring.

The numerical results for test case 1 are shown in
Fig. 3, from which it can be seen that all results are in
good accordance with each other. In particular, the Padé
approximation, the Krylov subspace method, and CRAM
give almost identical results for this case, as can be seen
from Fig. 4, where the absolute values of the relative
differences are plotted. For example, the largest relative
difference between the Chebyshev and Padé approxima-
tion solutions is ;0.00068% for the concentration of
252Cf, for which N' 2.17 � 10�19 ~b cm!�1.

The nuclide concentrations in test case 2 are shown
in Fig. 5. The Krylov subspace method could not be
applied to this case because the time step selection based
on local error estimation became practically impossible.
The Padé approximation also faced severe numerical prob-
lems producing completely unrealistic results, as can be
seen from Fig. 5. On the other hand, the solutions calcu-
lated with the TTA method and CRAM are consistent to
the same degree as in test case 1. The comparison be-
tween these numerical results for the most important nu-
clides is presented in Table I.

The small differences between the TTA and the
CRAM solutions can be attributed to the fact that the
closed cycles are terminated in the current implementa-
tion of the TTA method. This is supported by the fact
that all the concentrations calculated with CRAM are
slightly greater, as can be physically expected consider-
ing that the feedback transitions are ignored in the TTA
calculation. Also, the largest differences occur for nu-
clides for which the closed transition cycles are signifi-
cant. In test case 1, for example, the largest relative
difference, 0.84%, occurs for the hydrogen isotope 3H,
which forms one strongly connected component with the
nuclides 1H, 2H, and 3He.

As is pointed out in Sec. IV, the accuracy of CRAM
depends on the magnitudes of the imaginary parts of the
eigenvalues of At. In this test case the power density in
the fuel was 40 kW0kg U, which results in a neutron flux

Fig. 2. The structure of the burnup matrix in test case 2
described in Sec. V. The nuclides have been indexed in ascend-
ing order with respect to their mass number. The result is that
the nonzero elements are concentrated around the diagonal
with fission product distributions on the right side.
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of 1.5 � 1014 10~cm2 s! producing transmutation coeffi-
cients, most of which are of order �10�8 10s. The imag-
inary parts of the eigenvalues were correspondingly of
the same order. The time steps in the burnup calculation
generally vary from a few days at the beginning of the
irradiation cycle to a few hundred days at the end. The
time step used here was 125 days, which is of the same
order as the practical maximum time step. Time steps
greater than this would significantly violate the assump-
tion of constant transmutation coefficients during each
step. Therefore, even better convergence can be ex-
pected for shorter time steps.

Based on these observations, it seems that the CRAM
method is capable of providing robust and accurate so-
lutions regardless of the burnup matrix size or norm. The
method is also computationally remarkably effective. The
computation time for test case 2 involving a 1532 �
1532 matrix was only 0.1 s on a 2.6-GHz AMD Opteron
CPU. The corresponding computation time for the TTA
calculation was ;26 s. To further illustrate the effi-
ciency of the CRAM method, it was compared to the
TTA solution method using Serpent in a burnup calcula-
tion for a PWR fuel assembly with burnable absorber.
The total number of depleted materials was 65, the ir-
radiation history was divided into 42 steps with predictor-
corrector calculation, and a total of 3 million neutron
histories were run for each Monte Carlo simulation. The
overall running time with TTA was 18.5 h, and using

CRAM this was reduced to just over 13 h, which can be
considered a significant improvement.

When computing the CRAM solution, most of the
computation time is spent inverting the sparse matrices
of Eq. ~25!. As pointed out in Sec. IV, the structure of the
burnup matrix is crucial to the effectiveness of the solu-
tion scheme. In comparison to a random nuclide order,
indexing the nuclides according to their mass number
led to a computational speedup factor of 40 in test case 2.
The corresponding ordered matrix is illustrated in Fig. 2.
In this case, the sparse systems can be solved accurately
and effectively by first calculating the symbolic LU fac-
torization and then performing a Gaussian elimination
on this factorization.

VI. CONCLUSIONS

The magnitude of the transmutation and decay con-
stants of different nuclides vary extensively, which makes
calculating the matrix exponential challenging in the con-
text of burnup calculations. Short-lived nuclides are es-
pecially problematic because they can increase the matrix
norm and induce eigenvalues with absolute values up to
order 1021.

We approached this problem by examining the char-
acteristics of the eigenvalues of the burnup matrix. Based

Fig. 5. Nuclide number densities in test case 2. Number densities smaller than 10�30 b�1 cm�1 have been omitted. ZA �
1000Z � A, where Z is the atomic number and A is the mass number of the nuclide.
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Fig. 3. Nuclide number densities for test case 1. Number densities smaller than 10�30 ~b cm!�1 have been omitted. ZA �
1000Z � A, where Z is the atomic number and A is the mass number of the nuclide.

Fig. 4. Absolute values of the relative differences between the results calculated by CRAM, Padé approximation, and the
Krylov subspace method. ZA � 1000Z � A, where Z is the atomic number and A is the mass number of the nuclide.
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of 1.5 � 1014 10~cm2 s! producing transmutation coeffi-
cients, most of which are of order �10�8 10s. The imag-
inary parts of the eigenvalues were correspondingly of
the same order. The time steps in the burnup calculation
generally vary from a few days at the beginning of the
irradiation cycle to a few hundred days at the end. The
time step used here was 125 days, which is of the same
order as the practical maximum time step. Time steps
greater than this would significantly violate the assump-
tion of constant transmutation coefficients during each
step. Therefore, even better convergence can be ex-
pected for shorter time steps.

Based on these observations, it seems that the CRAM
method is capable of providing robust and accurate so-
lutions regardless of the burnup matrix size or norm. The
method is also computationally remarkably effective. The
computation time for test case 2 involving a 1532 �
1532 matrix was only 0.1 s on a 2.6-GHz AMD Opteron
CPU. The corresponding computation time for the TTA
calculation was ;26 s. To further illustrate the effi-
ciency of the CRAM method, it was compared to the
TTA solution method using Serpent in a burnup calcula-
tion for a PWR fuel assembly with burnable absorber.
The total number of depleted materials was 65, the ir-
radiation history was divided into 42 steps with predictor-
corrector calculation, and a total of 3 million neutron
histories were run for each Monte Carlo simulation. The
overall running time with TTA was 18.5 h, and using

CRAM this was reduced to just over 13 h, which can be
considered a significant improvement.

When computing the CRAM solution, most of the
computation time is spent inverting the sparse matrices
of Eq. ~25!. As pointed out in Sec. IV, the structure of the
burnup matrix is crucial to the effectiveness of the solu-
tion scheme. In comparison to a random nuclide order,
indexing the nuclides according to their mass number
led to a computational speedup factor of 40 in test case 2.
The corresponding ordered matrix is illustrated in Fig. 2.
In this case, the sparse systems can be solved accurately
and effectively by first calculating the symbolic LU fac-
torization and then performing a Gaussian elimination
on this factorization.

VI. CONCLUSIONS

The magnitude of the transmutation and decay con-
stants of different nuclides vary extensively, which makes
calculating the matrix exponential challenging in the con-
text of burnup calculations. Short-lived nuclides are es-
pecially problematic because they can increase the matrix
norm and induce eigenvalues with absolute values up to
order 1021.

We approached this problem by examining the char-
acteristics of the eigenvalues of the burnup matrix. Based

Fig. 5. Nuclide number densities in test case 2. Number densities smaller than 10�30 b�1 cm�1 have been omitted. ZA �
1000Z � A, where Z is the atomic number and A is the mass number of the nuclide.
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was well within the applicability domain of each tested
method, the Padé approximation and CRAM gave virtu-
ally identical results. The results obtained with the Kry-
lov subspace matrix exponential method were close, as
well. The system was also solved using the TTA method,
which gave coherent results. In test case 2, however, all
other matrix exponential methods suffered a breakdown,
but the results obtained with CRAM remained consistent
with those given by the TTA method to the same degree
as in the first test case.

Our motivation for the research was the prospect of
incorporating a matrix exponential method in the burnup
calculation routine of the Serpent code. Based on our
positive results, CRAM was added to the code with com-
putational speedup as one of the key improvements.
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on our experiments and physical reasoning, it seems that
these eigenvalues are generally confined to a region near
the negative real axis. The somewhat obscure fact that
the CRAM technique can be interpreted as a numerical
contour integral in the left complex plane led us to con-
duct further experiments with very promising results.
We compared this approach with more established ma-
trix exponential methods and the TTA method in solving
the burnup equations. Our results imply that the CRAM
solution scheme is well-suited for burnup calculation,
where it outperformed the more conventional matrix ex-
ponential methods in terms of computational accuracy

and efficiency. Unlike the previously applied matrix ex-
ponential methods, CRAM can readily treat the short-
lived nuclides simultaneously with the long-lived nuclides.
In addition, the practical maximum time step value can
be used in CRAM without compromising the computa-
tional accuracy.

For evaluating the matrix exponential methods, we
constructed two representative test cases. Test case 1 was
designed to be well-behaved in terms of the burnup ma-
trix size and norm ~ @A#� 200 � 200, 7A7; 10�4 !, and
test case 2 was designed to be pathologically difficult
~ @A#� 1500 � 1500, 7A7; 1021 !. In test case 1, which

TABLE I

A Comparison of the Numerical Results Computed Using CRAM and the TTA Method for the Most Important Nuclides

Case 1 Case 2

Nuclide

Concentration,
CRAM
~b�1 cm�1 !

Relative Difference
to TTA
~%!

Concentration,
CRAM
~b�1 cm�1 !

Relative Difference
to TTA
~%!

Actinides
234U 4.5718 � 10�6 5.4633 � 10�5 4.5632 � 10�6 5.5873 � 10�5

235U 3.0456 � 10�4 7.3299 � 10�5 3.0738 � 10�4 8.0322 � 10�5

236U 6.7457 � 10�5 2.4295 � 10�5 6.7627 � 10�5 2.6525 � 10�5

238U 2.1423 � 10�2 2.5090 � 10�5 2.1413 � 10�2 2.7600 � 10�5

239U 1.2933 � 10�8 2.5083 � 10�5 1.3510 � 10�8 2.7595 � 10�5

237Np 4.3857 � 10�6 3.2838 � 10�5 4.4366 � 10�6 4.2891 � 10�5

239Np 1.8656 � 10�6 2.4399 � 10�5 1.9488 � 10�6 2.6853 � 10�5

238Pu 7.5350 � 10�7 2.8311 � 10�5 7.8289 � 10�7 4.7964 � 10�5

239Pu 9.1938 � 10�5 6.6197 � 10�5 9.5985 � 10�5 7.0639 � 10�5

240Pu 2.9316 � 10�5 3.9718 � 10�4 2.9007 � 10�5 4.6375 � 10�4

241Pu 1.5002 � 10�5 3.9580 � 10�4 1.6400 � 10�5 4.5646 � 10�4

242Pu 3.2839 � 10�6 1.3219 � 10�4 3.5014 � 10�6 1.5190 � 10�4

241Am 2.3450 � 10�7 1.2989 � 10�4 2.5499 � 10�7 1.6080 � 10�4

242Am 7.9173 � 10�10 1.3073 � 10�4 8.6280 � 10�10 1.6164 � 10�4

243Am 3.1046 � 10�7 4.7632 � 10�5 3.4995 � 10�7 5.4590 � 10�5

242Cm 6.2763 � 10�8 4.7059 � 10�5 6.8238 � 10�8 6.1609 � 10�5

244Cm 3.9601 � 10�8 9.7363 � 10�5 4.8298 � 10�8 1.0704 � 10�4

Fission products
and light nuclides

3H 5.2271 � 10�8 8.4335 � 10�1 5.2535 � 10�8 8.2818 � 10�1

95Mo 1.6225 � 10�7 7.4205 � 10�6 1.9623 � 10�5 8.6482 � 10�6

99Tc 2.9344 � 10�9 1.0370 � 10�5 2.5379 � 10�5 2.1573 � 10�5

103Ru 6.2905 � 10�11 5.7469 � 10�5 2.3941 � 10�6 8.4875 � 10�5

109Ag 7.7335 � 10�13 1.1614 � 10�3 1.8199 � 10�6 1.3940 � 10�4

135Xe 2.7013 � 10�9 4.9536 � 10�4 7.2419 � 10�9 5.6080 � 10�4

133Cs 8.2702 � 10�9 3.2331 � 10�5 2.6399 � 10�5 6.5866 � 10�5

143Nd 3.4130 � 10�8 4.3039 � 10�5 1.9255 � 10�5 6.6319 � 10�5

145Nd 1.7186 � 10�11 2.3102 � 10�4 1.6098 � 10�5 1.2200 � 10�4

147Sm 1.7783 � 10�10 1.6831 � 10�5 1.0618 � 10�6 1.3204 � 10�5

149Sm 5.2676 � 10�12 2.0827 � 10�4 6.6335 � 10�8 4.3958 � 10�3

150Sm 3.2992 � 10�10 8.6619 � 10�5 5.3727 � 10�6 3.4225 � 10�4

151Sm 2.0391 � 10�9 4.2694 � 10�4 3.1044 � 10�7 5.6033 � 10�3

152Sm 9.3582 � 10�9 3.3607 � 10�4 2.5405 � 10�6 8.8872 � 10�4

153Eu 4.3027 � 10�9 1.2505 � 10�4 1.8654 � 10�6 3.8255 � 10�3

155Gd 1.0272 � 10�12 1.0841 � 10�1 6.4533 � 10�10 1.4526 � 10�2
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was well within the applicability domain of each tested
method, the Padé approximation and CRAM gave virtu-
ally identical results. The results obtained with the Kry-
lov subspace matrix exponential method were close, as
well. The system was also solved using the TTA method,
which gave coherent results. In test case 2, however, all
other matrix exponential methods suffered a breakdown,
but the results obtained with CRAM remained consistent
with those given by the TTA method to the same degree
as in the first test case.

Our motivation for the research was the prospect of
incorporating a matrix exponential method in the burnup
calculation routine of the Serpent code. Based on our
positive results, CRAM was added to the code with com-
putational speedup as one of the key improvements.
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Abstract – The topic of this paper is solving the burnup equations using dedicated matrix exponential
methods that are based on two different types of rational approximation near the negative real axis. The
previously introduced Chebyshev Rational Approximation Method (CRAM) is now analyzed in detail for
its accuracy and convergence, and correct partial fraction coefficients for approximation orders 14 and 16
are given to facilitate its implementation and improve the accuracy. As a new approach, rational approx-
imation based on quadrature formulas derived from complex contour integrals is proposed, which forms
an attractive alternative to CRAM, as its coefficients are easy to compute for any order of approximation.
This gives the user the option to routinely choose between computational efficiency and accuracy all the
way up to the level permitted by the available arithmetic precision. The presented results for two test cases
are validated against reference solutions computed using high-precision arithmetics. The observed behav-
ior of the methods confirms the previous conclusions of CRAM’s excellent suitability for burnup calcula-
tions and establishes the quadrature-based approximation as a viable and flexible alternative that, like
CRAM, has its foundation in the specific eigenvalue properties of burnup matrices.

I. INTRODUCTION

The topic of this paper is solving the burnup equa-
tions using matrix exponential methods based on ratio-
nal approximation near the negative real axis. Solving
the burnup equations is an essential part of the burnup
calculations that are necessary to predict the changes in
the material compositions in a nuclear reactor.

The burnup equations form a system of first-order
linear differential equations that can be written in matrix
notation as

n ' � An , n~0!� n0 , ~1!

where

n~t ! � Rn � nuclide concentration vector

A � Rn�n � burnup matrix containing the decay and
transmutation coefficients of the nu-
clides under consideration.

The matrix elements Aij characterize the rates of neutron-
induced reactions and spontaneous radioactive decay by
which nuclide j is transformed to nuclide i . In this paper
these coefficients are assumed to be fixed constants.

The burnup equations can be formally solved by the
matrix exponential method yielding the simple solution

n~t ! � eAtn0 , ~2!

where the exponential of the matrix At is defined as the
power series expression

eAt � (
k�0

` 1

k!
~At !k , ~3!

with the additional definition A0 � I. There are numer-
ous algorithms for computing the matrix exponential,
but unfortunately, most of them are not well-suited for
solving the burnup equations. Because the decay con-
stants of the nuclides vary extensively, the burnup ma-
trix has a wide spectrum of eigenvalues. Short-lived*Email: Maria.Pusa@vtt.fi
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rk, k~z! � a0 �(
j�1

k aj

z � uj
, ~8!

where

a0 � limit of the function rk,k at infinity

aj � residues at the poles uj .

Also rational functions rk�1,k can be written in this form
with a0 � 0. The poles of a rational function with real-
valued coefficients form conjugate pairs, so the compu-
tational cost can be reduced to half for a real variable x:

rk, k~x! � a0 � 2Re�(
j�1

k02 aj

x � uj
� . ~9!

The rational approximation to Eq. ~2! can then be written

n � a0 n0 � 2Re�(
j�1

k02

aj ~At � uj I !�1n0� , ~10!

which requires solving k02 sparse linear systems. It is
worth noting that the linear systems in Eq. ~10! are in-
dependent, so they can be solved in parallel. Notice that
Eq. ~10! can be used to apply any rational approximation
rk,k or rk�1,k to Eq. ~2!. A MATLAB code implementing
this equation is shown in Fig. 1 to further illustrate how
these approximations are computed in practice.

II.A. Chebyshev Rational
Approximation Method

In CRAM the rational function r~z! is chosen as the
best rational approximation of the exponential function

on the negative real axis R� . Let pk,k denote the set of
rational functions rk,k~x!� pk~x!0qk~x!, where pk and qk

are polynomials of order k. The CRAM approximation
of order k is defined as the unique rational function [rk,k �
[pk~x!0 [qk~x! satisfying

sup
x�R�

6 [rk, k~x!� ex 6 � inf
rk, k�pk, k

� sup
x�R�

6rk, k~x!� ex 6� .

~11!

The asymptotic convergence of this approximation
on the negative real axis is remarkably fast. Let us define

dk � sup
x�R�

6 [rk, k~x!� ex 6 . ~12!

It has been proven that

lim
kr`
dk

10k �
1

9.289 025 49. . .
� H , ~13!

where H is the Halphen constant that can be represented
in closed form using certain elliptic integrals.8 It follows
that for sufficiently large approximation orders k, roughly
k correct digits may be expected. Surprisingly, it was
recently discovered by Stahl and Schmelzer9 that this
convergence extends to compact subsets on the complex
plane and also to Hankel contours in C � R� , i.e.,

lim
kr`~sup

z�K
6 [rk, k~z!� ez 6!

10k
� lim

kr`~sup
z�G
6 [rk, k~z!� ez 6!

10k

� H ~14!

Fig. 1. MATLAB code illustrating how a rational function rk,k or rk�1,1 is applied to Eq. ~1! to approximate the matrix
exponential solution n. The input arguments are the partial fraction coefficients corresponding to the rational function, burnup
matrix A, time step t, and initial composition vector n_0.
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nuclides are especially problematic since they can induce
eigenvalues with absolute values up to an order of 1021,
consequently making the differential system extremely
stiff. Furthermore, the time steps used in burnup calcu-
lations can typically vary from a few days ~105 s! to
several months ~107 s!, and even to thousands of years,
if only decay reactions are considered. Most of the es-
tablished matrix exponential methods, such as the trun-
cated Taylor series approach or rational Padé
approximation, are based on approximation near the or-
igin and work well only when the matrix norm 7At7 is
sufficiently small. Consequently, these algorithms are
prone to severe numerical problems when applied to
the burnup equations, where this norm can be of the
order of 1027 ~Ref. 1!.

These difficulties have traditionally been solved by
using simplified burnup chains or by treating the most
short-lived nuclides separately when computing a ma-
trix exponential solution. For example, in the ORIGEN
code,2 the matrix exponential is computed with the trun-
cated Taylor series method with scaling and squaring
after excluding short-lived nuclides from the burnup ma-
trix to be treated separately. In the AEGIS code, a Kry-
lov subspace method is applied to a simplified burnup
chain with 221 nuclides, in which case the burnup ma-
trix norm is of the order of 10�2 ~Ref. 3!. However, it
was recently discovered by the author that the eigen-
values of the burnup matrix are generally confined to a
region near the negative real axis.1 This observation led
to applying the Chebyshev Rational Approximation
Method ~CRAM! to solve the burnup equations. This
method can be interpreted as the best rational approxi-
mation on the negative real axis, and it was shown to
give a robust and accurate solution to the burnup equa-
tions with a very short computation time. For further
information on established matrix exponential methods
and their applicability to solving burnup equations, see,
e.g., Refs. 1 and 4. For a comparison between CRAM
and ORIGEN, see Ref. 5.

The main challenge in using CRAM is determining
the coefficients of the Chebyshev rational approxima-
tion. The computation of higher-order CRAM coeffi-
cients especially can be rather involved. Motivated by
these challenges in implementing CRAM, an alterna-
tive and easier-to-implement method is presented in
Sec. II.B. This method is based on constructing rational
approximations from trapezoidal quadrature rules ap-
plied to contour integrals in the left complex plane.
Although these approximations do not converge as fast
as CRAM, they have the advantage that the order of the
approximation can easily be adjusted. These approxima-
tions are accurate near the negative real axis, so they
are well-suited to solving the burnup equations and can
be used to obtain extremely high solution accuracy. The
convergence and accuracy of the different rational ap-
proximations applied to burnup equations are discussed
in Sec. III.

II. RATIONAL APPROXIMATION OF THE
MATRIX EXPONENTIAL NEAR THE

NEGATIVE REAL AXIS

The matrix exponential can be computed based on a
rational function r~z! that is known to be a good approx-
imation to the function ez in some region in the complex
plane C. The matrix exponential and the approximating
matrix rational function can be defined in various ways.
The approach based on the Cauchy integral formula is
considered here. Based on this formula, the matrix ex-
ponential can be written as a complex contour integral of
the form

eAt �
1

2pi
�
G

ez~zI � At !�1 dz , ~4!

where G is a closed contour winding once around the
spectrum of At. The resolvent of the matrix At can be
written in the form

~zI � At !�1 �
B~z!

det~zI � At !
, ~5!

where

B~z! � z n�1B0 � z n�2B1 � {{{� z Bn�2 � Bn�1 ~6!

with B0, B1, . . . , Bn�1 matrices with constant elements.6

It follows that every element of the resolvent is a proper
rational function of z with the same denominator poly-
nomial det~zI � At !. Hence, the poles of these rational
functions are the eigenvalues of the matrix At, and cal-
culating eAt is essentially equivalent to evaluating con-
tour integrals of the form

~eAt !kl �
1

2pi
�
G

ezRkl ~z! dz , ~7!

where R � ~zI � At !�1 , Rkl � O~1! when zr �`, and
the singularities of Rkl are the eigenvalues of At. It fol-
lows that when the eigenvalues of At are confined to a
region near the negative real axis, G can be extended to a
parabolic or hyperbolic shape in the left complex plane.
Because the integrand will decrease exponentially, these
contour integrals can be approximated efficiently using
quadrature formulas. These quadrature formulas can be
associated with rational functions, whose poles and res-
idues are the nodes and weights of the numerical inte-
gration formula, respectively. In addition, every rational
function can be correspondingly interpreted as a quadra-
ture formula applied to a contour integral in the left com-
plex plane ~for proof, see Ref. 7!.

It is usually advantageous to employ the rational
approximation in the partial fraction decomposition ~PFD!
form. For a rational function rk,k~z! � pk~z!0qk~z! with
simple poles, and pk and qk being polynomials of order k,
the decomposition takes the form
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rk, k~z! � a0 �(
j�1

k aj

z � uj
, ~8!

where
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aj � residues at the poles uj .
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k02 aj

x � uj
� . ~9!
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It has been proven that
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where H is the Halphen constant that can be represented
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that for sufficiently large approximation orders k, roughly
k correct digits may be expected. Surprisingly, it was
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Fig. 1. MATLAB code illustrating how a rational function rk,k or rk�1,1 is applied to Eq. ~1! to approximate the matrix
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matrix A, time step t, and initial composition vector n_0.
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20 digits. Some of the newly computed coefficients dif-
fer significantly from the ones in Ref. 11. The PFD co-
efficients for approximation orders 1 � k � 13 can be
computed with high accuracy by using the approxima-
tive Carathéodory–Fejér method. A MATLAB script is
provided for this purpose in Ref. 14. With the help of
these coefficients, the implementation of the CRAM ma-
trix exponential method for approximation orders k � 16
is extremely straightforward; as can be seen from Eq. ~10!,

only solving a set of linear equations is required in ad-
dition to the coefficients. In order to implement CRAM
in MATLAB, only the code from Fig. 1 is needed in
addition to these coefficients. CRAM is therefore a very
attractive method for solving the burnup equations in
reactor physics codes.

However, if higher-order approximations are de-
sired, complications ensue. Based on our experiments,
the accuracy of the polynomial coefficients provided in

TABLE I

Partial Fraction Decomposition Coefficients for CRAM Approximation of Order 14

Coefficient Real Part Imaginary Part

u1 �8.897 773 186 468 888 819 9 � 100 �1.663 098 261 990 208 530 4 � 101

u2 �3.703 275 049 423 448 060 3 � 100 �1.365 637 187 148 326 817 1 � 101

u3 �0.208 758 638 250 130 125 1 � 100 �1.099 126 056 190 126 091 3 � 101

u4 �3.993 369 710 578 568 519 4 � 100 �6.004 831 642 235 037 317 8 � 100

u5 �5.089 345 060 580 624 506 6 � 100 �3.588 824 029 027 006 510 2 � 100

u6 �5.623 142 572 745 977 124 8 � 100 �1.194 069 046 343 966 976 6 � 100

u7 �2.269 783 829 231 112 709 7 � 100 �8.461 737 973 040 221 401 9 � 100

a1 �7.154 288 063 589 067 285 3 � 10�5 �1.436 104 334 954 130 011 1 � 10�4

a2 �9.439 025 310 736 168 877 9 � 10�3 �1.718 479 195 848 301 751 1 � 10�2

a3 �3.763 600 387 822 696 871 7 � 10�1 �3.351 834 702 945 010 421 4 � 10�1

a4 �2.349 823 209 108 270 119 1 � 101 �5.808 359 129 714 207 400 4 � 100

a5 �4.693 327 448 883 129 304 7 � 101 �4.564 364 976 882 776 079 1 � 101

a6 �2.787 516 194 014 564 646 8 � 101 �1.021 473 399 905 645 143 4 � 102

a7 �4.807 112 098 832 508 890 7 � 100 �1.320 979 383 742 872 388 1 � 100

a0 �1.832 174 378 254 041 275 1 � 10�14 �0.000 000 000 000 000 000 0 � 100

TABLE II

Partial Fraction Decomposition Coefficients for CRAM Approximation of Order 16

Coefficient Real Part Imaginary Part

u1 �1.084 391 707 869 698 802 6 � 101 �1.927 744 616 718 165 228 4 � 101

u2 �5.264 971 343 442 646 889 5 � 100 �1.622 022 147 316 792 730 5 � 101

u3 �5.948 152 268 951 177 480 8 � 100 �3.587 457 362 018 322 282 9 � 100

u4 �3.509 103 608 414 918 097 4 � 100 �8.436 198 985 884 375 082 6 � 100

u5 �6.416 177 699 099 434 192 3 � 100 �1.194 122 393 370 138 687 4 � 100

u6 �1.419 375 897 185 665 978 6 � 100 �1.092 536 348 449 672 258 5 � 101

u7 �4.993 174 737 717 996 399 1 � 100 �5.996 881 713 603 942 226 0 � 100

u8 �1.413 928 462 488 886 211 4 � 100 �1.349 772 569 889 274 538 9 � 101

a1 �5.090 152 186 522 491 565 0 � 10�7 �2.422 001 765 285 228 797 0 � 10�5

a2 �2.115 174 218 246 603 090 7 � 10�4 �4.389 296 964 738 067 391 8 � 10�3

a3 �1.133 977 517 848 393 052 7 � 102 �1.019 472 170 421 585 645 0 � 102

a4 �1.505 958 527 002 346 752 8 � 101 �5.751 405 277 642 181 997 9 � 100

a5 �6.450 087 802 553 964 659 5 � 101 �2.245 944 076 265 209 605 6 � 102

a6 �1.479 300 711 355 799 971 8 � 100 �1.768 658 832 378 293 790 6 � 100

a7 �6.251 839 246 320 791 889 2 � 101 �1.119 039 109 428 322 848 0 � 101

a8 �4.102 313 683 541 002 127 3 � 10�2 �1.574 346 617 345 546 819 1 � 10�1

a0 �2.124 853 710 495 223 748 8 � 10�16 �0.000 000 000 000 000 000 0 � 100
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for any compact K � C and for any Hankel contour G �
C � R� . However, it is worth noticing that this conver-
gence is related to the asymptotic properties of the se-
quence $dk % , and the accuracy of the approximation of
order k is still dependent on the choice of the subset and
the contour under consideration.

As previously stated, the main difficulty in using
CRAM is determining the coefficients of the rational
function for a given k. In principle the polynomial coef-
ficients of [pk and [qk can be computed with Remez-type
methods, but this requires delicate algorithms combined
with high-precision arithmetics. Fortunately, these coef-
ficients have been computed to a high accuracy by Car-
penter, Ruttan, and Varga for approximation orders k �
0,1, . . . , 30, and they are provided in Ref. 10. In practical
applications, however, CRAM approximation is usually
needed in the PFD form. Although the PFD coefficients
can in principle be computed from the polynomial coef-
ficients, the computation of the polynomial roots is ill-
conditioned and requires great care. The only reference
providing the PFD coefficients ~for approximation or-
ders 10 and 14! is presumably Ref. 11, and the coeffi-
cients for approximation of order k � 14 have therefore
been used in several applications including the EXPO-

KIT matrix exponential computing package12 and Ser-
pent reactor physics code.13 However, it seems that these
coefficients suffer from round-off errors and hence do
not correspond to the true best approximation. Figure 2
shows the error of order 14 approximation on the nega-
tive real axis computed using two different sets of coef-
ficients: the polynomial coefficients from Ref. 10 and
the partial fraction coefficients from Ref. 11. According
to theory, a necessary and sufficient condition for the
best approximation is that the corresponding error func-
tion equioscillates; i.e., there exists a set of points where
it attains its maximum absolute value with alternating
signs. Notice that the approximation computed with the
coefficients from Ref. 11 does not exhibit this behavior.
In addition, these coefficients result in 102 times poorer
accuracy than expected by theory.

To provide better accuracy, new sets of partial frac-
tion coefficients for approximation orders k � 14 and
k � 16 were computed from the polynomial coefficients
provided in Ref. 10, and these coefficients are listed in
Tables I and II. The computations were performed with
MATLAB’s Symbolic Toolbox using high-precision arith-
metics with 200 digits to ensure sufficient accuracy. In
Tables I and II the coefficients have been rounded off to

Fig. 2. Plot of ex � [r14,14~x! on the negative real axis. In ~a! [r14,14 was computed based on the partial fraction coefficients
from Ref. 11 and in ~b! based on the polynomial coefficients from Ref. 10.
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20 digits. Some of the newly computed coefficients dif-
fer significantly from the ones in Ref. 11. The PFD co-
efficients for approximation orders 1 � k � 13 can be
computed with high accuracy by using the approxima-
tive Carathéodory–Fejér method. A MATLAB script is
provided for this purpose in Ref. 14. With the help of
these coefficients, the implementation of the CRAM ma-
trix exponential method for approximation orders k � 16
is extremely straightforward; as can be seen from Eq. ~10!,

only solving a set of linear equations is required in ad-
dition to the coefficients. In order to implement CRAM
in MATLAB, only the code from Fig. 1 is needed in
addition to these coefficients. CRAM is therefore a very
attractive method for solving the burnup equations in
reactor physics codes.

However, if higher-order approximations are de-
sired, complications ensue. Based on our experiments,
the accuracy of the polynomial coefficients provided in

TABLE I

Partial Fraction Decomposition Coefficients for CRAM Approximation of Order 14

Coefficient Real Part Imaginary Part
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u1 �1.084 391 707 869 698 802 6 � 101 �1.927 744 616 718 165 228 4 � 101

u2 �5.264 971 343 442 646 889 5 � 100 �1.622 022 147 316 792 730 5 � 101

u3 �5.948 152 268 951 177 480 8 � 100 �3.587 457 362 018 322 282 9 � 100

u4 �3.509 103 608 414 918 097 4 � 100 �8.436 198 985 884 375 082 6 � 100

u5 �6.416 177 699 099 434 192 3 � 100 �1.194 122 393 370 138 687 4 � 100

u6 �1.419 375 897 185 665 978 6 � 100 �1.092 536 348 449 672 258 5 � 101

u7 �4.993 174 737 717 996 399 1 � 100 �5.996 881 713 603 942 226 0 � 100

u8 �1.413 928 462 488 886 211 4 � 100 �1.349 772 569 889 274 538 9 � 101

a1 �5.090 152 186 522 491 565 0 � 10�7 �2.422 001 765 285 228 797 0 � 10�5

a2 �2.115 174 218 246 603 090 7 � 10�4 �4.389 296 964 738 067 391 8 � 10�3

a3 �1.133 977 517 848 393 052 7 � 102 �1.019 472 170 421 585 645 0 � 102

a4 �1.505 958 527 002 346 752 8 � 101 �5.751 405 277 642 181 997 9 � 100

a5 �6.450 087 802 553 964 659 5 � 101 �2.245 944 076 265 209 605 6 � 102

a6 �1.479 300 711 355 799 971 8 � 100 �1.768 658 832 378 293 790 6 � 100

a7 �6.251 839 246 320 791 889 2 � 101 �1.119 039 109 428 322 848 0 � 101

a8 �4.102 313 683 541 002 127 3 � 10�2 �1.574 346 617 345 546 819 1 � 10�1

a0 �2.124 853 710 495 223 748 8 � 10�16 �0.000 000 000 000 000 000 0 � 100
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III. APPLICATION TO BURNUP EQUATIONS

To evaluate the accuracy and study the convergence
of the rational approximations, they were applied to two
large burnup systems, and the solutions were compared
to highly accurate reference solutions that were com-
puted using MATLAB’s Symbolic Toolbox and high-
precision arithmetics. Both test cases represented an
infinite pressurized water reactor pin-cell lattice. The time
step used in the computations was 125 days, which is of
the same order as the practical maximum time step. In
the first test case, the fuel was irradiated to 25 MWd0
kg U burnup, and the number of nuclides was 1532.a The
second test case contained 1290 nuclides, and the burnup
system was formed for both fresh fuel and fuel irradiated
to 20 MWd0kg U burnup. In the first test case, the burnup
matrix norm was of the order of 1021, and in the second
test case, it was of the order of 1016.

III.A. Chebyshev Rational
Approximation Method

The CRAM approximations of orders k � 12 were
computed using the Carathéodory–Fejér method imple-
mented as a MATLAB script in Ref. 14, and approxima-
tions of orders 14 and 16 were formed using the newly
computed coefficients provided in Tables I and II. The
numerical results for the first test case are shown in
Table III and Fig. 4. Note that no nuclides were excluded
from these results; i.e., even the nuclides with extremely
small number densities have been included in the mean
and maximum relative errors. The improvement in accu-
racy gained by recomputing the CRAM coefficients for
approximation order 14 is illustrated in Fig. 5, which
shows that the relative error is roughly 102 times smaller
with the new coefficients provided in Sec. II.A.

Overall, it can be seen from the results that even
relatively small CRAM approximation orders give re-
markably accurate solutions to the first test case. From a
practical point of view, orders of approximation as small
as k � 2 or k � 4 could be used for solving the burnup
equations for this test case without compromising the
accuracy of the entire burnup calculation. For compari-
son, arguably the most established matrix exponential
method, the Padé approximation ~with scaling and squar-
ing! suffered a total breakdown when applied to the same
test case,1 which serves well to illustrate the special char-
acteristics of the burnup equations.

To study the convergence rate of CRAM, the error
of the nuclide concentrations in the maximum norm was
plotted against the approximation order, and the results
are shown in Fig. 4. It can be seen that the convergence
of the method is clearly geometric. The actual conver-
gence rate can be estimated by performing a least-
squares fit to the points, suggesting that the convergence
is of the order of O~9.20�N ! for k � 2, . . . ,14. Notice
that this is very close to the theoretical asymptotic con-
vergence rate, giving further proof of this method’saThis is the same system as test case 1 in Ref. 1.

TABLE III

Accuracy of CRAM Approximation Applied to Test Case 1*

Approximation
Order Mean Error Maximum Error

Mean
Relative Error

Maximum
Relative Error

2 3.3901 � 10�7 3.3110 � 10�4 8.3015 � 10�2 1.9561 � 100

4 4.0252 � 10�9 3.8736 � 10�6 5.6140 � 10�3 6.3820 � 10�1

6 4.7339 � 10�11 4.5163 � 10�8 2.2452 � 10�4 3.8184 � 10�2

8 5.5808 � 10�13 5.2486 � 10�10 7.1664 � 10�6 1.5762 � 10�3

10 6.5685 � 10�15 6.0944 � 10�12 1.9529 � 10�7 5.1640 � 10�5

12 7.6474 � 10�17 6.9690 � 10�14 4.7280 � 10�9 1.4323 � 10�6

14 9.5452 � 10�19 9.5339 � 10�16 1.0384 � 10�10 3.4990 � 10�8

16 2.0748 � 10�19 1.6377 � 10�16 2.1196 � 10�12 7.7286 � 10�10

*The errors were computed against a reference solution calculated with high-precision arithmetics.

Fig. 4. Convergence of CRAM approximation applied to
the first test case with 1532 nuclides.
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Ref. 10 is not sufficient for computing the partial frac-
tion coefficients for approximation orders higher than
16. For this reason, an alternative and easier-to-implement
method is presented in Sec. II.B. This approach is based
on deriving the rational approximation from quadrature
formulas applied to a contour integral in the left complex
plane. Although these approximations do not converge
as fast as CRAM, they have the advantage that the com-
putation of the coefficients can be done on the fly, and
therefore, the accuracy of the approximation can be eas-
ily adjusted.

II.B. Rational Approximations
from Contour Integrals

When the eigenvalues of the matrix At are confined
to a region near the negative real axis, the computation
of the matrix exponential is effectively equivalent to eval-
uating contour integrals of the form represented by Eq. ~7!.
Because of the exponential factor in the integrand, the
contribution to the integral decays rapidly as Re~z! r
�`, and the integral can be approximated efficiently
using quadrature rules. These quadrature formulas can
furthermore be interpreted as rational approximations that
can be used to approximate the matrix exponential.

The idea of constructing rational approximations to
the exponential function from quadrature rules was re-
cently resurfaced by Trefethen, Weideman, and Schmelz-
er7 and Weideman and Trefethen.15 In Ref. 15, two types
of contours, namely, hyperbolas and parabolas, have been
analyzed, and asymptotically optimal parameters for these
contours have been derived by balancing the error terms
related to the approximation of the contour integrals by
quadrature rules. Of these contours the parabola is the sim-
pler one, so it is considered in this paper to illustrate the
method. For integrands of type ~7! with singularities on
the negative real axis,Weideman has proposed the parabola:

f : Rr C ,

f~x!� N~0.1309 � 0.1149x 2 � i0.2500x! , ~15!

which yields the convergence rate O ~2.85�N ! �
O~e�1.05N ! ~Ref. 7!. A rational approximation obtained
from this contour is applied to solving the burnup equa-
tions in Sec. III.B.

The rational approximation of the exponential func-
tion based on a contour integral can be simply con-
structed as

r~z! � (
k�1

N ak

z � uk
, ~16!

where uk � f~xk ! are the quadrature points from the
contour, and

ak � �
h

2pi
ef~xk !f '~xk ! ~17!

are the weights of the quadrature rule, where h denotes
the interval length used in the quadrature scheme. For a
detailed derivation, see Refs. 1 or 7. Figure 3 shows a
Matlab code illustrating how the coefficients corre-
sponding to the contour of Eq. ~15! may be computed in
practice. After obtaining the coefficients, the code shown
in Fig. 1 can be used to apply the approximation to Eq. ~1!.

The type of convergence analysis applied in Ref. 15
is based on mathematical theorems that characterize the
convergence of quadrature rules on the real line R. For
integrands that decay sufficiently fast when x r 6`,
the rate of convergence is determined by the integrand
function’s region of analyticity in the vicinity of the
real axis. These convergence results can then be ex-
tended to contour integrals with the help of conformal
functions that map the real axis R onto the contour G
under consideration ~for details and further information
see, e.g., Ref. 16!. When the decay of the integrand is
exponential, the truncation error can also be assumed to
be exponential, and the quadrature scheme can be cho-
sen to give an asymptotic convergence rate with respect
to the total error.

Fig. 3. MATLAB code illustrating how the partial fraction coefficients may be computed for a rational approximation
derived from a quadrature formula applied to the contour of Eq. ~15!. The input argument k is the degree of approximation, and
it must be an even number.
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III. APPLICATION TO BURNUP EQUATIONS

To evaluate the accuracy and study the convergence
of the rational approximations, they were applied to two
large burnup systems, and the solutions were compared
to highly accurate reference solutions that were com-
puted using MATLAB’s Symbolic Toolbox and high-
precision arithmetics. Both test cases represented an
infinite pressurized water reactor pin-cell lattice. The time
step used in the computations was 125 days, which is of
the same order as the practical maximum time step. In
the first test case, the fuel was irradiated to 25 MWd0
kg U burnup, and the number of nuclides was 1532.a The
second test case contained 1290 nuclides, and the burnup
system was formed for both fresh fuel and fuel irradiated
to 20 MWd0kg U burnup. In the first test case, the burnup
matrix norm was of the order of 1021, and in the second
test case, it was of the order of 1016.

III.A. Chebyshev Rational
Approximation Method

The CRAM approximations of orders k � 12 were
computed using the Carathéodory–Fejér method imple-
mented as a MATLAB script in Ref. 14, and approxima-
tions of orders 14 and 16 were formed using the newly
computed coefficients provided in Tables I and II. The
numerical results for the first test case are shown in
Table III and Fig. 4. Note that no nuclides were excluded
from these results; i.e., even the nuclides with extremely
small number densities have been included in the mean
and maximum relative errors. The improvement in accu-
racy gained by recomputing the CRAM coefficients for
approximation order 14 is illustrated in Fig. 5, which
shows that the relative error is roughly 102 times smaller
with the new coefficients provided in Sec. II.A.

Overall, it can be seen from the results that even
relatively small CRAM approximation orders give re-
markably accurate solutions to the first test case. From a
practical point of view, orders of approximation as small
as k � 2 or k � 4 could be used for solving the burnup
equations for this test case without compromising the
accuracy of the entire burnup calculation. For compari-
son, arguably the most established matrix exponential
method, the Padé approximation ~with scaling and squar-
ing! suffered a total breakdown when applied to the same
test case,1 which serves well to illustrate the special char-
acteristics of the burnup equations.

To study the convergence rate of CRAM, the error
of the nuclide concentrations in the maximum norm was
plotted against the approximation order, and the results
are shown in Fig. 4. It can be seen that the convergence
of the method is clearly geometric. The actual conver-
gence rate can be estimated by performing a least-
squares fit to the points, suggesting that the convergence
is of the order of O~9.20�N ! for k � 2, . . . ,14. Notice
that this is very close to the theoretical asymptotic con-
vergence rate, giving further proof of this method’saThis is the same system as test case 1 in Ref. 1.

TABLE III

Accuracy of CRAM Approximation Applied to Test Case 1*

Approximation
Order Mean Error Maximum Error

Mean
Relative Error

Maximum
Relative Error

2 3.3901 � 10�7 3.3110 � 10�4 8.3015 � 10�2 1.9561 � 100

4 4.0252 � 10�9 3.8736 � 10�6 5.6140 � 10�3 6.3820 � 10�1

6 4.7339 � 10�11 4.5163 � 10�8 2.2452 � 10�4 3.8184 � 10�2

8 5.5808 � 10�13 5.2486 � 10�10 7.1664 � 10�6 1.5762 � 10�3

10 6.5685 � 10�15 6.0944 � 10�12 1.9529 � 10�7 5.1640 � 10�5

12 7.6474 � 10�17 6.9690 � 10�14 4.7280 � 10�9 1.4323 � 10�6

14 9.5452 � 10�19 9.5339 � 10�16 1.0384 � 10�10 3.4990 � 10�8

16 2.0748 � 10�19 1.6377 � 10�16 2.1196 � 10�12 7.7286 � 10�10

*The errors were computed against a reference solution calculated with high-precision arithmetics.

Fig. 4. Convergence of CRAM approximation applied to
the first test case with 1532 nuclides.
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the same order for burnup matrices representing fresh
and depleted fuel; i.e., the reduced accuracy is not re-
lated to the properties of the burnup matrix. However, a
closer examination showed a clear trend between the
importance of particular nuclide chains and the relative
accuracy of the corresponding matrix elements. That is,
the matrix elements corresponding to less important
chains are also computed with poorer relative accuracy
with CRAM. This is mathematically reasonable since
the relative accuracy of CRAM approximation [r~x! di-
minishes as xr �`.b

It follows that the reduced relative accuracy ob-
served in fresh fuel cases is indeed related to the less
important nuclide chains. The approximation error for
nuclide concentration ni may be written

«i � �(
j�1

n

~Eij � ZEij !n0j� . ~18!

When the fuel is fresh, most of the initial concentrations
are zero, and hence, the error «i is determined by the
accuracy of the few matrix elements ZEij that correspond
to the chains originating from these nuclides. As an ex-
ample, consider the curium isotope 246Cm, which causes
the maximum relative error 1.1091 � 10�6 in CRAM
approximation of order 16 in test case 2. There are 61
nuclides ranging from 232Th to 245Cm that may contrib-
ute to the concentration of this nuclide, and in terms of
the burnup matrix alone, nuclides corresponding to sim-
ple and short nuclide chains are the most significant ones.
The theoretical contribution attributable to such chains
is as much as 108 to 1026 times greater than the contri-
bution originating from uranium isotopes. When the fuel
is fresh, however, the uranium isotopes are the only nu-
clides having nonzero initial concentrations. The re-
duced relative accuracy is a direct consequence of this.
In this example case, the only relevant chain actually
originates from 238U, and the relative error correspond-
ing to this chain is of the order of 10�6, which is in
accordance with the relative error of the result. For com-
parison, the relative error for this nuclide is 6.2857 �
10�11 in the depleted fuel case.

As no nuclides were excluded from the results shown
in Table IV, the relative maximum errors may reflect
individual concentrations corresponding to exotic nu-
clides or concentrations arbitrarily close to zero. In the
depleted case, for example, all relative errors of order
100 occur for the unstable dysprosium isotope 155Dy,
whose atomic fraction is;10�24. The relative errors cor-
responding to CRAM approximation of order 6 are shown
in Fig. 6. It can be seen from Fig. 6 that all other nuclides
have relative errors that are several orders of magnitude
smaller. The least unlikely nuclide chains for 155Dy orig-
inate from fission product nuclides, and hence, the re-

duced relative accuracy is observed in depleted fuel cases
with small approximation orders. Notice that for higher
approximation orders the relative errors are also consis-
tently extremely small.

From a practical point of view, the results computed
with CRAM approximation are remarkably accurate in
both test cases. The cross-section uncertainties related to
the transmutation reaction rates ~i.e., burnup matrix ele-
ments! usually range from 10�2 to 10�1 in typical reac-
tor physics calculations. When Monte Carlo methods are
used, the statistical error also reduces the accuracy of the
burnup matrix elements. With all this taken into consid-
eration, even approximation orders as low as k � 6 could
be used without compromising the total accuracy of a
burnup calculation.

In addition to accuracy, another advantage of CRAM
is its low computational cost. The order of approxima-
tion can be easily adjusted to suit needs for accuracy or
speed. As can be seen from Eq. ~10!, the computation
time is directly proportional to the approximation order
k. If the sparsity pattern of the burnup matrix is properly
exploited, the approximations can be computed with re-
markably short calculation times. For example, the com-
putation of an approximation of order k � 14 for a test
case with about 1500 nuclides takes less than a tenth of a
second in the Serpent reactor physics code.1,5

III.B. Rational Approximation from
Quadrature Formula

As explained in Sec. II.B, rational approximations
to the matrix exponential can be derived from quadrature
rules applied to contour integrals. Here, this technique is
illustrated by using the contour of Eq. ~15!, which is of
the form

f~x! � k~a� bx 2 � igx! , ~19!
b Notice that it is impossible to derive best approxima-

tions with respect to the relative error.

Fig. 6. Relative errors related to CRAM approximation
of order 6 applied to the depleted fuel burnup equations in test
case 2. The errors were computed against a reference solution
calculated with high-precision arithmetics.
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suitability in the context of burnup equations. For k �
16, the round-off error began to affect the result, and
hence, the convergence was slightly slower. It should be
noted that as an approximation of order k requires k02
linear solves, Fig. 4 also illustrates the computational
cost of CRAM versus the maximum error.

It has been observed that the accuracy of CRAM
depends relatively little on the fuel composition or neu-
tron spectrum corresponding to the burnup matrix.1,5 How-
ever, it has been noticed that CRAM generally produces
less accurate results for fresh fuel than for depleted fuel.5

When the fuel is fresh, only a few elements of n0 in
Eq. ~1! are nonzero, and all the nuclides are produced
solely from these initial nuclides. For a large part of
nuclides, this means both long and complex transmuta-
tion chains. It has been suggested that the observed re-
duction in accuracy is due to this and that the errors
might be averaged out in depleted cases, where there are
more initial nuclides.5 To further quantify this effect,
CRAM was applied to fresh fuel and fuel irradiated to 20
MWd0kg U burnup. This setup is referred to as test case
2 in this paper, and the numerical results are shown in
Table IV. It can be seen from these results that although
the absolute errors for both cases are very similar, the
relative errors related to the fresh fuel computation are
roughly 102 times greater than the ones corresponding to
the depleted fuel case.

To further investigate this issue, a CRAM approxi-
mation of order 16 was explicitly computed for the burnup
matrices representing fresh and depleted fuel in test case 2,
and the elements of the approximation matrices ZE �
[r16,16~At ! were compared to the reference matrix expo-

nentials E � eAt computed using MATLAB’s Symbolic
toolbox with high-precision arithmetics. This compari-
son showed that the accuracy of the approximation is of

Fig. 5. Absolute values of the errors computed with CRAM
approximation of order 14 using the PFD coefficients from
Ref. 11 ~dots! and using the recently computed coefficients
~crosses!. ZA � 1000 � Z � A, where Z is the atomic number
and A is the mass number of the nuclide.

TABLE IV

Accuracy of CRAM Approximation Applied to Test Case 2*

Approximation
Order Mean Error Maximum Error

Mean
Relative Error

Maximum
Relative Error

Fresh fuel
2 4.0451 � 10�7 3.3117 � 10�4 4.2189 � 100 2.3900 � 103

4 4.8034 � 10�9 3.8747 � 10�6 4.4645 � 10�1 1.5813 � 102

6 5.6347 � 10�11 4.5181 � 10�8 4.0548 � 10�2 1.9953 � 101

8 6.5984 � 10�13 5.2511 � 10�10 4.5634 � 10�3 3.9451 � 100

10 7.6769 � 10�15 6.0979 � 10�12 5.5147 � 10�5 5.3277 � 10�2

12 8.9182 � 10�17 6.9653 � 10�14 1.6627 � 10�6 1.7515 � 10�3

14 1.0448 � 10�18 8.1185 � 10�16 4.2531 � 10�8 4.7451 � 10�5

16 3.0297 � 10�19 2.6715 � 10�16 9.5605 � 10�10 1.1091 � 10�6

Depleted fuel
2 4.0231 � 10�7 3.3113 � 10�4 4.7487 � 10�2 1.7192 � 100

4 4.7767 � 10�9 3.8741 � 10�6 1.4957 � 10�3 8.8440 � 10�2

6 5.6312 � 10�11 4.5172 � 10�8 1.3526 � 10�3 1.6976 � 100

8 6.6458 � 10�13 5.2498 � 10�10 1.1667 � 10�3 1.5040 � 100

10 7.8380 � 10�15 6.0962 � 10�12 1.2991 � 10�6 1.6558 � 10�3

12 9.1377 � 10�17 6.9757 � 10�14 2.7517 � 10�10 5.9628 � 10�8

14 9.7118 � 10�19 6.7307 � 10�16 4.6712 � 10�12 1.1744 � 10�9

16 3.3790 � 10�19 3.6082 � 10�16 2.5916 � 10�13 2.2667 � 10�10

*The errors were computed against a reference solution calculated with high-precision arithmetics.
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the same order for burnup matrices representing fresh
and depleted fuel; i.e., the reduced accuracy is not re-
lated to the properties of the burnup matrix. However, a
closer examination showed a clear trend between the
importance of particular nuclide chains and the relative
accuracy of the corresponding matrix elements. That is,
the matrix elements corresponding to less important
chains are also computed with poorer relative accuracy
with CRAM. This is mathematically reasonable since
the relative accuracy of CRAM approximation [r~x! di-
minishes as xr �`.b

It follows that the reduced relative accuracy ob-
served in fresh fuel cases is indeed related to the less
important nuclide chains. The approximation error for
nuclide concentration ni may be written

«i � �(
j�1

n

~Eij � ZEij !n0j� . ~18!

When the fuel is fresh, most of the initial concentrations
are zero, and hence, the error «i is determined by the
accuracy of the few matrix elements ZEij that correspond
to the chains originating from these nuclides. As an ex-
ample, consider the curium isotope 246Cm, which causes
the maximum relative error 1.1091 � 10�6 in CRAM
approximation of order 16 in test case 2. There are 61
nuclides ranging from 232Th to 245Cm that may contrib-
ute to the concentration of this nuclide, and in terms of
the burnup matrix alone, nuclides corresponding to sim-
ple and short nuclide chains are the most significant ones.
The theoretical contribution attributable to such chains
is as much as 108 to 1026 times greater than the contri-
bution originating from uranium isotopes. When the fuel
is fresh, however, the uranium isotopes are the only nu-
clides having nonzero initial concentrations. The re-
duced relative accuracy is a direct consequence of this.
In this example case, the only relevant chain actually
originates from 238U, and the relative error correspond-
ing to this chain is of the order of 10�6, which is in
accordance with the relative error of the result. For com-
parison, the relative error for this nuclide is 6.2857 �
10�11 in the depleted fuel case.

As no nuclides were excluded from the results shown
in Table IV, the relative maximum errors may reflect
individual concentrations corresponding to exotic nu-
clides or concentrations arbitrarily close to zero. In the
depleted case, for example, all relative errors of order
100 occur for the unstable dysprosium isotope 155Dy,
whose atomic fraction is;10�24. The relative errors cor-
responding to CRAM approximation of order 6 are shown
in Fig. 6. It can be seen from Fig. 6 that all other nuclides
have relative errors that are several orders of magnitude
smaller. The least unlikely nuclide chains for 155Dy orig-
inate from fission product nuclides, and hence, the re-

duced relative accuracy is observed in depleted fuel cases
with small approximation orders. Notice that for higher
approximation orders the relative errors are also consis-
tently extremely small.

From a practical point of view, the results computed
with CRAM approximation are remarkably accurate in
both test cases. The cross-section uncertainties related to
the transmutation reaction rates ~i.e., burnup matrix ele-
ments! usually range from 10�2 to 10�1 in typical reac-
tor physics calculations. When Monte Carlo methods are
used, the statistical error also reduces the accuracy of the
burnup matrix elements. With all this taken into consid-
eration, even approximation orders as low as k � 6 could
be used without compromising the total accuracy of a
burnup calculation.

In addition to accuracy, another advantage of CRAM
is its low computational cost. The order of approxima-
tion can be easily adjusted to suit needs for accuracy or
speed. As can be seen from Eq. ~10!, the computation
time is directly proportional to the approximation order
k. If the sparsity pattern of the burnup matrix is properly
exploited, the approximations can be computed with re-
markably short calculation times. For example, the com-
putation of an approximation of order k � 14 for a test
case with about 1500 nuclides takes less than a tenth of a
second in the Serpent reactor physics code.1,5

III.B. Rational Approximation from
Quadrature Formula

As explained in Sec. II.B, rational approximations
to the matrix exponential can be derived from quadrature
rules applied to contour integrals. Here, this technique is
illustrated by using the contour of Eq. ~15!, which is of
the form

f~x! � k~a� bx 2 � igx! , ~19!
b Notice that it is impossible to derive best approxima-

tions with respect to the relative error.

Fig. 6. Relative errors related to CRAM approximation
of order 6 applied to the depleted fuel burnup equations in test
case 2. The errors were computed against a reference solution
calculated with high-precision arithmetics.
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As the value of c is increased from zero, the contour
f~x � ic! narrows down, and it approaches the negative
real axis when c reaches the value c �g0~2b!. By choos-
ing h � 2p0k the convergence of order

O~e�ck ! � O~e�1.0469k !� O~2.85�k !

is achieved for the case, where all the eigenvalues lie
on the negative real axis. This result can be generalized
for burnup matrices having eigenvalues near the nega-
tive real axis. It seems to be sufficient to require that
Im f~x � ic!� 0.1 at the origin. From this requirement it
is straightforward to derive the following equation for c:

k 2b�1~a� bc2 � gc!~g� 2b!2 � 0.1 . ~23!

In practice, the convergence of the quadrature scheme
can be estimated by solving this equation for sufficiently

small k with respect to the number of nodes used in the
calculations. For quadrature order k � 4, Eq. ~23! gives
c � 0.93, and thus, the convergence should be at least of
the order of O~2.53�N ! for this singularity distribution.
Note that this estimate corresponds to the worst-case sce-
nario, where practically all the singularities are located
on the contour f~x � ic!. In practice, however, only a
fraction of the eigenvalues of At lie off the real axis, and
the majority of them have imaginary parts smaller than
10�1.

The maximum norm error in test case 1 is plotted
against the quadrature order in Fig. 7. As in the case of
CRAM, the computational cost is directly proportional
to the approximation order k, and consequently, Fig. 7
also illustrates the computational cost of the quadrature
scheme versus the maximum error. A least-squares fit
to the points k � 32 suggests that the convergence is

TABLE VI

Accuracy of Quadrature Approximation Applied to Test Case 2*

Approximation
Order Mean Error Maximum Error

Mean
Relative Error

Maximum
Relative Error

Fresh fuel
4 1.7504 � 10�6 1.4528 � 10�3 3.0494 � 101 1.5087 � 104

8 2.6904 � 10�8 2.1931 � 10�5 3.5070 � 100 1.5082 � 103

12 3.9894 � 10�10 3.2276 � 10�7 4.1829 � 10�1 3.1038 � 102

16 5.9978 � 10�12 4.8131 � 10�9 2.7340 � 10�2 2.2658 � 101

20 8.9027 � 10�14 7.0744 � 10�11 3.7238 � 10�2 4.6645 � 101

24 1.3364 � 10�15 1.0451 � 10�12 9.4550 � 10�4 1.1684 � 100

28 1.9949 � 10�17 1.5307 � 10�14 1.2510 � 10�6 1.4528 � 10�3

32 3.5814 � 10�19 2.8449 � 10�16 3.4718 � 10�8 4.1451 � 10�5

36 1.7146 � 10�19 1.8735 � 10�16 8.7330 � 10�10 1.0632 � 10�6

40 8.0602 � 10�20 8.3267 � 10�17 2.0294 � 10�11 2.5030 � 10�8

44 2.9928 � 10�19 3.6776 � 10�16 5.1227 � 10�13 5.4906 � 10�10

48 6.8488 � 10�19 5.3429 � 10�16 2.8378 � 10�13 3.4522 � 10�10

52 2.0623 � 10�19 2.3592 � 10�16 1.2807 � 10�13 1.5392 � 10�10

56 4.3947 � 10�18 3.8441 � 10�15 4.3086 � 10�13 5.2005 � 10�10

60 2.8439 � 10�18 1.8804 � 10�15 1.9729 � 10�13 1.8854 � 10�10

Depleted fuel
4 1.7491 � 10�6 1.4527 � 10�3 1.5504 � 10�1 2.2859 � 100

8 2.6863 � 10�8 2.1928 � 10�5 8.1883 � 10�3 5.7021 � 10�1

12 4.0052 � 10�10 3.2270 � 10�7 9.2944 � 10�4 8.4914 � 10�1

16 6.0748 � 10�12 4.8119 � 10�9 1.7091 � 10�4 2.1048 � 10�1

20 9.0998 � 10�14 7.0723 � 10�11 3.0635 � 10�4 3.9490 � 10�1

24 1.3717 � 10�15 1.0447 � 10�12 5.3881 � 10�3 6.9504 � 100

28 2.0572 � 10�17 1.5314 � 10�14 5.8635 � 10�7 7.5604 � 10�4

32 4.2531 � 10�19 2.8449 � 10�16 2.1854 � 10�12 6.4981 � 10�10

36 1.6180 � 10�19 1.4572 � 10�16 5.2742 � 10�14 1.3987 � 10�11

40 2.0604 � 10�19 1.9429 � 10�16 2.3263 � 10�14 2.4936 � 10�11

44 3.9955 � 10�19 4.1633 � 10�16 8.4011 � 10�15 3.8230 � 10�12

48 9.5099 � 10�19 7.3552 � 10�16 6.8619 � 10�14 6.7985 � 10�11

52 1.2022 � 10�18 1.0270 � 10�15 1.1006 � 10�13 1.1291 � 10�10

56 3.7045 � 10�18 3.0531 � 10�15 3.8593 � 10�13 4.0835 � 10�10

60 4.3363 � 10�18 3.2127 � 10�15 1.7439 � 10�13 1.3113 � 10�10

*The errors were computed against a reference solution calculated with high-precision arithmetics.
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where a,b,g � 0 and x � R. In the context of burnup
equations, the integral under consideration is of the form
of Eq. ~7! and can be written

~eAt !kl �
1

2pi
�
G

ezRkl ~z! dz ,

�
1

2pi
�

�`

`

ef~x!Rkl ~f~x!!f
'~x! dx . ~20!

The numerical results for test cases 1 and 2 are shown
in Tables V and VI, respectively. By comparing these
results to those obtained with CRAM, it can be seen that
this approach is well-suited for solving the burnup equa-
tions. Notice that although the convergence of this method
is much slower than the convergence of CRAM, the re-
sults are qualitatively very similar. The results for test
case 1 are again more accurate, and the large overall
relative errors in the depleted case of test case 2 result
from the single dysprosium isotope 155Dy.

The total error in the results consists of the theoret-
ical approximation error and the round-off error related
to the finite precision arithmetics used in the computa-
tions. When the approximation order is greater than 36,
the round-off errors begin to contribute to the accuracy,
after which the maximum error does not significantly
diminish. However, it can be seen from the results that
with sufficiently high quadrature orders, it is possible
to obtain at least ten correct digits for all nuclide con-
centrations, which can be considered quite remarkable.
This is a sufficient accuracy for all considerable burnup
calculations, and hence, this approach could be suitable

for computing reference solutions for other numerical
methods.

Another advantage related to rational approxima-
tions derived from quadrature formulas is that it is pos-
sible to derive conservative convergence estimates for
different eigenvalue distributions. Because of the expo-
nential factor in the integral, the convergence of quadra-
ture rules applied to the computation of this integral is
determined by the region of analyticity of the integrand
function continued to the complex plane. If the integrand
function is analytic in the infinite strip

DS � $z � C 6z � x � iy, � d � y � c% , ~21!

the convergence with respect to the interval length h is
of order O~e�2pc0h � e�2pd0h ! as h r 0. In addition,
the truncation error can be estimated to be of order
O~6g~hN !6! as N r ` ~Ref. 15!. The integrand in
Eq. ~20! can be written

g~x � iv! � ef~x�iv!Rkl ~f~x � iv!!f '~x � iv! .

~22!

Because the only singularities of the function g are the
poles of the rational function Rkl , the singularity distri-
bution of g consists of points that are mapped onto the
eigenvalues of At. Since the eigenvalues of burnup ma-
trices are all confined to a region near the negative real
axis, the convergence rate should be dominated by the
factor O~e2pc0h !, where the constant c depends directly
on the magnitudes of the imaginary parts of the
eigenvalues.

TABLE V

Accuracy of Quadrature Approximation Applied to Test Case 1*

Approximation
Order Mean Error Maximum Error

Mean
Relative Error

Maximum
Relative Error

4 1.4726 � 10�6 1.4526 � 10�3 2.4786 � 10�1 1.4951 � 101

8 2.2621 � 10�8 2.1925 � 10�5 3.5720 � 10�2 4.7308 � 100

12 3.3657 � 10�10 3.2264 � 10�7 2.0632 � 10�3 4.1914 � 10�1

16 5.0968 � 10�12 4.8108 � 10�9 8.8273 � 10�5 2.2515 � 10�2

20 7.6246 � 10�14 7.0702 � 10�11 3.1568 � 10�6 9.4284 � 10�4

24 1.1477 � 10�15 1.0443 � 10�12 9.9082 � 10�8 3.3211 � 10�5

28 1.7191 � 10�17 1.5314 � 10�14 2.8082 � 10�9 1.0277 � 10�6

32 3.3333 � 10�19 2.7756 � 10�16 7.4740 � 10�11 2.8729 � 10�8

36 1.2452 � 10�19 1.5266 � 10�16 1.7969 � 10�12 7.3949 � 10�10

40 3.2204 � 10�20 2.4286 � 10�17 4.4542 � 10�14 1.7772 � 10�11

44 2.6421 � 10�19 3.6082 � 10�16 5.9574 � 10�15 4.0187 � 10�13

48 7.0675 � 10�19 8.8124 � 10�16 1.2903 � 10�14 2.3370 � 10�13

52 6.5418 � 10�19 4.9266 � 10�16 1.6877 � 10�14 2.4932 � 10�13

56 2.8871 � 10�18 3.0947 � 10�15 5.1656 � 10�14 1.4797 � 10�13

60 3.7784 � 10�18 4.7531 � 10�15 6.2409 � 10�14 2.2402 � 10�13

*The errors were computed against a reference solution calculated with high-precision arithmetics.
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As the value of c is increased from zero, the contour
f~x � ic! narrows down, and it approaches the negative
real axis when c reaches the value c �g0~2b!. By choos-
ing h � 2p0k the convergence of order

O~e�ck ! � O~e�1.0469k !� O~2.85�k !

is achieved for the case, where all the eigenvalues lie
on the negative real axis. This result can be generalized
for burnup matrices having eigenvalues near the nega-
tive real axis. It seems to be sufficient to require that
Im f~x � ic!� 0.1 at the origin. From this requirement it
is straightforward to derive the following equation for c:

k 2b�1~a� bc2 � gc!~g� 2b!2 � 0.1 . ~23!

In practice, the convergence of the quadrature scheme
can be estimated by solving this equation for sufficiently

small k with respect to the number of nodes used in the
calculations. For quadrature order k � 4, Eq. ~23! gives
c � 0.93, and thus, the convergence should be at least of
the order of O~2.53�N ! for this singularity distribution.
Note that this estimate corresponds to the worst-case sce-
nario, where practically all the singularities are located
on the contour f~x � ic!. In practice, however, only a
fraction of the eigenvalues of At lie off the real axis, and
the majority of them have imaginary parts smaller than
10�1.

The maximum norm error in test case 1 is plotted
against the quadrature order in Fig. 7. As in the case of
CRAM, the computational cost is directly proportional
to the approximation order k, and consequently, Fig. 7
also illustrates the computational cost of the quadrature
scheme versus the maximum error. A least-squares fit
to the points k � 32 suggests that the convergence is

TABLE VI

Accuracy of Quadrature Approximation Applied to Test Case 2*

Approximation
Order Mean Error Maximum Error

Mean
Relative Error

Maximum
Relative Error

Fresh fuel
4 1.7504 � 10�6 1.4528 � 10�3 3.0494 � 101 1.5087 � 104

8 2.6904 � 10�8 2.1931 � 10�5 3.5070 � 100 1.5082 � 103

12 3.9894 � 10�10 3.2276 � 10�7 4.1829 � 10�1 3.1038 � 102

16 5.9978 � 10�12 4.8131 � 10�9 2.7340 � 10�2 2.2658 � 101

20 8.9027 � 10�14 7.0744 � 10�11 3.7238 � 10�2 4.6645 � 101

24 1.3364 � 10�15 1.0451 � 10�12 9.4550 � 10�4 1.1684 � 100

28 1.9949 � 10�17 1.5307 � 10�14 1.2510 � 10�6 1.4528 � 10�3

32 3.5814 � 10�19 2.8449 � 10�16 3.4718 � 10�8 4.1451 � 10�5

36 1.7146 � 10�19 1.8735 � 10�16 8.7330 � 10�10 1.0632 � 10�6

40 8.0602 � 10�20 8.3267 � 10�17 2.0294 � 10�11 2.5030 � 10�8

44 2.9928 � 10�19 3.6776 � 10�16 5.1227 � 10�13 5.4906 � 10�10

48 6.8488 � 10�19 5.3429 � 10�16 2.8378 � 10�13 3.4522 � 10�10

52 2.0623 � 10�19 2.3592 � 10�16 1.2807 � 10�13 1.5392 � 10�10

56 4.3947 � 10�18 3.8441 � 10�15 4.3086 � 10�13 5.2005 � 10�10

60 2.8439 � 10�18 1.8804 � 10�15 1.9729 � 10�13 1.8854 � 10�10

Depleted fuel
4 1.7491 � 10�6 1.4527 � 10�3 1.5504 � 10�1 2.2859 � 100

8 2.6863 � 10�8 2.1928 � 10�5 8.1883 � 10�3 5.7021 � 10�1

12 4.0052 � 10�10 3.2270 � 10�7 9.2944 � 10�4 8.4914 � 10�1

16 6.0748 � 10�12 4.8119 � 10�9 1.7091 � 10�4 2.1048 � 10�1

20 9.0998 � 10�14 7.0723 � 10�11 3.0635 � 10�4 3.9490 � 10�1

24 1.3717 � 10�15 1.0447 � 10�12 5.3881 � 10�3 6.9504 � 100

28 2.0572 � 10�17 1.5314 � 10�14 5.8635 � 10�7 7.5604 � 10�4

32 4.2531 � 10�19 2.8449 � 10�16 2.1854 � 10�12 6.4981 � 10�10

36 1.6180 � 10�19 1.4572 � 10�16 5.2742 � 10�14 1.3987 � 10�11

40 2.0604 � 10�19 1.9429 � 10�16 2.3263 � 10�14 2.4936 � 10�11

44 3.9955 � 10�19 4.1633 � 10�16 8.4011 � 10�15 3.8230 � 10�12

48 9.5099 � 10�19 7.3552 � 10�16 6.8619 � 10�14 6.7985 � 10�11

52 1.2022 � 10�18 1.0270 � 10�15 1.1006 � 10�13 1.1291 � 10�10

56 3.7045 � 10�18 3.0531 � 10�15 3.8593 � 10�13 4.0835 � 10�10

60 4.3363 � 10�18 3.2127 � 10�15 1.7439 � 10�13 1.3113 � 10�10

*The errors were computed against a reference solution calculated with high-precision arithmetics.
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actually of the order of 2.85�k until round-off errors be-
gin to dominate the error. Judging by this, the few non-
real eigenvalues having small imaginary parts are not
relevant when using rational approximations that are ac-
curate near the negative real axis. This gives further cred-
ibility to the suitability of this type of approximation in
the context of burnup equations.

IV. SUMMARY AND CONCLUSIONS

The computation of the matrix exponential has been
considered challenging in the context of burnup equa-
tions because the magnitudes of the transmutation and
decay constants vary extensively, making the problem
extremely stiff. Traditionally, these difficulties have been
avoided by using simplified models or by excluding the
short-lived nuclides from the computation and treating
them separately. However, it was recently discovered
by the author that the eigenvalues of burnup matrices
are confined to a region near the negative real axis, and
this property can be exploited by using rational approx-
imations that are highly accurate there.1 This allows for
simultaneously solving the entire system containing thou-
sands of nuclides in an accurate and efficient manner.

In this paper, two different types of rational approx-
imation were considered for computing the exponential
of a burnup matrix—the previously introduced CRAM
approximation, which can be characterized as the best
rational approximation on the negative real axis, and an
approximation method based on quadrature rules ap-
plied to a contour integral around the negative real axis.
Both methods are very straightforward to implement be-
cause only a few lines of program code and a function
for solving a set of linear equations are required.

The motivation for introducing the latter method was
that although CRAM appears to be the most efficient
method for computing the matrix exponential of a burnup

matrix, its higher-order partial fraction coefficients are
difficult to obtain. In addition, the previous literature
values11 for order-14 coefficients were discovered to con-
tain round-off errors that resulted in relative accuracy
two orders of magnitude poorer than expected by theory.
To rectify this, new partial fraction coefficients were com-
puted and reported for CRAM approximation orders 14
and 16. Although the accuracy of order-16 CRAM is
more than sufficient for most thinkable burnup applica-
tions, and it can be readily implemented using the coef-
ficients provided in this paper, the proposed quadrature
approach is an attractive alternative. Its benefits include
flexibility in terms of balancing efficiency and accuracy
for routine burnup calculations with geometric conver-
gence properties as well as the possibility of computing
reference results with extremely high accuracy, limited
only by the available arithmetic precision. Such refer-
ence results offer a distinct benchmark that other matrix
exponential methods can be compared against in the fu-
ture. In this paper, the reference solutions for the two test
cases were painstakingly computed using high-precision
arithmetics, and they confirmed the accuracy of the high-
order quadrature approximations.

Regarding CRAM, this paper is the first to discuss
approximation orders other than 14 and to study the
convergence properties of the method in the context of
burnup equations. In addition, the sources of approxi-
mation error were analyzed, and the observed differ-
ences in resulting accuracy for fresh and depleted fuel
were explained. The new discoveries and observations
fully support our previous assessment of CRAM being
capable of providing a very accurate and robust solu-
tion to the burnup equations with a very low computa-
tional cost.

The main motivation and context for the presented
work is the Serpent reactor physics code,13 which was
the first of its kind to implement CRAM specifically for
solving the burnup equations. As previously mentioned,
the literature values for the order-14 CRAM coeffi-
cients, on which the implementation of CRAM in the
current release version of Serpent is also based, are in-
accurate, and future development plans for Serpent in-
clude implementing CRAM of orders 2 through 16 using
the correct coefficients.
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CORRECTION TO PARTIAL FRACTION DECOMPOSITION

COEFFICIENTS FOR CHEBYSHEV RATIONAL

APPROXIMATION ON THE NEGATIVE REAL AXIS

MARIA PUSA

Abstract. Chebyshev rational approximation can be a viable method to com-
pute the exponential of matrices with eigenvalues in the vicinity of the negative
real axis, and it was recently applied successfully to solving nuclear fuel burnup
equations. Determining the partial fraction decomposition (PFD) coefficients
of this approximation can be difficult and they have been provided (for ap-
proximation orders 10 and 14) by Gallopoulos and Saad in “Efficient solution
of parabolic equations by Krylov approximation methods”, SIAM J. Sci. Stat.
Comput., 13(1992). It was recently discovered that the order 14 coefficients
contain errors and result in 102 times poorer accuracy than expected by theory.
The purpose of this note is to provide the correct PFD coefficients for approx-
imation orders 14 and 16 and to briefly discuss the approximation accuracy
resulting from the erroneous coefficients.

1. Chebyshev rational approximation

This note concerns the computation of matrix exponential based on the Cheby-
shev rational approximation method (abbreviated cram in [7]) on the negative real
axis. In this approach, the matrix exponential eAt is approximated by a rational
matrix function r̂(At), where the rational function r̂(z) is chosen as the best ratio-
nal approximation of the exponential function on the negative real axis R−. Let
πk,k denote the set of rational functions rk,k(x) = pk(x)/qk(x) where pk and qk
are polynomials of order k. The cram approximation of order k is defined as the
unique rational function r̂k,k = p̂k(x)/q̂k(x) satisfying

(1) sup
x∈R

−

|r̂k,k(x)− ex| = inf
rk,k∈πk,k

{
sup
x∈R

−

|rk,k(x)− ex|

}
.

The asymptotic convergence of this approximation on the negative real axis is
remarkably fast with the convergence rate O(H−k), where H = 9.289 025 49 . . .
is called the Halphen constant [4]. It was recently discovered by Stahl and
Schmelzer [11] that this convergence extends to compact subsets on the complex
plane and also to Hankel contours in C \R−. The application of this approx-
imation to computing the matrix exponential was originally made famous by
Cody, Meinardus, and Varga in 1969 in the context of rational approximation
of e−x on [0,∞) and it was recently resurfaced by Trefethen, Weideman, and
Schmelzer [12]. For self-adjoint and negative semi-definite matrices, the method is
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COEFFICIENTS FOR CHEBYSHEV RATIONAL

APPROXIMATION ON THE NEGATIVE REAL AXIS

MARIA PUSA

Abstract. Chebyshev rational approximation can be a viable method to com-
pute the exponential of matrices with eigenvalues in the vicinity of the negative
real axis, and it was recently applied successfully to solving nuclear fuel burnup
equations. Determining the partial fraction decomposition (PFD) coefficients
of this approximation can be difficult and they have been provided (for ap-
proximation orders 10 and 14) by Gallopoulos and Saad in “Efficient solution
of parabolic equations by Krylov approximation methods”, SIAM J. Sci. Stat.
Comput., 13(1992). It was recently discovered that the order 14 coefficients
contain errors and result in 102 times poorer accuracy than expected by theory.
The purpose of this note is to provide the correct PFD coefficients for approx-
imation orders 14 and 16 and to briefly discuss the approximation accuracy
resulting from the erroneous coefficients.
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Figure 1. (a) Plot of e
x − ř14,14(x) on the negative real axis with

ř14,14 computed based on the partial fraction coefficients from [3], (b)
Plot of e

x− r̂14,14(x) based on the polynomial coefficients from [1]. The
plots were computed using high-precision arithmetics with 32 digits.

approximation denoted by ř14,14, and the polynomial coefficients from [1], with the
corresponding approximation denoted by r̂14,14. According to theory, a necessary
and sufficient condition for the best approximation is that the corresponding error
function equioscillates, i.e. there exists a set of points where it attains its maximum
absolute value with alternating signs. Notice that the approximation computed with
the coefficients from [3] does not exhibit this behavior and in addition results in a
102 times poorer accuracy than expected by theory.

After discovering the erroneous behavior induced by the coefficients from [3],
partial fraction coefficients for approximation orders k = 14 and k = 16 were com-
puted from the polynomial coefficients provided in [1] and subsequently reported
in [6]. The computed pfd coefficients are repeated here in Tables 1 and 2. The
computations were performed with Matlab’s Symbolic Toolbox using high preci-
sion arithmetics with 200 digits to ensure a sufficient accuracy. In Tables 1 and 2
the coefficients have been rounded off to 20 digits. The coefficients in [1] have been
also given with 20 digits’ accuracy, and based on our experience, the approximation
order k = 16 is the highest for which this accuracy is sufficient for computing the
pfd coefficients. For lower approximation orders, 1 ≤ k ≤ 13, the pfd coefficients
can be accurately computed with the approximative Carathéodory–Fejér method
and a Matlab script is provided for this purpose in [8].

2 M. PUSA

guaranteed to yield an error bound in 2-norm that corresponds to the maximum
error of the rational approximation on the negative real axis. This has also been
the main context for scientific applications [2, 9, 10]. Recently, the method has
also been successfully applied to non-self-adjoint matrices with eigenvalues near
the negative real axis [7, 6]. These specific matrices arise from a reactor physics
application, where the changes in nuclide concentrations due to radioactive decay
and neutron-induced reactions are governed by a linear system x

′ = Ax known as
the burnup equations.

2. Partial fraction decomposition form

The main difficulty in using cram for computing the matrix exponential is de-
termining the coefficients of the rational function for a given k. In principle, the
polynomial coefficients of p̂k and q̂k can be computed with Remez-type methods but
this requires delicate algorithms combined with high-precision arithmetics. Fortu-
nately, these coefficients have been computed to a high accuracy by Carpenter et al.
for approximation orders k = 0, 1, . . . , 30 and they are provided in [1]. In practical
applications, however, it is usually advantageous to employ cram in the partial
fraction decomposition (pfd) form. For simple poles, this composition takes the
form

(2) r̂k,k(z) = α0 +

k�

j=1

αj

z − θj
,

where α0 is the limit of the function r̂k,k at infinity, and αj are the residues at the
poles θj :

(3) αj =
p̂k(θj)

q̂′k(θj)
.

Since the coefficients of r̂k,k are real, its poles form conjugate pairs, so the compu-
tational cost can be reduced to half for a real variable x

(4) r̂k,k(x) = α0 + 2Re




k/2�

j=1

αj

x− θj




and the matrix exponential solution may be approximated as

(5) x = α0x0 + 2Re




k/2�

j=1

αj(At− θjI)
−1

x0




for a real matrix A ∈ R
n×n.

Although the pfd coefficients can in principle be computed from the polynomial
coefficients, the computation of the polynomial roots may be ill-conditioned and
requires great care. The pfd coefficients for approximation orders 10 and 14 have
been provided in [3], and the given coefficients for k = 14 have been used in several
applications including the matrix exponential computing package expokit [10] and
the reactor physics code Serpent [5]. However, in the latter context, it was recently
observed that these reported coefficients contain errors and do not correspond to
the true best approximation [6]. To illustrate this, Figure 1 shows the error of
order 14 approximation on the negative real axis computed using two different sets
of coefficients: the partial fraction coefficients from [3], with the corresponding
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Figure 1. (a) Plot of e
x − ř14,14(x) on the negative real axis with

ř14,14 computed based on the partial fraction coefficients from [3], (b)
Plot of e

x− r̂14,14(x) based on the polynomial coefficients from [1]. The
plots were computed using high-precision arithmetics with 32 digits.

approximation denoted by ř14,14, and the polynomial coefficients from [1], with the
corresponding approximation denoted by r̂14,14. According to theory, a necessary
and sufficient condition for the best approximation is that the corresponding error
function equioscillates, i.e. there exists a set of points where it attains its maximum
absolute value with alternating signs. Notice that the approximation computed with
the coefficients from [3] does not exhibit this behavior and in addition results in a
102 times poorer accuracy than expected by theory.

After discovering the erroneous behavior induced by the coefficients from [3],
partial fraction coefficients for approximation orders k = 14 and k = 16 were com-
puted from the polynomial coefficients provided in [1] and subsequently reported
in [6]. The computed pfd coefficients are repeated here in Tables 1 and 2. The
computations were performed with Matlab’s Symbolic Toolbox using high preci-
sion arithmetics with 200 digits to ensure a sufficient accuracy. In Tables 1 and 2
the coefficients have been rounded off to 20 digits. The coefficients in [1] have been
also given with 20 digits’ accuracy, and based on our experience, the approximation
order k = 16 is the highest for which this accuracy is sufficient for computing the
pfd coefficients. For lower approximation orders, 1 ≤ k ≤ 13, the pfd coefficients
can be accurately computed with the approximative Carathéodory–Fejér method
and a Matlab script is provided for this purpose in [8].
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Figure 2. Plot of log
10

|r̂14,14(z) − r̃14,14(z)| in the complex plane.
r̂14,14 was computed based on the partial fraction coefficients from Ta-
ble 1 and r̃14,14 was formed by truncating these coefficients to 6 sig-
nificant digits. The poles of r̂14,14 have been marked to the plot with
asterisks.

3. Analysis of inaccurate pfd coefficients for k = 14

To analyze the effect of inaccurate pfd coefficients denoted by {θ̃j} and {α̃j},
let r̃ denote the corresponding rational approximation. The error caused by the
inaccuracies in the pfd coefficients may be estimated

(6) |r̂k,k(z)− r̃k,k(z)| � |α0 − α̃0|+
k∑

j=1

|αj |

|z − θj |2
|θj − θ̃j |+

1

|z − θj |
|αj − α̃j | ,

indicating that the error is the greatest in the vicinity of the poles. It can also be
seen from Eq. (6) that the inaccuracy related to the poles has a greater impact near
the poles, whereas the error related to the residues should begin to dominate the
total error farther away from the poles. By comparing the old and the recomputed
pfd coefficients for k = 14, it can be seen that the poles all agree to about 6 digits
whereas the residues agree to about 5 digits. 1 The most dramatic discrepancy
occurs for the coefficient α0 for which the significands agree to 5 digits but the
exponent value given in [3] is −12, although the correct value is −14.

On the grounds of Eq. (6), it can be estimated that coefficients with 6 correct
digits should produce a rational function whose deviation from r̂14,14(z) is at most
of the order of 10−3 on the negative real axis. Figure 2 shows the difference between
r̂14,14(z) and a rational function r̃14,14(z) that was formed by truncating the pfd

coefficients of r̂14,14 to 6 significant digits. Interestingly, as can be seen from Fig. 1a,
the approximation ř14,14(x), corresponding to the pfd coefficients from [3], yields a
significantly better accuracy of order 10−12 than is expected based on the accuracy
of the coefficients alone.

1Notice that the pfd coefficients in [3] are given for the rational approximation of e−x on [0,∞)
and that they have been multiplied by a factor of two making Eq. (37) in [3] equivalent to Eq. (5).

4 M. PUSA

Table 1. Recomputed values for the partial fraction decomposition
coefficients for CRAM approximation of order 14.

Coefficient Real part Imaginary part

θ1 −8.897 773 186 468 888 819 9× 100 +1.663 098 261 990 208 530 4× 101

θ2 −3.703 275 049 423 448 060 3× 100 +1.365 637 187 148 326 817 1× 101

θ3 −0.208 758 638 250 130 125 1× 100 +1.099 126 056 190 126 091 3× 101

θ4 +3.993 369 710 578 568 519 4× 100 +6.004 831 642 235 037 317 8× 100

θ5 +5.089 345 060 580 624 506 6× 100 +3.588 824 029 027 006 510 2× 100

θ6 +5.623 142 572 745 977 124 8× 100 +1.194 069 046 343 966 976 6× 100

θ7 +2.269 783 829 231 112 709 7× 100 +8.461 737 973 040 221 401 9× 100

α1 −7.154 288 063 589 067 285 3× 10−5 +1.436 104 334 954 130 011 1× 10−4

α2 +9.439 025 310 736 168 877 9× 10−3
−1.718 479 195 848 301 751 1× 10−2

α3 −3.763 600 387 822 696 871 7× 10−1 +3.351 834 702 945 010 421 4× 10−1

α4 −2.349 823 209 108 270 119 1× 101 −5.808 359 129 714 207 400 4× 100

α5 +4.693 327 448 883 129 304 7× 101 +4.564 364 976 882 776 079 1× 101

α6 −2.787 516 194 014 564 646 8× 101 −1.021 473 399 905 645 143 4× 102

α7 +4.807 112 098 832 508 890 7× 100 −1.320 979 383 742 872 388 1× 100

α0 +1.832 174 378 254 041 275 1× 10−14 +0.000 000 000 000 000 000 0× 100

Table 2. Computed values for the partial fraction decomposition co-
efficients for CRAM approximation of order 16.

Coefficient Real part Imaginary part

θ1 −1.084 391 707 869 698 802 6× 101 +1.927 744 616 718 165 228 4× 101

θ2 −5.264 971 343 442 646 889 5× 100 +1.622 022 147 316 792 730 5× 101

θ3 +5.948 152 268 951 177 480 8× 100 +3.587 457 362 018 322 282 9× 100

θ4 +3.509 103 608 414 918 097 4× 100 +8.436 198 985 884 375 082 6× 100

θ5 +6.416 177 699 099 434 192 3× 100 +1.194 122 393 370 138 687 4× 100

θ6 +1.419 375 897 185 665 978 6× 100 +1.092 536 348 449 672 258 5× 101

θ7 +4.993 174 737 717 996 399 1× 100 +5.996 881 713 603 942 226 0× 100

θ8 −1.413 928 462 488 886 211 4× 100 +1.349 772 569 889 274 538 9× 101

α1 −5.090 152 186 522 491 565 0× 10−7
−2.422 001 765 285 228 797 0× 10−5

α2 +2.115 174 218 246 603 090 7× 10−4 +4.389 296 964 738 067 391 8× 10−3

α3 +1.133 977 517 848 393 052 7× 102 +1.019 472 170 421 585 645 0× 102

α4 +1.505 958 527 002 346 752 8× 101 −5.751 405 277 642 181 997 9× 100

α5 −6.450 087 802 553 964 659 5× 101 −2.245 944 076 265 209 605 6× 102

α6 −1.479 300 711 355 799 971 8× 100 +1.768 658 832 378 293 790 6× 100

α7 −6.251 839 246 320 791 889 2× 101 −1.119 039 109 428 322 848 0× 101

α8 +4.102 313 683 541 002 127 3× 10−2
−1.574 346 617 345 546 819 1× 10−1

α0 +2.124 853 710 495 223 748 8× 10−16 +0.000 000 000 000 000 000 0× 100
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3. Analysis of inaccurate pfd coefficients for k = 14

To analyze the effect of inaccurate pfd coefficients denoted by {θ̃j} and {α̃j},
let r̃ denote the corresponding rational approximation. The error caused by the
inaccuracies in the pfd coefficients may be estimated

(6) |r̂k,k(z)− r̃k,k(z)| � |α0 − α̃0|+
k∑

j=1

|αj |

|z − θj |2
|θj − θ̃j |+

1

|z − θj |
|αj − α̃j | ,

indicating that the error is the greatest in the vicinity of the poles. It can also be
seen from Eq. (6) that the inaccuracy related to the poles has a greater impact near
the poles, whereas the error related to the residues should begin to dominate the
total error farther away from the poles. By comparing the old and the recomputed
pfd coefficients for k = 14, it can be seen that the poles all agree to about 6 digits
whereas the residues agree to about 5 digits. 1 The most dramatic discrepancy
occurs for the coefficient α0 for which the significands agree to 5 digits but the
exponent value given in [3] is −12, although the correct value is −14.

On the grounds of Eq. (6), it can be estimated that coefficients with 6 correct
digits should produce a rational function whose deviation from r̂14,14(z) is at most
of the order of 10−3 on the negative real axis. Figure 2 shows the difference between
r̂14,14(z) and a rational function r̃14,14(z) that was formed by truncating the pfd

coefficients of r̂14,14 to 6 significant digits. Interestingly, as can be seen from Fig. 1a,
the approximation ř14,14(x), corresponding to the pfd coefficients from [3], yields a
significantly better accuracy of order 10−12 than is expected based on the accuracy
of the coefficients alone.

1Notice that the pfd coefficients in [3] are given for the rational approximation of e−x on [0,∞)
and that they have been multiplied by a factor of two making Eq. (37) in [3] equivalent to Eq. (5).



III/6 III/7

CORRECTION TO CHEBYSHEV APPROXIMATION COEFFICIENTS 7

[9] T. Schmelzer and L. N. Trefethen, Evaluating matrix functions for exponential integra-
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To investigate the matter further, let us now take the poles {θ̌j} reported in [3]
as a starting point for constructing a rational approximation of order 14. The poles
{θ̌j} define a polynomial

(7) q̌14(x) =

14∏

j=1

(x− θ̌j)

whose values agree to about 6 digits with the values of the correct polynomial q̂14(x)
on the negative real axis. The residues at the poles {θ̌j} cannot be computed in a
fully consistent manner, since the poles do not correspond to the true zeros of q̂14.
However, two alternative approaches for computing the residues can be considered.
One possibility is to use the correct rational function r̂14,14 and Eq. (3) to compute
the residues, but this is inconsistent as Eq. (3) only holds at the true poles. Another
option is to define a new rational function using q̌14 as the denominator and the
correct polynomial p̂14 as the numerator, after which the residues can be computed
exactly using symbolic arithmetics. With both of these approaches we obtain a
rational approximation, whose accuracy is of the order of 10−6 on the negative
real axis. It is also worth mentioning that forming the rational function based on
the poles {θ̌j} and the correct residues {αj} from Table 1 yields an approximation
whose accuracy is of the order of 10−7 on the negative real axis.

The article [3] by Gallopoulos and Saad does not indicate, how the reported pfd

coefficients were computed, but based on the observations regarding the accuracy
of the resulting approximation, it is evident that the values given for the residues
somehow compensate for the inaccuracies in the poles {θ̌j} and it seems likely that
they have been optimized to minimize the deviation from r̂14,14 on the negative

real axis. In fact, using the poles {θ̌j} and standard least squares optimization in
Matlab with 107 points chosen from the interval [−103,−10−10], we were able to
produce residues yielding only a slightly worse accuracy of order 10−11. In any case,
it should be noted that optimizing the residues properly in the Chebyshev sense
would essentially form a problem of comparable difficulty as the original problem
of determining r̂14,14.
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SOLVING LINEAR SYSTEMS WITH SPARSE GAUSSIAN

ELIMINATION IN THE CHEBYSHEV RATIONAL

APPROXIMATION METHOD (CRAM)

MARIA PUSA AND JAAKKO LEPPÄNEN

Abstract. The Chebyshev Rational Approximation Method (CRAM) has
been recently introduced by the authors for solving the burnup equations with
excellent results. This method has been shown to be capable of simultaneously
solving an entire burnup system with thousands of nuclides both accurately

and efficiently. The method was prompted by an analysis of the spectral
properties of burnup matrices, and it can be characterized as the best ratio-
nal approximation on the negative real axis. The coefficients of the rational

approximation are fixed and have been reported for various approximation or-
ders. In addition to these coefficients, implementing the method only requires
a linear solver. This paper describes an efficient method for solving the lin-
ear systems associated with the CRAM approximation. The introduced direct

method is based on sparse Gaussian elimination, where the sparsity pattern
of the resulting upper triangular matrix is determined before the numerical
elimination phase. The stability of the proposed Gaussian elimination method
is discussed based on considering the numerical properties of burnup matrices.

Suitable algorithms are presented for computing the symbolic factorization
and numerical elimination in order to facilitate the implementation of CRAM

and its adoption into routine use. The accuracy and efficiency of the described
technique are demonstrated by computing the CRAM approximations for a

large test case with over 1600 nuclides.

1. Introduction

The changes in material compositions of a reactor fuel must be taken into ac-
count in all reactor physics calculations, which is in practice handled by burnup
calculation codes. An essential part of a burnup calculation is the solving of the
burnup equations that describe the rates by which the concentrations of the var-
ious nuclides change. The burnup equations form a system of first-order linear
differential equations that can be written in matrix notation as

(1) n′ = An , n(0) = n0 ,

where n(t) ∈ Rn is the nuclide concentration vector and A ∈ Rn×n is the burnup
matrix containing the decay and transmutation coefficients of the nuclides under
consideration. The matrix elements Aij characterize the rates of neutron-induced
reactions and spontaneous radioactive decay by which nuclide j is transformed to
nuclide i, and they are assumed to be fixed constants.

The burnup equations can be formally solved by the matrix exponential method
yielding the simple solution

(2) n(t) = eAtn0 ,
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for a real variable x:

(6) rk,k(x) = α0 + 2Re




k/2∑
j=1

αj

x− θj


 .

The rational approximation to Eq. (2) can then be written

(7) n = α0n0 + 2Re




k/2∑
j=1

αj(At− θjI)
−1n0


 .

Therefore, the computation of a cram approximation of order k requires solving
k/2 linear systems of the form

(8) (At− θjI)xj = αj n0 .

Notice that the partial fraction coefficients for each cram approximation order
are fixed. Therefore, implementing cram only requires a linear solver in addition
to these coefficients. The approximation orders 1 ≤ k ≤ 13 can be computed
with high accuracy by using the approximative Carathéodory–Fejér method. A
Matlab script is provided for this purpose in [4]. In addition, revised sets of
partial fraction coefficients for approximation orders k = 14 and k = 16 have
been recently computed and reported [3, 5]. The development version of Serpent 2
features cram approximation of orders 6, 8, 10, 12, 14 and 16.

When no nuclides are excluded from the computation, the linear systems are
large—the dimensions of the burnup matrix being in the order of a thousand—which
complicates the computation of the cram approximation. Also, the numerical
characteristics of burnup matrices may compromise the accuracy of widely used
iterative solvers. The objective of this paper is to describe a method that can be
used to solve these linear systems in order to compute the cram approximation
in a burnup code. The proposed method is based on sparse Gaussian elimination
and it has been implemented to the reactor physics code Serpent [6]. This paper
is organized as follows. In Section 2, we briefly discuss the numerical properties of
burnup matrices that are essential when selecting a numerical method for solving
the linear systems according to Eq. (8). In Section 3 we review the theoretical
background for sparse Gaussian elimination and introduce suitable algorithms for
implementing the method. Finally, numerical results are presented in Section 4 and
the accuracy and efficiency of the proposed method is demonstrated.

2. Numerical Properties of Burnup Matrices

In order to select a well-suited method for solving the linear systems of Eq. (8),
it is necessary to consider the numerical characteristics of burnup matrices. First
of all, they are both large and sparse. Depending on the nuclear data libraries used
in the computation, the number of nuclides is generally between 1200 and 1600, if
no nuclides are excluded from the computation. The density of the burnup matrix
is a few percent, which corresponds to some tens of thousands of non-zero elements
in a single matrix. The nuclides can naturally be indexed arbitrarily, which can be
exploited when constructing the matrix. Fortunately, the burnup matrix becomes
nearly upper triangular if the nuclides are indexed in ascending order with respect
to their ZAI index, defined as ZAI = 10 000Z + 10A + I, where Z is the atomic
number, A is the mass number and I is the isomeric state number. Due to the
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where the exponential of the matrix At is defined as the power series expression

(3) eAt =

∞∑
k=0

1

k!
(At)

k
,

with the additional definition A0 = I.
There are numerous algorithms for computing the matrix exponential, but be-

cause of the numerical properties of burnup matrices, most of them are ill-suited for
solving the burnup equations. The decay constants of the nuclides vary extensively,
which induces elements with both extremely small and large absolute values to the
burnup matrix. Short-lived nuclides—corresponding to elements with the largest
magnitude—are especially problematic since they increase the matrix norm and
induce eigenvalues with absolute values up to the order of 1021. Furthermore, the
time steps used in burnup calculations can typically vary from a few days (105 sec-
onds) to several months (107 seconds), and to even thousands of years, if only decay
reactions are considered. Most of the established matrix exponential methods, such
as the truncated Taylor series approach or the rational Padé approximation, are
based on approximation near the origin and work well only when the matrix norm
∥At∥ is sufficiently small. Consequently, these algorithms are prone to severe nu-
merical problems when applied to the burnup equations, where this norm can be
of the order of 1028 [1].

These difficulties have traditionally been solved by using simplified burnup chains
or by treating the most short-lived nuclides separately when computing a matrix
exponential solution. However, it was recently discovered by the authors that the
eigenvalues of the burnup matrix are generally confined to a region near the negative
real axis [1]. This observation combined with the fact that in the Chebyshev Ratio-
nal Approximation Method (cram) the rational function r(z) is chosen as the best
rational approximation of the exponential function on the negative real axis R−,
led to applying cram to solving the burnup equations. The rational approximation
in cram can be formally defined as the unique rational function r̂k,k = p̂k(x)/q̂k(x)
satisfying

(4) sup
x∈R−

|r̂k,k(x)− ex| = inf
rk,k∈πk,k

{
sup
x∈R−

|rk,k(x)− ex|

}
,

where πk,k denotes the set of rational functions rk,k(x) = pk(x)/qk(x), where pk and
qk are polynomials of order k. cram has been shown to give a robust and accurate
solution to the burnup equations with a very short computation time [1, 2, 3].

For numerical reasons, it is generally advantageous to compute the matrix ra-
tional function in the partial fraction decomposition form. For a rational function
rk,k(x) with simple poles, the decomposition takes the form

(5) rk,k(z) = α0 +

k∑
j=1

αj

z − θj
,

where α0 is the limit of the function rk,k at infinity and αj are the residues
at the poles θj . The poles of a rational function with real-valued coeffi-
cients form conjugate pairs, so the computational cost can be reduced to half
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for a real variable x:

(6) rk,k(x) = α0 + 2Re




k/2∑
j=1

αj

x− θj


 .

The rational approximation to Eq. (2) can then be written

(7) n = α0n0 + 2Re




k/2∑
j=1

αj(At− θjI)
−1n0


 .

Therefore, the computation of a cram approximation of order k requires solving
k/2 linear systems of the form

(8) (At− θjI)xj = αj n0 .

Notice that the partial fraction coefficients for each cram approximation order
are fixed. Therefore, implementing cram only requires a linear solver in addition
to these coefficients. The approximation orders 1 ≤ k ≤ 13 can be computed
with high accuracy by using the approximative Carathéodory–Fejér method. A
Matlab script is provided for this purpose in [4]. In addition, revised sets of
partial fraction coefficients for approximation orders k = 14 and k = 16 have
been recently computed and reported [3, 5]. The development version of Serpent 2
features cram approximation of orders 6, 8, 10, 12, 14 and 16.

When no nuclides are excluded from the computation, the linear systems are
large—the dimensions of the burnup matrix being in the order of a thousand—which
complicates the computation of the cram approximation. Also, the numerical
characteristics of burnup matrices may compromise the accuracy of widely used
iterative solvers. The objective of this paper is to describe a method that can be
used to solve these linear systems in order to compute the cram approximation
in a burnup code. The proposed method is based on sparse Gaussian elimination
and it has been implemented to the reactor physics code Serpent [6]. This paper
is organized as follows. In Section 2, we briefly discuss the numerical properties of
burnup matrices that are essential when selecting a numerical method for solving
the linear systems according to Eq. (8). In Section 3 we review the theoretical
background for sparse Gaussian elimination and introduce suitable algorithms for
implementing the method. Finally, numerical results are presented in Section 4 and
the accuracy and efficiency of the proposed method is demonstrated.

2. Numerical Properties of Burnup Matrices

In order to select a well-suited method for solving the linear systems of Eq. (8),
it is necessary to consider the numerical characteristics of burnup matrices. First
of all, they are both large and sparse. Depending on the nuclear data libraries used
in the computation, the number of nuclides is generally between 1200 and 1600, if
no nuclides are excluded from the computation. The density of the burnup matrix
is a few percent, which corresponds to some tens of thousands of non-zero elements
in a single matrix. The nuclides can naturally be indexed arbitrarily, which can be
exploited when constructing the matrix. Fortunately, the burnup matrix becomes
nearly upper triangular if the nuclides are indexed in ascending order with respect
to their ZAI index, defined as ZAI = 10 000Z + 10A + I, where Z is the atomic
number, A is the mass number and I is the isomeric state number. Due to the
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process may be more ill-conditioned than the original matrix, which can in turn
grow the round-off error in the forward and back substitution phases of the solution.
This may be demonstrated by the following classical example matrix [9]

(10) A =

[
10−20 1

1 1

]
,

which has the LU decomposition

(11) L =

[
1 0

1020 1

]
, U =

[
10−20 1

0 1− 1020

]
.

In floating point arithmetics the number u22 = 1 − 1020 will be rounded off to

roughly ũ22 = −1020. Consequently, for respective floating point matrices �L and
�U produced by the algorithm, we get the following result

(12) �L �U =

[
10−20 1

1 0

]
,

which is substantially different from A = LU . Also, if we solve the system �L �Ux =
b, the solution will differ drastically from the true solution of Ax = b.

The instability demonstrated in the previous example arises when the interme-
diate quantities computed during the algorithm are large relative to the elements
of A. In order to control this instability, Gaussian elimination is nearly always
implemented with partial pivoting. In partial pivoting, the rows of the matrix are
permuted in such manner that in each column the largest element of the lower
triangular part of the matrix is chosen as the pivot element. This guarantees that
the elements of the lower triangular matrix L fulfill |Lij | ≤ 1. In this case the
algorithm is stable if the elements of U are of the same order as the elements of
A. This stability can be monitored based on a quantity called the growth factor,
defined as

(13) ρ =
maxi,j |uij |
maxi,j |aij |

.

When ρ is of order 1, we can expect Gaussian elimination with partial pivoting to
be stable. Gaussian elimination with partial pivoting is considered to be extremely
stable in practice, although it is possible to construct matrices with large growth
factors. When using partial pivoting, the elements of U can become large (com-
pared to the elements of A) only through the subtraction of rows in the Gaussian
elimination. Therefore, it is relatively easy to show that the maximum value for
the growth factor is ρmax = 2n−1. In practice, however, for the growth factor to
attain the value ρmax would require very special matrices that never seem to arise
in real applications [9].

Therefore, Gaussian elimination with partial pivoting is considered to be a re-
liable method for solving linear systems. There are, however, some difficulties in
applying it efficiently to sparse systems. First of all, it would be sensible to utilize
the sparsity pattern of the matrix under consideration and perform the elimination
solely on the non-zero elements of the matrix. This requires employing a sparse
matrix format where only the non-zero entries are stored together with their row
and column information. During the Gaussian elimination phase, however, new
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size of the problem, the method used to solve systems of Eq. (8) should either be
iterative or exploit the sparsity pattern of the matrices.

The diagonal elements of a burnup matrix are non-positive and the element ajj
characterizes the total rate by which nuclide j is transformed to other nuclides.
The off-diagonal elements, on the other hand, are non-negative and the element aij
describes the rate by which nuclide j is transformed to nuclide i. When forming
the burnup equations, it is possible to take into account the production of by-
product nuclides. In this case, for example, the reaction rate for each (n, p) reaction
contributes to the production rate of 1H. Traditionally, the production of nuclides
as by-products has been ignored in the burnup matrix [7, 8]. Therefore, we will
use the term augmented burnup matrix to refer to the case, where the production
of by-product nuclides has been taken into account when constructing the burnup
matrix. In the development version of Serpent 2, the augmented burnup equations
are solved by default.

The augmented burnup matrix elements satisfy the following relation:

(9) −dj ajj =
∑
i̸=j

aij , j = 1, . . . , n ,

where dj is the average number of nuclides produced in the transmutation and
decay reactions of nuclide j, consisting of the daughter nuclide and the reaction
by-products. Since at most four nuclides can result from a single transmutation or
decay reaction, e.g., from the (n, 3α) reaction, it holds 1 ≤ dj ≤ 4. Apart from
fission, the reactions producing two or more nuclides are relatively improbable,
however, and hence it generally holds 1 ≤ dj ≤ 2.

The half-lives of nuclides vary significantly, and as a result, the absolute val-
ues of burnup matrix elements can range from zero even up to the order of 1021.
As mentioned in Section 1, the extensive variations in the half-lives induce eigen-
values with extremely small and large magnitudes. The respective eigensystem is
generally poorly conditioned with many nearly confluent eigenvalues. Many of the
popular iterative methods, such as biconjugate gradient and generalized minimum
residual method, are based on Krylov subspace techniques and their convergence is
ultimately related to the spectral properties of the matrix at hand. In this context,
it is particularly disadvantageous, if the matrix eigenvalues lie far apart from each
other, which is the case for burnup matrices. Therefore, the numerical character-
istics of burnup matrices may cause both convergence and round-off problems in
these algorithms. For these reasons it was decided to implement a direct method
to Serpent.

3. Sparse Gaussian Elimination

In order to avoid introducing any additional error to the matrix exponential
solution, it would be favorable to solve the systems of Eq. (8) with a direct method
instead of an iterative one. The sparsity pattern of burnup matrices makes Gaussian
elimination a prominent candidate for this task and therefore the application of this
method is considered in detail in this section.

As is well-known, the main complication in basic Gaussian elimination is related
to round-off errors. It is easy to demonstrate that in the presence of finite precision
arithmetics, this method may lead to totally erroneous results due to its instability.
In addition, the triangular matrices (i.e., LU decomposition) generated during the
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process may be more ill-conditioned than the original matrix, which can in turn
grow the round-off error in the forward and back substitution phases of the solution.
This may be demonstrated by the following classical example matrix [9]

(10) A =

[
10−20 1

1 1

]
,

which has the LU decomposition

(11) L =

[
1 0

1020 1

]
, U =

[
10−20 1

0 1− 1020

]
.

In floating point arithmetics the number u22 = 1 − 1020 will be rounded off to

roughly ũ22 = −1020. Consequently, for respective floating point matrices �L and
�U produced by the algorithm, we get the following result

(12) �L �U =

[
10−20 1

1 0

]
,

which is substantially different from A = LU . Also, if we solve the system �L �Ux =
b, the solution will differ drastically from the true solution of Ax = b.

The instability demonstrated in the previous example arises when the interme-
diate quantities computed during the algorithm are large relative to the elements
of A. In order to control this instability, Gaussian elimination is nearly always
implemented with partial pivoting. In partial pivoting, the rows of the matrix are
permuted in such manner that in each column the largest element of the lower
triangular part of the matrix is chosen as the pivot element. This guarantees that
the elements of the lower triangular matrix L fulfill |Lij | ≤ 1. In this case the
algorithm is stable if the elements of U are of the same order as the elements of
A. This stability can be monitored based on a quantity called the growth factor,
defined as

(13) ρ =
maxi,j |uij |
maxi,j |aij |

.

When ρ is of order 1, we can expect Gaussian elimination with partial pivoting to
be stable. Gaussian elimination with partial pivoting is considered to be extremely
stable in practice, although it is possible to construct matrices with large growth
factors. When using partial pivoting, the elements of U can become large (com-
pared to the elements of A) only through the subtraction of rows in the Gaussian
elimination. Therefore, it is relatively easy to show that the maximum value for
the growth factor is ρmax = 2n−1. In practice, however, for the growth factor to
attain the value ρmax would require very special matrices that never seem to arise
in real applications [9].

Therefore, Gaussian elimination with partial pivoting is considered to be a re-
liable method for solving linear systems. There are, however, some difficulties in
applying it efficiently to sparse systems. First of all, it would be sensible to utilize
the sparsity pattern of the matrix under consideration and perform the elimination
solely on the non-zero elements of the matrix. This requires employing a sparse
matrix format where only the non-zero entries are stored together with their row
and column information. During the Gaussian elimination phase, however, new
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Algorithm 1 Symbolic factorization

Initialize F with the sparsity pattern of A
for j = 2, . . . , n do
Ωj = ∅
a = 0
for each non-zero Fij in column j do
ai = 1
if i < j then
add i to Ωj

end if
end for
while Ωj ̸= ∅ do
Delete some node i from Ωj

for each non-zero Fki in column i do
if k > i and ak = 0 then

add Fkj to the non-zero structure of F
ak = 1
if k < j then
add k to Ωj

end if
end if

end for
end while

end for

i and k, and therefore node k is added to the set Ωj . Notice that since the matrix
F is studied column-wise starting from the second column, the non-zeros Fkj with
k < i and k < j can be ignored at this stage, since the columns with indices smaller
than j have already been taken into account. The calculation continues this way
until the set Ωj is empty. The auxiliary vector a is used to keep track of the non-
zero elements that have already been added to the sparsity structure of F in each
column.

It is straightforward to estimate the computational cost of Algorithm 1. The
first step in the algorithm is proportional to the number of non-zeros in the column
j of F . Then, for each non-zero Fij in the upper triangular part of column j, the
lower triangular part of column i is studied. We’ll use the notation | · | to denote
the number of non-zero entries in a matrix or a vector, and write the fill-in matrix
in the following form:

(15) F = FL +D + FU ,

where FL contains the lower triangular part, D the diagonal, and FU the upper
triangular part of the matrix. Using this notation, we can state that the computa-
tional cost of Algorithm 1 is proportional to

|F |+
n∑

j=1

|FU
j ||F

L
j | .

This is computationally affordable, especially considering that the computational
cost of basic Gaussian elimination is proportional to 2

3n
3. The number of non-zero
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non-zero elements are introduced in the matrix. Unfortunately, putting on new
non-zero elements to the sparse matrix structure during the elimination may easily
begin to dominate the computational cost. For this reason, an efficient implemen-
tation of a sparse Gaussian elimination requires that the non-zero structure of the
resulting decomposition is determined in advance. This allows allocating storage for
all non-zero entries before beginning the numerical elimination. Determining this
sparsity pattern is called computing the symbolic LU factorization and the matrix
containing the non-zero structure is called the fill-in matrix. It is noteworthy that
when computing a cram approximation of order k, this sparsity pattern is similar
for all k/2 matrix equations of Eq. (8) and it is therefore sufficient to compute the
symbolic factorization only once for each cram approximation.

Unfortunately, this strategy fails if we wish to implement Gaussian elimina-
tion with partial pivoting. In this case the sparsity pattern of U depends on the
employed permutations, which are determined during the numerical elimination.
Hence, partial pivoting inhibits computing the symbolic LU factorization before
the numerical elimination phase, which deteriorates the computational efficiency
of this approach. Luckily, the special characteristics of burnup matrices actually
allow using Gaussian elimination without partial pivoting. This is explained in
Section 3.2

3.1. Symbolic factorization. This section describes an algorithm that can be
used to compute the sparsity pattern of the fill-in matrix F resulting from the
Gaussian elimination. The method presented here is essentially the algorithm
FILL2 from [10] but we attempt to introduce it without the unnecessary use of
graph-theoretical notation in order to facilitate its comprehensibility and imple-
mentation.

The column and row indices of A are referred to as nodes. When aij ̸= 0, the
notation i → j is used. We say that there is a path of length m from node i to node
k, if there exists a sequence of non-zero nodes [i = i1, i2, i3 . . . , im, im+1 = k] such
that in → in+1 for n = 1, . . . ,m + 1. The physical interpretation for this is that
there exists a transmutation path of length m from nuclide k to nuclide i.

The sparsity pattern of the matrix F can be computed efficiently by studying
the various paths related to the graph of A. This is a direct consequence from
Lemma 1 in [10], which states that Fij ̸= 0 if and only if there exists a path from
node i to node j such that

(14) in < min (i, j) for 2 ≤ n ≤ m .

Algorithm 1 can be used to compute the non-zero structure of F based on
Lemma 1 from [10]. As a first step, the sparsity pattern of F is initialized with
the sparsity pattern of A. The algorithm then proceeds column-wise through the
matrix. In each column, the upper triangular part of F is studied. If a non-zero
element Fij with i < j is found, node i is added to the set of nodes Ωj to be
considered later. After examining the non-zero pattern of column j, the algorithm
continues by deleting nodes one by one from the set Ωj . After deleting node i
from Ωj , the respective column of matrix F is examined. If a non-zero element
aki with k > i is found, there exists a path k → i → j such that i < min(k, j),
and according to Lemma 1, it follows that Fkj is non-zero in the fill-in matrix. In
addition, if i < k < j, there is a prospect for a longer path to node j through nodes
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Algorithm 1 Symbolic factorization

Initialize F with the sparsity pattern of A
for j = 2, . . . , n do
Ωj = ∅
a = 0
for each non-zero Fij in column j do
ai = 1
if i < j then
add i to Ωj

end if
end for
while Ωj ̸= ∅ do
Delete some node i from Ωj

for each non-zero Fki in column i do
if k > i and ak = 0 then

add Fkj to the non-zero structure of F
ak = 1
if k < j then
add k to Ωj

end if
end if

end for
end while

end for

i and k, and therefore node k is added to the set Ωj . Notice that since the matrix
F is studied column-wise starting from the second column, the non-zeros Fkj with
k < i and k < j can be ignored at this stage, since the columns with indices smaller
than j have already been taken into account. The calculation continues this way
until the set Ωj is empty. The auxiliary vector a is used to keep track of the non-
zero elements that have already been added to the sparsity structure of F in each
column.

It is straightforward to estimate the computational cost of Algorithm 1. The
first step in the algorithm is proportional to the number of non-zeros in the column
j of F . Then, for each non-zero Fij in the upper triangular part of column j, the
lower triangular part of column i is studied. We’ll use the notation | · | to denote
the number of non-zero entries in a matrix or a vector, and write the fill-in matrix
in the following form:

(15) F = FL +D + FU ,

where FL contains the lower triangular part, D the diagonal, and FU the upper
triangular part of the matrix. Using this notation, we can state that the computa-
tional cost of Algorithm 1 is proportional to

|F |+
n∑

j=1

|FU
j ||F

L
j | .

This is computationally affordable, especially considering that the computational
cost of basic Gaussian elimination is proportional to 2

3n
3. The number of non-zero
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Algorithm 2 Numerical elimination

v = 0
for i = 1, 2, . . . , n− 1 do
for j ∈ F (i) do
vj = aij

end for
for j ∈ F (i) do
if i > j then

ci = ci − Fij

Fjj
cj

for k ∈ F (j) do

vk = vk − Fij

Fjj
Fjk

end for
end if

end for
for j ∈ F (i) do
Fij = vj

end for
end for

3.3. Numerical Elimination. After computing the non-zero structure of the fill-
in matrix F , the numerical elimination can be efficiently performed on this symbolic
factorization using Algorithm 2. It has been derived from the method CELIMI-
NATE in [13]. CELIMINATE considers a system of the form of xM = c, where
x ∈ R1×n, M ∈ Rn×n and x ∈ R1×n, whereas we consider a system of the form of
Eq. (8).

When using a sparse matrix format, it is most efficient to store the matrices
and implement the numerical elimination row-wise. The notation F (i) is used to
denote the set of column indices of the non-zero entries on the ith row of the fill-
in matrix F , i.e. j ∈ F (i) if Fij ̸= 0. These column indices need to sorted in
ascending order. Algorithm 2 proceeds row by row by introducing zeros to the left
of the matrix diagonal. Since the non-zero structure of the resulting matrix has
been determined before starting the numerical elimination, the actual elimination
phase can be performed with a minimal computational cost. An auxiliary vector
v is employed in order to make the subtracting of the matrix rows more efficient.
Notice that the elements in each row need to be accessible in order by their column
indices. In practice, this requires sorting the matrix structure after computing the
fill-in by Algorithm 1. In Serpent, insertion sort is used for this purpose. It is also
convenient to store the diagonal elements of the matrix to an auxiliary vector in
order to allow for an easy access to them during the computation.

that enables these paths. However, since these transmutation paths are extremely unlikely, they
are not further considered here.
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entries is generally of the order of 1
100n

2 in burnup matrices. As already mentioned,
it is also advantageous that we only need to compute this symbolic factorization
once when computing a cram approximation.

It should be mentioned that Algorithm 1 can also be executed row-wise. The
implementation in the current release of Serpent is row-based, whereas the column-
based version, considered here, has been adopted to the development version of
Serpent 2.

3.2. Diagonal Dominance. It was previously stated that the special characteris-
tics of burnup matrices allow using Gaussian elimination without partial pivoting.
This matter is explained in the following.

In Gaussian elimination, a matrix A ∈ Rn×n is transformed to lower triangular
form by a series of updates, which corresponds to multiplying the matrix by a

sequence of lower-triangular matrices Lj from the left. Let A(j) denote the matrix

obtained after j updates, i.e. A(j) = Lj · · ·L2L1A. After n−1 updates, the matrix
becomes upper-triangular:

(16) Ln−1Ln−2 · · ·L2L1A = U ,

after which setting L = L−1
1 L−1

2 · · ·L−1
n−2L

−1
n−1 gives the decomposition A = LU .

During the elimination, the elements of L are computed according to

(17) Lij = −
a
(j−1)
ij

a
(j−1)
jj

, i > j .

Therefore, |Lij | ≤ 1, if the absolute values of the diagonal elements remain greater
than the absolute values of the elements below the diagonal during the updates. It
is well-known that for column diagonally dominant matrices, diagonal dominance
is preserved during Gaussian elimination. However, as mentioned in Section 2, due
to reactions that produce two or more nuclides, burnup matrices are not generally
diagonally dominant.

According to Lemma 1 in[10], the element aij is updated during Gaussian elim-
ination, if there exists a path from i → j satisfying Eq. (14) with length m ≥ 2.
Physically this means that there exists a transmutation path from nuclide j to nu-
clide i through nuclides whose ZAI index is smaller than the indices of i and j. In
particular, the element alj affects the element aij through the updates if l ∈ {in}.

In burnup matrices, diagonal dominance is violated by reactions that produce
two or more nuclides. Let k denote the index of the first fissionable nuclide. Aside
from fission, the only nuclides emitted as by-products are the hydrogen isotopes
1H, 2H and 3H and the helium isotopes 3He and 4He. According to the previous
Lemma, for the corresponding rows to affect other rows during Gaussian elimination
would require the existence of transmutation paths originating from the by-product
nuclides. However, this is generally impossible, since all these nuclides are stable
aside from 3H (which decays into 3He) and they do not elicit neutron reactions that
would produce nuclides outside this group. The violation of diagonal dominance in
the submatrix A(k : n, k : n), on the other hand, would require a transmutation
path from a fissile nuclide to another fissile nuclide through a fission product nuclide,
which is extremely unlikely in reactor conditions.1

1Interestingly, paths from fission product nuclides to fissile nuclides are theoretically possible if
data based on nuclear models rather than measurements is considered. For example, the nuclear
data library TENDL-2011 [11] produced with the nuclear reaction program Talys [12] contains data
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Algorithm 2 Numerical elimination

v = 0
for i = 1, 2, . . . , n− 1 do
for j ∈ F (i) do
vj = aij

end for
for j ∈ F (i) do
if i > j then

ci = ci − Fij

Fjj
cj

for k ∈ F (j) do

vk = vk − Fij

Fjj
Fjk

end for
end if

end for
for j ∈ F (i) do
Fij = vj

end for
end for

3.3. Numerical Elimination. After computing the non-zero structure of the fill-
in matrix F , the numerical elimination can be efficiently performed on this symbolic
factorization using Algorithm 2. It has been derived from the method CELIMI-
NATE in [13]. CELIMINATE considers a system of the form of xM = c, where
x ∈ R1×n, M ∈ Rn×n and x ∈ R1×n, whereas we consider a system of the form of
Eq. (8).

When using a sparse matrix format, it is most efficient to store the matrices
and implement the numerical elimination row-wise. The notation F (i) is used to
denote the set of column indices of the non-zero entries on the ith row of the fill-
in matrix F , i.e. j ∈ F (i) if Fij ̸= 0. These column indices need to sorted in
ascending order. Algorithm 2 proceeds row by row by introducing zeros to the left
of the matrix diagonal. Since the non-zero structure of the resulting matrix has
been determined before starting the numerical elimination, the actual elimination
phase can be performed with a minimal computational cost. An auxiliary vector
v is employed in order to make the subtracting of the matrix rows more efficient.
Notice that the elements in each row need to be accessible in order by their column
indices. In practice, this requires sorting the matrix structure after computing the
fill-in by Algorithm 1. In Serpent, insertion sort is used for this purpose. It is also
convenient to store the diagonal elements of the matrix to an auxiliary vector in
order to allow for an easy access to them during the computation.

that enables these paths. However, since these transmutation paths are extremely unlikely, they
are not further considered here.
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Figure 1. The non-zero structure of the test case burnup matrix.

high-precision arithmetics for approximation order 16. As round-off errors are ac-
cumulated with an increasing cram approximation order, the highest considered
approximation order should provide the most conservative error estimate for the
presented test case. The relative difference between the reference solution and the
solution computed with Gaussian elimination using double precision is plotted in
Figure 2. Recalling that we can expect about 15 correct digits with double precision
arithmetics, it can be seen from the figure that, apart from 1H, not many digits
have been lost to round-off errors. As explained in Section 3, Gaussian elimination
is stable, if the matrix growth factor ρ defined according to Eq. (13) is of the order
of 1. For this test case, the growth factor is exactly one for each linear system,
indicating that no amplification of the matrix entries takes place during the nu-
merical elimination. However, the practicality of this observation is hindered by
the fact that A contains entries of very large magnitude. Interestingly, the poor-
est relative accuracy, corresponding to about 12 correct digits, is obtained for the
nuclide 1H. In the burnup matrix, this nuclide corresponds to the first row, which
does not change during the numerical elimination. Therefore, the round-off error in
the result is solely attributable to the back substitution phase in the algorithm and
reflects the characteristics of the original matrix. In particular, due to the decay of
7B by proton emission, this first row in the matrix contains the largest element of
the matrix.

To further illustrate the numerical characteristics of the linear systems encoun-
tered in cram, the same test case was solved with some standard iterative solvers
available in Matlab. The considered iterative methods were the generalized min-
imum residual (gmres) method and the biconjugate gradient (bcg) method, and
they were used to compute the cram approximation of order 16. Figure 3 shows the
relative difference between the solutions obtained with these iterative techniques
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Table 1. CPU time required for computing the CRAM approxima-
tion of different orders for the test case with 1606 nuclides.

Approximation cpu time
order (s)

16 0.108
14 0.094
12 0.086
10 0.079
8 0.070
6 0.063

4. Numerical Results

To evaluate the efficiency and accuracy of the described technique, it was applied
to a burnup system that can be considered to represent the extreme case in terms
of the matrix size. The test case represents a pwr pin-cell with fuel irradiated to
0.1 MWd/kgU burnup with the time step of 12.5 days. The number of nuclides
present in the calculation is 1606, which is representative of the practical maximum
encountered in burnup calculations. The absolute values of the matrix elements
range from zero to the order of 1021, the largest entries corresponding to the decay
of 7B whose half-life is ∼ 10−24 s.

The burnup matrix was formed by indexing the nuclides according to their ZAI
index. The sparsity pattern of the resulting matrix is shown in Figure 1. The bur-
nup matrix has 59 668 non-zero entries, which corresponds to a density of approx-
imately 2.3%. Rows 2, . . . , 6 correspond to hydrogen and helium isotopes. These
rows are relatively dense because these nuclides are emitted as by-products in some
neutron and decay reactions. The dense columns in the right part of the matrix
result from fission reactions. The non-zero elements below the diagonal correspond
to beta negative decay and the (n, γ) reaction.

The cram approximations of orders 6, 8, 10, 12, 14 and 16 were computed for
this burnup system. The calculations were performed with the development version
of Serpent 2 on a quad-core 3.00 GHz Intel Xeon X5450 cpu. The respective cal-
culation times are shown in Table 1. These calculation times support the previous
observation that in terms of computational efficiency, cram either matches or out-
performs other established methods used in the context of burnup equations [2]. For
each approximation order, the total calculation time is dominated by the numerical
elimination phase. For the approximation of order 16, the numerical elimination
takes about 60% of the total cpu time, as opposed to about 40% for the approxi-
mation of order 6. According to Eq. (7), the computational cost of this phase for
approximation order k is proportional to k/2. The proportion of the total calcu-
lation time for performing the symbolic factorization phase, including the sorting
of the row indices, increases from 13% to 23% when the approximation order is
reduced from 16 to 6. The number of fill-in elements is 7 449 for this test case
matrix.

In order to evaluate the accuracy and to study the stability of the chosen ap-
proach, a reference solution was computed with Matlab’s Symbolic Toolbox using
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arithmetics, it can be seen from the figure that, apart from 1H, not many digits
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is stable, if the matrix growth factor ρ defined according to Eq. (13) is of the order
of 1. For this test case, the growth factor is exactly one for each linear system,
indicating that no amplification of the matrix entries takes place during the nu-
merical elimination. However, the practicality of this observation is hindered by
the fact that A contains entries of very large magnitude. Interestingly, the poor-
est relative accuracy, corresponding to about 12 correct digits, is obtained for the
nuclide 1H. In the burnup matrix, this nuclide corresponds to the first row, which
does not change during the numerical elimination. Therefore, the round-off error in
the result is solely attributable to the back substitution phase in the algorithm and
reflects the characteristics of the original matrix. In particular, due to the decay of
7B by proton emission, this first row in the matrix contains the largest element of
the matrix.

To further illustrate the numerical characteristics of the linear systems encoun-
tered in cram, the same test case was solved with some standard iterative solvers
available in Matlab. The considered iterative methods were the generalized min-
imum residual (gmres) method and the biconjugate gradient (bcg) method, and
they were used to compute the cram approximation of order 16. Figure 3 shows the
relative difference between the solutions obtained with these iterative techniques
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Figure 3. The relative difference between the reference solution
and solutions obtained with the generalized minimum residual
(gmres) method and the biconjugate gradient (bcg) method for
a cram approximation of order 16.

5. Conclusions

The computation of the matrix exponential in burnup calculations has been tra-
ditionally challenging due to the extreme stiffness of the problem resulting from the
extensively varying magnitudes of the transmutation and decay constants. Based on
the discovery that the eigenvalues of burnup matrices are generally confined to the
vicinity of the negative real axis, the Chebyshev Rational Approximation Method
(cram) was successfully proposed and applied to solving the burnup equations
by the authors, effectively eliminating all previously encountered computational
problems. The method can be described as the best rational approximation on
the negative real axis, and it has been shown [1, 3] to give a robust and accurate
solution to the burnup equations combined with high computational efficiency.

For numerical reasons it is generally advantageous to compute the cram ap-
proximation in its partial fraction form. Since these partial fraction coefficients
are fixed for each approximation order, implementing cram in a burnup code is
extremely straightforward—only a linear solver is required in addition to these co-
efficients. Unfortunately, the difficult numerical properties of burnup matrices may
compromise the accuracy of some numerical methods used for solving the linear sys-
tems. In this paper, a direct method was considered. The introduced technique is
based on sparse Gaussian elimination, where the non-zero structure of the resulting
upper triangular matrix is determined before beginning the numerical elimination
phase. The numerical properties of burnup matrices and the stability of Gaussian
elimination were considered. The efficiency and accuracy of this approach were
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Figure 2. The relative difference between the test case solutions
obtained using double and high-precision arithmetics for cram ap-
proximation of order 16.

and the reference solution based on Gaussian elimination with high-precision arith-
metics. As can be seen from the figure, the accuracy of both iterative methods is
questionable for this test case. This can be attributed to the methods stagnating
before a reasonable accuracy was reached. With the gmres method, the stagnation
occurred between 23 and 42 iterations, with the norm of the relative residual being
in the order of 10−4. The bcg method converged slightly faster, with all relative
residuals being in the order of 10−5 after less than 10 iterations when the method
stagnated.

Both of these iterative methods are based on projecting the original problem to a
lower dimensional Krylov subspace. Therefore, the observed convergence problems
can ultimately be traced back to the spectral properties of the burnup matrix.
In the gmres method, the iteration is based on minimizing the 2-norm of the
residual in a Krylov subspace, whose dimension increases with each iteration. In
the bcg method, on the other hand, the same residual is forced orthogonal to
another Krylov subspace. (For further details, see e.g., [9].) However, it should be
kept in mind that these basic iterative methods can be substantially improved by
preconditioning techniques. Therefore, this study does not imply that all Krylov-
based iterative methods are ill-suited for solving these linear systems. However, it
is clear that the numerical method for this purpose should be carefully selected and
tested.



IV/13

GAUSSIAN ELIMINATION IN CHEBYSHEV RATIONAL APPROXIMATION METHOD 13

10−50 10−45 10−40 10−35 10−30 10−25 10−20 10−15 10−10 10−5 10010−10

10−5

100

105

1010

1015

1020

Number density (b−1cm−2)

R
el
a
ti
ve

d
iff
er
en

ce

GMRES

BCG

Figure 3. The relative difference between the reference solution
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5. Conclusions

The computation of the matrix exponential in burnup calculations has been tra-
ditionally challenging due to the extreme stiffness of the problem resulting from the
extensively varying magnitudes of the transmutation and decay constants. Based on
the discovery that the eigenvalues of burnup matrices are generally confined to the
vicinity of the negative real axis, the Chebyshev Rational Approximation Method
(cram) was successfully proposed and applied to solving the burnup equations
by the authors, effectively eliminating all previously encountered computational
problems. The method can be described as the best rational approximation on
the negative real axis, and it has been shown [1, 3] to give a robust and accurate
solution to the burnup equations combined with high computational efficiency.

For numerical reasons it is generally advantageous to compute the cram ap-
proximation in its partial fraction form. Since these partial fraction coefficients
are fixed for each approximation order, implementing cram in a burnup code is
extremely straightforward—only a linear solver is required in addition to these co-
efficients. Unfortunately, the difficult numerical properties of burnup matrices may
compromise the accuracy of some numerical methods used for solving the linear sys-
tems. In this paper, a direct method was considered. The introduced technique is
based on sparse Gaussian elimination, where the non-zero structure of the resulting
upper triangular matrix is determined before beginning the numerical elimination
phase. The numerical properties of burnup matrices and the stability of Gaussian
elimination were considered. The efficiency and accuracy of this approach were
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demonstrated by applying it to a large test case with over 1600 nuclides. This
paper’s contribution together with the recently reported, more accurate cram par-
tial fraction coefficients [3, 5] are hoped to further facilitate the implementation of
cram for burnup calculations.
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1. Introduction

In recent years the interest towards sensitivity and uncertainty
(S&U) analysis has increased notably in the field of nuclear engi-
neering. In 2006, the OECD/NEA expert group on Uncertainty Anal-
ysis in Modelling decided to prepare a benchmark titled
Uncertainty Analysis in Best-Estimate Modelling (UAM) for Design,
Operation and Safety Analysis of LWRs (Ivanov et al., 2011) to estab-
lish the current state and needs of S&U analysis. The goal of the
benchmark is to propagate uncertainty through all stages of cou-
pled neutronics/thermal hydraulics calculations. The imprecision
of neutron cross-sections is likely one of the most significant
sources of uncertainty in these calculations, and therefore the
propagation of this uncertainty is the main priority in the bench-
mark at the moment. As a first step, this requires developing S&U
analysis methods for reactor physics codes that are used to pro-
duce homogenized data for coupled neutronics/thermal-hydraulics
calculations.

The objective of the benchmark is fairly ambitious as the com-
monly used reactor physics codes, such as CASMO (Rhodes and
Edenius, 2001), HELIOS (HELIOS, 2000), and NEWT (DeHart,
2009), do not have S&U analysis capabilities. In addition, incorpo-
rating S&U features to such codes can be quite involved, if the code
was not designed from this perspective in the first place. In partic-
ular, if a lattice physics code is based on a cross-section model,
where the individual capture and scattering reactions have been
combined to total scattering and capture reactions, respectively,

this will cause complications because the covariance matrices are
always reported for the individual reactions. This applies to both
statistical and deterministic uncertainty analysis. For example,
the lattice physics codes CASMO, HELIOS, WIMS (WIMS9A, 2005),
and DRAGON (Marleau et al., 2009) all have a similar cross-section
model that is based on combining the individual capture and scat-
tering cross-sections.

At VTT, the UAM benchmark was recognized as an opportunity
to start developing an S&U analysis calculation system. Since
CASMO-4 is the standard tool for lattice physics calculations at
VTT, it was decided to begin developing S&U analysis capability
to it. As a first step, classical perturbation theory (CPT) has been
implemented to enable the computation of critical eigenvalue sen-
sitivities with respect to cross-sections. In addition, a methodology
was developed for processing the covariance matrices from SCALE
6 (NEA Data Bank, 2011) to become compatible with the cross-
section model of CASMO-4 to enable uncertainty analysis. This pro-
cessing methodology has since been adopted by other participants
in the UAM benchmark (Wieselquist et al., 2011). In addition to
describing the developed methodology, the purpose of this paper
is to review the theoretical background and practical guidelines
for implementing S&U methods to lattice physics codes. Emphasis
is put on dealing with the cross-section model of CASMO-4.

2. Theoretical background

The purpose of sensitivity analysis is to study how sensitive a
mathematical model is to perturbations in its uncertain parame-
ters. The objective of uncertainty analysis is to estimate how the
uncertainty in these parameters is propagated to a response
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descriptive statistic for the uncertainty. The uncertainty related to
cross-sections is generally reported as covariance matrices.

In the Bayesian formalism, the outcome of the uncertainty anal-
ysis should ideally be the posterior distribution p(R) containing all
knowledge about the response R under consideration. However,
determining p(R) is usually extremely challenging and can often
only be done based on a simulation. Therefore, a common practice
is to compute estimates for the mean and variance of p(R) and
assume the distribution to be Gaussian. Typically the estimate
for Var[R] is obtained by linearizing R � sr, where s 2 R1�K , and
using the identity

Var½R� � Var½sr� ¼ sCov½r�sT ð10Þ

known as the Sandwich rule. Eq. (10) can be generalized to several
responses R 2 RJ as:

Cov½R� ¼ SCov½r�ST ð11Þ

where S 2 RJ�K . This procedure is exact when R depends linearly on
the parameters and p(r) is a Gaussian distribution. If r obeys a
Gaussian distribution with mean r̂ and covariance matrix Cov[r],
i.e. r � Nðr̂;Cov½r�Þ, it follows that

g ¼ c þ Sr � Nðc þ Sr̂; SCov½r�STÞ ð12Þ

where c 2 RK is a constant vector and S is a constant matrix. There-
fore, in this special case, the Sandwich rule yields the exact poster-
ior distribution for the response g.

3. Implementation

3.1. Computation of adjoint flux

It is generally quite straightforward to modify a deterministic
transport solver to also run in adjoint mode. This section reviews
the guidelines for this procedure and describes the methodology
used in implementing an adjoint solver to CASMO-4.

In CASMO-4, the multi-group criticality equation is solved by
the method of characteristics assuming isotropic scattering. There-
fore, the following system of equations may be taken as the for-
ward problem:

Xm � rUgðr;XmÞ þ RgUgðr;XmÞ

¼ 1
4p

XG

h¼1

Rh!g
s /hðrÞ þ

vg

4pk
XG

h¼1

�mRh
f /

hðrÞ; g ¼ 1; . . . ;G: ð13Þ

In Eq. (13) the scalar flux is approximated by the quadrature
formula

/hðrÞ ¼
XM
m¼1

xmU
hðr;XmÞ: ð14Þ

In order to simulate an infinite lattice, the boundary conditions are
often assumed to be reflective, i.e.

Uðr;Xm; EÞ ¼ Uðr;X0
m; EÞ r 2 C; Xm � n < 0 ð15Þ

whereXm ¼ X0
m � 2ðn �X0

mÞ n is the reflection direction. The adjoint
system corresponding to the inner product defined by Eq. (9) can
now be written

�Xm � rWgðr;XmÞ þ RgWgðr;XmÞ

¼ 1
4p

XG

h¼1

Rg!h
s whðrÞ þ

�mRg
f

4pk
XG

h¼1

vhw
hðrÞ; g ¼ 1; . . . ;G ð16Þ

with the boundary conditions

Wðr;Xm; EÞ ¼ Wðr;X0
m; EÞ r 2 C; Xm � n > 0: ð17Þ

It is straightforward to check that systems (13) and (16) with their
respective boundary conditions satisfy Eq. (4) with respect to the
inner product defined by Eq. (9).

When solving the system of Eq. (13) numerically, the eigenvalue
and flux are iterated in turns. The iteration step for the flux can
typically be written

AUnþ1 ¼ 1
kn

BUn: ð18Þ

After solving Un+1 from this equation, a new estimate is obtained
for the multiplication factor according to

knþ1 ¼ hw;BUnþ1i
hw;AUnþ1i

¼ kn
hw;BUnþ1i
hw;BUni ð19Þ

where w is a weighting function. This approach is also well-suited
for solving the adjoint system. In CASMO-4, however, the eigen-
value iteration is based on physical considerations, and therefore
it was replaced by the conventional power iteration based on
Eq. (19) before adding the adjoint mode to the code.

Solving Eq. (18) forms an essential part of the iteration. By com-
paring the forward system (13) to the adjoint system (16), it can be
seen that the systems are of the same form, but the adjoint system
has a different source and it is solved in the opposite direction. This
property may be exploited by using the inner iterations solver with
a modified input for the adjoint system (Williams, 1986). This can
be achieved by performing the following operations before the
adjoint calculation:

1. Transpose the scattering matrix
2. Interchange the vectors �mrf and v
3. Invert the group indices as follows: GM 1, (G � 1)M 2, . . .

The solution given by the forward solver must then be inter-
preted so that Ug

i ðrk;XmÞ corresponds to WGþ1�g
i ðrk;�XmÞ. Notice

that these operations automatically convert the forward boundary
conditions to the adjoint boundary conditions. Therefore, only
minor modifications are often needed to solve the adjoint flux with
a transport code.

The so far described methodology does not ensure that the con-
sistency objectives discussed in Section 2.1 are met. As previously
mentioned, the numerical method used in the inner iterations
should ideally produce discretized systems that are adjoints with
respect to the discretized inner product. When an iteration based
on Eqs. (18) and (19) is used, it is guaranteed that both systems
converge to the same eigenvalue. Unfortunately, many of the
established numerical methods do not enable this type of consis-
tency. For example, the very popular diamond difference method
does not guarantee adjointness in curved geometries (Greenspan,
1982). The method of characteristics used in CASMO-4, on the
other hand, is not well-suited for this type of formal analysis, since
it does not directly provide a discretization scheme that could be
used to check if Eq. (4) holds. For these reasons, the inner product
of Eq. (9) was approximated as

hU;Wi �
XI

i¼1

XG
g¼1

XM
m¼1

xm Vi Ug;i;mWg;i;m ð20Þ

where i denotes the mesh index and Ug;i;m and Wg;i;m denote the
average fluxes. Notice that this discretization can be used with
any type of numerical method including multi-group Monte Carlo
techniques (Rearden, 2009).

3.2. Computation of sensitivity and uncertainty profiles

After obtaining the adjoint solution, the sensitivities with
respect to the multi-group cross-sections and other parameters
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dependent on the mathematical model under consideration. In this
work the mathematical model is the neutron transport criticality
equation, which is an eigenvalue problem that can be written in
operator form as

AU ¼ 1
k
BU; ð1Þ

whereU 2 HU is the neutron flux, HU is a Hilbert space and k is the
multiplication factor. It should be noted that both the continuous-
energy criticality equation and the various systems derived from
it in numerical computations can be written in the form of
Eq. (1). The uncertain parameters are the neutron cross-sections
and they are denoted by r 2 Er, where Er is a normed space. The
response R under consideration is the critical eigenvalue k, which
forms a special case in terms of sensitivity analysis and can be trea-
ted with classical perturbation theory as described in the following
section.

2.1. Sensitivity analysis

The object of local sensitivity analysis is to determine how the
multiplication factor k depends on the cross-sections near their
evaluated value r̂. This dependence is characterized by the
directional derivative of the response in the direction of the pertur-
bation dr. When considering the continuous-energy criticality
equation, the cross-sections are functions of energy and location,
and the appropriate derivative is the functional directional deriva-
tive called the Gâteaux-variation (Cacuci, 2003). It follows that the
sensitivity of R with respect to the perturbation h = [dU, dr] 2 D =
HU � Er at the point ê ¼ ½Û; r̂� 2 D may be defined as:

dRðê;hÞ ¼ lim
t!0

Rðêþ thÞ � RðêÞ
t

: ð2Þ

When the cross-sections are perturbed, also the solution U is
affected and therefore the computation of the sensitivity dRðê;hÞ
requires that the perturbation dU is known. In principle, dU can
be computed from the following forward sensitivity system:

dkðê;hÞAUþ kdAðê;hÞ ¼ dBðê;hÞ; ð3Þ

which can be derived by taking the Gâteaux-variation of system (1)
with respect to a perturbation h on both sides. However, when com-
puting several sensitivities, this approach would require the repet-
itive solving of Eq. (3).

Fortunately, the sensitivities can be computed more efficiently
by exploiting the adjoint of Eq. (1), which is defined as the system
that satisfies the following relation1:

AU� 1
k
BU;W

� �
¼ U;A�W� 1

k
B�W

� �
ð4Þ

where the brackets h�, �i denote an inner product. When considering
the continuous-energy criticality equation, it is customary to em-
ploy the L2 inner product (Carlson and Lathrop, 1968; Lewis and
Miller, 1984). The expression for the sensitivity (3) can now be writ-
ten utilizing this adjoint relation. Since the operators A and B are
linear with respect to U, they are also Fréchet-differentiable with
respect to U with A0

U ¼ A and B0
U ¼ B. Eq. (3) can thus be written

in the form:

dkðê;hÞAUþ kA0
rðêÞ drþ kAðêÞ dU ¼ B0

rðêÞ drþ BðêÞ dU: ð5Þ

For any W 2 HU not orthogonal with AU or BU, it now holds:

dkðê;hÞ ¼
ð�kA0

r þ B0
rÞdr;W

� �
þ ð�kAþ BÞdU;Wh i

hAU;Wi

¼ �
ðA0

r � 1
kB

0
rÞdr;W

� �
þ ðA� 1

kBÞdU;W
� �

1
k2
BU;W

D E

¼ �
ðA0

r � 1
kB

0
rÞdr;W

� �
þ dU; ðA� � 1

kB
�ÞW

� �
1
k2
BU;W

D E : ð6Þ

If the function W is chosen as the solution of the adjoint system

A� � 1
k
B�

� �
W ¼ 0 ð7Þ

the response sensitivity may be computed as

dkðê;hÞ ¼ �
ðA0

r � 1
kB

0
rÞdr;W

� �
1
k2
BU;W

D E ð8Þ

which is known as classical perturbation theory in reactor physics.
In practice the criticality equation and the corresponding ad-

joint equation are solved numerically, which gives rise to some
complications in the CPT formalism. Ideally, the numerical method
applied to computing the sensitivities should fulfill two conditions.
Firstly, the discretized forward and adjoint systems and the dis-
cretized operators corresponding to the functional derivatives A0

r
and B0

r should be consistent with the analytical equations (Cacuci,
2003). Secondly, the inner product in (8) should be discretized in a
manner consistent with the discretized operators thereby bringing
the operators into a Hilbert-space, where the discretized operators
are adjoints with respect to the discretized inner product (Cacuci,
2003).

However, this type of consistent sensitivity analysis is usually
infeasible in reactor physics calculations. For example, if the mul-
ti-group approximation is applied to the continuous-energy for-
ward and adjoint systems, this leads to two sets of multi-group
cross-sections—one weighted with the energy spectrum corre-
sponding to the forward system and one weighted with the energy
spectrum corresponding to the adjoint system. For this reason, it is
customary to take the multi-group criticality equation as the start-
ing point and apply CPT to it. Another common approach is to ap-
ply the discrete ordinates approximation before formulating the
CPT setup. As previously noted, after these approximations the
criticality equation can still be written as a system of the form of
Eq. (1), where U is now a vector. The inner product corresponding
to this system can be defined in a consistent manner as

hU;Wi ¼
XG
g¼1

XM
m¼1

xm

Z
D
d3rUgðr;XmÞWgðr;XmÞ ð9Þ

where {Xm} are the considered directions in the discrete ordinates
approximation and xm are the associated quadrature weights. After
fixing the boundary conditions for the forward problem, the adjoint
system and its boundary conditions can be determined based on
Eq. (4).

2.2. Uncertainty analysis

The uncertainty of the cross-sections r should be understood in
terms of the Bayesian probability interpretation. In this framework,
all knowledge about a parameter r is presented as a probability
distribution and the spread of this distribution characterizes the
uncertainty related to r. Typically, the variance of the distribution
is chosen to give a numerical value to this uncertainty. When sev-
eral parameters are considered simultaneously, the probability dis-
tribution under consideration is their joint distribution p(r), and
the covariance matrix of this distribution may be chosen as the

1 In some cases it is more convenient to write the adjoint relation in the form
AUþ 1

k BU;W
� �

¼ U;A�Wþ 1
kB

�W
� �

þ ½PðW;UÞ�x2@X where [P(W,U)]x2oX is a bilinear
form associated with the system. We will only consider cases where it is straight-
forward to force this term to vanish.
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descriptive statistic for the uncertainty. The uncertainty related to
cross-sections is generally reported as covariance matrices.

In the Bayesian formalism, the outcome of the uncertainty anal-
ysis should ideally be the posterior distribution p(R) containing all
knowledge about the response R under consideration. However,
determining p(R) is usually extremely challenging and can often
only be done based on a simulation. Therefore, a common practice
is to compute estimates for the mean and variance of p(R) and
assume the distribution to be Gaussian. Typically the estimate
for Var[R] is obtained by linearizing R � sr, where s 2 R1�K , and
using the identity

Var½R� � Var½sr� ¼ sCov½r�sT ð10Þ

known as the Sandwich rule. Eq. (10) can be generalized to several
responses R 2 RJ as:

Cov½R� ¼ SCov½r�ST ð11Þ

where S 2 RJ�K . This procedure is exact when R depends linearly on
the parameters and p(r) is a Gaussian distribution. If r obeys a
Gaussian distribution with mean r̂ and covariance matrix Cov[r],
i.e. r � Nðr̂;Cov½r�Þ, it follows that

g ¼ c þ Sr � Nðc þ Sr̂; SCov½r�STÞ ð12Þ

where c 2 RK is a constant vector and S is a constant matrix. There-
fore, in this special case, the Sandwich rule yields the exact poster-
ior distribution for the response g.

3. Implementation

3.1. Computation of adjoint flux

It is generally quite straightforward to modify a deterministic
transport solver to also run in adjoint mode. This section reviews
the guidelines for this procedure and describes the methodology
used in implementing an adjoint solver to CASMO-4.

In CASMO-4, the multi-group criticality equation is solved by
the method of characteristics assuming isotropic scattering. There-
fore, the following system of equations may be taken as the for-
ward problem:

Xm � rUgðr;XmÞ þ RgUgðr;XmÞ

¼ 1
4p

XG

h¼1

Rh!g
s /hðrÞ þ

vg

4pk
XG

h¼1

�mRh
f /

hðrÞ; g ¼ 1; . . . ;G: ð13Þ

In Eq. (13) the scalar flux is approximated by the quadrature
formula

/hðrÞ ¼
XM
m¼1

xmU
hðr;XmÞ: ð14Þ

In order to simulate an infinite lattice, the boundary conditions are
often assumed to be reflective, i.e.

Uðr;Xm; EÞ ¼ Uðr;X0
m; EÞ r 2 C; Xm � n < 0 ð15Þ

whereXm ¼ X0
m � 2ðn �X0

mÞ n is the reflection direction. The adjoint
system corresponding to the inner product defined by Eq. (9) can
now be written

�Xm � rWgðr;XmÞ þ RgWgðr;XmÞ

¼ 1
4p

XG

h¼1

Rg!h
s whðrÞ þ

�mRg
f

4pk
XG

h¼1

vhw
hðrÞ; g ¼ 1; . . . ;G ð16Þ

with the boundary conditions

Wðr;Xm; EÞ ¼ Wðr;X0
m; EÞ r 2 C; Xm � n > 0: ð17Þ

It is straightforward to check that systems (13) and (16) with their
respective boundary conditions satisfy Eq. (4) with respect to the
inner product defined by Eq. (9).

When solving the system of Eq. (13) numerically, the eigenvalue
and flux are iterated in turns. The iteration step for the flux can
typically be written

AUnþ1 ¼ 1
kn

BUn: ð18Þ

After solving Un+1 from this equation, a new estimate is obtained
for the multiplication factor according to

knþ1 ¼ hw;BUnþ1i
hw;AUnþ1i

¼ kn
hw;BUnþ1i
hw;BUni ð19Þ

where w is a weighting function. This approach is also well-suited
for solving the adjoint system. In CASMO-4, however, the eigen-
value iteration is based on physical considerations, and therefore
it was replaced by the conventional power iteration based on
Eq. (19) before adding the adjoint mode to the code.

Solving Eq. (18) forms an essential part of the iteration. By com-
paring the forward system (13) to the adjoint system (16), it can be
seen that the systems are of the same form, but the adjoint system
has a different source and it is solved in the opposite direction. This
property may be exploited by using the inner iterations solver with
a modified input for the adjoint system (Williams, 1986). This can
be achieved by performing the following operations before the
adjoint calculation:

1. Transpose the scattering matrix
2. Interchange the vectors �mrf and v
3. Invert the group indices as follows: GM 1, (G � 1)M 2, . . .

The solution given by the forward solver must then be inter-
preted so that Ug

i ðrk;XmÞ corresponds to WGþ1�g
i ðrk;�XmÞ. Notice

that these operations automatically convert the forward boundary
conditions to the adjoint boundary conditions. Therefore, only
minor modifications are often needed to solve the adjoint flux with
a transport code.

The so far described methodology does not ensure that the con-
sistency objectives discussed in Section 2.1 are met. As previously
mentioned, the numerical method used in the inner iterations
should ideally produce discretized systems that are adjoints with
respect to the discretized inner product. When an iteration based
on Eqs. (18) and (19) is used, it is guaranteed that both systems
converge to the same eigenvalue. Unfortunately, many of the
established numerical methods do not enable this type of consis-
tency. For example, the very popular diamond difference method
does not guarantee adjointness in curved geometries (Greenspan,
1982). The method of characteristics used in CASMO-4, on the
other hand, is not well-suited for this type of formal analysis, since
it does not directly provide a discretization scheme that could be
used to check if Eq. (4) holds. For these reasons, the inner product
of Eq. (9) was approximated as

hU;Wi �
XI

i¼1

XG
g¼1

XM
m¼1

xm Vi Ug;i;mWg;i;m ð20Þ

where i denotes the mesh index and Ug;i;m and Wg;i;m denote the
average fluxes. Notice that this discretization can be used with
any type of numerical method including multi-group Monte Carlo
techniques (Rearden, 2009).

3.2. Computation of sensitivity and uncertainty profiles

After obtaining the adjoint solution, the sensitivities with
respect to the multi-group cross-sections and other parameters
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3.2.3. S&U analysis of scattering cross-section
Dealing with scattering cross-sections is more complicated.

In general, there are no covariance data available for transfer
cross-sections rh!g;j

x but only for rg;j
x ¼

PG
h¼1r

g!h;j
x , where x refers

to a scattering reaction (e.g. elastic, inelastic) and j is the nuclide
index. However, because of the scattering source term in Eq.
(13), the derivative with respect to rx

g,j is not mathematically
well-defined without additional constraints. Typically it is as-
sumed that the probabilities of transfers to various groups are
fixed, i.e.

rg!h;j
x ¼ rg;j

x pg!h;j
x ð25Þ

where pg!h
x is the proportion of neutrons scattered from energy

group g to energy group h, which is assumed to remain fixed even
if the scattering cross-section rg;j

x is perturbed (Weisbin et al.,
1976). Based on this assumption, the scattering source in Eq. (13)
can be written

Sg ¼ 1
4p

XG

h¼1

Rh!g
s /h ¼ 1

4p
X
x

X
j

Nj
XG

h¼1

rh;j
x ph!g

x /h ð26Þ
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Fig. 1. Covariance matrices corresponding to the individual capture cross-sections and the total capture cross-section of 16O. The covariance matrices in this example are
from the SCALE 5.1 covariance library 44groupv6rec and they have been processed to conform to the energy-group structure of CASMO-4.
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of interest can be computed according to Eq. (8). Notice that even
after the multi-group approximation, these parameters are still
spatial functions and therefore the derivatives in Eq. (8) refer to
functional derivatives. After obtaining expressions for all deriva-
tives A0

r and B0
r of interest, the respective sensitivities may be

computed simply by applying the discretization scheme of
Eq. (9) to Eq. (8).

In order to compute the uncertainties using the Sandwich rule,
the sensitivities and covariancematrices need to be based on similar
cross-section models. However, as mentioned in Section 1, lattice
physics codes such as CASMO, HELIOS, WIMS and DRAGON, have
cross-section models different from the one used in the covariance
files. More specifically, their cross-section models only contain the
total capture and scattering cross-sections, whereas the covariance
data is reported for the individual capture and scattering subreac-
tions. This greatly complicates the implementation of uncertainty
analysis with both deterministic and statistical methods, since the
prerequisite for uncertainty analysis is that the probability distribu-
tions for the parameters used in the calculation are known.

Naturally, this difficulty can be overcome by creating new
nuclear data libraries and modifying the cross-section model in
the code, but this requires extensive work. Another option, suitable
for deterministic analysis, is to not use problem-dependent cross-
sections in the sensitivity analysis. In this case, the sensitivity coef-
ficients can be computed outside the code based on the forward
and adjoint fluxes and any set of cross-sections. This was the idea,
for example, behind connecting DRAGON with the sensitivity and
uncertainty analysis code SUSD3D After a generalized adjoint
mode was implemented to DRAGON (Bidaud et al., 2009).

In this work, this complication was solved by the novel approach
of creating a covariance library that is consistentwith the cross-sec-
tion model of CASMO-4. In practice this requires combining the
covariance matrices of the individual capture and scattering reac-
tions. Interestingly, this treatment of covariance matrices draws
attention to the significance of some basic assumptions made in
sensitivity analysis. This approach is explained next by first
describing the procedure used to process the covariance matrices
to the energy-group structure of CASMO-4, and then considering the
methodology for combining the capture and scattering reactions.

3.2.1. Modifying the energy-group structure of covariance matrices
Applying the Sandwich rule requires a covariance library in the

same energy-group structure as the sensitivity profiles used in the
uncertainty computation. When the starting point is a multi-group
covariance library, the matrices can in principle be transformed to
another multi-group structure by simple mathematical techniques.
The applicability of this approach depends on the differences
between the group-structures. In particular, the widths of the
energy groups should not be drastically different. In this work,
the covariance data was taken from the multi-group covariance
library ZZ-SCALE6.0/COVA-44G (NEA Data Bank, 2011) and the
code Angelo 2.3 (Kodeli, 2010) was used for transforming the
matrices to the energy-group structure used in the sensitivity
calculations with CASMO-4.

The transformation procedure in Angelo 2.3 is based on a
flat-flux approximation, i.e. no weighting is used in the process.
Covariance matrices are treated as correlation matrices and rela-
tive standard deviations, whose values are computed separately
on the new energy grid. The resampled values on the new grid
are computed as lethargy overlap weighted averages. This guaran-
tees that the integrals over the new energy groups remain constant
in the resampling process. When the new energy groups extend
outside the region spanned by the original energy groups, a com-
plete correlation is assumed with the group fromwhich the extrap-
olation is carried out (Kodeli and Sartori, 1990).

Because the fission spectrum always satisfies the normalization
condition

XG
g¼1

vg ¼ 1 ð21Þ

it follows that the corresponding covariance matrix Cv should sat-
isfy the constraint that the sum of the elements on any row of the
matrix equals zero, which is also stated in the manual for the
ENDF-6 format (Herman and Trkov, 2009). When the energy group
structure of Cv is modified, there is no guarantee that this constraint
is satisfied, which may in turn lead to an erroneously large fission
spectrum uncertainty in a criticality calculation (Kodeli et al.,
2008). If this zero-sum rule is not too severely violated, there is a
suggested correction procedure for the matrix in the ENDF-6

manual.
However, it is often more practical to apply the correction

directly to the sensitivity coefficients. In this case the coefficients
are called constrained. The absolute constrained sensitivities are
defined as

sconstr: ¼ ðI � uvTÞsv ð22Þ

where I 2 RG�G is an identity matrix, u = [1, 1, . . . , 1]T and vector sv
contains the unconstrained sensitivities. In case of a small deviation
from the zero-sum rule, applying this correction to the sensitivities
is identical to the correction scheme suggested in the ENDF-6 man-
ual. It is easy to see that if the matrix Cv already satisfies the zero-
sum rule, constraining the sensitivities has no effect on the results
(Kodeli et al., 2008). This approach was also applied in this work.

3.2.2. S&U analysis of capture cross-section
Generally, the total capture cross-section is defined as the sum

of the individual capture cross-sections (ENDF/MT 102–107). In
CASMO-4, however, also the (n,2n) cross-section (ENDF/MT 16)
has been added to the capture cross-section with a negative sign
in the highest energy group. The expression for a capture cross-
section used in the code can therefore be written in matrix form as

rcapt ¼
X107

MT¼102

rMT þ Er16 ¼ Sr ð23Þ

where E 2 RG�G : E11 ¼ 1; Eij ¼ 0 otherwise; S 2 RG�7G and the vec-
tor r contains the concatenated reaction-specific cross-sections.
Since the relationship between rcapt and r is linear, the absolute
covariance matrix corresponding to rcapt can be accurately com-
puted with the Sandwich rule:

Cov½rcapt� ¼ SCov½r�ST : ð24Þ

Notice that this treatment does not involve any approximation in
the Bayesian framework, if all the probability distributions are
assumed to be Gaussian, which is a standard practice in nuclear
data uncertainty analysis. The corresponding relative covariance
matrix can then be easily calculated by dividing the covariance
matrix elements Cij by rirj, i.e. by dividing the covariance matrix
element-wise by the matrix r � r. Fig. 1 shows an example of this
treatment for the capture reactions of 16O.

After forming the covariance matrices for the capture cross-sec-
tions, they can be used in both deterministic and statistical uncer-
tainty analysis. In the deterministic case, the sensitivities with
respect to the capture cross-sections can be computed in the usual
manner according to Eq. (8). Notice that apart from the (n,2n) reac-
tion, this approach should give results that are consistent with
those obtained by computing the sensitivities with respect to the
individual capture reactions.
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3.2.3. S&U analysis of scattering cross-section
Dealing with scattering cross-sections is more complicated.

In general, there are no covariance data available for transfer
cross-sections rh!g;j

x but only for rg;j
x ¼

PG
h¼1r

g!h;j
x , where x refers

to a scattering reaction (e.g. elastic, inelastic) and j is the nuclide
index. However, because of the scattering source term in Eq.
(13), the derivative with respect to rx

g,j is not mathematically
well-defined without additional constraints. Typically it is as-
sumed that the probabilities of transfers to various groups are
fixed, i.e.

rg!h;j
x ¼ rg;j

x pg!h;j
x ð25Þ

where pg!h
x is the proportion of neutrons scattered from energy

group g to energy group h, which is assumed to remain fixed even
if the scattering cross-section rg;j

x is perturbed (Weisbin et al.,
1976). Based on this assumption, the scattering source in Eq. (13)
can be written

Sg ¼ 1
4p

XG

h¼1

Rh!g
s /h ¼ 1

4p
X
x

X
j

Nj
XG

h¼1

rh;j
x ph!g

x /h ð26Þ

10−5 10−3 10−1 101 103 105 107
10−5

10−3

10−1

101

103

105

107

Neutron energy (eV)
10−5 10−3 10−1 101 103 105 107

10−5

10−3

10−1

101

103

105

107

Neutron energy (eV)

10−5 10−3 10−1 101 103 105 107
10−5

10−3

10−1

101

103

105

107

Neutron energy (eV)
10−5 10−3 10−1 101 103 105 107

10−5

10−3

10−1

101

103

105

107

Neutron energy (eV)

10−5 10−3 10−1 101 103 105 107
10−5

10−3

10−1

101

103

105

107

Neutron energy (eV)

0.02

0.04

0.06

0.08

0.1

0.12

Fig. 1. Covariance matrices corresponding to the individual capture cross-sections and the total capture cross-section of 16O. The covariance matrices in this example are
from the SCALE 5.1 covariance library 44groupv6rec and they have been processed to conform to the energy-group structure of CASMO-4.
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adjoint case. For the total uncertainty, on the other hand, the value
given by CASMO is 4.531% greater. Table 2 shows the ten most
significant sources of uncertainty together with the corresponding
energy-and region-integrated sensitivity coefficients. It can be seen
from this Table that in both calculations the main contribution to
the total uncertainty comes from the capture cross-section of

238U, which is characteristic of LWR calculations with UOX. Also,
the difference in the total uncertainties is mainly attributable to
the fact that the CASMO calculation yields greater sensitivities
for this cross-section. This appears to originate from the differ-
ences in the cross-section libraries. In particular, the cross-section
library E60200 used in the CASMO calculation has not been

Table 2
The ten most significant sources of uncertainty in the PWR pin-cell test case and the corresponding energy-and region-integrated relative sensitivity coefficients. The sensitivity
coefficients with respect to the parameter v have been constrained according to Eq. (22).

Nuclide Parameter pair Sensitivity, CASMO Sensitivity, TSUNAMI Contribution to Dk
k (%), CASMO Contribution to Dk

k (%), TSUNAMI

238U rc, rc �2.609 � 10�1 �2.219 � 10�1 3.253 � 10�1 2.836 � 10�1

235U �m; �m 9.379 � 10�1 9.392 � 10�1 2.641 � 10�1 2.643 � 10�1

235U rc, rc �1.549 � 10�1 �1.539 � 10�1 2.225 � 10�1 2.098 � 10�1

235U rc, rf 1.087 � 10�1 1.039 � 10�1

235U v, v 2.166 � 10�6 �3.581 � 10�9 8.345 � 10�2 8.774 � 10�2

235U rf, rf 2.559 � 10�1 2.538 � 10�1 7.838 � 10�2 7.652 � 10�2

238U �m; �m 6.210 � 10�2 6.076 � 10�2 7.225 � 10�2 7.122 � 10�2

Zr rc, rc �9.403 � 10�3 �8.315 � 10�3 6.195 � 10�2 5.070 � 10�2

238U rs, rs �5.858 � 10�3 �6.178 � 10�3 3.941 � 10�2 1.058 � 10�1

1H rs, rs 1.952 � 10�1 1.866 � 10�1 2.739 � 10�2 2.581 � 10�2
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Fig. 3. Sensitivity profiles for the PWR pin-cell test case computed with (a) CASMO-4 and (b) TSUNAMI-1D.
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where the summations over x include all scattering reactions. After
this assumption, the derivative with respect to rx

g,j is well-defined
and can be computed as usual. It is straightforward to show that
this approach corresponds to computing the sensitivity coefficients
with respect to the transfer cross-sections rg!h;j

x and summing them
over h.

Unfortunately, the sensitivity with respect to the total scatter-
ing cross-section rj

s ¼
P

xr
j
x is not well-defined if the constraint

(25) is enforced. Instead, fixed transfer rates must be assumed
for the total scattering cross-section, which is clearly a stricter
assumption than Eq. (25). Mathematically, this approach corre-
sponds to computing the relative sensitivities with respect to the
individual scattering reactions and adding them up. It should be
emphasized that because the sensitivity coefficients corresponding
to the total and individual scattering reactions are based on incon-
sistent assumptions, the chain rule of derivation is not applicable
to these sensitivities. Therefore, it is not possible to perform S&U

analysis with respect to the total scattering cross-section in a man-
ner that would produce results consistent with the approach
where the sensitivities are computed with respect to the individual
scattering reactions. Nonetheless, the covariance matrices for the
individual scattering reactions can be combined in a similar man-
ner as the capture reactions. However, it should be kept in mind
that both these approaches are in fact based on simplifications of
the true problem and are likely to underestimate the uncertainty
related to scattering cross-sections.

4. Results

The calculation framework was applied to two test cases from
the UAM benchmark Exercise 1.1 (Ivanov et al., 2011). The first test
problem represents TMI-1 under hot zero power conditions and
the second one is a GEN-III MOX pin-cell test case with 9.8% of
plutonium. These test problems were chosen to be presented here
because they can also be modeled in one dimension and therefore
the results can be compared against TSUNAMI-1D (Rearden, 2009)
In addition, based on experiments with other pin-cell test cases
included in the UAM benchmark specification, the chosen test
cases are highly representative and characteristic in terms of
comparison to TSUNAMI-1D. The developed CASMO-4 calculation
system is naturally also well-suited for fuel assembly calculations,
but because the S&U results for pin-cell and lattice problems are
essentially very similar, only the 1D results were chosen to be pre-
sented here due to the possibility to validate them by comparison
to TSUNAMI-1D.

The outline of the CASMO-4 calculations is presented in Fig. 2.
The calculations were carried out using the cross-section library
E60200 that contains 70 energy groups and is based on ENDF/B-

VI data (Rhodes, 2005). The covariance data were taken from the
SCALE 6 library ZZ-SCALE6.0/COVA-44G (NEA Data Bank, 2011),
which is the most comprehensive covariance library available at
the time of writing. The library is based on true evaluations from
various sources (including ENDF/B-VII, ENDF/B-VI, JENDL-3.1)
and approximate covariance data. The covariances in the library
are given in relative terms and therefore the library is intended
to be used with all cross-section libraries including the ones that
are inconsistent with the evaluations. While this is not strictly cor-
rect, it is considered to be acceptable due to the scarcity of compre-
hensive covariance data among other reasons (Williams et al.,
2009).

The list of the nuclides present in these test cases can be found
in the benchmark specification (Ivanov et al., 2011). Apart from the
isotopes of Cr and Fe, all available covariance data in the library
was included in the uncertainty computations. The reason for
excluding these isotopes is that the employed cross-section library

E60200 does not contain isotope-specific cross-sections for these
materials. For this same reason, the given nuclide composition
could not be specified for the zircalloy-4 cladding in the MOX test
case, but was instead replaced by the zircalloy-4 composition given
for the PWR test case.

The covariance matrices from ZZ-SCALE6.0/COVA-44G were
processed for compatibility with CASMO-4. The sensitivity profiles
in CASMO-4 were computed using the 40-group structure option that
was the closest match to the amount of groups in the covariance
data and, as mentioned in Section 3.2, the code Angelo 2.3 (Kodeli,
2010) was used to process the covariance matrices to this energy-
group structure. Next, the nuclear data processing code NJOY
(MacFarlane and Muir, 1994) was used to transform the 40-group
covariance files to the BOXR format. Auxiliary FORTRAN programs
were written for combining the covariance matrices according to
the principles described in Section 3.2.

The TSUNAMI-1D calculations were performed using the ENDF/

B-VI-based cross-section library V6-238 containing 238 energy
groups. The module CENTRM was used for self-shielding. Implicit
sensitivity analysis (Williams et al., 2001) was omitted in the TSU-
NAMI calculations in order to facilitate the comparison of the
results given by CASMO-4 and TSUNAMI-1D. The boundary condi-
tions for the 1D models were assumed to be white, whereas reflec-
tive boundary conditions were used for the 2D-calculations with
CASMO-4.

4.1. PWR pin-cell

A summary of the numerical results for the PWR pin-cell repre-
senting TMI-1 is presented in Table 1. The relative difference be-
tween the multiplication factors computed with CASMO-4 and
TSUNAMI-1D is 0.1763% in the forward case and 0.1768% in the

Fig. 2. Outline of the CASMO-4 calculations.

Table 1
Summary of the results for the PWR pin-cell test case.

Code Forward k Adjoint k Rel. uncertainty, Dkk (%)

CASMO-4 1.421684 1.421686 0.5120
TSUNAMI-1D 1.419177 1.419172 0.4888
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adjoint case. For the total uncertainty, on the other hand, the value
given by CASMO is 4.531% greater. Table 2 shows the ten most
significant sources of uncertainty together with the corresponding
energy-and region-integrated sensitivity coefficients. It can be seen
from this Table that in both calculations the main contribution to
the total uncertainty comes from the capture cross-section of

238U, which is characteristic of LWR calculations with UOX. Also,
the difference in the total uncertainties is mainly attributable to
the fact that the CASMO calculation yields greater sensitivities
for this cross-section. This appears to originate from the differ-
ences in the cross-section libraries. In particular, the cross-section
library E60200 used in the CASMO calculation has not been

Table 2
The ten most significant sources of uncertainty in the PWR pin-cell test case and the corresponding energy-and region-integrated relative sensitivity coefficients. The sensitivity
coefficients with respect to the parameter v have been constrained according to Eq. (22).

Nuclide Parameter pair Sensitivity, CASMO Sensitivity, TSUNAMI Contribution to Dk
k (%), CASMO Contribution to Dk

k (%), TSUNAMI

238U rc, rc �2.609 � 10�1 �2.219 � 10�1 3.253 � 10�1 2.836 � 10�1

235U �m; �m 9.379 � 10�1 9.392 � 10�1 2.641 � 10�1 2.643 � 10�1

235U rc, rc �1.549 � 10�1 �1.539 � 10�1 2.225 � 10�1 2.098 � 10�1

235U rc, rf 1.087 � 10�1 1.039 � 10�1

235U v, v 2.166 � 10�6 �3.581 � 10�9 8.345 � 10�2 8.774 � 10�2

235U rf, rf 2.559 � 10�1 2.538 � 10�1 7.838 � 10�2 7.652 � 10�2

238U �m; �m 6.210 � 10�2 6.076 � 10�2 7.225 � 10�2 7.122 � 10�2

Zr rc, rc �9.403 � 10�3 �8.315 � 10�3 6.195 � 10�2 5.070 � 10�2

238U rs, rs �5.858 � 10�3 �6.178 � 10�3 3.941 � 10�2 1.058 � 10�1

1H rs, rs 1.952 � 10�1 1.866 � 10�1 2.739 � 10�2 2.581 � 10�2
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Fig. 3. Sensitivity profiles for the PWR pin-cell test case computed with (a) CASMO-4 and (b) TSUNAMI-1D.
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reduced in terms of the 238U resonance integral, which is known to
be overestimated in the ENDF/B-VI data (Rhodes, 2005). The 238U
capture sensitivity profile and some other sensitivity plots of inter-
est are shown in Fig. 3.

From Fig. 3 and Table 2, it can be seen that, overall, the results
between CASMO-4 and TSUNAMI-1D are in good accordance. It
should be noticed that the 235U fission spectrum sensitivities in
Table 2 have been constrained according to Eq. (22). Therefore
these values should theoretically vanish and the non-zero values
result from round-off errors. In particular, the single-precision
arithmetics used in CASMO-4 produces a greater deviation. Other
than this, the only notable difference in the uncertainty results
occurs for the scattering cross-section of 238U, which is due to
the inconsistency in defining the sensitivities, as discussed in
Section 3.2. The corresponding scattering sensitivities are plotted
in Fig. 4. Notice that in some energy groups the reaction-specific
scattering sensitivities have opposite signs, which is in clear con-
tradiction with the chain rule of derivation.

4.2. MOX pin-cell

The results for the MOX pin-cell test case are summarized in Ta-
ble 3. In the forward case, the relative difference between the mul-
tiplication factors computed with CASMO-4 and TSUNAMI-1D is

0.4283%. In the adjoint case, the respective relative difference is
0.4265%. For this test case, TSUNAMI-1D gives a greater uncer-
tainty with a relative difference of 1.988%. The ten covariance
matrices that contributed the most to the multiplication factor
uncertainty are shown in Table 4 together with the corresponding
energy-and region-integrated sensitivity coefficients. In addition,
the sensitivity profiles of the five most significant sources of uncer-
tainty are plotted in Figs. 5 and 6.

It can be seen from Table 4 that the main contribution to the to-
tal uncertainty in both CASMO-4 and TSUNAMI-1D calculations
comes from the parameter �m of 239Pu. The capture cross-section
of 238U is another significant contributor to the total uncertainty.
Similarly to the PWR pin-cell calculation, CASMO-4 yields a greater
sensitivity for this cross-section, causing a greater contribution to
the total uncertainty. The most notable difference in the results oc-
curs for the capture reaction of 242Pu, for which CASMO-4 yields a
significantly greater sensitivity, and consequently a greater uncer-
tainty. The respective sensitivity profiles, as computed with both
codes, are shown in Fig. 6. Although the integrated value of
TSUNAMI-1D is about 33% smaller, it can be seen from this figure
that qualitatively the sensitivity profiles are very similar. The cause
of the inconsistency in the sensitivities is not evident, but it may be
related to differences in both the cross-section libraries as well as
the self-shielding treatment of 242Pu. As an example of the latter’s
effect on the sensitivity, computing the same test case using SCALE
5.1 with the module NITAWL for self-shielding, resulted in a
6.493% greater sensitivity value than the one given by SCALE 6
with the module CENTRM.

Another relevant difference in the results occurs again for the
scattering cross-section of 238U, which is due to the discussed
inconsistency in defining the sensitivities. It is noteworthy that
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Fig. 4. Closeup of scattering sensitivity profiles of 238U in the PWR pin-cell test case.

Table 3
Summary of the results for the MOX pin-cell test case.

Code Forward k Adjoint k Rel. uncertainty, Dkk (%)

CASMO-4 1.09964 1.09964 0.9156
TSUNAMI-1D 1.09493 1.09495 0.9338

Table 4
The ten most significant sources of uncertainty in the MOX pin-cell test case and the corresponding energy-and region-integrated relative sensitivity coefficients. The sensitivity
coefficients with respect to the parameter v have been constrained according to Eq. (22).

Nuclide Parameter pair Sensitivity, CASMO Sensitivity, TSUNAMI Contribution to Dk
k (%), CASMO Contribution to Dk

k (%), TSUNAMI

239Pu �m; �m 7.212 � 10�1 7.251 � 10�1 7.273 � 10�1 7.311 � 10�1

238U rc,rc �1.963 � 10�1 �1.611 � 10�1 2.457 � 10�1 2.078 � 10�1

242Pu rc,rc �2.339 � 10�2 �1.557 � 10�2 2.339 � 10�1 1.359 � 10�1

239Pu rf,rf 3.619 � 10�1 3.596 � 10�1 2.236 � 10�1 2.204 � 10�1

239Pu rc,rc �1.974 � 10�1 �2.004 � 10�1 1.960 � 10�1 1.928 � 10�1

239Pu v,v �5.462 � 10�7 5.672 � 10�9 1.640 � 10�1 1.997 � 10�1

239Pu rc,rf 1.555 � 10�1 1.582 � 10�1

240Pu rc,rc �1.104 � 10�1 �1.052 � 10�1 1.549 � 10�1 1.459 � 10�1

238U rs,rs �1.591 � 10�2 �1.494 � 10�2 9.952 � 10�2 2.721 � 10�1

238U �m; �m 8.333 � 10�2 8.165 � 10�2 9.668 � 10�2 9.534 � 10�2
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in this test case this inconsistency has a more pronounced effect on
the overall results compared to the PWR test case. This is due to the
harder neutron spectrum of MOX fuel, which increases the sensi-
tivity of the multiplication factor to the inelastic scattering of

238U. In the TSUNAMI-1D computation, this parameter is actually
the second most significant source of uncertainty, contributing
2.703 � 10�1% to the total uncertainty, whereas the contribution
from the respective total scattering is only 9.952 � 10�2% in the

10
−4

10
−2

10
0

10
2

10
4

10
6

−0.1

−0.05

0

0.05

0.1

0.15

0.2

0.25

0.3

Energy (eV)

R
el

.
se

ns
iti

vi
ty

/
un

it
le

th
ar

gy

Pu —

U — capture

Pu — fission

Pu — capture

(a)

10
−4

10
−2

10
0

10
2

10
4

10
6

−0.15

−0.1

−0.05

0

0.05

0.1

0.15

0.2

0.25

0.3

Energy (eV)

R
el

.
se

ns
it

iv
ity

/
un

it
le

th
ar

gy

Pu —

U — capture

Pu — fission

Pu — capture

(b)

Fig. 5. Sensitivity profiles for the MOX pin-cell test case computed with (a) CASMO-4 and (b) TSUNAMI-1D.
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the overall results compared to the PWR test case. This is due to the
harder neutron spectrum of MOX fuel, which increases the sensi-
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CASMO-4 calculation. The fact that TSUNAMI-1D gives a greater to-
tal uncertainty for the multiplication factor is mainly attributable
to this.

5. Summary and conclusions

The motivation of the presented work has been participating in
the UAM benchmark, whose first stage aims at propagating the
uncertainty related to neutron cross-sections through a reactor
physics calculation. CASMO-4 was chosen as the development plat-
form due to its role as the standard code at VTT Technical Research
Centre of Finland.

As a first development, classical perturbation theory has been
implemented to CASMO-4, which has enabled performing sensitiv-
ity analysis of the multiplication factor. In the process of modifying
CASMO-4, a problem was faced due to the incompatibility of the
cross-section models between the covariance libraries and the
code itself because in CASMO-4, the individual capture and scatter-
ing cross-sections have been combined into total capture and scat-
tering cross-sections. This issue affects all similar reactor physics
codes irrespective of the method used for S&U analysis, whether
deterministic or statistical. As a solution to this discrepancy, a
technique for combining the covariance matrices of the individual
subreactions and computing the sensitivities with respect to the
combined reactions was devised and applied with success. The
technique accurately combines the capture reactions in a
consistent manner, but the combination of the scattering reactions
resulted in some systematic differences in comparison to TSU-
NAMI-1D. This observation drew attention to the basic assump-
tions that must be made in dealing with scattering reactions. The
observed differences were eventually explained by the incompati-
ble constraints in the calculation process, which in turn caused the
chain rule of derivation not being applicable.

Inspired by the experiences gained in the process, the theoreti-
cal background of S&U was reviewed and presented in detail, and
practical considerations were also discussed to benefit readers
interested in implementing perturbation analysis capabilities to
reactor physics codes. Numerical results were presented for fuel
pin-cell test problems representing a PWR and a GEN-III core with
MOX fuel, and the results were compared against TSUNAMI-1D.
The comparison supported the observations made on the devel-
oped methodology, i.e. the results were consistent except for scat-
tering reactions, where systematic differences appeared in cases
where multiple scattering reactions were present.

At the time of writing, the work in the benchmark has contin-
ued by implementing generalized perturbation theory to CASMO-
4, which enables performing S&U analysis on other responses in
addition to the multiplication factor. Future work includes the
refinement and validation of the implementation. When this has
been accomplished, the developed S&U calculation system enables
producing uncertainty estimates for homogenized assembly data,
which can in turn be propagated to coupled neutronics/thermal
hydraulics calculations.

Acknowledgment

The author wishes to express her gratitude to Dr. Ivan Kodeli
(Institute Jozef Stefan, Slovenia) for his invaluable help regarding
the code Angelo 2.3 and the covariance libraries used in this work.

References

Bidaud, A., Marleau, G., Noblat, E., 2009. Nuclear data uncertainty analysis using the
coupling of DRAGON with SUSD3D. In: International Conference on
Mathematics, Computational Methods & Reactor Physics (M& C 2009).

Cacuci, D.G., 2003. Sensitivity and Uncertainty Analysis, vol. 1. Chapman &
Hall/CRC.

Carlson, B.G., Lathrop, K.D., 1968. Transport theory—the method of discrete
ordinates. In: Greenspan, H., Kelber, C.N., Okrent, D. (Eds.), Computing
Methods in Reactor Physics. Gordon and Breach Science Publishers.

DeHart, M.D., 2009. NEWT: a new transport algorithm for two-dimensional discrete
ordinates analysis in non-orthogonal geometries. In: SCALE: A Modular Code
System for Performing Standardized Computer Analyses for Licencing
Evaluation, Version 6. No. ORNL/TM-2005/39. Oak Ridge National Library/US
Nuclear Regulatory Commission.

Greenspan, E., 1982. Sensitivity functions for uncertainty analysis. In: Lewins, J.,
Becker, M. (Eds.), Advances in Nuclear Science and Technology, Vol. 14. Plenum
Press, New York and London.

HELIOS, 2000. Methods, Studsvik Scandpower.
Herman, M., Trkov, A. (Eds.), 2009. ENDF-6 formats manual: data formats and

procedures for the evaluated nuclear data file ENDF/B-VI and ENDF/B-VII.
Document ENDF-102. Report BNL-90365-2009. Brookhaven National
Laboratory.

Ivanov, K., Avramova, M., Kamerow, S., Kodeli, I., Sartori, E., 2011. Benchmark for
Uncertainty Analysis in Modeling (UAM) for Design, Operation, and Safety
Analysis of LWRs. vol. I: Specification and Support Data for the Neutronics Cases
(Phase I). Version 2.0 (NEA/NSC/DOC(2011)).

Kodeli, I., Sartori, E., 1990. Neutron cross-section covariance data in multigroup
form and procedure for interpolation to users’ group structures for uncertainty
analysis applications. In: International Conference on the Physics of Reactors:
Operation, Design and Computation (PHYSOR 1990).

Kodeli, I., Ishikawa, M., Aliberti, G., 2008. Evaluation of fission spectra uncertainty
and their propagation, Appendix C In: OECD/NEA WPEC Subgroup 26 final
report: Uncertainty and target accuracy assessment for innovative systems
using recent covariance data evaluations. OECD.

Kodeli, I., 2010. Manual for ANGELO2 and LAMBDA Codes. NEA-1798/03 Package.
Lewis, E.E., Miller Jr., W.F., 1984. Computational Methods of Neutron Transport.

John Wiley & Sons.
MacFarlane, R.E., Muir, D.W., 1994. The NJOY Nuclear Data Processing System,

Version 91, Manual. Los Alamos National Laboratory (LA-12740-M).
Marleau, G., Hébert, A., Roy, R., 2009. A User Guide for DRAGON Version 4. (IGE294)

<http://www.polymtl.ca/nucleaire/DRAGON/>.
NEA Data Bank, 2011. ZZ-SCALE6.0/COVA-44G, a 44-group cross section covariance

matrix library retrieved from the SCALE 6.0 package. (USCD1236/03).
Rearden, B.T., 2009. TSUNAMI-1D: Control module for one-dimensional cross-

section sensitivity and uncertainty analysis for criticality. In: SCALE: A Modular
Code System for Performing Standardized Computer Analyses for Licencing
Evaluation, Version 6. No. ORNL/TM-2005/39. Oak Ridge National Library/US
Nuclear Regulatory Commission.

Rearden, B.T., 2009. TSUNAMI-3D: control module for three-dimensional cross-
section sensitivity and uncertainty analysis for criticality. In: SCALE: A Modular
Code System for Performing Standardized Computer Analyses for Licencing
Evaluation, Version 6. No. ORNL/TM-2005/39. Oak Ridge National Library/US
Nuclear Regulatory Commission.

Rhodes, J., Edenius, M., 2001. CASMO-4, a fuel assembly burnup program, users
manual. Studsvik of America (SSP-01/400 Rev 4, proprietary).

Rhodes, J., 2005. JEF 2.2 and ENDF/B-VI 70 group neutron data libraries. Studsvik
Scandpower (SSP-04/454 Rev 2, proprietary).

Weisbin, C.R., et al., 1976. Application of FORSS sensitivity and uncertainty
methodology to fast reactor benchmark analysis. Tech. Rep. (ORNL/TM-5563).

Wieselquist, W.A., Vasiliev, A., Ferroukhi, H., 2011. Towards an uncertainty
quantification methodology with casmo-5. In: The International Conference
on Mathematics and Computational Methods applied to Nuclear Science and
Engineering (M& C 2011).

Williams, M.L., 1986. Perturbation theory for nuclear reactor analysis. In:
Ronen, Y. (Ed.), CRC Handbook of Nuclear Reactors Calculations, vol. 3. CRC
Press.

Williams, M.L., Broadhead, B.L., Parks, C.V., 2001. Eigenvalue sensitivity theory for
resonance-shielded cross sections. Nuclear Science and Engineering 138, 177–
191.

Williams, M.L., Wiarda, D., Arbanas, G., Broadhead, B.L., 2009. Scale nuclear data
covariance library. In: SCALE: A Modular Code System for Performing
Standardized Computer Analyses for Licencing Evaluation, Version 6. No.
ORNL/TM-2005/39. Oak Ridge National Library/U.S. Nuclear Regulatory
Commission.

WIMS9A, 2005. New Features, A Guide to the New Features of WIMS Version 9A
<http://www.sercoassurance.com/answers/>.

162 M. Pusa / Annals of Nuclear Energy 40 (2012) 153–162

http://www.polymtl.ca/nucleaire/DRAGON/
http://www.sercoassurance.com/answers/


1

PUBLICATION VI

Perturbation-theory-based 
sensitivity and uncertainty 

analysis with CASMO-4 
In: Science and Technology of Nuclear 
Installations, 2012, Article ID 157029.

Copyright 2012 Maria Pusa.



VI/1



VI/1

Hindawi Publishing Corporation
Science and Technology of Nuclear Installations
Volume 2012, Article ID 157029, 11 pages
doi:10.1155/2012/157029

Research Article

Perturbation-Theory-Based Sensitivity and
Uncertainty Analysis with CASMO-4

Maria Pusa

VTT Technical Research Centre of Finland, P.O. Box 1000, VTT 02044, Finland

Correspondence should be addressed to Maria Pusa, maria.pusa@vtt.fi

Received 25 June 2012; Accepted 5 October 2012

Academic Editor: Kostadin Ivanov

Copyright © 2012 Maria Pusa. This is an open access article distributed under the Creative Commons Attribution License, which
permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

The topic of this paper is the development of sensitivity and uncertainty analysis capability to the reactor physics code CASMO-4
in the context of the UAM (Uncertainty Analysis in Best-Estimate Modelling for Design, Operation, and Safety Analysis of LWRs)
benchmark. The sensitivity analysis implementation is based on generalized perturbation theory, which enables computing the
sensitivity profiles of reaction rate ratios efficiently by solving one generalized adjoint system for each response. Both the theoretical
background and the practical guidelines for modifying a deterministic transport code to compute the generalized adjoint solutions
and sensitivity coefficients are reviewed. The implementation to CASMO-4 is described in detail. The developed uncertainty
analysis methodology is deterministic, meaning that the uncertainties are computed based on the sensitivity profiles and covariance
matrices for the uncertain nuclear data parameters. The main conclusions related to the approach used for creating a covariance
library compatible with the cross-section libraries of CASMO-4 are presented. Numerical results are given for a lattice physics test
problem representing a BWR, and the results are compared to the TSUNAMI-2D sequence in SCALE 6.1.

1. Introduction

The topic of this paper is the development of sensitivity
and uncertainty analysis capability to the reactor physics
code CASMO-4 [1] in the context of the UAM (Uncertainty
Analysis in Best-Estimate Modelling for Design, Operation
and Safety Analysis of LWRs) benchmark [2]. At VTT,
CASMO-4 is the standard tool for lattice physics calculations,
and therefore it was a natural choice as the development
platform for a sensitivity and uncertainty calculation system
for the pin cell and fuel assembly exercises in the benchmark.

Sensitivities with respect to uncertain parameters can be
computed efficiently by utilizing the adjoint system of the
criticality equation. The propagated parameter uncertainty
can then be calculated deterministically by the Sandwich
rule by combining the sensitivity profiles with the covari-
ance matrices of the parameters. As a first step, classical
perturbation theory (CPT) was implemented to CASMO-4
to enable the computation of critical eigenvalue sensitivities
with respect to nuclear data parameters. In this context,
a methodology was devised for processing the covariance
matrices from SCALE 6 [3] to become compatible with the

cross-section libraries of CASMO-4 to enable uncertainty
analysis. This work has been reported in detail in [4].
Recently, generalized perturbation theory (GPT) has been
added to the code as a new feature. This enables performing
sensitivity analysis for responses that can be presented as
reaction rate ratios. In this framework, one generalized
adjoint system needs to be solved for each response, after
which the response sensitivity profiles for all parameters of
interest can be computed in an efficient manner.

This paper is organized as follows. Section 2 reviews
the theoretical background for sensitivity and uncertainty
analysis based on generalized perturbation theory, and
Section 3 focuses on the implementation to CASMO-4. In
Section 3.1, the computation of generalized adjoint solutions
is considered and practical guidelines are presented for
modifying a deterministic transport code to solve the adjoint
problems needed in sensitivity analysis. Section 3.2 concerns
the computation of sensitivity and uncertainty profiles.
Finally, in Section 4, numerical results are presented for a
lattice physics test problem representing a BWR, and they are
compared to the TSUNAMI-2D sequence in SCALE 6.1.
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order for the solution Γ to exist. Also, when a solution Γ0 to
(9) exists, there exists an infinite amount of solutions of the
form

Γ = Γ0 + aΨ, a ∈ R. (10)

In this case, it is possible to choose a solution that is
orthogonal to the (forward) fission source. This particular
solution can be written as

Γp = Γ0 − �Γ0, BΦ�
�Ψ, BΦ�Ψ

= Γ0 − �B
∗Γ0,Φ�

�B∗Ψ,Φ�Ψ.

(11)

We can now derive a practical expression for the response
sensitivity with respect to a perturbation δσ :

δR(ê, h)
R

= R�σ(ê)δσ
R

+

〈
∇ΦR(ê)

R
, δΦ

〉

Φ

(9)= R�σ(ê)δσ
R

+
〈

(A∗ +
1
k

B∗)Γ, δΦ
�
Φ

(4)= R�σ(ê)δσ
R

+
〈
Γ,
(

A +
1
k

B
)
δΦ
�
Φ

(3)= R�σ(ê)δσ
R

−
〈
Γ,
(

A�σ(ê)− 1
k

B�σ(ê)
)
δσ
�
Φ

− δk(ê; h)
k2

�Γ, BΦ�Φ

= R�σ(ê)δσ
R

−
〈
Γp,
(

A�σ(ê)− 1
k

B�σ(ê)
)
δσ
�
Φ
.

(12)

This framework is often referred to as generalized perturba-
tion theory when the response R is of the form:

R(e) = �Φ,Σ1�
�Φ,Σ2� . (13)

In this case, it is straightforward to show that (8) is satisfied
and that R is Fréchet-differentiable, the relative gradient
being

∇ΦR

R
= Σ1

�Φ,Σ1� −
Σ2

�Φ,Σ2� . (14)

The generalized adjoint Γ(r,Ω,E) can be physically
interpreted as the average contribution of an additional
neutron at the phase space point [r,Ω,E] to the response
under consideration. The generalized adjoint is normalized
according to the value of the response. It should also be
noticed that since an additional neutron may also reduce
the value of the response, generalized adjoints can also have
negative values. The gradient of the response may also be
negative in some parts of the phase space.

In practice, the eigenvalue problem and the corre-
sponding adjoint equations are solved numerically, which
gives rise to some complications in the perturbation theory

formalism. Ideally, the discretizations should be performed
in a consistent manner so that the respective adjoint relations
are satisfied at all stages of the computation [5]. However,
this is usually infeasible in reactor physics calculations, and
therefore it is customary to take the eigenvalue problem
discretized with respect to energy and direction as the
starting point for sensitivity analysis. This issue is discussed
in more detail in [4].

2.2. Uncertainty Analysis. The uncertainty of the uncertain
parameters σ should be understood in terms of the Bayesian
probability interpretation. In this framework, probability
is defined as a subjective measure that characterizes the
plausibility of various hypotheses. When estimating param-
eters, all knowledge about a parameter σj is assumed to be
incorporated into its marginal probability distribution p(σj).

This distribution is defined so that the integral
∫ b
a p(σj) dσj

corresponds to the (Bayesian) probability that the value of
σj belongs to the interval [a, b]. The distribution p(σ) can
then be used to form an estimate for the parameters and
their associated uncertainties. Usually, the mean value or the
mode is chosen as the estimate for the parameters, whereas
the covariance matrix of the distribution is chosen as the
descriptive statistic for the uncertainty.

In the Bayesian formalism, the outcome of the uncer-
tainty analysis should ideally be the full posterior distribu-
tion p(R). However, determining p(R) analytically is usually
extremely challenging and the distribution can only be
estimated pointwise based on a simulation. In deterministic
uncertainty analysis, the objective is not to form the entire
distribution p(R), but to compute an estimate for the
covariance matrix Cov[R] by linearizing the response R ≈
Sσ . Here S ∈ RJ×K is the response vector sensitivity matrix, J
is the number of responses, and K is the number of uncertain
parameters. After linearizing the response, the covariance
matrix can be computed simply using the identity

Cov[R] ≈ Cov[Sσ] = S Cov[σ]ST , (15)

known as the first-order uncertainty propagation formula or
the Sandwich rule.

3. Implementation

3.1. Computation of Generalized Adjoint Fluxes. This section
reviews the guidelines for modifying a deterministic trans-
port solver to compute the adjoint solutions needed in gen-
eralized perturbation theory and describes the methodology
used in the implementation to CASMO-4. As mentioned
previously, the description on the implementation of clas-
sical perturbation theory to CASMO-4 has been recently
published in [4], and therefore, in this paper, the emphasis
is placed on the GPT-specific features.

As explained in Section 2.1, it is customary to take
the energy- and direction-discretized system as the starting
point for perturbation theory. In CASMO-4, the multigroup
criticality equation is solved by the method of characteristics
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2. Theoretical Background

The purpose of sensitivity analysis is to study how sensitive
a mathematical model is to perturbations in its uncertain
parameters. The target of uncertainty analysis is to estimate
how the uncertainty in these parameters is propagated to
a response dependent on the mathematical model under
consideration. In this work the mathematical model is the
neutron transport eigenvalue problem, which can be written
in operator form as

AΦ = 1
k

BΦ, (1)

where Φ ∈ HΦ is the neutron flux, HΦ is a Hilbert space,
and k is the multiplication factor. The uncertain parameters
consist of nuclear data parameters and they are denoted
by the vector σ ∈ Eσ . It should be noted that both
the continuous-energy criticality equation and the various
systems derived from it in numerical computations can be
written in the form of (1).

2.1. Sensitivity Analysis. The object of local sensitivity anal-
ysis is to determine how the response R depends on the
uncertain parameters in the vicinity of their best-estimate
values. In this work, the responses under consideration
include homogenized assembly parameters and the mul-
tiplication factor, whereas the uncertain parameters are
neutron cross-sections. When considering the continuous-
energy eigenvalue problem, the cross-sections are functions
of energy and location, and the appropriate derivative is the
functional directional derivative called the Gâteaux variation
[5]. It follows that the sensitivity of R with respect to the
perturbation h = [δΦ, δσ] ∈ D = HΦ × Eσ at the point
ê = [Φ̂, σ̂] ∈ D may be defined as

δR(ê; h) = lim
t→ 0

R(ê + th)− R(ê)
t

. (2)

When the parameters σ are perturbed, also the solution
Φ is affected and therefore the computation of the sensitivity
δR(ê; h) requires that the perturbation δΦ is known. In
principle, δΦ can be computed to first order from the
following forward sensitivity system:

δA(ê; h) = − 1
k2

δk(ê; h)BΦ +
1
k
δB(ê; h)

⇐⇒ A�σ(ê)δσ + A(ê)δΦ = − 1
k2

δk(ê; h)BΦ

+
1
k

B�σ(ê)δσ +
1
k

B(ê)δΦ,

(3)

which can be derived by taking the Gâteaux variation
of system (1) with respect to a perturbation h on both
sides. However, when computing several sensitivities, this
approach would require the repetitive solving of (3).

Fortunately, the sensitivities can be computed more
efficiently by exploiting the adjoint of (1), which is defined
as the system that satisfies the following relation: (In some

cases the adjoint relation needs to be written in the form
�AΦ+(1/k)BΦ,Ψ� = �Φ, A∗Ψ+(1/k)B∗Ψ�+[P(Ψ,Φ)]x∈∂Ω,
where [P(Ψ,Φ)]x∈∂Ω is a bilinear form associated with the
system. We will only consider cases where it is straightfor-
ward to force this term to vanish.)

〈
AΦ− 1

k
BΦ,Ψ

�
=
〈
Φ, A∗Ψ− 1

k
B∗Ψ

�
, (4)

where the brackets �·, ·� denote an inner product. When
considering the continuous-energy criticality equation, it
is customary to employ the L2 inner product [6, 7]. The
solution to the adjoint problem

(
A∗ − 1

k
B∗
)
Ψ = 0 (5)

is called the fundamental adjoint. Physically, the solution
to this system can be interpreted to represent the average
contribution, that is, importance of a neutron to the
multiplication factor. Interestingly, the adjoint system of (5)
can be derived solely based on this physical interpretation
[8]. Like the neutron flux, the fundamental adjoint has
an arbitrary normalization, and the concept of importance
should be understood in relative terms. Therefore, the value
Ψ(r,Ω,E) represents the importance of a neutron located at
the point [r,Ω,E] compared to the importance of neutrons
elsewhere in the phase space [9]. Based on this physical
reasoning, it can be deduced that the fundamental adjoint
must always be nonnegative.

By utilizing (4) and (5), it is straightforward to obtain
the following expression for the relative sensitivity of the
multiplication factor with respect to a perturbation δσ (For
derivation, see for example, [4, 10]):

δk(ê; h)
k

= −
〈(

A�σ(ê)− (1/k)B�σ(ê)
)
δσ ,Ψ

〉

�(1/k)BΦ,Ψ� . (6)

This equation is known in reactor physics as classical
perturbation theory. In addition, the adjoint system can be
utilized in the sensitivity analysis of the eigenvalue problem
for other responses fulfilling the following properties. Firstly,
the response R must be Fréchet-differentiable with respect to
Φ, in which case we can write

δR(ê; h) = R�σ(ê)δσ +
〈∇ΦR(ê), δΦ

〉
Φ. (7)

In addition, the response’s Fréchet derivative ∇ΦR (also
called gradient) must be orthogonal to the forward solution

�∇ΦR,Φ� = 0. (8)

When these assumptions are fulfilled, the generalized adjoint
corresponding to the response R can be defined as the
solution to the following inhomogeneous system:

(
A∗ +

1
k

B∗
)
Γ = ∇ΦR

R
. (9)

Notice that in the previous equation the eigenvalue k is
fixed to correspond to the solution of (1) and therefore the
operator A∗ + (1/k)B∗ is singular, which necessitates (8) in
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order for the solution Γ to exist. Also, when a solution Γ0 to
(9) exists, there exists an infinite amount of solutions of the
form

Γ = Γ0 + aΨ, a ∈ R. (10)

In this case, it is possible to choose a solution that is
orthogonal to the (forward) fission source. This particular
solution can be written as

Γp = Γ0 − �Γ0, BΦ�
�Ψ, BΦ�Ψ

= Γ0 − �B
∗Γ0,Φ�

�B∗Ψ,Φ�Ψ.

(11)

We can now derive a practical expression for the response
sensitivity with respect to a perturbation δσ :

δR(ê, h)
R

= R�σ(ê)δσ
R

+

〈
∇ΦR(ê)

R
, δΦ

〉

Φ

(9)= R�σ(ê)δσ
R

+
〈

(A∗ +
1
k

B∗)Γ, δΦ
�
Φ

(4)= R�σ(ê)δσ
R

+
〈
Γ,
(

A +
1
k

B
)
δΦ
�
Φ

(3)= R�σ(ê)δσ
R

−
〈
Γ,
(

A�σ(ê)− 1
k

B�σ(ê)
)
δσ
�
Φ

− δk(ê; h)
k2

�Γ, BΦ�Φ

= R�σ(ê)δσ
R

−
〈
Γp,
(

A�σ(ê)− 1
k

B�σ(ê)
)
δσ
�
Φ
.

(12)

This framework is often referred to as generalized perturba-
tion theory when the response R is of the form:

R(e) = �Φ,Σ1�
�Φ,Σ2� . (13)

In this case, it is straightforward to show that (8) is satisfied
and that R is Fréchet-differentiable, the relative gradient
being

∇ΦR

R
= Σ1

�Φ,Σ1� −
Σ2

�Φ,Σ2� . (14)

The generalized adjoint Γ(r,Ω,E) can be physically
interpreted as the average contribution of an additional
neutron at the phase space point [r,Ω,E] to the response
under consideration. The generalized adjoint is normalized
according to the value of the response. It should also be
noticed that since an additional neutron may also reduce
the value of the response, generalized adjoints can also have
negative values. The gradient of the response may also be
negative in some parts of the phase space.

In practice, the eigenvalue problem and the corre-
sponding adjoint equations are solved numerically, which
gives rise to some complications in the perturbation theory

formalism. Ideally, the discretizations should be performed
in a consistent manner so that the respective adjoint relations
are satisfied at all stages of the computation [5]. However,
this is usually infeasible in reactor physics calculations, and
therefore it is customary to take the eigenvalue problem
discretized with respect to energy and direction as the
starting point for sensitivity analysis. This issue is discussed
in more detail in [4].

2.2. Uncertainty Analysis. The uncertainty of the uncertain
parameters σ should be understood in terms of the Bayesian
probability interpretation. In this framework, probability
is defined as a subjective measure that characterizes the
plausibility of various hypotheses. When estimating param-
eters, all knowledge about a parameter σj is assumed to be
incorporated into its marginal probability distribution p(σj).

This distribution is defined so that the integral
∫ b
a p(σj) dσj

corresponds to the (Bayesian) probability that the value of
σj belongs to the interval [a, b]. The distribution p(σ) can
then be used to form an estimate for the parameters and
their associated uncertainties. Usually, the mean value or the
mode is chosen as the estimate for the parameters, whereas
the covariance matrix of the distribution is chosen as the
descriptive statistic for the uncertainty.

In the Bayesian formalism, the outcome of the uncer-
tainty analysis should ideally be the full posterior distribu-
tion p(R). However, determining p(R) analytically is usually
extremely challenging and the distribution can only be
estimated pointwise based on a simulation. In deterministic
uncertainty analysis, the objective is not to form the entire
distribution p(R), but to compute an estimate for the
covariance matrix Cov[R] by linearizing the response R ≈
Sσ . Here S ∈ RJ×K is the response vector sensitivity matrix, J
is the number of responses, and K is the number of uncertain
parameters. After linearizing the response, the covariance
matrix can be computed simply using the identity

Cov[R] ≈ Cov[Sσ] = S Cov[σ]ST , (15)

known as the first-order uncertainty propagation formula or
the Sandwich rule.

3. Implementation

3.1. Computation of Generalized Adjoint Fluxes. This section
reviews the guidelines for modifying a deterministic trans-
port solver to compute the adjoint solutions needed in gen-
eralized perturbation theory and describes the methodology
used in the implementation to CASMO-4. As mentioned
previously, the description on the implementation of clas-
sical perturbation theory to CASMO-4 has been recently
published in [4], and therefore, in this paper, the emphasis
is placed on the GPT-specific features.

As explained in Section 2.1, it is customary to take
the energy- and direction-discretized system as the starting
point for perturbation theory. In CASMO-4, the multigroup
criticality equation is solved by the method of characteristics
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(1) Transpose the scattering matrix.

(2) Interchange the vectors νσ f and χ.

(3) Invert the group indices for all variables as follows:
G↔ 1, (G− 1) ↔ 2, . . ..

After these operations, the transport solver can be used
to compute the fundamental adjoint solution. Notice also
that these operations automatically convert the forward
boundary conditions to the adjoint boundary conditions.
When solving a generalized adjoint problem, the following
changes need to be additionally implemented within the
(forward) transport solver.

(1) Add the response gradient ∇ΦR/R to the variable for
an external source.

(2) Modify the fission source Fg to the form

Fg =
χg

4πk

G∑
h=1

ν Σh
f

(
φh(r)− �BΦ,ΦF�

�BΨ,ΦF�Ψ
g
)

, (30)

where ΦF denotes the forward solution of (16) and Ψ
the adjoint solution of (20).

The multigroup solution Φ given by the solver must then
be interpreted so that, for example, Φg(r,Ω) corresponds to
ΓG+1−g(r,−Ω). Notice that if the transport solver is based
on a numerical scheme that relies on the nonnegativity of
the flux or the sources, some additional modifications are
necessary in addition to the ones described above. For further
details, see for example, [11].

3.2. Computation of Sensitivity and Uncertainty Profiles. After
obtaining the adjoint solutions, the sensitivities with respect
to the multigroup nuclear data parameters can be computed
according to (6) and (12). Notice that even after the
multigroup approximation, these parameters are still spatial
functions and therefore the derivatives in the equations refer
to functional derivatives. The inner product in the sensitivity
expressions can be discretized as

�Φ,Ψ� ≈
I∑

i=1

G∑
g=1

M∑
m=1

ωmVi Φ
g,i,m

Ψ
g,i,m

, (31)

where i denotes the mesh index and Φ
g,i,m

and Ψ
g,i,m

denote
the average fluxes.

In order to compute the uncertainties using the Sandwich
rule, the sensitivities and covariance matrices need to be
formed with respect to the same parameters using the same
energy group structure. In the SCALE 6 covariance library
[3], the available covariance matrices are given in a 40-
group structure for the parameters listed in Table 1. Most of
these covariance matrices are nuclide specific. It should be
emphasized that there is no covariance data for the group-
to-group transfer cross-sections.

Multigroup covariance matrices can in principle be
transformed to another multigroup structure by simple
mathematical techniques. The applicability of this approach
depends on the differences between the group structures.

Table 1: Parameters for which there exists covariance data in the
SCALE library.

Parameter MT number

σt 1

σe 2

σi 4

σn,2n 16

σf 18

σγ 102

σn,p 103

σn,d 104

σn,t 105

σn,He 106

σn,α 107

ν 456

χ 1018

In particular, the widths of the energy groups should not
dramatically change. In this work, the code Angelo 2.3 [12]
was used to transform the matrices to the energy group
structure used in the sensitivity calculations with CASMO-
4. The transformation procedure used in the code is based
on flat-flux approximation, where the resampled values on
the new grid are computed as lethargy overlap weighted
averages. For further details, see [13]. When modifying
the energy group structure of fission spectrum covariance
matrices, further correction procedures are necessary in
order to guarantee that the covariance matrices are in
accordance with the normalization condition

∑
g χ

g = 1
[14]. The correction can also be applied to the fission
spectrum sensitivities in which case the sensitivities are called
constrained [14]. This was the approach chosen in this work.

In order to utilize the covariance data given for the
parameters in Table 1, sensitivity profiles should be com-
puted with respect to the same parameters. However, many
lattice physics codes such as CASMO, HELIOS [15], WIMS
[16], and DRAGON [17] employ nuclear data libraries that
do not contain cross-section data for the individual capture
and scattering reactions, but only for the total capture and
scattering cross-section. There are generally three different
approaches to overcome this difficulty. The most natural
approach is perhaps to add the missing cross-sections to
the code, either by creating a new cross-section library
or by modifying the cross-sections inside the code [18].
Another option, suitable for deterministic analysis, is not
to use problem-dependent cross-sections in the sensitivity
analysis. In this case, the sensitivity coefficients can be
computed outside the code based on the forward and adjoint
fluxes and any set of cross-sections. This was the idea, for
example, behind connecting DRAGON with the sensitivity
and uncertainty analysis code SUSD3D after a generalized
adjoint mode was implemented to DRAGON [19]. The third
option is to form the covariance matrices corresponding to
the total capture and scattering cross-sections [4]. This is the
approach that was chosen in this work.
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assuming isotropic scattering. Therefore, the following sys-
tem of equations may be taken as the forward problem:

Ωm · ∇Φg(r,Ωm) + ΣgΦg(r,Ωm)

= 1
4π

G∑
h=1

Σ
h→ g
s φh(r) +

χg
4πk

G∑
h=1

ν Σh
f φ

h(r),

g = 1, . . . ,G.

(16)

In (16) the scalar flux is approximated by the quadrature
formula

φh(r) =
M∑

m=1

ωmΦ
h(r,Ωm). (17)

In order to simulate an infinite lattice, the boundary condi-
tions are often assumed to be reflective, that is,

Φ(r,Ωm,E) = Φ
(

r,Ω�
m,E

)
, r ∈ Γ, Ωm · n < 0, (18)

where Ωm = Ω�
m − 2(n · Ω�

m)n is the reflection direction.
The inner product corresponding to this discretization can
be defined in a consistent manner as

�Φ,Ψ� =
G∑

g=1

M∑
m=1

ωm

∫
D
d3rΦg(r,Ωm)Ψg(r,Ωm). (19)

The adjoint system can now be written

−Ωm · ∇Ψg(r,Ωm) + Σg Ψg(r,Ωm)

= 1
4π

G∑
h=1

Σ
g→h
s ψh(r) +

ν Σ
g
f

4πk

G∑
h=1

χhψ
h(r), g = 1, . . . ,G,

(20)

with the boundary conditions

Ψ(r,Ωm,E) = Ψ
(

r,Ω�
m,E

)
, r ∈ Γ, Ωm · n > 0. (21)

It is straightforward to check that the systems (16) and (20)
with their respective boundary conditions satisfy (4) with
respect to the inner product defined by (19).

The generalized adjoint problem for a response of the
form of (13) can now be written

−Ωm · ∇Γg(r,Ωm) + Σg Γg(r,Ωm)

= 1
4π

G∑
h=1

Σ
g→h
s γh(r) +

ν Σ
g
f

4πk

G∑
h=1

χhγ
h(r)

+
Σ
g
1(r)

�Φ,Σ1� −
Σ
g
2(r)

�Φ,Σ2� , g = 1, . . . ,G,

(22)

where the generalized adjoint of the scalar flux has been
denoted by γh(r). As explained in Section 2.1, this system
may have an infinite number of solutions, of which we wish
to solve the one that satisfies

〈
B∗Γp,Φ

〉
= 0. (23)

In deterministic transport solvers, the iteration for fixed
source calculations is generally of the form

AΦn+1 = BΦn + S, (24)

where S is an external source. This iteration scheme with a
fixed eigenvalue is also well suited for solving the generalized
adjoint problem of (22), in which case the iteration takes the
form

A∗Γn+1 = 1
k

B∗Γn +
∇ΦR

R
. (25)

During the iteration, however, the convergence to the
particular solution that is orthogonal to the fission source
must be ensured. It is straightforward to show that if the
initial guess for the generalized adjoint flux satisfies (23),
this orthogonality property is preserved during the iteration.
Firstly,

〈
A∗Γn+1,Φ

〉
(25)= 1

k

〈
B∗Γn,Φ

〉
+
〈∇ΦR

R
,Φ
�

(8)= 1
k

〈
B∗Γn,Φ

〉
.

(26)

On the other hand,
〈

A∗Γn+1,Φ
〉
=
〈
Γn+1, AΦ

〉
(1)= 1

k

〈
Γn+1, BΦ

〉

= 1
k

〈
B∗Γn+1,Φ

〉
.

(27)

Therefore, for each iteration n,
〈

B∗Γn+1,Φ
〉
= 〈B∗Γn,Φ

〉
, (28)

from which the result follows. In practice, however, due
to round-off errors and the unavoidable inconsistencies
in formulating the discretizations and adjoint relations, a
refinement of the iteration scheme is necessary to guarantee
that (23) remains satisfied [11]. A suitable procedure is
to force the orthogonality of the solution with each outer
iteration. In this case, in accordance with (11), the iteration
takes the form

A∗Γn+1 = 1
k

B∗
(
Γn − �B

∗Γn,Φ�
�B∗Ψ,Φ�Ψ

)
+
∇ΦR

R
. (29)

Notice that this iteration scheme requires that the forward
solution and the fundamental adjoint solution have been
previously computed and that they are accessible during the
iteration.

By comparing (29) with the forward problem of (16),
it can be seen that if the forward system had an external
source, the systems would be of the same form with the
exception that the adjoint system is solved in the opposite
direction. Therefore, if the transport solver does not rely
on the assumption of the nonnegativity of the flux or the
sources, relatively few modifications are needed to transform
the solver to also compute the generalized adjoint functions.
For example, the method of characteristics, used in CASMO-
4, does not require that the solution or the sources are non-
negative. In this case, the following operations need to be
performed before the adjoint calculation [10].
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(1) Transpose the scattering matrix.

(2) Interchange the vectors νσ f and χ.

(3) Invert the group indices for all variables as follows:
G↔ 1, (G− 1) ↔ 2, . . ..

After these operations, the transport solver can be used
to compute the fundamental adjoint solution. Notice also
that these operations automatically convert the forward
boundary conditions to the adjoint boundary conditions.
When solving a generalized adjoint problem, the following
changes need to be additionally implemented within the
(forward) transport solver.

(1) Add the response gradient ∇ΦR/R to the variable for
an external source.

(2) Modify the fission source Fg to the form

Fg =
χg

4πk

G∑
h=1

ν Σh
f

(
φh(r)− �BΦ,ΦF�

�BΨ,ΦF�Ψ
g
)

, (30)

where ΦF denotes the forward solution of (16) and Ψ
the adjoint solution of (20).

The multigroup solution Φ given by the solver must then
be interpreted so that, for example, Φg(r,Ω) corresponds to
ΓG+1−g(r,−Ω). Notice that if the transport solver is based
on a numerical scheme that relies on the nonnegativity of
the flux or the sources, some additional modifications are
necessary in addition to the ones described above. For further
details, see for example, [11].

3.2. Computation of Sensitivity and Uncertainty Profiles. After
obtaining the adjoint solutions, the sensitivities with respect
to the multigroup nuclear data parameters can be computed
according to (6) and (12). Notice that even after the
multigroup approximation, these parameters are still spatial
functions and therefore the derivatives in the equations refer
to functional derivatives. The inner product in the sensitivity
expressions can be discretized as

�Φ,Ψ� ≈
I∑

i=1

G∑
g=1

M∑
m=1

ωmVi Φ
g,i,m

Ψ
g,i,m

, (31)

where i denotes the mesh index and Φ
g,i,m

and Ψ
g,i,m

denote
the average fluxes.

In order to compute the uncertainties using the Sandwich
rule, the sensitivities and covariance matrices need to be
formed with respect to the same parameters using the same
energy group structure. In the SCALE 6 covariance library
[3], the available covariance matrices are given in a 40-
group structure for the parameters listed in Table 1. Most of
these covariance matrices are nuclide specific. It should be
emphasized that there is no covariance data for the group-
to-group transfer cross-sections.

Multigroup covariance matrices can in principle be
transformed to another multigroup structure by simple
mathematical techniques. The applicability of this approach
depends on the differences between the group structures.

Table 1: Parameters for which there exists covariance data in the
SCALE library.

Parameter MT number

σt 1

σe 2

σi 4

σn,2n 16

σf 18

σγ 102

σn,p 103

σn,d 104

σn,t 105

σn,He 106

σn,α 107

ν 456

χ 1018

In particular, the widths of the energy groups should not
dramatically change. In this work, the code Angelo 2.3 [12]
was used to transform the matrices to the energy group
structure used in the sensitivity calculations with CASMO-
4. The transformation procedure used in the code is based
on flat-flux approximation, where the resampled values on
the new grid are computed as lethargy overlap weighted
averages. For further details, see [13]. When modifying
the energy group structure of fission spectrum covariance
matrices, further correction procedures are necessary in
order to guarantee that the covariance matrices are in
accordance with the normalization condition

∑
g χ

g = 1
[14]. The correction can also be applied to the fission
spectrum sensitivities in which case the sensitivities are called
constrained [14]. This was the approach chosen in this work.

In order to utilize the covariance data given for the
parameters in Table 1, sensitivity profiles should be com-
puted with respect to the same parameters. However, many
lattice physics codes such as CASMO, HELIOS [15], WIMS
[16], and DRAGON [17] employ nuclear data libraries that
do not contain cross-section data for the individual capture
and scattering reactions, but only for the total capture and
scattering cross-section. There are generally three different
approaches to overcome this difficulty. The most natural
approach is perhaps to add the missing cross-sections to
the code, either by creating a new cross-section library
or by modifying the cross-sections inside the code [18].
Another option, suitable for deterministic analysis, is not
to use problem-dependent cross-sections in the sensitivity
analysis. In this case, the sensitivity coefficients can be
computed outside the code based on the forward and adjoint
fluxes and any set of cross-sections. This was the idea, for
example, behind connecting DRAGON with the sensitivity
and uncertainty analysis code SUSD3D after a generalized
adjoint mode was implemented to DRAGON [19]. The third
option is to form the covariance matrices corresponding to
the total capture and scattering cross-sections [4]. This is the
approach that was chosen in this work.
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Figure 1: Outline of the CASMO-4 calculations.

values given by CASMO-4 and TSUNAMI-2D are also very
consistent. Table 3 shows the five most significant sources
of uncertainty together with the corresponding energy- and
region-integrated sensitivity coefficients. As can be seen
from this table, both the sensitivity and the uncertainty
results are in good accordance. The greatest difference occurs
for the capture cross-section of 238U, for which CASMO-4
yields a greater sensitivity. This appears to originate from
the differences in the cross-section libraries. In particular,
the cross-section library E60200 used in the CASMO-4
calculation has not been reduced in terms of the 238U
resonance integral, which is known to be overestimated in
the ENDF/B-VI data [22].

Figure 2 shows the volume-averaged forward flux and the
volume-averaged fundamental adjoint Ψ corresponding to
this test case. As explained in Section 2.1, the value Ψ

g
repre-

sents the average importance of neutrons in the energy group
g to the multiplication factor in comparison to neutrons

Table 2: Summary of the results for the multiplication factor.

Code Forward k Adjoint k Rel. uncertainty, Δk/k (%)

CASMO-4 1.10548 1.10546 0.508

TSUNAMI-2d 1.10490 1.10490 0.506
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Figure 2: Volume-averaged forward flux and fundamental adjoint
flux.

in other energy groups. The plot can be interpreted from
this point of view. For example, it can easily be seen from
the figure how the 238U capture cross-section resonances
reduce the importance of neutrons in the corresponding
energy groups. This phenomenon is particularly clear in
the energy group E14 = [4.00 eV, 9.88 eV], where the
multigroup capture cross-section attains its maximum value.
It can also be clearly distinguished from the plot how the
adjoint function has a higher value in the energy groups
corresponding to the peaks in the fission cross-section of
235U. To further demonstrate this, Figure 3 shows a plot of
the problem-dependent 235U fission and 238U capture cross-
sections in the same 40-group structure. The increase in
the adjoint values in the highest energy groups corresponds
mainly to the increase in the value of ν at these energies.

Figure 4 shows the multiplication factor sensitivity pro-
files for the parameters, whose integrated sensitivity coef-
ficients have the greatest absolute values, excluding the
sensitivity profile with respect to the fission spectrum of
235U, which was constrained in the computation. As can
be seen from the figure, the multiplication factor is the
most sensitive to the fission parameters of 235U, the capture
cross-section of 238U, and the scattering cross-section of
1H. The positive sensitivity to the capture of 238U in the
highest energy group follows from the fact that in CASMO-
4 the (n, 2n) reaction cross-section has been included in the
capture cross-section with a negative sign in this group. It
is instructive to compare the sensitivity profiles with the
forward and adjoint fluxes plotted in Figure 2. Notice that
the peaks in the sensitivity profiles of 235U coincide with
the thermal peak of the neutron flux, where most of the
fissions occur. In general, perturbing a nuclear parameter
has a greater impact on the results in the energy groups,
where the flux is higher. On the contrary, the values of
the fundamental adjoint represent the average importance
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Since the relationships between the total and individual
capture and scattering reactions are linear, the covariance
matrices corresponding to the total capture and scattering
reactions can be computed with the Sandwich rule without
introducing any approximation. The method used for com-
bining the covariance matrices has been recently described in
detail in [4]. Therefore, only the most important conclusions
related to the methodology are repeated here.

Firstly, in the context of the capture reactions, the results
are expected to be fully consistent with the case where the
sensitivities are computed with respect to the individual
capture reactions. In the case of the scattering reactions,
however, the sensitivity profiles with respect to the individual
and the total scattering cross-sections cannot be defined in
a consistent manner and this affects the uncertainty results.
In this context, it should be emphasized that the treatment
of the covariance matrices involves no approximations and
the inconsistency is solely related to the computation of
the sensitivities. As mentioned previously, there is no cross-

section data for the transfer cross-sections σ
h→ g, j
x but only

for σ
g, j
x =∑G

h=1 σ
g→h, j
x , where x refers to a scattering reaction

(e.g., elastic, inelastic) and j is the nuclide index. Therefore,
in order to use the scattering covariance data, the sensitivity

profiles should be computed with respect to σ
g, j
x . Because of

the scattering source term in (16), however, the derivative

with respect to σ
g, j
x is not mathematically well defined

without additional constraints. Typically it is assumed that
the probabilities of transfers to various groups are fixed, that
is,

σ
g→h, j
x = σ

g, j
x p

g→h, j
x , (32)

where p
g→h
x is the proportion of neutrons scattered from

energy group g to energy group h, which is assumed to

remain fixed even if the scattering cross-section σ
g, j
x is

perturbed [20]. Based on this assumption, the scattering
source in (16) can be written as

Sg = 1
4π

G∑
h=1

Σ
h→ g
s φh = 1

4π

∑
x

∑
j

N j
G∑

h=1

σ
h, j
x p

h→ g
x φh, (33)

where the summations over x include all scattering reactions.

After this assumption, the derivative with respect to σ
g, j
x is

well defined and can be computed as usual. It is straightfor-
ward to show that this approach corresponds to computing
the sensitivity coefficients with respect to the transfer cross-

sections σ
g→h, j
x and summing them over h.

However, the sensitivity with respect to the total scat-

tering cross-section σ
j

s = ∑
x σ

j
x is not well defined if the

constraint (32) is enforced. In order to define this sensitivity,
fixed transfer rates must be assumed for the total scattering
cross-section. Also, computing the total scattering sensitivity
as the sum of the individual scattering sensitivities implicitly
enforces this constraint. Since the two assumptions required
to compute the individual and total scattering sensitivities are
inconsistent, the chain rule of derivation does not apply to

them, and, for example, although σ
g, j
s = σ

g, j
e + σ

g, j
i holds,

dR/dσg, j
e /= (dR/dσg, j

s )(dσg, j
s /dσg, j

e ).

4. Numerical Results for PB-2 Lattice
Physics Exercise

The calculation framework was applied to the BWR test
case from the UAM benchmark lattice physics Exercise 1.2
considering a single fuel assembly with reflective boundary
conditions [2], and the results were compared against
the TSUNAMI-2D sequence in SCALE 6.1 [21]. The test
problem represents Peach Bottom 2 (PB-2) under hot zero
power conditions. Two-group homogenized cross-sections
have been considered as responses in the GPT framework.

The outline of the CASMO-4 calculations is presented in
Figure 1. The calculations were carried out using the cross-
section library E60200 that contains 70 energy groups and
is based on ENDF/B-VI data [22]. The covariance data were
taken from the SCALE 6 library ZZ-SCALE6.0/COVA-44G
[3] according to the guidelines of the benchmark. The library
is based on evaluations from various sources (including
ENDF/B-VII, ENDF/B-VI, JENDL-3.1) and approximate
covariance data. The covariances in the library are given in
relative terms, and therefore the library is intended to be used
with all cross-section libraries including the ones that are
inconsistent with the evaluations. While this is not strictly
correct, it is considered to be acceptable due to the scarcity of
comprehensive covariance data among other reasons [23].

The list of the nuclides present in these test cases can be
found in the benchmark specification [2]. Apart from the
isotopes of chromium and iron, all available covariance data
in the library was included in the uncertainty computations.
The reason for excluding these isotopes is that the employed
cross-section library E60200 does not contain isotope-
specific cross-sections for these materials but only cross-
sections for natural chromium and iron.

The covariance matrices from ZZ-SCALE6.0/COVA-
44G were processed for compatibility with CASMO-4. The
sensitivity profiles in CASMO-4 were computed using the
40-group structure option that was the closest match to the
amount of groups in the covariance data and, as mentioned
in Section 3.2, the code Angelo 2.3 [12] was used to process
the covariance matrices to this energy group structure. Next,
the nuclear data processing code NJOY [24] was used to
transform the 40-group covariance files to the BOXR format.
Auxiliary FORTRAN programs were written for combining
the covariance matrices according to the principles described
in Section 3.2.

The TSUNAMI-2D calculations were performed using
the ENDF/B-VI-based cross-section library V6-238 con-
taining 238 energy groups. The module CENTRM was
used for self-shielding. Implicit sensitivity analysis [9] was
omitted in the TSUNAMI calculations in order to facilitate
the comparison of the results given by CASMO-4 and
TSUNAMI-2D.

4.1. Results Based on Classical Perturbation Theory. A sum-
mary of the results based on classical perturbation theory
for the multiplication factor is presented in Table 2. The
relative difference between the multiplication factors com-
puted with CASMO-4 and TSUNAMI-2D is 52 pcm in both
forward and adjoint cases. For the total uncertainty, the
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values given by CASMO-4 and TSUNAMI-2D are also very
consistent. Table 3 shows the five most significant sources
of uncertainty together with the corresponding energy- and
region-integrated sensitivity coefficients. As can be seen
from this table, both the sensitivity and the uncertainty
results are in good accordance. The greatest difference occurs
for the capture cross-section of 238U, for which CASMO-4
yields a greater sensitivity. This appears to originate from
the differences in the cross-section libraries. In particular,
the cross-section library E60200 used in the CASMO-4
calculation has not been reduced in terms of the 238U
resonance integral, which is known to be overestimated in
the ENDF/B-VI data [22].

Figure 2 shows the volume-averaged forward flux and the
volume-averaged fundamental adjoint Ψ corresponding to
this test case. As explained in Section 2.1, the value Ψ

g
repre-

sents the average importance of neutrons in the energy group
g to the multiplication factor in comparison to neutrons

Table 2: Summary of the results for the multiplication factor.

Code Forward k Adjoint k Rel. uncertainty, Δk/k (%)

CASMO-4 1.10548 1.10546 0.508

TSUNAMI-2d 1.10490 1.10490 0.506
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Figure 2: Volume-averaged forward flux and fundamental adjoint
flux.

in other energy groups. The plot can be interpreted from
this point of view. For example, it can easily be seen from
the figure how the 238U capture cross-section resonances
reduce the importance of neutrons in the corresponding
energy groups. This phenomenon is particularly clear in
the energy group E14 = [4.00 eV, 9.88 eV], where the
multigroup capture cross-section attains its maximum value.
It can also be clearly distinguished from the plot how the
adjoint function has a higher value in the energy groups
corresponding to the peaks in the fission cross-section of
235U. To further demonstrate this, Figure 3 shows a plot of
the problem-dependent 235U fission and 238U capture cross-
sections in the same 40-group structure. The increase in
the adjoint values in the highest energy groups corresponds
mainly to the increase in the value of ν at these energies.

Figure 4 shows the multiplication factor sensitivity pro-
files for the parameters, whose integrated sensitivity coef-
ficients have the greatest absolute values, excluding the
sensitivity profile with respect to the fission spectrum of
235U, which was constrained in the computation. As can
be seen from the figure, the multiplication factor is the
most sensitive to the fission parameters of 235U, the capture
cross-section of 238U, and the scattering cross-section of
1H. The positive sensitivity to the capture of 238U in the
highest energy group follows from the fact that in CASMO-
4 the (n, 2n) reaction cross-section has been included in the
capture cross-section with a negative sign in this group. It
is instructive to compare the sensitivity profiles with the
forward and adjoint fluxes plotted in Figure 2. Notice that
the peaks in the sensitivity profiles of 235U coincide with
the thermal peak of the neutron flux, where most of the
fissions occur. In general, perturbing a nuclear parameter
has a greater impact on the results in the energy groups,
where the flux is higher. On the contrary, the values of
the fundamental adjoint represent the average importance
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Table 4: Values and uncertainties of the responses considered in the GPT framework.

Response R
Value Relative uncertainty ΔR/R (%)

CASMO TSUNAMI CASMO TSUNAMI

νΣf,1 4.976× 10−3 4.951× 10−3 8.399× 10−1 9.754× 10−1

νΣf,2 6.922× 10−2 6.938× 10−2 4.490× 10−1 4.478× 10−1

Σc,1 5.348× 10−3 5.380× 10−3 1.098× 100 1.168× 100

Σc,2 2.653× 10−2 2.672× 10−2 5.066× 10−1 5.040× 10−1

Σf,1 1.935× 10−3 1.927× 10−3 5.563× 10−1 6.820× 10−1

Σf,2 2.841× 10−2 2.847× 10−2 3.244× 10−1 3.226× 10−1

Table 5: The five most significant sources of uncertainty for the response νΣf,2 and the corresponding energy- and region-integrated relative
sensitivity coefficients.

Nuclide Param. pair
Sensitivity Contribution to ΔR/R (%)

CASMO TSUNAMI CASMO TSUNAMI
235U ν, ν 9.996× 10−1 9.998× 10−1 3.105× 10−1 3.106× 10−1

235U σf, σf 7.985× 10−1 7.941× 10−1 2.893× 10−1 2.869× 10−1

235U σf, σc 7.985× 10−1 7.941× 10−1 1.134× 10−1 1.139× 10−1

−3.599× 10−2 −3.667× 10−2

238U σc, σc −4.406× 10−2 −4.255× 10−2 7.257× 10−2 7.222× 10−2

235U σc, σc −3.599× 10−2 −3.667× 10−2 5.613× 10−2 5.672× 10−2
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Figure 5: Volume-averaged generalized adjoints corresponding to
the responses νΣf,1 and νΣf,2.

from the downscattering of neutrons. Notice that Γf,1 also
has a small positive value in the first thermal group, which
corresponds to the possibility of upscattering. For the most
part, both adjoint fluxes qualitatively follow the fission cross-
section of 235U plotted in Figure 3. In the highest energy
groups, the values of Γf,1 increase rapidly due to the increase
in the values of ν. The negative values of Γf,1 between
0.111 MeV and 2.231 MeV signify that additional neutrons in
those energy groups would on average contribute more to the
denominator �Φ, 1�1 than to the numerator �Φ, νΣf�1. This
in accordance with the fact that fission is unlikely to occur in
this energy region.

Figure 6 shows the sensitivity profiles of νΣf,1 with respect
to the parameters, whose integrated sensitivity coefficients
have the greatest absolute values. As can be anticipated, the
response is the most sensitive to the fission parameters of
235U and 238U and in addition to the scattering of 1H. It
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Figure 6: Sensitivity profiles of the response νΣf,1.

is interesting to compare these profiles with the plot of the
generalized adjoint Γf,1 in Figure 5. The sensitivity to the
scattering of 1H has the smallest values in the groups with
the highest importance, as this reaction transfers neutrons to
energy groups with a lower importance. Since fast neutrons
mostly scatter downwards, the scattering sensitivity has
positive values in the groups between 149 eV and 1.35 MeV,
where the importance decreases with increasing energy. This
trend is reversed at 1.35 MeV, where the importance of the
energy groups begins to increase with energy, mainly due to
the increase in the values of ν at these energies.

The sensitivity profiles corresponding to the response
νΣf,2 are plotted in Figure 7. It is noteworthy that the
profiles qualitatively resemble the respective profiles of the
multiplication factor in the thermal region, whereas they
quickly fall to nearly zero in the fast region. From the
perspective of the GPT framework, it is again enlightening
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Table 3: The five most significant sources of uncertainty for the multiplication factor and the corresponding energy- and region-integrated
relative sensitivity coefficients.

Nuclide Parameter pair
Sensitivity Contribution to Δk/k (%)

CASMO TSUNAMI CASMO TSUNAMI
238U σc, σc −2.434× 10−1 −2.143× 10−1 3.198× 10−1 2.902× 10−1

235U ν, ν 9.160× 10−1 9.370× 10−1 2.720× 10−1 2.773× 10−1

235U σc, σc −1.027× 10−1 −1.025× 10−1 1.454× 10−1 1.422× 10−1

235U σf, σf 4.038× 10−1 4.212× 10−1 1.372× 10−1 1.409× 10−1
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Figure 3: Self-shielded multigroup cross-sections corresponding to
the test problem.

of neutrons in different energy groups. In particular, the
lowest energy group has the highest importance, but this is
not manifested in the sensitivity profiles, as the flux is very
close to zero in this group. The negative sensitivities to the
scattering reaction of 1H in the four lowest energy groups
can be attributed to the fact that in these groups upscattering
is more likely than downscattering. Therefore, neutrons are
scattered to energy groups with a lower importance. The
same reasoning applies to the scattering sensitivity of 1H
in the highest energy groups, where neutrons are scattered
downwards and the values of the adjoint function decrease
rapidly with energy.

4.2. Results Based on Generalized Perturbation Theory.
Table 4 presents the values and the total uncertainties of the
homogenized two-group cross-sections that were considered
as responses in the GPT-based sensitivity and uncertainty
analysis. In computing the responses, the thermal cut-off was
set at 0.625 eV. It can be seen from the table that all total
uncertainty values are in good agreement with the thermal
responses, whereas for the fast responses the uncertainties
given by TSUNAMI-2D are consistently greater.

Tables 5 and 6 show more detailed sensitivity and uncer-
tainty results for the two-group homogenized production
cross-sections νΣf,1 and νΣf,2. As can be seen from Table 6,
in the case of νΣf,1, the difference in the total uncertainty
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Figure 4: Multiplication factor sensitivity profiles.

values given by CASMO-4 and TSUNAMI-2D is attributable
to the scattering of 238U, for which TSUNAMI-2D yields
a significantly greater uncertainty value, although the total
scattering sensitivity coefficients given by both codes are very
close. As explained in Section 3.2, the sensitivity with respect
to the total scattering cross-section can only be defined if the
group-to-group transfer probabilities are assumed to be fixed
for the total scattering. Also, defining the total scattering
sensitivity as the sum of the individual scattering sensitiv-
ities implicitly enforces this assumption. However, in the
TSUNAMI-2D computation, the total scattering uncertainty
is computed based on the individual scattering sensitivities,
which rely on the assumption of fixed transfer rates for
each scattering reaction. The difference in the total scattering
uncertainties is hence explained by incompatible constraints
in the two uncertainty calculations. This phenomenon is
more evident for the fast group responses since they are more
sensitive to the inelastic scattering of 238U.

Figure 5 shows the volume-averaged generalized adjoint
solutions for the responses νΣf,1 and νΣf,2, denoted by Γf,1 and
Γf,2, respectively. As previously explained, the adjoint values
in each energy group can be interpreted to represent the
average importance of neutrons in that group to the response
under consideration. Therefore, it is not surprising that
thermal neutrons are more important to the response νΣf,2,
whereas fast neutrons are more important to the response
νΣf,1. The positive values of Γf,2 in the fast groups result
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Table 4: Values and uncertainties of the responses considered in the GPT framework.

Response R
Value Relative uncertainty ΔR/R (%)

CASMO TSUNAMI CASMO TSUNAMI

νΣf,1 4.976× 10−3 4.951× 10−3 8.399× 10−1 9.754× 10−1

νΣf,2 6.922× 10−2 6.938× 10−2 4.490× 10−1 4.478× 10−1

Σc,1 5.348× 10−3 5.380× 10−3 1.098× 100 1.168× 100

Σc,2 2.653× 10−2 2.672× 10−2 5.066× 10−1 5.040× 10−1

Σf,1 1.935× 10−3 1.927× 10−3 5.563× 10−1 6.820× 10−1

Σf,2 2.841× 10−2 2.847× 10−2 3.244× 10−1 3.226× 10−1

Table 5: The five most significant sources of uncertainty for the response νΣf,2 and the corresponding energy- and region-integrated relative
sensitivity coefficients.

Nuclide Param. pair
Sensitivity Contribution to ΔR/R (%)

CASMO TSUNAMI CASMO TSUNAMI
235U ν, ν 9.996× 10−1 9.998× 10−1 3.105× 10−1 3.106× 10−1

235U σf, σf 7.985× 10−1 7.941× 10−1 2.893× 10−1 2.869× 10−1

235U σf, σc 7.985× 10−1 7.941× 10−1 1.134× 10−1 1.139× 10−1

−3.599× 10−2 −3.667× 10−2

238U σc, σc −4.406× 10−2 −4.255× 10−2 7.257× 10−2 7.222× 10−2

235U σc, σc −3.599× 10−2 −3.667× 10−2 5.613× 10−2 5.672× 10−2
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Figure 5: Volume-averaged generalized adjoints corresponding to
the responses νΣf,1 and νΣf,2.

from the downscattering of neutrons. Notice that Γf,1 also
has a small positive value in the first thermal group, which
corresponds to the possibility of upscattering. For the most
part, both adjoint fluxes qualitatively follow the fission cross-
section of 235U plotted in Figure 3. In the highest energy
groups, the values of Γf,1 increase rapidly due to the increase
in the values of ν. The negative values of Γf,1 between
0.111 MeV and 2.231 MeV signify that additional neutrons in
those energy groups would on average contribute more to the
denominator �Φ, 1�1 than to the numerator �Φ, νΣf�1. This
in accordance with the fact that fission is unlikely to occur in
this energy region.

Figure 6 shows the sensitivity profiles of νΣf,1 with respect
to the parameters, whose integrated sensitivity coefficients
have the greatest absolute values. As can be anticipated, the
response is the most sensitive to the fission parameters of
235U and 238U and in addition to the scattering of 1H. It
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Figure 6: Sensitivity profiles of the response νΣf,1.

is interesting to compare these profiles with the plot of the
generalized adjoint Γf,1 in Figure 5. The sensitivity to the
scattering of 1H has the smallest values in the groups with
the highest importance, as this reaction transfers neutrons to
energy groups with a lower importance. Since fast neutrons
mostly scatter downwards, the scattering sensitivity has
positive values in the groups between 149 eV and 1.35 MeV,
where the importance decreases with increasing energy. This
trend is reversed at 1.35 MeV, where the importance of the
energy groups begins to increase with energy, mainly due to
the increase in the values of ν at these energies.

The sensitivity profiles corresponding to the response
νΣf,2 are plotted in Figure 7. It is noteworthy that the
profiles qualitatively resemble the respective profiles of the
multiplication factor in the thermal region, whereas they
quickly fall to nearly zero in the fast region. From the
perspective of the GPT framework, it is again enlightening
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Table 6: The five most significant sources of uncertainty for the response νΣf,1 and the corresponding energy- and region-integrated relative
sensitivity coefficients. The sensitivity coefficients with respect to the parameter χ have been constrained.

Nuclide Param. pair
Sensitivity Contribution to ΔR/R (%)

CASMO TSUNAMI CASMO TSUNAMI
235U χ, χ 4.657× 10−9 −2.757× 10−10 5.934× 10−1 6.150× 10−1

238U ν, ν 3.975× 10−1 3.879× 10−1 4.623× 10−1 4.544× 10−1

238U σf, σf 3.931× 10−1 3.834× 10−1 2.084× 10−1 1.994× 10−1

238U σs, σs −2.743× 10−2 −2.718× 10−2 2.015× 10−1 5.148× 10−1

235U σf, σf 5.826× 10−1 5.866× 10−1 1.588× 10−1 1.466× 10−1
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Figure 7: Sensitivity profiles of the response νΣf,2.

to compare the sensitivity plots with the adjoint function Γf,2

plotted in Figure 5 and the flux Φ shown in Figure 2. In the
case of this response, the average importance of neutrons
increases steadily with decreasing energy. Therefore, it is
reasonable that the scattering sensitivities are again negative
in the groups where upscattering is more likely than down-
scattering. Also, the sensitivities peak in the energy region
coinciding with the thermal peak of the forward flux.

5. Summary and Conclusions

Sensitivity and uncertainty analysis capability has been
developed to the reactor physics code CASMO-4 in the
context of the UAM benchmark. Sensitivities with respect
to nuclear data parameters can be computed efficiently by
utilizing the adjoint system of the criticality equation. The
propagated nuclear data uncertainty can then be calculated
deterministically by the Sandwich rule.

Initially, classical perturbation theory was implemented
to the code, which enabled sensitivity analysis of the critical
eigenvalue. In this context, covariance matrices from scale
6 were transformed to become compatible with CASMO-
4, and the resulting covariance library was connected with
the code. Since the cross-section libraries of CASMO-4 do
not contain data for the individual capture and scattering
reactions, the covariance matrices of the individual subre-
actions were combined in the covariance library. This work
has been reported in detail in [4], and the main conclusions
related to the methodology were summarized in this paper.
In particular, the sensitivities with respect to total scattering

and individual scattering cross-sections cannot be defined
in a consistent manner, which leads to some systematic
differences in the uncertainty results.

Recently, generalized perturbation theory was added to
the code as a new feature, which enables performing sensitiv-
ity analysis for responses that can be represented as reaction
rate ratios. For each response, the computation of sensitivity
profiles with respect to all parameters of interest requires
solving one generalized adjoint system. The mathematical
background as well as the physical interpretation of the
generalized adjoint solutions were reviewed, and practical
guidelines were given for modifying a deterministic transport
code to solve the generalized adjoint systems needed in
sensitivity analysis. The theory for computing the sensitivity
profiles was presented both from the perspective of function
space analysis and numerical computations.

Numerical results were presented for a lattice physics
test problem representing a BWR in hot zero power
conditions, and they were compared to the results given
by the TSUNAMI-2D sequence in SCALE 6.1. Two-group
homogenized cross-sections were considered as responses in
the generalized perturbation theory framework. The results
were in very good agreement with the thermal responses,
whereas in the case of fast responses, the uncertainties given
by TSUNAMI-2D were consistently greater. Detailed sensi-
tivity and uncertainty results were presented and analyzed
for the homogenized fast and thermal production cross-
sections. The differences in the uncertainty results for the
fast responses were explained by the incompatible constraints
used in computing the scattering uncertainties.

In the future, the work will continue by extending the
GPT framework to other responses in addition to two-
group homogenized cross-sections with the eventual goal of
modifying CASMO-4 to provide uncertainty estimates for all
homogenized assembly data, which can then be propagated
to coupled neutronics/thermal hydraulics calculations.
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of neutron transport criticality equation based on perturbation theory.

In this thesis, the mathematical properties of burnup matrices are 
studied and the Chebyshev rational approximation method (CRAM) is 
proposed as a novel method for solving the burnup equations. The 
results suggest that the proposed approach is capable of providing a 
robust and accurate solution to the burnup equations with a very short 
computation time. Secondly, the propagation of neutron interaction 
data uncertainty through the criticality equation is studied on a fuel 
assembly level. The considered approach is deterministic and utilizes 
the adjoint system of the criticality equation, which allows propagating 
these uncertainties in an efficient manner. 
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