
•V
IS

IO
N

S•
SCIENCE•TEC

H
N

O
L

O
G

Y
•RESEARCHHIGHLI

G
H

T
S

Dissertation

50

Adaptive security in
smart spaces
Antti Evesti

VTT SCIENCE 50

Adaptive security in smart
spaces

Antti Evesti

Thesis for the degree of Doctor of Science in Technology to be presented
with due permission for public examination and criticism in lecture hall L10,
at the University of Oulu, on the 31st of January 2014 at 12 noon.

ISBN 978-951-38-8113-9 (Soft back ed.)
ISBN 978-951-38-8114-6 (URL: http://www.vtt.fi/publications/index.jsp)

VTT Science 50

ISSN-L 2242-119X
ISSN 2242-119X (Print)
ISSN 2242-1203 (Online)

Copyright © VTT 2013

JULKAISIJA – UTGIVARE – PUBLISHER

VTT
PL 1000 (Tekniikantie 4 A, Espoo)
02044 VTT
Puh. 020 722 111, faksi 020 722 7001

VTT
PB 1000 (Teknikvägen 4 A, Esbo)
FI-02044 VTT
Tfn. +358 20 722 111, telefax +358 20 722 7001

VTT Technical Research Centre of Finland
P.O. Box 1000 (Tekniikantie 4 A, Espoo)
FI-02044 VTT, Finland
Tel. +358 20 722 111, fax +358 20 722 7001

Kopijyvä Oy, Kuopio 2013

http://www.vtt.fi/publications/index.jsp

3

Adaptive security in smart spaces

Älytilojen mukautuva tietoturva. Antti Evesti. Espoo 2013. VTT Science 50. 71 p. + app. 119 p.

Abstract
Smart spaces – like smart homes, smart offices and smart cities – exploit various
resources in order to offer enriched services and information for the end users.
Achieving security in such a dynamic and heterogeneous environment with pre-
defined and static security mechanisms is a challenging task. Hence, solutions for
self-adaptive security are needed. Self-adaptive security is able to automatically
select security mechanisms and their parameters at runtime in order to preserve
the required security level in a changing environment.

The research problem of the dissertation is how to achieve security adaptation
in a smart-space application. For this dissertation, architecture and knowledge base
objectives were set. The objectives were satisfied with security-adaptation architec-
ture that contains an adaptation loop and an ontology-based knowledge base for
security. The adaptation loop conforms to the Monitor, Analyse, Plan, Execute and
Knowledge (MAPE-K) model, which is a widely applied reference model in auto-
nomic computing. The ontology-based knowledge base offers input knowledge for
security adaptation. The research was carried using five cases, which iteratively
developed the architecture and the knowledge base for security adaptation.

The contributions of the dissertation are: Firstly, reusable adaptation architec-
ture for security is presented. The architecture strictly conforms to the MAPE-K
reference model and defines all phases in it. Moreover, the architecture is the first
that specifically separates security knowledge from the adaptation loop. Secondly,
the architecture supports the utilisation of security measures to recognise an ad-
aptation need. Security measures are presented by means of a three-level struc-
ture in order to achieve systematic monitoring. Due to the suggested architecture,
it is possible to reuse and extend the defined security measures. Thirdly, this is the
first time that an ontology has been applied for security adaptation. Hence, the
Information Security Measuring Ontology (ISMO) acts as the knowledge base for
the security adaptation. The ISMO is applicable at design-time and runtime alike.
At design-time, the ISMO offers knowledge for the software architect, in order to
design an application with security-adaptation features. In contrast, the application
searches knowledge from the ISMO at runtime, in order to automatically perform
the security adaptation. Utilising the ontology as a knowledge base ensures that
the knowledge is presented in a reusable and extensible form. Moreover, the
application does not need hard-coded adaptation knowledge.

Keywords Architecture, security measuring, ontology, knowledge base, self-adaptive

4

Älytilojen mukautuva tietoturva

Adaptive security in smart spaces. Antti Evesti. Espoo 2013. VTT Science 50. 71 s. + liitt. 119 s.

Tiivistelmä
Älytilat, kuten älykodit, älytoimistot ja älykaupungit, hyödyntävät monenlaisia re-
sursseja tarjotakseen loppukäyttäjille parempia palveluita ja informaatiota. Muuttu-
vissa ja heterogeenisissa älytiloissa on haastavaa saavuttaa tietoturvaa ennalta
määrätyillä ja muuttumattomilla tietoturvaratkaisuilla. Tämän vuoksi tarvitaan mukau-
tuvaa tietoturvaa. Mukautuvassa tietoturvassa tietoturvamekanismit ja -parametrit
valitaan automaattisesti suorituksen aikana, jotta vaadittu tietoturvataso saavute-
taan myös muuttuvassa älytilassa.

Väitöskirjan tutkimusongelmana on, kuinka saavutetaan mukautuva tietoturva
älytilan sovelluksessa. Tutkimusongelma on jaettu arkkitehtuuri- ja tietämyskanta-
tavoitteiksi. Tavoitteet täytetään mukautuvan tietoturvan arkkitehtuurilla, joka sisäl-
tää mukauttamissilmukan ja ontologiapohjaisen tietämyskannan tietoturvalle.
Mukauttamissilmukka noudattaa MAPE-K-mallia, Monitoroi (M), Analysoi (A),
Suunnittele (P), Toteuta (E) ja Tietämys (K), joka on yleisesti käytetty referenssi-
malli autonomisissa ohjelmistoissa. Väitöskirjassa MAPE-K-mallin tietämysosa
toteutetaan hyödyntäen ontologiapohjaista tietämyskantaa. Tutkimus on toteutettu
käyttäen viittä tapaustutkimusta, joissa kehitetään mukautuvan tietoturvan arkki-
tehtuuria ja tietämyskantaa iteratiivisesti.

Väitöskirjan tulokset ovat: i) Työ esittää uudelleenkäytettävän mukauttamisark-
kitehtuurin tietoturvalle noudattaen tarkasti MAPE-K-referenssimallia ja määritellen
mallin kaikki vaiheet. Lisäksi arkkitehtuuri on ensimmäinen, joka täsmällisesti
erottaa tietoturvatietämyksen mukauttamissilmukasta. ii) Arkkitehtuuri tukee mu-
kauttamistarpeen havaitsemista tietoturvamittareiden avulla. Tietoturvamittarit
esitetään kolmetasoisena rakenteena, joka mahdollistaa systemaattisen monito-
roinnin. Lisäksi kehitetty arkkitehtuuri mahdollistaa tietoturvamittareiden uudel-
leenkäytön ja laajentamisen. iii) Työssä sovelletaan ensimmäistä kertaa ontologi-
aa tietoturvan mukauttamiseen. Tietoturvan mittausontologia (ISMO) toimii tietä-
myskantana mukautuvalle tietoturvalle. ISMO soveltuu sekä suunnitteluaikaiseen
että suorituksenaikaiseen käyttöön. Suunnitteluaikana ISMO tarjoaa ohjelmisto-
arkkitehdille tietoa mukautuvan tietoturvan toteuttamiseksi osaksi sovellusta. Suo-
rituksen aikana sovellus puolestaan etsii tietoa ISMO:sta suorittaakseen mukaut-
tamisen. Ontologian käyttäminen tietämyskantana mahdollistaa tiedon uudelleen-
käytön ja laajennettavuuden. Lisäksi sovelluksessa ei tarvita kovakoodattua tietä-
mystä tietoturvan mukauttamiseen.

Avainsanat Architecture, security measuring, ontology, knowledge base, self-adaptive

5

Preface
The work presented in this dissertation was carried out in VTT Technical Research
Centre of Finland. The work was performed in the following research projects:
COSI (Co-development using inner & Open source in Software Intensive prod-
ucts), SVAMP (Software Variability Modelling Paradigm), SOFIA (Smart Objects
For Intelligent Applications) and SASER-Siegfried (Safe and Secure European
Routing) funded by VTT Technical Research Centre of Finland, Tekes (the Finnish
Funding Agency for Technology and Innovation) and the European Commission.
In addition, scholarships from the Oulu University Scholarship Foundation (Oulun
yliopiston tukisäätiö) and the Finnish Foundation for Technology Promotion
(Tekniikan edistämissäätiö) supported the dissertation work. I wish to thank the
above institutions for making this research possible.

I’m grateful to Professor Jukka Riekki from the University of Oulu and Professor
Eila Ovaska from VTT Technical Research Centre of Finland for supervising my
dissertation. Moreover, I wish to thank Professor Ovaska for guidance and insights
during the preparation of the original publications.

Professor Sam Malek and Professor Danny Weyns reviewed this dissertation. I
appreciate their professional comments and suggestions, which have improved
this work significantly.

I wish to thank the co-authors of the original publications Eila Ovaska, Reijo
Savola, Susanna Pantsar-Syväniemi, Jarkko Kuusijärvi, Jani Suomalainen, Pekka
Aho, Katja Henttonen and Marko Palviainen. Furthermore, I’m grateful to my col-
leagues who participated to the use-case implementations: Jarkko Kuusijärvi,
Sakari Stenudd, Jussi Kiljander and Matti Eteläperä.

Finally, I wish to thank my wife Jenni for her patience and support during the
years spent on this research.

Rovaniemi, 14th June 2013

Antti Evesti

6

Academic dissertation
Supervisor Jukka Riekki

Department of Computer Science and Engineering
University of Oulu

Reviewers Sam Malek
Department of Computer Science
George Mason University

Danny Weyns
Department of Computer Science
Linnaeus University

Opponent Kai Koskimies
Department of Software Systems
Tampere University of Technology

7

List of publications
This dissertation is based on the following original publications which are referred
to in the text as PI–PVII. The publications are reproduced with kind permission
from the publishers.

I Evesti A., Ovaska E., Savola R. From Security Modelling to Run-time Security
Monitoring. In the Proceedings of the European Workshop on Security in
Model Driven Architecture (SECMDA), Enschede, the Netherlands, 24 June
2009. Pp. 33–41.

II Evesti A., Pantsar-Syväniemi S. Towards Micro Architecture for Security
Adaptation. In the Proceedings of the Fourth European Conference on
Software Architecture (ECSA): Companion Volume, Copenhagen, Denmark,
23 August 2010. Pp. 181–188. DOI: 10.1145/1842752.1842790.

III Evesti A., Ovaska E. Ontology-based Security Adaptation at Run-time. In
the Proceedings of the Fourth IEEE Conference on Self-Adaptive and Self-
Organizing Systems (SASO), Budapest, Hungary, 27 September – 1 October
2010. Pp. 204–212. DOI: 10.1109/SASO.2010.11.

IV Ovaska E., Evesti A., Henttonen K., Palviainen M., Aho P. Knowledge
based quality-driven architecture design and evaluation. In the Journal of
Information and Software Technology, Elsevier, Vol. 52, No. 6, 2010. Pp.
577–601. DOI: 10.1016/j.infsof.2009.11.008.

V Evesti A., Savola R., Ovaska E., Kuusijärvi J. The Design, Instantiation and
Usage of Information Security Measuring Ontology. In the Proceedings of
the Second International Conference on Models and Ontology-based Design
of Protocols, Architectures and Services (MOPAS), Budapest, Hungary, 17–22
April 2011. Pp. 1–9.

VI Evesti A., Ovaska E. Design Time Reliability Predictions for Supporting
Runtime Security Measuring and Adaptation. In the Proceedings of the
Third International Conference on Emerging Network Intelligence
(EMERGING), Lisbon, Portugal, 20–25 November 2011. Pp. 94–99.

VII Evesti A., Suomalainen J., Ovaska E. Architecture and Knowledge-Driven
Self-Adaptive Security in Smart Space. In: Computers, MDPI, Vol. 2, No. 1,
2013. Pp. 34–66. DOI: 10.3390/computers2010034.

http://dx.doi.org/10.1145/1842752.1842790
http://dx.doi.org/10.1109/SASO.2010.11
http://dx.doi.org/10.1016/j.infsof.2009.11.008
http://dx.doi.org/10.3390/computers2010034

8

Contents
Abstract ... 3

Tiivistelmä ... 4

Preface ... 5

Academic dissertation ... 6

List of publications .. 7

Contents .. 8

List of symbols .. 10

1. Introduction ... 12
1.1 Background and motivation ... 12
1.2 Research objectives and scope ... 15
1.3 Research approach and history ... 17
1.4 Scientific contributions .. 19
1.5 Benchmark criteria .. 22
1.6 Structure of the dissertation .. 23

2. Background ... 24
2.1 Main concepts .. 24

2.1.1 Smart spaces .. 24
2.1.2 Security ... 25
2.1.3 Self-adaptive software.. 27
2.1.4 Measures and security measuring .. 29
2.1.5 From quality variability to quality adaptation 30

2.2 Related work .. 31
2.2.1 Security adaptation approaches ... 31
2.2.2 Security ontologies .. 33

3. Research ... 35
3.1 Cases .. 35
3.2 Security adaptation architecture .. 39

3.2.1 Structure ... 39

9

3.2.2 Behaviour .. 42
3.2.3 Deployment ... 45

3.3 Ontology as a knowledge base ... 47
3.3.1 Structure ... 47
3.3.2 Ontology usage at design-time ... 48
3.3.3 Ontology usage at runtime ... 50

4. Discussion .. 53
4.1 Research objectives revisited .. 53
4.2 Main contributions .. 54
4.3 Comparison to the related work ... 56
4.4 Limitations and future work ... 58

5. Conclusions .. 62

References ... 64

Appendices
Publications I–VII

10

List of symbols
ASM Adaptive Security Manager, a component utilised in the GEMOM adap-

tation approach

BM Base Measure, the smallest raw measure, which is not dependent on
other measures

CC Common Criteria, ISO/IEC 15408

C1–C5 Use-case identifiers from Use-case 1 to Use-case 5 respectively

CO4SS Context Ontology for Smart Spaces, context ontology that is utilised as
a source for context information in this dissertation

COSI Co-development using inner & Open source in Software Intensive
products, one of the projects where this research work is performed

DB Database, a storage utilised in the adaptation approach to offer input
knowledge

ECA Event-Condition-Action, one means to perform adaptation

ESCA Event-State-Condition-Action, c.f. ECA

GEMOM Genetic Messaging-Oriented Secure Middleware, the name of the project
where the security-adaptation approach with the same name is developed

ISMO Information Security Measuring Ontology, ontology developed in this
dissertation and utilised as the knowledge base for security adaptation

KP Knowledge Processor, an agent acting in the Smart-M3 based smart
space

MAPE-K Monitor, Analyse, Plan, Execute, Knowledge, a commonly used reference
model in the autonomic computing field

MAPE Monitor, Analyse, Plan and Execute, an adaptation loop in the MAPE-K
reference model

NIST National Institute of Standards and Technology, a non-regulatory agency
in the U.S.

OIS Ontology of Information Security, a security ontology utilised in the ISMO

11

OWL Web Ontology Language, language to describe ontologies in a machine-
readable form

PI-PVII Identifiers for the original publications I-VII

pof Probability of failure, a reliability value produced by means of RAP tool

QoS Quality of Service, a quality indicator utilised specifically in communication
and also applied in adaptation approaches

QPE Quality Profile Editor, a tool developed in the SVAMP project to present
quality requirements in UML profiles

RAP Reliability and Availability Prediction, a reliability prediction method to
calculate pof values as early as the architecture design phase

RDF Resource Description Framework, a language to describe information
formed to subject-predicate-object triplets

RDF-S RDF Schema, an extension to RDF

RIBS RDF Information Base Solution, one implementation of a Smart-M3
concept

SIB Semantic Information Broker, the backbone element of the Smart-M3
concept

SMEPP Secure Middleware for Embedded Peer-to-Peer systems, the name of
the project that offered an environment for Use-case C1 of this dissertation

SMO Software Measurement Ontology, the measurement ontology utilised in
the ISMO

SOFIA Smart Objects For Intelligent Applications, one of the projects where
this research work is performed

SS Smart Space, in this dissertation smart space is defined as a digital
entity that presents and offers information from the physical world

SSA Smart Space Application, an application constructed from a set of soft-
ware agents

SUM-SS Seamless Usage of Multiple Smart Spaces, the name of a pilot imple-
mentation that is utilised in use-case C5 in this dissertation

SVAMP Software Variability Modelling Paradigm, one of the projects where this
research work is performed

TLS Transport Layer Security, a protocol that supports communication security

UML Unified Modelling Language, a modelling language from the Object
Management Group

1. Introduction

12

1. Introduction

1.1 Background and motivation

Ubiquitous computing – envisioned in 1991 by Mark Weiser [1] – and smart spaces
create dynamism and heterogeneity from the application viewpoint. Firstly, everyday
appliances are networked and communicate with each other in smart spaces, and
simultaneously, devices and services can appear and disappear. Moreover, smart
space users are able to create new usage scenarios and utilise appliances in
novel ways. Although several topics related to smart spaces have been re-
searched, many unsolved problems and challenges have been recognised. Conti
et al. named autonomic behaviour as an important challenge of pervasive compu-
ting and smart spaces in [2]. This challenge is related to the capability of devices
and applications to adapt their behaviour as a response to changes in their opera-
tion environment. Similarly, achieving security in smart spaces is challenging. An
application faces various environments and situations during its lifetime, which
require different security objectives. For example, in some situations integrity is an
essential security objective but in other situations authentication has the first priority.
In parallel, the criticality of the handled information varies between situations. For
example, applications may use entertainment information or more critical control
information. Hence, the required security level varies from one situation to another.
These variations and the dynamism of the environment are challenging for soft-
ware developers; they cannot anticipate all possible changes and situations at de-
sign-time. Consequently, a smart space application must be able to adapt security
based on the changing situations.

The vision of autonomic computing was presented by Kephart et al. in 2003 [3].
The authors envisioned that autonomic systems will maintain and adjust their
operation in changing circumstances and when encountering failures. In contrast,
Salehie et al. define self-adaptive software as a closed-loop system with the feed-
back loop aiming to adjust the system during its operation [4]. The purpose of
adaptation is to maintain and adjust the operation of the system. Drivers for auto-
nomic computing and self-adaptive software are, for instance, the complexity and
heterogeneity of software. In other words, the set up, running and updating of
software are resource-consuming tasks even for professional users [3,5]. The
terms autonomic computing, self-management and self-adaptive are often utilised

1. Introduction

13

interchangeably [4]. In this dissertation, the short term ‘adaptive’ will be used to
refer to self-adaptive, which is a part of autonomic computing.

This dissertation focuses on security adaptation. The purpose of security adap-
tation is to maintain and adjust security in varying situations. This can be achieved
by monitoring the attributes and actions which affect the required and achieved
security. When a mismatch between the required and achieved securities is rec-
ognised security mechanisms are modified.

ISO/IEC 9126 [6] defines security as follows: “The capability of the software
product to protect information and data so that unauthorised persons or systems
cannot read or modify them and authorised persons or systems are not denied
access to them.” It can be seen that the definition contains the following security
objectives: authentication, authorisation, confidentiality, integrity and availability.
Conversely, Avižienis et al. define security as the composition of confidentiality,
integrity and availability [7] and Common Criteria (CC) utilises a similar composi-
tion of security objectives [8]. In this dissertation summary, the term “security”
refers to the set of security objectives included in the ISO/IEC definition.

A need to protect some assets creates a demand for security. CC defines an
asset as an entity that someone presumably places value upon [8]. Thus, an asset
can be almost anything that needs protection. Depending on the asset, different
security objectives are required. For instance, control information requires that
commands are not modified, and thus, integrity is required. On the other hand,
personal data requires that outsiders are not able to read it, which sets a require-
ment for confidentiality. Consequently, the appropriate security mechanisms are
needed to satisfy these requirements. In the literature, security mechanisms are
also called controls, countermeasures and safeguards, which is due to overlap-
ping terminologies and standards in the security area. In other words, there is no
universal agreement on the many terms used in the security field [9]. Security
mechanisms are a means to achieve the particular security objective. The National
Institute of Standards and Technology (NIST) Special Publication 800-30 [10]
divides security mechanisms into technical and non-technical. Technical mecha-
nisms are included into hardware or software. Conversely, management and op-
erational mechanisms are non-technical mechanisms. Therefore, the self-
adaptation capabilities of software are related to the technical mechanisms.

In static security solutions, security mechanisms are selected at software de-
sign-time. Decisions are based on the assumptions from the forthcoming execu-
tion environment. However, it is difficult – or even impossible – to make these
assumptions for software to be executed in heterogeneous and dynamic environ-
ments. Instead, the execution environment, the usage of software and the criticality
of operations can only be recognised at runtime. Thus, the software must be able to
adapt its security at runtime when information is available, which in turn makes it
possible to achieve the required security even in heterogeneous and dynamic
environments.

However, achieving software with security adaptation capabilities requires that
several issues must be considered at design-time. Firstly, the means of how to
monitor the environment and the software itself have to be designed and imple-

1. Introduction

14

mented. Secondly, a meaningful interpretation of the monitoring results has to be
made. Thirdly, the software has to contain variation points where different security
mechanisms or parameters can be set at runtime. Consequently, a common and
reusable architecture for security adaptation is needed. The architecture has to
support the above-mentioned monitoring, result interpretation and variation of
security mechanisms. An architecture, which defines these essential components,
their purposes and mutual behaviour, facilitates the development of software with
security adaptation capabilities.

Nevertheless, defining architecture for adaptation is not enough to achieve
software with adaptation capabilities. In addition, appropriate knowledge is re-
quired at design and runtime alike. A software architect has to know what security
mechanism supports the particular objective and what sensors to use to monitor
the fulfilment of the security objective. Furthermore, the software itself requires
knowledge at runtime to decide how to interpret the monitored results. Hence, the
architecture for adaptation has to define where the required knowledge is stored
and how to utilise it at runtime. When the software has recognised an adaptation
need it has to decide the means by which to adapt itself in order to achieve the
required security level. Naturally, all knowledge required at runtime can be hard
coded in the application logic. However, hard-coded knowledge complicates soft-
ware and knowledge reuse and maintenance. Consequently, separating the
knowledge from the application logic and adaptation loop supports extensibility
and reusability. Extensibility is required to respond to new vulnerabilities and
threats and to extend the adaptation capabilities with new monitoring and reaction
techniques. Reusability ensures that the existing knowledge and adaptation com-
ponents can be easily reused, which speeds up software development.

A security adaptation approach, supported by a common and reusable architec-
ture and the appropriate knowledge, makes it possible to achieve adaptive security
with reasonable dynamicity in heterogeneous environments. A literature study [11]
lists the challenges and future research needs in the field of self-adaptive systems.
The authors recognise that applying self-adaptation to manage other quality attrib-
utes like security, usability and accuracy is one possible topic for future research.
Consequently, the existing security adaptation approaches do not offer a complete
means to produce software with security-adaptation capabilities. On the one hand,
a survey by Elkhodary et al. [12] reveals that existing security adaptation ap-
proaches are not generic; instead the approaches concentrate on specific security
objectives. In addition, the authors recognise that realising reusability and main-
tainability in the existing approaches requires additional research. On the other
hand, a survey from Yuan et al. [13] shows that most of the existing approaches
concentrate on the monitoring part of the adaptation loop, instead of covering the
whole adaptation loop. Furthermore, the authors note that the architecture view-
point is not covered by the existing approaches at a reasonable level. Utilising the
existing approaches is complicated because the adaptation loop is not defined as
a whole. Furthermore, the shortcomings of the architecture damage reusability
and extensibility possibilities. The existing approaches apply the Monitor, Analyse,
Plan, Execute and Knowledge (MAPE-K) reference model [3] implicitly, and thus,

1. Introduction

15

the adaptation phases are mixed, or mutual relations are not defined. As men-
tioned above, the existing approaches cover the monitoring part of the adaptation
loop. However, the approaches do not utilise a uniform way to present the applied
monitoring techniques. Consequently, comparing and evaluating monitoring tech-
niques is difficult. Lastly, the existing approaches do not cover the knowledge
viewpoint at a sufficient level, and thus software designers are enforced to hard
code the required knowledge. The MAPE-K reference model contains knowledge
element K. However, the reference model does not define the form or utilisation of
knowledge. In the existing approaches, the knowledge part is not taken into ac-
count at all, such as in the approach in [14]. Alternatively, a database for
knowledge is added but its content is not described (e.g. the security-adaptation
approach in [15]). The lack of the knowledge part means that the knowledge us-
age in the adaptation phases is not defined. The existing security-adaptation ap-
proaches are described in more detail in Sub-section 2.2.1.

In summary, several problems can be recognised from the existing surveys and
security adaptation approaches. i) Common and reusable architecture for the
security adaptation is not presented. ii) Reusability and extensions are not sup-
ported, which complicates the utilisation of approaches in dynamic and heteroge-
neous smart spaces. iii) The presented architectures do not support the separation
of the knowledge part. Ignoring the knowledge part causes the utilised knowledge to
be presented in a hard-coded form, which ruins the reusability and extension possi-
bilities. These shortages set a need for the research presented in this dissertation.

1.2 Research objectives and scope

Based on the motivation described above, the research problem of the dissertation
is: How to achieve security adaptation in a smart space application? This
problem is divided into two main objectives. Solving these objectives will offer an
answer to the research problem of the dissertation.

The first objective is to define the architecture for security adaptation. This ob-
jective is called, in short, the architecture objective. In order to fulfil this objective
the following requirements have to be met in the architecture: The architecture has
to conform to the MAPE-K reference model. Hence, the architecture has to contain
the whole adaptation loop from the observations to the execution of adaptation and
knowledge has to be separated from the adaptation phases. Moreover, support for
reusability and extensibility is required. Finally, the utilisation of security measuring
has to be supported in order to recognise an adaptation need systematically.

The second objective is to develop a knowledge base for security adaptation.
This objective is called, in short, the knowledge base objective. The objective is
fulfilled when the following requirements are satisfied: First, the knowledge base
has to be applicable at design-time and runtime alike. At design-time, the
knowledge base facilitates the design of an application with security adaptation
features. At runtime, the knowledge base supports the adaptation loop in perform-
ing adaptation. Thus, the knowledge has to be presented in a form that makes the

1. Introduction

16

knowledge reachable for the software architect and for the adaptive application.
Secondly, it is necessary to know what knowledge is required in the different
phases of the adaptation loop. Lastly, the knowledge base has to support reusability
and extensibility in order to facilitate its usage in the various situations appearing
in future smart spaces.

The fulfilment of the research objectives forms a basis for answering the stated
research problem. The architecture contribution is built on the MAPE-K reference
model and the knowledge base contribution is built by means of ontologies. The
novelty of contributions comes from the integration, which is the first approach that
combines the MAPE-K reference model, security measuring and knowledge from
ontologies to consistent security adaptation architecture. In other words, the pro-
posed solution: i) presents adaptation architecture for security that strictly con-
forms to the MAPE-K reference model and defines all phases in it. Moreover, the
architecture is the first that specifically separates security knowledge from the
adaptation loop; ii) supports the utilisation of security measures to recognise an
adaptation need. Security measures are presented by means of a three-level
structure in order to achieve systematic monitoring. Furthermore, the three-level
structure makes it possible to define generic and implementation-specific parts for
the security level monitoring; iii) is the first time that an ontology has been applied
for security adaptation. The ontology-based knowledge base describes both security
and measuring knowledge, and in addition, knowledge requirements in different
adaptation phases are defined; iv) is validated from design-time and runtime view-
points.

Applying the architecture and knowledge base, the software architect is able to
produce smart space applications with adaptation features that support security in
heterogeneous and dynamic smart spaces. Furthermore, smart space applications
utilise the content of the knowledge base at runtime, in order to monitor the rele-
vant attributes and to make the right decision.

Security adaptation can be applied in various domains, and thus, scoping and
setting operational conditions for the research is important. From the security point
of view, the adaptation approach has to be generic. In other words, it has to be
possible to adapt various security objectives. Moreover, the approach has to apply
existing security mechanisms, instead of developing dedicated mechanisms for
the adaptation purposes. The research is performed from the end-user point of
view. Hence, the purpose is to achieve security adaptation in smart space applica-
tions (SSA) and especially in the application parts executed in an end user’s mo-
bile device. In the context of this dissertation, the smart space application is de-
fined as an application that is executed in heterogeneous smart spaces – such as
a smart home, smart city or smart office environment – and utilises devices and
information from the environment in order to facilitate end-user tasks. Thus, the
end-user gets suitable notifications and is able to employ the surrounding devices.
In other words, smart spaces are the domain in which the results are intended to
be used. However, the results can be applied in other domains as well, but it is
noteworthy that all runtime use cases are performed in a smart space environment.
Lastly, security objectives (i.e. confidentiality, integrity, availability etc.) define the

1. Introduction

17

research scope during the knowledge base definition. In other words, the content
of the knowledge base has to be defined separately for each security objective
because the required knowledge varies from objective to objective. In this disser-
tation, the content for the knowledge base is specifically defined from the user-
authentication point of view.

1.3 Research approach and history

The research for this dissertation was mainly performed in the Smart Objects For
Intelligent Applications (SOFIA) project during 2009–2011. Moreover, Co-
development using inner & Open source in Software Intensive products (COSI)
and Software Variability Modelling Paradigm (SVAMP) projects contributed to this
work. The dissertation research belongs to the design-science research [16].
Therefore, the constructive research approach [16] is utilised.

Some results for this research were already achieved in the COSI project, in
2005–2008. In the COSI project, the author’s work contained development of the
Reliability and Availability Prediction (RAP) method and tool. The developed
method and tool are utilised in publications PIV and PVI. In parallel with the COSI
project, quality ontologies and software quality variability were researched in the
SVAMP project in 2006–2007. The author’s work was to develop a tool for manag-
ing quality attribute variability. The tool collects quality requirements and retrieves
quality knowledge from quality ontologies. The first version of reliability and security
ontologies were created and utilised in the SVAMP project. The research from the
SVAMP project contributed to the publication PIV. Other publications are based on
the results of the SOFIA project. The author developed the means to achieve
security in dynamic smart spaces by using security adaptation.

Both the adaptation architecture and the ontology-based knowledge base are
developed iteratively. The adaptation architecture is researched in publications PI,
PII, PIII, PV and PVII. Simultaneously, ontologies and knowledge issues are re-
searched in all original publications. The contributions of these publications are
described in more detail in the next sub-section. The constructed artefacts are
validated by means of use cases and a pilot implementation, which are listed in
Table 1. The table contains an identifier (ID) for each case, connections to the
related research objectives and case description.

1. Introduction

18

Table 1. Use cases.

ID Contributes to Case description

C1 Knowledge
base

The Secure Middleware for Embedded Peer-to-Peer systems
(SMEPP) case concentrates on the design-time viewpoint. This
case validates how a software architect utilises quality ontolo-
gies as a knowledge source to define quality requirements for
the software under development.

C2 Architecture

Knowledge
base

The Smart Greenhouse demonstration contains a miniature
greenhouse, sensors and actuators. Two user groups – garden-
ers and customers – act in the greenhouse. The case validates
the first version of the adaptation loop. Risk-based security
measures for confidentiality and integrity are utilised for security
monitoring, and the required knowledge is retrieved from the
ontology.

C3 Architecture

Knowledge
base

This use case validates the Information Security Measuring
Ontology (ISMO). The case occurs in a smart home environ-
ment. Firstly, the ISMO is exploited at design-time. A software
architect selects security mechanisms to support security re-
quirements. Moreover, the architect retrieves suitable security
measures to trigger security adaptation. Secondly, the applica-
tion retrieves knowledge from the ISMO at runtime; the applica-
tion monitors the user’s authentication level by means of securi-
ty measures and interprets the measured results by means of
analysis models retrieved from the ISMO.

C4 Knowledge
base

The ISMO Extension case illustrates how the ISMO can be
extended with new knowledge. A software architect implements
an application with security adaptation features. At design-time,
RAP method is utilised to predict probability of failure (pof)
values for the designed security mechanisms. These pof values
are offered for runtime security adaptation purposes by means
of the ISMO. The case presents how new measures and in-
stances for the implemented security mechanisms are added
into the ISMO.

C5 Architecture

Knowledge
base

The Seamless Usage of Multiple Smart Spaces (SUM-SS) pilot
validates the whole adaptation architecture and usage of the
ISMO in a heterogeneous environment. The use case contains
fours smart spaces: a smart personal space, a smart home, a
smart office and a smart city. A home owner is able to control
home devices with her mobile device either locally or remotely.
Different actions set individual requirements for user authentica-
tion, and thus, adaptation is required.

The timeline in Figure 1 presents the history of this research. The timeline con-
tains projects (green bars), use cases (blue bars) and publications (yellow octa-
gons). Furthermore, some main topics researched during these years are men-
tioned on the top of the figure. In COSI and SVAMP projects the focus was on
design-time and architecture issues. However, the SOFIA project drove the focus
towards runtime and smart space viewpoints. Publications are numbered in a
chronological order based on the publication date. Publications PIV and PVII are

1. Introduction

19

journal articles, and thus, the time frame from an actual research topic to the final
publication is longer.

Figure 1. Research timeline.

1.4 Scientific contributions

The dissertation is composed of seven original research publications, which were
published in between 2009–2013. Two publications were published in scientific
journals and five in international conferences and workshops. The author of the
dissertation was the first author in six publications and the second author in one
publication. The contributions to each publication and the roles of writers are de-
scribed below. In addition, author contributions are summarised in Table 2. Pro-
fessor Eila Ovaska provided comments, insights and discussion for all of these
publications. However, this is not repeated separately for each publication.

Publication I compares security ontologies from runtime-applicability and secu-
rity-measuring viewpoints. The conclusion was that security ontologies for runtime
usage exist, especially for service discovery and matchmaking purposes. Howev-
er, there isn’t any security ontology that describes security measuring in detail.
Moreover, the publication presents the initial vision of the security adaptation con-
cept. This concept is developed further in the next publications. The author is the
main writer of the publication. Mr Reijo Savola commented on the publication and
contributed to the security-measurement section.

Publication II suggests two important artefacts for the runtime security adapta-
tion. Firstly, a taxonomy of context information for security is presented. The tax-
onomy contains concepts that affect the required and achieved security in smart
spaces (e.g. smart space type, the utilised platform, the user’s role and the role of
exchanged data). Moreover, few initial mapping properties for the ISMO are intro-
duced. The ISMO does not exist at the time of writing the publication, and thus,
only the term ‘security ontology’ is used. The second presented artefact is the
micro-architecture for security adaptation, which is an enhanced version of the
initial vision presented in PI. The micro-architecture describes the phases required
for security adaptation and information flows between these phases. Brief descrip-

1. Introduction

20

tions of phases and information flows are also presented. The author is the first
writer of the publication. Susanna Pantsar-Syväniemi commented on the publica-
tion and contributed to the context ontologies and context modelling parts. In addi-
tion, she was responsible for the context monitoring part of the micro-architecture.
Pantsar-Syväniemi utilises these parts in her dissertation work [17].

Publication III suggests an ontology-based adaptation approach with risk-
based measures. The block diagram of the adaptation is presented – showing the
required steps before executing the adaptation. Adaptation is divided into two
phases. The first is executed when the smart space application is started or joins
the smart space – this phase is called the start-up phase adaptation. The second
phase is called runtime phase adaptation, which is executed when security meas-
uring reveals that the required security is not being achieved anymore. In this
publication risk-based measures are used by measuring threat levels. Certain
actions increase threat levels in the smart space and the used security mecha-
nisms decrease these threats. C2 validates the adaptation approach, usage of the
ontology and risk-based measures. The author is the first writer of the publication.

Publication IV suggests the quality-aware software architecting approach and
the supporting tool chain. The approach contains three main steps: 1) modelling
quality requirements, 2) modelling software architecture and transforming re-
quirements to the models and 3) quality evaluations. Steps one and two are fur-
ther divided into knowledge engineering and software engineering processes,
whereas, the quality-evaluation step is divided into evaluations for evolution and
execution qualities. Quality ontologies are one of the knowledge sources utilised in
the approach. Consequently, in this publication the term ‘knowledge base’ does
not only apply to ontologies. The work utilises earlier-developed quality ontologies
for security [18] and reliability [19]. Both of these ontologies contain terminology
that describes quality attributes, and in addition, measures for setting the required
quality levels and measuring the fulfilment of quality requirements. Hence, the
content of these quality ontologies and the ISMO follow the same structure, that is,
the measuring and quality-attribute parts. From the scope of this dissertation, the
publication contributes to usage of ontology-based knowledge base at design-
time. In addition, C1 validates design-time usage of the ontology-based knowledge
base. Professor Eila Ovaska is the first writer of the article and the author is the
second writer. The author’s contribution is related to quality ontologies, quality
requirements modelling and quantitative quality evaluations for execution qualities.
Furthermore, the author contributed to the related tool development and validation.

Publication V suggests the knowledge base called the ISMO and architecture
elements for security monitoring. The publication describes the design and instan-
tiation of the ISMO. Moreover, design-time and runtime usage of the ISMO is
described. The ISMO is composed from two existing ontologies; the Software
Measuring Ontology (SMO) [20] offers measuring-related terminology and the
Ontology of Information Security (OIS) [21] provides security-related concepts.
The ISMO draws mappings between these two ontologies on two levels. Firstly,
concept-level mappings are defined. Thereafter, additional mappings are created
by means of instantiated security measures. The ISMO is the first ontology that

1. Introduction

21

combines security and measuring terminology on a detailed granularity level.
Measures for password-based authentication are utilised as an example during
ontology instantiation. The ISMO is a knowledge base for a software architect, in
order to design an application with security-adaptation features. Moreover, the
ISMO is a knowledge base for the smart space application, in order to perform
runtime security adaptation. The ISMO is described by means of Web Ontology
Language (OWL), and thus, applications are able to retrieve its content for adapta-
tion purposes. The ISMO offers a generic and reusable manner to present diverse
security measures. Furthermore, the ISMO ensures that security measures and
terminology can be updated easily. The author is the first writer in this publication.
Moreover, Reijo Savola and Jarkko Kuusijärvi have commented and contributed to
the publication. Savola contributed to the security measurement issues and
Kuusijärvi contributed to the validation use case.

Publication VI shows how design-time reliability predictions are brought for the
runtime security-adaptation purposes. Firstly, the publication presents the required
design steps to achieving security adaptation. After these steps, the RAP method
is utilised to predict the forthcoming reliability from the software architecture. The
RAP method produces probability of failure (pof) values for software components.
These prediction results are stored by means of the ISMO, which ensures that the
results can be utilised at runtime. However, this requires that the ISMO is extended.
C4 validates the extension possibilities of the ISMO by defining extension needs and
designing the required extensions. The author is the first writer in this publication.

Publication VII suggests a reusable security-adaptation approach, which can
be used to adapt various security objectives. The presented approach is mapped
to the MAPE adaptation loop. Hence, the approach defines the whole loop re-
quired in the security adaptation. The adaptation approach retrieves all the re-
quired knowledge from the ontologies, namely the ISMO and Context Ontology for
Smart Spaces (CO4SS). Utilising the ontologies as the knowledge base ensures
that the amount of hard-coded adaptation decisions can be minimised, and new
knowledge can be added to ontologies without modifications to source code. Thus,
smart space evolution does not cause changes to the smart space application’s
source code. Lastly, the publication presents the RDF Security Model, which pro-
vides an interoperable solution to control access to semantic information in smart
spaces. Therefore, access control is handled in a dynamic way, which ensures
that static and pre-defined access control lists are not needed in smart spaces.
Instead, new devices are able to join the smart space without additional adminis-
trative efforts. The article is the joint result made together with Jani Suomalainen
and Eila Ovaska. The author is the first writer in the article. The author has worked
with two first-mentioned contributions (i.e. the adaptation approach and knowledge
base). Simultaneously, the RDF Security Model was researched by Jani Suomalainen.

In Table 2 the contributions of the publications are mapped to the State of the
Art, Concept and Validation research phases. In addition, the table summarises
the publications’ contributions to these phases. In the validation column C1–C5
refers to the case IDs presented in Table 1.

1. Introduction

22

Table 2. Contributions of the original publications.

No. Research Phase
State of the Art Concept Validation

PI Security ontologies. The initial vision of the
security-adaptation concept.

PII Context ontologies. Micro-architecture for securi-
ty adaptation and the taxon-
omy of context information
for security.

PIII Few security adap-
tation approaches.

An ontology-based adapta-
tion approach with risk-
based measures.

C2 validates the adapta-
tion approach, the usage
of ontology and risk-
based measures.

PIV Quality-attribute
ontologies for de-
sign-time usage.

Usage of an ontology-based
knowledge base at design-
time.

C1 validates the design-
time usage of an ontolo-
gy-based knowledge
base.

PV Software measure-
ment terminology.

A knowledge base called the
ISMO. Architecture elements
for security monitoring.

C3 validates usage of the
ISMO.

PVI Design steps to achieve
security adaptation.

C4 validates the exten-
sion possibilities of the
ISMO.

PVII A security-adaptation ap-
proach with the whole adap-
tation loop and utilisation of
the ISMO.

C5 validates the adapta-
tion approach and the
ISMO as a whole.

1.5 Benchmark criteria

The security-adaptation approach presented in this dissertation is benchmarked
with the related approaches in order to emphasise contributions and their validity.
The attributes of the benchmarking criteria are described in Table 3. The bench-
marking criteria are utilised in Sub-section 4.3, which presents a comparison to the
related work.

1. Introduction

23

Table 3. Benchmarking criteria.

Criterion Description

Adaptation loop What phases of the MAPE adaptation loop are covered?

Structure / Behaviour Does the approach contain both architecture descriptions?

Supported security
adaptation

What security objectives can be adapted? Alternatively,
objectives are not restricted and the approach is generic.

Adaptation need recog-
nition

How does the adaptation approach recognise the need for
adaptation?

Extensibility How can the approach be extended?

Reusability How can the approach be reused?

Design / runtime Does a support for design-time and runtime purposes exist?

Knowledge storage Where is the required knowledge stored?

Knowledge form What form is used to store knowledge?

Knowledge content What knowledge is defined?

Knowledge usage How is knowledge used?

1.6 Structure of the dissertation

This dissertation summary is divided to in five chapters. After the introduction,
Chapter 2 presents the background and related work. Chapter 3 summarises the
research contributions of the dissertation based on the original publications.
Thereafter, Chapter 4 discusses the achievement of research objectives, con-
straints and future work. Finally, conclusions close the dissertation. The original
publications are reprinted as appendices at the end of the dissertation.

2. Background

24

2. Background

In this chapter, the main concepts are explained in the first sub-section. Thereafter,
existing security-adaptation approaches and security ontologies are described in
Sub-section 2.2.

2.1 Main concepts

2.1.1 Smart spaces

The desire to build smart spaces that offer enhanced services, which utilise infor-
mation intelligently has existed for a long time [22]. The terms smart space and
smart environment are widely used interchangeably. Cook et al. define a smart
environment as one that is able to acquire and apply knowledge about the envi-
ronment and its inhabitants in order to improve their experience in that environ-
ment [23]. Conversely, Ovaska et al. define a smart environment as the composi-
tion of a smart space and a physical environment [24]. Simultaneously, the smart
space is defined as a digital entity presenting and offering information from the
physical environment in an interoperable and machine-readable form [24]. Conse-
quently, the definition separates the terms smart space and smart environment.
This dissertation contributes to the smart spaces, that is, the digital part, and thus,
the latter definition is utilised.

Interoperability is the capability of a smart space to share and acquire infor-
mation between smart space devices. The interoperability levels, defined in
[24,25], describe the type of achieved interoperability. Conceptual interoperability
is the highest interoperability level, which builds the smartness by utilising the
data, context and actions from the smart space.

A smart space application is constructed from a set of software agents. Agents
can be distributed to several smart space devices, and thus, the application de-
ployment is distributed. In smart spaces, the smart space application offers en-
riched information and services for the end user. Context information and context
changes have an important role related to the capability of the application to enrich
the services and offered information. Chen et al. make the following definition:
Context is a set of environmental states and settings that either determines an
application’s behaviour, or in which application the event occurs, and is interesting

2. Background

25

to the user [26]. The context information makes it possible to select the most suit-
able information and services for the end user's purposes. Similarly, context in-
formation facilitates achieving security in the smart space. In other words, exploit-
ing context information makes it possible to select a suitable security mechanism
for the user’s situation and action.

Raychoudhury et al. survey in [27] middleware solutions for pervasive compu-
ting, which are applicable solutions to offer infrastructure for smart spaces. How-
ever, in the SOFIA project – and also in this dissertation – the Smart-M3 [28] con-
cept is utilised as the smart space infrastructure. In the Smart-M3, a Semantic
Information Broker (SIB) forms the backbone for the smart space. The smart
space contains agents, namely Knowledge Processors (KPs), which share infor-
mation with each other by means of the SIB. Hence, KPs do not communicate
directly but insert, query and subscribe to information from the SIB. Thus, the
Smart-M3 adopts the Blackboard architecture pattern [29]. The SIB and KPs pre-
sent information in the semantic form by means of a Resource Description
Framework (RDF) [30]. The first Smart-M3 implementation [31] was utilised in the
greenhouse demonstration [32] (i.e. the case in C2 and PIII). The second Smart-
M3 implementation is called the RDF Information Base Solution (RIBS) [33], which
is designed for resource-restricted devices with Transport Layer Security (TLS) [34]
support. The RIBS is utilised in cases C3 and C5.

2.1.2 Security

In this dissertation, the security definition is based on the ISO/IEC definition, and
thus, security is thought to be a composition of the following security objectives:
authentication, authorisation, confidentiality, integrity and availability [6].

Figure 2 presents security concepts and their relationships. In the scope of this
dissertation, asset is data in a communication channel and data stored or pro-
cessed in smart space devices. The content of the data is not restricted in this
work; data can be, for instance, a message payload, log information, code, rules or a
device identifier. Depending on the asset different security objectives are required
due to potential threats, which in turn increase risk. A threat is defined as follows: a
threat is potential for an accidental or intentional security violation [10,35]. Threats
are enabled by vulnerabilities. Based on [10,36] a vulnerability can be defined as a
property or weakness in a system or its environment that could cause a security
failure. Lastly, security mechanisms are a means to protect assets and to support
the particular security objective by mitigating risks.

2. Background

26

Figure 2. Security concepts.

Risk consists of the probability of threat realisation and the impact of the threat reali-
sation (i.e. asset value) [10]. Consequently, risk management contains risk identifi-
cation, risk assessment and risk mitigation steps to reduce the risk to an acceptable
level [10]. Risk assessment requires quantitative values or categories in order to
estimate threat probabilities and impacts to produce risk levels. Table 4 shows an
example of the risk-level matrix, which contains fine-tuned risk levels from the origi-
nal version presented in [10]. The risk-level matrix in Table 4 contains three rows for
threat probabilities and three columns for impacts. Furthermore, there are three
levels (low, medium and high) for probabilities, impacts and risk levels. For example,
a threat with medium probability and high impact directs to the cell that states that
the risk-level is high. However, the amount of levels and rating risks to levels is a
subjective decision, and thus, these vary between references and the purpose of
use – confer risk-level matrixes from [10,37]. Table 4 contains also continuous val-
ues for probability, impact and risk, which are utilised in use case C2.

Table 4. Risk-level matrix.

Threat
probability

Impact

Low (10) Medium (50) High (100)

High (1.0)
Medium

(1.0*10 = 10)
High

(1.0*50 = 50)
High

(1.0*100 = 100)

Medium (0.5)
Low

(0.5*10 = 5)
Medium

(0.5*50 = 25)
High

(0.5*100 = 50)

Low (0.1)
Low

(0.1*10 = 1)
Low

(0.1*50 = 5)
Medium

(0.1*100 = 10)

As described above, risk assessment utilises levels to define comparable catego-
ries for risks. Similarly, this dissertation uses a term security level, which is defined

2. Background

27

for the dissertation as the security mechanism effectiveness to support the re-
quired security objective. The NIST report [38] defines the terms security correct-
ness and security effectiveness as follows: The security correctness is the ability
of the security mechanism to work precisely as specified, whereas, the security
effectiveness is the security mechanism's strength to withstand attacks in carrying
out their function. Consequently, the overall security level of the system has to
take both correctness and effectiveness into account. Nevertheless, the effective-
ness-based security level is utilised in this dissertation for the runtime security-
adaptation purposes. The security correctness aspects are considered in PVI, that
is, the reliability of the security mechanism. Moreover, this dissertation derives
security objective specific levels (e.g. the authentication level) when emphasising
the security level of the particular security objective.

2.1.3 Self-adaptive software

Self-adaptive software is able to modify itself based on changes in the execution
environment, requirements, or in the software itself at runtime [39]. The MAPE-K
model was presented simultaneously with the autonomic computing vision [3]. The
MAPE-K model is applied as a reference model in several surveys in the self-
adaptation and autonomic computing fields. Therefore, the MAPE-K model is also
utilised in this dissertation. However, depending on the reference, the phases of
the adaptation loop are called different names. The alternative names utilised are:
Collect, Analyse/Detect, Decide and Act [4,40]. Furthermore, Psaier et al. [41]
present a loop for the self-healing purposes with Detect, Diagnose and Recover
phases, which combine Analyse and Plan phases. Self-healing is one of the self-*
properties, which form the base for self-adaptation [4]. Added to self-healing, these
self-* properties are self-configuring, self-optimisation and self-protection [3,4], which
can be described as follows. Self-configuring is the capability of reconfiguring by
installing, updating, integrating and composing/decomposing software [4]. Self-
optimisation is the capability of tuning or adjusting the parameters of the software.
Self-protection is the capability of protecting against malicious attacks or uninten-
tional usage mistakes. Lastly, self-healing is the capability of detecting and repair-
ing from faults, errors and failures. Furthermore, self-awareness and context-
awareness are essential properties for self-adaptation. Context-awareness is the
capability of observing, understanding and reacting to the changes in the external
(i.e. operational, environment) [42]. In contrast, self-awareness is the capability of
software to know its own state and behaviour [42].

Figure 3 illustrates the MAPE-K model. The Monitor, Analyse, Plan and Exe-
cute phases form the adaptation loop and the Knowledge part supports these
phases. In the Monitor phase, the required input information is collected by sen-
sors. Monitoring collects input information from the execution environment, and
observes the software’s internal state and behaviour. This dissertation utilises
context monitoring and security measures for monitoring purposes. Security

2. Background

28

measures for monitoring purposes are the focal point. Thus, security measures
are described in more detail in Sub-section 2.1.4.

The purpose of the Analyse phase is to recognise when adaptation is required.
Therefore, context-awareness and self-awareness are built during the Analyse
phase by combining the monitoring results. In order to recognise the adaptation
need, the Analyse phase compares the currently achieved objectives with the
required objectives.

Figure 3. MAPE-K model.

The purpose of the Plan phase is to decide how required objectives are fulfilled.
Therefore, the Plan recognises what has to be changed in order to achieve re-
quirements and how to perform this change. The output of this phase is called an
adaptation plan, which utilises self-configuring and self-optimisation. Salehie et al.
divide the Plan phase into static and dynamic types [4]. Static planning means that
the planning process is hard coded and cannot be modified without recompiling. In the
dynamic planning, runtime modifications for the planning process are possible due
to externally presented planning policies or quality definitions. The simplest way to
produce an adaptation plan is to define the ECA (Event-Condition-Action) rules [5].
On the higher level, the alternatives are goal policies and utility functions [43].
Goal policies define the desired and undesired states, and thus, the software has
to internally decide on how to achieve the desired state. A utility function calcu-
lates a value for each state, instead of only categorising desired or undesired
states. Furthermore, possible trade-offs between requirements are taken into
account during the Plan phase. The utility function is able to select the least bad
alternative between undesired states. Hence, the utility function is the preferable
selection for trade-off purposes. However, trade-off issues are out of the scope of
the dissertation, and thus, utility functions are not applied in this work. Conse-
quences of this restriction are discussed in Sub-section 4.4.

2. Background

29

The last phase of the adaptation loop is Execute, which performs the adapta-
tion based on the adaptation plan. The Execute phase utilises effectors, which are
concrete implementations inside the adapted software to perform the specific
change. In the security adaptation, effectors concentrate on causing security-
related changes (i.e. changes to security mechanisms and their parameters).

The Knowledge part offers input knowledge for the adaptation loop. Knowledge
is needed to describe what to monitor and how, how to interpret the monitored
results, and what are the possible ways to react to the recognised changes.

2.1.4 Measures and security measuring

The security adaptation approach presented in this dissertation utilises security
measures to obtain input information for the adaptation. The dissertation utilises
the measurement terminology defined by Garcia et al. in [20]. Consequently,
measures are divided into three categories that are base measures, derived
measures and indicators. Each measure uses a measurement approach, which is
a sequence of operations to determine a measurement result. The base measure
is the smallest raw measure, which is not dependent on other measures. Hence,
the base measures form the basis for all other measures. The measurement ap-
proach used with base measures is called a measurement method. The derived
measure combines base measures and other derived measures by using a meas-
urement function as the measurement approach. Indicators are the most complex
measures, which combine base measures, derived measures and other indicators
by using the measurement approach, called analysis models. Figure 4 illustrates
the structure of measures and their dependencies (i.e. arrows direct to measures,
which utilise other measures).

Figure 4. Structure of measures.

In some sources base measures are called direct measures and derived
measures and indicators are called indirect measures [44,45]. Moreover, the term
metric is widely used – especially in the security-measuring context. However, in
this dissertation terminology from Garcia et al. [20] is utilised because it is based
on an alignment made from several software measuring and metrology standards.
Hence, the term security measure refers to base measures, derived measures and

2. Background

30

indicators for security. Security measure does not refer to security countermeasures,
which are called security mechanisms.

Each derived measure and indicator depends on base measures, which are
measured by means of a measurement method. In the runtime security adaptation,
the measurement method has to be a concrete code snippet, which implements a
measurement method for the runtime purposes. In this dissertation, these code
snippets are called monitoring probes, which are presented with a Unified Model-
ling Language (UML) component symbol in order to emphasise their existence in
the software.

From the measuring viewpoint security is not a single measurable attribute. Se-
curity is the composition of security objectives, and thus, security measuring has
to reach security from different objective viewpoints. Wang and Wulf present a
decomposition approach to dividing security into smaller and more measurable
parts in [46]. The authors present decompositions for confidentiality, integrity,
authentication and non-repudiation. Savola et al. utilise the decomposition ap-
proach in [47] to define decompositions for authorisation and availability. From the
measure structure viewpoint (c.f., Figure 4), decomposition has to be continued
until the leaf nodes are found, which are measurable with base measures.

Bottom-up and top-down security measure definitions are presented in [48].
Decomposition is a top-down method to generate security measures. In the top-
down method, the measure definition starts from the security objective and pro-
ceeds to the required bottom-level base measures. In contrast, the bottom-up
measure definition starts from the bottom level to seek what base measures are
available and defines derived measures and indicators based on the available
information. This dissertation utilises the bottom-up approach to define security
measures. Developing security measures by means of a top-down approach pro-
duces a comprehensive set of measures. However, security adaptation architec-
ture and the knowledge base are the focal point of this work. Therefore, it is rea-
sonable to continue when the sufficient set of security measures is available –
instead of defining the most extensive measure set.

2.1.5 From quality variability to quality adaptation

Svahnberg et al. define software variability as the ability of the software system or
artefact to be efficiently extended, changed, customised or configured [49]. Varia-
bility makes it possible to reuse existing software components and architectures,
and in addition, it supports delayed decision making during the software design
phase. Variation points are the points at which changes caused by variations take
place [50]. Examples of the mechanisms to achieve variability are inheritance,
extensions, configuration, template instantiation, generation, inclusion or omission
of elements, and the selection of versions of elements [50,51]. In order to utilise
coherent terminology, this dissertation utilises the terms self-configuration and
self-optimisation to refer to runtime variation mechanisms.

2. Background

31

Binding time defines when the variation takes place [52]. Consequently, the lat-
est possible binding time is at runtime [49,52]. In the context of this dissertation,
the variability occurring at runtime is called adaptation. In [52] Niemelä et al. define
the quality variability model. Added to binding time, the model defines scope,
importance and dependencies on other quality attributes for variability. The scope
declares how widely the variation is able to have an effect (i.e. on the family, prod-
uct, service or component levels). The importance defines how quality variation
can take place by categorising the variations into high, medium and low catego-
ries. The high category means that quality cannot be lowered in a normal opera-
tion. Nevertheless, the quality can be lowered temporarily if it is mandatory for the
survival of the whole system. Consequently, the importance concept is essential
when analysing trade-offs. Finally, the dependencies on other quality attributes
concept declares connections between quality attributes. For security, dependen-
cies on performance and reliability exist (i.e. security mechanisms have to be
reliable and mechanisms consume resources). The quality variability model pre-
sented above states that dependencies exist between quality attributes. However,
in security internal dependencies also exist between security objectives. For in-
stance, adapting authorisation may affect the utilised identification scheme.

2.2 Related work

2.2.1 Security adaptation approaches

This section summarises existing security-adaptation approaches. The MAPE-K is
commonly utilised as a reference model in different adaptation approaches, and
thus, elements from the MAPE-K model are emphasised in this section.

Elkhodary et al. surveyed four security adaptation approaches in [12] – namely
Extensible Security Infrastructure [53], Strata Security API [54], The Willow Archi-
tecture [55] and the Adaptive Trust Negotiation Framework [56]. As the final con-
clusion, authors notice that any of these approaches support all security objectives
but concentrate on specific and pre-selected objectives. Moreover, maintainability
and reusability were recognised as a challenge.

Russello et al. propose the Architectural Approach for Self-managing Security
Services in [57]. The adaptation approach utilises Event-State-Condition-Action
(ESCA) policies. The approach separates the application logic to an application
layer, while adaptation elements and security mechanisms are located on a mid-
dleware layer. An ECSA policy manager selects policies and the set of security
mechanisms, which are adapted based on the selected policy. The following con-
text monitoring services offer contextual information: Trust level, threat level,
availability monitor and bandwidth monitor. However, the internal design of these
services is not described. The utilisation of the separation of concern principle
ensures that the architecture is clearly described. The Context sub-system performs
monitoring and analysing, while the ECSA policy manager performs planning and
execution. The required knowledge is presented inside the Context monitoring

2. Background

32

services and ECSA policies. The ECSA policy manager is validated in [58,59].
However, the validation does not contain a security-adaptation viewpoint.

The Software Framework for Autonomic Security in Pervasive Environments
consists of monitoring, analysing and responding modules with their mutual inter-
actions [15]. The monitoring module observes security-related events. The analys-
ing module receives these events and suggests a high-level security action in
order to reconfigure. Consequently, the module combines analysing and planning
phases. Finally, the responding module delivers reconfiguration actions for the
implementation specific sub-systems. The approach contains a support module,
which offers a profile database for other modules. The analysing module is able to
get information from the database in order to perform decision making. However,
the content of the database is not described.

Hulsebosch et al. present Context Sensitive Adaptive Authentication in [14], the
initial version of the approach is presented from the access control viewpoint in [60].
The approach utilises the user’s context information (i.e. location and time) for the
adaptation. The idea is to approximate the authentication confidence with the
probability of the user being at a certain location in authentication time. Hence, the
authors present a fusion algorithm that calculates probability values for the user’s
location. The main focus of the approach is the utilisation of the context infor-
mation for the adaptive user authentication. Therefore, the monitoring part concen-
trates on context monitoring. Moreover, the analysing part is partially covered by
calculating location probabilities. However, the authentication-level decision is left
for the application. The approach does not concentrate on the planning phase or
contain a separated knowledge base.

Genetic Messaging-Oriented Secure Middleware (GEMOM) contains self-
healing and adaptation features [61]. Security adaptation in GEMOM is performed
by means of an Adaptive Security Manager (ASM) [62]. The ASM contains ele-
ments for monitoring, analysing and adaptation. Thus, the adaptation element
combines plan and execute phases. In the GEMOM the monitoring is the most
emphasised part, which contains anomaly detection, Quality of Service (QoS)
monitoring and security measuring. From these monitoring techniques, security
measuring is described in more detail in [47]. Analysing and planning are per-
formed in separated components. However, the content of these phases is not
described. The approach contains a database in order to offer input for the anal-
yses but the content is not described.

The most recent survey in this field is presented by Yuan and Malek in [13].
The survey compares over 30 self-protecting approaches in a tabular form. The
survey reveals that almost all approaches cover the monitoring phase, but the
planning phase is not covered as extensively. Moreover, it is visible that only few
approaches take adaptation requirements into account from design- and runtime
viewpoints. Lastly, the survey denotes that there is a need for architecture-based
approaches that support generality and scalability. Actually, only two approaches
were found that cover the whole adaptation loop and take architecture aspects into
account. These approaches are Rainbow [63] and SASSY [64]. Rainbow concen-
trates on performance, availability and cost aspects. SASSY is intended to be

2. Background

33

generic in order to maintain functionality and QoS requirements by means of ad-
aptation. Consequently, these approaches are not directly intended for security-
adaptation.

2.2.2 Security ontologies

In this work, knowledge for security adaptation is formed by means of a security
ontology. Gruber defines ontology as follows: “An ontology is an explicit specifica-
tion of a conceptualisation” [65]. Afterwards, Zhou defines ontology as a shared
knowledge standard or knowledge model, defining primitive concepts, relations,
rules and their instances, which comprise topic knowledge. It can be used for
capturing, structuring and enlarging explicit and tacit topic knowledge across peo-
ple, organisations, and computer and software systems [66]. On the other hand,
Chandrasekaran et al. emphasise the importance of ontologies by their capability
to enable knowledge sharing and coherent reasoning [67].

The original publication PI compares four security ontologies from runtime and
measuring applicability viewpoints. These ontologies are Taxonomy of Information
Security in Service-Centric Systems [18], Security for DAML Web-services [68,69],
Security Ontology for Annotating Resources [70] and Security Ontology by
Tsoumas et al. [71]. The comparison revealed that these ontologies are intended
either for design-time usage or for service discovery and matchmaking purposes.
Moreover, Blanco et al. compare and analyse security ontologies in [72,73]. The
authors conclude that most of the existing security ontologies concentrate on
describing the particular security area or domain, for instance access control or
auditing. Furthermore, all developed security ontologies are not available [73].
Nevertheless, Blanco et al. have found few general purpose security ontologies,
which are available – namely ontologies from Denker et al. [68], Kim et al. [70],
Fenz et al. [74] and Herzog et al. [21]. Fenz et al. have published their work in
several publications, for example [74,75]. These papers include the information-
security viewpoint but the ontology contains threats and controls for physical secu-
rity purposes also, for instance fires and safety doors. The authors’ focus is clearly
on risk management, especially the business continuity aspects, which in turn do
not lend themselves to the scope of this dissertation. In contrast, the ontology from
Herzog et al. [21] concentrates purely on information security and it contains more
concepts than other security ontologies. Hence, the ontology from Herzog et al. is
utilised in this dissertation as a starting point to build a security ontology for adap-
tation purposes. In this work, the ontology from Herzog et al. is abbreviated with
an OIS (Ontology of Information Security).

The OIS categorises the concepts around risk-management terminology: as-
sets, threats, vulnerabilities, mechanisms and security objectives (terms shown in
Figure 2), which form high-level concept classes for the ontology. Moreover, the
ontology is not only a class hierarchy but connecting properties between classes
are also presented, for example threats threatening the particular security objec-
tive. However, the OIS does not contain security-measuring terminology. Conse-

2. Background

34

quently, this dissertation extends the OIS for security measuring and adaptation
purposes.

Figure 5 defines a graphical notation utilised in the dissertation to present on-
tologies. Rectangles refer to concepts, which are ontology classes and instantiat-
ed classes. In the figure, Concept1 is a concept and Concept2: instance1 is an
instance created from Concept2. Relationships are depicted by means of arrows,
which present a reading direction and name (property name). In addition, arrows
contain cardinality information. Consequently, the figure defines that Instance1
(instantiated from Concept2) relates to one or more of Concept1.

Concept1 Concept2: instance1
relates

1…*

Figure 5. Graphical notation utilised in the dissertation.

Naturally, these graphical presentations are not suitable for validation purposes
when ontology has to be in a machine-readable form. OWL [76] is utilised for this
purpose, which is a de-facto standard to present ontologies in machine-readable
form. OWL is based on the Resource Description Framework (RDF) [77] and RDF
Schema (RDF-S) [78].

3. Research

35

3. Research

This chapter gives an overview of the research contributions of the dissertation.
More details are given in the original publications that are listed at the beginning of
the dissertation and attached at the end. The research problem is divided into the
architecture and knowledge base objectives in Introduction. These objectives form
the main topics for the dissertation. The research to fulfil the architecture and
knowledge base objectives was made in parallel because the architecture utilises
knowledge, and the structure of the knowledge has an influence on the architecture.

The architecture objective set in the Introduction states that the architecture has
to contain the whole adaptation loop and, in addition, provide a means of monitor-
ing the achieved security level in order to trigger adaptation. Consequently, the
architecture research contains architectural elements, as well as their mutual
behaviour and deployment, in order to achieve security adaptation. The presented
adaptation architecture is designed to support the security measures for monitor-
ing purposes to recognise the adaptation need.

The knowledge base forms the second research topic for the dissertation. The
knowledge base objective requires developing a knowledge base, which is appli-
cable at design-time and runtime alike. Furthermore, it is required that the
knowledge is presented in a reusable and extensible manner. The knowledge
base is created by using an ontology, which ensures that knowledge is retrievable
both for software architects at design-time and applications at runtime.

The research utilises a constructive research approach by means of five cases.
Sub-section 3.1 briefly describes the cases. Sub-section 3.2 then summarises the
contributions to the architecture objective, and lastly, Sub-section 3.3 describes
contributions from the knowledge base point of view.

3.1 Cases

The cases that form this dissertation are summarised in Table 5, where case
objectives and experiences are presented from the perspective of this work. Based
on Runeson et al. [79], the case objective defines what is expected to be achieved in
the case. In Table 5 cases C1–C5 are mapped to the original publications PII–PVII.
All cases contribute to the knowledge base, and C2, C3 and C5 also contribute to

3. Research

36

the architecture. In addition, the cases contain both design-time and runtime view-
points, which is one novelty claim stated in Sub-section 1.2.

Table 5. Case objectives and experiences.

Case/Pub. Case objective Experiences

C1/PIV Investigate how to re-
trieve quality knowledge
from the ontology at
design-time.

The software architect is easily able to retrieve
quality knowledge from the ontology when a tool
support exists. Furthermore, separating quality
measures from other quality knowledge is a rea-
sonable solution.

C2/PII and
PIII

Develop an architecture
that utilises security
measures and ontolo-
gies for adaptation
purposes.

The main functionality of the adaptation architec-
ture is in place. However, the content and the
order of the adaptation phases need enhance-
ments. Similarly, the ontology contains the main
concepts but a finer granularity is needed.

C3/PV Evaluate the first version
of the ISMO for design-
time and runtime pur-
poses. In addition, the
objective is to develop
architecture parts for
measuring purposes.

The case proves that the architect is able to find
applicable security mechanisms and base
measures from the ISMO (the ISMO ontology is
described in Sub-section 3.3.1). Furthermore, the
ISMO offers a means of retrieving analysis models
in order to calculate security-level indicators at
runtime. The designed architecture elements
ensure that only components for base measures
are implementation-specific, while other measur-
ing-related components are generic and reusable.

C4/PVI Extend the ISMO with
new measures.

It is possible to extend the ISMO with new
measures. The case shows that the ISMO is able
to present design-time knowledge for runtime
adaptation purposes.

C5/PVII Develop the architecture
further based on previ-
ous experiences – ap-
plying the MAPE-K
reference model. Utilise
knowledge from the
ISMO in all phases of
the adaptation.

Utilising the MAPE-K reference model for the
security adaptation ensures that the adaptation
phases are separated. In addition, a distinct
knowledge base supports knowledge modifica-
tions and reduces hard-coded adaptation
knowledge. Lastly, the case shows the knowledge
required during the adaptation phases.

The SMEPP case is the first case (C1) presented in PIV. The SMEPP case is
intended to validate the knowledge-based quality-driven architecture design and
evaluation method that utilises ontologies as one knowledge source. The case
concentrates purely on software design-time. Therefore, the case shows how the
architect utilises quality knowledge from ontologies. The case utilises the reliability
ontology [19] because it contained more content than the security ontology at that
time. The SMEPP middleware has several reliability requirements and the archi-
tect searches reliability measures from the ontology to reveal if requirements are
not fulfilled. The reliability ontology is presented in the OWL format and a tool

3. Research

37

called the Quality Profile Editor (QPE) is used to search quality measures from the
ontology. The case showed that an appropriate tool facilitates retrieving knowledge
from the ontology at design-time. In addition, the case indicates that separating
quality measures and a means to achieve the particular quality is a reasonable
decision. Consequently, it is possible to update and extend both knowledge areas
without knowing the other.

The second case (C2), the Smart Greenhouse, contributes to both the architec-
ture and knowledge base objectives. The case is presented in PIII. However, the
initial vision of the architecture has already been presented in PI, and is further
developed in publications PII and PIII. The purpose of C2 is to develop a security-
adaptation architecture that utilises security measuring and ontologies. The case
contains a miniature greenhouse, and a gardener utilises greenhouse devices by
means of his mobile device. The security adaptation occurs in the smart space
application located in the gardener’s device. The gardener is able to retrieve sen-
sor information from the greenhouse and control the actuators. The greenhouse
contains a shopping area for customers. The number of customers in the green-
house area is calculated and this value is further utilised to calculate risk levels. In
other words, arriving customers and their mobile devices are recognised as
threats from the gardener’s application viewpoint. The case utilises risk-based
security measures for confidentiality and integrity, which are stored into the securi-
ty ontology. In addition, the ontology describes the security mechanisms that sup-
port these security objectives. It is notable that PIII utilises the term security con-
cept instead of security mechanism. The gardener’s application utilises security
measures and searches for adaptation means from the ontology. Consequently,
the case fulfils its objectives. The developed security adaptation architecture fol-
lows a loop structure, which is visible, especially in PII. However, the granularity of
the different phases in the adaptation loop varies (c.f. Figure 2 in PII). On the one
hand, some phases are trivial (e.g. a phase called Retrieve supporting mecha-
nisms from ontology), and on the other hand, some phases contain lot of function-
ality (e.g. the Measuring and Reasoning phase). Consequently, the architecture
structure is further developed in the following cases. The security ontology utilised
in the case contains all the necessary concepts to achieve the first version of the
security adaptation. However, the amount of security knowledge is not adequate
and the measures are described in a simple form.

Case C3 evaluates the first version of the ISMO and develops an architecture
for measuring purposes. This is the first case that utilises the ISMO in its current
form that reuses existing security and measuring ontologies in order to provide an
extensive set of concepts. Details of this case are presented in PV. The case
takes place in a smart home environment and the smart space application with the
adaptation feature runs in a mobile device. In the smart home, a user is able to
perform actions of varying criticality, which cause a need to adapt security levels.
Security adaptation in this case is implemented for the authentication security
objective, in a situation where authentication is based on passwords. At design-
time, the architect searches base measures for password authentication from the
ISMO. The developed architecture elements (c.f. Figure 7) ensure that only the

3. Research

38

software components for the measurement methods of the selected base
measures have to be implemented into the smart space. In other words, other
measuring-related components are reusable as such. At runtime, the application
searches knowledge from the ISMO. Hence, the required analysis models are
retrieved from the ISMO in order to calculate the authentication-level indicator for
different situations. The case shows that the structure using base measures, de-
rived measures and indicators to present security measures supports reusability
and ensures that the measures are presented in a machine-readable form. The
authentication levels, required for different actions, are hard coded in this case.
Moreover, the Monitor component calculates the security levels (c.f. Figure 6 in
PV). These decisions were reasonable during the case implementation but the
enhanced version is created in C5.

Case C4 concentrates on design-time aspects and shows how to extend the
ISMO with new knowledge. PVI presents the case in more detail. In the case, the
architect designs software with the security-adaptation feature by utilising the
design steps presented in PVI in Figure 2. After the architecture design, the RAP
method is utilised to predict reliability values for alternative authentication mecha-
nisms (i.e. authentication variants). The reliability values are presented by using
the probability of failure (pof) values [80]. Initially these pof values are intended for
the software architect to support design-time decision making. However, the case
extends the ISMO in a way that pof values can be offered for runtime purposes.
The extension contains instances for the following concepts: Attribute, BaseMeas-
ure and MeasurementMethod (c.f. Figure 5 in PVI). Therefore, all the instances
required to add a new measure are included. The case proved that new measures
can be added into the ISMO. In addition, the structure of the measures is not se-
curity specific, and measures for different qualities can also be added. Reliability
values offer knowledge from design-time, which can be used in the Analyse phase
as one factor in a security-level calculation.

Case C5 (the SUM-SS pilot) is the last case, which is presented in PVII. In ad-
dition, the general-level presentation of the SUM-SS pilot is given in the Sofia
brochure [81]. The SUM-SS pilot contains four smart spaces: a smart personal
space, a smart home, a smart office and a smart city. The owner of the smart
home acts as an end user in this case. The home owner moves between smart
spaces and simultaneously controls devices located in the home smart space. The
smart space application, with the security adaptation features, is running in the
end user’s mobile device and authentication is the adaptive security objective.
Thus, this case has similarities to C3. However, the case contains the latest ver-
sions of the adaptation architecture and the ISMO. Consequently, the case takes
into account experiences gained in previous cases. In addition, the case occurs in
a more heterogeneous environment and the application utilises information dis-
tributed for different smart spaces. The used security-adaptation architecture con-
forms to the MAPE-K reference model. Hence, the case contributes to the struc-
ture of the security adaptation architecture as do the others. However, the case
contributes behaviour and deployment descriptions to the architecture, which are
not considered as much in previous cases. In the Plan phase, the case utilises

3. Research

39

AnalysisModels in order to find attributes, whose adaptation is able to change the
achieved security level (c.f. Figures 9 and 14 in PVII). Furthermore, the adaptation
phases are connected to the required knowledge from the ISMO. The case proves
that utilising the MAPE-K reference model produces the security adaptation archi-
tecture with common and reusable adaptation phases. Separating the knowledge
from the adaptation loop ensures that the smart space application does not need
hard-coded analysis models or planning rules.

3.2 Security adaptation architecture

This sub-section describes contributions to the security-adaptation architecture.
The architecture contains the elements, their mutual behaviour and deployment in
order to achieve security adaptation. Next, Sub-sections 3.2.1, 3.2.2 and 3.2.3
describe the proposed architecture from structural, behavioural and deployment
viewpoints, respectively.

3.2.1 Structure

The structure of the security adaptation architecture is developed iteratively in
cases C2, C3 and C5. Due to iterative development, the architecture structure
from the last case forms the main contribution. However, the measuring-related
architecture elements have already been recognised in C3 and fine-tuned in C5.

The architecture structure is presented in Figure 6. The structure conforms to
the MAPE-K reference model. Consequently, the Monitor, Analyser, Planner and
Executor components play a key role in the structure, that is, the architecture
applies the whole MAPE adaptation loop for the security adaptation and defines
each phase separately. The knowledge is offered from the OWL-formatted ontolo-
gy, the ISMO, which is described in Sub-section 3.3. The ISMO is connected to
the Monitor, Analyser and Planner components, which utilise knowledge from it.
PVII defines the knowledge required in these adaptation phases. Moreover, the
component descriptions below summarise the knowledge retrieved from the
ISMO. The existing security adaptation approaches do not define knowledge and
its utilisation in the MAPE loop. Hence, this dissertation defines the knowledge
base, and in addition, describes what knowledge is needed in the adaptation
phases.

3. Research

40

Figure 6. The structure of the adaptation architecture.

The Monitor component is connected to the Monitoring probe components, the
Analyser and the ISMO. From the ISMO, the Monitor component retrieves the
base measures to use. Thus, only measures for required security objectives and
utilised security mechanisms are used. Each base measure has its own meas-
urement approach (i.e. measurement method) that describes how to perform the
measurement, which is available from the ISMO. The Monitoring probe compo-
nents are concrete code snippets that implement the measurement methods.
Hence, Monitoring probes are reusable building blocks for performing measuring.
The Monitor component requests measuring results from the selected Monitoring
probe components. The proposed solution utilises security measures to monitor
the achieved security level. This makes it possible to define generic and imple-
mentation-specific parts for the security-level monitoring, which is novel compared
to the existing approaches as stated in Sub-section 1.2. Figure 7 presents these
generic and implementation-specific parts. Initially, this structure is presented in
PV, where the separation of measurement methods (i.e. monitoring probes) and
the Monitor component is presented. However, the security-level indicator calculation
is allocated for the Analyser component in this final architecture, as presented in
PVII and visible in the figure.

The Analyser component is called by the Monitor component. Figure 7 shows
the internal components of the Analyser component to calculate the security level
indicator. The Analyser component retrieves derived measures, indicators and
related measurement approaches (i.e. measurement functions and analysis models)
from the ISMO. The Analysis model parser component parses rules from analysis
models, which are utilised in the Base measure combiner component to calculate
the security-level indicator. In other words, the retrieved measurement approaches
act as equations to calculate results for derived measures and indicators by com-
bining results from base measures, as described in Sub-section 2.1.4. Hence, the
Analyser component is able to calculate the achieved security level indicator in

3. Research

41

order to recognise the adaptation need. The whole Analyser component is located
in the generic part, as visible in Figure 7. Therefore, the Analyser component does
not change when the utilised Monitoring probes change, which supports reusability
and extensibility. This advantage is achieved due to the utilisation of security
measuring and a three-level measuring structure.

Afterwards, the Analyser component compares the achieved and required se-
curity levels and calls the Planner component if the required security has not been
achieved. C2 and C3 utilise hard-coded security levels to set the required securi-
ties. PII defines the context information that affects security. Therefore in C5, the
Analyser component uses context information to deduce the required security
levels (c.f. Figure 8 in PVII). Thus, the Analyser component produces both the
required and achieved security levels by utilising the monitored information. Nev-
ertheless, deciding the required security objectives and levels at runtime is not the
focal point of this dissertation.

Figure 7. Generic and implementation-specific parts for security-level monitoring.

The purpose of the Planner component is to create an adaptation plan. The com-
ponent is connected to the ISMO in order to retrieve alternative security mecha-
nisms or attributes to achieve the required security. The adaptation plan is either
defined at design-time, decided at runtime based on knowledge from the ISMO, or
in the worst situation, instructions on how to proceed are requested from the user.
These alternative ways to create the adaptation plan are described in PVII and
summarised in the Behaviour Sub-section 3.2.2.

The Executor is the last component in the adaptation loop. The purpose of the
Executor component is to enforce the adaptation plan received as an input from
the Planner component. Thus, the Executor component is connected to the Action
to Adapt components, which are concrete implementations for adapting security.

3. Research

42

Therefore, the Action to Adapt components are security mechanisms intended to use,
or alternatively, implementations that modify the attributes of security mechanisms.

3.2.2 Behaviour

This section summarises the mutual behaviour of architecture components. The
behaviour is presented by means of sequence diagrams, which contain compo-
nents from Figure 6.

Figure 8 depicts the first part of the sequence diagram, where the Monitor and
Analyser components play a key role at the beginning of the adaptation loop. The
adaptation loop starts from the Monitor component. Firstly, the Monitor component
retrieves the applicable base measures from the ISMO. As mentioned earlier, the
selection of base measures depends on the required security objectives and the
security mechanisms that are utilised to fulfil those objectives. For example, it is
not reasonable to utilise measures for integrity if that security objective is not re-
quired. When the base measure selection is ready the Monitor starts the Monitor-
ing probe components, which in turn start to offer measurement results. The Moni-
tor component delivers the measured results to the Analyser component. The first
time, the Analyser searches for the derived measures, measurement functions
(measurement approach for derived measures), indicators and analysis models
(measurement approach for indicators) from the ISMO. For clarity reasons the
sequence diagram in Figure 8 shows only the retrieval of analysis models. By
means of the analysis model the measurement results from the Monitoring probes
are composed to the security-level indicator as described in Figure 4. The securi-
ty-level indicator produced with the analysis model is compared to the required
security. If the required security is achieved adaptation is not needed and the
execution returns to the Monitor component. Otherwise, the Planner component is
called. In Figure 8, Measurement1 does not cause an adaptation need but Meas-
urement2 reveals that the achieved security level is not sufficient and the Analyser
component calls the Planner component.

PVII and C5 utilise context information in order to avoid hard-coded security re-
quirements. Hence, context information is also monitored and the results are de-
livered for the Analyser component. The Analyser component calculates the re-
quired security and compares the required and achieved security levels in a simi-
lar way to that presented in Figure 8. In other words, context information is treated
similarly to the security measurement results. However, the means of performing
context monitoring are not the focal point of the dissertation; more details on con-
text monitoring are described in [25].

3. Research

43

Figure 8. Sequence diagram part 1.

Figure 9 presents the behaviour when the Analyser component calls the Planner.
The heterogeneity of smart spaces causes challenges for the Planning phase. The
adaptation plan that is sufficient in one situation is not automatically applicable in
another situation. Consequently, the adaptation plan’s applicability has to be
checked in each situation. In PII and PIII adaptation architecture contains a sepa-
rated phase called Control analysis that checks the mechanism’s applicability for
the current environment. However, in this final architecture this functionality is an
internal functionality of the Planner component. PVII enumerates three alternative
ways to create an adaptation plan: i) The smart space application utilises a prede-
fined adaptation plan; ii) The application searches for alternative security mecha-
nisms or attributes to adapt from the ISMO; iii) The application asks the user how
to proceed. These alternatives are presented inside the Alternatives frame in the
sequence diagram and separated from each other with a dashed line.

In the first alternative, a predefined adaptation plan is utilised. For example,
when the security objective of confidentiality is not achieved the predefined adap-
tation plan can be “start to use encryption”. Thus, the Planner component selects
the adaptation plan and delivers it to the Executor component, which in turn calls
the related Action to Adapt component. From the previous example, the Action to
Adapt component is a concrete implementation that enforces the utilisation of the
particular encryption library, whose handshake procedure takes care that both
communication sides start to use encryption and negotiates the required parameters.

3. Research

44

The final step of the adaptation is to return to the Monitor component and continue
the adaptation loop.

In the second alternative, the Planner component utilises the knowledge from
the ISMO in order to create the adaptation plan. On the one hand, it is possible to
search for alternative security mechanisms based on the required security objec-
tives. On the other hand, it is possible to get the utilised analysis model from the
ISMO and find attributes that have affected the achieved security level, and adapt
those attributes. How these attributes can be found is presented in PVII in Figure 9.
Based on the knowledge retrieved from the ISMO, the Planner component creates
the adaptation plan and calls the Executor component, which enforces the plan.
Again, the execution returns to the Monitor component.

Figure 9. Sequence diagram part 2.

The third alternative way to create the adaptation plan is intended for situations
when the above described means are not sufficient to decide how to proceed.
Therefore, the only possibility is to ask for instructions from the end user. Thereaf-
ter, the sequence proceeds similarly as described in alternatives one and two.

3. Research

45

It is not always possible to create an adaptation plan that satisfies all security
and other quality requirements. For instance, the security mechanism can require
computation resources, which cannot be allocated for it. Or alternatively, the adap-
tation plan can propose a security mechanism (e.g. multifactor authentication) that
reduces usability. Moreover, the smart space devices may define conflicting adap-
tation plans. It is mandatory to take these trade-off and matchmaking issues into
account during the Plan phase. Currently, the Planner component utilises goal-
orientated decision making, that is, the context sets the required security objec-
tives and levels (goals) and the Planner component finds a configuration that
satisfies the goal. However, taking trade-offs and matchmaking into account re-
quires more sophisticated decision making in the Planner component, for example
utility functions and negotiations between devices. The selection of a decision-
making algorithm is the internal design decision of the Planner component, which
is not restricted in the presented architecture. This future research topic is dis-
cussed in Sub-section 4.4.

3.2.3 Deployment

The last part of the security adaptation architecture is the deployment viewpoint.
The deployment diagram is depicted in Figure 10. In the figure the smart space is
abbreviated to SS. RIBS is the RDF Information Base Solution, which is described
in Sub-section 2.1.1. However, the architecture is also applicable for other smart
space infrastructure implementations. For instance, C2 utilised Smart-M3.

The adaptation loop (i.e. the Monitor, Analyser, Planner and Executor compo-
nents) and the ISMO are contained in a device where the application is utilised
and where the adaptation is intended to occur. In other words, the adaptation is
intended to occur from a Device1 perspective. Performing the adaptation from the
Device2 or RIBS perspective requires that the adaptation loop and the ISMO are
located in those devices. Similarly, in the smart space where all devices utilise
security adaptation, the adaptation loop is located in all devices. Consequently,
Figure 10 presents one possible deployment instantiation. The Monitoring probe
and the Action to Adapt components are distributed over the whole smart space.
For instance, C2 counts customers by using a Monitoring probe (recognition algo-
rithm for video stream) outside the gardener’s device and this monitored data is
utilised in the gardener’s device to calculate the threat level indicator from the
gardener’s perspective. On the other hand, the adaptation action that changes the
utilised communication protocol has an effect on both sides of communication.
The example in Sub-section 3.2.2 contains the following adaptation plan “start to
use encryption”. A device that initiates this adaptation plan contains an Action to
Adapt component to enforce the utilisation of the particular encryption library. For
the other side of communication this adaptation looks like a normal part of the
encryption protocol handshake. Thus, conceptually the Action to Adapt component
in the other side of communication is a part of the encryption library. The adapting

3. Research

46

device is able to recognise if the communication channel is not encrypted. Hence,
the adaptation does not cause additional trust requirements between devices.

Figure 10. Example deployment of the security-adaptation architecture.

The justification to centralise the adaptation loop and the ISMO is two-fold. Firstly,
the adaptation is intended to occur from the Device1 viewpoint. Thus, the security
adaptation analyses security and plans adaptation for Device1 purposes. In other
words, the security consequences of the monitoring results are analysed in order
to reveal how those affect Device1. Similarly, Device1 makes a decision on how to
adapt based on its own preferences and capabilities. Secondly, trust requirements
dictate this deployment because it is more preferable to trust own computation and
storage capabilities instead of unknown external devices. In public smart spaces, it
is particularly challenging to know the trustworthiness of other devices. Thus, the
centralisation ensures that the trust level of the content of the ISMO and the re-
sults of the Analyser and Planner components do not need to be evaluated. In
contrast, storing the ISMO in another device makes it possible that an attacker
modifies its content. In the same way, distributing Analyser and Planner compo-
nents creates an attack possibility. Naturally, the trustworthiness of the monitoring
probes is also an important research issue in the future. Therefore, the analysis
model has to take trust levels into account when the monitoring probes are located
in other nodes.

Although the adaptation loop and the ISMO are centralised in a device where
the adaptation is intended to occur, it does not restrict the decentralisation of
smart space applications and devices in the smart space. Decentralising the adap-
tation loop and the ISMO requires reasonable justification of the possible ad-
vantages and the evaluation of appearing threats. However, the performed use
cases have not indicated any demands towards decentralisation from the view-
point of the adaptation loop and the ISMO.

3. Research

47

3.3 Ontology as a knowledge base

This sub-section describes contributions to the knowledge base objective. Sub-
section 3.3.1 describes the structure of the ISMO, 3.3.2 shows the design-time
usage of the ISMO and runtime usage is presented in Sub-section 3.3.3.

3.3.1 Structure

Security adaptation requires: i) Security knowledge, ii) Measuring knowledge and
iii) Context knowledge. Security knowledge defines security objectives, mecha-
nisms, threats and how they are related. Thereafter, measuring knowledge de-
scribes attributes and how to measure them. Lastly, context knowledge describes
the smart space and the role of data, users and actions within the smart space.
These three knowledge areas are presented in Figure 11, which is originally pre-
sented in PVII. Moreover, the figure shows the relationships between these main
concepts. The purpose of the concepts and relationships are described in more
detail in Sub-section 3.1 of PVII.

Case C2 utilises a security ontology that contains a minimal set of security and
measuring terminology. In other words, the security ontology contains concepts
that are specifically required in C2. Starting from PV security ontology is called the
ISMO. In PV, the ISMO is composed of the Software Measurement Ontology
(SMO) [20] and Ontology of Information Security (OIS) [21]. This ontology reuse
makes it possible to create a wide ontology, whose concepts have already been
validated in previous scientific publications. The ISMO is a novel contribution since
it contains both security- and measuring-related knowledge in an ontology form.
This kind of knowledge composition has not been presented before. Moreover, the
ISMO is applied as the knowledge base for the security adaptation in this disserta-
tion. The research made in PV revealed that there are only few concept-level
mappings between security and measuring-related terminology. However, the
additional mappings appear when security measures are instantiated into the
ontology. Taking an example from the figures presented in PV, password age is
an attribute of the password credential and related to the brute-force attack threat.
However, these relations only appear when an attribute instance (password age)
is created. It cannot be defined that all credentials have an attribute and that at-
tribute relates to a threat (i.e. concept-level mappings). Consequently, new map-
pings are created to the ISMO in cases C4 and C5 when new measures are added.
The ISMO is an OWL-formatted ontology and available from the web1. The OWL
file is produced by means of the Protégé ontology tool [82].

Context knowledge is stored in the Context Ontology for Smart Spaces
(CO4SS), which is described in detail in [83]. From the security perspective, the

1 https://sofia-community.com/projects/sontologies/

https://sofia-community.com/projects/sontologies/

3. Research

48

CO4SS is developed in PII by defining the security-related context information and
mapping it to Situational, Digital and Physical context levels. This security-related
context knowledge is utilised in C5 to define the required security levels for different
situations.

Security
mechanisms

Security
objective

Threats

Situational

Digital

Physical

has

setRequired

supports

offers

contains

threatens

hasAttributes

Measures

definedFor

Vulnerability

enables

Figure 11. The structure of the main concepts presented in PVII.

3.3.2 Ontology usage at design-time

The knowledge base objective states that the knowledge base has to be able to
offer knowledge for design-time and runtime purposes alike. However, knowledge
requirements for design-time and runtime usage are different. In addition, design-
time and runtime users of knowledge are not the same. At design-time, a software
architect is the main stakeholder that retrieves knowledge from the ISMO, where-
as the smart space application retrieves knowledge at runtime. Initially, the archi-
tect has a set of security objectives required from the designed application. From
the ISMO the architect is able to retrieve security mechanisms that support the
required objectives (c.f. Figure 12). Furthermore, the ISMO contains a means to
measure the security level of the particular security objective. That is, each security
objective has an indicator for the security level. The indicator is calculated by
means of an analysis model, which depends on the selected security mechanism.
In the same way, each analysis model uses the specific set of base measures, as
visible in Figure 12. It is notable that analysis models use base measures via other
analysis models and derived measures as depicted in Figure 4. However, these
are not shown in Figure 12 for clarity reasons. Moreover, it is notable that the
same base measure can be utilised in several analysis models. The architect’s

3. Research

49

task is to design and implement the needed base measures (i.e. to create new or
reuse existing monitoring probes) into the application. For example, user authenti-
cation is a security objective that has an authentication-level indicator. The value
for that indicator is calculated with an analysis model, whose selection depends on
the used security mechanism. Consequently, there are different analysis models
for password authentication and fingerprint authentication. Furthermore, these
mechanisms apply different base measures.

In heterogeneous smart spaces, attributes to measure and applicable base
measures change due to environment changes. For instance, in some situations a
device communicates with a simple sensor device via ZigBee and after a while
with a laptop computer via Wi-Fi. The ISMO makes it possible to store an exten-
sive set of base measures and analysis models, which supports monitoring in
heterogeneous environments.

All versions of the security ontology utilised in the original publications and cas-
es distinguish measures and security knowledge. The first version, presented in
PIV and C1, does not present mappings from measures to security objectives and
mechanisms. Therefore, the architect has to select measures without any aid from
the ontology. Consequently, the ISMO defines mappings between measures and
security knowledge. Hence, the architect can find the appropriate measures from the
ISMO by following the connections from the security objectives to the mechanisms.

Figure 12. ISMO content for design-time usage.

In addition, the knowledge base research objective states that it must be possible
to extend the content of the knowledge base. Possibilities to extend the ISMO
support its utilisation in heterogeneous smart spaces. PVI and C4 present how to
extend the ISMO. The case shows how to extend the ISMO with new base
measures by adding the required attribute and measurement method for the base
measure. Hence, future analysis models are able to utilise these base measures
in order to take security mechanism reliability into account. Clearly, possibilities to
extend the ISMO at design-time are wider than runtime extension possibilities. The
architect has to implement the selected base measures into the application, and
thus, new base measures can only be added to the ISMO at design-time.

3. Research

50

3.3.3 Ontology usage at runtime

The runtime usage is covered by PIII, PV and PVII, and cases C2, C3 and C5. As
already said, the ISMO is developed iteratively, and thus, the runtime usage is
also developed onwards through publications and cases. Therefore, PVII and C5
present the latest means for the runtime usage. In contrast to design-time usage,
the smart space application is an entity that retrieves knowledge from the ISMO at
runtime. That is, knowledge has to be in a machine-readable form, which is
achieved by utilising an OWL-formatted ontology. Figure 13 and Figure 14 illus-
trate example situations where implementation components (component symbols
in the bottom parts in the figures) utilise the content from the ISMO (the upper
parts in the figures). The legend for these figures is defined in Figure 5. Further-
more, dashed arrows indicate the connections between the ISMO and the imple-
mentation components.

Figure 6 shows that the Monitor, Analyser and Planner components retrieve
knowledge from the ISMO. Firstly, the Monitor component retrieves the base
measures that are applicable for the current situation. Thus, monitoring probes are
utilised only if needed. For example, it is not reasonable to utilise all the monitoring
probes if the adaptation requires only base measures for authentication purposes.
Figure 13 contains four base measure instances and the related monitoring probe
implementations.

Next, knowledge is retrieved from the ISMO by the Analyser component. The
purpose is to find the analysis model that calculates the security-level indicator for
the required security objective. The analysis model selection has to take into ac-
count the utilised security mechanism. As mentioned in the previous section, sep-
arate analysis models are needed when the security objective is fulfilled with dif-
ferent mechanisms. Figure 13 presents a situation where the Analyser component
uses the analysis model for password authentication (i.e. the instantiated analysis
model is applicable for the password authentication security mechanism). The
presented analysis model is utilised in C5 and it is extended from the analysis
model initially developed in PV and C3. In other words, the utilisation of analysis
models supports extensibility. The analysis model in the figure uses the password
type indicator and the analysis model for it is also defined in PV and C3. Analysis
models are a mandatory part to recognise the achieved security level and adapta-
tion need. In this dissertation analysis models are developed for the validation
cases, and thus, the purpose is not to define the complete set of analysis models.
However, the analysis models developed for these cases offer a base to define
analysis models for different security objectives and mechanisms in the future.

As visible from Figure 13, analysis models are described by means of English
and Boolean algebra. Cases C3 and C5 utilise a component that is able to parse
these analysis models and calculate the security-level indicators from the results
of base measures. C3 contains a separated parser component called the Analysis
model parser, while in C5 this is an internal part of the Analyser component as
presented in Figure 7.

3. Research

51

C
on

te
nt

fro
m

th
e

IS
M

O
Im

pl
em

en
ta

tio
n

co
m

po
ne

nt
s

Figure 13. Sample knowledge for the Monitor and Analyse phases.

Lastly, the Planner component retrieves input knowledge from the ISMO in order
to create the adaptation plan. In this phase, the purpose is to find security mecha-
nism alternatives and attributes to change (c.f. PIII and PVII). In PIII and C2, secu-
rity mechanisms that support the required security objectives are retrieved. In
contrast, PVII and C5 retrieve both mechanisms and attributes, which can be
adapted. Figure 14 shows an example situation where the adaptation plan is created
based on the knowledge from the ISMO (c.f. the second alternative in Figure 9).
From the ISMO, the Planner component retrieves Action to adapt instances for
attributes and security mechanisms by means of the adaptableWith property.
Implementation components contain concrete implementations to perform these
adaptations. Consequently, the Planner component gets the knowledge that
makes it possible to create an adaptation plan. In other words, knowledge shows
the places to adapt (mechanisms and attributes) that are able to affect the
achieved security level. The adaptation utilises goal-orientated approach, that is,
the adaptation plan that firstly satisfies the requirement is selected.

3. Research

52

Co
nt

en
tf

ro
m

th
e

IS
M

O
Im

pl
em

en
ta

tio
n

co
m

po
ne

nt
s

Figure 14. Sample of knowledge utilisation in the Plan phase.

In this dissertation security knowledge is separated from the adaptation loop. More-
over, it is necessary to define knowledge requirements for different adaptation phas-
es. Hence, Table 6 summarises the knowledge required in the adaptation phases.

Table 6. Adaptation phases and required knowledge.

Adaptation phase Knowledge from the ISMO

Monitoring Base measures
Measurement methods

Analysing Derived measures
Indicators
Measurement functions
Analysis models

Planning Action to adapt
Attributes
Security mechanisms

Extending the content of the knowledge base is also possible at runtime. Naturally,
runtime extending possibilities are not as wide as at design-time. Nevertheless,
new analysis models can appear and the existing ones can be modified at
runtime. Thus, the approach supports a dynamic planning process. This is
achieved because knowledge is not hard coded into the adaptation loop or into the
application.

4. Discussion

53

4. Discussion

This dissertation concentrates on security adaptation in smart spaces. An architec-
ture that contains the whole adaptation loop has not been presented in any of the
existing security-adaptation approaches. In addition, the required knowledge is not
tackled in the existing approaches. These issues have motivated this work.

In this section, the research objectives are revisited in Sub-section 4.1, and
Sub-section 4.2 discusses contributions. After that, Sub-section 4.3 compares
contributions to the existing approaches and Sub-section 4.4 discusses the limita-
tions of the results and possible future work.

4.1 Research objectives revisited

The following research problem was stated in the introduction: How to achieve
security adaptation in a smart space application? In order to solve the problem it
was further divided into two research objectives. The first research objective was
to define the architecture for security adaptation. The architecture has to contain
the whole adaptation loop, starting from observations and ending with the execu-
tion of the adaptation. In addition, it was required to develop a means of monitor-
ing the achieved security level. The second objective was to develop a knowledge
base that is applicable both at design-time and runtime. Hence, knowledge has to
be presented in a form which is reachable for the software architect and the adap-
tive application. Moreover, it was required that both the architecture and the
knowledge base support reusability and extensibility.

The architecture objective is achieved as follows. The original publication PI
envisions a loop structure for adaptation. The loop structure is a natural selection
for adaptation that occurs continuously at runtime – as visible from the surveys
[4,5,41]. PII and PIII add context monitoring and ontology utilisation into the adap-
tation architecture. Use case C2 is the first validation performed for the architec-
ture, which shows that the developed ontology is an applicable form for the
knowledge base. Moreover, it indicates that the security-adaptation architecture
contains all the necessary phases for adaptation. Nevertheless, some necessary
enhancements are also recognised. Firstly, it is mandatory to further develop the
monitoring part because the structure of the measures is not formulated exactly.
Secondly, the phases of the adaptation architecture are not in balance. In other

4. Discussion

54

words, some phases are small, trivial actions but other phases are complex and
not defined in detail. Therefore, the monitoring part is developed further in PV and
C3. In that publication, monitoring is divided into generic and implementation-
specific parts. As a result, the architecture offers a better solution from the exten-
sibility and reusability points of view. The last version of the security adaptation
architecture is developed in PVII and validated in C5 (i.e. SUM-SS pilot). The
developed architecture conforms to the MAPE-K reference model and separates
knowledge from the adaptation loop to an ontology-based knowledge base. More-
over, the architecture utilises security measures in order to monitor the achieved
security level.

The knowledge base objective is achieved as follows. From the design-time
viewpoint, the knowledge base is developed in PIV and PVI. The first-mentioned
publication utilised quality ontologies, namely the security and reliability ontolo-
gies, for modelling quality requirements and transforming requirements into archi-
tectural models. In parallel, C1 validates how the software architect utilises ontolo-
gies as the knowledge base at design-time. PVI and C4 in turn, show how to ex-
tend the knowledge base with new design-time knowledge. From the runtime point
of view, the knowledge base is developed in PI, PIII, PV and PVII. The publication
PI compares security ontologies from the runtime applicability viewpoint and PIII
presents a structural sketch for an ontology-based knowledge base. In C2, the
security ontology is utilised for the first time at runtime. Next, the ISMO ontology is
described in PV, and thus, the publication makes the main contribution to the
knowledge base. In tandem, PV presents use case C3, which validates the ISMO.
The latest version of the knowledge base is presented in PVII and validated in C5.
The validation proves that an ontology-based knowledge base is applicable during
the whole adaptation loop.

4.2 Main contributions

This dissertation makes three research contributions. Firstly, security adaptation
architecture that conforms to the MAPE-K reference model and separates security
knowledge from the adaptation loop is developed. Secondly, the architecture sup-
ports the utilisation of security measures to recognise an adaptation need. Lastly,
security ontology is developed and applied for the security adaptation as the
knowledge base. Next, these contributions are discussed one by one.

Contributions for architecture: The latest version of the architecture strictly
conforms to the MAPE-K reference model. In other words, the contribution covers
all the phases of the MAPE loop and describes their intended usage. Hence, the
proposed architecture differs from the existing ones, which ignore some phases,
or alternatively, combine some adaptation phases. Applying the MAPE-K refer-
ence model facilitates the utilisation of the architecture because the phases of the
adaptation loop are widely understood. The presented security adaptation archi-
tecture is the first one that specifically separates security knowledge from the
adaptation loop. The knowledge requirements are taken systematically into ac-

4. Discussion

55

count by utilising ontology (i.e. the ISMO). Moreover, the knowledge required in
the adaptation phases is described. The knowledge separation makes it possible
that hard-coded analysis models or adaptation rules are not needed. For this rea-
son, modifying and extending the knowledge does not cause a need to modify the
application logic. Furthermore, both the structure and behaviour of the architecture
are described. In parallel, the architecture supports extensibility and reusability
evolution qualities. Consequently, software architects are able to utilise the archi-
tecture in their own applications. Finally, the architecture is built from the adapta-
tion viewpoint, instead of solving a particular security-related adaptation problem.
Hence, the solution is generic from the security objective, mechanism and asset
viewpoints alike, which supports usage in heterogeneous smart spaces.

Contribution to recognise the adaptation need: The presented architecture
supports the utilisation of security measures to recognise an adaptation need.
First, risk-based measures for the integrity and confidentiality of the communica-
tion are applied. Afterwards, security measures are presented by means of a
three-level structure (i.e. base measures, derived measures and indicators). This
makes it possible to define the measures exactly and to achieve systematic moni-
toring. Hence, the possibilities of understanding the monitoring functionality and
analysing its reliability and feasibility are enhanced from the existing approaches.
Moreover, the three-level structure ensures that new measures can be created
easily by reusing existing base measures, which is not supported in the existing
approaches. The three-level structure makes it possible to divide the monitoring
into a generic part and an implementation-specific part. Thus, new derived
measures and indicators can be provided for an application, even at runtime. This
is an important feature in changing smart spaces where different situations cause
variations. Furthermore, each base measure creates a straight connection to a
concrete monitoring probe by means of a measurement method. Finally, the dis-
sertation shows that security measure-based monitoring is able to act as a part of
the security-adaptation architecture, and security measures are able to offer valu-
able information for the planning phase of the adaptation loop. The utilised securi-
ty measures are related to password-based user authentication. However, the
presented three-level measurement structure and monitoring by means of generic
and implementation specific parts are not dependant on the utilised measures.
Consequently, the same structure is applicable for measures intended for other
security objectives.

Contribution to the knowledge base: In the dissertation, the ontology is first
time applied to the security adaptation as the knowledge base. The dissertation
defines the structure and content of the ontology-based knowledge base, which
are not defined in the previous security adaptation approaches. The knowledge
base ensures that the security and measuring knowledge is represented in a uni-
fied manner and is accessible for both software architects and applications. The
most significant contribution for the knowledge base is the ISMO that merges
existing security and measurement ontologies, and thus, the ISMO is an extensive
ontology, which is compatible with its predecessors. Reusing the existing ontolo-
gies was a reasonable selection. Firstly, the reuse ensured a much wider ontology

4. Discussion

56

without overlapping terms. Secondly, the content and structure of the reused on-
tologies had already been validated and accepted in previous scientific publica-
tions, which brings a higher-maturity level. Lastly, reusing is one preferred ontolo-
gy-development method suggested in [84]. Knowledge requirements differ for
design-time and runtime usage, and thus, it was required that the knowledge base
is applicable at design-time and runtime alike. From the design-time viewpoint, the
ISMO facilitates a software architect to select the applicable security mechanisms
for security objectives. Moreover, the ISMO offers the security measures for the
software architect. From the runtime viewpoint, knowledge from the ISMO is uti-
lised in the monitoring, analysing and planning phases. It is shown in use cases
that the ontology is an appropriate knowledge form even for runtime usage in
mobile devices. Reusability was one requirement for the knowledge base. The
knowledge base is utilised in three runtime and two design-time use cases in order
to achieve evidence about the reusability and extensibility possibilities of the
knowledge base. Use cases show that the knowledge base can be reused in vari-
ous situations. In addition, the extension possibilities of the knowledge base are
described by adding new design-time-related measures into the ISMO.

4.3 Comparison to the related work

This section compares the presented contributions to the related work. Firstly, the
main differences are described in a textual form. Thereafter, the benchmarking
criteria defined in Sub-section 1.5 is utilised in Table 7 to compare contributions to
the related work in more formal way. The similar comparison in the more extensive
form is presented in our recent publication in [85].

In Table 7 a line (-) symbol indicates that the aspect is not described in the ap-
proach. Extensibility and Reusability criteria utilise the following grades: “Yes”,
“Partially” and “No”. For Extensibility: “Yes” means that the approach can be ex-
tended i) by adding adaptation support for new security objectives and ii) by using
new adaptation techniques (i.e. new monitoring, analysing, and planning mecha-
nisms). The “Partially” grade means that the approach supports either security- or
adaptation-related extensions. Finally, the “No” grade means that extensions can-
not be made, or that they are laborious. In parallel, for Reuse: “Yes” means that
both the approach as a whole and its individual parts can be reused. The “Partial-
ly” grade indicates that individual parts of the approach can be reused. Lastly, the
“No” grade means that reusing is not possible or that it is laborious, for example,
the approach is closely related to the particular case or environment.

The existing security adaptation approaches do not cover the whole adaptation
loop. Yuan and Malek notice in their study that in the existing approaches the most
emphasis is put on the Monitor and Analyse phases and details on how the plan-
ning occurs are not given [13]. A similar shortage is visible in the approaches
described in Sub-section 2.2.1. Naturally, it is possible to find significant contribu-
tions from the existing approaches. However, those are mainly intended for a
particular phase of the adaptation or for dedicated security objectives or mecha-

4. Discussion

57

nisms, instead of security adaptation as a whole. For instance, the approach from
Hulsebosch et al. [14] is intended for adaptive authentication and access control.
Consequently, the approach is not generic from the security-objective viewpoint.
The approach in [15] combines the Analyse and Plan phases, which is indicated
with parentheses in the adaptation loop criterion in Table 7. However, from the
architecture viewpoint it is reasonable to separate the different phases from each
other. The GEMOM approach [61] contains elements for the planning purposes,
but the functionality is not described. However, in order to achieve security adap-
tation, it is mandatory to cover the whole adaptation loop. The lifecycle viewpoint
(i.e. the software development aspect) is not present in the previous approaches.
This is visible in the Design / Runtime criteria in Table 7. The security-adaptation ap-
proach presented in this dissertation also pays attention to the software design-time.

Measure-based monitoring offers considerable advantages when compared to
the monitoring of existing security-adaptation approaches. Due to explicitly defined
measures, monitoring is systematic. In the existing approaches, various aspects
are monitored. However, details on performing monitoring are not described. One
monitoring alternative is to define and monitor security-related events. An adapta-
tion action is triggered when an event occurs and the defined conditions are true.
This ECA-based adaptation is applied, for instance, by Russello et al. [57]. From
the existing approaches, only GEMOM [61] utilises security measures to trigger
adaptation. In GEMOM, measures are produced by means of the decomposition
approach [46,47], and thus, the measures form a similar kind of hierarchical struc-
ture as described in this dissertation. However, this dissertation maps base
measures and their monitoring probes to the Monitoring phase, whereas higher-
level measures (derived measures and indicators) are intended for analysing
purposes. Consequently, security measuring is not one single component. The
three-level measuring structure supports reusability and extensibility qualities,
which was one requirement set for the research. This ensures that the Analysing
phase can be updated without affecting the monitoring probes. The existing solu-
tions do not concentrate on these evolution qualities.

In the existing security adaptation approaches the knowledge part is not taken
into account at a sufficient level. Hulsebosch et al. [14] do not concentrate on
knowledge at all. In contrast, Saxena et al. [15] and the GEMOM approach [61]
define a database (DB) for input knowledge in their approaches. However, the
content of a database or its utilisation are not defined. Even the MAPE-K model
[3], does not define the form or content of knowledge. Furthermore, the survey
from Huebscher et al. [5] denotes that the division between planning and
knowledge in the MAPE-K model is not distinct. The knowledge base presented in
this dissertation tackles these challenges. Firstly, the security-adaptation architec-
ture separates the knowledge base from the adaptation loop. Secondly, the form
and content of the knowledge base is also defined. Lastly, the usage of knowledge
in the different phases of the adaptation loop is described.

4. Discussion

58

Table 7. Benchmarking contributions to the existing approaches.

Criterion This
work

Hulsebosch
[14]

Rusello
[57]

Saxena
[15]

GEMOM
[61]

Adaptation loop MAPE MA (MA)PE M(AP) MA(PE)

Structure /
Behaviour

Both Both Structure Both Structure

Supported
security adap-
tation

Generic Authentication,
access control

Generic Generic Generic

Adaptation
need recogni-
tion

Security
measuring

Applies user’s
location.

Context
monitoring
services.

Beforehand
selected
events

Security
measuring

Extensibility Yes No Yes Yes Partially

Reusability Yes Partially Yes Yes Partially

Design /
Runtime

Both Runtime Runtime Runtime Runtime

Knowledge
storage

Separated
ontology

- Integrated Profile DB DB

Knowledge
form

OWL - ECSA
policies

- -

Knowledge
content

Security &
measuring

- - - -

Knowledge
usage

Defined - - - -

4.4 Limitations and future work

Based on the use cases, the presented architecture is a reasonable solution for
security adaptation in smart spaces. The architecture describes the required ele-
ments and their mutual behaviour. Nevertheless, the internal content of these
elements has to be developed further. The Monitoring phase is defined on a de-
tailed level but the Analyse and Plan phases need refinements. The Analyse
phase has to recognise the achieved security level based on the monitoring re-
sults and to deduct the required security level from context information. Both of
these are complex tasks, which require a lot of knowledge. Developing these
further would ensure that the smart space application is able to recognise security
requirements and adaptation needs in various situations. Defining security re-
quirements at design-time is extensively covered in [86]. Moreover, Salehie et al.
concentrate on the variability of assets and how this affects security in [87].
Hence, one alternative is to apply these results to recognise security requirements
in the future. Moreover, the Plan phase of the adaptation architecture will need
more sophisticated decision-making algorithms. This dissertation contains few
alternatives on how the adaptation plan can be created. However, these are not

4. Discussion

59

sufficient mechanisms as such, for instance in complex situations when trade-offs
or mechanism matchmaking between devices have to be taken into account.

Trade-offs have to be considered between security objectives, and in situations
where achieving the required security level would cause a failure to meet other
quality requirements. For instance, security mechanisms might consume too much
computation and network resources, or reduce usability. Consequently, trade-offs
between security and other quality requirements have to be analysed. Possible
alternative is to apply utility functions as presented in [88] for security and perfor-
mance trade-offs. On the other hand, it is possible that devices in the smart space
produce conflicting adaptation plans. For example, smart space infrastructure
creates the adaptation plan to utilise biometric authentication while user’s device
creates the adaptation plan where two-factor authentication is preferred. In order
to solve this mismatch, devices have to be able to negotiate and matchmake.
Therefore in the future, both trade-offs and matchmaking have to be taken into
account. Currently, the Plan phase seems to be a reasonable phase for these
functionalities. Adding trade-offs and matchmaking requires that the internal struc-
ture and behaviour of the Planner component is designed carefully in order to
avoid bottlenecks and to maintain reusability and extensibility. In addition, it would
be reasonable to search existing trade-off and matchmaking approaches and
apply the available solutions instead of starting from scratch. Evidently, these
functionalities will also need knowledge. Adding trade-off and matchmaking-
related knowledge into the ISMO ensures that the hard-coded knowledge in the
Plan phase can be minimised even after the inclusion of trade-offs and matchmaking
functionalities.

During the research, security measures for confidentiality, integrity and user au-
thentication are utilised. C2 applies measures for confidentiality and integrity,
whereas, authentication measures are utilised in C3 and C5. Therefore, only user-
authentication measures are presented by utilising a three-level measurement
structure and applied in the latest version of the adaptation architecture. However,
reliable calculation of the security level requires that a wide set of correctly defined
analysis models are available. Thus, it is necessary to define the analysis models
for other security objectives in the future. It is notable that each security objective
needs separate analysis models for each security mechanism, as visible in Figure 12.
Currently, the amount of existing analysis models restricts the direct utilisation of
the presented approach. However, the original publications present analysis models
to calculate the achieved authentication level, and those models can be applied as
a guideline when defining new models in the future. Defining analysis models is a
complex and time-consuming task. Therefore, in the future a tool support for analysis
model definition is needed. Furthermore, it will be fruitful to evaluate the reliability
and feasibility of the currently used authentication measures. These measures
were developed based on the available information by using the bottom-up measure-
ment development approach [48]. However, this approach may lead to a situation
in which some important factors are not taken into account because the related
information is not available.

4. Discussion

60

The presented knowledge base, that is, the ISMO, is the composition of two
previously presented ontologies. Hence, its security and measurement parts were
validated and accepted in previous scientific publications. These two ontologies
are combined with new properties defined in PV. However, it was noticed that
these mapping properties are dependent on security measures. Thus, additional
mappings have to be defined in the future when new security measures are added.
Naturally, new security knowledge will be generated by the research community,
and thus, updating and enhancing the knowledge base in the future is necessary.
As a result of this, it would be appropriate to establish a community to maintain the
knowledge base. In this way, the knowledge base can contain fresh knowledge
and support adaptation in a reasonable way. The community could also offer various
analysis models and reusable monitoring probes, which will support the evolution
of analysis models.

The contributions of this dissertation are intended to offer adaptive security for
smart space applications. However, these solutions are also able to damage the
existing security. For example, the Monitoring phase may collect information,
which can be exploited during an attack. Or alternatively, an attacker may launch
an attack towards the Planning phase, in order to cause an adaptation that de-
activates the particular security mechanism. These are example cases where the
presented security-adaptation approach creates new threats and attack possibili-
ties. Naturally, these kinds of situations are not acceptable. Thus, the presented
adaptation approach has to be implemented in such a way that valuable data and
adaptation actions are protected. At least the following is required: the confidenti-
ality and integrity of results from monitoring probes; integrity for the Analyse and
Plan phases and adaptation plans; and integrity of the ISMO. Moreover, appropri-
ate access control rules are required for the elements in the adaptation architec-
ture. For example, only the Executor component is able to call the Action to Adapt
components, and modifying the ISMO requires more permissions than reading.
These security aspects have to be studied in the context of future research.

In the research scoping, smart spaces was set as a domain for the research re-
sults. However, other domains are also able to gain benefits from the adaptive
security, but currently we don’t have evaluation use cases that provide evidence
for that. Consequently, the next step would be to define a use case outside the
smart space environment. For instance, one alternative is to utilise the approach
as part of a web browser to adapt the utilised security mechanisms based on
content and criticality of information.

The current deployment centralises the adaptation loop and the ISMO in a de-
vice where the adaptation is intended to occur, as described in the Deployment
Sub-section 3.2.3. The performed use cases indicate that this is a reasonable
selection. However, certain cases in the future might need decentralised deploy-
ment. Firstly, the resource restrictions of the device under the adaptation might
cause a need for decentralisation. For instance, the storage capacity might not be
sufficient for the ISMO, or alternatively, the computation resources might not be
able to produce the adaptation plan. This is a relevant case especially in embed-
ded devices, which are dedicated to particular usage. Secondly, trade-off analysis

4. Discussion

61

and matchmaking might increase the amount of required communication in the
future. Thus, it might be reasonable to perform the Plan phase remotely in one
place within the smart space. Consequently, unnecessary communication due to
planning can be avoided and only a ready-made adaptation plan is delivered for
the adapted device. However, in this case the trustworthiness of the planning
device has to be evaluated extensively.

Currently, the ISMO is located within the device where the adaptation occurs. It
would be reasonable to consider this deployment issue in the future from the up-
dating viewpoint. In this deployment, updates for the ISMO mean that each device
has to update its own instance from the ISMO. Thus, locating the ISMO in one
place – accessible via a smart space infrastructure – would offer the most up-to-
date knowledge for each device. This can be compared with the current antivirus
software, where virus signatures are retrieved from a trusted cloud service.

5. Conclusions

62

5. Conclusions

Smart spaces offer enriched services and information for end users. Smart spaces
are heterogeneous and dynamic: they contain devices from different vendors and
new services and devices may appear constantly. From the security point of view,
dynamically changing smart spaces are a challenge, as static and beforehand
selected security mechanisms are not able to offer an optimal security level for the
varying situations. Moreover, it is impossible at design-time to anticipate all situa-
tions in which a smart space application will be utilised. These challenges cause a
need for self-adaptive security, which is able to select security mechanisms and
tune their parameters at runtime.

The research problem of this dissertation was to achieve security adaptation in
a smart space application. The research problem was further divided into architec-
ture and knowledge base objectives. The purpose of the architecture objective
was to develop a security adaptation architecture that covers the whole adaptation
loop. In addition, it was required to develop a means to monitor the achieved secu-
rity level in order to recognise the adaptation need. In contrast, the knowledge
base objective required the development of a separate knowledge base for security.
It was required that the knowledge base offer adaptation knowledge for design-time
and runtime purposes alike.

Both architecture and knowledge base research objectives were developed it-
eratively through the dissertation work. The original publications PI–PIII, PV and
PVII and use cases C2, C3 and C5 contributed to the architecture objective. The
knowledge base was developed in all use cases and original publications. Due to
the iterative development, the most recent publication PVII and use case C5 con-
tain the latest version of the presented security-adaptation approach.

As the final conclusion, the contributions of the dissertation are: Firstly, a reus-
able adaptation architecture for security is presented. The architecture strictly
conforms to the MAPE-K model and defines all phases in it. The proposed archi-
tecture is the first solution that specifically separates security knowledge and the
adaptation loop. Secondly, the architecture supports the utilisation of security
measures in order to recognise the adaptation need. Security measures are pre-
sented by means of a three-level structure, which supports systematic monitoring.
Due to the suggested architecture, it is possible to reuse and extend the defined
security measures. Thirdly, the proposed solution is the first time that an ontology
has been applied for security adaptation. The Information Security Measuring

5. Conclusions

63

Ontology (ISMO) acts as the knowledge base for the adaptation. Moreover, the
ISMO is applicable at design-time and runtime alike. These contributions form the
first approach to combine the MAPE-K reference model, security measuring and
knowledge from ontologies to form a consistent security adaptation architecture,
which is able to offer security adaptation for smart space applications – as re-
quired by the research problem.

64

References

1. Weiser, M. The Computer for the 21st Century. Scientific American 1991, 265,
94–104.

2. Conti, M.; Das, S. K.; Bisdikian, C.; Kumar, M.; Ni, L. M.; Passarella, A.; Rous-
sos, G.; Tröster, G.; Tsudik, G.; Zambonelli, F. Looking ahead in perva-
sive computing: Challenges and opportunities in the era of cyber–
physical convergence. Pervasive Mob. Comput. 2012, 8, 2–21.

3. Kephart, J. O.; Chess, D. M. The vision of autonomic computing. Computer
2003, 36, 41–50.

4. Salehie, M.; Tahvildari, L. Self-adaptive software: Landscape and research
challenges. ACM Trans.Auton.Adapt.Syst. 2009, 4, 14:1–14:42.

5. Huebscher, M. C.; McCann, J. A. A survey of autonomic computing—degrees,
models, and applications. ACM Comput. Surv. 2008, 40, 7:1–7:28.

6. ISO/IEC 9126-1:2001 Software Engineering – Product Quality – Part 1: Quality
Model, International Organization of Standardization 2001.

7. Avižienis, A.; Laprie, J.; Randell, B.; Landwehr, C. Basic concepts and taxonomy
of dependable and secure computing. IEEE Transactions on Dependable
and Secure Computing 2004, 1, 11–33.

8. ISO/IEC 15408-1:2009 Common Criteria for Information Technology Security
Evaluation – Part 1: Introduction and general model, International Organ-
ization of Standardization 2009.

9. Stallings, W. Cryptography and Network Security – Principles and Practice, 5th ed.,
Prentice Hall, New Jersey, 2010.

10. Stoneburner, G.; Goguen, A.; Feringa, A. Risk management guide for infor-
mation technology systems. Special publication 800-30 2002, 1–41.

11. Weyns, D.; Iftikhar, M. U.; Malek, S.; Andersson, J. Claims and supporting
evidence for self-adaptive systems: A literature study. In Proceedings of
the Software Engineering for Adaptive and Self-Managing Systems
Workshop on ICSE, Zurich, Switzerland, 4–5 June, IEEE, 2012, pp. 89–98.

12. Elkhodary, A.; Whittle, J. A Survey of Approaches to Adaptive Application
Security. In Proceedings of the Software Engineering for Adaptive and

65

Self-Managing Systems Workshop, Minneapolis, 20–26 May, IEEE, 2007,
pp. 16–23.

13. Yuan, E.; Malek, S. A taxonomy and survey of self-protecting software systems.
In Proceedings of the Software Engineering for Adaptive and Self-Managing
Systems, Zürich, Switzerland, 4–5 June, IEEE, 2012, pp. 109–118.

14. Hulsebosch, R.; Bargh, M.; Lenzini, G.; Ebben, P.; Iacob, S. Context sensitive
adaptive authentication. In Smart Sensing and Context, Kortuem G., Fin-
ney J., Lea R., Sundramoorthy V., Eds.; Springer Berlin Heidelberg,
2007, pp. 93–109.

15. Saxena, A.; Lacoste, M.; Jarboui, T.; Lücking, U.; Steinke, B. A Software
Framework for Autonomic Security in Pervasive Environments. In Infor-
mation Systems Security, McDaniel P., Gupta S., Eds.; Springer Berlin /
Heidelberg, 2007, pp. 91–109.

16. Järvinen, P. On Research Methods, Opinpajan kirja, Tampereen yliopistopaino
Oy, Tampere, Finland, 2004.

17. Pantsar-Syväniemi, S. Reusable, semantic, and context-aware micro-architecture.
Approach to managing interoperability and dynamics in smart spaces,
VTT, Espoo, Finland, 2013.

18. Savolainen, P.; Niemelä, E.; Savola, R. A taxonomy of information security for
service centric systems. In Proceedings of the 33rd EUROMICRO Con-
ference on Software Engineering and Advanced Applications, Lübeck,
Germany, 27–31 August, IEEE, 2007, pp. 5–12.

19. Zhou, J.; Niemela, E.; Evesti, A.; Immonen, A.; Savolainen, P. OntoArch Approach
for Reliability-Aware Software Architecture Development. In Proceedings
of the 32nd International conference on Computer Software and Applica-
tions, Turku, Finland, 28 July – 1 August, IEEE, 2008, pp. 1228–1233.

20. García, F.; Bertoa, M. F.; Calero, C.; Vallecillo, A.; Ruíz, F.; Piattini, M.;
Genero, M. Towards a consistent terminology for software measurement.
Inf. and Softw. Technol. 2006, 48, 631–644.

21. Herzog, A.; Shahmehri, N.; Duma, C. An ontology of information security.
Journal of Information Security and Privacy 2007, 1, 1–23.

22. Cook, D.; Das, S. Smart environments: Technology, protocols and applications,
Wiley-Interscience, New Jersey, 2004.

66

23. Cook, D.; Das, S. K. How smart are our environments? An updated look at the
state of the art. Pervasive Mob. Comput. 2007, 3, 53–73.

24. Ovaska, E.; Salmon Cinotti, T.; Toninelli, A. Design principles and practices of
interoperable smart spaces. In Advanced Design Approaches to Emerging
Software Systems: Principles, Methodologies, and Tools, Liu X., Li Y.,
Eds.; IGI Global, 2011, pp. 18–47.

25. Pantsar-Syväniemi, S.; Purhonen, A.; Ovaska, E.; Kuusijärvi, J.; Evesti, A.
Situation-Based and Self-Adaptive Applications for Smart Environment.
J. Ambient Intelligence and Smart Environ. 2012, 4, 491–516.

26. Chen, G.; Kotz, D. A Survey of Context-Aware Mobile Computing Research.
2000, Technical Report TR2000-381.

27. Raychoudhury, V.; Cao, J.; Kumar, M.; Zhang, D. Middleware for pervasive
computing: A survey. Pervasive Mob. Comput. 2013, 9, 177–200.

28. Honkola, J.; Laine, H.; Brown, R.; Tyrkkö, O. Smart-M3 information sharing
platform. In Proceedings of the Symposion on Computers and Communi-
cations, Riccione, Italy, 22–25 June, IEEE, 2010, pp. 1041–1046.

29. Buschmann, F.; Meunier, R.; Rohnert, H.; Sommerlad, P.; Stal, M. Pattern-
oriented software architecture – A system of patterns, John Wiley,
Chichester, England, 1996.

30. RDF Primer. http://www.w3.org/TR/rdf-primer/, 2004, Accessed 23 November
2012.

31. Smart-M3. http://sourceforge.net/projects/smart-m3/, 2012, Accessed 23rd
November 2012.

32. Evesti, A.; Eteläperä, M.; Kiljander, J.; Kuusijärvi, J.; Purhonen, A.; Stenudd, S.
Semantic Information Interoperability in Smart Spaces. In Proceedings of
the 8th International Conference on Mobile and Ubiquitous Multimedia,
Cambride, UK, 22–25 November, ACM, 2009, pp. 158–159.

33. Suomalainen, J.; Hyttinen, P.; Tarvainen, P. Secure information sharing be-
tween heterogeneous embedded devices. In Proceedings of the 4th Eu-
ropean Conference on Software Architecture: Companion Volume, Co-
penhagen, Denmark, 23–26 August, ACM, 2010, pp. 205–212.

http://www.w3.org/TR/rdf-primer/
http://sourceforge.net/projects/smart-m3/

67

34. Dierks, T. and Rescorla, E. The Transport Layer Security (TLS) Protocol Version
1.2. http://www.ietf.org/rfc/rfc5246.txt, 2008, Accessed 23 Nov 2012.

35. Bishop, M. Computer Security – Art and Science, Addison-Wesley 2003.

36. Anderson, R. J. Security Engineering: A Guide to Building Dependable Distributed
Systems, 2nd ed., Wiley, Indianapolis, 2008.

37. Herrmann, D. S. Complete Guide to Security and Privacy Metrics: Measuring
Regulatory Compliance, Operational Resilience, and ROI, Auerbach
Publications, Boca Raton, 2007.

38. Jansen, W. Directions in Security Metric Research. NISTIR 7564 2009, 21.

39. Andersson, J.; Lemos, R.; Malek, S.; Weyns, D. Modeling Dimensions of Self-
Adaptive Software Systems. In Software Engineering for Self-Adaptive
Systems, Cheng B. C., Lemos R., Giese H., Inverardi P., Magee J., Eds.;
Springer, Berlin Heidelberg, 2009, pp. 27–47.

40. Dobson, S.; Denazis, S.; Fernández, A.; Gaïti, D.; Gelenbe, E.; Massacci, F.;
Nixon, P.; Saffre, F.; Schmidt, N.; Zambonelli, F. A survey of autonomic
communications. ACM Trans.Auton.Adapt.Syst. 2006, 1, 223–259.

41. Psaier, H.; Dustdar, S. A survey on self-healing systems: approaches and
systems. Computing 2011, 91, 43–73.

42. Parashar, M.; Hariri, S. Autonomic Computing: An Overview. In Unconventional
Programming Paradigms, Banâtre J., Fradet P., Giavitto J., Michel O.,
Eds.; Springer, Berlin Heidelberg, 2005, pp. 257–269.

43. Kephart, J. O.; Walsh, W. E. An artificial intelligence perspective on autonomic
computing policies. In Proceedings of the 5th Workshop on Policies for
Distributed Systems and Networks, Yorktown Heights, USA, 7–9 June
2004, IEEE, 2004, pp. 3–12.

44. ISO/IEC 14598-1 Information Technology – Software Product Evaluation Part
1 General Overview, 1999.

45. Savola, R. M.; Abie, H. On-Line and off-line security measurement framework
for mobile ad hoc networks. Journal of Networks 2009, 4565–579.

http://www.ietf.org/rfc/rfc5246.txt

68

46. Wang, C.; Wulf, W. A. Towards a Framework for Security Measurement. In
Proceedings of the 20th National Information Systems Security Conference,
Baltimore, Maryland, October, 1997, pp. 522–533.

47. Savola, R.; Abie, H. Development of measurable security for a distributed
messaging system. Int. J. on Advances in Security 2009, 2, 358–380.

48. Payne, S. C. A Guide to Security Metrics. SANS InfoSec Reading Room 2007,
1–11.

49. Svahnberg, M.; Van Gurp, J.; Bosch, J. A taxonomy of variability realization
techniques. Software: Practice and Experience 2005, 35, 705–754.

50. Bosch, J. Design & Use of Software Architectures: Adopting and evolving a
product-line approach, Addison-Wesley 2000.

51. Bass, L.; Clements, P.; Kazman, R. Software architecture in practice, 2nd ed.,
Addison-Wesley, Boston, 2003.

52. Niemelä, E.; Evesti, A.; Savolainen, P. Modeling quality attribute variability. In
Proceedings of the 3rd International Conference on Evaluation of Novel
Approaches to Software Engineering, Funchal, Madeira, 4–7 May, 2008,
pp. 169–176.

53. Hashii, B.; Malabarba, S.; Pandey, R.; Bishop, M. Supporting reconfigurable
security policies for mobile programs. Computer Networks 2000, 33, 77–93.

54. Hu, W.; Hiser, J.; Williams, D.; Filipi, A.; Davidson, J. W.; Evans, D.; Knight, J. C.;
Nguyen-Tuong, A.; Rowanhill, J. Secure and practical defense against
code-injection attacks using software dynamic translation. In Proceedings of
the 2nd international conference on Virtual execution environments, Ottawa,
Canada, 14–16 June, ACM, 2006, pp. 2–12.

55. Knight, J.; Strunk, E. Achieving Critical System Survivability Through Software
Architectures. In Architecting Dependable Systems II, de Lemos R.,
Gacek C., Romanovsky A., Eds.; Springer Berlin / Heidelberg, 2004,
pp. 69–91.

56. Ryutov, T.; Zhou, L.; Neuman, C.; Leithead, T.; Seamons, K. E. Adaptive trust
negotiation and access control. In Proceedings of the 10th ACM sympo-
sium on Access control models and technologies, Stockholm, Sweden,
1–3 June, ACM, 2005, pp. 139–146.

69

57. Russello, G.; Dulay, N. An Architectural Approach for Self-Managing Security
Services. In Proceedings of the International Conference on Advanced
Information Networking and Applications Workshops, Bradford, York-
shire, 26–29 May, IEEE, 2009, pp. 153–158.

58. Russello, G.; Mostarda, L.; Dulay, N. ESCAPE: A Component-Based Policy
Framework for Sense and React Applications. In Component-Based
Software Engineering, Chaudron M., Szyperski C., Reussner R., Eds.;
Springer Berlin / Heidelberg, 2008, pp. 212–229.

59. Russello, G.; Mostarda, L.; Dulay, N. A policy-based publish/subscribe middleware
for sense-and-react applications. J. Syst. Software 2011, 84, 638–654.

60. Hulsebosch, R. J.; Salden, A. H.; Bargh, M. S.; Ebben, P. W. G.; Reitsma, J.
Context sensitive access control. In Proceedings of the 10th symposium
on Access control models and technologies, Stockholm, Sweden, 1–3
June, ACM, 2005, pp. 111–119.

61. Abie, H.; Savola, R. M.; Bigham, J.; Dattani, I.; Rotondi, D.; Da Bormida, G.
Self-Healing and Secure Adaptive Messaging Middleware for Business-
Critical Systems. Int. J. on Advances in Security 2010, 3, 34–51.

62. Abie, H. Adaptive security and trust management for autonomic message-
oriented middleware. In Proceedings of the 6th International Conference
on Mobile Adhoc and Sensor Systems, Macau, China, 12–15 October,
IEEE, 2009, pp. 810–817.

63. Garlan, D.; Shang-Wen, C.; An-Cheng, H.; Schmerl, B.; Steenkiste, P. Rainbow:
architecture-based self-adaptation with reusable infrastructure. Computer
2004, 37, 46–54.

64. Menasce, D.; Gomaa, H.; Malek, S.; Sousa, J. P. SASSY: A Framework for Self-
Architecting Service-Oriented Systems. IEEE Software 2011, 28, 78–85.

65. Gruber, T. R. A translation approach to portable ontology specifications.
Knowledge acquisition 1993, 5, 199–220.

66. Zhou, J. Knowledge Dichotomy and Semantic Knowledge Management. In
Proceedings of the 1st IFIP WG12.5 Working Conference on Industrial
Applications of Semantic Web, Jyväskylä, Finland, 25–27 August,
Springer US, 2005, pp. 305–316.

70

67. Chandrasekaran, B.; Josephson, J. R.; Benjamins, V. R. What are ontologies,
and why do we need them? Intelligent Systems and their Applications,
IEEE 1999, 14, 20–26.

68. Denker, G.; Kagal, L.; Finin, T. Security in the Semantic Web using OWL.
Information Security Technical Report 2005, 10, 51–58.

69. Denker, G.; Kagal, L.; Finin, T.; Paolucci, M.; Sycara, K. Security for DAML
Web Services: Annotation and Matchmaking. In The Semantic Web –
ISWC 2003, Fensel D., Sycara K., Mylopoulos J., Eds.; Springer Berlin
Heidelberg, 2003, pp. 335–350.

70. Kim, A.; Luo, J.; Kang, M. Security Ontology for annotating resources. In Proceed-
ings of the On the Move to Meaningful Internet Systems 2005: CoopIS,
DOA, and ODBASE, Agia Napa, Cyprus, 31 October – 4 November,
Springer-Verlag Berlin Heidelberg, 2005, pp. 1483–1499.

71. Tsoumas, B.; Gritzalis, D. Towards an Ontology-based Security Management.
In Proceedings of the 20th Advanced Information Networking and Appli-
cations, Vienna Austria, 18–20 April, IEEE, 2006, pp. 985–992.

72. Blanco, C.; Lasheras, J.; Valencia-García, R.; Fernández-Medina, E.; Toval, A.;
Piattini, M. A systematic review and comparison of security ontologies. In
Proceedings of the 3rd International Conference on Availability, Security,
and Reliability, Barcelona, Spain, 4–7 March, IEEE, 2008, pp. 813–820.

73. Blanco, C.; Lasheras, J.; Fernández-Medina, E.; Valencia-García, R.; Toval, A.
Basis for an integrated security ontology according to a systematic review of
existing proposals. Computer Standards & Interfaces 2011, 33, 372–388.

74. Fenz, S.; Ekelhart, A. Formalizing information security knowledge. In Proceedings
of the Proceedings of the 4th International Symposium on Information,
Computer, and Communications Security, Sydney, Australia, 10–12
March, ACM, 2009, pp. 183–194.

75. Ekelhart, A.; Fenz, S.; Klemen, M.; Weippl, E. Security Ontology: Simulating
Threats to Corporate Assets. In Information Systems Security, Bagchi A.,
Atluri V., Eds.; Springer, Berlin Heidelberg, 2006, pp. 249–259.

76. W3C. Web Ontology Language (OWL). http://www.w3.org/2004/OWL/, 2007,
Accessed Jan 25 2013.

http://www.w3.org/2004/OWL/

71

77. W3C. Resource Description Framework (RDF). http://www.w3.org/RDF/, 2012,
Accessed Jan 25 2013.

78. W3C. RDF Vocabulary Description Language 1.0: RDF Schema.
http://www.w3.org/TR/rdf-schema/, 2004, Accessed Jan 25 2013.

79. Runeson, P.; Höst, M. Guidelines for conducting and reporting case study
research in software engineering. Empirical Software Engineering 2009,
14, 131–164.

80. Palviainen, M.; Evesti, A.; Ovaska, E. The reliability estimation, prediction and
measuring of component-based software. J.Syst.Software 2011, 84,
1054–1070.

81. Sofia Pilot Brochure. http://www.slideshare.net/sofiaproject/sofia-project-
brochure-pilots-set, 2012, Accessed 23 November 2012.

82. Protégé. Protégé Ontology tool. http://protege.stanford.edu/, 2006.

83. Pantsar-Syväniemi, S.; Kuusijärvi, J.; Ovaska, E. Supporting Situation-awareness
in Smart Spaces. In Proceedings of the International Workshops, S3E,
HWTS, Doctoral Colloquium, Held in Conjunction with GPC 2011, Oulu, Fin-
land, 11–13 May 2011, Springer-Verlag Berlin Heidelberg, 2012, pp. 14–23.

84. Noy, N. F.; McGuinness, D. L. Ontology development 101: A guide to creating
your first ontology. 2001, 1–25.

85. Evesti, A.; Ovaska, E. Comparison of Adaptive Information Security Ap-
proaches. ISRN Artificial Intelligence 2013, 1–18.

86. Haley, C. B.; Laney, R.; Moffett, J. D.; Nuseibeh, B. Security Requirements
Engineering: A Framework for Representation and Analysis. IEEE
Transactions on Software Engineering 2008, 34, 133–153.

87. Salehie, M.; Pasquale, L.; Omoronyia, I.; Ali, R.; Nuseibeh, B. Requirements-
driven adaptive security: Protecting variable assets at runtime. In Pro-
ceedings of the 20th International Requirements Engineering Conference
(RE), Chicago, USA, 24th–28th September, IEEE, 2012, pp. 111–120.

88. Menascé, D. A.; Ewing, J. M.; Gomaa, H.; Malek, S.; Sousa, J. P. A framework for
utility-based service oriented design in SASSY. In Proceedings of the 1st
joint WOSP/SIPEW international conference on Performance engineering,
San Jose, California, USA, 28–30 January, ACM, 2010, pp. 27–36.

http://www.w3.org/RDF/
http://www.w3.org/TR/rdf-schema/
http://www.slideshare.net/sofiaproject/sofia-project-brochure-pilots-set
http://www.slideshare.net/sofiaproject/sofia-project-brochure-pilots-set
http://protege.stanford.edu/

PUBLICATION I

From security modelling to
run-time security

monitoring

In: Proceedings of the European Workshop
on Security in Model Driven Architecture
(SECMDA), Enschede, the Netherlands,

24 June 2009. Pp. 33–41.
Copyright 2009.

Reprinted with permission from the publisher.  

I/1

From Security Modelling to Run-time Security

Monitoring

Antti Evesti, Eila Ovaska and Reijo Savola

VTT Technical Research Centre of Finland, Kaitoväylä 1,

90571 Oulu, Finland

{Antti.Evesti, Eila.Ovaska, Reijo.Savola}@vtt.fi

Abstract. In this paper we take the first steps from security modelling to run-

time security monitoring. Providing full support for run-time security

monitoring requires that following issues are solved: security concepts has to be

defined in an unambiguous way, security level has to be defined and measured,

and finally, software has to adapt itself based on measurements and

requirements. This paper addresses the unambiguous definition of security by

examining existing security ontologies. None of the existing ontologies is able

to support run-time security monitoring as such, and there is a need to combine

and widen these ontologies. In addition, this paper describes our vision how

run-time security management can be achieved as the wholeness.

Keywords: Security ontology, security measuring

1 Introduction

Today’s software products are not running in a static and beforehand known

environment. Instead, software is running in mobile devices within constantly

evolving environments or, alternatively, software is running in a fixed place but new

services become available for exploitation of this device. In addition, the threat

landscape is changing constantly. In both cases, the user wants to preserve a particular

security level (or security performance) – even though his/her environment changes.

In these circumstances, making all security decisions at a design time is not sufficient

and thus managing security also at run-time is required. In other words, it is necessary

to reveal security changes, by means of monitoring, and adapt the software during its

execution – in order to ensure the desired security level for system’s users.

Although there are a number of security solutions introduced in the literature [10],

[22], there is no common understanding how to define and measure security in

practical cases. The existing definitions are generic but too abstract. One example of

immaturity of methods and techniques used for security modelling and measurement

is the diversity of security concepts and metrics defined in research papers and

standards, for example in [1] and [3]. Moreover, security is a cross-cutting issue [2],

and therefore, its management is difficult, not only at run-time but also at design-time.

Development of appropriate run-time security solutions is a complex process.

Firstly, security has to be defined, i.e. modelled, in an unambiguous way that is

I/1

From Security Modelling to Run-time Security

Monitoring

Antti Evesti, Eila Ovaska and Reijo Savola

VTT Technical Research Centre of Finland, Kaitoväylä 1,

90571 Oulu, Finland

{Antti.Evesti, Eila.Ovaska, Reijo.Savola}@vtt.fi

Abstract. In this paper we take the first steps from security modelling to run-

time security monitoring. Providing full support for run-time security

monitoring requires that following issues are solved: security concepts has to be

defined in an unambiguous way, security level has to be defined and measured,

and finally, software has to adapt itself based on measurements and

requirements. This paper addresses the unambiguous definition of security by

examining existing security ontologies. None of the existing ontologies is able

to support run-time security monitoring as such, and there is a need to combine

and widen these ontologies. In addition, this paper describes our vision how

run-time security management can be achieved as the wholeness.

Keywords: Security ontology, security measuring

1 Introduction

Today’s software products are not running in a static and beforehand known

environment. Instead, software is running in mobile devices within constantly

evolving environments or, alternatively, software is running in a fixed place but new

services become available for exploitation of this device. In addition, the threat

landscape is changing constantly. In both cases, the user wants to preserve a particular

security level (or security performance) – even though his/her environment changes.

In these circumstances, making all security decisions at a design time is not sufficient

and thus managing security also at run-time is required. In other words, it is necessary

to reveal security changes, by means of monitoring, and adapt the software during its

execution – in order to ensure the desired security level for system’s users.

Although there are a number of security solutions introduced in the literature [10],

[22], there is no common understanding how to define and measure security in

practical cases. The existing definitions are generic but too abstract. One example of

immaturity of methods and techniques used for security modelling and measurement

is the diversity of security concepts and metrics defined in research papers and

standards, for example in [1] and [3]. Moreover, security is a cross-cutting issue [2],

and therefore, its management is difficult, not only at run-time but also at design-time.

Development of appropriate run-time security solutions is a complex process.

Firstly, security has to be defined, i.e. modelled, in an unambiguous way that is

I/2 I/3

an event that occurs when the delivered service differ from the correct service.

Instead, deviation in the external state of the system is called an error and the cause of

an error is called fault. Internal faults are called vulnerabilities, whereas external

faults are called attacks. The SecuritySolutions contains means for preventing

unwanted behaviour and development of a system. The last concept is

SecurityMetrics divided to StrengthMetrics and WeaknessMetrics – containing eight

metrics to measure system’s threats and efficiency of their countermeasures [7].

However, this categorization is at very high abstraction level.

Fig. 1 Security taxonomy by Savolainen et al.

Denker et al. describe security annotations, represented by DAML-S, intended to

be used by agents in [8]. Their ontology can be used to describe service requirements

and capabilities – e.g. the requirement that a service requestor wants to use the Open-

PGP encryption – and this information are used for service discovery and

matchmaking. Matchmaking is performed based on requirements and capabilities

with four matching level. [8]

Fig 2 presents the main parts of ontology from Denker et al. [8]. These ontologies

contain credentials information and security mechanisms. Therefore, many important

security aspects are missing. When compared to the work by Savolainen et al., for

instance assets, threats and metrics are not defined. However, purpose of the Denker’s

ontology is to concentrate mostly to the service discovery and matchmaking, and thus

universally understood by all stakeholders. These generic security models, typically

represented by means of security ontologies, are used as basis of security aware

software development. Secondly, an appropriate security level needs to be defined,

measured and monitored constantly. Obviously, a widely-accepted measurement

ontology is needed to enable metrics development. Thirdly, software has to be able to

adapt itself based on the measurement results. In this paper, we concentrate on the

first challenge, security modelling, by examining security ontologies that can be used

for representing security. Since these ontologies offer support for security

measurement, security measurement issues are also discussed. Finally, we introduce

our vision about the run-time security management based on existing security

ontologies that are to be combined and enhanced.

The remainder of this paper is organized as follows. Firstly, existing security

ontologies are examined, and thereafter, quality and security measurement issues are

discussed. Section 3 shows how our approach takes security issues into account at

design-time, and, thereafter, we present our vision of the run-time security

management. Conclusions and future work section closes the paper.

2 Security Ontologies

2.1 Information Security in General

In order to achieve coherent understanding of security we have to describe security

issues in a universal way and incorporate enough details to make the description

useful. Ontologies make it possible to give this kind of presentation. We used the

following method to select ontologies to this study: 1) ontologies have to concentrate

information security, 2) only general purpose ontologies, i.e. not domain specific

ontologies, and 3) ontologies have to be mature enough, i.e. at least a concept

structure has to be available. Based on these criteria, we describe four existing

security ontologies and consider their differences – concentrating applicability to run-

time usage and security measurement.

Savolainen et al. present a taxonomy of information security for service centric

systems in [7]. The presented taxonomy is intended for the use of software architects

of service centric systems. Thus, the taxonomy supports following aspects: 1)

stakeholders’ participation in the development of service-centric systems, 2) improve

communication of security concerns in requirements elicitation, 3) aid to designing

and constructing of security means while architecting and 4) support quality analysis

phase by providing a common security terminology. [7]

The security taxonomy is divided to five main concepts as shown in Fig. 1.

SecurityAssets contains entities that have a value, i.e. asset means an entity that has to

be protected. SecurityAttributes contains concepts Confidentiality, Integrity and

Availability – also called CIA triad. It must be noted that in telecommunications, this

triad is often enhanced with non-repudiation and explicit reference to authentication

and authorization. These security attributes compose service’s security, and thus,

security specification of a system should cover all of these aspects. After that, the

concept SecurityThreats defines Faults, Errors and Failures. A failure is defined as

I/3

an event that occurs when the delivered service differ from the correct service.

Instead, deviation in the external state of the system is called an error and the cause of

an error is called fault. Internal faults are called vulnerabilities, whereas external

faults are called attacks. The SecuritySolutions contains means for preventing

unwanted behaviour and development of a system. The last concept is

SecurityMetrics divided to StrengthMetrics and WeaknessMetrics – containing eight

metrics to measure system’s threats and efficiency of their countermeasures [7].

However, this categorization is at very high abstraction level.

Fig. 1 Security taxonomy by Savolainen et al.

Denker et al. describe security annotations, represented by DAML-S, intended to

be used by agents in [8]. Their ontology can be used to describe service requirements

and capabilities – e.g. the requirement that a service requestor wants to use the Open-

PGP encryption – and this information are used for service discovery and

matchmaking. Matchmaking is performed based on requirements and capabilities

with four matching level. [8]

Fig 2 presents the main parts of ontology from Denker et al. [8]. These ontologies

contain credentials information and security mechanisms. Therefore, many important

security aspects are missing. When compared to the work by Savolainen et al., for

instance assets, threats and metrics are not defined. However, purpose of the Denker’s

ontology is to concentrate mostly to the service discovery and matchmaking, and thus

I/4 I/5

Asset, Attack, Controls, Countermeasure, Impact, Security policy, Stakeholder, Risk,

Threat, Threat agent, Unwanted incident, Vulnerability and relationships among

these concepts. When compared ontology from Tsoumas et al. to ontology from

Savolainen et al. it can be noticed that both ontologies describe security in the same

abstraction level. Thus, neither describes detailed protocols or mechanism for

achieving security as opposed to NRL security ontology does. As well as NRL

security ontology and ontology from Denker et al., ontology from Tsoumas et al.

suffers from lack of security metrics.

Table 1 summarizes the most important aspects of above described security

ontologies from run-time security management viewpoint. Ontologies from Denker et

al. and Kim et al. are initially intended for run-time environment, i.e. service

discovery and matchmaking. On the other hand, only ontology from Savolainen et al.

contains security metrics. Thus, combining proposals from Savolainen et al. and Kim

et al. should offer an appropriate approach. However, combining ontologies in an

appropriate way contains many challenges. Firstly, suitable abstraction level has to be

found. Secondly, relationships between metrics and security solutions are required, in

order to measure solutions’ efficiency during the run-time. In addition one of the

major challenges is how to incorporate attacker behaviour to the ontology. Malicious

activity is the major difference in security compared to other quality attribute

descriptions.

Table 1 Summary of security ontologies

Ontology Scope Pros / cons

Savolainen et al. Design phase of

service centric

systems.

+ Contains metrics

– No connection between attributes and

solutions

– Only abstract level hierarchy

– Intended for design-time use

Denker et al. Service discovery

and matchmaking

+ Run-time applicable

– Only credentials and mechanisms.

Kim et al. Service discovery

and matchmaking

+ Run-time applicable

+ Detailed solutions

+ Connection between objectives and solutions

– Metrics are missing

Tsoumas et al. Linking policy

statements to

security controls

– Only abstract level hierarchy

– Intended for design-time use

2.2 Security Measurement

It is a widely accepted management principle that an activity cannot be managed well

if it cannot be measured. Overall, metrics provide four fundamental benefits – to

characterize, to evaluate, to predict and to improve. Security metrics and

measurements can be used for decision support, especially in assessment and

prediction. Examples of using security metrics for assessment include [14]:

• Comparison of different security controls or solutions,

• Security assurance of a product, an organization, or a process,

scope is different than ontology in [7]. Lately, Denker et al. updated their ontology to

utilising OWL in [9].

Fig 2 Security credentials and mechanisms by Denker et al.

Kim et al. presented their security ontology called NRL (Naval Research

Laboratory) security ontology in [10]. NRL security ontology makes it possible to

annotate resources with security related information that can be used during service

discovery and matchmaking. NRL security ontology describes following security

aspects: mechanisms, protocols, objectives, algorithms and credentials in various

levels of details. Both service providers and requestors can use NRL ontology to

describe their capabilities and requirements. Actually, NRL security ontology is a

collection of ontologies. Main Security ontology imports the Credentials, Security

Algorithms and Security Assurance ontologies as object properties. Thus, these

ontologies make it possible to give more specific values for SecurityConcepts. In

addition, user can define SecurityObjectives and connect them to the specific

SecurityConcept by utilising supportSecurityObjective property. [10]

NRL security ontology is well organised concentrating mostly on security solutions

area and providing a reasonable way to matchmaking between requirements and

capabilities. When comparing NRL ontology to work by Savolainen et al. it can be

noticed that the NRL security ontology lacks in security assets, threats and metric

areas. However, NRL security ontology contains a substantially better description in

security solutions area. In addition, connections between security objectives

(requirements) and their solutions are defined more comprehensively.

Tsoumas et al. present in [11] and [12] a framework for information system

security management, i.e. linking high-level policy statements to explicit low-level

security controls adaptable and applicable in the information system environment.

Authors’ framework consists of four phases: 1) Building of Security Ontology, 2)

Security Requirements Collection, 3) Security Actions Definition, and 4) Security

Actions Deployment and Monitoring. Building of Security Ontology means

ontology’s instantiation based on a conceptual model. This conceptual model defines:

I/5

Asset, Attack, Controls, Countermeasure, Impact, Security policy, Stakeholder, Risk,

Threat, Threat agent, Unwanted incident, Vulnerability and relationships among

these concepts. When compared ontology from Tsoumas et al. to ontology from

Savolainen et al. it can be noticed that both ontologies describe security in the same

abstraction level. Thus, neither describes detailed protocols or mechanism for

achieving security as opposed to NRL security ontology does. As well as NRL

security ontology and ontology from Denker et al., ontology from Tsoumas et al.

suffers from lack of security metrics.

Table 1 summarizes the most important aspects of above described security

ontologies from run-time security management viewpoint. Ontologies from Denker et

al. and Kim et al. are initially intended for run-time environment, i.e. service

discovery and matchmaking. On the other hand, only ontology from Savolainen et al.

contains security metrics. Thus, combining proposals from Savolainen et al. and Kim

et al. should offer an appropriate approach. However, combining ontologies in an

appropriate way contains many challenges. Firstly, suitable abstraction level has to be

found. Secondly, relationships between metrics and security solutions are required, in

order to measure solutions’ efficiency during the run-time. In addition one of the

major challenges is how to incorporate attacker behaviour to the ontology. Malicious

activity is the major difference in security compared to other quality attribute

descriptions.

Table 1 Summary of security ontologies

Ontology Scope Pros / cons

Savolainen et al. Design phase of

service centric

systems.

+ Contains metrics

– No connection between attributes and

solutions

– Only abstract level hierarchy

– Intended for design-time use

Denker et al. Service discovery

and matchmaking

+ Run-time applicable

– Only credentials and mechanisms.

Kim et al. Service discovery

and matchmaking

+ Run-time applicable

+ Detailed solutions

+ Connection between objectives and solutions

– Metrics are missing

Tsoumas et al. Linking policy

statements to

security controls

– Only abstract level hierarchy

– Intended for design-time use

2.2 Security Measurement

It is a widely accepted management principle that an activity cannot be managed well

if it cannot be measured. Overall, metrics provide four fundamental benefits – to

characterize, to evaluate, to predict and to improve. Security metrics and

measurements can be used for decision support, especially in assessment and

prediction. Examples of using security metrics for assessment include [14]:

• Comparison of different security controls or solutions,

• Security assurance of a product, an organization, or a process,

I/6 I/7

assurance, tools and metrics. OWASP [17] contains an active discussion and

development forum on security metrics. More security metrics are listed in [14] and

[18]. Representing these base and derived measures in the ontology also makes it

possible to utilise measures at run-time, and in addition, generate new derived

measures from the existing measures if needed.



 


    







Fig 3 Decomposition for non-repudiation

3 Security Modelling

This section describes how to design security and how the process should take run-

time security management issues into account in order to make it possible to achieve

run-time security management.

3.1 Design-time Security Management

Our earlier work has concentrated to take quality issues into account at software’s

design and implementation phases by exploiting architectural models [20] and [21],

i.e. conforming to model-driven development. We have used ontologies to describe

quality attributes in a uniform way. Ontologies are utilized during the quality

requirements modelling and during the architecture modelling to select the best

solutions to achieve required qualities. Furthermore, we have evaluated a designed

architecture in order to detect whether required qualities are met or not. Finally,

quality of the implemented software is measured and compared to requirements. All

of these phases belong to the QADA (Quality-driven Architecture Design and quality

Analysis) methodology [23]. QADA contains two abstraction levels, i.e. conceptual

and concrete levels, which can be mapped to the PIM (Platform-Independent Model)

and PSM (Platform-Specific Model) from MDA.

Based on our earlier work, we are able to take step forward and start to concentrate

to the run-time quality management – especially from security point of view. The

means for defining quality attributes (especially reliability) at modelling-time is

represented in [20] – and Fig. 4 follows this approach from the security viewpoint.

Thus at this point, the purpose is to model security requirements and the architecture

in a way that makes it possible to achieve run-time security management.

• Security testing (functional, red team and penetration testing) of a system,

• Certification and evaluation (e.g. based on Common Criteria [15]) of a product or

an organization,

• Intrusion detection in a system, and

• Other reactive security solutions such as antivirus software.

The field of defining security metrics systematically is young and the current

practice of information security is still a highly diverse field; holistic and widely

accepted approaches are still missing. A major challenge in developing appropriate

and feasible security metrics is the immaturity of the state-of-the-art security

requirements engineering. Security requirements have not been profoundly addressed

within the software engineering community: they are still regarded as being in a side

role in most of the software requirements engineering codes of practice [18].

In order to measure, the target of measurement needs to be identified. It is

important to clearly know the entity that is the target of measurement because

otherwise the actual metrics might not be meaningful. The target of security

measurement can be, e.g., an organization, its processes and resources, or a product or

its subsystem. The most widely known technical security certification standard is the

Common Criteria (CC) ISO/IEC 15408 international standard [15]. During the CC

evaluation process, a numerical rating, EAL (Evaluation Assurance Level), is

assigned to the target product, with EAL1 being the most basic and EAL7 being the

most stringent level. Each EAL corresponds to a collection of assurance requirements,

which covers the complete development of a product with a given level of strictness.

ISO/IEC 9126 standard concentrates measuring software’s quality, and it contains

three metric reports: 1) External metrics [4] applicable during testing, 2) Internal

metrics [5] applicable during development and 3) Quality in use metrics [6]

applicable in run-time. Furthermore, ISO/IEC divides quality attributes into

characteristics and subcharacteristics – security can be found under the functionality

characteristic. Therefore, metrics from ISO/IEC are grouped to these characteristics

and their subcharacteristics. However, standard does not contain any security related

metric in Quality in use metric document [6].

Therefore, it is necessary to find a suitable way to measure security more

extensively and holistically. Wang et al. presented a security measurement framework

in [2] based on security requirements. The main idea in their work is to divide

security requirements to smaller parts, i.e. decomposition, and finally these smallest

parts can be measured. Garcia et al. propose two terms: a base measure and a derived

measure in [19]. The base measure is a measure of quality attribute that does not

depend on other measures, whereas the derived measure is a measure derived from

base or derived measures. Therefore, base and derived measure terms can be

combined to the approach of Wang et al. Fig 3 shows the decomposition made for

non-repudiation in [2] – combined with the base measure and derived measure terms

from [19]. It can be noticed that the lowest level in Fig 3 contains reliability – and

metrics for it can be found, for example from ISO/IEC’s standard. Thus,

decomposition gives a possibility to find and develop security metrics required for the

run-time security monitoring. When searching these metrics following sources can

also give a valuable input: The U.S. NIST (National Institute of Information

Standards and Technology) SAMATE (Software Assurance Metrics and Tool

Evaluation) project [16] that seeks to help answer various questions on software

I/7

assurance, tools and metrics. OWASP [17] contains an active discussion and

development forum on security metrics. More security metrics are listed in [14] and

[18]. Representing these base and derived measures in the ontology also makes it

possible to utilise measures at run-time, and in addition, generate new derived

measures from the existing measures if needed.



 


    







Fig 3 Decomposition for non-repudiation

3 Security Modelling

This section describes how to design security and how the process should take run-

time security management issues into account in order to make it possible to achieve

run-time security management.

3.1 Design-time Security Management

Our earlier work has concentrated to take quality issues into account at software’s

design and implementation phases by exploiting architectural models [20] and [21],

i.e. conforming to model-driven development. We have used ontologies to describe

quality attributes in a uniform way. Ontologies are utilized during the quality

requirements modelling and during the architecture modelling to select the best

solutions to achieve required qualities. Furthermore, we have evaluated a designed

architecture in order to detect whether required qualities are met or not. Finally,

quality of the implemented software is measured and compared to requirements. All

of these phases belong to the QADA (Quality-driven Architecture Design and quality

Analysis) methodology [23]. QADA contains two abstraction levels, i.e. conceptual

and concrete levels, which can be mapped to the PIM (Platform-Independent Model)

and PSM (Platform-Specific Model) from MDA.

Based on our earlier work, we are able to take step forward and start to concentrate

to the run-time quality management – especially from security point of view. The

means for defining quality attributes (especially reliability) at modelling-time is

represented in [20] – and Fig. 4 follows this approach from the security viewpoint.

Thus at this point, the purpose is to model security requirements and the architecture

in a way that makes it possible to achieve run-time security management.

I/8 I/9

Fig. 5 Run-time security management

Firstly, available services are discovered. Thereafter, Adaptation is performed

based on available services, their security properties, and the desired security level. In

this phase, the security ontology helps to select the most suitable countermeasure (i.e.

security solution as mentioned in the previous section) and resources in order to

achieve the desired security level. Furthermore, this phase can utilize the existing

service matchmaking solutions, but the adaptation also requires more sophisticated

algorithms for the decision making. The purpose is to achieve an automatic adaptation

that does not require user actions. However, user preferences can be used to direct a

countermeasure selection or setting a divergent desired security level.

Next, the achieved security is monitored by means of measuring. A Measuring

activity measures several properties of the system utilising base measures –

introduced in Fig 3. From these values the Monitoring activity combines an overall

security level by means of derived measures. Thus, monitoring activity also requires

security ontology. Vulnerability databases can be utilised as an additional input

source for monitoring activity. For instance, selected countermeasure might be

cracked after ontology construction, and thus its security efficiency is lower than

initially set. Hence, utilisation of vulnerability DBs enhances correctness of

monitoring.

The achieved security value acts as an input for the Reasoning activity, which calls

the Adaptation if the achieved security level is not satisfying the desired security and

alternative countermeasure can be selected. Both the monitoring and the reasoning

activities should be automatic – working without user actions. On the other hand, if

the desired security level is not achieved and adaptation cannot resolve a situation

then user actions will be needed to make a decision how to continue. In Fig. 5 desired

and achieved security levels are part of the context because the security management

depends on the context where the adaptation occurs. How context is to be defined is

out of the scope of this paper.

As a simple example of run-time security management, software contains AES /

DES encryptions and fingerprint / username password pair authentication for

achieving its security – as implemented in the previous section. We assume that a user

prefers to use fingerprint authentication without encryption as default. In the case

when content of the user’s information exchange changes, for example, from news

reading to more secure online buying, i.e. context changes, the desired security level

also changes. The monitoring activity uses base and derived measures from the

security ontology for monitoring the achieved security level. Based on the results of

the monitoring, the reasoning activity remarks that the desired security level is not

Fig. 4 Main phases of security modelling process.

Firstly, ontologies work as an input for the Defining requirements activity. Thus,

ontologies described in the previous section have to be combined appropriately in

order to achieve one adequate ontology – containing at least security objectives,

countermeasures, base/derived measures and relationships between these concepts.

After that, the security ontology can facilitate a requirements definition activity

comprehensively, as a guideline. For instance, an architect can define following

security requirements based on security objectives described in the security ontology

and the objectives of the designed software: “user has to be authenticated” and

“messages’ integrity has to be ensured”.

Constructing architecture activity starts after requirements definition. Support for

run-time security adaptation requires that alternative security solutions are modelled

and implemented into the system. The security ontology helps to find these alternative

security solutions. Therefore, the architect selects from the security ontology a

password and fingerprints as alternative solutions for the authentication requirement

and AES (Advanced Encryption Standard) and DES (Data Encryption Standard) as

alternative solutions for the integrity requirement. In addition, the architect selects

appropriate measures from the security ontology to monitor achievement of the

authentication and integrity requirements. Finally, we have security annotated

architecture that works as an input for Implementation activity. Therefore,

implementation can produce software containing alternative solutions for achieving

security on different contexts, and measurements for ensuring that desired security

level is kept.

In conclusion, the security ontology is used both defining security requirements

and constructing architecture that contains alternative security solutions. Without

these steps it is not possible to achieve run-time security management described in the

next section.

3.2 Run-Time Security Management

Our current vision of the run-time security management is presented in Fig. 5 – in

other words, how the above designed and developed software monitors and adapts its

security.

I/9

Fig. 5 Run-time security management

Firstly, available services are discovered. Thereafter, Adaptation is performed

based on available services, their security properties, and the desired security level. In

this phase, the security ontology helps to select the most suitable countermeasure (i.e.

security solution as mentioned in the previous section) and resources in order to

achieve the desired security level. Furthermore, this phase can utilize the existing

service matchmaking solutions, but the adaptation also requires more sophisticated

algorithms for the decision making. The purpose is to achieve an automatic adaptation

that does not require user actions. However, user preferences can be used to direct a

countermeasure selection or setting a divergent desired security level.

Next, the achieved security is monitored by means of measuring. A Measuring

activity measures several properties of the system utilising base measures –

introduced in Fig 3. From these values the Monitoring activity combines an overall

security level by means of derived measures. Thus, monitoring activity also requires

security ontology. Vulnerability databases can be utilised as an additional input

source for monitoring activity. For instance, selected countermeasure might be

cracked after ontology construction, and thus its security efficiency is lower than

initially set. Hence, utilisation of vulnerability DBs enhances correctness of

monitoring.

The achieved security value acts as an input for the Reasoning activity, which calls

the Adaptation if the achieved security level is not satisfying the desired security and

alternative countermeasure can be selected. Both the monitoring and the reasoning

activities should be automatic – working without user actions. On the other hand, if

the desired security level is not achieved and adaptation cannot resolve a situation

then user actions will be needed to make a decision how to continue. In Fig. 5 desired

and achieved security levels are part of the context because the security management

depends on the context where the adaptation occurs. How context is to be defined is

out of the scope of this paper.

As a simple example of run-time security management, software contains AES /

DES encryptions and fingerprint / username password pair authentication for

achieving its security – as implemented in the previous section. We assume that a user

prefers to use fingerprint authentication without encryption as default. In the case

when content of the user’s information exchange changes, for example, from news

reading to more secure online buying, i.e. context changes, the desired security level

also changes. The monitoring activity uses base and derived measures from the

security ontology for monitoring the achieved security level. Based on the results of

the monitoring, the reasoning activity remarks that the desired security level is not

I/10 I/11

7. Savolainen, P., Niemelä, E., Savola, R.: A Taxonomy of Information Security for Service-

Centric Systems. 33rd EUROMICRO Conference on Software Engineering and Advanced

Applications, pp. 5--12 (2007)

8. Denker, G., Kagal, L., Finin, T., Paulucci, M., Sycara, K.: Security for DAML web services:

Annotating and matchmaking. In Proc. of the 2nd International Semantic Web Conference

(ISWC2003), Sanibel Island, Florida, pp. 335-350 (2003)

9. Denker, G., Kagal, L., Finin, T.: Security in the Semantic Web Using OWL. Information

Security Technical Report, Volume 10, Issue 1, pp. 51-58 (2005)

10. Kim, A., Luo, J., Kang, M.: Security Ontology for Annotating Resources. OTM

Confederated International Conferences, CoopIS, DOA, and ODBASE. Springer,

Heidelberg. pp. 1483--1499 (2005)

11. Tsoumas, B., Dritsas, S., Gritzalis, D.: An Ontology-Based Approach to Information

Systems Security Management. In Computer Network Security, pp. 151-164 (2005)

12. Tsoumas, B., Gritzalis, D.: Towards an Ontology-Based Security Management. 20th

International Conference on Advanced Information Networking and Applications AINA),

pp. 985-992 (2006)

14. Savola, R.: Towards a Taxonomy for Information Security Metrics. In Proc. of ACM

Workshop of Quality of Protection (QoP’07), Alexandria, Virginia, USA, pp. 28-30 (2007)

15. ISO/IEC: 15408-1 Common Criteria for Information Technology Security Evaluation – Part

1: Introduction and General Model. (2005)

16. Black, P. E.: SAMATE’s Contribution to Information Assurance. IANewsletter, Volume 9,

Issue 2 (2006)

17. OWASP: Open Web Application Security Project. http://www.owasp.org/

18. Savola, R., Abie, H.: Identification of Basic Measurable Security Components for a

Distributed Messaging System. 3rd Int. Conf. on Emerging Security Information, Systems

and Technologies (SECURWARE), Jun 18-23, 2009, Athens, Greece (2009) in press

19. Garcia, F., Bertoa, M. F., Calero, C., Vallecillo, A., Ruíz, F., Genero M.: Towards a

consistent terminology for software measurement. In Information and Software Technology,

Volume 48, Issue 8, pp. 631-644 (2006)

20. Niemelä, E., Evesti, A., Savolainen, P.: Modeling Quality Attribute Variability: 3rd

international conference on Evaluation of Novel Approaches to Software Engineering

(ENASE), pp. 169-176 (2008)

21. Evesti, A., Niemelä, E., Henttonen, K., Palviainen, M.: A Tool Chain for Quality-driven

Software Architecting. 12th International Software Product Line Conference (SPLC), p. 360

(2008)

22. Anderson, R.: Security Engineering – A Guide to Building Dependable Distributed

Systems. John Wiley & Sons, New York (2001)

23. QADA (Quality-driven Architecture Design and quality Analysis). www.vtt.fi/qada/

reached anymore. Hence, the adaptation is called, and it decides that the security level

for online buying cannot be satisfied without encryption and thus AES is selected –

for instance.

4 Conclusions and Future Work

Managing security at the run-time requires that: 1) security is understood holistically

yet offering enough details to be useful, 2) the achieved security level of the software

can be monitored, and 3) software is able to adapt itself based on the context and

monitoring results. In this paper, we concentrated to the first issue and also presented

the overview vision how the run-time security management can be achieved.

Several security ontologies exist but mostly emphasize service discovery and

matchmaking, or alternatively describe different security solutions. Although both are

important aspects, these are not enough for covering the whole area of security from

the run-time point of view. Thus, there is a need for more extensive security ontology.

In addition, security ontology has to contain base and derived measures which make it

possible to measure and monitor security levels.

Our next step is to produce the universal security ontology – a combination from

the existing ones – containing security objectives and supporting solution

mechanisms. Next, we will develop a set of base and derived measures for measuring

efficiency of security solutions and include these metrics to the combined ontology.

After that we are able to move forward to research monitoring mechanisms and

adaptation algorithms required to support the whole process. When the first

monitoring mechanisms are available we can build up an initial laboratory case to test

validity of the approach and reveal it costs related the performance and other quality

attributes.

Acknowledgments. This work is made under SOFIA (Smart Objects For Intelligent

Applications) project – funded by Tekes (the Finnish Funding Agency for Technology

and Innovation) and the European Commission.

References

1. Avižienis, A., Laprie, J-C., Randell, B., Landwehr, C.: Basic concepts and taxonomy of

dependable and secure computing. IEEE Transactions on Dependable and Secure

Computing. Volume 1, Issue 1, pp. 11-33 (2004)

2. Wang, C., Wulf, W. A.: Towards a framework for security measurement. 20th National

Information Systems Security Conference, Baltimore, pp. 522-533 (1997)

3. ISO/IEC: 9126-1 Software engineering – Product quality – Part 1: Quality model (2001)

4. ISO/IEC: 9126-2 Software engineering – Product quality – Part 2: External metrics (2003)

5. ISO/IEC: 9126-3 Software engineering – Product quality – Part 3: Internal metrics (2003)

6. ISO/IEC: 9126-4 Software engineering – Product quality – Part 4: Quality in use metrics

(2004)

I/11

7. Savolainen, P., Niemelä, E., Savola, R.: A Taxonomy of Information Security for Service-

Centric Systems. 33rd EUROMICRO Conference on Software Engineering and Advanced

Applications, pp. 5--12 (2007)

8. Denker, G., Kagal, L., Finin, T., Paulucci, M., Sycara, K.: Security for DAML web services:

Annotating and matchmaking. In Proc. of the 2nd International Semantic Web Conference

(ISWC2003), Sanibel Island, Florida, pp. 335-350 (2003)

9. Denker, G., Kagal, L., Finin, T.: Security in the Semantic Web Using OWL. Information

Security Technical Report, Volume 10, Issue 1, pp. 51-58 (2005)

10. Kim, A., Luo, J., Kang, M.: Security Ontology for Annotating Resources. OTM

Confederated International Conferences, CoopIS, DOA, and ODBASE. Springer,

Heidelberg. pp. 1483--1499 (2005)

11. Tsoumas, B., Dritsas, S., Gritzalis, D.: An Ontology-Based Approach to Information

Systems Security Management. In Computer Network Security, pp. 151-164 (2005)

12. Tsoumas, B., Gritzalis, D.: Towards an Ontology-Based Security Management. 20th

International Conference on Advanced Information Networking and Applications AINA),

pp. 985-992 (2006)

14. Savola, R.: Towards a Taxonomy for Information Security Metrics. In Proc. of ACM

Workshop of Quality of Protection (QoP’07), Alexandria, Virginia, USA, pp. 28-30 (2007)

15. ISO/IEC: 15408-1 Common Criteria for Information Technology Security Evaluation – Part

1: Introduction and General Model. (2005)

16. Black, P. E.: SAMATE’s Contribution to Information Assurance. IANewsletter, Volume 9,

Issue 2 (2006)

17. OWASP: Open Web Application Security Project. http://www.owasp.org/

18. Savola, R., Abie, H.: Identification of Basic Measurable Security Components for a

Distributed Messaging System. 3rd Int. Conf. on Emerging Security Information, Systems

and Technologies (SECURWARE), Jun 18-23, 2009, Athens, Greece (2009) in press

19. Garcia, F., Bertoa, M. F., Calero, C., Vallecillo, A., Ruíz, F., Genero M.: Towards a

consistent terminology for software measurement. In Information and Software Technology,

Volume 48, Issue 8, pp. 631-644 (2006)

20. Niemelä, E., Evesti, A., Savolainen, P.: Modeling Quality Attribute Variability: 3rd

international conference on Evaluation of Novel Approaches to Software Engineering

(ENASE), pp. 169-176 (2008)

21. Evesti, A., Niemelä, E., Henttonen, K., Palviainen, M.: A Tool Chain for Quality-driven

Software Architecting. 12th International Software Product Line Conference (SPLC), p. 360

(2008)

22. Anderson, R.: Security Engineering – A Guide to Building Dependable Distributed

Systems. John Wiley & Sons, New York (2001)

23. QADA (Quality-driven Architecture Design and quality Analysis). www.vtt.fi/qada/

http://www.owasp.org/
http://www.vtt.fi/qada/

PUBLICATION II

Towards micro architecture for
security adaptation

In: Proceedings of the Fourth European
Conference on Software Architecture (ECSA):
Companion Volume, Copenhagen, Denmark,

23 August 2010. Pp. 181–188.
Copyright 2010 ACM.

Reprinted with permission from the publisher.  

II/1

Towards Micro Architecture for Security Adaptation
Antti Evesti

VTT Technical Research Centre of Finland
Kaitoväylä 1, P.O. Box 1100

90571 Oulu Finland
+358 40 552 7542

Antti.Evesti@vtt.fi

Susanna Pantsar-Syväniemi
VTT Technical Research Centre of Finland

Kaitoväylä 1, P.O. Box 1100
90571 Oulu Finland
+358 40 505 6682

Susanna.Pantsar-Syvaniemi@vtt.fi

ABSTRACT

Normally, software development practices concentrate to take all

security requirements into account at design-time. Nevertheless,

today’s software products are intended to be used in mobile, or

alternatively, in embedded devices whose environment changes

during the application’s execution. These kinds of changes occur

especially in applications used in smart spaces. This enforces to

think security concerns more dynamically. Thus, software has to

be aware of its 1) security level in each time, and 2) changes in its

environment that can cause security threats. Based on this

awareness, software has to change its security mechanisms to

fulfil security requirements in the current context. A security

measurement is a key factor of this awareness. This work presents

a micro-architecture for security adaptation and taxonomy of

context information affecting to information security in smart

spaces. The security measurement is the essential part of the

micro-architecture. In addition, taxonomy describes concepts that

have to be monitored in the smart space environment.

General Terms

Management, Measurement, Design, Security.

Keywords

Quality, run-time, smart space.

1. INTRODUCTION
Our environment can contain a huge amount of sensors and

devices. These can communicate and share information with each

other, and thus, create different smart spaces to our surroundings.

Software used in these kind of smart spaces encounter constantly

changes in the environment and a way how the software is used.

Thus, it is impossible to define beforehand all the changes in the

smart space. For instance, an execution platform of an application

may change from a laptop to a mobile phone, or alternatively

usage of an application may change from entertainment to

professional usage. Hence, it is infeasible to bind all security

mechanisms at a design-time. Instead, an application, used in

smart spaces, has to be able to monitor its environment and

measure achieved security levels. Based on the environment

monitoring and the security measurement the application has to

make a selection of a security mechanism. In other words, the

application has to have awareness of its situation.

There are few approaches which concentrate to changing security

requirements, or alternatively to adapt used security mechanisms

to achieve the optimal security performance. Security Adaptation

Management (SAM) [16] adapts security mechanisms of the

system when a number of attacks increase. This makes it possible

to reach more performance when attacks are not present. SAM

addresses to buffer overflow attacks and countermeasures against

them. The adaptation model presented in [2] concentrates on the

tradeoffs between Quality of Service (QoS) and security items.

The purpose of the presented model is to select the most suitable

application variant for each situation based on context information

and user preferences. However, these approaches cannot offer

enough situation awareness and autonomy needed for the

adaptations of smart spaces.

In this work we present an adaptation approach that offers

required flexibility and autonomy especially for smart spaces – by

utilising context monitoring and security measuring. A context

change is a trigger for the adaptation. The context change means

either change in the physical or digital environment of an

application or a change in the usage of the application. Based on

these changes the application makes a decision on its required

security level. After that, the application (or supporting services)

measures if the requirement is met or not. Finally, the application

adapts the used security mechanisms and parameters if the desired

security level cannot be met with the used mechanisms. In this

approach, ontologies are in the key role – exploited two different

purposes. Firstly, ontology is used to describe a security in

general. The security ontology describes how the fulfilment of a

security requirement can be measured. Furthermore, the security

ontology contains security goals and supporting mechanisms.

Secondly, ontology is used to describe context information

affecting to security of the smart space application. Novelty of this

work comes from the utilisation of ontologies, which enables an

application to adapt to several situations. New knowledge can be

brought to the application afterwards with the ontologies. This

new knowledge can be, for example, information of arisen

security vulnerabilities and new security measurement technique.

The paper is organised as follows: Section 2 gives background

information. Section 3 describes the taxonomy of security context

information and section 4 describes the micro architecture for

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies

are not made or distributed for profit or commercial advantage and that

copies bear this notice and the full citation on the first page. To copy

otherwise, or republish, to post on servers or to redistribute to lists,

requires prior specific permission and/or a fee.

ECSA 2010, August 23–26, 2010, Copenhagen, Denmark.

Copyright (c) 2010 ACM 978-1-4503-0179-4/10/08 …$10.00.

181

II/1

Towards Micro Architecture for Security Adaptation
Antti Evesti

VTT Technical Research Centre of Finland
Kaitoväylä 1, P.O. Box 1100

90571 Oulu Finland
+358 40 552 7542

Antti.Evesti@vtt.fi

Susanna Pantsar-Syväniemi
VTT Technical Research Centre of Finland

Kaitoväylä 1, P.O. Box 1100
90571 Oulu Finland
+358 40 505 6682

Susanna.Pantsar-Syvaniemi@vtt.fi

ABSTRACT

Normally, software development practices concentrate to take all

security requirements into account at design-time. Nevertheless,

today’s software products are intended to be used in mobile, or

alternatively, in embedded devices whose environment changes

during the application’s execution. These kinds of changes occur

especially in applications used in smart spaces. This enforces to

think security concerns more dynamically. Thus, software has to

be aware of its 1) security level in each time, and 2) changes in its

environment that can cause security threats. Based on this

awareness, software has to change its security mechanisms to

fulfil security requirements in the current context. A security

measurement is a key factor of this awareness. This work presents

a micro-architecture for security adaptation and taxonomy of

context information affecting to information security in smart

spaces. The security measurement is the essential part of the

micro-architecture. In addition, taxonomy describes concepts that

have to be monitored in the smart space environment.

General Terms

Management, Measurement, Design, Security.

Keywords

Quality, run-time, smart space.

1. INTRODUCTION
Our environment can contain a huge amount of sensors and

devices. These can communicate and share information with each

other, and thus, create different smart spaces to our surroundings.

Software used in these kind of smart spaces encounter constantly

changes in the environment and a way how the software is used.

Thus, it is impossible to define beforehand all the changes in the

smart space. For instance, an execution platform of an application

may change from a laptop to a mobile phone, or alternatively

usage of an application may change from entertainment to

professional usage. Hence, it is infeasible to bind all security

mechanisms at a design-time. Instead, an application, used in

smart spaces, has to be able to monitor its environment and

measure achieved security levels. Based on the environment

monitoring and the security measurement the application has to

make a selection of a security mechanism. In other words, the

application has to have awareness of its situation.

There are few approaches which concentrate to changing security

requirements, or alternatively to adapt used security mechanisms

to achieve the optimal security performance. Security Adaptation

Management (SAM) [16] adapts security mechanisms of the

system when a number of attacks increase. This makes it possible

to reach more performance when attacks are not present. SAM

addresses to buffer overflow attacks and countermeasures against

them. The adaptation model presented in [2] concentrates on the

tradeoffs between Quality of Service (QoS) and security items.

The purpose of the presented model is to select the most suitable

application variant for each situation based on context information

and user preferences. However, these approaches cannot offer

enough situation awareness and autonomy needed for the

adaptations of smart spaces.

In this work we present an adaptation approach that offers

required flexibility and autonomy especially for smart spaces – by

utilising context monitoring and security measuring. A context

change is a trigger for the adaptation. The context change means

either change in the physical or digital environment of an

application or a change in the usage of the application. Based on

these changes the application makes a decision on its required

security level. After that, the application (or supporting services)

measures if the requirement is met or not. Finally, the application

adapts the used security mechanisms and parameters if the desired

security level cannot be met with the used mechanisms. In this

approach, ontologies are in the key role – exploited two different

purposes. Firstly, ontology is used to describe a security in

general. The security ontology describes how the fulfilment of a

security requirement can be measured. Furthermore, the security

ontology contains security goals and supporting mechanisms.

Secondly, ontology is used to describe context information

affecting to security of the smart space application. Novelty of this

work comes from the utilisation of ontologies, which enables an

application to adapt to several situations. New knowledge can be

brought to the application afterwards with the ontologies. This

new knowledge can be, for example, information of arisen

security vulnerabilities and new security measurement technique.

The paper is organised as follows: Section 2 gives background

information. Section 3 describes the taxonomy of security context

information and section 4 describes the micro architecture for

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies

are not made or distributed for profit or commercial advantage and that

copies bear this notice and the full citation on the first page. To copy

otherwise, or republish, to post on servers or to redistribute to lists,

requires prior specific permission and/or a fee.

ECSA 2010, August 23–26, 2010, Copenhagen, Denmark.

Copyright (c) 2010 ACM 978-1-4503-0179-4/10/08 …$10.00.

181

mailto:Antti.Evesti@vtt.fi
mailto:Susanna.Pantsar-Syvaniemi@vtt.fi

II/2 II/3

middleware architecture is used as basis for the context ontology

and a concept of context-awareness that takes care for instance of

context monitoring [19]. This context ontology is created by

OWL (Web Ontology Language) by importing some parts from

the SOUPA [7] and by adding own domain related classes. The

main classes of the context ontology (user, digital environment,

and physical environment) follow the definition given in [22].

This context ontology takes into account the different levels of

semantic context interpretation and abstraction presented in [4].

The first level, the physical context of environment, detects

individual actions. Thereafter, the second level – the digital

context of environment – fuses the individual output of the first

level. Finally, the third level fuses the output of the second level

for a group of situations. These terms are utilised also in this work

when context information for security is defined.

An initial vision of run-time security monitoring is presented in

[12]. The presented model contains service discovery, adaptation,

measuring, and reasoning activities as a sequence with a feedback

loop. In the model, adaptation is performed immediately after

service discovery. With the term adaptation we refer to the ability

of software to adapt its functionality, especially its security

mechanisms, according to the current context, refined from

adaptation definition in [18]. Thus, the purpose of the adaptation

action is to select the most optimal security mechanisms based on

the current context information. After that, achieved security is

monitored by means of measuring. An achieved security value is

an input for the reasoning activity, which will call the adaptation

again if the desired security level is not reached.

In this work, we will draw a connection between approaches

described above. Thus, the initial vision of run-time security

monitoring is enhanced. In addition, the used context information

for security is bound to the context levels presented in [19].

3. CONTEXT INFORMATION FOR

SECURITY
Several context ontologies exist as mentioned in the previous

section. However, the context information is thought from a

security viewpoint in this work. Consequently, we have to define

the context concepts that affect to the security of application in the

smart space. In other words, these concepts affect to the required

security level and also to the achieved security level. Thereafter,

we map these concepts to three context levels, i.e., situation,

digital, and physical context, as depicted in Figure 1.

In the highest abstraction level, in the situation context, are the

concepts that describe an application usage: 1 Role of exchanged /

stored data and 2 User’s role in a smart space. The role of data,

either exchanged or stored, contains a content type property and

content usage property. The content type property has values like

a picture, a video, an e-mail, and a text message. The content

usage property has the value of entertainment, professional,

payment, or emergency. In addition, data can have a level of

importance, privacy, etc. The concept user’s role in a smart space

gets values like a visitor, a worker, a customer, an owner, etc. In

addition, each of these user roles can have own objectives in the

smart space. As a conclusion, above mentioned context concepts

are intended to describe the usage of smart space application and

its user. Hence, this information is utilized to decide security

requirements and levels for the application in the smart space.

On the contrary, context information of the environment of an

application affects to the ability to reach the security requirements

and levels. The context information of environment is divided into

two levels – digital and physical context – as mentioned in the

previous section. From the security viewpoint, the digital context

means a role of smart space and the physical context means an

execution platform of smart space application. The execution

platform concept describes a platform where the smart space

application is executed – containing a connection type, an

operating system, supported security mechanisms, etc.

The role of smart space concept is intended to describe the smart

space where the application is currently used, i.e., private, office,

or public. The SIB and the KPs build up the smart space as

explained in the section 2.1. Thus, the reputation of SIB and KPs

is important context information from the security perspective.

The reputation consists of information of KPs and SIB producers,

utilization of an antivirus software, and used authentication, etc.

The producer of KPs and SIB tells to the application that can it

utilize the information from the particular agent or not and is it

allowed to join the particular SIB. For example, a user is able to

set a preference that applications in her device utilize only the

KPs and the SIBs produced by big companies. Similarly, joining

and using information from smart spaces which doesn’t have

appropriate antivirus software or an authentication mechanism can

be restricted.

From these context concepts – on three different levels – it is

possible to make connections to the security ontology. From the

platform concept connection to vulnerabilities and security

mechanisms, i.e., countermeasures, can be performed. For

instance, the operating system may contain vulnerabilities and it

can also offer security mechanisms. Secondly, used authentication

mechanism can be connected to the security ontology. Finally, a

connection to assets in the security ontology can be made from the

role of exchanged / stored data concept.

To collect all this information by a means of context monitoring is

unfeasible. Thus, the information that cannot be collected

automatically has to be collected from the user – for instance by a

means of user preferences. The above described context

information is utilised during the security adaptation that will be

described next.

183

achieving security adaptation in the smart spaces. Finally,

discussion and conclusions close the paper.

2. BACKGROUND
In this section, the used smart space platform is presented.

Secondly, security ontologies are briefly presented. After that,

context modelling, situations and related ontologies are described.

Finally, section 2.5 introduces the context monitoring approach

and security monitoring that will be combined in this work.

2.1 Smart-M3
In this work, the smart spaces are built up by using a Smart-M3

platform [1], and thus, related terminology will be used. The

purpose of the Smart-M3 is to make the information available

between heterogeneous devices and add semantics for this

information. In the Smart-M3, a SIB (Semantic Information

Broker) creates a backbone to the smart space. A KP (Knowledge

Processor) works as an independent agent producing and/or

consuming information from the SIB. Thus, all the information is

transmitted via the SIB, i.e., KPs do not communicate directly

with each other. The information transmission is performed by a

SSAP (Smart Space Application Protocol). The SSAP can be

utilised with different communication protocols, like TCP,

Bluetooth.

2.2 Security Ontologies
Zhou defines ontology as a shared knowledge standard or a

knowledge model defining primitive concepts, relations, rules and

their instances, which comprise topic knowledge. The ontology

can be used for capturing, structuring and enlarging explicit and

tacit topic knowledge across people, organizations, and computer

and software systems [25].

There are several security ontologies available for different use.

Blanco et al. offer a list of security ontologies in [5]. In addition,

[12] compares few security ontologies from a run-time

applicability viewpoint. Security taxonomy from Savolainen et al.

presents a hierarchy of security concepts – intended especially for

a design time usage [21]. That taxonomy is the only one

containing at least some kind of presentation of security

measurements. The NRL (Naval Research Laboratory) security

ontology presented by Kim et al. [17] gives an extensive set of

security concepts and base relationships between concepts. The

NRL security ontology is intended for service discovery and

matchmaking purposes – referring to run-time applicability.

Herzog et al. present in [15] an ontology of information security

called OIS in this work. The OIS contains a comprehensive set of

security concepts divided to countermeasures (133), assets (79),

vulnerabilities, and threats (88), and in addition relationships

between those concepts (34) – numbers in parenthesis mean a

number of pieces. The OIS can work as a general purpose

vocabulary, an extensible dictionary, or a manner of reasoning

relationships between concepts, like threats and countermeasures

as authors mention. Therefore, the OIS offers a good starting

point for ontology required in the run-time security management.

However, it does not contain security measurements which are

essential to measure the achieved security level. Hence, security

measurements part has to be added to the OIS. However, this

ontology development is out of scope of this paper.

2.3 Context Modelling and Situations
Chen and Kotz give the following definition for context: Context

is a set of environmental states and settings that either determines

an application’s behaviour or in which application event occurs

and is interesting to the user [6]. Bettini et al. [4] describe that

ontological models have clear advantages regarding support for

interoperability and heterogeneity. Besides, the ontological

models support the representation of complex relationships and

dependencies between context data. Thus, the ontological models

are well suited to the recognition of high-level context

abstractions. A situation is the mostly used term for referring

high-level context abstractions.

Situations as a concept are introduced in [8, 9]. Dey et al.

introduce in [10] the usage of situations to support intelligibility

and control in context-aware applications. In [10], the situations

are components that expose application logic. Dobson et al. in

[11] describe situations as external semantic interpretations of

low-level context. Adaptations in context-aware applications are

caused by the change of situations, i.e., a change of a context

value triggers adaptation if the context update changes the

situation [4]. Bettini et al. present in [4] an overview of the

different levels of semantic context interpretation and abstraction.

In that overview sensor-based low-level context information (1st

level) is semantically interpreted by the high-level context level

(2nd level). The situations (3rd level) are formed based on the

information that is reusable and available from the 2nd level. In [4]

it is defined that the situations can either be defined by a human

based on his knowledge or recognized and learned automatically

by using machine learning techniques.

2.4 Context Ontologies
For the run-time security adaptation in the smart spaces we need

to have context ontology beside the security ontology. CoDAMoS

(Context-Driven Adaptation of Mobile Services) context ontology

[20] is user-centric since users play an important role in ambient

intelligence and covers context-awareness, situation awareness,

and domain independency. The CAMPO [24] ontology is to be

used with the CAMPUS (Context-Aware Middleware for

Pervasive and Ubiquitous Service) middleware that utilizes the

CAMPO to dynamically derive decision rules to enable optimized

computation over varying contextual environments and covers

context-awareness, and domain independency. The CAMPO is a

component-centric ontology since it is used in CAMPUS to

decide whether the component can be used in the target

environment. The SOUPA (Standard Ontology for Ubiquitous and

Pervasive Applications) ontology [7] is intended for pervasive

computing and used for building the CoBrA (Context Broker

Architecture) middleware. It covers context-awareness, situation

awareness, domain independency, and adaptability rules. The

SOUPA defines intelligent agents with associated beliefs, desires,

and intentions, time, space, events, user profiles, actions, and

policies for security and privacy. The SOUPA ontology is

attractive for our purposes since it is agent-centric and aimed for

the smart spaces.

2.5 Related Work
Toninelli et al. [23] present the context-aware middleware

architecture for smart spaces. It is an extension of Smart-M3

introducing two alternative implementation options for building

up context-aware support for the smart spaces. This context-aware

182

II/3

middleware architecture is used as basis for the context ontology

and a concept of context-awareness that takes care for instance of

context monitoring [19]. This context ontology is created by

OWL (Web Ontology Language) by importing some parts from

the SOUPA [7] and by adding own domain related classes. The

main classes of the context ontology (user, digital environment,

and physical environment) follow the definition given in [22].

This context ontology takes into account the different levels of

semantic context interpretation and abstraction presented in [4].

The first level, the physical context of environment, detects

individual actions. Thereafter, the second level – the digital

context of environment – fuses the individual output of the first

level. Finally, the third level fuses the output of the second level

for a group of situations. These terms are utilised also in this work

when context information for security is defined.

An initial vision of run-time security monitoring is presented in

[12]. The presented model contains service discovery, adaptation,

measuring, and reasoning activities as a sequence with a feedback

loop. In the model, adaptation is performed immediately after

service discovery. With the term adaptation we refer to the ability

of software to adapt its functionality, especially its security

mechanisms, according to the current context, refined from

adaptation definition in [18]. Thus, the purpose of the adaptation

action is to select the most optimal security mechanisms based on

the current context information. After that, achieved security is

monitored by means of measuring. An achieved security value is

an input for the reasoning activity, which will call the adaptation

again if the desired security level is not reached.

In this work, we will draw a connection between approaches

described above. Thus, the initial vision of run-time security

monitoring is enhanced. In addition, the used context information

for security is bound to the context levels presented in [19].

3. CONTEXT INFORMATION FOR

SECURITY
Several context ontologies exist as mentioned in the previous

section. However, the context information is thought from a

security viewpoint in this work. Consequently, we have to define

the context concepts that affect to the security of application in the

smart space. In other words, these concepts affect to the required

security level and also to the achieved security level. Thereafter,

we map these concepts to three context levels, i.e., situation,

digital, and physical context, as depicted in Figure 1.

In the highest abstraction level, in the situation context, are the

concepts that describe an application usage: 1 Role of exchanged /

stored data and 2 User’s role in a smart space. The role of data,

either exchanged or stored, contains a content type property and

content usage property. The content type property has values like

a picture, a video, an e-mail, and a text message. The content

usage property has the value of entertainment, professional,

payment, or emergency. In addition, data can have a level of

importance, privacy, etc. The concept user’s role in a smart space

gets values like a visitor, a worker, a customer, an owner, etc. In

addition, each of these user roles can have own objectives in the

smart space. As a conclusion, above mentioned context concepts

are intended to describe the usage of smart space application and

its user. Hence, this information is utilized to decide security

requirements and levels for the application in the smart space.

On the contrary, context information of the environment of an

application affects to the ability to reach the security requirements

and levels. The context information of environment is divided into

two levels – digital and physical context – as mentioned in the

previous section. From the security viewpoint, the digital context

means a role of smart space and the physical context means an

execution platform of smart space application. The execution

platform concept describes a platform where the smart space

application is executed – containing a connection type, an

operating system, supported security mechanisms, etc.

The role of smart space concept is intended to describe the smart

space where the application is currently used, i.e., private, office,

or public. The SIB and the KPs build up the smart space as

explained in the section 2.1. Thus, the reputation of SIB and KPs

is important context information from the security perspective.

The reputation consists of information of KPs and SIB producers,

utilization of an antivirus software, and used authentication, etc.

The producer of KPs and SIB tells to the application that can it

utilize the information from the particular agent or not and is it

allowed to join the particular SIB. For example, a user is able to

set a preference that applications in her device utilize only the

KPs and the SIBs produced by big companies. Similarly, joining

and using information from smart spaces which doesn’t have

appropriate antivirus software or an authentication mechanism can

be restricted.

From these context concepts – on three different levels – it is

possible to make connections to the security ontology. From the

platform concept connection to vulnerabilities and security

mechanisms, i.e., countermeasures, can be performed. For

instance, the operating system may contain vulnerabilities and it

can also offer security mechanisms. Secondly, used authentication

mechanism can be connected to the security ontology. Finally, a

connection to assets in the security ontology can be made from the

role of exchanged / stored data concept.

To collect all this information by a means of context monitoring is

unfeasible. Thus, the information that cannot be collected

automatically has to be collected from the user – for instance by a

means of user preferences. The above described context

information is utilised during the security adaptation that will be

described next.

183

II/4 II/5

Briefly, there are two factors causing a need for security

adaptation. Firstly, the level of security requirement may change

during the execution, recognised by a means of context

monitoring. Secondly, the application’s capability to achieve the

required security level may change due to the change in the

environment, recognised by a means of measuring. Therefore, this

model deals both of these cases.

4.1 Decision of Required Securities and

Levels
The first phase recognises changes in the security requirements

and levels. Naturally, the application is unable to create the

security requirements from scratch but a parameter selection can

be made automatically without major contribution from the user.

Firesmith notes that there is not much variation in the security

requirements between the different applications [13]. Based on

this, Firesmith proposes a security requirements template to define

reusable security requirements. The requirements decision phase

works in a similar way for deciding the security requirements and

levels of each situation.

The first step in the requirements decision phase is asset

recognition – in this work an asset is data stored in a device or in

a communication channel. However, content, usage, and user of

this data vary, as depicted in Figure 1. Consequently, this

variation affects importance of data and criticality of threats.

Therefore, the context monitoring is required to recognise the

changes in Role of exchanged / stored data and User’s role in

smart space context concepts. The requirements decision phase

subscribes to the results of context monitoring in the SIB, and

thus, gets a notification when the situation context changes.

The output of the requirements decision phase is called a

protection profile for the application – which bases on a current

situation context. The protection profile is a platform independent

way to present the security requirements of applications [3]. The

protection profile describes which information has to be protected

and how much. In this work we utilise five quantitative levels for

describing the different amount of security, i.e., levels 1-5. The

level 1 means that achieving the security requirement is not

critical, and on a contrary the level 5 means that achieving the

security requirement is extremely critical.

4.2 Retrieve Supporting Mechanisms from

Ontology
The supporting security mechanisms are retrieved from the

security ontology based on the content of the protection profile. In

this phase, the mechanisms are searched only by the security

requirement, not with a level value. The level depends on the

current environment and it will be estimated for the mechanisms

later on. The OIS described by Herzog et al [15] contains the

connection from the requirements to the supporting

countermeasures. However, retrieving the ontology returns a set

of security mechanisms supporting desired security requirements.

In addition, the ontology offers information related to which kind

of asset a particular mechanism is intended to protect. Thus, for

instance, different mechanisms may be offered for achieving

confidentiality of data stored in the device or confidentiality of

data in the communication channel.

4.3 Control Analysis
The control analysis phase compares and evaluates the feasibility

of security mechanisms retrieved from the security ontology. This

phase is required because the security ontology is generic and

contains the mechanisms not supported by the application or not

applicable at the current situation. The control analysis checks

currently used security mechanisms – this information is required

in the adaptation phase.

Secondly, the security mechanisms supported in the user’s own

device and application in it are found out. Finally, the

mechanisms supported in the current smart space, i.e., the

mechanisms that the currently used SIB and KPs can use are

found out. In other words, it is not enough to know the security

mechanisms supported in own device but also the mechanisms in

other devices which the user’s device is communicating with.

Hence, the result of the control analysis is a reduced version of the

security mechanisms list returned from the security ontology in

the previous phase. This list is called to applicable mechanisms.

Figure 2 Micro Architecture for security adaptation

4.4 Measuring and Reasoning
The measuring phase is twofold. Firstly, the security level that

different mechanisms can offer in the current environment is

estimated. This means an estimation before the security

mechanism is started to use. On the other hand, requirements

fulfilment is measured during the application usage. This means

the measuring which reveals if the used security mechanism is not

185

Figure 1 Context information for security

4. MICRO ARCHITECTURE FOR

SECURITY ADAPTATION
In this section we describe micro architecture for adaptable

security, based on [12]. Figure 2 presents designed micro

architecture, containing six execution phases (rectangles) and the

most important information (three-dimensional rectangles)

flowing between execution phases. The execution phases are:

1) Decision of required securities and levels – decides the

required securities and levels in the current context

situation.

2) Retrieve supporting mechanisms from ontology –

searches the security mechanisms that can support

requirements.

3) Control analysis – analyses which security mechanisms

can be used in the current smart space.

4) Measuring and Reasoning – measures the achieved

security level in the current environment and reasons

the affects of security threats. Applicable measures are

searched from the ontology.

5) Execution of Adaptation – selects the security

mechanism and parameters that offer the optimal

security level in the current situation. After the

execution of adaptation, execution phase 1 or 4 will be

executed depending on the input from phase 6.

6) Context monitoring – produce the information defined

in the context information for security taxonomy for the

execution phases 1 and 4.

184

II/5

Briefly, there are two factors causing a need for security

adaptation. Firstly, the level of security requirement may change

during the execution, recognised by a means of context

monitoring. Secondly, the application’s capability to achieve the

required security level may change due to the change in the

environment, recognised by a means of measuring. Therefore, this

model deals both of these cases.

4.1 Decision of Required Securities and

Levels
The first phase recognises changes in the security requirements

and levels. Naturally, the application is unable to create the

security requirements from scratch but a parameter selection can

be made automatically without major contribution from the user.

Firesmith notes that there is not much variation in the security

requirements between the different applications [13]. Based on

this, Firesmith proposes a security requirements template to define

reusable security requirements. The requirements decision phase

works in a similar way for deciding the security requirements and

levels of each situation.

The first step in the requirements decision phase is asset

recognition – in this work an asset is data stored in a device or in

a communication channel. However, content, usage, and user of

this data vary, as depicted in Figure 1. Consequently, this

variation affects importance of data and criticality of threats.

Therefore, the context monitoring is required to recognise the

changes in Role of exchanged / stored data and User’s role in

smart space context concepts. The requirements decision phase

subscribes to the results of context monitoring in the SIB, and

thus, gets a notification when the situation context changes.

The output of the requirements decision phase is called a

protection profile for the application – which bases on a current

situation context. The protection profile is a platform independent

way to present the security requirements of applications [3]. The

protection profile describes which information has to be protected

and how much. In this work we utilise five quantitative levels for

describing the different amount of security, i.e., levels 1-5. The

level 1 means that achieving the security requirement is not

critical, and on a contrary the level 5 means that achieving the

security requirement is extremely critical.

4.2 Retrieve Supporting Mechanisms from

Ontology
The supporting security mechanisms are retrieved from the

security ontology based on the content of the protection profile. In

this phase, the mechanisms are searched only by the security

requirement, not with a level value. The level depends on the

current environment and it will be estimated for the mechanisms

later on. The OIS described by Herzog et al [15] contains the

connection from the requirements to the supporting

countermeasures. However, retrieving the ontology returns a set

of security mechanisms supporting desired security requirements.

In addition, the ontology offers information related to which kind

of asset a particular mechanism is intended to protect. Thus, for

instance, different mechanisms may be offered for achieving

confidentiality of data stored in the device or confidentiality of

data in the communication channel.

4.3 Control Analysis
The control analysis phase compares and evaluates the feasibility

of security mechanisms retrieved from the security ontology. This

phase is required because the security ontology is generic and

contains the mechanisms not supported by the application or not

applicable at the current situation. The control analysis checks

currently used security mechanisms – this information is required

in the adaptation phase.

Secondly, the security mechanisms supported in the user’s own

device and application in it are found out. Finally, the

mechanisms supported in the current smart space, i.e., the

mechanisms that the currently used SIB and KPs can use are

found out. In other words, it is not enough to know the security

mechanisms supported in own device but also the mechanisms in

other devices which the user’s device is communicating with.

Hence, the result of the control analysis is a reduced version of the

security mechanisms list returned from the security ontology in

the previous phase. This list is called to applicable mechanisms.

Figure 2 Micro Architecture for security adaptation

4.4 Measuring and Reasoning
The measuring phase is twofold. Firstly, the security level that

different mechanisms can offer in the current environment is

estimated. This means an estimation before the security

mechanism is started to use. On the other hand, requirements

fulfilment is measured during the application usage. This means

the measuring which reveals if the used security mechanism is not

185

II/6 II/7

context information consumer. In this work the context

information consumer refers to the requirements decision and the

measuring and reasoning phases.

5. DISCUSSION
The presented micro architecture and the context taxonomy for

security are in the research phase. We are currently implementing

a demonstrator containing home and public smart spaces in order

to validate how the presented adaptation approach and the related

context monitoring and security measurement work in practice.

The demonstration will also contain measurements related to

security correctness, described by a means of ontologies. The

security measurement is the most essential part in order to achieve

the applications which are really able to autonomously adapt

themselves in the smart spaces. Secondly, we will continue

research related to the context monitoring. After these, we are able

to take into account other quality attributes also, like performance,

and related trade-offs.

In this time, we have three main issues in our minds. Firstly,

measuring the achieved security level means the simplification of

application and its environment. Hence, measuring security of the

application does not give an exact truth – for example if

comparing to the performance measurements like memory

consumption. We utilise the security levels from 1 to 5 to describe

the extent of security. These levels are derived from the risk

management approaches, which utilise the threat likelihood and

the severity of consequences to calculate the risk values.

Developing measurement techniques which are able to measure

these variables from the application and its environment at run-

time is required. In this work, the threat likelihood is reasoned

from the context information, i.e., unknown device in the smart

space, founded vulnerability in the used security mechanism, and

reliability / unreliability of the used security mechanism. The type

of smart space affects how much these affect to the threat

likelihood. Hence, we estimated effects in the home, work, and

public smart spaces. Nevertheless, several other factors also affect

to the threat likelihoods, for instance an attacker’s capabilities and

resources, and the severity of consequences because it may be a

motive for the attacker. Furthermore, it is difficult to give precise

values for the risk value calculation, and thus, using the security

levels instead of exact values is reasonable. However, a

calibration of these levels will be important.

Second issue relates to the context monitoring. The purpose of

context monitoring from the security adaptation and measurement

viewpoint is to offer the information needed to find out the

required and achieved security levels. The defined taxonomy of

security related context information specifies this context

information. For a certainty, there exist other concepts that also

affect the security levels of the smart space application. However,

the most extensive set of security related context concepts will be

found by testing the presented approach in the real smart spaces.

Thirdly, deciding the security requirements and levels for

application based on the context information is not a trivial task.

Deciding required security goals and levels needs a lot of

reasoning. The smart space application has to have detailed

awareness of its usage when selecting the security requirements

and levels. Thus, currently used usage classifications

(entertainment, professional. paying, and emergency) has to be

defined further. For instance, the professional usage may contain

several business domains. These business domains have different

requirements for confidentiality, authentication, etc. However, we

suppose that this phase will get benefit from the measuring

techniques – because measuring is intended to measure the

fulfilment of requirements.

There exist few approaches for security adaptation, i.e., SAM

(Security Adaptation Management) [16] and the adaptation model

presented in [2]. SAM adapts used security mechanisms when a

number of attacks increase. In other words, the adaptation is

performed reactively. In our approach, the adaptation occurs

proactively. Proactiveness can be achieved by utilising the

reasoned threat likelihoods in the security level measurements,

i.e., threats appear before attacks. Using the attacks as a trigger for

the adaptation might cause that the adaptation is performed too

late. The adaptation model presented by Alia et al. collects the

security requirements from user preferences. This is not practical

in the smart spaces where the situations change every now and

then. Enforcing the user to give new preferences all the time, or

alternatively, using the same preferences in the different situations

causing a need to overestimate the required securities. Therefore,

our approach contains the requirements decision phase to decide

the security requirements and levels for each situation.

In the future, autonomous behaviour of the smart spaces also

affects to the achieved security. When devices and applications

start to communicate with each other in an unexpected way – not

defined earlier – new security problems might occur. In many

cases when two secure products are combined the result has

contained new security vulnerabilities. These problems have

happened even though combination is well designed. Thus, in

cases when the smart space applications perform these

combinations autonomously it can be assumed that unexpected

security vulnerabilities will occur.

6. CONCLUSIONS
In this paper we presented the taxonomy of context information

for security. The taxonomy contains concepts describing: the

usage of smart space application, the smart space itself, and the

physical features of the environment. In addition, the micro

architecture for adaptable security is modelled. The micro

architecture contains six execution phases: requirements decision,

retrieving security mechanisms from the security ontology, control

analysis, measuring and reasoning, execution of adaptation, and

context monitoring. The context monitoring phase produces input

information for the requirements decision and the measuring and

reasoning phases.

The ontologies play the key role in our approach. The security

ontology is used to search the supporting security mechanisms for

different situations. Moreover, the concepts affecting these

situations are defined by a means of context taxonomy. The

ontologies ensure that it is possible to bring new information

related to new vulnerabilities in some security mechanism, a new

measuring technique or alternatively, new context information

affecting to the security of smart space application.

7. ACKNOWLEDGMENTS
This work has been carried out in the Sofia ARTEMIS JU project

funded by Tekes, VTT and the European Commission.

187

able to fulfil the required security in the changing environment. In

order to obtain the required input information the measurement

phase also subscribes to the result of context monitoring.

In this work, we utilise the security measurements from the risk

management area. However, other security measurements can be

also utilised, e.g. measures related to the mechanism correctness.

The risk level is calculated by multiplying threat likelihood with

severity of consequences [14].

Risk Level = Threat Likelihood * Severity of Consequences.

This calculation produces values in interval [0, 100] as shown in

[14]. These values can be connected to the quantitative security

levels, for instance as follows:

• Risk Level value 0-9 connects to the security level 5

(highest security)

• Risk Level value 10-19 connects to the security level 4

• Risk Level value 20-39 connects to the security level 3

• Risk Level value 40-69 connects to the security level 2

• Risk Level value 70-100 connects to the security level 1

Usage of exchanged / stored data (see Figure 1) affects to the

Severity of Consequences variable. In this variable bigger values

mean the greater damage. Hence, following Severity of

Consequences values are initially suggested for different usage:

• For entertainment usage Severity of Consequences 5-8,

• For professional usage Severity of Consequences 25-50,

• For payment usage Severity of Consequences 40-65, and

• For emergency usage Severity of Consequences 80-100.

The variation between these values comes from the different usage

inside the usage group. For instance, Severity of Consequences in

the professional usage depends on type of business and in the

payment usage money amount affects.

The second factor in the Risk Level calculation is Threat

Likelihood. We have not developed the measurement techniques

applicable for Threat Likelihood measuring at run-time so far.

Therefore, reasoning, based on the environment information, is

utilised to decide Threat Likelihood for the security risk level

calculation. In this time following aspects are taken into account

when reasoning Threat Likelihood: unknown devices in the smart

space, founded vulnerabilities in the used security mechanism,

and reliability or unreliability of the used security mechanism.

Following table shows how these aspects affect to Threat

Likelihood variable in the different smart spaces. However, these

values are intended to be as initial values, which can be adjusted

during the application execution.

Table 1 Affects to threat likelihoods in different smart spaces

 Home smart

space

Work smart

space

Public

smart space

Unknown

device in smart

space

+ 50

percentage

units

+ 20

percentage

units

NULL

Founded

vulnerability in

the used

security

mechanisms

+ 10

percentage

units

+ 25

percentage

units

+ 50

percentage

units

Reliability /

unreliability of

the used

security

mechanism

+ / - 25

percentage

units

+ / - 25

percentage

units

+ / - 25

percentage

units

Now, these Risk Levels are described in a generic way. However,

from the security adaptation point of view it is necessity to

calculate levels separately for each security goals. Meaning the

own risk level for authentication, integrity, etc.

4.5 Execution of Adaptation
The execution of adaptation phase performs the security

mechanism selection and sets parameters for the selected

mechanism. The execution of adaptation utilises the information

collected from the previous phases:

1) the protection profile, describing the required securities

and levels,

2) a list of applicable and currently used security

mechanisms, and

3) the measurement and reasoning results.

Based on this information set, the execution of adaptation tries to

select an optimal set of security mechanisms. For instance, the

protection profile defines that an integrity level 2 is required, and

the already used security mechanism is able to ensure the level 1

only. Thus, the execution of adaptation selects the new

mechanism or changes parameters for the currently used

mechanism. There is a possibility that adaptation cannot ensure

the required security level, and then a warning message will

appear to the user. Another alternative is that the security

mechanism violates other qualities, like a performance, and then

the execution of adaptation will require trade-off analysis, which

is out of scope of this paper.

4.6 Context Monitoring
The context monitoring phase produces the context information to

the SIB. Thus, it offers important input information for the

requirements decision and for the measuring and reasoning

phases. These two phases subscribe to the information produced

by the context monitoring. Thus, the context change triggers the

requirements decision and the measuring and reasoning phases.

The context monitoring is the KP used by the smart space

application or another KP in the smart space application to follow

up the context information relevant for it. The scope is defined by

another agent in the smart space or by the smart space application.

The context monitoring agent does not need to be located in the

same computing environment than the other agent or smart space

application who consumes the information provided by the

context monitoring agent. The context information is mediated via

the SIB by using a suitable communication channel between the

SIB and the context monitoring KP and between the SIB and the

186

II/7

context information consumer. In this work the context

information consumer refers to the requirements decision and the

measuring and reasoning phases.

5. DISCUSSION
The presented micro architecture and the context taxonomy for

security are in the research phase. We are currently implementing

a demonstrator containing home and public smart spaces in order

to validate how the presented adaptation approach and the related

context monitoring and security measurement work in practice.

The demonstration will also contain measurements related to

security correctness, described by a means of ontologies. The

security measurement is the most essential part in order to achieve

the applications which are really able to autonomously adapt

themselves in the smart spaces. Secondly, we will continue

research related to the context monitoring. After these, we are able

to take into account other quality attributes also, like performance,

and related trade-offs.

In this time, we have three main issues in our minds. Firstly,

measuring the achieved security level means the simplification of

application and its environment. Hence, measuring security of the

application does not give an exact truth – for example if

comparing to the performance measurements like memory

consumption. We utilise the security levels from 1 to 5 to describe

the extent of security. These levels are derived from the risk

management approaches, which utilise the threat likelihood and

the severity of consequences to calculate the risk values.

Developing measurement techniques which are able to measure

these variables from the application and its environment at run-

time is required. In this work, the threat likelihood is reasoned

from the context information, i.e., unknown device in the smart

space, founded vulnerability in the used security mechanism, and

reliability / unreliability of the used security mechanism. The type

of smart space affects how much these affect to the threat

likelihood. Hence, we estimated effects in the home, work, and

public smart spaces. Nevertheless, several other factors also affect

to the threat likelihoods, for instance an attacker’s capabilities and

resources, and the severity of consequences because it may be a

motive for the attacker. Furthermore, it is difficult to give precise

values for the risk value calculation, and thus, using the security

levels instead of exact values is reasonable. However, a

calibration of these levels will be important.

Second issue relates to the context monitoring. The purpose of

context monitoring from the security adaptation and measurement

viewpoint is to offer the information needed to find out the

required and achieved security levels. The defined taxonomy of

security related context information specifies this context

information. For a certainty, there exist other concepts that also

affect the security levels of the smart space application. However,

the most extensive set of security related context concepts will be

found by testing the presented approach in the real smart spaces.

Thirdly, deciding the security requirements and levels for

application based on the context information is not a trivial task.

Deciding required security goals and levels needs a lot of

reasoning. The smart space application has to have detailed

awareness of its usage when selecting the security requirements

and levels. Thus, currently used usage classifications

(entertainment, professional. paying, and emergency) has to be

defined further. For instance, the professional usage may contain

several business domains. These business domains have different

requirements for confidentiality, authentication, etc. However, we

suppose that this phase will get benefit from the measuring

techniques – because measuring is intended to measure the

fulfilment of requirements.

There exist few approaches for security adaptation, i.e., SAM

(Security Adaptation Management) [16] and the adaptation model

presented in [2]. SAM adapts used security mechanisms when a

number of attacks increase. In other words, the adaptation is

performed reactively. In our approach, the adaptation occurs

proactively. Proactiveness can be achieved by utilising the

reasoned threat likelihoods in the security level measurements,

i.e., threats appear before attacks. Using the attacks as a trigger for

the adaptation might cause that the adaptation is performed too

late. The adaptation model presented by Alia et al. collects the

security requirements from user preferences. This is not practical

in the smart spaces where the situations change every now and

then. Enforcing the user to give new preferences all the time, or

alternatively, using the same preferences in the different situations

causing a need to overestimate the required securities. Therefore,

our approach contains the requirements decision phase to decide

the security requirements and levels for each situation.

In the future, autonomous behaviour of the smart spaces also

affects to the achieved security. When devices and applications

start to communicate with each other in an unexpected way – not

defined earlier – new security problems might occur. In many

cases when two secure products are combined the result has

contained new security vulnerabilities. These problems have

happened even though combination is well designed. Thus, in

cases when the smart space applications perform these

combinations autonomously it can be assumed that unexpected

security vulnerabilities will occur.

6. CONCLUSIONS
In this paper we presented the taxonomy of context information

for security. The taxonomy contains concepts describing: the

usage of smart space application, the smart space itself, and the

physical features of the environment. In addition, the micro

architecture for adaptable security is modelled. The micro

architecture contains six execution phases: requirements decision,

retrieving security mechanisms from the security ontology, control

analysis, measuring and reasoning, execution of adaptation, and

context monitoring. The context monitoring phase produces input

information for the requirements decision and the measuring and

reasoning phases.

The ontologies play the key role in our approach. The security

ontology is used to search the supporting security mechanisms for

different situations. Moreover, the concepts affecting these

situations are defined by a means of context taxonomy. The

ontologies ensure that it is possible to bring new information

related to new vulnerabilities in some security mechanism, a new

measuring technique or alternatively, new context information

affecting to the security of smart space application.

7. ACKNOWLEDGMENTS
This work has been carried out in the Sofia ARTEMIS JU project

funded by Tekes, VTT and the European Commission.

187

II/8 1

8. REFERENCES
[1] Smart-M3 URL: http://sourceforge.net/projects/smart-m3/

Accessed: 06/30, 2010.

[2] Alia, M. and Lacoste, M. 2008. A QoS and security

adaptation model for autonomic pervasive systems. In 32nd

Annual IEEE International Computer Software and

Applications Conference, COMPSAC 2008. (Turku, 28 Jul. -

1 Aug. 2008), 943-948.

[3] Anderson, R. J. 2008. Security Engineering: A Guide to

Building Dependable Distributed Systems. Wiley,

Indianapolis.

[4] Bettini, C., Brdiczka, O., Henricksen, K., Indulska, J.,

Nicklas, D., Ranganathan, A., and Riboni, D. 2010. A survey

of context modelling and reasoning techniques. Pervasive

and Mobile Computing, 6, 2, 2010, 161-180.

[5] Blanco, C., Lasheras, J., Valencia-García, R., Fernández-

Medina, E., Toval, A., and Piattini, M. 2008. A systematic

review and comparison of security ontologies. In 3rd

International Conference on Availability, Security, and

Reliability, ARES 2008. (Barcelona, 4 - 7 Mar. 2008), 813-

820.

[6] Chen, G. and Kotz, D. 2000. A Survey of Context-Aware

Mobile Computing Research. Technical Report TR2000-381.

Dartmouth College.

[7] Chen, H., Finin, T., and Joshi, A. 2005. The SOUPA

Ontology for Pervasive Computing. Ontologies for Agents:

Theory and Experiences, 233-258.

[8] Dey, A. K. and Abowd, G. D. 2000. CybreMinder: A

Context-Aware System for Supporting Reminders. In HUC

'00: Proceedings of the 2nd international symposium on

Handheld and Ubiquitous Computing. Bristol, UK.

Springer-Verlag, 172-186.

[9] Dey, A. K., Abowd, G. D., and Salber, D. 2001. A

conceptual framework and a toolkit for supporting the rapid

prototyping of context-aware applications. Human-Computer

Interaction, 16, 2, 2001, 97-166.

[10] Dey, A. K. and Newberger, A. 2009. Support for context-

aware intelligibility and control. In CHI '09: Proceedings of

the 27th international conference on Human factors in

computing systems. (Boston, 4-9 Apr. 2009). ACM, New

York, 859-868.

[11] Dobson, S. and Ye, J. 2006. Using fibrations for situation

identification. In Pervasive 2006 workshop proceedings.

645-651.

[12] Evesti, A., Ovaska, E., and Savola, R. 2009. From security

modelling to run-time security monitoring. In European

Workshop on Security in Model Driven Architecture

(SECMDA). (Enchede, 23 - 26 Jun. 2009). CTIT Centre for

Telematics and Information Technology, 33-41.

[13] Firesmith, D. 2004. Specifying reusable security

requirements. Journal of Object Technology, 3, 1, 2004, 61-

75.

[14] Herrmann, D. S. 2007. Complete Guide to Security and

Privacy Metrics: Measuring Regulatory Compliance,

Operational Resilience, and ROI. Auerbach Publications,

Boca Raton.

[15] Herzog, A., Shahmehri, N., and Duma, C. 2009. An ontology

of information security. Techniques and Applications for

Advanced Information Privacy and Security: Emerging

Organizational, Ethical, and Human Issues, 278-301.

[16] Hinton, H., Cowan, C., Delcambre, L., and Bowers, S. 1999.

SAM: Security Adaptation Manager. Proceedings of 15th

Annual Computer Security Applications Conference 1999

(ACSAC '99), (Phoenix, 6-10 Dec. 1999), 361-370.

[17] Kim, A., Luo, J., and Kang, M. 2005. Security Ontology for

annotating resources. In OTM Confederated International

Conferences, CoopIS, DOA, and ODBASE 2005 - On the

Move to Meaningful Internet Systems 2005. (Agia Napa, 31

Oct. - 4 Nov. 2005), 1483-1499.

[18] Matinlassi, M. and Niemelä, E. 2003. The impact of

maintainability on component-based software systems. In

29th Euromicro Conference. (Belek-Antalya, Turkey, 3 - 5

Sep. 2003), 25-32.

[19] Pantsar-Syväniemi, S., Simula, K., and Ovaska, E. 2010.

Context-awareness in smart spaces. First International

Workshop on Semantic Interoperability for Smart Spaces,

(Riccione, Italy, 22 Jun. 2010), 1010-1015.

[20] Preuveneers, D., Van den Bergh, J., Wagelaar, D., Georges,

A., Rigole, P., Clerckx, T., Berbers, Y., Coninx, K.,

Jonckers, V., and De Bosschere, K. 2004. Towards an

extensible context ontology for ambient intelligence. Lecture

Notes in Computer Science, 2004, 148-159.

[21] Savolainen, P., Niemelä, E., and Savola, R. 2007. A

taxonomy of information security for service centric systems.

In Proceedings of the 33rd EUROMICRO Conference on

Software Engineering and Advanced Applications, SEAA

2007. (Lubeck, 27 - 31 Aug. 2007), 5-12.

[22] Soylu, A., Causmaecker, P. D., and Desmet, P. 2009.

Context and Adaptivity in Pervasive Computing

Environments: Links with Software Engineering and

Ontological Engineering. Journal of Software, 4, 9, 2009,

992-1013.

[23] Toninelli, A., Pantsar-Syväniemi, S., Bellavista, P., and

Ovaska, E. 2009. Supporting context awareness in smart

environments: a scalable approach to information

interoperability. In M-PAC '09: Proceedings of the

International Workshop on Middleware for Pervasive

Mobile and Embedded Computing. (Urbana Champaign,

Illinois, 30 Nov. 2009). ACM, 1-4.

[24] Wei, E. J. Y. and Chan, A. T. S. 2008. Semantic Approach to

Middleware-Driven Run-Time Context-Aware Adaptation

Decision. In ICSC '08: Proceedings of the 2008 IEEE

International Conference on Semantic Computing. (Santa

Clara, CA, USA, 4-7 Aug. 2008). IEEE Computer Society,

440-447.

[25] Zhou, J. 2005. Knowledge Dichotomy and Semantic

Knowledge Management. Industrial Applications of

Semantic Web, (Jyväskylä, 25 - 27 Aug. 2005), 305-316.

188

http://sourceforge.net/projects/smart-m3/

1

PUBLICATION III

Ontology-based security
adaptation at run-time

In: Proceedings of the Fourth IEEE Conference
on Self-Adaptive and Self-Organizing Systems
(SASO), Budapest, Hungary, 27 September –

1 October 2010. Pp. 204–212.
Copyright 2010 IEEE.

Reprinted with permission from the publisher.

III/1

III/1

Ontology-based Security Adaptation at Run-time

Antti Evesti and Eila Ovaska
VTT Technical Research Centre of Finland

Finland
e-mail: antti.evesti@vtt.fi, eila.ovaska@vtt.fi

Abstract—This paper describes how software is able to
autonomously adapt its security mechanisms based on
knowledge from security ontology. Security adaptation is
required because a software’s environment changes during
run-time. Thus, all security requirements cannot be defined
beforehand. To achieve security adaptation, we have combined
a security ontology that defines security mechanisms, security
objectives, and high level security measurements. The run-time
security adaptation utilises this security ontology to adapt
security mechanisms or their parameters to fulfil security
requirements for each environment and usage situation. The
novelty of this approach comes from the utilisation of
ontologies and security measurements, which makes
adaptation flexible. We validate our security adaptation with a
case study in a smart space environment. The case study
proves that security adaptation is able to work autonomously
without other user actions.

Keywords-component; Security ontology, dynamic
adaptation, quality management

I. INTRODUCTION

Nowadays, it is not enough to decide the security
mechanisms used only at the time of a software’s design.
Present requirements demand that the software product is
able to select the most suitable security mechanisms at run-
time. This is so because many applications are executed in a
constantly changing environment and it is therefore not
possible to define all of these changes beforehand. In
addition, all security mechanisms are not applicable in all
possible environments, i.e. security mechanism is not
supported or mechanism requires too much calculation
capacity – causing a need to adapt application at run-time.
Mobile devices used in smart environments face this kind of
situations in particular. Although, the environment changes a
user wants to preserve the particular security level.
Therefore, run-time security adaptation ensures that the user
is able to concentrate to application usage – instead of
configuring its security features constantly. Moreover, an
application with adaptation capabilities is able to offer
increased performance because security mechanisms are
used only when needed – not all the time.

Few approaches exist where changing security
requirements and attack situations are the focal point. In [1]
Security Adaptation Management (SAM) is presented. The
purpose of SAM is to allow more performance and a less
secure state to the system when it is not under an attack.
When the number of attacks increases the SAM adapts the
system to use different implementations to achieve a more

secure state. This work utilises the term adaptation spaces for
defining possible security breaches and related
countermeasures. SAM concentrates on buffer overflow
cases and defends against them. Alia et al. present an
adaptation model for handling trade-offs between QoS
(Quality of Service) and security concerns in [2]. The
adaptation model consists of a component framework model,
the context in a general sense, adaptability dimensions,
user’s preferences, and a utility function for describing an
adaptation strategy. The utility function selects which
application variant will be used in each situation – the
selection is based on the user’s preferences and context
information. Lamprecht et al. presents a Secure Socket Layer
(SSL) based run-time security adaptation in [3, 4] – called an
adaptive SSL. The adaptive SSL selects an appropriate
security mechanism for SSL session, i.e., performs a
renegotiation, when the environment changes. The main
interest of the authors is security adaptation from the
resource consumption and performance viewpoint. However,
a threat level is also mentioned as a possible trigger for the
adaptation. Myllärniemi et al. present in [5] a security
variability approach called KumbangSec – which is intended
to work at an architectural level. With this kind of approach
the purpose is to derive a different product for different
security requirements. Therefore, the security mechanism is
bound at design-time and changes are not possible
afterwards. Hence, this kind of approach is insufficient in
those cases when the security requirements of an application
or security threats change during run-time.

In this paper we present our work towards applications
which are able to adapt their security mechanisms at run-
time. Security is a complex area, containing several bindings
to other quality attributes, like reliability and performance. In
addition, some security objectives are contradicting, like
non-repudiation and privacy. These complexities are reason
to utilise ontologies to describe security. Our adaptation
approach is based on a security ontology with measurements,
and context information representing changes in the
environment and usage of application. The novelty of our
approach comes from the utilisation of ontologies and
security measurements, which ensures flexible and
autonomous adaptation also in resource-restricted systems –
like mobile devices used in smart spaces. In addition, the
approach takes an asset’s value into account that reflects
directly to the security requirements of an application. The
ontology is used to describe security mechanisms, their
properties and supported security objectives, whereas
security measurements are triggers for the security
adaptation. In this work, we adopt security measurements

2010 Fourth IEEE International Conference on Self-Adaptive and Self-Organizing Systems

978-0-7695-4232-4/10 $26.00 © 2010 IEEE
DOI 10.1109/SASO.2010.11

204

mailto:antti.evesti@vtt.fi
mailto:eila.ovaska@vtt.fi

III/2 III/3

Figure 2. Vision of run-time security management

III. SECURITY ONTOLOGY AND MEASUREMENTS

Security adaptation at run-time requires that devices and
applications in these devices are able to communicate and
exchange security-related information. To make this
communication possible security ontologies are needed.
Support for run-time security adaptation requires that the
security ontology contains security mechanisms, objectives,
security measurements, and connections between these.
From these concepts, the connections are essential for
adaptation, since they make it possible to know which
objectives, i.e. high level requirements, can be achieved with
a particular mechanism. The security ontology utilised in this
work adopts security objectives and mechanisms from [18,
19]. However, measurement part conform the ontology from
Savolainen et al. [16]. TABLE I. presents an initial part of a
security ontology combined for this work. The first column
lists classes, the second column lists the properties of each
class and their ranges, and the third column gives examples
of possible instances. The ontology definition is work in
progress but the current version presents the most important
concepts from the run-time adaptation viewpoint. Ontologies
in [18, 19] contain dozens of objectives and security
mechanisms – all of these are important but copying them to
this paper is not reasonable at this point.

Some classes of the security ontology are quite
straightforward – listing mechanisms etc. Whereas, some
other classes are more complex, like classes related to
security measurements. For this security ontology, we
defined risk level measurements for confidentiality and
integrity based on the proposal in [21] presented in TABLE
I. which conforms to the idea of a risk-level matrix from [9].
The vertical axis denotes a threat’s likelihood and the
horizontal axis means the severity of consequences. We posit
that the severity of consequences is an analogue for an
asset’s value defined in the security ontology – in NIST 800-
30 this is defined as impact [9].

For defining likelihoods of threats we have to know what
these threats are, and thus we decided to use the following
high level threats for confidentiality and integrity
respectively: “unauthorised disclosure of information” and

“unauthorised modification of information” defined in [8].
Based on these threat definitions and the table above we can
define separated risk measurements for confidentiality and
integrity as follows:

RiskForConfidentiality = Tl * Av (1)

RiskForIntegrity = Tl * Av (2)

Where Tl means threat’s likelihood and Av is an asset’s
value. Hence, values for these risk levels are calculated in a
similar way as TABLE I. shows but it is notable that the
values are in the interval [0, 100] not only as values
presented in the table. However, we map these numerical
values to the risk levels – similarly as made in [21], i.e. low
(0-10), moderate (11-39), and high (40-100).

TABLE I. PART OF SECURITY ONTOLOGY

Class Properties {Range} Possible instances
SecurityAsset hasValue {[0, 100]} Message

Data
SecurityObjective achievableWith

{securityConcept}
fulfilmentMeasured-
With
{SecurityMeasurement}

Confidentiality
Integrity
Availability
Authentication

SecurityConcept support
{securityObjective}
utilises {credential}

AES and DES support
Confidentiality
MD5 supports
Integrity

Credential Fingerprint, Password
SecurityMeasurement hasValue

measuredObjective
{securityObjective}

RiskForConfidentiality
RiskForIntegrity

Device hasSecurityConcept
{securityConcept}
hasCurrentlyUsed
SecurityConcept
{SecurityConcept}
hasMeasuredSecurity
{SecurityMeasurement}

MobileDevice with
entertainment
application

206

from risk management approaches. Furthermore, utilisation
of context information makes it possible to recognise
different security requirements for the same application
depending on its usage. This is essential when the same
application is used for different purposes. Moreover, the
approach is applicable for different threats.

After the introduction, background information is given.
Thereafter in section 3 parts of the used security ontology
and security measurements are presented. Section 4 presents
our adaptation approach. Section 5 gives a case example and
section 6 contains discussion and future work ideas. Finally,
conclusions close the paper.

II. BACKGROUND

ISO/IEC defines security in [6] as follows: The capability
of the software product to protect information and data so
that unauthorized persons or systems cannot read or modify
them and authorized persons or systems are not denied
access to them. Furthermore, in some sources security is
thought to be a composition of confidentiality, integrity and
availability [7, 8]. Common criteria [8] list security failures
for these attributes as unauthorised disclosure, modification,
and loss of use, respectively. [8] defines an asset as an entity
that someone presumably places value upon. This means that
almost anything can be an asset. However, in this work we
define an asset as data stored in a device or a message in a
communication channel – as depicted in Fig. 1.

Risk management is the process of identifying risk,
assessing risk, and taking steps to reduce risk to an
acceptable level [9]. Risk management utilises threat
likelihood and the impact caused by a threat exercise to
calculate a risk level. The NIST (National Institute of
Standards and Technology) integrates risk management to
the SDLC (Software Development Life Cycle), i.e. 1)
initiation, 2) development or acquisition, 3) implementation,
4) operation or maintenance, and 5) disposal in [9].
Naturally, phase number four – operation or maintenance –
can be thought of as a phase where run-time security
adaptation is applicable. The NIST 800-30 [9] suggests
performing risk management activities in phase four
periodically or whenever major changes are made to the
system or its environment. However, in smart spaces these
changes in the execution environment happen constantly,
which we thought of as context changes.

There are several definitions for context, for instance
from Chen and Kortz [10]: Context is a set of environmental
states and settings that either determines an application’s
behaviour or in which an application event occurs and is
interesting to the user. In this work we view context from
two perspectives. Firstly, the environment context means
broadly an application’s execution environment, i.e. location,
devices and people around, execution platform and so on.
Secondly, the usage context means the purpose of an
application’s usage, i.e. entertainment, work and so on.

Fig. 2 presents our vision of run-time security
management published in [11]. In this initial vision, service
discovery, adaptation, measuring, and reasoning phases form
a sequential process with a feedback loop. Adaptation is
performed based on available services, their security
properties, and the desired security. Next, the achieved
security is monitored by means of measuring. The achieved
security value acts as an input for the reasoning activity. If
the desired security is not achieved, the reasoning phase calls
the adaptation and an alternative security mechanism is
selected. The context affects the desired and achieved
security levels as well as available security mechanisms and
resources. Now in this work, we concentrate on the
adaptation phase and its prerequisites.

Adaptation is the ability of software to adapt its
functionality according to the environment and usage
context, refined from [12]. In this work, functionality means
those security mechanisms intended to achieve a particular
level of security.

In [13] Zhou defines ontology and its possible use as
follows: Ontology is a shared knowledge standard or
knowledge model defining primitive concepts, relations,
rules and their instances which comprise topic knowledge. It
can be used for capturing, structuring and enlarging explicit
and tacit topic knowledge across people, organizations and
computer and software systems. There are several security
ontologies available for different purposes, listed and
compared, for example in [14]. Our earlier work also
compares a few security ontologies from the viewpoint of
run-time applicability [11]. The existing security ontologies
are intended to be used in design-time – like ontologies in
[15, 16] – or alternatively, for service discovery and
matchmaking purposes – like those ontologies in [17, 18].
Added to these, Herzog et al. presented a comprehensive
ontology of information security in [19].

Based on Savola et al. [20] security metrics are used for
decision support, especially in risk management for
mitigating, cancelling or neglecting security risks. Therefore,
metrics that might be useful for different purposes will be
associated with risk analysis. Security metrics and
measurements can be used for decision support, especially in
assessment and prediction [20]. In this work, security
measurements are used to detect the difference between the
required and achieved security level of an application.

Figure 1. Assets in our work

205

III/3

Figure 2. Vision of run-time security management

III. SECURITY ONTOLOGY AND MEASUREMENTS

Security adaptation at run-time requires that devices and
applications in these devices are able to communicate and
exchange security-related information. To make this
communication possible security ontologies are needed.
Support for run-time security adaptation requires that the
security ontology contains security mechanisms, objectives,
security measurements, and connections between these.
From these concepts, the connections are essential for
adaptation, since they make it possible to know which
objectives, i.e. high level requirements, can be achieved with
a particular mechanism. The security ontology utilised in this
work adopts security objectives and mechanisms from [18,
19]. However, measurement part conform the ontology from
Savolainen et al. [16]. TABLE I. presents an initial part of a
security ontology combined for this work. The first column
lists classes, the second column lists the properties of each
class and their ranges, and the third column gives examples
of possible instances. The ontology definition is work in
progress but the current version presents the most important
concepts from the run-time adaptation viewpoint. Ontologies
in [18, 19] contain dozens of objectives and security
mechanisms – all of these are important but copying them to
this paper is not reasonable at this point.

Some classes of the security ontology are quite
straightforward – listing mechanisms etc. Whereas, some
other classes are more complex, like classes related to
security measurements. For this security ontology, we
defined risk level measurements for confidentiality and
integrity based on the proposal in [21] presented in TABLE
I. which conforms to the idea of a risk-level matrix from [9].
The vertical axis denotes a threat’s likelihood and the
horizontal axis means the severity of consequences. We posit
that the severity of consequences is an analogue for an
asset’s value defined in the security ontology – in NIST 800-
30 this is defined as impact [9].

For defining likelihoods of threats we have to know what
these threats are, and thus we decided to use the following
high level threats for confidentiality and integrity
respectively: “unauthorised disclosure of information” and

“unauthorised modification of information” defined in [8].
Based on these threat definitions and the table above we can
define separated risk measurements for confidentiality and
integrity as follows:

RiskForConfidentiality = Tl * Av (1)

RiskForIntegrity = Tl * Av (2)

Where Tl means threat’s likelihood and Av is an asset’s
value. Hence, values for these risk levels are calculated in a
similar way as TABLE I. shows but it is notable that the
values are in the interval [0, 100] not only as values
presented in the table. However, we map these numerical
values to the risk levels – similarly as made in [21], i.e. low
(0-10), moderate (11-39), and high (40-100).

TABLE I. PART OF SECURITY ONTOLOGY

Class Properties {Range} Possible instances
SecurityAsset hasValue {[0, 100]} Message

Data
SecurityObjective achievableWith

{securityConcept}
fulfilmentMeasured-
With
{SecurityMeasurement}

Confidentiality
Integrity
Availability
Authentication

SecurityConcept support
{securityObjective}
utilises {credential}

AES and DES support
Confidentiality
MD5 supports
Integrity

Credential Fingerprint, Password
SecurityMeasurement hasValue

measuredObjective
{securityObjective}

RiskForConfidentiality
RiskForIntegrity

Device hasSecurityConcept
{securityConcept}
hasCurrentlyUsed
SecurityConcept
{SecurityConcept}
hasMeasuredSecurity
{SecurityMeasurement}

MobileDevice with
entertainment
application

206

III/4 III/5

TABLE IV. INCREASING ACTIONS

Event in the environment Initial Ia value
Untrusted agent in the environment Increase 2 levels
Abnormal behaviour of agent Increase 3 levels

IV. APPLICATION ADAPTATION

The adaptation takes place at the start-up and run-time
phases alike. Clearly, the start-up phase adaptation is
performed when an application is started. The run-time phase
adaptation takes place during application execution – when a
major change occurs in the environment or usage of an
application. In practice, both adaptation cases are similar
from the adaptation viewpoint because similar input
information collection and mechanism selection activities are
required in both cases. However, the adaptation during the
run-time phase requires more sophisticated mechanisms
from an implementation perspective, e.g. re-establishing
network connections, when compared to the adaptation at
start-up phase. In our adaptation approach, the above
described security ontology and security measurements are
used in both start-up and run-time adaptation phases. The
approach is initially intended for smart spaces but the
purpose is that it can also be utilised in other environments.
The block diagram of the application’s adaptation is
presented in Fig. 3 – containing both start-up and run-time
phase adaptations. The diagram shows the actions required to
perform before or during the action of adaptation. In the
figure, rectangles mean information and rounded rectangles
depict actions. Grey boxes represent information which is
applicable only during the run-time phase. Furthermore, in
the start-up phase we use the term collecting input
information instead of the monitoring term, used at the run-
time phase.

A. Start-up Phase Adaptation
The first action is elicitation of security requirements and

the required levels for these requirements. The context of
application affects these, especially the context related to the
usage of application. As an example, entertainment usage
and surveillance usage of an application elicit different
security requirements and related levels. For entertainment
usage, only availability matters and its required level is quite
low. This is contrary to surveillance usage which requires
availability and integrity at a critical level – adopting terms
from TABLE I. Thus, an application gets a list of security
requirements and levels. After that, security mechanisms
supporting these requirements can be retrieved from the
security ontology. Retrieving supporting mechanisms from
the security ontology is possible because ontology contains
connection from objectives to mechanisms, i.e.
achievableWith property presented in TABLE I. For
instance, if confidentiality and integrity is required retrieving

ontology produces a list of supporting mechanisms – like
AES, DES, and MD5.

Next, a control analysis action is performed. This is
required because the security ontology is intended to be
general, and thus may contain mechanisms not implemented
in an application or alternatively not applicable in the current
environment. The outcome from the control analysis action
is a set of applicable security mechanisms. The final action
in the collecting input information activity is measuring. In
this action, the forthcoming security of the application is
measured, meaning the security level that will be achieved
without any security mechanisms or alternatively with
default mechanisms defined in user preferences when the
application starts.

As a conclusion, we have the following information
available for the adaptation: security requirements and levels,
applicable security mechanisms, and measured security
levels. The adaptation action is executed if the measured
security fails to reach the requirements set. Based on input
information, the adaptation action selects the security
mechanisms to be used and their parameters.

B. Run-time Phase Adaptation
The run-time adaptation phase is for the most part similar

to the above described start-up phase adaptation. However,
some differences exist. Firstly, the adaptation action is
triggered based on monitoring results. Thus, the adaptation is
performed when required – not only periodically at a
moment defined earlier. Secondly, the manner in which
adaptation takes place differs when the application is already
running, for instance re-establishing network connection
might be needed. The monitoring activity monitors earlier
mentioned context changes, i.e. changes in usage context and
environment context.

The change in the usage of an application may cause
change in security requirements or their levels.
Consequently, the currently used security mechanisms do not
fulfil these new security requirements – recognised by means
of measuring. The security ontology defines connection from
security objectives to security measurements, i.e.
fulfilmentMeasuredWith property presented in TABLE I.
Thus, ontology offers knowledge needed to measure
requirements fulfilment.

Another possibility for changes comes from the
environment. These changes affect how well the required
securities are met – not the requirements themselves. For
instance, a new device appears that poses a threat to the
application’s operation, or alternatively, the environment
changes in a way that prevents the usage of the earlier
selected security mechanism. Both of these context changes
can create a need to adapt security mechanisms or the
parameters of the application.

208

TABLE II. RISK LEVELS ADOPTED FROM [18]

Severity of consequencesThreat
Likelihood Insignificant

(10)
Marginal

(40)
Critical

(70)
Catastrophic

(100)
Incredible
(0.1)
Level 1

10 *0.1=1 40*0.1=4 70*0.1=7 100*0.1=10

Improbable
(0.2)
Level 2

10 *0.2=2 40*0.2=8 70*0.2=14 100*0.2=20

Remote
(0.4)
Level 3

10 *0.4=4 40*0.4=16 70*0.4=28 100*0.4=40

Occasional
(.0.6)
Level 4

10 *0.6=6 40*0.6=24 70*0.6=42 100*0.6=60

Probable
(0.8)
Level 5

10 *0.8=8 40*0.8=32 70*0.8=56 100*0.8=80

Frequent
(1.0)
Level 6

10 *1.0=10 40*1=40 70*1=70 100*1=100

As said in section 2, an asset can be almost anything but
in this work an asset is defined as a message in a
communication channel or data stored in a device. However,
an asset’s value (Av) for its owner depends on the content
and usage of the asset. Hence, we do not try to define these
asset values in this work – instead this information will be
collected from user preferences. For calculating threat
likelihood Tl we propose the following equation:

Tl = 0, when Da Ia
(3)

Tl = Ia – Da, when Da < Ia

Ia means actions that increase the threat likelihood and
Da actions that decrease the likelihood. At the moment, we
do not try to give numeric values for Da and Ia variables –
instead variables get values describing how many levels they
affect to the threat likelihood. As TABLE I. shows Tl gets
values from the interval [0, 1], and these values are mapped
to six levels from incredible (level 1) to frequent (level 6).
Naturally, when Da is bigger or equals with Ia then Tl gets
value 0, which maps to the incredible level. In this time, we
make an assumption that Ia and Da are independent from
each other, e.g. change in a Da value does not affect to an Ia
value. In order to achieve automatic adaptation, calculation
of this formula has to be made automatically during the
execution based on information stored in the ontology and
context information collected from the environment. It is
important to bear in mind that we can give exact definitions
for Tl values 0 and 1 as Hunstad et al. did in their work [22]
for probabilistic security values, but precise values between
these end points are more complicated as they mention.
Hence, we know that threat likelihood 0 means that there is
no possibility for threat’s realisation, and likelihood 1 means
that the threat will certainly be realised.

Utilisation of security mechanisms affects the variable
Da (Decreasing actions). Therefore, the security ontology

has to contain a connection from mechanisms to Da variable
in the measurement class. For instance, measurement
RiskForConfidentiality is affected by encryption algorithms
like AES (Advanced Encryption Standard) and DES (Data
Encryption Standard). Thus, the device software has to select
the appropriate encryption mechanism and its parameters to
decrease the RiskForConfidentiality measurement’s value.
TABLE III. contains security mechanism assessment, i.e.
how many levels mechanisms reduce threat likelihood.
Humstad et al. [22] note that the rating of security functions
is a difficult task. Thus, it is impossible to give exact values
how much a particular security mechanism decreases the
particular threat. However, we defined initial Da values for
security mechanisms in the security ontology in order to test
how well the security ontology is able to support run-time
security adaptation. The current usage of security
mechanisms can give suggestive values for Da value
selection, for example Anderson mentions in [23] that NSA
(National Security Agency) approved AES with 128 bit keys
for secret purposes and AES with 256 bit keys for top secret
purposes. However, values in TABLE III. change when time
goes on because vulnerabilities will be found and attackers
learn new ways to attack. In addition, use cases in different
contexts will offer valuable feedback for assessing these
values. Thus, values in the ontology have to be updated
when new knowledge appears.

On the contrary, environment issues affect the variable Ia
(Increasing actions). Basically these can be anything that
happens in the application’s environment, i.e. knowing the
context is essential to elicit this information. Added to this,
the following information can be also used when estimating
the increasing actions variable (Ia): asset’s value because it
may be a motive for an attacker, information from
vulnerability databases, and log information from intrusion
detection systems (IDS). In any case, it is better to
overestimate this variable. 0gives examples of events that
increase threat likelihood Tl.

As a conclusion the security ontology describes security
objectives, mechanisms supporting these objectives, and risk
based measurements for measuring fulfilment of these
objectives. Therefore, the security ontology contains
essential information for application adaptation – presented
in the next section.

TABLE III. INITIAL SECURITY MECHANISM ASSESSMENT

Security mechanism /
parameters for confidentiality

Initial Da value

AES 256 bit Reduce 5 Levels
AES 192 bit Reduce 4 levels
AES 128 bit Reduce 3 levels
DES Reduce 1 level

Security mechanism for
integrity

Initial Da value

SHA-2 Reduce 4 levels
SHA-1 Reduce 3 levels
MD5 Reduce 2 levels
MD4 Reduce 1 level

207

III/5

TABLE IV. INCREASING ACTIONS

Event in the environment Initial Ia value
Untrusted agent in the environment Increase 2 levels
Abnormal behaviour of agent Increase 3 levels

IV. APPLICATION ADAPTATION

The adaptation takes place at the start-up and run-time
phases alike. Clearly, the start-up phase adaptation is
performed when an application is started. The run-time phase
adaptation takes place during application execution – when a
major change occurs in the environment or usage of an
application. In practice, both adaptation cases are similar
from the adaptation viewpoint because similar input
information collection and mechanism selection activities are
required in both cases. However, the adaptation during the
run-time phase requires more sophisticated mechanisms
from an implementation perspective, e.g. re-establishing
network connections, when compared to the adaptation at
start-up phase. In our adaptation approach, the above
described security ontology and security measurements are
used in both start-up and run-time adaptation phases. The
approach is initially intended for smart spaces but the
purpose is that it can also be utilised in other environments.
The block diagram of the application’s adaptation is
presented in Fig. 3 – containing both start-up and run-time
phase adaptations. The diagram shows the actions required to
perform before or during the action of adaptation. In the
figure, rectangles mean information and rounded rectangles
depict actions. Grey boxes represent information which is
applicable only during the run-time phase. Furthermore, in
the start-up phase we use the term collecting input
information instead of the monitoring term, used at the run-
time phase.

A. Start-up Phase Adaptation
The first action is elicitation of security requirements and

the required levels for these requirements. The context of
application affects these, especially the context related to the
usage of application. As an example, entertainment usage
and surveillance usage of an application elicit different
security requirements and related levels. For entertainment
usage, only availability matters and its required level is quite
low. This is contrary to surveillance usage which requires
availability and integrity at a critical level – adopting terms
from TABLE I. Thus, an application gets a list of security
requirements and levels. After that, security mechanisms
supporting these requirements can be retrieved from the
security ontology. Retrieving supporting mechanisms from
the security ontology is possible because ontology contains
connection from objectives to mechanisms, i.e.
achievableWith property presented in TABLE I. For
instance, if confidentiality and integrity is required retrieving

ontology produces a list of supporting mechanisms – like
AES, DES, and MD5.

Next, a control analysis action is performed. This is
required because the security ontology is intended to be
general, and thus may contain mechanisms not implemented
in an application or alternatively not applicable in the current
environment. The outcome from the control analysis action
is a set of applicable security mechanisms. The final action
in the collecting input information activity is measuring. In
this action, the forthcoming security of the application is
measured, meaning the security level that will be achieved
without any security mechanisms or alternatively with
default mechanisms defined in user preferences when the
application starts.

As a conclusion, we have the following information
available for the adaptation: security requirements and levels,
applicable security mechanisms, and measured security
levels. The adaptation action is executed if the measured
security fails to reach the requirements set. Based on input
information, the adaptation action selects the security
mechanisms to be used and their parameters.

B. Run-time Phase Adaptation
The run-time adaptation phase is for the most part similar

to the above described start-up phase adaptation. However,
some differences exist. Firstly, the adaptation action is
triggered based on monitoring results. Thus, the adaptation is
performed when required – not only periodically at a
moment defined earlier. Secondly, the manner in which
adaptation takes place differs when the application is already
running, for instance re-establishing network connection
might be needed. The monitoring activity monitors earlier
mentioned context changes, i.e. changes in usage context and
environment context.

The change in the usage of an application may cause
change in security requirements or their levels.
Consequently, the currently used security mechanisms do not
fulfil these new security requirements – recognised by means
of measuring. The security ontology defines connection from
security objectives to security measurements, i.e.
fulfilmentMeasuredWith property presented in TABLE I.
Thus, ontology offers knowledge needed to measure
requirements fulfilment.

Another possibility for changes comes from the
environment. These changes affect how well the required
securities are met – not the requirements themselves. For
instance, a new device appears that poses a threat to the
application’s operation, or alternatively, the environment
changes in a way that prevents the usage of the earlier
selected security mechanism. Both of these context changes
can create a need to adapt security mechanisms or the
parameters of the application.

208

III/6 III/7

Similarly a value for RiskForIntegrity measurement can
be calculated by utilising the same asset value, i.e. critical.
However, the threat likelihood (Tl) value for integrity risks
differs from confidentiality because there has been a
possibility that some untrusted third party device has
manipulated sensor values before the gardener arrived. In 0it
is defined that untrusted agent in the environment increases
Ia value with 2 levels. Thus, Tl increases from the first level
to the third level, i.e. to remote level. Hence, utilising
equation 2 RiskForIntegrity measurement gets value 28 as
follows.

Remote (0.4) * Critical (70) = Moderate level (28)

Based on these calculations, the gardener’s application
makes a decision to use hash function (MD5) in
communication to ensure integrity, but without encryption
because the RiskForConfidentiality was below 10, i.e. in the
low level. Utilisation of MD5 hash function decreases Tl
value to level 1 and ensures that RiskForIntegrity value also
decrease to the low level, which was required. The upper
sequence diagram in Fig. 5 shows these start-up adaptation
actions.

B. Run-time Phase Adaptation
In the second phase, the retail area of the greenhouse

opens and customers arrive to the greenhouse, causing a
need for run-time adaptation. The monitoring action
recognises that the environment context changes due to these
customers and their mobile devices joining to the greenhouse
smart space. The required security does not change because

the context change comes from environment. However, the
arriving customers cause the value of the
RiskForConfidentiality measurement to increase. This is
because customers’ mobile devices are regarded as untrusted
agents, i.e., an increasing action (Ia) in equation 3. Tl value
increases from the first level to the third level and asset value
Av remains at the critical level – as described earlier. Using
equation 1 RiskForConfidentiality measurement reveals that
risk level is raised to the moderate level. Hence, the required
confidentiality level is no longer reached – causing a need to
run-time phase adaptation.

Next, retrieval of supporting mechanisms and control
analysis actions are performed. It is also possible to use the
security mechanisms list retrieved earlier, in the start-up
phase, but it may contain mechanisms already cracked. In
this phase, the control analysis action returns two separated
lists, i.e. applicable mechanisms (AES) and currently used
mechanisms (MD5). Based on this, AES encryption with a
key length of 128 bits is selected for ensuring confidentiality.
TABLE III. showed that this mechanism decreases Tl value
three levels, which is enough to reaching risk level low. The
lower sequence diagram in Fig. 5 shows the run-time phase
adaptation.

The case example showed that it is possible to adapt an
application both at the start-up and run-time phases. The
security monitoring is able to detect changes in the current
security level by means of measuring. Thus, adaptation is
performed when required, which ensures selection of the
optimal security mechanism.

Gardener's application SIB Security Monitor Sensor agentCustomer's device

Join

RiskForConfidentiality 28

Context change

Adaptation at run-time

Query sensor value with AES

Sensor value3 (AES)

Sensor value3 (AES)

Gardener's application SIB Security Monitor Sensor agent

Value1 (no security)

Join

RiskForConfidentiality 7

RiskForIntegrity 28

Start-up adaptation

Query sensor value with MD5

Value2 (MD5)

Value2 (MD5)

Figure 5. Sequence diagrams for start-up phase and run-time pahse adaptation.

210

Figure 3. Adaptation block diagram

V. CASE EXAMPLE

We tested our run-time adaptation with a greenhouse
demonstration [24]. The demonstrator does not cover the
whole adaptation presented in the previous section, i.e.
automatic requirements elicitation is not yet implemented –
which is required when usage context changes. However,
start-up and run-time adaptation is built with the above
described ontology and measurements, and changes in the
environment context. Therefore, demonstrator measures
requirements fulfilment and adapts application accordingly.
The smart greenhouse demonstrator contains a miniature
greenhouse with several sensors and actuators. In addition,
the demonstrator contains two stakeholder groups, i.e. a
gardener and the customers of the greenhouse. The run-time
adaptation is performed in the gardener application, running
in a mobile device. Hence, gardener’s device uses security
mechanisms only when needed, and thus, is able to save
resources.

The demonstrator is built upon the Smart-M3 platform
[25] – intended to establish smart spaces where devices can
use information and its semantics. The main concepts in the
Smart-M3 are SIB (Semantic Information Broker) and
agents. SIB mediates information between agents which
produce and consume information. In other words, agents do
not communicate directly with each other. In the
demonstrator, SIB is running in a Linux laptop offering a
wireless TCP connection for agents.

A. Start-up Phase Adaptation
Firstly, a gardener arrives at the greenhouse, which is his

place of work. The greenhouse smart space authenticates the
gardener and assigns him worker privileges. Thus, the
gardener is able to look at sensor values from the greenhouse
and to change actuator states. The gardener performs these
actions with his mobile device, Nokia N810 Internet tablet,
containing the gardener’s application implemented by
Python – user interface is presented in Fig. 4. The first
security adaptation takes place immediately when the
gardener receives his worker privileges and joins the
greenhouse smart space, i.e. security adaptation at start-up

phase. The adaptation goes as presented in Fig. 3 – thus the
required securities and levels are first decided. The
application is intended for working purposes. Therefore, both
confidentiality and integrity are critical security requirements
and related risk levels have to be in the low level. For these
requirements, the security ontology returns the following list
of mechanisms for the gardener’s application: AES or DES
for confidentiality and MD5 for integrity. However, control
analysis reveals that the gardener’s application does not
support DES encryption, and thus the applicable mechanisms
are AES and MD5.

The final thing before adaptation is security measuring –
based on measurements presented in section 3. This moment,
the greenhouse smart space contains only trusted agents, i.e.
agents for sensors and actuators. Thus, threat likelihood
variable Tl – related to confidentiality – in equation 3
remains in level 1 (incredible) because environment does not
contain any increasing actions (Ia). However, the
consequences of possible security breaches might be
remarkable harmful to the gardener or the greenhouse, and
thus, the severity of consequences (Asset Value Av) is in a
critical level, when compared to TABLE I. With these values
we get following RiskForConfidentiality measurement, as
TABLE I. shows:

Incredible (0.1) * Critical (70) = Low level (7)

Figure 4. Gardener application in Nokia N810

209

III/7

Similarly a value for RiskForIntegrity measurement can
be calculated by utilising the same asset value, i.e. critical.
However, the threat likelihood (Tl) value for integrity risks
differs from confidentiality because there has been a
possibility that some untrusted third party device has
manipulated sensor values before the gardener arrived. In 0it
is defined that untrusted agent in the environment increases
Ia value with 2 levels. Thus, Tl increases from the first level
to the third level, i.e. to remote level. Hence, utilising
equation 2 RiskForIntegrity measurement gets value 28 as
follows.

Remote (0.4) * Critical (70) = Moderate level (28)

Based on these calculations, the gardener’s application
makes a decision to use hash function (MD5) in
communication to ensure integrity, but without encryption
because the RiskForConfidentiality was below 10, i.e. in the
low level. Utilisation of MD5 hash function decreases Tl
value to level 1 and ensures that RiskForIntegrity value also
decrease to the low level, which was required. The upper
sequence diagram in Fig. 5 shows these start-up adaptation
actions.

B. Run-time Phase Adaptation
In the second phase, the retail area of the greenhouse

opens and customers arrive to the greenhouse, causing a
need for run-time adaptation. The monitoring action
recognises that the environment context changes due to these
customers and their mobile devices joining to the greenhouse
smart space. The required security does not change because

the context change comes from environment. However, the
arriving customers cause the value of the
RiskForConfidentiality measurement to increase. This is
because customers’ mobile devices are regarded as untrusted
agents, i.e., an increasing action (Ia) in equation 3. Tl value
increases from the first level to the third level and asset value
Av remains at the critical level – as described earlier. Using
equation 1 RiskForConfidentiality measurement reveals that
risk level is raised to the moderate level. Hence, the required
confidentiality level is no longer reached – causing a need to
run-time phase adaptation.

Next, retrieval of supporting mechanisms and control
analysis actions are performed. It is also possible to use the
security mechanisms list retrieved earlier, in the start-up
phase, but it may contain mechanisms already cracked. In
this phase, the control analysis action returns two separated
lists, i.e. applicable mechanisms (AES) and currently used
mechanisms (MD5). Based on this, AES encryption with a
key length of 128 bits is selected for ensuring confidentiality.
TABLE III. showed that this mechanism decreases Tl value
three levels, which is enough to reaching risk level low. The
lower sequence diagram in Fig. 5 shows the run-time phase
adaptation.

The case example showed that it is possible to adapt an
application both at the start-up and run-time phases. The
security monitoring is able to detect changes in the current
security level by means of measuring. Thus, adaptation is
performed when required, which ensures selection of the
optimal security mechanism.

Gardener's application SIB Security Monitor Sensor agentCustomer's device

Join

RiskForConfidentiality 28

Context change

Adaptation at run-time

Query sensor value with AES

Sensor value3 (AES)

Sensor value3 (AES)

Gardener's application SIB Security Monitor Sensor agent

Value1 (no security)

Join

RiskForConfidentiality 7

RiskForIntegrity 28

Start-up adaptation

Query sensor value with MD5

Value2 (MD5)

Value2 (MD5)

Figure 5. Sequence diagrams for start-up phase and run-time pahse adaptation.

210

III/8 III/9

REFERENCES

[1] H. Hinton, C. Cowan, L. Delcambre and S. Bowers. "SAM: Security
Adaptation Manager," Proceedings of 15th Annual Computer Security
Applications Conference 1999 (ACSAC '99), pp. 361-370, 1999.
[2] M. Alia and M. Lacoste. "A QoS and security adaptation model for
autonomic pervasive systems," 32nd Annual IEEE International
Computer Software and Applications Conference, COMPSAC 2008, pp.
943-948, 2008.
[3] C. J. Lamprecht and A. P. A. van Moorsel. "Runtime Security
Adaptation Using Adaptive SSL," Dependable Computing, 2008. PRDC
'08. 14th IEEE Pacific Rim International Symposium, pp. 305-312,
2008.
[4] C. J. Lamprecht and A. P. A. van Moorsel. "Adaptive SSL: Design,
Implementation and Overhead Analysis," First International Conference
on Self-Adaptive and Self-Organizing Systems, 2007. SASO '07., pp.
289-294, 2007.
[5] V. Myllärniemi, M. Raatikainen and T. Männistö. "KumbangSec: An
approach for modelling functional and security variability in software
architectures," First International Workshop on Variability Modelling of
Software-Intensive Systems, pp. 61-70, 2007.
[6] ISO/IEC 9126-1:2001. Software Engineering - Product Quality -
Part 1: Quality Model. 2001,
[7] A. Avižienis, J. -. Laprie, B. Randell and C. Landwehr, "Basic
concepts and taxonomy of dependable and secure computing," IEEE
Transactions on Dependable and Secure Computing, vol. 1, pp. 11-33,
2004.
[8] ISO/IEC 15408-1:2009, Common Criteria for Information
Technology Security Evaluation - Part 1: Introduction and General
Model. International Organization of Standardization, 2009,
[9] G. Stoneburner, A. Goguen and A. Feringa. "Risk management guide
for information technology systems," Special Publication 800-30, 2002.
[10] G. Chen and D. Kotz. "A Survey of Context-Aware Mobile
Computing Research," Technical Report TR2000-3812000.
[11] A. Evesti, E. Ovaska and R. Savola, "From security modelling to
run-time security monitoring," European Workshop on Security in
Model Driven Architecture (SECMDA), pp. 33-41, 23 - 26 Jun. 2009.
2009.
[12] M. Matinlassi and E. Niemelä. "The impact of maintainability on
component-based software systems," 29th Euromicro Conference, pp.
25-32, 2003.
[13] J. Zhou. "Knowledge Dichotomy and Semantic Knowledge
Management," Industrial Applications of Semantic Web, pp. 305-316,
2005.
[14] C. Blanco, J. Lasheras, R. Valencia-García, E. Fernández-Medina,
A. Toval and M. Piattini. "A systematic review and comparison of
security ontologies," 3rd International Conference on Availability,
Security, and Reliability (ARES 2008), pp. 813-820, 2008.
[15] B. Tsoumas and D. Gritzalis. "Towards an Ontology-based Security
Management," 20th Advanced Information Networking and Applications
2006 (AINA 2006), pp. 985-992, 2006.
[16] P. Savolainen, E. Niemelä and R. Savola. "A taxonomy of
information security for service centric systems," 33rd EUROMICRO
Conference on Software Engineering and Advanced Applications (SEAA
2007), pp. 5-12, 2007.
[17] G. Denker, L. Kagal and T. Finin. "Security in the Semantic Web
using OWL," Information Security Technical Report 10(1), pp. 51-58.
2005.
[18] A. Kim, J. Luo and M. Kang. "Security Ontology for annotating
resources," LNCS, vol. 3761, pp. 1483-1499, 2005.
[19] A. Herzog, N. Shahmehri and C. Duma. "An ontology of
information security," Techniques and Applications for Advanced
Information Privacy and Security: Emerging Organizational, Ethical,
and Human Issues pp. 278-301. 2009.
[20] R. M. Savola and H. Abie. "On-Line and off-line security
measurement framework for mobile ad hoc networks," Journal of
Networks, 4(7), pp. 565-579, 2009.

[21] D. S. Herrmann. Complete Guide to Security and Privacy Metrics:
Measuring Regulatory Compliance, Operational Resilience, and ROI.
2007,
[22] A. Hunstad, J. Hallberg and R. Andersson. "Measuring IT security -
A method based on Common Criteria's security functional
requirements," 5th Annual IEEE System, Man and Cybernetics
Information Assurance Workshop (SMC), pp. 226-233, 2004.
[23] R. J. Anderson. Security Engineering: A Guide to Building
Dependable Distributed Systems. (2nd ed.) 2008,
[24] A. Evesti, M. Eteläperä, J. Kiljander, J. Kuusijärvi, A. Purhonen
and S. Stenudd, "Semantic Information Interoperability in Smart
Spaces," 8th International Conference on Mobile and Ubiquitous
Multimedia (MUM'09), 22 - 25 Nov. 2009.
[25] Smart-M3, http://sourceforge.net/projects/smart-m3/

212

VI. DISCUSSION AND FUTURE WORK

It is possible to find some essential differences when
comparing our approach to the related work mentioned in
the introduction section. There are, however, also a few
similarities. The Security Adaptation Management (SAM)
[1] adapts the used implementation if the current one does
not fulfil the required security. However, the adaptation is
intended to take place in attack and buffer overflow
situations. In some cases, recognising an attack is difficult,
or alternatively, when an attack is recognised it might be
too late to adapt the software. Our approach recognises
security related risks that might cause security breaches,
which makes it possible to operate proactively. SAM uses
adaptation spaces for defining security breaches and their
countermeasures. In our work, this information is stored in
the security ontology by using security requirements and
mechanisms. The adaptation model presented in [2]
concentrates strongly on trade-offs. The presented model
makes it possible to select an application variant that best
satisfies the user preferences in the current context. In this
adaptation model, the user gives the required securities and
their importance levels in user preferences. By contrast,
our approach elicits these requirements from context
information. The adaptive SSL presented by Lamprecht et
al. [3, 4] adapts security mechanisms of the SSL session.
Performance is a trigger for the adaptation. Authors
mention a possibility to use a threat level as a trigger for
adaptation but this area is not covered yet. Naturally, the
adaptive SSL concentrates to adapt security mechanisms
of communication. Thus, it is not able to adapt security
mechanisms used to protect assets in a user device.
Finally, when compared to design time security variability
approaches like [5] it can be noted that the run-time phase
adaptation offers more flexibility, especially in those cases
where all security related requirements cannot be defined
at design-time. As a conclusion, all of these approaches are
intended to select the most suitable security mechanism to
fulfil security requirements in different situations. Thus,
the most significant difference comes from the techniques
used to trigger these adaptations.

Risk based security measurements ensure that our
approach is able to work in different threat situations. In
addition, it is easy to add new security measurements to
the ontology. Moreover, current measurements take an
asset’s value into account. As an example – from our case
study domain – data from a temperature sensor is not
valuable for a customer but might be very important for
the gardener who is making decisions based on this sensor
data. Thus, an asset’s value is thought to be an important
factor in adaptation. The adaptation utilises context
information to observe changes in environment and usage
of the application. At this moment, changes in the
environment context are monitored. However, in the future
we will also monitor the usage context of an application
that is used to elicit security requirements. The security
ontology used in this work is under construction. The
ontology is combined from three separate sources
containing essential parts for the adaptation, such parts as

measurements, mechanisms and supported security
objectives. Nevertheless, additions and refinements are
still needed, especially related to measurements, context
issues, and connections between different concepts. Future
studies will concentrate on security measuring and context
issues and how different contexts affect the required and
achieved securities.

Additional research is also needed in security
measurements and their calibration techniques.
Measurements related to security mechanisms also
facilitate evaluation of how good a particular mechanism
really is – because in this work we were obliged to use
estimated values in calculations. Moreover, it is important
to make performance tests, in order to see how much
memory and CPU consumption our approach demands.
However, the performed case example does not reveal any
major overheads. Also, negotiation techniques between
devices should be taken into account because security
mechanisms used in a communication requires that both
sides support a selected technique. In our case example
gardener’s application and SIB supported same security
mechanisms but sometimes more sophisticated negotiation
techniques will be needed. Applicable solutions for the
negotiations can be found for instance from existing
service matchmaking approaches.

The presented case example is based on the first
laboratory experience. The case example is intended to
give an overview of the applicability of the adaptation
approach and facilitate the future field tests. Currently, we
are implementing the wider demonstrator. The second
demonstrator contains also requirements decision part
based on the usage context of the application. In addition,
the second demonstrator utilises more sophisticated
security measures as a trigger for an adaptation action.
Therefore, the results from the second demonstrator offer
valuable input for the evaluations related to feasibility of
adaptation decisions and performance overhead.

VII. CONCLUSIONS

In this work we presented our run-time security
adaptation approach that utilises security ontology and
measurements. The high level risk measurements for
confidentiality and integrity are presented. Adaptation
takes place either at an application’s start-up or during the
run-time phase. In addition, adaptation is performed at the
mechanism and parameter levels, which is essential for
many security mechanisms. The designed security
ontology supports the adaptation approach and offers a
possibility for future changes and extensions. The case
example showed that software is able to adapt its security
mechanisms during run-time even in a mobile device.

ACKNOWLEDGMENT

This work has been carried out in the ARTEMIS JU
SOFIA project funded by Tekes, VTT, and the European
Commission.

211

III/9

REFERENCES

[1] H. Hinton, C. Cowan, L. Delcambre and S. Bowers. "SAM: Security
Adaptation Manager," Proceedings of 15th Annual Computer Security
Applications Conference 1999 (ACSAC '99), pp. 361-370, 1999.
[2] M. Alia and M. Lacoste. "A QoS and security adaptation model for
autonomic pervasive systems," 32nd Annual IEEE International
Computer Software and Applications Conference, COMPSAC 2008, pp.
943-948, 2008.
[3] C. J. Lamprecht and A. P. A. van Moorsel. "Runtime Security
Adaptation Using Adaptive SSL," Dependable Computing, 2008. PRDC
'08. 14th IEEE Pacific Rim International Symposium, pp. 305-312,
2008.
[4] C. J. Lamprecht and A. P. A. van Moorsel. "Adaptive SSL: Design,
Implementation and Overhead Analysis," First International Conference
on Self-Adaptive and Self-Organizing Systems, 2007. SASO '07., pp.
289-294, 2007.
[5] V. Myllärniemi, M. Raatikainen and T. Männistö. "KumbangSec: An
approach for modelling functional and security variability in software
architectures," First International Workshop on Variability Modelling of
Software-Intensive Systems, pp. 61-70, 2007.
[6] ISO/IEC 9126-1:2001. Software Engineering - Product Quality -
Part 1: Quality Model. 2001,
[7] A. Avižienis, J. -. Laprie, B. Randell and C. Landwehr, "Basic
concepts and taxonomy of dependable and secure computing," IEEE
Transactions on Dependable and Secure Computing, vol. 1, pp. 11-33,
2004.
[8] ISO/IEC 15408-1:2009, Common Criteria for Information
Technology Security Evaluation - Part 1: Introduction and General
Model. International Organization of Standardization, 2009,
[9] G. Stoneburner, A. Goguen and A. Feringa. "Risk management guide
for information technology systems," Special Publication 800-30, 2002.
[10] G. Chen and D. Kotz. "A Survey of Context-Aware Mobile
Computing Research," Technical Report TR2000-3812000.
[11] A. Evesti, E. Ovaska and R. Savola, "From security modelling to
run-time security monitoring," European Workshop on Security in
Model Driven Architecture (SECMDA), pp. 33-41, 23 - 26 Jun. 2009.
2009.
[12] M. Matinlassi and E. Niemelä. "The impact of maintainability on
component-based software systems," 29th Euromicro Conference, pp.
25-32, 2003.
[13] J. Zhou. "Knowledge Dichotomy and Semantic Knowledge
Management," Industrial Applications of Semantic Web, pp. 305-316,
2005.
[14] C. Blanco, J. Lasheras, R. Valencia-García, E. Fernández-Medina,
A. Toval and M. Piattini. "A systematic review and comparison of
security ontologies," 3rd International Conference on Availability,
Security, and Reliability (ARES 2008), pp. 813-820, 2008.
[15] B. Tsoumas and D. Gritzalis. "Towards an Ontology-based Security
Management," 20th Advanced Information Networking and Applications
2006 (AINA 2006), pp. 985-992, 2006.
[16] P. Savolainen, E. Niemelä and R. Savola. "A taxonomy of
information security for service centric systems," 33rd EUROMICRO
Conference on Software Engineering and Advanced Applications (SEAA
2007), pp. 5-12, 2007.
[17] G. Denker, L. Kagal and T. Finin. "Security in the Semantic Web
using OWL," Information Security Technical Report 10(1), pp. 51-58.
2005.
[18] A. Kim, J. Luo and M. Kang. "Security Ontology for annotating
resources," LNCS, vol. 3761, pp. 1483-1499, 2005.
[19] A. Herzog, N. Shahmehri and C. Duma. "An ontology of
information security," Techniques and Applications for Advanced
Information Privacy and Security: Emerging Organizational, Ethical,
and Human Issues pp. 278-301. 2009.
[20] R. M. Savola and H. Abie. "On-Line and off-line security
measurement framework for mobile ad hoc networks," Journal of
Networks, 4(7), pp. 565-579, 2009.

[21] D. S. Herrmann. Complete Guide to Security and Privacy Metrics:
Measuring Regulatory Compliance, Operational Resilience, and ROI.
2007,
[22] A. Hunstad, J. Hallberg and R. Andersson. "Measuring IT security -
A method based on Common Criteria's security functional
requirements," 5th Annual IEEE System, Man and Cybernetics
Information Assurance Workshop (SMC), pp. 226-233, 2004.
[23] R. J. Anderson. Security Engineering: A Guide to Building
Dependable Distributed Systems. (2nd ed.) 2008,
[24] A. Evesti, M. Eteläperä, J. Kiljander, J. Kuusijärvi, A. Purhonen
and S. Stenudd, "Semantic Information Interoperability in Smart
Spaces," 8th International Conference on Mobile and Ubiquitous
Multimedia (MUM'09), 22 - 25 Nov. 2009.
[25] Smart-M3, http://sourceforge.net/projects/smart-m3/

212

http://sourceforge.net/projects/smart-m3/

PUBLICATION IV

Knowledge based
quality-driven architecture

design and evaluation

In: Journal of Information and Software
Technology, Vol. 52, No. 6, pp. 577–601.

Copyright 2010 Elsevier.
Reprinted with permission from the publisher.

IV/1

IV/1

Knowledge based quality-driven architecture design and evaluation

Eila Ovaska *, Antti Evesti, Katja Henttonen, Marko Palviainen, Pekka Aho
VTT Technical Research Centre of Finland, Kaitoväylä 1, 90570 Oulu, Finland

a r t i c l e i n f o

Article history:
Received 3 July 2009
Received in revised form 16 November 2009
Accepted 21 November 2009
Available online 6 December 2009

Keywords:
Quality attribute
Model-driven development
Software architecture
Ontology
Evaluation
Tool

a b s t r a c t

Modelling and evaluating quality properties of software is of high importance, especially when our every
day life depends on the quality of services produced by systems and devices embedded into our sur-
roundings. This paper contributes to the body of research in quality and model driven software engineer-
ing. It does so by introducing; (1) a quality aware software architecting approach and (2) a supporting
tool chain. The novel approach with supporting tools enables the systematic development of high quality
software by merging benefits of knowledge modelling and management, and model driven architecture
design enhanced with domain-specific quality attributes. The whole design flow of software engineering
is semi-automatic; specifying quality requirements, transforming quality requirements to architecture
design, representing quality properties in architectural models, predicting quality fulfilment from archi-
tectural models, and finally, measuring quality aspects from implemented source code. The semi-auto-
matic design flow is exemplified by the ongoing development of a secure middleware for peer-to-peer
embedded systems.

� 2009 Elsevier B.V. All rights reserved.

1. Introduction

Systems and devices embedded into our everyday life are soft-
ware intensive systems that embody service orientation and pro-
duce software services upon which our quality of life, e.g. security
and safety depend. Therefore, it is extremely important that manu-
facturers and service providers who produce software based solu-
tions take care that their development processes are properly
facilitated to produce services of high quality. Quality is a termwith
multi-dimensional meaning, which is fully understood only when
its context has been specified. Quality of Service (QoS) has a tradi-
tional meaning as a property of communication technologies, i.e.
throughput, latency, jitter, error rate, availability, and network
security as its sub-characteristics. In the context of service-oriented
architectures QoS is defined as dependability (including availabil-
ity, reliability, security, and safety), maintainability, usability and
scalability [60]. From the end-user point of view, QoS is the degree
to which an executed service meets the quality requirements set by
a user. Thus, QoS quantifies service fitness based on the collective
behaviour of a composite of services [48]. From service develop-
ment point of view, QoS defines a set of quality attributes that a par-
ticular service has to fulfil. Thus, quality attributes (QAs) defined in
the QoS specification of a service system have to be dealt in each
software engineering phase; in requirements specification, archi-
tecture design and implementation.

When talking about quality, one needs to define what quality is
and why it is required. ‘What’ gives the explicit definition of re-
quired quality properties. ‘Why’ specifies the context where the
quality property definition is understandable and complete. For
example, when a customised product is designed, the context
can be clearly specified because the quality requirements of all
stakeholders are defined. The situation is different as the scope is
broad. For example, in the case of a cross-domain architecture only
those quality requirements that are common for all domains can be
defined explicitly. However, extensive reuse of models and getting
remarkable cost savings are possible only if quality requirements
have been explicitly defined and represented in models.

There are three main approaches for handling quality properties
in designs.

Ontology orientation focuses on representing, structuring and
managing topic knowledge shared across people, organizations,
computers and software [17]. Several methods for ontology devel-
opment exist, e.g. METHONTOLOGY [24], and a set of languages can
be applied to represent knowledge in a machine readable format,
such as eXtensible Markup Language (XML) [9], Resource Defini-
tion Framework (RDF) [32], and Web Ontology Language (OWL)
[51]. Web Ontology Language for Services (OWL-S) [5] is a specific
description language for describing a service ontology.

Software architecture design based on generic modelling
technologies addresses Model Driven Architecture [55], Unified
Modelling Language (UML) [8] as a common modelling language
and dedicated transformation languages for describing transforma-
tion rules. Three types of transformation languages are: the Query/

0950-5849/$ - see front matter � 2009 Elsevier B.V. All rights reserved.
doi:10.1016/j.infsof.2009.11.008

* Corresponding author. Tel.: +358 20 722 111; fax: +358 8 551 2320.
E-mail address: eila.ovaska@vtt.fi (E. Ovaska).

Information and Software Technology 52 (2010) 577–601

Contents lists available at ScienceDirect

Information and Software Technology

journal homepage: www.elsevier .com/locate / infsof

http://www.elsevier.com/locate/infsof
mailto:eila.ovaska@vtt.fi

IV/2 IV/3

2.2. Quality attribute ontologies

Ontology is a shared knowledge standard or knowledge model
defining primitive concepts, relations, rules and their instances,
which comprise topic knowledge [82]. Ontology can be used for
capturing, structuring, and enlarging explicit and tacit topic knowl-
edge across people, organizations, and computer and software sys-
tems [17]. In this work, we use ontologies to describe and specify
quality attributes in a uniform way. Thus, quality ontologies make
it possible to communicate effectively between stakeholders relat-
ing to quality attributes. Ontological engineering is a branch of
knowledge engineering, viewed as a methodology and toolset for
developing and managing knowledge ontologies.

Quality attribute (QA) ontologies consist of concepts and rela-
tionships for capturing and structuring quality knowledge related
to product quality. Quality of Service ontology defines the concepts
and relationships related to user-experienced quality. QoS ontol-
ogy includes user-related concepts and the quality attributes rele-
vant to services with which the QoS ontology is used. Thus, a set of
QA ontologies is prerequisite for QoS ontology. However, com-
monly accepted QA ontologies do not exist.

QoS/QA specification languages constitute a set of qualifiers in
using QoS/QA ontology, for example, usage range, domain, and
meaning, enabling service customers and providers to unambigu-
ously communicate quality. It is possible to have many QoS speci-
fication languages for a single QoS ontology.

Efforts for defining QA ontologies have resulted in different
kinds of ontologies; e.g. dependability and security ontologies have
been aimed at systems engineering and security service develop-
ment, respectively. However, security ontologies defined for web
service annotation, security mechanisms and information security
are applicable only for their own specific purposes. Moreover, most
of the metrics are process metrics and are not suitable for measur-
ing product-quality or the fitness of service-oriented systems.

FIPA-QoS ontology contains a basic vocabulary for the Quality of
Service. Agents can utilise FIPA-QoS ontology when communicat-
ing about Quality of Service. Thus, agents can query current QoS
values from another agent, or alternatively, an agent can subscribe
a notification when something happens related to the QoS. For in-
stance, the agent can be informed when the throughput value of
the sent real-time data drops below the required QoS value [25].

DAML-QoS ontology constructed by Zhou et al. [80] comple-
ments DAML-S (nowadays OWL-S) ontology to take also a service’s
non-functional aspects into account. DAML-QoS ontology contains
three layers: (1) the QoS profile layer for matchmaking purposes,
(2) the QoS property definition layer for elaborating the property’s
domain and range constraints, and (3) the metric layer for metrics
definition and measurement. DAML-QoS makes web services ma-
chine understandable and especially facilitates service discovery.
For example, the service enquiry returns services that may poten-
tially satisfy the desired QoS requirements. DAML-QoS provides
only integer values for QoS measurements, which are also used
in the QoS measurement framework [81].

Tian et al. [74] have defined a WS-QoS approach for dynamic
QoS-aware web-service selection and monitoring. One part of the
WS-QoS approach is WS-QoSOntology containing definitions for
metric, protocol, and priority. However, this ontology is not stored
in a standard ontology format (e.g. in OWL (Web Ontology Lan-
guage) format). Nevertheless, the metric definition part specifies
direction for each metric, e.g. higher is better, which is an essential
feature for achieving machine reasoning.

Dobson et al. [16] describe a QoS ontology, called QoSOnt, for
service-centric systems in order to enable communication about
QoS between clients, providers, and intermediaries. The QoSOnt
consists of three layers: (1) Base QoS and Units form the lowest
layer, (2) Quality attributes constitute the middle layer, and (3)

Usage Domains model the highest layer. Each layer is a separate
ontology, and third parties can replace these ontologies. The Base
QoS ontology defines basic concepts common for all QAs that can
be utilised in the higher layers. The Attributes layer specifies a
QoS attribute, e.g. for dependability. The dependability ontology
may represent dependability attributes – reliability, availability,
safety, and security – and a set of metrics for them.

Dependable Systems Ontology [29] also called ReSIST ontology
– is an ontology about resilient and dependable systems. The
ontology contains two main classes, i.e. Computer System Vulner-
ability and Dependable Systems Technology. The first class con-
tains threats that can cause a computer system to malfunction or
stop – and the latter class contains features and the research areas
of dependable systems technology. Mostly, this ontology contains
concepts related to dependability and security, but the metrics
are not defined.

2.3. Quality attribute modelling

UML [62] is a de facto standard for modelling software architec-
tures. UML2 offers profiles as an extension mechanism for adapting
the UML metamodel with constructs that are specific to a particu-
lar domain, platform, or method. UML profiles are a natural way to
connect the defined quality requirements to the architectural mod-
els as stereotypes. Usually UML tools support a set of profiles by
default but it is possible to define new domain-specific profiles.

MARTE [65] is a specific UML2 profile for the embedded real-
time systems domain. MARTE includes a set of sub-profiles, one
of which is the non-functional properties sub-profile, intended
for describing quality and other non-functional properties in mod-
els. A specific sub-profile for quality evaluation purposes is also
provided by the Generic Quantitative Analysis Modelling sub-pro-
file that can be used for schedulability analysis and performance
evaluation. As drawbacks, MARTE does not provide a systematic
approach for describing all execution qualities, it has no support
for reusable quality definitions, it is complicated to use with imma-
ture tools and missing guidelines.

Another approach is to extend UML with quality specific ontol-
ogies [57]. In this approach each quality attribute forms a quality
domain that is represented as a separate QA ontology. W3C has
published RDF-S [4] and OWL [51] languages for representing
ontologies. The RDF-S is an extension to RDF that makes it possible
to represent structures, i.e. classes and sub-classes, in the RDF
description. Whereas, OWL is designed for applications that need
to process the content of information. OWL contains three upward
compatible sub-classes: OWL Lite, OWL DL, and OWL Full.

When QA ontologies are represented by using the ontology lan-
guages, they can be merged with application domain-specific
ontologies and used as the integrated ontology of a specific do-
main, e.g. smart houses. Unlike MARTE, this approach manages
the evolution of QA ontologies and application specific ontologies
separately, i.e. both the quality property models and the architec-
tural models are evolvable. Only mappings between quality prop-
erty models and architectural models are case-specific. In the use
of MARTE, quality property definitions are tightly intertwined with
architectural descriptions.

2.4. Model driven architecting and testing

The two major challenges for MDD modelling languages are to
raise the abstraction level and to keep formality high enough to
support formal manipulation. MDD can be categorised into two
schools for tackling the challenge of abstraction: The Extensible
General-Purpose Modelling Language School and The Domain-Spe-
cific Modelling Language (DSML) School. The first one provides a
general-purpose language with domain-specific extensions, e.g.

E. Ovaska et al. / Information and Software Technology 52 (2010) 577–601 579

View/Transformation (QVT) language [61], XML as an intermediate
transformation language and specific action languages.

Domain-specific modelling emphasises the specifics of a do-
main by defining the primitives of an application domain in the
meta-models from which a domain-specific language is derived
[49]. Although UML2 is a generic modelling language, it also pro-
vides constructs to extend the language with domain-specific con-
cepts. UML with the Modelling and Analysis of Real-time and
Embedded systems (MARTE) profile [65] is an example of a generic
language adapted to a specific domain.

These approaches have evolved simultaneously but separately.
All of these approaches aim to model the concepts and properties
in an accurate and reusable way. The main difference is in their fo-
cus; knowledge, software, and domain. However, not one of these
approaches by itself provides a solution to handle different quality
properties systematically from the requirements specification to
the architecture design, and finally to the source code. Ontologies
support knowledge reuse but not architecture modelling. More-
over, no commonly accepted quality ontologies exist. UML as such
lacks of support for modelling quality properties. However, UML
can be extended with the MARTE profile [65], a profile that en-
hance UML2 constructs with the domain-specific quality proper-
ties of embedded systems. However, the profile gives only partial
support for describing quality properties; performance is covered
but, for example, security and reliability are not supported. Fur-
thermore, reuse of modelling constructs of quality properties is
not supported in MARTE.

The objective of this paper is to introduce a systematic approach
to manage quality properties during the whole life cycle of model-
driven development. This paper presents how to manage and trace
quality characteristics from requirements specification to architec-
ture design, how designs can be annotated by the predicted and
measured quality properties gathered by evaluation and testing,
and how these designs can be stored for reuse and shared among
developers. Our approach is a fusion of ontology orientation, model
driven software engineering, and domain-specific modelling ap-
proaches. Our main topic of knowledge is quality and each quality
attribute is understood as a separate sub-domain [84]. Ontology
orientation is used as a means for dealing with and managing qual-
ity knowledge [71]. The model driven approach with UML profiles
makes it possible to use quality knowledge and manage its vari-
ability at the time of development [57,83]. Separation of quality
engineering and software engineering makes models reusable
and evolvable.

Our main contribution is a quality aware software architecting
approach with supporting methods, techniques, and an integrated
tool chain. Some of these methods, techniques, and tools are qual-
ity attribute specific; some of them are generic. However, we argue
that our approach is generic in the sense that the same principles
and the same tool environment with quality attribute specific
extensions can be applied to all quality attributes. The common
principles form the core of our methodology, and the tool environ-
ment is based on an open source platform, Eclipse.1 To our knowl-
edge, this is the first time that this kind of systematic approach with
a supporting tool chain has been introduced.

The main advantages of our approach are; (1) Reusable quality
requirements specifications based on a uniform model of quality
attributes and their metrics. (2) A systematic transformation of
quality requirements to architecture and representing them as
quality properties of architectural model elements. (3) Reuse of
architectural knowledge, i.e. existing styles, patterns, solutions
and test results for architecting and quality evaluation. (4) A tool

chain that supports the whole design flow from quality require-
ments specification to source code testing.

The structure of the paper is as follows: The next section dis-
cusses the earlier research results. Section 3 introduces the quality
aware model driven approach by discussing the main principles of
the approach and justifies the rationale behind them. Section 4
presents a case study introducing how the approach was applied
to engineering a novel quality aware middleware for peer-to-peer
embedded systems. Section 5 discusses the lessons learned by
applying the approach and future research directions. Conclusions
close the paper.

2. Definitions and related work

2.1. Multiple views of quality attributes

Quality can be tackled from different angles [18]: (a) Judg-
mental criteria define quality as the goodness of product. The
definition does not provide a means by which quality can be
measured or assessed as the basis for decision making. (b) Prod-
uct quality is a function of a specific, measurable property, and
differences in quality reflect the differences in the quantity of
some product attribute. (c) User-experienced quality is defined
as fitness for intended use, or how well the product performs
its intended function. (d) Value-based quality is based on the
relationship of usefulness or satisfaction to price. (e) Manufac-
turing-based quality defines quality as the desirable outcome
of engineering and manufacturing practices, or conformance to
specifications. Our focus is on product quality and user-experi-
enced quality.

ISO/IEC defines a software quality model [45] according to six
categories of quality characteristics: functionality, reliability,
usability, efficiency, maintainability, and portability. Quality char-
acteristics are externally or internally observable properties of sys-
tems, also called quality attributes (QA). ISO 9126:2-4 [44] define
quality attribute metrics for three categories; the execution quali-
ties that express themselves in the behaviour of systems and are
observable only at run-time; evolution qualities which are embod-
ied in the structures of systems and are considered in the develop-
ment and maintenance of systems; and quality-in-use metrics
which measure user-experienced quality.

The focal interest of quality attributes for system architectures
is in how quality attributes interact with, and constrain, each
other, and how they affect the achievement of other quality attri-
butes. That is why a set of quality attributes must be evaluated at
the same time and the tradeoffs analysis made for achieving an
optimal quality level. For example, dependability is a concept
that includes four quality attributes: reliability, availability,
safety, and security. Moreover, a new concept ‘trustworthiness’
focuses on a holistic view of quality including the following attri-
butes: correctness, safety, availability, reliability, performance,
security, and privacy. The holistic approach aims at applying
multidimensional optimisation techniques on top of a set of qual-
ity attributes that can have intrinsic and/or extrinsic relation-
ships on other quality attributes. An intrinsic relationship
defines the inherent properties of a quality attribute and their
relations. For example, an attack that harms system’s availability
is dealt as a security threat. Thus, there is an intrinsic relation-
ship between security and availability; an increase in availability
increases security. Extrinsic relationships occur when attributes
behave in opposition. For example, if an increase in reliability de-
creases performance, the relation between reliability and perfor-
mance is extrinsic. However, the relations between two attributes
do not exist per se but they are rather properties of system archi-
tecture [31].1 http://www.eclipse.org.

578 E. Ovaska et al. / Information and Software Technology 52 (2010) 577–601

http://www.eclipse.org

IV/3

2.2. Quality attribute ontologies

Ontology is a shared knowledge standard or knowledge model
defining primitive concepts, relations, rules and their instances,
which comprise topic knowledge [82]. Ontology can be used for
capturing, structuring, and enlarging explicit and tacit topic knowl-
edge across people, organizations, and computer and software sys-
tems [17]. In this work, we use ontologies to describe and specify
quality attributes in a uniform way. Thus, quality ontologies make
it possible to communicate effectively between stakeholders relat-
ing to quality attributes. Ontological engineering is a branch of
knowledge engineering, viewed as a methodology and toolset for
developing and managing knowledge ontologies.

Quality attribute (QA) ontologies consist of concepts and rela-
tionships for capturing and structuring quality knowledge related
to product quality. Quality of Service ontology defines the concepts
and relationships related to user-experienced quality. QoS ontol-
ogy includes user-related concepts and the quality attributes rele-
vant to services with which the QoS ontology is used. Thus, a set of
QA ontologies is prerequisite for QoS ontology. However, com-
monly accepted QA ontologies do not exist.

QoS/QA specification languages constitute a set of qualifiers in
using QoS/QA ontology, for example, usage range, domain, and
meaning, enabling service customers and providers to unambigu-
ously communicate quality. It is possible to have many QoS speci-
fication languages for a single QoS ontology.

Efforts for defining QA ontologies have resulted in different
kinds of ontologies; e.g. dependability and security ontologies have
been aimed at systems engineering and security service develop-
ment, respectively. However, security ontologies defined for web
service annotation, security mechanisms and information security
are applicable only for their own specific purposes. Moreover, most
of the metrics are process metrics and are not suitable for measur-
ing product-quality or the fitness of service-oriented systems.

FIPA-QoS ontology contains a basic vocabulary for the Quality of
Service. Agents can utilise FIPA-QoS ontology when communicat-
ing about Quality of Service. Thus, agents can query current QoS
values from another agent, or alternatively, an agent can subscribe
a notification when something happens related to the QoS. For in-
stance, the agent can be informed when the throughput value of
the sent real-time data drops below the required QoS value [25].

DAML-QoS ontology constructed by Zhou et al. [80] comple-
ments DAML-S (nowadays OWL-S) ontology to take also a service’s
non-functional aspects into account. DAML-QoS ontology contains
three layers: (1) the QoS profile layer for matchmaking purposes,
(2) the QoS property definition layer for elaborating the property’s
domain and range constraints, and (3) the metric layer for metrics
definition and measurement. DAML-QoS makes web services ma-
chine understandable and especially facilitates service discovery.
For example, the service enquiry returns services that may poten-
tially satisfy the desired QoS requirements. DAML-QoS provides
only integer values for QoS measurements, which are also used
in the QoS measurement framework [81].

Tian et al. [74] have defined a WS-QoS approach for dynamic
QoS-aware web-service selection and monitoring. One part of the
WS-QoS approach is WS-QoSOntology containing definitions for
metric, protocol, and priority. However, this ontology is not stored
in a standard ontology format (e.g. in OWL (Web Ontology Lan-
guage) format). Nevertheless, the metric definition part specifies
direction for each metric, e.g. higher is better, which is an essential
feature for achieving machine reasoning.

Dobson et al. [16] describe a QoS ontology, called QoSOnt, for
service-centric systems in order to enable communication about
QoS between clients, providers, and intermediaries. The QoSOnt
consists of three layers: (1) Base QoS and Units form the lowest
layer, (2) Quality attributes constitute the middle layer, and (3)

Usage Domains model the highest layer. Each layer is a separate
ontology, and third parties can replace these ontologies. The Base
QoS ontology defines basic concepts common for all QAs that can
be utilised in the higher layers. The Attributes layer specifies a
QoS attribute, e.g. for dependability. The dependability ontology
may represent dependability attributes – reliability, availability,
safety, and security – and a set of metrics for them.

Dependable Systems Ontology [29] also called ReSIST ontology
– is an ontology about resilient and dependable systems. The
ontology contains two main classes, i.e. Computer System Vulner-
ability and Dependable Systems Technology. The first class con-
tains threats that can cause a computer system to malfunction or
stop – and the latter class contains features and the research areas
of dependable systems technology. Mostly, this ontology contains
concepts related to dependability and security, but the metrics
are not defined.

2.3. Quality attribute modelling

UML [62] is a de facto standard for modelling software architec-
tures. UML2 offers profiles as an extension mechanism for adapting
the UML metamodel with constructs that are specific to a particu-
lar domain, platform, or method. UML profiles are a natural way to
connect the defined quality requirements to the architectural mod-
els as stereotypes. Usually UML tools support a set of profiles by
default but it is possible to define new domain-specific profiles.

MARTE [65] is a specific UML2 profile for the embedded real-
time systems domain. MARTE includes a set of sub-profiles, one
of which is the non-functional properties sub-profile, intended
for describing quality and other non-functional properties in mod-
els. A specific sub-profile for quality evaluation purposes is also
provided by the Generic Quantitative Analysis Modelling sub-pro-
file that can be used for schedulability analysis and performance
evaluation. As drawbacks, MARTE does not provide a systematic
approach for describing all execution qualities, it has no support
for reusable quality definitions, it is complicated to use with imma-
ture tools and missing guidelines.

Another approach is to extend UML with quality specific ontol-
ogies [57]. In this approach each quality attribute forms a quality
domain that is represented as a separate QA ontology. W3C has
published RDF-S [4] and OWL [51] languages for representing
ontologies. The RDF-S is an extension to RDF that makes it possible
to represent structures, i.e. classes and sub-classes, in the RDF
description. Whereas, OWL is designed for applications that need
to process the content of information. OWL contains three upward
compatible sub-classes: OWL Lite, OWL DL, and OWL Full.

When QA ontologies are represented by using the ontology lan-
guages, they can be merged with application domain-specific
ontologies and used as the integrated ontology of a specific do-
main, e.g. smart houses. Unlike MARTE, this approach manages
the evolution of QA ontologies and application specific ontologies
separately, i.e. both the quality property models and the architec-
tural models are evolvable. Only mappings between quality prop-
erty models and architectural models are case-specific. In the use
of MARTE, quality property definitions are tightly intertwined with
architectural descriptions.

2.4. Model driven architecting and testing

The two major challenges for MDD modelling languages are to
raise the abstraction level and to keep formality high enough to
support formal manipulation. MDD can be categorised into two
schools for tackling the challenge of abstraction: The Extensible
General-Purpose Modelling Language School and The Domain-Spe-
cific Modelling Language (DSML) School. The first one provides a
general-purpose language with domain-specific extensions, e.g.

E. Ovaska et al. / Information and Software Technology 52 (2010) 577–601 579

IV/4 IV/5

neering process and a software engineering process. Knowledge
engineering process focuses on creating and providing knowledge
of quality attributes for the use of the corresponding software engi-
neering process. The aim of these two separate processes is to max-
imise the reuse of the design artefacts produced in the
requirements specification, architecture design and quality evalua-
tion phases. Knowledge engineering and software engineering pro-
cesses have separate activities and the fusion of the results of both
processes is made at the information level by design models. In the
following sections, the three modelling phases are discussed in
more detail phase by phase; modelling quality requirements (Sec-
tion 3.1), representing quality properties in architectural models
(Section 3.2) and evaluating quality fulfilment from models and
code (Section 3.3). The whole modelling process is highly iterative.

Shortcomings identified in one phase cause re-engineering of the
results of the precede phase(s). For example, if required improve-
ments are identified in the evaluation phase, they can cause
changes both in quality requirements, and architecture models.
Thus, iterations may be needed in one or more design activities.

The quality aware modelling process can be tailored for differ-
ent software engineering processes, like Rational Unified Process
[69] and agile processes such as SCRUM [73]. For instance, our ap-
proach covers stakeholders’ involvement and all four lifecycles of
RUP (i.e. inception, elaboration, construction and transition) to
the extent that relates to software architecting. However, our ap-
proach emphasises more the activities of elaboration and construc-
tion than inception and transition. Due to the iterative and
incremental nature of our approach one iteration can include all

Software engineering process
Eliciting quality attribute

knowledge

Formulation QA concepts,
properties and rules

Quering QA ontology

Updating QA requirements

Defining QA requirements

Knowledge engineering process Software engineering process

Modelling architecture

Mapping QA properties

Selecting style & patterns

Select quality attribute for
evaluation based on priority level

Process for evolution qualities Process for execution qualities

Perform evaluation

Select appropriate
evaluation method

Select evaluation method

Prepare for evaluation

Perform calculations

Compare results to
evaluation criteria

Define
 improvements

Priority based

Quality Attribute ontology QA requirements model

Content in the Architectural
Knowledge Base (AKB)

QA annotated
architectural models

Architectural styles

Generic design patterns

QA profiles

Domain specific patterns
Define

Quality
Attribute (QA)

Knowledge engineering process

Fig. 1. Quality aware modelling process.

E. Ovaska et al. / Information and Software Technology 52 (2010) 577–601 581

UML. In the latter, a domain-specific language is defined using
meta-modelling mechanisms and tools [26].

MDA is an OMG initiative designed to provide a standardization
framework for MDD [55]. The three primary goals of MDA are por-
tability, interoperability, and reusability through architectural sep-
aration of concerns. One of its key tenets is direct representation
[7]. Direct representation means using models for representing
problems rather than using models as graphical syntax for pro-
gramming languages. MDA specifies three viewpoints on a system;
a computation independent viewpoint (CIM), a platform indepen-
dent viewpoint (PIM) and a platform specific viewpoint (PSM)
[55]. Models in the context of the MDA Foundation Model [63]
are instances of Meta Object Facility (MOF) meta-models, and
therefore, consist of model elements and links between them. That
is, meta-models in the context of MDA are expressed using MOF.

MDA comprises a set of non-proprietary standards that will
specify interoperable technologies with which to realise model-
driven development with automated transformations [72].
However, not all of these technologies will directly concern the
transformations involved in MDA. Transformation in the context
of MDAmeans transforming anyMOF compatible model to another
MOF compatible model. A common transformation language, MOF
QVT Specification 1.0, was published in April 2008 [61].

Although being the de facto standard and following the recom-
mendation by OMG that the modelling language used for MDA
framework is UML, the alternative is to define DSML. However,
according to the MDA specification, the modelling language must
be MOF compliant [52].

Model-Based Testing (MBT) facilitates software testing by auto-
mating test suite generation and test execution tasks [23]. The MBT
is a black-box approach, applied to binary programs without
source code, to embedded software, and even to hardware devices
[77]. The models used in MBT can focus on modelling the system
under test, or the environment of the system (capturing the ways
in which the system will be used), or both the system and its envi-
ronment [77]. The MBT is used to model the particular structural or
behavioural aspects of a system for defined objectives, assump-
tions, and structures [23]. Thus, the model of the system under
testing serves two purposes [78]: (1) it acts as an oracle for the sys-
tem by encoding the intended behaviour and (2) its structure is
exploited for generating test cases. An oracle is a component that
assigns a pass/fail verdict to each test from the model of a system.
The model used in MBT must be simpler than the system, or at
least easier to check, modify, and maintain but at the same time
the model must be sufficiently precise to serve as a basis for the
generation of ‘‘meaningful” test cases.

MBT starts typically from abstract visual models that are refined
with additional information in order to enable the automatic gen-
eration of testing artefacts. Thus, model-based test generation con-
tains usually the following tasks [77]:

Building an abstract model of the system under test, i.e. the mod-
el needed for test generation may be a little different to the model
needed for other purposes. The abstract model can be just a func-
tional or behavioural model of the system under test, or of the
environment of the system, or of both the system and its
environment.

Validating the model (typically via animation) for detecting gross
errors in the model. If some errors remain in the model, they are
very likely to be detected when the generated tests are run against
the system under test.

Generating abstract tests from the model. The test engineer can
control various parameters to determine which parts of the system
are tested, how many tests are generated, which model coverage
criteria are used etc.

Refining these abstract tests into concrete executable tests by add-
ing concrete details missing from the abstract model. It is usually

performed automatically, after the test engineer specifies a refine-
ment function from the abstract values to some concrete values,
and a concrete code template for each abstract operation.

The following lists the benefits of the MBT: (1) The MBT facili-
tates the creation of behavioural models early in a development
life-cycle, thus exposing ambiguities in the specification and de-
sign [68]. (2) The MBT supports reuse in testing because in contrast
to a test suite, the behaviour models are much easier to update and
reuse in any future testing if the software specification changes
[68], and finally (3) The MBT potentially supports earlier fault
detection and a higher level of coordination between design and
testing activities [23].

The model-driven testing requires a similar structure to MDA to
facilitate, besides the generation of test cases and oracles, the exe-
cution of tests on different target platforms [33]. In order to benefit
from the separation of PIMs and PSMs in the generation and execu-
tion of tests, the strategy of Model-Driven Testing has to refine the
classic three tasks of model-based testing of [33]: (1) the genera-
tion of test cases from models according to a given coverage crite-
rion, (2) the generation of a test oracle to determine the expected
results of a test and (3) the execution of tests in test environments,
possibly also generated from models. Tasks 1 and 2 are platform
independent tasks whereas task 3 takes place on a certain target
platform of the application [33]. Thus, platform specific models
are required in task 3 to generate test environments and to map
platform independent test cases and oracles on the desired plat-
form. For example, a model transformation technique can be used
to generate test cases from a PIM of a software system.

3. Quality aware software architecting

Quality aware software architecting extends model and quality-
driven architecture design and evaluation with the means of a
knowledge engineering discipline in order to increase the use of
existing design knowledge in the development of complex soft-
ware intensive systems. Although some methods support quality
modelling and testing (see Section 2), to our knowledge there are
no approach for quality aware software architecting capable of
managing both the quality knowledge and the architectural knowl-
edge during the construction of a software system. In order to sup-
port quality aware software engineering, we developed a new
quality aware architecting approach that incorporates quality
knowledge modelling and management and quantitative and qual-
itative measurement of software quality in the early verification
and validation phase of architecture design. Making use of Quality
Attribute (QA) ontologies, the supporting tool chain enables soft-
ware architects and quality attribute experts to formally, explicitly,
and coherently conduct architecture modelling and quality attri-
bute modelling in a unified computer-aided environment. As a
benefit of our quality aware software architecting approach is
the fact that it facilitates software developers to: (1) model reus-
able quality requirements for software systems, (2) transform the
modelled quality requirements to the architectural models, (3) re-
use existing design knowledge such as architectural styles, generic
design patterns, and domain-specific patterns to achieve desired
quality goals in software architecture, and finally (4) evaluate that
the desired quality goals are met in the software models and code.
This all helps software developers to improve and keep quality of
software stable; the systematic approach of quality aware archi-
tecting enables to manage both the quality knowledge and the
architectural knowledge during the construction of a software sys-
tem and always use the best knowledge of both design knowledge
areas.

Quality aware modelling process (Fig. 1) has three main phases,
and two of them that focus on modelling have a knowledge engi-

580 E. Ovaska et al. / Information and Software Technology 52 (2010) 577–601

IV/5

neering process and a software engineering process. Knowledge
engineering process focuses on creating and providing knowledge
of quality attributes for the use of the corresponding software engi-
neering process. The aim of these two separate processes is to max-
imise the reuse of the design artefacts produced in the
requirements specification, architecture design and quality evalua-
tion phases. Knowledge engineering and software engineering pro-
cesses have separate activities and the fusion of the results of both
processes is made at the information level by design models. In the
following sections, the three modelling phases are discussed in
more detail phase by phase; modelling quality requirements (Sec-
tion 3.1), representing quality properties in architectural models
(Section 3.2) and evaluating quality fulfilment from models and
code (Section 3.3). The whole modelling process is highly iterative.

Shortcomings identified in one phase cause re-engineering of the
results of the precede phase(s). For example, if required improve-
ments are identified in the evaluation phase, they can cause
changes both in quality requirements, and architecture models.
Thus, iterations may be needed in one or more design activities.

The quality aware modelling process can be tailored for differ-
ent software engineering processes, like Rational Unified Process
[69] and agile processes such as SCRUM [73]. For instance, our ap-
proach covers stakeholders’ involvement and all four lifecycles of
RUP (i.e. inception, elaboration, construction and transition) to
the extent that relates to software architecting. However, our ap-
proach emphasises more the activities of elaboration and construc-
tion than inception and transition. Due to the iterative and
incremental nature of our approach one iteration can include all

Software engineering process
Eliciting quality attribute

knowledge

Formulation QA concepts,
properties and rules

Quering QA ontology

Updating QA requirements

Defining QA requirements

Knowledge engineering process Software engineering process

Modelling architecture

Mapping QA properties

Selecting style & patterns

Select quality attribute for
evaluation based on priority level

Process for evolution qualities Process for execution qualities

Perform evaluation

Select appropriate
evaluation method

Select evaluation method

Prepare for evaluation

Perform calculations

Compare results to
evaluation criteria

Define
 improvements

Priority based

Quality Attribute ontology QA requirements model

Content in the Architectural
Knowledge Base (AKB)

QA annotated
architectural models

Architectural styles

Generic design patterns

QA profiles

Domain specific patterns
Define

Quality
Attribute (QA)

Knowledge engineering process

Fig. 1. Quality aware modelling process.

E. Ovaska et al. / Information and Software Technology 52 (2010) 577–601 581

IV/6 IV/7

effort on information security covered the analysis of the most rel-
evant literature resulting in security taxonomy (Fig. 3) [71]. Fur-
thermore, our QA ontologies contain quality metrics for both
setting target values and for measuring fulfilment of the quality
attribute requirements. These quality metrics are the results of
several iterative design efforts of ours. Both of the defined QA
ontologies are aligned and contain a metric class. The different
metrics, i.e. instances of the metric class, are represented as indi-
viduals under the metric class. Quality metrics use shared proper-
ties, which do not change between QA ontologies. In other words,
each quality metric has the same properties. These properties are:
(1) objective; (2) target, i.e. where the metric can be used; (3)
applicability, i.e. when the metric can be used; (4) one or more for-
mulas; (5) a range value for the measurement; and (6) the optimal
value of the measurement. Fig. 2 presents the content of the metric
class in the reliability ontology as a taxonomy form; a bold line
represents a class, and a numbered thin line means a quality
metric.

Quality metrics were collected mainly from ISO/IEC 9126 [45]
and IEEE 982.1 [38]. Although much effort has been put for quality
standardization, software metrics are still an immature area. Espe-
cially, execution qualities, such as reliability and security, lack of
standard based metrics. Quality standards focus mostly on process
metrics. Furthermore, only a few standard based information secu-
rity metrics were available. Although companies specialised on

security have their proprietary solutions and metrics, they are
not available, do not relate to information security nor are standard
based. The reliability ontology contains 18 metrics (Fig. 2) and the
security ontology (Fig. 3) contains 8 metrics. The standard metrics
of ISO/IEC 9126 and IEEE 982.1 were classified according to the ob-
ject of a measurement. It is also possible to extend the metrics clas-
ses with new ones if the ontology does not provide suitable
metrics. Adaptation by extensions is allowed and needed due to
different business and technical goals of companies. Adaptation
needs are also obvious because of evolution, i.e. changes in busi-
ness and technology cause changes in the QA ontologies. However,
due to the QA ontologies, changes are manageable and made only
in one model. However, if the formula of a metric is changed, it
causes changes to existing architectural models and their realisa-
tions. Such kind of modification is not tolerated.

The security and reliability ontologies categorise metrics to
Strength and Weakness metrics [57,71]. The alignment makes
the metrics easier to understand for architects. The separate QA
ontologies also makes ontologies more evolvable by enabling dif-
ferent QA engineers (and other stakeholders) to refine ontologies
in parallel, necessary if different engineering tasks have to be car-
ried out concurrently in different places. Nevertheless, these sepa-
rate QA ontologies can be merged if needed. The QA ontologies
facilitate knowledge sharing and reuse in the quality requirements
specification phase, which many stakeholders are involved in.

SecurityProperties

Confidentiality

Integrity

Availability

Non-rerpudiation

SecurityThreats

SecurityMeans

SecurityMetrics

SecurityAssets

Faults

Errors

Failures Attacks

Vulnerabilities

ControlMechanisms

SecurityAttributes

FailureResistance

Authentication

AccessControl

AuditTrail

Encryption

Signature

KeyFormat

Protocol

Password

FaultPrevention

FaultTolerance

FaultRemoval ErrorDetection
SystemRecovery

Benchmarking

FaultForecasting

StrengthMetrics

WeaknessMetrics

NormalCaseMetrics

AbnormalCaseMetrics AdversaryWorkMetrics

SurvivabilityMetrics

RiskMetrics

OperLimitationMetrics

Data

Messages

Code

Resources

Security

Fig. 3. A taxonomy of the concepts in the security ontology [71].

E. Ovaska et al. / Information and Software Technology 52 (2010) 577–601 583

design activities; requirements specification, conceptual design,
detailed design, quality evaluation, coding and testing. The first
two design activities, i.e. requirements specification and concep-
tual design, are well defined in the same way as in SCRUM. How-
ever, our approach differs from agile methods by the way of
achieving agility. In SCRUM, agility is achieved by a flexible empir-
ical process that is based on sprint backlogs. Our approach achieves
agility by repeating iteration loops of model based design, priori-
tised evaluation and testing. Therefore, adoption of our approach
for SCRUM needs more tailoring than for RUP. Moreover, our pro-
cess model focuses on technical development of software architec-
ture, not on the management of the whole development work like
RUP and SCRUM.

3.1. Modelling quality requirements

The goal of quality requirements modelling (also called QA
requirements) is to create two models; the QA ontology and the
QA requirements model. The QA ontology captures the knowledge
related to a specific quality attribute and is the result of a specific
knowledge engineering process. The QA knowledge engineering
process has two main phases; (1) QA knowledge is first elicited,
and then (2) QA concepts, properties and rules are formulated. This
information is presented as a QA ontology.

The QA requirements model, produced by a software engineer-
ing process, uses the QA ontology in order to define and update the
QA requirements model that is related to certain products or ser-
vices. As depicted in Fig. 1, both processes result in a model. Thus,
the quality attribute related knowledge is separated from the con-
text where the QA knowledge is used. Our goal is to make it easier
to manage the evolution of both models; QA ontology represents a

commonly accepted understanding of a specific QA domain man-
aged by an organisation or initiative; the QA requirements model
represents customers’ needs and market relevance and therefore,
changes in markets or in customers’ needs reflect upon them. By
following the ‘separation of concerns’ principle, we can make the
QA requirements aligned and reusable. QA ontologies make it pos-
sible to compare the quality properties of products and services
from different suppliers when they apply the standard QA metrics
defined by the QA ontology. Thus, QA metrics can be managed and
reused among a large set of suppliers. The use of QA ontologies as-
sists in the alignment among company boundaries, whereas the QA
requirements model makes the same inside an organisation or/and
application domain by improving efficiency of non-functional
requirements specification.

3.1.1. Defining QA ontologies
In this section, we focus on the QA ontology definition process

presented in the left top corner in Fig. 1. Defining an ontology for
a specific quality attribute requires a broad understanding of the
quality domain in hand. An adequate expert group may be needed
to offer consultation and feedback for the quality engineer. The
quality engineer and expert group should develop the QA ontology
iteratively together in order to ensure that the needed aspects are
taken into account in the QA ontology. Consequently, defining a QA
ontology is a time consuming task, and the final result depends on
the experience of both the quality engineer(s) and the expert
group.

We have defined QA ontologies for reliability and security attri-
butes. These ontologies define the quality attributes in general. The
reliability ontology (Fig. 2) was defined based on an extensive lit-
erature analysis, including mainly books and standards [83]. Our

Fig. 2. The reliability metrics [57].

582 E. Ovaska et al. / Information and Software Technology 52 (2010) 577–601

IV/7

effort on information security covered the analysis of the most rel-
evant literature resulting in security taxonomy (Fig. 3) [71]. Fur-
thermore, our QA ontologies contain quality metrics for both
setting target values and for measuring fulfilment of the quality
attribute requirements. These quality metrics are the results of
several iterative design efforts of ours. Both of the defined QA
ontologies are aligned and contain a metric class. The different
metrics, i.e. instances of the metric class, are represented as indi-
viduals under the metric class. Quality metrics use shared proper-
ties, which do not change between QA ontologies. In other words,
each quality metric has the same properties. These properties are:
(1) objective; (2) target, i.e. where the metric can be used; (3)
applicability, i.e. when the metric can be used; (4) one or more for-
mulas; (5) a range value for the measurement; and (6) the optimal
value of the measurement. Fig. 2 presents the content of the metric
class in the reliability ontology as a taxonomy form; a bold line
represents a class, and a numbered thin line means a quality
metric.

Quality metrics were collected mainly from ISO/IEC 9126 [45]
and IEEE 982.1 [38]. Although much effort has been put for quality
standardization, software metrics are still an immature area. Espe-
cially, execution qualities, such as reliability and security, lack of
standard based metrics. Quality standards focus mostly on process
metrics. Furthermore, only a few standard based information secu-
rity metrics were available. Although companies specialised on

security have their proprietary solutions and metrics, they are
not available, do not relate to information security nor are standard
based. The reliability ontology contains 18 metrics (Fig. 2) and the
security ontology (Fig. 3) contains 8 metrics. The standard metrics
of ISO/IEC 9126 and IEEE 982.1 were classified according to the ob-
ject of a measurement. It is also possible to extend the metrics clas-
ses with new ones if the ontology does not provide suitable
metrics. Adaptation by extensions is allowed and needed due to
different business and technical goals of companies. Adaptation
needs are also obvious because of evolution, i.e. changes in busi-
ness and technology cause changes in the QA ontologies. However,
due to the QA ontologies, changes are manageable and made only
in one model. However, if the formula of a metric is changed, it
causes changes to existing architectural models and their realisa-
tions. Such kind of modification is not tolerated.

The security and reliability ontologies categorise metrics to
Strength and Weakness metrics [57,71]. The alignment makes
the metrics easier to understand for architects. The separate QA
ontologies also makes ontologies more evolvable by enabling dif-
ferent QA engineers (and other stakeholders) to refine ontologies
in parallel, necessary if different engineering tasks have to be car-
ried out concurrently in different places. Nevertheless, these sepa-
rate QA ontologies can be merged if needed. The QA ontologies
facilitate knowledge sharing and reuse in the quality requirements
specification phase, which many stakeholders are involved in.

SecurityProperties

Confidentiality

Integrity

Availability

Non-rerpudiation

SecurityThreats

SecurityMeans

SecurityMetrics

SecurityAssets

Faults

Errors

Failures Attacks

Vulnerabilities

ControlMechanisms

SecurityAttributes

FailureResistance

Authentication

AccessControl

AuditTrail

Encryption

Signature

KeyFormat

Protocol

Password

FaultPrevention

FaultTolerance

FaultRemoval ErrorDetection
SystemRecovery

Benchmarking

FaultForecasting

StrengthMetrics

WeaknessMetrics

NormalCaseMetrics

AbnormalCaseMetrics AdversaryWorkMetrics

SurvivabilityMetrics

RiskMetrics

OperLimitationMetrics

Data

Messages

Code

Resources

Security

Fig. 3. A taxonomy of the concepts in the security ontology [71].

E. Ovaska et al. / Information and Software Technology 52 (2010) 577–601 583

IV/8 IV/9

In real-life, decision paths and tradeoffs are obviously much
more complicated than in the simplified example above. However,
in any situation, the AKB supports architect’s decision making pro-
cess by providing a large amount on information on both general
and domain-specific patterns and styles. The AKB lists a set of
styles or/and patterns that embody the quality attribute(s) the
architect is interested in. The AKD does not make design decisions.
That is the duty of the architect because (s)he only knows the con-
text where the pattern is used. The role of AKB is meant to be
descriptive in its capacity to support the architecting process.
There is a strong tendency in architectural knowledge manage-
ment that SHARK tools are not meant to replace people (e.g. [1]).
Since architecting is essentially an art-form, tools should rather
encourage than limit architect’s creativity [22].

3.2.2. Mapping quality properties to architecture
As explained earlier, the quality property specification defines

quality properties unambiguously for a software system. In order
to benefit from these quality properties they have to be mapped
to the elements of the software architecture. In other words, qual-
ity properties must be connected to the elements of the UML
model.

Quality properties are stored to the UML profile as stereotypes.
Thus, a UML modelling tool is able to handle quality properties like
any other stereotypes. However, making quality properties map-
ping possible to each model element is not reasonable at the mo-
ment, and thus we restricted mappings for component, class, and
object elements. Components are structured hierarchically, and
this structure can be utilised in the quality mappings for defining
the scope of a quality property, i.e. a quality property in the higher
level reflects all lower levels. Although mappings only to compo-
nents, classes and objects are supported so far, the applicability
of stereotypes to associations and interfaces can easily be ex-
tended, if necessary.

In practice, the architect selects a QA profile, e.g. a profile
including security properties, and loads it to the UML model. After
that, the architect is able to map the quality properties to compo-
nent, object and class elements. For instance, the security proper-
ties mentioned earlier can be mapped as follows: use
authentication to the Login component and use access control to
the Data storage component. Thus, QA profiles are used for map-
ping quality properties into architectural elements with UML tool.
Effort required for the quality mappings depends on how specific
quality properties are defined and into which level these will be
mapped in the UML models. Mapping very specific quality proper-
ties for low level components (deep in a component hierarchy) is a
challenging task. However, the experienced software architect is
able to perform this task in the same time when constructing the
architecture with UML tool.

3.3. Model based quality evaluation

The quality aware architecting approach is an iterative and
incremental approach containing three main steps for quality eval-
uation (the bottom part in Fig. 1): (1) The quality attributes prior-
itized with high importance are first evaluated separately, and
thereafter, a tradeoffs analysis is made between them. (2) The
quality attributes with medium importance are then evaluated in
a similar way after the high priority quality requirements are
met. (3) Finally, the qualities, which are ranked to have only low
priority, are evaluated and considered as ‘nice to have’ qualities.

Quality evaluation may focus on evolution qualities or execu-
tion qualities or both. Evolution qualities are evaluated with sce-
nario-based methods, which are mostly qualitative but may also
provide quantitative measurements. Execution qualities require
quantitative prediction and measurement methods. Also simula-

tion methods can be used for evaluating execution qualities but
these methods are not in the scope of this paper.

The bottom part in Fig. 1 presents an overview of the whole
quality evaluation process. The scenario-based methods for evolu-
tion qualities are heavily based on an evaluator’s skills, architec-
tural knowledge base (AKB), i.e. styles, patterns, and earlier
defined scenarios. Supporting tools make the evaluation process
more effective and trustworthy. However, tools are not necessarily
needed for the evaluation of evolution qualities if appropriately
skilled evaluators are available. The situation is totally different
with the execution qualities, where tooling is a prerequisite for
performing evaluations and getting reliable results in time. In spite
of what is evaluated or which method is used, the two last activi-
ties are common; (1) comparing the evaluation results with the
evaluation criteria which were defined based on the quality
requirements set in the requirements specification phase and (2)
making proposals on improvements required in architectural mod-
els and code.

3.3.1. Qualitative quality evaluation
Evolution qualities cannot be measured at run-time. The evalu-

ation of these qualities is based on qualitative, scenario- and mod-
el-based analysis methods, i.e. evaluation scenarios are defined
when quality requirements are defined, the scenarios are taken
into account when architecting and evaluation is based on archi-
tectural models. The IEE (Integrability and Extensibility Evaluation)
method [37] is a good example of this approach. The mains steps in
this kind of evaluation are as follows [37,59]:

3.3.1.1. The scenario categories are created. Firstly, one considers
how a system may evolve in the future and recognises prospective
needs with regard to changing, maintaining and reusing the soft-
ware architecture. Based on this assessment, the categories of eval-
uation scenarios are identified. ‘‘Replacing an existing third party
component” and ‘‘porting to another operating system” could be
mentioned as examples of scenario categories.

3.3.1.2. The evaluation scenarios are defined. Typically, one or two
scenarios are selected to represent each category. For example, a
scenario where the MySQL database is replaced with a new one
could represent the category ‘‘replacing an existing third party
component”. Scenarios may also be weighted by estimating the
probability of occurrence during a certain time period.

3.3.1.3. The defined scenarios are presented in architectural mod-
els. The scenario modelling includes the following tasks: (1) select-
ing an appropriate views and patterns for describing the
architectural changes, (2) defining matching conditions for inter-
face evaluation, and (3) defining assumptions, architectural con-
straints and a design rationale for each view. The result is a
description of an architecture at the point where all figurative
change scenarios have been realised. The description includes a
complete set of views and selected styles and patterns.

3.3.1.4. The effects of the scenarios on architectural elements are
evaluated and reported. The report compares the quality character-
istics of a system to the quality requirements specification. Pro-
posed improvements and identified unsolved problems (if any)
are described and are returned to the architects. This evaluation
should be carried out by someone external to the architecting
team, e.g. an analyst or outside consultant.

The AKB plays an important role in both the scenario modelling
phase and in the evaluation phase. With regard to scenario model-
ling, the AKB helps the architect to select patterns for modelling
the architectural changes, which are required by a scenario. The
scenario models should be created at an early phase of architecture

E. Ovaska et al. / Information and Software Technology 52 (2010) 577–601 585

3.1.2. Defining quality attribute requirements
In this section, we focus on the QA requirements definition pro-

cess presented in the right top corner in Fig. 1. Specifying quality
requirements is a challenging task because different stakeholders
typically understand QAs according to different conventions. By
contrast, the QA ontology defines the quality attribute in a uniform
way; for example, the metric class defines what to measure, where
the metric is applicable, how to use the metric, and what formula
to use. Due to these uniform descriptions, the software architects
can understand the quality attributes in a similar fashion. In addi-
tion, the software architect can enhance his/her knowledge related
to a particular quality attribute by examining the content of the
quality ontology – because the quality ontology contains domain
knowledge of a quality attribute. For example, we defined five
main concepts for the information security (Fig. 3); assets, charac-
teristics, threats, solutions and metrics [71]. From the security
ontology (Fig. 3) the software architect understands that faults, er-
rors, and failures are the main classes of security threats. Further-
more, the architect notices that control mechanisms, control
properties, and failure resistance are the main classes of the security
solutions. Therefore, the architect can specify appropriate quality
requirements for achieving a desirable security level.

The software architect can now derive the quality properties
from the requirements specification. The QA ontology helps in this
task. For example, secure use of a software system may require
usage of both the authentication and the access control mecha-
nisms. Thus, in this case, use authentication is the first and use ac-
cess control is the second quality (security) property of the
software system. These properties are the sub-classes of the control
mechanisms class of the security ontology (Fig. 3).

As said in the previous section, defined quality ontologies con-
tain metrics for setting target values and measuring the fulfilment
of the quality attribute. In practice, these quality metrics are in-
tended for measuring the fulfilment of the quality property. There-
fore, the software architect selects a suitable quality metric for
each quality property and sets a desired target value for it. The
selection of the quality metrics for the properties is an iterative
process in which different stakeholders from business and technol-
ogy development are involved. However, that process is out of the
scope of this paper.

3.2. Representing quality properties in architectural models

Knowledge engineering enriches the quality aware architecture
modelling process (middle part in Fig. 1) in four different ways; (1)
Architectural styles create the generic basis of architectural knowl-
edge, i.e. styles define a set of types of architectures repeatedly ap-
plied in products, upon which architecting is based; (2) Generic
design patterns provide solutions applicable across different appli-
cation domains. (3) Purpose and domain-specific design patterns
provide micro models for adjusting architecture models for specific
purposes, and finally (4) QA profiles make it possible to tune QA
properties further to match the requirements of a specific product
or service. The knowledge storage is defined as the Architectural
Knowledge Base (AKB). All knowledge in AKB is organised in a
way that the styles and patterns are searchable by the name of
the quality attributes they support. Thus, architecting is quality
driven, not functionality driven. The main reason is that quality
requirements influence architecting more than functional ones;
quality requirements define which style to be used as a starting
point, which patterns to use for refining the selected style(s),
where to use the selected patterns, why to use them and not oth-
ers, and which part of architecture need tuning with the QA pro-
files. Functional requirements can be achieved by different
means but in order to fulfil quality requirements only a few or
one option(s) are/is possible. AKB is a repository for reusable mod-

els; thus, reuse is made possible among artefacts of the highest
abstraction level, where it is the most efficient.

AKB provides assistance and guidance for software engineering
process. A tool for searching suitable models (i.e. styles, patterns,
reference models, and domain models) for a particular case in hand
assists in architecture modelling. The tool enables mapping of QA
properties to model elements of the architecture, too. Because,
the use of AKB is case sensitive, both of these tools are semi-auto-
matic. Because the architect has the most relevant information of
the system to be modelled, (s)he has all rights for decision making,
assisted by the AKB and supporting tools.

3.2.1. Quality driven model selection
Quality-driven architecture design relies on the assumption

that evolution qualities are embodied in the architectural struc-
tures of software. Architectural styles and patterns, and also design
patterns, promote different quality attributes. When patterns are
applied in the architecture, quality characteristics of the selected
patterns are reflected to the entire software architecture [50].

AKB provides uniform information about architectural refer-
ence models (e.g. styles and patterns) and their quality character-
istics [50]. The AKB helps software architects to select the most
suitable styles and patterns for achieving the desired quality goals
in a software system [54]. The idea is to move from the ‘‘notion of
architectural styles into the ability to reason based on quality attri-
bute specific models” [50] and thereby improve the quality of
architecture design. In addition, the AKB promotes knowledge
sharing in development teams [58]. The benefits of the knowledge
sharing capacity are perhaps most evident in the case of domain-
specific solutions, since they are often tacit knowledge inside an
organisation [21]. The AKB makes such knowledge explicit and
provides means to effectively maintain, share and accumulate it
[21]. Architecture development becomes faster and more reliable
as there is no need to ‘‘reinvent the wheel” [1,50].

The AKB contains the following basic information on each mod-
el [53,54]: name, alternative names, abstraction level (conceptual/
concrete), type (e.g. pattern/style/reference architecture) and in-
tent, and a list of supported quality attributes and their rationales.
In addition, each reference model is associated with a picture
and a guide, which provides instructions on applying the model
(e.g. application areas, implementation guidelines, consequences,
common problems and related reference models). The models
can be searched from the AKB by any of the mentioned fields.

The AKB is used as a model selection guide when designing a
new architecture from scratch. Similarly, it can assist in transform-
ing architectural models from the existing style to another when
the quality requirements have changed [54]. The architect searches
the AKB according to the desired quality characteristics and selects
patterns on that basis. First, an architect would select an overall
architectural style for the system and then adjust it to specific pur-
poses with generic and/or domain-specific design patterns. In addi-
tion to the quality properties of individual patterns, one also has to
consider how different patterns compose with each other [50]. For
example, let’s assume that modifiability and interoperability are
listed as the primary quality goals of a GUI-intensive software sys-
tem. An architect searches AKB according to these attributes and
limits the search to architectural patterns. The search results show
that Layers, Blackboard, Presentation-Abstraction Control, andModel-
View-Controller patterns support modifiability while the Broker
pattern supports interoperability. The architect then looks closer
at these patterns for more information and makes her decision.
(S)he could select, for example, the combination of Model-View-
Controller and Broker [11]. Model-View-Controller separates the
application logic from the user interface (modifiability) while Bro-
ker would deal the transformation of the application interface to
the properties of the used terminal (portability) [58].

584 E. Ovaska et al. / Information and Software Technology 52 (2010) 577–601

IV/9

In real-life, decision paths and tradeoffs are obviously much
more complicated than in the simplified example above. However,
in any situation, the AKB supports architect’s decision making pro-
cess by providing a large amount on information on both general
and domain-specific patterns and styles. The AKB lists a set of
styles or/and patterns that embody the quality attribute(s) the
architect is interested in. The AKD does not make design decisions.
That is the duty of the architect because (s)he only knows the con-
text where the pattern is used. The role of AKB is meant to be
descriptive in its capacity to support the architecting process.
There is a strong tendency in architectural knowledge manage-
ment that SHARK tools are not meant to replace people (e.g. [1]).
Since architecting is essentially an art-form, tools should rather
encourage than limit architect’s creativity [22].

3.2.2. Mapping quality properties to architecture
As explained earlier, the quality property specification defines

quality properties unambiguously for a software system. In order
to benefit from these quality properties they have to be mapped
to the elements of the software architecture. In other words, qual-
ity properties must be connected to the elements of the UML
model.

Quality properties are stored to the UML profile as stereotypes.
Thus, a UML modelling tool is able to handle quality properties like
any other stereotypes. However, making quality properties map-
ping possible to each model element is not reasonable at the mo-
ment, and thus we restricted mappings for component, class, and
object elements. Components are structured hierarchically, and
this structure can be utilised in the quality mappings for defining
the scope of a quality property, i.e. a quality property in the higher
level reflects all lower levels. Although mappings only to compo-
nents, classes and objects are supported so far, the applicability
of stereotypes to associations and interfaces can easily be ex-
tended, if necessary.

In practice, the architect selects a QA profile, e.g. a profile
including security properties, and loads it to the UML model. After
that, the architect is able to map the quality properties to compo-
nent, object and class elements. For instance, the security proper-
ties mentioned earlier can be mapped as follows: use
authentication to the Login component and use access control to
the Data storage component. Thus, QA profiles are used for map-
ping quality properties into architectural elements with UML tool.
Effort required for the quality mappings depends on how specific
quality properties are defined and into which level these will be
mapped in the UML models. Mapping very specific quality proper-
ties for low level components (deep in a component hierarchy) is a
challenging task. However, the experienced software architect is
able to perform this task in the same time when constructing the
architecture with UML tool.

3.3. Model based quality evaluation

The quality aware architecting approach is an iterative and
incremental approach containing three main steps for quality eval-
uation (the bottom part in Fig. 1): (1) The quality attributes prior-
itized with high importance are first evaluated separately, and
thereafter, a tradeoffs analysis is made between them. (2) The
quality attributes with medium importance are then evaluated in
a similar way after the high priority quality requirements are
met. (3) Finally, the qualities, which are ranked to have only low
priority, are evaluated and considered as ‘nice to have’ qualities.

Quality evaluation may focus on evolution qualities or execu-
tion qualities or both. Evolution qualities are evaluated with sce-
nario-based methods, which are mostly qualitative but may also
provide quantitative measurements. Execution qualities require
quantitative prediction and measurement methods. Also simula-

tion methods can be used for evaluating execution qualities but
these methods are not in the scope of this paper.

The bottom part in Fig. 1 presents an overview of the whole
quality evaluation process. The scenario-based methods for evolu-
tion qualities are heavily based on an evaluator’s skills, architec-
tural knowledge base (AKB), i.e. styles, patterns, and earlier
defined scenarios. Supporting tools make the evaluation process
more effective and trustworthy. However, tools are not necessarily
needed for the evaluation of evolution qualities if appropriately
skilled evaluators are available. The situation is totally different
with the execution qualities, where tooling is a prerequisite for
performing evaluations and getting reliable results in time. In spite
of what is evaluated or which method is used, the two last activi-
ties are common; (1) comparing the evaluation results with the
evaluation criteria which were defined based on the quality
requirements set in the requirements specification phase and (2)
making proposals on improvements required in architectural mod-
els and code.

3.3.1. Qualitative quality evaluation
Evolution qualities cannot be measured at run-time. The evalu-

ation of these qualities is based on qualitative, scenario- and mod-
el-based analysis methods, i.e. evaluation scenarios are defined
when quality requirements are defined, the scenarios are taken
into account when architecting and evaluation is based on archi-
tectural models. The IEE (Integrability and Extensibility Evaluation)
method [37] is a good example of this approach. The mains steps in
this kind of evaluation are as follows [37,59]:

3.3.1.1. The scenario categories are created. Firstly, one considers
how a system may evolve in the future and recognises prospective
needs with regard to changing, maintaining and reusing the soft-
ware architecture. Based on this assessment, the categories of eval-
uation scenarios are identified. ‘‘Replacing an existing third party
component” and ‘‘porting to another operating system” could be
mentioned as examples of scenario categories.

3.3.1.2. The evaluation scenarios are defined. Typically, one or two
scenarios are selected to represent each category. For example, a
scenario where the MySQL database is replaced with a new one
could represent the category ‘‘replacing an existing third party
component”. Scenarios may also be weighted by estimating the
probability of occurrence during a certain time period.

3.3.1.3. The defined scenarios are presented in architectural mod-
els. The scenario modelling includes the following tasks: (1) select-
ing an appropriate views and patterns for describing the
architectural changes, (2) defining matching conditions for inter-
face evaluation, and (3) defining assumptions, architectural con-
straints and a design rationale for each view. The result is a
description of an architecture at the point where all figurative
change scenarios have been realised. The description includes a
complete set of views and selected styles and patterns.

3.3.1.4. The effects of the scenarios on architectural elements are
evaluated and reported. The report compares the quality character-
istics of a system to the quality requirements specification. Pro-
posed improvements and identified unsolved problems (if any)
are described and are returned to the architects. This evaluation
should be carried out by someone external to the architecting
team, e.g. an analyst or outside consultant.

The AKB plays an important role in both the scenario modelling
phase and in the evaluation phase. With regard to scenario model-
ling, the AKB helps the architect to select patterns for modelling
the architectural changes, which are required by a scenario. The
scenario models should be created at an early phase of architecture

E. Ovaska et al. / Information and Software Technology 52 (2010) 577–601 585

IV/10 IV/11

QPE shows (Fig. 5) the content of the metric class from QA
ontology to an architect and enables him/her to inspect the mean-
ings of the metrics. The architect enters the defined quality proper-
ties and selects a metric from the opened ontology for every
quality property. Quality properties are identified by a name, e.g.
R1 and R2, meaning the reliability properties. Each quality property
gets a textual description and a target value as a decimal number.
QPE compares the entered target value and a range of the selected
metric, and asks the architect to change the value if an unsuitable
value is attempted. In addition, the architect can set dependencies
between the defined quality properties, for instance, the reliability
property R1 is dependent of the security property S4. Furthermore,
each quality property gets an importance level (high, medium or
low) and a scope (a set of products/systems, product, service, or
component). These details make it possible to define variable qual-
ity properties for the set of software products. For example, a qual-
ity property might be important to some particular product but not
needed in other products. However, quality variability is out of the

scope of this paper – a more detailed explanation is given in our
earlier paper [57]. Finally, QPE stores the defined quality properties
to the UML profile as stereotypes – containing all the information
entered in QPE. Any Eclipse UML2 [10] compliant tool can now uti-
lise the stored quality profile.

3.4.2. Architecture modelling tools
The Stylebase for Eclipse6 [35] is an open source tool created by

us for browsing and maintaining the Architectural Knowledge Base
(AKB) introduced in Section 3.2.1. The tool provides functions for
browsing and searching the model repository as well as for adding,
deleting, and updating models in the repository. The tool supports
the maintenance of both a client-side local repository accessible by
one architect and a server-side shared repository to be used by a
number of architects in a distributed environment [35]. The models

<<OWL File>>
Quality Ontology

<<UML2 File>>
Architecture Model

<<XML File>>
Usage Profile

TOPCASED UML Tool

Protégé

RAP Tool

ComponentBee

StyleBase

QPE

<<UML2 File>>
Quality Profile

creates

pr
ov

id
e

In
pu

t t
o

<<Design Pattern>>
Architecture Pattern

Input to

creates

uses/creates

Input to

us
es

creates

Input to

M
ea

su
re

d
Po

F

assists

Predicted PoFs

Fig. 4. An integrated tool chain for the quality aware architecting approach.

Fig. 5. Quality Profile Editor (QPE).

6 http://www.stylebase.tigris.org.

E. Ovaska et al. / Information and Software Technology 52 (2010) 577–601 587

development. The scenario models can be stored in the AKB and la-
ter reused in other architecture development projects and/or re-
trieved for analysis purposes. In quality evaluation, the analyst
detects the reference models being used in the architecture (an
existing system architecture and/or scenario models) and then
searches the AKB to see which quality attributes are associated
with these reference models [54]. As mentioned before, the AKB
also contains a wide range of information in using patterns, e.g.
instructions on implementation or tackling with common prob-
lems. As shown in the case study later, these are a good resource
when analyst needs to provide improvement suggestions for the
architecting team.

3.3.2. Quantitative quality evaluation
Methods for quantitative quality evaluations can be categorised

into three groups [15]:
Quantitative measuring techniques – used as part of scenario-

based evaluation methods in order to estimate, for example, risks,
adaptability, and flexibility. The Adaptability Evaluation Method
(AEM) [75] is an example of this kind of method; it assists in the
selection of the optimal architecture that meets the defined adapt-
ability criteria. Evaluation is based on adaptability scenarios, im-
pact analysis, and complexity analysis. The adaptability degree of
the software architecture is calculated based on the results of the
impact and complexity analysis. Equations are explained in detail
in [76].

Prediction methods – by which the quality attributes of the
architectural elements and the whole software system are pre-
dicted based on analytical models. The Reliability and Availability
Prediction (RAP) [39,41] is an example of this kind of method.
The RAP method predicts reliability at the (1) component, (2)
architecture, and (3) system levels. A component-level prediction
is based on the state-based method that predicts a component’s
PoF (Probability of Failure) based on the component’s state dia-
gram transformed to the Markov chain model, i.e. state diagram
containing probabilities for state transitions and PoF values for
each state. From these diagrams component-level prediction calcu-
lates predicted PoF for the component (also called component’s
independent PoF value). The architecture-level reliability predic-
tion is a path-based approach that requires a behaviour model
(i.e. sequence diagrams) of the architecture and the usage profiles
of the system. The method calculates the predicted PoF values for
each execution path and the predicted PoF value for the whole sys-
tem. The calculations are based on the components’ PoF values and
probabilities of transitions in the execution paths. By analysing the
reliabilities of execution paths and the components reliabilities in-
volved in a particular path, the reliability sensitivity points of the
architecture can be identified. The execution order of the paths
has no impact on the system level reliability.

Measurement based methods – use model-driven testing tech-
niques for measuring quality attributes from running systems.
These methods help in predicting the quality of a system, identify-
ing the critical components of a software system, and estimating
the consequences and risks of system failures. The method used
in the ComponentBee [67] is an example of this kind of approach;
it supports unit-level reliability testing that calculates measured
PoF_M values for a component in different execution paths. It is
based on: (1) a test model and (2) a test bed. The test model de-
scribes the expected behaviour for components under testing and
plug-ins that collect, process, or evaluate the raw and trace data
of the dynamic behaviour of the components under test. The test
bed sends input messages, being defined in the use cases, for an
instrumented software component and handles the output mes-
sages that the component delivers. The instrumented component
records raw and trace data regarding its dynamic behaviour. The
PoF_M values are finally calculated from the processed raw and

trace data. The ComponentBee uses the test model and produces
PoF_M values for the software components and tested use cases
based upon the following steps: (1) it processes the recorded raw
and trace data and composes an overall tree presentation for the
concurrent execution paths of the tested components, (2) it recog-
nises the use cases from the overall presentation, (3) it calls the
evaluator plug-ins that are defined in the test model to identify
those components that participate in or cause failures in the recog-
nised use cases, and (4) finally it produces results for the software
components that have participated in the recognised use cases.

3.4. Integrated development environment

The existing tool support for the whole process is presented in
Fig. 4 rounded rectangle means tool and white rectangle represents
exchanged data [19]. In each phase of the process a set of tools are
used; Protégé and Quality Profile Editor (QPE) for modelling quality
requirements, Stylebase for Eclipse and TOPCASED UML tool for
representing quality properties in architectural models; and the
Stylebase for Eclipse, TOCASED UML, Reliability and Availability
Prediction (RAP) and CombonentBee tools that are used for quality
evaluation from models and code. Most of these tools work under
the Eclipse2 which is an open, extensible and well-standardised soft-
ware development environment providing an extensible application
framework upon which software can be build [70]. This section will
present these tools and how they interact and support the whole
process.

3.4.1. Quality specification tools
Suitable tool support is required for a quality ontology defini-

tion (see Section 3.1.1). Our first goal was to find an ontology tool
for the Eclipse. Unfortunately, an appropriate ontology tool was
not available for the Eclipse at the time we were developing the
tool chain. Thus, we had to select a standalone tool for ontology
modelling. We decided to use an open source ontology editor
called Protégé3 for QA ontology definition.

The Protégé is capable of storing ontologies in the OWL format,
and thus, it is possible to replace it with a new ontology editor in
the future. In addition, it is important to note that new versions
of the Protégé tool have been published since we started the tool
chain development. For example, a demo version of the Protégé
that is integrated in the Eclipse environment has already been pub-
lished.4 However, currently the standalone version of the Protégé
ontology tool is used for QA ontology definition, because it is the
most mature open source ontology modelling tool.

A large software system may contain a huge amount of require-
ments related to different QAs (see Section 3.1.2). Each QA require-
ment has to be transformed into one or more quality properties
that the system has to have. Typically this transformation is made
by hand, although tool support is needed in order to structure and
manage these quality properties in an appropriate way. Based on
our knowledge, there exists no such kind of tool thus far. Therefore,
we implemented a tool called QPE (Quality Profile Editor) onto the
Eclipse platform. With this tool, the architect can define and man-
age quality properties. QPE reads an OWL formatted QA ontology
as an input and stores the defined quality properties to a UML pro-
file form as an output. The QA ontology is read into QPE by utilising
the Jena framework.5 Jena is an open source Java framework that of-
fers a programmatic environment, e.g. for manipulating OWL files.
Thus, Jena makes it possible to read the OWL formatted QA ontology
stored by Protégé.

2 http://www.eclipse.org.
3 http://www.protege.com.
4 http://informatics.mayo.edu/LexGrid/index.php?page = protege.
5 http://jena.sourceforge.net/.

586 E. Ovaska et al. / Information and Software Technology 52 (2010) 577–601

http://www.eclipse.org
http://www.protege.com
http://informatics.mayo.edu/LexGrid/index.php?page
http://jena.sourceforge.net/

IV/11

QPE shows (Fig. 5) the content of the metric class from QA
ontology to an architect and enables him/her to inspect the mean-
ings of the metrics. The architect enters the defined quality proper-
ties and selects a metric from the opened ontology for every
quality property. Quality properties are identified by a name, e.g.
R1 and R2, meaning the reliability properties. Each quality property
gets a textual description and a target value as a decimal number.
QPE compares the entered target value and a range of the selected
metric, and asks the architect to change the value if an unsuitable
value is attempted. In addition, the architect can set dependencies
between the defined quality properties, for instance, the reliability
property R1 is dependent of the security property S4. Furthermore,
each quality property gets an importance level (high, medium or
low) and a scope (a set of products/systems, product, service, or
component). These details make it possible to define variable qual-
ity properties for the set of software products. For example, a qual-
ity property might be important to some particular product but not
needed in other products. However, quality variability is out of the

scope of this paper – a more detailed explanation is given in our
earlier paper [57]. Finally, QPE stores the defined quality properties
to the UML profile as stereotypes – containing all the information
entered in QPE. Any Eclipse UML2 [10] compliant tool can now uti-
lise the stored quality profile.

3.4.2. Architecture modelling tools
The Stylebase for Eclipse6 [35] is an open source tool created by

us for browsing and maintaining the Architectural Knowledge Base
(AKB) introduced in Section 3.2.1. The tool provides functions for
browsing and searching the model repository as well as for adding,
deleting, and updating models in the repository. The tool supports
the maintenance of both a client-side local repository accessible by
one architect and a server-side shared repository to be used by a
number of architects in a distributed environment [35]. The models

<<OWL File>>
Quality Ontology

<<UML2 File>>
Architecture Model

<<XML File>>
Usage Profile

TOPCASED UML Tool

Protégé

RAP Tool

ComponentBee

StyleBase

QPE

<<UML2 File>>
Quality Profile

creates

pr
ov

id
e

In
pu

t t
o

<<Design Pattern>>
Architecture Pattern

Input to

creates

uses/creates

Input to

us
es

creates

Input to

M
ea

su
re

d
Po

F

assists

Predicted PoFs

Fig. 4. An integrated tool chain for the quality aware architecting approach.

Fig. 5. Quality Profile Editor (QPE).

6 http://www.stylebase.tigris.org.

E. Ovaska et al. / Information and Software Technology 52 (2010) 577–601 587

http://www.stylebase.tigris.org

IV/12 IV/13

4.1.1. Selects a quality profile folder
The quality properties from profiles in this folder are listed in

‘Dependencies to Other Quality Properties’ group, in order to set
dependencies to the earlier defined properties.

4.1.2. Opens quality ontology
The metrics are shown in the ‘Quality Metrics Browser’ group.
Enters the defined quality properties – by utilising ‘New Quality

Property’ group. The entered quality properties appear to ‘Identi-
fied Quality Properties’ and ‘Dependencies to Other Quality Proper-
ties’ groups.

Connects each of defined quality properties to an appropriate
metric (frommetrics group) and any possible other quality proper-
ties (from dependencies group) – by using the ‘Connect’ button.

Fig. 5 represents a phase when the architect is selecting a qual-
ity metric (Restartability) for the quality property R10 (see Table 2).
Lastly, QPE creates a UML profile and stores the defined quality
properties into it in a stereotype form. When the quality profile
contained all quality properties related to reliability, another qual-
ity profile was created for security properties. Thus, quality profiles
are quality attribute specific. In the architecture modelling phase,
the reliability and security properties are then mapped to UML
models.

SMEPP had 83 initial quality requirements that resulted in over
100 quality properties. The reason is that several quality properties
are derived from one initial quality requirement as seen in Table 2,
where the EM.APP.PER.6 requirement ends up four reliability prop-
erties, measured by different metrics. Thus, by QPE the architect
can refine and manage quality requirements in a systematic way
and provide the results as reusable design artefacts. Moreover,
the architect can later on add new quality properties to the defined
profile or create an entirely new quality profile, if an added
requirement is related to a quality attribute not covered by the
existing profiles.

4.2. Representing quality in architectural models

The TOPCASED tool and UML2 notation were used for modelling
the SMEPP middleware architecture. The architecture was mod-
elled from four different view points (structural, behavioural,
deployment, and development views) and on two levels of abstrac-
tion (conceptual and concrete) in accordance with the QADA�9

(Quality-driven Architecture Design and quality Analysis) methodol-
ogy. The purpose of this chapter is not to present the architectural
design of the SMEPP platform (as already done in [46] and [47]),
nor to explain the details of QADA methodology (as already done,
e.g. in [50]). Instead, we exemplify how quality requirements were
transformed into architectural models as described in Section 3.2.
Firstly, the evolution quality requirements were taken into account
when selecting styles and patterns to be used in the architecture.
Secondly, the execution qualities were mapped into architectural
elements.

In the model selection phase, the Stylebase for Eclipse tool
should be used to search for different design alternatives from
the AKB. As explained earlier, the AKB represents the mappings be-
tween the evolution qualities and design decisions. The architect
searches the AKB by the desired quality attributes and selects pat-
terns and styles on that basis. Thus, the architect still needs design
knowledge in order to make the decision which style or pattern to
select. The AKB helps in making decisions by providing knowledge
on earlier design decisions represented as models but it does not
have intelligence to make design decisions on architect’s behalf.
If it is discovered in the quality evaluation phase that the selection
does not meet the quality requirements, another option is selected
when the architecture is redesigned. Redesign can be made manu-

Table 1
An example of the initial quality requirements of SMEPP.

Req. ID Category Description (from D1.1, D1.3) Related conceptual layer(s) of
MW architecture

Importance Related quality
attribute

HS.APP.MID.11 Middleware non-functional
application

Middleware must be stable enough in all
possible situations (reconfigurability of the
network, disconnection and reconnection of
nodes, different network interfaces, etc.)

Applications and services Reliability
adaptabilityX Extensions and service

model support
High

X SMEPP common services High
X SMEPP enabling services High
X Infrastructure High

Table 2
A set of quality properties and metrics derived from the initial quality requirements.

Requirement ID + description Property ID + description Related metric

REQ.MID.REL.1: The middleware must endure the loss of
communication of some nodes and store the unprocessed
information in the network

R1: The middleware must be able to restore itself in 90% of cases Restorability

REQ.MID.PER.1: The middleware must provide a timely response
of less than 10 s for an alarm generated by a peer (a sensor)

R2: Mean recovery time should be less than 5 s Mean recovery time
R3: Availability should be at least 98% Availability

HS.APP.QoS.14: QoS in the video streaming R4: Availability of the video streaming component should be at least
92%

Availability

HS.APP.MID.11: Middleware must be stable enough in all possible
situations (reconfigurability of the network, disconnection and
reconnection of nodes, different network interfaces, etc.)

R5: Mean time between failures of the middleware should stay
above 12 h.

Mean time between
failure

R6: Middleware should contain mechanisms for breakdown
avoidance for 85% of recognised failure cases

Breakdown avoidance

EM.APP.PER.6: The application must provide data and services in
real-time

R7: Availability of the application should be at least 95% Availability
R8: The application should contain mechanisms for breakdown
avoidance for 80% of recognised failure cases

Breakdown avoidance

R9: Mean down time of the application should be less than 10 s Mean down time
R10: The application should be able to restart in 97% of breakdowns
cases

Restartability

9 QADA is a registered trademark of VTT, http://virtual.vtt.fi/virtual/proj1/projects/
qada/.

E. Ovaska et al. / Information and Software Technology 52 (2010) 577–601 589

are moved between the local and shared repositories with upload
and download commands. Essentially, Stylebase for Eclipse is a
user-interface of the AKB, through which existing models and their
known quality properties can be reused in architecture design.

The architect can search the AKB with the Stylebase, select one
or more reference models, and bring these models into the TOP-
CASED UML tool for further editing [20]. If the architect wants to
add a new reference model into the AKB, either for self-reuse or
for sharing with others, (s)he can export model(s) from TOPCASED
into the Stylebase for Eclipse tool [20]. This is possible, because the
Stylebase for Eclipse stores the model in an XML format that the
TOPCASED tool can read [34].

After selecting one or more reference models from AKB the
architect annotates the architectural models with the appropriate
quality properties by using the defined quality properties stored
as stereotypes in the UML profiles. The mapping of QA properties
is made with the TOPCASED tool. This ensures that QA properties
are available for each architect during the design time and for each
software developer when implementing the software based on
architectural models.

3.4.3. Quality evaluation tools
Fig. 1 showed that quality evaluation contains two separated

processes, evaluation of evolution qualities and evaluation of exe-
cution qualities. From the tool support point of view, Stylebase for
Eclipse concentrates on evolution qualities whereas the Reliability
and Availability Prediction (RAP) and ComponentBee tools concen-
trate on execution qualities.

The Stylebase for Eclipse can also assist in scenario and model-
based qualitative quality evaluation [34]. The analyst detects
which patterns and styles are used in the architecture and uses
the Stylebase for Eclipse to search the AKB for information on
them, e.g. their quality properties or alternative implementation
strategies (see Section 3.3.1). Currently, there is no automatic pat-
tern detection from TOPCASED models, so this part of the task is
heavily dependent on the know-how of the analyst. In addition,
the Stylebase is typically used to retrieve and store scenario mod-
els from/into the AKB. The RAP tool [42] supports RAP method (de-
scribed in Section 3.3.2). The RAP tool reads an architectural model
that contains components’ state diagrams, which are transformed
to the Markov chain models. This transformation is made semi-
automatically; the QA analyser adds the estimated probabilities
of state transitions and PoF values of each state; the RAP tool adds
a separate failure state and calculates new probabilities for state
transitions and finally the independent PoF value for component.
After component-level prediction, the RAP tool performs architec-
ture-level prediction by utilising components’ independent PoF
values and usage profiles. The RAP tool offers an editor for creating
and saving these usage profiles. Finally, the RAP tool calculates a
PoF value for the whole system as mentioned in Section 3.3.2. All
of these predicted PoF values are stored back to the architectural
model as Fig. 4 shows. The main benefits for the architect when
utilising these evaluation tools are: (1) the first evaluation results
are available before implementation phase, (2) the results are
stored in the architectural models (acting as annotations) and (3)
the evaluation can be made from the existing architectural models.

In order to improve the accuracy of reliability prediction results
that the RAP tool produces, it should be possible to test the reliabil-
ity of used existing components and use these measured reliability
(PoF_M) values in an architecture-level reliability evaluation.
Therefore, we use ComponentBee testing tool [20] for measuring
components’ PoF_M values. ComponentBee utilises architecture-
level reliability prediction models, i.e. a usage profile created by
the RAP tool, in unit-level reliability testing. Finally, measured
PoF_M values are stored to the architectural models as Fig. 4
shows. As an iterative manner, the RAP tool re-evaluates the archi-

tecture model by utilising measured PoF_M values. The RAP and
ComponentBee tools are able to exchange information by means
of a UML profile, intended for evaluation results, containing sepa-
rate fields for the estimated, predicted, and measured PoF values.
These fields are attached to the components of the architecture
model.

4. Applying the approach

This section presents how the quality aware architecting ap-
proach was used in the development of a SMEPP middleware.
We address our approach by focusing on modelling and evaluating
quality properties as follows: (1) quality properties are defined for
the SMEPP architecture, (2) a quality aware architecture is then
modelled, and finally (3) a quality evaluation is performed at archi-
tecture and implementation levels focusing on reliability
evaluation.

The SMEPP7 project is a running FP6 project that aims to develop
a secure middleware, called the SMEPP middleware, for embedded
peer-to-peer systems. In peer-to-peer systems, all the elements of
the network are symmetrical, and in most cases, the mechanisms
of communication are based on dynamic ad hoc networks among
peers. Advanced technologies of short distance wireless communica-
tions used in peer-to-peer systems have opened up new areas of
applications with technological challenges. Moreover, peer-to-peer
systems are extremely vulnerable to any type of internal or external
attack. With these concerns in mind, the SMEPP middleware has to
be secure, generic, and highly customizable, allowing for its adapta-
tion to different devices (from PDAs and new generation mobile
phones to embedded sensor actuator systems) and domains (from
critical systems to consumer entertainment or communication).
The generic middleware has to implement (1) new security primi-
tives for the specific attacks in this type of system, (2) a new inter-
action model specific to peer systems, and (3) the necessary
services to support this interaction model. Moreover, a customizable
component framework and the supporting tools are developed for
adapting the middleware to different embedded devices and
networks.

4.1. Modelling quality requirements

First, the initial requirements for the generic middleware were
specified and divided into functional and non-functional catego-
ries. In total, 43 functional and 83 non-functional requirements
were identified. Each requirement was associated with a unique
identifier and mapped into the components and conceptual layers
of the middleware architecture. The importance of a requirement
for each architectural layer was defined and expressed using three
categories: high, medium and low. The related quality attributes
were also identified. Table 1 exemplifies the description of the
non-functional requirements. The entire requirement specification
can be viewed online8.

The initial quality requirements were enhanced as explained in
Section 3.1. We derived quality properties from the initial quality
requirements and selected appropriate metrics for each quality
property. Table 2 shows an example of the derived quality proper-
ties andmetrics related to reliability. As mentioned in Section 3.1.2,
we have two quality ontologies ready at the moment. The reliabil-
ity ontology is used as an example in this case study.

The software architect uses the Quality Profile Editor (QPE)
(Fig. 5) and defines the above-mentioned quality properties to
the quality profile form in the following steps. The architect:

7 http://www.smepp.org/.
8 http://www.smepp.org/Deliverables.aspx.

588 E. Ovaska et al. / Information and Software Technology 52 (2010) 577–601

http://www.smepp.org/
http://www.smepp.org/Deliverables.aspx

IV/13

4.1.1. Selects a quality profile folder
The quality properties from profiles in this folder are listed in

‘Dependencies to Other Quality Properties’ group, in order to set
dependencies to the earlier defined properties.

4.1.2. Opens quality ontology
The metrics are shown in the ‘Quality Metrics Browser’ group.
Enters the defined quality properties – by utilising ‘New Quality

Property’ group. The entered quality properties appear to ‘Identi-
fied Quality Properties’ and ‘Dependencies to Other Quality Proper-
ties’ groups.

Connects each of defined quality properties to an appropriate
metric (frommetrics group) and any possible other quality proper-
ties (from dependencies group) – by using the ‘Connect’ button.

Fig. 5 represents a phase when the architect is selecting a qual-
ity metric (Restartability) for the quality property R10 (see Table 2).
Lastly, QPE creates a UML profile and stores the defined quality
properties into it in a stereotype form. When the quality profile
contained all quality properties related to reliability, another qual-
ity profile was created for security properties. Thus, quality profiles
are quality attribute specific. In the architecture modelling phase,
the reliability and security properties are then mapped to UML
models.

SMEPP had 83 initial quality requirements that resulted in over
100 quality properties. The reason is that several quality properties
are derived from one initial quality requirement as seen in Table 2,
where the EM.APP.PER.6 requirement ends up four reliability prop-
erties, measured by different metrics. Thus, by QPE the architect
can refine and manage quality requirements in a systematic way
and provide the results as reusable design artefacts. Moreover,
the architect can later on add new quality properties to the defined
profile or create an entirely new quality profile, if an added
requirement is related to a quality attribute not covered by the
existing profiles.

4.2. Representing quality in architectural models

The TOPCASED tool and UML2 notation were used for modelling
the SMEPP middleware architecture. The architecture was mod-
elled from four different view points (structural, behavioural,
deployment, and development views) and on two levels of abstrac-
tion (conceptual and concrete) in accordance with the QADA�9

(Quality-driven Architecture Design and quality Analysis) methodol-
ogy. The purpose of this chapter is not to present the architectural
design of the SMEPP platform (as already done in [46] and [47]),
nor to explain the details of QADA methodology (as already done,
e.g. in [50]). Instead, we exemplify how quality requirements were
transformed into architectural models as described in Section 3.2.
Firstly, the evolution quality requirements were taken into account
when selecting styles and patterns to be used in the architecture.
Secondly, the execution qualities were mapped into architectural
elements.

In the model selection phase, the Stylebase for Eclipse tool
should be used to search for different design alternatives from
the AKB. As explained earlier, the AKB represents the mappings be-
tween the evolution qualities and design decisions. The architect
searches the AKB by the desired quality attributes and selects pat-
terns and styles on that basis. Thus, the architect still needs design
knowledge in order to make the decision which style or pattern to
select. The AKB helps in making decisions by providing knowledge
on earlier design decisions represented as models but it does not
have intelligence to make design decisions on architect’s behalf.
If it is discovered in the quality evaluation phase that the selection
does not meet the quality requirements, another option is selected
when the architecture is redesigned. Redesign can be made manu-

Table 1
An example of the initial quality requirements of SMEPP.

Req. ID Category Description (from D1.1, D1.3) Related conceptual layer(s) of
MW architecture

Importance Related quality
attribute

HS.APP.MID.11 Middleware non-functional
application

Middleware must be stable enough in all
possible situations (reconfigurability of the
network, disconnection and reconnection of
nodes, different network interfaces, etc.)

Applications and services Reliability
adaptabilityX Extensions and service

model support
High

X SMEPP common services High
X SMEPP enabling services High
X Infrastructure High

Table 2
A set of quality properties and metrics derived from the initial quality requirements.

Requirement ID + description Property ID + description Related metric

REQ.MID.REL.1: The middleware must endure the loss of
communication of some nodes and store the unprocessed
information in the network

R1: The middleware must be able to restore itself in 90% of cases Restorability

REQ.MID.PER.1: The middleware must provide a timely response
of less than 10 s for an alarm generated by a peer (a sensor)

R2: Mean recovery time should be less than 5 s Mean recovery time
R3: Availability should be at least 98% Availability

HS.APP.QoS.14: QoS in the video streaming R4: Availability of the video streaming component should be at least
92%

Availability

HS.APP.MID.11: Middleware must be stable enough in all possible
situations (reconfigurability of the network, disconnection and
reconnection of nodes, different network interfaces, etc.)

R5: Mean time between failures of the middleware should stay
above 12 h.

Mean time between
failure

R6: Middleware should contain mechanisms for breakdown
avoidance for 85% of recognised failure cases

Breakdown avoidance

EM.APP.PER.6: The application must provide data and services in
real-time

R7: Availability of the application should be at least 95% Availability
R8: The application should contain mechanisms for breakdown
avoidance for 80% of recognised failure cases

Breakdown avoidance

R9: Mean down time of the application should be less than 10 s Mean down time
R10: The application should be able to restart in 97% of breakdowns
cases

Restartability

9 QADA is a registered trademark of VTT, http://virtual.vtt.fi/virtual/proj1/projects/
qada/.

E. Ovaska et al. / Information and Software Technology 52 (2010) 577–601 589

http://virtual.vtt.fi/virtual/proj1/projects/

IV/14 IV/15

ity of the UML tool. Hence, the mapping depends on the experience
of the architect, as mentioned in Section 3.2.2. Some quality prop-
erties from Table 2 relate directly to one particular component,
whereas some are more generic ones and related to several compo-
nents. For instance, quality properties R7, R8, R9, and R10 are
mapped only for Executable SMEPP application component. On the
contrary, the quality property R3 that is related to availability is
mapped to six components, meaning that availability of the whole
middleware requires that availability of all these components is in
the sufficient level. Similarly, other quality properties are mapped
to the components which are responsible for achieving these qual-
ity properties. The resulting architectural description, which con-
tains measurable quality properties as stereotype values of
components, is presented in Fig. 7.

4.3. Model based quality evaluation

The interest of the QAs for a software architecture is in how
they interact with, and constrain, each other, and how they affect
the achievement of other QAs. Therefore, a set of QAs must be han-
dled at the same time and tradeoffs between them calculated and
managed. However, the developers must first ensure that the used
architecture, selected components, and the software system itself
meet the desired quality requirements.

In the following sections, we concentrate on three kinds of eval-
uations; (1) a scenario-based evaluation of evolution qualities, (2) a
prediction-based evaluation of execution qualities, and (3) mea-
surement-based testing. The following sections present how these
evaluations were carried out and how the tool suite worked in the
case in hand.

4.3.1. Qualitative evaluation of evolution qualities
Qualitative, scenario-based evaluation methods are used to as-

sess evolution qualities as explained in Section 3.3. The integrabil-
ity, extensibility and portability of the SMEPP middleware
architecture were evaluated by using such a method, namely IEE
(Integrability and Extensibility Evaluation) method [59]. The pur-
pose of this chapter is not to present evaluation results, nor to de-
scribe the IEE method as already done in [37]. Instead, we briefly
exemplify the evaluation processes and highlight the benefits of
using the Architectural Knowledge Base (AKB) and the related
knowledge management tool, Stylebase for Eclipse.

Firstly, one has to decide which quantitative quality require-
ments are selected for evaluation and derive concrete quality goals
from selected requirements. Quality goals are prioritized so that
the evaluation can start from the most important ones. In essence,
they answer the question how well something is to be achieved.
Secondly, the scenario categories are derived from the quality goals
and at least one change scenario is defined per each scenario cate-
gory. Quality goals and scenarios should be ideally defined at the
same time when the quality requirement specification is written.
In the case SMEPP, this task was performed later, when the tool
chain was taken into use. Table 3 presents a portability related sce-
nario, which is taken as a example herein. The whole process of
determining scenarios and quality goals is throughout explained
in [37].

Once in the example scenario, SMEPP would be ported into a
Mote-class hardware platform for sensors. A sensor is a very tiny
device with extremely constrained resources of memory, battery,
and computing. A sensor could not face the technical problems
arising in the implementation of the whole SMEPP specification
[79], and therefore, a new ‘‘light” version of SMEPP would be re-
quired. SMEPP Light would take the special characteristics of Motes
into account and offer only a minimum set of functionality. In the
scenario modelling phase, the analyst designed the conceptual
architecture of SMEPP Light and modelled it with the TOPCASED
tool. In the beginning, the Stylebase for Eclipse tool was used to
search for reusable scenario models in the architectural knowledge
base (AKB). In this case, suitable scenario models were not found,
and therefore, the conceptual architecture of SMEPP (Fig. 7) was
used as a starting point. The analyst imported the model (Fig. 7)
from Stylebase for Eclipse to the TOPCASED tool and modified it
to create SMEPP Light. Table 4 illustrates the essential differences
between SMEPP and SMEPP Light.

While modelling, the analyst encountered some problems. For
example, SMEPP Light does not support services and its communi-
cation is event based. Therefore, it could not process messages
from conventional SMEPP devices such as PDAs. An adaptor com-
ponent would be needed to enable full communication between
‘‘normal” and ‘‘light” versions of SMEPP. At this point, the analyst
used Stylebase for Eclipse to search for solutions. Firstly, he
searched for a ready solution: someone could have already de-
signed a domain-specific micro-architecture to target this issue.
In this case, there was none. The analyst continued by searching
information on generic patterns (Fig. 8), reading about their appli-
cations and quality consequences. After weighting different op-
tions, the analyst selected the combination of Proxy [11], Adapter
[27] and Forwarder–Receiver [27] patterns to form the basis of
the new adaptor component. The skeletons of these patterns were
dragged-and-dropped from Stylebase for Eclipse into the TOP-
CASED tool and the analyst drew the micro-architecture of the
new component.

At the end of the scenario modelling phase, the ready scenario
models (i.e. the models of SMEPP Light and the adaptor compo-
nent) were exported and saved into the shared repository of the
Stylebase for Eclipse. In addition to being used in analysis, the
models could be reused as a design document later on, i.e. if the
scenario is realised, a ready implementation plan is at hand. In

Table 3
Example definition of a quality goal and related scenario.

Requirement ID + description Quality goal Scenario category Scenario

MID_NON_FUN3: The middleware system
architecture must be implementable on a
variety of heterogeneous operating systems
and hardware platforms

Porting to another platform requires
moderate programming effort and
does not break existing architectural
style(s)

Porting the SMEPP
middleware to a new
operating system and/or
hardware platform

SMEPP is ported into a Mote-class
hardware platform for sensors (and,
consequently, to a TinyOS operating
system)

Table 4
Components of SMEPP and SMEPP light.

High-level components SMEPP SMEPP light

SMEPP API Yes Limited
Group management Yes Yes
Event management Yes Yes
Service management Yes No
Overlay network Yes No
Peer-communication layer Yes Yes
Topology management Yes No
Adaptation layer Yes Yes
Security and crypto services Yes Limited

E. Ovaska et al. / Information and Software Technology 52 (2010) 577–601 591

ally or semi-automatically by exploiting a model transformation
technique [54].

The architecture of the SMEPP middleware was designed by our
partners, who did not use the Stylebase for Eclipse tool (or any
other knowledge base solution) at the time. Design decisions were
based on their own knowledge and experience instead. The pri-
mary architectural styles and patterns were selected as follows
[46,75]: (1) the Layers Pattern [11] and (2) the Microkernel Pattern
[11] to depict the layers of the architectures, (3) General Commu-
nication Middleware (GCM) [66] to solve the adaptive middleware
issues, (4) a component-based architecture paradigm [64] to depict
the architectures, and (5) connectors [12] to depict the relation-
ships between the architecture components. Later on, the Style-

base for Eclipse was used in the quality evaluation of these
decisions.

Execution qualities were made visible in architectural models.
Once initial design decisions had been made, the structure of the
SMEPP middleware was outlined in an UML2 Component Diagram.
The quality profile, which was earlier created with the QPE tool
(see Section 4.1), was opened in the TOPCASED tool. The quality
properties were then mapped into components of the architectural
model as stereotype values of the components, classes and objects.

Fig. 6 presents how an architect browses the imported quality
profile and maps quality properties (saved as UML stereotypes)
into architectural elements. The architect maps these quality prop-
erties to architectural elements by utilising the default functional-

Fig. 6. Mapping quality properties to the components.

Fig. 7. The structural view annotated with quality properties.

590 E. Ovaska et al. / Information and Software Technology 52 (2010) 577–601

IV/15

ity of the UML tool. Hence, the mapping depends on the experience
of the architect, as mentioned in Section 3.2.2. Some quality prop-
erties from Table 2 relate directly to one particular component,
whereas some are more generic ones and related to several compo-
nents. For instance, quality properties R7, R8, R9, and R10 are
mapped only for Executable SMEPP application component. On the
contrary, the quality property R3 that is related to availability is
mapped to six components, meaning that availability of the whole
middleware requires that availability of all these components is in
the sufficient level. Similarly, other quality properties are mapped
to the components which are responsible for achieving these qual-
ity properties. The resulting architectural description, which con-
tains measurable quality properties as stereotype values of
components, is presented in Fig. 7.

4.3. Model based quality evaluation

The interest of the QAs for a software architecture is in how
they interact with, and constrain, each other, and how they affect
the achievement of other QAs. Therefore, a set of QAs must be han-
dled at the same time and tradeoffs between them calculated and
managed. However, the developers must first ensure that the used
architecture, selected components, and the software system itself
meet the desired quality requirements.

In the following sections, we concentrate on three kinds of eval-
uations; (1) a scenario-based evaluation of evolution qualities, (2) a
prediction-based evaluation of execution qualities, and (3) mea-
surement-based testing. The following sections present how these
evaluations were carried out and how the tool suite worked in the
case in hand.

4.3.1. Qualitative evaluation of evolution qualities
Qualitative, scenario-based evaluation methods are used to as-

sess evolution qualities as explained in Section 3.3. The integrabil-
ity, extensibility and portability of the SMEPP middleware
architecture were evaluated by using such a method, namely IEE
(Integrability and Extensibility Evaluation) method [59]. The pur-
pose of this chapter is not to present evaluation results, nor to de-
scribe the IEE method as already done in [37]. Instead, we briefly
exemplify the evaluation processes and highlight the benefits of
using the Architectural Knowledge Base (AKB) and the related
knowledge management tool, Stylebase for Eclipse.

Firstly, one has to decide which quantitative quality require-
ments are selected for evaluation and derive concrete quality goals
from selected requirements. Quality goals are prioritized so that
the evaluation can start from the most important ones. In essence,
they answer the question how well something is to be achieved.
Secondly, the scenario categories are derived from the quality goals
and at least one change scenario is defined per each scenario cate-
gory. Quality goals and scenarios should be ideally defined at the
same time when the quality requirement specification is written.
In the case SMEPP, this task was performed later, when the tool
chain was taken into use. Table 3 presents a portability related sce-
nario, which is taken as a example herein. The whole process of
determining scenarios and quality goals is throughout explained
in [37].

Once in the example scenario, SMEPP would be ported into a
Mote-class hardware platform for sensors. A sensor is a very tiny
device with extremely constrained resources of memory, battery,
and computing. A sensor could not face the technical problems
arising in the implementation of the whole SMEPP specification
[79], and therefore, a new ‘‘light” version of SMEPP would be re-
quired. SMEPP Light would take the special characteristics of Motes
into account and offer only a minimum set of functionality. In the
scenario modelling phase, the analyst designed the conceptual
architecture of SMEPP Light and modelled it with the TOPCASED
tool. In the beginning, the Stylebase for Eclipse tool was used to
search for reusable scenario models in the architectural knowledge
base (AKB). In this case, suitable scenario models were not found,
and therefore, the conceptual architecture of SMEPP (Fig. 7) was
used as a starting point. The analyst imported the model (Fig. 7)
from Stylebase for Eclipse to the TOPCASED tool and modified it
to create SMEPP Light. Table 4 illustrates the essential differences
between SMEPP and SMEPP Light.

While modelling, the analyst encountered some problems. For
example, SMEPP Light does not support services and its communi-
cation is event based. Therefore, it could not process messages
from conventional SMEPP devices such as PDAs. An adaptor com-
ponent would be needed to enable full communication between
‘‘normal” and ‘‘light” versions of SMEPP. At this point, the analyst
used Stylebase for Eclipse to search for solutions. Firstly, he
searched for a ready solution: someone could have already de-
signed a domain-specific micro-architecture to target this issue.
In this case, there was none. The analyst continued by searching
information on generic patterns (Fig. 8), reading about their appli-
cations and quality consequences. After weighting different op-
tions, the analyst selected the combination of Proxy [11], Adapter
[27] and Forwarder–Receiver [27] patterns to form the basis of
the new adaptor component. The skeletons of these patterns were
dragged-and-dropped from Stylebase for Eclipse into the TOP-
CASED tool and the analyst drew the micro-architecture of the
new component.

At the end of the scenario modelling phase, the ready scenario
models (i.e. the models of SMEPP Light and the adaptor compo-
nent) were exported and saved into the shared repository of the
Stylebase for Eclipse. In addition to being used in analysis, the
models could be reused as a design document later on, i.e. if the
scenario is realised, a ready implementation plan is at hand. In

Table 3
Example definition of a quality goal and related scenario.

Requirement ID + description Quality goal Scenario category Scenario

MID_NON_FUN3: The middleware system
architecture must be implementable on a
variety of heterogeneous operating systems
and hardware platforms

Porting to another platform requires
moderate programming effort and
does not break existing architectural
style(s)

Porting the SMEPP
middleware to a new
operating system and/or
hardware platform

SMEPP is ported into a Mote-class
hardware platform for sensors (and,
consequently, to a TinyOS operating
system)

Table 4
Components of SMEPP and SMEPP light.

High-level components SMEPP SMEPP light

SMEPP API Yes Limited
Group management Yes Yes
Event management Yes Yes
Service management Yes No
Overlay network Yes No
Peer-communication layer Yes Yes
Topology management Yes No
Adaptation layer Yes Yes
Security and crypto services Yes Limited

E. Ovaska et al. / Information and Software Technology 52 (2010) 577–601 591

IV/16 IV/17

diagrams. Thereafter, separate sequence diagrams were defined for
each use case. The use case ‘‘joining SMEPP network” is given as an
example in Fig. 9. In the sequence diagram a lifeline corresponds to
the particular component from the component diagram.

After the sequence diagrams have been completed, the architect
or analyst connects a particular behaviour, i.e. state diagrams con-
verted to the Markov chain forms, to the components. However, in
this case the analyst decided to give an estimated PoF values for
each component – instead of the Markov chain models enabling
him/her to get the first reliability prediction very quickly. The ana-
lyst based the estimated PoFs on the architects’ initial insights of
the SMEPP middleware and the anticipated complexity of the com-
ponents to be implemented. The architects estimated (a) an inde-
pendent mean time between failure (MTBF) and (b) usage
frequency for each component. From these values, the analyst cal-
culated the PoF value for each component. For example, Event
Management (EM) component’s MTBF was estimated to be 24 h
and its usage frequency every fifth second. This means 17,200 exe-
cution times per 24 h. Thus, the independent PoF value for the EM
component is estimated to be 1/17,200 = 0.0000581 rounded to
0.00006. The Independent PoF column in Table 5 lists the esti-
mated independent PoF values for the components of the SMEPP
architecture.

Now, the UML model of the architecture contained the esti-
mated PoF values, too. Next, the analyst defined the usage pro-
file(s) for the system. The usage profile denotes execution times

for each sequence diagram. From these execution times, the RAP
tool calculates an execution probability for each sequence diagram.
The RAP tool makes it possible to define many usage profiles to be
analysed separately. The analyst can construct separate usage pro-
files for different stakeholders or for an entirely different context of
the system usage. For example, in the SMEPP case there can be
usage profiles for observing a nuclear power plant, monitoring pa-
tients’ health information in the health care environment, and a
usage profile representing a default (an average) use of the system.
Fig. 10 resents an average usage profile that is created with the
usage profile editor of the RAP tool.

Figs. 11 and 12 show the results the RAP tool has calculated
when the usage profile from Fig. 10 was used. Fig. 11 shows the re-
sults from the components point of view, i.e. components’ execu-
tion times, independent PoF values and system dependent PoF
values. The system tab of the result window (Fig. 12) presents
the results from the system point of view and lists execution paths
and their execution times, PoF values, descriptions, and compo-
nents. In addition, the probability of failure for the entire system
is shown. Columns 3rd and 4th in Table 6 list the execution times

Fig. 9. Joining SMEPP network sequence diagram.

Table 5
Summary of components.

Component’s name Independent
PoF

Execution
times

System
dependent PoF

Adaptation layer 0.0 0 0.0
Cryptographic services 0.00006 0 0.0
Event management 0.00006 41,400 0.000002
Group management 0.00012 86,700 0.00001
Group security 0.00012 2000 0.0
Overlay network

management
0.00022 11,200 0.000002

Runtime component
framework

0.000012 900,000 0.000011

Secure high level peer
communication

0.00006 115,100 0.000007

Secure topology
management

0.00022 2500 0.000001

Service and message
management

0.00022 67,720 0.000015

SMEPP_API 0.00006 139,500 0.000008
Fig. 10. The usage profile editor of the RAP tool.

E. Ovaska et al. / Information and Software Technology 52 (2010) 577–601 593

addition, the micro-architecture of the adaptor component is quite
generic and can be reused in another development project.

Once the scenarios had been modelled, the analyst was ready to
evaluate how the predefined quality goals are met in the architec-
ture. Layers and Microkernel are the main architectural patterns
that are used in the SMEPP middleware architecture. Firstly, Style-
base for Eclipse was used to find some general information on
these patterns. For example, the AKB contains information on
how the Layers pattern supports modifiability, portability, and reus-
ability and, in turn, how the Microkernel pattern supports modifi-
ability, extensibility, portability, and scalability. Fig. 8 (see the
Pattern Properties windows in the centre) illustrates how Style-
base for Eclipse presents (a) the list of quality attributes supported
by a pattern and (b) the description on why and how the given
qualities are supported.

The idea of the scenario-based evaluation is to analyse the sce-
nario models and assess the architectural impact of the figurative
scenarios. Each pattern in the AKB is associated with usage instruc-
tions (see the HTML-formatted ‘‘guide” in the top-left corner of
Fig. 8) that include a section on dealing with common problems.
Therefore, when scenario evaluation relieves a specific problem,
the Stylebase for Eclipse tool can be used to search for suggestions
on how to improve the architecture. In the sample scenario, the
main architectural styles, Layers, remained intact. However, there
would be major changes to the behaviour of one layer, Common
Services, and this could turn into a snow-ball effect, impacting sev-
eral other layers. The Stylebase for Eclipse provided instructions on
how to tackle the problem of cascades of changing behaviour in the
Layers architecture. The sample scenario also demonstrates the
breakage of Microkernel architecture, because the new light ver-
sion of SMEPP is much smaller than the original functional core
of the SMEPP Microkernel. The Stylebase for Eclipse provided infor-
mation on the problematic of determining the core functionality in
the Microkernel architecture. These are examples of the issues

which were mentioned in the evaluation report, accompanied with
improvement suggestions.

4.3.2. Predicting reliability
A software architect or analyst is able to predict reliability of

software with the RAP tool. Firstly, (s)he has to construct a compo-
nent diagram, sequence diagrams and optional state diagrams as a
Markov chain form [13]. Naturally, mostly these diagrams are pro-
duced during the architectural modelling phase and only little
additions are needed in this phase. The component diagram pre-
sents a concrete static structure, i.e. the components and their
interfaces, of a software system. Instead, sequence diagrams pres-
ent behaviour, i.e. execution paths for the components of a soft-
ware system. The component’s internal behaviour is modelled by
means of state diagrams, which are converted to the Markov chain
form. In the Markov chain form each state gets a probability of fail-
ure (PoF) value and each state transition gets a transition probabil-
ity value. From the Markov chain model the RAP tool calculates an
independent PoF value for the particular component. Constructing
Markov models is not mandatory. For example, for small compo-
nents or third party components the software architect can esti-
mate a component’s independent PoF. After the RAP tool has
gathered a components’ independent PoF values – either by calcu-
lating from the Markov models or as an architect’s estimate – the
components’ PoF values are calculated in each execution path
and in the whole system. By utilising these values, the RAP tool cal-
culates a PoF value for each execution path, and finally for the
whole system as a weighted average from execution paths’ PoFs.

The reliability prediction utilises the diagrams the architect has
defined with the TOPCASED UML tool. First, the analyst took the
component diagram of the SMEPP architecture and connected a
special UML profile to it in order to store the estimated PoF values
and results from the RAP tool into this profile. In that way, the ana-
lyst was able to see components’ PoF values directly from the UML

Fig. 8. The Stylebase for Eclipse is used to search AKB.

592 E. Ovaska et al. / Information and Software Technology 52 (2010) 577–601

IV/17

diagrams. Thereafter, separate sequence diagrams were defined for
each use case. The use case ‘‘joining SMEPP network” is given as an
example in Fig. 9. In the sequence diagram a lifeline corresponds to
the particular component from the component diagram.

After the sequence diagrams have been completed, the architect
or analyst connects a particular behaviour, i.e. state diagrams con-
verted to the Markov chain forms, to the components. However, in
this case the analyst decided to give an estimated PoF values for
each component – instead of the Markov chain models enabling
him/her to get the first reliability prediction very quickly. The ana-
lyst based the estimated PoFs on the architects’ initial insights of
the SMEPP middleware and the anticipated complexity of the com-
ponents to be implemented. The architects estimated (a) an inde-
pendent mean time between failure (MTBF) and (b) usage
frequency for each component. From these values, the analyst cal-
culated the PoF value for each component. For example, Event
Management (EM) component’s MTBF was estimated to be 24 h
and its usage frequency every fifth second. This means 17,200 exe-
cution times per 24 h. Thus, the independent PoF value for the EM
component is estimated to be 1/17,200 = 0.0000581 rounded to
0.00006. The Independent PoF column in Table 5 lists the esti-
mated independent PoF values for the components of the SMEPP
architecture.

Now, the UML model of the architecture contained the esti-
mated PoF values, too. Next, the analyst defined the usage pro-
file(s) for the system. The usage profile denotes execution times

for each sequence diagram. From these execution times, the RAP
tool calculates an execution probability for each sequence diagram.
The RAP tool makes it possible to define many usage profiles to be
analysed separately. The analyst can construct separate usage pro-
files for different stakeholders or for an entirely different context of
the system usage. For example, in the SMEPP case there can be
usage profiles for observing a nuclear power plant, monitoring pa-
tients’ health information in the health care environment, and a
usage profile representing a default (an average) use of the system.
Fig. 10 resents an average usage profile that is created with the
usage profile editor of the RAP tool.

Figs. 11 and 12 show the results the RAP tool has calculated
when the usage profile from Fig. 10 was used. Fig. 11 shows the re-
sults from the components point of view, i.e. components’ execu-
tion times, independent PoF values and system dependent PoF
values. The system tab of the result window (Fig. 12) presents
the results from the system point of view and lists execution paths
and their execution times, PoF values, descriptions, and compo-
nents. In addition, the probability of failure for the entire system
is shown. Columns 3rd and 4th in Table 6 list the execution times

Fig. 9. Joining SMEPP network sequence diagram.

Table 5
Summary of components.

Component’s name Independent
PoF

Execution
times

System
dependent PoF

Adaptation layer 0.0 0 0.0
Cryptographic services 0.00006 0 0.0
Event management 0.00006 41,400 0.000002
Group management 0.00012 86,700 0.00001
Group security 0.00012 2000 0.0
Overlay network

management
0.00022 11,200 0.000002

Runtime component
framework

0.000012 900,000 0.000011

Secure high level peer
communication

0.00006 115,100 0.000007

Secure topology
management

0.00022 2500 0.000001

Service and message
management

0.00022 67,720 0.000015

SMEPP_API 0.00006 139,500 0.000008
Fig. 10. The usage profile editor of the RAP tool.

E. Ovaska et al. / Information and Software Technology 52 (2010) 577–601 593

IV/18 IV/19

2. We created a Java project in the Eclipse workspace and coded a
test bed for the EM component with Java. The test bed starts
three threads. Each of the threads executes a test sequence that
calls the send message, push message, subscribe event, and quit
event subscription methods of the EM component. Each thread
repeats the test sequence 1000 times.

3. Weused the testmodel editor of the ComponentBee and adapted
the test model for the implementation components by adding
adaptor elements to the testmodel. The adaptor elements define
whichmethodsare calledwhenaparticular testmodel’smessage

is passed. Secondly, we implemented evaluator plug-ins that are
capable of recognising the failed messages and defining which
software components caused failures in the executed use cases.

4. A TPTP ProbeKit10 was generated for the test model with the
ComponentBee. We started the profiler tool of the Eclipse. The
tool inserts the probes of the ProbeKit to the components under
testing and runs the instrumented Java program that finally pro-
duces the raw log file.

Table 6
Summary of the applications of our approach.

Trial Scope Results Type of
product

Lessons learned

1 Modelling by QADA� Middleware service architecture Prototypical How to define and justify multiple
viewpoints and abstraction levels for
service architectures

2 Modelling and evaluating evolution
qualities

Multimedia streaming service, instant messaging
and presence service

Industrial How to select styles and patterns for
managing modifiability, portability and
extensibility

3 Modelling and evaluating variations A family of mobile terminal software systems Industrial How to model quality variability inside
and among products
How to identify variability among a family
of products
How to select proper binding times for
variations
How to evaluate evolution qualities

4 Architecture knowledge management Creation of reference architecture, architecture
knowledge management support and domain-
specific patterns for wireless services

Prototypical How to create reference architecture

How to define and share AKB in a
distributed multi-national development
team

5 Reliability and availability prediction
(RAP)

A distribution management platform for services Prototypical How to annotate service architectures with
variable reliability properties
How to evaluate reliability of a family of
service architectures

6 Evaluation of a product family The approach applied to a product family of mobile
network analysers

Industrial How to elicit domain-specific patterns
from existing documents and source code

Reusable domain-specific patterns defined How to evaluate evolution qualities and
their variations from architectural models

7 Modelling a family of measuring
systems

Service architecture with high quality
requirements; reliability, security, maintainability,
portability, flexibility

Industrial How to elicit and manage a large set of
quality requirements and their variations
in a software product line
How to transform quality requirements to
architectural models

8 Adaptability evaluation Service architecture of wireless environment
controlling systems

Industrial How to evaluate adaptability of software
architectures
How to apply the AEM method to an
industrial case study

9 Integrability and extensibility
evaluation

IEE method applied to an open source software
development

Open source How to apply the IEE method for refining
and extending existing open source
software components

10 Reusable models of quality attributes Service architecture of a family of weather
measuring systems

Prototypical How to define security and reliability
ontology

Quality variability model How to define a common quality
variability model for execution qualities
How to create modelling techniques and
tools for defining quality attribute
ontologies
How to use quality attribute ontologies for
defining metrics for quality requirements
How to map quality properties to
architectural models
How to combine reliability prediction
models with model based dynamic testing

11 Validation of reliability evaluation and
the integrated tool environment (RAP
and ComponentBee)

Personal information repository, a business-to-
consumer health-care document delivery system

Industrial How to apply the quality driven modelling
methodology and supporting tools for
industrial cases
How to define stakeholders based usage
scenarios for evaluating reliability from
architectural models
How to transform predicted and measured
quality properties between models and
source code

10 http://www.eclipse.org/tptp/.

E. Ovaska et al. / Information and Software Technology 52 (2010) 577–601 595

and system dependent PoF values that are calculated for the se-
lected usage profile (Fig. 10).

In conclusion, Table 5 lists all components, (estimated) inde-
pendent PoFs, execution times, and the system dependent PoFs
for the usage profile from Fig. 10. The first notable thing from these
results is the PoF value of the Runtime Component Framework com-
ponent. The architect of the SMEPP system assumed that it is the
most unreliable component of the system – based on its huge
amount of executions. However, the analysis revealed that the Ser-
vice and Message Management component is even more unreliable
and that the Runtime Component Framework comes after that, as
the results show. Thus, the system’s reliability can be influenced
the most effectively by enhancing the reliability of the Service
and Message Management component. The second issue, raised
when the architect inspected the results, is the execution times
of the Secure High Level Peer Communication component. The com-
ponent is the third executed component of the system after Run-
time Component Framework and SMEPP_API components. Based on
the analysis, the probability of failure to the whole system is pre-
dicted to be 5.6E�5, and the result corresponds to the architect’s
assumption very well.

As mentioned earlier, the RAP tool stores predicted reliability
values to the UML model by utilising the designed UML profile.
Thus, these values can be also examined from the TOPCASED
UML tool. Thus, the architect can see the component’s independent
PoF value given by the architect and the system dependent PoF
that the RAP tool has calculated. In addition, the profile contains
fields for the results calculated by the Markov model and the mea-
sured PoF value, measured by ComponentBee.

4.3.3. Measuring reliability
Many software projects have multiple participants that provide

components for a software system. For example, reusing older soft-
ware components is a common method to decrease the implemen-
tation effort of new software systems. Unfortunately, these
components can cause unexpected problems. For example, our first
plan was to test the Event Management (EM) component of the
SMEPP on the system level. More precisely, our plan was (1) to
implement a test bed that calls the SMEPP system to execute the
test sequence, (2) to insert probes to observe and to record trace
and raw log data of the SMEPP system, and finally (3) to evaluate
the recorded raw log file and to calculate measured PoF values
for the EM component in various use cases. Unfortunately, the
SMEPP system did not work correctly when we tried to execute
it with the profiler tool of the Eclipse. In addition, we did not have
source code for all the components of the SMEPP system. Thus, it
was difficult to trace the reason why the execution of the SMEPP
system failed in the profiler tool. Threads may be one possible rea-
son for the observed problems. The profiler tool may affect the
scheduling of threads that perform the configuration sequence of
the SMEPP system. As a result, the SMEPP system is not necessarily
correctly initialized, which leads to the malfunction of the system.
In order to avoid the described problems, we decided to implement
a separate test bed for the EM component.

The testing was implemented according to the following steps:

1. A test model was created for the EM component with the Com-
ponentBee. It defines a ‘‘test sequence” use case and the mes-
sages that are delivered in the use case.

Fig. 11. The PoF values of components as analysis results.

Fig. 12. The PoF values of paths and the system as analysis results.

594 E. Ovaska et al. / Information and Software Technology 52 (2010) 577–601

IV/19

2. We created a Java project in the Eclipse workspace and coded a
test bed for the EM component with Java. The test bed starts
three threads. Each of the threads executes a test sequence that
calls the send message, push message, subscribe event, and quit
event subscription methods of the EM component. Each thread
repeats the test sequence 1000 times.

3. Weused the testmodel editor of the ComponentBee and adapted
the test model for the implementation components by adding
adaptor elements to the testmodel. The adaptor elements define
whichmethodsare calledwhenaparticular testmodel’smessage

is passed. Secondly, we implemented evaluator plug-ins that are
capable of recognising the failed messages and defining which
software components caused failures in the executed use cases.

4. A TPTP ProbeKit10 was generated for the test model with the
ComponentBee. We started the profiler tool of the Eclipse. The
tool inserts the probes of the ProbeKit to the components under
testing and runs the instrumented Java program that finally pro-
duces the raw log file.

Table 6
Summary of the applications of our approach.

Trial Scope Results Type of
product

Lessons learned

1 Modelling by QADA� Middleware service architecture Prototypical How to define and justify multiple
viewpoints and abstraction levels for
service architectures

2 Modelling and evaluating evolution
qualities

Multimedia streaming service, instant messaging
and presence service

Industrial How to select styles and patterns for
managing modifiability, portability and
extensibility

3 Modelling and evaluating variations A family of mobile terminal software systems Industrial How to model quality variability inside
and among products
How to identify variability among a family
of products
How to select proper binding times for
variations
How to evaluate evolution qualities

4 Architecture knowledge management Creation of reference architecture, architecture
knowledge management support and domain-
specific patterns for wireless services

Prototypical How to create reference architecture

How to define and share AKB in a
distributed multi-national development
team

5 Reliability and availability prediction
(RAP)

A distribution management platform for services Prototypical How to annotate service architectures with
variable reliability properties
How to evaluate reliability of a family of
service architectures

6 Evaluation of a product family The approach applied to a product family of mobile
network analysers

Industrial How to elicit domain-specific patterns
from existing documents and source code

Reusable domain-specific patterns defined How to evaluate evolution qualities and
their variations from architectural models

7 Modelling a family of measuring
systems

Service architecture with high quality
requirements; reliability, security, maintainability,
portability, flexibility

Industrial How to elicit and manage a large set of
quality requirements and their variations
in a software product line
How to transform quality requirements to
architectural models

8 Adaptability evaluation Service architecture of wireless environment
controlling systems

Industrial How to evaluate adaptability of software
architectures
How to apply the AEM method to an
industrial case study

9 Integrability and extensibility
evaluation

IEE method applied to an open source software
development

Open source How to apply the IEE method for refining
and extending existing open source
software components

10 Reusable models of quality attributes Service architecture of a family of weather
measuring systems

Prototypical How to define security and reliability
ontology

Quality variability model How to define a common quality
variability model for execution qualities
How to create modelling techniques and
tools for defining quality attribute
ontologies
How to use quality attribute ontologies for
defining metrics for quality requirements
How to map quality properties to
architectural models
How to combine reliability prediction
models with model based dynamic testing

11 Validation of reliability evaluation and
the integrated tool environment (RAP
and ComponentBee)

Personal information repository, a business-to-
consumer health-care document delivery system

Industrial How to apply the quality driven modelling
methodology and supporting tools for
industrial cases
How to define stakeholders based usage
scenarios for evaluating reliability from
architectural models
How to transform predicted and measured
quality properties between models and
source code

10 http://www.eclipse.org/tptp/.

E. Ovaska et al. / Information and Software Technology 52 (2010) 577–601 595

http://www.eclipse.org/tptp/

IV/20 IV/21

shows that each trial resulted in an industrial or prototypical type
of product. Industrial products were developed together with com-
panies and aimed at use in commercial product developments. Pro-
totypes were developed with commercial products in mind
proving feasibility studies, e.g. for technology investigation. The
methods and techniques were initially developed in joint research
projects and applied to prototypical products. Thereafter, the
developed parts were applied to and validated in the industrial
product developments, which have also fed identification of new
problems to be solved. Table 6 also summarises the main lessons
learned in each trial. For example, in Trial 3 we learnt why and
how variations do arise in product families and how they should
be managed in architectural models. We also identified that man-
aging quality variations is of high importance. In Trial 7 several
stakeholders were involved in requirements specification that re-
sulted in a large amount of quality requirements. Thus, we realised
in a concrete way how important it is to have appropriate tools
that assist in defining and managing variable quality requirements
and their relations. The development of AKB (Trial 4) origins from
the needs of the distributed development team of an international
joint research project where our target was to define a generic ref-
erence architecture for wireless services. Furthermore, after the
evaluation methods were demonstrated by laboratory cases they
were adapted to industrial settings and validated in industrial or
open source product developments (Trials 2, 3, 6, 8, 9, and 11).
We selected an approach to integrate ontology orientation with
model driven architecting. The selection seems to be the right solu-
tion; nowadays industrial companies are more and more inter-
ested in applying ontologies for capturing domain knowledge to
reusable models. In our case, a quality attribute formed a domain.
Knowledge of any domain can be defined as an ontology or
reusable patterns. We have identified and defined reusable
domain-specific patterns for wireless services and mobile network
analysers (Trials 4 and 6). However, our recent work concentrates
on applying ontology orientation for defining domain knowledge
for achieving interoperability between cross-domain architectures
of different application areas, e.g. applications of personal spaces
and a smart city.

One of the most important factors on maturity of the approach
is the availability of supporting tools. Meanwhile our approach ma-
tured, several tool developments were carried out.

Table 7 summarises the maturity levels of our achievements in
the tool development. In the very beginning of their life cycle, all
tools were tested in laboratory cases. Thereafter, all tools except
QPE were individually applied into real-life software development
projects. ComponentBee and Stylebase for Eclipse were also adver-
tised as open source projects and we received dozens of improve-
ment requests. The tools were incrementally improved on the basis
of gained experiences and feedback. In total, there were 12 differ-

ent tool versions: one QPE version, five Stylebase versions, three
RAP versions, and three ComponentBee versions. Each version en-
hanced the previous versions, thus offering better support for the
whole approach.

Gained information from different tool implementations:

� From the QPE there is the initial version available, although we
know that the tool requires many usability related enhance-
ments. However, the first version has also indicated that metric
selection has to be facilitated in the future.

� The first version of Stylebase for Eclipse was dependent on a
closed source modelling environment, which impaired extensi-
bility and limited potential user base. The open source version
was designed from the view point of extensibility and integra-
bility, which are still the strongest advantages of the tool [36].
The later releases implemented several usability requests, which
we received from users. However, many challenges remain.
Knowledge management has to be made easier, for example.

� From the RAP tool the first version revealed that a separated
simulation model is difficult to use and maintain. Thus, the sec-
ond version utilised only UML2 compatible models, which
makes the prediction much easier for the analyser. Leaving the
simulation model out affected also the RAP method and the pre-
ceding architecture modelling phase. Therefore, this is a good
example how the tool development has offered valuable feed-
back also for the whole approach.

� Our goal was to publish the ComponentBee tool as an open
source project under the Eclipse technology project. The Compo-
nentBee project proposal has now gone through a review pro-
cess and is now accepted and published. In order to follow the
base idea of Eclipse that means that Eclipse projects do not just
develop tools and runtimes but they also develop extensible
frameworks for building, deploying and managing software
across the life-cycle, we divided the ComponentBee tool into:
(1) framework part and (2) implementation part that provides
plug-in implementations for the interfaces of the framework.
Our experiences of Eclipse Plug-in Development Environment
(PDE) revealed that the development of Eclipse plug-ins should
be made more fluent. By default, the PDE requires a user to start
another instance of the Eclipse workbench before a newly
implemented plug-in can be tested. However, starting a work-
bench is a time and memory consuming task. Therefore, we
developed an additional component which makes it possible
to develop, debug and run plug-ins that are used in reliability
evaluation within one workbench. This component considerably
increases usability of the ComponentBee framework and tools.

� From the view point of the tool development, the SMEPP case
study was significant in the two ways. For the first time, all tools
were used together as an integrated tool chain to support

Fig. 13. The PoF values of components after the re-prediction.

E. Ovaska et al. / Information and Software Technology 52 (2010) 577–601 597

5. The raw log file was pre-processed with the ComponentBee. The
ComponentBee took the raw log file as an input and composed
an overall presentation (a behaviour tree) for the test sequences
that were executed in different threads. This tree contained
only messages that were defined in the test model.

6. Behaviour patterns were extracted from the overall behaviour
tree according to the following steps: (1) The ComponentBee
generates a BNF grammar [28] that defines production rules
for the behaviours that are described in the test model, then
(2) calls the Java Compiler-Compiler (JavaCC)11 to generate a
BehaviourParser for the grammar, and finally (3) calls the gener-
ated BehaviourParser to compose a symbol tree (a behaviour pat-
tern tree) of the behaviour tree.

7. The behaviour pattern tree was finally evaluated with the Com-
ponentBee that activates the defined evaluator plug-ins to eval-
uate and write the evaluation results to the nodes of the
behaviour pattern tree. The behaviour pattern tree is written
to an XML file that contains both the evaluation results and
the extracted behaviour patterns.

The parser extracted 2999 test sequences from the behaviour
tree. In addition, one unidentified behaviour sequence was ex-
tracted from the behaviour tree. We evaluated the unidentified
behaviour sequence and noticed that a synchronisation problem
exists in the EM component. More precisely, an ArrayIndexOutOf-
BoundsException is thrown if a thread is trying to call its push
method while another thread is calling its unsubscribe event meth-
od. Thus, the measured PoF value for the EM component in the
‘‘test sequence” use case was 0.0003.

In order to facilitate the iterative development of the software
system, the measured PoF values are imported to the UML models
by utilising the UML profile. The architect/analyst re-evaluated the
architecture with the RAP tool. This time, instead of estimated PoF
values, the more accurate PoF values measured with the Compo-
nentBee are used in architecture-level reliability prediction. The
re-evaluation produces a new predicted PoF value for the whole
architecture of the SMEPP system and new predicted system
dependent PoF value for EM component.

Our experiences in the reliability testing of the SMEPP system
showed that many unexpected issues may affect or even prevent
the testing of the target software components. For example, if
threads are used in a software system, the usage of a profiler tool
may affect the scheduling of threads and even prevent the usage
of the software system. However, in a best case scenario, these
kinds of problems can reveal bugs related to thread synchronisa-
tion in a software system.

It took four working days to implement the reliability test and
evaluation for the event management component of the SMEPP
system. The test model creation took a few hours. The Component-
Bee evaluated the recorded raw log (the size was 61 Mb) and pro-
duced reliability values for the components in 9 min and 30 s. Of
course, the raw log size has a great impact on this time. The Com-
ponentBee prototype records the raw log data in an uncompressed
XML format, which leads to quite large raw log files. Large scale
testing requires very fine-grained raw log writers that only record
the required raw and trace data to the raw log. Additionally, a more
efficient format is needed for the raw logs.

4.3.4. Re-predicting reliability
After measuring the reliability of the Event Management com-

ponent, as described in the previous section, the RAP tool utilises
this measured PoF value in re-predicting reliability of the SMEPP
system. Thus, the re-prediction produces more accurate results be-

cause one measured value (produced by the ComponentBee) is
used instead of initial estimates (given by the architects of the
SMEPP).

Re-predicting reliability from the architectural model does not
differ from the procedure represented in Section 4.3.2. However,
at this time the analyst constructed a new sequence diagram that
conforms to the used test model because this behaviour was de-
tected during the testing, and the prime model did not contain this
sequence. Thereafter, the analysis selected by the RAP tool that the
measured PoF value was used instead of the estimate. Lastly, the
RAP tool gave the refined results in the same format as earlier
(cf. Fig. 13).

As we can see from Fig. 13, the results of the re-prediction are
close to the results of the first prediction. In the first time, the
PoF value in SMEPP system for Event Management component
was 0.000002 and re-prediction produces a PoF value of
0.000003. PoF values for other components are not changed be-
cause original initial values were used for them. In addition, the
PoF value for the whole SMEPP system did not change in this iter-
ation, and re-prediction produced the same PoF value for the whole
system as was the case the first time (5.6E�5). The reason why the
PoF value for the whole system was not changed this time can be
seen easily. The Event Management component’s new PoF value
differs only slightly from the first value and because there are more
dominant components in the system, this difference is not visible
in the PoF value of the whole system. In other words, the result
is the same but we can be more confident about its correctness.

In conclusion, re-prediction of reliability can be made very
quickly. An architect/analyst is obliged to add only one additional
sequence diagram to the initial model, and thereafter, the RAP tool
performs the prediction automatically. However, a new diagram is
not needed in ideal cases as the initial architectural model is com-
prehensive, i.e. implementation corresponds to the architecture
design. In the next iteration, a new component is implemented,
tested, and again the evaluation results came back to the RAP tool
for re-predicting reliability of the whole SMEPP system.

5. Discussions

As a benefit of our quality aware software architecting approach
is the fact that it facilitates software developers to: (1) model reus-
able quality requirements for software systems, (2) transform the
modelled quality requirements to the architectural models, (3) re-
use existing design knowledge such as architectural styles, generic
design patterns, and domain-specific patterns to achieve desired
quality goals in software architecture, and finally (4) evaluate that
the desired quality goals are met in the software models and code.
This all helps software developers to manage both the quality
knowledge and the architectural knowledge during the construc-
tion of a software system. In addition, quality evaluation task is
supported by providing method support for both qualitative and
quantitative quality evaluation. For qualitative quality evaluation
there is the Integrability and Extensibility Evaluation (IEE) method
whereas for the quantitative quality evaluation there are the
Adaptability Evaluation Method (AEM), the Reliability and Avail-
ability Method (the RAP method), and the measurement method
used in the ComponenBee.

5.1. Maturity of the approach

Our approach was developed incrementally and applied to sev-
eral software developments in the international joint research pro-
jects and national contract research projects. Our approach is
intended for the development of complex long-lasting software
intensive systems, e.g. networked embedded systems. Table 611 http://www.javacc.dev.java.net/.

596 E. Ovaska et al. / Information and Software Technology 52 (2010) 577–601

http://www.javacc.dev.java.net/

IV/21

shows that each trial resulted in an industrial or prototypical type
of product. Industrial products were developed together with com-
panies and aimed at use in commercial product developments. Pro-
totypes were developed with commercial products in mind
proving feasibility studies, e.g. for technology investigation. The
methods and techniques were initially developed in joint research
projects and applied to prototypical products. Thereafter, the
developed parts were applied to and validated in the industrial
product developments, which have also fed identification of new
problems to be solved. Table 6 also summarises the main lessons
learned in each trial. For example, in Trial 3 we learnt why and
how variations do arise in product families and how they should
be managed in architectural models. We also identified that man-
aging quality variations is of high importance. In Trial 7 several
stakeholders were involved in requirements specification that re-
sulted in a large amount of quality requirements. Thus, we realised
in a concrete way how important it is to have appropriate tools
that assist in defining and managing variable quality requirements
and their relations. The development of AKB (Trial 4) origins from
the needs of the distributed development team of an international
joint research project where our target was to define a generic ref-
erence architecture for wireless services. Furthermore, after the
evaluation methods were demonstrated by laboratory cases they
were adapted to industrial settings and validated in industrial or
open source product developments (Trials 2, 3, 6, 8, 9, and 11).
We selected an approach to integrate ontology orientation with
model driven architecting. The selection seems to be the right solu-
tion; nowadays industrial companies are more and more inter-
ested in applying ontologies for capturing domain knowledge to
reusable models. In our case, a quality attribute formed a domain.
Knowledge of any domain can be defined as an ontology or
reusable patterns. We have identified and defined reusable
domain-specific patterns for wireless services and mobile network
analysers (Trials 4 and 6). However, our recent work concentrates
on applying ontology orientation for defining domain knowledge
for achieving interoperability between cross-domain architectures
of different application areas, e.g. applications of personal spaces
and a smart city.

One of the most important factors on maturity of the approach
is the availability of supporting tools. Meanwhile our approach ma-
tured, several tool developments were carried out.

Table 7 summarises the maturity levels of our achievements in
the tool development. In the very beginning of their life cycle, all
tools were tested in laboratory cases. Thereafter, all tools except
QPE were individually applied into real-life software development
projects. ComponentBee and Stylebase for Eclipse were also adver-
tised as open source projects and we received dozens of improve-
ment requests. The tools were incrementally improved on the basis
of gained experiences and feedback. In total, there were 12 differ-

ent tool versions: one QPE version, five Stylebase versions, three
RAP versions, and three ComponentBee versions. Each version en-
hanced the previous versions, thus offering better support for the
whole approach.

Gained information from different tool implementations:

� From the QPE there is the initial version available, although we
know that the tool requires many usability related enhance-
ments. However, the first version has also indicated that metric
selection has to be facilitated in the future.

� The first version of Stylebase for Eclipse was dependent on a
closed source modelling environment, which impaired extensi-
bility and limited potential user base. The open source version
was designed from the view point of extensibility and integra-
bility, which are still the strongest advantages of the tool [36].
The later releases implemented several usability requests, which
we received from users. However, many challenges remain.
Knowledge management has to be made easier, for example.

� From the RAP tool the first version revealed that a separated
simulation model is difficult to use and maintain. Thus, the sec-
ond version utilised only UML2 compatible models, which
makes the prediction much easier for the analyser. Leaving the
simulation model out affected also the RAP method and the pre-
ceding architecture modelling phase. Therefore, this is a good
example how the tool development has offered valuable feed-
back also for the whole approach.

� Our goal was to publish the ComponentBee tool as an open
source project under the Eclipse technology project. The Compo-
nentBee project proposal has now gone through a review pro-
cess and is now accepted and published. In order to follow the
base idea of Eclipse that means that Eclipse projects do not just
develop tools and runtimes but they also develop extensible
frameworks for building, deploying and managing software
across the life-cycle, we divided the ComponentBee tool into:
(1) framework part and (2) implementation part that provides
plug-in implementations for the interfaces of the framework.
Our experiences of Eclipse Plug-in Development Environment
(PDE) revealed that the development of Eclipse plug-ins should
be made more fluent. By default, the PDE requires a user to start
another instance of the Eclipse workbench before a newly
implemented plug-in can be tested. However, starting a work-
bench is a time and memory consuming task. Therefore, we
developed an additional component which makes it possible
to develop, debug and run plug-ins that are used in reliability
evaluation within one workbench. This component considerably
increases usability of the ComponentBee framework and tools.

� From the view point of the tool development, the SMEPP case
study was significant in the two ways. For the first time, all tools
were used together as an integrated tool chain to support

Fig. 13. The PoF values of components after the re-prediction.

E. Ovaska et al. / Information and Software Technology 52 (2010) 577–601 597

IV/22 IV/23

removal uses code inspection and testing to remove faults in the
code once it is written Fault tolerance reduces the number of fail-
ures that occur by detecting and countering deviations in program
execution that may lead to failures. The tool chain including QA
ontologies supports all these reliability strategies. The QA ontolo-
gies and the QPE, Stylebase and RAP tools together support fault
prevention. The QA ontologies, QPE and Stylebase support creation
of software architecture for the desired quality goals. The RAP tool,
in turn, enables the software architect to evaluate the reliability at
design-level before implementation of a software system and thus
helps the software architect to develop the software architecture
until the desired reliability goals are achieved in it. The Compo-
nentBee supports fault removal by providing a way to identify
the failure behaviours of a software system. The tools together
support composition of fault tolerant software systems. The QPE,
Stylebase and RAP tools facilitate development of more reliable
and fault tolerant software architectures whereas the Component-
Bee is capable of evaluating how faults affect the dynamic behav-
iour of the software system.

The quality attributes that are fully or to some extent covered
by the tools are: reliability, availability, security, adaptability,
maintainability, portability, integrability, and extensibility. We
also have a tool for performance monitoring but its integration
with other tools still requires adaptation work. We aim to extend
the ontology orientation to all execution quality attributes so that
a similar approach can be applied to the sub-characteristics of
dependability (reliability, availability, security, and safety) and
performance. This is extremely important in order to manage sev-
eral quality attributes and their variations at run-time.

5.3. Comparison to other approaches

Although there exist several methods for modelling quality dri-
ven software architectures, to our knowledge there is no other
methodology that covers the full life-cycle from the quality
requirements specification to measuring quality properties from
source code. A short summary of related works is given to illustrate
the state of the art in quality and model driven architecture design
and quality evaluation.

The NFR (Non-Functional Requirements) framework [14] is a
process-oriented approach, in which quality requirements are
treated as soft-goals to be achieved. The soft-goals are derived
from the stakeholders’ needs and used as guidance while consid-
ering design alternatives, analysing tradeoffs, and rationalising
various design decisions. A soft-goal interdependency graph is
used to support the goal oriented process of architecture design.
We have exploited the ideas of NFR but our methodology deals
with traceability of both evolution and execution quality attri-
butes from requirements specification to architectural models
and code and provides means of modelling, evaluating and testing
quality attributes.

CBSP (Component Bus System Property) [30] defines five steps
starting from taking a requirement under consideration and finish-
ing with making tradeoffs regarding architectural elements and
styles. Each requirement is assessed for its relevance to the system
architecture components and connectors (buses), to the topology
of the system or a particular sub-system, and to their properties.
The intermediate CBSP model is used as a bridge while refining
and transforming requirements to components and connectors.
Although the coverage of CBSP is pretty much the same as our
methodology, our approach is a systematic approach that keeps fo-
cus on knowledge reuse, model based evaluation and model-based
testing and provides appropriate tooling for each engineering
phase.

Architecture Based Design (ABD) method [2] is a well-known
quality driven method for designing the software architecture for

a long-lived system. The method addresses functional, quality,
and business requirements and their mappings to the conceptual
architecture. ABD provides a series of steps for designing the con-
ceptual software architecture and ends when decisions on concrete
components are to be made. In addition, the method provides a
collection of software templates that constrain the implementation
of components of different types. Even though the ABD method has
been developed further into a newmethod called the Attribute Dri-
ven Design method, ADD [3], it still does not provide more than a
coarse grained high level, i.e. conceptual architecture as an output.
Also the support for product line architecture design in the ABD
and in the ADD is mentioned but immature. Moreover, no model-
ling tool is provided.

QASAR (Quality Attribute oriented Software ArchitectuRe de-
sign method) [6] is another model driven architecture design
method that addresses quality attributes in software architecture
design. QASAR is consisting of two iterative processes: the inner
iteration includes the activities of software architecture design,
assessment and transformation to quality requirements, whereas
the outer iteration refers to a requirements selection process to
be performed within the inner iteration. The method starts from
functionality and adapts functionality to quality requirements.
Thus, in this method quality requirements are not considered a
driving force in architecture development.

Regarding the abstractions, viewpoints and languages for mod-
elling the conclusion is that the existing methods offer good cover-
age but none of them give full support, for e.g. quality
requirements specification and their traceability throughout the
life-cycle of the software development. Some commercial tools,
like IBM Rational DOORS, have established links between certain
commercial modelling tools but to our knowledge no open source
tool supports the link between requirements engineering and soft-
ware architecting. However, some open source transformation
tools (e.g. ATL Development Tools for Eclipse) have demonstrated
a great degree of maturity and offer flexible transformation pat-
terns. In summary, Eclipse based modelling tools offer a higher de-
gree of integration with transformation tools than other similar
open or commercial tool environments. Moreover, commercial
tools have shown to be complete Model Driven Engineering frame-
works by themselves, making any kind of modifications in the
model to code transformation difficult.

There exist several quality evaluation methods that address dif-
ferent quality attributes, goals, stakeholders (i.e. method users),
and therefore they also provide different evaluation results. The
differences, for example, between performance and reliability eval-
uation methods are the maturity of methods and tools provided for
evaluation steps. The main reason is that performance evaluation
has been studied for tens of years but reliability evaluation at the
architecture level has been addressed only for a few years. The
main shortcomings of the existing methods are: precision of the
evaluation results, lack of tooling and missing references from
industrial case studies.

Most evaluation methods are used on the component, sub-sys-
tem and/or system levels. However, one factor seems to be com-
mon for most evaluation methods: UML is a standard modelling
language and supporting tools are based on it. Although most eval-
uation methods require a specific set of architectural models as in-
put, the use of MDA and specific profiles for quality attributes is
not supported.

5.4. Future research items

This last experiment, where the SMEPP middleware was evalu-
ated with the tool chain, revealed some topics that need further
research:

E. Ovaska et al. / Information and Software Technology 52 (2010) 577–601 599

quality aware architecting. In addition, the task was more chal-
lenging: the SMEPP middleware platform has hundreds of qual-
ity requirements while the software used in previous case
studies had less than 30.

5.2. Coverage of the tool chain

The tool chain supports the whole design flow from quality
requirements to code evaluation. Downward traceability of quality
characteristics works well after quality requirements have been
identified and specified. However, transformation from require-
ments to quality properties seemed to be problematic for the
developers. The main reasons seem to be (a) developers’ unfamil-
iarity with quality requirements specification, (b) quality require-
ments are intertwined with functional requirements, (c) it is
difficult to discuss and clarify quality requirements before defining
a conceptual architecture or/and the context where the system will
be used. The latter is the main reason why the quality require-
ments specification for a cross-domain architecture is difficult
and faulty. However, as soon as the requirements specification
has been done in a systematic way, i.e. by utilising quality ontolo-
gies, there is no limit to reusing the results. Thus, although the cre-

ation of quality ontologies takes time, we believe that it is worth
doing. As illustrated, the downward traceability from QA property
specifications to models is fully supported by the tool chain. Up-
ward traceability is supported from code to models by a specific
UML profile. However, there is still work to be done, e.g. for match-
ing quality properties of architectural models to quality require-
ments. This could be solved by a new tool that manages
traceability links between the artefacts produced in the different
phases of the design process.

The development of reliability aware systems is completely
supported by the tool chain; from requirements specification to
architecture design, evaluation, and testing. The tool suite supports
the reliability evaluation on three levels; on system, architecture,
and component levels. It is capable of using all the available Prob-
ability of Failure (PoF) values (estimated, predicted, and measured)
in order to achieve an accurate reliability prediction for a software
system.

The three reliability strategies [56], fault prevention, fault re-
moval, and fault tolerance, are supported by the tool chain. Fault
prevention uses requirements, designs, and coding techniques
and processes, as well as requirements and design reviews, to
reduce the number of faults introduced in the first place. Fault

Table 7
Summary of the integrated tool environment.

Tool Versions Extensions Validation Remarks

QPE
(proprietary,
EPL licence)

QPE v 0.5 (1st version) Relations with quality attributes A laboratory case
study of a weather
forecasting domain

Usability has to be enhanced. Especially
when working with a huge amount of quality
properties

Eclipse compliant UML tools can utilise defined
quality properties

The SMEPP case
study

Adding a semi-automatic metric selection
would be valuable for the architect

Tool checks that quality
property’s value is in a
range of the selected
metric

Stylebase For
Eclipse (open
source, GPL
licence)

Q-Stylebase The initial concept of AKB A case study of
wireless service
domain [58]

Increased interest in sharing and exploiting
architectural knowledge

Stylebase for Eclipse v 0.6 C# version for the Tau developer UML tool A laboratory case
study of a
distributed service
platform [54]

Knowledge consumption is easy, but
knowledge maintenance too laborious

Stylebase for Eclipse v 0.7 Eclipse integration (Java version) SMEPP case study The content of AKB brings value, the tool is
just an interface

Stylebase for Eclipse 1.0 Improved QA definition Feedback from OS
users [35]

Tool’s best advantage is its integrability and
extensibility

Stylebase for Eclipse v.1.1 Local knowledge repository added Improved
usability

RAP
(proprietary,
EPL licence)

RAP tool 1.0 1st version C# version for the Tau developer UML tool A laboratory case
study of a
distributed service
platform [53]

The first version required a separated
simulation model that s is not required
anymore. Instead, common UML models are
used for evaluation

RAP tool 2.0 2nd version Eclipse integration (Java version) The SMEPP case
study

Now it is possible to make evaluation from
different usage viewpoints, i.e. usage profiles

RAP tool 2.5 Usage profiles, integration with
ComponentBee, estimated, predicted and
measured PoF values in the measurement
profile

Industrial personal
information
repository [40]

Is it possible to evaluate other quality
attributes in a similar fashion?

Producing Markov models semi-automatically Setting execution order for execution paths
Better guidance for the architect in order to
estimate initial PoF values

ComponentBee
(open source,
EPL licence)

RT-tool (1st version) Prototype for research purposes A script-based
client–server
application [43]

A proposal to bring ComponentBee under the
Eclipse Technology Project

ComponentBee v0.9 Improved usability (e.g. possible to run and
debug plug-ins in one workbench)

Stylebase for
Eclipse [67]

In order to comply with the Eclipse mission,
the focus is now on developing extensible
framework, rather than tools

ComponentBee v.1.0 Project divided into two parts: (1) framework,
which provides interfaces and (2) exemplary
tools which implement these interfaces

The SMEPP case
study

598 E. Ovaska et al. / Information and Software Technology 52 (2010) 577–601

IV/23

removal uses code inspection and testing to remove faults in the
code once it is written Fault tolerance reduces the number of fail-
ures that occur by detecting and countering deviations in program
execution that may lead to failures. The tool chain including QA
ontologies supports all these reliability strategies. The QA ontolo-
gies and the QPE, Stylebase and RAP tools together support fault
prevention. The QA ontologies, QPE and Stylebase support creation
of software architecture for the desired quality goals. The RAP tool,
in turn, enables the software architect to evaluate the reliability at
design-level before implementation of a software system and thus
helps the software architect to develop the software architecture
until the desired reliability goals are achieved in it. The Compo-
nentBee supports fault removal by providing a way to identify
the failure behaviours of a software system. The tools together
support composition of fault tolerant software systems. The QPE,
Stylebase and RAP tools facilitate development of more reliable
and fault tolerant software architectures whereas the Component-
Bee is capable of evaluating how faults affect the dynamic behav-
iour of the software system.

The quality attributes that are fully or to some extent covered
by the tools are: reliability, availability, security, adaptability,
maintainability, portability, integrability, and extensibility. We
also have a tool for performance monitoring but its integration
with other tools still requires adaptation work. We aim to extend
the ontology orientation to all execution quality attributes so that
a similar approach can be applied to the sub-characteristics of
dependability (reliability, availability, security, and safety) and
performance. This is extremely important in order to manage sev-
eral quality attributes and their variations at run-time.

5.3. Comparison to other approaches

Although there exist several methods for modelling quality dri-
ven software architectures, to our knowledge there is no other
methodology that covers the full life-cycle from the quality
requirements specification to measuring quality properties from
source code. A short summary of related works is given to illustrate
the state of the art in quality and model driven architecture design
and quality evaluation.

The NFR (Non-Functional Requirements) framework [14] is a
process-oriented approach, in which quality requirements are
treated as soft-goals to be achieved. The soft-goals are derived
from the stakeholders’ needs and used as guidance while consid-
ering design alternatives, analysing tradeoffs, and rationalising
various design decisions. A soft-goal interdependency graph is
used to support the goal oriented process of architecture design.
We have exploited the ideas of NFR but our methodology deals
with traceability of both evolution and execution quality attri-
butes from requirements specification to architectural models
and code and provides means of modelling, evaluating and testing
quality attributes.

CBSP (Component Bus System Property) [30] defines five steps
starting from taking a requirement under consideration and finish-
ing with making tradeoffs regarding architectural elements and
styles. Each requirement is assessed for its relevance to the system
architecture components and connectors (buses), to the topology
of the system or a particular sub-system, and to their properties.
The intermediate CBSP model is used as a bridge while refining
and transforming requirements to components and connectors.
Although the coverage of CBSP is pretty much the same as our
methodology, our approach is a systematic approach that keeps fo-
cus on knowledge reuse, model based evaluation and model-based
testing and provides appropriate tooling for each engineering
phase.

Architecture Based Design (ABD) method [2] is a well-known
quality driven method for designing the software architecture for

a long-lived system. The method addresses functional, quality,
and business requirements and their mappings to the conceptual
architecture. ABD provides a series of steps for designing the con-
ceptual software architecture and ends when decisions on concrete
components are to be made. In addition, the method provides a
collection of software templates that constrain the implementation
of components of different types. Even though the ABD method has
been developed further into a newmethod called the Attribute Dri-
ven Design method, ADD [3], it still does not provide more than a
coarse grained high level, i.e. conceptual architecture as an output.
Also the support for product line architecture design in the ABD
and in the ADD is mentioned but immature. Moreover, no model-
ling tool is provided.

QASAR (Quality Attribute oriented Software ArchitectuRe de-
sign method) [6] is another model driven architecture design
method that addresses quality attributes in software architecture
design. QASAR is consisting of two iterative processes: the inner
iteration includes the activities of software architecture design,
assessment and transformation to quality requirements, whereas
the outer iteration refers to a requirements selection process to
be performed within the inner iteration. The method starts from
functionality and adapts functionality to quality requirements.
Thus, in this method quality requirements are not considered a
driving force in architecture development.

Regarding the abstractions, viewpoints and languages for mod-
elling the conclusion is that the existing methods offer good cover-
age but none of them give full support, for e.g. quality
requirements specification and their traceability throughout the
life-cycle of the software development. Some commercial tools,
like IBM Rational DOORS, have established links between certain
commercial modelling tools but to our knowledge no open source
tool supports the link between requirements engineering and soft-
ware architecting. However, some open source transformation
tools (e.g. ATL Development Tools for Eclipse) have demonstrated
a great degree of maturity and offer flexible transformation pat-
terns. In summary, Eclipse based modelling tools offer a higher de-
gree of integration with transformation tools than other similar
open or commercial tool environments. Moreover, commercial
tools have shown to be complete Model Driven Engineering frame-
works by themselves, making any kind of modifications in the
model to code transformation difficult.

There exist several quality evaluation methods that address dif-
ferent quality attributes, goals, stakeholders (i.e. method users),
and therefore they also provide different evaluation results. The
differences, for example, between performance and reliability eval-
uation methods are the maturity of methods and tools provided for
evaluation steps. The main reason is that performance evaluation
has been studied for tens of years but reliability evaluation at the
architecture level has been addressed only for a few years. The
main shortcomings of the existing methods are: precision of the
evaluation results, lack of tooling and missing references from
industrial case studies.

Most evaluation methods are used on the component, sub-sys-
tem and/or system levels. However, one factor seems to be com-
mon for most evaluation methods: UML is a standard modelling
language and supporting tools are based on it. Although most eval-
uation methods require a specific set of architectural models as in-
put, the use of MDA and specific profiles for quality attributes is
not supported.

5.4. Future research items

This last experiment, where the SMEPP middleware was evalu-
ated with the tool chain, revealed some topics that need further
research:

E. Ovaska et al. / Information and Software Technology 52 (2010) 577–601 599

IV/24 IV/25

[25] FIPA, FIPA Quality of Service Ontology Specification 2009/02/11, Foundation
for Intelligent Physical Agents, 2002. <http://www.fipa.org/specs/fipa00094/
XC00094.html>.

[26] R. France, B. Rumpe, Model-driven development of complex software: a
research roadmap, Future of Software Engineering (2007) (FOSE ‘07).

[27] E. Gamma, R. Helm, R. Johnson, J. Vlissides, Desing Patterns. Elements of
Reusable Object-oriented Software, Addison-Wesley, Boston, 1994.

[28] L.M. Garshol, BNF and EBNF: what are they and how do they work? 2002.
<http://www.garshol.priv.no/download/text/bnf.html>.

[29] H. Glaser, A. Jaffri, I. Millard, B. Rodriguez, ReSIST Ontology, 2006. <http://
users.ecs.soton.ac.uk/aoj04r/resist.owl>.

[30] P. Gruenbacker, A. Egyed, N. Medvidovic, Reconciling software requirements
and architectures with intermediate models, Software and Systems Modeling
3 (3) (2003) 235–253.

[31] W. Hasselbring, R. Reussner, Toward Trustworthy Software Systems, Computer
39 (4) (2006) 91.

[32] P. Hayes, RDF Semantics, W3C, 2004. <http://www.w3.org/TR/rdf-mt/>.
[33] R. Heckel, M. Lohmann, Towards model-driven testing, Electronic Notes in

Theoretical Computer Science 82 (6) (2003) 33–43.
[34] K. Henttonen, Stylebase for Eclipse, An open source tool to support the

modeling of quality-driven software architecture, Research Note 2387, Espoo:
VTT Technical Research Centre of Finland, 2007. <http://www.vtt.fi/inf/pdf/
tiedotteet/2007/T2387.pdf>.

[35] K. Henttonen, M. Matinlassi, Contributing to Eclipse: a case study, in:
Proceedings of the 2007 Conference on Software Engineering (SE2007),
Hamburg, Germany, 29–30 March, 2007.

[36] K. Henttonen, M. Matinlassi, Open source based tools for sharing and reuse of
software architectural knowledge. Joint Working IEEE/IFIP Conference on
Software Architecture (WICSA) & 3rd European Conference on Software
Architecture (ECSA), Cambridge, UK, 14–17 Sept. 2009. IEEE, pp. 41–50.

[37] K. Henttonen, M. Matinlassi, E. Niemelä, T. Kanstrén, Integrability and
extensibility evaluation from software architectural models – a case study,
The Open Software Engineering Journal 1 (1) (2007) 1–20 (Bentham Science
Publishers, Sharjah).

[38] IEEE, IEEE 982.1, In IEEE Standard Dictionary of Measures of the Software
Aspects of Dependability, Institute of Electrical and Electronics Engineers,
ISBN: 0738148466, 2005.

[39] A. Immonen, A method for predicting reliability and availability at the
architectural level, in: T. Käkölä, J.C. Dueñas (Eds.), Software Product-lines –
Research Issues in Engineering and Management, Springer-Verlag, Berlin,
2006, pp. 373–422.

[40] A. Immonen, A. Evesti, Validation of the reliability analysis method ant tool, in:
Proceedings of the 12th International Software Product Line Conference (SPLC
‘08), vol. 2, 2008.

[41] A. Immonen, E. Niemelä, Survey of reliability and availability prediction
methods from the viewpoint of software architecture, Software and Systems
Modelling 7 (1) (2008) 49–65.

[42] A. Immonen, A. Niskanen, A tool for reliability and availability prediction, in
Proceedings of the 31st Euromicro Conference on Software Engineering and
Advanced Applications, Porto, IEEE Computer Society, 30 August–3 September,
2005.

[43] A. Immonen, M. Palviainen, Trustworthiness evaluation and testing of open
source components, in: Seventh International Conference on Quality Software
(QSIC’07), Portland, Oregon, USA, October 11–12, 2007.

[44] ISO/IEC, 9126:2-4, Software Engineering, Product Quality, Parts 4–6, 2003
<http://www.iso.org/iso/iso_catalogue/catalogue_tc/catalogue_detail.htm?
csnumber=22749>.

[45] ISO/IEC, 9126-1, Software Engineering, Product Quality, Part 1: Quality Model,
2001.

[46] J. Kalaoja, T. Paaso, J. Toivonen, P. Plaza, J. Marina, J. Serrano, S. Kraxberger, D.
Garrido, R. Roman, M. Diaz, D3.2 Conceptual Architecture of Secure EP2P
Middleware, 2008. <http://www.smepp.org/DownloadsReview/D3_2_Final_
Year2.pdf>.

[47] J. Kalaoja, T. Paaso, M. Rodrigues, D. Garrido, A. Rayna, P. Merino, A. Recio, F.
Benigni, R. Popescu, J. Serrano, J. Marina, D3.3 Concrete Architecture of Secure
EP2P Middleware, 2008. <http://www.smepp.org/DownloadsReview/D3_3_
Final_Year2.pdf>.

[48] J. Kantorovitch, E. Niemelä, Service description ontologies, in: Mehdi Khosrow-
Pour (Ed.), Encyclopedia of Information Science and Technology, second ed.,
vol. 7, Published under the imprint Information Science Reference (formerly
Idea Group Reference), 2008, pp. 3445–3451.

[49] S. Kelly, J.Tolvanen, Domain-specific Modelling: Enabling Full Code
Generation, ISBN: 978-0-470-03666-2, 2008.

[50] M. Matinlassi, E. Niemelä, L. Dobrica, Quality-driven Architecture Design and
Quality Analysis Method. A Revolutionary Initiation Approach to a Product
Line Architecture, VTT Electronics, Espoo, Finland, 2002.

[51] D. McGuinness, F. van Harmelen, OWL Web Ontology Language Overview,
W3C, 2004. <http://www.w3.org/TR/owl-features/>.

[52] S.J. Mellor, S. Kendal, A. Uhl, D. Weise, MDA Distilled, Addison-Wesley
Longman Publishing Co., Inc., Redwood City, CA, USA, 2004.

[53] J. Merilinna, A Tool for Quality-driven Architecture Model Transformation, VTT
Technical Research Centre of Finland, Espoo, 2005.

[54] J. Merilinna, E. Niemelä, A stylebase as a tool for modeling of quality-driven
software architecture, in: Proceedings of the Estonian Academy of Sciences,
Special Issue on Programming Languages and Software Tools, vol. 11(4), Tallinn
University of Technology, Tallinn University, Estonian Agricultural University,
2005.

[55] J. Miller, J. Johansson, MDA Guide, Object Management Group, 2003. <http://
www.omg.org/docs/omg/03-06-01.pdf>.

[56] J.D. Musa, Software-reliability-engineered testing, Computer (1996) 61–68.
[57] E. Niemelä, A. Evesti, P. Savolainen, Modeling quality attribute variability, in:

Third International Conference on Evaluation of Novel Approaches of Software
Engineering, ENASE 2008, Funchal, Madeira, Portugal, 4–7 May, 2008.

[58] E. Niemelä, J. Kalaoja, P. Lago, Toward an architectural knowledge base for
wireless service engineering, IEEE Transactions on Software Engineering 31 (5)
(2005). 361-362-379.

[59] E. Niemelä, M. Matinlassi, Quality evaluation by QADA, in: A half-day tutorial
in the 5th Working IEEE/IFIP Conference on Software Architecture, WICSA
2005, Pittsburg, Pennsylvania, USA, 6–9 November, 2005.

[60] L. O’Brien, P. Merson, L. Bass. Quality Attributes for Service-oriented
Architectures, in: Proceedings of the International Workshop on Systems
Development in SOA Environments (SDSOA ‘07), 20–26 May, 2007.

[61] Object Management Group, Meta Object Facility (MOF) 2.0 Query/View/
Transformation Specification, 2008. <http://www.omg.org/spec/QVT/1.0/>.

[62] Object Management Group, UML Superstructure Specification 2.0, 2005
<http://www.omg.org/spec/UML/2.0/>.

[63] Object Management Group, A Proposal for an MDA Foundation Model, 2005
<http://www.omg.org/docs/ormsc/05-04-01.pdf>.

[64] Object Management Group, CORBA Component Model, v.4.0, 2006. <http://
www.omg.org/docs/formal/06-04-01.pdf>.

[65] Object Management Group, MARTE Specification, 2007. <http://
www.omgmarte.org/Specification.htm>.

[66] D. Pakkala, P. Pääkkönen, M. Sihvonen, A generic communication middleware
architecture for distributed application and service messaging, in: Proceedings
of the Joint International Conference on Autonomic and Autonomous Systems
and International Conference on Networking and Services, 2005.

[67] M. Palviainen, A model-based method for dynamic behaviour and reliability
evaluation of multithreaded Java programs. in: Submitted to the Third
International Conference on Software Testing, Verification and Validation
(ICST 2010), Paris, France, 2010.

[68] H. Robinson, Graph theory techniques in model-based testing, in: In the
International Conference on Testing Computer Software, 1999.

[69] RUP, Rational Unified Process: Best Practices for Software Development Teams,
2009. <http://www.augustana.ab.ca/~mohrj/courses/2000.winter/csc220/
papers/rup_best_practices/rup_bestpractices.html>.

[70] D. Rubel, The Heart of Eclipse, ACM Queue 4 (6) (2006) 36–44.
[71] P. Savolainen, E. Niemelä, R. Savola, A taxonomy of information security for

service-centric systems, in: 33rd EUROMICRO Conference on Software
Engineering and Advanced Applications, 20075-12, 2007.

[72] B. Selic, A Definition of MDA, Brest, Brittany, France, Presentation in the Second
Summer School ‘‘MDA for Embedded Systems”, 6–10 September, 2004.

[73] SCRUM, What is Scrum? 2009. <http://www.controlchaos.com/about/>.
[74] M. Tian, A. Gramm, H. Ritter, J. Schiller, Efficient selection and monitoring of

QoS-Aware Web services with the WS-QoS framework, in Proceedings of the
IEEE/WIC/ACM International Conference on Web Intelligence, 2004.

[75] P. Tarvainen, Adaptability evaluation at software architecture level, The Open
Software Engineering Journal 2 (1) (2008) 1–30 (Bentham Science Publishers,
Sharjah).

[76] P. Tarvainen, Adaptability evaluation of software architectures; a case study,
in: Proceedings of the 31st Annual International Computer Software and
Applications Conference, COMPSAC, 2007, pp. 2579–2586.

[77] M. Utting, Position Paper: Model-based Testing, in: Proceedings of the Verified
Software: Theories, Tools, Experiments (VSTTE) Conference, 2005.

[78] M. Utting, A. Pretschner, B. Legeard, A Taxonomy of Model-based Testing,
Department of Computer Science, The University of Waikato, Hamilton, New
Zealand, 2005.

[79] C. Vairo, M. Albano, S. Chessa, A secure middleware for wireless sensor
applications, in: The Fifth Annual International Conference on Mobile and
Ubiquitous Systems: Computing, Networking and Services, Trinity College
Dublin, Ireland, 21–25 July, 2008.

[80] C. Zhou, L. Chia, B. Lee, DAML-QoS Ontology for Web services, in: Proceeding of
the International Conference on Web Services (ICW2004), 2004, pp. 472–
479.

[81] C. Zhou, L. Chia, B. Lee, QoS measurement issues with DAML-QoS ontology, in:
IEEE International Conference on Business Engineering, ICEBE, 2005.

[82] J. Zhou, Knowledge dichotomy and semantic knowledge management, in: 1st
IFIP WG 12.5 Working Conference on Industrial Applications of Semantic Web,
Jyvaskyla, Finland, 2005.

[83] J. Zhou, E. Niemelä, A. Evesti, A. Immonen, P. Savolainen, OntoArch approach
for reliability-aware software architecture development, in: Proceedings of
QACOS2008, IEEE Computer Society, ISBN: 978-0-7695-3262-1, 2008.

[84] J. Zhou, E. Niemelä, P. Savolainen, An integratedQoS-aware service development
and management framework, in: Sixth Working IEEE/IFIP Conference on
Software Architecture (WICSA), Mumbai, India, 6–9 January, 2007.

E. Ovaska et al. / Information and Software Technology 52 (2010) 577–601 601

QPE should facilitate metric selection especially when we have
a lot of quality metrics available. One possibility is that QPE filters
metrics, and the architect could select a metric from a filtered met-
ric group. Probably, this kind of feature can be implemented by uti-
lising existing filtering and data mining techniques.

The Stylebase for Eclipse tool is only an interface to the Archi-
tectural Knowledge Base (AKB), and therefore, the real value of
the tool depends on the contents of the AKB. Currently, our knowl-
edge base contains mostly generic solutions such as architecture
patterns from Buschmann [11]. Next, we plan to gradually accu-
mulate a large knowledge base of domain-specific patterns and
other specialised solutions. However, the knowledge maintenance
features of Stylebase for Eclipse must first be improved.

Extending RAP for predicting other execution quality attributes.
The defined usage profile is not quality attribute dependent and it
could be utilised directly for a new prediction algorithms. There-
fore, research of additional prediction methods based on architec-
tural models is required. However, before that there has to be
suitable metrics available for these quality attributes (cf. Probabil-
ity of Failure PoF).

Currently, ComponentBee supports reliability testing. In the fu-
ture, the tool could be extended andmade capable to test other exe-
cution qualities, such as performance and availability. It should be
quite straightforward to take the technique for calculating reliability
values and use them to calculate other quality values. The essential
conceptwould remain the same: (1) testmodels are constructed (2)
dynamic behaviour is logged, (3) behaviour patterns are recognised
from the raw log (4) and quality values are calculated.

In the future, we hope to validate the tool chain in a genuine
industrial setting (e.g. oversee its deployment in a software com-
pany). However, further effort is required before this is feasible.
For example, quality ontologies for all execution qualities are to be
defined.Moreover, theusability of the approachwouldbemuchbet-
ter if backward traceability is also supported and if all models
needed for quality evaluation could be automatically transformed
from the architecturemodels. Nowadays, only reliability evaluation
models are automatically extracted from the architectural models.

6. Conclusion

In this paper, we introduced a quality aware software architect-
ing approach based on the novel techniques in the knowledge
engineering and model driven software engineering areas. The ap-
proach supports design time quality management and covers the
whole development life cycle of software systems starting from
quality requirements specification, selecting measuring techniques
for quality properties, representing quality properties in architec-
tural models, and finally, evaluating how well the quality require-
ments are met. Furthermore, it provides supporting methods,
techniques, and an integrated tool chain that is based on the
Eclipse platform.

The quality aware modelling approach has three main phases;
modelling quality requirements, representing quality in architec-
tural models, and model based quality evaluation. In the modelling
quality requirements phase, quality knowledge is defined as qual-
ity attribute ontologies. This knowledge is exploited in the quality
requirements specification activity for producing reusable quality
properties. Architectural knowledge is stored as model artefacts;
styles and patterns, and used for representing quality in architec-
ture. Architectural knowledge is also used while qualitative evalu-
ation methods are applied to evaluating evolution qualities.
Meanwhile, execution qualities are evaluated from the architec-
tural models annotated with quality properties by using reusable
usage profiles. Thus, knowledge engineering is used for improving
reuse of knowledge of quality attributes and architectures. Reus-
able models make architecting efficient and of high quality.

Although our approach has been proved to work in practice, we
have also identified several research topics, which need further
examination. One of the most important topics is that all quality
attributes related to execution qualities should be fully supported.
Thereafter, we have a chance to take a step forward and develop
mechanisms and algorithms for managing quality at run-time.

Acknowledgements

The publication of this paper has been supported by the follow-
ing research projects: EU-SMEPP (EU-FP6-IST 0333563), ITEA-COSI,
ITEA-CAM4HOME and ARTEMIS-SOFIA. The first mentioned project
is mainly funded by the European Commission. The three others
are funded by the National Technology Agency (Tekes) and VTT
Technical Research Centre of Finland.

References

[1] P. Avgeriou, P. Kruchten, P. Lago, P. Grisham, D. Perry, Architectural knowledge
and rationale: issues, trends, challenges, SIGSOFT Softw. Eng. Notes 32 (4)
(2007) 41–46 (July).

[2] F. Bachmann, L. Bass, G. Chastek, P. Donohoe, F. Peruzzi, The Architecture based
Design Method, CMU/SEI, Technical Report 2000-TR-001, 2000.

[3] F. Bachmann, L. Bass, Introduction to the attribute driven design method, in:
23rd International Conference on Software Engineering (ICSE’01), 0745, 2001.

[4] D. Brickley, R.V. Guha, RDF Vocabulary Description Language 1.0: RDF Schema,
W3C, 2004. <http://www.w3.org/TR/rdf-schema/>.

[5] A. Barstow, J. Hendler, M. Skall, et al. OWL Web Ontology Language for
Services, W3C, 2004. <http://www.w3.org/Submission/2004/07/>.

[6] J. Bosch, Design and Use of Software Architectures: Adopting and Evolving a
Product-line Approach, Addison-Wesley, Harlow, 2000.

[7] G. Booch, A. Brown, S. Iyengar, J. Rumbaugh, B. Selic, An MDA Manifesto, in:
MDA Journal: Model Driven Architecture Straight from the Masters, Meghan-
Kiffer Press, Tampa, FL, USA, 2005.

[8] G. Booch, I. Jacobson, J. Rumbaugh, Unified Modeling Language for Object
Oriented Development, Rational Software Corporation, 1996.

[9] T. Bray, J. Paoli, C.M. Sperberg-McQueen, E. Maler, F. Yergeau, Extensible
Markup Language (XML) 1.0. W3C, 1999. <http://www.w3.org/TR/REC-xml/>.

[10] J. Bruck, Defining Generics with UML Templates, IBM, 2007. <http://
www.eclipse.org/modeling/mdt/uml2/docs/articles/Defining_Generics_with_
UML_Templates/article.html>.

[11] F. Buschmann, R. Meunier, H. Rohnert, P. Sammerlad, M. Stal, Pattern Oriented
Software Architecture: A System of Patterns, John Wiley & Sons Ltd.,
Chichester, 1996.

[12] S.W. Cheng, D. Garlan, B. Schmerl, P. Steenkiste, N. Hu, Software architecture-
based adaptation for grid computing, in: Proceedings of the 11th IEEE
International Symposium on High Performance Distributed Computing
(HPDC-11 2002), 2002.

[13] R.C. Cheung, A user-oriented software reliability model. Software engineering,
IEEE Transactions on Software Engineering 6 (2) (1980) 118–125.

[14] L. Chung, B.A. Nixon, E. Yu, J. Mylopoulus, Non-functional Requirements in
Software Engineering, Kluwer Academic Publishers, Boston, 2000.

[15] L. Dobrica, E. Niemelä, A Survey on Software Architecture Analysis Methods,
IEEE Transactions on Software Engineering 28 (7) (2002) 638–653.

[16] G. Dobson, R. Lock, I. Sommerville, QoSOnt: a QoS ontology for service-centric
systems, in: Proceedings of the 31st EUROMICRO Conference on Software
Engineering and Advanced Applications, 2005.

[17] T. Edgington, B. Choi, K. Henson, T. Raghu, A. Vinze, Adopting ontology to
facilitate knowledge sharing, Communications of ACM 47 (11) (2004) 85–90.

[18] J.R. Evans, W.M. Lindsay, The Management and Control of Quality, South
Western College Publishing, 1999.

[19] A. Evesti, E. Niemelä, Quality-oriented architecting environment for quality
variability, in: Proceedings of International Conference and Software and
Systems Engineering and their Applications, ICSSEA, 3–6 December, 2007.

[20] A. Evesti, E. Niemelä, K. Henttonen, M. Palviainen, A tool chain for quality-
driven software architecting, in: Proceedings of the 12th International
Software Product Line Conference (SPLC ‘08), 2008.

[21] R. Farenhorst, P.Lago, H. van Vliet, Prerequisites for successful architectural
knowledge sharing, in: Proceedings of the 18th Australian Software
Engineering Conference (ASWEC 2007), 2007.

[22] R. Farenhost, P. Lago, H. Vlient, Effective tool support for architectural
knowledge sharing, Lecture Notes in Computer Science 4758/2007, Springer-
Verlag, Berlin, Heidelberg, 2007.

[23] U. Farooq, C. Lam, H. Li, Towards automated test sequence generation, in:
Proceedings of the 19th Australian Conference on Software Engineering
(ASWEC 2008), 2008.

[24] M. Fernandez-Lopez, A. Gomez-Perez, N. Juristo, METHONTOLOGY: from
ontological art towards ontological engineering, in: Proceeding of Spring
Symposium on Ontological Engineering of AAAI, Stanford University,
California, 1997.

600 E. Ovaska et al. / Information and Software Technology 52 (2010) 577–601

http://www.w3.org/TR/rdf-schema/
http://www.w3.org/Submission/2004/07/
http://www.w3.org/TR/REC-xml/
http://www.eclipse.org/modeling/mdt/uml2/docs/articles/Defining_Generics_with_UML_Templates/article.html
http://www.eclipse.org/modeling/mdt/uml2/docs/articles/Defining_Generics_with_UML_Templates/article.html
http://www.eclipse.org/modeling/mdt/uml2/docs/articles/Defining_Generics_with_UML_Templates/article.html

IV/25

[25] FIPA, FIPA Quality of Service Ontology Specification 2009/02/11, Foundation
for Intelligent Physical Agents, 2002. <http://www.fipa.org/specs/fipa00094/
XC00094.html>.

[26] R. France, B. Rumpe, Model-driven development of complex software: a
research roadmap, Future of Software Engineering (2007) (FOSE ‘07).

[27] E. Gamma, R. Helm, R. Johnson, J. Vlissides, Desing Patterns. Elements of
Reusable Object-oriented Software, Addison-Wesley, Boston, 1994.

[28] L.M. Garshol, BNF and EBNF: what are they and how do they work? 2002.
<http://www.garshol.priv.no/download/text/bnf.html>.

[29] H. Glaser, A. Jaffri, I. Millard, B. Rodriguez, ReSIST Ontology, 2006. <http://
users.ecs.soton.ac.uk/aoj04r/resist.owl>.

[30] P. Gruenbacker, A. Egyed, N. Medvidovic, Reconciling software requirements
and architectures with intermediate models, Software and Systems Modeling
3 (3) (2003) 235–253.

[31] W. Hasselbring, R. Reussner, Toward Trustworthy Software Systems, Computer
39 (4) (2006) 91.

[32] P. Hayes, RDF Semantics, W3C, 2004. <http://www.w3.org/TR/rdf-mt/>.
[33] R. Heckel, M. Lohmann, Towards model-driven testing, Electronic Notes in

Theoretical Computer Science 82 (6) (2003) 33–43.
[34] K. Henttonen, Stylebase for Eclipse, An open source tool to support the

modeling of quality-driven software architecture, Research Note 2387, Espoo:
VTT Technical Research Centre of Finland, 2007. <http://www.vtt.fi/inf/pdf/
tiedotteet/2007/T2387.pdf>.

[35] K. Henttonen, M. Matinlassi, Contributing to Eclipse: a case study, in:
Proceedings of the 2007 Conference on Software Engineering (SE2007),
Hamburg, Germany, 29–30 March, 2007.

[36] K. Henttonen, M. Matinlassi, Open source based tools for sharing and reuse of
software architectural knowledge. Joint Working IEEE/IFIP Conference on
Software Architecture (WICSA) & 3rd European Conference on Software
Architecture (ECSA), Cambridge, UK, 14–17 Sept. 2009. IEEE, pp. 41–50.

[37] K. Henttonen, M. Matinlassi, E. Niemelä, T. Kanstrén, Integrability and
extensibility evaluation from software architectural models – a case study,
The Open Software Engineering Journal 1 (1) (2007) 1–20 (Bentham Science
Publishers, Sharjah).

[38] IEEE, IEEE 982.1, In IEEE Standard Dictionary of Measures of the Software
Aspects of Dependability, Institute of Electrical and Electronics Engineers,
ISBN: 0738148466, 2005.

[39] A. Immonen, A method for predicting reliability and availability at the
architectural level, in: T. Käkölä, J.C. Dueñas (Eds.), Software Product-lines –
Research Issues in Engineering and Management, Springer-Verlag, Berlin,
2006, pp. 373–422.

[40] A. Immonen, A. Evesti, Validation of the reliability analysis method ant tool, in:
Proceedings of the 12th International Software Product Line Conference (SPLC
‘08), vol. 2, 2008.

[41] A. Immonen, E. Niemelä, Survey of reliability and availability prediction
methods from the viewpoint of software architecture, Software and Systems
Modelling 7 (1) (2008) 49–65.

[42] A. Immonen, A. Niskanen, A tool for reliability and availability prediction, in
Proceedings of the 31st Euromicro Conference on Software Engineering and
Advanced Applications, Porto, IEEE Computer Society, 30 August–3 September,
2005.

[43] A. Immonen, M. Palviainen, Trustworthiness evaluation and testing of open
source components, in: Seventh International Conference on Quality Software
(QSIC’07), Portland, Oregon, USA, October 11–12, 2007.

[44] ISO/IEC, 9126:2-4, Software Engineering, Product Quality, Parts 4–6, 2003
<http://www.iso.org/iso/iso_catalogue/catalogue_tc/catalogue_detail.htm?
csnumber=22749>.

[45] ISO/IEC, 9126-1, Software Engineering, Product Quality, Part 1: Quality Model,
2001.

[46] J. Kalaoja, T. Paaso, J. Toivonen, P. Plaza, J. Marina, J. Serrano, S. Kraxberger, D.
Garrido, R. Roman, M. Diaz, D3.2 Conceptual Architecture of Secure EP2P
Middleware, 2008. <http://www.smepp.org/DownloadsReview/D3_2_Final_
Year2.pdf>.

[47] J. Kalaoja, T. Paaso, M. Rodrigues, D. Garrido, A. Rayna, P. Merino, A. Recio, F.
Benigni, R. Popescu, J. Serrano, J. Marina, D3.3 Concrete Architecture of Secure
EP2P Middleware, 2008. <http://www.smepp.org/DownloadsReview/D3_3_
Final_Year2.pdf>.

[48] J. Kantorovitch, E. Niemelä, Service description ontologies, in: Mehdi Khosrow-
Pour (Ed.), Encyclopedia of Information Science and Technology, second ed.,
vol. 7, Published under the imprint Information Science Reference (formerly
Idea Group Reference), 2008, pp. 3445–3451.

[49] S. Kelly, J.Tolvanen, Domain-specific Modelling: Enabling Full Code
Generation, ISBN: 978-0-470-03666-2, 2008.

[50] M. Matinlassi, E. Niemelä, L. Dobrica, Quality-driven Architecture Design and
Quality Analysis Method. A Revolutionary Initiation Approach to a Product
Line Architecture, VTT Electronics, Espoo, Finland, 2002.

[51] D. McGuinness, F. van Harmelen, OWL Web Ontology Language Overview,
W3C, 2004. <http://www.w3.org/TR/owl-features/>.

[52] S.J. Mellor, S. Kendal, A. Uhl, D. Weise, MDA Distilled, Addison-Wesley
Longman Publishing Co., Inc., Redwood City, CA, USA, 2004.

[53] J. Merilinna, A Tool for Quality-driven Architecture Model Transformation, VTT
Technical Research Centre of Finland, Espoo, 2005.

[54] J. Merilinna, E. Niemelä, A stylebase as a tool for modeling of quality-driven
software architecture, in: Proceedings of the Estonian Academy of Sciences,
Special Issue on Programming Languages and Software Tools, vol. 11(4), Tallinn
University of Technology, Tallinn University, Estonian Agricultural University,
2005.

[55] J. Miller, J. Johansson, MDA Guide, Object Management Group, 2003. <http://
www.omg.org/docs/omg/03-06-01.pdf>.

[56] J.D. Musa, Software-reliability-engineered testing, Computer (1996) 61–68.
[57] E. Niemelä, A. Evesti, P. Savolainen, Modeling quality attribute variability, in:

Third International Conference on Evaluation of Novel Approaches of Software
Engineering, ENASE 2008, Funchal, Madeira, Portugal, 4–7 May, 2008.

[58] E. Niemelä, J. Kalaoja, P. Lago, Toward an architectural knowledge base for
wireless service engineering, IEEE Transactions on Software Engineering 31 (5)
(2005). 361-362-379.

[59] E. Niemelä, M. Matinlassi, Quality evaluation by QADA, in: A half-day tutorial
in the 5th Working IEEE/IFIP Conference on Software Architecture, WICSA
2005, Pittsburg, Pennsylvania, USA, 6–9 November, 2005.

[60] L. O’Brien, P. Merson, L. Bass. Quality Attributes for Service-oriented
Architectures, in: Proceedings of the International Workshop on Systems
Development in SOA Environments (SDSOA ‘07), 20–26 May, 2007.

[61] Object Management Group, Meta Object Facility (MOF) 2.0 Query/View/
Transformation Specification, 2008. <http://www.omg.org/spec/QVT/1.0/>.

[62] Object Management Group, UML Superstructure Specification 2.0, 2005
<http://www.omg.org/spec/UML/2.0/>.

[63] Object Management Group, A Proposal for an MDA Foundation Model, 2005
<http://www.omg.org/docs/ormsc/05-04-01.pdf>.

[64] Object Management Group, CORBA Component Model, v.4.0, 2006. <http://
www.omg.org/docs/formal/06-04-01.pdf>.

[65] Object Management Group, MARTE Specification, 2007. <http://
www.omgmarte.org/Specification.htm>.

[66] D. Pakkala, P. Pääkkönen, M. Sihvonen, A generic communication middleware
architecture for distributed application and service messaging, in: Proceedings
of the Joint International Conference on Autonomic and Autonomous Systems
and International Conference on Networking and Services, 2005.

[67] M. Palviainen, A model-based method for dynamic behaviour and reliability
evaluation of multithreaded Java programs. in: Submitted to the Third
International Conference on Software Testing, Verification and Validation
(ICST 2010), Paris, France, 2010.

[68] H. Robinson, Graph theory techniques in model-based testing, in: In the
International Conference on Testing Computer Software, 1999.

[69] RUP, Rational Unified Process: Best Practices for Software Development Teams,
2009. <http://www.augustana.ab.ca/~mohrj/courses/2000.winter/csc220/
papers/rup_best_practices/rup_bestpractices.html>.

[70] D. Rubel, The Heart of Eclipse, ACM Queue 4 (6) (2006) 36–44.
[71] P. Savolainen, E. Niemelä, R. Savola, A taxonomy of information security for

service-centric systems, in: 33rd EUROMICRO Conference on Software
Engineering and Advanced Applications, 20075-12, 2007.

[72] B. Selic, A Definition of MDA, Brest, Brittany, France, Presentation in the Second
Summer School ‘‘MDA for Embedded Systems”, 6–10 September, 2004.

[73] SCRUM, What is Scrum? 2009. <http://www.controlchaos.com/about/>.
[74] M. Tian, A. Gramm, H. Ritter, J. Schiller, Efficient selection and monitoring of

QoS-Aware Web services with the WS-QoS framework, in Proceedings of the
IEEE/WIC/ACM International Conference on Web Intelligence, 2004.

[75] P. Tarvainen, Adaptability evaluation at software architecture level, The Open
Software Engineering Journal 2 (1) (2008) 1–30 (Bentham Science Publishers,
Sharjah).

[76] P. Tarvainen, Adaptability evaluation of software architectures; a case study,
in: Proceedings of the 31st Annual International Computer Software and
Applications Conference, COMPSAC, 2007, pp. 2579–2586.

[77] M. Utting, Position Paper: Model-based Testing, in: Proceedings of the Verified
Software: Theories, Tools, Experiments (VSTTE) Conference, 2005.

[78] M. Utting, A. Pretschner, B. Legeard, A Taxonomy of Model-based Testing,
Department of Computer Science, The University of Waikato, Hamilton, New
Zealand, 2005.

[79] C. Vairo, M. Albano, S. Chessa, A secure middleware for wireless sensor
applications, in: The Fifth Annual International Conference on Mobile and
Ubiquitous Systems: Computing, Networking and Services, Trinity College
Dublin, Ireland, 21–25 July, 2008.

[80] C. Zhou, L. Chia, B. Lee, DAML-QoS Ontology for Web services, in: Proceeding of
the International Conference on Web Services (ICW2004), 2004, pp. 472–
479.

[81] C. Zhou, L. Chia, B. Lee, QoS measurement issues with DAML-QoS ontology, in:
IEEE International Conference on Business Engineering, ICEBE, 2005.

[82] J. Zhou, Knowledge dichotomy and semantic knowledge management, in: 1st
IFIP WG 12.5 Working Conference on Industrial Applications of Semantic Web,
Jyvaskyla, Finland, 2005.

[83] J. Zhou, E. Niemelä, A. Evesti, A. Immonen, P. Savolainen, OntoArch approach
for reliability-aware software architecture development, in: Proceedings of
QACOS2008, IEEE Computer Society, ISBN: 978-0-7695-3262-1, 2008.

[84] J. Zhou, E. Niemelä, P. Savolainen, An integratedQoS-aware service development
and management framework, in: Sixth Working IEEE/IFIP Conference on
Software Architecture (WICSA), Mumbai, India, 6–9 January, 2007.

E. Ovaska et al. / Information and Software Technology 52 (2010) 577–601 601

http://www.fipa.org/specs/fipa00094/XC00094.html
http://www.fipa.org/specs/fipa00094/XC00094.html
http://www.garshol.priv.no/download/text/bnf.html
http://users.ecs.soton.ac.uk/aoj04r/resist.owl
http://users.ecs.soton.ac.uk/aoj04r/resist.owl
http://www.w3.org/TR/rdf-mt/
http://www.vtt.fi/inf/pdf/tiedotteet/2007/T2387.pdf
http://www.vtt.fi/inf/pdf/tiedotteet/2007/T2387.pdf
http://www.iso.org/iso/iso_catalogue/catalogue_tc/catalogue_detail.htm?csnumber=22749
http://www.iso.org/iso/iso_catalogue/catalogue_tc/catalogue_detail.htm?csnumber=22749
http://www.smepp.org/DownloadsReview/D3_2_Final_Year2.pdf
http://www.smepp.org/DownloadsReview/D3_2_Final_Year2.pdf
http://www.smepp.org/DownloadsReview/D3_3_Final_Year2.pdf
http://www.smepp.org/DownloadsReview/D3_3_Final_Year2.pdf
http://www.w3.org/TR/owl-features/
http://www.omg.org/docs/omg/03-06-01.pdf
http://www.omg.org/docs/omg/03-06-01.pdf
http://www.omg.org/spec/QVT/1.0/
http://www.omg.org/spec/UML/2.0/
http://www.omg.org/docs/ormsc/05-04-01.pdf
http://www.omg.org/docs/formal/06-04-01.pdf
http://www.omg.org/docs/formal/06-04-01.pdf
http://www.omgmarte.org/Specification.htm
http://www.omgmarte.org/Specification.htm
http://www.augustana.ab.ca/~mohrj/courses/2000.winter/csc220/papers/rup_best_practices/rup_bestpractices.html
http://www.augustana.ab.ca/~mohrj/courses/2000.winter/csc220/papers/rup_best_practices/rup_bestpractices.html
http://www.controlchaos.com/about/

PUBLICATION V

The design, instantiation, and
usage of information

security measuring ontology

In: Proceedings of the Second International
Conference on Models and Ontology-based

Design of Protocols, Architectures and Services
(MOPAS), Budapest, Hungary, 17–22 April 2011.

Pp. 1–9.
Copyright 2011 IARIA.

Reprinted with permission from the publisher.

V/1

V/1

The Design, Instantiation, and Usage of Information
Security Measuring Ontology

Antti Evesti, Reijo Savola, Eila Ovaska, Jarkko Kuusijärvi
VTT Technical Research Centre of Finland

Oulu, Finland
e-mail: antti.evesti@vtt.fi, reijo.savola@vtt.fi, eila.ovaska@vtt.fi, jarkko.kuusijarvi@vtt.fi

Abstract—Measuring security is a complex task and requires a
great deal of knowledge. Managing this knowledge and
presenting it in a universal way is challenging. This paper
describes the Information Security Measuring Ontology
(ISMO) for measuring information security. The ontology
combines existing measuring and security ontologies and
instantiates it through example measures. The ontology
provides a solid way to present security measures for software
designers and adaptable applications. The software designer
can utilise the ontology to provide an application with security
measuring capability. Moreover, the adaptable application
searches for measures from the ontology, in order to measure a
security level in the current run-time situation. The case
example illustrates the design and run-time usage of the
ontology. The experiment proved that the ontology facilitates
the software designer’s work, when implementing security
measures for applications that are able to retrieve measures
from the ontology at run-time.

Keywords-adaptation; run-time; quality; measure; security
metric; software

I. INTRODUCTION

Software applications running on devices and systems
may face needs for changes due to alterations happening in
their execution environments or intended usages. These
changes may have a considerable effect on the security
requirements of the software system. Moreover, emerging
security threats and vulnerabilities may affect the achieved
security level. However, the software system is required to
achieve a desired security level in these changing
circumstances [1]. Therefore, the software has to be able to
observe the security level at run-time, measure the fulfilment
of the security requirements, and adapt itself accordingly.
However, measuring the security level at run-time requires
the correct measures and measurement techniques for each
situation. Defining the measures and the measuring
techniques is a time consuming task and requires the use of
experts from different domains. Thus, it is important to
present the defined measures in a universal and reusable
form. In addition, problems concerning how to present these
measures, the measuring techniques, and their mutual
relationships have to be solved in a way that facilitates run-
time security measuring. Ontologies provide a possibility to
manage this knowledge, making it possible to describe

different security requirements and ways to measure the
fulfilment of these requirements.

Ontologies are utilised in [2] to achieve the required
quality of the software at a design-time. Thus, it is
reasonable to utilise ontologies as a knowledge base for
quality management at the run-time. Furthermore, the work
in [3] presents the architecture for developing software
applications with security adaptation capabilities – the
presented approach assumes that the knowledge required for
security monitoring and adaptation is available from
ontologies.

In this work, we will present a novel ontology for the
run-time security measuring – called Information Security
Measuring Ontology (ISMO). ISMO combines a
terminology from a software measurement area in general
and the security related terminology. In addition, a few
security measurements are added to the ontology in order to
instantiate it. The novelty of our work comes from this
combination – based on our current knowledge, there isn’t
any other ontology which describe security measuring in a
run-time applicable way. The content of ISMO can be
enhanced after the software application has been delivered.
Hence, the measuring process is based on the up-to-date
specifications of security measures. The purpose of this new
ontology is to make it possible for software applications to
utilise security measures during run-time in changing
environments. Therefore, it is possible for the application to
measure the fulfilment of its security requirements and adapt
the used security mechanisms if the required security is not
met. In other words, the measuring acts as a trigger for the
adaptation. However, to achieve software applications with a
measuring capability, the developer must have implemented
a set of measuring techniques as a part of it. Thus, ISMO
also provides input for developers – presenting what
measuring techniques are to be implemented and how.

The remainder of the paper is organised as follows:
Section 2 provides background information; Section 3
presents an overview of the combined ontology and
mentions some security measurements. Section 4 instantiates
the defined ontology. Section 5 explains how the ontology is
utilised. A case example is presented in Section 6. Finally, a
discussion and conclusions close the paper.

1Copyright (c) IARIA, 2011. ISBN: 978-1-61208-005-5

MOPAS 2011 : The Second International Conference on Models and Ontology-based Design of Protocols, Architectures and Services

mailto:antti.evesti@vtt.fi
mailto:reijo.savola@vtt.fi
mailto:eila.ovaska@vtt.fi
mailto:jarkko.kuusijarvi@vtt.fi

V/2 V/3

Figure 1. An overview of the combining process.

TABLE I shows mapping properties between concepts
from the SMO and OIS. These are mappings made from
concept to concept. Each SecurityGoal has an Indicator –
intended for measuring the fulfilment of the goal. The SMO
uses the term QualityModel for defining measurable
concepts. QualityModel is a quality attribute dependent, i.e.,
security in this case. Thus, the QualityModel concept is
related to SecurityGoal. The MeasurableConcept from the
SMO is also mapped to the SecurityGoal, through the means
of the isDefinedFor property.

In the SMO, MeasurableConcept relates to Attribute,
meaning a characteristic that will be measured. Thus,
Attribute can relate to countermeasures, threats, or assets,
depending on the measure which is used.
hasMeasurableAttribute is optional, meaning that mappings
to the attributes are made during the phase when the
measures are instantiated.

TABLE I. MAPPING PROPERTIES BETWEEN SMO AND OIS

Concept from OIS Mapping property
(direction)

Concept from SMO

SecurityGoal hasIndicator (->) Indicator
SecurityGoal isRelatedTo (<-) QualityModel
SecurityGoal isDefinedFor (<-) MeasurableConcept
Countermeasure,
Threat, Asset

hasMeasurableAtt-
ribute (->) (optional)

Attribute

A. Security Measures
The overall security level of the product can be

represented by a combination of relevant security attribute
measures. However, it is not possible to cover all security
measures in this work. Consequently, we will concentrate on
user authentication, and thus, the ISMO is instantiated by
these measures.

In [18] measures for various security goals (e.g.,
authentication, integrity, etc.) are defined by using a
decomposition approach introduced by Wang et al. in [19].
Authentication can be decomposed into five components –
called BMCs (Basic Measurable Components) – as follows:
Authentication Identity Uniqueness (AIU), Authentication
Identity Structure (AIS), Authentication Identity Integrity
(AII), Authentication Mechanism Reliability (AMR), and
Authentication Mechanism Integrity (AMI). Savola and Abie
[18] define equations for these BMCs, and in addition, the
equation for combining Authentication Strength (AS) from

these BMCs. AS is an aggregated user-dependent measure
that can be utilized in authentication and authorization.

The user-dependent AS results can be combined into a
system-level AS, which can be utilized in run-time adaptive
security decision-making [18]. When considering a software
application that measures its security level at run-time, AIS,
AII, and AMR are particularly applicable. In other words, an
application cannot measure AIU and AMI, as the
information which is required for these measures is only
available at the server side where the application will be
authenticated. Thus, in this work, the measures for the AIS
will be used as example measures.

To measure AIS, we utilise a measure intended for
situations where the authentication is based on a password –
called the structure of the password. It is commonly
understood that the structure of a password, i.e., the length
and variation of the symbols, affects the achievable
authentication strength. Therefore, we divide passwords into
groups such as: i) a PIN code containing four numbers, ii) a
password containing 5-9 lower case characters, and iii) a
password containing over 10 ASCII symbols. Intuitively,
group i provides the worst authentication level, group ii
offers an increased authentication level, and group iii is the
best alternative.

Another measure that we utilise for password based
authentication is the age of the password, i.e., how long the
same password has been used. This measure can be used for
two different purposes. Firstly, to measure the security policy
fulfilment, e.g., a policy can define that the password has to
be changed every three months. Secondly, the measure can
be utilised as a factor of measuring the authentication
strength by utilising more complex analysis models. The age
of the password is also mapped to the AIS from BMCs.

These two measures are simple to understand, and thus,
provide a good starting point for instantiating ISMO. The
graphs in Fig. 2 illustrate how the password strength is
affected by the structure and age of the password. These are
however merely examples and we do not claim that these
affects are linear.

Figure 2. Conceptual correlation graphs for the authentication measures.

IV. THE INSTANTIATION OF INFORMATION SECURITY
MEASURING ONTOLOGY

In this section, the authentication related measures are
instantiated as a part of the ISMO and the required mappings
are added. Fig. 3, Fig. 4, and Fig. 5 present the instantiated
ontology – rectangles depict the concepts from SMO and
ellipses refer to concepts from OIS. The name of each

3Copyright (c) IARIA, 2011. ISBN: 978-1-61208-005-5

MOPAS 2011 : The Second International Conference on Models and Ontology-based Design of Protocols, Architectures and Services

II. BACKGROUND

ISO/IEC defines security in [4] as follows: “The
capability of the software product to protect information and
data so that unauthorized persons or systems cannot read or
modify them and authorized persons or systems are not
denied access to them.” Furthermore, in some sources
security is thought to be a composition of confidentiality,
integrity and availability [5, 6]. In [7], these security sub-
attributes are called security goals.

Zhou [8] defines ontology as a shared knowledge
standard or knowledge model, defining primitive concepts,
relations, rules and their instances, which comprise topic
knowledge. It can be used for capturing, structuring and
enlarging explicit and tacit topic knowledge across people,
organizations, and computer and software systems.

Blanco et al. [9] lists several security ontologies in their
work. In addition, our earlier work [10] also compares a
number of security ontologies, particularly those that are
applicable for run-time usage. It is noticed in [10] that
security ontologies for run-time usage exist – especially for
service discovery and matchmaking, for example, ontologies
from Denker et al. [11] and Kim et al. [12]. In addition,
security ontologies which concentrate on software design
and implementation phases also exist, e.g., works from
Savolainen et al. [13] and Tsoumas et al. [14]. From these
ontologies, only the work from Savolainen et al. [13] takes
measurements into account, by presenting a high level
classification for different security measures. However, the
most extensive information security ontology at the moment
is the one proposed by Herzog et al. [7], called an ontology
of information security – abbreviated as (OIS) in this work.
The OIS is intended to provide a general vocabulary or an
extensible dictionary of information security. It is applicable
at design and run-time alike, and it contains more concepts
than all the above mentioned security ontologies altogether.
Thus, this ontology provides a sound starting point for
defining the concepts of ISMO.

The OIS does not contain concepts for describing
measures. Therefore, the Software Measurement Ontology
(SMO) [15] is utilised for measurement definitions. The
SMO presents the generic measurement terminology related
to software measurements. In other words, ontology is
quality attribute independent. The SMO collects and aligns
terminology from several standards of software engineering,
software quality metrics, and general metrology. It is
important to notice that the SMO uses a term measure
instead of metric. Thus, the measure term will be used in this
work. The SMO divides measures into three sub-classes:
namely a base measure, derived measure, and indicator – all
of which inherit the same relationships from other concepts.
The base measure is an independent ‘raw’ measure. A
derived measure is a combination of other derived measures
and / or base measures. Finally, an indicator can be a
combination of all of these three types of measures. The
complexity of these measures increases when moving from
base measures to derived measures and further on to
indicators. In literature, base measures and derived measures

are also called direct and indirect measures; however we will
follow the terminology defined by the SMO.

Hence, this work draws mappings between the OIS and
SMO, instead of defining a new ontology from scratch. This
is considered to be reasonable since a remarkable effort has
been invested into these existing ontologies and both are
scientifically reviewed and accepted. In addition, the reuse of
existing ontologies is suggested in [16] as one potential
approach for ontology development.

III. THE DESIGN OF INFORMATION SECURITY MEASURING
ONTOLOGY

This section describes how the combined ontology ISMO
is designed. SMO [15] contains 20 generic measurement
related concepts and their relationships. Thus, security
measures will be used to instantiate ontology for security
measuring purposes – creating base measures, derived
measures, and indicators. On the other hand, OIS [7]
contains concepts related to threats, assets, countermeasures,
security goals, and the relationships between those concepts.
In addition, the OIS describes a couple of vulnerabilities and
how these act as enablers for threats. The OIS already
contains some of these concepts as an instantiated form, such
as the security goals of authentication, integrity, etc.

The purpose of combining these two ontologies is to
achieve an ontology that makes it possible to measure the
fulfilment of security requirements, i.e., security goals and
levels. In other words, the purpose is to enable an operational
security correctness measurement, as called in [17].
Therefore, the requirements are described by a means of
vocabulary from the OIS. The requirements fulfilment is
measured with indicators – which combine several measures
– defined in the SMO. The security measures, i.e., indicators,
are different for each security goal, e.g., a level of
authentication or non-repudiation is measured with different
measures. However, these measures can utilise the same base
measures. On the other hand, the same security goal can be
achieved with different countermeasures, which in turn
might require their own measures. For instance, the
authentication level, which is achieved, is measured in a
different way when a security token is used instead of a
password authentication. Hence, there are only a few
concept-to-concept mappings between these two ontologies,
but additional mappings appear when the measures are
instantiated. By using a terminology from ontologies, a
mapping refers to the property between the concepts. Adding
mappings for instantiated measures requires domain
expertise, i.e., the capability to recognise applicable
measuring techniques for a particular security goal and
related mechanisms. Furthermore, the mapping requires a
capability to recognise threats which affect to the particular
security goal and/or mechanism. Mappings at the
instantiation phase are described more detail in Section IV.

Fig. 1 shows an overview of the combining process.
Firstly, the mappings between the concepts are drawn.
Secondly, security measure instances are added and related
mappings for each measure are defined. Thus, the SMO is
used as a guideline as how to define the instances of security
measures.

2Copyright (c) IARIA, 2011. ISBN: 978-1-61208-005-5

MOPAS 2011 : The Second International Conference on Models and Ontology-based Design of Protocols, Architectures and Services

V/3

Figure 1. An overview of the combining process.

TABLE I shows mapping properties between concepts
from the SMO and OIS. These are mappings made from
concept to concept. Each SecurityGoal has an Indicator –
intended for measuring the fulfilment of the goal. The SMO
uses the term QualityModel for defining measurable
concepts. QualityModel is a quality attribute dependent, i.e.,
security in this case. Thus, the QualityModel concept is
related to SecurityGoal. The MeasurableConcept from the
SMO is also mapped to the SecurityGoal, through the means
of the isDefinedFor property.

In the SMO, MeasurableConcept relates to Attribute,
meaning a characteristic that will be measured. Thus,
Attribute can relate to countermeasures, threats, or assets,
depending on the measure which is used.
hasMeasurableAttribute is optional, meaning that mappings
to the attributes are made during the phase when the
measures are instantiated.

TABLE I. MAPPING PROPERTIES BETWEEN SMO AND OIS

Concept from OIS Mapping property
(direction)

Concept from SMO

SecurityGoal hasIndicator (->) Indicator
SecurityGoal isRelatedTo (<-) QualityModel
SecurityGoal isDefinedFor (<-) MeasurableConcept
Countermeasure,
Threat, Asset

hasMeasurableAtt-
ribute (->) (optional)

Attribute

A. Security Measures
The overall security level of the product can be

represented by a combination of relevant security attribute
measures. However, it is not possible to cover all security
measures in this work. Consequently, we will concentrate on
user authentication, and thus, the ISMO is instantiated by
these measures.

In [18] measures for various security goals (e.g.,
authentication, integrity, etc.) are defined by using a
decomposition approach introduced by Wang et al. in [19].
Authentication can be decomposed into five components –
called BMCs (Basic Measurable Components) – as follows:
Authentication Identity Uniqueness (AIU), Authentication
Identity Structure (AIS), Authentication Identity Integrity
(AII), Authentication Mechanism Reliability (AMR), and
Authentication Mechanism Integrity (AMI). Savola and Abie
[18] define equations for these BMCs, and in addition, the
equation for combining Authentication Strength (AS) from

these BMCs. AS is an aggregated user-dependent measure
that can be utilized in authentication and authorization.

The user-dependent AS results can be combined into a
system-level AS, which can be utilized in run-time adaptive
security decision-making [18]. When considering a software
application that measures its security level at run-time, AIS,
AII, and AMR are particularly applicable. In other words, an
application cannot measure AIU and AMI, as the
information which is required for these measures is only
available at the server side where the application will be
authenticated. Thus, in this work, the measures for the AIS
will be used as example measures.

To measure AIS, we utilise a measure intended for
situations where the authentication is based on a password –
called the structure of the password. It is commonly
understood that the structure of a password, i.e., the length
and variation of the symbols, affects the achievable
authentication strength. Therefore, we divide passwords into
groups such as: i) a PIN code containing four numbers, ii) a
password containing 5-9 lower case characters, and iii) a
password containing over 10 ASCII symbols. Intuitively,
group i provides the worst authentication level, group ii
offers an increased authentication level, and group iii is the
best alternative.

Another measure that we utilise for password based
authentication is the age of the password, i.e., how long the
same password has been used. This measure can be used for
two different purposes. Firstly, to measure the security policy
fulfilment, e.g., a policy can define that the password has to
be changed every three months. Secondly, the measure can
be utilised as a factor of measuring the authentication
strength by utilising more complex analysis models. The age
of the password is also mapped to the AIS from BMCs.

These two measures are simple to understand, and thus,
provide a good starting point for instantiating ISMO. The
graphs in Fig. 2 illustrate how the password strength is
affected by the structure and age of the password. These are
however merely examples and we do not claim that these
affects are linear.

Figure 2. Conceptual correlation graphs for the authentication measures.

IV. THE INSTANTIATION OF INFORMATION SECURITY
MEASURING ONTOLOGY

In this section, the authentication related measures are
instantiated as a part of the ISMO and the required mappings
are added. Fig. 3, Fig. 4, and Fig. 5 present the instantiated
ontology – rectangles depict the concepts from SMO and
ellipses refer to concepts from OIS. The name of each

3Copyright (c) IARIA, 2011. ISBN: 978-1-61208-005-5

MOPAS 2011 : The Second International Conference on Models and Ontology-based Design of Protocols, Architectures and Services

V/4 V/5

The final measure instantiated into the ontology is
AuthenticationLevel (Fig. 5), which is an instance of the
indicator concept – intended to combine the above described
measures. The AuthenticationLevel is calculated with an
analysis model in a similar manner as described for the
PasswordType above. The analysis model is as follows:

|PasswordType == PINCode := Level1|
|PasswordType == NormalPassword AND
UsageTime >= 180 AND UsageTime < 365 :=
Level2|
|(PasswordType == GoodPassword AND
UsageTime < 180) OR (PasswordType ==
NormalPassword AND UsageTime < 90 := Level3)|
|ELSE := Level1|

The analysis model for the AuthenticationLevel uses the
results from the PasswordType indicator and the UsageTime
derived measure. Therefore, the calculation of the
authentication level, according to this analysis mode,
requires the five base measures, i.e., OnlyNumbers,
OnlyAlphabets, Date, Length, and NumberOfDifferent-
Symbols, presented in Fig. 3 and Fig. 4.

Information Need : Authentication
Strength, i.e., authentication level

of the application

MeasurableConcept : BMC
AuthenticationIdentityStructure (AIS)

isAassociatedWith

satisfies

DerivedMeasure :
UsageTime

Indicator :
PasswordType

Indicator :
AuthenticationLevel

AnalysisModel :
|PasswordType == ’PINCode’ := Level1|

|PasswordType == ’NormalPassword’ AND UsageTime >= 90
AND UsageTime < 365 := Level2|

|(PasswordType == ’GoodPassword’ AND UsageTime < 180) OR
(PasswordType == ’NormalPassword’ AND UsageTime < 90 := Level3)|

|ELSE := Level1|

calculatedWith

usesuses

SecurityGoal :
Authenticationhas

Countermeasure :
PasswordAuthentication

isApplicableFor

hasIndicator

Figure 5. Authentication level.

Currently, the presented analysis models are very simple,
utilising only a few base measures, and need to be enhanced
in the future. Nevertheless, these analysis models provide the
possibility to test the suitability of ISMO for run-time
security measurements. Furthermore, the presentation of
analysis models in the ontology makes it possible to modify
and update them at run-time. The following table lists the
mapping properties made from/to instantiated security
measures. Again, these mappings are measure dependent.
Hence, the addition of a new measure instance also creates
new mapping properties.

TABLE II. MAPPING THE PROPERTIES OF INSTANTIATED MEASURES

Concept from
OIS [7]

Mapping
property in

ISMO
(direction)

Concept from the SMO [15]

Threat : Brute-
ForceAttack

dependsOn (->) Attribute : PasswordStructure
Attribute : PasswordAge

Credential :
Password

hasMeasurable-
Attribute (->)

Attribute : PasswordStructure
Attribute : PasswordAge
Attribute : PasswordLength
Attribute :
NumberOfDifferentSymbols
Attribute : OnlyAlphabets
Attribute : OnlyNumbers

Countermeasure :
Password-
Authentication

relatesToCount
ermeasure
(<-)

Measurable concept :
AuthenticationIdentity
Structure

Countermeasure :
Password-
Authentication

isApplicableFor
(<-)

Analysis model : analysis
model for authentication level

V. THE USAGE OF INFORMATION SECURITY MEASURING
ONTOLOGY

 This section describes how the ISMO will be used at
design and run-time. In addition, ontology evolution is
discussed.

A. Utilisation at Design-time
The software designers have to take several issues into

account when they design an application that is intended to
measure its security level and adapt itself accordingly.
Firstly, the required security goals are defined – such as the
user authentication. Secondly, the levels for each security
goal are defined, e.g., level 1 for security goals which are not
very critical and level 5 for extremely critical security goals.
It is notable that ISMO does not restrict the number of
security levels, for example, the analysis models in the
previous section utilised three levels instead of five. Thirdly,
the security mechanisms to achieve the required goals are
selected, e.g., a username-password pair for authentication.
The micro-architecture for run-time security adaptation is
presented in [3] – working as a guideline for the software
developer by showing the components which are required in
an adaptation applicable software.

The OIS already contains mapping properties from goals
to supporting mechanisms. However, there is no possibility
to define the required levels for the goals. It should be noted
that the selection and implementation of security
countermeasures is highly context-dependent. The ISMO
draws a mapping from the security goal to the level indicator
– in our case authentication level – as presented in Fig. 5.
Therefore, the software designer can retrieve the base
measures from ISMO, used for calculating a particular level
indicator. Based on this information, she implements the
measuring methods of base measures as the part of
application. For example, the authentication level indicator
requires five base measures and the related measurement
methods as mentioned earlier, which must all be
implemented to the application. However, measurement
functions and analysis models that combine base measures
are not hard coded to the application. Instead, a generic

5Copyright (c) IARIA, 2011. ISBN: 978-1-61208-005-5

MOPAS 2011 : The Second International Conference on Models and Ontology-based Design of Protocols, Architectures and Services

concept is presented in the figures and separated from the
instance name by a colon, i.e., ConceptName :
InstanceName. The property mappings between these two
ontologies are presented in bold fonts. For reasons of clarity,
the instantiated ontology is presented in three separated
figures. Consequently, some concepts may appear in each
figure, but from a different viewpoint, i.e., presenting
different properties.

The SMO contains the concept MeasurableConcept,
which corresponds conceptually to the BMCs, which are
defined in [18]. Thus, AIS BMC is instantiated in the
ontology as a MeasurableConcept. The concept
QualityModel refers to security goals in this work. Hence,
there is a mapping property from the QualityModel concept
to Security goals (authentication, confidentiality, etc.), as
mentioned in Section 3.

The PasswordAge measure (Fig. 3) is the first measure
instance which is added to the ISMO. In the SMO, measures
are defined for attributes and these attributes are related to
the measurable concept. AIS is an instance of the measurable
concept and PasswordAge is one of the related attributes.
This attribute is measured through the means of an
instantiated derived measure, called UsageTime. Hence, the
derived measure is not purely security related, and can also
be applied for other attributes, e.g., the usage time of the
CPU in performance measurements. The derived measure
UsageTime is calculated with a measurement function –
defining that UsageTime is the current date minus the
starting date. The calculation of the value for this
measurement function requires that a base measure instance
called Date is used. Date is a base measure, meaning that it
is not dependant on other measures and its value is measured
by the measurement method. The measurement method for
the Date measure is simple: taking the date value from the
system clock. Defining UsageTime as a derived measure
may seem like an overestimation. However, detailed
definitions are required in order to achieve a measuring
ontology that supports run-time security measuring.

The second measure – presented in Fig. 4 – is connected
to the AIS via an attribute called PasswordStructure. The
attribute is measured with an instantiated indicator called
PasswordType. Indicators are calculated using an analysis
model. In this context, the analysis model is a set of rules,
which can be thought as if-then-else statements. We have
decided to use statements which are very close to the natural
English language, so that the analysis models could be
updated without an extensive knowledge on programming.
The statements of the analysis model can be updated later on
to, e.g., the standard SPARQL [20] queries. The analysis
model itself is saved as a string literal, so it can be easily
changed into a SPARQL statement. For simplicity, the
following analysis model is defined for the PasswordType:

|Length < 5 AND OnlyNumbers := PINCode|
|Length >= 5 AND Length <= 9 AND
OnlyAlphabets := NormalPassword|
|Length > 9 AND Length < 12 AND
NumberOfDifferentSymbols >= 3 := GoodPassword|
|ELSE := WeakPassword|

Thus, four base measures are used in this analysis model,
i.e., OnlyNumbers, OnlyAlphabets, Length and
NumberOfDifferenSymbols. These are measured using
appropriate measurement methods, respectively (methods for
OnlyNumbers and OnlyAlphabets are omitted from Fig. 4. In
addition, these base measures are also connected to the AIS
via appropriate attributes. For reasons of clarity, these are not
presented in Fig. 4; however, TABLE II also lists these
attributes.

Figure 3. The age of the password.

The above mentioned attributes PasswordStructure and
PasswordAge are mapped to the BruteForceAttack threat
from the OIS. Thus, these are possible extension points in the
future, in so far as risk related measures are added to ISMO.
The risk measures are applied for run-time usage in [21].

MeasurableConcept : BMC
Authentication Identity

Structure (AIS)
Attribute : PasswordStructure

BaseMeasure :
Length

MeasurementMethod :
count number of symbols

uses

definedFor

BaseMeasure :
NumberOfDifferentSymbols

(type)

AnalysisModel :
|Length < 5 AND OnlyNumbers := PINCode|

|Length >= 5 AND Length <= 9 AND OnlyAlphabets := NormalPassword|
|Length > 9 AND Length < 12 AND NumberOfDifferentSymbols >= 3 :=

GoodPassword|
|ELSE := WeakPassword|

Indicator : PasswordType

calculatedWith

uses uses

MeasurementMethod :
count number of different

symbol categories

uses

Credential :
Password

hasMeasurableAttribute

Threat :
BruteForceAttack

dependsOn

relates

BaseMeasure :
OnlyAlphabets

BaseMeasure :
OnlyNumbers

uses

uses

Figure 4. The structure of the password.

4Copyright (c) IARIA, 2011. ISBN: 978-1-61208-005-5

MOPAS 2011 : The Second International Conference on Models and Ontology-based Design of Protocols, Architectures and Services

V/5

The final measure instantiated into the ontology is
AuthenticationLevel (Fig. 5), which is an instance of the
indicator concept – intended to combine the above described
measures. The AuthenticationLevel is calculated with an
analysis model in a similar manner as described for the
PasswordType above. The analysis model is as follows:

|PasswordType == PINCode := Level1|
|PasswordType == NormalPassword AND
UsageTime >= 180 AND UsageTime < 365 :=
Level2|
|(PasswordType == GoodPassword AND
UsageTime < 180) OR (PasswordType ==
NormalPassword AND UsageTime < 90 := Level3)|
|ELSE := Level1|

The analysis model for the AuthenticationLevel uses the
results from the PasswordType indicator and the UsageTime
derived measure. Therefore, the calculation of the
authentication level, according to this analysis mode,
requires the five base measures, i.e., OnlyNumbers,
OnlyAlphabets, Date, Length, and NumberOfDifferent-
Symbols, presented in Fig. 3 and Fig. 4.

Information Need : Authentication
Strength, i.e., authentication level

of the application

MeasurableConcept : BMC
AuthenticationIdentityStructure (AIS)

isAassociatedWith

satisfies

DerivedMeasure :
UsageTime

Indicator :
PasswordType

Indicator :
AuthenticationLevel

AnalysisModel :
|PasswordType == ’PINCode’ := Level1|

|PasswordType == ’NormalPassword’ AND UsageTime >= 90
AND UsageTime < 365 := Level2|

|(PasswordType == ’GoodPassword’ AND UsageTime < 180) OR
(PasswordType == ’NormalPassword’ AND UsageTime < 90 := Level3)|

|ELSE := Level1|

calculatedWith

usesuses

SecurityGoal :
Authenticationhas

Countermeasure :
PasswordAuthentication

isApplicableFor

hasIndicator

Figure 5. Authentication level.

Currently, the presented analysis models are very simple,
utilising only a few base measures, and need to be enhanced
in the future. Nevertheless, these analysis models provide the
possibility to test the suitability of ISMO for run-time
security measurements. Furthermore, the presentation of
analysis models in the ontology makes it possible to modify
and update them at run-time. The following table lists the
mapping properties made from/to instantiated security
measures. Again, these mappings are measure dependent.
Hence, the addition of a new measure instance also creates
new mapping properties.

TABLE II. MAPPING THE PROPERTIES OF INSTANTIATED MEASURES

Concept from
OIS [7]

Mapping
property in

ISMO
(direction)

Concept from the SMO [15]

Threat : Brute-
ForceAttack

dependsOn (->) Attribute : PasswordStructure
Attribute : PasswordAge

Credential :
Password

hasMeasurable-
Attribute (->)

Attribute : PasswordStructure
Attribute : PasswordAge
Attribute : PasswordLength
Attribute :
NumberOfDifferentSymbols
Attribute : OnlyAlphabets
Attribute : OnlyNumbers

Countermeasure :
Password-
Authentication

relatesToCount
ermeasure
(<-)

Measurable concept :
AuthenticationIdentity
Structure

Countermeasure :
Password-
Authentication

isApplicableFor
(<-)

Analysis model : analysis
model for authentication level

V. THE USAGE OF INFORMATION SECURITY MEASURING
ONTOLOGY

 This section describes how the ISMO will be used at
design and run-time. In addition, ontology evolution is
discussed.

A. Utilisation at Design-time
The software designers have to take several issues into

account when they design an application that is intended to
measure its security level and adapt itself accordingly.
Firstly, the required security goals are defined – such as the
user authentication. Secondly, the levels for each security
goal are defined, e.g., level 1 for security goals which are not
very critical and level 5 for extremely critical security goals.
It is notable that ISMO does not restrict the number of
security levels, for example, the analysis models in the
previous section utilised three levels instead of five. Thirdly,
the security mechanisms to achieve the required goals are
selected, e.g., a username-password pair for authentication.
The micro-architecture for run-time security adaptation is
presented in [3] – working as a guideline for the software
developer by showing the components which are required in
an adaptation applicable software.

The OIS already contains mapping properties from goals
to supporting mechanisms. However, there is no possibility
to define the required levels for the goals. It should be noted
that the selection and implementation of security
countermeasures is highly context-dependent. The ISMO
draws a mapping from the security goal to the level indicator
– in our case authentication level – as presented in Fig. 5.
Therefore, the software designer can retrieve the base
measures from ISMO, used for calculating a particular level
indicator. Based on this information, she implements the
measuring methods of base measures as the part of
application. For example, the authentication level indicator
requires five base measures and the related measurement
methods as mentioned earlier, which must all be
implemented to the application. However, measurement
functions and analysis models that combine base measures
are not hard coded to the application. Instead, a generic

5Copyright (c) IARIA, 2011. ISBN: 978-1-61208-005-5

MOPAS 2011 : The Second International Conference on Models and Ontology-based Design of Protocols, Architectures and Services

V/6 V/7

storage where agents publish and subscribe information. The
smart home environment contains agents which publish
environmental information, for instance, temperatures,
humidity, etc. Home automation devices contain agents
which subscribe to control information from the home SIB.
Furthermore, the smart home environment contains agents,
which offer entertainment information for the user, i.e.,
news, weather forecasts, etc.

In the case study, information from the smart home is
utilised with a smart space application, which is running on a
Nokia N900 mobile device. The smart space application and
the related base measures are implemented using the Python
programming language. In this case example, two SIBs exist.
The first one (personal SIB) runs on the user’s N900, as
storage for ISMO. Alternatively, ISMO can be stored in the
mass storage of the N900 in an OWL format. The second
one (home SIB) runs on a computer in the smart home, and
constitutes the home smart space. The application
communicates with the personal and home SIB via TCP/IP
communication and measures the achieved authentication
level by a means of ISMO.

Firstly, ISMO is used at the smart space application
design time as described in the previous section. The generic
part, i.e., AnalysisModelParser and Monitor components, are
imported to the application. The application developer makes
a decision that passwords will be used for authentication and
searches the supporting analysis model from ISMO.
Furthermore, the base measures which are required in the
analysis models are retrieved and implemented to the
application. In this case, the used base measures are
OnlyNumbers, OnlyAlphabets, Length, NumberOf-
DifferentSymbols, and Date.

Secondly, ISMO is used while running a smart space
application. When the user opens the smart space
application, the application automatically retrieves ISMO
from the personal SIB. The user then opts to join the home
smart space with the smart space application. During the join
operation, the user is authenticated for the first time and the
authentication level monitoring process starts. The
AnalysisModelParser component reads ISMO. The Monitor
component receives rules on how to combine different base
measures and provides the authentication level for the
security adaptation. Both the AnalysisModelParser and
Monitor components are running on the N900. The used
countermeasure is password authentication – based on this
information, the monitor component selects the correct
analysis model to calculate the authentication level. It is
notable that the application can contain several
authentication mechanisms and ISMO provides information
concerning which analysis model to use with each
mechanism. The home smart space contains various types of
information and the utilisation of different information
requires their own authentication levels. Thus, we defined
the following authentication requirements for different tasks:

Level 1 for entertainment usage,
Level 2 for retrieving information from sensors, etc.,
Level 3 for controlling building automation devices.

The smart space application is aware of what the user is
currently doing, i.e., it monitors the current context and
reports this information to the security adaptation. The user
decides to login with a username and password on
authentication level 2. Thus, the user is unable to control the
building automation devices. In an accelerated use case,
when the password usage time reaches 12 months, the
authentication level decreases to level 1. Hence, the smart
space application only provides entertainment information
for the user. When the user attempts to perform a task which
requires higher authentication level, the smart space
application recognises that an adaptation is required. The
adaptation asks the user to re-authenticate with a better
password, as is shown in Fig. 7. Consequently, the
application user does not require any knowledge of ISMO,
i.e., the smart space application seamlessly utilises the
content of ISMO.

Figure 7. Re-authenticating the user.

The purpose of the case example was to test designed and
instantiated ontology. Thus, the content of the analysis
models and measures was not within the scope of the case.
The utilisation of ISMO ensured that security can be
measured in a dynamic environment. Without ISMO, the
used analysis models have to be hard coded to the
application, which is unreasonable in the dynamic
environment. The case example proved that when the
AnalysisModelParser and Monitor components exist, the
implementation of the security measures to the application is
straightforward. The application developer merely has to
implement the required base measures as declared in the
ISMO, or use existing base measures. The application
developer is able to utilise measures from ISMO, without a
need to implement ontology parsers. Moreover, the
application was able to retrieve analysis models from ISMO
and monitor the authentication level at run-time. The
Monitor component calculates a new authentication level
each time the used base measures change. However, the
AnalysisModelParser component checks the content of
ISMO at pre-defined intervals.

It is a commonly known issue that ontology searches may
cause performance overheads. However, in this case
example, the ontology was used in a mobile device without a
major overhead. Nevertheless, it is important to optimise
how often information is retrieved from ISMO. This helps to
achieve the performance requirements of the application,

7Copyright (c) IARIA, 2011. ISBN: 978-1-61208-005-5

MOPAS 2011 : The Second International Conference on Models and Ontology-based Design of Protocols, Architectures and Services

parser and monitor components are utilised. The parser
component retrieves analysis models from ISMO and parses
the rules, which depict how the base measures have to be
combined. The monitor component utilises these rules and
calculates the security level (the authentication level at this
time) from the base measures, which is utilised in the
software adaptation. The generic and implementation
specific parts are presented in Fig. 6. The internal design of
these components is not within the scope of this paper.

AnalysisModelParser

MeasurementMet
hodOfBaseMeas

ure1

MeasurementMet
hodOfBaseMeas

ure2

MeasurementMet
hodOfBaseMeas

ureN

Monitor
Rules

BaseMeasure

Information Security Measuring Ontology (ISMO)

Implemented base measures

Generic part

SecurityLevel

Figure 6. Generic and implementation specific parts.

B. Utilisation at Run-time
The application, which contains a capability to measure

its security, is assumed to be aware of its security goal(s) and
level(s) and how to measure the fulfilment of its goal(s).
Hence, the application retrieves an indicator which is used to
measure the level of a particular security goal, e.g., the
authentication level indicator for the authentication goal.
However, separate analysis models are required for the
alternative countermeasures used to achieve user
authentication. For example, Fig. 5 contains the analysis
model for the password based authentication.
Simultaneously, the ontology may contain an analysis model
for the security token based authentication, and both of these
analysis models are related to the authentication level
indicator. Thus, the application must check the currently
used countermeasure and select an appropriate analysis
model for it from the ISMO. The isApplicableFor property
maps the analysis model to the countermeasure and makes
this selection possible.

Now, the application has a right analysis model. Based
on this information, the application searches the measures
that are used in the analysis model. The authentication level
indicator and the related analysis model, presented in Fig. 5,
use the PasswordType indicator and the UsageTime derived
measure. Thus, the application queries ISMO until it finds
the base measures which are required to calculate a value for
the authentication level indicator. It is notable that these
searches only have to be made at application start-ups and
when the countermeasure is to be changed at run-time, due to
security adaptation demands.

As a result of this search, the application possesses all the
information which is required for measuring security. The
application has the knowledge of required security goals and
levels, and the base measures to be used. Therefore, the
application uses measurement methods, which are
implemented as a part of it during the design-time. The
monitor component (in Fig. 6) combines these base measures
to a security level indicator. In a situation where the
application is unable to reach the required security level, it
adapts the used countermeasure. The results of measuring
help to recognise the part of the application that has to be
adapted. The security adaptation is discussed in more detail
in [21].

It is possible that the required security level changes
during the application execution. For instance, the usage of
the application may change in a way that requires a higher
security level. This type of change does not affect the
utilisation of ISMO or the measuring itself. Only the level,
compared to the measurement result, changes.

C. Ontology Evolution
At some point, it is necessary to make changes and

additions to ISMO. This is required because new threats
appear, the usage of the application changes, or the
environment of the application changes. The ontology
evolution is a challenge from the application point of view,
since ISMO is also used for making design decisions. In
other words, the required base measures are selected and
implemented at the design-time. Thus, a new base measure
cannot appear for the application by adding it to ISMO. On
the contrary, the analysis models which are used for
indicators, such as the authentication level, can be
dynamically changed to ISMO. For instance, the analysis
model in Fig. 5 defines that level 2 is achieved with a normal
password that is used for 3-12 months (90-365 days).
However, this can be easily changed to the form: level 2 is
achieved with a normal password that is used for 3-6 months.
More complicated changes can also be made easily – the
only requisite is that the application contains the required
base measures. The AnalysisModelParser and Monitor
components (Fig. 6) ensure that changes in the analysis
models do not require any changes to the application.
However, the analysis models have to be described in a
common syntax that the AnalysisModelParser is able to
parse. ISMO uses simple logical operations to combine the
named measurement results, as seen in Fig. 4 and Fig. 5.

VI. A CASE EXAMPLE OF INFORMATION SECURITY
MEASURING ONTOLOGY

Run-time security measuring and adaptation was earlier
validated in [21, 22] – released on YouTube [23]. Now, a
case example is used to exemplify both the design-time and
run-time usage of ISMO. The case study takes place in a
smart home environment, where the user performs different
tasks with her mobile device. The RIBS platform [24] is used
to build up the smart home environment. RIBS is a platform
that makes it possible for heterogeneous devices to
communicate with each other by a means of SIB (Semantic
Information Broker) and agents. The SIB is an information

6Copyright (c) IARIA, 2011. ISBN: 978-1-61208-005-5

MOPAS 2011 : The Second International Conference on Models and Ontology-based Design of Protocols, Architectures and Services

V/7

storage where agents publish and subscribe information. The
smart home environment contains agents which publish
environmental information, for instance, temperatures,
humidity, etc. Home automation devices contain agents
which subscribe to control information from the home SIB.
Furthermore, the smart home environment contains agents,
which offer entertainment information for the user, i.e.,
news, weather forecasts, etc.

In the case study, information from the smart home is
utilised with a smart space application, which is running on a
Nokia N900 mobile device. The smart space application and
the related base measures are implemented using the Python
programming language. In this case example, two SIBs exist.
The first one (personal SIB) runs on the user’s N900, as
storage for ISMO. Alternatively, ISMO can be stored in the
mass storage of the N900 in an OWL format. The second
one (home SIB) runs on a computer in the smart home, and
constitutes the home smart space. The application
communicates with the personal and home SIB via TCP/IP
communication and measures the achieved authentication
level by a means of ISMO.

Firstly, ISMO is used at the smart space application
design time as described in the previous section. The generic
part, i.e., AnalysisModelParser and Monitor components, are
imported to the application. The application developer makes
a decision that passwords will be used for authentication and
searches the supporting analysis model from ISMO.
Furthermore, the base measures which are required in the
analysis models are retrieved and implemented to the
application. In this case, the used base measures are
OnlyNumbers, OnlyAlphabets, Length, NumberOf-
DifferentSymbols, and Date.

Secondly, ISMO is used while running a smart space
application. When the user opens the smart space
application, the application automatically retrieves ISMO
from the personal SIB. The user then opts to join the home
smart space with the smart space application. During the join
operation, the user is authenticated for the first time and the
authentication level monitoring process starts. The
AnalysisModelParser component reads ISMO. The Monitor
component receives rules on how to combine different base
measures and provides the authentication level for the
security adaptation. Both the AnalysisModelParser and
Monitor components are running on the N900. The used
countermeasure is password authentication – based on this
information, the monitor component selects the correct
analysis model to calculate the authentication level. It is
notable that the application can contain several
authentication mechanisms and ISMO provides information
concerning which analysis model to use with each
mechanism. The home smart space contains various types of
information and the utilisation of different information
requires their own authentication levels. Thus, we defined
the following authentication requirements for different tasks:

Level 1 for entertainment usage,
Level 2 for retrieving information from sensors, etc.,
Level 3 for controlling building automation devices.

The smart space application is aware of what the user is
currently doing, i.e., it monitors the current context and
reports this information to the security adaptation. The user
decides to login with a username and password on
authentication level 2. Thus, the user is unable to control the
building automation devices. In an accelerated use case,
when the password usage time reaches 12 months, the
authentication level decreases to level 1. Hence, the smart
space application only provides entertainment information
for the user. When the user attempts to perform a task which
requires higher authentication level, the smart space
application recognises that an adaptation is required. The
adaptation asks the user to re-authenticate with a better
password, as is shown in Fig. 7. Consequently, the
application user does not require any knowledge of ISMO,
i.e., the smart space application seamlessly utilises the
content of ISMO.

Figure 7. Re-authenticating the user.

The purpose of the case example was to test designed and
instantiated ontology. Thus, the content of the analysis
models and measures was not within the scope of the case.
The utilisation of ISMO ensured that security can be
measured in a dynamic environment. Without ISMO, the
used analysis models have to be hard coded to the
application, which is unreasonable in the dynamic
environment. The case example proved that when the
AnalysisModelParser and Monitor components exist, the
implementation of the security measures to the application is
straightforward. The application developer merely has to
implement the required base measures as declared in the
ISMO, or use existing base measures. The application
developer is able to utilise measures from ISMO, without a
need to implement ontology parsers. Moreover, the
application was able to retrieve analysis models from ISMO
and monitor the authentication level at run-time. The
Monitor component calculates a new authentication level
each time the used base measures change. However, the
AnalysisModelParser component checks the content of
ISMO at pre-defined intervals.

It is a commonly known issue that ontology searches may
cause performance overheads. However, in this case
example, the ontology was used in a mobile device without a
major overhead. Nevertheless, it is important to optimise
how often information is retrieved from ISMO. This helps to
achieve the performance requirements of the application,

7Copyright (c) IARIA, 2011. ISBN: 978-1-61208-005-5

MOPAS 2011 : The Second International Conference on Models and Ontology-based Design of Protocols, Architectures and Services

V/8 V/9

discussed the advantages and shortcomings related to the
designed ontology.

In the future, it is important to evaluate the performance
cost of using ISMO. In addition, it is important to add new
security measures to ISMO, and test how easily these
extensions can be made.

ACKNOWLEDGMENT

This work has been carried out in the SOFIA ARTEMIS
and GEMOM EU FP7 projects, funded by Tekes, VTT, and
the European Commission.

REFERENCES

[1] D. M. Chess, C. C. Palmer, and S. R. White, "Security in an
autonomic computing environment," IBM Systems Journal, 42(1), pp.
107-118. 2003.

[2] E. Ovaska, A. Evesti, K. Henttonen, M. Palviainen, and P. Aho,
"Knowledge based quality-driven architecture design and evaluation,"
Information and Software Technology, 52(6), pp. 577-601. 2010.

[3] A. Evesti and S. Pantsar-Syväniemi, "Towards micro architecture for
security adaptation," 1st International Workshop on Measurability of
Security in Software Architectures (MeSSa 2010), pp. 181-188, 2010.

[4] ISO/IEC 9126-1:2001. Software Engineering - Product Quality - Part
1: Quality Model. 2001.

[5] A. Avižienis, J. Laprie, B. Randell, and C. Landwehr, "Basic concepts
and taxonomy of dependable and secure computing," IEEE
Transactions on Dependable and Secure Computing, vol. 1, pp. 11-
33, 2004.

[6] ISO/IEC 15408-1:2009, Common Criteria for Information
Technology Security Evaluation - Part 1: Introduction and General
Model. International Organization of Standardization, 2009.

[7] A. Herzog, N. Shahmehri, and C. Duma. (2009, "An ontology of
information security," In Techniques and Applications for Advanced
Information Privacy and Security: Emerging Organizational, Ethical,
and Human Issues, Eds. H. R. Nemati, pp. 278-301, 2009.

[8] J. Zhou, "Knowledge Dichotomy and Semantic Knowledge
Management," Industrial Applications of Semantic Web, pp. 305-316,
2005.

[9] C. Blanco, J. Lasheras, R. Valencia-García, E. Fernández-Medina, A.
Toval, and M. Piattini, "A systematic review and comparison of
security ontologies," 3rd International Conference on Availability,
Security, and Reliability (ARES 2008), pp. 813-820, 2008.

[10] A. Evesti, E. Ovaska, and R. Savola, "From security modelling to
run-time security monitoring," European Workshop on Security in
Model Driven Architecture (SECMDA), pp. 33-41, 2009.

[11] G. Denker, L. Kagal, and T. Finin, "Security in the Semantic Web
using OWL," Information Security Technical Report, 10(1), pp. 51-
58. 2005.

[12] A. Kim, J. Luo, and M. Kang, "Security Ontology for annotating
resources," LNCS, vol. 3761, pp. 1483-1499, 2005.

[13] P. Savolainen, E. Niemelä, and R. Savola, "A taxonomy of
information security for service centric systems," 33rd EUROMICRO

Conference on Software Engineering and Advanced Applications
(SEAA 2007), pp. 5-12, 2007.

[14] B. Tsoumas and D. Gritzalis. "Towards an Ontology-based Security
Management," 20th Advanced Information Networking and
Applications 2006 (AINA 2006), pp. 985-992, 2006.

[15] F. García, M. F. Bertoa, C. Calero, A. Vallecillo, F. Ruíz, M. Piattini,
and M. Genero, "Towards a consistent terminology for software
measurement," Information and Software Technology, 48(8), pp. 631-
644, 2006.

[16] N. F. Noy and D. L. McGuinness. "Ontology development 101: A
guide to creating your first ontology,", pp. 1-25 2001.

[17] R. Savola, "A Security Metrics Taxonomization Model for Software-
Intensive Systems," Journal of Information Processing Systems, 5(4),
pp. 197-206, 2009.

[18] R. Savola and H. Abie. "Development of measurable security for a
distributed messaging system," International Journal on Advances in
Security, 2(4), pp. 358-380, 2010.

[19] C. Wang and W. A. Wulf, "Towards a Framework for Security
Measurement," Proceedings of the Twentieth National Information
Systems Security Conference, pp. 522-533, 1997.

[20] SPARQL Query Language for RDF, W3C Recommendation,
http://www.w3.org/TR/rdf-sparql-query/, 31.1.2011

[21] A. Evesti and E. Ovaska, "Ontology-Based Security Adaptation at
Run-Time," 4th IEEE International Conference on Self-Adaptive and
Self-Organizing Systems (SASO), pp. 204-212, 2010.

[22] A. Evesti, M. Eteläperä, J. Kiljander, J. Kuusijärvi, A. Purhonen, and
S. Stenudd, "Semantic Information Interoperability in Smart Spaces,"
8th International Conference on Mobile and Ubiquitous Multimedia
(MUM'09), pp. 158-159, 2009.

[23] Semantic Information Interoperability in Smart Spaces,
http://www.youtube.com/watch?v=EU9alk9t7dA, 31.1.2011

[24] J. Suomalainen, P. Hyttinen, and P. Tarvainen, "Secure information
sharing between heterogeneous embedded devices," 1st International
Workshop on Measurability of Security in Software Architectures
(MeSSa 2010), pp. 205-212, 2010.

[25] A. Elkhodary and J. Whittle, "A Survey of Approaches to Adaptive
Application Security," International Workshop on Software
Engineering for Adaptive and Self-Managing Systems, 2007 SEAMS
'07., p. 16, 2007.

[26] A. Klenk, H. Niedermayer, M. Masekowsky, and G. Carle, "An
architecture for autonomic security adaptation," Ann Telecommun,
61(9-10), pp. 1066-1082. 2006.

[27] C. J. Lamprecht and A. P. A. van Moorsel, "Adaptive SSL: Design,
Implementation and Overhead Analysis," First International
Conference on Self-Adaptive and Self-Organizing Systems, 2007.
SASO '07., pp. 289-294, 2007.

[28] C. J. Lamprecht and A. P. A. van Moorsel, "Runtime Security
Adaptation Using Adaptive SSL," Dependable Computing, 2008.
PRDC '08. 14th IEEE Pacific Rim International Symposium, pp. 305-
312, 2008.

[29] G. Costa, F. Martinelli, P. Mori, C. Schaefer, and T. Walter,
"Runtime monitoring for next generation Java ME platform,"
Comput. Secur., 29(1), pp. 74-87. 2010.

9Copyright (c) IARIA, 2011. ISBN: 978-1-61208-005-5

MOPAS 2011 : The Second International Conference on Models and Ontology-based Design of Protocols, Architectures and Services

since changes in ISMO are only checked at pre-defined
intervals. Therefore, there is no need to continually query the
personal SIB. In the case example, the searches were made
every 60 seconds and this kind of checking interval had no
visible effects on the usability or performance of the
application. Another alternative is to utilise subscriptions,
which automatically inform to applications when ISMO is
changed. However, the performance overhead of this option
is not known beforehand, i.e., changes in ISMO can take
place at anytime.

VII. DISCUSSION

In this work, we utilised existing ontologies – instead of
starting from scratch – to achieve the information security
measuring ontology for run-time usage. Thus, we gained a
wide and extensible ontology that is compatible with its
predecessors. The combination also ensures a higher
maturity level, as the ontologies which were used were
already validated. It can be seen from the ontology
comparison presented in [10] that the existing security
ontologies contain a large deal of overlapping. This work
does not add overlapping concepts, which is important from
a compatibility viewpoint. Utilisation of the SMO ensures
that the measurement part of ISMO is generic. Therefore, the
addition of new measures in the future will be easy.
Furthermore, the used concepts can also be utilised to
measure other quality attributes. Initially, the SMO is not
intended for run-time usage. However, there are no
constraints to applying the SMO at run-time situations as
measuring related terminology is similar in both design and
run-time measurements.

It might seem that using ontology to achieve a run-time
measuring applicability is a too heavy weight solution.
Nevertheless, in cases where an application contains several
mechanisms for reaching a particular security goal, it will be
necessary to describe the measures in detail. This is
particularly necessary when the application is intended to
adapt used security mechanisms. In addition, ISMO makes it
possible to update and add analysis models – when a new
vulnerability is found or the application usage changes.
Currently, measurement functions and analysis models are
described by using simple logical operations in the ontology
– parsed by the AnalysisModelParser component. Logical
operations were suitable for the measures used in this work.
However, in the future, there is a need for additional
mathematical operations, required in security measuring. The
ontology definition is made at a level that possesses
sufficient detail, and thus, it is possible for ISMO to provide
the required knowledge for an autonomous measuring
process.

Mapping between OIS and SMO is a complex task due to
the complexity of measuring security. Currently, a concept
level mapping is done, but there were only a few concept-to-
concept mappings, which enforces the creation of mapping
from/to instantiated security measures. Authentication
related measures are instantiated to ISMO as an example.
Additional mappings are required when a new measure
instance is added. However, the measure instances added in
this work offer an example of how to add the mappings, and

thus, facilitate future additions. It is notable, that different
types of measures will create entirely different mappings
between these ontologies. For example, risk measures will
create mappings between assets from the OIS and attributes
from the SMO. On the other hand, there is not always a
mapping property from the attribute concept (in SMO) to
some specific credential (in OIS). Hence, mappings between
these ontologies depend on the security goal, the used
security mechanism, and the used measure.

The performed case example showed that ISMO can be
used even in a mobile device without a major performance
overhead. However, a more thorough performance
evaluation has to be performed in the future. One question is
how the usage of ISMO affects the achieved security. For
instance, an attacker may cause constant environment
changes, which in turn create a set of queries for ISMO and
might jeopardize the availability. In addition, measurement
methods and results might also be the target of an attack.
Thus, it is necessary to perform the run-time measurement in
a way that supports the achievement of security
requirements, instead of creating new vulnerabilities and
possibilities for attacks.

Survey of adaptive application security in [25] lists few
adaptation approaches. Added to these, the Extensible
Security Adaptation Framework (ESAF) [26] utilises
security policies to adapt security mechanisms in the
middleware layer. Furthermore, adaptation for Secure Socket
Layer (SSL) is presented in [27][28] and monitoring for Java
ME platform in [29]. The ISMO offers several advantages
compared to existing self-adaptation and policy based
approaches. Firstly, security measuring triggers an adaptation
task, instead of beforehand defined situation. Secondly,
ISMO is a generic solution, i.e., it is not tied to only one
security mechanism, platform, or security goal. Finally,
ISMO based approaches are dynamic – new analysis models
can be added and the existing ones can be modified.

VIII. CONCLUSION AND FUTURE WORK

In this paper, we presented a novel ontology – called
ISMO – for information security measuring, developed
particularly for the needs of run-time security measuring.
The main purpose was to achieve an ontology that is able to
support security measuring at the run-time of an application.
The ontology development utilises two existing ontologies:
(i) an ontology of information security, describing security
related concepts, and (ii) a software measuring ontology,
describing general measuring terminology. Firstly, a
conceptual mapping between these ontologies was
introduced. However, security measuring is a complex task
where only a few concept-to-concept relationships can be
made. Secondly, the ontology was instantiated by using
password related measures. The measures which were used
were simple – password structure and password age –
however, these measures offered a good starting point to
construct ontology which is applicable to run-time security
measurements. After the ontology instantiation, we described
how to utilise the ISMO in a way that supports run-time
measurements. The case example was utilised to exemplify
how to use ISMO in a smart home environment. Finally, we

8Copyright (c) IARIA, 2011. ISBN: 978-1-61208-005-5

MOPAS 2011 : The Second International Conference on Models and Ontology-based Design of Protocols, Architectures and Services

V/9

discussed the advantages and shortcomings related to the
designed ontology.

In the future, it is important to evaluate the performance
cost of using ISMO. In addition, it is important to add new
security measures to ISMO, and test how easily these
extensions can be made.

ACKNOWLEDGMENT

This work has been carried out in the SOFIA ARTEMIS
and GEMOM EU FP7 projects, funded by Tekes, VTT, and
the European Commission.

REFERENCES

[1] D. M. Chess, C. C. Palmer, and S. R. White, "Security in an
autonomic computing environment," IBM Systems Journal, 42(1), pp.
107-118. 2003.

[2] E. Ovaska, A. Evesti, K. Henttonen, M. Palviainen, and P. Aho,
"Knowledge based quality-driven architecture design and evaluation,"
Information and Software Technology, 52(6), pp. 577-601. 2010.

[3] A. Evesti and S. Pantsar-Syväniemi, "Towards micro architecture for
security adaptation," 1st International Workshop on Measurability of
Security in Software Architectures (MeSSa 2010), pp. 181-188, 2010.

[4] ISO/IEC 9126-1:2001. Software Engineering - Product Quality - Part
1: Quality Model. 2001.

[5] A. Avižienis, J. Laprie, B. Randell, and C. Landwehr, "Basic concepts
and taxonomy of dependable and secure computing," IEEE
Transactions on Dependable and Secure Computing, vol. 1, pp. 11-
33, 2004.

[6] ISO/IEC 15408-1:2009, Common Criteria for Information
Technology Security Evaluation - Part 1: Introduction and General
Model. International Organization of Standardization, 2009.

[7] A. Herzog, N. Shahmehri, and C. Duma. (2009, "An ontology of
information security," In Techniques and Applications for Advanced
Information Privacy and Security: Emerging Organizational, Ethical,
and Human Issues, Eds. H. R. Nemati, pp. 278-301, 2009.

[8] J. Zhou, "Knowledge Dichotomy and Semantic Knowledge
Management," Industrial Applications of Semantic Web, pp. 305-316,
2005.

[9] C. Blanco, J. Lasheras, R. Valencia-García, E. Fernández-Medina, A.
Toval, and M. Piattini, "A systematic review and comparison of
security ontologies," 3rd International Conference on Availability,
Security, and Reliability (ARES 2008), pp. 813-820, 2008.

[10] A. Evesti, E. Ovaska, and R. Savola, "From security modelling to
run-time security monitoring," European Workshop on Security in
Model Driven Architecture (SECMDA), pp. 33-41, 2009.

[11] G. Denker, L. Kagal, and T. Finin, "Security in the Semantic Web
using OWL," Information Security Technical Report, 10(1), pp. 51-
58. 2005.

[12] A. Kim, J. Luo, and M. Kang, "Security Ontology for annotating
resources," LNCS, vol. 3761, pp. 1483-1499, 2005.

[13] P. Savolainen, E. Niemelä, and R. Savola, "A taxonomy of
information security for service centric systems," 33rd EUROMICRO

Conference on Software Engineering and Advanced Applications
(SEAA 2007), pp. 5-12, 2007.

[14] B. Tsoumas and D. Gritzalis. "Towards an Ontology-based Security
Management," 20th Advanced Information Networking and
Applications 2006 (AINA 2006), pp. 985-992, 2006.

[15] F. García, M. F. Bertoa, C. Calero, A. Vallecillo, F. Ruíz, M. Piattini,
and M. Genero, "Towards a consistent terminology for software
measurement," Information and Software Technology, 48(8), pp. 631-
644, 2006.

[16] N. F. Noy and D. L. McGuinness. "Ontology development 101: A
guide to creating your first ontology,", pp. 1-25 2001.

[17] R. Savola, "A Security Metrics Taxonomization Model for Software-
Intensive Systems," Journal of Information Processing Systems, 5(4),
pp. 197-206, 2009.

[18] R. Savola and H. Abie. "Development of measurable security for a
distributed messaging system," International Journal on Advances in
Security, 2(4), pp. 358-380, 2010.

[19] C. Wang and W. A. Wulf, "Towards a Framework for Security
Measurement," Proceedings of the Twentieth National Information
Systems Security Conference, pp. 522-533, 1997.

[20] SPARQL Query Language for RDF, W3C Recommendation,
http://www.w3.org/TR/rdf-sparql-query/, 31.1.2011

[21] A. Evesti and E. Ovaska, "Ontology-Based Security Adaptation at
Run-Time," 4th IEEE International Conference on Self-Adaptive and
Self-Organizing Systems (SASO), pp. 204-212, 2010.

[22] A. Evesti, M. Eteläperä, J. Kiljander, J. Kuusijärvi, A. Purhonen, and
S. Stenudd, "Semantic Information Interoperability in Smart Spaces,"
8th International Conference on Mobile and Ubiquitous Multimedia
(MUM'09), pp. 158-159, 2009.

[23] Semantic Information Interoperability in Smart Spaces,
http://www.youtube.com/watch?v=EU9alk9t7dA, 31.1.2011

[24] J. Suomalainen, P. Hyttinen, and P. Tarvainen, "Secure information
sharing between heterogeneous embedded devices," 1st International
Workshop on Measurability of Security in Software Architectures
(MeSSa 2010), pp. 205-212, 2010.

[25] A. Elkhodary and J. Whittle, "A Survey of Approaches to Adaptive
Application Security," International Workshop on Software
Engineering for Adaptive and Self-Managing Systems, 2007 SEAMS
'07., p. 16, 2007.

[26] A. Klenk, H. Niedermayer, M. Masekowsky, and G. Carle, "An
architecture for autonomic security adaptation," Ann Telecommun,
61(9-10), pp. 1066-1082. 2006.

[27] C. J. Lamprecht and A. P. A. van Moorsel, "Adaptive SSL: Design,
Implementation and Overhead Analysis," First International
Conference on Self-Adaptive and Self-Organizing Systems, 2007.
SASO '07., pp. 289-294, 2007.

[28] C. J. Lamprecht and A. P. A. van Moorsel, "Runtime Security
Adaptation Using Adaptive SSL," Dependable Computing, 2008.
PRDC '08. 14th IEEE Pacific Rim International Symposium, pp. 305-
312, 2008.

[29] G. Costa, F. Martinelli, P. Mori, C. Schaefer, and T. Walter,
"Runtime monitoring for next generation Java ME platform,"
Comput. Secur., 29(1), pp. 74-87. 2010.

9Copyright (c) IARIA, 2011. ISBN: 978-1-61208-005-5

MOPAS 2011 : The Second International Conference on Models and Ontology-based Design of Protocols, Architectures and Services

http://www.w3.org/TR/rdf-sparql-query/
http://www.youtube.com/watch?v=EU9alk9t7dA

PUBLICATION VI

Design time reliability
predictions for supporting

runtime security measuring
and adaptation

In: Proceedings of the Third International
Conference on Emerging Network Intelligence

(EMERGING), Lisbon, Portugal,
20–25 November 2011. Pp. 94–99.

Copyright 2011 IARIA.
Reprinted with permission from the publisher.

VI/1

VI/1

Design Time Reliability Predictions for Supporting
Runtime Security Measuring and Adaptation

Antti Evesti, Eila Ovaska
VTT Technical Research Centre of Finland

Oulu, Finland
{antti.evesti, eila.ovaska}@vtt.fi

Abstract—The reliability of a quality-critical software
component affects the security level that is achieved. There is
currently no runtime security management approach that uses
design time information. This paper presents an approach to
exploiting design time reliability predictions in runtime
security management. The Reliability and Availability
Prediction (RAP) method is used to predict reliability at
software design time. The predicted reliability values are
stored in ontology form to support runtime use. The use case
example illustrates the presented approach. The presented
approach makes it possible to use design time reliability
predictions at runtime for security measuring and adaptation.
Hence, the reliability of security mechanisms is taken into
account when security adaptation is triggered.

Keywords - information security; quality; evaluation; metric;
architecture

I. INTRODUCTION

A variety of quality prediction and testing techniques are
used at software design time. The results of these predictions
are used to enhance architecture designs, select better
component alternatives, and reveal implementation errors.
The use of these prediction results ends when satisfactory
quality is achieved for a component or system and the
product is delivered. However, these prediction results could
also be used in runtime situations. This is reasonable,
especially in reliability and security management. Reliability
is an important factor in achieving a required security level,
as can clearly be seen from the security decomposition
presented in [1]. Weak reliability of a security-related
software component ruins the offered security. Hence, the
reliability information of component is valuable for security-
related decision-making. This paper therefore presents an
approach to bring the design-time reliability prediction
results for runtime security measuring and adaptation
purposes. To achieve this, ISMO (Information Security
Measuring Ontology) [2] is extended in a way that allows
prediction results to be stored at design time.

In the literature, different security adaptation approaches
exist. The adaptive SSL presented in [3] sets parameters for
the SSL session based on the environment information. An
Extensible Security Adaptation Framework [4] adds a
middleware layer for security mechanisms. The application
sets the required security policy and, based on the policy, the
middleware layer selects security mechanisms. Context-

sensitive Adaptive Authentication [5] uses time and location
information to calculate a confidence level for the
authentication. In some situations, a low confidence level is
sufficient while others require adaptation of the
authentication method used. Our earlier work presents an
approach that uses ontologies and risk-based measures for
security adaptation [6]. These adaptation approaches are
intended to work at runtime by observing the system’s
resources and environment. Based on the observations,
different security mechanisms or parameters are set. To our
knowledge, none of the existing approaches uses design-time
information for adaptation purposes.

Figure 1. presents the broader context of the contribution
of this paper. In the first phase, the Reliability and
Availability Prediction (RAP) method [7] is used to predict
future reliability from software designs. The prediction
results are stored in ontology form in order to ensure
exploitation at runtime. In this paper we will focus on this
first phase. In the second phase, application security is
measured at runtime. Reliability predictions are used as input
information for security measuring. The third phase is
security adaptation, which is triggered by the measuring
phase. The adaptation also uses reliability predictions to
select the most suitable security mechanism for different
situations. After the adaptation, the execution returns to the
measuring phase.

Figure 1. Broader scope

The contribution of this paper makes it possible to use
design-time reliability predictions for runtime security
measuring and adaptation. Hence, a wider information set is
available for triggering and making a decision on the
adaptation. In other words, information for runtime use can
be collected in different phases of the application lifecycle.
Thus, the adaptation is not only based on the measurements
made just before adaptation but also on knowledge of the
whole life cycle of the component.

The paper is organised as follows. After the introductory
section, background information is presented. Next, Section
3 is divided into three parts describing the design steps
towards applications with security adaptation, design time

94Copyright (c) IARIA, 2011. ISBN: 978-1-61208-174-8

EMERGING 2011 : The Third International Conference on Emerging Network Intelligence

VI/2 VI/3

Software measures are designed for the application in
parallel with the mechanism design phase. In particular, this
means base measures that require measuring probes inside
the application. Adaptation at runtime will be triggered based
on derived measures and analysis models, which both
depend on base measures. In other words, base measures are
used to compose derived measures and analysis models.
Hence, the software architect has to implement these base
measures for the application.

5) Architecture design
The architect designs the architecture for the system.

From the security adaptation viewpoint, it is important that
variation points are designed with care. For adaptable user
authentication, this means that an authentication feature can
be called without knowing the currently used authentication
mechanism.

Figure 2. Steps towards adaptable application

B. Design Time Predictions
This subsection describes how the software architect

predicts the reliability of components from the architectural
designs. The architect uses the RAP method to perform these
predictions. Based on the steps listed in the previous
subsection, the architect has design documents for the
application. Firstly, the component diagram describes the
structure of the application. Secondly, the internal behaviour
of components is described by means of state diagrams.
Finally, sequence diagrams describe the mutual behaviour of

components, i.e., how the component calls other
components.

The RAP method contains state-based and path-based
reliability prediction methods. For runtime security
measuring and adaptation purposes, the RAP method is used
to predict the probability of failure (pof) values for security
mechanism components, i.e., mechanisms designed in phase
3 of the previous subsection.

The state-based prediction method calculates reliability
for one independent software component by means of state
diagrams. In state diagrams, pof values are given for each
state to describe the failure probability in that particular state.
Moreover, transition probabilities between states are
described. Based on this information, the RAP tool
automatically adds a separated failure state and calculates the
component’s pof value using a state transition matrix p and a
probability vector p(n) as follows:

p=

pSS pSA pSB pSF
pAS pAA pAB pAF
pBS pBA pBB pBF
pFS pFA pFB pFF

 (1)

p(n+1) = p(n)*p (2)

In transition matrix p, pSA presents the probability of
transit from the start state S to state A. Similarly, pAF
presents a probability of transit from state A to the failure
state F. In the beginning, the probability vector takes the
form p(0) = [1, 0, 0, 0], which means that the probability of
being in the start state is 1 at time moment 0.

The state-based prediction produces independent pof
values for the components. These values are further used to
calculate the component’s pof values in different execution
paths. Execution paths are presented by means of sequence
diagrams in architectural models. The following equation is
used to calculate a component’s pof value in a particular
execution path:

pij = 1 - (1 - pi)Nij (3)

The previously calculated independent pof of the
component is substituted in pi, and Nij represents the number
of execution times of the component in that execution path.
Execution paths describe how the particular component is
called in different execution paths.

As mentioned in Section 2, the RAP tool is also able to
calculate pof values for each execution path, the component
belonging to the particular software system, and for the
whole software system. The equations for these calculations
are presented in [11]. However, our interest is in bringing the
previously presented component-related pof values for
runtime use.

C. Storing Prediction Results in a Runtime-Applicable Way
After the RAP predictions, the software architect has the

components’ independent pof values and the components’
pof values for the execution paths. Initially, the RAP tool
was only intended for use at design time. Thus, the RAP tool

96Copyright (c) IARIA, 2011. ISBN: 978-1-61208-174-8

EMERGING 2011 : The Third International Conference on Emerging Network Intelligence

reliability predictions, and a way to transform prediction
results into the ontology form. Section 4 illustrates the
presented approach by means of a case example. A
conclusion and future work ideas close the paper.

II. BACKGROUND

Reussner et al. define reliability as the probability of
failure-free operation of a software system for a specified
period of time in a specified environment [8]. ISO/IEC
defines security as follows: The capability of the software
product to protect information and data so that unauthorized
persons or systems cannot read or modify them and
authorized persons or systems are not denied access to them
[9].

The RAP method evaluates the reliability of a designed
software system and its components already at architecture
design time [7, 10]. The RAP method reveals design flaws
and critical components from the reliability viewpoint. The
evaluation is based on architectural models, which means
that the first evaluation results are available before any
implementation effort is required. Hence, modifications can
be performed easily. The RAP method uses state-based
models, i.e., Markov models, to predict the reliability of
components. The path-based models are used to predict the
reliability of a single execution path and the whole software
system. The RAP method produces the following reliability
values, known as probability of failure (pof) values: 1)
independent pof values for software components, 2) pof
values for execution paths, 3) the component’s pof value in
each execution path, 4) the components’ system-dependent
pof values, and 5) the pof value for the whole software
system. The RAP method supports the feedback loop from
software testing [11]. The prediction results can therefore be
replaced with more accurate values when measured
reliability values are available from the software testing.
Tool support for the RAP method, called the RAP tool, is
also available. The RAP tool reads architectural models from
UML diagrams, i.e., state, component, and sequence
diagrams. In addition, the RAP tool uses usage profiles that
describe system usage, i.e., how many times each execution
path is called. The usage profiles make it possible to perform
own predictions for different user groups, e.g., professional
and normal users. In this work, the results from the RAP tool
will be made available for runtime use.

Evesti et al. present the ISMO ontology in [2]. The ISMO
composes security ontology and general software measuring
terminology. The ISMO thus offers a generic and extendable
way to present security measures. These measures are
connected to security threats and/or supporting mechanisms,
depending on the measure. Measures are divided into base
measures, derived measures, and analysis models. The base
measure is the simplest measure and is used for more
complex measures, i.e., derived measures and analysis
models. The ISMO is instantiated as an example using
authentication measures, especially Authentication Identity
Structure (AIS) measures [1] for password-based
authentication. The ISMO thus contains measures for
password age and type, i.e., length and the number of
different symbols. The software application uses different

measures from those of the ISMO to measure its security
level at runtime. In this work, the ISMO is extended to
contain design time reliability predictions.

Savola et al. present Basic Measurable Components
(BMCs) for security attributes (e.g., authentication,
confidentiality, etc.) in [1]. BMCs are derived by means of
the decomposition approach. The idea of BMCs is to divide
security attributes into smaller pieces that can be measured.
For example, authentication is divided into five BMCs in [1]
as follows: Authentication Identity Uniqueness (AIU),
Authentication Identity Structure (AIS), Authentication
Identity Integrity (AII), Authentication Mechanism
Reliability (AMR), and Authentication Mechanism Integrity
(AMI).

III. RELIABILITY PREDICTIONS FOR SUPPORTING
SECURITY MEASURING AND ADAPTATION

This section is dived into three subsections. Firstly, high-
level design steps for the application with security adaptation
features are described. Secondly, a design time reliability
prediction is presented. Finally, a way to store the prediction
results in ISMO in a way that supports runtime measuring is
described.

A. Designing an Application with Security Adaptation
Features
This subsection lists design steps that a software architect

has to take when designing an application with security
adaptation features. Figure 2. illustrates these design phases.
The last three phases of the process are iterative. This is not
depicted in the figure, however, for reasons of clarity.

1) Required security attributes
In the first phase, the software architect has a set of

required security attributes for the application, for instance,
S1 for communication confidentiality, S2 for user
authentication, and S3 for data integrity requirements. S
refers to a security requirement in general.

2) Adaptable security attributes
The software architect has to design adaptation features

separately for each security attribute. From the above-listed
required security attributes, the architect has to select which
ones to implement in an adaptable manner, i.e., variation will
take place at runtime [12]. In Figure 2. user authentication S2
is selected for the adaptable security attribute. Other security
attributes are thought of as static security requirements from
the runtime viewpoint. In other words, the possible variation
in these attributes is taken into account at design time.

3) Mechanisms for adaptable security attributes
The adaptable security requirement has to be met by

security mechanisms that can be changed or that have
parameters that can be modified at runtime. For example, in
the adaptable user authentication case, the architect designs
two alternative user authentication mechanisms for the
application, e.g., password-based and voice-based
authentications. Another alternative is to design one security
mechanism and set different parameters for it at runtime.

4) Measurements for triggering adaptation

95Copyright (c) IARIA, 2011. ISBN: 978-1-61208-174-8

EMERGING 2011 : The Third International Conference on Emerging Network Intelligence

VI/3

Software measures are designed for the application in
parallel with the mechanism design phase. In particular, this
means base measures that require measuring probes inside
the application. Adaptation at runtime will be triggered based
on derived measures and analysis models, which both
depend on base measures. In other words, base measures are
used to compose derived measures and analysis models.
Hence, the software architect has to implement these base
measures for the application.

5) Architecture design
The architect designs the architecture for the system.

From the security adaptation viewpoint, it is important that
variation points are designed with care. For adaptable user
authentication, this means that an authentication feature can
be called without knowing the currently used authentication
mechanism.

Figure 2. Steps towards adaptable application

B. Design Time Predictions
This subsection describes how the software architect

predicts the reliability of components from the architectural
designs. The architect uses the RAP method to perform these
predictions. Based on the steps listed in the previous
subsection, the architect has design documents for the
application. Firstly, the component diagram describes the
structure of the application. Secondly, the internal behaviour
of components is described by means of state diagrams.
Finally, sequence diagrams describe the mutual behaviour of

components, i.e., how the component calls other
components.

The RAP method contains state-based and path-based
reliability prediction methods. For runtime security
measuring and adaptation purposes, the RAP method is used
to predict the probability of failure (pof) values for security
mechanism components, i.e., mechanisms designed in phase
3 of the previous subsection.

The state-based prediction method calculates reliability
for one independent software component by means of state
diagrams. In state diagrams, pof values are given for each
state to describe the failure probability in that particular state.
Moreover, transition probabilities between states are
described. Based on this information, the RAP tool
automatically adds a separated failure state and calculates the
component’s pof value using a state transition matrix p and a
probability vector p(n) as follows:

p=

pSS pSA pSB pSF
pAS pAA pAB pAF
pBS pBA pBB pBF
pFS pFA pFB pFF

 (1)

p(n+1) = p(n)*p (2)

In transition matrix p, pSA presents the probability of
transit from the start state S to state A. Similarly, pAF
presents a probability of transit from state A to the failure
state F. In the beginning, the probability vector takes the
form p(0) = [1, 0, 0, 0], which means that the probability of
being in the start state is 1 at time moment 0.

The state-based prediction produces independent pof
values for the components. These values are further used to
calculate the component’s pof values in different execution
paths. Execution paths are presented by means of sequence
diagrams in architectural models. The following equation is
used to calculate a component’s pof value in a particular
execution path:

pij = 1 - (1 - pi)Nij (3)

The previously calculated independent pof of the
component is substituted in pi, and Nij represents the number
of execution times of the component in that execution path.
Execution paths describe how the particular component is
called in different execution paths.

As mentioned in Section 2, the RAP tool is also able to
calculate pof values for each execution path, the component
belonging to the particular software system, and for the
whole software system. The equations for these calculations
are presented in [11]. However, our interest is in bringing the
previously presented component-related pof values for
runtime use.

C. Storing Prediction Results in a Runtime-Applicable Way
After the RAP predictions, the software architect has the

components’ independent pof values and the components’
pof values for the execution paths. Initially, the RAP tool
was only intended for use at design time. Thus, the RAP tool

96Copyright (c) IARIA, 2011. ISBN: 978-1-61208-174-8

EMERGING 2011 : The Third International Conference on Emerging Network Intelligence

VI/4 VI/5

that is used to store pof values. The following structure is
used: componentName, componentPof, the component’s pof
in execution path 1, the component’s pof in execution path 2,
etc. This structure therefore offers information on the
execution path used to calculate path-specific pof values. It is
possible to store pof values in a separated file or structure
inside the application code. The separated file offers more
flexibility, however, i.e., pof values can be updated without
knowing the program code. The architect decides where the
pof values are stored and creates an appropriate measurement
method.

The reason why pof values are not stored directly in the
attributes is twofold. Firstly, the measurement part of the
ISMO – inherited from the Software Measurement Ontology
(SMO) [13] – defines that attributes only define things that
can be measured. Secondly, storing pof values outside the
ISMO makes the ontology and pof values manageable. An
application with security adaptation can contain several
security mechanism components and each component can
belong to several execution paths. Storing all these values
into the ISMO will increase its size and complicate the
updating of pof values.

IV. USE CASE EXAMPLE

This section gives a use case example of the presented
approach. The purpose of the example is to show how the
reliability of the security mechanism component is predicted.
The results are stored in a runtime-applicable way in the
ISMO.

The software architect designs a software application
with security adaptation features. Communication
confidentiality and user authentication are required securities
for the application, c.f. Figure 2. From these security
requirements, it is decided to implement user authentication
in an adaptable manner. Hence, the architect designs
alternative mechanisms for achieving user authentication, for
example, password-based and fingerprint authentication. At
the same time, base measures for measuring the user
authentication are designed for the application. One of these
base measures is pof. The value of the pof base measure is
retrieved using a measurement method. It is notable, that the
base measures and related measurement method
implementations are reusable. Hence, the same base measure
is also applicable to other security mechanisms.

After these design steps, there will be a component
diagram, state diagrams of components, and sequence
diagrams. Both authentication mechanisms are implemented
as one independent software component called
passwordAuthentication and fingerprintAuthentication.

Figure 6. presents a state diagram for the password
authentication component. In this case, each transition
probability is 1, i.e., only one leaving transition from each
state. The architect sets the pof values for each state
heuristically, and these pof values then affect the transition
probabilities. In other words, the state’s pof value reduces
the occurrence probability of the right state transition
respectively. Based on values from Figure 6. the RAP tool
automatically adds the failure state and builds the transition
matrix p as described in Section 3. From the transition

matrix, the RAP tool calculates the pof value for the
passwordAuthentication component. In this case, the pof
value for the passwordAuthentication component is
0.000482. Similarly, pof values are given for states in the
fingerpringAuthentication component, and the pof value of
the component is calculated.

Figure 6. State diagram for the passwordAuthentication component

To exemplify path-specific pof values, the sequence
diagram in Figure 7. is used. The RAP tool uses this
sequence diagram, previously calculated pof value, and
equation 3 to calculate the path-specific pof value. Hence, a
pof value of 0.000482 is attained for the
passwordAuthentication component in this specific
execution path. In this case, the independent and path-
specific pof values are the same because the
passwordAuthentication component is only called once in
this sequence diagram, c.f. equation 3.

Figure 7. Sample execution path for password authentication

The architect stores this information in the ISMO in the
form defined in the previous section and illustrated in Figure
8. In the figure, grey is used to describe information added in
this case example. The component name is now
passwordAuthentication and the version number is 1.0.
Hence, the instance named passwordAuthentication_ver1.0
is created under the password authentication concept in the
ISMO. Similarly, the instance for the
fingerprintAuthentication component is created. Both of
these instances contain previously mentioned attributes.
Attributes for the fingerprintAuthentication are not presented
in the figure, however, for reasons of clarity. Calculated pof
values are stored in the specific file called pofs. This file is
presented in dark grey in Figure 8. because it is a separate
part from the ISMO. MeasurementMethod contains a link to
that file and is able to read pof values from the file. In this
case, the file contains pof values for the
passwordAuthentication and fingerpringAuthentication
components.

98Copyright (c) IARIA, 2011. ISBN: 978-1-61208-174-8

EMERGING 2011 : The Third International Conference on Emerging Network Intelligence

stores these reliability values in the component diagram by
means of a UML profile. Hence, the values are available
during the implementation and testing phases. Figure 3.
shows the security mechanism part of the component
diagram after the RAP predictions. Now, the mechanism
alternatives designed earlier contain the predicted pof values.
This is not practical for runtime purposes however. Reading
the pof values from the UML profile requires a connection to
a UML tool, which cannot be offered at runtime.

Figure 3. Component diagram after reliability predictions

As mentioned in Section 2, the ISMO supports runtime
security measurements. The ISMO is therefore extended to
store the components’ reliability values. The following
information needs to be stored in the ISMO:

1. Software component name
2. Software component version number
3. Which security mechanism the component

implements
4. Reference to a place where the pof values are

stored
5. Information on the execution path used to

calculate path-specific pof values
The component name is intended to separate different

alternatives of the mechanisms and is the name taken directly
from the component diagram. It is natural to create an
instance in the ISMO with a component name. This is
because each software component is an individual element.

The version number separates different implementations
of the same component. For instance, a new component
version that contains bug fixes has a better pof value than the
old version. This information therefore has to be separated in
the ISMO. The version number is combined with the
component name, i.e., an instance name in the ISMO. This
naming convention also ensures that the ISMO does not
contain instances with the same name.

Information on the security mechanism that the
component implements is required because components use
different security mechanisms to meet the required security,
i.e., the mechanism alternatives in Figure 3. use different
security mechanisms. For example, two components can use

different authentication mechanisms to achieve user
authentication. Countermeasures are described as concepts,
i.e., classes, in the ISMO. Thus, it is reasonable to create the
instance from the software component under the right
countermeasure concept. Figure 4. presents instances created
from software components from different countermeasure
concepts.

Countermeasure

MechanismAlter
native1_ver1.0 MechanismAlternative2

PasswordAuthentication VoiceRecognition

IsIs

isInstanceOf isInstanceOf

MechanismAlter
native1_ver2.0

isInstanceOf

Figure 4. Component instances in the ISMO

The most important information is the components’ pof
values, and the above-described additions to the ISMO make
it possible to put this information into the ISMO. Figure 5.
shows a way of presenting pof values in the ISMO. A new
base measure called pof is added to the ISMO. This is able to
offer the component’s pof values for the runtime measuring.
In the ISMO, each measure is defined for attribute, i.e., path-
specific pof and independent pof. The attribute relates to
MeasurableConcept, i.e., Authentication Mechanism
Reliability (AMR). Previously, the ISMO contained only
measures related to the Authentication Identity Structure
(AIS). Both attributes are connected to the countermeasure
instance, i.e., MechanismAlternative_ver1.0 in this case,
with the hasMeasurableAttribute property. Other mechanism
instances also contain these attributes. However, for reasons
of clarity, these are not presented in the figure.

MeasurableConcept : BMC
AuthenticationMechanism

Reliability (AMR)

Attribute : independent pof

relatesToCountermeasure

relates

definedFor

BaseMeasure : pof

MeasurementMethod : get
component’s stored pof value

uses

hasMeasurable
Attribute

MechanismAlternative1_ver1.0

Attribute : path specific pof

hasMeasurable
Attribute

relates

definedFor

Figure 5. Update for the ISMO

Both attributes use the same pof base measure. The
purpose of this base measure is to use MeasurementMethod,
which retrieves the components’ pof values. The
measurement method is a concrete measuring probe that is
able to retrieve pof values. Hence, it has to know the format

97Copyright (c) IARIA, 2011. ISBN: 978-1-61208-174-8

EMERGING 2011 : The Third International Conference on Emerging Network Intelligence

VI/5

that is used to store pof values. The following structure is
used: componentName, componentPof, the component’s pof
in execution path 1, the component’s pof in execution path 2,
etc. This structure therefore offers information on the
execution path used to calculate path-specific pof values. It is
possible to store pof values in a separated file or structure
inside the application code. The separated file offers more
flexibility, however, i.e., pof values can be updated without
knowing the program code. The architect decides where the
pof values are stored and creates an appropriate measurement
method.

The reason why pof values are not stored directly in the
attributes is twofold. Firstly, the measurement part of the
ISMO – inherited from the Software Measurement Ontology
(SMO) [13] – defines that attributes only define things that
can be measured. Secondly, storing pof values outside the
ISMO makes the ontology and pof values manageable. An
application with security adaptation can contain several
security mechanism components and each component can
belong to several execution paths. Storing all these values
into the ISMO will increase its size and complicate the
updating of pof values.

IV. USE CASE EXAMPLE

This section gives a use case example of the presented
approach. The purpose of the example is to show how the
reliability of the security mechanism component is predicted.
The results are stored in a runtime-applicable way in the
ISMO.

The software architect designs a software application
with security adaptation features. Communication
confidentiality and user authentication are required securities
for the application, c.f. Figure 2. From these security
requirements, it is decided to implement user authentication
in an adaptable manner. Hence, the architect designs
alternative mechanisms for achieving user authentication, for
example, password-based and fingerprint authentication. At
the same time, base measures for measuring the user
authentication are designed for the application. One of these
base measures is pof. The value of the pof base measure is
retrieved using a measurement method. It is notable, that the
base measures and related measurement method
implementations are reusable. Hence, the same base measure
is also applicable to other security mechanisms.

After these design steps, there will be a component
diagram, state diagrams of components, and sequence
diagrams. Both authentication mechanisms are implemented
as one independent software component called
passwordAuthentication and fingerprintAuthentication.

Figure 6. presents a state diagram for the password
authentication component. In this case, each transition
probability is 1, i.e., only one leaving transition from each
state. The architect sets the pof values for each state
heuristically, and these pof values then affect the transition
probabilities. In other words, the state’s pof value reduces
the occurrence probability of the right state transition
respectively. Based on values from Figure 6. the RAP tool
automatically adds the failure state and builds the transition
matrix p as described in Section 3. From the transition

matrix, the RAP tool calculates the pof value for the
passwordAuthentication component. In this case, the pof
value for the passwordAuthentication component is
0.000482. Similarly, pof values are given for states in the
fingerpringAuthentication component, and the pof value of
the component is calculated.

Figure 6. State diagram for the passwordAuthentication component

To exemplify path-specific pof values, the sequence
diagram in Figure 7. is used. The RAP tool uses this
sequence diagram, previously calculated pof value, and
equation 3 to calculate the path-specific pof value. Hence, a
pof value of 0.000482 is attained for the
passwordAuthentication component in this specific
execution path. In this case, the independent and path-
specific pof values are the same because the
passwordAuthentication component is only called once in
this sequence diagram, c.f. equation 3.

Figure 7. Sample execution path for password authentication

The architect stores this information in the ISMO in the
form defined in the previous section and illustrated in Figure
8. In the figure, grey is used to describe information added in
this case example. The component name is now
passwordAuthentication and the version number is 1.0.
Hence, the instance named passwordAuthentication_ver1.0
is created under the password authentication concept in the
ISMO. Similarly, the instance for the
fingerprintAuthentication component is created. Both of
these instances contain previously mentioned attributes.
Attributes for the fingerprintAuthentication are not presented
in the figure, however, for reasons of clarity. Calculated pof
values are stored in the specific file called pofs. This file is
presented in dark grey in Figure 8. because it is a separate
part from the ISMO. MeasurementMethod contains a link to
that file and is able to read pof values from the file. In this
case, the file contains pof values for the
passwordAuthentication and fingerpringAuthentication
components.

98Copyright (c) IARIA, 2011. ISBN: 978-1-61208-174-8

EMERGING 2011 : The Third International Conference on Emerging Network Intelligence

VI/6 VI/7

Figure 8. The content of ISMO after design time predictions

V. CONCLUSION AND FUTURE WORK

There is a clear connection between software reliability
and security. An unreliable software component that
performs security-related actions can ruin the security of the
whole application. In this work, an approach was introduced
to bring the results from design-time reliability predictions
for runtime security measuring and adaptation purposes.
Hence, the reliability of the security mechanisms can be
taken into account when security adaptation is triggered. The
work presented steps on how to produce an application with
security adaptation features. Thereafter, reliability was
predicted from design documents. Finally, these prediction
results were stored in the ISMO, which makes it possible to
use the prediction results at runtime. Storing the
components’ pof values in the ISMO required some
extensions to the ontology. Firstly, the way to present
individual security mechanism components in the ISMO was
added. Secondly, the attributes for pof values were added
and finally, a new base measure for pof values was
introduced in the ISMO.

To our knowledge, there is no security measuring and
adaptation approach that also uses design time information.
Thus, the introduced approach is the first step towards
enabling the use of the design time reliability predictions for
runtime security measuring and adaptation. Reliability values
are stored in a way that supports fast and easy updating. This
is important when bug fixes for the security components are
made. Furthermore, the real use of a component may

produce different reliability to that initially predicted and it is
then important to update the pof values. The presented
approach is not restricted to one particular security
mechanism or attribute. Hence, the software architect can
make the decision of which attributes will be implemented in
an adaptable manner on a case-by-case basis.

In the future, it is important to develop security measures
that use the components’ pof values in runtime security
measuring. Current pof values of components can be used to
compare different security components. Moreover,
combining the reliability information and security level
supported by the component offers valuable information for
adaptation purposes. This means that the ISMO will be
enhanced by new analysis models. The RAP tool also needs
new features for storing information automatically to the
ISMO.

ACKNOWLEDGMENT

This work is being carried out in the ARTEMIS SOFIA
project funded by Tekes, VTT, and the European
Commission.

REFERENCES

[1] R. Savola and H. Abie. "Development of measurable security for a
distributed messaging system", International Journal on Advances in
Security, 2(4), pp. 358-380, 2010.

[2] A. Evesti, R. Savola, E. Ovaska, and J. Kuusijärvi, "The Design,
Instantiation, and Usage of Information Security Measuring
Ontology", MOPAS'2011, pp. 1-9, 17th April, 2011. 2011.

[3] C. J. Lamprecht and A. P. A. van Moorsel, "Runtime Security
Adaptation Using Adaptive SSL", Dependable Computing, 2008.
PRDC '08. 14th IEEE Pacific Rim International Symposium, pp. 305-
312, 2008.

[4] A. Klenk, H. Niedermayer, M. Masekowsky, and G. Carle, "An
architecture for autonomic security adaptation", Ann Telecommun,
61(9-10), pp. 1066-1082. 2006.

[5] R. Hulsebosch, M. Bargh, G. Lenzini, P. Ebben, and S. Iacob.
"Context sensitive adaptive authentication", Smart Sensing and
Context, pp. 93-109, 2007.

[6] A. Evesti and E. Ovaska, "Ontology-Based Security Adaptation at
Run-Time", 4th IEEE International Conference on Self-Adaptive and
Self-Organizing Systems (SASO), pp. 204-212, 2010.

[7] A. Immonen, "A method for predicting reliability and availability at
the architecture level", in Software Product Lines T. Käkölä and J.
Dueñas, Eds., 2006.

[8] R. H. Reussner, H. W. Schmidt, and I. H. Poernomo, "Reliability
prediction for component-based software architectures", J. Syst.
Software, 66(3), pp. 241-252. 2003.

[9] ISO/IEC 9126-1:2001. Software Engineering – Product Quality –
Part 1: Quality Model. 2001.

[10] E. Ovaska, A. Evesti, K. Henttonen, M. Palviainen, and P. Aho,
"Knowledge based quality-driven architecture design and evaluation",
Information and Software Technology, 52(6), pp. 577-601. 2010.

[11] M. Palviainen, A. Evesti, and E. Ovaska, "The reliability estimation,
prediction and measuring of component-based software", J. Syst.
Software, 84(6), pp. 1054-1070. 2011.

[12] E. Niemela, A. Evesti, and P. Savolainen, "Modeling quality attribute
variability", ENASE – Proc. Int. Conf. Eval. Novel Approaches
Software Eng., pp. 169-176, 2008.

[13] F. García, M. F. Bertoa, C. Calero, A. Vallecillo, F. Ruíz, M. Piattini,
and M. Genero, "Towards a consistent terminology for software
measurement", Information and Software Technology, 48(8), pp. 631-
644. 2006.

99Copyright (c) IARIA, 2011. ISBN: 978-1-61208-174-8

EMERGING 2011 : The Third International Conference on Emerging Network Intelligence

VI/7

PUBLICATION VII

Architecture and knowledge-
driven self-adaptive security in

smart space

In: Computers, Vol. 2, No. 1, pp. 34–66.
Copyright 2013 Authors.

Reprinted with permission.

VII/1

VII/1

Computers 2013, 2, 34-66; doi:10.3390/computers2010034

computers
ISSN 2073-431X

www.mdpi.com/journal/computers
Article

Architecture and Knowledge-Driven Self-Adaptive Security in
Smart Space

Antti Evesti 1,*, Jani Suomalainen 2 and Eila Ovaska 1

1 VTT Technical Research Centre of Finland, Kaitoväylä 1, 90571 Oulu, Finland;
E-Mail: eila.ovaska@vtt.fi (E.O.)

2 VTT Technical Research Centre of Finland, Vuorimiehentie 3, 02044 Espoo, Finland;
E-Mail: jani.suomalainen@vtt.fi (J.S.)

* Author to whom correspondence should be addressed; E-Mail: antti.evesti@vtt.fi;
Tel.: +358-20-722-2101; Fax: +358-20-722-2320.

Received: 26 November 2012; in revised form: 24 February 2013 / Accepted: 4 March 2013 /
Published: 18 March 2013

Abstract: Dynamic and heterogeneous smart spaces cause challenges for security because
it is impossible to anticipate all the possible changes at design-time. Self-adaptive security
is an applicable solution for this challenge. This paper presents an architectural approach
for security adaptation in smart spaces. The approach combines an adaptation loop,
Information Security Measuring Ontology (ISMO) and a smart space security-control
model. The adaptation loop includes phases to monitor, analyze, plan and execute changes
in the smart space. The ISMO offers input knowledge for the adaptation loop and the
security-control model enforces dynamic access control policies. The approach is novel
because it defines the whole adaptation loop and knowledge required in each phase of the
adaptation. The contributions are validated as a part of the smart space pilot
implementation. The approach offers reusable and extensible means to achieve adaptive
security in smart spaces and up-to-date access control for devices that appear in the space.
Hence, the approach supports the work of smart space application developers.

Keywords: architecture; authentication; authorization; ontology; self-adaptation

OPEN ACCESS

http://www.mdpi.com/journal/computers
mailto:eila.ovaska@vtt.fi
mailto:jani.suomalainen@vtt.fi
mailto:antti.evesti@vtt.fi

VII/2 VII/3

Computers 2013, 2

36

defined form. The adaptation loop selects from the security mechanisms and configures the parameters
of those mechanisms at runtime. (2) The knowledge is mapped to the security-adaptation architecture,
in order to encompass the knowledge part of the MAPE-K reference model. In our solution, knowledge
is made accessible to the security adaptation by means of ontologies. Compared with the existing
approaches, our solution is novel because it makes it possible to minimize the amount of hard-coded
knowledge and supports knowledge addition and modifications. (3) A runtime security-control model
for dynamic authorization and access control is defined. The security-control model defines how
shared information is effectively secured and controlled in smart spaces.

The novelty of contributions comes from the integration, which builds up the consistent
security-adaptation architecture. The architecture covers all adaptation phases from monitoring to
execution with dynamic access control. In contrast to the existing approaches, knowledge is separated
from the architecture, and mappings from the architecture to knowledge are presented. Thus, the
presented security adaptation does not require hard-coded rules for the analysis and planning phases
because ontologies form the knowledge for the adaptation. Finally, the whole approach is validated as
part of the wider smart space pilot implementation.

Background information and related work are described in Section 2. The whole adaptation
approach is presented in Section 3. Section 4 describes the implementation of the approach by means
of a use case. A discussion of the approach and future research are summarized in Section 5. Finally,
the Conclusions Section closes the paper.

2. Background and Related Work

2.1. Smart Spaces

Smart spaces are physical spaces where devices cooperate and share information to intelligently
provide services for the users. Cook et al. define a smart environment as one that is able to acquire and
apply knowledge about the environment and its inhabitants in order to improve their experience in that
environment [4]. The terms smart space and smart environment are widely used interchangeably—
this article uses the term smart space.

Cooperation and information sharing requires that devices and Smart Space Applications (SSAs)
are able to interoperate. This interoperation is able to occur at different levels, which are called
interoperability levels, defined in [5,6]. The presented interoperability levels from bottom to top are
Connection, Communication, Semantic, Dynamic, Behavioral and Conceptual interoperability. The
Connection interoperability level focuses on network connectivity, whereas the Communication level
focuses on data syntax. However, these two lower-most interoperability levels are out of the scope of
this paper. The Semantic interoperability level concentrates on understanding data from the
communication level. Next, the Dynamic level focuses on context changes and the Behavioral level
matches actions together. Finally, the Conceptual interoperability level focuses on abstracting;
representing easy-to-use knowledge to the other interoperability levels, and making deductions based
on data, context and actions. Thus, conceptual interoperability creates meaning from the information,
context and behavior in the smart spaces. Hence, this is the level where the “smartness” is built for the
smart space.

Computers 2013, 2

35

1. Introduction

The smart space trend has initiated several research projects and publications, from technologies to
applications. Smart spaces—such as smart homes, smart buildings and smart cities—offer available
information and devices for end-users’ purposes without a pre-defined configuration or application
behavior. Smart spaces are dynamic, and moreover, utilized technologies are heterogeneous.
Consequently, it is not possible to envision all the possible situations where the smart space application
will be utilized, which creates a challenge for software designers. Self-adaptation is a possibility to
respond to this challenge by postponing decision making from design-time to runtime. Self-adaptation
is a software’s capability to configure and tune its functionality at runtime, in order to tackle changing
situations. Challenges related to smart space security are complex—due to the dynamicity and
heterogeneity of smart spaces. Firstly, the required security objectives vary between situations,
e.g., sometimes integrity is the essential security objective but in other situations the user’s privacy is
the first priority. Secondly, the security needs of a smart space application vary between situations. For
instance, an application utilizing entertainment or critical control information has variable
requirements for security effectiveness, i.e., for the security level. Thirdly, smart spaces change
continuously, as new devices appear and leave. These devices must be able to use the smart space’s
available security mechanisms. However, the same security mechanisms are not applicable in all smart
spaces. For example, one smart space may support only one particular authentication mechanism while
another provides three different mechanisms.

These challenges demand an adaptive security solution that is able to change and modify the used
security mechanisms autonomously at runtime. The importance of self-adaptation in smart spaces is
also recognized in [1]. A reference model called MAPE-K (Monitor, Analyze, Plan and Execute) has
been introduced as a solution for self-adaptation. This model is generic, i.e., it can be applied for
various quality and functionality adaptations, and thus it was selected as the reference model for
security adaptation in this work. In the MAPE-K model, the Monitor collects information that is
analyzed to recognize adaptation needs. Thereafter, the Plan phase creates an adaptation plan for
execution. These four phases constitute an adaptation loop supported by knowledge. Currently, several
security-adaptation approaches exist [2,3]. The first survey reveals that the existing security-adaptation
approaches concentrate on specific security objectives. The second survey shows that the existing
approaches have a lack in the adaptation loop coverage, i.e., the approaches do not define the whole
MAPE loop. Moreover, Yuan et al. note that the abstract architecture for security adaptation is not
presented in the existing approaches [3]. These architecture-level problems complicate the reusability
and extensibility of the existing security-adaptation approaches. The MAPE-K model separates
knowledge from the adaptation loop. However, existing security-adaptation approaches do not support
this separation but utilize hard-coded adaptation decisions, which is not sufficient in dynamic smart
spaces. Moreover, smart spaces require flexible access control, which is able to handle the situations
when new devices and information constantly appear in the smart space. However, the existing
approaches are not able to offer this flexibility for dynamically changing access control needs.

This paper concentrates on architecture, knowledge and access control problems. Hence, the paper
makes the following contributions: (1) Architecture for the security-adaptation loop is defined and
mapped to the MAPE model. Hence, the architecture covers all the adaptation phases in a clearly

VII/3

Computers 2013, 2

36

defined form. The adaptation loop selects from the security mechanisms and configures the parameters
of those mechanisms at runtime. (2) The knowledge is mapped to the security-adaptation architecture,
in order to encompass the knowledge part of the MAPE-K reference model. In our solution, knowledge
is made accessible to the security adaptation by means of ontologies. Compared with the existing
approaches, our solution is novel because it makes it possible to minimize the amount of hard-coded
knowledge and supports knowledge addition and modifications. (3) A runtime security-control model
for dynamic authorization and access control is defined. The security-control model defines how
shared information is effectively secured and controlled in smart spaces.

The novelty of contributions comes from the integration, which builds up the consistent
security-adaptation architecture. The architecture covers all adaptation phases from monitoring to
execution with dynamic access control. In contrast to the existing approaches, knowledge is separated
from the architecture, and mappings from the architecture to knowledge are presented. Thus, the
presented security adaptation does not require hard-coded rules for the analysis and planning phases
because ontologies form the knowledge for the adaptation. Finally, the whole approach is validated as
part of the wider smart space pilot implementation.

Background information and related work are described in Section 2. The whole adaptation
approach is presented in Section 3. Section 4 describes the implementation of the approach by means
of a use case. A discussion of the approach and future research are summarized in Section 5. Finally,
the Conclusions Section closes the paper.

2. Background and Related Work

2.1. Smart Spaces

Smart spaces are physical spaces where devices cooperate and share information to intelligently
provide services for the users. Cook et al. define a smart environment as one that is able to acquire and
apply knowledge about the environment and its inhabitants in order to improve their experience in that
environment [4]. The terms smart space and smart environment are widely used interchangeably—
this article uses the term smart space.

Cooperation and information sharing requires that devices and Smart Space Applications (SSAs)
are able to interoperate. This interoperation is able to occur at different levels, which are called
interoperability levels, defined in [5,6]. The presented interoperability levels from bottom to top are
Connection, Communication, Semantic, Dynamic, Behavioral and Conceptual interoperability. The
Connection interoperability level focuses on network connectivity, whereas the Communication level
focuses on data syntax. However, these two lower-most interoperability levels are out of the scope of
this paper. The Semantic interoperability level concentrates on understanding data from the
communication level. Next, the Dynamic level focuses on context changes and the Behavioral level
matches actions together. Finally, the Conceptual interoperability level focuses on abstracting;
representing easy-to-use knowledge to the other interoperability levels, and making deductions based
on data, context and actions. Thus, conceptual interoperability creates meaning from the information,
context and behavior in the smart spaces. Hence, this is the level where the “smartness” is built for the
smart space.

VII/4 VII/5

Computers 2013, 2

38

Knowledge. A similar structure is also applied in [12,13] as a reference model for autonomic
computing. However, the names of the phases vary. For instance, Dobson et al. use the terms Collect,
Analyze, Decide and Act [12]. In contrast, Psaier et al. define a control loop that joins the Analyze and
Plan phases into one Diagnosing phase [14]. The loop concentrates on self-healing, which is a form of
autonomic computing. However, in this paper the MAPE-K loop will be utilized as a reference
architectural model. The terms autonomic computing, self-management and self-adaptive are utilized
interchangeably for instance in [13,15]. This article utilizes the term self-adaptive and its short-form
adaptive to refer to software’s ability to adapt itself at runtime. Adaptability has been defined as the
ability of software to adapt its functionality according to the environment and user [16]. From the
security viewpoint, functionality means security mechanisms intended to support the required
security objectives.

Elkhodary et al. survey four approaches to adaptive security in [2]—namely Extensive Security
Infrastructure [17], Strada Security API [18], Willow Architecture [19] and the Adaptive Trust
Negotiation Framework (ATNAC) [20]. Moreover, the recent survey from Yuan and Malek [3]
compares over 30 self-protection approaches. The extensible Security Adaptation Approach (ESAF)
distinguishes security mechanisms from the application to the middleware layer [21]. Hence, the
application communicates the required security to the middleware without any knowledge of the used
security mechanism. In contrast, Context-sensitive adaptive authentication utilizes context information
to replace static authentication mechanisms [22]. Hence, in situations where a lower authentication
level is sufficient it is possible to utilize other attributes, e.g., location-based authentication, instead of
passwords. The GEMOM (Genetic Messaging-Oriented Secure Middleware)—covered also
in [3]—offers self-healing and adaptation features to ensure optimal security strength and
uninterrupted operation in changing environments and threats [23]. The GEMOM applies the
Monitoring part of the MAPE-K model by means of security measuring [24].

In the security adaptation, the Monitoring phase utilizes security measuring or observes events that
affect security. Security measures can be produced by means of the decomposition approach, where
security objectives are divided into smaller parts until the measurable components are found [25].
Garcia et al. presented a similar technique for generic software measurement in [26] by categorizing
measures as Base Measures, Derived Measures and Indicators. Base Measures represent raw measures,
which are further composed into Derived Measures. Indicators are on the highest abstraction
level—and are able to compose Base Measures, Derived Measures and other Indicators. Figure 2
illustrates the structure of these measures. The indicator for the particular security objective is on the
highest level. The Indicator is derived from the Derived measures, Base Measures and other indicators.
Structuring measures hierarchically ensures that measures can be reused and extended. Hence, security
measures will be applied to Monitoring in this article. The Monitoring phase uses base measures.
The results of the base measures are composed in the Analysis phase to reveal the current
security level.

The Analyze phase utilizes monitoring results. However, it is not enough to know the current
security level but the required security level also has to be known. The required security level can be
defined at design-time, or alternatively, the Analyze phase can reason the required level at runtime.
Deciding on an appropriate security requirement set is a challenging task. Defining security
requirements for design-time purposes is extensively covered in [27]. The presented security

Computers 2013, 2

37

The SSA consists of a set of software agents that communicate and share information with each
other. Therefore, the deployment of the SSA can be distributed to several smart space devices,
i.e., agents of the SSA are executed in different devices instead of one centralized device. These agents
and the composed SSA act in dynamically changing smart spaces, which may offer a huge amount of
information. Context-awareness is a means to handle this information flow in order to provide
reasonable information and services for the user. Similarly, security in smart spaces requires
context-awareness in order to provide reasonable security for different situations and actions. From the
interoperability-level viewpoint, SSAs and context-awareness occur at the Dynamic and
Behavioral levels.

Establishing a smart space requires an appropriate infrastructure—in this paper, the Smart-M3
concept [7] will be utilized. In the Smart-M3, the Semantic Information Broker (SIB) forms a
backbone for the smart space. The SIB takes care of information sharing between agents—called
Knowledge Processors (KPs). Agents are able to make queries and subscriptions, and insert semantic
information in the SIB. Consequently, various devices are able to interoperate, i.e., share semantic
information, by means of the SIB and agents inside devices, as illustrated in Figure 1. The SIB utilizes
semantic web technologies—especially Resource Description Framework (RDF) [8] and SPARQL
query language. From the interoperability-level point of view, the SIB embodies the Semantic
Interoperability level. In the Sofia project [9], three different Smart-M3 concept implementations were
made for different usages. This paper utilizes the implementation called RIBS [10], which contains
mechanisms to secure communication and is able to work in resource-restricted devices—such as a
WLAN access point.

Figure 1. Smart spaces formed by Semantic Information Brokers (SIBs) and
Knowledge Processors (KPs).

Security challenges caused by the dynamicity and heterogeneity of smart spaces are mentioned

above. Moreover, traditional security challenges, e.g., key exchange and resource restrictions,
are present in the smart spaces. Similarly, openness and free utilization, which are characteristics of
smart spaces, affect security. Nevertheless, this paper focuses on security challenges due to dynamicity
and heterogeneity by presenting a security-adaptation approach with a dynamic access control.

2.2. Security Adaptation

Kephart et al. define autonomic computing as computing systems that can manage themselves by
using high-level objectives given by administrators [11]. The autonomic element contains the
MAPE-K control loop composed of the Monitor, Analyze, Plan and Execute phases, supported by

VII/5

Computers 2013, 2

38

Knowledge. A similar structure is also applied in [12,13] as a reference model for autonomic
computing. However, the names of the phases vary. For instance, Dobson et al. use the terms Collect,
Analyze, Decide and Act [12]. In contrast, Psaier et al. define a control loop that joins the Analyze and
Plan phases into one Diagnosing phase [14]. The loop concentrates on self-healing, which is a form of
autonomic computing. However, in this paper the MAPE-K loop will be utilized as a reference
architectural model. The terms autonomic computing, self-management and self-adaptive are utilized
interchangeably for instance in [13,15]. This article utilizes the term self-adaptive and its short-form
adaptive to refer to software’s ability to adapt itself at runtime. Adaptability has been defined as the
ability of software to adapt its functionality according to the environment and user [16]. From the
security viewpoint, functionality means security mechanisms intended to support the required
security objectives.

Elkhodary et al. survey four approaches to adaptive security in [2]—namely Extensive Security
Infrastructure [17], Strada Security API [18], Willow Architecture [19] and the Adaptive Trust
Negotiation Framework (ATNAC) [20]. Moreover, the recent survey from Yuan and Malek [3]
compares over 30 self-protection approaches. The extensible Security Adaptation Approach (ESAF)
distinguishes security mechanisms from the application to the middleware layer [21]. Hence, the
application communicates the required security to the middleware without any knowledge of the used
security mechanism. In contrast, Context-sensitive adaptive authentication utilizes context information
to replace static authentication mechanisms [22]. Hence, in situations where a lower authentication
level is sufficient it is possible to utilize other attributes, e.g., location-based authentication, instead of
passwords. The GEMOM (Genetic Messaging-Oriented Secure Middleware)—covered also
in [3]—offers self-healing and adaptation features to ensure optimal security strength and
uninterrupted operation in changing environments and threats [23]. The GEMOM applies the
Monitoring part of the MAPE-K model by means of security measuring [24].

In the security adaptation, the Monitoring phase utilizes security measuring or observes events that
affect security. Security measures can be produced by means of the decomposition approach, where
security objectives are divided into smaller parts until the measurable components are found [25].
Garcia et al. presented a similar technique for generic software measurement in [26] by categorizing
measures as Base Measures, Derived Measures and Indicators. Base Measures represent raw measures,
which are further composed into Derived Measures. Indicators are on the highest abstraction
level—and are able to compose Base Measures, Derived Measures and other Indicators. Figure 2
illustrates the structure of these measures. The indicator for the particular security objective is on the
highest level. The Indicator is derived from the Derived measures, Base Measures and other indicators.
Structuring measures hierarchically ensures that measures can be reused and extended. Hence, security
measures will be applied to Monitoring in this article. The Monitoring phase uses base measures.
The results of the base measures are composed in the Analysis phase to reveal the current
security level.

The Analyze phase utilizes monitoring results. However, it is not enough to know the current
security level but the required security level also has to be known. The required security level can be
defined at design-time, or alternatively, the Analyze phase can reason the required level at runtime.
Deciding on an appropriate security requirement set is a challenging task. Defining security
requirements for design-time purposes is extensively covered in [27]. The presented security

VII/6 VII/7

Computers 2013, 2

40

identification, non-repudiation, policy compliance, secrecy and trust. Nevertheless, the OIS does not
contain a security-measuring part. In contrast, Garcia et al. presented the measurement terminology in
an ontology form called Software Measurement Ontology (SMO) in [26]. Consequently, we have
combined the Information Security Measuring Ontology (ISMO) from OIS and SMO in [38]. The
ISMO makes it possible to present security measures via a common vocabulary and map defined
measures to security concepts, e.g., security objectives and mechanisms. In the ISMO, security
measures are defined in detail—containing descriptions on how the particular measuring has to be
performed and how the base measures can be further combined into indicators. Hence, the ISMO
offers knowledge for design-time and runtime purposes, e.g., what kind of measuring probe to
implement at design time and how to utilize measuring results at runtime. This paper utilizes
knowledge from the ISMO. Furthermore, context knowledge is vital for security adaptation, in order to
describe an environment and user actions. For this purpose, we utilize the Context Ontology for Smart
Spaces (CO4SS) [39] in this paper. In [40] we defined the taxonomy of context information for
security. The taxonomy maps security-related context information to physical, digital and situation
context levels. The physical context describes an infrastructure where the SSA is running. The digital
context presents the role of the smart space, e.g., public space. Finally, the situation context describes
the user’s role and activity within the smart space. Moreover, the role of the exchanged/stored data is
described in the situation context.

Our earlier work in [41] presented ontology-based security adaptation. In that work, risk-based
security measures were stored in the ontology to support security monitoring. Moreover, the ontology
contained knowledge about how much each security mechanism decreases the particular security risk,
which supports the Planning phase. In [40] we presented a micro-architecture for security adaptation.
However, in that architecture the ontology usage was tightly coupled inside the architecture. In this
article, the architecture is developed towards the MAPE-K reference model and the ontologies will be
separated out to their own interoperability level, i.e., to the Conceptual level.

2.4. Access Control over Semantic Information

To control access to shared semantic information, fine-grained authorization models have been
introduced for RDF. These approaches include approaches where access control is implemented as an
additional layer on top of the repository, as in [42], and approaches where access-control information
has also been integrated into repositories. In the triple-level access control [43], RDF resources are
protected with access-restriction properties. Essentially, these properties are links to access policy
graphs that specify the owner of the RDF resource as well as those predicates to which this
protection applies.

Some researchers have proposed models where RDF-level access control decisions are implicitly
derived from existing higher-level policies and context information. The policy-based access control
model [44] uses metadata to define permit or prohibit conditions. Jain and Farkas [45] introduce an
access-control model where RDF class hierarchy is utilized to manage and derive access control
policies. Flourish et al. [46] propose a high-level policy-specification language for annotation RDF
triples with access-control information. Moreover, approaches for access-control reasoning, based on

Computers 2013, 2

39

requirements engineering framework takes into account assets, threats, business goals, and system
context. All these aspects can be modeled in order to achieve the most extensive security adaptation
approach. For example, Salehie et al. [28] concentrate on the variability of assets and how this affects
security, and how adaptive security is able to deal with these challenges. This is an important
viewpoint and starts from assets, which initially set the requirements for all security. It is said that an
asset is an entity that someone places value upon [29], and thus, it needs protection. However, we do
not model requirements and assets in this granularity. On the contrary, we will utilize context
information to recognize the importance and role of handled data, i.e., asset value, which in turn leads
to required securities.

Many uncertainties relate to security, and thus, getting accurate numbers to describe security for
adaptation purposes is challenging. Sahinoglu [30] utilizes variance values to cover uncertainties in
risk analysis. Similarly, in security adaptation, results from monitoring and analysis contain variance in
some range. Uncertainties affect the achieved security and the recognized adaptation need but
uncertainties do not affect security adaptation architecture or the utilization of knowledge itself.
Thus, these uncertainties are out of the scope of this article.

Figure 2. The Structure of Measures.

2.3. Adaptation Knowledge from Ontologies

The MAPE-K model does not define how the knowledge has to be offered. However, in order to
follow the separation of the concerns principle, we introduce knowledge as a separately identifiable
architectural element by utilizing ontology orientation to represent a self-sufficient model of security
concepts. Ontology can be defined as a shared knowledge standard or knowledge model, defining
primitive concepts, relations, rules and their instances, which comprise topic knowledge. It can be used
for capturing, structuring and enlarging explicit and tacit topic knowledge across people, organizations
and computer and software systems [31]. Several security ontologies have been listed in [32].
In addition, our earlier work [33] compared security ontologies from the runtime applicability and
measuring viewpoints. Ontologies, designed for runtime usage, often concentrate on the service
discovery and matchmaking, e.g., ontologies in [34,35]. However, these ontologies do not cover
security measuring. In contrast, Savolainen et al. [36] present a security taxonomy for design time
usage, which also contains a high-level security measuring part. At the moment, the most extensive
security ontology is proposed by Herzog et al. [37], known as Ontology of Information Security (OIS).
The OIS contains over 250 concepts, which describe security threats, countermeasures, assets and
security goals, etc. In this paper, security goals and countermeasures are called security objectives and
mechanisms, respectively. The OIS lists the following security objectives: confidentiality, integrity,
availability, authentication, accountability, anonymity, authenticity, authorization, correctness,

VII/7

Computers 2013, 2

40

identification, non-repudiation, policy compliance, secrecy and trust. Nevertheless, the OIS does not
contain a security-measuring part. In contrast, Garcia et al. presented the measurement terminology in
an ontology form called Software Measurement Ontology (SMO) in [26]. Consequently, we have
combined the Information Security Measuring Ontology (ISMO) from OIS and SMO in [38]. The
ISMO makes it possible to present security measures via a common vocabulary and map defined
measures to security concepts, e.g., security objectives and mechanisms. In the ISMO, security
measures are defined in detail—containing descriptions on how the particular measuring has to be
performed and how the base measures can be further combined into indicators. Hence, the ISMO
offers knowledge for design-time and runtime purposes, e.g., what kind of measuring probe to
implement at design time and how to utilize measuring results at runtime. This paper utilizes
knowledge from the ISMO. Furthermore, context knowledge is vital for security adaptation, in order to
describe an environment and user actions. For this purpose, we utilize the Context Ontology for Smart
Spaces (CO4SS) [39] in this paper. In [40] we defined the taxonomy of context information for
security. The taxonomy maps security-related context information to physical, digital and situation
context levels. The physical context describes an infrastructure where the SSA is running. The digital
context presents the role of the smart space, e.g., public space. Finally, the situation context describes
the user’s role and activity within the smart space. Moreover, the role of the exchanged/stored data is
described in the situation context.

Our earlier work in [41] presented ontology-based security adaptation. In that work, risk-based
security measures were stored in the ontology to support security monitoring. Moreover, the ontology
contained knowledge about how much each security mechanism decreases the particular security risk,
which supports the Planning phase. In [40] we presented a micro-architecture for security adaptation.
However, in that architecture the ontology usage was tightly coupled inside the architecture. In this
article, the architecture is developed towards the MAPE-K reference model and the ontologies will be
separated out to their own interoperability level, i.e., to the Conceptual level.

2.4. Access Control over Semantic Information

To control access to shared semantic information, fine-grained authorization models have been
introduced for RDF. These approaches include approaches where access control is implemented as an
additional layer on top of the repository, as in [42], and approaches where access-control information
has also been integrated into repositories. In the triple-level access control [43], RDF resources are
protected with access-restriction properties. Essentially, these properties are links to access policy
graphs that specify the owner of the RDF resource as well as those predicates to which this
protection applies.

Some researchers have proposed models where RDF-level access control decisions are implicitly
derived from existing higher-level policies and context information. The policy-based access control
model [44] uses metadata to define permit or prohibit conditions. Jain and Farkas [45] introduce an
access-control model where RDF class hierarchy is utilized to manage and derive access control
policies. Flourish et al. [46] propose a high-level policy-specification language for annotation RDF
triples with access-control information. Moreover, approaches for access-control reasoning, based on

VII/8 VII/9

Computers 2013, 2

42

3. The Concept for Adaptive Security

The security-adaptation approach is presented in this section. Firstly, we give an overview of the
approach, and thereafter, each part of the approach is presented in its own sub-section. The approach is
not bound to any particular security objective or security mechanism. Nevertheless, the approach
contains all the necessary components required to build adaptive security for smart spaces.
The presented concept is instantiated by means of a case study in Section 4. The case study illustrates
the approach from the authentication and authorization viewpoints.

The adaptation approach combines solutions from different interoperability levels. Figure 3
illustrates the proposed solutions—mapped to the interoperability levels and design-time and runtime
phases. Sub-Sections 3.1—3.3 concentrate on these levels one-by-one.

Knowledge, required in security adaptation, is set on the Conceptual interoperability level. The
knowledge is described with ontologies—namely the Information Security Measuring Ontology
(ISMO) and the Context Ontology for Smart Spaces (CO4SS). Hence, security- and context-related
knowledge is offered to other interoperability levels from the Conceptual level at runtime.
Ontology-based knowledge ensures that smart space applications (SSA) are able to understand security
and context situations in a uniform way. Moreover, the architect utilizes knowledge from ontologies at
design-time to implement the appropriate monitoring probes and adaptation actions for the SSA, c.f.,
connections from ontologies to Monitoring probes and Adaptation actions in Figure 3. In other words,
these components are specific for the designed SSA. In contrast, the Analyzer and Planner components
search required knowledge at runtime.

The security-adaptation loop—based on the MAPE reference model—and the SSA are located on
the Behavioral and Dynamic interoperability levels. The architect designs and implements the required
software components at design-time. These components are as follows: Pure application logic,
monitoring probes, security mechanisms with adaptation actions, analyzer and planner. The adaptation
logic is located in the Planner component. However, the architecture does not dictate the utilized
adaptation logic, i.e., the internal functionality of the Planner component. The plan phase is described
in Subsection 3.2.3. At runtime, the SSA utilizes monitoring probes to observe security and context
changes. The Analyzer component analyses the consequences of the changes based on knowledge
retrieved from the ontologies at runtime. Sequentially, the Plan component creates an adaptation plan
for responding to changes. Finally, the adaptation plan is enforced by the executors. In the security
adaptation these executors are the selected security mechanisms. For example, “a new mobile device
has arrived in the smart space” is a change observed by means of monitoring. The SSA analyzes the
security consequences of a new device and decides how to adapt to this change. Adaptation actions
can, e.g., affect information sharing on the semantic level or reset the communication parameters.

On the Semantic interoperability level, the RIBS constitutes the smart space infrastructure. The
RIBS takes care of information sharing between smart space devices and SSAs. Hence, various
devices are able to interoperate via the RIBS by sharing semantic information, which is presented by
means of RDF. The Semantic level has to contain security solutions, which protect and control the
sharing of semantic information. Therefore, we propose a semantic level security-control model to
enable efficient access control. The security-control model enables SSAs to prepare security policies
so that the RIBS does not have to support complex ontologies or perform runtime security reasoning.

Computers 2013, 2

41

concepts and their relations represented by ontologies, have been introduced by Kim et al. [47] and
Cho et al. [48].

However, none of these reasoning solutions are directly applicable for smart spaces. In smart
spaces, access control is enforced by information-brokering devices, which are not aware of
application-specific policies. Also, semantic reasoning for real-time security control is a challenging
task as the reasoning problems are, at the worst case, only solvable in exponential time with respect to
the input size [49,50]. Consequently, to enable real-time security enforcement, efficient and scalable
solutions are needed. These solutions should enable smart spaces to support different reasoning
applications, which may be based on expressive and complex security ontologies.

Our earlier work defined solutions [10,51] for securing communication between smart space
devices and controlling information sharing. In [51], we proposed an RDF node-level access-control
model for a semantic information broker. The model is simpler than other RDF access-control models
as each security policy can be expressed using a single RDF triplet and, in an optimized
implementation, be presented with a single bit. In this article, the model is formally defined and
generalized, and its granularity is enlarged to protect semantic relationships in addition to semantic
information.

2.5. From Quality Variability to Quality Adaptation

In our approach, building a capability for quality adaptation begins at design-time. Consequently,
our earlier work combines quality-, model-, and knowledge-driven software development.
Our previous work presented the quality-variability model [52]. The variability model defines binding
times for variations, i.e., design, assembly, start-up and runtime, which defines the latest time point
when quality can be changed. This work concentrates on the situation where security variation occurs
at runtime—called security adaptation. Quality variability is closely related to architectures, and thus,
the approach for the knowledge-based quality-driven architecture design and evaluation was presented
in [53]. The approach contains three steps: (1) Modeling the quality requirement. (2) Modeling the
software architecture and transforming the requirements to the models. (3) Quality evaluation. Steps
one and two are divided into the knowledge and software engineering processes, whereas step three is
divided into the quantitative and qualitative evaluation processes. In that study, quality ontologies for
reliability and security were utilized as a knowledge base. Now, we will also bring ontology-based
knowledge from design-time for automatic runtime usage.

Lastly, the design steps to produce an application with security adaptation features were
presented [54]. The following steps were recognized: (1) Required security objectives—defines all
security objectives for the application. (2) Adaptive security objectives—selects objectives, which will
be adapted at runtime. (3) Mechanism variants for the selected objectives—selecting security
mechanisms and their parameters, which can be adapted at runtime. (4) Measurements for triggering
adaptation—selecting security measurements to monitor the adaptation needs of the selected security
objectives. (5) Architecture design—designing the selected security mechanisms and measurements
into the application architecture in a way that supports runtime adaptation. The contribution of this
paper relates to step five, i.e., presenting security-adaptation architecture and mapping it to the
knowledge retrieved from the ontologies.

VII/9

Computers 2013, 2

42

3. The Concept for Adaptive Security

The security-adaptation approach is presented in this section. Firstly, we give an overview of the
approach, and thereafter, each part of the approach is presented in its own sub-section. The approach is
not bound to any particular security objective or security mechanism. Nevertheless, the approach
contains all the necessary components required to build adaptive security for smart spaces.
The presented concept is instantiated by means of a case study in Section 4. The case study illustrates
the approach from the authentication and authorization viewpoints.

The adaptation approach combines solutions from different interoperability levels. Figure 3
illustrates the proposed solutions—mapped to the interoperability levels and design-time and runtime
phases. Sub-Sections 3.1—3.3 concentrate on these levels one-by-one.

Knowledge, required in security adaptation, is set on the Conceptual interoperability level. The
knowledge is described with ontologies—namely the Information Security Measuring Ontology
(ISMO) and the Context Ontology for Smart Spaces (CO4SS). Hence, security- and context-related
knowledge is offered to other interoperability levels from the Conceptual level at runtime.
Ontology-based knowledge ensures that smart space applications (SSA) are able to understand security
and context situations in a uniform way. Moreover, the architect utilizes knowledge from ontologies at
design-time to implement the appropriate monitoring probes and adaptation actions for the SSA, c.f.,
connections from ontologies to Monitoring probes and Adaptation actions in Figure 3. In other words,
these components are specific for the designed SSA. In contrast, the Analyzer and Planner components
search required knowledge at runtime.

The security-adaptation loop—based on the MAPE reference model—and the SSA are located on
the Behavioral and Dynamic interoperability levels. The architect designs and implements the required
software components at design-time. These components are as follows: Pure application logic,
monitoring probes, security mechanisms with adaptation actions, analyzer and planner. The adaptation
logic is located in the Planner component. However, the architecture does not dictate the utilized
adaptation logic, i.e., the internal functionality of the Planner component. The plan phase is described
in Subsection 3.2.3. At runtime, the SSA utilizes monitoring probes to observe security and context
changes. The Analyzer component analyses the consequences of the changes based on knowledge
retrieved from the ontologies at runtime. Sequentially, the Plan component creates an adaptation plan
for responding to changes. Finally, the adaptation plan is enforced by the executors. In the security
adaptation these executors are the selected security mechanisms. For example, “a new mobile device
has arrived in the smart space” is a change observed by means of monitoring. The SSA analyzes the
security consequences of a new device and decides how to adapt to this change. Adaptation actions
can, e.g., affect information sharing on the semantic level or reset the communication parameters.

On the Semantic interoperability level, the RIBS constitutes the smart space infrastructure. The
RIBS takes care of information sharing between smart space devices and SSAs. Hence, various
devices are able to interoperate via the RIBS by sharing semantic information, which is presented by
means of RDF. The Semantic level has to contain security solutions, which protect and control the
sharing of semantic information. Therefore, we propose a semantic level security-control model to
enable efficient access control. The security-control model enables SSAs to prepare security policies
so that the RIBS does not have to support complex ontologies or perform runtime security reasoning.

VII/10 VII/11

Computers 2013, 2

44

300 concepts and their connections. The ISMO describes security and measuring knowledge, while
CO4SS contains context knowledge.

Figure 4 summarizes the main dependencies of these ontologies, and thus, it contains only the main
concepts. The additional concepts and connections are presented in Figures 6–10 in Subsection 3.2. It
is notable that the content in Figure 4 is laid in the conceptual level in Figure 3 (the highest level).
The context knowledge from the CO4SS sets the required security objectives and levels. For example,
dealing with professional information in an office environment has different security requirements than
handling the same information in a public environment, which may contain additional threats. The
ISMO describes which security mechanism supports the particular security objective and how the
security objectives mutually relate. However, the applicable mechanisms depend on the physical
context of the smart space, which describes the execution platform and operating system. For instance,
the used operating system supports only a particular security mechanism, therefore, in Figure 4 the
Physical context is connected to Security mechanisms with an offers connector.

Triggering the security adaptation requires that both security and context concepts are monitored.
The monitoring focuses on measurable attributes (attribute), and thus, security and context are
connected to the Attribute, c.f., Figure 4. In Figure 4, the connections to Attribute start from the
Security concepts and Context concepts frames, which means that all of those concepts can contain
measurable attributes. Examples of attributes are a key length from the security side and the number of
smart space devices from the context side. Naturally each attribute contains its own measures.

Figure 4. Dependencies of security and context ontologies.

Figure 3 shows that knowledge from ontologies is utilized at design-time and runtime alike. At
design-time, the software architect implements a set of monitoring probes, which require knowledge of
the measures. Moreover, the architect searches which security mechanisms to implement from ISMO.
Additional details of the design-time use of ISMO are presented in [38,53]. At runtime, the SSA
automatically utilizes knowledge from the ISMO. The application has to know what measures to

Computers 2013, 2

43

Applications requesting and providing information must unambiguously define the semantics of shared
information. However, the presented dynamic access control ensures that variations are handled at
runtime, without design-time rules.

Figure 3. Interoperability levels and proposed solutions.

At this point, it is necessary to emphasize the difference between semantic and conceptual
interoperability levels. However the semantic technologies, i.e., RDF and OWL, are applied on both
levels the difference comes from the abstraction level of the knowledge. The Semantic level contains
separated pieces of information, e.g. temperature is minus five or a password length is seven
characters. In contrast, the Conceptual level makes it possible to deduct the causes of the semantic
information, e.g., water will freeze or the authentication level is low.

3.1. Security Adaptation Concepts from Ontologies

The right knowledge is an essential part of the security adaptation. In our solution, knowledge will
be offered from the Conceptual interoperability level by means of ontologies. Ontologies make it
possible to update and extend the existing knowledge. Moreover, ontologies support reusability and
offer knowledge in a machine-readable form. Knowledge requirements for the security adaptation are
threefold, c.f., Figure 4. Firstly, security knowledge is needed to describe security mechanisms,
security objectives, threats and their relationships. Secondly, measuring concepts are needed to
monitor the achieved security, i.e., the current and/or past security. Thirdly, context knowledge is
needed to describe the state of the smart space from situational, digital and physical viewpoints. The
situational context is intended to describe the user’s role in the smart space and the role of the
exchanged/stored data. In contrast, the digital context depicts the role of the smart space. Lastly, the
physical context presents the execution platform and smart space infrastructure. The knowledge is
arranged in two separate ontologies, i.e., ISMO [38] and CO4SS [39], which together contain over

VII/11

Computers 2013, 2

44

300 concepts and their connections. The ISMO describes security and measuring knowledge, while
CO4SS contains context knowledge.

Figure 4 summarizes the main dependencies of these ontologies, and thus, it contains only the main
concepts. The additional concepts and connections are presented in Figures 6–10 in Subsection 3.2. It
is notable that the content in Figure 4 is laid in the conceptual level in Figure 3 (the highest level).
The context knowledge from the CO4SS sets the required security objectives and levels. For example,
dealing with professional information in an office environment has different security requirements than
handling the same information in a public environment, which may contain additional threats. The
ISMO describes which security mechanism supports the particular security objective and how the
security objectives mutually relate. However, the applicable mechanisms depend on the physical
context of the smart space, which describes the execution platform and operating system. For instance,
the used operating system supports only a particular security mechanism, therefore, in Figure 4 the
Physical context is connected to Security mechanisms with an offers connector.

Triggering the security adaptation requires that both security and context concepts are monitored.
The monitoring focuses on measurable attributes (attribute), and thus, security and context are
connected to the Attribute, c.f., Figure 4. In Figure 4, the connections to Attribute start from the
Security concepts and Context concepts frames, which means that all of those concepts can contain
measurable attributes. Examples of attributes are a key length from the security side and the number of
smart space devices from the context side. Naturally each attribute contains its own measures.

Figure 4. Dependencies of security and context ontologies.

Figure 3 shows that knowledge from ontologies is utilized at design-time and runtime alike. At
design-time, the software architect implements a set of monitoring probes, which require knowledge of
the measures. Moreover, the architect searches which security mechanisms to implement from ISMO.
Additional details of the design-time use of ISMO are presented in [38,53]. At runtime, the SSA
automatically utilizes knowledge from the ISMO. The application has to know what measures to

VII/12 VII/13

Computers 2013, 2

46

into the ISMO. The Monitoring probe is a concrete code snippet, which is able to observe the
particular attribute, e.g., by retrieving a key length from the utilized encryption library. In other words,
the Monitoring probe is the implementation of the Measurement method. Each Monitoring probe is
intended to observe only one attribute from the environment or SSA. Therefore, implemented probes
can be easily reused.

Figure 6 depicts knowledge from the ISMO, i.e., the Conceptual level, and its relation to the SSA
and the environment in the Monitoring phase. The SSA and environment contain several attributes and
each attribute has its own Monitoring probe implementation. At runtime, the ISMO provides
knowledge about useful Base measures. The environment contains several probes but only a certain set
is needed in each particular situation. For instance, in a situation where communication integrity is not
needed it is useless to utilize integrity-related Base measures. Hence, the knowledge from the ISMO
reveals which probes to use. Consequently, it is vital that the ISMO contains the connections depicted
in Figure 6 because that information shows what attribute each probe is able to measure.

Figure 6. Knowledge from the Information Security Measuring Ontology (ISMO) for the
Monitoring phase.

3.2.2. Analyze

The Analyze phase reveals the current security levels for the required security objectives and
decides which levels are sufficient for the current situation. Hence, the Analyze phase combines the
Base measure results from the Monitoring phase to Indicators. The Indicator presents the security level
of the security objective in that particular smart space situation. In other words, Base measures indicate
that some changes have occurred in the smart space, whereas, the Analyze phase reveals the
consequences of these changes, i.e., it builds a meaning for the information in that situation.

The ISMO contains Derived measures and Indicators, which combine the Base measure results.
Base measures, Derived measures and Indicators are sub-classes of the Measure concept, depicted in
Figure 4. The ISMO follows a terminology defined in [26], and thus, Derived measures use the
Measurement function and Indicators use Analysis models to perform the combining process. The
Measurement function can be a simple mathematical operation, e.g., base_measure_1 +
base_measure_2. In contrast, Analysis models contain more complex structures including conditional
clauses and Boolean operations. For instance, the result from the Analysis model can be the integrity
level of communication.

Figure 7 shows concepts for the Analyze phase from the ISMO. Each indicator has Analysis
models, which use Base measures, Derived measures and Indicators. Every Security objective has its

Computers 2013, 2

45

utilize, how to analyze results, and finally, how to create an adaptation plan. These knowledge
requirements are described in detail in the following sections.

Smart spaces create a need to update knowledge every now and then. There can be several reasons
for updates: new security mechanisms appear, vulnerabilities are found, the threat landscape changes
or the execution environment changes. The SSA has to be aware of these changes, which is ensured by
up-to-date knowledge. Utilizing ontologies as the knowledge source offers an advantage from a
knowledge updating and enhancement view point. ISMO and CO4SS are presented in an OWL format,
and thus, updates can be made to ontologies without modifying SSAs, which only retrieve knowledge
from ontologies.

3.2. Architecture for Security Adaptation

The security-adaptation approach follows the MAPE model. The Monitor phase collects
information by means of monitoring probes. The Analyze phase calculates the security level achieved,
reasons the required security level, and calls the Plan phase if the required securities are not achieved.
The Plan phase creates a plan to adapt, and finally, the Execute phase enforces the adaptation plan. The
following descriptions of these phases show, how they utilize knowledge from the Conceptual
interoperability level. Figure 5 presents a legend for figures used in the next sections.

Figure 5. Symbol definitions.

3.2.1. Monitor

The Monitor phase gathers information from the environment and the SSA itself. The purpose of
monitoring is to collect those small information pieces, which are then utilized to reveal an adaptation
need. The target of monitoring can be at any level—from a low-level network technology to a
high-level description of the user situation. These monitoring targets are called attributes—the
encryption key length and the number of unknown devices in the smart space are examples of
monitored attributes. Monitoring utilizes security measures, and thus, the measuring related
terminology is utilized in the Monitoring phase. The Monitor phase uses Base measures to collect raw
data by means of Monitoring probes. It is notable that Figure 4 presents the Measure concept, and the
Base measure is one subclass of the Measure.

At design time, the software architect implements Monitoring probes into the SSA and environment
based on the Measurement method descriptions from the ISMO, c.f., Figure 6. If the architect creates a
new Base measure and Monitoring probe, knowledge about what attribute the probe measures is added

VII/13

Computers 2013, 2

46

into the ISMO. The Monitoring probe is a concrete code snippet, which is able to observe the
particular attribute, e.g., by retrieving a key length from the utilized encryption library. In other words,
the Monitoring probe is the implementation of the Measurement method. Each Monitoring probe is
intended to observe only one attribute from the environment or SSA. Therefore, implemented probes
can be easily reused.

Figure 6 depicts knowledge from the ISMO, i.e., the Conceptual level, and its relation to the SSA
and the environment in the Monitoring phase. The SSA and environment contain several attributes and
each attribute has its own Monitoring probe implementation. At runtime, the ISMO provides
knowledge about useful Base measures. The environment contains several probes but only a certain set
is needed in each particular situation. For instance, in a situation where communication integrity is not
needed it is useless to utilize integrity-related Base measures. Hence, the knowledge from the ISMO
reveals which probes to use. Consequently, it is vital that the ISMO contains the connections depicted
in Figure 6 because that information shows what attribute each probe is able to measure.

Figure 6. Knowledge from the Information Security Measuring Ontology (ISMO) for the
Monitoring phase.

3.2.2. Analyze

The Analyze phase reveals the current security levels for the required security objectives and
decides which levels are sufficient for the current situation. Hence, the Analyze phase combines the
Base measure results from the Monitoring phase to Indicators. The Indicator presents the security level
of the security objective in that particular smart space situation. In other words, Base measures indicate
that some changes have occurred in the smart space, whereas, the Analyze phase reveals the
consequences of these changes, i.e., it builds a meaning for the information in that situation.

The ISMO contains Derived measures and Indicators, which combine the Base measure results.
Base measures, Derived measures and Indicators are sub-classes of the Measure concept, depicted in
Figure 4. The ISMO follows a terminology defined in [26], and thus, Derived measures use the
Measurement function and Indicators use Analysis models to perform the combining process. The
Measurement function can be a simple mathematical operation, e.g., base_measure_1 +
base_measure_2. In contrast, Analysis models contain more complex structures including conditional
clauses and Boolean operations. For instance, the result from the Analysis model can be the integrity
level of communication.

Figure 7 shows concepts for the Analyze phase from the ISMO. Each indicator has Analysis
models, which use Base measures, Derived measures and Indicators. Every Security objective has its

VII/14 VII/15

Computers 2013, 2

48

The final step in the Analyze phase is to compare the Indicator results to the required security
objectives and levels. If some indicators show that the required security level is not achieved, the
Planning phase will be triggered.

Figure 8. An example of context information to define security objectives and levels.

As a whole, the Analyze phase requires a lot of knowledge, which is available from the ontologies.
Based on the knowledge, the SSA builds an individual view point of the environment and achieved
security. In order to produce the correct results, knowledge maintenance is important. Analysis models
and the rule sets for the definition of requirements can be added and updated without modifying the
application logic. The utilization of ontologies makes this flexibility possible, i.e., the knowledge is not
hard coded inside the application.

3.2.3. Plan

The Plan phase decides how to adapt the SSA when the required securities are not achieved. The
Plan phase uses the results from the Analyze phase as input information, i.e., (i) the unfulfilled security
objective. (ii) The current and required security level. (iii) The used security mechanism. Furthermore,
ontologies offer knowledge to make an adaptation plan. In some situations, only certain security
mechanisms are supported, and thus, the Plan phase has to take these restrictions into account.

We have recognized three alternative ways to create the adaptation plan:
(1) The SSA utilizes pre-defined configuration alternatives.
(2) The SSA searches alternative security mechanisms or individual attributes to adapt, based on

knowledge from the ISMO.
(3) The SSA asks the user how to proceed.

The first one is the simplest case. At design-time, the architect implements configuration
alternatives inside the SSA. Thus, the Plan phase selects one of these pre-defined configurations at
runtime. Naturally, dynamism is restricted in this alternative. However, this is enough for simple

Computers 2013, 2

47

own Indicator—e.g., authentication is a security objective, which has an Indicator called the
authentication level. However, the Indicator is able to use several Analysis models, depending on the
situation in hand. For example, a different Analysis model has to be used when authentication is based
on fingerprints, passwords or a multi-factor authentication mechanism. In the multi-factor
authentication case, the Analysis model, which combines analysis models from a single mechanism, is
applied. Therefore, each Analysis model has a property that binds it to the security mechanism—from
the above example, multi-factor authentication is seen as an individual security mechanism. Similarly
as the Base measures, Indicators are also defined for Attributes. At design-time, the architect brings the
Analyzer component into the SSA and the Analyzer component searches knowledge from the Analysis
models to calculate security-level indicators for the SSA at runtime.

Figure 7. The concepts from the ISMO for the Analyze phase.

The security level indicators are compared to the required security levels. As depicted in Figure 4,

the context information sets the required security objectives and levels. In [40], we defined the context
concepts, which affect the required security as follows: (i) The user’s role in the smart space. (ii) The
actions performed in the smart space. (iii) The role and importance of the data. (iv) The role of the
smart space. Furthermore, user preferences are able to affect the required security level.

Figure 8 shows the context information rules that define the required authentication level for
different situations. However, the rule sets are an example—not the extensive rule sets to define
authentication requirements. In these rules, the role of the smart space, i.e., Private, Public or Office,
constitutes the main categorization between the rule sets. In the private smart space, e.g., home smart
space, the role of the data and its importance define how strong authentication has to be used. Thus, in
a situation where the user consumes entertainment data—like news—authentication level 1 is
sufficient. However, in a situation where the high importance level control information is handled, e.g.,
a home alarm system, authentication level 4 is required. In contrast, in public smart spaces, like freely
available smart city services, authentication is not required at all. Finally, in an office smart space the
user’s action is also taken into account in the rules. Similar context-based rule sets can be defined for
other security objectives, i.e., confidentiality, integrity, availability, etc. Based on these rules, the SSA
is aware of the required security objectives and levels in different situations.

VII/15

Computers 2013, 2

48

The final step in the Analyze phase is to compare the Indicator results to the required security
objectives and levels. If some indicators show that the required security level is not achieved, the
Planning phase will be triggered.

Figure 8. An example of context information to define security objectives and levels.

As a whole, the Analyze phase requires a lot of knowledge, which is available from the ontologies.
Based on the knowledge, the SSA builds an individual view point of the environment and achieved
security. In order to produce the correct results, knowledge maintenance is important. Analysis models
and the rule sets for the definition of requirements can be added and updated without modifying the
application logic. The utilization of ontologies makes this flexibility possible, i.e., the knowledge is not
hard coded inside the application.

3.2.3. Plan

The Plan phase decides how to adapt the SSA when the required securities are not achieved. The
Plan phase uses the results from the Analyze phase as input information, i.e., (i) the unfulfilled security
objective. (ii) The current and required security level. (iii) The used security mechanism. Furthermore,
ontologies offer knowledge to make an adaptation plan. In some situations, only certain security
mechanisms are supported, and thus, the Plan phase has to take these restrictions into account.

We have recognized three alternative ways to create the adaptation plan:
(1) The SSA utilizes pre-defined configuration alternatives.
(2) The SSA searches alternative security mechanisms or individual attributes to adapt, based on

knowledge from the ISMO.
(3) The SSA asks the user how to proceed.

The first one is the simplest case. At design-time, the architect implements configuration
alternatives inside the SSA. Thus, the Plan phase selects one of these pre-defined configurations at
runtime. Naturally, dynamism is restricted in this alternative. However, this is enough for simple

VII/16 VII/17

Computers 2013, 2

50

Attribute. Figure 10 shows a runtime situation, where the Planner component calls the Executor and
offers the adaptation plan. Based on the adaptation plan the Executor signals an implementation
component.

Figure 9. Planning using an Analysis Model.

Figure 10. Execute phase.

The execution can affect different layers in a device where the SSA is running. Moreover, the

execution can indirectly affect the whole smart space infrastructure. For example, when the SSA
adapts a communication protocol the application has to establish a new connection to the smart space
infrastructure by using new parameters or a new mechanism. The execute phase can, for example,
control how information can be shared by defining security policies according to the Security Control
Model described in the next section.

3.3. Runtime Security Control Model

Security knowledge in the conceptual interoperability level provides a means to present security
policies, which control the behavior of smart space devices and applications. However, analyzing and
planning access-control decisions at runtime, when information is queried and modified, can be

Computers 2013, 2

49

devices and applications. As an example, for a situation where the required level of communication
confidentiality is not achieved, the pre-defined configuration can be “Start to use the TLS connection”.

The second planning alternative changes the security mechanism or adapts individual attributes.
When changing the whole security mechanism, the Planner component searches alternative
mechanisms from the ISMO. In the ISMO, each security mechanism contains a link to the supported
security objectives. For the required security objective, the ISMO can contain several security
mechanisms. However, it is probable that only few of those are applicable in the current situation.
For instance, the user’s device supports fingerprint authentication but the smart space infrastructure
does not offer this possibility. Hence, the adaptation plan has to take into account these restrictions
from the context information. Alternatively, the Planner component can adapt individual attributes. To
achieve this, the SSA searches the causes for the current security level by means of the same Analysis
model, which showed that the adaptation was needed. In other words, the Analysis model is used to
search Attributes, which have affected the current security level. Therefore, the SSA knows which
attribute to adapt in order to affect the security level. Figure 9 illustrates this alternative—colored
rectangles refer to the concepts presented in Figure 4. The Analysis model uses Base measures to
observe Attributes. If the Attribute can be adapted its adaptableWith property shows an action for how
to adapt the Attribute. The smart space may contain attributes that affect the achieved security level but
all of these cannot be adapted. For instance, if the smart space contains an external threat that cannot
be removed other attributes have to be adapted to mitigate threat effects. Finally, the Planner
component decides on the adapted Attribute and the Action to be performed. To make this decision the
Planner component may utilize goal, constraint or utility function based decision-making. At the
moment, our approach is clearly goal orientated, i.e., the context sets the required security objectives
and levels (goals) and the purpose of the planning is to find a configuration that satisfies the goal.
However, the decision-making algorithm is out of the scope of this paper but the architecture does not
restrict decision-making algorithms utilized internally in the Planner component. When the Planner has
to take trade-offs into account more sophisticated decision making will be needed, for instance for
utility functions.

The third case is for a situation where the SSA is not able to create an enforceable adaptation plan.
The following reasons can lead to this alternative: (i) The required knowledge is not defined in the
ontologies. (ii) Knowledge is available but creating an adaptation plan would consume too many
resources. Therefore, the only way to proceed is to give a warning message to the user and ask for
instructions on how to continue.

From these alternatives, the second one is the most dynamic and autonomous without hard-coded
adaptation plans. Hence, it is the preferred alternative.

3.2.4. Execute

The final step in the adaptation is the Execute phase, where the created adaptation plan is executed.
In other words, it is the straightforward realization of the adaptation plan. At design-time, the software
architect has to design variation points inside the SSA. The variation point ensures that it is possible to
adapt security mechanisms and attributes at runtime. Figure 9 contains the Action to adapt concept.
From the Execute phase point of of view the action is a component, which modifies the related

VII/17

Computers 2013, 2

50

Attribute. Figure 10 shows a runtime situation, where the Planner component calls the Executor and
offers the adaptation plan. Based on the adaptation plan the Executor signals an implementation
component.

Figure 9. Planning using an Analysis Model.

Figure 10. Execute phase.

The execution can affect different layers in a device where the SSA is running. Moreover, the

execution can indirectly affect the whole smart space infrastructure. For example, when the SSA
adapts a communication protocol the application has to establish a new connection to the smart space
infrastructure by using new parameters or a new mechanism. The execute phase can, for example,
control how information can be shared by defining security policies according to the Security Control
Model described in the next section.

3.3. Runtime Security Control Model

Security knowledge in the conceptual interoperability level provides a means to present security
policies, which control the behavior of smart space devices and applications. However, analyzing and
planning access-control decisions at runtime, when information is queried and modified, can be

VII/18 VII/19

Computers 2013, 2

52

refers to any resource that the security adaptation component selects based on the ontologies and
policy information from the conceptual level.

When the SSA queries or modifies information, only some contexts and measurements are active.
The access control component uses resources, which are active for the application in the current
situation. Active resources are found through the control context concept, which can be realized as a
resource. Security adaptation components define which measurement and context resources are active
with triplets: “ControlContext, ‘hasActive’, Context/Measurement”. Determination of what resources
are active is a dynamic and constantly running process, which may involve different
security-adaptation applications. ControlContext resources are fixed in the sense that the access control
and security adaption components must know them. For instance, each SSA that is connected to a SIB
and has an open communication socket may have a dedicated ControlContext resource. In this case,
the active resources could be URIs representing the end-user’s identity or security level. These URIs
can be resolved and activated by the security adaptation component in the Monitor and Analyze
phases, when the user authenticates.

3.3.1. Authorization Predicates

An important use case for the security-control model is authorization over resource access. Policy
predicates enabling authorization are defined in Table 1. The granularity of the security-control model
protects individual resources and also semantic relationships because of control over access to the
resource properties. The security-control model supports the use of allow and disallow policies.
Different policies can be used in conjunction to the set conditions of the authorizations (e.g., a user can
access information but only if a contextual requirement is met). To prevent contradictory behavior due
to the simultaneous use of allow and disallow policies, the proposed approach is that ‘disable’ policies
override “allow” policies.

The security control model enables efficient runtime access control. An access-control component
does not need to do heavy reasoning at the time applications are querying or modifying information,
instead, security adaptation Analysis and Planning phases can be done in advance when
adaptation-triggering events occur. The access control component needs to locate the relevant security
relationships, presented with triples, between context or measurement resources and a target sources.
When an SSA queries or modifies information, the access control component checks whether there are
active policies allowing or denying the action.

When the amount of active and authorizing context and measurement resources is n, the access
control component must do at most 2*n truth queries (“is there an allow or deny relationship between
the active resource and the accessed resource?”) to resolve the authorization of a transaction on a
target. The access control component must also find active resources for each used control context
resource. Implementations may further speed this up by keeping the list of control context specific
active resources in the cached memory.

Computers 2013, 2

51

computationally costly. In smart spaces the information is shared using SIBs, which are unaware of
applications’ conceptual policies and hence unable to enforce these policies. SIBs can be assumed to
be aware only of a minimal set of standard security primitives, which are associated to information
elements instead of the meaning of this information. In addition, as smart space devices may have
limited computing capabilities, solutions based on cryptography are often unfeasible. Therefore,
efficient solutions are needed to protect information sharing and to control information access in a
fine-grained manner at the level of semantic data.

This subsection generalizes and formalizes our previously presented RDF access control approach [51]
into a conceptual security control model. The control model has been verified with RDF but it can be
applied to any information presentation system, which is based on subject-predicate-object triples. It
specifies how access-control policies and security control information over resources are structured
and presented. Runtime costs are minimized by requiring that each policy is presented with a single
information triple. The security control model is based on context and security measurement concepts,
which are used to authorize actions. Hence, the model can be applied efficiently and flexibly in various
dynamic security-control situations.

Figure 11 depicts the security relationships in the security control model. The model has a
relationship with three software components, presented in the top-right corner of the figure. Smart
space applications insert, query, modify or subscribe to information resources. The access control
component authorizes and controls these operations. Application specific security adaptation
components administer the behavior of the access-control component. This administering is done by
controlling the relationships between resources as specified by the security control model.

Figure 11. Runtime security-control model for smart spaces.

Each piece of information, i.e., each information resource, can have a relationship with one or

several context and security measurement resources. Each relationship presents one access control
statement and is described using triplets in the form: “Information, SecurityPredicate,
Context/Measurement”. Security predicates are properties that define authorizing or accounting
relationships for the security control. Predicates, which are to be used when authorizing transactions,
are presented in Table 2. Predicates for accounting can be found in Table 2. Context/measurement

VII/19

Computers 2013, 2

52

refers to any resource that the security adaptation component selects based on the ontologies and
policy information from the conceptual level.

When the SSA queries or modifies information, only some contexts and measurements are active.
The access control component uses resources, which are active for the application in the current
situation. Active resources are found through the control context concept, which can be realized as a
resource. Security adaptation components define which measurement and context resources are active
with triplets: “ControlContext, ‘hasActive’, Context/Measurement”. Determination of what resources
are active is a dynamic and constantly running process, which may involve different
security-adaptation applications. ControlContext resources are fixed in the sense that the access control
and security adaption components must know them. For instance, each SSA that is connected to a SIB
and has an open communication socket may have a dedicated ControlContext resource. In this case,
the active resources could be URIs representing the end-user’s identity or security level. These URIs
can be resolved and activated by the security adaptation component in the Monitor and Analyze
phases, when the user authenticates.

3.3.1. Authorization Predicates

An important use case for the security-control model is authorization over resource access. Policy
predicates enabling authorization are defined in Table 1. The granularity of the security-control model
protects individual resources and also semantic relationships because of control over access to the
resource properties. The security-control model supports the use of allow and disallow policies.
Different policies can be used in conjunction to the set conditions of the authorizations (e.g., a user can
access information but only if a contextual requirement is met). To prevent contradictory behavior due
to the simultaneous use of allow and disallow policies, the proposed approach is that ‘disable’ policies
override “allow” policies.

The security control model enables efficient runtime access control. An access-control component
does not need to do heavy reasoning at the time applications are querying or modifying information,
instead, security adaptation Analysis and Planning phases can be done in advance when
adaptation-triggering events occur. The access control component needs to locate the relevant security
relationships, presented with triples, between context or measurement resources and a target sources.
When an SSA queries or modifies information, the access control component checks whether there are
active policies allowing or denying the action.

When the amount of active and authorizing context and measurement resources is n, the access
control component must do at most 2*n truth queries (“is there an allow or deny relationship between
the active resource and the accessed resource?”) to resolve the authorization of a transaction on a
target. The access control component must also find active resources for each used control context
resource. Implementations may further speed this up by keeping the list of control context specific
active resources in the cached memory.

VII/20 VII/21

Computers 2013, 2

54

information is needed, e.g., when trying to detect malicious or harmful modifications and intrusions
and when reasoning which nodes may have been potentially compromised due to harmful information.
The table also lists IsSignedWith and HasSecurityContext predicates, which users can use to verify the
authenticity and trustworthiness of information. Trustworthiness may depend on context or
measurement, which were active when the information was stored.

4. Implementation of Adaptive Security

4.1. Case Description

The validation was based on a use case from the smart space pilot—called Seamless Usage of
Multiple Smart Spaces (SUM-SS) [55]. The SUM-SS pilot combines four smart spaces, i.e., smart
personal space, smart home, smart office and smart city. An end user facilitates information from these
smart spaces via his/her mobile phone, which constitutes his/her personal smart space. In the personal
smart space, the user is able to store information from other smart spaces, like calendar information
and documents from the office space. The home smart space offers capabilities to monitor energy
consumption; control light and wall sockets and control home automation via the Lon network etc. The
smart city offers public information and facilitates everyday life in an urban environment—for
instance, by offering information on parking areas and traffic jams. Furthermore, mobile devices and
televisions are able to consume entertainment content from a cloud, which is supported by the
Cam4Home platform [56]. Consequently, the SUM-SS pilot opens up possibilities to select a smart
space use case for the validation purposes. Hence, the use case selected for the validation purposes
concentrates on illustrating the following issues:

1. The SSA running in an end user’s mobile phone utilizes the adaptation loop to ensure an
appropriate authentication level in different situations.

2. Security- and context-related knowledge is retrieved from ontologies.
3. RIBS controls access over shared information by using the security control model.

Use case description: The homeowner leaves the home in the morning, by car. During the drive
she wants to check that the front door of her house is locked properly. The owner is able to check a
lock status via her mobile phone without any additional authentication.

During the working day, a maintenance man arrives on the front door of the house and rings a
doorbell. The doorbell sound is played in the owner’s mobile phone and a video stream from the front
door of the house is delivered. Hence, when she recognizes the maintenance man at the door, she is
able to open the door remotely. However, her current authentication level is not strong enough for the
remote door opening, and thus, re-authentication is requested.

After a while, the maintenance man is ready and leaves the house. The owner is informed and she
locks the front door again. Now the time has passed and the authentication level is dropped.
Nevertheless, re-authentication is not needed because the door can be locked with a lower
authentication level.

The home owner arrives home and opens the front door locally by utilizing the NFC (Near Field
Communication) feature of her mobile phone. The mobile phone authenticates the user and then the
mobile is authenticated through NFC. Inside the house, the owner adjusts the lighting—and the earlier

Computers 2013, 2

53

Table 1. Authorisation policy predicates.

Predicate Description

GetAllowedFor Authorizes reading a URI or literal value

SetAllowedFor Authorizes modifying a URI or literal value

PropertyCreationAllowedFor Authorizes adding a new URI or literal node under the URI node

PropertyRemovalAllowedFor Authorizes the removal of a URI or literal node from the URI
node

UseAsPropertyAllowedFor Authorizes use of this node under other URI nodes

GetDisabledFor Prevents reading a URI or literal value

SetDisabledFor Prevents modifying a URI or literal value

PropertyCreationDisabledFor Prevents adding a new URI or literal node under the URI node

PropertyRemovalDisabledFor Prevents the removal of a URI or literal node from the URI node

UseAsPropertyDisabledFor Prevents the use of this node under other URI nodes

IsAuthorisedBy Sets a node under access control and specifies authority. There
may be several authorities in one broker.

Table 2. Predicates for access control accounting.

Predicate Description

HasBeenAuthoredBy Identifies a resource’s author

HasAddedPredicate Identifies authors who have added predicates under the resource

IsSignedWith Link to a signature proving authenticity and the origin of the resource

HasSecurityContext Link to any security measurement or context resource which was active
when the data was stored (needed to verify e.g. trustworthiness of data)

IsAuthorisedBy Specifies the authority that controls security. If such relationship to a
known security authority is missing, access can be directly authorized
without any other checks.

CanBeMonitored Allows or disallows logging (e.g. due to performance or privacy)

HasBeenReadBy Identifies contexts (users) where data has been successfully queried

HadInvalidReadAttemptBy Identifies contexts (users) with rejected read requests

HadInvalidWriteAttemptBy Identifies contexts (users) who have made rejected write requests

3.3.2. Accounting Predicates

In addition to authorization, the security control model supports other real-time security control
situations. Table 2 presents predicate definitions for access accounting activities, which are needed to
determine the authenticity or trustworthiness of information. The table defines the relationships for
accounting predicates, which are used to log access requests, both successful and unsuccessful. This

VII/21

Computers 2013, 2

54

information is needed, e.g., when trying to detect malicious or harmful modifications and intrusions
and when reasoning which nodes may have been potentially compromised due to harmful information.
The table also lists IsSignedWith and HasSecurityContext predicates, which users can use to verify the
authenticity and trustworthiness of information. Trustworthiness may depend on context or
measurement, which were active when the information was stored.

4. Implementation of Adaptive Security

4.1. Case Description

The validation was based on a use case from the smart space pilot—called Seamless Usage of
Multiple Smart Spaces (SUM-SS) [55]. The SUM-SS pilot combines four smart spaces, i.e., smart
personal space, smart home, smart office and smart city. An end user facilitates information from these
smart spaces via his/her mobile phone, which constitutes his/her personal smart space. In the personal
smart space, the user is able to store information from other smart spaces, like calendar information
and documents from the office space. The home smart space offers capabilities to monitor energy
consumption; control light and wall sockets and control home automation via the Lon network etc. The
smart city offers public information and facilitates everyday life in an urban environment—for
instance, by offering information on parking areas and traffic jams. Furthermore, mobile devices and
televisions are able to consume entertainment content from a cloud, which is supported by the
Cam4Home platform [56]. Consequently, the SUM-SS pilot opens up possibilities to select a smart
space use case for the validation purposes. Hence, the use case selected for the validation purposes
concentrates on illustrating the following issues:

1. The SSA running in an end user’s mobile phone utilizes the adaptation loop to ensure an
appropriate authentication level in different situations.

2. Security- and context-related knowledge is retrieved from ontologies.
3. RIBS controls access over shared information by using the security control model.

Use case description: The homeowner leaves the home in the morning, by car. During the drive
she wants to check that the front door of her house is locked properly. The owner is able to check a
lock status via her mobile phone without any additional authentication.

During the working day, a maintenance man arrives on the front door of the house and rings a
doorbell. The doorbell sound is played in the owner’s mobile phone and a video stream from the front
door of the house is delivered. Hence, when she recognizes the maintenance man at the door, she is
able to open the door remotely. However, her current authentication level is not strong enough for the
remote door opening, and thus, re-authentication is requested.

After a while, the maintenance man is ready and leaves the house. The owner is informed and she
locks the front door again. Now the time has passed and the authentication level is dropped.
Nevertheless, re-authentication is not needed because the door can be locked with a lower
authentication level.

The home owner arrives home and opens the front door locally by utilizing the NFC (Near Field
Communication) feature of her mobile phone. The mobile phone authenticates the user and then the
mobile is authenticated through NFC. Inside the house, the owner adjusts the lighting—and the earlier

VII/22 VII/23

Computers 2013, 2

56

the ISMO. Analysis models are described by a natural language, which combines English and Boolean
algebra. We made this decision in our previous work [38] in order to facilitate the preparation of
Analysis models. Thus, Analysis models can be modified and added without experience of ontology
query languages. The Analysis model utilized in this case is presented in Figure 13. The analysis
model uses four base measures—either directly or via the Password type indicator—as depicted in the
figure. Moreover, the figure presents Monitoring probes, which implement measurement methods for
base measures.

Figure 13. Analysis model used in the use case.

The above-presented Analysis model produces the achieved authentication level. Moreover, the

Analyze component analyzes the current situation in order to decide the required authentication level.
For this purpose, rules presented in Figure 8 are utilized.

Table 3 summarizes user actions, situations and the achieved and required authentication levels. The
achieved authentication level means the level before adaptation. Hence, Actions 1, 3 and 5 do not
require adaptation because the achieved level is higher than the required level. Other actions require
adaptation and the Planner component is called.

The Plan component selects how the adaptation is performed. In this case, the Planner component
searches the causes of the current security level from the analysis model (c.f., Figure 9). Figure 14 lists
the attributes of password authentication. In the ISMO base measures from Figure 13 are connected to
these attributes by means of a definedFor property. Now there are two possible ways to adapt. Firstly,
the re-authentication of the user affects the session duration attribute. Secondly, calling the change
password function affects password usage time—and depending on a new password—the length and
number of special characters attributes. Based on this knowledge, the Planner component selects an
appropriate action to adapt. Table 3 listed user actions. Action numbers 2 and 4 are handled with
re-authenticate adaptation. The user action number 6 leads to the change-password adaptation action
because the one-month usage time, i.e., 720 h, boundary has been exceeded.

Computers 2013, 2

55

achieved authentication level is enough for these actions. After a while, the owner wants to turn down
the heating system in the house. However, controlling the home automation system is a critical action
and too much time has passed from the last authentication. Thus, authentication with a stronger
authentication level is required.

4.2. Case Implementation

Figure 12 shows the deployment of the use case from the security adaptation viewpoint. The use
case implements user authentication in an adaptive manner by using password-based authentication.
Our previous demonstration utilized a gait-based authentication [57]. The construction contains six
nodes, i.e., homeowner’s mobile device, RIBS, smart door, lighting, Lon server and the maintenance
man’s mobile device. The main actions in the use case are performed with the homeowner’s mobile
device Nokia C7. Hence, it contains application logic agents to retrieve and insert information into the
RIBS. These agents are implemented with Qt C++. In this case, the adaptation will be performed from
the homeowner’s viewpoint, and thus, adaptation-related components are located in her device. The
smart door node contains lock, camera and doorbell agents, which offer related functionalities.
Similarly, the lighting node and the Lon server node contain agents to utilize those devices. The RIBS
is executed inside a WLAN access point—in order to offer a good connectivity. The RIBS supports the
Transport Layer Security (TLS) protocol [58] to secure communication between agents and the RIBS.
The last node is the maintenance man’s mobile device that contains a visitor agent. The visitor agent
makes it possible to ring the doorbell that is available publicly from the home smart space.

Figure 12. The deployment of the use case.

Monitoring probes are components that implement measurement methods for base measures

(c.f., Figure 6). For password-based authentication the use case utilizes the following base measures:
(1) Password length. (2) The number of special characters in the password. (3) Password usage time.
(4) Session duration. The change of these base measures is informed to the Analyze component.
Naturally, Base measures 1 and 2 change when the password is changed. In contrast, Base measures 3
and 4 change constantly, and thus, the changed values are informed to the Analyze component at a
certain intervals.

The Analyze component combines the monitoring results to authentication level indicator by means
of the Analysis model (c.f., Figure 7). The Analyzer component retrieves the right analysis model from

VII/23

Computers 2013, 2

56

the ISMO. Analysis models are described by a natural language, which combines English and Boolean
algebra. We made this decision in our previous work [38] in order to facilitate the preparation of
Analysis models. Thus, Analysis models can be modified and added without experience of ontology
query languages. The Analysis model utilized in this case is presented in Figure 13. The analysis
model uses four base measures—either directly or via the Password type indicator—as depicted in the
figure. Moreover, the figure presents Monitoring probes, which implement measurement methods for
base measures.

Figure 13. Analysis model used in the use case.

The above-presented Analysis model produces the achieved authentication level. Moreover, the

Analyze component analyzes the current situation in order to decide the required authentication level.
For this purpose, rules presented in Figure 8 are utilized.

Table 3 summarizes user actions, situations and the achieved and required authentication levels. The
achieved authentication level means the level before adaptation. Hence, Actions 1, 3 and 5 do not
require adaptation because the achieved level is higher than the required level. Other actions require
adaptation and the Planner component is called.

The Plan component selects how the adaptation is performed. In this case, the Planner component
searches the causes of the current security level from the analysis model (c.f., Figure 9). Figure 14 lists
the attributes of password authentication. In the ISMO base measures from Figure 13 are connected to
these attributes by means of a definedFor property. Now there are two possible ways to adapt. Firstly,
the re-authentication of the user affects the session duration attribute. Secondly, calling the change
password function affects password usage time—and depending on a new password—the length and
number of special characters attributes. Based on this knowledge, the Planner component selects an
appropriate action to adapt. Table 3 listed user actions. Action numbers 2 and 4 are handled with
re-authenticate adaptation. The user action number 6 leads to the change-password adaptation action
because the one-month usage time, i.e., 720 h, boundary has been exceeded.

VII/24 VII/25

Computers 2013, 2

58

Figure 15. ISMO in Protégé.

The RIBS is responsible for enforcing access control over brokered information. It enforces that

only authenticated and authorized users can insert and modify information. The authorization checks
follow the runtime security-control model, as illustrated in Figure 16. The agents in the homeowner’s
terminal are responsible for administering the authorization policies, which are stored in the RIBS for
each RDF resource. When a user is authenticated, appropriate context and measurement resources are
activated. In the use case, the maintenance man is mapped to a visitor context and the homeowner is
mapped to a resource, which represents owner’s identity. Further, all users are mapped to security
measurement resources, which describe the authentication level. When users query or modify
information, the SIB checks whether these active RDF resources authorize access to the requested
resources. All authenticated users are given access to non-critical information inside the home e.g., the
lighting. The homeowner has access to every piece of information. However, access to the most
critical information requires that the owner have a sufficient authentication level.

The RIBS has been optimized to provide fast and low-power consuming information access.
The implementation indexes all incoming RDF data, and thus, enables RDF URIs as well as literals to
be directly addressed. Relationship information is stored to a three-dimensional (subject-predicate-
object) array, i.e., to a bit cube. As security policies are presented with a single bit, which is either on
or off, they can be quickly checked and the amount of required memory will not increase even when
the security configuration becomes more complex.

4.3. Lessons Learned

Implementing and performing these use cases showed several advantages from the presented
approach. Firstly, all knowledge is retrieved from ontologies. Thus, content from the analysis model
(c.f., Figure 13) and rules for setting the required authentication levels (c.f., Figure 8) do not need to be
coded into the SSA. Hence, knowledge can be modified and extended without coding work. Secondly,
adaptive user authentication enhanced usability. However, as the authentication level decreased the
user was able to perform Action 3 (see Table 3). In contrast, using a static authentication requires that

Computers 2013, 2

57

Table 3. Achieved and required authentication levels in different situations.
Action Situation and

Input Information for the Analysis Model
Achieved
Auth. Level

Required
Auth. Level

1. Check the lock
status

Check the lock status
Normal password selected 708 h ago.
Session duration: 2 h

2 0

2. Open the front door Remote opening
Normal password selected 710 h ago.
Session duration: 4 h

2 3

3. Lock the front door Remote locking
Normal password selected 712 h ago.
Session duration: 2 h

2 1

4. Open the front door Local opening
Normal password selected 719 h ago.
Session duration: 7 h

0 3

5. Modify lighting Local modification
Normal password selected 719 h ago.
Session duration: 0.02 h

3 1

6. Modify home
automation

Local modification
Normal password selected 721 h ago.
Session duration: 2 h

1 2

Figure 14. Actions to adapt different parameters.

Lastly, the Execute component performs the created adaptation plan. Both adaptation actions also

have an effect outside of the homeowner’s device: It requires re-authentication into the RIBS or calling
the password-change function from the RIBS. However, in both cases the initiative for these actions is
made in the Execute component inside the homeowner’s device.

Figure 15 shows the screenshot of the ISMO in the Protégé ontology tool. The screenshot contains
concepts instantiated for the use case purposes. The ISMO is also available in web: https://sofia-
community.com/projects/sontologies/—needs registration. The page contains ISMO and links to
imported ontologies.

https://sofia-community.com/projects/sontologies/%E2%80%94needs
https://sofia-community.com/projects/sontologies/%E2%80%94needs
https://sofia-community.com/projects/sontologies/%E2%80%94needs

VII/25

Computers 2013, 2

58

Figure 15. ISMO in Protégé.

The RIBS is responsible for enforcing access control over brokered information. It enforces that

only authenticated and authorized users can insert and modify information. The authorization checks
follow the runtime security-control model, as illustrated in Figure 16. The agents in the homeowner’s
terminal are responsible for administering the authorization policies, which are stored in the RIBS for
each RDF resource. When a user is authenticated, appropriate context and measurement resources are
activated. In the use case, the maintenance man is mapped to a visitor context and the homeowner is
mapped to a resource, which represents owner’s identity. Further, all users are mapped to security
measurement resources, which describe the authentication level. When users query or modify
information, the SIB checks whether these active RDF resources authorize access to the requested
resources. All authenticated users are given access to non-critical information inside the home e.g., the
lighting. The homeowner has access to every piece of information. However, access to the most
critical information requires that the owner have a sufficient authentication level.

The RIBS has been optimized to provide fast and low-power consuming information access.
The implementation indexes all incoming RDF data, and thus, enables RDF URIs as well as literals to
be directly addressed. Relationship information is stored to a three-dimensional (subject-predicate-
object) array, i.e., to a bit cube. As security policies are presented with a single bit, which is either on
or off, they can be quickly checked and the amount of required memory will not increase even when
the security configuration becomes more complex.

4.3. Lessons Learned

Implementing and performing these use cases showed several advantages from the presented
approach. Firstly, all knowledge is retrieved from ontologies. Thus, content from the analysis model
(c.f., Figure 13) and rules for setting the required authentication levels (c.f., Figure 8) do not need to be
coded into the SSA. Hence, knowledge can be modified and extended without coding work. Secondly,
adaptive user authentication enhanced usability. However, as the authentication level decreased the
user was able to perform Action 3 (see Table 3). In contrast, using a static authentication requires that

VII/26 VII/27

Computers 2013, 2

60

objectives can be implemented in an adaptive manner. Similarly, the adaptation approach is
independent on the used security mechanism.

Secondly, the adaptation approach is based on knowledge from ontologies, which cover the
knowledge part of the MAPE-K model. This separation of concerns, i.e., separation of generic
knowledge from application logic, improves reusability. The knowledge can be updated and extended
easily and quickly without modifying the SSA. Moreover, the ontologies ensure that there is a uniform
way to present security terminology.

Thirdly, the commonly known MAPE model ensures that the required components are clearly
defined, i.e., Monitoring, Analyzing, Planning and Executing. Clearly defined components support
reusability, which facilitates the architects’ work. The Monitoring utilizes security measures and the
Analysis utilizes extendable analysis models. In each phase the required knowledge is retrieved from
the ontologies.

Fourthly, smart spaces consist of devices and applications that can enter and leave the space at any
time. Various situations require dynamic access-control policies that are enforced automatically. The
security-control model provides an approach for enforcing the access control for different situations.
The model is expressive but still straightforward, and hence, more suitable for runtime enforcement
than the previous RDF level access-control proposals.

5.2. The Challenges of the Approach and Future Research

Firstly, the use cases showed that creating analysis models is a complex task. Therefore, a tool, or at
least guidelines, for the analysis model definition is needed in the future. The tool has to present the
possible variables and their value ranges. In addition, the tool has to check that contradicting analysis
models are not created.

Secondly, in the future mutual relationships between security objectives have to be taken into
account during the Analyze and Plan phases. The ISMO already contains basic connections between
security objectives, e.g., authorization demands identification. Therefore, analysis models have to
notice these dependencies when recognizing adaptation needs. Similarly, the Plan phase is able to
utilize this knowledge when searching applicable adaptation actions. For instance, the need to adapt
authorization causes the utilized identification scheme to change. Furthermore, trade-offs and
dependencies on other qualities like performance, reliability and usability are topics for
future research.

Thirdly, the performance cost of the approach is a natural question. However, end users were not
able to recognize decreased performance during the case study. It is clear that the performance
overhead can be noticed if a huge amount of base measures and complex analysis models are used.
Therefore, it is important to adjust the analysis models and the number of base measures for device
resources. The performance penalty caused by the RDF access control depends on the amount of
requested RDF resources. In a performance test case with the RIBS implementation, the average
request times were around one per cent longer when compared to a case where all requests were
authorized without any checks [51].

The last issue relates to the security of the adaptation approach. It is possible that an attacker may
try to modify some parts of the adaptation loop in order to attack the smart space. For instance,

Computers 2013, 2

59

all actions be set as equally critical, which in turn means that all actions require the highest
authentication level. Thirdly, from the implementation view point the presented adaptation loop clearly
defined the required components. In addition, knowledge—required in each component—was defined
explicitly. Therefore, the approach description can act as an implementation guideline. Finally, the
security-control model in the RIBS supported flexible access control. The access control information is
described in the RIBS as RDF information, and thus, separated access-control lists are not needed.

Figure 16. Examples of authorizing relations in the runtime security-control model.

However, improvement ideas are also recognized. The first consideration relates to the selected

security objective—in the use case user authentication was in the focal point. Supporting other security
objectives does not require changes to the adaptation approach and utilization of knowledge from the
ontologies. Nevertheless, the content of the ontologies has to be extended with new knowledge related
to security objectives. This knowledge does not need to be created from scratch but the existing
knowledge has to be described in a machine-readable form by means of the ontologies. The second
issue relates to the definition of the Analysis model. During the case implementation it was noticed
that defining the Analysis model is a complex and time-consuming task—although only three variables
were used. Thus, automation is needed in the future in order to define extensive analysis models.

5. Discussion

5.1. The Advantages of the Approach

Achieving security in smart spaces requires dynamic security solutions. The presented adaptation
approach for security ensures that the achieved security corresponds to each situation faced in the
smart space. Further, the introduced security-control model ensures the appropriate information access
in changing smart spaces. Thus, the introduced security-adaptation approach offers several advantages:

Firstly, the approach is generic—security objectives and mechanisms can be freely selected. Hence,
the approach is able to offer adaptation for one security objective, or alternatively, a set of security

VII/27

Computers 2013, 2

60

objectives can be implemented in an adaptive manner. Similarly, the adaptation approach is
independent on the used security mechanism.

Secondly, the adaptation approach is based on knowledge from ontologies, which cover the
knowledge part of the MAPE-K model. This separation of concerns, i.e., separation of generic
knowledge from application logic, improves reusability. The knowledge can be updated and extended
easily and quickly without modifying the SSA. Moreover, the ontologies ensure that there is a uniform
way to present security terminology.

Thirdly, the commonly known MAPE model ensures that the required components are clearly
defined, i.e., Monitoring, Analyzing, Planning and Executing. Clearly defined components support
reusability, which facilitates the architects’ work. The Monitoring utilizes security measures and the
Analysis utilizes extendable analysis models. In each phase the required knowledge is retrieved from
the ontologies.

Fourthly, smart spaces consist of devices and applications that can enter and leave the space at any
time. Various situations require dynamic access-control policies that are enforced automatically. The
security-control model provides an approach for enforcing the access control for different situations.
The model is expressive but still straightforward, and hence, more suitable for runtime enforcement
than the previous RDF level access-control proposals.

5.2. The Challenges of the Approach and Future Research

Firstly, the use cases showed that creating analysis models is a complex task. Therefore, a tool, or at
least guidelines, for the analysis model definition is needed in the future. The tool has to present the
possible variables and their value ranges. In addition, the tool has to check that contradicting analysis
models are not created.

Secondly, in the future mutual relationships between security objectives have to be taken into
account during the Analyze and Plan phases. The ISMO already contains basic connections between
security objectives, e.g., authorization demands identification. Therefore, analysis models have to
notice these dependencies when recognizing adaptation needs. Similarly, the Plan phase is able to
utilize this knowledge when searching applicable adaptation actions. For instance, the need to adapt
authorization causes the utilized identification scheme to change. Furthermore, trade-offs and
dependencies on other qualities like performance, reliability and usability are topics for
future research.

Thirdly, the performance cost of the approach is a natural question. However, end users were not
able to recognize decreased performance during the case study. It is clear that the performance
overhead can be noticed if a huge amount of base measures and complex analysis models are used.
Therefore, it is important to adjust the analysis models and the number of base measures for device
resources. The performance penalty caused by the RDF access control depends on the amount of
requested RDF resources. In a performance test case with the RIBS implementation, the average
request times were around one per cent longer when compared to a case where all requests were
authorized without any checks [51].

The last issue relates to the security of the adaptation approach. It is possible that an attacker may
try to modify some parts of the adaptation loop in order to attack the smart space. For instance,

VII/28 VII/29

Computers 2013, 2

62

use knowledge in machine-readable form. The ISMO provides security- and measuring-related
knowledge and CO4SS offers context knowledge. For access control, the security-control model was
presented, which utilizes context information and provides dynamic access control. Hence, the
security-control model provides a flexible and efficient mechanism to control information sharing in
smart spaces.

The presented approach was validated by means of a use case. The use case illustrated (i) all the
phases of the adaptation loop, (ii) how ontologies offer knowledge for adaptation at runtime, (iii) that
access control enforced the semantic information. The advantages of the presented approach are
evident. Firstly, the approach is independent of security objectives and mechanisms. Second, the
approach provides a reusable architecture to develop adaptive security applicable for different kinds of
smart spaces. Thirdly, the components for the security adaptation are clearly defined, which help in
adopting the approach. Finally, the utilization of ontologies ensures that knowledge can be updated and
extended easily.

In the future, new and wider analysis models are needed. Thus, a tool will be developed for defining
a wider set of analysis models for various security objectives.

Acknowledgments

This work has been carried out in the SOFIA ARTEMIS project (2009-2011) and SASER-Siegfried
Celtic-Plus project (2012-2015) funded by Tekes (the Finnish Funding Agency for Technology and
Innovation), VTT Technical Research Centre of Finland and the European Commission.

Conflict of Interests

The authors declare no conflict of interests.

References

1. Conti, M.; Das, S.K.; Bisdikian, C.; Kumar, M.; Ni, L.M.; Passarella, A.; Roussos, G.; Tröster, G.;
Tsudik, G.; Zambonelli, F. Looking ahead in pervasive computing: Challenges and opportunities
in the era of cyber–physical convergence. Pervasive Mob. Comput. 2012, 8, 2–21.

2. Elkhodary, A.; Whittle, J. A Survey of Approaches to Adaptive Application Security.
In Proceedings of the International Workshop on Software Engineering for Adaptive and Self-
Managing Systems, Minneapolis, USA, 20-26 May, 2007; pp. 16–23.

3. Yuan, E.; Malek, S. A taxonomy and survey of self-protecting software systems. In Proceedings
of the IEEE Software Engineering for Adaptive and Self-Managing Systems, Zürich, Switzerland,
4-5 June, 2012; pp. 109–118.

4. Cook, D.J.; Das, S.K. How smart are our environments? An updated look at the state of the art.
Pervasive Mob. Comput. 2007, 3, 53–73.

5. Ovaska, E.; Salmon Cinotti, T.; Toninelli, A. Design principles and practices of interoperable
smart spaces. In Advanced Design Approaches to Emerging Software Systems: Principles,
Methodologies, and Tools; Liu, X., Li, Y., Eds.; IGI Global, 2011; pp. 18–47.

Computers 2013, 2

61

manipulating the Monitoring or Analyzing parts might mean that a decreased security level is not
recognized. Or alternatively, the Plan phase may create an inappropriate adaptation plan, which is
advantageous for the attacker. Hence, it is extremely important to protect these components and ensure
the authenticity and integrity of knowledge.

5.3. The Maturity of the Approach

The approach was developed during a three-year research project. The development was performed
incrementally by utilizing different use cases and smart space set-ups. In previous cases, we have
experienced different adaptation ideas and worked on different phases of security adaptation. Table 4
summarizes the previous validation cases.

Table 4. Previous validation cases.

Validation Case Description

Risk-based security
adaptation in a
greenhouse [41,57].

A greenhouse with a shopping area constitutes a public smart space. In the
smart space threats increase the risk levels and security mechanisms decrease
risks. Hence, the monitoring concentrates on recognizing threats. In this case,
confidentiality and integrity were considered. Furthermore, users authenticated
by means of gait information identified from the measurements of acceleration
sensors inside the mobile phone.

Adaptive user
authentication [38].

The first case that utilized knowledge from the ISMO. It adapts user
authentication by monitoring authentication-related measures: password length,
age, variation of characters and session duration. Important information was
available only when an acceptable authentication level was reached. The user’s
re-authentication was requested when the session duration was exceeded.

Role- and popularity-
based access-control
simulations [51,59].

Controlling access to information according to the user’s role or popularity of
information. Popularity is a measure that indicates how many readers or how
many authors an RDF resource has. These adaptation cases were simulated
with the smodels logic solver.

Adding new
knowledge into the
ISMO [54].

The paper and related case example showed how easily knowledge in the
ISMO can be extended. Moreover, design steps to develop adaptive security
were presented.

6. Conclusions

In smart spaces, it is not possible to take all the security requirements into account at design-time.
Hence, this paper presented a self-adaptation approach for smart space security. The presented
approach contains an adaptation loop the Monitor, Analyze, Plan, and Execute model—in a clearly
defined form. The monitor phase utilizes monitoring probes to observe security-relevant attributes
from the smart space and smart space application. The monitored results are analyzed in order to reveal
if the required security is not achieved. The Plan phase creates an adaptation plan, which will be
enforced in the Execute phase. The adaptation approach requires a lot of knowledge, which is retrieved
from the ontologies. The utilization of ontologies ensures a flexible and extensible way to manage and

VII/29

Computers 2013, 2

62

use knowledge in machine-readable form. The ISMO provides security- and measuring-related
knowledge and CO4SS offers context knowledge. For access control, the security-control model was
presented, which utilizes context information and provides dynamic access control. Hence, the
security-control model provides a flexible and efficient mechanism to control information sharing in
smart spaces.

The presented approach was validated by means of a use case. The use case illustrated (i) all the
phases of the adaptation loop, (ii) how ontologies offer knowledge for adaptation at runtime, (iii) that
access control enforced the semantic information. The advantages of the presented approach are
evident. Firstly, the approach is independent of security objectives and mechanisms. Second, the
approach provides a reusable architecture to develop adaptive security applicable for different kinds of
smart spaces. Thirdly, the components for the security adaptation are clearly defined, which help in
adopting the approach. Finally, the utilization of ontologies ensures that knowledge can be updated and
extended easily.

In the future, new and wider analysis models are needed. Thus, a tool will be developed for defining
a wider set of analysis models for various security objectives.

Acknowledgments

This work has been carried out in the SOFIA ARTEMIS project (2009-2011) and SASER-Siegfried
Celtic-Plus project (2012-2015) funded by Tekes (the Finnish Funding Agency for Technology and
Innovation), VTT Technical Research Centre of Finland and the European Commission.

Conflict of Interests

The authors declare no conflict of interests.

References

1. Conti, M.; Das, S.K.; Bisdikian, C.; Kumar, M.; Ni, L.M.; Passarella, A.; Roussos, G.; Tröster, G.;
Tsudik, G.; Zambonelli, F. Looking ahead in pervasive computing: Challenges and opportunities
in the era of cyber–physical convergence. Pervasive Mob. Comput. 2012, 8, 2–21.

2. Elkhodary, A.; Whittle, J. A Survey of Approaches to Adaptive Application Security.
In Proceedings of the International Workshop on Software Engineering for Adaptive and Self-
Managing Systems, Minneapolis, USA, 20-26 May, 2007; pp. 16–23.

3. Yuan, E.; Malek, S. A taxonomy and survey of self-protecting software systems. In Proceedings
of the IEEE Software Engineering for Adaptive and Self-Managing Systems, Zürich, Switzerland,
4-5 June, 2012; pp. 109–118.

4. Cook, D.J.; Das, S.K. How smart are our environments? An updated look at the state of the art.
Pervasive Mob. Comput. 2007, 3, 53–73.

5. Ovaska, E.; Salmon Cinotti, T.; Toninelli, A. Design principles and practices of interoperable
smart spaces. In Advanced Design Approaches to Emerging Software Systems: Principles,
Methodologies, and Tools; Liu, X., Li, Y., Eds.; IGI Global, 2011; pp. 18–47.

VII/30 VII/31

Computers 2013, 2

64

22. Hulsebosch, R.; Bargh, M.; Lenzini, G.; Ebben, P.; Iacob, S. Context sensitive adaptive
authentication. In Smart Sensing and Context; Kortuem, G., Finney, J., Lea, R., Sundramoorthy,
V., Eds.; Springer: Berlin-Heidelberg, Germany, 2007; pp. 93–109.

23. Abie, H.; Savola, R.M.; Bigham, J.; Dattani, I.; Rotondi, D.; Da Bormida, G. Self-Healing
and Secure Adaptive Messaging Middleware for Business-Critical Systems. Int. J. Adv. Se.
2010, 3, 34–51.

24. Savola, R.; Abie, H. Development of measurable security for a distributed messaging system.
Int. J. Adv. Se. 2009, 2, 358–380.

25. Wang, C.; Wulf, W. A. Towards a Framework for Security Measurement. In Proceedings of
the 20th National Information Systems Security Conference, Baltimore, Maryland, USA, October
1997; pp. 522–533.

26. García, F.; Bertoa, M.F.; Calero, C.; Vallecillo, A.; Ruíz, F.; Piattini, M.; Genero, M. Towards a
consistent terminology for software measurement. Inf. Softw. Technol. 2006, 48, 631–644.

27. Haley, C.B.; Laney, R.; Moffett, J.D.; Nuseibeh, B. Security Requirements Engineering:
A Framework for Representation and Analysis. IEEE Trans. Softw. Eng. 2008, 34, 133–153.

28. Salehie, M.; Pasquale, L.; Omoronyia, I.; Ali, R.; Nuseibeh, B. Requirements-driven adaptive
security: Protecting variable assets at runtime. In Proceedings of the 20th International
Requirements Engineering Conference (RE), Chicago, USA, 24–28 September, IEEE, 2012; pp.
111–120.

29. ISO/IEC 15408-1:2009 Standard. Common Criteria for Information Technology Security
Evaluation – Part 1: Introduction and general model, International Organization of
Standardization, 2009.

30. Sahinoglu, M. Security meter: a practical decision-tree model to quantify risk. Security Privacy
2005, 3, 18–24.

31. Zhou, J. Knowledge Dichotomy and Semantic Knowledge Management. In Proceedings of the 1st
IFIP WG12.5 Working Conference on Industrial Applications of Semantic Web, Jyväskylä,
Finland, 25–27 August, Springer, USA, 2005; pp. 305–316.

32. Blanco, C.; Lasheras, J.; Valencia-García, R.; Fernández-Medina, E.; Toval, A.; Piattini, M.
A systematic review and comparison of security ontologies. In Proceedings of the 3rd
International Conference on Availability, Security, and Reliability, Barcelona, Spain, 4–7 March,
IEEE, 2008; pp. 813–820.

33. Evesti, A.; Ovaska, E.; Savola, R. From security modelling to run-time security monitoring.
In Proceedings of the European Workshop on Security in Model Driven Architecture, CTIT Centre
for Telematics and Information Technology, Enchede, Netherlands, 23–26 June, 2009;
pp. 33–41.

34. Kim, A.; Luo, J.; Kang, M. Security Ontology for annotating resources. In Proceedings of the On
the Move to Meaningful Internet Systems 2005: CoopIS, DOA, and ODBASE, Agia Napa, Cyprus,
31 October–4 November, Springer: Berlin-Heidelberg, Germany, 2005; pp. 1483-1499.

35. Denker, G.; Kagal, L.; Finin, T. Security in the Semantic Web using OWL.
Inform. Sec. Tech. Rep. 2005, 10, 51–58.

Computers 2013, 2

63

6. Pantsar-Syväniemi, S.; Purhonen, A.; Ovaska, E.; Kuusijärvi, J.; Evesti, A. Situation-Based and
Self-Adaptive Applications for Smart Environment. J. Ambient Intelligence Smart Environ. 2012,
4, 491–516.

7. Honkola, J.; Laine, H.; Brown, R.; Tyrkkö, O. Smart–M3 information sharing platform.
In Proceedings of the IEEE Symposion on Computers and Communications, Riccione, Italy,
22–25 June, 2010; pp. 1041–1046.

8. RDF Primer. 2004. Available online: http://www.w3.org/TR/rdf-primer/ (accessed on 23
November 2012).

9. SOFIA Smart Objects For Intelligent Applications. www.sofia-project.eu, 2012. Accessed 23
November 2012.

10. Suomalainen, J.; Hyttinen, P.; Tarvainen, P. Secure information sharing between heterogeneous
embedded devices. In Proceedings of the 4th European Conference on Software Architecture:
Companion Volume, Copenhagen, Denmark, 23-26 August, ACM, 2010; pp. 205–212.

11. Kephart, J.O.; Chess, D.M. The vision of autonomic computing. Computer 2003, 36, 41–50.
12. Dobson, S.; Denazis, S.; Fernández, A.; Gaïti, D.; Gelenbe, E.; Massacci, F.; Nixon, P.; Saffre, F.;

Schmidt, N.; Zambonelli, F. A survey of autonomic communications. ACM Trans. Auton. Adapt.
Syst. 2006, 1, 223–259.

13. Salehie, M.; Tahvildari, L. Self-adaptive software: Landscape and research challenges.
ACM Trans. Auton. Adapt. Syst. 2009, 4, 1–42.

14. Psaier, H.; Dustdar, S. A survey on self-healing systems: approaches and systems. Computing
2011, 91, 43–73.

15. Huebscher, M.C.; McCann, J.A. A survey of autonomic computing-degrees, models, and
applications. ACM Comput. Surv. 2008, 40, 1–28.

16. Matinlassi, M.; Niemelä, E. The impact of maintainability on component-based software systems.
In Proceedings of the 29th Euromicro Conference, Belek-Antalya, Turkey, 3–5 September, IEEE,
2003; pp. 25–32.

17. Hashii, B.; Malabarba, S.; Pandey, R.; Bishop, M. Supporting reconfigurable security policies for
mobile programs. Computer Networks 2000, 33, 77–93.

18. Hu, W.; Hiser, J.; Williams, D.; Filipi, A.; Davidson, J.W.; Evans, D.; Knight, J.C.;
Nguyen-Tuong, A.; Rowanhill, J. Secure and practical defense against code-injection attacks using
software dynamic translation. In Proceedings of the 2nd international conference on Virtual
execution environments, Ottawa, Canada, 14-16 June, ACM, 2006; pp. 2–12.

19. Knight, J.C.; Strunk, E.A. Achieving critical system survivability through software architectures.
In Architecting Dependable Systems II, Lemos R., Gacek C., Romanovsky A., Eds.;
Springer: Berlin-Heidelberg, Germany, 2004; pp. 51–78.

20. Ryutov, T.; Zhou, L.; Neuman, C.; Leithead, T.; Seamons, K.E. Adaptive trust negotiation and
access control. In Proceedings of the 10th ACM Symposium on Access Control Models and
Technologies, Stockholm, Sweden, 1-3 June 2005; pp. 139–146.

21. Klenk, A.; Niedermayer, H.; Masekowsky, M.; Carle, G. An architecture for autonomic security
adaptation. Ann. Telecommun. 2006, 61, 1066–1082.

http://www.w3.org/TR/rdf-primer/
http://www.sofia-project.eu

VII/31

Computers 2013, 2

64

22. Hulsebosch, R.; Bargh, M.; Lenzini, G.; Ebben, P.; Iacob, S. Context sensitive adaptive
authentication. In Smart Sensing and Context; Kortuem, G., Finney, J., Lea, R., Sundramoorthy,
V., Eds.; Springer: Berlin-Heidelberg, Germany, 2007; pp. 93–109.

23. Abie, H.; Savola, R.M.; Bigham, J.; Dattani, I.; Rotondi, D.; Da Bormida, G. Self-Healing
and Secure Adaptive Messaging Middleware for Business-Critical Systems. Int. J. Adv. Se.
2010, 3, 34–51.

24. Savola, R.; Abie, H. Development of measurable security for a distributed messaging system.
Int. J. Adv. Se. 2009, 2, 358–380.

25. Wang, C.; Wulf, W. A. Towards a Framework for Security Measurement. In Proceedings of
the 20th National Information Systems Security Conference, Baltimore, Maryland, USA, October
1997; pp. 522–533.

26. García, F.; Bertoa, M.F.; Calero, C.; Vallecillo, A.; Ruíz, F.; Piattini, M.; Genero, M. Towards a
consistent terminology for software measurement. Inf. Softw. Technol. 2006, 48, 631–644.

27. Haley, C.B.; Laney, R.; Moffett, J.D.; Nuseibeh, B. Security Requirements Engineering:
A Framework for Representation and Analysis. IEEE Trans. Softw. Eng. 2008, 34, 133–153.

28. Salehie, M.; Pasquale, L.; Omoronyia, I.; Ali, R.; Nuseibeh, B. Requirements-driven adaptive
security: Protecting variable assets at runtime. In Proceedings of the 20th International
Requirements Engineering Conference (RE), Chicago, USA, 24–28 September, IEEE, 2012; pp.
111–120.

29. ISO/IEC 15408-1:2009 Standard. Common Criteria for Information Technology Security
Evaluation – Part 1: Introduction and general model, International Organization of
Standardization, 2009.

30. Sahinoglu, M. Security meter: a practical decision-tree model to quantify risk. Security Privacy
2005, 3, 18–24.

31. Zhou, J. Knowledge Dichotomy and Semantic Knowledge Management. In Proceedings of the 1st
IFIP WG12.5 Working Conference on Industrial Applications of Semantic Web, Jyväskylä,
Finland, 25–27 August, Springer, USA, 2005; pp. 305–316.

32. Blanco, C.; Lasheras, J.; Valencia-García, R.; Fernández-Medina, E.; Toval, A.; Piattini, M.
A systematic review and comparison of security ontologies. In Proceedings of the 3rd
International Conference on Availability, Security, and Reliability, Barcelona, Spain, 4–7 March,
IEEE, 2008; pp. 813–820.

33. Evesti, A.; Ovaska, E.; Savola, R. From security modelling to run-time security monitoring.
In Proceedings of the European Workshop on Security in Model Driven Architecture, CTIT Centre
for Telematics and Information Technology, Enchede, Netherlands, 23–26 June, 2009;
pp. 33–41.

34. Kim, A.; Luo, J.; Kang, M. Security Ontology for annotating resources. In Proceedings of the On
the Move to Meaningful Internet Systems 2005: CoopIS, DOA, and ODBASE, Agia Napa, Cyprus,
31 October–4 November, Springer: Berlin-Heidelberg, Germany, 2005; pp. 1483-1499.

35. Denker, G.; Kagal, L.; Finin, T. Security in the Semantic Web using OWL.
Inform. Sec. Tech. Rep. 2005, 10, 51–58.

VII/32 VII/33

Computers 2013, 2

66

49. Bock, J.; Haase, P.; Ji, Q.; Volz, R. Benchmarking OWL reasoners. In Proceedings of the
Workshop on Advancing Reasoning on the Web: Scalability and Commonsense, Tenerife, Spain,
CEUR Workshop Proceedings, 2008; pp. 1–15.

50. Dentler, K.; Cornet, R.; Ten Teije, A.; De Keizer, N. Comparison of reasoners for large ontologies
in the OWL 2 EL profile. Semantic Web 2011, 2, 71–87.

51. Suomalainen, J.; Hyttinen, P. Security Solutions for Smart Spaces. In Proceedings of the 11th
International Symposium on Applications and the Internet, Munich, Germany, 18-21 July 2011,
IEEE, 2011; pp. 297–302.

52. Niemelä, E.; Evesti, A.; Savolainen, P. Modeling quality attribute variability. In Proceedings of
the 3rd International Conference on Evaluation of Novel Approaches to Software Engineering,
Funchal, Portugal, 4-7 May 2008; pp. 169–176.

53. Ovaska, E.; Evesti, A.; Henttonen, K.; Palviainen, M.; Aho, P. Knowledge based quality-driven
architecture design and evaluation. Inf. Softw. Technol. 2010, 52, 577–601.

54. Evesti, A.; Ovaska, E. Design Time Reliability Predictions for Supporting Runtime Security
Measuring and Adaptation. In Proceedings of the 3rd International Conference on Emerging
Network Intelligence, Lisbon, Portugal, 20–25 November 2011, IARIA, 2011; pp. 94–99.

55. Sofia Pilot Brochure. 2012. Available online: http://www.slideshare.net/sofiaproject/sofia-project-
brochure-pilots-set (accessed on 23 November 2012).

56. Cam4Home Project. 2012. Available online: http://www.cam4home-itea.org/ (accessed on 8 May
2012).

57. Evesti, A.; Eteläperä, M.; Kiljander, J.; Kuusijärvi, J.; Purhonen, A.; Stenudd, S. Semantic
Information Interoperability in Smart Spaces. In Proceedings of the 8th International Conference
on Mobile and Ubiquitous Multimedia, Cambride, UK, 22-25 November 2009, ACM, 2009; pp.
158–159.

58. Dierks, T. and Rescorla, E. The Transport Layer Security (TLS) Protocol Version 1.2. 2008.
Available online: http://www.ietf.org/rfc/rfc5246.txt (accessed on 23 November 2012).

59. Suomalainen, J. Flexible Security Deployment in Smart Spaces. In Proceedings of the
International Workshops, S3E, HWTS, Doctoral Colloquium, Held in Conjunction with GPC
2011, Oulu, Finland, 11–13 May 2011, Springer: Berlin-Heidelberg, Germany, 2012; pp. 34–43.

© 2013 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article
distributed under the terms and conditions of the Creative Commons Attribution license
(http://creativecommons.org/licenses/by/3.0/).

Computers 2013, 2

65

36. Savolainen, P.; Niemelä, E.; Savola, R. A taxonomy of information security for service centric
systems. In Proceedings of the 33rd EUROMICRO Conference on Software Engineering and
Advanced Applications, Lübeck, Germany, 27–31 August, IEEE, 2007; pp. 5–12.

37. Herzog, A.; Shahmehri, N.; Duma, C. An ontology of information security. J. Inform. Sec. Privacy
2007, 1, 1–23.

38. Evesti, A.; Savola, R.; Ovaska, E.; Kuusijärvi, J. The Design, Instantiation, and Usage of
Information Security Measuring Ontology. In Proceedings of the 2nd International Conference on
Models and Ontology-based Design of Protocols, Architectures and Services, Budapest, Hungary,
17-22 April, IARIA, 2011; pp. 1–9.

39. Pantsar-Syväniemi, S.; Kuusijärvi, J.; Ovaska, E. Supporting Situation-awareness in Smart Spaces.
In Proceedings of the International Workshops, S3E, HWTS, Doctoral Colloquium, Held in
Conjunction with GPC 2011, Oulu, Finland, 11–13 May 2011, Springer: Berlin-Heidelberg,
Germany, 2012; pp. 14–23.

40. Evesti, A.; Pantsar-Syväniemi, S. Towards micro architecture for security adaptation. In
Proceedings of the 4th European Conference on Software Architecture, Companion Volume,
Copenhagen, Denmark, 23–26 August, ACM, 2010; pp. 181–188.

41. Evesti, A.; Ovaska, E. Ontology-Based Security Adaptation at Run-Time. In Proceedings of the
4th International Conference on Self-Adaptive and Self-Organizing Systems, Budapest, Hungary,
27 September–1 October 2010, IEEE, 2010; pp. 204–212.

42. Dietzold, S.; Auer, S. Access control on RDF triple stores from a semantic wiki perspective.
In Proceedings of the Scripting for the Semantic Web Workshop at 3rd European Semantic Web
Conference, Budva, Montenegro, 11–14 June 2006, CEUR Workshop Proceedings, 2006; pp. 1–9.

43. D’Elia, A.; Honkola, J.; Manzaroli, D.; Salmon Cinotti, T. Access Control at Triple Level:
Specification and Enforcement of a Simple RDF Model to Support Concurrent Applications in
Smart Environments. In Proceedings of the 11th International Conference, NEW2AN 2011, and
4th Conference on Smart Spaces, ruSMART 2011, St. Petersburg, Russia, 22–25 August 2011,
Springer: Berlin-Heidelberg, Germany, 2011; pp. 63–74.

44. Reddivari, P.; Finin, T.; Joshi, A. Policy-based access control for an RDF store. In Proceedings of
the Policy Management for the Web, Chiba, Japan, 10–14 May 2005; pp. 78–81.

45. Jain, A.; Farkas, C. Secure resource description framework: an access control model.
In Proceedings of the 11th symposium on Access control models and technologies, Lake Tahoe,
CA, USA, 7–9 June 2006, ACM, 2006, pp. 121–129.

46. Flouris, G.; Fundulaki, I.; Michou, M.; Antoniou, G. Controlling access to RDF graphs.
In Proceedings of the Future Internet - FIS 2010, Berlin, Germany, 20–22 September 2010,
Springer: Berlin-Heidelberg, Germany, 2010, pp. 107–117.

47. Kim, J.; Jung, K.; Park, S. An Introduction to Authorization Conflict Problem in RDF Access
Control. In Proceedings of the Knowledge-Based Intelligent Information and Engineering
Systems, Zagreb, Croatia, 3-5 September 2008, Springer: Berlin-Heidelberg, Germany, 2008; pp.
583–592.

48. Cho, E.; Kim, Y.; Hong, M.; Cho, W. Fine-Grained View-Based Access Control for RDF
Cloaking. In Proceedings of the 9th International Conference on Computer and Information
Technology, Xiamen, China, 11-14 October 2009, IEEE, 2009; pp. 336–341.

VII/33

Computers 2013, 2

66

49. Bock, J.; Haase, P.; Ji, Q.; Volz, R. Benchmarking OWL reasoners. In Proceedings of the
Workshop on Advancing Reasoning on the Web: Scalability and Commonsense, Tenerife, Spain,
CEUR Workshop Proceedings, 2008; pp. 1–15.

50. Dentler, K.; Cornet, R.; Ten Teije, A.; De Keizer, N. Comparison of reasoners for large ontologies
in the OWL 2 EL profile. Semantic Web 2011, 2, 71–87.

51. Suomalainen, J.; Hyttinen, P. Security Solutions for Smart Spaces. In Proceedings of the 11th
International Symposium on Applications and the Internet, Munich, Germany, 18-21 July 2011,
IEEE, 2011; pp. 297–302.

52. Niemelä, E.; Evesti, A.; Savolainen, P. Modeling quality attribute variability. In Proceedings of
the 3rd International Conference on Evaluation of Novel Approaches to Software Engineering,
Funchal, Portugal, 4-7 May 2008; pp. 169–176.

53. Ovaska, E.; Evesti, A.; Henttonen, K.; Palviainen, M.; Aho, P. Knowledge based quality-driven
architecture design and evaluation. Inf. Softw. Technol. 2010, 52, 577–601.

54. Evesti, A.; Ovaska, E. Design Time Reliability Predictions for Supporting Runtime Security
Measuring and Adaptation. In Proceedings of the 3rd International Conference on Emerging
Network Intelligence, Lisbon, Portugal, 20–25 November 2011, IARIA, 2011; pp. 94–99.

55. Sofia Pilot Brochure. 2012. Available online: http://www.slideshare.net/sofiaproject/sofia-project-
brochure-pilots-set (accessed on 23 November 2012).

56. Cam4Home Project. 2012. Available online: http://www.cam4home-itea.org/ (accessed on 8 May
2012).

57. Evesti, A.; Eteläperä, M.; Kiljander, J.; Kuusijärvi, J.; Purhonen, A.; Stenudd, S. Semantic
Information Interoperability in Smart Spaces. In Proceedings of the 8th International Conference
on Mobile and Ubiquitous Multimedia, Cambride, UK, 22-25 November 2009, ACM, 2009; pp.
158–159.

58. Dierks, T. and Rescorla, E. The Transport Layer Security (TLS) Protocol Version 1.2. 2008.
Available online: http://www.ietf.org/rfc/rfc5246.txt (accessed on 23 November 2012).

59. Suomalainen, J. Flexible Security Deployment in Smart Spaces. In Proceedings of the
International Workshops, S3E, HWTS, Doctoral Colloquium, Held in Conjunction with GPC
2011, Oulu, Finland, 11–13 May 2011, Springer: Berlin-Heidelberg, Germany, 2012; pp. 34–43.

© 2013 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article
distributed under the terms and conditions of the Creative Commons Attribution license
(http://creativecommons.org/licenses/by/3.0/).

http://www.slideshare.net/sofiaproject/sofia-project-brochure-pilots-set
http://www.slideshare.net/sofiaproject/sofia-project-brochure-pilots-set
http://www.slideshare.net/sofiaproject/sofia-project-brochure-pilots-set
http://www.cam4home-itea.org/
http://www.ietf.org/rfc/rfc5246.txt
http://creativecommons.org/licenses/by/3.0/

Series title and number
VTT Science 50

Title Adaptive security in smart spaces
Author(s) Antti Evesti

Abstract Smart spaces – like smart homes, smart offices and smart cities – exploit various
resources in order to offer enriched services and information for the end users.
Achieving security in such a dynamic and heterogeneous environment with pre-
defined and static security mechanisms is a challenging task. Hence, solutions for
self-adaptive security are needed. Self-adaptive security is able to automatically
select security mechanisms and their parameters at runtime in order to preserve
the required security level in a changing environment.

The research problem of the dissertation is how to achieve security adaptation
in a smart-space application. For this dissertation, architecture and knowledge base
objectives were set. The objectives were satisfied with security-adaptation architec-
ture that contains an adaptation loop and an ontology-based knowledge base for
security. The adaptation loop conforms to the Monitor, Analyse, Plan, Execute and
Knowledge (MAPE-K) model, which is a widely applied reference model in auto-
nomic computing. The ontology-based knowledge base offers input knowledge for
security adaptation. The research was carried using five cases, which iteratively
developed the architecture and the knowledge base for security adaptation.
The contributions of the dissertation are: Firstly, reusable adaptation architecture
for security is presented. The architecture strictly conforms to the MAPE-K refer-
ence model and defines all phases in it. Moreover, the architecture is the first that
specifically separates security knowledge from the adaptation loop. Secondly, the
architecture supports the utilisation of security measures to recognise an adapta-
tion need. Security measures are presented by means of a three-level structure in
order to achieve systematic monitoring. Due to the suggested architecture, it is
possible to reuse and extend the defined security measures. Thirdly, this is the first
time that an ontology has been applied for security adaptation. Hence, the Infor-
mation Security Measuring Ontology (ISMO) acts as the knowledge base for the
security adaptation. The ISMO is applicable at design-time and runtime alike. At
design-time, the ISMO offers knowledge for the software architect, in order to
design an application with security-adaptation features. In contrast, the application
searches knowledge from the ISMO at runtime, in order to automatically perform
the security adaptation. Utilising the ontology as a knowledge base ensures that
the knowledge is presented in a reusable and extensible form. Moreover, the appli-
cation does not need hard-coded adaptation knowledge.

ISBN, ISSN ISBN 978-951-38-8113-9 (soft back ed.)
ISSN 2242-119X (soft back ed.)
ISBN 978-951-38-8114-6 (URL: http://www.vtt.fi/publications/index.jsp)
ISSN 2242-1203 (URL: http://www.vtt.fi/publications/index.jsp)

Date December 2013

Language English, Finnish abstract

Pages 71 p. + app. 119 p.

Name of the project

Commissioned by

Keywords Architecture, security measuring, ontology, knowledge base, self-adaptive

Publisher VTT Technical Research Centre of Finland
P.O. Box 1000, FI-02044 VTT, Finland, Tel. 020 722 111

http://www.vtt.fi/publications/index.jsp
http://www.vtt.fi/publications/index.jsp

Julkaisun sarja ja numero
VTT Science 50

Nimeke Älytilojen mukautuva tietoturva
Tekijä(t) Antti Evesti

Tiivistelmä Älytilat, kuten älykodit, älytoimistot ja älykaupungit, hyödyntävät monenlaisia re-
sursseja tarjotakseen loppukäyttäjille parempia palveluita ja informaatiota. Muuttu-
vissa ja heterogeenisissa älytiloissa on haastavaa saavuttaa tietoturvaa ennalta
määrätyillä ja muuttumattomilla tietoturvaratkaisuilla. Tämän vuoksi tarvitaan mukau-
tuvaa tietoturvaa. Mukautuvassa tietoturvassa tietoturvamekanismit ja -parametrit
valitaan automaattisesti suorituksen aikana, jotta vaadittu tietoturvataso saavutetaan
myös muuttuvassa älytilassa.

Väitöskirjan tutkimusongelmana on, kuinka saavutetaan mukautuva tietoturva
älytilan sovelluksessa. Tutkimusongelma on jaettu arkkitehtuuri- ja tietämyskanta-
tavoitteiksi. Tavoitteet täytetään mukautuvan tietoturvan arkkitehtuurilla, joka sisäl-
tää mukauttamissilmukan ja ontologiapohjaisen tietämyskannan tietoturvalle. Mu-
kauttamissilmukka noudattaa MAPE-K-mallia, Monitoroi (M), Analysoi (A), Suunnit-
tele (P), Toteuta (E) ja Tietämys (K), joka on yleisesti käytetty referenssimalli au-
tonomisissa ohjelmistoissa. Väitöskirjassa MAPE-K-mallin tietämysosa toteutetaan
hyödyntäen ontologiapohjaista tietämyskantaa. Tutkimus on toteutettu käyttäen
viittä tapaustutkimusta, joissa kehitetään mukautuvan tietoturvan arkkitehtuuria ja
tietämyskantaa iteratiivisesti.

Väitöskirjan tulokset ovat: i) Työ esittää uudelleenkäytettävän mukauttamisark-
kitehtuurin tietoturvalle noudattaen tarkasti MAPE-K-referenssimallia ja määritellen
mallin kaikki vaiheet. Lisäksi arkkitehtuuri on ensimmäinen, joka täsmällisesti
erottaa tietoturvatietämyksen mukauttamissilmukasta. ii) Arkkitehtuuri tukee mu-
kauttamistarpeen havaitsemista tietoturvamittareiden avulla. Tietoturvamittarit
esitetään kolmetasoisena rakenteena, joka mahdollistaa systemaattisen monito-
roinnin. Lisäksi kehitetty arkkitehtuuri mahdollistaa tietoturvamittareiden uudelleen-
käytön ja laajentamisen. iii) Työssä sovelletaan ensimmäistä kertaa ontologiaa
tietoturvan mukauttamiseen. Tietoturvan mittausontologia (ISMO) toimii tietämys-
kantana mukautuvalle tietoturvalle. ISMO soveltuu sekä suunnitteluaikaiseen että
suorituksenaikaiseen käyttöön. Suunnitteluaikana ISMO tarjoaa ohjelmistoarkki-
tehdille tietoa mukautuvan tietoturvan toteuttamiseksi osaksi sovellusta. Suorituksen
aikana sovellus puolestaan etsii tietoa ISMO:sta suorittaakseen mukauttamisen.
Ontologian käyttäminen tietämyskantana mahdollistaa tiedon uudelleenkäytön ja
laajennettavuuden. Lisäksi sovelluksessa ei tarvita kovakoodattua tietämystä
tietoturvan mukauttamiseen.

ISBN, ISSN ISBN 978-951-38-8113-9 (nid.)
ISSN 2242-119X (nid.)
ISBN 978-951-38-8114-6 (URL: http://www.vtt.fi/publications/index.jsp)
ISSN 2242-1203 (URL: http://www.vtt.fi/publications/index.jsp)

Julkaisuaika Joulukuu 2013

Kieli Englanti, suomenkielinen tiivistelmä

Sivumäärä 71 s. + liitt. 119 s.

Projektin nimi

Toimeksiantajat

Avainsanat Architecture, security measuring, ontology, knowledge base, self-adaptive

Julkaisija VTT
PL 1000, 02044 VTT, Puh. 020 722 111

http://www.vtt.fi/publications/index.jsp
http://www.vtt.fi/publications/index.jsp

V
T

T
 S

C
IE

N
C

E
 5

0
	

A
d

a
p

tive
 se

c
u

rity in
 sm

a
rt sp

a
c
e
s

ISBN 978-951-38-8113-9 (Soft back ed.)
ISBN 978-951-38-8114-6 (URL: http://www.vtt.fi/publications/index.jsp)
ISSN-L 2242-119X
ISSN 2242-119X (Print)
ISSN 2242-1203 (Online)

http://www.vtt.fi/publications/index.jsp

	Abstract
	Tiivistelmä
	Preface
	Academic dissertation
	List of publications
	List of symbols
	1. Introduction
	1.1 Background and motivation
	1.2 Research objectives and scope
	1.3 Research approach and history
	1.4 Scientific contributions
	1.5 Benchmark criteria
	1.6 Structure of the dissertation

	2. Background
	2.1 Main concepts
	2.1.1 Smart spaces
	2.1.2 Security
	2.1.3 Self-adaptive software
	2.1.4 Measures and security measuring
	2.1.5 From quality variability to quality adaptation

	2.2 Related work
	2.2.1 Security adaptation approaches
	2.2.2 Security ontologies

	3. Research
	3.1 Cases
	3.2 Security adaptation architecture
	3.2.1 Structure
	3.2.2 Behaviour
	3.2.3 Deployment

	3.3 Ontology as a knowledge base
	3.3.1 Structure
	3.3.2 Ontology usage at design-time
	3.3.3 Ontology usage at runtime

	4. Discussion
	4.1 Research objectives revisited
	4.2 Main contributions
	4.3 Comparison to the related work
	4.4 Limitations and future work

	5. Conclusions
	References

