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Disease State Index and Disease State Fingerprint
Supervised learning applied to clinical decision support in Alzheimer’s disease

Taudin tilan indeksi ja taudin tilan sormenjälki. Ohjatun koneoppimisen menetelmä kliinisen
päätöksenteon tueksi Alzheimerin taudissa. Jussi Mattila.
Espoo 2013. VTT Science 51. 96 p. + app. 75 p.

Abstract
Due to scientific and technological advancements, investigations in modern medi-
cine are producing more measurement data than ever before. Since a large
amount of information exists, and it is also being produced at ever-increasing
rates, no single person can digest all current knowledge of diseases. Data collect-
ed from large patient cohorts may contain valuable knowledge of diseases, which
could be useful to clinicians when making diagnoses or choosing treatments.
Making use of the large volumes of data in clinical decision-making requires ancil-
lary help from information technologies, but such systems have not yet become
widely available. This thesis addresses the challenge by proposing a computer-
based decision support method that is suited to clinical use.

This thesis presents the Disease State Index (DSI), a supervised machine
learning method intended for the analysis of patient data. The DSI comprehensively
compares patient data with previously diagnosed cases with or without a disease.
Based on this comparison, the method provides an estimate of the state of dis-
ease progression in the patient. Interpreting the DSI is made possible by its visual
counterpart, the Disease State Fingerprint (DSF), which allows domain experts to
gain a comprehensive view of patient data and the state of the disease at a quick
glance. In the design and development of these methods, both performance and
applicability in clinical use were taken into account equally.

Alzheimer’s disease (AD) is a slowly progressing neurodegenerative disease and
one of the largest social and economic burdens in the world today, and it will contin-
ue to be so in the future. Studies with large patient cohorts have significantly im-
proved our knowledge of AD during the last decade. This information should be
made extensively available at memory clinics to maximize the benefits for diagnos-
tics and treatment of the disease. The DSI and DSF methods proposed in this thesis
were studied in the early diagnosis of AD and as a measure of disease progression
in six original publications. The methods themselves and their implementation within
a clinical decision support system, the PredictAD tool, were quantitatively evaluated
with regard to their performance and potential benefits in clinical use. The results
show that the methods and clinical decision support tool based on these methods
can be used to follow disease progression objectively and provide earlier diagnoses
of AD. These, in turn, could improve treatment efficacy due to earlier interventions
and make drug trials more efficient by allowing better patient selection.

Keywords supervised learning, data visualization, clinical decision support systems
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Taudin tilan indeksi ja taudin tilan sormenjälki
Ohjatun koneoppimisen menetelmä kliinisen päätöksenteon tueksi Alzheimerin taudissa

Disease State Index and Disease State Fingerprint. Supervised learning applied to clinical
decision support in Alzheimer’s disease. Jussi Mattila.
Espoo 2013. VTT Science 51. 96 s. + liitt. 75 s.

Tiivistelmä
Nykyaikaisen lääketieteen tutkimuksissa kerätään uuden teknologian ansiosta
enemmän mittaustuloksia kuin koskaan aiemmin. Koska tietoa on paljon ja sitä
tuotetaan yhä nopeammin, yksittäisen ihmisen on mahdotonta sisäistää kaikki
olemassa oleva ajantasainen tietämys eri taudeista. Suurista potilasjoukoista
saadut tulokset saattavat sisältää arvokastakin tietoa, josta olisi apua kliinikoille
diagnostiikassa ja hoitotoimenpiteitä päätettäessä. Suurten tietomassojen hyödyn-
täminen päätöksenteossa vaatii tietotekniikkaa apuvälineeksi, mutta tähän men-
nessä tehtävään sopivia järjestelmiä ei ole saatu laajamittaiseen käyttöön. Tämä
väitöskirja vastaa tähän haasteeseen esittelemällä kliiniseen käyttöön soveltuvan
tietokonepohjaisen päätöksenteon tukijärjestelmän.

Tämä väitöskirja esittelee ohjatun koneoppimisen menetelmän nimeltään Di-
sease State Index (DSI, suom. taudin tilan indeksi), jolla potilaiden mittaustuloksia
voidaan verrata kattavasti suurissa tietokannoissa oleviin aiemmin diagnosoituihin
potilaisiin. Menetelmä antaa vertailun perusteella arvion potilaan taudin tilasta ja
sen etenemisestä. DSI:n tulosten tulkintaan kehitettiin visualisointimenetelmä
nimeltään Disease State Fingerprint (DSF, suom. taudin tilan sormenjälki), joka
mahdollistaa potilaan tietojen ja tulosten nopean mutta kattavan arvioinnin. Mene-
telmien suunnittelussa ja toteutuksessa otettiin yhtä lailla huomioon tarkkuusvaa-
timukset kuin niiden soveltuvuus käyttöönottoon klinikoissa.

Alzheimerin tauti (AT) on hitaasti etenevä neurodegeneratiivinen tauti ja yksi
maailman vakavista sosiaalisista ja taloudellisista ongelmista nyt ja tulevaisuudessa.
Potilaista kerättyjen suurten tietomassojen avulla AT:n kuva on terävöitynyt merkit-
tävästi kymmenen viime vuoden aikana. Tämä tieto olisi hyvä saada laajamittai-
sesti muistiklinikoiden käyttöön parhaan mahdollisen diagnostiikan ja hoidon var-
mistamiseksi. Väitöskirjassa esiteltyjen menetelmien soveltuvuutta AT:n varhai-
seen diagnostiikkaan sekä taudin seurantaan tutkittiin kuudessa julkaisussa, joissa
itse menetelmät sekä niiden toteutus kliinisenä päätöksenteon tukijärjestelmänä,
nimeltään PredictAD tool (suom. EnnustaAT-apuväline), arvioitiin kvantitatiivisesti
suorituskyvyn ja potentiaalisten hyötyjen suhteen. Tulokset näyttävät, että mene-
telmillä ja niiden pohjalta kehitetyllä kliinisen päätöksenteon tukityökalulla voidaan
seurata potilaan taudin tilan etenemistä objektiivisesti sekä mahdollistaa AT:n
varhaisempaa diagnostiikkaa. Näiden voidaan puolestaan odottaa parantavan
hoitojen tehoa hoitojen aiemman aloituksen ansiosta sekä auttavan lääkekehityk-
sessä paremmin kohdennetun potilasvalinnan myötä.

Avainsanat supervised learning, data visualization, clinical decision support systems
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1. Introduction

Technology has revolutionized the way people work in medical research and in
clinical practice. Modern medical devices allow recording of enormous amounts of
patient data, which adds to the knowledge of diseases and provides opportunities
for better healthcare. Computer-based information systems simplify patient man-
agement and enable more efficient use of resources. But is healthcare using the
deluge of data produced by modern medicine to maximal benefit? Unfortunately,
the answer is a resounding no [Fasano 2013]. Clinicians are often unable to bene-
fit from the knowledge of diseases that exists in large patient data sets, as it is
buried within the large volumes of data. Sometimes clinicians are even unable to
cope with the plethora of data measured from a single patient when making diag-
nostic decisions. There is a need for computer-based methods that allow making
use of the existing large heterogeneous data sets to provide objective knowledge
about the condition of a patient. In other words, there is a need for clinical decision
support methods.

Clinical decision support can be defined as: “providing clinicians or patients with
computer-generated clinical knowledge and patient-related information, intelligently
filtered or presented at appropriate times, to enhance patient care” [Osheroff et al.
2005]. In recent decades, the ever-increasing medical knowledge has grown too
large for any individual to master. This has led to suboptimal patient care that is
inefficient and potentially dangerous to patients, to a lower level of quality in
healthcare practices and to clinical processes that are not well coordinated [Insti-
tute of Medicine (US) 2001, Legido-Quigley et al. 2008]. A remedy proposed for
these issues is clinical decision support systems (CDSS). CDSS is defined as
software that provides clinical decision support at the point of care. With a CDSS,
the characteristics of patients are analysed by a computer and, based on the find-
ings, assessments or recommendations are presented to the clinician to simplify
the decision-making process [Sim et al. 2001]. The healthcare community has
slowly but steadily begun embracing CDSSs. Though not all initiatives succeed,
recent studies show that a majority of CDSSs have had a positive impact on practi-
tioner performance and, as a result, research into CDSSs is accelerating [Jaspers et
al. 2011].

There are many types of clinical tasks that a CDSS can support [Berner 2007,
Greenes 2011]. A CDSS can warn of changes in a patient’s condition – e.g., while in
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a critical care unit or during surgery – or send reminders and warnings for laboratory
test results, dosage errors, drug-to-drug interactions, and conflicts with allergies.
In complex or rare diseases a CDSS can propose likely diagnoses based on patient
data and the system’s knowledge base of diseases. Subsequently, a CDSS can
formulate treatment suggestions based on guidelines or treatment efficacy models.

The provision of CDSSs should follow the principles of evidence-based medi-
cine, which has been defined as “the conscientious, explicit, and judicious use of
current best evidence in making decisions about the care of individual patients”
and also as “the use of mathematical estimates of probability and risk” [Sackett et
al. 1996, Donald & Greenhalgh 2000]. The motivation for evidence-based medi-
cine is to prevent unsafe practices that lack empirical support, to reduce unac-
ceptable individual variance in diagnoses and treatments and, ultimately, to in-
crease efficiency, quality and equality of healthcare [Donald & Greenhalgh 2000].
In short, evidence-based medicine is about seeking the best scientific evidence for
questions concerning diagnosis and treatment of diseases.

To make use of existing large data sets in an evidence-based manner, super-
vised learning can be used. This is a field of machine learning in which a function
or model is inferred from labelled training data. An early and influential example of
supervised learning is the perceptron model by Rosenblatt [1958], a building block
of artificial neural networks (ANN). Supervised learning predicts the output for any
valid input after having been presented with training examples with known out-
comes, i.e. pairs of patient data and corresponding diagnoses. According to
Alpaydin [2010], supervised learning is especially useful for prediction, extracting
knowledge (data mining), compressing information and detecting outliers. Super-
vised learning is used routinely in medical research to provide the results needed
for evidence-based medicine and has been applied to the study of cancers [Liu et
al. 2010, Steinfort et al. 2010, Floares et al. 2011, Bhat et al. 2012], infections
[Pillai 2011, Yao et al. 2011], cardiac diseases [Sitar-Taut et al. 2009] and neuro-
degenerative diseases [Devanand et al. 2008, Hinrichs et al. 2009, Walhovd et al.
2010, Ewers et al. 2012, Kruczyk et al. 2012], among many other diseases.

Though extensively applied in medical research, supervised learning methods
have not yet become widely available as CDSSs to enable evidence-based medicine
at clinics [Wu et al. 2006, Greenes 2011]. Interpretation of the results provided by
supervised learning methods can be challenging for clinicians. Requirements on
data can cause difficulties in realistic clinical settings in which information collected
from patients is of varying completeness and only a few patients have exactly the
same tests administered. Additionally, diagnostic decisions rely not only on com-
prehensive analysis of patient data but also on patient and caregiver interviews,
consideration of confounding factors and drawing on past experience. Thus, in-
cluding the analysis results from supervised learning methods to the holistic as-
sessment of a patient’s condition is very challenging.

Quantification of disease state is a concept that has been gaining traction in the
medical research community. It relates to a process in which a method, based on
patient data, not only labels the patient as having (or not having) a disease but
also estimates the clinical condition of the patient [Escudero et al. 2012, Jedynak
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et al. 2012]. These methods, based on patient data, comprehensively assess the
condition of a patient in relation to a disease that usually has several progression
stages. Results of the analysis indicate where, in the continuum of the disease,
the patient is at. Disease state quantification methods are promising for use in
clinical decision support since they can be linked to the clinical states of the dis-
ease, allowing clinicians and researchers to more easily incorporate results from
the machine learning methods into their decision-making processes.

Despite all the recent efforts, disease state quantification, supervised learning
and CDSSs in general are underused in clinical decision-making. There is a need
for novel methods and CDSSs that work with realistic clinical data sets, perform
robustly, provide clinical benefits and are widely accepted by the end-uses. When
such methods become available, they could launch a new era of evidence-based
medicine, improving both the quality and equality of healthcare.

1.1 Objectives

The context of this thesis work was the early diagnostics of Alzheimer’s disease
(AD). AD is a neurodegenerative disease that causes irreversible death of brain
cells, which accelerates with disease progression [Braak & Braak 2012]. The goal
was to provide methods and tools that could be used as a CDSS in a situation in
which a clinician has to determine whether a subject with mild memory problems is
at an early stage of AD. This is a complex problem that currently causes long
delays in the diagnosis of AD. Specifically, the clinical objectives of this thesis
work were to:

1) provide a comprehensive and objective data-driven estimate of the pa-
tient’s disease state for clinical decision-making and

2) enable earlier and more accurate diagnosis of Alzheimer’s disease.

The primary technical objective of this thesis was to design and implement a su-
pervised learning method and a data visualization method that can fulfil the clinical
objectives. This required considering the requirements for such methods and
working with heterogeneous and sparse data obtained from various medical data
sources. The second objective was to validate the performance of the method,
ensuring that it reaches a clinically acceptable level and is suitable for a variety of
problems. The final goal was to design and develop a CDSS software tool using
these methods and to validate its utility with clinicians. In summary, the technical
objectives of this thesis were to:

1) design and implement a supervised learning method and data visualization
method for estimating the disease state of a patient,

2) validate that the methods perform at an acceptable level, and

3) develop a software tool using the methods and evaluate its clinical utility.
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1.2 Outline of the thesis

This thesis comprises six original publications of the author’s research concerning
supervised learning methods for clinical decision support. All research was con-
ducted between the years 2008 and 2013, including the design, implementation,
evaluation and validation of the methods and the related software tools. The work
was partially funded by PredictAD, a research project in the 7th EU Framework
(FP7 – 224328) in which a consortium of technical and clinical partners aimed to
provide standardized and objective solutions for enabling earlier diagnoses of AD,
improved monitoring of treatment efficacy, easier patient selection for drug trials
and improved cost-effectiveness of diagnostic protocols.

The research work for this thesis consisted of the development of a supervised
learning method called Disease State Index (DSI), the development of an accom-
panying visualization method called Disease State Fingerprint (DSF) and an im-
plementation of a CDSS intended for early diagnosis of AD, called the PredictAD
tool. The aim of the PredictAD tool is to help clinicians form an objective view of
the state of AD progression in a patient using the DSI and DSF methods.

Publication I presents the DSI and DSF methods, investigating their characteristics
and performance when analysing early clinical symptoms and biomarkers of AD.
This publication introduces the concepts behind the methods and justifies the devel-
opment of new supervised learning and visualization methods for clinical decision
support.

Publication II describes a software implementation of the DSI and DSF methods
as a generic clinical decision support tool. Reusable libraries and the tool were
implemented on a modern software development platform, supporting various use
cases, and evaluated with regard to accuracy and performance using several data
sets.

Analyses of the temporal dynamics of the DSI and DSF methods, when quanti-
fying the progression of Alzheimer’s disease, are provided in Publication III. This
paper evaluates whether the longitudinal changes in a patient’s disease state are
reflected by the DSI and whether differences in varying patient profiles are clearly
revealed by the DSI and DSF.

Publication IV presents a decision support methodology – enabled by the DSI
method – in which the classification problem is constrained by first setting a clini-
cally meaningful target accuracy that must be reached when predicting future
progression to AD. Having defined the target accuracy, the number of patients
who could be classified with the target accuracy at an early phase of AD are then
determined.

In Publications V and VI, the PredictAD tool, which implements the DSI and
DSF methods, is evaluated with clinicians who use the PredictAD tool for decision
support. The first study compares the clinical performance of using the tool with
the current diagnostic guidelines of AD. The latter study compares the use of the
PredictAD tool with the current situation in clinical diagnostics in which no CDSS is
available.



1. Introduction

19

The rest of the thesis is organized as follows. Chapter 2 motivates the need for
clinical decision support, focusing on CDSSs based on supervised learning. In
Chapter 3, an overview of Alzheimer’s disease diagnostics in the context of clinical
decision support is given. Chapter 4 provides a description of the methods and the
computer-based decision support tools developed during this research work.
Chapter 5 contains a summary of the publications in this thesis, covering their
goals, the methods applied, the main results and conclusions. A discussion of the
results and consideration of topics remaining for future research are provided in
Chapter 6. Finally, concluding remarks are drawn in Chapter 7.
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2. Clinical decision support systems

In a landmark paper by McDonald [1976], it was argued that the amount of infor-
mation required to practise medicine had become so expansive that no human
could provide perfect care unaided, but some ancillary aid, like a computer, was
needed. Now, almost forty years later, medical research is producing new findings
faster than ever, with technological advancements providing a deluge of data and
new information. The challenges that were recognized decades ago have only
grown greater, and no human can absorb all the knowledge in medicine, which is
also being produced at ever-increasing rates. CDSSs are seen as part of the solu-
tion to this problem.

2.1 History

Clinical decision support has a long history dating from the early years of compu-
ting. Even though the initial systems in the 1950s were purely mathematical or
statistical and did not rely on computational power provided by computers, they
laid a foundation for the first computer-based CDSSs of the following decades
[Ledley & Lusted 1959, Warner et al. 1961]. The first pioneering computerized
CDSS described a system for the differential diagnosis of a large number of dis-
eases based on a number of questions and answers fed to the computer using a
stack of cards [Collen et al. 1964]. This system was initially applied to the screen-
ing of bronchial asthma. Soon after, research was conducted on more focused
systems, each supporting one disease area and enforcing strict data collection
protocols [Bleich 1969, De Dombal et al. 1972, Peck et al. 1973, Shortliffe et al.
1975]. Some researchers also began modelling the thinking processes behind
diagnostic decisions [Pople et al. 1975, Pauker et al. 1976].

By the 1980s, the availability and performance of computers had increased sig-
nificantly. Artificial intelligence and machine learning had also become active fields
of science, allowing several CDSSs for diagnostics and treatment planning to be
developed, some with broader scope than before [Miller et al. 1982, Miller 1986].
One of the best-known systems from this era is DXplain, a differential diagnostic
system based on relationships between symptoms and diseases [Barnett et al. 1987].
By this time the evolution of hospital information systems (HIS) was also acceler-
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ating, allowing more seamless integration of CDSSs with the clinical workflows
[McDonald et al. 1977, Pryor et al. 1983, Sittig et al. 1989]. According to Greenes
[2011], the period from approximately 1960 to 1985 was a “long infatuation” phase,
when there was great enthusiasm for clinical decision support, many research
initiatives and a wealth of new ideas.

After the first successes of the 1980s, CDSS research has expanded consider-
ably, with hundreds of articles describing and evaluating a plethora of systems,
and many of them also showing evidence of being beneficial to practitioners [Garg
et al. 2005, Kawamoto et al. 2005, Jaspers et al. 2011]. Despite all the activity and
the current technology-driven medical environment, it is perhaps surprising to
learn that CDSSs have had very limited impact on healthcare outside a handful of
mostly academic medical centres and highly integrated service providers [Wu et
al. 2006, Greenes 2011]. Especially in the diagnostics of diseases, the common
procedure is still to manually evaluate all patient data – relying on thresholds or
statements by specialists, if available – and to exclude other possible causes of
the symptoms. This leads to a question: why, compared with the amount of active
research, are there so few practical applications of CDSSs providing decision
support for clinicians making the diagnoses and deciding treatments?

The lack of CDSS deployments in wide practice can be attributed to several is-
sues according to [Greenes 2011]: images and signals produced in medical stud-
ies are important to diagnostics, but their automatic and robust quantification is
difficult. Methods and tools that work in controlled research settings are not always
applicable in realistic clinical settings; it takes a long time to test and approve
medical devices and a large scale-up effort to move from an initial implementation
to one providing on-going decision support. Healthcare as a field is moving for-
ward at a fast pace but, perplexingly, is also very conservative: new ideas are not
always embraced immediately. The development of clinical decision support sys-
tems for healthcare should also consider the environment in which the system will
be used [Kaplan 2001]. Healthcare systems, organizations and clinical processes
are not very well coordinated in general. Data produced by medical examinations
are often incomplete and can contain errors [Little et al. 2012]. There are also
philosophical and language barriers between engineers and clinicians. If the re-
sults are difficult to interpret, clinicians may not take them into account. Even when
the tools and methods fit clinical workflows, the lack of standards makes interop-
erability with existing systems difficult. Simply accessing existing data is problem-
atic. Electronic health records are still a work in progress in several nations and
they will continue to be so for years to come. Regarding many of these issues, the
situation is constantly improving. But the progress is slow and all-encompassing
solutions to the technical, organizational and practical challenges in CDSS de-
ployments are not expected in the near future. All in all, the lack of successful
CDSS deployments is a sign that more work is needed to bridge medical research
and clinical practice.
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2.2 Categorization and standards

CDSSs have been categorized into four distinct architectural groups based on
their evolution through the years [Wright & Sittig 2008]:

1) Stand-alone decision support systems, beginning in 1959
2) Integrated systems, beginning in 1967
3) Standards-based systems, beginning in 1989
4) Service models, beginning in 2005.

Systems in categories one (1) and two (2) are the most common, and these cate-
gories include most of the historical systems mentioned previously. The funda-
mental difference between stand-alone and integrated systems is that integrated
systems are a part of a larger whole, usually implemented as a component within
a HIS. Stand-alone systems on the other hand have limited interactions with sys-
tems or services outside the immediate environment of the CDSS.

CDSSs in category three (3) include standards for representing, encoding, stor-
ing and sharing knowledge. They strive to overcome some of the disadvantages of
proprietary decision support systems, especially those concerning interoperability.
For example, Arden Syntax is a language for generating automatic alerts and
messages [Hripcsak et al. 1994]. A system named Gello formalizes decision crite-
ria and can be used for providing alerts and reminders or creating guidelines for
complex clinical workflows [Sordo et al. 2004]. The healthcare standards body
Health Level 7 (HL7) has accepted both of these as standards, and Arden Syntax
is also accepted by the American National Standards Institute (ANSI).

Service models, the fourth (4) and most recent category, shares the goal of in-
teroperability with the standards-based systems, but they achieve this goal by
standardizing an application programming interface (API) instead of providing
interoperable data formats. There are two approaches to implementing CDSS in
the service models category, depending on where the API exists. If an API is
specified in front of a clinical system, then any CDSS supporting this data access
API can query data from the clinical system and use it for analyses. An effort using
this approach is the Shareable Active Guideline Environment (SAGE), which
standardizes the vocabularies used to access and process medical records. Un-
fortunately, SAGE severely constrains the types of decision support methods that
can be implemented on top of it [Ram et al. 2003]. The alternative option for ser-
vice models is to have the API in front of the CDSS, allowing clinical systems to
push information into the CDSS for analyses. The System for Evidence-Based
Advice through Simultaneous Transaction with an Intelligent Agent across a Net-
work (SEBASTIAN) is such a system and is being developed by HL7 as the HL7
Decision Support Service [Kawamoto & Lobach 2005].
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2.3 Supervised learning in clinical decision support

Supervised learning is a technique in which a mapping from the inputs to the correct
outputs is learned through examples provided by a supervisor [Alpaydin 2010].
Supervised learning has been used extensively in medical research to enable
evidence-based medicine, i.e. to produce disease models that allow clinicians to
assess risks and benefits of diagnostic tests and treatments (including lack of
treatment) based on existing evidence. Well-known methods such as ANNs, deci-
sion trees (DT), Bayesian belief networks (BBN) and support vector machines
(SVM) have been applied to a great variety of medical problems. Since the field is
extremely active, this section provides only an overview of the extent of medical
problems to which supervised learning methods have recently been applied with
regard to disease prediction and diagnostics. CDSSs and supervised learning
methods specific to AD are described in more detail in the next chapter. In addition
to supervised learning methods, unsupervised and reinforcement learning methods
have been utilized in medical contexts. Unsupervised learning methods differ from
supervised learning methods by looking for patterns in unlabelled training data
[Alpaydin 2010]. Reinforcement learning methods produce actions to maximize a
cumulative reward, unlike the individual input/output pairs presented to supervised
learning methods [Alpaydin 2010]. Unsupervised or reinforcement learning meth-
ods are not considered in this thesis except for those specifically applied to AD,
described in the next chapter.

DTs are among the most popular methods for CDSSs due to their simplicity
and understandable rules [Alpaydin 2010]. DTs have been employed, e.g., to
diagnosis of cancers [Liu et al. 2010, Steinfort et al. 2010], heart diseases [Sitar-
Taut et al. 2009] and cerebrovascular disease [Yeh et al. 2011]. BBNs are a prob-
ability-based inference model used for knowledge representation when reasoning
under uncertainty [Alpaydin 2010]. They have been applied to a range of medical
applications, including treatment prioritization during emergencies [Sadeghi et al.
2006] and early diagnosis of sepsis [Gultepe et al. 2012]. ANNs are especially
suited to modelling the complex and fuzzy cognitive processes of making diagnoses
[Alpaydin 2010]. The applicability of ANNs has been demonstrated with the diagno-
sis of cancers [Floares et al. 2011, Bhat et al. 2012], tumours [S ftoiu et al. 2012,
Streba et al. 2012] and glaucoma [Andersson et al. 2012]. SVM is a relatively recent
classification and regression technique [Cortes & Vapnik 1995]. Today, due to its
good performance, SVM is one of the most frequently used algorithms in machine
learning. SVMs have been used in clinical decision support in, for example, tuberculo-
sis infection [Pillai 2011], pulmonary infections [Yao et al. 2011] and for predicting
brain infarcts [Huang et al. 2011]. Recently, medical research has begun applying
Gaussian processes (GP), a stochastic method that was primarily designed to
solve regression problems but also allows probabilistic classification. GPs have
been used, at least, for the prediction of psychiatric disorders [Mourão-Miranda et
al. 2012] and estimation of child mortality rates [Rajaratnam et al. 2010].
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In addition to the widely used methods above, a large number of other super-
vised learning methods and hybrid approaches have been used when dealing with
particular problems. For example, there are ensemble methods that combine the
decisions of several classifiers trained to solve the same problem. One of the most
well-known of these is the Random Forest (RF) classifier, which builds several
DTs to solve a single problem and selects the outcome based on votes from all
the different DTs [Breiman 2001].

Based on the considerable amount of research on the topic, it is quite obvious
that there is huge interest in applying supervised learning to questions in medical
research. The publications also often state intentions to make the methods availa-
ble to healthcare providers as CDSSs, but very few of them are eventually de-
ployed to clinics for validation studies, let alone commercialized as tools for daily
practice. So the question remains: why, with all the research on CDSSs using
supervised learning, are there so few practical applications of such systems
providing evidence-based decision support for clinicians? To improve the situation,
this thesis proposes a supervised learning method and a data visualization meth-
od that could be made available at clinics with reasonable effort and hopefully be
also accepted by end-users.
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3. Diagnosis of Alzheimer’s disease

AD is the most common reason for dementia, accounting for approximately two-
thirds of all 34 million dementia cases worldwide [Geldmacher & Whitehouse
1996, Wimo & Prince 2010]. Dementia is a general term that refers to a group of
symptoms indicating problems with memory or cognition. The term dementia does
not reveal the original reason for the problems and dementia is not a disease: it is
the clinical manifestation of a disease. There are many possible causes of demen-
tia, some of which are reversible [Hughes et al. 2011]. AD is a neurodegenerative
disease that causes dementia due to irreversible death of brain cells, which also
accelerates as the disease progresses [Braak & Braak 2012]. As the primary
cause of dementia, AD is a huge economic and social challenge. The accumulat-
ed costs of social care, unpaid care and medical bills globally are estimated at 1%
of all gross domestic products. The costs are projected to more than triple by 2050
when there will be well over 100 million people with dementia, due to the aging
population [Wimo & Prince 2010].

AD develops slowly over several years. Initially, there are no visible symptoms.
This asymptomatic phase may last up to a decade or even longer [Morris 2005].
When the first clinical symptoms appear, the disease has already been active for
several years. Figure 1 illustrates the onset and slow progression of AD.

Figure 1. Onset and slow progression of AD.

While the mechanisms of AD are not yet fully understood, the pathophysiological
process of AD can be detected in vivo already in the preclinical phase from sever-
al subtle changes [Jack et al. 2013]. The first measurable change indicating early
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AD is the decreased concentration of amyloid  protein in the cerebrospinal fluid
(CSF). This is followed by an accumulation of amyloid  in the brain, detectable
using positron emission tomography (PET) amyloid imaging. Next, the accumula-
tion of tau proteins in the CSF and brain tissue changes brain metabolism, causing
functional and structural neurodegeneration. These are detectable using fluorode-
oxyglucose (FDG) PET and structural magnetic resonance imaging (MRI), respec-
tively. Throughout the pathological process, subtle cognitive alterations and im-
pairment occur, and finally the memory and cognition of the person deteriorate
towards clinical dementia [Sperling et al. 2011]. Predicting progression to clinical
AD from early observations is not simple. Genetic predisposition towards AD, age,
gender, education and comorbidities confuse the situation, and some individuals
with the pathophysiological process of AD may not become symptomatic during
their lifetime at all.

There are two major diagnostic challenges of dementia and AD. One is to dif-
ferentiate AD from the much more uncommon causes of dementia, e.g. vascular
dementia (VaD), dementia with Lewy bodies (DLB), frontotemporal dementia
(FTD) and mixed dementia to which multiple diseases contribute. There are also
other conditions that cause dementia for which the main symptoms are different –
e.g., Parkinson’s disease and Huntington’s disease – which must be considered
before the final diagnosis is given. The second challenge in dementia diagnostics
is to determine whether the initial minor memory problems are truly early manifes-
tations of AD, or are they temporary or even part of normal aging. Currently, clini-
cians rely mostly on their experience and behavioural assessment to dissociate
between the different types of dementia. This is done within a framework provided
by clinical criteria and national guidelines that allow the fitting of patients’ data
within agreed standards to reach a diagnosis. Making the diagnosis is a time-
consuming exercise and needs to be done manually. Finding the answers to the
clinical questions as soon as possible would minimize the delays in current diag-
nostic work and also improve patient selection in drug trials. In this thesis work,
research concentrated on the latter problem: the identification of early AD. The
primary reason for concentrating on this issue was the good availability of large
data sets containing comprehensive data on early AD development.

3.1 Mild cognitive impairment

A central theme in the early diagnosis of AD – and in this thesis – is to recognize
subjects with mild cognitive impairment (MCI) who will develop AD. MCI is a term
referring to persons who do not fulfil the criteria for dementia but who exhibit some
form of cognitive impairment [Palmer et al. 2003, Petersen 2004]. MCI is associat-
ed with an increased risk of developing AD, especially when the MCI is related to
memory problems [Petersen et al. 1999]. MCI is a heterogeneous condition that
can remain stable (stable MCI, SMCI) or even revert to a cognitively normal state
[Petersen & Negash 2008]. Though often caused by early AD or another neuro-
degenerative disease, MCI can also be caused by a vascular burden, metabolic
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disturbances, medication interactions, infections, vitamin shortages, malnutrition,
drug/alcohol abuse and other physiological and psychological disorders. Thus,
identifying MCI patients who will progress to AD (subjects with progressive MCI,
PMCI) is not a simple diagnostic problem.

Accurately predicting MCI progression to AD would allow early application of
disease-modifying treatments to slow AD progression at a point where the clinical
manifestations are still limited. A combination of results from neuropsychological
testing, MRI, CSF and genetic testing can aid in the prediction of which patients
with MCI will progress to AD [Farlow et al. 2004, Diniz et al. 2008, Landau et al.
2010, Madureira et al. 2010, Lötjönen et al. 2011]. Even a modest delay of one
year in the disease onset and progression could drastically reduce the burden of
AD on society [Brookmeyer et al. 2007]. The current symptomatic treatments, non-
pharmacological interventions and medications for treating AD are most effective
at the earliest stages of the disease, underlining the importance of early diagnosis
of AD at the MCI phase [Osborn & Saunders 2010]. Currently, there is no medica-
tion that would reverse or stop AD progression altogether, but when one is found,
it is anticipated to provide greatest benefit if started early.

3.2 Diagnostic criteria of AD

The criteria most commonly used for the diagnosis of AD in clinical practice are
the DSM-IV criteria from 1994 (Diagnostic and Statistical Manual of Mental Disor-
ders, 4th edition [Spitzer et al. 2002]) and the NINCDS-ADRDA criteria from 1984
(National Institute of Neurological and Communicative Disorders and Stroke and
the Alzheimer’s Disease and Related Disorders Association [McKhann et al.
1984]). The clinical diagnoses defined by these criteria are possible AD and prob-
able AD, a diagnosis of definite AD is only available by histopathologic confirma-
tion, meaning, in practice, post-mortem microscopic examination of brain tissue.
According to these criteria, diagnosis of probable AD is established by clinical and
neuropsychological examination. Cognitive impairments have to be progressive
and present in two or more areas of cognition. The onset of the deficits must not
have occurred at a young age and finally there must be an absence of other dis-
eases capable of producing a dementia syndrome. Currently, diagnosis of AD in
Europe takes on average 20 months from the first clinical symptoms, although AD
pathology is known to start years before these first symptoms even appear [Cattel
et al. 2000, Speechly et al. 2008, Bond et al. 2005].

The criteria mentioned above are still widely used, but they are falling behind
current knowledge of AD pathophysiology, which has leaped forward in recent
years due to advances in imaging and laboratory technologies. The old criteria
also have deficiencies that limit drug development, medical research and clinical
practice. For example, they are insensitive in the early phases of AD, when clinical
symptoms are not easily detectable [Johnson et al. 2009]. As a result, proposals
for new diagnostic criteria of AD and its pre-dementia and preclinical phases (MCI
phases) have appeared [Dubois et al. 2007, Dubois et al. 2010, Jack et al. 2011,
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McKhann et al. 2011, Albert et al. 2011, Sperling et al. 2011]. These put more
focus on biomarkers, which are defined as measurable physical changes that
respond to changes in the progressing disease state. In the new diagnostic criteria
of AD, biomarkers are considered an important component alongside neuropsy-
chological tests and clinical assessment. The generally accepted AD biomarkers
are as follows:

 low -amyloid protein levels and/or elevated tau protein levels measured in
the CSF,

 atrophy of the temporal lobe revealed by MRI,

 temporo-parietal hypometabolism as assessed with 18-labeled FDG PET
or identification of amyloid accumulation in the brain with Pittsburgh Com-
pound B (PIB) PET, and

 known causative genetic mutations in the immediate family, notably the
apolipoprotein E (APOE) gene found on chromosome 19.

Though they are important for clinical diagnostics, the sensitivity and specificity of
all current biomarkers of AD are rather poor when considered individually [Jack et
al. 2012]. Another recent development made possible by novel biomarker acquisi-
tion technologies is a hypothetical model of AD progression by Jack et al. [2010,
2013], showing the temporal dynamics of different biomarkers in relation to the
clinical disease stages (see Figure 2). This hypothetical model provides a temporal
aspect to biomarkers that should also be considered in the diagnostic process.

Figure 2. Dynamic biomarkers of the Alzheimer’s pathological cascade. This
graph illustrates timings of key biomarkers as the subjects’ transition through
stages of AD (cognitively normal, MCI, dementia). Reproduced from [Jack et al.
2010] with permission from Elsevier © 2010 Elsevier.
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Ultimately, making an AD diagnosis could require a clinician to observe hundreds
of individual data points from different tests and measurements, read statements
from radiology and neuropsychology specialists, interview the patient and caregiv-
ers and rule out other possible causes of memory problems. Weighing in each
piece of evidence appropriately while also taking into account the latest findings
from AD research is an extremely complicated process that requires experience,
intuition and tenacity. As a result, the diagnoses come rather late and the overall
accuracy of clinical AD diagnosis compared with neuropathological confirmation is
relatively low, with the agreement being only 70–90% [Lim et al. 1999, Petrovitch
et al. 2001, Kazee et al. 1993].

3.3 Clinical decision support systems in Alzheimer’s disease

Due to the complexity of making an AD diagnosis, it is a problem well suited to
clinical decision support. A need for such systems was reflected in a survey of
European memory clinics that found that none of the clinics had a CDSS available
and that 85% of the respondents wanted a tool that combines all available patient
information and provides a risk score for Alzheimer’s disease [unpublished data
collected in project PredictAD 2009].

CDSSs targeting diagnosis of AD can be considered to exist in two flavours:
singlemodal and multimodal. Singlemodal CDSSs analyse data from a single
measurement modality, e.g. from MRI or PET imaging, genetic testing or neuro-
psychological testing, and produce a disease probability, estimate of the disease
state or a diagnostic suggestion based on the data. Single-modal methods are
important for evidence-based medicine and for evaluating the roles of biomarkers
in the progression of AD. They can also have a role in clinical decision support
although they do not provide a holistic view of the patient’s situation. On the other
hand, multimodal CDSSs accept a wide set of measurements and strive to provide
comprehensive analysis results, usually with the goal to help in early diagnostics
of AD or in differential diagnosis of multiple possible diseases contributing to de-
mentia. Considering that the recently updated diagnostic criteria emphasize ob-
serving evidence from several measurement modalities, this thesis focuses on
multimodal CDSS methods that bear close resemblance to clinical practice.

CDSSs targeting diagnosis of AD can also be divided into two subtypes according
to the decision support approach: expert systems and machine learning methods.
Expert systems have a knowledge base built together with domain experts, e.g.
with clinicians specialized in neurodegenerative diseases. They include an infer-
ence engine that uses the knowledge base to derive suggestions based on new
inputs. Machine learning methods, on the other hand, are data-driven and process
a training data set to create a model of the disease and then evaluate the model
with previously unseen patient data.

DemNet was among the first expert system CDSSs for the diagnosis of dementia.
It used a BBN built painstakingly with clinicians to provide classification of patients
based on a wide array of neuropsychological test results and demographic data
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[Oteniya et al. 2005]. DemNet targeted nurses and general practitioners involved
in the primary level assessment of patients suspected of having dementia. Path-
Net by the same research group extended DemNet to support differential diagnos-
tics of dementia, providing likelihoods of having one of the several possible causes
of dementia supported by the system [Oteniya 2008]. The performance of these
systems was never evaluated in a clinical setting. The models were reviewed by
domain experts during system development and were found reasonable.

The Dementia Management Support System and its revised version (DMSS,
DMSS-R) are expert systems that guide the collection of information and allow
hypotheses to be made in differential diagnostics of dementia [Lindgren 2008,
Lindgren 2011a]. The system is driven by the clinical guidelines of DSM-IV and
applies if-then rules to a knowledge base to support diagnostic reasoning. In
common cases of dementia, the system provides a categorization of the types of
pathologies that meet the guideline criteria, given the evidence presented. In atyp-
ical cases, in which the system is unsure of the diagnosis, the system presents all
the evidence to the physician. The physician then attempts to infer a diagnosis
based on the evidence presented. An evaluation study showed that the DMSS-R
system’s interpretation of available patient data has good compliance (84%) with
the physician’s view on the patient case [Lindgren 2011b]. There are also plans to
commercialize the DMSS-R system.

An expert system for finding new knowledge and emergent rules to support the
diagnostic process of dementia was recently introduced [Sanches et al. 2011,
Toro et al. 2012]. This system is described not only as a CDSS but also as a re-
search tool that could help clinicians to determine the most relevant parameters
for diagnosis of AD and its cause. Clinical evaluation of the system will be per-
formed over 15 months starting in June 2013 [Sanches et al. 2013].

A hybrid method employing both an expert system and machine learning was
employed by Marling and Whitehouse [2001], with the system recommending
neuroleptic medication to AD patients based on patient data. Qualitative evalua-
tion of the system was performed with clinical partners. Perhaps the most interest-
ing finding in this study was that the data-driven machine learning module was
considered more evidence-based, and therefore more trustworthy, than the expert
system module with hand-crafted rules.

A number of machine learning methods have recently been applied to holistic
multimodal analysis of data from early AD patients. Duchesne et al. [2010] pre-
sented a CDSS for the diagnosis of AD that coded multimodal information meas-
ured from patients as binary strings. The strings were used for finding similar pa-
tients from a training data set using the k-nearest neighbours algorithm and
providing a classification based on the findings. Another CDSS applied SVM to
classify healthy elderly controls, SMCIs, PMCIs and ADs using data from imaging
and CSF biomarkers [Zhang et al. 2011]. Several other methods have also been
proposed for combining data from multiple sources to aid in the diagnosis of sub-
jects with MCI [Devanand et al. 2008, Hinrichs et al. 2009, Walhovd et al. 2010,
Ewers et al. 2012, Kruczyk et al. 2012]. These are described as decision support
tools, although they are perhaps more accurately thought of as data analysis
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methods that could be applied in decision support. In the end, none of the ma-
chine learning-based CDSSs for AD have been evaluated by clinicians to provide
evidence of their usefulness.

3.4 Quantification of Alzheimer’s disease state

Traditionally, machine learning has been used for classification with the intention
of labelling a patient as having or not having a disease. In situations in which the
overall classification accuracy is low (e.g. close to 70% in early prediction of AD),
a single label is clinically irrelevant and more knowledge must be extracted from
the data. For example, a probability of the given label can be provided, giving
additional context to the classification.

With a plethora of measurement values and computational resources available,
it has become possible to analyse all patient data comprehensively and provide a
rank or a risk score indicating where in the continuum of a disease the patient is,
based purely on his/her measurement values. This type of analysis is especially
well suited to slowly progressing diseases, in which the subject’s condition gradu-
ally deteriorates and is followed over longer periods. AD is such a disease and
thus a good candidate for these types of methods. As a result, several methods for
quantifying AD progression have been proposed in recent research.

AD is characterized by changes in the brain that can be observed with modern
imaging technologies, such as PET and MRI. Converting high-dimensional imaging
data into continuous clinical variables is a recurring topic in recent research. Wang
et al. [2010] applied a regional feature extraction approach and further feature
selection to create a regression model from a training set of MRI data. The goal of
the regression is to discover a relationship between brain atrophy patterns and the
clinical stage of the disease, the latter being measured by clinical variables. Simi-
lar goals were addressed by Fan et al. [2010] who presented a method to estimate
clinical variables from brain images by quantitatively evaluating the continuous
transition from the normal state to the diseased state. Their research is built on
morphological measures derived from structural MRI and a regression method that
models several clinical variables that capture the changing disease state.

Chen et al. [2011] introduced a hypometabolic convergence index (HCI) for the
assessment of AD and compared it with other biological, cognitive and clinical
measures, and demonstrated its capability to predict clinical decline in MCI pa-
tients. The HCI is a single measure intended to reflect the extent to which the
pattern and magnitude of cerebral hypometabolism in an individual’s PET image
corresponds to that in probable AD patients and is generated using a voxel-based
image analysis algorithm.

Bioprofiling is an unsupervised machine learning approach for the analysis of
biomedical data to support the management and care of patients with AD [Escudero
et al. 2012]. Bioprofile analysis derives personal bioindices that indicate how closely
a subject’s data resemble the pattern of AD. Bioprofile analysis uses an unsuper-
vised k-means technique to cluster measurement variables so that subjects are
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divisible into those with a bioprofile of AD and those without it. Results show that
there is a pattern of AD detectable in the measurement data of patients. The pattern
is also in line with the hypothetical model of AD evolution [Jack et al. 2010]. Longi-
tudinal analysis of the changes in bioindices found that having the AD bioprofile at
baseline was associated with a risk of progressing from MCI to AD.

A general-purpose statistical methodology for deriving a disease progression
score (DPS) using multiple biomarkers from subjects with neurodegenerative
disease was proposed by Jedynak et al. [2012]. The methodology yields an Alz-
heimer’s DPS score for each subject and each time point in a data set. In addition,
a description of the changes in the biomarkers is produced allowing observation of
the temporal ordering of biomarkers. This ordering was noted to follow the hypo-
thetical model of AD evolution [Jack et al. 2010]. In short, the DPS methodology
stages individuals according to their state of disease progression and deduces
common temporal behaviours of biomarkers in the disease itself.

It is evident that quantification of the disease state and disease progression are
emerging as tools to help in the early diagnostics of AD. The latter could also be
useful in drug research for monitoring the efficacy of treatments. Though none of
the methods above are routinely applied in clinical practice yet, it is expected that
some disease state quantification methods will eventually find their way into clini-
cians’ daily workflows.
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4. Disease State Index and Disease State
Fingerprint

The design and development of the data analysis and visualization methods pre-
sented in this thesis began in 2008. The background to the thesis work was in
heart disease research, for which Koikkalainen et al. [2008] developed a method
for interpreting the results provided by automatic cardiac image processing algo-
rithms. The algorithms processed cardiac images to derive several features of
numeric data, containing information useful for assessing a patient’s condition, but
without additional tools, it was difficult to see which data were truly important and
what could be said from all the data put together. To help clinicians interpret the
data generated by image quantification, a new supervised learning method and a
visualization method were developed.

Parallel to the cardiac imaging research, a European research project called
PredictAD1 was being prepared with the goal to find efficient biomarkers from
heterogeneous patient data and integrate them into a clinical decision support tool.
The goal of the project was to make early diagnosis and monitoring of the progress
of AD more efficient, reliable and objective. It was discovered that the data analy-
sis and visualization concepts developed with cardiac diseases could be devel-
oped further to address the new problem at hand. The new goal was to design and
develop methods for quantification and visualization of AD patients’ disease state
based on heterogeneous and sparse measurement data. The new methods were
also intended to be used in clinical decision support. The background, require-
ments and development of these methods are presented in this chapter.

4.1 Background

The foundation for the methods developed in this thesis work was a method called
disease state parameter (DSP), which was used for identifying patients with early
familial dilated cardiomyopathy (DCM) [Koikkalainen et al. 2008]. In the study, the
patient group consisted of 12 subjects who had a genetic mutation that might

1 www.predictad.eu, verified 29.4.2013

http://www.predictad.eu
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cause DCM but who were all judged to be healthy based on echocardiography.
The control group consisted of 14 healthy subjects without the genetic mutation.
Volumes, wall thicknesses and wall motions in both the left ventricle and the right
ventricle were quantified with automatic MRI processing methods. The DSP meth-
od was applied to combine all the MRI parameters into a single global cardiac
function index. A visual representation was also created to help assess the indi-
vidual image parameters, allowing a visual comparison with the disease group
(see Figure 3). In this study, it was found that the average DSP of the patient
group was significantly higher than that of the control group and that with the DSP
method, subclinical familial DCM might be recognized at an early stage.

Figure 3. DSP visualizations for a disease case (P2) and a control case (C1). The
colours denote larger (red) or smaller (blue) measurement values compared with
the mean value of the control group. Nodes are sized according to their statistical
significance when comparing control and disease groups. Adapted from
[Koikkalainen et al. 2008] with permission from the Radiological Society of North
America © 2008 RSNA.

The main limitations of the DSP method are that it expects complete sets of data
and that all the features must have similar statistical properties. This was easily
achieved in the original study in which image processing algorithms were guaran-
teed to produce full data sets of appropriately distributed data. In other situations,
these requirements can be more difficult to fulfil. Nevertheless, for this thesis work,
DSP provided a platform from which a new method could be developed, one that
works with more heterogeneous and sparse data sets and that could provide clini-
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cal decision support in complex diseases, especially in AD. Three concepts from
the DSP method survived the transformation to a more generalized method, even
though the implementation details changed considerably. First, the DSP computa-
tion introduced a mathematical equation that evaluates similarity between patient
measurements and control and positive cases, a so-called fitness function. Sec-
ond, the weighting of fitness values with feature importance was used to derive a
global index from all the data. Third, the colours chosen for DSP visualizations
(blue, white and red) were used in this thesis work as well.

4.2 Requirements specification process

To reiterate, the reason for developing new data analysis and visualization meth-
ods was to support decision-making in the early diagnosis of AD. There was also a
need for a method that would allow AD progression to be followed quantitatively
and objectively. Specifically, the goal was to develop a method that provides an
objective data-driven estimation of the patient’s progressing disease state. Dis-
cussions with clinicians specialized in dementia were initiated, including evalua-
tions of several successive mock-ups of CDSSs. Based on these sessions, sever-
al requirements were identified. Consideration was also given to other medical
domains besides AD. The approach to the problem was pragmatic: there was a
clear intention to create a machine learning method that could work with realistic
clinical data sets and later be deployed as a CDSS at memory clinics. In addition
to the requirements specified by the end-users during the design sessions, some
requirements were self-imposed. Altogether, requirements for the algorithms were
considered in five areas, as categorized by Han and Kamber [2011]:

Accuracy: Basic classifier performance characteristics such as area under
the receiver operating characteristic curve (AUC), accuracy, sensitivity and
specificity, compared with state-of-the-art classification methods.

Speed: Computational costs of using the given method.

Robustness: Ability of the classifier to make predictions given noisy data
or data with missing values.

Scalability: Ability to construct and use the classifier efficiently given large
amounts of data.

Interpretability: Level of understanding and insight that is provided by the
classifier or predictor.

4.2.1 Accuracy requirements

For accuracy, the requirement was to be comparable to modern classification
methods that have been shown to perform well in various settings. The methods
commonly used for benchmarking were the naïve Bayesian classifier, SVM, lo-
gistic regression (LR) and RF.
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4.2.2 Speed requirements

The speed of building the model and evaluating it were both considered to be of
great importance. The main reason for this was to support use by clinicians in an
interactive CDSS. If new data became available or the clinician wanted to exclude
some data from the analysis, recreating and re-evaluating the model should be
virtually instantaneous. This would allow exploration of the patient data and hope-
fully allow clinicians to infer connections between measurements that are other-
wise easy to miss.

Another reason for emphasizing speed was the consideration of personalized
medicine, which encompasses the use of risk algorithms and biomarkers for im-
proved diagnostics and treatments [Ginsburg & McCarthy 2001]. A computationally
low-cost method allows quick construction and evaluation of personalized disease
models. With a supervised learning method, personalization could mean, e.g.,
using as training data only those cases that are of the same age group, gender
and/or genotype as the patient being studied. Data analyses could also be per-
sonalized by using healthy controls as the reference for building a regression
model applied to patient data [Koikkalainen et al. 2012]. For a clinician to be able
to apply such methods interactively in a decision support tool, building of the dis-
ease models and evaluating them with patient data should be very quick.

Ultimately, the speed requirement was defined such that both building and
evaluating the model must be possible without perceivable delay while a clinician
is using the CDSS that implements the method.

4.2.3 Robustness requirements

It was mentioned earlier that machine learning methods are currently underused in
clinical settings. One reason for this is the nature of clinical data collection, which
can be haphazard and sporadic. Clinical data can also have errors and missing
data, even in well-controlled clinical trials [Little et al. 2012]. These issues create
significant problems for many machine learning methods. Methods may have strict
requirements for the inputs they accept and most require some data pre-
processing before they can be applied. According to Han and Kamber [2011], pre-
processing steps commonly required by machine learning methods include:

 data cleaning – detecting and correcting or removing corrupt or inaccurate
records and/or replacing missing data with substituted values,

 data integration – the merging of data from multiple data stores,

 data reduction – deriving a set of values used for machine learning from raw
source data or removing features that do not contribute to the results, and

 data transformation – converting values from the data format of a source
system into the data format of a destination system or normalizing data to a
common space.
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For the method developed in this thesis work, minimal pre-processing of patient
data was an important goal. If possible, patient data should be accepted as is and
any issues normally associated with problematic or missing data handled within
the algorithm implementation. The method should thus function even with pre-
existing data sets that were collected without consideration for supervised classifi-
cation. It should not mandate adding (e.g. imputation), removing (e.g. feature
selection) or normalizing of data as a pre-processing step. These requirements
were also supported by the clinicians who indicated that they preferred to base
their decisions on realistic data that was actually measured from patients.

Another requirement related to robustness was determinism, i.e. given the
same data model and inputs, the results should always be the same. Determinism
would make the validation of the method as a clinical decision support tool and
approval as a medical device simpler, since the risks associated with using the
results for diagnosis would be related only to how good the model and data for the
question were, not the stochastic result of a single evaluation of the model.

Finally, small changes to the inputs were expected to result in small changes to
the outputs, making the method well suited to monitoring disease progression.
This property of a machine learning method is called stability, indicating how the
method is perturbed by changes to its inputs. A stable learning algorithm is one for
which the prediction does not change much when the training data are modified
slightly. Some classifiers can give a very high probability of having AD even when
in reality the data cannot predict AD anywhere near that accuracy. In addition, by
changing a single patient value slightly, the results could be reversed and indicate
a very low probability of having the disease. Unstable outputs like this would limit inter-
est and also make following disease state longitudinally impossible for clinicians.

4.2.4 Scalability requirements

The number of training cases used for building the disease models was expected
to be at most some thousands of previously diagnosed patients. As for the number
of features, anything between a few features up to thousands of features was
expected. The whole range of possibilities should be supported, with the speed
requirements defined earlier also fulfilled. Supporting scaling at this level would
allow relatively large amounts of data are to be processed interactively. The scal-
ing should also extend to the reporting of analysis results, enabling the clinicians
to absorb all the important information, regardless of the scale of the data.

4.2.5 Interpretability requirements

Interpretability is a subjective measure and therefore more difficult to assess. In
the discussions with clinicians it became apparent that their ability to interpret the
results is as important as the accuracy of the method. Incorporating new infor-
mation into the diagnostic process would be challenging if the method provided,
for example, only a single number indicating the probability of a patient having a
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disease. Thus, the method was required to provide a comprehensive and objective
estimate of a patient’s disease state that also corresponded to his/her clinical
status.

Another requirement for interpretability was to keep the algorithm understanda-
ble to the level at which clinicians were able to verify the results using pen and
paper if they wanted. The reasoning for this ‘white box’ approach was that if clini-
cians are able to see and understand how the algorithm arrives at its results, they
should be more comfortable using this information in their decisions. Obviously,
with enough data, manual verification would become inconvenient, but neverthe-
less it should be possible. This requirement was in clear contrast to many modern
classifiers, which process the data as a ‘black box’ that cannot be easily inspected
by humans, especially if they are not machine learning experts.

The final major interpretability requirement was to indicate clearly the influence
of diagnostic tests and any raw measurement values on the results. This would
allow clinicians to see how much the different tests affect the classification, possi-
bly determine which tests should be performed next and evaluate the results ap-
propriately. Lastly, related to the speed requirement, the inclusion and exclusion of
variables was required to be interactively modifiable, allowing exploration of pa-
tient data in search of answers to several clinical questions.

4.2.6 Consideration of existing methods

Several existing methods were considered after the requirements became clear.
Not surprisingly, quick quantification of the disease state from heterogeneous and
sparse data in a deterministic and understandable manner had not been exten-
sively addressed in previous research at the time the work started. Although sev-
eral promising approaches were found, they invariably fell short in areas of ro-
bustness, speed or interpretability.

Well-known classifiers and regression methods were considered first. Ensem-
ble methods like RF and stochastic methods such as GP were the most promising.
Ultimately, none of the existing methods fully satisfied all the requirements set for
this work: their outputs (probability estimates of having the disease or not) did not
always produce values that reflected disease progression. The algorithms were also
often overwhelmingly complex to clinicians. Some research using these methods
have since been done and they appear to be reasonably good solutions for as-
sessing disease progression [Young et al. 2012, Chincarini et al. 2011]. The other
recently introduced disease state quantification methods mentioned in Section 3.4
were published in parallel with this thesis work and thus were not available for con-
sideration when the work started. The method proposed in this thesis work is com-
pared with the other disease quantification methods in more detail in Section 6.2.
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4.3 Disease State Index

Research and development work for this thesis was done using the commercial
software package MATLAB2. This work resulted in the supervised learning method
DSI and an associated visualization method DSF, described later in this chapter.
These methods are the main topic of this thesis. Results from evaluating the
methods with various data sets are provided in the next chapter in which the thesis
publications are summarized.

In short, the DSI is a supervised learning method that processes heterogene-
ous patient data to derive numeric index values denoting the disease state of  a
patient. Disease state can be considered a condition related to the progression of
a disease based on data measured from a patient. DSI is the numeric quantifica-
tion of disease state, obtaining values between [0, 1]. In practice, the DSI is com-
puted by comparing a patient’s measurement values comprehensively with previ-
ously diagnosed subjects with and without a disease. Previously diagnosed pa-
tients are provided as training data for the method, containing examples of control
(healthy) cases and positive (disease) cases. The numeric values resulting from
evaluating DSI, i.e. disease indices or DSI values, are defined as the location or
rank of the patient between the control and positive cases. They denote the simi-
larity of patient data to the positive cases in the training data. Thus, increasing DSI
values indicate greater similarity to patients having the disease, based on the
comparison with the training data. The following sections describe in detail how
the DSI is computed.

4.3.1 Supervised learning, classification and regression

In machine learning, we can assume that a model of a system is defined with a set
of parameters:

= ( | ), (1)

where g(·) is the model,  are its parameters, x is the input and y is the output. In
supervised learning, the parameters in  are optimized by observing training data
and minimizing errors in the mapping between training data inputs to the correct
outputs. Regression is defined as supervised learning where the correct outputs
are numeric values [Alpaydin 2010]. Thus the expected output, y, can be a num-
ber in the case of regression or a class code (e.g., healthy/disease) in the case of
classification. The inputs and outputs can both be multidimensional.

The DSI is a supervised learning method, since it receives pairs of inputs and
the correct output classes as training data from a supervisor and from these learns
a mapping from the inputs to the output values. It is slightly unorthodox in the

2  MATLAB Release 7.6 and newer, The MathWorks, Inc., Natick, Massachusetts, USA
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sense that it lies somewhere between regression and classification. In the training
data, there are no numeric output values that would guide the building of a regres-
sion model. However, since DSI results in numeric output – disease indices indi-
cating the progression state of the disease – it implicitly defines a regression mod-
el based on the labelled training data. The DSI can be used as a classifier if the
numeric disease index is translated into a class label such as ‘healthy’ or ‘disease’.
Thus, the DSI is comparable to classification methods that provide a numeric class
probability that determines the output class.

4.3.2 Assumptions

The DSI method assumes that values measured for disease diagnostics and used
for classification adhere to a distribution that changes in a certain way as the dis-
ease progresses. For example, the volume of hippocampus is known to decrease
with AD progression and the -amyloid load in the brain tissue increases with
disease progression [Jack et al. 2013]. This allows modelling of the progressing
disease state based on the differences between the control (healthy) population
and the positive (disease) population in the training data. Figure 4 shows example
distributions of data drawn from such populations, representing a situation in
which the positive population obtains larger values than the control population.
The implication of this assumption is that when the DSI assesses similarity to the
disease population, a change in a measured value in a certain direction always
changes the output in the same direction, i.e. the DSI is a monotonic function.

The assumption of measures changing monotonically due to a disease does
not hold in a situation in which a feature has a normal range for controls but yields
increased or decreased values for the positive population (or vice versa). For
example, some blood tests and the amount of sleep per day may function like this.
The assumption established above requires these features to be split into two
distinct features, one modelling the elevation in a positive distribution and another
modelling the decrease. Within the data sets used in the thesis work, no such
features were encountered. Nevertheless, splitting a feature for analysis is not
optimal and finding a better solution is one of the directions for future work, as
discussed in Chapter 6.

Situations in which value distributions remain relatively constant with disease
progression do not present a problem for the method. These features simply get
ignored by design, as described in Section 4.3.4.
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Figure 4. Examples of control and positive populations and the evaluation of the
resulting fitness function at locations a and b. Reproduced from Publication II with
permission from the Institute of Electrical and Electronics Engineers © 2011 IEEE.

4.3.3 Fitness

The first step in calculating the DSI is to derive a fitness function for each individu-
al feature included in the model. Given patient values x1, x2, …, xn, the fitness func-
tion provides a non-linear transformation of the value xi into the fitness space with
range [0, 1], based on the differences between the control and positive distribu-
tions. For any features that can be represented on a numeric scale, the fitness
function Fit(xi) is defined as:

)()(
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where LP(xi) is the left integral of the probability density function (PDF) for positive
class values Pi, and RC(xi) is the right integral of PDF for control class values Ci, as
shown in Figure 4. The derivation of the fitness function can be conducted in an
analogous manner if populations are interchanged, i.e. the positive distribution has
smaller values than the control distribution. The order of populations is determined
by comparing the medians and means of the distributions. In practice, computation
of the fitness function in Equation 2 is not done with an estimated PDF but in a
discrete manner using the original raw training data values. All values for a feature
found in the training set are evaluated sequentially, setting each value in turn as a
decision threshold , one of which is shown in Figure 4. Now, it is possible to
replace the division of integrals in Equation 2 with the fraction of rejection errors
(false negatives) from all the errors (both false negative and false positive), written as:
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where FNR and FPR refer to false negative and false positive rates, i.e. the ratios
of incorrectly classified instances when  is used as the decision threshold. As
can be inferred from Equation 3, a variance in population sizes does not affect the
fitness function: equal PDFs result in the same fitness function regardless of the
number of samples in the distributions. After establishing the discrete fitness func-
tion using the available training data values, evaluating fitness for any patient
value x is possible by interpolating between the discrete instances. Figure 4 shows
the result of evaluating fitness at two points, a and b.

The fitness function in Equation 3 is monotonic (proven in the supplementary ma-
terial for Publication I) according to the assumption made in Section 4.3.2. The main
benefit of monotonicity is illustrated in Figure 5, where the results from evaluating the
fitness function are compared with conditional probability. With data sampled from
real patient populations, other machine learning methods may indicate that hippo-
campal atrophy (cell death) could in some cases be a positive change, which does
not make clinical sense. This cannot happen with the fitness function and thus the
assumption made in Section 4.3.2 is often appropriate for clinical decision support.

Figure 5. Conditional probability and fitness computed with two distributions of
control and positive cases. On the left, well-behaving distributions produce monot-
onously increasing curves with both methods. On the right, limited amount of data
with long tails and possibly some outliers cause drastic changes to the behaviour
of conditional probability. Reprinted from Publication I with permission from IOS
Press © 2011 IOS Press.

For a purely categorical variable { , } where the categories cannot be
represented on a scale, conditional probability of the subject belonging to the
positive population when observing  = xi can be used as the fitness value. In this
case the lack of monotonicity does not matter as the categories are assumed to be
independent of each other.

Figure 6 shows an example in which we want to evaluate the fitness for a pa-
tient measurement value. All controls (blue happy faces) and positives (red neutral
faces) in the training data have been positioned along the X-axis according to a
measurement of cerebral atrophy. The patient studied is indicated by the black
face. Computation of fitness is illustrated in Figure 7. Four (4) cases out of 40 in
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the control group were found to have more atrophy than our patient, i.e. FPR =
4/40 = 0.10. In addition, there are 24 positive cases with less atrophy than our
patient out of 42 positive cases in total, resulting in FNR = 24/42 = 0.57. The fit-
ness value computed for the patient is thus FNR/( FNR+ FPR) = 0.85, meaning that
the patient measurement fits much better to the positive group than to the control
group, which can also be confirmed visually in Figure 6.

Figure 6. Values for controls (blue) and positives (red) in the training set and a
patient whose fitness is to be evaluated.

Figure 7. To evaluate fitness, the patient value is chosen as a decision threshold
and the ratios of the remaining control and positive cases are computed.

The example above is slightly simplified, since in reality the fitness is evaluated by
interpolating between two discretely evaluated fitness values, i.e. interpolating
between the fitnesses of the closest values in the training data that are larger and
smaller than the patient value.

4.3.4 Relevance

Some features are better for quantifying disease progression than others. This
characteristic of a feature is modelled in the DSI algorithm with a measure called
relevance. Similarly to fitness, the relevance function gives a value between [0, 1].
With relevance, increasing values indicate better discrimination capability. Unlike
fitness, the relevance computation does not depend on the patient measurement;
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it is based purely on the distributions of control and positive cases in the training
data. In short, relevance is defined as a feature’s ability to separate the known
control and the positive populations. Relevance for scale values that increase with
disease progression is defined as:

,1*)(*)(,0max:)( iPiC xRxLielR (4)

where LC(xi*) is the left integral of PDF for control values Ci, and RP(xi*) is the right
integral of PDF for positive values Pi at the decision threshold xi* (shown in Figure 4).
The decision threshold xi* for the relevance computation is the point at which the fit-
ness function (Equation 2) evaluates to 0.5, but it could also be selected to be the
point at which the control and positive PDFs intersect.

To help understand Equation 4, LC(xi*) can be thought of as specificity for train-
ing data, i.e. the proportion of patients whose data indicate no disease and who
test negative for it. Conversely, RP(xi*) is the sensitivity of training data, i.e. the
proportion of positives with data indicating having the disease. As with fitness,
relevance can be derived for interchanged population distributions and the actual
computation is done using discrete data from the training set. Figure 8 shows
examples of relevance computed for three scale features.

Figure 8. Relevance computed for three variables with different scales (X axis)
based on control (blue) and positive (red) distributions in the training data. Increas-
ing relevance indicates better separation of the distributions.
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With purely categorical variables for which the categories cannot be ordered on a
scale, relevance is computed using only the training cases that are in the same
category as the independent variable, i.e. the ones that have the same value as
the patient being studied:

,1)()(,0max:)( ii xSpecxSensielR (5)

where Sens(xi) is the ratio of positive cases with fitness > 0.5 to the total number of
positive cases in category  =  xi, and Spec(xi) is  the  ratio  of  control  cases  with
fitness < 0.5 to the total number of control cases in category  =  xi. Figure 9
shows examples of relevance computed for two categories.

Figure 9. Relevance for two categories of a purely categorical feature using control
(blue) and positive (red) distributions from the training data.

Equations 4 and 5 are virtually the same. The only difference is that in Equation 5
training data for only one category within the feature is included.

When the relevance of a feature evaluates to zero, the feature discriminates be-
tween the classes as poorly as a random label. A relevance approaching one, i.e.
where both sensitivity and specificity for training data are close to one, indicates that
the feature is very capable of discriminating between controls and positives and is
thus an excellent candidate for estimating the disease state. As with fitness, rele-
vance computation does not depend on the sizes of training populations but is
determined purely by the separation of PDFs derived from those populations.

4.3.5 Combining fitness and relevance as the Disease State Index

To study the combination of several variables, the n-variable scalar valued Dis-
ease State Index function DSI(x1,  x2,  …, xn) is defined as a weighted mean of fit-
ness and relevance values:
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Since both relevance and fitness are in the range [0, 1], it naturally follows that
Equation 6 also results in a value in the range [0, 1]. Figure 10 illustrates the eval-
uation of Equation 6 where the fitness values of three individual patient measure-
ments are weighted by the variable relevancies to obtain a composite DSI value
for the three measurements.

Figure 10. Evaluating DSI as a weighted mean of fitness and relevance values.
Black bars denote the location of a measured patient value in relation to the con-
trol (blue) and positive (red) distributions.

Conceptually, individual fitness values computed for measurements and their
combination as a composite DSI value exist in a common space. This means that
the fitness of an individual feature value can be considered as the DSI value for
that feature. For example, by computing the fitness for a volume of hippocampus
measurement, one can determine the disease state of a patient based on that
single measurement. Combining this with fitnesses of other measurements pro-
duces a composite disease state estimate, which is still in the same space but
comprises information from several measurements. The DSI values are assumed
to lie on an interval scale, i.e. one unit on the scale represents the same magni-
tude across the whole range of the scale. As the DSI values are based on fitness,
increasing values of the DSI indicate increasing similarity to the positive population
and a more severe disease state based on the training data.

4.3.6 Recursion to derive the total Disease State Index

To provide a holistic estimate of the patient disease state, contributions from all
the tests and biomarkers used in the analysis must be made available to the do-
main experts. This is made possible in the DSI method by organizing all the
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measurement values in a tree hierarchy in which the tests and biomarkers exist in
separate branches but combine into a common root (see Figure 11). Currently,
organizing features into the trees is an ad-hoc procedure, but a rule of thumb
exists: the tree should adhere to a structure that the domain experts find reasona-
ble. This implies that similar tests can be grouped into appropriate categories and
also that individual tests can be grouped based on what they measure. For exam-
ple, all neuropsychological tests could be located under a single node in the tree
and a single neuropsychological test could be divided into groups of features,
depending on the purpose of each test section producing those features, such as
memory, cognition, visuospatial capability, etc. Another example is division of
imaging features into categories by the region of the brain they are derived from,
an example of which is shown on page 52.

Figure 11. Patient data organized as a tree hierarchy with individual variables
(leaf nodes, representing the original raw values measured from the patients),
tests (internal nodes) and the total DSI (root node). Additional levels and varying
branch depths can be employed to modify the granularity of the tree. Reprinted
from Publication I with permission from IOS Press © 2011 IOS Press.

By not combining all patient measurements in one step, the DSI method allows
hierarchical study of measurement categories. In other words, Equation 6 is not
evaluated once, but instead, recursion is applied to yield a hierarchy of DSI values
that the domain experts can read and interpret. The three steps described above –
determining fitness (Section 4.3.3), relevance (Section 4.3.4) and combining them
as a composite DSI (Section 4.3.5) – are repeated recursively by grouping the
data until a single DSI value is arrived at. Recursion starts with the parents of the
leaf nodes. DSI values obtained by combining the leaves are then used for evalu-
ating fitness and relevance at the upper levels of the hierarchy. Eventually, the
recursion ends at a single DSI value representing the overall quantified disease
state of the patient. This is called the total DSI value and is derived from all availa-
ble patient measurement data. The total DSI is based on the disease model de-
fined by the training data and the tree hierarchy. The computation is fully determin-
istic, according to the requirement set in Section 4.2.3.

The recursion described above results in a full hierarchy of fitness, relevance
and DSI values that represent the disease state of the patient based on particular
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measurements. The DSI values in the hierarchy indicate how individual measure-
ment values, groups of measurement values and all the patient data, as a whole,
match the disease profile as defined from a large number of previously known
training cases. Relevance values show how important each piece of data are
considered. Together, relevance and DSI values provide a comprehensive and
objective quantification of disease state based on patient measurement data.

4.3.7 Summary of the DSI method

The DSI method computes a continuous disease index value by comparing patient
measurements with training data that has discrete class labels for control (healthy)
and positive (disease) cases. After deciding the tree hierarchy organization, the
process of computing the DSI follows these steps:

1) For each patient measurement, compute fitness (Section 4.3.3).

2) For each feature, compute relevance (Section 4.3.4).

3) According to the tree hierarchy organization, combine fitness and rele-
vance values inside each branch as a composite DSI (Section 4.3.5).

4) Using the composite DSIs from step 3 as measurements, continue recur-
sively from step 1 (Section 4.3.6).

5) Stop when all measurements have converged to a single measurement,
i.e. the total DSI.

The resulting DSI values can be understood as the percentage of patient meas-
urement data fitting the disease profile, which is modelled by the training data and
the tree hierarchy. Relevance can be understood as the importance of individual
features and their combinations in measuring disease progression.

The DSI method supports the requirements set in Section 4.2. Every step of the
method is simple, both conceptually and computationally, making it quick to evalu-
ate and interpret. It accepts scale and category data and, with additional fitness
functions, could be extended to support other types of data. Missing values do not
create problems when building the disease model or evaluating it with previously
unseen patient data; each feature is first handled alone using the available data
and then combined with other data. The result of applying the DSI method is not
only a single DSI value characterizing all data but a full hierarchy of fitness, rele-
vance and DSI values that can be read and interpreted by a domain expert.

The correlation between features was considered when developing the DSI
method. The tree hierarchy and the recursion resulting from it appear to counter
issues normally associated with correlation. For data sets with a large number of
features, a step that applies principal component analysis (PCA) to the leaf nodes
of the data hierarchy was developed. This did not have a meaningful effect on the
method performance with the disease data sets used in this thesis and thus is not
considered an integral part of the method. The added benefit of using original raw
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data as the starting point for the algorithm is that interpretation of the results is
simple, since all the raw values used in the computation are ones with which do-
main experts are already familiar.

4.4 Disease State Fingerprint

In an analogy to human fingerprints and DNA fingerprints, DSF visualizations form
unique disease fingerprint patterns, enabling quick visual inspection of the disease
state and raw measurement data at several levels of abstraction. In the DSF,
patterns emerge from a tree of nodes rendered according to the DSI organization,
using shapes and colours to quickly identify the patient’s disease state. The DSF
is a visual counterpart of the DSI method intended to make reading of the original
measurement data and analysis results quick and easy. It allows domain experts
to see at a glance how the DSI values were computed and to determine which
data are more important than others for the question at hand. The DSF also
makes it possible to build a generic data analysis platform for visualizing disease
state progression interactively in a CDSS. This section shows – based on Publica-
tions I–III – how DSF visualizations are derived from the DSI results.

4.4.1 Colours

The DSF uses a gradient of colours from blue to white to red, indicating increasing
DSI values, as shown in Figure 12. The choice of colours produces a heat map, in
which cold (blue) colours indicate similarity to healthy controls and hot (red) col-
ours similarity to disease state. Although colours resembling traffic lights were
considered, ranging from good (green) to neutral (yellow) to poor (red), their use
was avoided due to the difficulties they would create for colour-blind people.

Figure 12. Different DSI values are indicated using colours.

4.4.2 Node sizes

The DSF uses size to indicate relevance. The larger the node, the more relevant it
is. To compare relevancies accurately, there needs to be a reference to compare
node sizes to, or, more simply, the numeric relevance value can be shown to
users when necessary. By default, nodes with a relevance of zero are not shown.
A custom threshold could also be selected, hiding nodes that are less relevant
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than the selected threshold. When observing many features simultaneously, sibling
nodes in the tree hierarchy are organized in order of relevance, as shown in Figure 13.

Figure 13. Node sizes indicate differences in relevance. Siblings are sorted ac-
cording to decreasing relevance. The tree shows features from an MRI processing
method grouped by the regions of the brain from which they are derived.

4.4.3 Combining nodes in a hierarchy as the DSF

The combination of DSI and relevance values within a tree hierarchy captures the
essence of patient data in relation to the studied disease. DSI values rendered as
shades of red indicate which patient data are similar to the positive population in
the training data, and the size specifies how relevant that information is based on
previously diagnosed cases. A large DSI value and high relevance for a neuropsy-
chological test, for example, indicate that the patient performed similarly to a
known AD population and that the test discriminates between healthy and AD
patients with good accuracy. This is visualized in the DSF as a large red node that
is easy to notice. On the other hand, a test with a large DSI value but little or no
relevance may often be ignored, since the test is unable to differentiate between
the control and positive populations. Accordingly, these kinds of features are very
small or even hidden in the DSF visualization. Figure 14 illustrates how individual
points of data are combined in the DSF visualization to form a comprehensive
picture for evaluating the disease state.
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Figure 14. At the top is a DSF visualization of patient data with a large share of
measurement values indicating early AD. The computation of the DSI for an MRI
variable is depicted at the bottom. Adapted from Publication I with permission from
IOS Press © 2011 IOS Press.
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In Figure 14, the names of the tests and their DSI values (or raw measurement
values in the case of leaf nodes) are shown next to each node. DSI values are
indicated by both colours and numbers, providing an overview of the disease state
for the patient from any branch of the tree in relation to the training set. Red col-
oured nodes with DSI values approaching one indicate similarity to early AD cas-
es. Blue colour and DSI values close to zero indicate similarity to stable MCIs. The
relevance of a test is indicated by the size of the node next to the test’s name. Not
all nodes are fully expanded; collapsed nodes show the overall DSI value from
that test section. Here, neuropsychological tests and MRI contribute most to the
total disease index, indicated by the largest node sizes and red colour. Nodes in
the tree hierarchy can be presented within a software tool such that they are inter-
actively expanded and collapsed. This allows users of the DSF to see an overview
of all the data and, when necessary, drill into each individual patient measure.
Leaves of the tree show original raw patient data (actual test results), such as
‘Delayed Word Recall’, which is a task in a neuropsychological test, and ‘Total
Volume of Hippocampi’, derived from structural brain MRI.

4.4.4 Longitudinal DSF visualizations

Data from multiple time points can be rapidly analysed with the DSI method. Feed-
ing the longitudinal results to the DSF produces visualizations with a temporal
component. The results of longitudinal DSF visualizations are shown in Figure 15.
The left side of the figure shows DSFs in which the DSI values of the individual
tests at different time points are shown. The total DSI values (the topmost rows of
the DSFs) combine results from all the tests. The size of a box indicates how well
a feature discriminates between control and positive cases. Again, colours indicate
into which group the data fit best. The right side shows linear regression of the
total DSI values (red dashed line with white circles). Black squares present the
total DSI values of a patient. A vertical line indicates the age (on the x-axis) of the
patient being studied.
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Figure 15. Longitudinal DSF visualizations for two MCI patients. The rows of boxes
show the disease state evaluated at approximately 6-month intervals. Reprinted
from Publication III with permission from IOS Press © 2014 IOS Press.

4.4.5 Summary of the DSF visualizations

The DSF provides a quickly interpretable visual overview of the patient state,
obtained from data-driven and evidence-based analysis of patient data. Using
colours and shapes, it draws attention to the data that are most relevant, reducing
the need to go over hundreds of data points individually. DSF clearly discloses the
factors contributing to the results, highlights the relevant measures and, thus,
supports application of clinical judgment. The DSF respects the requirements
specified earlier in Section 4.2 and emphasizes interpretability. It supports scala-
bility by allowing a huge number of raw data points to be visualized interactively
with only a subset of data visible at any time. It can also provide detailed infor-
mation of any individual measurement if needed. Longitudinal visualizations allow
clinicians to objectively monitor a changing disease state, and they can also be
used to visualize the effects of drug treatments on the progression of AD.
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4.5 Implementation of the DSI and DSF in the PredictAD tool

A software library implementing the methods and an interactive CDSS using the
library, called the PredictAD tool, were developed in parallel with the DSI and DSF
methods. The goal of the PredictAD tool was to provide clinical decision support in
the early diagnosis of AD using the DSI and DSF methods.

The development of all the software was done in the C# language using Mi-
crosoft .NET Framework 3.5 or later [Hejlsberg et al. 2006]. User interface compo-
nents were implemented with Windows Presentation Foundation (WPF) 3.5 or
later. The PredictAD tool and the interactive implementations of the DSI and DSF
methods were evaluated with clinical partners several times in an iterative devel-
opment process. The following sections describe the PredictAD decision support
tool, based on Publications II, V and VI.

4.5.1 Software library implementing the DSI and DSF methods

A proprietary software library implementing the DSI and DSF methods provides an
application programming interface (API) for managing data, computing DSI values
and visualizing the results interactively with the DSF (see Figure 16). It is a stand-
alone library applicable to several domains in addition to early diagnosis of AD.

The library provides an abstraction for data repositories as persistence stores
(see (a) in Figure 16) that allow receiving data from multiple data sources. The
underlying data source can be virtually anything, a database, a web service or
simply a set of data files on a disk. A data definition layer(b) is used for describing
entries (the types of tests done on a patient) and features (the types of raw meas-
urement values within entries). Definitions are application-specific meta-data and
are configured in source code or by XML (Extensible Markup Language) when
initializing the library for use. The organization of the DSI tree hierarchy is also
described within this layer. The actual data are read from the persistence stores
into another layer(c), where all the entities (e.g. patients), entries and feature val-
ues are represented by object instances.

To perform DSI computations, the library needs to know how to select control
and positive cases from the training data. For this, a rule-based grouping system(d)

was developed. A CDSS using the API is responsible for defining the grouping
rules, e.g., “if diagnosis equals AD, assign patient to positive group AD”. After
applying grouping rules, control and positive cases in the training data are known
to the library(e). Next, using a configurable sampling system(f), the library selects
particular data from training cases as the training data for the DSI method. Soft-
ware tools were created for interactive creation and modification of the grouping
and sampling rules systems.

Finally, having sampled the training data(g), the library uses them together with
the patient measurements(c) and the feature hierarchy(b) to evaluate the DSI(h). All
data are first organized according to the tree hierarchy, and a disease model is
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trained. Fitnesses, relevancies and DSI values are then computed recursively to
obtain a total DSI value from all the available patient data.

To visualize the data and results from applying the DSI method to the user, the
library provides graphical user interface components for interactively displaying
and manipulating DSI trees(i), data distributions(j), entry timelines(k) and entry de-
tails(l). If a user wishes to examine the DSI or relevance values of any tree node in
more detail, clicking on the node provides more information in the form of data
distributions. Any test or measurement node can also be omitted from the DSI tree
interactively. This can be a useful feature if the user considers certain results
unreliable or wants to test different hypotheses.

Figure 16. Overview of the architecture of a library implementing the DSI and DSF
methods showing the main directions of data flow. Reproduced from Publication II
with permission from Institute of Electrical and Electronics Engineers © 2011 IEEE.

4.5.2 PredictAD tool – a CDSS for early diagnosis of AD

The PredictAD tool integrates heterogeneous data such as imaging biomarkers,
CSF biomarkers and results from neuropsychological tests for compact visualiza-
tion within an interactive user interface. The reason for building the PredictAD tool
was to investigate whether it – by using the DSI and DSF methods – can assist
physicians in the early diagnosis of AD. The hypothesis was that physicians inter-
acting with the software could predict conversion from MCI to AD better than with-
out using the tool. This would allow some patients to be diagnosed earlier than
they are currently, making possible earlier delivery of treatments and better selec-
tion of subjects in pharmacological trials.

The tool was developed iteratively with clinicians. In the first prototype, basic
design and architecture was put in place. In the second prototype, the user inter-
face was improved and new features implemented. The third prototype was used
for validation with clinicians. There also exists a more recent prototype version of
the PredictAD tool, which will be used in future studies at several memory clinics.
See Figure 17 for an overview of the tool evolution over these prototypes.
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Figure 17. Evolution of the PredictAD tool research prototypes. Starting from top
left in clockwise order: prototypes 1, 2 and 3, and the current prototype.

The PredictAD tool provides an overview screen from which all patient data can be
easily accessed. The overview screen contains basic demographic information
and a timeline of the tests and measurements performed on the patient. In the
latest versions, an interactive implementation of the DSF is also visible on the
overview screen, showing data analysis results from the DSI. These are provided
by the software library implementation described in Section 4.5.1.

4.5.3 Summary of the PredictAD tool

The PredictAD tool was developed as a means to validate the DSI and DSF meth-
ods clinically. The implementation of the application was also a central deliverable
for the EU-funded PredictAD project. The design and development work to build
the PredictAD tool was a software engineering project whose detailed description
is outside the scope of this thesis. Nevertheless, the work resulted in a CDSS that
could be installed in end-user environments for validation by clinicians, forming a
crucial part of this thesis work.
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5. Summary of publications

This chapter describes the six original publications on which this thesis is based.
The chapter is organized according to the goals of this thesis.

5.1 Design and implementation of the DSI and DSF

The design and implementation of the DSI and DSF methods and the PredictAD
tool were published mainly in two articles: Publications I and II. Since the design
and implementation have already been covered by the previous chapter, they are
not discussed further here.

5.2 Evaluation of the supervised learning method

The evaluation of the DSI method consisted of several studies in which the meth-
od was applied to large AD cohorts and publicly available data sets of other dis-
eases. The goal was to validate the DSI as a disease state quantification method
and a classifier that performs at a level similar to the current state-of-the-art classi-
fication methods. Considering the intended use of the method as a platform for
CDSS, these evaluations would also address other requirements listed in Section
4.2, including speed, robustness and interpretability of the results.

5.2.1 Classification performance

The goal of Publications I and II was to describe the methods and validate the DSI
method as a supervised classifier using a large AD cohort and several publicly
available disease data sets. In these studies, the primary goal was to evaluate the
DSI method’s ability to discriminate patients with MCI between those who will
develop AD and those who will not. In other words, the DSI method was used for
predicting conversion from MCI to AD. In addition, Publication II evaluated the
performance of the DSI with publicly available hepatitis, heart disease, and diabe-
tes data sets. In all of these studies, the results were benchmarked against refer-
ence classifiers.
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The studies used cross-validation for the method evaluation. Cross-validation is
a technique for assessing how the results of a statistical analysis generalize to an
independent data set. One round of cross-validation involves partitioning a sample
of data into two complementary subsets. A disease model is built using one subset
(training set), and this model is validated on the other subset (test set). To reduce
variability, several iterations of cross-validation are performed using different parti-
tions, and the validation results are averaged over the rounds. Both studies used
ten iterations of stratified 10-fold cross-validation. Stratified selection means that
the ratio of control to positive cases remains the same over all iterations. 10-fold
validation means that the training data is divided into ten subsets and each set is
used once for testing and nine times for training. The final results of these studies
were computed by averaging ten iterations of 10-fold cross-validation, i.e. classifi-
ers were trained and tested 100 times to obtain robust performance estimates.

The data used in these studies were from the Alzheimer’s Disease Neuroimag-
ing Initiative (ADNI) [Mueller et al. 2005]. ADNI is a longitudinal five-year study of
Alzheimer’s disease conducted in the USA and Canada, with the aim of develop-
ing and validating surrogate markers for early detection and monitoring of AD
progression. ADNI measured the progression of MCI and early AD using bi-
omarkers and clinical and neuropsychological assessment. ADNI recruited ap-
proximately 400 people with MCI to be followed for three years, in addition to
recruiting 200 normal elderly individuals and 200 AD patients. From the MCI pa-
tients recruited to ADNI, the studies in Publications I and II included those whose
last clinical diagnosis remained MCI, forming a classification group of SMCIs
(n=190), and those whose last clinical diagnosis was AD, forming a group of
PMCIs (n=154, average time to make AD diagnosis: 19 months). Using the sparse
and heterogeneous baseline measurement data alone, the DSI method’s ability to
predict conversion to AD was evaluated. The baseline data included neuropsycho-
logical tests, magnetic resonance imaging data, molecular test data and genetic
test data (see Table 1).

The DSI model of the progressing disease state was shown to discriminate well
between different diagnostic classes. The main result in Publication I regarding
classification performance was the comparison with the LR, SVM and Bayes clas-
sifier when predicting conversion from MCI to AD. The results showed that the DSI
method performed at a level similar to that of the reference classifiers. Prediction
accuracy for all classifiers was close to 70% and the AUCs using all the data were
approximately 75% (see Figure 18).
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Table 1. Demographic and clinical data of SMCI and PMCI (average conversion
time 19 months from baseline) groups. The data are expressed as counts and
percentages of available data except for age and education, which are expressed
as the mean (± standard deviation).

SMCI PMCI

Subjects 190 154

Gender

    Male 125 (66%) 93 (60%)

    Female 65 (34%) 61 (40%)

Demographics, years

   Age 74.8 (± 7.6) 74.2 (± 6.9)

   Education 15.8 (± 3.1) 15.6 (± 2.9)

Available baseline data

    MMSE 190 (100%) 154 (100%)

    ADAS 189 (99%) 152 (99%)

    TMT 186 (98%) 153 (99%)

    MRI 171 (90%) 135 (88%)

    CSF 94 (49%) 83 (54%)

    APOE 190 (100%) 154 (100%)

Figure 18. The area under the curve from the receiver operating characteristic
curve (AUC) of DSI compared with the LR, SVM and Bayes classifiers when pre-
dicting conversion from MCI to AD using a subset of the data and all the data.
Reprinted from Publication I with permission from IOS Press © 2011 IOS Press.
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Publication II used the same cohort of ADNI patients but slightly different data to
study prediction of the conversion from MCI to AD once more. Again, the results
shown in Table 2 indicate that the DSI method is able to discriminate between
patients as well as the other classifiers.

Table 2. Comparison of DSI classification performance with the reference methods
when predicting conversion from MCI to AD. The means and standard deviations
(SD) are listed over ten iterations of 10-fold cross-validation.

Method AUC Accuracy Sensitivity Specificity
DSI 0.75 ± 0.08 0.68 ± 0.08 0.70 ± 0.12 0.66 ± 0.10

SVM 0.75 ± 0.08 0.67 ± 0.07 0.64 ± 0.11 0.69 ± 0.11

Bayes 0.76 ± 0.08 0.67 ± 0.07 0.65 ± 0.12 0.69 ± 0.11

LR 0.69 ± 0.09 0.62 ± 0.07 0.73 ± 0.10 0.53 ± 0.11

In addition to the ADNI MCI data set, the DSI method was evaluated in Publication
II using three other medical data sets (Pima Indian Diabetes, Cleveland Heart
Disease and Hepatitis) available online3. The performance with these data sets
was compared with publicly available benchmark results4. The DSI method was
shown to perform slightly worse than the best method in each case but better than
the average (see Table 3). The best benchmark methods differed in all cases and
they were optimized individually for each problem, unlike the DSI method, which
was simply given the raw data without any pre-processing.

Table 3. Classification accuracy comparison using publicly available data sets and
benchmark results. The table shows number of subjects and means and standard
deviations (SD) of classification accuracies from ten iterations of 10-fold cross-
validationa, 10-fold cross-validationb and averages of methods beating the majority
class classifierc.

Data set Controls /
Positives DSIa Benchmark

maximumb
Benchmark

averagec

Diabetes 500/268 0.75±0.04 0.78±0.04 0.74±0.03

Heart disease 164/139 0.81±0.06 0.85±0.01 0.79±0.06

Hepatitis 123/32 0.84±0.08 0.90±0.01 0.85±0.04

3  Frank, A. and Asuncion, A. (2010). UCI Machine Learning Repository.
http://archive.ics.uci.edu/ml, verified available 25.4.2013

4  Duch, W. (2011). Comparison of classification results.
http://www.is.umk.pl/projects/datasets.html, verified available 25.4.2013

http://archive.ics.uci.edu/ml
http://www.is.umk.pl/projects/datasets.html
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In summary, the classification accuracies and AUCs achieved by the DSI method
compare well with other methods. With regard to predicting MCI to AD conversion,
the results correspond with several other studies using similar data sets. Cui et al.
[2011] combined MRI, CSF and neuropsychological tests at the baseline to obtain
a prediction accuracy of 67.1% and an AUC of 79.6%. Davatzikos et al. [2011]
utilized MRI images to construct a Spatial Pattern of Abnormalities for the Recog-
nition of Early AD (SPARE-AD) index that classified correctly 52.3% of 239 MCI
patients (AUC 66.0%). A logistic regression model presented by Ewers et al.
[2012] achieved an accuracy of 76.3%. Classifying SMCI and PMCI patients with
full sets of MRI, PET and CSF measurements using SVM reached an accuracy of
76.4% and an AUC of 80.9% [Zhang et al. 2011].

5.2.2 Computational performance

In Section 4.3, the design of the DSI method was shown to be rather simple. Intui-
tively, it can be accepted that the computational requirements for analysing patient
data with this method are conservative. Publication II used the initial unoptimized
implementation of the DSI to evaluate its performance within a CDSS. The training
of the DSI model using 344 training cases and computation of DSI values for a
patient took on average 860 ms (standard deviation 74 ms). Re-evaluation of DSI
values after interactively excluding or including a feature was virtually instantane-
ous, consistently taking less than one millisecond on a common laptop PC. These
computational times show that the method can be applied as an interactive CDSS
for clinicians who wish to find answers to particular questions. Although the speed of
comprehensively analysing all patient data is already quite quick, it should be noted
that there is plenty of room for optimizing the performance of the implementation.

5.2.3 Quantification of disease progression

In Publication III, the objective was to study disease progression quantitatively
using heterogeneous longitudinal data from the ADNI MCI cohort. The study eval-
uated whether it is possible to discern significant trends in the severity of AD as
reflected by the DSI and whether subjects who convert from MCI to AD have a
different longitudinal DSI behaviour to subjects who do not. To evaluate this, re-
gression parameters were derived from DSI values computed at several time
points. The classification of subjects into converters (PMCIs) and non-converters
(SMCIs) on the basis of regression parameters was then studied. The cohort used
in this study was a more recent and updated version of the ADNI MCI population.
See Table 4 for demographic information of the study cohort. Analyses were done
using stratified 10-fold cross-validation.
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Table 4. Demographics of the Publication III cohort at baseline. Data presented as
number of subjects (percentage of subjects %) or mean ± standard deviation.
There are fewer subjects than in Publications I and II since only those subjects
with enough longitudinal measurements could be included.

SMCI PMCI

Subjects 149 (51.6%) 140 (48.4%)

Gender

     Female 51 (34.2%) 55 (39.3%)

     Male 98 (65.8%) 85 (60.7%)

Age (years) 75.1 ± 7.4 75.4 ± 6.7

Education (years) 15.9 ± 3.0 15.6 ± 3.0

The results in Table 5 show that the change in DSI values over time, as reflected
by the slope of the regression equation from longitudinal DSI values, clearly differs
between the SMCI and PMCI groups. The slope of the PMCI cases was five times
higher than the slope of the SMCI cases. When the slopes of the SMCI cases
were studied further, it was noticed that there were two subgroups in the SMCI
group: a group with lower slopes and another group with higher slopes that overlap
the slopes of the PMCI cases (see Figure 19). It was proposed that the SMCIs with
higher slopes represent patients that would progress into AD or other dementia later
if the follow-ups were continued. This finding was similar to previous studies in
which some SMCI cases had data similar to early AD, suggesting that these sub-
jects may progress into AD in the future [Cui et al. 2011, Davatzikos et al. 2011].

Table 5. Regression parameters of longitudinal DSI values for SMCI and PMCI
groups. Values are median (25th percentile, 75th percentile). Disease state index
values were derived using all available variables. * statistically significant difference
between the groups (Mann-Whitney U test, p < 0.0005), + significantly different
from zero (one-sample Wilcoxon Signed Rank test, p < 0.0005).

SMCI PMCI

Slope* 0.002 (0.000, 0.006) + 0.010 (0.005, 0.015) +

Intercept* 0.295 (0.139, 0.621) + 0.754 (0.626, 0.860) +
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Figure 19. Histograms of the slopes for the SMCI (blue) and PMCI (red) cases.
There are two separate subgroups in the SMCI group. A mixture distribution of two
normal curves fitted to the slopes of the SMCIs is shown. The areas of the histo-
grams are scaled to one (SD = standard deviation, Q1 = 25th quartile, Q3 = 75th
quartile). Reprinted from Publication III with permission from IOS Press © 2014
IOS Press.

The classification using regression parameters obtained from longitudinal DSI
values achieved a performance comparable to that of other studies using similar
longitudinal ADNI data sets. Regression parameters combining all the data
achieved the best classification accuracies and AUCs. The classification accuracy
and AUC for the slopes were 76.9% and 82.3%, respectively. For the constants,
the prediction accuracy was 74.6% and the AUC was 80.8%.

5.2.4 Optimizing the diagnosis of early AD in MCI

When advising patients and families on the likelihood of transition from MCI to AD,
a predictor model with sensitivity and specificity over 80% is essential because
false positive and negative rates of over 20% are clinically unacceptable [Ronald
and Nancy Reagan Research Institute & National Institute on Aging 1998]. Recent
research on large AD cohorts has shown that predicting AD at an early stage
using the commonly available biomarkers cannot generally achieve that level, as
prediction accuracies remain closer to 70% [Devanand et al. 2008, Hinrichs et al. 2009,
Walhovd et al. 2010, Cui et al. 2011, Davatzikos et al. 2011, Ewers et al. 2012,
Kruczyk et al. 2012].
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As described in Chapter 4, the DSI quantifies the disease state of a patient in a
continuous variable in the range [0, 1]. The disease indices from applying the DSI
method were found to differ from disease probabilities computed with other classi-
fication methods. The DSI values were evenly distributed across the output range,
whereas other classifiers maximize class separation to achieve optimal classifica-
tion performance. In Figure 20, the DSI values are shown to relate to the clinical
status of the patient more linearly than the disease probabilities. This linearity was
also verified statistically using Kruskal-Wallis and Pearson tests in Publication I.

The goal of Publication IV was to implement and evaluate a novel clinical deci-
sion support strategy that makes use of this feature of the DSI method. The prem-
ise was to exploit the linearity of the DSI for selecting patients who could be dis-
criminated with improved accuracy, i.e. with sensitivities and specificities closer to
90% than 70%. In practice, the challenge of prediction was approached from a
reverse angle, which may better address the clinical need. First, a target prediction
accuracy was found at 87.7% by modelling the amount of evidence available in
the data when clinical AD diagnoses are made. Then, by selecting subjects with
the most or least evidence of early AD – i.e., the ones with the largest and small-
est DSI values – subgroups of patients were formed. These subgroups with strong
evidence of the disease were such that when considering only them, the prediction
accuracy for the selection reached the predetermined target accuracy. The cohort
used for these analyses was the same as in Publication III and described in Table 4,
and all the analyses were done using ten iterations of 10-fold cross-validation.

Figure 20. Index and probability distributions of the ADNI MCI data set using DSI,
LR, SVM and Bayes, displayed as box plots and probability density estimates of
patient classes: healthy controls (blue), SMCI (green), PMCI (yellow) and AD
(red). In the box plots, a line in the middle is the median, the upper and lower ends
of the box are the 75% and 25% percentiles, and the whiskers show the range.
Index/probability values of two arbitrarily chosen SMCI (light blue) and PMCI
(brown) patients with similar clinical test results and biomarker data are visualized
on top of each distribution graph. The locations of the stems illustrate differences
between the methods. Reprinted from Publication I with permission from IOS
Press © 2011 IOS Press.
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The results obtained with this strategy were promising, considering the DSI’s in-
tended use case of clinical decision support in the early diagnosis of AD. Two
years before the study subjects received clinical AD diagnoses, approximately one
in four had strong evidence of early AD in their measurement data, allowing classi-
fication at the target accuracy. One year before AD diagnoses, approximately half
of the subjects were included in the group of decisive cases with strong evidence
of early AD. Thus, it appears that half of the patients who waited for their AD diag-
noses for one or more years could have been considered eligible for diagnosis at
least a year earlier, if identified correctly at that time. This is because the early
signs of AD were evident in their measurement data and being included in the
group of decisive cases implies a prediction accuracy close to 90%, a level similar
to clinical diagnoses themselves. In addition to potential AD converters, the strategy
revealed with similar accuracy subjects who were likely to remain stable based on
their data. These results can be easily understood by examining the green (SMCI)
and yellow (PMCI) areas in Figure 20 within a situation in which we only consider
subjects whose DSI < 0.3 or DSI > 0.7. Hardly any PMCIs have DSI < 0.3 and,
although not visible in the figure, hardly any SMCIs have DSI > 0.7. Thus, the
accuracy for discriminating between SMCI and PMCI increases when ambiguous
cases between 0.3 and 0.7 are dismissed from consideration.

A feature of the DSI method that helps this optimization strategy is that the rel-
evance function (Equation 4) drives sensitivity and specificity evenly. Relevance
does not maximize accuracy; instead it maximizes the sum of sensitivity and spec-
ificity. Since the sensitivities and specificities of the cases selected with the DSI
method are more or less evenly distributed, the clinical requirement of having both
high sensitivity and specificity is fulfilled without additional effort.

In summary, the approach presented in Publication IV provides an additional
tool for applying the DSI method in clinical decision support. This data analysis
strategy allows clinicians to determine a target sensitivity and specificity and obtain
in response threshold DSI values that indicate how high (or low) the total DSI value
must be to predict future decline to AD (or stability of MCI) at the target accuracy.

5.3 Evaluation of the clinical decision support system

The DSI method has been shown to perform well as a classifier, providing com-
prehensive analyses of patient measurement data and a platform for visualizing
the results with the DSF. Unfortunately, having these properties does not guarantee
that actual benefits would be gained by having the methods available in a CDSS.
In other words, until the performance of clinicians making decisions using decision
support tools incorporating these methods is evaluated, one does not known
whether the assumed benefits are real.

This section provides a summary of the results from Publications V and VI, in
which the DSI and DSF methods were evaluated by clinicians in clinical decision
support scenarios as part of the PredictAD tool. In addition to the clinical validation
studies, all the original publications had a component in which the DSF trees –
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disease fingerprints – were studied visually to evaluate the viability of the DSF
approach. The section starts with the most important findings from qualitative
assessments of DSF visualizations and concludes by presenting results from the
clinical validation studies.

5.3.1 Single subject DSF visualizations

Publication I presented the case for using DSI and DSF to obtain a quick overview
of patient data in clinical decision-making. One of the main objectives in making
this publication was to visually inspect patient DSFs to evaluate their clinical prac-
ticality. Over the course of this initial study, DSFs of countless SMCI and PMCI
patients were inspected to confirm that they expressed the state of the patient
data in relation to control and positive populations and highlighted the tests and
variables contributing to the results. Figure 21 shows example DSFs for four sub-
jects: clear SMCI, subtle SMCI, subtle PMCI and clear PMCI. With the clear cases,
nearly all the variables point towards AD (shades of red) or against it (shades of
blue). With the more ambiguous cases (DSI closer to 0.5), there is a mix of colours
that show which patient data indicate AD and which do not.

From Figure 21, it can be seen that the DSF provides a quickly interpretable
visual overview of patient state, obtained from statistical analysis of patient data.
The colours and shapes of the DSF draw attention to the data that are most rele-
vant, bypassing the need to go over all data points individually. Nevertheless, all
data are still available for inspection, if the need to study them arises. DSF also
clearly discloses the factors contributing to the results and thus supports applica-
tion of clinical judgment. To the author’s knowledge, the DSF is unique as a su-
pervised learning data and visualization method that was developed with a philos-
ophy emphasizing both prediction accuracy and clinical interpretability equally.
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Figure 21. Data of four patients at baseline visualized using the DSF. Starting
from the left, two SMCI patients and two PMCI patients are shown. The box sizes
(denoting relevance) indicate the capability of a variable or test to discriminate
between SMCI and PMCI cases. Sibling nodes are ordered top to bottom accord-
ing to relevance. Colours indicate into which group the patient data fit better: blue
equals SMCI and red equals PMCI. A unique disease fingerprint emerges from the
node sizes and colours for each patient, allowing quick evaluation of the patient
state and reviewing of individual tests and variables contributing to the results.
Reprinted from Publication I with permission from IOS Press © 2011 IOS Press.

5.3.2 Longitudinal DSF visualizations

Since AD is a slowly progressing disease, it is often monitored for some period of
time before a diagnosis is arrived at. To facilitate decision support when following
the progression of AD and to allow better analysis of longitudinal data, the DSF
visualization was extended in Publication III to support temporal data.

A visualization of the progression of AD in MCI subjects with the DSF is
demonstrated in Figure 15 on page 55. Most nodes in the longitudinal DSF of a
clear SMCI case are blue, indicating that the patient data remained constantly
similar to the data of previously seen stable cases (top part of Figure 15). The
other SMCI case with increasing DSI values and the DSF changing from blue
towards red is shown at the bottom of Figure 15. The data on this subject appear
to be progressing slowly towards AD and the subject could be an early AD case
yet to be diagnosed, as hypothesized in Section 5.2.3. A regression line showing
the trend of changing DSI values projects the trajectory of the disease state into
the future.
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5.3.3 Comparison with current diagnostic guidelines

In the study described in Publication V, the baseline data of 391 MCI cases in the
ADNI cohort were analysed with the objective to predict final clinical diagnoses
after three to five years of follow-ups. The baseline data from all the MCIs were
evaluated by a single clinician using the PredictAD tool and current guidelines of
prodromal AD as identified by combinations of cognitive scores, visual assessment
of middle temporal lobe atrophy on MRI, and CSF biomarkers [Dubois et al. 2007,
Dubois et al. 2010, Jack et al. 2011, McKhann et al. 2011, Sperling et al. 2011].
The working hypothesis was that computer-assisted analysis of patient data could
improve the accuracy of the diagnostic predictions.

The results show that the PredictAD tool alone and the clinician with the assis-
tance of the PredictAD tool were more accurate in predicting three-year MCI out-
comes than current research criteria for diagnosis of prodromal AD. Guideline-
based predictions using different combinations of examinations achieved accura-
cies between 57–65%. The accuracy with the PredictAD tool was slightly above
70%, which is not very high with regard to clinical utility but is comparable with the
current state of the art. Nevertheless, the clinician was able to select one-third of
patients with a clear indication of either early AD or stable MCI for whom the accu-
racy was 84%, which is at a level that could influence clinical reasoning.

5.3.4 Predicting conversion from MCI to AD with the PredictAD tool

In Publication VI, a cohort of 140 MCI subjects was selected from ADNI. Three
clinicians specializing in neurodegenerative diseases used a prototype version of
the PredictAD tool to predict which MCI patients would later convert to AD. They
rated each subject on a scale of six categories, ranging from ‘Clear non-AD’ to
‘Clear AD’. Non-AD categories were defined to be used for subjects with any other
condition than early phase AD. Classifications by clinical raters were compared
with the raters’ own classifications when deprived of the tool, i.e. only having the
patient data on paper. The golden truth for the diagnostic predictions was the
clinical diagnoses made by ADNI investigators. In other words, clinical raters were
asked to predict three-year conversion outcomes (SMCI or PMCI) using only
baseline data from MCIs, including cognitive tests, MRI and CSF biomarkers. The
hypothesis was that clinicians would perform better with the tool than without it.

Prototype three of the PredictAD tool, described in Section 4.5.2, provided pa-
tient information of subjects one by one to the clinical raters. In the tool, a timeline
panel showed tests that had been administered to the patient. Selecting a test
from the timeline displayed it in a preview panel, providing detailed results from
the selected test. The DSF visualizations showed how patient data relate to data
from previously diagnosed SMCI and PMCI cases.

There were two major findings from this study. First, it was shown that inter-
rater agreement was greater when clinicians had the tool than when they did not



5. Summary of publications

71

have the tool. Second, the prediction accuracy of clinical raters was superior when
using the tool.

When the three raters were using the tool, the inter-rater agreement between
them was good, evaluated with quadratic weighted Cohen’s kappa (see [Bowers 2008])
as 0.64, 0.76 and 0.80. When deprived of the tool, the agreement between the
raters was only moderate (Cohen’s kappa: 0.41, 0.43 and 0.71). The agreement
between classifications made by a single rater using either the tool or paper charts
was relatively good (Cohen’s kappa: 0.58, 0.70 and 0.77). In summary, inter-
observer differences between ratings were minimized when they used the tool to
make categorizations.

When clinical raters were deprived of the tool, there was a decrease in every
rater’s classification performance. Overall, there was a statistically significant
decrease in classification accuracy from 70.0% to 63.2% from when the tool was
used to when it was not used. In addition to the decreased classification accuracy,
clinical raters were less confident in categorizing patients as ‘clear’ cases without
the tool. With the tool, clinicians selected a third of the patients as clear cases and
achieved a prediction accuracy of 85.6% for them. Again, this number could be
considered high enough to affect clinical reasoning. With paper charts, only a
quarter of patients were selected as clear cases, achieving an accuracy of 82.2%
for them. In conclusion, the study found evidence that the PredictAD tool with the
DSI and DSF methods allows clinicians to interpret patient data better and predict
future decline to AD more accurately.
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6. Discussion

6.1 Accomplishment of objectives

The objective of this thesis work was to design and evaluate a disease state quan-
tification method and apply it to clinical decision support in Alzheimer’s disease.
The work was accomplished by developing three components in parallel and itera-
tively with clinicians who were considered potential end-users of the methods. The
first of them is a supervised machine learning method (DSI) that compares patient
data with previously diagnosed cases and estimates the patient’s disease state
quantitatively. The second component is a method for visualizing the DSI results
to allow quick, interactive study of raw patient measures and their relation to a
disease. This visualization uses colours and shapes to distinguish the differences
between patients, and it was named DSF in an analogy to unique human and DNA
fingerprints. The third component is the PredictAD tool, a software tool implement-
ing the DSI and DSF methods in an interactive user interface that was created for
performing evaluations with clinicians.

The DSI method, together with its visual counterpart DSF, had several require-
ments to fulfil, as listed in Section 4.2. Optimizing the classification accuracy was
crucial, but it was not the only goal. It had to be balanced against the interpretability
of the results, the robustness when using heterogeneous and incomplete data sets
and the processing speed requirements. The PredictAD tool needed to provide the
methods to clinicians in a package that benefits diagnostics, while also minding
usability issues. Based on the results from the studies presented in Chapter 5, this
thesis work was able to achieve its objectives.

In Publications I and II, the DSI method was shown to be as accurate as state-
of-the-art classifiers when predicting conversion from MCI to AD. The method also
performed well with several other publicly available disease data sets. The charac-
teristics of DSI and DSF make them convenient for representing disease state. As
discussed in Publications I and III–VI, the linear and slowly changing response to
changes in inputs corresponds to the clinical status. This allows quantifying of
disease progression over time and, perhaps more importantly, allows for the easy
selection of patients with early evidence of the disease for more accurate diagnostics.
Other machine learning methods may be capable of extracting the same information
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from the data, but often they cannot provide it to human readers in a way that it is
easily taken into use in clinical decision-making.

The DSI algorithm is computationally lightweight, allowing interactive use and
quick generation of personalized disease models. The speed of training and test-
ing multiple disease models is quick enough to allow several hypotheses to be
evaluated, which will be important for differential diagnostics. Scalability was
achieved by keeping algorithmic complexity low and providing the DSF for visual-
izing large amounts of data without the need to show everything at once.

For robustness, the design of the DSI takes into account the heterogeneity and
sparseness of clinically collected data by allowing the disease models to use
whichever values are available. None of the studies employed any pre-processing
of data beyond specifying the DSI tree hierarchy. Quite simply, raw patient data
were fed into the DSI and DSF methods without data cleaning, feature selection,
normalization or any other pre-processing steps.

The interpretability of the results was guaranteed by keeping the DSI method,
the DSF visualizations and their interactive implementation within the PredictAD
tool relatively simple. The DSF trees allow quick reading of patient data and re-
sults from the DSI method. In current practice, clinicians are required to browse
test results individually, often in several systems, possibly losing track of the big
picture. Clinicians, particularly those with less experience, may be more confident
diagnosing AD at an early stage if they are able to see all the data at once and
also how patient data relate to previously diagnosed disease populations. While
the DSI and DSF increase the amount of information available to a clinician, they
also allow clinicians to concentrate on what is important and ignore less relevant
information, making the most of existing data.

The clinical objectives of this thesis were to create methods and tools that allow
end-users to objectively and comprehensively assess a patient’s disease state in
order to diagnose AD earlier and more accurately. The results from Publications V
and VI show that the best classification accuracies and agreement between clini-
cians were achieved when they used the PredictAD tool for decision support. In
other words, the most accurate and consistent results were achieved when clini-
cians combined their clinical expertise in AD with the additional information and
context provided by the DSI, DSF and PredictAD tool. Clinicians were also able to
select clear cases in which data contained strong evidence of early AD with good
accuracy. Thus, it appears that some patients who currently wait several years for
an AD diagnosis could be diagnosed earlier if the collected data were interpreted
correctly. Earlier diagnoses would bring benefits to treatments, which could start
earlier, and to drug trials, for which improved patient selection would reduce the
number of subjects needed. Eventually, better profiling of patients could also im-
prove targeting of drugs to the correct patients. Longitudinally quantifying disease
state allows objective monitoring of disease progression for diagnostics and for
evaluation of drug treatment efficacy.

All the publications in this thesis reflect the reality that current prodromal AD
guidelines and combinations of biomarkers are not perfect for predicting AD in the
early phase. Prediction accuracies reported in recent literature are commonly
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between 60–80%. Nevertheless, with the DSI, DSF and PredictAD tool, it was
possible to select subgroups of patients where the prediction accuracy is ap-
proaching 90%. This capability rises from the objective and evidence-based infor-
mation on the state of the patient, integrated from large amounts of imperfect
heterogeneous measurement data and reported in a manner that can be incorpo-
rated to decision making processes. To maximize the value of data that are al-
ready being collected in investigations with the patients, clinicians should have
tools that allow them to better assess disease severity and detect sub-populations
for which diagnostic accuracies are high enough to affect clinical reasoning.

It should be noted that not every step of the design and development work
needed to create the DSI and DSF is fully explored in this thesis. For example,
several ways to evaluate fitness and relevance were considered in addition to the
ones presented in Sections 4.3.3 and 4.3.4. Effects of different approaches on
method performance were often negligible or even negative. As an example, more
accurate models of relevance caused overfitting of data, sometimes making the
final predictions less accurate. The recursive building of the DSI hierarchies also
saw several iterations before arriving at the current one, which produces intuitive,
stable and consistent results at several levels of abstraction. When considering
the impact of different approaches on interpretability and performance, the author
believes that the current implementation strikes a good balance between them.

6.2 Impact of the research in its field

Clinical decision support systems have a long history, but there are only a few
stand-out success stories. The approach in this thesis work was to produce meth-
ods and tools that are viable for the research of diseases but that could also be
transferred to clinics in the real world. The intention was to minimize issues re-
stricting deployment, so that the methods have the potential to make an impact in
the research community and later in the medical field.

The DSI and DSF methods presented in this thesis are ideologically related to
two recently developed disease state quantification methods: bioprofile and dis-
ease progression score [Escudero et al. 2012, Jedynak et al. 2012]. These meth-
ods quantify heterogeneous patient data to provide an objective and continuous
measure for neurodegenerative disease progression over the course of AD. These
methods are thus designed for a similar purpose to that of DSI and DSF.

The core concept of the bioprofile method introduced by Escudero et al. [2012]
is that it applies unsupervised clustering to a limited set of features, which is se-
lected based on the hypothetical model of AD progression by Jack et al. [2010]. Of
the features selected from four different tests, the training data are divided into two
clusters each. A priori information about the tests is used for labelling the clusters
as ‘having disease’ and ‘not having disease’. When previously unseen patient data
are analysed, normalized distances to the cluster centroids are compared to pro-
duce a continuous variable called a bioindex between [0, 1]. Classification accura-
cies achieved with bioprofiling are slightly lower than those commonly published
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with similar data sets and the method appears to provide little additional value
when combining data from multiple tests. Bioprofiling as a method is very simple
to grasp, however, allowing intuitive understanding of the results.

The DPS method introduced by Jedynak et al. [2012] is mathematically much
more involved than either of the DSI and bioprofile methods. It aims to model the
temporal dynamics of multiple biomarkers in a data-driven manner and validates
the results in AD by comparing the DPS model to the hypothetical model of AD
progression by Jack et al. [2010]. The DPS method analyses all longitudinal pa-
tient data simultaneously, fitting the measures to sigmoidal functions over time.
From a clinical decision support point of view, it is not totally clear how the DPS
would best be used since the method requires longitudinal measurements. This is
a challenge for early diagnostics since the first estimates of disease state and
progression become available only after waiting for the disease to progress for
several months. Nevertheless, as a data-driven disease state quantification method,
the DPS is a very valuable addition to the evidence supporting the recently intro-
duced and updated hypothetical models of AD disease progression [Jack et al.
2010, Jack et al. 2013].

To the author’s best knowledge, machine learning methods with goals and re-
quirements similar to those of this thesis work do not exist. The DSI and DSF
methods are in a unique niche, and because of the encouraging results they have
been taken into regular use by a small group of people in the research community.
The methods presented in this thesis seem to be a good fit when supervised
learning is applied and interpreted by laymen or domain experts. In addition to
Publications I–VI, there are already several other publications using the DSI and
DSF as the data analysis methods. For example, the method has been applied to
discriminating frontotemporal dementia from MCI and AD [Muñoz-Ruiz et al. 2013]
and discriminating AD from several other dementias [Simonsen et al. 2013]. The
methods and the PredictAD tool have also been chosen as the clinical decision
support platform for two large EU projects targeting differential diagnostics of
dementia, VPH-DARE@IT5 and PredictND6, which should make the methods well-
known in this field. In the machine learning community, the DSI and DSF methods
are not yet well known, most probably due to the lack of publications about them
published in conferences or journals in the field.

There has also been interest in applying the DSI and DSF methods to contexts
other than dementia. They are already being used in TBIcare7, an EU-funded
project that provides objective and evidence-based solutions for the management
of traumatic brain injuries. There are also initial concepts for using the algorithm to
produce ‘wellness index’ estimates in lifestyle management. In general, there
seems to be potential for wider exploitation of the methods, but the extent of their
realization remains to be seen.

5 http://www.vph-dare.eu/, verified available 15.2.2014
6 http://www.predictnd.eu/, verified available 15.2.2014
7 http://www.tbicare.eu/, verified available 18.9.2013

http://www.vph-dare.eu/
http://www.predictnd.eu/
http://www.tbicare.eu/
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6.3 Limitations of the studies

The majority of the research work for this thesis was done with arguably the most
comprehensive AD data set available to the wider research community, ADNI.
Although it is by all accounts an excellent data set, having used only one is a
severe limitation. To counter this limitation, method generalization was evaluated
to some extent in Publication II. The studies by Muñoz-Ruiz et al. [2013] and Si-
monsen et al. [2013] have since provided additional evidence of method generali-
zation. Some of the results in this thesis have also been repeated with another
large AD data set, DESCRIPA (Development of screening guidelines and criteria
for predementia Alzheimer’s disease), described originally by Visser et al. [2008].
This work is pending publication in a journal in the near future. Yet another study
that applies the DSI method to four large AD data sets and provides information
about inter-data set generalization performance is also under way. Subsequently,
the PredictAD tool will be applied to unselected prospective clinical data sets to
assess its value in the context of a memory clinic, providing realistic performance
measures in clinical use. The current version of the PredictAD tool is being applied
to identification of early AD in a pilot study at two sites in Finland. In the future, a
version supporting differential diagnostics of dementia will be evaluated at multiple
sites in Europe with prospective unselected patients.

The main disadvantage of the DSI and DSF methods and the PredictAD tool is
that they require a properly validated training data set of control and disease cases.
Building large training data sets is challenging since the data must be collected
from actual patients within legal and ethical boundaries. As training data become
available, the risks associated with using particular sets of data for modelling a
disease and basing decisions on them must be controlled. When using clinical
diagnoses as the golden standard, it should also be remembered that an accuracy
of 100% is not a realistic target. Clinical AD diagnoses are not always confirmed
pathologically, and when they are, the agreement between clinical and neuropa-
thological diagnoses is only 70–90% [Lim et al. 1999, Petrovitch et al. 2001, Kazee
et al. 1993]. To achieve the best performance, training data sets with clinical diag-
noses and pathological confirmation should be used.

Data obtained in research studies are currently the best starting point for train-
ing data, but populations in those represent a selected group of patients as op-
posed to a general mixed memory clinic population. As such, research data may
not fully represent the situation at clinics. For example, affective disorders or
measures of depression and anxiety are not included in the AD models in this
thesis, although abnormal mood and anxiety of mild severity are associated with
MCI and may be confounding factors in the diagnostic process. This omission is
simply due to not having those particular data available for analysis. Nevertheless,
any data that can influence diagnostic decisions should be included in the DSI
model of AD progression or, at a minimum, be available to the clinician when
making decisions.
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A big limitation in almost all of the current research cohorts is that some of the
stable MCI patients may have converted to AD after the follow-up period ended.
These patients remain as SMCI in the data but are, in fact, PMCIs, skewing the
results. It is possible that the effects of this issue are seen in Publication III, in
which a group of SMCI patients was found to have disease progression associated
with AD.

In this thesis, all data analyses were performed at cohort level without personal-
ization based on individual patient demographics or genotype. The effects of per-
sonalizing the analyses are expected to be rather small, but they should be taken
into account when diagnosing real patients. Personalized estimates of the pa-
tient’s condition would provide as accurate a picture of the situation as possible.

Currently, the methods presented in this thesis support two-class problems only.
Extending to multi-class problems is very important since differential diagnostics
between multiple possible dementias and mixed dementias are clinically relevant
questions. Supporting differential diagnostics requires a strategy for comparing
patient data with several disease groups in parallel and an extension to the DSF
visualization for quickly comparing patient data with multiple possible disease
classes. The performance of the methods in differential diagnostics must also be
clarified in upcoming research projects.

6.4 Future work

The work presented in this thesis is an initial platform for the DSI, DSF and Pre-
dictAD tool. There are many avenues of research that can be explored to take
them further.

The most pressing consideration for future research is a limitation mentioned
above: addressing how these methods are best applied when multiple diseases
are under consideration. Since the DSI algorithm is computationally inexpensive,
several hypotheses can be evaluated quickly. Thus, reducing the multi-class prob-
lem into multiple binary classification problems is a valid strategy. Building binary
classifiers allows distinguishing between one disease and the rest (one versus all)
or between every pair of diseases (one versus one). In one versus all, the disease
getting the highest DSI value is the one that patient data resembles most closely.
In the one versus one approach, every classifier assigns the patient to one of the
two diseases and a composite classification is produced using voting or some
other ensemble method. In addition to extensions to the data analysis with the
DSI, the DSF visualization requires further development to allow quick interpretation
of data produced in multi-class classification problems.

In the future, the DSI should provide support also for features for which values
can both increase and decrease in the case of pathology. For example, sleep of
eight hours per day can be considered normal but both four hours and twelve
hours may be indicative of dementia. As described in Section 4.3.2, the DSI cur-
rently requires such features to be split into two. The DSI method would benefit
from automatic detection of such features and from a fitness function that produces
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increasing DSI values when deviating from the normal range, irrespective of the
direction of the deviation.

The DSI was designed to be used with unprocessed raw patient data collected
at clinics in routine investigations. Accordingly, in the original publications comprising
this thesis, using raw heterogeneous patient data without any pre-processing did
not adversely affect accuracy or performance. The hierarchical evaluation of the
DSI appears to alleviate issues in data correlation as described in Section 4.3.7,
but correlations between features and their impact on the optimal organization of
the DSI tree hierarchy should be studied more carefully. Generally, developing
methods for constructing, optimizing and validating the DSI tree hierarchies is
considered an important future research path. As new data sets arrive, there
should be tools that propose a hierarchy suitable for data analysis with the DSI
method instead of the current ad-hoc approach. Similarly, feature selection methods
and the need to apply them should be studied more closely.

With the extensions to the DSI and DSF methods described above, the methods
should be able to handle most clinical decision support problems for which they
are intended. To verify this, the methods must be tested extensively, using as
many data sets as possible. It is expected that in terms of accuracy, the DSI
method will not be the best possible classifier for every problem. For decision
support and data visualization, it is nevertheless important that the method con-
stantly achieves good accuracies compared with other classifiers, so that it is
known to perform robustly in a wide range of problems.

To really see whether the PredictAD tool is able to improve the diagnostics of
AD, it must be evaluated with unselected prospective patients at several memory
clinics. As was already mentioned, there are several studies in the planning phase
that have this agenda. The goal of these studies is to verify that when clinicians
analyse patient data with the help of the DSI and the DSF, they are able to make
AD diagnoses earlier and more accurately. When support for differential diagnos-
tics is added to the DSI and DSF, the clinical evaluations will also include consid-
eration of multiple possible dementias. In clinical diagnostics, connecting the DSI
to the updated hypothetical model of the AD progression should also be taken into
account [Jack 2013]. Since the DSI produces results normalized to a range be-
tween zero and one, it should be relatively easy to provide additional visualizations
of the data overlaid on the hypothetical model. In the clinical evaluations, it is also
important to make sure that clinicians can use the CDSS easily, so that it is not
dismissed because of usability issues.

Lastly, to simplify deployment of the PredictAD tool to various clinics, tighter in-
tegration with HISs should be explored. Although the current implementation can
receive brain MRIs from the hospital’s picture archiving and communication sys-
tem (PACS), it is still considered a stand-alone system (category 1) as defined in
Section 2.2. The PredictAD tool could be a better fit to clinics as an integrated
system (category 2) or as a service model (category 4). Making the switch is mostly
a technical and financial issue, due to the fact that HISs are complex software
systems and integrations with them are expensive to implement. Standards, like
the ones presented in Section 2.2 should help in integration work, but as Brooks
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[1987] has said, there is no silver bullet. One option to reduce the need for exten-
sive integrations is to consider business models for bringing a subset of the tools
available to clinicians. There may be ways to provide some of the DSI, DSF, and
PredictAD tool functionalities to clinicians in a way that would still provide benefits
while keeping integrations to existing systems narrow in scope.



7. Conclusions

81

7. Conclusions

In this thesis, a disease state quantification method was presented and applied to
clinical decision support in AD. The work comprised design, development and
evaluation of three components: a supervised learning method (DSI), an accom-
panying data visualization method (DSF) and an end-user software tool imple-
menting these methods called the PredictAD tool.

The performance of the methods and the tool were evaluated computationally
and by clinicians specialized in neurodegenerative diseases. The DSI method
performed as well as state-of-the-art reference classifiers and the classification
results were consistent throughout all of the studies. In general, the accuracies for
predicting conversion from MCI to AD achieved similar levels to those found in
recent literature. In addition, the accuracy for predicting conversion from MCI to
AD from baseline measurements reached a clinically relevant level of 85% for at
least one third of patients in every study. Even though other classification methods
may achieve similar accuracies, clinicians always need to consider several as-
pects in parallel, making the DSI with its visual counterpart DSF good candidates
for use in a decision support tool.

In summary, this thesis shows that the supervised learning method DSI, the
visualization method DSF and the PredictAD tool could be valuable additions for
memory clinics. They could provide assistance in diagnosing AD at an early phase
of the disease, selecting patients in pharmacological trials and following the pro-
gression of the disease. The linearity of the DSI and its response to changes in the
inputs correspond well with a patient’s clinical status. The DSF provides quickly
interpretable visualizations of patient data and reveals their relation to disease
progression. And finally, the PredictAD tool allows clinicians to objectively evaluate
all available patient data and select cases in which early AD can be identified
accurately enough to be clinically relevant.
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Abstract. Diagnostic processes of Alzheimer’s disease (AD) are evolving. Knowledge about disease-specific biomarkers is
constantly increasing and larger volumes of data are being measured from patients. To gain additional benefits from the collected
data, a novel statistical modeling and data visualization system is proposed for supporting clinical diagnosis of AD. The proposed
system computes an evidence-based estimate of a patient’s AD state by comparing his or her heterogeneous neuropsychological,
clinical, and biomarker data to previously diagnosed cases. The AD state in this context denotes a patient’s degree of similarity to
a previously diagnosed disease population. A summary of patient data and results of the computation are displayed in a succinct
Disease State Fingerprint (DSF) visualization. The visualization clearly discloses how patient data contributes to the AD state,
facilitating rapid interpretation of the information. To model the AD state from complex and heterogeneous patient data, a
statistical Disease State Index (DSI) method underlying the DSF has been developed. Using baseline data from the Alzheimer’s
Disease Neuroimaging Initiative (ADNI), the ability of the DSI to model disease progression from elderly healthy controls to
AD and its ability to predict conversion from mild cognitive impairment (MCI) to AD were assessed. It was found that the DSI
provides well-behaving AD state estimates, corresponding well with the actual diagnoses. For predicting conversion from MCI
to AD, the DSI attains performance similar to state-of-the-art reference classifiers. The results suggest that the DSF establishes
an effective decision support and data visualization framework for improving AD diagnostics, allowing clinicians to rapidly
analyze large quantities of diverse patient data.
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and predictions
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INTRODUCTION

Diagnosing Alzheimer’s disease (AD) is a non-
specific, subjective, and error-prone process, espe-
cially in the early phases of the disease [1]. Because
of their inherent difficulty, diagnoses often come late,
taking up to two years after initial memory problems
occur [2]. Current criteria for AD require early and
dominating decline in episodic memory supported by
abnormal biomarkers [3, 4]. If a patient with objective
evidence of cognitive impairment does not yet meet
the criteria for AD or for other dementia, he or she
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Subjects with data beyond 12 
months and AD diagnosis progression 
matching inclusion criteria

Subgroups for two distinct 
evaluation setups

Correlation to diagnoses
706 subjects

154 PMCI subjects
Diagnosis:

MCI ⇒ AD

190 SMCI subjects
Diagnosis:

MCI ⇒ MCI

163 AD subjects
Diagnosis:

AD ⇒ AD

199 HC subjects
Diagnosis:

HC ⇒ HC

Prediction of conversion
344 subjects

Fig. 1. Patients were divided into two overlapping subgroups. Correlation to actual diagnoses was evaluated using all subjects, capability to
predict conversion from MCI to AD using only SMCI and PMCI subjects.

website (http://www.loni.ucla.edu/ADNI/). The site
also provides exact information regarding ADNI
neuroimaging instrumentation, procedures, and data
processing.

Study cohorts and data selection

The analyses in this paper included ADNI subjects
who a) had follow-up data available beyond the 12-
month visit period and b) belonged to one of four
diagnostic groups based on the baseline diagnosis and
the latest diagnosis available in the database (accessed
on September 2, 2010). The first three diagnostic
groups included subjects whose latest diagnosis was
the same as the baseline diagnosis, particularly elderly
healthy controls (HC, n = 199), stable MCIs (SMCI,
n = 190), and Alzheimer’s disease (AD, n = 163). The
fourth group was a progressive MCI group (PMCI,
n = 154), whose diagnosis at the baseline of the ADNI
study was MCI, but had converted to AD (on average
after 19 months) over the course of the study. Patients
whose diagnosis had changed otherwise, such as from
MCI or AD to healthy subjects, were excluded from
this study. Study cohort selection is illustrated in Fig. 1
and demographic data for the diagnostic groups are
presented in Table 1.

All analyses were made using baseline measure-
ment data readily available from the ADNI database.
Specifically, patient data obtained from six baseline
tests were used; Alzheimer’s Disease Assessment
Scale-cognitive subscale (ADAS), Mini-Mental State
Examination (MMSE), Trail making test from Neu-
ropsychological Battery (TMT), MRI derived volumes
(MRI), amyloid-� and total tau from CSF, and
apolipoprotein E (APOE). Altogether, analyses were
run with 66 unique patient variables distributed into
the ten distinct datasets, illustrated in Fig. 2. Sparse
and incomplete data were intentionally included to
parallel a realistic clinical setting where not all tests
are administered to all patients. In ADNI, automated
volumetric segmentation of MRI was performed with
the Freesurfer image analysis suite [28], which is

Table 1
Demographic and clinical data of the healthy control (HC), sta-
ble mild cognitive impairment (SMCI), progressive mild cognitive
impairment (PMCI, average conversion time 19 months from base-

line), and Alzheimer’s disease (AD) groups

HC SMCI PMCI AD

Subjects 199 190 154 163
Diagnosis

Baseline HC MCI MCI AD
Latest HC MCI AD AD

Gender
Male 104 (52%) 125 (66%) 93 (60%) 87 (53%)
Female 95 (48%) 65 (34%) 61 (40%) 76 (47%)

Demo-
graphics,
years
Age 75.5 (±5.1) 74.8 (±7.6) 74.2 (±6.9) 74.7 (±7.5)
Education 16.1 (±2.8) 15.8 (±3.1) 15.6 (±2.9) 14.9 (±3.1)

Available
baseline
data
MMSE 199 (100%) 190 (100%) 154 (100%) 163 (100%)
ADAS 199 (100%) 189 (99%) 152 (99%) 160 (98%)
TMT 199 (100%) 186 (98%) 153 (99%) 156 (96%)
MRI 190 (95%) 171 (90%) 135 (88%) 137 (84%)
CSF 102 (52%) 94 (49%) 83 (54%) 90 (55%)
APOE 199 (100%) 190 (100%) 154 (100%) 163 (100%)

The data are expressed as counts and (percentages) of available
data except for age and education, which are expressed as mean
(±standard deviation).

documented and freely available for download online
(http://surfer.nmr.mgh.harvard.edu/). Composite vari-
ables and summaries of test patterns, e.g., total MMSE
score and ADAS 13 point total, were excluded from
the datasets, since the same information was contained
within the individual variables.

Disease state index

To improve interpretability of heterogeneous patient
data, a statistical DSI method has been developed,
deriving a scalar index value indicating the state of
AD in a patient. The rationale of the DSI is to provide
additional evidence-based information by comparing
patient data as a whole to a high number of other cases
with or without the disease. It is principally intended to
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is usually diagnosed as having mild cognitive impair-
ment (MCI) [5]. MCI is a heterogeneous state with
several possible outcomes and is associated with an
increased risk of developing AD, particularly when
memory impairment is the predominant symptom [6].
For early diagnosis of AD, a key issue is finding tests
and biomarkers that determine which subjects with
MCI will develop AD. Here, the term ‘biomarker’ is
used in a broad sense, encompassing biologic features
obtained by any and all detection modalities providing
information about the disease.

Diverse sets of neuropsychological tests and
biomarkers have been investigated for their efficacy
to predict conversion from MCI to AD [7–11], and
several studies have shown that combining results
can yield even better predictions [12–14]. Increased
knowledge about cognitive tests and biomarkers has
influenced a recent proposal for a new lexicon, where
the term AD encompasses the whole spectrum of
the disease from predementia to dementia phases and
further emphasizes the combination of clinical and
biomarker data [15]. However, results from many of
the studies are not easily applied in daily diagnostic
work. They may require a specific test pattern that is
not available or is incompatible due to local or national
differences in execution. Occasionally, the statistical
analysis methods lack transparency, making them hard
to incorporate into local decision making processes.
Ultimately, despite all attempts, there have not yet been
findings that would comprehensively differentiate MCI
subjects who develop AD (progressive MCIs, PMCI)
from those who do not (stable MCIs, SMCI).

New approaches for improving the diagnostic pro-
cess in AD are needed. Computer-based analyses
of patient data can quantify information with good
diagnostic accuracy, in some cases comparable to
experienced clinicians [16]. Tools that help manage
the constantly increasing amounts of complex patient
data can increase the quantity of information clini-
cians can examine, and can reveal subtle aspects of
information that are buried under a wealth of clini-
cal data [17, 18]. Clinical decision support systems
(CDSS) have shown their potential in reducing med-
ical errors and increasing health care quality and
efficiency [19–21]. Visualization techniques for ana-
lyzing biomedical and temporal data are already
commonplace [22, 23], and novel clinical information
visualization solutions are constantly being devel-
oped [24–26]. Consequently, a statistical Disease State
Index (DSI) method is proposed for deriving a scalar
value denoting the AD state or progression of AD in
suspected AD patients. In this context, AD state mea-

sures similarity of patient data to previously-diagnosed
healthy and AD populations. While the DSI provides
yet another piece of information to clinicians, its goal
is to distill existing patient data to a few parameters at
a high abstraction level, allowing them to quickly find
relevant information and disregard irrelevant informa-
tion. A Disease State Fingerprint (DSF) visualization
technique is also proposed for displaying patient data
and DSI values in a concise and interpretable format,
extended from earlier research in another biomedical
domain [27]. Together, they offer a decision support
system that allows clinicians to rapidly extract knowl-
edge from large quantities of heterogeneous patient
data and combine them with personal expertise for
making the diagnosis.

The main contributions of this work are the pro-
posal of a novel patient data visualization technique
(DSF) and the definition of an underlying statistical
method for modeling progressing disease state (DSI).
The DSI is evaluated against state-of-the-art classifiers
using baseline data from the Alzheimer’s Disease Neu-
roimaging Initiative (ADNI); its ability to discriminate
healthy elderly controls, SMCIs, PMCIs, and ADs and
its capability to predict conversion from MCI to AD are
considered. Interpretation of the resulting DSF visual-
izations and characteristics of the proposed system are
reviewed to assess their clinical applicability.

MATERIALS AND METHODS

Alzheimer’s disease neuroimaging initiative
(ADNI)

ADNI is a longitudinal 5-year study of AD con-
ducted in the USA and Canada, with the goal of
developing and validating surrogate markers for early
detection and monitoring of AD progression. After
launching in late 2004, approximately 800 participants,
ranging in age from 55 to 90 years, were recruited for
the study: 200 healthy elderly controls, 400 patients
with diagnosed MCI, and 200 with early diagnosed
AD. Follow-ups of ADNI participants were done by
telephone or in person every 6 to 12 months for a
period of two to three years. All participants underwent
repeated cognitive and neuropsychological testing and
magnetic resonance imaging (MRI) scanning. Other
tests, including positron emission tomography (PET)
and lumbar puncture providing cerebrospinal fluid
(CSF) samples, were done more infrequently and not
necessarily for all participants. Data from the study are
freely available to researchers in an online database
at the UCLA Laboratory of Neuroimaging (LONI)
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Fig. 1. Patients were divided into two overlapping subgroups. Correlation to actual diagnoses was evaluated using all subjects, capability to
predict conversion from MCI to AD using only SMCI and PMCI subjects.

website (http://www.loni.ucla.edu/ADNI/). The site
also provides exact information regarding ADNI
neuroimaging instrumentation, procedures, and data
processing.

Study cohorts and data selection

The analyses in this paper included ADNI subjects
who a) had follow-up data available beyond the 12-
month visit period and b) belonged to one of four
diagnostic groups based on the baseline diagnosis and
the latest diagnosis available in the database (accessed
on September 2, 2010). The first three diagnostic
groups included subjects whose latest diagnosis was
the same as the baseline diagnosis, particularly elderly
healthy controls (HC, n = 199), stable MCIs (SMCI,
n = 190), and Alzheimer’s disease (AD, n = 163). The
fourth group was a progressive MCI group (PMCI,
n = 154), whose diagnosis at the baseline of the ADNI
study was MCI, but had converted to AD (on average
after 19 months) over the course of the study. Patients
whose diagnosis had changed otherwise, such as from
MCI or AD to healthy subjects, were excluded from
this study. Study cohort selection is illustrated in Fig. 1
and demographic data for the diagnostic groups are
presented in Table 1.

All analyses were made using baseline measure-
ment data readily available from the ADNI database.
Specifically, patient data obtained from six baseline
tests were used; Alzheimer’s Disease Assessment
Scale-cognitive subscale (ADAS), Mini-Mental State
Examination (MMSE), Trail making test from Neu-
ropsychological Battery (TMT), MRI derived volumes
(MRI), amyloid-� and total tau from CSF, and
apolipoprotein E (APOE). Altogether, analyses were
run with 66 unique patient variables distributed into
the ten distinct datasets, illustrated in Fig. 2. Sparse
and incomplete data were intentionally included to
parallel a realistic clinical setting where not all tests
are administered to all patients. In ADNI, automated
volumetric segmentation of MRI was performed with
the Freesurfer image analysis suite [28], which is

Table 1
Demographic and clinical data of the healthy control (HC), sta-
ble mild cognitive impairment (SMCI), progressive mild cognitive
impairment (PMCI, average conversion time 19 months from base-

line), and Alzheimer’s disease (AD) groups

HC SMCI PMCI AD

Subjects 199 190 154 163
Diagnosis

Baseline HC MCI MCI AD
Latest HC MCI AD AD

Gender
Male 104 (52%) 125 (66%) 93 (60%) 87 (53%)
Female 95 (48%) 65 (34%) 61 (40%) 76 (47%)

Demo-
graphics,
years
Age 75.5 (±5.1) 74.8 (±7.6) 74.2 (±6.9) 74.7 (±7.5)
Education 16.1 (±2.8) 15.8 (±3.1) 15.6 (±2.9) 14.9 (±3.1)

Available
baseline
data
MMSE 199 (100%) 190 (100%) 154 (100%) 163 (100%)
ADAS 199 (100%) 189 (99%) 152 (99%) 160 (98%)
TMT 199 (100%) 186 (98%) 153 (99%) 156 (96%)
MRI 190 (95%) 171 (90%) 135 (88%) 137 (84%)
CSF 102 (52%) 94 (49%) 83 (54%) 90 (55%)
APOE 199 (100%) 190 (100%) 154 (100%) 163 (100%)

The data are expressed as counts and (percentages) of available
data except for age and education, which are expressed as mean
(±standard deviation).

documented and freely available for download online
(http://surfer.nmr.mgh.harvard.edu/). Composite vari-
ables and summaries of test patterns, e.g., total MMSE
score and ADAS 13 point total, were excluded from
the datasets, since the same information was contained
within the individual variables.

Disease state index

To improve interpretability of heterogeneous patient
data, a statistical DSI method has been developed,
deriving a scalar index value indicating the state of
AD in a patient. The rationale of the DSI is to provide
additional evidence-based information by comparing
patient data as a whole to a high number of other cases
with or without the disease. It is principally intended to
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Table 3
Interpretations and visualizations of DSI and relevance. DSI is computed by comparing the patient values to training data,

relevance is computed from the known control and diseases population values alone

DSI 0.0 0.5 1.0 

Interpretation 

Patient value matches the 

healthy controls perfectly

Patient value falls between 

control and disease populations, 

matching both equally well 

Patient value matches the AD 

population perfectly

Blue color White color Red color 
Visualization 

Relevance 0.0 0.5 1.0 

Interpretation 
Not relevant for estimating 

disease state; variable does not 

differentiate between known 

control and disease populations 

Relevant for estimating disease 

state; discrimination capability 

is halfway between random and 

perfect discrimination 

Very relevant for estimating 

disease state; variable 

discriminates perfectly between 

control and disease populations

Excluded from visualization Intermediate box size Large box size 
Visualization 

patient, such as for ADAS and MRI imaging. Corre-
lations between variables can be accounted for at this
step, e.g., by applying principal component analysis
(PCA) [30].

To obtain a total DSI value representing the combi-
nation of all data from multiple tests, the three steps
described above are repeated recursively. In lieu of raw
measurement values, the DSI values from the previous
step are now used for evaluating relevance and fitness,
and merged into a total DSI value (see Fig. 3).

The combination of DSI and relevance, schemati-
cally depicted in Fig. 4, capture the essence of patient
data in relation to the disease. DSI values indicate
which patient data are similar to the AD population
and relevance specifies how important that information
should be considered based on previously diagnosed
cases. A large DSI value and large relevance for a
neuropsychological test, for example, indicate that the
patient performed similarly to known AD population
and that the test has previously been able to dis-
criminate between healthy and AD patients with high
accuracy. On the other hand, a test with a large DSI
value but little or no relevance may usually be ignored,

since the test is unable to differentiate between the
populations.

Disease state fingerprint

In an analogy to the unique human fingerprints and
DNA fingerprints, DSF visualization forms patterns,
enabling quick visual inspection of unique disease and
patient data at multiple levels of abstraction. In DSF,
the patterns emerge from a tree of nodes rendered
according to the DSI organization, using shapes and
colors to quickly identify the patient’s disease state.
Specifically, shades of colors indicate DSI values while
relevance is indicated by node sizes (see Table 3).

The DSF tree allows rapid but detailed reviewing
of raw patient measurement data, DSI values, rele-
vance values, and the study of their relationship to the
disease profile (see Fig. 4). Measures that have zero
relevance are by default hidden from the DSF visual-
ization. Interactive implementation of the DSF allows
visualizations of data distributions (see Fig. 5) and
‘drill-down’/‘roll-up’ operations common to data min-
ing and visual analytics [29]. These operations can be
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Fig. 2. Analyses were run with ten distinct datasets (D1–D10),
formed using variables from six individual tests. The combinations
of tests emulate the effect of having incremental tests done, gradu-
ally increasing knowledge about the patient. The tests and variable
counts included in each dataset are presented in the diagram.

be used with quantitative patient data, such as standard-
ized neuropsychological tests, laboratory test results,
and computer-based analyses of medical imaging data.
Applying the DSI to patient data results in a value
between zero and one, indicating the patient’s disease
state or progression of the disease. The DSI values are
assumed to lie on an interval scale, i.e., one unit on the
scale represents the same magnitude across the whole
range of the scale. Increasing values of DSI indicate an
increasing similarity to AD population, based on the
available data. More specifically, DSI measures how
individual measurement values and patient data as a
whole match the disease profile as defined from a large
number of known disease cases.

DSI is data agnostic and can be used with any data
available. It can determine the disease state between
healthy and typical AD, healthy and atypical AD, MCI
and AD, and potentially between other dementias and
diseases, as long as the training data are available.
DSI is also designed to be highly dynamic, not requir-
ing particular tests but using any data acquired and
available for the patient being studied. Together, these
properties facilitate application of the method at vari-
ous clinics and re-evaluation of patient data as more
test results become available. Choosing a decision

boundary allows the DSI to be considered a supervised
classifier, discriminating between healthy and diseased
patients. Several design requirements were imposed
on the DSI according to five classifier performance
categories defined by Han and Kamber [29], listed in
Table 2.

DSI values are computed from patient data in three
relatively simple steps. First, each individual patient
measurement value, e.g., a single answer in ADAS
or the volume of a brain structure derived from MRI,
is compared to previously known training data using
a fitness function. A fitness function computes the
DSI value for a single patient measurement reveal-
ing which population, healthy or diseased, the value
fits best. Second, observing only values from known
control and disease populations, the relevance of each
variable is computed, independent of the patient mea-
surement. Relevance indicates how well a variable is
able to discriminate between the known healthy and
diseased populations. Evaluation of relevance results
in a value between zero and one, obtaining larger values
as the separation between control and disease popula-
tions increases. Interpretations for different values of
DSI and relevance are listed in Table 3 and they are
derived in full detail in supplementary material (avail-
able online: http://www.j-alz.com/issues/27/vol27-
1.html#supplementarydata07). Third, DSI and rele-
vance values are combined as a weighted arithmetic
mean, where DSI values of individual patient mea-
surements are weighted by the variable relevancies,
to obtain composite DSI values for tests done with the

Table 2
Design goals for the Disease State Index method

Category Goals for Disease State Index

Interpretability Provides well-behaving index values that concur
with severity of disease state

Uses original measurement values in analysis
and for reporting the results

Facilitates development of interpretable
visualizations for expert analyses

Accommodates varying clinical and research
questions

Prediction
accuracy

Classification performance should be
comparable to state-of-the-art classifiers

Robustness Not all patients need to have the same set of tests
performed

Must be able to use any quantifiable data and all
types of variables

Missing data should not impose problems for
using the method

Computational
speed

Allow refinement of parameters and updating of
results at interactive rates

Scalability Enable computation of the model on the fly or
beforehand as necessary

http://www.j-alz.com/issues/27/vol27-1.html#supplementarydata07
http://www.j-alz.com/issues/27/vol27-1.html#supplementarydata07
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Table 3
Interpretations and visualizations of DSI and relevance. DSI is computed by comparing the patient values to training data,

relevance is computed from the known control and diseases population values alone

DSI 0.0 0.5 1.0 

Interpretation 

Patient value matches the 

healthy controls perfectly

Patient value falls between 

control and disease populations, 

matching both equally well 

Patient value matches the AD 

population perfectly

Blue color White color Red color 
Visualization 

Relevance 0.0 0.5 1.0 

Interpretation 
Not relevant for estimating 

disease state; variable does not 

differentiate between known 

control and disease populations 

Relevant for estimating disease 

state; discrimination capability 

is halfway between random and 

perfect discrimination 

Very relevant for estimating 

disease state; variable 

discriminates perfectly between 

control and disease populations

Excluded from visualization Intermediate box size Large box size 
Visualization 

patient, such as for ADAS and MRI imaging. Corre-
lations between variables can be accounted for at this
step, e.g., by applying principal component analysis
(PCA) [30].

To obtain a total DSI value representing the combi-
nation of all data from multiple tests, the three steps
described above are repeated recursively. In lieu of raw
measurement values, the DSI values from the previous
step are now used for evaluating relevance and fitness,
and merged into a total DSI value (see Fig. 3).

The combination of DSI and relevance, schemati-
cally depicted in Fig. 4, capture the essence of patient
data in relation to the disease. DSI values indicate
which patient data are similar to the AD population
and relevance specifies how important that information
should be considered based on previously diagnosed
cases. A large DSI value and large relevance for a
neuropsychological test, for example, indicate that the
patient performed similarly to known AD population
and that the test has previously been able to dis-
criminate between healthy and AD patients with high
accuracy. On the other hand, a test with a large DSI
value but little or no relevance may usually be ignored,

since the test is unable to differentiate between the
populations.

Disease state fingerprint

In an analogy to the unique human fingerprints and
DNA fingerprints, DSF visualization forms patterns,
enabling quick visual inspection of unique disease and
patient data at multiple levels of abstraction. In DSF,
the patterns emerge from a tree of nodes rendered
according to the DSI organization, using shapes and
colors to quickly identify the patient’s disease state.
Specifically, shades of colors indicate DSI values while
relevance is indicated by node sizes (see Table 3).

The DSF tree allows rapid but detailed reviewing
of raw patient measurement data, DSI values, rele-
vance values, and the study of their relationship to the
disease profile (see Fig. 4). Measures that have zero
relevance are by default hidden from the DSF visual-
ization. Interactive implementation of the DSF allows
visualizations of data distributions (see Fig. 5) and
‘drill-down’/‘roll-up’ operations common to data min-
ing and visual analytics [29]. These operations can be
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Fig. 5. If a node in the DSF tree is clicked, a comparison of patient data in relation to control and disease population distributions is displayed.
Values of the AD population are rendered in red. The healthy population is rendered in blue. Black bars denote the values of the patient being
studied. On the left, right hippocampal volume of the patient (2455 mm3) is overlaid on the distributions. In the center, an ordinal variable
(Delayed Word Recall from ADAS) is displayed as bar chart. On the right, total AD Disease State Index of the patient (0.56) is overlaid on the
control and AD population DSI values.

practical applications. Like the reference methods, the
DSI is a predictor of having AD, and they are all
in congruence, with increasing disease probabilities
generally resulting in increasing DSI values. Com-
parisons between values resulting from the DSI and
the reference methods are appropriate if one considers
the values being used by human readers for decision
support. All methods were evaluated using the same
training and test data. For LR and SVM, variables not
significant between the control and disease populations
(Student’s t-test result of p > 0.05) were excluded. For
all reference methods, missing values were handled
appropriately. For DSI, this type of pre-processing of
the data was not required due to its design.

Comparison to actual diagnoses was performed by
training the methods with HC and AD subjects and
testing with all patients. The methods’ ability to assign
values that have a relation with interval-level diag-
noses (HC = 0

3 , SMCI = 1
3 , PMCI = 2

3 , and AD = 3
3 ) was

evaluated using Kruskal-Wallis non-parametric test,
Pearson’s linear correlation test, and visual inspection.
Capability to predict conversion of MCI patients to AD
was evaluated by determining area under curve (AUC)
measures from receiver-operator curves (ROC) using
SMCI-PMCI datasets. MCI patients who obtained
index/probability values within the upper or lower
ranges of the scale were pooled together to determine
classification accuracy for these subsets separately.
The patients included in each subset were selected from
both ends of the index/probability value range [0, 1],
extending to a distance of 0.02, 0.05, 0.1, 0.2, 0.3, and
finally 0.4 from either end.

In all analyses, ten iterations of stratified (with same
proportions of class labels) 10-fold cross validation
were performed to produce robust estimates of per-
formance metrics associated with the methods. Using

such a large number of iterations is especially impor-
tant for data where the differences between classes are
subtle and results can vary considerably over consec-
utive iterations. All analyses were implemented and
executed within Matlab version R2010a, using lib-
svm [32] implementation of SVM and MathWorks®

Statistics toolbox implementations of LR and Bayes
classifier.

RESULTS

Correlation between disease state index and
diagnosis

DSI, LR, SVM, and Bayes classifier were evalu-
ated using baseline data from the ADNI database to
determine how they relate to the diagnostic classes of
199 healthy controls, 190 SMCIs, 154 PMCIs, and 163
ADs. Figure 6 shows the box-plots and distributions of
values assigned to the patients using the best perform-
ing dataset, best individual test dataset, and the worst
dataset (ALL, ADAS, and TMT respectively).

The graphs clearly illustrate that DSI is different in
nature from the reference methods, distributing index
values evenly over the whole scale. The significance
of DSI’s evident linearity can be appreciated by com-
paring results from two example patients whose total
scores from ADAS differ only slightly (17 vs. 19). With
data from ADAS alone, DSI gave to these patients
indices of 0.36 and 0.57 (a moderate difference of
0.21), respectively. For the same patients, the probabil-
ity of having AD estimated by LR were 0.39 and 0.73
(difference of 0.34), by SVM 0.23 and 0.95 (difference
of 0.72), and by Bayes 0.0 and 0.75 (difference of 0.75).
Especially with SVM and Bayes, the inflated proba-
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Fig. 3. Organization of a DSI / DSF visualization tree. The tree structure follows organization of patient data consisting of individual variable
values (leaf nodes at Variable Level), performed tests (internal nodes at Test Level), and the resulting total Disease State Index (root node at
Disease State Index Level). Additional levels can be employed to modify the granularity of the tree.

Disease cases Healthy cases

Patient measure

Fig. 4. DSI values of a patient with subtle indication of AD (total DSI value = 0.56). Name of the test and DSI value is shown next to each node.
Larger nodes discriminate better between healthy and diseased patients (visualization of relevance). ‘Hot’, i.e., red, nodes highlight patient data
that fits AD profile (visualization of DSI). Here, ADAS and MRI contribute the most to the AD Disease State Index, indicated by largest node
size. MRI variables, especially volume of hippocampus, whose computation is schematically depicted on the right hand side, push the total DSI
value towards AD population.

used for hiding or revealing extra details and for inclu-
sion or exclusion of variables. User initiated changes
to DSI model selection can give more control over the
study of the patient’s disease state, making possible
personalized comparison of patient data to previous
cases that are of the same gender, age group, ethnicity,
and educational degree.

Evaluation

Objectives of the evaluations were to

1. compare the performance of the DSI to state-of-
the-art classifiers,

2. evaluate the relationship between the index val-
ues and the actual diagnoses,

3. investigate the DSI’s capability to predict conver-
sion from MCI to AD, and

4. visually inspect patient DSFs to evaluate their
clinical practicality.

In all of the analyses, index values from DSI were
compared to the probability of having AD obtained
with three reference classifiers: logistic regression
(LR) [31], probability estimates from support vec-
tor machines (SVM) [32] and Naı̈ve Bayes classifier
[33]. These classifiers were chosen as being repre-
sentative of commonly used classification methods in
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practical applications. Like the reference methods, the
DSI is a predictor of having AD, and they are all
in congruence, with increasing disease probabilities
generally resulting in increasing DSI values. Com-
parisons between values resulting from the DSI and
the reference methods are appropriate if one considers
the values being used by human readers for decision
support. All methods were evaluated using the same
training and test data. For LR and SVM, variables not
significant between the control and disease populations
(Student’s t-test result of p > 0.05) were excluded. For
all reference methods, missing values were handled
appropriately. For DSI, this type of pre-processing of
the data was not required due to its design.

Comparison to actual diagnoses was performed by
training the methods with HC and AD subjects and
testing with all patients. The methods’ ability to assign
values that have a relation with interval-level diag-
noses (HC = 0

3 , SMCI = 1
3 , PMCI = 2

3 , and AD = 3
3 ) was

evaluated using Kruskal-Wallis non-parametric test,
Pearson’s linear correlation test, and visual inspection.
Capability to predict conversion of MCI patients to AD
was evaluated by determining area under curve (AUC)
measures from receiver-operator curves (ROC) using
SMCI-PMCI datasets. MCI patients who obtained
index/probability values within the upper or lower
ranges of the scale were pooled together to determine
classification accuracy for these subsets separately.
The patients included in each subset were selected from
both ends of the index/probability value range [0, 1],
extending to a distance of 0.02, 0.05, 0.1, 0.2, 0.3, and
finally 0.4 from either end.

In all analyses, ten iterations of stratified (with same
proportions of class labels) 10-fold cross validation
were performed to produce robust estimates of per-
formance metrics associated with the methods. Using

such a large number of iterations is especially impor-
tant for data where the differences between classes are
subtle and results can vary considerably over consec-
utive iterations. All analyses were implemented and
executed within Matlab version R2010a, using lib-
svm [32] implementation of SVM and MathWorks®

Statistics toolbox implementations of LR and Bayes
classifier.

RESULTS

Correlation between disease state index and
diagnosis

DSI, LR, SVM, and Bayes classifier were evalu-
ated using baseline data from the ADNI database to
determine how they relate to the diagnostic classes of
199 healthy controls, 190 SMCIs, 154 PMCIs, and 163
ADs. Figure 6 shows the box-plots and distributions of
values assigned to the patients using the best perform-
ing dataset, best individual test dataset, and the worst
dataset (ALL, ADAS, and TMT respectively).

The graphs clearly illustrate that DSI is different in
nature from the reference methods, distributing index
values evenly over the whole scale. The significance
of DSI’s evident linearity can be appreciated by com-
paring results from two example patients whose total
scores from ADAS differ only slightly (17 vs. 19). With
data from ADAS alone, DSI gave to these patients
indices of 0.36 and 0.57 (a moderate difference of
0.21), respectively. For the same patients, the probabil-
ity of having AD estimated by LR were 0.39 and 0.73
(difference of 0.34), by SVM 0.23 and 0.95 (difference
of 0.72), and by Bayes 0.0 and 0.75 (difference of 0.75).
Especially with SVM and Bayes, the inflated proba-
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Table 4
Results from the Kruskal-Wallis and Pearson tests using DSI, LR, SVM, and Bayes for discriminating between the diagnostic classes of NL,

SMCI, PMCI, and AD and for linear correlation with the interval-level diagnoses, respectively

Kruskal-Wallis Pearson

Rank Method Dataset χ2 p Rank Method Dataset r p

1 DSI ALL 117.6 (5.8) 8.67E–24 1 DSI ALL 0.56 (0.01) 8.53E–30
2 Bayes MMSE + ADAS + MRI + CSF 116.4 (6.0) 1.39E–23 2 DSI MMSE + ADAS + MRI + CSF 0.54 (0.01) 2.70E–26
3 Bayes MMSE + ADAS + MRI 113.1 (6.4) 1.05E–22 3 DSI ADAS 0.53 (0.02) 2.88E–26
4 SVM ALL 113.3 (6.8) 1.45E–22 4 DSI MMSE + ADASvMRI 0.52 (0.01) 6.10E–25
5 Bayes ALL 118.2 (7.1) 1.51E–22 5 SVM ALL 0.50 (0.02) 2.23E–22
6 Bayes MMSE + ADAS 114.5 (6.6) 2.50E–22 6 LR ADAS 0.51 (0.02) 2.52E–22
7 DSI MMSE + ADAS + MRI + CSF 108.4 (5.6) 1.02E–21 7 SVM MMSE + ADAS + MRI 0.49 (0.01) 7.75E–22
8 SVM MMSE + ADAS + MRI 107.7 (5.7) 1.31E–21 8 DSI MMSE + ADAS 0.49 (0.01) 9.92E–22
: : : : : : : : :

33 LR TMT 40.3 (6.5) 1.25E–06 33 DSI APOE 0.28 (0.03) 1.72E–06
34 SVM TMT 39.7 (6.4) 2.49E–06 34 LR APOE 0.28 (0.03) 1.78E–06
35 Bayes TMT 35.7 (6.6) 4.49E–06 35 DSI CSF 0.38 (0.03) 2.28E–06
36 DSI CSF 29.5 (3.0) 5.01E–06 36 Bayes APOE 0.28 (0.03) 2.39E–06
37 DSI TMT 37.3 (6.5) 5.59E–06 37 Bayes CSF 0.37 (0.03) 2.43E–06
38 SVM CSF 26.9 (3.5) 2.42E–05 38 Bayes TMT 0.28 (0.03) 4.16E–06
39 Bayes CSF 26.4 (3.2) 2.45E–05 39 SVM CSF 0.35 (0.03) 4.63E–06
40 SVM APOE 27.0 (5.7) 6.23E–05 40 SVM APOE 0.27 (0.03) 8.71E–06

The table shows method/dataset performance ordered by the mean of p-values over 10 × 10-fold cross-validation iterations. The Kruskal-Wallis
test statistic χ2 and Pearson test statistic r shown are the mean and standard deviation over 10 × 10-fold cross-validation iterations.

Prediction of MCI to AD conversion

Capability to predict conversion from MCI to AD
was evaluated with 190 SMCI and 154 PMCI cases
from the ADNI database. Figure 7 shows results from
two of the best individual tests and from the four
increasingly complete combinations of tests. In gen-
eral, AUC improves and standard deviation decreases
through having better or more patient data available.

Relevance parameters obtained from DSI indicate
that within the ADNI database, ADAS is the most rel-
evant single test for predicting conversion from MCI
to AD, followed by MRI, APOE, CSF, MMSE, and
finally TMT (see Table 5). Within ADAS, relevance
values are very similar to weights of a recently intro-
duced ADAS composite [34]. Between all individual
variables from all tests, DSI considers the most relevant
to be Delayed Word Recall from ADAS (relevance of
0.294), Left Middle Temporal Lobe from MRI (0.262),
and Total Tau from CSF (0.258).

Levels of confidence for predicting conversion
from MCI to AD

Based on data alone, there are no machine learn-
ing methods that can predict conversion from MCI to
AD for all cases reliably. Therefore, clinicians always
need to consider all available evidence. Nevertheless,
index/probability values obtained with the complete
dataset (ALL) were examined to determine if the meth-
ods studied here could provide more confidence for

diagnosing certain subsets of patients. From Table 6
it can be seen that extreme value ranges provide con-
siderably better prediction accuracies and there is a
small subset of patients where the classification meth-
ods attain perfect prediction accuracy.

Visual inspection of disease state fingerprints

The DSFs of several SMCI and PMCI patients were
inspected to confirm that they quickly reveal the state
of the patient data in relation to AD population and
highlight the tests and variables contributing to the
results. Fig. 8 shows example DSFs for clear SMCI,
subtle SMCI, subtle PMCI, and clear PMCI cases. With
the clear cases, nearly all variables point towards AD
(shades of red) or against it (shades of blue). With the
subtle cases, there is a mix of colors that show which
patient data indicate AD and which do not.

DISCUSSION

The DSF provides a quickly interpretable visual
overview of patient state, obtained from evidence-
based statistical analysis of patient data. It draws the
clinician to data that are the most relevant, omitting the
need to go over tens or hundreds of data points individ-
ually. DSF clearly discloses the factors contributing to
the results, highlights the important measures, and thus
supports application of clinical judgment. In its design,
equal emphasis was given to prediction accuracy and
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Fig. 6. Index and probability values obtained from evaluating datasets ALL, ADAS, and TMT with DSI, LR, SVM, and Bayes. Results are
displayed as box plots and probability density estimates of patient classes NL (blue), SMCI (green), PMCI (yellow), and AD (red) according to
index/probability values assigned to them by the methods. In box plots, the line in the middle is the median, the upper and lower ends of the
box are the 75% and 25% percentiles, and the whiskers give an indication of the range. Values of two arbitrarily chosen SMCI (light blue) and
PMCI (brown) patients with relatively similar clinical test results and biomarker discoveries are visualized on top of each distribution graph.
Locations of the stems demonstrate the differences between the methods when assessing individual patients.

bilities obscure what in reality is a small difference in
cognitive performance between the patients.

All methods distinguished between the diagnos-
tic categories with high significance (p < 0.001 in
Kruskal-Wallis test) using all datasets. Linear corre-

lation with interval-level diagnoses also attained high
significance (p < 0.001 in Pearson) using all datasets.
Table 4 shows the eight best and eight poorest perform-
ing method/dataset combinations from both statistical
tests.
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Table 4
Results from the Kruskal-Wallis and Pearson tests using DSI, LR, SVM, and Bayes for discriminating between the diagnostic classes of NL,

SMCI, PMCI, and AD and for linear correlation with the interval-level diagnoses, respectively

Kruskal-Wallis Pearson

Rank Method Dataset χ2 p Rank Method Dataset r p

1 DSI ALL 117.6 (5.8) 8.67E–24 1 DSI ALL 0.56 (0.01) 8.53E–30
2 Bayes MMSE + ADAS + MRI + CSF 116.4 (6.0) 1.39E–23 2 DSI MMSE + ADAS + MRI + CSF 0.54 (0.01) 2.70E–26
3 Bayes MMSE + ADAS + MRI 113.1 (6.4) 1.05E–22 3 DSI ADAS 0.53 (0.02) 2.88E–26
4 SVM ALL 113.3 (6.8) 1.45E–22 4 DSI MMSE + ADASvMRI 0.52 (0.01) 6.10E–25
5 Bayes ALL 118.2 (7.1) 1.51E–22 5 SVM ALL 0.50 (0.02) 2.23E–22
6 Bayes MMSE + ADAS 114.5 (6.6) 2.50E–22 6 LR ADAS 0.51 (0.02) 2.52E–22
7 DSI MMSE + ADAS + MRI + CSF 108.4 (5.6) 1.02E–21 7 SVM MMSE + ADAS + MRI 0.49 (0.01) 7.75E–22
8 SVM MMSE + ADAS + MRI 107.7 (5.7) 1.31E–21 8 DSI MMSE + ADAS 0.49 (0.01) 9.92E–22
: : : : : : : : :

33 LR TMT 40.3 (6.5) 1.25E–06 33 DSI APOE 0.28 (0.03) 1.72E–06
34 SVM TMT 39.7 (6.4) 2.49E–06 34 LR APOE 0.28 (0.03) 1.78E–06
35 Bayes TMT 35.7 (6.6) 4.49E–06 35 DSI CSF 0.38 (0.03) 2.28E–06
36 DSI CSF 29.5 (3.0) 5.01E–06 36 Bayes APOE 0.28 (0.03) 2.39E–06
37 DSI TMT 37.3 (6.5) 5.59E–06 37 Bayes CSF 0.37 (0.03) 2.43E–06
38 SVM CSF 26.9 (3.5) 2.42E–05 38 Bayes TMT 0.28 (0.03) 4.16E–06
39 Bayes CSF 26.4 (3.2) 2.45E–05 39 SVM CSF 0.35 (0.03) 4.63E–06
40 SVM APOE 27.0 (5.7) 6.23E–05 40 SVM APOE 0.27 (0.03) 8.71E–06

The table shows method/dataset performance ordered by the mean of p-values over 10 × 10-fold cross-validation iterations. The Kruskal-Wallis
test statistic χ2 and Pearson test statistic r shown are the mean and standard deviation over 10 × 10-fold cross-validation iterations.

Prediction of MCI to AD conversion

Capability to predict conversion from MCI to AD
was evaluated with 190 SMCI and 154 PMCI cases
from the ADNI database. Figure 7 shows results from
two of the best individual tests and from the four
increasingly complete combinations of tests. In gen-
eral, AUC improves and standard deviation decreases
through having better or more patient data available.

Relevance parameters obtained from DSI indicate
that within the ADNI database, ADAS is the most rel-
evant single test for predicting conversion from MCI
to AD, followed by MRI, APOE, CSF, MMSE, and
finally TMT (see Table 5). Within ADAS, relevance
values are very similar to weights of a recently intro-
duced ADAS composite [34]. Between all individual
variables from all tests, DSI considers the most relevant
to be Delayed Word Recall from ADAS (relevance of
0.294), Left Middle Temporal Lobe from MRI (0.262),
and Total Tau from CSF (0.258).

Levels of confidence for predicting conversion
from MCI to AD

Based on data alone, there are no machine learn-
ing methods that can predict conversion from MCI to
AD for all cases reliably. Therefore, clinicians always
need to consider all available evidence. Nevertheless,
index/probability values obtained with the complete
dataset (ALL) were examined to determine if the meth-
ods studied here could provide more confidence for

diagnosing certain subsets of patients. From Table 6
it can be seen that extreme value ranges provide con-
siderably better prediction accuracies and there is a
small subset of patients where the classification meth-
ods attain perfect prediction accuracy.

Visual inspection of disease state fingerprints

The DSFs of several SMCI and PMCI patients were
inspected to confirm that they quickly reveal the state
of the patient data in relation to AD population and
highlight the tests and variables contributing to the
results. Fig. 8 shows example DSFs for clear SMCI,
subtle SMCI, subtle PMCI, and clear PMCI cases. With
the clear cases, nearly all variables point towards AD
(shades of red) or against it (shades of blue). With the
subtle cases, there is a mix of colors that show which
patient data indicate AD and which do not.

DISCUSSION

The DSF provides a quickly interpretable visual
overview of patient state, obtained from evidence-
based statistical analysis of patient data. It draws the
clinician to data that are the most relevant, omitting the
need to go over tens or hundreds of data points individ-
ually. DSF clearly discloses the factors contributing to
the results, highlights the important measures, and thus
supports application of clinical judgment. In its design,
equal emphasis was given to prediction accuracy and
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Table 5
Relevance values for all data, individual tests, and best individual
features (where relevance >0.200) for predicting conversion from

MCI to AD based on ADNI data

Test Relevance (SD)

Disease State Index 0.420 (0.019)
ADAS 0.333 (0.022)

Delayed Word Recall 0.294 (0.018)
Orientation 0.256 (0.017)
Word Recall 0.256 (0.017)
Word Recognition 0.203 (0.017)

MRI 0.300 (0.021)
Left Middle Temporal Lobe 0.262 (0.018)
Right Middle Temporal Lobe 0.246 (0.020)
Left Inferior Temporal Lobe 0.221 (0.021)
Left Hippocampus 0.207 (0.022)
Right Hippocampus 0.201 (0.020)
Right Enthorinal Cortex 0.201 (0.020)

APOE 0.256 (0.016)
Allele B of genotype A/B 0.256 (0.016)

CSF 0.249 (0.029)
Total Tau 0.258 (0.025)
Amyloid-� 0.221 (0.025)

MMSE 0.249 (0.024)
no individual features with relevance >0.200

TMT 0.207 (0.022)
Time to Complete Trail B 0.202 (0.022)

The table shows mean relevance values and their standard deviation
over 10 × 10-fold cross-validation.

to clinical practicality. To the authors’ knowledge
there exists no other evidence-based data visualization
methods developed with a similar philosophy. Several
established machine learning methods were considered
for the foundation of DSF, but none were found sat-
isfactory. For example, regression analysis cannot be
capitalized fully when working with existing discrete
AD diagnoses that do not include much information
about the stage or severity of the disease. SVM, with

its high dimensional decision boundary, is too abstract
for human interpretation. Naı̈ve Bayes works well as a
classifier, but results in very unrealistic and unpracti-
cal disease probabilities. Thus, DSI was developed to
provide a good foundation for visual expert analysis of
progressing disease state.

The DSI model of progressing disease state was able
to discriminate well between the diagnostic classes of
healthy, SMCI, PMCI, and AD and attained good levels
of linear correlation, superior to the reference classi-
fiers. Improved linearity is clearly evident with visual
inspection of the value distribution graphs in Fig. 6,
in which reference methods lean heavily on the head
and tail values of the scale even when source data
differs only slightly. Thus, DSI is truly indicative of
patient state between healthy and AD and appears to
correspond well with clinical practice. Even though
maximizing classification accuracy was not the only
goal, DSI’s capability to predict conversion from MCI
to AD was similar to the reference classifiers. Anal-
ysis of the relevance values reinforced the view that
combinations of tests are required for reliable early
diagnoses. Interestingly, the relatively simple and com-
putationally low-cost method for computing relevance
produced almost the same weighting factors as a novel
method employed for prediction of 12 months conver-
sion from MCI to AD [34].

Currently, clinicians are forced to browse test results
one by one, possibly losing track of the big picture.
Analysis of extreme DSI values indicates that there
are MCI cases where data leaves little doubt as to
whether a patient has AD or not. Particularly those
clinicians with less experience might be more confi-
dent to diagnose AD at an early stage if they were

Table 6
Classification accuracies of DSI, LR, SVM, and Bayes when observing subgroups of SMCI and PMCI patients based on index/probability values

assigned to them

Distance from 

end of scale [0, 1] 

< 0.02   

Allowed value 

ranges 

DSI None assigned 100% (0.7%) 93.6% (9.1%) 84.0% (30.2%) 75.6% (63.7%) 

LR 52.5% (1.2%) 73.6% (5.1%) 71.9% (13.2%) 72.9% (31.7%) 71.4% (52.3%) 67.5% (75.1%) 

SVM 100% (1.0%) 95.1% (4.2%) 90.7% (13.1%) 84.3 % (32.3%) 77.3% (53.0%) 72.0% (76.0%) 

BAYES 77.6% (57.0%) 74.2% (66.1%) 72.1% (74.2%) 71.1 % (82.7%) 70.7% (88.3%) 70.0% (94.2%) 

< 0.4 < 0.3  < 0.2  < 0.1< 0.05

None assigned 

In parentheses is the percentage of patients assigned to the subgroup over 10 × 10-fold cross-validation iterations. For example, DSI assigned an
index value <0.2 or >0.8 to 9.2% of the patients, which was a correct prediction for 93.7% of cases, i.e., classification accuracy for the subgroup
was 93.7%.
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Fig. 7. ROC curves for individual tests and combinations of tests for predicting conversion from MCI to AD. Numbers denote AUC and standard
deviations of AUC with the respective datasets over the 10 × 10-fold cross-validation iterations.
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Table 5
Relevance values for all data, individual tests, and best individual
features (where relevance >0.200) for predicting conversion from

MCI to AD based on ADNI data

Test Relevance (SD)

Disease State Index 0.420 (0.019)
ADAS 0.333 (0.022)

Delayed Word Recall 0.294 (0.018)
Orientation 0.256 (0.017)
Word Recall 0.256 (0.017)
Word Recognition 0.203 (0.017)

MRI 0.300 (0.021)
Left Middle Temporal Lobe 0.262 (0.018)
Right Middle Temporal Lobe 0.246 (0.020)
Left Inferior Temporal Lobe 0.221 (0.021)
Left Hippocampus 0.207 (0.022)
Right Hippocampus 0.201 (0.020)
Right Enthorinal Cortex 0.201 (0.020)

APOE 0.256 (0.016)
Allele B of genotype A/B 0.256 (0.016)

CSF 0.249 (0.029)
Total Tau 0.258 (0.025)
Amyloid-� 0.221 (0.025)

MMSE 0.249 (0.024)
no individual features with relevance >0.200

TMT 0.207 (0.022)
Time to Complete Trail B 0.202 (0.022)

The table shows mean relevance values and their standard deviation
over 10 × 10-fold cross-validation.

to clinical practicality. To the authors’ knowledge
there exists no other evidence-based data visualization
methods developed with a similar philosophy. Several
established machine learning methods were considered
for the foundation of DSF, but none were found sat-
isfactory. For example, regression analysis cannot be
capitalized fully when working with existing discrete
AD diagnoses that do not include much information
about the stage or severity of the disease. SVM, with

its high dimensional decision boundary, is too abstract
for human interpretation. Naı̈ve Bayes works well as a
classifier, but results in very unrealistic and unpracti-
cal disease probabilities. Thus, DSI was developed to
provide a good foundation for visual expert analysis of
progressing disease state.

The DSI model of progressing disease state was able
to discriminate well between the diagnostic classes of
healthy, SMCI, PMCI, and AD and attained good levels
of linear correlation, superior to the reference classi-
fiers. Improved linearity is clearly evident with visual
inspection of the value distribution graphs in Fig. 6,
in which reference methods lean heavily on the head
and tail values of the scale even when source data
differs only slightly. Thus, DSI is truly indicative of
patient state between healthy and AD and appears to
correspond well with clinical practice. Even though
maximizing classification accuracy was not the only
goal, DSI’s capability to predict conversion from MCI
to AD was similar to the reference classifiers. Anal-
ysis of the relevance values reinforced the view that
combinations of tests are required for reliable early
diagnoses. Interestingly, the relatively simple and com-
putationally low-cost method for computing relevance
produced almost the same weighting factors as a novel
method employed for prediction of 12 months conver-
sion from MCI to AD [34].

Currently, clinicians are forced to browse test results
one by one, possibly losing track of the big picture.
Analysis of extreme DSI values indicates that there
are MCI cases where data leaves little doubt as to
whether a patient has AD or not. Particularly those
clinicians with less experience might be more confi-
dent to diagnose AD at an early stage if they were

Table 6
Classification accuracies of DSI, LR, SVM, and Bayes when observing subgroups of SMCI and PMCI patients based on index/probability values

assigned to them

Distance from 

end of scale [0, 1] 

< 0.02   

Allowed value 

ranges 

DSI None assigned 100% (0.7%) 93.6% (9.1%) 84.0% (30.2%) 75.6% (63.7%) 

LR 52.5% (1.2%) 73.6% (5.1%) 71.9% (13.2%) 72.9% (31.7%) 71.4% (52.3%) 67.5% (75.1%) 

SVM 100% (1.0%) 95.1% (4.2%) 90.7% (13.1%) 84.3 % (32.3%) 77.3% (53.0%) 72.0% (76.0%) 

BAYES 77.6% (57.0%) 74.2% (66.1%) 72.1% (74.2%) 71.1 % (82.7%) 70.7% (88.3%) 70.0% (94.2%) 

< 0.4 < 0.3  < 0.2  < 0.1< 0.05

None assigned 

In parentheses is the percentage of patients assigned to the subgroup over 10 × 10-fold cross-validation iterations. For example, DSI assigned an
index value <0.2 or >0.8 to 9.2% of the patients, which was a correct prediction for 93.7% of cases, i.e., classification accuracy for the subgroup
was 93.7%.
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would also provide statistical measures that could
improve analysis of patient data [35]. Robustness of
the DSI will be evaluated with data from several lon-
gitudinal studies of AD and other neurodegenerative
diseases. Performance of the proposed system will also
be examined when there are heavy correlations and
other adverse conditions within the data. Utility of an
interactive DSF tool is being evaluated with clinicians
using existing data from ADNI. There are also plans
to take part in upcoming longitudinal studies where an
implementation of DSF is provided to the clinicians.

Diagnostic guidelines for AD emphasize the
congruence of neuropsychological test results and
biomarkers. DSF was designed to enable quick visual
analysis of all patient data as a whole. It is a versa-
tile decision support system that uses locally available
patient data, presents a synthesis of the information
in an understandable manner, and allows an expert
to interpret and report the results within the diagnos-
tic process. The proposition is that the DSF can be
a clinically relevant tool which enables clinicians to
make better and more consistent decisions in daily
practice.
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Fig. 8. Four patients visualized using the DSF. Starting from the left, the figure shows two stable MCI (SMCI) patients and two progressive
MCI (PMCI) patients. Box sizes (denoting relevance) indicate capability of a variable or test to discriminate between SMCI and PMCI cases.
The nodes are reordered top to bottom according to this measure. Colors indicate which group the patient data fits better; blue color equals
SMCI, red color equals PMCI. A unique disease state fingerprint emerges from the node sizes and color codes for each patient, allowing quick
evaluation of patient state and reviewing of individual tests and variables contributing to the results.

able to see all data at once, and also see how patient
data relate with previously diagnosed disease popu-
lation at their clinic. While the DSI and DSF increase
the amount of information available to a clinician, they
also allow clinicians to concentrate on what is impor-
tant and ignore irrelevant information, making the most
of existing data.

When compared to many other machine learning
methods, the benefits of DSI and DSF are numerous.
Due to linearity, small changes in patient data cause
only small changes in DSI, making interpretation of
DSF easier and longitudinal follow-ups consistent. The
methods are data agnostic, able to work with any tests
or variables in use at a particular clinic. They work with
raw test and measurement values, increasing familiar-
ity and requiring no pre-processing of data, feature
selection, or data cleanup. All data acquisition modal-
ities are quantified both in isolation and as a part of
the whole, providing additional context to the results.
It is very easy to support different types of tests and
variables (scalar, nominal, ordinal, even textual with
text mining methods) with suitable fitness functions.
If desired, the probability of a patient having AD can
be computed using the DSI values obtained during
its evaluation. Unlike as is the case with many other
machine learning methods, sparse data creates no prob-

lems. Each variable is initially treated individually, and
only used if the data exists. Additionally, as long as the
training set patients are representative of the control
and disease populations, there is no need to have very
large quantities of data.

Further potential is anticipated from interactive
implementation of DSF, which can provide a quick
path to personalized healthcare. Limiting comparison
of patient data to cases that are of same gender, age,
ethnicity, or educational degree provides personalized
results for that patient. A clinical application could
also employ relevance measures to suggest additional
tests to be done, based on their ability to discriminate
between healthy and diseased cases. Interactive visual-
izations of disease population distributions with patient
values overlaid on them are an expressive way of com-
paring patient data to previously diagnosed cases.

Further studies are being planned to cover aspects
of DSI and DSF not reported here. Non-linear depen-
dencies between the variables, e.g., differences in
cognitive tests due to varying levels of education, were
not considered in this work. Stratification of training
data will be studied to see if regression of variables
based on demographics, such as age and education,
further improves the results. Bootstrapping would
allow better relevance estimates and, more importantly,
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would also provide statistical measures that could
improve analysis of patient data [35]. Robustness of
the DSI will be evaluated with data from several lon-
gitudinal studies of AD and other neurodegenerative
diseases. Performance of the proposed system will also
be examined when there are heavy correlations and
other adverse conditions within the data. Utility of an
interactive DSF tool is being evaluated with clinicians
using existing data from ADNI. There are also plans
to take part in upcoming longitudinal studies where an
implementation of DSF is provided to the clinicians.

Diagnostic guidelines for AD emphasize the
congruence of neuropsychological test results and
biomarkers. DSF was designed to enable quick visual
analysis of all patient data as a whole. It is a versa-
tile decision support system that uses locally available
patient data, presents a synthesis of the information
in an understandable manner, and allows an expert
to interpret and report the results within the diagnos-
tic process. The proposition is that the DSF can be
a clinically relevant tool which enables clinicians to
make better and more consistent decisions in daily
practice.
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Derivation of the fitness function for scalar
variables

Suppose first that x is a random variable from a
distribution combining both control (e.g. healthy) and
positive (e.g., disease) subjects, marked with C and
P. In addition, assume that the progression of disease
increases the observed values of x, making the condi-
tional expected value E(x|P) higher for positives than
the corresponding value E(x|C) for the controls (see
Fig. 1).

Let us divide the probability density f into the com-
ponents fC and fP , such that

f (x) = fC(x) + fP (x)

= f (x|C)p(C) + f (x|P)p(P) (1)
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Fig. 1. Probability density function f(x) and its components fC and
fP for the control and positive groups and, respectively.

where f (x|C) and f (x|P) are the marginal dis-
tributions of C and P, and the probabilities p(C)
and p(P) correspond to the overall fraction of
controls and positives in the study population,
respectively. These values are related by the equa-
tion

∫
R

f (x)dx = ∫
R

[
fC(x) + fP (X)

]
dx = p(C) +

p(P) = 1, obtained by integrating (1).
Bayes’ theorem states that the conditional prob-

ability of a subject belonging to the group P after
observing x ∈ A = (a − ε; a + ε), where ε is the
radius of a small region around the actual observation
a, can be written as
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Suppose first that x is a random variable from a
distribution combining both control (e.g. healthy) and
positive (e.g., disease) subjects, marked with C and
P. In addition, assume that the progression of disease
increases the observed values of x, making the condi-
tional expected value E(x|P) higher for positives than
the corresponding value E(x|C) for the controls (see
Fig. 1).

Let us divide the probability density f into the com-
ponents fC and fP , such that
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Fig. 1. Probability density function f(x) and its components fC and
fP for the control and positive groups and, respectively.

where f (x|C) and f (x|P) are the marginal dis-
tributions of C and P, and the probabilities p(C)
and p(P) correspond to the overall fraction of
controls and positives in the study population,
respectively. These values are related by the equa-
tion

∫
R

f (x)dx = ∫
R

[
fC(x) + fP (X)

]
dx = p(C) +

p(P) = 1, obtained by integrating (1).
Bayes’ theorem states that the conditional prob-

ability of a subject belonging to the group P after
observing x ∈ A = (a − ε; a + ε), where ε is the
radius of a small region around the actual observation
a, can be written as
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Fit(a): = LP (a)/p(P)

LP (a)/p(P) + RC(a)/p(C)
(6)

Derivation of the fitness function can be conducted in
an analogous manner if populations are interchanged,
resulting in a monotonously decreasing function. In
addition, alternate formulations of fitness functions to
account for non-continuous variables, such as nomi-
nal and ordinal variables, can also be derived easily by
counting these values as point masses while comput-
ing the integrals. The resulting fitness values obtained
by evaluating (6) are in many situations close to the
conditional probabilities (2) but fitness behaves in a
more intuitive manner with real-life empirical distri-
butions, as demonstrated in Fig. 2. For example, it is
known that atrophy decreases the size of hippocampus
in Alzheimer’s disease; the smaller the size of hip-
pocampus the higher the DSI value should be, i.e.,
the function should be monotonous. However, if the
number of cases in the training set is small and con-
ditional probabilities are used, posterior probability
can decrease even while the hippocampus volume is
decreasing.

It merits restating that the number of instances in
either class of the training set does not bias fitness
(6), which makes it robust against disparity between
the numbers of class instances. Since the fitness val-
ues are not intended to be used solely as a machine
learning classifier but accompanied with visual anal-
ysis tools, this choice offers more intuitive ratings
for measured values. Additional information related
to the class probabilities, i.e., disease incidence and
prevalence, should be presented to clinicians via the
graphical user interface.

Derivation of the composite Disease State Index

In clinical practice, multiple variables must be
considered simultaneously. Combining results from
several fitness functions would allow evaluation of
large quantities of heterogeneous patient data at once.
Due to its simplicity and interpretability, the weighted
arithmetic mean is employed for combining fitness

values. Let us define the composite Disease State Index
(DSI) as

DSI(a1, a2, . . . , an): =
∑n

i=1 wiFit(ai)

w1 + w2 + · · · + wn

, (7)

where [a1, a2, . . . , an] are the data measured from the
subject and w = w1, w2, . . . , wn are the non-negative
weights for each of the variables according to their
relevance. Relevance is a parameter quantifying a
variable’s ability to differentiate classes C and P. To
compute the relevance of the ith variable, the classi-
fication accuracy is estimated by applying the fitness
function to the training data itself:

Acc(i) = |CT : Fit(ai) < 1
2 | + |PT : Fit(ai) > 1

2 |
|CT | + |PT | (8)

where CT and PT are the corresponding training sets
for the controls and positives (with the i:th variable
present) and 1

2 is the classifier threshold value for a.
Now, relevance of a variable is formally defined as

Rel(i): = max

{
0,

(
Acc(i) − 1

2

)
∗ 2

}
. (9)

If the relevance is zero, it discriminates the classes
as poorly as a random label. A relevance of one
indicates that the variable is capable of fully discrim-
inating between training classes C and P, thus being
an excellent candidate for estimating the disease state.
Substituting wi in (7) with (9) yields

DSI(a1, a2, . . . , an): =
∑n

i=1 Rel(i)Fit(ai)∑n
i=1 Rel(i)

. (10)

It is clear from (10) that like fitness, composite
DSI(a1, a2, . . . , an) ∈ [0, 1]. It must be emphasized
that DSI cannot be considered as the probability of
having the disease. Instead, it is a score that increases
with the probability of having the disease, taking into
account the assumption that having abnormally high
(or low) values is worse than being inside the normal
range. Thus, DSI is defined as a value derived from
a series of observed facts that describes the rank of
patient data relative to control and positive cases.

2 J. Mattila et al. / Disease State Fingerprint

Fig. 2. Conditional probability and fitness computed with two distributions of control and positive cases. On the left, synthetic data with no
outlier observations produces monotonously increasing curves with both methods. On the right, data with wide distribution tails causes drastic
change to conditional probability behavior, rendering it sub-optimal for human interpretation.

p(P |x ∈ A) = p(x ∈ A|P)p(P)

p(x ∈ A)

= p(x ∈ A|P)p(P)

p(x ∈ A|P)p(P) + p(x ∈ A|C)p(C)

→ fP (x)

fP (x) + fC(x)
, (2)

when ε → 0. While estimating the probability den-
sities from empirical data, one needs to smooth the
estimates e.g. by using a sufficiently wide kernel esti-
mate, or to use a large enough ε to compensate for the
measurement noise and errors caused by the finite num-
ber of samples. If ε is chosen to be too large, p(P |x∈A)
approaches the a priori fraction of the positive cases
p(P)/(p(P) + p(C)), and equation (2) loses its predic-
tive power. The values p(P) and p(C), also called the
“a priori” probabilities, are needed when applying the
Bayes’ rule. This can be a great asset, but could also be
regarded as a drawback when used or interpreted incor-
rectly. In addition, distributions of the form (2) have
also some inconvenient properties, which can make
their interpretation difficult, as shown later in Fig. 2.

Instead of using conditional probability (2), let us
introduce a fitness function Fit(a), which increases
monotonously. In a sense, fitness describes the loca-
tion of the subject with value a relative to distributions
fC and fP . Let us first define the left and right integrals
for fC and fP ,

LP (a) :=
∫ a

−∞
fP (x) dx and

RC(a) :=
∫ ∞

a

fC (x) dx, (3)

which are also illustrated in Fig. 1. For completeness,
RP (a) and LC(a) are defined in an analogous manner.
If one consider value a as the clinical threshold for
classification between the controls C and positives P,
one can construct a new boolean classifier, described
in Table 1.

Table 1
Classification performance when using the value a as the threshold

to discriminate between controls C and positives P

P 

False Negatives 

)(aLP

True Positives 

)(aRP

C 

True Negatives 

)(aLC

False Positives 

)(aRC

x < a x > a 

Table 1 shows that P(x ≤ a) = LC(a) + LP (a)
and P(x > a) = RC(a) + RP (a) for the columns and
P(P) = LP (a) + RP (a) and P(C) = LC(a) + RC(a)
for the rows. In particular, the fraction of rejection
errors (false negatives) from all the errors (both false
negative and false positive) can be written as

Fit(a)∗: = FN(a)

FN(a) + FP(a)
= LP (a)

LP (a) + RC(a)
, (4)

where the abbreviations FN and FP refer to false
negatives and positives, i.e. the counts of incorrectly
classified instances. It is obvious from equation (4)
that Fit(a)∗ ∈ [0, 1] and one can intuitively expect that
Fit(a)* increases along with increasing values of a,
which is proved by differentiating (4):

d

da
Fit(a)∗ =

d
da

LP (a)RC(a) − LP (a) d
da

RC(a)

[LP (a) + RC(a)]2

= fP (a)RC(a) + LP (a)fC(a)

[LP (a) + RC(a)]2

≥ 0 for each a, (5)

In the special case LP (a) = RC(a) = 0 where (5) is
not defined, the result can be interpolated from closest
values of a where (5) is defined. Finally, to eliminate
the influence caused by varying proportions of p(P)
and p(C) between different populations, the normal-
ized fitness value is defined as
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Fit(a): = LP (a)/p(P)

LP (a)/p(P) + RC(a)/p(C)
(6)

Derivation of the fitness function can be conducted in
an analogous manner if populations are interchanged,
resulting in a monotonously decreasing function. In
addition, alternate formulations of fitness functions to
account for non-continuous variables, such as nomi-
nal and ordinal variables, can also be derived easily by
counting these values as point masses while comput-
ing the integrals. The resulting fitness values obtained
by evaluating (6) are in many situations close to the
conditional probabilities (2) but fitness behaves in a
more intuitive manner with real-life empirical distri-
butions, as demonstrated in Fig. 2. For example, it is
known that atrophy decreases the size of hippocampus
in Alzheimer’s disease; the smaller the size of hip-
pocampus the higher the DSI value should be, i.e.,
the function should be monotonous. However, if the
number of cases in the training set is small and con-
ditional probabilities are used, posterior probability
can decrease even while the hippocampus volume is
decreasing.

It merits restating that the number of instances in
either class of the training set does not bias fitness
(6), which makes it robust against disparity between
the numbers of class instances. Since the fitness val-
ues are not intended to be used solely as a machine
learning classifier but accompanied with visual anal-
ysis tools, this choice offers more intuitive ratings
for measured values. Additional information related
to the class probabilities, i.e., disease incidence and
prevalence, should be presented to clinicians via the
graphical user interface.

Derivation of the composite Disease State Index

In clinical practice, multiple variables must be
considered simultaneously. Combining results from
several fitness functions would allow evaluation of
large quantities of heterogeneous patient data at once.
Due to its simplicity and interpretability, the weighted
arithmetic mean is employed for combining fitness

values. Let us define the composite Disease State Index
(DSI) as

DSI(a1, a2, . . . , an): =
∑n

i=1 wiFit(ai)

w1 + w2 + · · · + wn

, (7)

where [a1, a2, . . . , an] are the data measured from the
subject and w = w1, w2, . . . , wn are the non-negative
weights for each of the variables according to their
relevance. Relevance is a parameter quantifying a
variable’s ability to differentiate classes C and P. To
compute the relevance of the ith variable, the classi-
fication accuracy is estimated by applying the fitness
function to the training data itself:

Acc(i) = |CT : Fit(ai) < 1
2 | + |PT : Fit(ai) > 1

2 |
|CT | + |PT | (8)

where CT and PT are the corresponding training sets
for the controls and positives (with the i:th variable
present) and 1

2 is the classifier threshold value for a.
Now, relevance of a variable is formally defined as

Rel(i): = max

{
0,

(
Acc(i) − 1

2

)
∗ 2

}
. (9)

If the relevance is zero, it discriminates the classes
as poorly as a random label. A relevance of one
indicates that the variable is capable of fully discrim-
inating between training classes C and P, thus being
an excellent candidate for estimating the disease state.
Substituting wi in (7) with (9) yields

DSI(a1, a2, . . . , an): =
∑n

i=1 Rel(i)Fit(ai)∑n
i=1 Rel(i)

. (10)

It is clear from (10) that like fitness, composite
DSI(a1, a2, . . . , an) ∈ [0, 1]. It must be emphasized
that DSI cannot be considered as the probability of
having the disease. Instead, it is a score that increases
with the probability of having the disease, taking into
account the assumption that having abnormally high
(or low) values is worse than being inside the normal
range. Thus, DSI is defined as a value derived from
a series of observed facts that describes the rank of
patient data relative to control and positive cases.
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Abstract—Medical research and clinical practice are currently
being redefined by the constantly increasing amounts of multi-
scale patient data. New methods are needed to translate them into
knowledge that is applicable in healthcare. Multiscale modeling
has emerged as a way to describe systems that are the source of
experimental data. Usually, a multiscale model is built by com-
bining distinct models of several scales, integrating, e.g., genetic,
molecular, structural, and neuropsychological models into a com-
posite representation. We present a novel generic clinical decision
support system, which models a patient’s disease state statistically
from heterogeneous multiscale data. Its goal is to aid in diagnostic
work by analyzing all available patient data and highlighting the
relevant information to the clinician. The system is evaluated by
applying it to several medical datasets and demonstrated by imple-
menting a novel clinical decision support tool for early prediction
of Alzheimer’s disease.

Index Terms—Clinical diagnosis, decision support systems, soft-
ware architecture, supervised learning.

I. INTRODUCTION

ADVANCES in multimodal data acquisition instrumenta-
tion have resulted in a deluge of data that have contributed

significantly to scientific research of diseases [1]. It has also al-
tered the daily clinical practice by increasing the amount of pa-
tient information that clinicians must manage. Everything from
questionnaire answers to laboratory results and information ob-
tained with sophisticated imaging methods must be considered
when making diagnostic decisions. Furthermore, new knowl-
edge about diseases is unveiled at an unparalleled rate, making
the deliberate application of evidence-based medicine a chal-
lenging and time-consuming effort.

One approach to managing this complexity is to develop
detailed computer-based multiscale modeling, simulation, and
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analysis systems. Multiscale is defined here as patient data ob-
tained at several scales, e.g., with genetic, molecular, structural,
and neuropsychological tests. Models that describe phenomena
of human physiology at a particular scale may be combined,
usually with considerable effort, for understanding of larger
entities [2]. Physiological multiscale models are often custom-
built to target a single organ, disease, or condition, and they help
develop treatments, biomarkers, and even personalized disease
models for use in clinical work. They have already proven useful
and shall remain the focus of much of future research [3], [4].

The increasing number and scale of measurements can im-
prove one’s understanding of a system even without detailed
physiological modeling. There are established machine learning
methods that can classify a patient as being healthy or diseased
or provide the probability of having a disease when trained
with previously diagnosed patient data [5]. Recent research has
introduced mathematical and statistical models, which derive
composite disease indicators from quantitative multiscale and
multimodal data. Their goal is to give prognoses, e.g., in the
context of prostate cancer [6] or Alzheimer’s disease (AD) [7].
An alternative method is to employ data-driven techniques that
divide all the experimental data into components for analysis.
Study of the components can provide insight into the subsystems
and ultimately to the system as a whole. Such an approach, able
to handle empirical patient data and implemented within a clin-
ical decision support system (CDSS), could transform existing
patient data into knowledge applicable in the clinical setting [8].

One major hurdle for the widespread use of these systems
and CDSSs in general is that data collected at different clin-
ics vary considerably. Consequently, most CDSSs for medical
diagnostics are purpose-built expert systems targeting a single
condition or a family of diseases, and also require a partic-
ular set of data [9]. Generic CDSSs for clinical diagnostics
have also been developed, traditionally employing Bayesian
inference [10], text-mining methods [11], case-based reason-
ing [12], or fuzzy cognitive maps (FCM) [13]. But even with
the more generic CDSS systems, most require definition of
disease-specific model parameters by domain experts before
they can be put into use.

This manuscript describes a data-agnostic clinical decision
support system, implemented as a reusable software library. The
software library uses a statistical approach to analyze multiscale
data and combine them into an aggregate representation inter-
pretable by a clinician. It supports heterogeneous patient data
of virtually any type and scale and allows clinicians to study the
system simultaneously as a collection of components and as a
whole. The library has been designed to easily support several

0018-9294/$26.00 © 2011 IEEE
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Abstract—Medical research and clinical practice are currently
being redefined by the constantly increasing amounts of multi-
scale patient data. New methods are needed to translate them into
knowledge that is applicable in healthcare. Multiscale modeling
has emerged as a way to describe systems that are the source of
experimental data. Usually, a multiscale model is built by com-
bining distinct models of several scales, integrating, e.g., genetic,
molecular, structural, and neuropsychological models into a com-
posite representation. We present a novel generic clinical decision
support system, which models a patient’s disease state statistically
from heterogeneous multiscale data. Its goal is to aid in diagnostic
work by analyzing all available patient data and highlighting the
relevant information to the clinician. The system is evaluated by
applying it to several medical datasets and demonstrated by imple-
menting a novel clinical decision support tool for early prediction
of Alzheimer’s disease.

Index Terms—Clinical diagnosis, decision support systems, soft-
ware architecture, supervised learning.

I. INTRODUCTION

ADVANCES in multimodal data acquisition instrumenta-
tion have resulted in a deluge of data that have contributed

significantly to scientific research of diseases [1]. It has also al-
tered the daily clinical practice by increasing the amount of pa-
tient information that clinicians must manage. Everything from
questionnaire answers to laboratory results and information ob-
tained with sophisticated imaging methods must be considered
when making diagnostic decisions. Furthermore, new knowl-
edge about diseases is unveiled at an unparalleled rate, making
the deliberate application of evidence-based medicine a chal-
lenging and time-consuming effort.

One approach to managing this complexity is to develop
detailed computer-based multiscale modeling, simulation, and
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analysis systems. Multiscale is defined here as patient data ob-
tained at several scales, e.g., with genetic, molecular, structural,
and neuropsychological tests. Models that describe phenomena
of human physiology at a particular scale may be combined,
usually with considerable effort, for understanding of larger
entities [2]. Physiological multiscale models are often custom-
built to target a single organ, disease, or condition, and they help
develop treatments, biomarkers, and even personalized disease
models for use in clinical work. They have already proven useful
and shall remain the focus of much of future research [3], [4].

The increasing number and scale of measurements can im-
prove one’s understanding of a system even without detailed
physiological modeling. There are established machine learning
methods that can classify a patient as being healthy or diseased
or provide the probability of having a disease when trained
with previously diagnosed patient data [5]. Recent research has
introduced mathematical and statistical models, which derive
composite disease indicators from quantitative multiscale and
multimodal data. Their goal is to give prognoses, e.g., in the
context of prostate cancer [6] or Alzheimer’s disease (AD) [7].
An alternative method is to employ data-driven techniques that
divide all the experimental data into components for analysis.
Study of the components can provide insight into the subsystems
and ultimately to the system as a whole. Such an approach, able
to handle empirical patient data and implemented within a clin-
ical decision support system (CDSS), could transform existing
patient data into knowledge applicable in the clinical setting [8].

One major hurdle for the widespread use of these systems
and CDSSs in general is that data collected at different clin-
ics vary considerably. Consequently, most CDSSs for medical
diagnostics are purpose-built expert systems targeting a single
condition or a family of diseases, and also require a partic-
ular set of data [9]. Generic CDSSs for clinical diagnostics
have also been developed, traditionally employing Bayesian
inference [10], text-mining methods [11], case-based reason-
ing [12], or fuzzy cognitive maps (FCM) [13]. But even with
the more generic CDSS systems, most require definition of
disease-specific model parameters by domain experts before
they can be put into use.

This manuscript describes a data-agnostic clinical decision
support system, implemented as a reusable software library. The
software library uses a statistical approach to analyze multiscale
data and combine them into an aggregate representation inter-
pretable by a clinician. It supports heterogeneous patient data
of virtually any type and scale and allows clinicians to study the
system simultaneously as a collection of components and as a
whole. The library has been designed to easily support several
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Fig. 2. DSI tree visualizations for two patients, one healthy, one with AD.
Larger node sizes indicate higher relevance (i.e., better discrimination of training
classes), with irrelevant features omitted. Shades of red indicate similarity of
the patient data to the disease population, shades of blue similarity to healthy.

language (see Fig. 3). The library is context independent, and
thus is applicable to several domains.

Since the DSI can use any available multiscale data, the li-
brary supports accessing multiple data repositories with a lay-
ered approach. Data access implementations, called persistence
stores(a) in Fig. 3, are free to connect with data sources in any
way that is needed, e.g., through an object relational mapping
(ORM) service, web services, or simply reading a flat text file.
An interface defines how the persistence stores can transfer data
to and from the library.

A data definition layer(b) comprises descriptions of entries
(e.g., types of tests done to a patient) and feature values (types
of individual data points) within those entries. Definitions are
application-specific metadata and must be configured in source
code or by Extensible Markup Language (XML) when initial-
izing the library for use. In addition to all features existing at
the leaf nodes, the organization of the DSI tree hierarchy is also
described within this layer. The actual data that are analyzed
are contained within another layer(c) , where all the subjects,
entries, and feature values are represented by matching object
instances, as described in Table I.

Performing DSI computations requires the library to construct
control and positive classes in a generic manner, using entities
from one or more persistent stores that provide training data. For
this, we have developed a rule-based grouping system(d) , where
a grouping rule interface is called to check whether a training
entity belongs to a particular class, e.g., to healthy controls or
Alzheimer’s disease patients. A CDSS tool using this decision
support library is aware of the context and is responsible for
defining the group forming rules, e.g., “if diagnosis equals AD,
assign patient to group AD.” A graphical user interface (GUI)
component is available in the decision support library to allow
interactive modification of the rules that have been implemented
so far. If necessary, new rule implementations can be created.
They are able to use all available patient information when
deciding whether he or she is to be included in a training class
or not.

After applying grouping rules, entities in control and positive
classes are known(e) . Now, the library must collect all types
of values from the entities in a generic manner. For this, we
have developed a sampling system(f ) , where sampling policies
control how data from a single entity are chosen for training.
One can, e.g., use the mean of all scalar values for a particular
feature or pick the value that was obtained most recently. As
with the grouping rules, the sampling policy implementations
can be configured with a GUI component and new ones can be
implemented in source code if complex sampling policies are
necessary. Custom grouping and sampling may be used, e.g.,
for personalized healthcare, where stratification is employed to
collect feature values with age and gender constraints.

Now, having the training data(g) , data from the patient we
are studying, and with the definition layer(b) describing the fea-
ture hierarchy, the library has all the necessary information for
evaluating the DSI(h) . Training data obtained through grouping
and sampling is organized in the tree hierarchy where the leaves
contain actual measurement values for the training set. Fitness
and relevance are evaluated at the leaf level, DSI and relevance
values in internal nodes are computed recursively, and, finally, a
total DSI value for the whole dataset at the root of the DSI tree
is obtained.

The library provides implementations of GUI components for
displaying DSI trees(i) , data distributions(j) , entry timeline(k) ,
and entry details(l) . These are implemented on top of the logic
tier using Windows Presentation Foundation (WPF) platform.

C. Data Access Implementations

Currently, there exist two implementations of persistence
stores(a) for accessing patient information to be used with the de-
cision support library. One of them uses an entity-attribute-value
(EAV) scheme, which is a common methodology for database
design in healthcare applications, thanks to its applicability to
storing heterogeneous and sparse patient data [15]–[17]. EAV
is well suited for querying data of individual patients, but it is
well known to be inefficient for bulk queries, which are needed
for collecting large quantities of training data [18]. These re-
quire the use of a normalized database where the patient and
all record types are represented by their own tables [19]. Un-
fortunately, this is a conflicting requirement for the decision
support library, which strives to be a generic one, accepting any
kind of data from any clinic to be incorporated into it. To over-
come the conflicting requirements, a normalized database and
persistence store generators have been developed to go along
with the library. They are based on C# language features, such
as partial classes and reflection [20], with Entity Framework 4
(EF4) [19] and Text Template Transformation Toolkit (T4) [21]
engine used for generating all the necessary constructs without
hard-coding any data descriptions. Reflection is a mechanism
in object-oriented programming languages that is used for ex-
amining, instantiating, and using unknown types. Partial classes
allow splitting class definitions to several source files. It is often
used to combine machine generated source code in one file with
manually written source code in another.
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diseases, requiring minimal amount of configuration. The first
application prototype developed using the proposed decision
support library is a CDSS tool for early diagnosis of AD. The
statistical methods are validated using data from several medical
datasets and the clinical applicability of our proposed system is
demonstrated by evaluating the implementation of the CDSS
tool.

The main contributions of this work are the description of the
generic decision support software library, the statistical method
behind it, and evaluations of classification and computational
performance of the proposed system using several medical
datasets. A more thorough analysis of the statistical method
and its relationship to established machine learning methods
with regards to AD is available in [14].

II. MATERIALS AND METHODS

A. Evaluation of Disease State

In this work, a data-agnostic statistical disease modeling
method has been developed. It combines heterogeneous mul-
tiscale data to compute a value in the interval [0,1], indicating a
patient’s disease state, i.e., the location or rank based on data, in
relation to previously known control (healthy) and positive (dis-
ease) populations. It is intended to be used mainly with quan-
titative features, such as standardized questionnaire answers,
laboratory analysis results, automatically quantified biomedical
data, and outputs of personalized disease model simulations.
It can be considered a supervised classifier, where patient data
are compared to previously diagnosed data. In its development,
equal emphasis was given to classification accuracy and to clin-
ical interpretability of the results.

Given the heterogeneous patient data from a single test at a
single time point, e.g., an individual neuropsychological test or
laboratory analysis results of a blood sample, as x1 , x2 , . . ., xn ,
we define the n-variable scalar valued disease state index (DSI)
function as a weighted mean

DSI(x1 , x2 , . . . , xn ) :=
∑n

i=1 Rel(i)Fit(xi)∑n
i=1 Rel(i)

(1)

where Rel(i) is a relevance function providing the weighting
between [0,1] for variable i and Fit(xi) is a fitness function
providing a nonlinear transformation of value xi into fitness
space [0,1].

A fitness function computes the location, i.e., rank, of an indi-
vidual variable xi relative to values of the same variable in two
different populations, denoted as controls Ci and positives Pi .
Our system currently supports scalar, ordinal, and categorical
(including boolean) variables, but could be extended to sup-
port others, such as value lists and complex values, by deriving
appropriate fitness functions. Let us consider a scalar variable
where the progression of a disease tends to increase its value
(see Fig. 1). For these, fitness is defined as a monotonically
increasing function

Fit(xi) :=
LP (xi)

LP (xi) + RC (xi)
(2)

Fig. 1. Probability density functions of Ci and Pi , the resulting fitness (with
examples at test outcome values a and b), and the optimal classification
threshold x∗

i .

where LP (xi) is the left integral of probability density function
(PDF) for positive class values Pi and RC (xi) is the right integral
of PDF for control class values Ci . Derivation of the fitness
function can be conducted in an analogous manner for ordinal
variables. For a categorical variable xi ∈ {Ω1 , . . . ,Ωn}, we use
as fitness the conditional probability of the subject belonging to
the positive population in the case of observing Ω = xi .

The weighting factors of DSI, i.e., relevancies of variables,
are determined by the variables’ ability to correctly classify
between the known classes Ci and Pi , and are independent of
the patient data. Relevance is defined for scalar and ordinal
values that increase with disease progression as

Rel(i) := max {0, LC (x∗
i ) + RP (x∗

i ) − 1} (3)

where LC (x∗
i ) is the left integral of PDF for control values Ci

and RP (x∗
i ) is the right integral of PDF for positive values Pi

at the decision threshold x∗
i (shown in Fig. 1). For categorical

variables, relevance is the classification accuracy of training
cases given the category of the independent variable.

To combine data from multiple tests and/or multiple scales,
DSI values obtained from (1) are recursively inserted back into
(1) as new variables, using several levels of recursion for granu-
larity. Recursive evaluation provides fitness, relevance, and DSI
values for a tree of data, where the leaves and branches represent
multiple scales but converge to a common root describing the
whole system. This tree of data can be rendered for quick vi-
sual interpretation of multiscale data, using colors and shapes to
quickly distinguish patient state and the relevance of all tests and
variables. The nodes can also be ordered according to relevance
to show the most important features at the top (see Fig. 2).

In summary, DSI uses available multiscale data to model the
state of having a disease. It does so first with the individual
measurement values, then transforms the values nonlinearly to
a common classification space and combines them within that
space to obtain aggregate results. The recursive computation
produces classification results at multiple levels of abstraction,
which can be visualized using a tree hierarchy.

B. Decision Support Library

We have developed a software library implementing the DSI
computational method and supporting features using the C#
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Fig. 2. DSI tree visualizations for two patients, one healthy, one with AD.
Larger node sizes indicate higher relevance (i.e., better discrimination of training
classes), with irrelevant features omitted. Shades of red indicate similarity of
the patient data to the disease population, shades of blue similarity to healthy.

language (see Fig. 3). The library is context independent, and
thus is applicable to several domains.

Since the DSI can use any available multiscale data, the li-
brary supports accessing multiple data repositories with a lay-
ered approach. Data access implementations, called persistence
stores(a) in Fig. 3, are free to connect with data sources in any
way that is needed, e.g., through an object relational mapping
(ORM) service, web services, or simply reading a flat text file.
An interface defines how the persistence stores can transfer data
to and from the library.

A data definition layer(b) comprises descriptions of entries
(e.g., types of tests done to a patient) and feature values (types
of individual data points) within those entries. Definitions are
application-specific metadata and must be configured in source
code or by Extensible Markup Language (XML) when initial-
izing the library for use. In addition to all features existing at
the leaf nodes, the organization of the DSI tree hierarchy is also
described within this layer. The actual data that are analyzed
are contained within another layer(c) , where all the subjects,
entries, and feature values are represented by matching object
instances, as described in Table I.

Performing DSI computations requires the library to construct
control and positive classes in a generic manner, using entities
from one or more persistent stores that provide training data. For
this, we have developed a rule-based grouping system(d) , where
a grouping rule interface is called to check whether a training
entity belongs to a particular class, e.g., to healthy controls or
Alzheimer’s disease patients. A CDSS tool using this decision
support library is aware of the context and is responsible for
defining the group forming rules, e.g., “if diagnosis equals AD,
assign patient to group AD.” A graphical user interface (GUI)
component is available in the decision support library to allow
interactive modification of the rules that have been implemented
so far. If necessary, new rule implementations can be created.
They are able to use all available patient information when
deciding whether he or she is to be included in a training class
or not.

After applying grouping rules, entities in control and positive
classes are known(e) . Now, the library must collect all types
of values from the entities in a generic manner. For this, we
have developed a sampling system(f ) , where sampling policies
control how data from a single entity are chosen for training.
One can, e.g., use the mean of all scalar values for a particular
feature or pick the value that was obtained most recently. As
with the grouping rules, the sampling policy implementations
can be configured with a GUI component and new ones can be
implemented in source code if complex sampling policies are
necessary. Custom grouping and sampling may be used, e.g.,
for personalized healthcare, where stratification is employed to
collect feature values with age and gender constraints.

Now, having the training data(g) , data from the patient we
are studying, and with the definition layer(b) describing the fea-
ture hierarchy, the library has all the necessary information for
evaluating the DSI(h) . Training data obtained through grouping
and sampling is organized in the tree hierarchy where the leaves
contain actual measurement values for the training set. Fitness
and relevance are evaluated at the leaf level, DSI and relevance
values in internal nodes are computed recursively, and, finally, a
total DSI value for the whole dataset at the root of the DSI tree
is obtained.

The library provides implementations of GUI components for
displaying DSI trees(i) , data distributions(j) , entry timeline(k) ,
and entry details(l) . These are implemented on top of the logic
tier using Windows Presentation Foundation (WPF) platform.

C. Data Access Implementations

Currently, there exist two implementations of persistence
stores(a) for accessing patient information to be used with the de-
cision support library. One of them uses an entity-attribute-value
(EAV) scheme, which is a common methodology for database
design in healthcare applications, thanks to its applicability to
storing heterogeneous and sparse patient data [15]–[17]. EAV
is well suited for querying data of individual patients, but it is
well known to be inefficient for bulk queries, which are needed
for collecting large quantities of training data [18]. These re-
quire the use of a normalized database where the patient and
all record types are represented by their own tables [19]. Un-
fortunately, this is a conflicting requirement for the decision
support library, which strives to be a generic one, accepting any
kind of data from any clinic to be incorporated into it. To over-
come the conflicting requirements, a normalized database and
persistence store generators have been developed to go along
with the library. They are based on C# language features, such
as partial classes and reflection [20], with Entity Framework 4
(EF4) [19] and Text Template Transformation Toolkit (T4) [21]
engine used for generating all the necessary constructs without
hard-coding any data descriptions. Reflection is a mechanism
in object-oriented programming languages that is used for ex-
amining, instantiating, and using unknown types. Partial classes
allow splitting class definitions to several source files. It is often
used to combine machine generated source code in one file with
manually written source code in another.
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TABLE II
ENTRIES AND THEIR FEATURE COUNTS FOR EARLY DIAGNOSIS OF AD

TABLE III
CLASSIFICATION PERFORMANCE WITH ADNI MCI DATASET

designed not to require preprocessing of any kind, and was used
as such. Ten iterations of 10-fold cross-validation were done to
obtain robust performance metrics.

In addition to the MCI dataset, we tested the DSI method with
three other medical datasets (Pima Indian Diabetes, Cleveland
Heart Disease, and Hepatitis) available online [23]. Performance
with these datasets was compared to publicly available bench-
mark results [24]. It is not possible to make a completely ob-
jective comparison between the benchmark values and the DSI
method since many of the reported values are expressed only
as a single number giving the classification accuracy, without
standard deviation or information about the validation process.
Also, some benchmark results were computed only after ex-
cluding subjects with missing values. To robustly assess the
DSI method, ten iterations of 10-fold cross-validation were per-
formed with all available data and compared against the best
benchmark method whose standard deviation was available, and
against the average of benchmark methods that performed better
than a simple majority classifier, i.e., one that assigns every case
to whichever class is in the majority in the training set.

Applicability of the software library was demonstrated by
developing a CDSS tool for early prediction of AD. The com-
plexity of implementation work was evaluated qualitatively and
the computational performance of the interactive DSI method
was measured quantitatively on a laptop PC with Windows XP
SP3, 2 GB of memory, and a 2.4 GHz dual core processor.

III. RESULTS

A. Classification Performance

With the MCI dataset from ADNI, the DSI method performed
on a level similar to established machine learning methods, as
seen in Table III.

Results obtained with other medical datasets show that the
DSI method tends to perform slightly worse than the best
benchmark methods, but similar to the average of them. With

TABLE IV
CLASSIFICATION ACCURACY WITH BENCHMARK DATASETS

the diabetes dataset, the best benchmark method was SVM.
For heart disease data, the maximum was obtained with a 28-
nearest neighbors (k-NN) classifier, using Euclidean distance,
and trained only with a subset of features. With the hepatitis
dataset, accuracy was best with an 18-NN classifier, this time
using Manhattan distance. Results of these evaluations are listed
in Table IV.

B. Implementing the CDSS Tool

Relying on the generic decision support library for much
of the necessary functionality, a prototype of a CDSS tool for
early prediction of AD was developed. The prototype uses two
persistence stores that connect to local databases, one using
EAV scheme that provides MCI patients for analysis, and a
normalized database for accessing training data. Definitions of
entries and feature values are described in an XML file and
provided to the decision support library during initialization of
the application.

The tool provides a comprehensive overview of all available
patient data to clinicians. GUI components from the library vi-
sualize entries, the DSI tree, and data distributions on a single
screen. The patient details panel and the rendering of brain MRI
images were custom built for this application. From the user in-
terface, clinicians can select entries to see the data in more detail,
select nodes from the DSI tree to see patient and training data
distributions, change classification groups, and change included
features to customize classification. In summary, the tool allows
mining of multiscale patient data and evidence-based study of
their relation to known Alzheimer’s disease profiles.

The software library facilitated rapid implementation of the
CDSS prototype. Taking it into use required configuration of
persistence stores and data definitions, providing the necessary
sampling and grouping rules, and finally wiring the GUI com-
ponents into the application.

C. Computational Performance of the DSI Implementation

Training of the DSI model and computation of the initial set of
DSI values was done for all patients sequentially, taking on av-
erage 860 ms/patient (standard deviation 74 ms). Re-evaluation
of DSI values after user initiated exclusion or inclusion of a fea-
ture was virtually instantaneous, consistently taking less than
1 ms. Grouping and sampling of training data, including the
necessary queries to the database, took on average 10 s. This
is done only once after the application launches, but could be
performed again if the training data are changed while running
the application.
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Fig. 3. Tiers, layers, and components of the generic decision support library, also showing the main direction of data flow.

TABLE I
LIBRARY RUNTIME DATA STRUCTURES

The process of generating normalized databases utilizes the
data definition layer(b) , which is also used within the library
for describing the CDSS data organization. A T4 script reads
the data definitions and automatically transforms this metadata
to database generation commands, which can be executed to
create a new database containing data tables adhering to the
given data definitions. With the database structure in place, one
can create, using EF4, an object relational mapping (ORM) that
allows writing and reading data in the database tables. More
specifically, the EF4 tooling environment builds a conceptual
model of the database by inspecting its structure and generates
the necessary code for transferring data between the database
and an application using the data. The EF4 generated conceptual
model uses strongly typed C# classes, again working against
the requirement of providing a generic decision support library.
With strongly typed classes, it is normally required to explicitly
declare the type of the class before using it, which in this case is
impossible since the database structure is unknown to the library.
To overcome this, another T4 script is used for generating partial
class definitions that augment the EF4-generated conceptual
model classes. The partial class definitions add functionality
that allows the augmented object instances to be created and
manipulated, using reflection, in a manner that can be considered
weakly typed. Through these mechanisms and with information
from the data definition layer(b) , generic implementations of
persistence stores(a) are able to access normalized databases

and transform patient data contained within those into the data
structures (entities/patients, entries, and feature values) used by
the decision support library. Finally, there are tools to populate
persistence stores(a) with data from other persistence stores as
necessary.

Together, the decision support library and data access imple-
mentations form a data-agnostic end-to-end system, which can
generate and populate appropriately designed databases based
on the data definitions and provide evidence-based decision sup-
port using the statistical DSI method.

D. Evaluation of the Proposed CDSS

Data used in the preparation of this article were obtained
from the Alzheimer’s Disease Neuroimaging Initiative (ADNI)
database (adni.loni.ucla.edu, accessed September 2, 2010). Pri-
mary goal of ADNI has been to measure the progression of
mild cognitive impairment (MCI) and early AD using biomark-
ers, and clinical and neuropsychological assessment. MCI is a
heterogeneous state of cognitive decline, with multiple possible
outcomes and increased risk of AD [22]. ADNI recruited ap-
proximately 400 people with MCI to be followed for 3 years,
in addition to recruiting 200 normal elderly individuals and
200 AD patients.

From the MCI patients recruited to ADNI, this study in-
cluded those whose last clinical diagnosis during the study was
still MCI or had converted to AD, forming the classification
groups of stable MCI (SMCI, n = 190) and progressive MCI
(PMCI, n = 154, average time to getting AD diagnosis: 19
months), respectively. Using baseline measurements alone, we
tested our method’s ability to predict conversion to AD using
sparse multiscale measurement data that included neuropsycho-
logical tests, magnetic resonance imaging data, molecular test
data, and genetic test data (see Table II).

The ability of DSI to predict AD was compared to three refer-
ence classifiers; support vector machine (SVM), Naı̈ve Bayes,
and Logistic Regression (LR). All methods were given exactly
the same data. Data preprocessing, parameter search, and fea-
ture selection was done for the reference classifiers to attain the
best performance possible. The generic DSI method has been
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designed not to require preprocessing of any kind, and was used
as such. Ten iterations of 10-fold cross-validation were done to
obtain robust performance metrics.

In addition to the MCI dataset, we tested the DSI method with
three other medical datasets (Pima Indian Diabetes, Cleveland
Heart Disease, and Hepatitis) available online [23]. Performance
with these datasets was compared to publicly available bench-
mark results [24]. It is not possible to make a completely ob-
jective comparison between the benchmark values and the DSI
method since many of the reported values are expressed only
as a single number giving the classification accuracy, without
standard deviation or information about the validation process.
Also, some benchmark results were computed only after ex-
cluding subjects with missing values. To robustly assess the
DSI method, ten iterations of 10-fold cross-validation were per-
formed with all available data and compared against the best
benchmark method whose standard deviation was available, and
against the average of benchmark methods that performed better
than a simple majority classifier, i.e., one that assigns every case
to whichever class is in the majority in the training set.

Applicability of the software library was demonstrated by
developing a CDSS tool for early prediction of AD. The com-
plexity of implementation work was evaluated qualitatively and
the computational performance of the interactive DSI method
was measured quantitatively on a laptop PC with Windows XP
SP3, 2 GB of memory, and a 2.4 GHz dual core processor.

III. RESULTS

A. Classification Performance

With the MCI dataset from ADNI, the DSI method performed
on a level similar to established machine learning methods, as
seen in Table III.

Results obtained with other medical datasets show that the
DSI method tends to perform slightly worse than the best
benchmark methods, but similar to the average of them. With

TABLE IV
CLASSIFICATION ACCURACY WITH BENCHMARK DATASETS

the diabetes dataset, the best benchmark method was SVM.
For heart disease data, the maximum was obtained with a 28-
nearest neighbors (k-NN) classifier, using Euclidean distance,
and trained only with a subset of features. With the hepatitis
dataset, accuracy was best with an 18-NN classifier, this time
using Manhattan distance. Results of these evaluations are listed
in Table IV.

B. Implementing the CDSS Tool

Relying on the generic decision support library for much
of the necessary functionality, a prototype of a CDSS tool for
early prediction of AD was developed. The prototype uses two
persistence stores that connect to local databases, one using
EAV scheme that provides MCI patients for analysis, and a
normalized database for accessing training data. Definitions of
entries and feature values are described in an XML file and
provided to the decision support library during initialization of
the application.

The tool provides a comprehensive overview of all available
patient data to clinicians. GUI components from the library vi-
sualize entries, the DSI tree, and data distributions on a single
screen. The patient details panel and the rendering of brain MRI
images were custom built for this application. From the user in-
terface, clinicians can select entries to see the data in more detail,
select nodes from the DSI tree to see patient and training data
distributions, change classification groups, and change included
features to customize classification. In summary, the tool allows
mining of multiscale patient data and evidence-based study of
their relation to known Alzheimer’s disease profiles.

The software library facilitated rapid implementation of the
CDSS prototype. Taking it into use required configuration of
persistence stores and data definitions, providing the necessary
sampling and grouping rules, and finally wiring the GUI com-
ponents into the application.

C. Computational Performance of the DSI Implementation

Training of the DSI model and computation of the initial set of
DSI values was done for all patients sequentially, taking on av-
erage 860 ms/patient (standard deviation 74 ms). Re-evaluation
of DSI values after user initiated exclusion or inclusion of a fea-
ture was virtually instantaneous, consistently taking less than
1 ms. Grouping and sampling of training data, including the
necessary queries to the database, took on average 10 s. This
is done only once after the application launches, but could be
performed again if the training data are changed while running
the application.
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of new user interfaces. As long as definitions of the data and the
data itself are provided to the library, it can organize available
values and construct interactive views that provide analyses of
the recently defined information to clinical decision makers. The
ultimate goal is to provide evidence-based decision support for
clinicians during diagnostic work. Application of the decision
support library was demonstrated by developing a prototype
CDSS tool for early prediction of AD. We are currently evaluat-
ing the prototype at two memory clinics in Europe, comparing it
to traditional diagnostic methods. We are also applying the DSI
method and the decision support library to several other datasets
to assess their robustness more comprehensively.
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IV. DISCUSSION

To the authors’ knowledge, there are no other CDSS tools
or decision support libraries for clinical diagnostics developed
with a similar philosophy, i.e., using any available sparse and
unprocessed patient data, and not requiring manual tuning or
decision parameters defined by clinical experts. To use the deci-
sion support system presented here, one only needs data defini-
tions, which can in several cases be derived in a straightforward
manner, using the structure of the original data. Data hierarchy
definitions can be modified manually if a particular organization
is preferred. Computer-based methods for organizing the data
hierarchy could also be developed, possibly grouping features
automatically along the dimensions of a disease, e.g., effect to
motor dysfunction or to delayed recall performance. Further
studies are required to assess the effect of different hierarchy
structures on the classification accuracy of the statistical DSI
method behind the library.

The generic clinical decision support library was found to be a
good basis for developing a CDSS tool for early diagnosis of AD.
Features of the library aim to support clinical requirements, e.g.,
they accommodate workflows where patient data are collected
sporadically. The statistical methods are not computationally
intensive, and could be further optimized with parallelization.
Computational performance of the decision support library is
more limited by access to training data. Retrieving bulk patient
data for training sets in a generic manner was made feasible
by developing tools and defining processes that can be used
for creating and populating normalized databases from existing
electronic datasets.

The DSI method behind the decision support library was
able to provide values for quickly interpretable visualizations of
multiscale data without compromising prediction accuracy. The
visualizations were designed to be transparent, i.e., to clearly
disclose the origin of the derived values, since even accurate
diagnostics obtained with a black box classifier are not very
easily applied in clinical practice. Compared to the reference
classification methods, the DSI also emphasizes clinical inter-
pretability by 1) providing information about all subsystems of
different scales (e.g., genetic, molecular, structural, and neu-
ropsychological) individually and also as a part of the whole,
2) computing a rank of the patient data in relation to diagnosed
populations instead of maximizing class separation, which leads
to 3) consistency in output that should reflect the magnitude of
changes in the raw data. In addition to highlighting important
details to clinicians, the DSI and relevance values can facilitate
building of expert systems.

Classification accuracy of the DSI was found comparable to
benchmark methods when applied to various medical datasets,
even though it is designed not to require feature selection or
searching of optimal classifier parameters. In other words, the
generic DSI method obtained classification accuracies close to
the best benchmark results, which were manually tuned to work
with the given data as well as possible. The relatively low clas-
sification accuracies with MCI data are in line with other stud-
ies [25] and underline the fact that data alone are not enough for
reliable prediction of conversion from MCI to AD at an early

phase of the disease. This is also true for ADNI data, partly
due to a relatively short follow-up time and also due to errors
in the diagnoses which have not been confirmed pathologically.
Correlation between features was also considered. It appears
that the tree hierarchy and the recursion resulting from it par-
tially nullify issues due to correlation. For datasets with a large
number of features, we have implemented a method that ex-
plicitly addresses correlation by applying principal component
analysis (PCA) to the leaf nodes of the data hierarchy. In the
evaluation datasets, this did not, however, increase classification
accuracy.

Healthcare is slowly moving towards electronic health
records. Eventually, patient data could be automatically loaded
for analyses inside a tool such as this. A clinician diagnos-
ing a patient would not need to observe hundreds of individ-
ual measurements at different scales, available from several
sources. Instead, they could see all available data at once, hy-
pothesize a disease, and immediately see which data are rele-
vant in that context and which point toward the disease. This
could save both time and frustration from information over-
load. For now, manual work is needed, either entering patient
records into the tool, implementing a custom persistence store
implementation, or implementing a data adapter which reads
existing electronic sources of a particular clinic into a database
supported by the library. This limits the presented solution to
specialist clinics in the immediate future. The authors also ac-
knowledge that routinely collected clinical data contain more
artifacts and missing information than research data that affect
the performance of the methods. Therefore, there are plans for
future studies using less well-curated patient data from realistic
sources.

The main disadvantage of the presented DSI method and the
decision support library implementation is that in addition to
the patient measurements for analyses, they require properly
validated datasets for control and disease cases. This training
data could be local to a particular clinic, but could also be
collected regionally or nationally, greatly decreasing the burden
of creating validated training datasets. The authors believe that
data obtained in research studies should be a good starting point
for compiling the initial training datasets.

Another limitation of the proposed system is that currently
the library has proper support for two-class problems only. Fu-
ture research will address how these methods are appropriately
applied when multiple diseases are in consideration, which is a
clinically important requirement for differential diagnostics.

V. CONCLUSION

In this manuscript, the design and implementation of a generic
decision support system was presented. It is implemented as a
reusable software library employing a statistical disease state
modeling method, which is able to robustly analyze heteroge-
neous multiscale patient data with minimal preprocessing. The
context-agnostic data access, analysis, and visualization meth-
ods allow the library to be rapidly applied in several contexts.
When presented with a new problem or data, there is no search-
ing of parameters, handling of missing values, or development
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of new user interfaces. As long as definitions of the data and the
data itself are provided to the library, it can organize available
values and construct interactive views that provide analyses of
the recently defined information to clinical decision makers. The
ultimate goal is to provide evidence-based decision support for
clinicians during diagnostic work. Application of the decision
support library was demonstrated by developing a prototype
CDSS tool for early prediction of AD. We are currently evaluat-
ing the prototype at two memory clinics in Europe, comparing it
to traditional diagnostic methods. We are also applying the DSI
method and the decision support library to several other datasets
to assess their robustness more comprehensively.
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Abstract. Several neuropsychological tests and biomarkers of Alzheimer’s disease (AD) have been validated and their evolution
over time has been explored. In this study, multiple heterogeneous predictors of AD were combined using a supervised learning
method called Disease State Index (DSI). The behavior of DSI values over time was examined to study disease progression
quantitatively in a mild cognitive impairment (MCI) cohort. The DSI method was applied to longitudinal data from 140 MCI cases
that progressed to AD and 149 MCI cases that did not progress to AD during the follow-up. The data included neuropsychological
tests, brain volumes from magnetic resonance imaging, cerebrospinal fluid samples, and apolipoprotein E from the Alzheimer’s
Disease Neuroimaging Initiative database. Linear regression of the longitudinal DSI values (including the DSI value at the point
of MCI to AD conversion) was performed for each subject having at least three DSI values available (147 non-converters, 126
converters). Converters had five times higher slopes and almost three times higher intercepts than non-converters. Two subgroups
were found in the group of non-converters: one group with stable DSI values over time and another group with clearly increasing
DSI values suggesting possible progression to AD in the future. The regression parameters differentiated between the converters
and the non-converters with classification accuracy of 76.9% for the slopes and 74.6% for the intercepts. In conclusion, this
study demonstrated that quantifying longitudinal patient data using the DSI method provides valid information for follow-up of
disease progression and support for decision making.

Keywords: Alzheimer’s disease, biomarkers, data mining, decision support techniques, early diagnosis, mild cognitive
impairment

INTRODUCTION

Alzheimer’s disease (AD) is a neurodegenera-
tive disease that develops gradually over the years
and finally results in loss of cognitive function and
dementia [1]. Mild cognitive impairment (MCI) is
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an intermediate state between normal cognition and
dementia. Patients with MCI have cognitive problems
that are not normal for their age and do not yet interfere
with their daily activities [2–4]. MCI with memory dys-
function is a risk factor for AD, however, not all MCI
patients will progress to AD [2, 3].

There is no cure for AD, but it has been modeled
that delaying the onset of the disease would reduce
its prevalence considerably, and slowing down its pro-
gression would allow more cases to remain as mild AD
instead of progressing to moderate or severe AD which
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III/1

Journal of Alzheimer’s Disease 39 (2014) 49–61
DOI 10.3233/JAD-130359
IOS Press

49

Quantitative Evaluation of Disease
Progression in a Longitudinal Mild Cognitive
Impairment Cohort

Hilkka Runttia,∗, Jussi Mattilaa, Mark van Gilsa, Juha Koikkalainena, Hilkka Soininenb,
Jyrki Lötjönena and for the Alzheimer’s Disease Neuroimaging Initiative
aVTT Technical Research Centre of Finland, Tampere, Finland
bDepartment of Neurology, University of Eastern Finland and Kuopio University Hospital, Kuopio, Finland

Handling Associate Editor: Javier Escudero

Accepted 20 August 2013

Abstract. Several neuropsychological tests and biomarkers of Alzheimer’s disease (AD) have been validated and their evolution
over time has been explored. In this study, multiple heterogeneous predictors of AD were combined using a supervised learning
method called Disease State Index (DSI). The behavior of DSI values over time was examined to study disease progression
quantitatively in a mild cognitive impairment (MCI) cohort. The DSI method was applied to longitudinal data from 140 MCI cases
that progressed to AD and 149 MCI cases that did not progress to AD during the follow-up. The data included neuropsychological
tests, brain volumes from magnetic resonance imaging, cerebrospinal fluid samples, and apolipoprotein E from the Alzheimer’s
Disease Neuroimaging Initiative database. Linear regression of the longitudinal DSI values (including the DSI value at the point
of MCI to AD conversion) was performed for each subject having at least three DSI values available (147 non-converters, 126
converters). Converters had five times higher slopes and almost three times higher intercepts than non-converters. Two subgroups
were found in the group of non-converters: one group with stable DSI values over time and another group with clearly increasing
DSI values suggesting possible progression to AD in the future. The regression parameters differentiated between the converters
and the non-converters with classification accuracy of 76.9% for the slopes and 74.6% for the intercepts. In conclusion, this
study demonstrated that quantifying longitudinal patient data using the DSI method provides valid information for follow-up of
disease progression and support for decision making.

Keywords: Alzheimer’s disease, biomarkers, data mining, decision support techniques, early diagnosis, mild cognitive
impairment

INTRODUCTION

Alzheimer’s disease (AD) is a neurodegenera-
tive disease that develops gradually over the years
and finally results in loss of cognitive function and
dementia [1]. Mild cognitive impairment (MCI) is

∗Correspondence to: Hilkka Runtti, VTT Technical Research
Centre of Finland, P.O. Box 1300, FIN-33101 Tampere, Finland.
Tel.: +358 40 152 6627; Fax: +358 20 722 3499; E-mail: hilkka.
runtti@vtt.fi.

an intermediate state between normal cognition and
dementia. Patients with MCI have cognitive problems
that are not normal for their age and do not yet interfere
with their daily activities [2–4]. MCI with memory dys-
function is a risk factor for AD, however, not all MCI
patients will progress to AD [2, 3].

There is no cure for AD, but it has been modeled
that delaying the onset of the disease would reduce
its prevalence considerably, and slowing down its pro-
gression would allow more cases to remain as mild AD
instead of progressing to moderate or severe AD which
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causes huge costs to society [5]. Different treatments
to modify disease progression have been studied [6, 7]
and it has been shown that they should be started as
early as possible to be effective [7, 8]. To make ear-
lier AD diagnosis and interventions feasible, different
neuropsychological tests and biomarkers from labora-
tory tests and imaging have been studied extensively
[9–12].

In 2010, Jack et al. [13] proposed a model describ-
ing temporal evolution of major AD biomarkers. The
model was recently updated on the basis of gained
knowledge, and according to it, different biomark-
ers of AD become abnormal in a certain temporal
order and their longitudinal behavior is non-linear
[14]. Biomarkers measuring deposition of amyloid-
� plaques become abnormal first, years before the
clinical symptoms appear. They are followed by indi-
cators of neurodegeneration, and the last biomarkers
to become abnormal are structural changes visible
in magnetic resonance imaging (MRI) and changes
in cerebral metabolism revealed by fluorodeoxyglu-
cose positron emission tomography (FDG-PET). The
updated model also takes into account that the sever-
ity of cognitive impairment due to pathophysiological
load of AD is individual depending on, e.g., genetics,
lifestyle, and other brain diseases.

New guidelines, incorporating both cognitive
assessment and biomarkers for diagnosing different
stages of AD, were recently published as a result of
these research findings [15–18]. They state that the
detection of preclinical stages of AD in research sub-
jects should be based on biomarkers and that MCI
and AD are diagnosed using clinical and cognitive
evaluation and biomarkers can provide complementary
information.

All the different tests and investigations done in
modern diagnostics produce large amounts of data that
clinicians need to explore carefully. Assessing the het-
erogeneous data and measuring longitudinal changes
in them may be difficult. Several studies have success-
fully combined multimodal data to classify subjects
into classes of healthy, MCI, or AD using established
classification methods, e.g., logistic regression or sup-
port vector machines [19–24]. There also exists a
statistical Disease State Index (DSI) method which
estimates the state of a patient in the continuum from
healthy to disease on the basis of measured data. The
DSI method has been developed and extensively stud-
ied by most of the authors of this manuscript. Mattila
et al. [22] demonstrated that it discriminated well
between healthy cases, MCI cases that do not con-
vert to AD, MCI cases that convert to AD, and AD

cases. A recent study, also by Mattila et al. [25], showed
that approximately half of the MCI patients who devel-
oped into AD could have been classified with a high
accuracy already a year before receiving the clinical
diagnoses using the DSI. However, it has not been stud-
ied yet how DSI values develop over time in subjects
with MCI.

DSI values can be visualized with a Disease State
Fingerprint (DSF) technique which shows how results
from different tests contribute to the disease state of a
patient. The DSF allows rapid interpretation of large
amounts of patient data and helps clinicians to discern
relevant information from irrelevant [22]. Until now,
only data from a single time point have been visualized
using the DSF.

The objective of this work was to study disease
progression quantitatively using heterogeneous longi-
tudinal data in an MCI cohort. First, it was studied
whether it is possible to discern significant trends in
the severity of AD as reflected by the DSI and whether
subjects that convert from MCI to AD have a differ-
ent longitudinal DSI behavior than subjects that do not
convert. Second, classification of MCI subjects to con-
verters and non-converters on the basis of the trend
parameters from longitudinal DSI values was tested.
Third, to facilitate interpretation of data, the DSF visu-
alization was developed further for the presentation of
longitudinal data.

MATERIALS AND METHODS

Study population

Data used in the analyses were obtained from the
Alzheimer’s Disease Neuroimaging Initiative (ADNI)
database [26]. ADNI is a 5-year study aiming at devel-
oping and testing methods for acquiring and analyzing
biological markers that measure the progression of
MCI and AD [27]. ADNI was launched in 2004, and
approximately 800 subjects of age 50 to 90 years
have been recruited at around 50 sites in the United
States and Canada. The enrolled subjects included 200
healthy elderly controls, 400 subjects with MCI, and
200 subjects with early AD. The subjects underwent
cognitive assessment, neuropsychological testing, and
MRI at intervals of six or twelve months for two to four
years. Other tests, such as FDG-PET and blood and
cerebrospinal fluid samples (CSF), were performed
less frequently [28].

In the present study, MCI cases with at least 24
months of follow-up data were included. The selected
MCI cases were divided into two groups: a stable
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Table 1
Demographics of the study population at the baseline

Stable MCI Progressive MCI p

Subjects 149 (51.6%) 140 (48.4%)
Gender 0.373

Female 51 (34.2%) 55 (39.3%)
Male 98 (65.8%) 85 (60.7%)

Age (years) 75.1 ± 7.4 75.4 ± 6.7 0.916
Education (years) 15.9 ± 3.0 15.6 ± 3.0 0.239

Data presented as number of subjects (percentage of subjects %)
or mean ± standard deviation. p: Group differences were examined
using appropriate tests based on whether their distribution was nor-
mal or not as determined by the Kolmogorov-Smirnov test: Pearson
χ2 test (gender) and Mann-Whitney U test (age and education).

MCI group (SMCI, n = 149), who did not obtain the
diagnosis of AD during the follow-up period, and a pro-
gressive MCI group (PMCI, n = 140), whose diagnosis
changed from MCI to AD during the follow-up. Sub-
jects whose diagnosis changed from MCI to healthy or
from MCI to AD and then back to MCI were excluded
from the study. Demographics of these two groups are
presented in Table 1.

The data were downloaded from the ADNI web-
site (http://adni.loni.ucla.edu) in September 2011. The
data used in the analyses comprised Mini-Mental
State Examination (MMSE), Alzheimer’s Disease
Assessment Scale-cognitive subscale (ADAS), Neu-
ropsychological Battery (NeuroBat), brain volume
measures based on MRI, amyloid-� and total tau in
CSF, and apolipoprotein E (APOE). Details of the
included variables are presented in the Supplemen-
tary Material. MRI brain volume measures provided
to ADNI by Anders Dale Lab (University of Califor-
nia, San Diego) were used. They performed volumetric
segmentation of MRI with the FreeSurfer image analy-
sis suite, which is documented and freely available for
download online (http://surfer.nmr.mgh.harvard.edu/).
Technical details of the segmentation are described in
[29].

Diagnosis of MCI and AD in the ADNI is based
on evaluation of memory, cognition, and functional
performance (memory complaints by a subject or a
study partner, Logical Memory II, MMSE, and Clin-
ical Dementia Rating) [28]. In addition, diagnosis of
probable AD requires fulfillment of the AD criteria
defined by the NINCDS-ADRDA (the National Insti-
tute of Neurological and Communicative Disorders
and Stroke and the Alzheimer’s Disease and Related
Disorders Association) [30, 31]. Although the diagno-
sis is partly based on MMSE and Logical Memory II,
they were included in the data analyses in this study
because 1) MMSE is widely used making it interesting

in clinical sense, 2) the diagnosis is not based only on
the MMSE and Logical Memory II, and 3) the ADNI
criteria to decide between MCI versus AD does allow
overlap in MMSE score and Logical Memory II score.

Variables summarizing the tests, e.g., total MMSE
score and ADAS 13 point total, were excluded as
independent variables from the analysis because the
subscores and the individual items contain the same
information as the total scores. Justification for the use
of individual items instead of total scores is that some
items may differentiate between SMCI and PMCI
cases better than others and part of the available infor-
mation is lost if only the total scores are used. For
example, Llano et al. [32] weighted individual items
of ADAS with coefficients derived using data-driven
approach and constructed a new composite ADAS
score. Their composite score differentiated normal
controls, MCI, and AD cases better than the ADAS
total score and the composite score also predicted con-
version to AD slightly better than the ADAS total score.

Disease State Index

The DSI is a statistical method for deriving a scalar
value that estimates the state of a disease in a patient
[22]. The DSI method is based on the computation of
two different values: DSI values and relevance values.
The DSI value of an individual variable is computed
by comparing a measurement value from a patient
to the distributions of known healthy and diseased
cases using a so-called fitness function. DSI values are
between zero and one, with higher values indicating
that the patient fits better to the disease than to the con-
trol population on the basis of the measured data. The
relevance value describes how well the variable differ-
entiates between the known healthy and diseased cases.
In other words, relevance is a measure of the differ-
ences in the data measured from healthy and diseased
cases. Relevance values, like the DSI values, are also
between zero and one, with higher values represent-
ing better discrimination. A composite DSI combining
different variables is computed as a weighted arith-
metic mean of the individual DSI values weighted by
the relevance values. This averaging is done several
times recursively to yield a hierarchy of DSI values
that reveals the overall position or rank in relation to
the disease, i.e., quantifies the progression of a disease
based on available patient data. In this work, the study
population consisted of SMCIs as control cases and
PMCIs as disease cases.

The DSI method is robust against overfitting by its
design. Estimation of the DSI and relevance values

http://adni.loni.ucla.edu
http://surfer.nmr.mgh.harvard.edu/
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Fig. 1. Visualizations of three sets of longitudinal patient data. Left panel: Disease State Fingerprints (DSF) in which Disease State Index (DSI)
values of the individual tests at different time points are shown on the rows. Total DSI values (the topmost rows of the DSFs) combines the
results from the individual tests. Sizes of the boxes indicate how well the variable discriminates between the stable (SMCI) and progressive
(PMCI) mild cognitive impairment cases. Color indicates to which group the data fits the best. Blue corresponds to SMCI and red to PMCI. Right
panel: linear regression of the total DSI values (red dashed line with white circles). Black squares present the total DSI values of a patient. The
horizontal lines indicate a threshold where the classification accuracy of 85% is achieved. The vertical line shows the current age of a patient.
Data from two SMCI cases are presented in the topmost panels and data from a PMCI case is presented in the lowest panel.
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Table 2
Number of available patient visits at different time points

Baseline Month 6 Month 12 Month 18 Month 24 Month 30 Month 36 Month 42 Month 48

Total 289 287 287 279 281 0 233 0 51
SMCI 149 148 147 143 142 0 121 0 19
PMCI 140 139 140 136 139 0 112 0 32

SMCI, stable mild cognitive impairment; PMCI, progressive mild cognitive impairment.

for individual variables is done independently from
other variables, thus, there is no over-dimensionality
at the variable level because only two parameters are
estimated for each variable (the DSI value and the rele-
vance value). In addition, weighting of features and the
use of the hierarchy lead in practice to feature selection.
As a result, any few values alone will not determine
the resulting composite DSI value, but it is an amal-
gam of all relevant data sources. Mathematical details
of the computation of the DSI and relevance values are
explained in [22].

The DSI values can be calculated on the basis of a
single variable or multiple variables together. In this
study, it was investigated whether combining different
data modalities would yield better results than utilizing
data from a single modality alone. Thus, DSI val-
ues were calculated using two different approaches:
1) using all available variables together (MMSE,
ADAS, NeuroBat, MRI, CSF, and APOE) and 2)
using data from individual data modalities indepen-
dently (MMSE, ADAS, NeuroBat, and MRI). CSF was
measured less frequently so it was not analyzed indi-
vidually and neither was APOE genetics, which do not
change with disease progression. For the calculation of
the DSI values, subjects were divided into ten training
and test sets for stratified 10-fold cross-validation in
which each fold contains the same proportions of class
labels. The training data used for building the model
of AD progression included actual measurement val-
ues from SMCI baseline visits and actual measurement
values from the time of receiving AD diagnosis for
PMCI cases. This kind of selection of training data sets
the dynamic range of the DSI method between SMCIs
at the baseline and early AD, i.e., the dynamic range
of the DSI method was optimized for the purposes of
the study and clinical problem at the hand. The test
sets included data from the complete series of visits
of the remaining SMCI and PMCI cases. The number
of patient visits available at the different time points
is shown in Table 2. Missing values in the raw data
(e.g., a missing result in MMSE) were replaced with
the values from the patient’s previous available visit.
This allowed having complete data sets for the analy-
sis at each patient visit. Although using previous data

can result in slightly outdated data and conservative
disease progression estimates for some patient visits,
that data were known to have been available at those
time points.

Disease State Fingerprint

The DSF is a method for visualizing the patient data
and the hierarchy of the DSI values [22]. Example visu-
alizations are shown in the left panel of Fig. 1. DSF
consists of a tree with nodes of different sizes and col-
ors. The size of the node indicates the relevance value,
i.e., how well a variable or a test differentiates between
SMCI and PMCI, and color indicates the DSI value.
Higher DSI values refer to PMCI and result in shades of
red. Lower values represent SMCI and result in shades
of blue. In this study, the progression of AD was visu-
alized using the DSF technique extended with support
for longitudinal data.

Synchronization of the time stamps

The initial visits of MCI patients to a memory clinic
occurred in different phases of the disease. For exam-
ple, some PMCI cases converted from MCI to AD at
follow-up month 6 and others at month 36. To take this
into account, the time stamps of the patient visits were
synchronized. The moment of receiving AD diagno-
sis was set as the zero time point (Z) of PMCIs. For
SMCIs, the last available time point up to month 36
was set as their Z. The time points preceding the zero
point were labeled as Z-6, Z-12, etc. DSI values from
Z-42 and Z-48 months were excluded from the analy-
sis because they contained only a few cases. Thus, DSI
values computed from visit data at Z, Z-6, Z-12, Z-18,
Z-24, Z-30, and Z-36 months were used in the analysis.
Only those subjects who had at least three DSI values
available in all approaches (DSI calculated using all
variables, MMSE, ADAS, NeuroBat, or MRI), were
included for further analysis. The purpose was to per-
form linear regression (see below) and using only two
points would have yielded in perfect regression, mak-
ing the comparison of goodness of fit values between
the different datasets unfair. The number of available
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Fig. 1. Visualizations of three sets of longitudinal patient data. Left panel: Disease State Fingerprints (DSF) in which Disease State Index (DSI)
values of the individual tests at different time points are shown on the rows. Total DSI values (the topmost rows of the DSFs) combines the
results from the individual tests. Sizes of the boxes indicate how well the variable discriminates between the stable (SMCI) and progressive
(PMCI) mild cognitive impairment cases. Color indicates to which group the data fits the best. Blue corresponds to SMCI and red to PMCI. Right
panel: linear regression of the total DSI values (red dashed line with white circles). Black squares present the total DSI values of a patient. The
horizontal lines indicate a threshold where the classification accuracy of 85% is achieved. The vertical line shows the current age of a patient.
Data from two SMCI cases are presented in the topmost panels and data from a PMCI case is presented in the lowest panel.
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Table 4
Goodness of fit for the linear regression of longitudinal Disease State

Index values derived using different data modalities

Dataset R2 Adjusted R2 Mean square error

Total 0.553 ± 0.289 0.422 ± 0.369 0.006 ± 0.008
MMSE 0.364 ± 0.295 0.172 ± 0.390 0.014 ± 0.016
ADAS 0.388 ± 0.298 0.196 ± 0.413 0.024 ± 0.026
NeuroBat 0.475 ± 0.318 0.315 ± 0.426 0.005 ± 0.004
MRI 0.721 ± 0.259 0.642 ± 0.321 0.001 ± 0.001

Total, All available variables included when calculating DSI val-
ues; MMSE, Mini-Mental State Examination; ADAS, Alzheimer’s
Disease Assessment Scale-cognitive subscale; NeuroBat, Neuropsy-
chological Battery; MRI, brain volumes derived from magnetic
resonance imaging. The values are mean ± standard deviation
because the linear regression was performed for each subject inde-
pendently.

correction was applied and p < 0.0056 was considered
significant (number of comparisons was nine).

All analyses were performed in Matlab R2012a (The
Mathworks, Natick, MA) and IBM SPSS Statistics 19
(IBM, Armonk, NY). Visualizations were processed
in GNU Image Manipulation Program 2.0 (GIMP 2.0,
freely available at http://www.gimp.org/).

RESULTS

Modeling progression of AD

Goodness of fit for linear regression of the longitudi-
nal DSI values is shown in Table 4. On the basis of R2,
adjusted R2, and mean square error, the linear associa-
tion was the strongest when DSI values were calculated
using only MRI-derived volumes. The linear model fit-
ted the second best when all available variables were
used together. The longitudinal DSI values derived on
the basis of cognitive and neuropsychological tests had
the smallest association values. Plots of residuals ver-
sus predicted values supported the interpretation that
the DSI values calculated on the basis of ADAS and
MMSE were the least linear over time: points in the
plots were not as randomly distributed as they were
when the DSI values were based on all available data,
MRI, or NeuroBat (results not shown here).

The linear regression of the DSI values over time was
performed for each subject independently. Medians of
the regression parameters for SMCI and PMCI groups
are shown in Table 5. The slopes and the intercepts of
both groups were higher than zero (p < 0.0005). There
were also clear differences between the two groups:
PMCIs had five times higher slopes and almost three
times higher intercepts than SMCIs (p < 0.0005).

The distributions of the slopes of both groups
are presented in Fig. 2. On the basis of the visual

Table 5
Regression parameters of longitudinal Disease State Index values

for SMCI and PMCI groups

SMCI PMCI

Slope∗ 0.002 (0.000, 0.006)+ 0.010 (0.005, 0.015)+
Intercept∗ 0.295 (0.139, 0.621)+ 0.754 (0.626, 0.860)+
n 7 (7; 7) 5 (3; 5)

Values are median (25th percentile, 75th percentile). SMCI, sta-
ble mild cognitive impairment; PMCI, progressive mild cognitive
impairment, n, number of points in the regression, ∗statistically
significant difference between the groups (Mann-Whitney U
test, p < 0.0005), +significantly different from zero (one-sample
Wilcoxon Signed Rank test, p < 0.0005). Disease State Index values
were derived using all variables together.

inspection, the SMCI curve deviated from a Gaussian
distribution containing also cases with higher slopes.
Therefore, a hypothesis was put forth that the SMCI
group actually contained two subgroups: one with truly
stable DSI values and one with non-stable DSI values
having signs of disease progression. A mixture distri-
bution of two normal curves was fitted to the slopes of
the SMCIs. The fits of unimodal and bimodal distri-
butions were compared, and the results and estimated
parameters are shown in the Supplementary Material.
The results showed that the bimodal distribution fitted
better to the slopes of the SMCIs than the unimodal
distribution supporting the idea that two subgroups do
exist within the SMCI group.

Visualizing progression of AD

In Fig. 1, the progression of AD is visualized using
the DSF and the regression line of the DSI values.
Most of the nodes in the DSF of a clear SMCI case
are blue indicating that the patient data remained con-
stantly unlike the data of those with AD. Also, the slope
and the intercept of the regression line have low val-
ues (Fig. 1, topmost panel). On the contrary, almost all
nodes of a clear PMCI case are red, indicating strong
resemblance to previously diagnosed AD cases, and
the slope and the intercept are higher as well (Fig. 1,
lowest panel). A SMCI case with clearly increasing
DSI values and the DSF changing from blue to red
is also shown (Fig. 3, mid-panel). This case belongs
to the subgroup of SMCI cases with non-stable DSI
values in Fig. 2.

Differentiation using the trend parameters

MCI cases were classified as SMCI or PMCI using
the regression parameters of the longitudinal DSI val-
ues, and the classification performance results are
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Table 3
Number of Disease State Index values of the SMCI and PMCI cases
at synchronized time points. The last available time point up to month
36 was selected as the zero time point (Z) of SMCI. The moment of
receiving Alzheimer’s disease diagnosis was set as the Z of PMCI.

The time points preceding the Z were labeled as Z-6 etc

Z-36 Z-30 Z-24 Z-18 Z-12 Z-6 Z

SMCI 147 147 147 147 147 147 147
PMCI 29 29 64 90 126 126 126

SMCI, stable mild cognitive impairment; PMCI, progressive mild
cognitive impairment. The number of SMCI cases stays the same
because the visit Z-36 is their baseline visit and any missing values
have been replaced with the values from the previous available visit.
The number of PMCI cases changes over time because some have
converted in an early phase of the study. Only the cases having at
least three available DSI values were included.

DSI values of the included SMCI and PMCI cases at
the synchronized time points is presented in Table 3.

Modeling progression of AD

In this work, it was assumed that the change of the
DSI values over time, and thus the progression of AD,
can be modeled linearly:

DSI = a ∗ t + b (1)

where a is the slope of regression (rate of change
for DSI values), b is the intercept of regression (DSI
value at the time point zero), and t is time measured
in months. A linear model was selected because it is
the simplest method to model the progression of AD
and it is also the simplest to interpret. Another reason
was that due to the synchronization of the time stamps
some subjects had only few DSI values available for the
regression. Thus, there were not enough data points for
more complicated models. The third reason supporting
the linear model was that the follow-up times were rel-
atively short compared with the time span of disease
progression in AD in overall. Linear regression was
performed for each subject separately to model each
individual’s disease progression.

Differentiation using the trend parameters

Classification of subjects as SMCI or PMCI cases
on the basis of their regression parameters (slope,
intercept) was studied as follows. First, optimal clas-
sification thresholds for the regression parameters
were defined on the basis of the receiver operat-
ing characteristic (ROC) curves. Then, the regression
parameters were compared to the threshold value and
if it was exceeded the subject was classified as PMCI.
Otherwise he or she was classified as SMCI. The

thresholds and classification performance measures
(classification accuracy, sensitivity, and specificity)
were calculated using the stratified 10-fold cross-
validation.

Statistical methods

Normality of the continuous demographic variables
was studied using Kolmogorov-Smirnov test. Group
differences in demographics between SMCI and PMCI
groups were examined using non-parametric Mann-
Whitney U test for continuous variables and Pearson
χ2 test for categorical variables.

Linear regression was performed using the longi-
tudinal DSI values which were derived using 1) all
available variables together (total) and 2) data from
individual tests separately. Goodness of fit of the lin-
ear regression using 1) and 2) was compared using
R2, adjusted R2, and mean square errors. Residuals of
the regression were also examined using histograms
and by plotting residuals versus predicted values. The
regression parameters of the SMCI and PMCI groups
were compared to zero using one-sample Wilcoxon
Signed Rank test and the differences between the
groups were studied using Mann-Whitney U test.

Normality of the regression parameters was studied
using histograms. On the basis of the initial histogram
analysis, it appeared that the slopes of the SMCI group
may have a bimodal distribution. Fits of unimodal
and bimodal distributions were compared and details
of these analyses are explained in the Supplementary
Material.

Subjects were classified as SMCIs or PMCIs on
the basis of their regression parameters. Classification
performance was measured using the area under the
ROC curve (AUC), classification accuracies, sensitiv-
ities, and specificities. To study whether using all data
modalities together would yield in significantly greater
classification performance than using only a single data
modality, classification accuracies of the individual
tests were compared to the classification accuracies
derived using all data. Thus, four comparisons with
both the slopes and the intercepts (total-MMSE, total-
ADAS, total-NeuroBat, total-MRI) were performed.
The classification accuracies of the slopes and the
intercepts derived using all data were also compared.
Paired samples t-test was used if the classification
accuracies were normally distributed according to
Kolmogorov-Smirnov test, otherwise, related-samples
Wilcoxon Signed Rank test was performed. In all anal-
yses, p < 0.05 was considered significant. In pairwise
comparisons of classification accuracies, Bonferroni
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Table 4
Goodness of fit for the linear regression of longitudinal Disease State

Index values derived using different data modalities

Dataset R2 Adjusted R2 Mean square error

Total 0.553 ± 0.289 0.422 ± 0.369 0.006 ± 0.008
MMSE 0.364 ± 0.295 0.172 ± 0.390 0.014 ± 0.016
ADAS 0.388 ± 0.298 0.196 ± 0.413 0.024 ± 0.026
NeuroBat 0.475 ± 0.318 0.315 ± 0.426 0.005 ± 0.004
MRI 0.721 ± 0.259 0.642 ± 0.321 0.001 ± 0.001

Total, All available variables included when calculating DSI val-
ues; MMSE, Mini-Mental State Examination; ADAS, Alzheimer’s
Disease Assessment Scale-cognitive subscale; NeuroBat, Neuropsy-
chological Battery; MRI, brain volumes derived from magnetic
resonance imaging. The values are mean ± standard deviation
because the linear regression was performed for each subject inde-
pendently.

correction was applied and p < 0.0056 was considered
significant (number of comparisons was nine).

All analyses were performed in Matlab R2012a (The
Mathworks, Natick, MA) and IBM SPSS Statistics 19
(IBM, Armonk, NY). Visualizations were processed
in GNU Image Manipulation Program 2.0 (GIMP 2.0,
freely available at http://www.gimp.org/).

RESULTS

Modeling progression of AD

Goodness of fit for linear regression of the longitudi-
nal DSI values is shown in Table 4. On the basis of R2,
adjusted R2, and mean square error, the linear associa-
tion was the strongest when DSI values were calculated
using only MRI-derived volumes. The linear model fit-
ted the second best when all available variables were
used together. The longitudinal DSI values derived on
the basis of cognitive and neuropsychological tests had
the smallest association values. Plots of residuals ver-
sus predicted values supported the interpretation that
the DSI values calculated on the basis of ADAS and
MMSE were the least linear over time: points in the
plots were not as randomly distributed as they were
when the DSI values were based on all available data,
MRI, or NeuroBat (results not shown here).

The linear regression of the DSI values over time was
performed for each subject independently. Medians of
the regression parameters for SMCI and PMCI groups
are shown in Table 5. The slopes and the intercepts of
both groups were higher than zero (p < 0.0005). There
were also clear differences between the two groups:
PMCIs had five times higher slopes and almost three
times higher intercepts than SMCIs (p < 0.0005).

The distributions of the slopes of both groups
are presented in Fig. 2. On the basis of the visual

Table 5
Regression parameters of longitudinal Disease State Index values

for SMCI and PMCI groups

SMCI PMCI

Slope∗ 0.002 (0.000, 0.006)+ 0.010 (0.005, 0.015)+
Intercept∗ 0.295 (0.139, 0.621)+ 0.754 (0.626, 0.860)+
n 7 (7; 7) 5 (3; 5)

Values are median (25th percentile, 75th percentile). SMCI, sta-
ble mild cognitive impairment; PMCI, progressive mild cognitive
impairment, n, number of points in the regression, ∗statistically
significant difference between the groups (Mann-Whitney U
test, p < 0.0005), +significantly different from zero (one-sample
Wilcoxon Signed Rank test, p < 0.0005). Disease State Index values
were derived using all variables together.

inspection, the SMCI curve deviated from a Gaussian
distribution containing also cases with higher slopes.
Therefore, a hypothesis was put forth that the SMCI
group actually contained two subgroups: one with truly
stable DSI values and one with non-stable DSI values
having signs of disease progression. A mixture distri-
bution of two normal curves was fitted to the slopes of
the SMCIs. The fits of unimodal and bimodal distri-
butions were compared, and the results and estimated
parameters are shown in the Supplementary Material.
The results showed that the bimodal distribution fitted
better to the slopes of the SMCIs than the unimodal
distribution supporting the idea that two subgroups do
exist within the SMCI group.

Visualizing progression of AD

In Fig. 1, the progression of AD is visualized using
the DSF and the regression line of the DSI values.
Most of the nodes in the DSF of a clear SMCI case
are blue indicating that the patient data remained con-
stantly unlike the data of those with AD. Also, the slope
and the intercept of the regression line have low val-
ues (Fig. 1, topmost panel). On the contrary, almost all
nodes of a clear PMCI case are red, indicating strong
resemblance to previously diagnosed AD cases, and
the slope and the intercept are higher as well (Fig. 1,
lowest panel). A SMCI case with clearly increasing
DSI values and the DSF changing from blue to red
is also shown (Fig. 3, mid-panel). This case belongs
to the subgroup of SMCI cases with non-stable DSI
values in Fig. 2.

Differentiation using the trend parameters

MCI cases were classified as SMCI or PMCI using
the regression parameters of the longitudinal DSI val-
ues, and the classification performance results are

http://www.gimp.org/
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neuropsychological tests were included and their tem-
poral behavior was the least linear. The linear model
may not necessarily be the best model for progression
of AD but it was selected because of simplicity and
due to paucity of data. Some subjects with PMCI had
only a few DSI values available for the regression due
to synchronization of the time stamps.

Jack and his colleagues [13] proposed that changes
in biomarkers over time would be sigmoidal and
biomarkers would become abnormal in a certain tem-
poral order. These assumptions gained support in
several studies and they still are core components of
the recently revised model [14]. Caroli et al. [33] pro-
vided the first evidence supporting the first version of
the model. They compared the fit of linear and sig-
moidal model and concluded that the sigmoidal model
fitted better for hippocampal volume, and amyloid-�
and total-tau in CSF. The linear model fitted better
for FDG-PET data. Instead of real longitudinal data,
Caroli et al. [33] used data from healthy controls,
PMCIs, and early and late ADs at the baseline to
reflect the progression of AD. Mouiha and Duchesne
[34] used the same kind of cross-sectional setting to
study the relationship between biomarkers and dis-
ease severity. They fitted six different models (linear,
quadratic, robust quadratic, local quadratic regression,
penalized B-spline, and sigmoid) to baseline data from
healthy controls, PMCI, and AD cases [34]. According
to them, amyloid-� had a piece-wise quadratic rela-
tionship, hippocampal volume and CSF measures of
phosphorylated tau and total tau were best modeled
with penalized B-splines, and linear model was the
best fit for FDG-PET [34].

The results in this study show that the change of DSI
values over time as reflected by the slope of the linear
regression equation is clearly different in the SMCI
and PMCI groups. The slope of PMCI cases was five
times higher than the slope of SMCI cases. When the
slopes of SMCI cases were studied more thoroughly, it
was noticed that there were two different subgroups in
the SMCI group: a group with lower slopes and another
group with higher slopes that overlap with the slopes of
the PMCI cases. It is expected that the peak with higher
slopes represents MCIs that would convert to AD or
other dementia later if the follow-up was continued.
Davatzikos et al. [20] and Cui et al. [19] also found in
their studies that subjects in the SMCI group did not
have uniform results. Some SMCI cases had markers
similar to AD, suggesting that they may convert to AD
in the future [19, 20].

Samtani et al. [35] modeled a subject’s rate of dis-
ease progression using a logistic model with several

covariates. Severity of the disease was measured using
ADAS and the analysis was restricted to an AD pop-
ulation [35]. Another approach for modeling disease
progression was presented by Escudero et al. [36].
They found profiles of disease and normality using an
unsupervised learning method (k-means clustering).
Escudero et al. [36] calculated a so-called Bioindex
that describes a subject’s degree of membership to the
profile of disease on the basis of measured data. To
study evolution of Bioindeces over time, a sigmoid
function was fitted to the Bioindex values at differ-
ent time points. They used the same approach as here
and fitted an individual function to the Bioindeces of
each subject and studied evolution of Bioindeces in
the groups of SMCI and PMCI. As in this study, they
found that converters had steeper progression towards
AD than non-converters. However, Escudero et al. [36]
did not take into account that MCI patients arrived in
the study at different phases of the disease, and they
did not synchronize the time stamps as we did.

Patient visits in this study were synchronized
according to the time of receiving AD diagnosis.
Using this method, the accuracy of the synchronization
depends on the accuracy of the actual AD diagnoses.
Also, data points of the SMCI cases are not synchro-
nized because they do not have an AD diagnosis.
Jedynak et al. [37] and Yang et al. [38] proposed more
sophisticated methods for synchronization. Jedynak et
al. [37] used multiple biomarkers to create a disease
progression score, which set the subjects on the same
timeline [37]. Biomarkers were assumed to follow a
sigmoidal function when constructing the disease pro-
gression score [37]. Yang et al. [38] modeled evolution
of ADAS 13 score over time with an exponential model
and then defined the start of the cognitive decline using
the model. Other biomarkers were then synchronized
using the estimated period of cognitive decline. After
the synchronization, evolution of biomarkers over time
and relations between them were clearer and they sup-
ported the model presented by Jack et al. [13, 14, 38]. In
the approach presented in [38], one needs to define an
accurate model for the progression of ADAS 13 score
over time, and the accuracy of the synchronization
depends on the suitability of the model.

The dynamic range for the DSI depends on training
sets used. In this study, the DSI values were calculated
on the basis of data from SMCI cases at baseline and
PMCI cases at the point of conversion to AD. Thus,
the dynamic range lies between MCI and early AD.
Using the same model of disease progression to study
healthy controls and late AD groups would saturate
DSI values close to zero and one, respectively. On the
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Fig. 2. Histograms of the slopes for stable (SMCI, blue) and progres-
sive (PMCI, red) mild cognitive impairment cases. There appears to
be two separate subgroups in the SMCI group. A mixture distribution
of two normal curves fitted to the slopes of SMCIs is also shown. The
areas of the histograms are scaled to one. (SD = standard deviation,
Q1 = 25th quartile, Q3 = 75th quartile).

Fig. 3. Receiver operating characteristic curves of the slope (solid
line) and the intercept (dashed line). Regression parameters were
defined using total Disease State Index values over time.

presented in Table 6. AUCs were the highest when all
available variables were used in the analysis (total).
Classification accuracies were normally distributed,
except for the slopes derived using NeuroBat. The

Table 6
Classification performance of the regression parameters of the lon-
gitudinal Disease State Index values derived using different datasets

AUC (%) Accuracy (%) Sensitivity (%) Specificity (%)

Slope
Total 82.3 76.9 ± 8.8 82.2 ± 13.7 73.0 ± 15.0
MMSE 77.1 71.8 ± 7.6 55.5 ± 15.5 86.5 ± 5.5
ADAS 76.8 68.7 ± 10.2 51.1 ± 19.2 83.6 ± 10.2
NeuroBat 76.6 69.2 ± 5.8 60.2 ± 13.2 76.9 ± 15.3
MRI 71.0 66.8 ± 8.1 49.5 ± 14.4 80.6 ± 14.7

Intercept
Total 80.8 74.6 ± 8.7 75.1 ± 17.4 74.4 ± 12.2
MMSE 79.0 72.0 ± 5.0 84.2 ± 11.6 61.5 ± 11.6
ADAS 80.3 74.9 ± 8.8 74.4 ± 15.6 75.7 ± 10.5
NeuroBat 79.3 66.9 ± 6.1 74.4 ± 21.7 61.0 ± 14.0
MRI 69.6 60.4 ± 8.9 55.6 ± 16.2 63.9 ± 16.2

Results are mean ± standard deviation from the stratified 10-fold
cross-validation, except for the AUC. Total, all available variables
included when calculating Disease State Index values; MMSE, Mini-
Mental State Examination; ADAS, Alzheimer’s Disease Assessment
Scale-cognitive subscale; NeuroBat, Neuropsychological Battery;
MRI, brain volumes derived from magnetic resonance imaging;
AUC, area under the receiver operating characteristic curve.

classification accuracy of the slopes (total) was sig-
nificantly higher than the classification accuracies of
the slopes derived using ADAS or MRI (p = 0.001
for total-ADAS and p = 0.005 for total-MRI compar-
isons). The classification accuracy of the intercepts
(total) was significantly higher than classification accu-
racy of the MRI-derived intercepts (p = 0.004). Other
pairwise comparisons of the slopes and the inter-
cepts were not statistically significant (all p > 0.01,
Bonferroni-corrected significance level was 0.0056).
The classification accuracies of the slopes (total) and
the intercepts (total) were very similar (76.9% and
74.6%, respectively, p = 0.309). ROC curves of the
slopes (total) and the intercepts (total) are presented
in Fig. 3.

DISCUSSION

Quantification of disease progression from MCI to
AD was studied by applying the DSI method to het-
erogeneous longitudinal patient data and analyzing the
behavior of the DSI values over time in subjects with
MCI. Trend parameters of the longitudinal DSI values
were obtained from regression and ability of them to
differentiate between the groups of stable and progres-
sive MCI was also studied.

In this study, it was assumed that the behavior of
the longitudinal DSI values can be modeled linearly.
The linear association was the strongest when the
DSI values were based only on MRI features. Behav-
ior of the total DSI values was not as linear because
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neuropsychological tests were included and their tem-
poral behavior was the least linear. The linear model
may not necessarily be the best model for progression
of AD but it was selected because of simplicity and
due to paucity of data. Some subjects with PMCI had
only a few DSI values available for the regression due
to synchronization of the time stamps.

Jack and his colleagues [13] proposed that changes
in biomarkers over time would be sigmoidal and
biomarkers would become abnormal in a certain tem-
poral order. These assumptions gained support in
several studies and they still are core components of
the recently revised model [14]. Caroli et al. [33] pro-
vided the first evidence supporting the first version of
the model. They compared the fit of linear and sig-
moidal model and concluded that the sigmoidal model
fitted better for hippocampal volume, and amyloid-�
and total-tau in CSF. The linear model fitted better
for FDG-PET data. Instead of real longitudinal data,
Caroli et al. [33] used data from healthy controls,
PMCIs, and early and late ADs at the baseline to
reflect the progression of AD. Mouiha and Duchesne
[34] used the same kind of cross-sectional setting to
study the relationship between biomarkers and dis-
ease severity. They fitted six different models (linear,
quadratic, robust quadratic, local quadratic regression,
penalized B-spline, and sigmoid) to baseline data from
healthy controls, PMCI, and AD cases [34]. According
to them, amyloid-� had a piece-wise quadratic rela-
tionship, hippocampal volume and CSF measures of
phosphorylated tau and total tau were best modeled
with penalized B-splines, and linear model was the
best fit for FDG-PET [34].

The results in this study show that the change of DSI
values over time as reflected by the slope of the linear
regression equation is clearly different in the SMCI
and PMCI groups. The slope of PMCI cases was five
times higher than the slope of SMCI cases. When the
slopes of SMCI cases were studied more thoroughly, it
was noticed that there were two different subgroups in
the SMCI group: a group with lower slopes and another
group with higher slopes that overlap with the slopes of
the PMCI cases. It is expected that the peak with higher
slopes represents MCIs that would convert to AD or
other dementia later if the follow-up was continued.
Davatzikos et al. [20] and Cui et al. [19] also found in
their studies that subjects in the SMCI group did not
have uniform results. Some SMCI cases had markers
similar to AD, suggesting that they may convert to AD
in the future [19, 20].

Samtani et al. [35] modeled a subject’s rate of dis-
ease progression using a logistic model with several

covariates. Severity of the disease was measured using
ADAS and the analysis was restricted to an AD pop-
ulation [35]. Another approach for modeling disease
progression was presented by Escudero et al. [36].
They found profiles of disease and normality using an
unsupervised learning method (k-means clustering).
Escudero et al. [36] calculated a so-called Bioindex
that describes a subject’s degree of membership to the
profile of disease on the basis of measured data. To
study evolution of Bioindeces over time, a sigmoid
function was fitted to the Bioindex values at differ-
ent time points. They used the same approach as here
and fitted an individual function to the Bioindeces of
each subject and studied evolution of Bioindeces in
the groups of SMCI and PMCI. As in this study, they
found that converters had steeper progression towards
AD than non-converters. However, Escudero et al. [36]
did not take into account that MCI patients arrived in
the study at different phases of the disease, and they
did not synchronize the time stamps as we did.

Patient visits in this study were synchronized
according to the time of receiving AD diagnosis.
Using this method, the accuracy of the synchronization
depends on the accuracy of the actual AD diagnoses.
Also, data points of the SMCI cases are not synchro-
nized because they do not have an AD diagnosis.
Jedynak et al. [37] and Yang et al. [38] proposed more
sophisticated methods for synchronization. Jedynak et
al. [37] used multiple biomarkers to create a disease
progression score, which set the subjects on the same
timeline [37]. Biomarkers were assumed to follow a
sigmoidal function when constructing the disease pro-
gression score [37]. Yang et al. [38] modeled evolution
of ADAS 13 score over time with an exponential model
and then defined the start of the cognitive decline using
the model. Other biomarkers were then synchronized
using the estimated period of cognitive decline. After
the synchronization, evolution of biomarkers over time
and relations between them were clearer and they sup-
ported the model presented by Jack et al. [13, 14, 38]. In
the approach presented in [38], one needs to define an
accurate model for the progression of ADAS 13 score
over time, and the accuracy of the synchronization
depends on the suitability of the model.

The dynamic range for the DSI depends on training
sets used. In this study, the DSI values were calculated
on the basis of data from SMCI cases at baseline and
PMCI cases at the point of conversion to AD. Thus,
the dynamic range lies between MCI and early AD.
Using the same model of disease progression to study
healthy controls and late AD groups would saturate
DSI values close to zero and one, respectively. On the
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last time point. If the missing values had not been
imputed at all, the DSI values at different time points
would have been calculated using different variables
for each visit and this would have hindered the inter-
pretation of the longitudinal results.

The study had some limitations. The final diagnoses
for the subjects were determined on the basis of clinical
evaluation and they were not verified with postmortem
histological samples taken from the brain. Also, the
study period of 48 months is relatively short. Thus,
some subjects diagnosed currently as stable MCI may
convert to AD later. This study utilized longitudinal
data from a period of 2–4 years. In clinics, where the
patients are diagnosed, there may not be data from
such a long period available. Less longitudinal data
will probably produce more variation in the slopes
and the intercepts of the regression equation. On the
other hand, this study suggests that quantifying lon-
gitudinal patient data using the DSI method provides
valid information for decision support and is a valid
methodology to follow-up a patient’s condition in a
quantitative manner.

In conclusion, this study demonstrates that combin-
ing sparse and heterogeneous data with the DSI method
can be used for deriving a quantitative measure related
to early AD progression. Significant trends were found
in longitudinal DSI values: rate of change of DSI val-
ues was five times higher in the PMCI group than in the
SMCI group. Classification of the subjects as convert-
ers and non-converters on the basis of the regression
parameters (the slope and the intercept) also showed
that SMCI and PMCI cases can be differentiated on the
basis of the trend parameters.
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other hand, if the training set consisted of PMCI and
AD groups, the DSI would characterize changes at the
later phase of the disease. Thus, if different training
sets are used, the longitudinal behavior of the DSI val-
ues can be somewhat different. As another example, if
training set included healthy and AD cases, slopes of
the SMCI and PMCI groups should be closer to each
other than they are in this study.

Training data for this study was selected from SMCI
cases at the baseline and PMCI cases at the point of con-
version because the initial purpose for the proposed
method is in early diagnosis of AD. The main use
case for the method is a situation where a subject with
memory complaints arrives at a clinic. After some tests
have been administered, computer-based decision sup-
port tools could help in objective assessment of patient
data and possibly provide help for earlier diagnosis of
AD. If the diagnosis cannot be made at the baseline,
longitudinal quantification of progressing disease state
provides additional information to base the diagnosis
on. By selecting SMCI cases at the baseline and PMCI
cases at the moment of receiving diagnosis as the train-
ing set, the system is optimized to detect early AD cases
from an MCI population referred to a memory clinic.
The DSI method is currently incorporated in a deci-
sion support tool that will be used in pilot studies and
the training set used in the tool comprises SMCI and
PMCI cases, similar to this study. When studies with
other purposes (e.g., focus on conversion from normal
cognition to MCI) are done in the future, then the prac-
tical issues of selecting the most appropriate training
population will be addressed.

Recently, several studies have predicted the con-
version from MCI to AD by combining multiple
data modalities and identifying converters and non-
converters on the basis of the data [19–23]. In these
studies, multimodal data were combined using logis-
tic regression [21, 22], the DSI method [22], support
vector machine classifiers [19, 22, 23, 39], and a Naive
Bayes classifier [22]. In [19, 20, 22, 40], it was found
that combination of multimodal data resulted in bet-
ter classification performance than the use of a single
modality of data, e.g., using only neuropsychological
tests. However, those studies did not report whether the
differences were statistically significant. Ewers et al.
[21] found that increasing number of variables in the
model from one to four increased the classification
accuracy, but the increase was not significant accord-
ing to the 95% confidence intervals. Cui et al. [39] also
combined different data modalities for predicting con-
version from normal cognition to MCI. They reported
that combination of neuropsychological test scores and

MRI features resulted in significantly higher classifi-
cation accuracy for the predictions than using either of
the data modalities alone. Results from our study are in
line with the previous research findings. Combination
of all available data resulted in higher classification
accuracies and AUCs than using only a single modal-
ity of data and increases in classification accuracies
were not always statistically significant. To account for
multiple comparisons, we used Bonferroni correction
which is known to be a rather conservative method.
However, in many comparisons, p-values were higher
than 0.05.

It is worth noting that the calculation of the lin-
ear regression included DSI values from the point of
conversion for PMCI cases. Thus, the classification
performance measures presented here do not describe
the ability of the trend parameters to predict conversion
from MCI to AD. However, they demonstrate that the
trend parameters of the DSI values are clearly different
between the groups of SMCI and PMCI. Prediction of
MCI to AD conversion with the DSI method using data
from the ADNI database has already been studied in
[22] and [25].

One interesting finding was that the MRI-derived
longitudinal DSI values had the strongest linear asso-
ciation but the regression parameters of the MRI-based
DSI values performed the worst in the classification.
One explanation could be that changes related to nor-
mal aging in the brain may interfere with the results.
For example, Koikkalainen et al. [41] removed effects
of age and other confounding factors by dividing
patients into subgroups and using linear regression.
These procedures improved classification accuracies
in their study. Another explanation could be that MRI
may be a better indicator of the rate of disease progres-
sion than of the disease stage. Stronger linearity of the
MRI-derived DSI over time might also be caused by
the fact that MRI measures are not as prone to daily
variations as neuropsychological tests may be.

Missing values were imputed with the values from
the previous available visit. This approach resulted in
slightly outdated data for some patient visits and biased
the results towards non-progression. This approach
was chosen so that all data used in the analyses really
were available from a patient at the specific moments.
This would not be the case, e.g., if missing values were
replaced with the next available values or using other
more complex imputation methods. Replacing missing
values with next available values would have biased
results toward progression to some extent and there
would still have been missing values because some
patients did not have any values available beyond the
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last time point. If the missing values had not been
imputed at all, the DSI values at different time points
would have been calculated using different variables
for each visit and this would have hindered the inter-
pretation of the longitudinal results.

The study had some limitations. The final diagnoses
for the subjects were determined on the basis of clinical
evaluation and they were not verified with postmortem
histological samples taken from the brain. Also, the
study period of 48 months is relatively short. Thus,
some subjects diagnosed currently as stable MCI may
convert to AD later. This study utilized longitudinal
data from a period of 2–4 years. In clinics, where the
patients are diagnosed, there may not be data from
such a long period available. Less longitudinal data
will probably produce more variation in the slopes
and the intercepts of the regression equation. On the
other hand, this study suggests that quantifying lon-
gitudinal patient data using the DSI method provides
valid information for decision support and is a valid
methodology to follow-up a patient’s condition in a
quantitative manner.

In conclusion, this study demonstrates that combin-
ing sparse and heterogeneous data with the DSI method
can be used for deriving a quantitative measure related
to early AD progression. Significant trends were found
in longitudinal DSI values: rate of change of DSI val-
ues was five times higher in the PMCI group than in the
SMCI group. Classification of the subjects as convert-
ers and non-converters on the basis of the regression
parameters (the slope and the intercept) also showed
that SMCI and PMCI cases can be differentiated on the
basis of the trend parameters.
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Abstract. In the diagnostic process of Alzheimer’s disease (AD), there may be considerable delays between first contact
to outpatient services and a final, definitive diagnosis. In Europe the average delay is 20 months. Nevertheless, patient data
preceding clinical AD diagnoses often contains early signs of the disease. Several studies have analyzed data of mild cognitive
impairment (MCI) subjects, showing that conversion from MCI to AD can be predicted with a classification accuracy of 60–80%.
This accuracy may not be high enough for influencing diagnostic decisions. In this work, the prediction problem is approached
differently; a target prediction accuracy is defined first and is then used for identifying MCI patients for whom the required
accuracy can be reached. The process uses a novel disease state index method in which patient data are statistically compared
to a high number of previously diagnosed cases. It is shown that the disease index values derived from heterogeneous patient
data can be used for identifying groups of patients for whom the prediction accuracy reaches the previously set target level. The
results also show that 12 months before receiving clinical AD diagnoses, approximately half (51.5%, 95% confidence interval:
48.6–54.2%) of MCI subjects who progressed to AD can be classified with a high accuracy of 87.7%, possibly enough to support
earlier diagnostic decisions.

Keywords: Clinical decision support, early Alzheimer’s disease, mild cognitive impairment, patient selection
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INTRODUCTION

Evidence shows that Alzheimer’s disease (AD)
pathology begins several years or even decades prior
to onset of dementia, but the symptoms that eventually
draw medical attention appear only after the disease
has reached a certain stage [1]. After the initial visit to
a memory clinic, many patients are considered to be in
a transitional state, referred to as mild cognitive impair-
ment (MCI), where they have memory problems that
are abnormal for their age, but their functional capacity
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tests, a novel clinical decision support method has
been developed [30]. It computes DSI values between
zero and one from patient measurements by com-
paring them comprehensively to a large number of
previously diagnosed cases. The DSI supports any
quantifiable, heterogeneous, and sparse data. It analy-
ses the available measurements and their combinations
without requiring manual cleaning of data, feature
selection, or other pre-processing steps. Visualizations
of a patient’s disease state, called disease state fin-
gerprints (DSF), inform the clinician about important
diagnostic measures and about their relationship to
patient measurements (see Fig. 1). DSI and DSF are not
diagnostic tools per se. Their main purpose is to help
clinicians quickly interpret and analyze large quan-
tities of heterogeneous patient data. In addition, DSI
has been shown to predict AD and other diseases with
accuracy comparable to established machine-learning
methods, and, together with DSF, is expected to have
potential in improving both the confidence and accu-
racy of clinical diagnosis [30, 32]. In this study, the DSI
method was used for measuring evidence of early AD
in patient data, with increasing DSI values within the
test cohorts modeling the progression of the disease.

Alzheimer’s Disease Neuroimaging Initiative
(ADNI)

Data used in the preparation of this article
were obtained from the ADNI database (http://
adni.loni.ucla.edu, accessed 2 September 2011). The
ADNI was launched in 2003 by the National Institute
on Aging (NIA), the National Institute of Biomedi-
cal Imaging and Bioengineering (NIBIB), the Food
and Drug Administration (FDA), private pharmaceuti-
cal companies, and non-profit organizations, as a $60
million, 5-year public-private partnership. The primary
goal of ADNI has been to test whether serial MRI, PET,
other biological markers, and clinical and neuropsy-
chological assessment can be combined to measure the
progression of MCI and early AD. Determination of
sensitive and specific markers of very early AD pro-
gression is intended to aid researchers and clinicians
to develop new treatments and monitor their effective-
ness, as well as lessen the time and cost of clinical
trials.

The Principal Investigator of this initiative is
Michael W. Weiner, MD, VA Medical Center and Uni-
versity of California-San Francisco. ADNI is the result
of efforts of many co-investigators from a broad range
of academic institutions and private corporations, and
subjects have been recruited from over 50 sites across

Fig. 1. Disease state fingerprint (DSF) visualization of patient data
with a large share of measurement values indicating early AD. Rel-
evance of a particular test is indicated by the size of the box next to
the test’s name. Red color and DSI values approaching one (1.00)
indicate similarity to early AD cases. Blue color and DSI values
close to zero (0.00) indicate similarity with stable MCIs. Leaves of
the tree show the raw test and measurement values. Not all nodes
are fully expanded in the tree; collapsed nodes show the overall DSI
value from that test section.

the US and Canada. The initial goal of ADNI was to
recruit 800 adults, ages 55 to 90, to participate in the
research, approximately 200 cognitively normal older
individuals to be followed for 3 years, 400 people with
MCI to be followed for at least 3 years, and 200 people
with early AD to be followed for 2 years. For up-to-date
information, see http://www.adni-info.org/.
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in activities of daily living is intact [2]. It is known that
MCI is a heterogeneous entity with an increased prob-
ability of developing to AD, but MCI may also remain
stable, progress to other dementias, or even return to
normal cognition [3, 4]. For subjects with MCI who
later progress to AD, it takes on average one to three
years to get an AD diagnosis in the clinical phase, due
to uncertainties of the diagnosis or slow disease pro-
gression [5–9]. Though there is no cure for AD yet,
diagnosis in the early prodromal phase would allow
the prescription of therapies and medications, which
are believed to work better the earlier they are started
[10, 11].

Currently, there exists no specific test that would
confirm AD in vivo. Therefore, clinicians are required
to make an informed judgment based on available
information. When compared to neuropathological
gold standards — obtained with postmortem brain
autopsy — clinical diagnosis of AD reaches accura-
cies ranging from 70–90% [12–14]. Recent research
has shown that biomarkers could improve diagnostic
accuracy even at early phases of the disease [15–17].
These findings are contributing to the new diagnostic
guidelines of predementia and prodromal AD, which
are emphasizing the combination of biomarkers, neu-
ropsychological tests, and clinical assessment [18–20].
The generally accepted AD biomarkers are:

• Low amyloid-� levels and/or elevated (phospho)
tau levels in cerebrospinal fluid (CSF);

• atrophy of the temporal lobe in magnetic reso-
nance imaging (MRI);

• temporo-parietal hypometabolism as assessed
with 18-labeled fluoro-2-deoxy-D-glucose posi-
tron emission tomography (PET) or identifica-
tion of amyloid accumulation in the brain with
Pittsburgh Compound B (PIB) PET, and

• known causative genetic mutations in immediate
family.

There has been a vast amount of studies aiming
at predicting which MCI subjects will convert to AD
and which will not, based on biomarker data measured
at early phases of the disease [21–29]. Most of these
studies rely on supervised classifiers, which assign the
most probable class label for a given patient using a
decision model derived from training data. They have
shown that predicting conversion from MCI to AD
from early measurement data is possible at an accu-
racy of 60–80%, with larger cohorts generally around
70%. With the overall accuracy of classification so
low, predictions of outcomes can influence diagnos-
tic decisions only marginally. Another issue with many

classifiers is that they only provide a label (AD/no AD)
or a disease probability without any estimate of the reli-
ability of the result for each case individually. In this
work, the challenge of prediction was approached from
another angle, which may better address the clinical
need. A target prediction accuracy is defined first and is
then used for identifying groups of patients for which
this accuracy can be reached. The approach is made
possible by using a novel disease state index (DSI)
method, which has been designed for clinical decision
support [30]. The DSI takes as input quantifiable het-
erogeneous patient data and provides as output values
from zero to one, indicating the proportion of patient’s
data that match a disease profile, e.g., that of early AD.
The DSI is also transparent, i.e., the rationale for all
predictions is provided to those who wish to use the
results.

In this study, subjects from the Alzheimer’s Disease
Neuroimaging Initiative (ADNI) [31] were analyzed
with the DSI method to find the proportion of MCI
subjects whose measurement data contain strong evi-
dence of early AD. First, an appropriate target level
for the prediction accuracy was defined. Second, the
DSI method was applied to MCI data at 6, 12, 18,
and 24 months before receiving clinical AD diag-
noses. Third, threshold DSI values that indicate strong
evidence of early AD were determined. Finally, the
numbers of MCI subjects identified as having strong
evidence of early AD, based on their DSI values, were
analyzed. The main contributions of this study are 1)
a data-driven target classification accuracy for predict-
ing conversion from MCI to AD; 2) DSI thresholds
indicating strong evidence of early AD at 6, 12, 18,
and 24 months before receiving AD diagnoses; and
3) proportion of MCI subjects having strong evidence
of early AD in their data, i.e., the number of MCI
patients who could possibly be diagnosed earlier than
is current clinical practice. The eventual use case for
the proposed method is in clinical decision support. If
data from an individual with MCI exceeds a previously
set DSI threshold, one could predict conversion to AD
within a given period of time (e.g., 24 months) with an
accuracy that is clinically relevant (e.g., close to 90%)
and also see the justification for the prediction due to
transparency of the DSI method.

MATERIALS AND METHODS

Disease State Index (DSI)

To make better use of available patient data, includ-
ing a variety of biomarkers and neuropsychological
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tests, a novel clinical decision support method has
been developed [30]. It computes DSI values between
zero and one from patient measurements by com-
paring them comprehensively to a large number of
previously diagnosed cases. The DSI supports any
quantifiable, heterogeneous, and sparse data. It analy-
ses the available measurements and their combinations
without requiring manual cleaning of data, feature
selection, or other pre-processing steps. Visualizations
of a patient’s disease state, called disease state fin-
gerprints (DSF), inform the clinician about important
diagnostic measures and about their relationship to
patient measurements (see Fig. 1). DSI and DSF are not
diagnostic tools per se. Their main purpose is to help
clinicians quickly interpret and analyze large quan-
tities of heterogeneous patient data. In addition, DSI
has been shown to predict AD and other diseases with
accuracy comparable to established machine-learning
methods, and, together with DSF, is expected to have
potential in improving both the confidence and accu-
racy of clinical diagnosis [30, 32]. In this study, the DSI
method was used for measuring evidence of early AD
in patient data, with increasing DSI values within the
test cohorts modeling the progression of the disease.

Alzheimer’s Disease Neuroimaging Initiative
(ADNI)

Data used in the preparation of this article
were obtained from the ADNI database (http://
adni.loni.ucla.edu, accessed 2 September 2011). The
ADNI was launched in 2003 by the National Institute
on Aging (NIA), the National Institute of Biomedi-
cal Imaging and Bioengineering (NIBIB), the Food
and Drug Administration (FDA), private pharmaceuti-
cal companies, and non-profit organizations, as a $60
million, 5-year public-private partnership. The primary
goal of ADNI has been to test whether serial MRI, PET,
other biological markers, and clinical and neuropsy-
chological assessment can be combined to measure the
progression of MCI and early AD. Determination of
sensitive and specific markers of very early AD pro-
gression is intended to aid researchers and clinicians
to develop new treatments and monitor their effective-
ness, as well as lessen the time and cost of clinical
trials.

The Principal Investigator of this initiative is
Michael W. Weiner, MD, VA Medical Center and Uni-
versity of California-San Francisco. ADNI is the result
of efforts of many co-investigators from a broad range
of academic institutions and private corporations, and
subjects have been recruited from over 50 sites across

Fig. 1. Disease state fingerprint (DSF) visualization of patient data
with a large share of measurement values indicating early AD. Rel-
evance of a particular test is indicated by the size of the box next to
the test’s name. Red color and DSI values approaching one (1.00)
indicate similarity to early AD cases. Blue color and DSI values
close to zero (0.00) indicate similarity with stable MCIs. Leaves of
the tree show the raw test and measurement values. Not all nodes
are fully expanded in the tree; collapsed nodes show the overall DSI
value from that test section.

the US and Canada. The initial goal of ADNI was to
recruit 800 adults, ages 55 to 90, to participate in the
research, approximately 200 cognitively normal older
individuals to be followed for 3 years, 400 people with
MCI to be followed for at least 3 years, and 200 people
with early AD to be followed for 2 years. For up-to-date
information, see http://www.adni-info.org/.
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Table 2
Data available in ADNI for the study cohort (MCI patients with at least 24 months of visit data)

Visit month Baseline (Month 0) Month 6 Month 12 Month 18 Month 24 Month 36 Month 48

SMCI patient visits 148 147 146 142 141 N/Ac N/Ac

Verified MCI at +24 mo.a 148 120 120 19 19 – –
MMSE 148 147 145 142 141 – –
ADAS 148 147 145 142 141 – –
NeuroBat 148 147 145 141 141 – –
MRI 143 133 133 119 105 – –
CSF 82 – 65 – – – –
APOE 148 – – – – – –

PMCI patient visits 140 139 140 136 139 112 32
Converted from MCI to ADb 0 13 49 76 111 137 140
MMSE 140 139 140 135 139 112 32
ADAS 140 139 140 135 139 111 32
NeuroBat 140 139 140 135 139 111 32
MRI 139 135 127 118 108 70 11
CSF 74 – 68 – – – –
APOE 140 – – – – – –
aNumber of SMCI patients that are known to have remained stable 24 months after this visit.
bNumber of PMCI patients whose diagnosis converted to AD during or before this visit.
cVisit data were excluded since the subjects could not be confirmed to have remained stable MCI for the subsequent 24 months.

PMCI data Baseline Month 6 Month 12 Month 18 Month 24 Month 36 Month 48

PMCI conversion data (T-0)

Step 1. Take data from visits where diagnosis converted to AD.

Step 2. Compare PMCI conversion data to all SMCI data.

SMCI baseline data

Step 3. Choose the SMCI visit that best discriminates between 
SMCIs and PMCIs at the time of conversion to AD.

Step 4. Set classification accuracy as the target accuracy.

Target accuracy (expectation ~85%)

PMCI conversion data (T-0)

SMCI data Baseline Month 6 Month 12 Month 18 Month 24

Fig. 2. Steps 1–4 for determining the target accuracy in a data-driven manner.

MCI subjects with strong evidence of early AD

The primary goal of this study was to determine the
proportion of MCI patients that could be classified with
the target accuracy at an early phase of AD. To iden-
tify these patients, all data from PMCIs were aligned
according to the visit where they received their AD

diagnosis (step 5 in Fig. 3). This ‘AD conversion visit’
was set as T-0 (conversion time T minus zero months),
with visits preceding the conversion aligned at T-6, T-
12, T-18, and T-24 months. As some PMCIs converted
during the first months of the ADNI study, there was no
data for them at visits aligned to T-12 (number of PMCI
visits available = 127), T-18 (n = 91), or T-24 (n = 64).
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Table 1
Demographic information of the study cohort at baseline visit

Stable MCI Progressive MCI
(SMCI) (PMCI)

Subjects 148 140
Males 97 (65.5%) 85 (60.7%)
Age 75.1 (7.4) 75.4 (6.7)
Average time for AD diagnosis n/a 20.8 months

after baseline visit
Years of education 15.9 (3.0) 15.6 (3.0)
MMSE scorea 27.5 (1.7) 26.6 (1.6)
ADAS-cog 13 scorea 16.3 (6.0) 21.1 (5.3)
APOE status (�4 carriers)b 62 (41.9%) 95 (67.9%)

Data presented as number of subjects (percentage of subjects %) or
as mean (standard deviation).
aStatistically significant difference between SMCIs and PMCIs (stu-
dent’s t-test, p < 0.05).
bStatistically significant difference between SMCIs and PMCIs
(Fisher’s exact test, p < 0.05), APOE carriers are subjects with one
or two copies of �4 allele at the APOE locus.

From ADNI, MCI patients with at least 24 months
of data were included in this study. Patients were
stratified into two groups according to conversion to
AD. The first group was a stable MCI group (SMCI,
n = 148), where diagnosis remained the same (MCI)
during all follow-ups. The other group was a pro-
gressive MCI group (PMCI, n = 140), where diagnosis
changed to AD during the study and remained AD
thereafter. Patients who converted otherwise (e.g., MCI
−→ healthy or MCI −→ AD −→ MCI) were excluded
from the analysis. Since there are no autopsy data
available, diagnoses made by ADNI (using NINCDS-
ARDRA criteria [33]) were used as the reference for
building the disease models and evaluating their per-
formance. Demographic and clinical baseline data for
these two groups are listed in Table 1.

Test and measurement data used in this study con-
sisted of Mini-Mental State Examination (MMSE, 30
variables), Alzheimer’s Disease Assessment Scale-
cognitive subscale scores (ADAS-cog, 13 variables),
neuropsychological battery (NeuroBat, 53 variables),
amyloid-� and total tau levels (CSF, 2 variables),
and genetic risk factors (Apolipoprotein E, APOE,
2 variables). All these data are readily available for
researchers in the ADNI database. In addition, features
derived from MRI images with fully automated meth-
ods of voxel-based morphometry [34], tensor-based
morphometry [35], and hippocampal volume segmen-
tation [36], were included into the study. These MRI
image processing methods use an 83 region atlas to
quantify the results over several structures of the brain
and thus provide 83 variables each, except for the

total volume of hippocampi, which is a single variable.
Table 2 shows the number of visits and data modali-
ties available for SMCI and PMCI subjects at each
time point. Missing test values at months 6–48 were
replaced with values from a patient’s previous visit
if available. This is analogous to having a compre-
hensive test battery available for analyses during all
visits, albeit with slightly dated patient data in some
cases.

Target prediction accuracy

Target prediction accuracy, or target accuracy, is
defined here as a classification accuracy that must be
reached when predicting conversion from MCI to AD
for the prediction to be clinically relevant. As described
in the Introduction, agreement between clinical and
gold standard neuropathological diagnoses is between
70% and 90%. Because the ADNI database contains
only clinical diagnoses, setting the target accuracy at
over 90% would be questionable. An alternative data-
driven approach to setting the target accuracy is to
consider the discriminative power in the data at the
time when clinical diagnoses of AD are made. One
can assume that when clinicians make diagnoses, they
have, implicitly or explicitly, concluded that measure-
ment data contain enough evidence for making the
decision. The rest of the decision is based on infor-
mation that is not in the data, e.g., from meeting
the patient and caregiver, and/or accepted uncertainty.
Thus, appropriate target accuracy for AD diagnostics
can be derived by comparing SMCI data to PMCI
data from the moment when clinicians have made the
AD diagnoses. In this way, target accuracy models the
acceptable uncertainty of clinical AD diagnoses when
only quantitative measurement data are considered.

The target accuracy was determined by compar-
ing all SMCI data to measures from PMCI subjects
at the time point they received AD diagnoses (step 1
in Fig. 2). Using the DSI method, SMCI visits were
exhaustively tested to find the visit that best differenti-
ates SMCIs from PMCIs at AD conversion time (step
2). The maximum classification accuracy obtained
from these comparisons represents the minimum dis-
criminatory power needed in data for AD diagnostics
(step 3). This accuracy was set as the target accuracy
(step 4) which, if exceeded using earlier PMCI data,
could allow patients to be considered eligible for AD
diagnosis earlier. The target accuracy was hoped to
exceed 85% to be comparable with the level of clini-
cal accuracy achieved when using NINCDS-ADRDA
criteria, the diagnostic reference in this study.
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Table 2
Data available in ADNI for the study cohort (MCI patients with at least 24 months of visit data)

Visit month Baseline (Month 0) Month 6 Month 12 Month 18 Month 24 Month 36 Month 48

SMCI patient visits 148 147 146 142 141 N/Ac N/Ac

Verified MCI at +24 mo.a 148 120 120 19 19 – –
MMSE 148 147 145 142 141 – –
ADAS 148 147 145 142 141 – –
NeuroBat 148 147 145 141 141 – –
MRI 143 133 133 119 105 – –
CSF 82 – 65 – – – –
APOE 148 – – – – – –

PMCI patient visits 140 139 140 136 139 112 32
Converted from MCI to ADb 0 13 49 76 111 137 140
MMSE 140 139 140 135 139 112 32
ADAS 140 139 140 135 139 111 32
NeuroBat 140 139 140 135 139 111 32
MRI 139 135 127 118 108 70 11
CSF 74 – 68 – – – –
APOE 140 – – – – – –
aNumber of SMCI patients that are known to have remained stable 24 months after this visit.
bNumber of PMCI patients whose diagnosis converted to AD during or before this visit.
cVisit data were excluded since the subjects could not be confirmed to have remained stable MCI for the subsequent 24 months.

PMCI data Baseline Month 6 Month 12 Month 18 Month 24 Month 36 Month 48

PMCI conversion data (T-0)

Step 1. Take data from visits where diagnosis converted to AD.

Step 2. Compare PMCI conversion data to all SMCI data.

SMCI baseline data

Step 3. Choose the SMCI visit that best discriminates between 
SMCIs and PMCIs at the time of conversion to AD.

Step 4. Set classification accuracy as the target accuracy.

Target accuracy (expectation ~85%)

PMCI conversion data (T-0)

SMCI data Baseline Month 6 Month 12 Month 18 Month 24

Fig. 2. Steps 1–4 for determining the target accuracy in a data-driven manner.

MCI subjects with strong evidence of early AD

The primary goal of this study was to determine the
proportion of MCI patients that could be classified with
the target accuracy at an early phase of AD. To iden-
tify these patients, all data from PMCIs were aligned
according to the visit where they received their AD

diagnosis (step 5 in Fig. 3). This ‘AD conversion visit’
was set as T-0 (conversion time T minus zero months),
with visits preceding the conversion aligned at T-6, T-
12, T-18, and T-24 months. As some PMCIs converted
during the first months of the ADNI study, there was no
data for them at visits aligned to T-12 (number of PMCI
visits available = 127), T-18 (n = 91), or T-24 (n = 64).
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Fig. 4. Proportion of MCI subjects with strong evidence of early AD, or evidence dismissing AD, in data at visits preceding AD diagnoses.
For these subjects, i.e., those assigned to the decisive groups, classification accuracy between SMCIs and PMCIs reaches the target accuracy
(87.7%) at each time point. Also listed are the sensitivities and specificities for the subjects in the decisive groups, and the DSI thresholds that
allowed selecting patients into the decisive groups while reaching the target accuracy.

resulting one hundred iterations of training a dis-
ease model and testing with unseen patient data give
robust performance metrics and provide information
about confidence intervals (CI). Statistical signifi-
cances between groups were evaluated using student’s
t-test at significance level p < 0.05. All results are
reported as the mean and 95% CI of the one hundred
test iterations, unless otherwise noted.

RESULTS

Target prediction accuracy

PMCI conversion time data (T-0) was compared to
all SMCI visit data using the DSI method. The best
result was obtained with baseline SMCI data; discrim-
ination between baseline SMCIs and conversion time
PMCIs reached accuracy of 87.7% (CI: 86.6–88.8%),
sensitivity of 86.9% (CI: 85.1–8.4%), and specificity
of 88.5% (CI: 86.9–89.9%). Thus, prediction accuracy
of 87.7% was set as the target accuracy, corresponding
well with the maximum accuracy of clinical AD diag-
noses using NINCDS-ADRDA criteria judged against
neuropathological confirmations.

Previous research on ADNI data has shown that
predicting MCI to AD conversion from baseline
measurements attains accuracies between 60–72%
[21–24]. Here, the baseline prediction accuracy
between SMCI and PMCI data was in line with these
studies, at 70.1% (CI: 68.4–71.5%). It should be

noted that the target accuracy was set significantly
higher than what can be achieved when considering
all patients at baseline (87.7% versus 70.1%, respec-
tively).

MCI subjects with strong evidence of early AD

PMCI data at visits preceding AD diagnoses (vis-
its T-24 to T-6) were analyzed against baseline SMCI
data to estimate whether data from earlier visits can
reach the target accuracy. The DSI thresholds at each
time point were selected such that the target accuracy
of 87.7% was surpassed. Patients with low or high DSI
values, limited by DSI thresholds, were selected into
the decisive groups. Figure 4 shows the proportion of
patients included into the decisive groups and the DSI
thresholds allowing selection into them at different
time points. The figure also lists the prediction sensitiv-
ities and specificities computed using only patients in
the decisive groups. The proportion of PMCI patients
in the decisive groups grows consistently with each
visit closer to AD conversion time T-0. 24 months prior
to AD diagnoses, measurement data allowed 26.2%
(CI: 23.1–29.5%) of PMCI patients to be included
into the decisive groups. At visit T-12, the decisive
groups consisted of 51.5% (CI: 48.6–54.2%) of PMCI
patients. The share of patients is maximized closest to
conversion time at T-6, where it was it was possible to
include 70.7% (CI: 68.5–73.1%) of PMCIs at the target
accuracy. The ranges of DSI values allowing inclusion,

974 J. Mattila et al. / Optimizing the Diagnosis of Early AD in MCI Subjects

Fig. 3. Steps 5–9 for evaluating the proportion of MCI subjects whose data has strong evidence regarding early AD.

Aligned PMCI visits were analyzed against the most
representative SMCI data, chosen in step 3, using the
DSI method (step 6). For each aligned visit (T-24 to
T-6), a DSI threshold for patient inclusion was deter-
mined (step 7). DSI thresholds define the range of DSI
values, i.e., the level of evidence needed in patient
data, which allows classification accuracy of included
patients to reach the target accuracy. Included patients
formed groups of decisive cases, where DSI values are
larger than the DSI threshold, suggesting early AD, or
smaller than 1 – DSI threshold, dismissing early AD
(step 8). Thus, at each time point, only those patients
with considerable evidence in their data, indicated by
large or small DSI values, were included into the deci-
sive groups. The rest of the patients were dismissed
and not analyzed further. To reiterate, patient selec-
tion into the decisive groups using the DSI thresholds
allowed classification accuracy of selected patients
to reach the previously set target accuracy. Num-
bers of patients included in the decisive groups were

evaluated, providing the proportion of MCI patients
with strong evidence regarding early AD at 6, 12,
18, and 24 months before receiving their diagnoses
(step 9).

To compute the DSI values used for patient selec-
tion, the DSI method must determine how much
predictive power individual tests and their combina-
tions have, i.e., how relevant they are (see [30] for
details). As a final step in this study, proportions of rel-
evance assigned to each test were evaluated to assess
their contributions to the DSI method and thus to the
patient selection process.

Test methodology

All data processing was performed in Matlab2

using ten iterations of stratified (with consistent ratio
of SMCIs and PMCIs) 10-fold cross-validation. The

2 Matlab R2011b, The MathWorks Inc., Natick, MA, 2011.
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Fig. 4. Proportion of MCI subjects with strong evidence of early AD, or evidence dismissing AD, in data at visits preceding AD diagnoses.
For these subjects, i.e., those assigned to the decisive groups, classification accuracy between SMCIs and PMCIs reaches the target accuracy
(87.7%) at each time point. Also listed are the sensitivities and specificities for the subjects in the decisive groups, and the DSI thresholds that
allowed selecting patients into the decisive groups while reaching the target accuracy.

resulting one hundred iterations of training a dis-
ease model and testing with unseen patient data give
robust performance metrics and provide information
about confidence intervals (CI). Statistical signifi-
cances between groups were evaluated using student’s
t-test at significance level p < 0.05. All results are
reported as the mean and 95% CI of the one hundred
test iterations, unless otherwise noted.

RESULTS

Target prediction accuracy

PMCI conversion time data (T-0) was compared to
all SMCI visit data using the DSI method. The best
result was obtained with baseline SMCI data; discrim-
ination between baseline SMCIs and conversion time
PMCIs reached accuracy of 87.7% (CI: 86.6–88.8%),
sensitivity of 86.9% (CI: 85.1–8.4%), and specificity
of 88.5% (CI: 86.9–89.9%). Thus, prediction accuracy
of 87.7% was set as the target accuracy, corresponding
well with the maximum accuracy of clinical AD diag-
noses using NINCDS-ADRDA criteria judged against
neuropathological confirmations.

Previous research on ADNI data has shown that
predicting MCI to AD conversion from baseline
measurements attains accuracies between 60–72%
[21–24]. Here, the baseline prediction accuracy
between SMCI and PMCI data was in line with these
studies, at 70.1% (CI: 68.4–71.5%). It should be

noted that the target accuracy was set significantly
higher than what can be achieved when considering
all patients at baseline (87.7% versus 70.1%, respec-
tively).

MCI subjects with strong evidence of early AD

PMCI data at visits preceding AD diagnoses (vis-
its T-24 to T-6) were analyzed against baseline SMCI
data to estimate whether data from earlier visits can
reach the target accuracy. The DSI thresholds at each
time point were selected such that the target accuracy
of 87.7% was surpassed. Patients with low or high DSI
values, limited by DSI thresholds, were selected into
the decisive groups. Figure 4 shows the proportion of
patients included into the decisive groups and the DSI
thresholds allowing selection into them at different
time points. The figure also lists the prediction sensitiv-
ities and specificities computed using only patients in
the decisive groups. The proportion of PMCI patients
in the decisive groups grows consistently with each
visit closer to AD conversion time T-0. 24 months prior
to AD diagnoses, measurement data allowed 26.2%
(CI: 23.1–29.5%) of PMCI patients to be included
into the decisive groups. At visit T-12, the decisive
groups consisted of 51.5% (CI: 48.6–54.2%) of PMCI
patients. The share of patients is maximized closest to
conversion time at T-6, where it was it was possible to
include 70.7% (CI: 68.5–73.1%) of PMCIs at the target
accuracy. The ranges of DSI values allowing inclusion,
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predicting outcomes may be manually set by a clini-
cian if a certain level for decision support is required.
After the target accuracy has been determined, either
manually or in a data-driven manner, new DSI thresh-
olds can be derived. These act as limits for the level of
evidence needed in data and allow identifying patients
whose disease state has progressed far enough to war-
rant consideration for an early diagnosis. The DSI
thresholds could thus be computed to answer a partic-
ular clinical question, such as predicting conversion to
AD within the coming 12 months at an accuracy of 85%
or identifying MCI subjects who should not progress
to AD during the next 4 years. To properly study these
clinically interesting predictions with unseen patient
data, there is need for a separate study where the test
data are not aligned according to AD conversions,
as they were here. This work is already underway to
ensure that the results generalize to more realistic situ-
ations where the delays in potential conversion to AD
cannot be known.

In addition to identifying the patients, analysis
results must be presented to clinicians in a way that
leaves making the decision in their hands. The DSF
visualization has been developed for this purpose, pro-
viding an objective view to patient data as analyzed
by the DSI method. In this cohort, neuropsychological
testing (comprising in order of influence NeuroBat,
ADAS, and MMSE) provided the most important set
of variables for the patient identification process. MRI
was ranked second, with all image processing meth-
ods having equal value. CSF and APOE were the
least influential measures. Despite the differences in
relevancies of tests, DSI as a method considers the con-
gruence of all tests and measurements together. Thus,
leaving out any one of them would impact the number
of patients that can be identified. Since the DSF visual-
ization clearly indicates which tests and measures are
contributing to high DSI values and allows consider-
ing all the evidence comprehensively, clinicians using
the proposed method should be better informed when
making decisions regarding early diagnoses. In actual
diagnostic work, APOE genotype, age, and gender,
should be used as a background profile for analyzing
patient data rather than being omitted or used as clas-
sification features. Issues that would then rise from
stratifying training datasets into smaller groups can be
countered, for example, by methods reported in [37].
In this work, a conscious choice was made against
division to subgroups based on genotype, gender, age,
or other features. The non-personalized group level
results reported here are intended to provide a base-
line for the amount of information available in patient

data. Future work for developing a fully featured soft-
ware tool providing automatic identification of patients
with strong evidence of early AD, based on their
measurement data, is currently underway. This work
builds on an earlier implementation of a clinical deci-
sion support tool discussed in [32].

The main limitation of this study is the use of clinical
diagnoses as a reference for building the disease mod-
els and evaluating results. Without neuropathological
confirmations, it is impossible to determine whether
the diagnoses suggested by an automated decision
support tool indicate better or worse diagnostic accu-
racy than clinical diagnoses. Also, results from this
study are not easily comparable to previous research,
since, to the authors’ best knowledge, similar analyses
have not been done previously. Nevertheless, predic-
tion accuracies obtained in the study are in line with
current research and give indication that the conclu-
sions regarding proportions of patients that could be
identified early are relevant. Subjects in this study
were selected into the conclusive groups of SMCIs and
PMCIs based on their total DSI values. To allow more
personalized diagnostics of early AD, data analysis
should consider the effects of age, gender, and geno-
type to the results. In addition, due to ADNI inclusion
criteria, results from this work apply to motivated MCI
patients selected by expert memory centers, with exclu-
sions for confounding disease, medications, etc. As
such, the work demonstrates a data analysis concept,
not a clinically verified solution. In regards to clinical
application of the proposed method, suitable training
datasets and integration to hospital information sys-
tems are essential. Studies with prospective patients are
currently in preparation. In these studies, the method’s
usefulness and acceptance in clinical settings will be
evaluated. They will also provide knowledge about
applying the proposed method to datasets that are less
controlled than ADNI.

CONCLUSION

A considerable proportion of MCI subjects have
strong evidence of early AD in their measurement
data several months before receiving their diagnoses.
By selecting patients whose disease state has the
strongest evidence of the disease, diagnostic outcomes
can be predicted from patient data more accurately
than otherwise possible. Identifying these patients
at an early phase of the disease could make clini-
cians consider them eligible for earlier AD diagnosis,
allowing administration of disease modifying thera-
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Fig. 5. Influence of the different measurement modalities and indi-
vidual tests for the selection of decisive cases, as determined by
the DSI method. Ranges of confidence intervals for individual neu-
ropsychological tests and image processing methods were smaller
than 0.3%.

i.e., the DSI thresholds, increase consistently with each
comparison closer to T-0, as do the numbers of control
subjects, i.e., baseline SMCIs, in the decisive groups,
as seen in Fig. 4.

Driving factors for the selection of decisive cases,
as determined by the DSI method, are depicted in
Fig. 5. The data with the most classifying power were
neuropsychological tests (their share of influence to
selection being 37.5%), followed by MRI (25.7%),
CSF (19.0%), and finally APOE (17.9%). Neuropsy-
chological tests and MRI are composed of several
individual tests and image processing methods, whose
influence within these modalities are also noted in
Fig. 5.

DISCUSSION

By statistically analyzing a large body of biomark-
ers and neuropsychological test data, one can get a
comprehensive and objective evidence-based estimate
of a patient’s disease state. In this study, the DSI
method was applied to early MCI data to determine
the proportion of subjects whose data contain strong
evidence of AD, or clear indication that the subject
should remain stable during the coming months. By
selecting subjects with the most and least evidence of
early AD, subgroups of decisive patients were formed
such that the accuracy of the selection reached a prede-
termined target accuracy. In this study, target accuracy
was set at 87.7% by modeling the amount of evidence
available in data when clinical AD diagnoses are made.
This data-driven target accuracy was similar to the

level of agreement between clinical and postmortem
diagnoses in previous clinical samples. Ideally, the
accuracies that can be reached with the DSI method
should be assessed in future prospective studies with
neuropathological follow-ups.

Two years before receiving clinical AD diagnoses,
approximately one in four subjects had strong evi-
dence regarding the disease in their measurement data,
allowing classification at the target accuracy. At T-12
months, i.e., one year before AD diagnoses, approxi-
mately half of the subjects were included into the group
of decisive cases. These results suggest that half of
the patients who waited for their AD diagnoses for
one or more years could have been considered eligi-
ble for diagnosis at least a year earlier, if identified
correctly. Their early signs of AD were evident in the
measurement data and being included in the decisive
group implies correct prediction close to 90% of the
time, similar to clinical diagnoses. In addition to poten-
tial AD converters, the method revealed, with similar
accuracy, that there are subjects who will likely remain
stable for 24 months, based on their data. For some sub-
jects this information could be considered as important
as having found strong indications of early AD.

Sensitivities and specificities for the decisive cases
selected with the DSI method are evenly distributed,
even though classification accuracy alone was driv-
ing the analyses. Confidence intervals of the results
develop logically with disease progression, as do the
DSI thresholds allowing inclusion into the decisive
groups. Furthest from the AD diagnoses, confidence
intervals are largest, and they become smaller close
to T-0. Similarly, DSI thresholds restrict inclusion
into the decisive groups the most at T-24, but with
each visit closer to AD conversion, they allow more
and more subjects to be included. The consistence of
these properties gives indication that the identifica-
tion process using the DSI method works in a robust
manner.

Since patients exist whose measurement data could
support earlier diagnosis, the next step is to pro-
vide a clinically feasible method for identifying these
patients. Obviously, if similar patient data are avail-
able, it is possible to utilize the DSI thresholds
determined here. In that case, DSI values above 0.76
would predict that the patient shall convert to AD
within 24 months with at least 87.7% accuracy. Sim-
ilarly, a value of DSI <0.24 indicates that the patient
is likely to remain stable MCI for at least 24 months.
The proposed method does not expect this particular
dataset to be available, though. Custom DSI thresholds
can be extracted from any data. The target accuracy for
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predicting outcomes may be manually set by a clini-
cian if a certain level for decision support is required.
After the target accuracy has been determined, either
manually or in a data-driven manner, new DSI thresh-
olds can be derived. These act as limits for the level of
evidence needed in data and allow identifying patients
whose disease state has progressed far enough to war-
rant consideration for an early diagnosis. The DSI
thresholds could thus be computed to answer a partic-
ular clinical question, such as predicting conversion to
AD within the coming 12 months at an accuracy of 85%
or identifying MCI subjects who should not progress
to AD during the next 4 years. To properly study these
clinically interesting predictions with unseen patient
data, there is need for a separate study where the test
data are not aligned according to AD conversions,
as they were here. This work is already underway to
ensure that the results generalize to more realistic situ-
ations where the delays in potential conversion to AD
cannot be known.

In addition to identifying the patients, analysis
results must be presented to clinicians in a way that
leaves making the decision in their hands. The DSF
visualization has been developed for this purpose, pro-
viding an objective view to patient data as analyzed
by the DSI method. In this cohort, neuropsychological
testing (comprising in order of influence NeuroBat,
ADAS, and MMSE) provided the most important set
of variables for the patient identification process. MRI
was ranked second, with all image processing meth-
ods having equal value. CSF and APOE were the
least influential measures. Despite the differences in
relevancies of tests, DSI as a method considers the con-
gruence of all tests and measurements together. Thus,
leaving out any one of them would impact the number
of patients that can be identified. Since the DSF visual-
ization clearly indicates which tests and measures are
contributing to high DSI values and allows consider-
ing all the evidence comprehensively, clinicians using
the proposed method should be better informed when
making decisions regarding early diagnoses. In actual
diagnostic work, APOE genotype, age, and gender,
should be used as a background profile for analyzing
patient data rather than being omitted or used as clas-
sification features. Issues that would then rise from
stratifying training datasets into smaller groups can be
countered, for example, by methods reported in [37].
In this work, a conscious choice was made against
division to subgroups based on genotype, gender, age,
or other features. The non-personalized group level
results reported here are intended to provide a base-
line for the amount of information available in patient

data. Future work for developing a fully featured soft-
ware tool providing automatic identification of patients
with strong evidence of early AD, based on their
measurement data, is currently underway. This work
builds on an earlier implementation of a clinical deci-
sion support tool discussed in [32].

The main limitation of this study is the use of clinical
diagnoses as a reference for building the disease mod-
els and evaluating results. Without neuropathological
confirmations, it is impossible to determine whether
the diagnoses suggested by an automated decision
support tool indicate better or worse diagnostic accu-
racy than clinical diagnoses. Also, results from this
study are not easily comparable to previous research,
since, to the authors’ best knowledge, similar analyses
have not been done previously. Nevertheless, predic-
tion accuracies obtained in the study are in line with
current research and give indication that the conclu-
sions regarding proportions of patients that could be
identified early are relevant. Subjects in this study
were selected into the conclusive groups of SMCIs and
PMCIs based on their total DSI values. To allow more
personalized diagnostics of early AD, data analysis
should consider the effects of age, gender, and geno-
type to the results. In addition, due to ADNI inclusion
criteria, results from this work apply to motivated MCI
patients selected by expert memory centers, with exclu-
sions for confounding disease, medications, etc. As
such, the work demonstrates a data analysis concept,
not a clinically verified solution. In regards to clinical
application of the proposed method, suitable training
datasets and integration to hospital information sys-
tems are essential. Studies with prospective patients are
currently in preparation. In these studies, the method’s
usefulness and acceptance in clinical settings will be
evaluated. They will also provide knowledge about
applying the proposed method to datasets that are less
controlled than ADNI.

CONCLUSION

A considerable proportion of MCI subjects have
strong evidence of early AD in their measurement
data several months before receiving their diagnoses.
By selecting patients whose disease state has the
strongest evidence of the disease, diagnostic outcomes
can be predicted from patient data more accurately
than otherwise possible. Identifying these patients
at an early phase of the disease could make clini-
cians consider them eligible for earlier AD diagnosis,
allowing administration of disease modifying thera-
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pies and medications at the earliest possible time. An
alternative use for the proposed approach is to opti-
mize patient selection for drug-trials or psycho-social
treatments.
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Abstract

Purpose: To compare the accuracies of predicting AD conversion by using a decision support system (PredictAD tool) and
current research criteria of prodromal AD as identified by combinations of episodic memory impairment of hippocampal
type and visual assessment of medial temporal lobe atrophy (MTA) on MRI and CSF biomarkers.

Methods: Altogether 391 MCI cases (158 AD converters) were selected from the ADNI cohort. All the cases had baseline
cognitive tests, MRI and/or CSF levels of Ab1–42 and Tau. Using baseline data, the status of MCI patients (AD or MCI) three
years later was predicted using current diagnostic research guidelines and the PredictAD software tool designed for
supporting clinical diagnostics. The data used were 1) clinical criteria for episodic memory loss of the hippocampal type, 2)
visual MTA, 3) positive CSF markers, 4) their combinations, and 5) when the PredictAD tool was applied, automatically
computed MRI measures were used instead of the visual MTA results. The accuracies of diagnosis were evaluated with the
diagnosis made 3 years later.

Results: The PredictAD tool achieved the overall accuracy of 72% (sensitivity 73%, specificity 71%) in predicting the AD
diagnosis. The corresponding number for a clinician’s prediction with the assistance of the PredictAD tool was 71%
(sensitivity 75%, specificity 68%). Diagnosis with the PredictAD tool was significantly better than diagnosis by biomarkers
alone or the combinations of clinical diagnosis of hippocampal pattern for the memory loss and biomarkers (p#0.037).

Conclusion: With the assistance of PredictAD tool, the clinician can predict AD conversion more accurately than the current
diagnostic criteria.
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features automatically derived with FreeSurfer software package,

and CSF laboratory analysis results. In addition, several features

automatically derived from original MRI images using manifold

learning [20], tensor-based morphometry [21], and hippocampus

volume segmentation [22], developed in the PredictAD project

(www.predictad.eu), were included. When determining with the

assistance of PredictAD tool whether a subject had prodromal AD,

the clinician based his opinion on presence of abnormal

performances in the delayed recall and delayed recognition of

Auditory RAVLT, the other neuropsychological tests were used as

supportive evidences to determine the confidence of the clinical

diagnosis. Given the baseline data, the clinician was then asked to

categorize, i.e. diagnose, each patient into one of six categories: 1)

clear indication of Non-AD, 2) probable indication of Non-AD, 3)

subtle indication of Non-AD, 4) subtle indication of early AD, 5)

probable indication of early AD, and 6) clear indication of early

AD. One must emphasize that the clinician was asked to predict

the diagnostic outcomes (Non-AD and AD converter) at the end of

ADNI study using exclusively baseline data. To compare the

accuracy of classification between automatically computed Pre-

dictAD diagnosis and clinician’s diagnosis with assistance of

PredictAD tool, Disease State Index (DSI) values, computed by the

PredictAD tool, were categorized uniformly between 0 and 1 as

follows: (1) Clear indication of Non-AD: DSI ,0.17, (2) Probable

indication of Non-AD: 0.17# DSI ,0.33, (3) Subtle indication of

Non-AD: 0.33# DSI ,0.50, (4) Subtle indication of early AD:

0.50# DSI,0.67, (5) Probable indication of early AD: 0.67# DSI

,0.83, and (6) Clear indication of early AD: $0.83. In the

automatically computed PredictAD diagnosis, all the neuropsy-

chological and genetic tests, MRI, and CSF data were used to

calculate the DSI.

To test the reproducibility of the diagnosis by clinicians with the

assistance of PredictAD tool, interobserver variability and

intraobserver reproducibility were analyzed. To test the interob-

server variability, two clinicians (Y.L. and M.M.) independently

made diagnosis in 40 (10%) randomly selected cases. To test the

intraobserver reproducibility, one clinician made diagnosis in the

40 cases with an interval of at least 6 months between the diagnosis

sessions.

Statistical Analysis
The demographics and results of clinical exams were compared

with Student t-test and chi square test between converters and

non-converters. The conversion rates were calculated in cases with

different likelihoods of AD conversion. The sensitivity, specificity,

and accuracy of classification with the PredictAD tool, and

different combinations of clinical scores, Scheltens scale, and CSF

markers were calculated. McNemar’s test was used to compare the

differences in accuracy produced with the PredictAD tool and the

current AD guidelines. Kappa test was used to test interobserver

variability and intraobserver reproducibility. The difference was

considered statistically significant if p,0.05.

Results

A total 387 of 391 MCI cases had undergone MRI exams, 199

MCI cases had undergone CSF examination, and 195 MCI cases

had both MRI and CSF exams. During the 3-year follow-up, 158

of 391 (40%) converted to AD, 15 of 391 (4%) returned to normal

cognitive status, and 218 MCI cases (56%) remained stable.

The conversion rates in different situations are summarized in

Table 2.

Among the MCI cases who possessed a single positive marker

(clinical core criteria or biomarker), those MCI cases who had

increased Tau and decreased Ab1–42 had the highest conversion

rate (57%). The conversion rate for those MCI cases with

Scheltens score$3 was 55%. The MCI cases fulfilling the clinical

Table 1. Demographics and clinical examinations for the MCI patients.

Non-AD converter (n=233) AD converter (n=158) p value

Gender Male/Female 158/75 95/63 0.044

Age years 7568 7467 0.544

Years of education 1663 1663 0.969

ApoE alle 4 carrier 66 of 198 (33%) 145 of 193 (75%) ,0.001

MMSE 27.361.8 26.761.7 0.001

RAVLT delayed recall 3.763.6 1.562.1 ,0.001

RAVLT delayed recognition 10.363.5 8.763.6 ,0.001

ADAS-Cog total score (11-item) 10.364.2 13.364.1 ,0.001

ADAS-Cog total score (13-item) 16.766.1 21.665.4 ,0.001

Clock drawing test 4.460.8 3.961.1 ,0.001

Digit span forward 8.262.0 8.262.0 0.940

Digit span backward 6.262.2 6.061.8 0.523

Category fluency 16.364.9 15.364.8 0.048

Trail making test-A 41.8620.1 49.7625.9 0.001

Trail making test-B 115.7667.5 151.1667.5 ,0.001

Digit symbol substitution test 38.5611.2 33.8611.0 ,0.001

Scheltens scale 1.860.9 (n = 230) 2.260.9 (n = 157) ,0.001

Tau 93661 (n = 115) 118657 (n = 84) 0.004

Ab1–42 178658 (n = 115) 144639 (n = 84) ,0.001

doi:10.1371/journal.pone.0055246.t001
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Introduction

Alzheimer’s disease (AD) is the most common form of dementia

in the elderly [1]. The pathology of AD starts years, even decades

before any appearance of symptoms. The current hypothesis is

that interventions should be started at an early phase in order to be

efficient. Therefore, early diagnostics is essential 1) for detecting

persons in clinical trials where pharmaceutical or psychosocial

interventions are developed, and 2) for starting treatments at the

earliest phase possible when efficient treatments become available

in future. If one could have an intervention to delay disease onset

or progression this would dramatically reduce the global burden of

AD.

Mild cognitive impairment (MCI) is thought to represent the

stage between normal forgetfulness due to aging and AD. Thus,

MCI is a high risk factor for developing AD. However, due to

heterogeneity of the MCI population the annual conversion rate

varies from 4 to 31% between different studies/populations [2,3],

and thus predicting which MCI cases will actually convert to AD is

still a challenge. According to a recent proposal about new

research criteria for AD, the diagnosis of AD requires that the

patient displays the core criterion of significant episodic memory

impairment, and exhibits at least one or more of the supportive

biomarker criteria [4–8]. Dozens of clinical measures and AD

biomarkers have been proposed [9]. The diagnosis process

involves collaborative efforts from neurologists, psychologists,

radiologists, geneticists, and laboratories to interpret demographic

information, neuropsychological tests, and biomarkers. Several

studies have shown that by combining biomarkers one achieve an

improvement in accuracy of the AD diagnosis [10,11]. However,

cognitive status does not always parallel the neuropathological

changes due to the complex compensatory mechanisms present in

AD. Therefore an accurate diagnosis of incipient/very early AD is

not easy for the clinician, he/she is confronted by large amounts of

quantitative and qualitative patient data, and particularly when

much of the biomarker data may be ambiguous or even

contradictory.

Recently, several computer-assisted support tools have been

proposed as ways to help clinicians to make as accurate diagnoses

as possible [12–14]. Decision support tools can provide objective

and evidence-based information about the state of the patient; they

are intended to integrate heterogeneous measurement data

acquired from a patient in current clinical practice [12,13]. There

is evidence that computer-assisted analyses of patient data can

achieve comparable diagnostic accuracy as experienced clinicians

[12,13]. The PredictAD tool can provide a classification and

positions the patient into a continuous space between the values 0

and 1, indicating a patient’s disease state in relation to previously

known control (healthy) and positive (disease) populations [12,13].

This makes it possible to assess the disease severity i.e. it is not

simply a yes/no diagnosis.

Many studies have been carried out to study the accuracy of

biomarkers in detecting AD or predicting cognitive outcomes,

however, there are few studies evaluating the relative importance

of different biomarkers when they are used together. In some MCI

cases, the biomarker data are ambiguous or contradict each

another. It is unknown whether one of these biomarkers or their

combination of them would be more sensitive, and whether

quantitative values provide more information than a dichotomous

rating [15]. In the present study, we grouped MCI cases from the

Alzheimers disease Neuroimaging Initiative (ADNI) cohort

(http://adni.loni.ucla.edu/) into four groups: high likelihood,

intermediate likelihood, uninformative likelihood, and low likeli-

hood of converting to AD [5]. We evaluated the accuracies of

predicting the AD diagnosis made by quantitative analysis using

the computer assisted PredictAD tool [12] and by using current

guidelines of prodromal AD [4–8] as identified by combinations of

dichotomized cognitive scores and visual assessment of middle

temporal lobe atrophy on MRI and dichotomized CSF biomark-

ers. Our working hypothesis was that computer-assisted analysis

could help to improve accuracy of the diagnosis.

Subjects and Methods

A total of 391 MCI cases were selected from the ADNI cohort

(http://adni.loni.ucla.edu/). The demographics of the cases are

summarized in Table 1. The definition of MCI is as follow: 1)

subjects had Mini-Mental State Examination (MMSE) score

between 24 and 30, 2) the memory complaint, 3) objective

memory loss measured by education adjusted scores on Wechsler

Memory Scale-Revised (WMS-R) Logical Memory II, 4) Clinical

Dementia Rating (CDR) of 0.5, 5) the absence of significant levels

of impairment in other cognitive domains, essentially preserved

activities of daily living, and 6) the absence of dementia. All the

cases had baseline ADNI cognitive testing results, including

MMSE, Alzheimer’s Disease Assessment Scale-Cognitive subscale

(ADAS-Cog), and several other common neuropsychological tests

(http://adni.loni.ucla.edu/).

Predicting AD Conversion with Current Prodromal AD
Guidelines
The prediction of AD conversion was conducted with the

combinations of clinical diagnosis of hippocampal pattern of

memory loss [5] and biomarkers [16,17]. The episodic memory

loss of the hippocampal type, which is characterized by a free

recall deficit on testing not normalized with cueing [5], was

defined as present when the scores of delayed recall and delayed

recognition of Auditory Verbal Learning Test (RAVLT) [18] were

lower than 1 standard deviation of the corresponding mean values

in healthy aged people, i.e. RAVLT delayed recall ,3 and

RAVLT delayed recognition ,10 [19]. The Scheltens Scale was

used to categorize the visual medial temporal lobe atrophy (MTA)

on MRI, The scale rates atrophy on a 5-point scale (0 = absent,

1 =minimal, 2 =mild, 3 =moderate and 4= severe) [16]. A single

experienced neuroradiologist (YL) evaluated MTA in all of the

cases. Scheltens score $3 was considered as having significant

MTA. CSF levels of Tau .93 pg/ml, and Amyloid beta 1–42

(Ab1–42) ,192 pg/ml were considered as positive CSF markers

[17]. The likelihood of AD conversion was defined as follows [5]:

N High likelihood: all clinical core criteria (RAVLT tests),

Scheltens scale and CSF markers were positive,

N Intermediate likelihood: clinical core criteria was positive, one

of MRI and CSF markers was positive, but the other one was

lacking, i.e., not available,

N Uninformative likelihood: clinical core criteria was positive,

and one of MRI and CSF markers was positive, but the other

one was negative.

N Low likelihood: all clinical core criteria, Scheltens scale, and

CSF markers were negative.

Predict Conversion to AD with PredictAD Tool
The PredictAD tool [12] was used by one clinician who was

blinded to the outcome during the evaluation. The PredictAD tool

provided the rater with the available patient information at

baseline, including demographics, apolipoprotein E (APOE)

genotype, MMSE, ADAS-Cog, neuropsychological battery, MRI
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features automatically derived with FreeSurfer software package,

and CSF laboratory analysis results. In addition, several features

automatically derived from original MRI images using manifold

learning [20], tensor-based morphometry [21], and hippocampus

volume segmentation [22], developed in the PredictAD project

(www.predictad.eu), were included. When determining with the

assistance of PredictAD tool whether a subject had prodromal AD,

the clinician based his opinion on presence of abnormal

performances in the delayed recall and delayed recognition of

Auditory RAVLT, the other neuropsychological tests were used as

supportive evidences to determine the confidence of the clinical

diagnosis. Given the baseline data, the clinician was then asked to

categorize, i.e. diagnose, each patient into one of six categories: 1)

clear indication of Non-AD, 2) probable indication of Non-AD, 3)

subtle indication of Non-AD, 4) subtle indication of early AD, 5)

probable indication of early AD, and 6) clear indication of early

AD. One must emphasize that the clinician was asked to predict

the diagnostic outcomes (Non-AD and AD converter) at the end of

ADNI study using exclusively baseline data. To compare the

accuracy of classification between automatically computed Pre-

dictAD diagnosis and clinician’s diagnosis with assistance of

PredictAD tool, Disease State Index (DSI) values, computed by the

PredictAD tool, were categorized uniformly between 0 and 1 as

follows: (1) Clear indication of Non-AD: DSI ,0.17, (2) Probable

indication of Non-AD: 0.17# DSI ,0.33, (3) Subtle indication of

Non-AD: 0.33# DSI ,0.50, (4) Subtle indication of early AD:

0.50# DSI,0.67, (5) Probable indication of early AD: 0.67# DSI

,0.83, and (6) Clear indication of early AD: $0.83. In the

automatically computed PredictAD diagnosis, all the neuropsy-

chological and genetic tests, MRI, and CSF data were used to

calculate the DSI.

To test the reproducibility of the diagnosis by clinicians with the

assistance of PredictAD tool, interobserver variability and

intraobserver reproducibility were analyzed. To test the interob-

server variability, two clinicians (Y.L. and M.M.) independently

made diagnosis in 40 (10%) randomly selected cases. To test the

intraobserver reproducibility, one clinician made diagnosis in the

40 cases with an interval of at least 6 months between the diagnosis

sessions.

Statistical Analysis
The demographics and results of clinical exams were compared

with Student t-test and chi square test between converters and

non-converters. The conversion rates were calculated in cases with

different likelihoods of AD conversion. The sensitivity, specificity,

and accuracy of classification with the PredictAD tool, and

different combinations of clinical scores, Scheltens scale, and CSF

markers were calculated. McNemar’s test was used to compare the

differences in accuracy produced with the PredictAD tool and the

current AD guidelines. Kappa test was used to test interobserver

variability and intraobserver reproducibility. The difference was

considered statistically significant if p,0.05.

Results

A total 387 of 391 MCI cases had undergone MRI exams, 199

MCI cases had undergone CSF examination, and 195 MCI cases

had both MRI and CSF exams. During the 3-year follow-up, 158

of 391 (40%) converted to AD, 15 of 391 (4%) returned to normal

cognitive status, and 218 MCI cases (56%) remained stable.

The conversion rates in different situations are summarized in

Table 2.

Among the MCI cases who possessed a single positive marker

(clinical core criteria or biomarker), those MCI cases who had

increased Tau and decreased Ab1–42 had the highest conversion

rate (57%). The conversion rate for those MCI cases with

Scheltens score$3 was 55%. The MCI cases fulfilling the clinical

Table 1. Demographics and clinical examinations for the MCI patients.

Non-AD converter (n=233) AD converter (n=158) p value

Gender Male/Female 158/75 95/63 0.044

Age years 7568 7467 0.544

Years of education 1663 1663 0.969

ApoE alle 4 carrier 66 of 198 (33%) 145 of 193 (75%) ,0.001

MMSE 27.361.8 26.761.7 0.001

RAVLT delayed recall 3.763.6 1.562.1 ,0.001

RAVLT delayed recognition 10.363.5 8.763.6 ,0.001

ADAS-Cog total score (11-item) 10.364.2 13.364.1 ,0.001

ADAS-Cog total score (13-item) 16.766.1 21.665.4 ,0.001

Clock drawing test 4.460.8 3.961.1 ,0.001

Digit span forward 8.262.0 8.262.0 0.940

Digit span backward 6.262.2 6.061.8 0.523

Category fluency 16.364.9 15.364.8 0.048

Trail making test-A 41.8620.1 49.7625.9 0.001

Trail making test-B 115.7667.5 151.1667.5 ,0.001

Digit symbol substitution test 38.5611.2 33.8611.0 ,0.001

Scheltens scale 1.860.9 (n = 230) 2.260.9 (n = 157) ,0.001

Tau 93661 (n = 115) 118657 (n = 84) 0.004

Ab1–42 178658 (n = 115) 144639 (n = 84) ,0.001

doi:10.1371/journal.pone.0055246.t001
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agreements were achieved (kappa= 0.800, p,0.001 for interob-

server variability; kappa= 0.850, p,0.001 for intraobserver

reproducibility).

The PredictAD DSI achieved accuracy of 81% in detecting

non-AD converters, and an accuracy of 63% in detecting AD

converters. In the clinician’s diagnosis with the assistance of the

PredictAD tool, the accuracies were 80% and 62% respectively.

However, with the assistance of PredictAD tool, the clinician’s

diagnosis of high confidence (clear non-AD, probable non-AD,

probable AD, and clear AD) was dramatically improved compared

to the PredictAD tool alone. The number of non-AD diagnoses

made by the clinician with high confidence increased from 118 to

146 (from 30% to 37%), and the number of AD diagnosis with

high confidence increased from 87 to 112 (from 22% to 29%).

With help of the PredictAD tool, the clinician made diagnoses of

clear non-AD or clear AD in 144 of 391 (37%) cases with overall

accuracy of 84% (Tables 4, 5, 6).

The clear AD diagnoses (16 cases) in the PredictAD DSI index

included 5 stable MCI cases. The Probable indication of AD (71

cases) in the PredictAD DSI index included 20 stable MCI

individuals. Among this subgroup there were no significant

differences in age, gender, presence of APOE 4, years of

education, concentrations of CSF markers, Scheltens scores,

MMSE, or RAVLT results between AD converters and those

with stable MCI (p$0.236).

Because a variety of subject-specific factors may be influencing

results in unkown ways, we also performed analyses on a subset of

195 participants who had all data available (neuropsychology,

MRI and CSF) and repeated the analyses reported in Table 4 for

this subset. The sensitivities, specificities, and accuracies of

classifications using the PredictAD tool and different criteria in

this subgroup were highly similar to those in whole group

(Tables 3–4).

Table 4. Sensitivity, specificity, and accuracy (percentage) of classification between AD converters and non-converters with
different combinations of examinations and use of the PredictAD tool (195 MCI cases with both MRI and CSF results).

Criteria Sensitivity (95% CI) Specificity (95% CI) Accuracy

Neuropsychology tests (1) Auditory Verbal Learning Test (RAVLT) + 48 (37–59) 70 (60–78) 61

Visual MTA (2) MRI + 31 (22–43) 83 (75–89) 61

CSF (3a) Tau or Ab1–42 + 90 (81–95) 36 (27–45) 59

CSF (3b) Tau and Ab1–42 + 57 (45–67) 71 (61–79) 65

1+2 19 (12–30) 94 (87–97) 62

1+3a 43 (33–55) 79 (70–86) 64

1+2+3a 18 (11–28) 91 (84–95) 60

1+2+3b 4 (1–11) 97 (92–99) 57

PredictAD tool Cutoff value of disease state index 0.50 76 (65–84) 71 (61–79) 73

Clinician with PredictAD tool assistance Scale 1–3 stable MCI, scale 4–6 AD converter 78 (68–86) 68 (58–76) 72

doi:10.1371/journal.pone.0055246.t004

Table 5. Accuracy of classification between AD converters
and non-converters with the PredictAD tool.

Final Diagnosis Total Accuracy

AD Healthy MCI

Clear indication
of non-AD

2 9 43 54 (14%) 96%

Probable indication
of non-AD

9 4 51 64 (16%) 86%

Subtle indication
of non-AD

27 2 53 82 (21%) 67%

Indication of Non AD 38 15 147 200 (51%) 81%

Subtle indication
of AD

58 0 46 104 (27%) 56%

Probable indication
of AD

51 0 20 71 (18%) 72%

Clear indication of AD 11 0 5 16 (4%) 80%

Indication of AD 121 0 70 191 (49%) 63%

Note: Clear non-AD: disease state index ,0.17, Probable non-AD: 0.17# disease
state index ,0.33, Subtle non-AD: 0.33# disease state index ,0.50, Subtle AD:
0.50# disease state index,0.67, Probable AD: 0.67# disease state index,0.83,
Clear AD: disease state index $0.83. ‘Healthy’ denotes MCI cases which
converted back to the category ‘healthy’ during the study and belong still to
the non-AD group. Overall accuracy of diagnosis was 72%.
doi:10.1371/journal.pone.0055246.t005

Table 6. Accuracy of classification between AD converters
and non-converters the clinician making the diagnosis with
assistance of the PredictAD tool.

Final Diagnosis Total Accuracy

AD Healthy MCI

Clear indication
of non-AD

6 12 64 82 (21%) 93%

Probable indication
of non-AD

15 3 46 64 (16%) 77%

Subtle indication
of non-AD

18 0 34 52 (13%) 65%

Indication of Non AD 39 15 144 198 (50%) 80%

Subtle indication
of AD

43 0 38 81 (21%) 53%

Probable indication
of AD

31 0 19 50 (13%) 62%

Clear indication of AD 45 0 17 62 (16%) 73%

Indication of AD 119 0 74 193 (50%) 62%

Overall accuracy of diagnosis was 71%.
doi:10.1371/journal.pone.0055246.t006
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core criteria for episodic memory loss evident both on free recall

and recognition had the lowest conversion rate (53%).

As expected, the conversion rate was highest for those MCI

subjects in high likelihood AD group (65%) and lowest for MCI

subjects with low likelihood (7%). For the MCI cases with

intermediate and uninformative likelihood of AD, the conversion

rates were 57% and 64% respectively. Among the 20 baseline

MCI cases estimated as high likelihood of AD, there were no

significant differences in age, Scheltens score, concentrations of

CSF Tau and Ab1–42, AVLT scores, education years, gender,

frequency of APOE e4 allele, or PredictAD DSI between

converters (n = 13) and non-converters (n = 7) (p$0.354).

Sensitivity, Specificity, and Accuracy using Different
Criteria and PredictAD Tool
The sensitivity, specificity, and accuracy of classification using

the PredictAD tool and different criteria are listed in Table 3.

The criteria of increased CSF Tau or decreased Ab1–42
achieved the highest sensitivity (90%), but the lowest specificity

(36%). The criteria that included episodic memory loss of the

hippocampal type, Scheltens scale $3, increased CSF Tau, and

decreases Ab1–42 could correctly detect 111 of 115 non-AD

converters, producing the highest specificity (98%), but the lowest

sensitivity (6%).

The PredictAD tool produced the highest accuracy 72%,

followed by the clinician’s diagnosis with the assistance of the

PredictAD tool (71%). There was no significant difference in

accuracy between the diagnosis by Predict tool alone and by the

clinician (p = 1.0). The accuracy of the diagnosis by PredictAD

tool alone was significantly higher than if one used the criteria of

the biomarkers alone or combinations of clinical diagnosis of

hippocampal pattern of memory loss and biomarkers (p#0.037).

When considering the six categories of diagnosis (from clear

indication of early AD to clear indication of non-AD), the

interobserver variability and intraobserver reproducibility showed

moderate agreements (kappa= 0.403, p,0.001; kappa= 0.462,

p,0.001, respectively). However, when we simplified the six

categories of diagnosis into AD and non-AD groups, excellent

Table 2. Conversion rates of baseline MCI in different situations.

Criteria Cases Converters (percentage)

Baseline MCI 391 158 (40%)

Hippocampal pattern of memory loss (clinical) Auditory Verbal Learning Test (RAVLT) + 136 72 (53%)

Core biomarkers

moderate to severe MTA MRI + 92 51(55%)

increased Tau or decreased Ab1–42 Tau or Ab1–42 + 150 76 (51%)

increased Tau and decreased Ab1–42 Tau and Ab1–42 + 84 48 (57%)

High likelihood AD RAVLT +, MRI +, CSF + 20 13 (65%)

Low likelihood AD RAVLT 2 and biomarkers 2 29 2 (7%)

Intermediate likelihood AD RAVLT +, one biomarker +, and one not available 21 12 (57%)

no Scheltens scale RAVLT + and Tau or Ab1–42 + 2 1 (50%)

no CSF markers RAVLT + and MRI + 19 11 (58%)

Uninformative likelihood AD RAVLT +, one biomarker +, and one 2 58 37 (64%)

negative MRI RAVLT + and Tau or Ab1–42 + 41 24 (59%)

negative CSF markers RAVLT + and MRI + 17 13 (77%)

+=positive finding.
doi:10.1371/journal.pone.0055246.t002

Table 3. Sensitivity, specificity, and accuracy (percentage) of classification between AD converters and non-converters with
different combinations of examinations and use of the PredictAD tool (All MCI cases).

Criteria Sensitivity (95% CI) Specificity (95% CI) Accuracy

Neuropsychology tests (1) Auditory Verbal Learning Test (RAVLT) + 46 (38–54) 73 (66–78) 62

Visual MTA (2) MRI + 32 (25–40) 82 (76–87) 62

CSF (3a) Tau or Ab1–42 + 90 (82–96) 36 (27–45) 59

CSF (3b) Tau and Ab1–42 + 57 (46–68) 70 (60–78) 64

1+2 17 (12–24) 93 (89–96) 63

1+3a 44 (33–55) 78 (69–85) 64

1+2+3a 18 (11–28) 91 (84–96) 60

1+2+3b 4 (1–11) 97 (92–99) 58

PredictAD tool Cutoff value of disease state index 0.50 73 (66–80) 71 (64–76) 72

Clinician with PredictAD tool assistance Scale 1–3 stable MCI, scale 4–6 AD converter 75 (68–82) 68 (62–74) 71

doi:10.1371/journal.pone.0055246.t003
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agreements were achieved (kappa= 0.800, p,0.001 for interob-

server variability; kappa= 0.850, p,0.001 for intraobserver

reproducibility).

The PredictAD DSI achieved accuracy of 81% in detecting

non-AD converters, and an accuracy of 63% in detecting AD

converters. In the clinician’s diagnosis with the assistance of the

PredictAD tool, the accuracies were 80% and 62% respectively.

However, with the assistance of PredictAD tool, the clinician’s

diagnosis of high confidence (clear non-AD, probable non-AD,

probable AD, and clear AD) was dramatically improved compared

to the PredictAD tool alone. The number of non-AD diagnoses

made by the clinician with high confidence increased from 118 to

146 (from 30% to 37%), and the number of AD diagnosis with

high confidence increased from 87 to 112 (from 22% to 29%).

With help of the PredictAD tool, the clinician made diagnoses of

clear non-AD or clear AD in 144 of 391 (37%) cases with overall

accuracy of 84% (Tables 4, 5, 6).

The clear AD diagnoses (16 cases) in the PredictAD DSI index

included 5 stable MCI cases. The Probable indication of AD (71

cases) in the PredictAD DSI index included 20 stable MCI

individuals. Among this subgroup there were no significant

differences in age, gender, presence of APOE 4, years of

education, concentrations of CSF markers, Scheltens scores,

MMSE, or RAVLT results between AD converters and those

with stable MCI (p$0.236).

Because a variety of subject-specific factors may be influencing

results in unkown ways, we also performed analyses on a subset of

195 participants who had all data available (neuropsychology,

MRI and CSF) and repeated the analyses reported in Table 4 for

this subset. The sensitivities, specificities, and accuracies of

classifications using the PredictAD tool and different criteria in

this subgroup were highly similar to those in whole group

(Tables 3–4).

Table 4. Sensitivity, specificity, and accuracy (percentage) of classification between AD converters and non-converters with
different combinations of examinations and use of the PredictAD tool (195 MCI cases with both MRI and CSF results).

Criteria Sensitivity (95% CI) Specificity (95% CI) Accuracy

Neuropsychology tests (1) Auditory Verbal Learning Test (RAVLT) + 48 (37–59) 70 (60–78) 61

Visual MTA (2) MRI + 31 (22–43) 83 (75–89) 61

CSF (3a) Tau or Ab1–42 + 90 (81–95) 36 (27–45) 59

CSF (3b) Tau and Ab1–42 + 57 (45–67) 71 (61–79) 65

1+2 19 (12–30) 94 (87–97) 62

1+3a 43 (33–55) 79 (70–86) 64

1+2+3a 18 (11–28) 91 (84–95) 60

1+2+3b 4 (1–11) 97 (92–99) 57

PredictAD tool Cutoff value of disease state index 0.50 76 (65–84) 71 (61–79) 73

Clinician with PredictAD tool assistance Scale 1–3 stable MCI, scale 4–6 AD converter 78 (68–86) 68 (58–76) 72

doi:10.1371/journal.pone.0055246.t004

Table 5. Accuracy of classification between AD converters
and non-converters with the PredictAD tool.

Final Diagnosis Total Accuracy

AD Healthy MCI

Clear indication
of non-AD

2 9 43 54 (14%) 96%

Probable indication
of non-AD

9 4 51 64 (16%) 86%

Subtle indication
of non-AD

27 2 53 82 (21%) 67%

Indication of Non AD 38 15 147 200 (51%) 81%

Subtle indication
of AD

58 0 46 104 (27%) 56%

Probable indication
of AD

51 0 20 71 (18%) 72%

Clear indication of AD 11 0 5 16 (4%) 80%

Indication of AD 121 0 70 191 (49%) 63%

Note: Clear non-AD: disease state index ,0.17, Probable non-AD: 0.17# disease
state index ,0.33, Subtle non-AD: 0.33# disease state index ,0.50, Subtle AD:
0.50# disease state index,0.67, Probable AD: 0.67# disease state index,0.83,
Clear AD: disease state index $0.83. ‘Healthy’ denotes MCI cases which
converted back to the category ‘healthy’ during the study and belong still to
the non-AD group. Overall accuracy of diagnosis was 72%.
doi:10.1371/journal.pone.0055246.t005

Table 6. Accuracy of classification between AD converters
and non-converters the clinician making the diagnosis with
assistance of the PredictAD tool.

Final Diagnosis Total Accuracy

AD Healthy MCI

Clear indication
of non-AD

6 12 64 82 (21%) 93%

Probable indication
of non-AD

15 3 46 64 (16%) 77%

Subtle indication
of non-AD

18 0 34 52 (13%) 65%

Indication of Non AD 39 15 144 198 (50%) 80%

Subtle indication
of AD

43 0 38 81 (21%) 53%

Probable indication
of AD

31 0 19 50 (13%) 62%

Clear indication of AD 45 0 17 62 (16%) 73%

Indication of AD 119 0 74 193 (50%) 62%

Overall accuracy of diagnosis was 71%.
doi:10.1371/journal.pone.0055246.t006
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Discussion

The results show that the PredictAD tool alone (72%) and the

clinician with the assistance of the PredictAD tool produced

comparable or higher accuracy in predicting 3-year MCI outcome

than current research criteria for diagnosis of prodromal AD. The

literature is somewhat confusing, due to differences in size of study

populations, statistical methods, and length of follow-up etc., but it

seems that the overall accuracy of combinations of clinical data

and/or biomarkers in predicting AD conversion from MCI has

varied from 67% to 93% [23–28]. Liu et al., using the 100 MCI

cases from AddNeuroMed data and a combination of neuropsy-

chological tests and structural MRI biomarkers reported overall

accuracy 69% during one year follow-up [27]. Studies with the

ADNI cohort reported accuracies 67–77% when using combina-

tions of clinical measures and CSF and MRI biomarkers

[23,24,26].

We acknowledge that the prediction accuracy of about 70% is

not high concerning the clinical utility but the result is still

comparable with the current state-of-the-art. It reflects a reality

that the current prodromal AD guidelines and combinations of

biomarkers are not perfect. However, our point was not to develop

a novel method but to show how the current guidelines compare

with computer-assisted methods. The PredictAD tool can provide

objective and evidence-based information about the state of the

patient by integrating heterogeneous measurement data acquired

from a patient in current clinical practice. PredictAD makes it

possible to assess the disease severity, i.e. it is not simply a yes/no

diagnosis. Its graphical user interface can make it easy for clinician

to explore every single test or biomarker, giving more confident to

clinicians than a probability or yes/no diagnosis calculated with

certain software with underlying complex statistical calculation.

Using the PredictAD tool, the clinician was able to detect a sub-

population for which the accuracy was 84% which starts to be high

enough for affecting the clinical reasoning. It is good to remember

that 100% is not the correct target value in reality due to different

reasons: 1) Stable MCI and progressive MCI cases in ADNI are

not pathologically confirmed cases. It has been shown in different

studies that the agreement of the clinical and neuropathology

diagnoses is 70–90% [29–31]. In other words, even 72% is within

this range and studies reporting values .90% should be

interpreted with a caution. 2) Even neuropathological diagnoses

are not perfect.

It is interesting that about 30% MCI cases with clear (DSI

$0.83, 5 of 16 cases) and probable (0.67# DSI ,0.83, 20 of 71

cases) indications of AD did not convert to AD during the 3-year

follow-up, even though they did not significantly differ from AD

converters in age, gender, presence of APOE4, years of education,

concentrations of CSF markers, Scheltens scores, MMSE, and

RAVLT results (Figure 1). The reason why those 25 stable MCI

cases did not convert to AD is still unknown. In fact, this subgroup

population seems to be interesting, and a detailed investigation of

this subgroup, we might uncover novel preventative factors which

delay the onset of symptoms of AD.

Current research criteria for prodromal AD [4] emphasizes that

the core criteria of episodic memory impairment should not only

include deficit on delayed free recall but also on cued recall or

recognition. In this paper we used RAVLT free recall and

recognition scores to form the criteria of episodic memory

impairment. Adjustments for gender or education were not used,

and in addition it can be argued that results may have been

different if another memory test or cut-off values would have been

used. However, it is essential to remind that all MCI subjects in

ADNI cohort already fulfilled a significant memory impairment

measured with WMS-R logical memory II test (with education

correction). Thus subjects who fulfilled the criteria of episodic

memory impairment in the present paper performed lower than

expected for age altogether in three memory tests.

It has been shown that the Scheltens scale can classify AD

patients and healthy controls or other types of dementia with high

sensitivity, specificity, and accuracy [16,32,33]. Westman et al.

[34] applied Scheltens scale 2 and 3 as cutoff values in 101 MCI

cases from the multicenter study AddNeuroMed study. They

reported that the visually evaluated atrophy of MTL produced

similar accuracy in predicting conversion from MCI to AD (68%)

compared to multivariate regional MRI classification and manual

hippocampal volumes at one year follow-up. We applied Scheltens

scale 3 as the cutoff value in the ADNI data and found prediction

accuracy (62%) during the 3-year follow-up.

In the present study, according to the most recent criteria for

likelihood of AD, only 25 cases fulfilled the high likelihood of AD,

i.e. all clinical core criteria, MRI and CSF markers were positive,

fifteen of those 25 (60%) cases did convert to AD. Moreover, very

low sensitivities (6%–57%) were achieved by using the combina-

tion of clinical core tests, and MRI and CSF markers. In contrast,

by using the PredictAD tool, the number of clinician’s diagnosis of

a clear indication of AD was 62 cases, and 45 of those 62 (73%)

cases did convert to AD. This finding indicates that the PredictAD

tool uses the clinical, MRI, and CSF data in a much more efficient

way than the recent criteria applied with specific cut-off values for

making the diagnosis of AD.

We acknowledge that the present study has certain limitation. In

the predicting AD conversion with current prodromal AD

guidelines, only RAVLT tests were used to define if the subjects

had prodromal AD symptoms, but in the predicting AD

conversion with PredictAD tool alone, all the neuropsychological

tests were used. When the clinician determined if the subjects had

prodromal AD symptoms with the assistance of PredictAD tool,

only RAVLT tests were used as in the predicting AD conversion

with prodromal AD guidelines. However, the clinician was not

blinded to the other neuropsychological tests, the performance at

the other tests exploring cognitive domains other than memory

were used to increase the confidence of clinical diagnosis. The

overall predicting accuracy was 72%, 71%, and 64% for the

Figure 1. Screenshots from the PredictAD tool for two cases. The cases A and B had similar baseline neuropsychological tests, biomakers, and
genetic tests, but the case A did not convert to AD, case B converted to AD during 3-year follow-up period. The case A was classified by both
predictAD tool and current guildline for prodromal AD. It is probable that this case will convert in longer follow-up. The MCI subjects like case A seem
to be a potential interesting study group. It might be possible to identify sensitive biomarkers to detect AD at early phase or explore novel
preventative factors to delay the onset of symptoms of AD by investigating this subgroup. The main window of the PredictAD tool consists of five
panels. The ‘Patient details’ panel shows basic information about the patient. The ‘Timeline of entries’ panel contains information about all
measurements acquired from patient. The panel is interactive: the user can click any of the entries visible and a summary isshown in the ‘Entry
preview’ panel. The disease state fingerprint is shown in the ‘Disease state fingerprint’ panel. When the user selects any of the item from the
fingerprint, details behind the item are shown in the ‘Disease state index’ panel. The distributions show the probability density functions of the
corresponding item for the study and control groups, in this case PMCI and SMCI groups, and the value measured from the patient is shown by a
vertical black line.
doi:10.1371/journal.pone.0055246.g001
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accuracy 69% during one year follow-up [27]. Studies with the
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certain software with underlying complex statistical calculation.

Using the PredictAD tool, the clinician was able to detect a sub-

population for which the accuracy was 84% which starts to be high

enough for affecting the clinical reasoning. It is good to remember

that 100% is not the correct target value in reality due to different

reasons: 1) Stable MCI and progressive MCI cases in ADNI are

not pathologically confirmed cases. It has been shown in different

studies that the agreement of the clinical and neuropathology

diagnoses is 70–90% [29–31]. In other words, even 72% is within

this range and studies reporting values .90% should be
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cases did not convert to AD is still unknown. In fact, this subgroup

population seems to be interesting, and a detailed investigation of

this subgroup, we might uncover novel preventative factors which

delay the onset of symptoms of AD.

Current research criteria for prodromal AD [4] emphasizes that

the core criteria of episodic memory impairment should not only

include deficit on delayed free recall but also on cued recall or
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and in addition it can be argued that results may have been

different if another memory test or cut-off values would have been

used. However, it is essential to remind that all MCI subjects in

ADNI cohort already fulfilled a significant memory impairment

measured with WMS-R logical memory II test (with education

correction). Thus subjects who fulfilled the criteria of episodic

memory impairment in the present paper performed lower than

expected for age altogether in three memory tests.

It has been shown that the Scheltens scale can classify AD

patients and healthy controls or other types of dementia with high

sensitivity, specificity, and accuracy [16,32,33]. Westman et al.

[34] applied Scheltens scale 2 and 3 as cutoff values in 101 MCI

cases from the multicenter study AddNeuroMed study. They

reported that the visually evaluated atrophy of MTL produced

similar accuracy in predicting conversion from MCI to AD (68%)

compared to multivariate regional MRI classification and manual

hippocampal volumes at one year follow-up. We applied Scheltens

scale 3 as the cutoff value in the ADNI data and found prediction

accuracy (62%) during the 3-year follow-up.

In the present study, according to the most recent criteria for

likelihood of AD, only 25 cases fulfilled the high likelihood of AD,

i.e. all clinical core criteria, MRI and CSF markers were positive,

fifteen of those 25 (60%) cases did convert to AD. Moreover, very

low sensitivities (6%–57%) were achieved by using the combina-

tion of clinical core tests, and MRI and CSF markers. In contrast,

by using the PredictAD tool, the number of clinician’s diagnosis of

a clear indication of AD was 62 cases, and 45 of those 62 (73%)

cases did convert to AD. This finding indicates that the PredictAD

tool uses the clinical, MRI, and CSF data in a much more efficient

way than the recent criteria applied with specific cut-off values for

making the diagnosis of AD.

We acknowledge that the present study has certain limitation. In

the predicting AD conversion with current prodromal AD

guidelines, only RAVLT tests were used to define if the subjects

had prodromal AD symptoms, but in the predicting AD

conversion with PredictAD tool alone, all the neuropsychological

tests were used. When the clinician determined if the subjects had

prodromal AD symptoms with the assistance of PredictAD tool,

only RAVLT tests were used as in the predicting AD conversion

with prodromal AD guidelines. However, the clinician was not

blinded to the other neuropsychological tests, the performance at

the other tests exploring cognitive domains other than memory

were used to increase the confidence of clinical diagnosis. The

overall predicting accuracy was 72%, 71%, and 64% for the

Figure 1. Screenshots from the PredictAD tool for two cases. The cases A and B had similar baseline neuropsychological tests, biomakers, and
genetic tests, but the case A did not convert to AD, case B converted to AD during 3-year follow-up period. The case A was classified by both
predictAD tool and current guildline for prodromal AD. It is probable that this case will convert in longer follow-up. The MCI subjects like case A seem
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corresponding item for the study and control groups, in this case PMCI and SMCI groups, and the value measured from the patient is shown by a
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doi:10.1371/journal.pone.0055246.g001
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PredictAD tool alone, clinician’s prediction with the assistance of

the PredictAD tool, and the best combination of the core clinical

and biomarkers respectively. Diagnosis with the PredictAD tool

was significantly more accurate than diagnosis by biomarkers

alone or the combinations of clinical core criteria and biomarkers.

The methods judging if a subject presented prodromal symptoms

were not equal. It may explain the differences in overall predicting

accuracy. The findings imply that a single neuropsychological test

is not powerful enough to replace the other neuropsychological

tests in early AD diagnosis, enhancing the justification of using

PredictAD tool in clinical practice.

In conclusion, with the assistance of the PredictAD tool, the

clinician can predict AD conversion more accurately than than the

current research criteria for prodromal AD.

Acknowledgments

Data used in the preparation of this article were obtained from the

Alzheimer’s Disease Neuroimaging Initiative (ADNI) database (www.loni.

ucla.edu/ADNI). As such, the investigators within the ADNI contributed

to the design and implementation of ADNI and/or provided data, but did

not participate in analysis or writing of this report.

Author Contributions

Conceived and designed the experiments: YL TP JL HS. Critically revised

the paper: YL JM MAMR TP JK MVG SKH GW JL HS. Analyzed the

data: YL JM JL. Contributed reagents/materials/analysis tools: JM JK

MVG SKH GW JL HS. Wrote the paper: YL JM TP JL HS.

References

1. Brookmeyer R, Johnson E, Ziegler-Graham K, Arrighi HM (2007) Forecasting

the global burden of alzheimer’s disease. Alzheimers Dement 3: 186–191.
2. Bruscoli M, Lovestone S (2004) Is MCI really just early dementia? A systematic

review of conversion studies. Int Psychogeriatr 16: 129–140.

3. Luis CA, Loewenstein DA, Acevedo A, Barker WW, Duara R (2003) Mild
cognitive impairment: Directions for future research. Neurology 61: 438–444.

4. Dubois B, Feldman HH, Jacova C, Dekosky ST, Barberger-Gateau P, et al.
(2007) Research criteria for the diagnosis of alzheimer’s disease: Revising the

NINCDS-ADRDA criteria. Lancet Neurol 6: 734–746.

5. Dubois B, Feldman HH, Jacova C, Cummings JL, Dekosky ST, et al. (2010)
Revising the definition of alzheimer’s disease: A new lexicon. Lancet Neurol 9:

1118–1127.
6. R JC,Jr, Albert MS, Knopman DS, McKhann GM, Sperling RA, et al. (2011)

Introduction to the recommendations from the national institute on aging-
alzheimer’s association workgroups on diagnostic guidelines for alzheimer’s

disease. Alzheimers Dement 7: 257–262.

7. McKhann GM, Knopman DS, Chertkow H, Hyman BT, Jack CR Jr, et al.
(2011) The diagnosis of dementia due to alzheimer’s disease: Recommendations

from the national institute on aging-alzheimer’s association workgroups on
diagnostic guidelines for alzheimer’s disease. Alzheimers Dement 7: 263–269.

8. Sperling RA, Aisen PS, Beckett LA, Bennett DA, Craft S, et al. (2011) Toward

defining the preclinical stages of alzheimer’s disease: Recommendations from the
national institute on aging-alzheimer’s association workgroups on diagnostic

guidelines for alzheimer’s disease. Alzheimers Dement 7: 280–292.
9. Drago V, Babiloni C, Bartres-Faz D, Caroli A, Bosch B, et al. (2011) Disease

tracking markers for alzheimer’s disease at the prodromal (MCI) stage.
J Alzheimers Dis 26 Suppl 3: 159–199.

10. Vemuri P, Wiste HJ, Weigand SD, Shaw LM, Trojanowski JQ, et al. (2009)

MRI and CSF biomarkers in normal, MCI, and AD subjects: Predicting future
clinical change. Neurology 73: 294–301.

11. Vemuri P, Wiste HJ, Weigand SD, Shaw LM, Trojanowski JQ, et al. (2009)
MRI and CSF biomarkers in normal, MCI, and AD subjects: Diagnostic

discrimination and cognitive correlations. Neurology 73: 287–293.

12. Mattila J, Koikkalainen J, Virkki A, Simonsen A, van Gils M, et al. (2011) A
disease state fingerprint for evaluation of alzheimer’s disease. J Alzheimer’s Dis

27: 163–176.
13. Kloppel S, Stonnington CM, Barnes J, Chen F, Chu C, et al. (2008) Accuracy of

dementia diagnosis: A direct comparison between radiologists and a comput-

erized method. Brain 131: 2969–2974.
14. Kawamoto K, Houlihan CA, Balas EA, Lobach DF (2005) Improving clinical

practice using clinical decision support systems: A systematic review of trials to
identify features critical to success. BMJ 330: 765.

15. Albert MS, DeKosky ST, Dickson D, Dubois B, Feldman HH, et al. (2011) The
diagnosis of mild cognitive impairment due to alzheimer’s disease: Recommen-

dations from the national institute on aging-alzheimer’s association workgroups

on diagnostic guidelines for alzheimer’s disease. Alzheimers Dement 7: 270–279.
16. Scheltens P, Leys D, Barkhof F, Huglo D, Weinstein HC, et al. (1992) Atrophy

of medial temporal lobes on MRI in ‘‘probable’’ alzheimer’s disease and normal
ageing: Diagnostic value and neuropsychological correlates. J Neurol Neurosurg

Psychiatr 55: 967–972.

17. Shaw LM, Vanderstichele H, Knapik-Czajka M, Clark CM, Aisen PS, et al.
(2009) Cerebrospinal fluid biomarker signature in alzheimer’s disease neuroim-

aging initiative subjects. Ann Neurol 65: 403–413.

18. Rey A (1964) Lexamen clinique en psychologie. Paris: Presses Universitaires de

France.

19. Ivnik RJ, Malec JF, Tangalos EG, Petersen RC, Kokmen E, et al. (1992) Mayòs
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ter classification accuracy (from 62.6 to 70.0%) was found 
when using the PredictAD tool during the stepwise proce-
dure. When the same data were presented on paper, classi-
fication accuracy of the raters dropped significantly from 
70.0 to 63.2%. Conclusion: Best classification accuracy was 
achieved by the clinical raters when using the tool for deci-
sion support, suggesting that the tool can add value in diag-
nostic classification when large amounts of heterogeneous 
data are presented. Copyright © 2012 S. Karger AG, Basel
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Abstract
Background: The PredictAD tool integrates heterogeneous 
data such as imaging, cerebrospinal fluid biomarkers and re-
sults from neuropsychological tests for compact visualiza-
tion in an interactive user interface. This study investigated 
whether the software tool could assist physicians in the ear-
ly diagnosis of Alzheimer’s disease. Methods: Baseline data 
from 140 patients with mild cognitive impairment were se-
lected from the Alzheimer’s Disease Neuroimaging Study. 
Three clinical raters classified patients into 6 categories of 
confidence in the prediction of early Alzheimer’s disease, in 
4 phases of incremental data presentation using the soft-
ware tool. A 5th phase was done with all available patient 
data presented on paper charts. Classifications by the clinical 
raters were compared to the clinical diagnoses made by the 
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were presented to the raters in a stepwise manner using the Pre-
dictAD tool. After each presentation of patient data, the clinical 
raters were asked to categorize the patient into one of 6 categories 
according to the likelihood that the patient would develop AD 
dementia: (1) clear indication of non-AD, (2) probable indication 
of non-AD, (3) subtle indication of non-AD, (4) subtle indication 
of early AD, (5) probable indication of early AD or (6) clear indi-
cation of early AD.

In other words, the clinical raters were asked to predict the 
3-year conversion outcomes (S-MCI or P-MCI) using baseline 
data for cognitive tests, MRI and CSF biomarkers. The non-AD 
categories, i.e. (1)–(3), were defined to be used for subjects with 
memory problems thought to be due to causes other than early-
phase AD. 

As shown in table 2, baseline clinical data were presented to 
the clinical raters in a stepwise manner in 4 phases, each phase 
adding more information about the patient. 

In phase 1, only simple demographic and clinical data (global 
and functional status) were presented. In subsequent phases, 
more clinical information was added, mimicking the routine 
clinical diagnostic process, starting with the less costly and inva-
sive procedures and ending with the addition of CSF biomarkers 
at phase 4. The raters did not receive any form of feedback about 
their performance between the rating phases.

During each phase, the PredictAD tool provided only the al-
lowed patient information to the clinical raters (see fig. 1). A 
timeline panel showed when the different tests were adminis-
tered. Selecting a test from the timeline displayed it in a preview 
panel showing detailed results from the selected test. A tree of 
colored nodes on the right panel of the computer screen showed 
how patient data as a whole relate to average values from previ-
ously diagnosed S-MCI and P-MCI cases. Tests with large node 
sizes indicated patient measures which differentiated well be-
tween S-MCI and P-MCI. Red indicated patient data which are 
similar to P-MCI cases, whereas blue pointed towards S-MCI. 
White indicated measurements that were intermediate between 
the average values for previously diagnosed S-MCI and P-MCI 
cases. Values within the tree visualization are Disease State In-

dex (DSI) values [13]. The DSI method is a novel statistical clas-
sification method that was developed with the goal of support-
ing clinical decision-making. Here, it was used for ranking pa-
tient data against data from known S-MCI and P-MCI cases on 
a scale of 0–1. A DSI value of zero denotes a perfect match with 
S-MCIs, and a DSI value of 1 denotes a perfect match to P-MCI 
cases. To compute these DSI values, all MCI patients from the 
ADNI were used for training the disease model, except the pa-
tient being currently classified equivalent to leave-one-out 
cross-validation. This was done to ensure that there are enough 
data for good-quality computerized analysis and to ensure that 
raters’ predictions have no bias towards the correct categories 
when using the software tool. More rigorous analysis of the per-
formance and characteristics of the DSI method underlying the 
tool’s visualizations can be found in our previously published 
paper [11]. 

To minimize influence from previous phases, all 140 patients 
were categorized once before moving on to the next phase and 
restarting from the first patient with additional clinical informa-
tion. Information about previous rater categorizations was not 
provided to the clinical raters during subsequent phases. The pre-
sentation of the subjects was always in the same order. Any reten-
tion from previous phases influenced categorizations similarly, 
whether using the tool or reading the paper charts.

Patient Classification by Clinical Raters Using Traditional 
Paper Charts
After categorizing patients into 4 phases with the tool, each 

rater was presented with exactly the same patient data as at phase 
4 in a paper chart format at a separate rater meeting. Raters were 
once more requested to classify all patients into the 6 categories. 
This 5th phase resembled the current state of diagnostic work, 
i.e. no help from tools was available, only raw data and test re-
sults. Similar to the earlier phases using the tool, the raters were 
not provided with test norms or MCI cut-off scores for any of the 
data. 

Clinical Raters
The raters were all physicians who had clinical experience in 

the diagnostic evaluation of dementia and experience with the 
cognitive tests and assessment scales used in the ADNI. However, 
they had not previously participated in any ADNI-related studies. 

Statistical Analysis
Categorizations made by the clinical raters using baseline data 

alone were compared to clinical diagnoses made by the ADNI in-
vestigators after 3 years of follow-up. At each phase, assigning a 
patient to category (1), (2) or (3) was deemed correct if the clinical 
diagnosis was S-MCI and similarly, categories (4), (5) and (6) were 
correct if the clinical diagnosis was P-MCI.

Classification accuracy for the raters was computed from all 
categorizations made by the 3 clinical raters grouped together. 
Classification accuracy was defined as the ratio of correctly clas-
sified patients versus the total number of patients. 

Differences between the diagnostic groups at baseline were 
evaluated with the unpaired Student t test. Changes in classifica-
tion accuracy between the tool and the paper charts were evalu-
ated using the McNemar test. 

A subanalysis of cases categorized by the raters as (1) or (6) was 
performed separately. Differences in the relative number of clear 

Table 2. Protocol for stepwise data presentation using the Predic-
tAD tool

Available data

Phase 1 Age, gender, years of education, primary occupation +
MMSE including subscores, FAQ including subscores 
and AD index calculated by the software

Phase 2 All from phase 1 +
ADAS-cog including subscores and CDR including 
subscores

Phase 3 All from phases 1 and 2 +
MRI volumetrics (provided by the ADNI and computed 
with the FreeSurfer image analysis suite [14])

Phase 4 All from phases 1, 2 and 3 +
CSF levels of amyloid beta and total tau
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Introduction

Mild cognitive impairment (MCI) is a term referring 
to persons who do not fulfill the criteria for dementia, but 
who exhibit some form of cognitive impairment [1, 2]. 
MCI is associated with an increased risk of developing 
Alzheimer’s disease (AD) [3, 4]. Identification of MCI pa-
tients who will progress to AD would allow the applica-
tion of disease-modifying treatments to slow progression 
at a point where clinical manifestations are limited. A 
combination of results from neuropsychological testing 
[5], MRI [6] and cerebrospinal fluid (CSF) biomarkers [7] 
can aid in the prediction of which patients with MCI will 
progress to AD. Furthermore, measurements of brain 
amyloid by PET using the ligand 11C PIB (Pittsburg com-
pound B) were shown to predict a 3-year conversion to 
AD in a group of patients with amnestic MCI [8].

Even a modest delay of 1 year in the onset and progres-
sion of disease could drastically reduce the burden of AD 
on society [9]. Current symptomatic treatments and non-
pharmacological interventions are assumed to be most 
effective at the earliest stages of the disease, underlining 
the importance of early diagnosis [10]. PredictAD, fund-
ed by the 7th EU framework (FP7 – 224328), is a research 
project where a consortium of technical and clinical part-
ners aims to provide standardized and objective solutions 
for enabling earlier diagnoses of AD, improved monitor-
ing of treatment efficacy, easier patient selection for drug 
trials and improved cost-effectiveness of diagnostic pro-
tocols. For this purpose, the PredictAD consortium has 
developed a software tool to support clinical decision-
making [11]. The PredictAD tool integrates heteroge-
neous data from clinical investigations in an individual 
patient, such as imaging, CSF biomarkers and results 
from neuropsychological tests for compact visualization 
in an interactive user interface. The aim of this study was 
to investigate whether the PredictAD tool could assist 
physicians in the early diagnosis of AD. The hypothesis 
was that when physicians were presented with clinical 
and paraclinical information from a patient by the soft-
ware they would be able to predict conversion from MCI 
to AD better than if the information were presented in a 
traditional form on a printed chart.

Methods

Patients
Baseline data from 140 patients with MCI were selected from 

the Alzheimer’s Disease Neuroimaging Initiative (ADNI) study 
cohort [4]. The ADNI comprises a consortium of universities and 

medical centers in the USA and Canada. It was established to de-
velop imaging techniques and biomarker procedures in normal 
subjects, subjects with MCI and subjects with mild AD. A total of 
229 cognitively normal subjects, 398 MCI patients and 192 AD 
patients were recruited for the ADNI [4] which is supported by the 
National Institutes of Health, private pharmaceutical companies 
and nonprofit organizations. Full inclusion and exclusion criteria 
are described in detail at www.adni-info.org.

The criteria for selecting MCI patients in this study were: the 
availability of the Mini Mental State Examination (MMSE), Func-
tional Assessment Questionnaire (FAQ), Alzheimer’s Disease As-
sessment scale (ADAS-cog), Clinical Dementia Rating (CDR), 
CSF levels of amyloid beta and tau as well as MRI-derived volume 
values at the baseline measurement. Furthermore, patients who 
dropped out of the ADNI before 3 years of follow-up were exclud-
ed from our study. Some of the excluded patients had converted 
from MCI to AD at that time.

All selected patients had a CDR = 0.5 and an MMSE score ≥24 
at baseline. In total, 140 of the 398 ADNI MCI patients met our 
criteria and were included in this study. 

Diagnostic Classification of Patients According to the ADNI
In the ADNI study, patients with MCI were diagnosed accord-

ing to the criteria of Petersen et al. [1]. Of the 140 patients includ-
ed in our study, 64 (45.7%) progressed to AD (progressive MCI, 
P-MCI) during the ADNI follow-up period according to the Na-
tional Institute of Neurological and Communicative Disorders 
and Stroke and Alzheimer’s Disease and Related Disorders Asso-
ciation (NINCDS-ADRDA) [12], whereas 76 remained in the MCI 
group (stable MCI, S-MCI). Demographic information is listed in 
table 1. Due to our selection criteria, the average time of conver-
sion from MCI to AD (i.e. the P-MCI group) was 20 months, 
which is slightly longer than when considering all ADNI P-MCIs 
including the ones that were excluded because they dropped out 
before the end of the 3-year follow-up. The mean age of the pa-
tients was 74.3 years (SD 7.5), and there were 90 males and 50 fe-
males.

Stepwise Classification by Clinical Raters Using the PredictAD 
Tool
In PredictAD, a clinical decision support tool was developed 

for the early diagnosis of AD [11]. The tool was applied by 3 clin-
ical raters who were informed that the patients to be evaluated had 
been diagnosed with MCI by the ADNI team at baseline. All cas-
es presented to the raters were anonymized. The baseline data 

Table 1. Average age, MMSE and years of education of the MCI 
patients

n Gender 
M/F

Age, years 
(SD)

MMSE 
(SD)*

Years of educa-
tion (SD)*

P-MCI 64 39/25 74.7 (7.0) 26.6 (1.9) 15.3 (3.0)
S-MCI 76 51/25 73.9 (7.8) 27.3 (1.7) 16.3 (2.7)

* Statistically significant difference (p < 0.05 from unpaired 
Student t test).
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were presented to the raters in a stepwise manner using the Pre-
dictAD tool. After each presentation of patient data, the clinical 
raters were asked to categorize the patient into one of 6 categories 
according to the likelihood that the patient would develop AD 
dementia: (1) clear indication of non-AD, (2) probable indication 
of non-AD, (3) subtle indication of non-AD, (4) subtle indication 
of early AD, (5) probable indication of early AD or (6) clear indi-
cation of early AD.

In other words, the clinical raters were asked to predict the 
3-year conversion outcomes (S-MCI or P-MCI) using baseline 
data for cognitive tests, MRI and CSF biomarkers. The non-AD 
categories, i.e. (1)–(3), were defined to be used for subjects with 
memory problems thought to be due to causes other than early-
phase AD. 

As shown in table 2, baseline clinical data were presented to 
the clinical raters in a stepwise manner in 4 phases, each phase 
adding more information about the patient. 

In phase 1, only simple demographic and clinical data (global 
and functional status) were presented. In subsequent phases, 
more clinical information was added, mimicking the routine 
clinical diagnostic process, starting with the less costly and inva-
sive procedures and ending with the addition of CSF biomarkers 
at phase 4. The raters did not receive any form of feedback about 
their performance between the rating phases.

During each phase, the PredictAD tool provided only the al-
lowed patient information to the clinical raters (see fig. 1). A 
timeline panel showed when the different tests were adminis-
tered. Selecting a test from the timeline displayed it in a preview 
panel showing detailed results from the selected test. A tree of 
colored nodes on the right panel of the computer screen showed 
how patient data as a whole relate to average values from previ-
ously diagnosed S-MCI and P-MCI cases. Tests with large node 
sizes indicated patient measures which differentiated well be-
tween S-MCI and P-MCI. Red indicated patient data which are 
similar to P-MCI cases, whereas blue pointed towards S-MCI. 
White indicated measurements that were intermediate between 
the average values for previously diagnosed S-MCI and P-MCI 
cases. Values within the tree visualization are Disease State In-

dex (DSI) values [13]. The DSI method is a novel statistical clas-
sification method that was developed with the goal of support-
ing clinical decision-making. Here, it was used for ranking pa-
tient data against data from known S-MCI and P-MCI cases on 
a scale of 0–1. A DSI value of zero denotes a perfect match with 
S-MCIs, and a DSI value of 1 denotes a perfect match to P-MCI 
cases. To compute these DSI values, all MCI patients from the 
ADNI were used for training the disease model, except the pa-
tient being currently classified equivalent to leave-one-out 
cross-validation. This was done to ensure that there are enough 
data for good-quality computerized analysis and to ensure that 
raters’ predictions have no bias towards the correct categories 
when using the software tool. More rigorous analysis of the per-
formance and characteristics of the DSI method underlying the 
tool’s visualizations can be found in our previously published 
paper [11]. 

To minimize influence from previous phases, all 140 patients 
were categorized once before moving on to the next phase and 
restarting from the first patient with additional clinical informa-
tion. Information about previous rater categorizations was not 
provided to the clinical raters during subsequent phases. The pre-
sentation of the subjects was always in the same order. Any reten-
tion from previous phases influenced categorizations similarly, 
whether using the tool or reading the paper charts.

Patient Classification by Clinical Raters Using Traditional 
Paper Charts
After categorizing patients into 4 phases with the tool, each 

rater was presented with exactly the same patient data as at phase 
4 in a paper chart format at a separate rater meeting. Raters were 
once more requested to classify all patients into the 6 categories. 
This 5th phase resembled the current state of diagnostic work, 
i.e. no help from tools was available, only raw data and test re-
sults. Similar to the earlier phases using the tool, the raters were 
not provided with test norms or MCI cut-off scores for any of the 
data. 

Clinical Raters
The raters were all physicians who had clinical experience in 

the diagnostic evaluation of dementia and experience with the 
cognitive tests and assessment scales used in the ADNI. However, 
they had not previously participated in any ADNI-related studies. 

Statistical Analysis
Categorizations made by the clinical raters using baseline data 

alone were compared to clinical diagnoses made by the ADNI in-
vestigators after 3 years of follow-up. At each phase, assigning a 
patient to category (1), (2) or (3) was deemed correct if the clinical 
diagnosis was S-MCI and similarly, categories (4), (5) and (6) were 
correct if the clinical diagnosis was P-MCI.

Classification accuracy for the raters was computed from all 
categorizations made by the 3 clinical raters grouped together. 
Classification accuracy was defined as the ratio of correctly clas-
sified patients versus the total number of patients. 

Differences between the diagnostic groups at baseline were 
evaluated with the unpaired Student t test. Changes in classifica-
tion accuracy between the tool and the paper charts were evalu-
ated using the McNemar test. 

A subanalysis of cases categorized by the raters as (1) or (6) was 
performed separately. Differences in the relative number of clear 

Table 2. Protocol for stepwise data presentation using the Predic-
tAD tool

Available data

Phase 1 Age, gender, years of education, primary occupation +
MMSE including subscores, FAQ including subscores 
and AD index calculated by the software

Phase 2 All from phase 1 +
ADAS-cog including subscores and CDR including 
subscores

Phase 3 All from phases 1 and 2 +
MRI volumetrics (provided by the ADNI and computed 
with the FreeSurfer image analysis suite [14])

Phase 4 All from phases 1, 2 and 3 +
CSF levels of amyloid beta and total tau
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tistically significant margin during each successive phase 
when information was added (phase 1–phase 2, p = 0.005; 
phase 2–phase 3, p = 0.000002; phase 3–phase 4, p = 0.002). 
Furthermore, the classification accuracy for the Clear pa-
tients increased (see fig. 3) with additional data, up to 
85.6%. The increase in classification accuracy for cases cat-
egorized as Clear was statistically significant from phase 1 
to phases 2, (p = 0.022), 3 (p = 0.004) and 4 (p = 0.002). 

Using the Tool was Superior to Paper Charts
When the clinical raters were presented with patients 

in with exactly the same data in a paper chart format after 
they had been using the tool, there was a decrease in every 
rater’s classification performance. There was a statistical-
ly significant decrease in classification accuracy from 
70.0 to 63.2% (p = 0.005), as seen in figure 2.

In addition to decreased classification accuracy, the 
clinical raters were less confident in classifying patients 
as Clear cases when they only had the data in a paper 
chart format (see fig. 3). The decrease in the amount of 
Clear cases between having the tool available and not 

having it was close to being statistically significant (p = 
0.050). Classification accuracy of Clear cases was also 
lower with the paper charts than with the tool, but the 
difference was not statistically significant.

Inter-Rater Agreement
When the 3 raters were using the tool, inter-rater 

agreement between them was very good with Cohen’s 
kappa of 0.64, 0.76 and 0.80. When deprived of the tool, 
the agreement between raters was moderate (Cohen’s 
kappa: 0.41, 0.43 and 0.71). Agreement between classifica-
tions made by a single rater using either the tool or paper 
charts was relatively good (Cohen’s kappa: 0.58, 0.70 and 
0.77).

Discussion

The results show that the best classification accuracy 
by clinical raters and the best agreement between raters 
was achieved when they used the software tool for  decision 

Fig. 2. Classification accuracy of clinical 
raters achieved for all patients during dif-
ferent phases of patient data presentation.

Fig. 3. Prevalence of patients assigned as 
clear (1) or (6) and classification accuracy 
for these cases at each phase.
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cases and in classification accuracy between phases were analyzed 
using the Fisher exact test.

Interrater agreement was evaluated using categorizations ob-
tained at the 2 final phases where all data were available. This al-
lowed us to test the agreement between clinical raters using the 
PredictAD software and paper charts. The test was performed by 
computing quadratic-weighted Cohen’s kappa values.

In this study, a difference was considered statistically signifi-
cant if p < 0.05.

Results

In this study, 140 patients with MCI at baseline were 
evaluated by 3 clinical raters. There were no differences 
between S-MCI and P-MCI regarding gender or age, but 
the S-MCI patients had a statistically significant higher 

MMSE (p = 0.011) and more years of education (p = 0.044) 
than the P-MCI patients (see table 1).

In total, the stepwise classification process resulted in 
2,100 patient categorizations (140 patients × 3 clinical rat-
ers × 5 phases).

Increasing Accuracy and Confidence from the 
Availability of More Data
There was a trend towards more accurate classifica-

tions at each successive phase when the raters were pre-
sented with more clinical data, as depicted in figure 2. 
The increase in accuracy from phase 1 to phase 4, i.e. 
62.6–70.0%, was statistically significant, p = 0.029. 

At each successive phase, the raters gained more confi-
dence in making the classifications. The number of pa-
tients assigned to the Clear categories increased by a sta-

Fig. 1. Screenshot of the PredictAD tool used in this study. A patient being categorized at phase 4 has been 
marked as having a clear indication of early AD. Shown in the software are patient details, a timeline of entries 
where an MMSE entry is currently selected, a preview of the selected entry and a DSI visualization tree reveal-
ing how patient data relates to known S-MCI and P-MCI cases. Large nodes in the tree indicate good patient 
measures at differentiating between S-MCI and P-MCI. Shades of blue and red indicate where patient data are 
similar to S-MCIs and P-MCIs, respectively. Distributions (S-MCIs in blue, P-MCIs in red) and the patient 
value (in black) of the currently selected measure are displayed in a graph below the tree.
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tistically significant margin during each successive phase 
when information was added (phase 1–phase 2, p = 0.005; 
phase 2–phase 3, p = 0.000002; phase 3–phase 4, p = 0.002). 
Furthermore, the classification accuracy for the Clear pa-
tients increased (see fig. 3) with additional data, up to 
85.6%. The increase in classification accuracy for cases cat-
egorized as Clear was statistically significant from phase 1 
to phases 2, (p = 0.022), 3 (p = 0.004) and 4 (p = 0.002). 

Using the Tool was Superior to Paper Charts
When the clinical raters were presented with patients 

in with exactly the same data in a paper chart format after 
they had been using the tool, there was a decrease in every 
rater’s classification performance. There was a statistical-
ly significant decrease in classification accuracy from 
70.0 to 63.2% (p = 0.005), as seen in figure 2.

In addition to decreased classification accuracy, the 
clinical raters were less confident in classifying patients 
as Clear cases when they only had the data in a paper 
chart format (see fig. 3). The decrease in the amount of 
Clear cases between having the tool available and not 

having it was close to being statistically significant (p = 
0.050). Classification accuracy of Clear cases was also 
lower with the paper charts than with the tool, but the 
difference was not statistically significant.

Inter-Rater Agreement
When the 3 raters were using the tool, inter-rater 

agreement between them was very good with Cohen’s 
kappa of 0.64, 0.76 and 0.80. When deprived of the tool, 
the agreement between raters was moderate (Cohen’s 
kappa: 0.41, 0.43 and 0.71). Agreement between classifica-
tions made by a single rater using either the tool or paper 
charts was relatively good (Cohen’s kappa: 0.58, 0.70 and 
0.77).

Discussion

The results show that the best classification accuracy 
by clinical raters and the best agreement between raters 
was achieved when they used the software tool for  decision 

Fig. 2. Classification accuracy of clinical 
raters achieved for all patients during dif-
ferent phases of patient data presentation.

Fig. 3. Prevalence of patients assigned as 
clear (1) or (6) and classification accuracy 
for these cases at each phase.
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support. That is to say, when clinical raters combined 
their clinical experience in AD with the additional infor-
mation and context provided by the tool, they achieved 
the most accurate and consistent results.

There was a statistically significant decrease in the 
classification accuracy of the raters when they only had 
traditional paper charts with patient data. This suggests 
it is more challenging to apply clinical diagnostic criteria 
to a large amount of heterogeneous data when they are 
presented without any help that highlights important de-
tails. These results reinforce the case for decision-support 
systems that help clinicians manage large quantities of 
patient data obtained in modern healthcare.

Another aspect revealed by the results was that in-
creasing amounts of data proved beneficial for the diag-
nostics in more than one way. It was expected that the 
availability of more data would improve classification 
accuracy, but there was also an added benefit of boosting 
confidence in the diagnosis. There was a statistically sig-
nificant increase in the number of clear cases each time 
more data were made available, up to 33.1% of the pa-
tients being marked clear at the 4th phase. Classification 
accuracy of the clear cases also improved at each con-
secutive phase, up to 85.6%. In other words, one third of 
the patients were classified from baseline data at a rela-
tively high accuracy by the clinical raters. Although the 
overall prediction accuracy with the tool was only 70%, 
having one third of the patients categorized at 85% ac-
curacy (similar to the accuracy of clinical AD diagnoses) 
on average 20 months before the clinical AD diagnoses 
were given, could allow earlier treatments or better pa-
tient selection for drug trials. This result also suggests 
that there are some cases where the data contain strong 
evidence of early AD, perhaps allowing earlier diagnosis 
if interpreted correctly. In this regard, having the tool 
seemed to improve classification performance, as with 
the paper charts, the doctors categorized only 26.0% of 
the cases as clear and achieved 82.2% classification ac-
curacy for them.

To put this study into context, it is important to stress 
that the 3 clinical raters had not met the patients in per-
son and they were not able to review the patients’ medical 
history. By interviewing and examining patients in per-
son, valuable information regarding medical history, psy-
chiatric symptoms and information about the onset of 
cognitive decline would be obtained that could further 
improve the diagnostic classification of the patients. The 
tool used here should be developed further to take other 
clinical parameters into account such as the ones men-
tioned above. 

The clinical raters in our study only had the baseline 
data presented to them by the software or on the paper 
charts. Whether the software solution would add clini-
cally meaningful value to the classification accuracy 
above that obtained by interview and examination of pa-
tients in person together with traditional presentation of 
investigational results is not clear from this study. This 
hypothesis should be examined in further prospective 
clinical studies. 

A weakness of this study is that some of the stable MCI 
patients may have converted to AD after the 3-year fol-
low-up period. These patients were classified as S-MCI in 
the data, but may in fact have been P-MCIs. This may 
skew the results towards a lower classification accuracy, 
affecting all the methods and analyses applied in the 
study.

Furthermore, the ADNI MCI population was a select-
ed group of patients as opposed to a general mixed mem-
ory-clinic population. The performance of the Predic-
tAD tool in a mixed group of patients with memory im-
pairment has still to be clarified. 

In conclusion, the results suggest that a computerized 
decision-support tool designed to help the reading and 
interpreting of heterogeneous patient data may be useful 
for diagnostic work. When raters were using the tool, the 
confidence in making a diagnostic classification, the ac-
curacy of the diagnoses and interrater agreement were all 
significantly higher than their performance when only 
traditional paper charts were available.
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