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Adaptive power and frequency allocation strategies in cognitive
radio systems

Adaptiiviset tehon ja taajuuden allokoinnin strategiat kognitiivisissa radiojärjestelmissä.
Marko Höyhtyä. Espoo 2014. VTT Science 61. 78 p. + app. 119 p.

Abstract
This doctoral thesis comprises a summary of novel results considering (1) channel
selection in a cognitive radio system (CRS) using history information and (2) pow-
er allocation in a selected frequency band assuming a fading channel. Both can be
seen as methods to manage interference between in-system users as well as to
the users of other systems operating in the same geographical area and frequency
band. Realization of CRSs that are using various methods to obtain information
about environment and making intelligent decisions based on that information
requires the use of adaptive transmission. Adaptive techniques proposed in this
thesis enable efficient operation of CRSs in varying radio environment.

History information and learning are essential factors to consider in the CRS design.
Intelligent use of history information affects throughput, collisions and delays since
it helps to guide the sensing and channel selection processes. In contrast to majority of
approaches presented in the literature, this thesis proposes a classification-based
prediction method that is not restricted to a certain type of traffic. Instead, it is a
general method that is applicable to a variety of traffic classes. The work develops
an optimal prediction rule for deterministic traffic pattern and maximum likelihood
prediction rule for exponentially distributed traffic patterns for finding channels
offering the longest idle periods for secondary operation. Series of simulations
were conducted to show the general applicability of the rule to a variety of traffic
models. In addition, the thesis develops a method for traffic pattern classification in
predictive channel selection. Classification-based prediction is shown to increase
the throughput and reduce the number of collisions with the primary user up to
70% compared to the predictive system operating without classification.

In terms of the power allocation work, the thesis defines the transmission power
limit for secondary users as a function of the detection threshold of a spectrum
sensor as well as investigates theoretical water-filling and truncated inverse power
control methods. The methods have been optimized using rational decision theory
concepts. The main focus has been on the development and performance com-
parison of practical inverse power control methods for constant data rate applica-
tions. One of the key achievements of the work is the development of the filtered-x
LMS (FxLMS) algorithm based power control. It can be seen as a generalized
inverse control to be used in power control research, giving a unified framework to
several existing algorithms as well.

Keywords dynamic spectrum access, prediction, closed-loop method
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Adaptiiviset tehon ja taajuuden allokoinnin strategiat kognitiivisissa
radiojärjestelmissä

Adaptive power and frequency allocation strategies in cognitive radio systems. Marko Höyhtyä.
Espoo 2014. VTT Science 61. 78 s. + liitt. 119 s.

Tiivistelmä
Tämä väitöskirja sisältää yhteenvedon tuloksista koskien 1) historiatietoa käyttä-
vää kanavanvalintaa kognitiiviradiojärjestelmässä ja 2) tehon allokointia valitulla
taajuuskanavalla häipyvässä kanavassa. Molemmat menetelmät auttavat häiriön-
hallinnassa sekä järjestelmän omien käyttäjien välillä että muiden samalla alueella
toimivien järjestelmien suhteen. Ympäristötietoa useilla eri menetelmillä keräävien
ja tämän tiedon mukaan älykkäitä päätöksiä tekevien kognitiiviradiojärjestelmien
toteuttaminen vaatii adaptiivisten lähetystekniikoiden käyttöä. Väitöskirjassa ehdo-
tettujen adaptiivisten menetelmien käyttö mahdollistaa kognitiiviradiojärjestelmien
tehokkaan toiminnan vaihtuvassa radioympäristössä.

Historiatiedot ja oppiminen ovat olennaisia kognitiiviradiojärjestelmän suunnitte-
lussa huomioitavia asioita. Älykäs historiatietojen käyttö vaikuttaa kapasiteettiin,
törmäyksiin ja viiveisiin, koska se auttaa ohjaamaan sensorointia ja kanavanvalin-
taprosessia. Toisin kuin valtaosa kirjallisuuden menetelmistä, väitöskirja ehdottaa
luokitteluun perustuvaa menetelmää, joka ei rajoitu tiettyyn liikennemalliin. Ehdo-
tettu menetelmä on yleinen ja toimii useiden liikenneluokkien kanssa. Työssä on
kehitetty optimaalinen ennustussääntö deterministiselle liikenteelle ja suurimman
uskottavuuden estimaatti eksponentiaalisesti jakautuneelle liikenteelle, kun tavoit-
teena on löytää lähetyskanavat, jotka tarjoavat mahdollisimman pitkät vapaat ajat
sekundääristä käyttöä varten. Väitöskirja osoittaa simulointien avulla sääntöjen
soveltuvan myös muille malleille. Lisäksi työssä on kehitetty luokittelumenetelmä
liikennemalleille ja osoitettu luokitteluun perustuvan ennustavan kanavanvalinnan
lisäävän kapasiteettia ja vähentävän törmäyksiä primäärisen käyttäjän kanssa
jopa 70 % verrattuna luokittelemattomaan ennustavaan kanavanvalintaan.

Tehoallokointityössä on määritelty lähetystehorajoja sekundäärisille käyttäjille
spektrin sensoroinnin ilmaisukynnyksen funktiona ja tutkittu teoreettista täyttöme-
netelmää ja katkaistua kanavainversiomenetelmää. Menetelmiä on optimoitu käyt-
täen rationaalista päätösteoriaa. Pääfokus tehonsäätötyössä on ollut käytännöllis-
ten vakiodatanopeutta käyttävien inverssimenetelmien kehittämisessä ja suoritus-
kykyvertailuissa. Yksi väitöskirjatyön pääsaavutuksista on ollut FxLMS-algoritmiin
perustuvan tehonsäätömenetelmän kehittäminen. Sen voi katsoa olevan yleinen
inverssisäätöalgoritmi, jonka erikoistapauksina saadaan määriteltyä monet käy-
tännölliset algoritmit.

Avainsanat Dynamic spectrum access, prediction, closed-loop method
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1. Introduction

Wireless systems rely on spectrum use to provide their services. Traditionally,
different portions of the spectrum have been allocated to different wireless sys-
tems, such as mobile cellular systems and television, and licenses are required to
operate within those bands. These licensed systems are called primary users (PU)
of the spectrum. However, the potential for new spectrum allocations is shrinking
because the expansion of wireless communications is continuing and new sys-
tems are emerging faster than the ageing systems currently in use are becoming
extinct. The situation has led to the scarcity of spectrum globally.

Spectrum sharing techniques seem to provide good solutions to the ever-
increasing demand of wireless services by enabling a more efficient use of the
limited spectrum resource. A spectrum sharing arrangement can be basically
defined by two defining features (Peha 2009). The first is whether the sharing is
based on cooperation or coexistence. The second defining feature is whether the
question is about sharing among equals or primary-secondary sharing. Motivations
and the sharing conditions in these models can differ clearly from each other. Cognitive
radio (CR) techniques can be used to enable any of these arrangements.

1.1 Cognitive radio system

The term cognitive radio was coined by Joseph Mitola in (Mitola & Maguire 1999,
Mitola 1999). He described the cognitive radio approach as devices and networks
that are “sufficiently computationally intelligent about radio resources and related
computer-to-computer communications to detect user communications needs as a
function of use context, and to provide radio resources and wireless services most
appropriate to those needs.” A CR continuously observes, orients itself, creates a
plan, makes decisions based on the plan and orientation, and then acts based on
those decisions.

After Haykin published his seminal paper (Haykin 2005), the term cognitive ra-
dio changed to mean mainly dynamic spectrum access oriented operation. Ac-
cording to (Haykin 2012) two key functions of a CR are (1) a radio scene analyzer
at the receiver to identify spectrum holes, i.e., available frequency channels at
certain time and at certain location, and (2) dynamic spectrum manager and
transmit-power controller at the transmitter to allocate the spectrum holes among
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multiple CR users. Haykin described a simpler cognitive cycle, compared to Mitola’s
general one, focusing on the dynamic spectrum use aspects. The cognitive cycle
depicted in Figure 1 defines the operation of a CRS.

Figure 1. Cognitive cycle as an OODA loop.

The official recent definition developed by the International Telecommunication
Union Radiocommunication Sector (ITU-R) states that the cognitive radio system
is (ITU-R SM.2152, 2009): “A radio system employing technology that allows the
system to obtain knowledge of its operational and geographical environment,
established policies and its internal state; to dynamically and autonomously adjust
its operational parameters and protocols according to its obtained knowledge in
order to achieve predefined objectives; and to learn from the results obtained.” This
general definition broadens the scope again to other than frequency resources as well.

The cognitive cycle presented in the previous examples is based on the “ob-
serve, orient, decide, and act” (OODA) loop that was developed by John Boyd in
the 1970s to analyze success of American pilots in the Korean War (Brehmer
2005). In his later work, Boyd developed the OODA loop into a more general
model of winning and losing. Figure 1 shows the cognitive cycle as an OODA loop
operating in the radio frequency (RF) environment.

The main aim of cognitive radios is to improve spectral efficiency by actively
sensing the environment and then filling the gaps in a licensed spectrum by their
own transmissions. The sensing needs to be performed rather often to obtain a
reliable situational awareness picture of the RF environment. Sensing with sub-
Nyquist sampling is called compressive sampling (Candes & Wakin 2008). Sens-
ing information can be used in defining traffic patterns of the primary users, char-
acterizing the channel use in time domain. CRSs can also obtain spectrum use
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pattern passively outside from one’s own communication system, e.g. from dedi-
cated control channels or databases (Höyhtyä et al., 2007). Spectrum awareness
is a basic prerequisite for a cognitive radio system to operate in a shared band
with the primary users. The transmission of the primary users has to be either
reliably detected or passively known, and spectrum awareness should ensure
adaptive transmission in wide bandwidths without causing interference to the
primary users.

1.2 Motivation and contribution of this thesis

The biggest challenge in CRSs is designing clever algorithms that will take all the
needed information that is available – including location of the cognitive radio
nodes, sensing information, traffic patterns of the different users, database infor-
mation of nations and regulations, etc. – and make decisions about where in the
spectrum to operate at any given moment (Rubenstein 2007) and how much power
to use in that band. The task is challenging even for a single CR link where users
have to connect with each other on a single frequency channel among many pos-
sible ones before starting the data transmission. The mobility of CRs makes this a
very demanding task. When there is a CR network with many simultaneous com-
municating links, things become even more complicated. Many questions arise:
How to choose which frequency bands and channels to use? What characteristics
are needed to know about “spectrum holes”? How can we share the band in a
non-interfering manner? How should frequency and power be allocated? In gen-
eral, transmission parameters have to be adapted based on the sensed spectrum
and propagation channel estimates. In this thesis, the term “channel” refers to a
frequency channel. When the propagation channel between the transmitter and
the receiver is considered, it is explicitly mentioned.

When the research work on channel selection for this thesis started, most of the
cognitive radio literature was focusing on reactive channel selection methods, as
in (Jing et al., 2005) and (Stevenson et al., 2009). These methods use instantaneous
information about the environment, such as spectrum being idle or busy, as a
basis for the spectrum decision. The idea to take history information into account
in the channel selection based on the primary user traffic models was shortly dis-
cussed in (Haykin 2005). Later, several different prediction and channel selection
models for stochastic and deterministic traffic were proposed, including (Clancy &
Walker 2006, Acharya et al., 2006, Li & Zekavat 2008, Yau et al., 2009, Tercero et
al., 2011).

A common problem for the proposed methods is that they are working based
on the assumption that the primary traffic follows a specific distribution. In reality,
different traffic patterns exist in different primary bands and channels. Thus, we
started to develop a more general method for classification-based predictive
channel selection. The CRS should be able to learn and classify the traffic in dif-
ferent channels and then apply specific prediction methods based on that
knowledge. A classification method and prediction rules for both stochastic and
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deterministic traffic were developed in order to find the longest idle times for the
secondary operation among the channels of interest. The methods have been
simulated with several different traffic patterns. In addition, we have made meas-
urement studies in different bands to verify the practicality of the proposed ap-
proach. The classification method was further improved by reducing the errors
caused by noise and incoherent spectrum sensing. The resulting method searches
periodicity from the sensed binary pattern using a discrete autocorrelation func-
tion. The proposed method finds the type of the traffic with a high probability when
the investigated channels include both stochastic and deterministic traffic patterns.
This research direction has been attracting more attention recently. For example,
the work on the primary user’s traffic pattern estimation in (Zhang & Shin 2013) is
a promising step towards a classification-based channel selection in the future.

Majority of the works are using short-term information as the basis for channel
selection, but some authors have also proposed using long-term information, such
as (Li & Zekavat 2008) or (Vartiainen et al., 2010). The latter use long-term infor-
mation to guide sensing to the most promising channels and consequently reduce
the sensing time. We have extended the idea by a combined use of the short-term
and long-term databases. The long-term database reduces the sensing time by
prioritizing the channels while the short-term database allows classification and
prediction in the bands of interest. The method reduces delays experienced by the
CRS users because less time is needed for sensing and finding suitable channels
for secondary transmission.

When a channel is selected for secondary transmission, the CRS needs to con-
trol its transmission power during the active communication. Several researchers
have been investigating transmission power control for CRSs. Transmission power
limit settings have been developed based on measurements of the own signal
(Kolodzy 2006, Zhang 2009) or the primary user signal (Hoven & Sahai 2005,
Mishra et al., 2007, Hamdi et al., 2013). In addition to knowing the maximum limit,
transmission power needs to be controlled based on a fast varying environment,
such as a fading channel.

Adaptive power control methods have been studied since the 1960s, when the
paper (Hayes 1968) proposing an adaptive transmission strategy over a Rayleigh
fading channel was published. Numerous theoretical and practical adaptive meth-
ods have been proposed for wireless centralized systems; e.g., in (Salmasi &
Gilhousen 1991, Pat. U.S. 5 056 109 1991, Goldsmith & Chua 1997, Yang &
Chang 1999, Frantti 2006, 3GPP 2011). All these papers have considered inverse
control approaches that are heavily applied in other areas such as channel equali-
zation (Proakis 2001) and interference cancellation (Widrow & Walach 1996). The
so-called filtered-x LMS (FxLMS) algorithm, which was independently introduced
in (Morgan 1980, Burgess 1981, Widrow et al., 1981), is perhaps the most used
inverse control algorithm in noise and interference cancellation applications. This
thesis is the first to apply the FxLMS method to power control, providing a unified
framework for the existing state-of-the-art inverse power control algorithms and
linking them to the LMS literature. In addition, a novel method to calculate power
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limits for CRSs based on the performance of the spectrum sensors is proposed
and applied to several scenarios in the satellite band.

The selection of suitable performance criteria for adaptive communication sys-
tem is not a trivial task. The adaptive transmission system should be analyzed
based on the efficiency of use of resources. Two alternative ways of measuring
the performance in terms of energy have been used in the literature, namely aver-
age transmitted (Hayes 1968) and average received energies per symbol (Proakis
2001), usually normalized by the receiver noise spectral density. Transmitted
energy is the basic system resource in adaptive systems and should be used in
performance comparisons (Mämmelä et al., 2006). In addition, normalization of
the channel has to be carefully considered in performance measurements to ob-
tain fair results between different techniques (Xiang & Pietrobon 2003, Mämmelä
et al., 2006). Several different criteria are reviewed in (Biglieri et al., 1998), includ-
ing optimization of link spectral efficiency in ergodic channels. A recently proposed
risk-reward metric uses rational decision theory concepts in finding the best theo-
retical adaptive transmission method in nonergodic channels (Kotelba & Mämmelä
2008). In this thesis, we extend the work of (Mämmelä et al., 2006) by generalizing
the results concerning SNRs and normalization of the channel, and by providing
analytical expressions for the distribution of SNRs. In addition, we develop and
apply the metric from (Kotelba & Mämmelä 2008) to rank several adaptive trans-
mission strategies, including the FxLMS method.

Figure 2. High-level system model.

The high-level system model for the developed methods is shown in Figure 2. The
CR senses the spectrum periodically and stores the information into the database.
The database may also include information on the primary system such as trans-
mission power and noise figure. The dynamic spectrum management (DSM) module
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uses the sensing information and database for power and frequency allocations.
The channel history is used to predict future spectrum use in the channels of interest.
The same channel is used as long as it is available, and when the CR needs to
switch the channel, for example, due to a primary user appearance, it selects a
free one with the longest predicted idle time. Power is controlled adaptively based
on the propagation channel estimates and by taking the sensing data and PU
parameters into account. The CR uses minimum transmission power to achieve
the required quality of service. This saves energy and minimizes the interference
to the primary user, leading to inverse control approaches. This thesis provides
answers to the above-mentioned problems and the following research questions:

1) How to implement an efficient adaptive inverse control method for power
control over fading channels? (Papers I, IV, and VII)

2) How to select suitable performance criteria for fair comparison of different
adaptive transmission techniques? (Papers II and III)

3) How to adapt transmission power taking the spectrum sensing information
into account? (Papers V and VI)

4) What is an efficient way of using traffic pattern learning and prediction for
channel selection in spectrum sensing-based spectrum access? (Pa-
pers V, VIII, IX and XI)

5) How long-term and short-term history information could help in the channel
selection process? (Paper X)

6) How to make traffic pattern classification robust against noise and spec-
trum sensing errors? (Paper XII)

This thesis is based on twelve original papers, which are summarized in Chapter 3
and enclosed as appendices. Other supplementary publications of the author
related to CRSs and adaptive transmission include (Chen et al., 2009, Höyhtyä et al.,
2007, Höyhtyä et al., 2011, Höyhtyä et al., 2012, Höyhtyä et al., 2013b, Matin-
mikko et al., 2008, Matinmikko et al., 2010a, Matinmikko et al., 2010b, Matinmikko
et al., to be published, Mämmelä et al., 2006, Mämmelä et al., 2011, Sarvanko et
al., 2010, Sarvanko et al., 2011, Sarvanko et al., 2012, and Vartiainen et al., 2010). In
addition, the work has produced two patent applications on resource management
for cognitive radio systems (Höyhtyä et al., 2010 and Höyhtyä et al., 2013a).

1.3 Outline of the thesis

The thesis is organized as follows: Chapter 2 provides incentives for spectrum
sharing and reviews the relevant literature on adaptive frequency and power allo-
cation strategies for cognitive radio systems. Chapter 3 includes a summary of the
original papers, providing short answers to presented research questions. Chap-
ter 4 presents the main results and contributions of this thesis, including limitations
and hints for future work. Chapter 5 provides the summary.
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2. Review of the literature

This chapter reviews the relevant frequency and power allocation strategies for the
purpose of this thesis. First, the chapter reviews incentives for the development of
cognitive radio systems taking into account the global situation. Then, the chapter
provides an overview and classification of channel selection strategies for spectrum
sensing and data transmission. The chapter also classifies and reviews power allocation
strategies. Finally, the chapter discusses learning techniques applicable to CRSs.

2.1 Incentives for spectrum sharing

The most important driver for research and development of cognitive radio systems
has been the need for additional spectrum. For example, mobile communication
systems are expected to run out of spectrum while attempting to accommodate
the fast-growing mobile data traffic (ITU-R M.2243, Cisco 2013). The frequency
bands have already been allocated to different wireless systems, giving licensed
users exclusive access to blocks of spectrum. Spectrum measurement studies
have shown that many frequency bands are not efficiently used. For example,
measurements conducted on the below-3 GHz spectrum in Chicago (Roberson et
al., 2006) and in Barcelona (L pez-Benitez et al., 2009) show that as much as
over 80% of these bands are not used during the measurement campaign. These
measurements were made using a rather small-resolution bandwidth. It was
shown in (Höyhtyä et al., 2013b) that the analysis bandwidth has a significant
effect on the results. Both the bandwidth of the devices already operating in the band
and the bandwidth of the device aiming for opportunistic access in this particular band
should be taken into account in the analysis. However, in all the above-mentioned
measurement campaigns, the majority of the spectrum was not used regardless of
the resolution used in the analysis. Significant capacity improvements could be
achieved through a more efficient use of the underused spectrum resources.

One might think that a good way to improve the situation would be to clear and
reallocate parts of the spectrum to better support the growing demands, for exam-
ple, with respect to mobile communication systems. A regulator could clear the
spectrum nationwide and ensure consistent rules throughout the band (Peha
2009). Unfortunately, clearing and reallocation of the spectrum is not sustainable
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due to the high price in terms of cost, delays and the occasional need to switch off
incumbent users. For example, clearing one 95 MHz band in the USA would take
10 years, cost USD 18 billion, and cause significant disruptions (PCAST report
2012). Thus, more dynamic spectrum sharing options are needed. Increased
spectrum sharing is essential to addressing today’s serious scarcity of available
spectrum. Regulators will have a key role in supporting the innovations in this
area. The role is described in (Peha 2009) as follows: “Regulators must ensure the
rules that unleash new technologies while controlling interference are legally and
technically feasible. Otherwise, new technologies are not ready for use.” Without
good rules for spectrum sharing, greedy devices transmitting with greater power,
duration, or bandwidth than necessary will prevent other devices from operating
sufficiently in the same band. In one extreme, that can lead to a tragedy of com-
mons, where many devices consume too much of the shared resources and all
devices experience inadequate performance as a result.

Incentives described for spectrum sharing in federal bands in the USA

Due to the above-described problems concerning clearing and reallocation of the
spectrum, several incentives for more efficient federal spectrum use and sharing
were described in (GAO report 2012). We will shortly review the proposals below.

 The first incentive is assessing spectrum fees to help to free spectrum for new
users. Licensees using the spectrum inefficiently could benefit from spectrum
sharing since the secondary users would pay for accessing their band.

 Secondly, expanding the availability of unlicensed spectrum would promote
more experimentation and innovation for shared spectrum use as well as
increase the shared spectrum use using Wi-Fi-type wireless transmission.

 A third important incentive is identifying federal spectrum that can be
shared and promoting sharing. FCC granted permission to T-Mobile to per-
form tests to explore sharing between commercial wireless services and
federal systems operating in the 1755–1780 MHz band.

 The fourth idea is requiring agencies to give more consideration to sharing
and efficiency. The requirement forces the agencies to advance the inclu-
sion of spectrum sharing techniques in near future to improve the efficiency
of the spectrum use.

Improving and expediting the spectrum-sharing process is clearly needed.
The whole process should be made more flexible and transparent to users
seeking for more bandwidth.

 Finally, increasing the federal focus on research, development and testing of
technologies that can enable sharing, and improve spectral efficiency is need-
ed. Several technologies promise to enable dynamic sharing to make spectrum
use efficient. However, much more real-world experiments would be needed to
be able to see the potential and applicability of the proposed techniques.
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A possible way for sharing spectrum using an interesting tool called spectrum
currency is described in (PCAST report 2012). Spectrum currency is a synthetic
currency to “buy” spectrum rights. It provides an initial valuation and then incen-
tives to Federal agencies to be efficient in their spectrum allocation. Nowadays the
agencies do not need to be efficient in their spectrum use but this new mechanism
would reward efficient users with a trade for real money. More efficient use of
spectrum would include reducing agencies’ own need for spectrum and sharing
spectrum with other agencies and non-government users.

Drivers defined for spectrum sharing in Europe

The European Commission lays out the regulatory background, the drivers and
enablers, and the challenges for more shared use of spectrum in order to meet the
objectives of the Europe 2020 strategy in the Communication (COM(2012) 478).
Three clear drivers described in the report include:

(1) wireless broadband,
(2) wireless-connected society, and
(3) research and innovative technologies.

Regarding driver 1, it is concluded in (COM report 2012) that “Shared use of li-
censed or licence-exempt wireless broadband frequencies enables cost savings
for mobile network operators, affordable Internet connectivity and infrastructure
sharing possibilities.” Wireless-connected society has led to a situation where a
majority of new wireless technologies are developed for license-exempt band
operation. Clearly the low spectrum access barriers foster development and de-
ployment of more resilient wireless technologies. Finally, funding for both the Eu-
ropean Union (EU) level research activities and national activities in Europe have
enabled the development of new technologies. The technologies are currently
being tested in many ongoing projects and programs.

As an example of a promising candidate, a new model called the licensed
shared access (LSA) approach would provide additional users with spectrum
access rights and guaranteed quality of service. In addition, the model would allow
incumbents to continue to use the spectrum while also providing spectrum capaci-
ties to other users. A definition of the LSA is: “A regulatory approach aiming to
facilitate the introduction of radio communication systems operated by a limited
number of licensees under an individual licensing regime in a frequency band
already assigned or expected to be assigned to one or more incumbent users.
Under the LSA framework, the additional users are allowed to use the spectrum
(or part of the spectrum) in accordance with sharing rules included in their rights of
use of spectrum, thereby allowing all the authorized users, including incumbents,
to provide a certain QoS” (RSPG13-529, 2013). The model is under intensive
study in Europe right now. The authorized shared access (ASA) concept is a spe-
cial case of the LSA, enabling mobile communication systems such as the 3rd
Generation Partnership Project (3GPP) Long-Term Evolution (LTE) to access
bands of other communication systems while ensuring good operational conditions
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for both systems. The first demonstration of the ASA concept using real LTE net-
work and devices was recently (April 2013) carried out in Ylivieska, Finland by
VTT Technical Research Centre of Finland and its research and industrial partners
(Matinmikko et al., 2013).

Other drivers for cognitive radio systems

As a minimum, the following benefits of CRSs have been recognized: more efficient
spectrum use, better accessibility and enhanced ease of use, better adaptability,
better connectivity, increased scalability and improved reliability, lower energy con-
sumption, increased efficiency, and lower prices (Ahokangas et al., 2012). As a
new and emerging area of business opportunity, the CRS context so far lacks
coherent and holistic market research and market estimates. However, several
drivers for the business can be identified in several domains. The drivers behind
the CRS business, presented in (Ahokangas et al., 2012) and (Casey et al., 2010),
can be seen in Table 1. These drivers should facilitate the emergence of business
opportunities around CRSs during the coming years.

Table 1. Drivers behind the cognitive radio systems business.

Political
liberalization of spectrum regulation, threat
of losing control of the spectrum market,
allocation of unlicensed bands

Economic
operators using the spectrum more effi-
ciently, incumbent operators’ fear of losing
market control, increased number of local
operators, vertical/horizontal integration

Social
demand for additional spectrum, growth of
connected devices, high bandwidth con-
suming applications, diffusion of flat rate
pricing, substitution of wired with wireless,
fear of radio emissions

Technological
cognitive and reconfigurable devices, locality
of spectrum markets, decentralization of
intelligence in wireless networks, interfer-
ence issues, bottlenecks in backhaul

Another multidimensional model proposed to describe the business potential has
been proposed recently in (Fomin et al., 2011). The domains in this work are market,
technology, and policy. It has been noted by the authors that each and every driving
force in any of the domains will have a certain barrier acting as a counter-force.
Thus, the main idea behind the co-evolutionary analysis provided in the article is
that it helps to identify the cross-related factors in other domains that may help to
overcome the effect of the primary barriers in the domain under investigation. The
message provided in the article is that coordinated gradual development of cross-
related factors across all three domains is required in order for CR technologies to
realize their full benefits.
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2.2 Channel selection for cognitive radio systems

Intelligent selection can be seen as a multi-phase process that is described in
Figure 3. In the first phase, the data are classified. The basic reason for this is the
estimation process in the second phase. Estimation is done with models which
creates a need for classification, i.e., the estimation model is selected based on
the classification. Classification can be performed, for example, to automatically
recognize attributes of incoming signal such as type of jammers, carrier frequency,
or modulation type (Dostert 1983, Hamkins & Simon 2006). Finally, the third phase
is decision, which is made based on the estimation, for example, to select the
center frequency for the receiver.

Figure 3. Intelligent selection process.

The frequency bands and channels the CRS is able to access over a wide fre-
quency range may have different characteristics. Path loss, interference, available
bandwidth, and availability of spectrum holes over time, among others, vary con-
siderably. Thus, channel selection is a very important task to perform in order to
fulfil the needs of CRS users. The goal of channel selection is to find the most
suitable spectrum bands and channels for requesting services and applications.
As discussed in (Masonta et al., 2013) and (Lee & Akyildiz 2011), the CRS system
needs to characterize the bands and channels by considering the current radio
conditions and the primary user activity to find the best transmission opportunities.
By selecting the best channels for own transmission, the CRS is able to, for ex-
ample, decrease delays of own transmission, increase throughput, and decrease
collisions with the primary user.

Several methods can be used in characterization of spectrum opportunities, in-
cluding geo-location services and spectrum sensing. We will mainly concentrate
on sensing-based spectrum access schemes that are widely investigated in the
literature. The main reason for the interest is the fact that sensing-based access
does not require the primary users to alter their existing hardware or behavior. We
will discuss channel selections from two different perspectives:

(1) selecting/ordering channels for spectrum sensing and
(2) selecting channels for data transmission among sensed channels.

The classification is shown in Figure 4. We will discuss the proposed classification
in detail in the following sections.
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Figure 4. Classification of channel selection strategies.

2.2.1 Selecting channels for spectrum sensing

Spectrum sensing can be defined as a task of obtaining awareness about the
spectrum usage and existence of primary users in a geographical area (Y cek &
Arslan 2009). While there are other possible approaches to obtaining spectrum
awareness, such as databases and control channels (Höyhtyä et al., 2007), the
advantage of spectrum sensing is the ability to provide the spectrum information
autonomously. The CRS senses the spectrum and can use this information directly
without the need to cooperate with other systems. However, cooperation with the
sensing nodes of the CRS can increase the reliability of sensing considerably
(Mishra et al., 2006). A lot of effort has been put on the development of spectrum
sensing techniques during the recent years, see e.g., (Y cek & Arslan 2009),
(Matinmikko 2012) and references therein. Advantages and limitations of tech-
niques such as energy detection, feature detection, and matched filter detection
have been studied intensively. Instead of focusing on sensing techniques them-
selves, we discuss here the selection of channels for spectrum sensing.

Usually in sensing-based opportunistic spectrum access, the CRS performs pe-
riodic spectrum sensing (Zhao et al., 2008), (Zhou et al., 2008). When the primary
user appears in the channel, the CRS needs to stop transmission and continue it
using another available channel. The length of a sensing period is limited by the
maximum tolerable interference time of the primary system. In addition, for wide-
band spectrum sensing, a cognitive radio is capable to sense only a limited band-
width of spectrum during a certain time period (Jia et al., 2008), (Chang & Liu
2008). Thus, there is clearly a time constraint for spectrum sensing. The used time
depends both on the sensing method as well as on the primary signals. Thus, it
makes sense to use channel selection in spectrum sensing. The aim is to avoid
consuming resources in channels that do not offer good transmission opportunities
and to decrease delays in finding good channels. Channel selection for spectrum
sensing can be classified into two main classes:
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(1) focused channel selection, where only a subset of channels is sensed using
certain criteria, and

(2) randomly selecting either a subset or all the channels to be sensed.

Random channel selection for sensing

Random channel selection refers to the case where the channels to be sensed are
not selected based on any a priori information. This method can be used efficiently
especially when the bandwidth is limited and the time constraint allows the system
to sense all the channels if needed. A limited bandwidth for spectrum sensing
allows computational burden to be restricted and a limited target spectrum selec-
tion enables to prevent that a single type of a CRS occupies the majority of spec-
trum opportunities (Sahin & Arslan 2006). It is proposed in (Sahin & Arslan 2006)
that a regulator should allocate spectrum bands for different types of cognitive
radios depending on the intended range and the throughput requirements.

There are several different possibilities on how to perform the sensing among
the possible channels even when there are no specific criteria given how to
choose the channels. A simple option is to start spectrum sensing among the
channels in an ascending order. The sensing is performed until a free channel is
found, and the system starts using it. Another option is to randomly sense chan-
nels among possible ones until a free one is found (Luo et al., 2009). Although
both the random and the serial search exhibit similar detection time performance,
the random search provides a better fairness to allocate a potential free channel,
whether it is at the beginning or end of the channel sequence (Luo & Roy 2007).

The CRS can also sense all channels and then select some available ones
randomly for each requesting user. However, random selection can take too much
time to find a suitable channel (Luo et al., 2009). Thus, several methods have
been proposed to improve the process. For example, several antennas can be
used to simultaneously detect multiple channels (Neihart et al., 2007). If wide
bandwidths are considered, the largest improvements can be achieved by the use
of focused channel selection strategies, described in sections below. As a hybrid
method between these two approaches, a two-stage sensing process is proposed
to improve the detection time in several papers (Luo et al., 2009), (Youn et al.,
2006), (Park et al., 2006). First, fast energy detection is performed among all
channels. Second, a more sensitive fine sensing, such as the feature detection
method, scrutinizes the focused set of channels found promising at the first stage.
The rationale behind this approach is as follows: Energy detection is a faster but
not as reliable method as feature detection. It can be used to measure the power
levels among candidate channels. The channels can be ordered based on the
received power levels (Youn et al., 2006). A channel with low power has a high
probability to be an unoccupied channel and fine sensing is performed only on
those channels.
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Focused channel selection for sensing

Instead of randomly selecting the channels for sensing, several authors have been
studying how to improve the performance of the sensing process by focusing it on
better channels using a priori knowledge about the spectrum occupancy statistics.
Spectrum occupancy, or channel transmission occupancy as referred to in
(Spaulding & Hagn 1977), can be defined as the fraction of measurement time that
the detected power in the channel exceeds a threshold. In addition, optimization of
sensing parameters, for example, in time domain has been under intensive re-
search. Long-term information gathered in a certain location can be used in avoiding
sensing of certain channels (Kim & Shin 2008), (Harrold et al., 2011), (Vartiainen et
al., 2010) and focusing the spectrum sensing on more promising channels.

The objective of (Kim & Shin 2008) is to maximize the discovery of spectrum
opportunities by sensing period adaptation and to minimize delay in finding an
available channel. The more frequent the sensing is, the more the CRS is able to
find spectrum opportunities. However, each sensing causes overhead due to the
time consumed in sensing. Thus, there is a clear trade-off between sensing-time
overhead and discovery of opportunities. The authors in (Kim & Shin 2008) pro-
pose a method for optimization of a sensing period and test it with simulations
using exponentially distributed ON and OFF times in the primary traffic. In addi-
tion, an optimal sensing order is proposed. The channels should be sensed in a
descending order using the probability of them to be idle. The most probable idle
channels should be sensed first.

Detection timing and channel selection for CRSs is studied in (Zhou et al.,
2008). Detection timing helps to determine the start of the next sensing block, i.e.,
estimates how long the secondary user is able to transmit before sensing again. It
is shown in the paper that as the channel transition rate from idle to busy state or
from busy to idle state increases, the optimal inter-sensing duration becomes
smaller or larger, respectively. The channel selection algorithm in (Zhou et al.,
2008) uses also information on the idle state probabilities in each channel, as was
presented in (Kim & Shin 2008).

It was discussed in (Jiang et al., 2009) that if the channels are identical (except
for availability probabilities) and independent, the proposed strategies of sensing
the channels in a descending order of the channel availability probabilities are
optimal if the adaptive modulation is not used. Identical means here that the chan-
nel gains are above a certain threshold and thus acceptable for transmission.
However, this does not lead to optimality when adaptive modulation is used. Dy-
namic programming solutions for deriving the optimal channel selection for spec-
trum sensing, i.e., sensing orders, are provided in the paper. The optimal order
may vary from one time slot to another due to correlation between the ON and
OFF states among different time slots. Since the computational complexity of the
proposed method is rather high, some suboptimal strategies with lower complexity
and comparable performance would be needed.
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In the method discussed in (Vartiainen et al., 2010), the spectrum data are
gathered over a long-term period and stored in the database. When a cognitive
radio needs to find an unoccupied channel for data transmission, it sends a query
to a database to receive a set of channel candidates. Channel candidates are a
set of promising channels that are possibly free based on the detection history at
the request time. Optimization of a sensing strategy would minimize the time to
find a suitable channel as well as the energy consumed in the searching process.
As described in (Harrold et al., 2011) the long-term process is used in discovering
channels which are likely to be lightly used at particular times and days and priori-
tizing them for future channel sensing. In addition, history knowledge can be used
in removing channels that have previously been noted as being constantly occu-
pied from the pool of channels that are to be sensed.

A very recent work in (Khan et al., 2013) proposes a sensing order selection for
the distributed cognitive radio network. The proposed method uses a so-called
success counter in the channel selection where both the probability of a success-
ful transmission and the probability of collision information are used in defining the
sensing strategy. Random channel selection is shown to cause collisions among
the autonomous CRs. In the proposed method, the CR nodes autonomously se-
lect the sensing order without coordination from a centralized entity. It is shown
that the proposed strategy enables the CRs to converge to a collision-free sensing
strategy. A disadvantage of the proposed method is the assumption of zero prob-
ability of missed detections.

2.2.2 Selecting channels for data transmission

A natural next step after spectrum sensing is to select channels for data transmission.
Transmission channel selection can be classified into three main categories:

(1) underlay transmission in a channel where the primary user is operating,

(2) reactively selecting new available channel when needed; and

(3) predictive channel selection where history information is used to assist the
selection.

Underlay transmission

Underlay transmission refers to a simultaneous transmission with the primary user
as long as interference caused is below an acceptable limit (Werbach 2002, Gold-
smith et al., 2009). Therefore, a cognitive user’s power is limited by the interfer-
ence constraint. The so-called interference temperature concept was proposed to
use measured interference information in dynamic spectrum management (Ko-
lodzy 2006), (Sharma et al., 2007). The large challenge in the concept is the fact
that cognitive radios cannot be aware of the precise locations of the primary re-
ceivers and they cannot measure the effects of their transmissions on all possible
receivers. It was proposed in (Kolodzy 2006) that measurements from many fixed
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and mobile sites would be gathered and integrated to create an overall power flux
density map across a large area. Another possibility is to use a separate sensor
network over the operation area. However, the requirement for the density of the
sensing devices is very high to accurately map the situation including shadowing
effects. Related correlation distances have been studied, for example, in (Gud-
mundsson 1991). FCC actually abandoned the interference temperature concept
since nobody could show effective ways to measure accurate interference infor-
mation (FCC 2007).

In practice, if the primary user does not tell anything about the detected inter-
ference levels back to the secondary system, the operation has to be based on
clear rules. The rules will cover the channel selections with transmission power
limits. Link budget calculations as well as real measurements can be used to de-
termine the possible signal levels for coexistence. Underlay transmission have
also been proposed for device-to-device (D2D) communication underlaying cellu-
lar networks in (Yu et al., 2011). Use of low powers limits the area of coverage for
underlay transmitters. Relay techniques can be used to reach remote destinations
(Lee & Akyildiz 2011), (Hussain et al., 2012). The proposed technique in (Hussain
et al., 2012) ensures the relay link SNR above a certain value while keeping the
interference below a defined threshold.

Reactive channel selection methods

The methods that select the transmission channels reactively when required, such
as in the case of a primary user appearance, are called reactive channel selection
methods (Jing et al., 2005, Yang et al., 2008). These methods mainly use instan-
taneous information on the channel quality as a basis for the operation. We will
review them shortly before concentrating on proactive/predictive channel selection
strategies. Proactive approach means that decisions can be made based on pre-
diction, not only reactively based on some detected changes in the environment.

Homogeneous channels: Even though a lot of work has been made on charac-
terizing channels based on several different criteria, there is also a considerable
amount of work found in the literature assuming homogeneous channels; see e.g.,
(Zheng & Cao 2005), (Cao & Zheng 2008), and (Feng & Zhao 2010). Available
channels are considered to be equally good for secondary transmission. In the
simplest case, the spectrum sensing makes only a binary decision on the chan-
nels (Letaief & Zhang 2009). The sensed channel is either available or not availa-
ble due to a presence of primary users. Sensing results of several nodes can be
combined with certain rules to obtain more reliable information on the spectrum
use. Then, the available channels are allocated to requesting secondary users,
assuming the channels to be equally good (Feng & Zhao 2010).

In the methods proposed in (Zheng & Cao 2005) and (Cao & Zheng 2008), de-
vices select channels independently based on local observations. Each channel is
assumed to have an identical throughput capacity, i.e., their channel quality due to
fading, shadowing, and other environmental factors is assumed to be similar.
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Fairness between users in a distributed network is governed by the use of spec-
trum rules that ensure enough bandwidth for end users. The method proposed in
(Feng & Zhao 2010) modifies the Institute of Electrical and Electronics Engineers
(IEEE) 802.15.4 medium access control (MAC) protocol designed for wireless
sensor networks and uses it in a cluster-based cognitive network. When the cur-
rent channel becomes unavailable, the cluster head (CH) waits for the start of the
next sensing interval. After nding an available channel, the CH broadcasts the
information to the sensors through the dedicated control channel. All sensors
listen to the control channel at the beginning of each sensing interval, receive
information about the available channel, and switch to the given channel. Thus,
the first available channel is selected for transmission.

A reason to prefer simplicity in channel characterization and selection is to ex-
perience short delays in channel selection and to minimize the control overhead.
However, a better performance might be achieved in many cases if more detailed
information than pure binary data on channels is available.

Heterogeneous channels: Many reactive channel selection approaches consider
heterogeneous channels. Channels can be ordered based on their characteristics.
Interference criterion, i.e., characterizing the channels based on the interference
level and selecting the channels with the lowest interference levels for transmis-
sion, is proposed, for example, in (Jing et al., 2005). The authors in that paper
proposed that the channel switch should be carried out only after the interference
power level of a clearer channel is at least 10% less than in the used channel to
avoid unnecessary oscillations in channel switching. Interference estimation at the
mesh routers was proposed in (Ramachandran et al., 2006) for channel assign-
ment in multi-radio mesh network. It is discussed in (Stevenson et al., 2009) how
interference metric is used in channel selection in the IEEE 802.22 standard-
based systems designed for secondary operation in TV bands. Finally, interfer-
ence-based resource allocation has been considered in orthogonal frequency-
division multiple access (OFDMA)-based cognitive radio network in (Almalfouh &
Stuber 2011) taking into account out-of-band emissions as well.

In addition to instantaneous interference values, several other criteria have
been proposed for channel selection in the literature. Available bandwidth at the
request time has been used as a selection criterion, for example, in (Clancy et al.,
2007), where the cognitive radio system aims at selecting the channel with the
largest bandwidth for secondary operation. A method for determining the spectrum
capacity taking into account the spectrum switching delay is introduced in (Lee &
Akyildiz 2011). The importance of the recovery delay from failure in the communi-
cation has been considered in (Azarfar et al., 2012) as well, providing guidelines
for robust communication using cognitive radios.

A channel selection approach considering jointly spectrum sensing information
and traf c load in channel selection is proposed in (Timmers et al., 2010). Sec-
ondary users estimate the opportunistic traf c load in each channel and put this
value in the Secondary users Channel Load (SCL) vector. When a user wants to
start a communication, it selects the channel with the lowest SCL value. Multi-
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criteria selection has also been studied in (Rodriquez-Colina et al., 2011), (Sar-
vanko et al., 2012), and (Correia et al., 2012), where several parameters such as
received signal strength indicator (RSSI), delay, bandwidth, and transmission
power are jointly considered in selecting the most suitable channel for transmis-
sion. An interested reader may look at the thorough review of different spectrum
characterization aspects provided in (Masonta et al., 2013).

Predictive channel selection methods

Due to the nature of cognitive radio operation, it would be desirable to know what
is happening in the transmission channels in the near future. That would ensure
better transmission possibilities to secondary systems and keep interference to the
primary system at the minimum level. A CRS samples and collects multi-domain
information about the environment, including information about spectrum occupancy,
location, traf c, and network state. This information could be used in predicting
how the spectrum will be used in the near future. A CRS should make intelligent
decisions based on the observation results, e.g., identify spectrum holes, learn
behavior of primary users, and nd the optimal spectrum bands to use.

Use of history information in channel selection leads to predictive strategies.
The strategies can use different levels of intelligence from determining long-term
or short-term occupancies to sophisticated prediction algorithms matched to traffic
patterns of the primary users. The following sections review the proposed methods
in the area.

Occupancy-based channel selection: Increase of spectrum occupancy has
been the main target for cognitive radio systems since the seminal paper of
(Haykin 2005) was published. Channel selection based on the occupancy values
of different channels is thus a convenient way for cognitive operation. A channel
with low/minimum occupancy is selected for the secondary use. Measurement of
spectrum occupancy requires history knowledge about the use. Both long-term
and short-term information can be used in defining the spectrum occupancy for
different channels.

Long-term spectrum occupancy measurements have been reported, for exam-
ple, in (Harrold et al., 2011), where suitability of channels for cognitive radio use
are categorized based on the occupancy values. Occupancy-based selection has
been shown to provide a good performance with a measured traffic in the Univer-
sal Mobile Telecommunication System (UMTS) and the Global System for Mobile
Communications (GSM) bands (Wellens et al., 2008). Also occupancy of other
CRs is taken into account in (Rehmani et al., 2011). The idea is to avoid channels
where primary users are operating and favor channels with a high number of other
cognitive users to be able to disseminate data throughout the network. Methods to
estimate the occupancy of PU traffic have been proposed, for example, in (Kim &
Shin 2008), (Liang & Liu 2012), and (Gabran et al., 2013).
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Figure 5. Suitability of channels based on occupancy and idle time.

Pure occupancy-based selection does not guarantee selection of good channels
for cognitive radio system in all scenarios. Consider an example shown in
Figure 5 where one channel has 50% occupancy with long idle and busy periods,
such as 1 minute each. Another channel might have 33% occupancy with very
short periods, such as 1 second idle times. Clearly the first channel would be a
better choice for the secondary use when it is available. One of the most important
metrics in selecting suitable channels is the length of the availability period.

Traffic model-based channel selection: Data traffic transmitted in a network can
be temporally characterized with the traffic pattern. In a wireless environment, two
basic classes of traffic patterns exist (Haykin 2005): (1) deterministic patterns,
where the PU transmission is ON, then OFF during a fixed time slot, and (2) sto-
chastic patterns, where traffic can be described only in statistical terms. A tradi-
tionally used model assumes the arrival times of packets to be modeled as a Pois-
son process while the service times are modeled as exponentially distributed. This
model is widely used due to the analytical tractability even though measurements
have shown heavy-tail distributions such as Pareto distribution to model better the
service times of bursty data traffic delivered, for example, on the Internet (Willinger
et al., 1997). An example of packet traffic is shown in Figure 6.

Stochastic traffic patterns occur, for example, in cellular networks as well as in
short-range wireless transmission systems such as Wi-Fi. Fully deterministic signals
can be modeled as completely specified functions of time so there is no uncertainty.
The frame structure makes the traffic pattern fully or partially deterministic. Partially
deterministic means that the ON time starts periodically but its length can vary.
One period consists of one ON time followed by one OFF time. The definition also
covers the deterministic periodic case where the ON and OFF times are fixed.
Examples of deterministic traffic patterns include TV broadcasting with longer
periods and radar transmission with rather short periods. A deterministic long-term
component can be seen in several bands such as cellular mobile communication
systems due to daily rhythm of the users (L pez-Benitez & Casadevall 2011).

The most important thing to know from the CRS point of view is the model of
the spectrum use at the location of interest. Figure 6 shows how the ON and OFF
times of a transmission link can be formed from the packets that are transmitted
over this channel. The upper part of the figure shows, for example, how the pack-
ets are arriving at a router faster than it can transmit. That causes waiting time to
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the packet transmission. The ON time consists of service times of the packets in
the queue. A channel is not occupied when there is nothing to transmit.

Figure 6. Traffic and channel occupancy model for packet transmission: packets
arriving faster than they can be transmitted.

At a given time, a radio channel may be either reserved or available for secondary
spectrum use. Thus, instead of traffic patterns in the traditional sense, we will
concentrate more on discussing the spectrum occupancy patterns of the primary
users. In this model the PU activities follow an alternating ON/OFF pattern, in
which the OFF time can be exploited by the CRS. A good overview of the ON/OFF
traffic patterns is provided in (L pez-Benitez & Casadevall 2012). A generally
applied ON/OFF traffic pattern studied, for example, in (Gabran et al., 2013) as-
sumes both the ON and the OFF times to be exponentially distributed. However, it
has been noted that in real systems, other distributions provide more adequate
results. The generalized Pareto distribution is appropriate for various radio tech-
nologies at long time scales, while at short time scales the most appropriate func-
tion is technology-dependent (L pez-Benitez & Casadevall 2012). For example,
Weibull distribution can be used to characterize the length of idle periods in Ter-
restrial Trunked Radio (TETRA) systems while gamma distribution is better for
modelling GSM traffic patterns.

Due to the problem of occupancy-based selection described at the end of the
previous section, several authors have considered channel selection models that
aim to select channels based on idle time statistics. (Clancy & Walker 2006) inves-
tigate the predictability when the primary traffic is assumed to be representable by
a cyclostationary random process. Prediction of TV broadcast traffic is studied in
(Acharya et al., 2006). Availability of a channel metric to capture both spectrum
availability and frequency of interruptions from the primary user is used in perfor-
mance analysis. Furthermore, usability of channel metric uses weighted average
of availability to obtain short-term and long-term statistics of the channel occupancy.
In addition to the primary-secondary model, prediction can be applied to recognition



2. Review of the literature

36

of the radio resource availability generally in a heterogeneous environment
(Takeuchi et al., 2008), (Kaneko et al., 2008).

Traffic prediction in (Li & Zekavat 2008) is performed using binomial-distributed
arrival times and gamma-distributed service times. The goal is to estimate the
probability of a channel being idle within the expected time period using this infor-
mation. The justification of the binomial distribution is behind the assumption that
the number of service arrivals of primary users is limited within a time period.
Negative binomial distribution has been noticed to model the number of time-slots
within an ON or OFF period in GSM systems (L pez-Benitez & Casadevall 2012).
Exponential, periodic, and periodic-exponential traffic patterns are considered in
(Yang et al., 2008). In the latest traffic model, the duration of the ON (or OFF)
period is fixed and the duration of the OFF (or ON) period is exponentially distrib-
uted. A description of a proactive approach where the channel is changed before a
PU appears is given. The exponential traffic pattern is also studied in (Yau et al.,
2009), who consider packet error rates in channel selection. In addition, log-
normal distribution and extreme value distribution representing peer-to-peer (P2P)
traffic and gaming traffic are investigated in (Sung et al., 2010).

Switching delay in channel selection is taken into account in (Feng et al., 2009),
where secondary users decide whether to switch the channel or not based on
channel prediction and switching overhead. The exponential traffic pattern is con-
sidered. (Timmers et al., 2010 also study the same problem, showing that energy
can be saved by buffering the packets during the primary user appearance com-
pared to the case where the channel is always switched when the current channel
is not available anymore. The same problem is studied in (Kahraman & Buzluka
2011) by proposing a channel switching strategy that balances the trade-off be-
tween the cost of the channel switch and cost of waiting until the end of the PU
activity. The simulation results show that the proposed method can decrease the
frequency of switches and increase the aggregated SU use especially in channels
where PU activity is short-termed.

Use of radar spectrum is studied in (Tercero et al., 2011) and (Saruthirathana-
worakun et al., 2012) showing that the deterministic radar pattern can be efficiently
exploited by secondary wireless local area network (WLAN) users and cellular
users. The radar pattern is formed by the periodic rotation of the radar antenna.
However, one has to be careful also while sending between pulses to avoid inter-
fering with the radar. Interference limits to be respected have been given by ITU in
(ITU-R M.1461-1, 2009). (Song & Xie 2012) propose a fully distributed proactive
channel selection approach for multiuser scenarios studying the operation under
biased-geometric distributed and Pareto-distributed inter-arrival times. The inter-
arrival time is the time between the arrival of one packet and the arrival of the next
packet.

In (Wang et al., 2012), an extended data delivery time of the secondary con-
nections is studied with the IEEE 802.22 standard-based always-staying and the
always-changing channel sequences. Extended data delivery time is a metric that
takes the number of interruptions during the data delivery into account. It is shown
that if the secondary users can adaptively choose the better channel sequence
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according to traffic conditions, the extended data delivery time can be improved
significantly compared to the existing channel selection methods, especially for the
heavy traffic loads of the primary users. The method is studied with the Pareto-
distributed traffic patterns and exponential traffic patterns.

The prediction method taking switching delay into account (Kahraman & Buzluka
2011) is developed further in (Zhang & Shin 2013), where an adaptive sensing
policy is developed to detect the primary user appearance as fast as possible.
SUs may choose to stay silent in the evicted band for future reuse if the primary
busy duration lasts relatively short. The paper derives the optimal time for the SUs
to switch and proposes a learning strategy to estimate the primary’s activity pat-
tern while minimizing the disruption time of the SUs on-the- y. Several stochastic
traffic patterns modeled with exponential, Weibull, and gamma distributions are
studied in the paper.

Clearly more work is needed on traffic pattern prediction. Methods that can
learn the traffic patterns in different channels and optimize operation according to
learned patterns would provide the best performance for cognitive users. The
recent work in (Zhang & Shin 2013) is a promising step towards this direction.

2.3 Adaptive power allocation

Transmission power control is one of the key techniques in resource allocation in
wireless systems. The use of power control prolongs the battery life, provides a
means to manage interference, and together with diversity reduces the effects of
multipath fading. Transmission power control can be classified using several dif-
ferent criteria such as centralized and distributed algorithms according to what is
measured to determine power control commands such as channel quality, signal
strength, and signal-to-interference ratio (SIR) (Chiang et al., 2007), (Novakovic &
Dukic 2000) or, for example, by classifying the algorithms based on whether they
consider pure power control task or the algorithm is combined with some other
functionality such as beamforming (Rashid-Farrokhi et al., 1998).

A novel classification that takes two different aspects into account is presented
in Figure 7. First, we will discuss how to determine the transmission power limit for
a cognitive radio system. These methods are needed to determine the operational
limits for a secondary system accessing the primary spectrum. Second, we divide
adaptive power allocation strategies into two basic groups, namely the water-filling
and inverse control approaches. The latter classification defines how the limited
power is allocated when the wireless channel is available. Basically, the difference
between these two approaches is that the water-filling approach allocates more
power to the better channel instants whereas channel inversion aims at inverting
the channel power gain while maintaining the desired signal strength at the re-
ceiver.
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Figure 7. Classification of power control strategies.

2.3.1 Determining transmission power limits for CRSs

Measurement of own signal

To protect the primary users, the transmission power of the CRs should be limited
based on their proximity to the PUs. The concept of interference temperature
(Kolodzy 2006) discussed in the underlay channel selection section provides
means to manage the transmission power of the CRS. Transmission power limit
adjustments based on this concept have been described, for example, in (Wang et
al., 2007) and (Zhang 2009), where peak and interference power constraints for
SUs are considered. A defining feature for the interference temperature model is
that the transmitter should be able to get information on the effect of its transmis-
sion at the primary receiver. Thus, the primary receiver or a very closely located
measurement device should be able to provide interference information to the
secondary system. Then, the secondary system could optimally set transmission
power to the required level. This means that the operation would be based on the
measurements of secondary signals and their effects on primary receivers. How-
ever, as pointed out in Section 2.2.2, the interference temperature model has
many weaknesses and has already been abandoned by regulatory authorities
such as FCC.

Numerical values for power limits have been provided for TV bands in the USA,
where FCC conducted a series of tests with TV white space test devices from
several companies such as Motorola, Adaptrum, Microsoft, Philips, and Institute
for Infocomm Research (I2R). Based on the tests, FCC adopted rules that allow
unlicensed radio transmitters to operate in the broadcast television spectrum at
locations where the spectrum is not used by licensed services. This unused spec-
trum is called “white spaces” and the devices operating under these rules are
called TV bands devices (TVBDs). The rules are published by FCC in a compact
form in (FCC 2011). Both fixed and portable TVBDs are considered. Fixed TVBD
is a device that transmits and receives at a specified fixed location, for example, to
provide wireless broadband access in urban and rural areas. A personal/portable
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TVBD operates at unspecified locations or while in motion in the form of, for ex-
ample, Wi-Fi-like cards in laptop computers.

The compliance requirements of all TVBDs include (FCC 2011): “A) Transmit
power control has to be used. The transmission power needs to be limited to minimum
necessary for successful communication. B) A TVBD is required to have the ca-
pability to display a list of identified available channels and its operating channel.
C) A TVBD must comply with the limits that are set to in-band power, out-of-band
emissions, and power spectral density at the antenna.” The power limit is partly
dependent on the time domain requirements, i.e., how often the device is updating
the environment data. A personal and portable TVBD using geo-location needs to
check its location at least once in every 60 s while in operation. The maximum
transmission power is limited to 100 mW in a 6 MHz TV channel. Sensing-only
TVBDs are limited to a maximum of 50 mW.

Measurement of the primary signal

In contrast to the interference temperature model, for example, (Hoven & Sahai
2005) and (Hulbert 2005) have proposed measurements of the primary signal to
be used as a basis for adjusting own secondary transmitter signal power to a level
that allows interference-free communication between the PUs. Either a signal from
the PU transmitter (Hoven & Sahai 2005) or a so-called beacon signal transmitted
from the receiver (Hulbert 2005) can be used to estimate the attenuation between
the SU transmitter and PU receiver. The problem with the latter approach is that it
cannot be used to primary receivers without modification.

The power level limits based on PU SNR measurement are discussed in
(Hoven & Sahai 2005). Calculations for the power limit are provided for a single
transmitter as well as for a network of transmitters. The work is extended in (Vu et
al., 2008), where primary exclusive region defining the area inside which the sec-
ondary user is not allowed to operate is determined. Relationship between feasible
signal-to-interference-and-noise ratios (SINRs) of cellular and femtocell users are
investigated in (Chandrasekhar et al., 2009). The results are applicable to CRSs
for determining the relationship between the feasible SINRs of the primary and
CRS users.

Spectrum sensing can be used to define operational possibilities for the sec-
ondary users. However, the situation is partly dependent on the power level of the
primary user compared to the secondary user (Mishra et al., 2007). For a large
scale PU, an embedded sensor in the secondary transmitter might be enough. If
the PU power level is close to the SU power level, a separate sensor network
might be needed to reliably define whether the secondary user is allowed to allo-
cate power in that band.

Spectrum sensing side information is used in power control in (Hamdi et al.,
2007) and (Hamdi et al., 2013), where energy detection is used to estimate the
path loss between the victim receiver and the cognitive transmitter and the power
level is adjusted to keep the interference at a low enough level. Sensing infor-
mation is used also in (Srinivasa & Jafar 2010) to adjust transmission powers
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taking both the peak transmission power constraint as well as the interference
constraint of primary users into account. Finally, sensing side information, i.e.,
probability of missed detections in a frame is used in power adaptation in (Peh et
al., 2011) to protect the PUs. The authors maximize the average data rate and
minimize the outage probability of the SU while ensuring that the probability of
detecting the PU is above a pre-determined threshold such that the PU is suffi-
ciently protected.

2.3.2 Adaptive power allocation strategies

Development of adaptive power control techniques started in the 1960s. (Hayes
1968) proposed adaptive transmitter power control over Rayleigh fading channel
and derived an optimal strategy. The optimization criterion was to minimize the
average probability of error subject to an average transmitted power constraint.
(Cavers 1972) analyzed optimal data rate variation with constant transmission
power by varying the transmission data rate optimally according to the channel
gain. (Hentinen 1974) investigated simultaneous power and data rate control and
showed that the rate control is more effective than pure power control. Simultane-
ous controlling further improves the performance of the system. (Srinivasan 1981)
included pilot symbol estimation to adaptive transmission whereas the former
works described above assumed ideal channel knowledge. Estimates were used
for power and data rate control. Also impact of feedback delay was highlighted.
(Vucetic 1991) and (Goeckel 1999) presented adaptive coding so that code rate
varies based on channel state.

Water-filling

(Webb & Steele 1995) proposed the variable rate M-ary quadrature amplitude
modulation (MQAM) technique and (Goldsmith & Chua 1997) the variable rate
variable power MQAM, where optimal adaptation rule, water-filling in time, was
derived. In this work, channel state values were assumed to be known by the
transmitter and both coding and modulation transmitted over the channels are
optimized for instantaneous fade levels. The resulting water-filling strategy allo-
cates more power to good channel states and, conversely, when the channel is
not as good, less power is allocated. If the channel quality drops below a certain
optimal threshold, the channel is not used for transmission. The proposed method
achieves ergodic capacity for a fading channel. Capacity achieving method with
maximal ratio combining diversity was presented in (Alouini & Goldsmith 1999). An
important observation made in (Caire et al., 1999) was that the constant-rate vari-
able power method is enough for achieving capacity if delay constraint is included
in the analysis. No variable-rate coding is required.

The water-filling power control method can be applied also to the frequency
domain. For example, (Yu et al., 2004) investigate iterative water-filling for Gauss-
ian vector multiple access channels, providing an efficient numerical algorithm for
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the problem. Iterative water-filling has been proposed for cognitive radio operation
as well (Haykin 2005), (Setoodeh & Haykin 2009) because it can provide a distrib-
uted solution with low complexity and rather fast convergence speed. Each user
acts greedily to optimize its own performance based on local information, and the
users do not need to communicate with each other to establish coordination be-
tween themselves.

Inverse control

Inverse control has been used for several applications such as channel equaliza-
tion (Widrow & Stearns 1985), (Proakis 2001), automatic gain control (AGC) (Meyr
& Ascheid 1990), noise and interference cancellation (Widrow & Walach 1996),
and transmission power control, which is the topic of this thesis. In addition to the
capacity achieving water-filling strategy, also suboptimal policies, channel inver-
sion and truncated channel inversion power control strategies were presented in
(Goldsmith & Chua 1997). Inversion simplifies greatly the coding and modulation
since channel with inversion appears to the encoder and decoder as an additive
white Gaussian noise (AWGN) channel. Truncation improves energy and spectral
efficiency and can also be used in a shadowing channel (Kim & Goldsmith 2000).
(Saarinen 2000) derived an optimal BER minimizing policy with minimum mean
square error (MMSE) estimation and showed that truncated channel inversion
approximates the optimal rule in continuous transmission systems.

Several adaptive inverse control methods have been proposed in the literature
for power control; see e.g., (Salmasi et al., 1991), (Pat. U.S. 5 056 109 1991),
(Yang & Chang 1999), (Aldajani & Sayed 2003), (Frantti 2006), (Yang & Chen
2010), and (3GPP 2011). Inverse power control approaches have been proposed
and used, for example, for code division multiple access (CDMA), LTE, and TV
white space transmission. In the rules defined in (FCC 2011), the secondary de-
vice operating in the TV band needs to limit its transmission power to the minimum
necessary for successful communication. A clear aim of the inverse control ap-
proaches is energy and interference reduction; to use only sufficient power to
meet the transmission rate requirements.

The conventional 1-bit adaptive power control (CAPC-1) method from (Salmasi
et al., 1991) and (Gilhousen et al., 1991) employs delta modulation, i.e., adjusts
the previous transmission power up or down by a fixed step depending on whether
the received power has been over or below a threshold value. The method is
simple but not fast enough to compensate deep fades in the channel. In the litera-
ture, adaptive step sizes (Yang & Chang 1999), (Frantti 2006), (3GPP 2011) and
predictive power control methods (Aldajani & Sayed 2003) are used to improve the
performance of the conventional CAPC-1 algorithm. The basic idea is that when
the power of the received signal is far from the desired, the control step is in-
creased to reach the desired level faster.

The use of adaptive step sizes leads to a requirement of using more bits in the
power control command. In practical systems, the implementation of the adaptive
size algorithm has to be made with a limited feedback channel (Love et al., 2008).
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For example, in CDMA systems, the typical control frequencies are 800 Hz and
1,500 Hz (Aldajani & Sayed 2003). If a simple 1-bit algorithm is used, the feedback
control rate would be 800 bit/s and 1,500 bit/s, respectively. In the LTE system,
the closed loop power control can be updated once in a millisecond (3GPP 2011).
If 2 bits are used per power control command, the feedback rate is 2,000 bit/s.
Thus, the adaptive algorithm needs to be designed to provide sufficient perfor-
mance without requiring more than a few bits in the power control command.

There are several ways to manage dynamic range requirements with limited
feedback. Nonlinear quantization of feedback signaling (Meyr & Ascheid 1990,
Rabiner & Schafer 2007) and variable step algorithms (Yang & Chang 1999,
Hwang & Li 2009, 3GPP 2011) are commonly used for this purpose. An interesting
idea of a multiphase power control is introduced in (Frantti 2006). Since the CDMA
system limits the size of the power control command into two bits, conventionally
only four different commands are possible. Frantti proposes sending two bits in
two consecutive control commands and then using four bits to increase the num-
ber of possible commands to sixteen. Simultaneously, the control frequency is
reduced to half. Results show that a better performance can be achieved with the
same control rate by the use of multiphase power control.

The performance of a power-controlled wireless system can be improved fur-
ther by the use of interleaving, channel coding, and diversity (Stein 1987, Viterbi &
Padovani 1992, Simpson & Holzmann 1993, Saarinen 2000). Power control and
interleaving are complementary methods since with low velocities, power control
operates accurately whereas interleaving operates more efficiently with high veloc-
ities. Diversity, on the other hand, reduces the dynamic range requirements of the
power control.

2.4 Performance measures for adaptive transmission

2.4.1 Adaptive transmission over a wireless channel

Adaptive transmission systems should be analyzed based on the efficiency of the
use of resources. Energy is a basic resource in digital transmission links. There
are two alternative ways to measure the performance of the system in terms of
energy. Either average transmitted or received energy per symbol is used, usually
normalized by the receiver noise spectral density. This leads to the average
transmitted SNR per symbol (Hayes 1968, Cavers 1972, Hentinen 1974, Sriniva-
san 1981) and the average received SNR per symbol (Ionescu & Boariu 2001,
Proakis 2001), respectively. The performance of the system is partly dependent on
the average received SNR because the achieved performance can tell how well
the receiver is matched to the channel. However, transmitted energy is the basic
system resource in adaptive transmission systems and should be used in compar-
ing the different methods with each other (Mämmelä et al., 2006). The average
received SNR can be used if the channels are properly normalized and the trans-
mitters exploit no form of selectivity in space, time, or frequency domain.
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Major approaches to normalization of the channel include average and peak
normalization, i.e., normalizing either the average energy gain or the peak energy
gain to unity, respectively (Xiang & Pietrobon 2003). Average normalization is
used in most of the literature on fading channels. However, as was shown in
(Xiang & Pietrobon 2003, Mämmelä et al., 2006), the approach has to be recon-
sidered when either the transmitted signal or the channel exhibits selectivity in
time, space, or frequency. It was concluded in (Mämmelä et al., 2006) that by
using the transmitted SNR and peak normalization, we can avoid confusing results
and we know what the minimum transmitted SNR is.

In addition to the above-discussed issues, there are other things to be consid-
ered when selecting good performance measures to compare different adaptive
transmission methods. In ergodic channels, the mean of some quantity such as
link spectral efficiency, is a valid performance measure because one observes all
possible channel states (Biglieri et al., 1998, Kotelba & Mämmelä 2008). In non-
ergodic channels, there is an uncertainty because only part of the channel states
is observed. A common performance measure is then the outage probability, i.e.,
the probability that the performance is below a certain threshold. Transmission
methods e.g. for optimizing capacity have been studied and reported in the litera-
ture with different system assumptions (Biglieri et al., 1998). So-called risk-reward
theory from finance theory was proposed to be used in performance measure-
ments of adaptive transmission systems in nonergodic channels in (Kotelba &
Mämmelä 2008). The reward can be defined as the difference between the ex-
pected value of the link spectral efficiency, and the target link spectral efficiency
for a given energy “investment”. The risk can be measured, for example, with a
second-order partial moment of the link spectral efficiency distribution. Basically,
the proposed risk measure defines in a smooth way how far the system is from the
desired value. The proposed approach jointly considers risk and reward provided
by the adaptive transmission strategy and formulates the performance measure as
a certain risk-reward ratio.

2.4.2 Channel selection in CRS

Performance measures for channel selection were discussed already in Sec-
tion 2.2, where the existing methods were classified and reviewed. We will next
briefly summarize the used criteria. A commonly used metric in the CRS literature
is a binary decision criterion. A channel is regarded as busy or idle (Letaief &
Zhang 2009), (Feng & Zhao 2010) and then an available channel is selected for
transmission. Simplicity of this metric is targeting to decrease delays and minimize
the control overhead. Other common metrics include selecting the channels with
the lowest interference values (Jing et al., 2005) or with the widest bandwidth
(Clancy et al., 2007).

Since simple metrics cannot measure the quality of the possible channels in
more detail, several other criteria have been proposed for channel selection in
order to support a more sophisticated resource allocation. However, gathering and
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delivering more information increases the overhead. Thus, it was proposed in (Kim
& Shin 2008) that a trade-off between the sensing frequency to find the best op-
portunities and the sensing overhead caused by frequent sensing should be con-
sidered when selecting the suitable channels for secondary transmission. Instead
of considering a single criterion for the problem, multi-criteria selection has been
recently studied, for example, in (Timmers et al., 2010) and (Sarvanko et al.,
2012). Several parameters are jointly considered in the selection process to
achieve a good trade-off between sometimes conflicting requirements.

In addition to the instantaneous information, metrics that need gathering data
over time have also been investigated actively in the literature. Spectrum occupancy
of a channel can be used as a metric in defining the suitability of a channel for CRS
operation (Harrold et al., 2011, Wellens et al., 2008). It has been proposed that
traffic models should be taken into account to obtain a more detailed view on the
spectrum use over time (Haykin 2005). More detailed information on traffic patterns
is used to capture spectrum availability as well as frequency of interruptions in the
channel (Acharya et al., 2006, Wang et al., 2012). Detailed information on the primary
user activity enables using predictive channel selection methods such as (Acharya
et al., 2006), (Yang et al., 2008), and (Tercero et al., 2011) by selecting the channels
with the highest probability of availability or with the longest idle times.

An important metric for secondary users is the delay in finding a suitable chan-
nel for transmission. Different approaches to delay minimization are considered in
the literature. Delay reduction is achieved by focusing sensing on promising chan-
nels in (Vartiainen et al., 2010) while switching delay is avoided in (Feng et al.,
2009, Timmers et al., 2010 Kahraman & Buzluka 2011, and Zhang & Shin 2013)
by balancing the trade-off between the cost of channel switch and the cost of
waiting until the end of the PU activity. Switching delays can also be reduced by
reducing the switching frequency and simultaneously increasing the SU transmission
time by favoring channels with the longest idle periods (Yang et al., 2008).

2.5 Learning

In addition to being able to gather information about its environment and adapt its
operation based on that information, a real cognitive system is able to learn and
thus improve its operation over time. Learning is included in the ITU-R definition
(ITU-R SM.2152, 2009), which states that a CRS is able to learn from the results
obtained. This is what separates the cognitive system from the adaptive system.
According to (Claasen & Mecklenbräuker 1985), four features of the adaptive
system include a priori knowledge, a quality criterion, an algorithm that determines
the parameters, and a signal processing device using the parameters to achieve
the goal set for the system. In learning systems, not only parameters but also the
algorithm or even the criterion can be adapted to specific conditions (Claasen &
Mecklenbräuker 1985). Machine learning can be defined as a process to improve
the future performance of the system; i.e., things learn when they change their be-
havior in a way that makes them perform better in the future (Witten & Frank 2000).
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Another definition of learning, adopted also in the thorough survey article on
machine learning techniques for CRS in (Bkassiny et al., 2013), is given for intelli-
gent systems in (Michalski 1995): “Learning is creating knowledge from the per-
ceived information, i.e., the system can classify, organize, abstract, and generalize
information obtained from the sensors.” According to (Michalski 1995), intelligence
can be described by an “equation” as information gathering + knowledge genera-
tion + knowledge utilization. Information gathering includes the ability to sense the
surrounding environment and the internal states. Then learning is used to generate
knowledge. Finally, knowledge is used to achieve certain goals through reasoning.
Actually, learning can be described as a cycle that resembles the OODA loop
described in Section 1.1.

Several learning techniques can be used to improve the performance of the
CRS in various situations. According to (Duda et al., 2001), learning paradigms
can be classified into supervised learning, unsupervised learning, and reinforce-
ment learning (RL). In supervised learning, the training data is analyzed and a
function that maps inputs to desired outputs is generated. Unsupervised learning
techniques such as clustering aim at organizing the data and finding hidden struc-
tures in it. Reinforcement learning techniques aim at observing the impacts of the
actions in the environment and using this feedback in adapting the learning algo-
rithm. According to (Bkassiny et al., 2013), reinforcement learning can be seen as
a subclass of the unsupervised learning paradigm because the agents can learn
autonomously without supervision.

In order for learning to become necessary for CRS, the precise effects of the
changing inputs on the outputs must not be known (Clancy et al., 2007). According
to (Bkassiny et al., 2013), the main learning problems in CRS are decision making
and feature classification. Classification problems often arise in spectrum sensing
whereas decision making is often related to adaptive transmission or, for example,
in determining the spectrum sensing policy (Bkassiny et al., 2013).

Several possible learning methods for improving decision making are discussed
in (Bkassiny et al., 2013). Game theory has been applied for analyzing power
control, rate adaptation, spectrum leasing, and spectrum allocation problems
(Bkassiny et al., 2013). Learning in a game-theoretic framework provides potential
solutions to multi-agent learning problems under partial observability assumptions.
Learning is also applied in finding the optimal threshold for energy detection in a
changing environment (Gong et al., 2009).

Reinforcement learning has been rather popular in the CR literature; see e.g., a
review article (Yau et al., 2012), where application of RL techniques for routing,
resource management and dynamic channel selection is reviewed. Distributed
power control is studied in (Galindo-Serrano & Giupponi 2010) and (Chen et al.,
2011). Learning enables the network to achieve equilibrium in a completely dis-
tributed way without any control from the centralized entity. The performance can
be further improved if the nodes can share the information they have learned. The
process of knowledge transfer, i.e., teaching, has been recently proposed to im-
prove the learning process (Giupponi et al., 2010, Palazzo et al., 2012). The re-
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sulting framework is referred to as docitive radios. Docition can significantly short-
en the learning process for the system.

Classification increases the knowledge of the CRS about the surrounding radio
environment. Learning can enable the CRS to detect the primary signals better
and make decisions about the primary activity based on the observed and classi-
fied data. Learning is used, for example, in (Shetty et al., 2009) to identify and
classify multiple wireless systems existing simultaneously in a certain frequency
band such as industrial, scientific, and medical (ISM) band. Learning has also
been applied to modulation classification (Ramkumar 2009, Petrova et al., 2010),
MAC protocol classification (Yang & Chen 2010), and predicting the channel
availability for secondary use (Tumuluru et al., 2010). Learning and prediction
make the operation of cognitive radios more efficient compared to the case where
only information available at the design time is possible. Ideally, the CRS should
be able to use the information gathered during its lifetime.
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3. Summary of original papers

There are clear gaps in the literature regarding adaptive frequency and power
allocation strategies. For example, a channel selection method that could learn
and classify traffic patterns of the existing users could provide suitable operation
possibilities to sensing based spectrum access users in any environment. In addi-
tion, the relation of the current inverse power control approaches to the traditional
inverse control methods used, for example, for noise cancellation is missing. In the
following, the contributions of the twelve original papers are summarized with
respect to the prevailing gaps in the literature.

3.1 Overview of papers

Basic building blocks of a CRS (see Figure 1) include methods to gather infor-
mation, use of learning to create knowledge from that information, decision making
based on the obtained knowledge, and adapting transmission according to deci-
sions. The original papers I–VII mainly investigate the adaptive transmission
phase, but also decision-making aspects are included, e.g., regarding the maxi-
mum transmission power limit calculations. Papers VIII–XII consider the last three
phases, starting from the assumption that there are spectrum sensors periodically
producing information for knowledge generation.

Relations between the original papers are shown in Figure 8. The starting point
for the thesis work was Paper I that studied the use of the FxLMS algorithm to
adaptive inverse power control. Two different research directions arose from this:
(1) we started to carefully consider performance metrics for adaptive transmission
in Papers II and III, and (2) the FxLMS algorithm work was extended in Paper IV
towards cognitive radio systems. The cognitive radio system research continued in
two different areas: (1) predictive channel selection studies in Papers VIII–XII and
(2) transmission power control in Papers V–VII. As shown in the figure, there were
clear interrelations between the topics: for example, Paper V described a joint two-
step approach to power and frequency allocations. The problems were studied
with mathematical analyses, simulations, and measurements. In particular, net-
work traffic measurements were used in the predictive channel selection work
described in Paper XI.
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Figure 8. Relation of original papers.

3.2 Adaptive power allocation methods

3.2.1 FxLMS power control

The contribution of Paper I is to present the FxLMS method for adaptive inverse
power control by introducing the analogy between the fixed-step CAPC method
(Salmasi & Gilhousen 1991, Pat. U.S. 5 056 109 1991) and the well-known LMS
algorithm. Since the LMS algorithm is not directly suitable for active control appli-
cations, a variant called the FxLMS algorithm has been developed for inverse
control solutions (Widrow & Walach 1996). Paper I develops and describes a
modified version of the FxLMS algorithm for inverse power control in a fading
channel. The algorithm is presented in Figure 9. The algorithm updates the coeffi-
cient  of a one-tap filter as

= + (1)

where =  is the correction term,  is the adaptation step size of the algo-
rithm that regulates the speed and stability of adaptation, and = | |
| + | is the error signal to be minimized. The filtered input signal for the
conventional FxLMS algorithm is = ( ) , where  is the complex conjugate
version of ,  is the estimated input signal, and  is the estimated instantane-
ous channel gain. The filtered input signal is = for the modified FxLMS
algorithm and the parameter  is additive white Gaussian noise.
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Figure 9. FxLMS algorithm-based power control, modified version.

In addition to the development of the FxLMS algorithm, another important novelty
in Paper I is the method for modelling a time-variant fading channel. The model is
a modification of Jakes’ sum-of-sinusoids channel model (Jakes 1974). We have
randomized frequency shifts in the model to avoid periodicity in the channel gain in
the time domain and made the power spectrum flat and symmetric with respect to
zero frequency. The performance of the modified FxLMS algorithm is compared to
existing state-of-the-art algorithms with simulations in the proposed channel. The
results show that the FxLMS algorithm can provide better accuracy and perfor-
mance for the power control than the state-of-the-art methods.

Inverse power control is a suitable method for cognitive radio systems because
it minimizes the interference that a secondary user creates to licensed users and
allows more users to share the spectrum. A truncated version of the FxLMS algo-
rithm is developed and studied in Paper IV for cognitive radio systems. Truncation,
i.e., interrupting transmission and setting the transmission power to zero when the
channel gain deteriorates under certain cutoff value, improves further the system
performance. It reduces energy consumption of the CR node as well as interfer-
ence to the primary users, improves capacity both under interference range and
energy consumption constraint, allows more secondary users to share the spec-
trum and relaxes sensing requirements compared to full inversion. Since the inter-
ference range of the secondary user is smaller, there is no need to sense as weak
signals as with the full inversion method.

A detailed comparison between the conventional FxLMS and the modified
FxLMS algorithm using analyses and simulations is provided in Paper VII, justifying
the used modifications. In addition, a convergence analysis for the modified FxLMS
algorithm, providing new results for time-invariant and time-variant channels, is
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provided. The modification in the algorithm is based on additional envelope detec-
tors or absolute value blocks. The reason for this is that we are adjusting power
levels and thus are interested only in amplitude values. Phases are not that im-
portant from the power control perspective and thus we can reduce the information
to be carried in power control commands.

Paper VII includes a thorough comparison between the FxLMS and conven-
tional state-of-the-art algorithms (Salmasi & Gilhousen 1991, Yang & Chang 1999,
Frantti 2006, 3GPP 2011), showing that the FxLMS algorithm can be seen as a
generalized inverse control to be used in the power control research. The devel-
opment of a quantized version of the modified FxLMS algorithm is presented. Bit-
error-rate simulations for the studied algorithms in a fading channel and in a diversity
channel are provided and the results analyzed.

3.2.2 Transmission power limit for the secondary user

Sensing-based transmission power limit setting was proposed in (Hoven & Sahai
2005) using a simple channel model. Paper IV extends the idea by using link budget
calculations for defining the transmission ranges and interference ranges in the
primary-secondary system. The interference management method is described in
more detail in Paper V, where analytical equations for transmission power limit cal-
culations are given. It is shown that the allowed transmission power of the sensing-
based secondary user scales linearly with increasing primary transmission power.
The results also illustrate the effect of the antenna height on the transmission power
limit. If the primary transmitter uses high antennas such as 50 m towers, it allows
more powerful secondary users to operate in the same geographical area. The main
reason for this is the fact that sensing the primary signal transmitted from a high
tower can be made reliably also from a greater distance. The signal attenuates more
rapidly between the secondary transmitter and the primary receiver both having low
antennas, allowing larger transmission powers.

The general method developed in Paper V is applied to analyzing secondary
use of the spectrum in a satellite band below 3 GHz in Paper VI. Application of
cognitive radio techniques to satellite bands is a rather novel research area that
has just started to attract attention at the time of writing this thesis. An interested
reader may take a look at the topic, for example, in (Höyhtyä et al., 2012, Biglieri
2012). The primary system in Paper VI is a digital video broadcasting – satellite
services to handheld devices (DVB-SH) hybrid network that is operating in the S
band between 2170 MHz and 2200 MHz. The maximum transmission power is
defined for a secondary user as a function of a detection threshold of a spectrum
sensor, and results for several different indoor and outdoor scenarios are given.
The results indicate that short-range communication is preferred for sensing-
based access in the spectrum.

It is noted that energy detection cannot be used at all in many scenarios even
when low-power short-range communication is considered. For example, in an
urban environment where the sensor is located indoor, the detection threshold
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allowing normal WLAN transmitters to transmit should be clearly below the noise
floor. Implemented energy detection based sensors usually have thresholds 10–
20 dB above the noise floor. Thus, sensors able to detect signals with clearly
lower power levels are required. Matched filter detection and feature detection are
needed, particularly when the secondary transmitters are using higher transmis-
sion powers. Based on the analysis and related uncertainties, it is proposed that
the secondary system use database access or other passive spectrum awareness
method whenever possible. This would guarantee the quality of service (QoS) of
the both secondary and primary systems.

3.2.3 Performance measurements

Paper II studies analytically the relationship between the average transmitted and
received energies under several transmission power control methods, including
truncated channel inversion and water-filling. The paper shows that, in general,
the average transmitted SNR should be used in performance measurement of an
adaptive transmission system. Transmitted energy is the basic system resource.
In addition, there is a correlation between the transmitted energy and the energy
gain of the channel because of adaptive transmission, for example, when using
transmitter power control. The use of transmitted energy leads to a normalization
problem of the channel, which has been studied previously in (Xiang & Pietrobon
2003). Paper II generalizes the analysis from (Xiang & Pietrobon 2003) to include
time, frequency and spatial domains. Peak normalization of the channel is needed
to avoid confusion in performance comparison of energy-limited adaptive trans-
mission systems.

We continued studies on performance measurements of adaptive transmission
systems in Paper III by applying rational decision theory for that purpose. The
concept was originally proposed in (Kotelba & Mämmelä 2008) by exploring simi-
larities between the optimal portfolio selection problem in finance theory and the
finding of a valid performance measure for adaptive transmission in nonergodic
channels. The proposed approach jointly considers risk and reward provided by
the studied adaptive transmission method. It formulates the performance measure
as a certain risk-reward ratio that can be used in comparing different adaptive
transmission strategies.

We extended the work in Paper III by developing and applying the metric to
rank several practical adaptive transmission strategies, including the FxLMS pow-
er control strategy. An interesting result from the analytical studies in Paper III was
related to the use of truncation in the power control strategy in a diversity channel.
Even though the traditional maximum capacity scheme for a diversity channel
requires the use of cutoff, the authors in (Alouini & Goldsmith 1999) suggest that
based on intuition, with diversity, total channel inversion might be a better choice
than truncated channel inversion. It does not achieve the highest capacity but is
close enough to that. Rational decision making leads unambiguously to this solution
because the optimal risk-reward ratio is achieved without the cutoff.
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3.3 Classification-based predictive channel selection

A clear contribution of this thesis is related to the intelligent selection process
described in Figure 3. The thesis proposes a novel classification-based predictive
channel selection method that follows the intelligent selection principle. Classifica-
tion of traffic patterns is needed to be able to estimate and predict idle times in
different channels. Then, decision of a channel in which to transmit is made using
the predicted idle times.

3.3.1 Predictive channel selection

Paper VIII started the predictive channel selection research. The main idea behind
this concept is to be able to select not only the instantaneously best channels for
secondary transmission but rather be able to learn and select channels that will
remain good also in the future. Some papers had considered predictive spectrum
access previously, see e.g., (Acharya et al., 2006, Yang et al., 2008), but they
were restricted to a certain traffic model. To be really usable, the channel selection
method should be able to classify traffic patterns of different channels and to pre-
dict the future use with different prediction methods for different traffic patterns.
Traffic patterns can be classified, for example, by the use of the autocorrelation
function. The main contribution of Paper VIII was proposing the classification-
based method and providing prediction methods both for deterministic and for
stochastic traffic patterns. Exponentially distributed traffic patterns were consid-
ered in stochastic traffic simulations. The system model used in the predictive
channel selection studies is shown in Figure 10.

Figure 10. System model for predictive channel selection.

Channel
history

1) Spectrum
sensing

2) Traffic pattern
classification

3) Prediction
method decision

4) Idle time
prediction

5) Switching
decision

6) Data
transmission

Switch
channel

yes

no

Channel state
flag

Method 1

Method N



3. Summary of original papers

53

The method works as follows: (1) All channels are sensed and results stored in the
channel history database. (2) Based on the collected history, the traffic patterns
are classified into stochastic and deterministic ones. (3) The prediction method
that is best suitable for a certain traffic type in a certain channel is selected. (4)
The idle time prediction is made using history information and the selected predic-
tion method. The channel state flag is used to define which channels are currently
idle, and only those idle channels undergo the prediction phase. (5) A channel is
used as long as it is free. After that, the channel with the longest predicted idle
time is selected for data transmission. (6) Data is transmitted up to the maximum
length of the interference time the PU can tolerate before the system goes back to
state 1. If the tolerable interference time is 0, no CR operation is allowed in that
band. The interference time is defined as a time period during which the CR
transmission interferes with the PU. The secondary user could have a priori
knowledge about the signal, e.g., from the standards to given licensed frequency
bands. This information can be used additionally to assist the prediction.

The work continued in Paper V, where a maximum likelihood-based prediction
rule for exponential traffic pattern was shown to be the mean idle time of previous
idle periods. The rule was shown to provide good results for Weibull-distributed
traffic patterns as well. Paper IX extended the previous works to analyzing how
much classification helps to improve the performance of the system, measured by
throughput and collision rate. The impact of sensing and switching times is taken
into account in the analysis. Deterministic, exponentially distributed, and Pareto-
distributed traffic patterns were used in the study. Throughput can be clearly im-
proved by the use of the predictive channel selection method using history infor-
mation compared to a channel selection that is based on instantaneous infor-
mation. In addition, the number of collisions with a primary user can drop more
than 60% compared to a predictive method operating without classification.

The main reason for a large reduction in the number of collisions is the ability to
change the channel and or stop transmission in a current channel before the PU
appears when the ON/OFF pattern is deterministic. The situation is shown in Fig-
ure 11 for a single channel operation. The dashed lines represent the sensing
times of a CRS. The first row describes the PU transmission in a channel. The
second row shows that when the system is operating reactively, collision occurs
every time the primary user starts transmitting in a channel where a secondary
user is active at that moment. The last row presents an alternative case where the
secondary user operates proactively. The proactive method avoids the collisions
due to the ability to predict the appearance of the PU.

Results of previous papers were extended and unified in Paper XI. The tests
conducted with several different traffic models show the general applicability of the
proposed classification-based method using mean time-based prediction to sto-
chastic traffic patterns. With new simulations, the number of collisions with the
primary user was shown to reduce up to 70% compared to the predictive system
operating without classification. We used measurement data from the ISM band
and from the 450 MHz band in Paper XI to verify the practicality of the proposed
approach.
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Figure 11. Impact of alternative reactive and proactive methods on collisions,
single channel operation considered.

3.3.2 Classification of traffic patterns

Paper VIII was the first one in the literature to propose a traffic pattern classifica-
tion in dynamic spectrum access networks. The autocorrelation function of the
sensed signal was proposed to be used in the classification in Papers VIII and IX.
Then, we improved the classification algorithm in Paper XII by reducing the errors
that are caused by noise and incorrect spectrum sensing. The algorithm searches
for the peaks in the autocorrelation function (ACF) to decide whether the signal is
periodic or not. However, noise and incorrect sensing can cause additional peaks,
so-called fake maximums, in the ACF. To be able to reliably classify the signals,
the ACF signal needs to be smoothened by removing these fake maximums. It is
described in the paper how a combination of median filtering followed by a mean
filter is an effective way to do the smoothing. The procedure is shown in the Figure 12.

The resulting method was tested with Pareto, Weibull, and exponentially dis-
tributed stochastic traffic patterns and the deterministic traffic pattern. The method
is able to classify the type of the traffic with a high probability when the channels of
interest include both stochastic and deterministic traffic patterns and it is robust
against noise and sensing errors. Probability of correct classification is more than
95% when the probabilities of missed detection and false alarms are below 10%.
From the practical point of view, the proposed method is based on the autocorrela-
tion function and thus can be used in real-time applications.
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Figure 12. Smoothing the ACF by filtering.

3.3.3 Use of databases in channel selection

Paper X extends the predictive channel selection method further by joint long-term
and short-term database use. Long-term (LT) database aids the operation of the
CRS and reduces its sensing time by prioritizing the channels. Only the channels
considered promising based on the detection history are selected to be sensed at
the time of request (e.g., at 10 a.m. on Friday). Physically, the LT database needs
to be local to its users to be able to provide relevant information to the channel
selection process. It can be located. for example, in the base station of a cellular
system. The request and feedback messages can include information about the
needed availability time for the SU operation, enabling the channel allocation to
support better the users requesting longer idle times.

Short-term (ST) database allows the classification of traffic patterns and more
detailed prediction in the band of interest. The information about the local channel
use is gathered with periodical sensing and stored in the ST database. Combining
the LT and ST databases makes the operation faster and more efficient than ei-
ther of these techniques alone. The contribution described in this paper lead to a
patent application (Höyhtyä et al., 2010) on the topic before publishing the paper.
The method both shortens the sensing time and reduces the number of channel
switching, leading to an increase in the throughput for the secondary systems as
well as reduced interference to the primary users. The idea can be extended to
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consider several databases with different time and space resolutions even though
the paper considers only two databases. A combination of the database and spec-
trum sensing seems to be a promising method for dynamic spectrum access.
Spectrum sensing provides means to keep the spectrum data in databases up-to-
date whereas the database can be used to assist the sensing of the resource-
limited devices.
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4. Discussion and conclusions

The current view on the applicability of the CRS capabilities to real-world systems
has concentrated on LSA type of concepts or database-based access to the spec-
trum. However, sensing-based access will also have a clear role, for example, in
short-range communications or in military applications due to their ability to adapt
to changing RF environments and find the needed spectrum whenever and wher-
ever required. The current sensing-based Wi-Fi systems are very popular among
end users, which can be seen as a clear signal of a need for sensing-based solu-
tions in the future as well. This chapter discusses the main findings of the thesis,
showing the main contributions to the CRS literature. In addition, the chapter pre-
sents the limitations of the work and suggestions for future research directions.

4.1 Main findings

Use of history information for predicting the future channel use enables selecting
the best channels for secondary transmission. This leads to reduced energy con-
sumption, higher throughput, and reduced delays and collisions. Long-term infor-
mation can be used in spectrum sensing management to focus the sensing on the
most promising channels. Then, short-term data over the promising channels help
in classifying and selecting the actual transmission channel. Traffic classification
can be made robust against sensing errors and noise by smoothing the autocorre-
lation function.

Transmission power limits can be set based on the spectrum sensing perfor-
mance. We have shown the limit to be dependent on the height of the primary
antenna. The allowed SU power increases linearly with the increasing PU power.
The conducted simulations and calculations show that in many indoor and outdoor
environments, only short-range communication is possible with spectrum sensing.
This is particularly true when energy detection methods are used for sensing.
Other concepts such as databases or LSA/ASA may be needed to achieve longer
transmission ranges for spectrum sharing systems.

The developed FxLMS algorithm-based inverse power control is a new application
of the algorithm widely used for other inverse control purposes. We have shown the
convergence of the algorithm in a slowly fading channel through analyses and
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simulations. The method is compared to other practical methods and a quantized
version is developed. The algorithm provides a unified framework for many existing
algorithms and links them to the LMS literature and theory.

Performance measurement of adaptive transmission methods differs from the
traditional receiver-based thinking. Transmitted energy is the basic system re-
source, and transmitted SNR should be used in performance comparisons to
obtain fair results due to covariance between the channel and the transmitted
signal. We have also shown that rational decision theory can be used for designing
adaptive transmission methods achieving an optimal trade-off between risks and
rewards as well as for comparing the performance of different strategies with a
simple risk-reward metric.

4.2 Limitations and future work

The results obtained in this thesis are promising but there are also limitations
associated with the conducted research. For example, system level studies have
not been conducted on the power allocation work. Instead, we have focused on
investigations over a fading link. The obtained results show that the proposed
FxLMS algorithm behaves in a rather similar way compared to state-of-the-art
inverse power control algorithms. Thus, it seems to be a very promising method
for adaptive transmission over fading links. More importantly, it provides a unified
framework for inverse power control algorithms. A limiting factor in the develop-
ment of the algorithm was related to limited feedback. The selection of the step
size for the quantized FxLMS algorithm in a time-variant channel was made in the
thesis using a heuristic method. Optimization of the step size remains an interesting
future topic.

Another system level limitation can be seen in power limit calculations, where
the work focused on the single user case. However, discussions are provided on
how to take multiple users into account in calculations. Both the cooperative sens-
ing gain resulting from the diversity effect (Mishra et al., 2006) and the construc-
tive interference from multiple users affect the transmission power limit. This re-
mains a good topic for future work. The obtained results show that sensing-based
access should be used with caution already in the single user case; only short-
range communications is possible in many environments. The multi-user situation
would be even more challenging from the interference point of view.

We opened up a new research direction in classification-based predictive
channel selection. The proposed classification method differentiates between
deterministic and stochastic traffic patterns and the prediction rules are provided
for both classes. A clear limitation in this method is that it cannot differentiate
between different stochastic patterns. More accurate results could be obtained if
specific methods could be applied to all different traffic patterns. However, this
would require rather frequent sensing as well as a more complex classification
method. The proposed method is simple to implement, rather robust with different
sensing periods, and provides decent performance with several different stochastic
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patterns. An interesting future topic would be to study the performance of classifiers
and predictors with different time resolutions to see what are the circumstances, if
any, where more complex methods provide reasonable performance gain to the
system.
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5. Summary

The present thesis has presented adaptive frequency and power allocation strate-
gies for CRSs. While it is more and more challenging to find new spectrum for
coming wireless systems, the CRS technology enables spectrum sharing among
several systems, increasing spectrum occupancy and supporting higher data rate
demands. The largest challenge in the CRS is designing clever algorithms that will
take all needed information that is available – including location of the CR nodes,
sensing information, traffic patterns of the different users, regulations, etc. – and
make decisions about where in the spectrum to operate at any given moment and
how much power to use in that band. The realization of CRSs requires the use of
adaptive transmission.

The thesis has reviewed the relevant literature on cognitive radio systems,
providing a thorough review on the incentives for spectrum sharing as well. Chan-
nel selection methods and adaptive power control techniques were reviewed and
classified. The thesis comprises a summary of results considering (1) channel
selection in a CRS using history information and (2) power allocation in a selected
frequency band assuming a fading channel. A novel FxLMS algorithm-based power
control was proposed and studied in the thesis. It is a general inverse power control
method that links the state-of-the-art algorithms to the LMS algorithm literature,
providing a unified framework for many practical algorithms.

A method for calculating the transmission power limit for secondary transmis-
sion in sensing-based spectrum access has been developed. The results show
that the allowed transmission power of the secondary user scales linearly with the
increasing primary transmission power. The effect of the antenna heights of both
primary and secondary systems was also studied and the thesis also provided
numerical evaluations in the satellite bands. The results indicate that short-range
communication is preferred for sensing-based access in the spectrum. We also
noticed that in many scenarios, energy detection cannot support secondary operation
in the spectrum. Instead, more sophisticated techniques such as matched filter
detection or feature detection are required.

Selecting the proper performance measure to compare different adaptive
transmission techniques fairly between each other is not a simple task. We pro-
pose using the average transmitted SNR in performance measurement of an
adaptive transmission system to see how efficiently the basic energy resource
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taken from the battery of the transmitter is used. The thesis also studied the use of
rational decision theory in performance comparisons, jointly considering the risk
and reward provided by the studied adaptive transmission method.

Intelligent use of history information in resource management was studied in
the thesis, focusing on predictive channel selection. The thesis highlights the im-
portance of classifying the traffic patterns in different channels and use of different
prediction techniques for these channels based on the classification results. The
classification based prediction reduces collisions and delays and increases the
throughput of the secondary system compared to both random channel selection
and pure predictive channel selection operating without classification. The thesis
also proposes a robust autocorrelation-based method for traffic pattern classification.
It is a practical method that provides decent performance in a noisy environment.

Finally, in order to use history information as efficiently as possible, the thesis
presents a predictive channel selection method that uses both long-term and
short-term database information in channel allocations. The long-term database
aids the sensing process by prioritizing the channels and focusing the sensing on
the most promising channels. Then, short-term information over these most prom-
ising channels allows classification and more detailed prediction in the band of
interest.

The presented results can be applied to wireless systems operating in different
frequency bands, for example, to mobile communication systems, short-range
communications, or the satellite bands. In addition, the proposed techniques are
useful when development and introduction and use of adaptive transmission tech-
niques continues in the coming wireless systems. Adaptive and cognitive tech-
niques will enable a more efficient spectrum use, providing means to respond to
the growing capacity demands in the future.
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Abstract—In this paper, a novel adaptive inverse power control 
method that is based on the filtered-x LMS (FxLMS) algorithm is 
introduced. Inverse power control minimizes the interference 
that a cognitive radio creates to licensed users and allows more 
users to share the spectrum. It is also needed in multi-access 
systems like code division multiple access (CDMA) to alleviate 
the near-far problem. The proposed variable step algorithm 
adjusts the step size in a nearly optimal way. Based on numerical 
analysis this new method clearly improves system performance 
compared to the algorithm where the well-known fixed or 
variable step adjustment power control is used. A normalized 
version of the FxLMS algorithm is needed in a fading channel. In 
a slowly fading channel (e.g., normalized Doppler frequency of 
0.001) the FxLMS power control can keep the received signal-to-
noise ratio (SNR) in the desired level with a good accuracy most 
of the time. The standard deviation of the received SNR is 1.92 
dB when the received SNR is kept at 10 dB. The results with 
almost all different SNR values are better than the other methods 
can achieve. 

Keywords-adaptive transmission; inverse control; FxRLS 
algorithm;  

I.  INTRODUCTION  
The power control method that maximizes the capacity of a 

single user channel in the presence of fading is water filling 
[1]. However, in constant-rate transmission the performance of 
the water filling approach is inferior to that of truncated 
channel inversion. Inverse control is also a good choice for a 
cognitive radio network [2]. By using the minimum amount of 
transmission power needed to achieve prescribed requirements 
the cognitive radio minimizes the interference it creates to 
licensed users and allows more secondary users to share the 
spectrum. Furthermore, in multi-access systems like code 
division multiple access (CDMA) inverse power control is 
needed to alleviate the near-far problem.  

A practical closed loop inverse power control method is 
fixed step adjustment power control (FSAPC) [3], known also 
as conventional closed loop power control (CLPC). When this 
method is used, transmission power is adjusted up- or 
downwards by a fixed amount (typically 1 dB/ms) depending 
on whether the received power has been over or below a 
threshold value. The FSAPC method is simple but not fast 
enough to compensate deep fades in the channel. In the 
literature adaptive step-size and also predictive power control 
methods are used to improve the performance of the 
conventional FSAPC algorithm [4]-[6].  

An analogy can be seen between the FSAPC algorithm and 
the most well-known adaptive algorithm, the least-mean 

square (LMS) algorithm. Because of stability problems, the 
LMS algorithm is not directly suitable for active control 
application where the adaptive filter works as a controller for a 
time-variant system. Instead, the FxLMS algorithm is a good 
choice for that kind of applications [7]. It is essentially the 
LMS algorithm with a few little changes so that algorithm can 
remain stable.  

The FxLMS algorithm is developed from the LMS 
algorithm by inserting the model of the controlled system 
between the input data signal and the adaptive algorithm that 
updates the coefficients of adaptive filter. The structure of an 
active control system using the algorithm is presented in Figure 
1. The input signal is denoted by xk, the controlled system is 

)(zP  and the model of it is )(ˆ zP . The noisy plant output is 
compared to the desired response dk and error signal εk is used 
when updating the filter coefficients. 
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 Figure 1. Active control system using the FxLMS algorithm. 
 
The FxLMS algorithm is perhaps the most commonly used 

adaptive algorithm in active noise canceling applications. The 
structure and operation of the algorithm are ideally suited to 
the architectures of standard digital signal processing (DSP) 
chips and it behaves robustly in the presence of modeling 
errors and numerical effects caused by finite-precision 
calculations [8]. In addition, the algorithm is very well suited 
to adaptive inverse control solutions [9]. In this work we 
propose and demonstrate a new use of the FxLMS algorithm, 
namely power control.  

Both open-loop and closed-loop methods are used in the 
power control. Typically the channel is not reciprocal, i.e., 
fading in up- and down-link correlate poorly and therefore a 
closed-loop control is required. Open-loop control can be used 
to compensate shadowing but in this work the main goal is the 
compensation of fast fading. Therefore only closed-loop 
methods are considered.  Closed-loop FxLMS power control is 
employed by using noiseless and delayless feedback. The 
transmitter adjusts the transmission power according to the 
channel state information transmitted from the receiver. Using 
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Figure 3. FSAPC control structure. 

 
The FSAPC method approximates the channel inversion. 

The weakness of this method is that closed loop control is too 
slow. The fading can typically be tens of dB even every half a 
carrier wavelength. If the mobile device moves fast (e.g. in a 
car), the controlling rate 1 dB/ms is not fast enough to 
compensate fading. Larger steps or diversity is required in 
such situations. 

The control structure presented in Figure 3 can be used also 
in the variable step adjustment power control (VSAPC) [5]. 
The idea is that when the power of the received signal is far 
from the desired, the control step is increased to reach the 
desired level faster. When the error signal is small, the 
transmitted power is kept in the same level. The power control 
command for VSAPC is 
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where Perr is the power of error signal in dB and κ = 0.5∆P. 

IV. FXLMS POWER CONTROL 

A. Control structure 
The power control structure based on the FxLMS algorithm 

is introduced in Figure 4. It also approximates the channel 
inversion. The algorithm updates the coefficient c[k] of a one-
tap filter. The algorithm can be written as  

 
  kkkk xcc εµ+= −

'
1                                       (4) 

 
where µ is the adaptation step size of the algorithm, the 

filtered input signal is xk
’ =|xk ĥk | and εk  is the error signal to 

be minimized. If the variation of channel is slow enough, the 
algorithm can track the changes and invert the channel. 
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Figure 4. FxLMS power control. 

B. Convergence of the algorithm 
The choice of initial conditions for the FxLMS algorithm is 

not critical [9]. The algorithm is stable if µ is small enough, 
and transients die out just as with the conventional LMS 
algorithm. In a slowly fading channel hk can be assumed 
constant over the memory of the LMS algorithm and the 
amplitude of the data is constant. Thus the stability condition 
to the structure when noise is neglected and the channel state 
is known is  

 

  )/(20 22
kk hx<µ< .           (5) 

 
An optimal step size can be found for each different hk. The 

optimum value for the adaptation step size is in the middle of 
the defined range [12]. Therefore the optimum adaptation step 
size should be time variant. The optimum step size in a known 
channel can be defined as 

 
  )/(1 22

opt kk hx=µ .                         (6) 
 
When the channel gain is estimated, the system becomes 

unstable if this step size is used. To stabilize the control the 
optimum step size is given by  

 
  

term
22opt
)ˆ(

1

chx kk +
=µ              (7) 

     
where cterm is a small number that prevents the adaptation step 
size to grow to infinity when the estimated received power is 
very small [13]. 

Usually the adaptation step size of the FxLMS algorithm is 
not time-variant. However, the algorithm with a fixed 
adaptation step size corresponds to a first-order system. It 
cannot track the fastest changes in time-variant channel 
without lag error that can be quite large. The best performance 
is achieved by optimizing the adaptation step size with the 
instantaneous power of the input signal. It means that the 
FxLMS algorithm with a fixed step size is changed to the 
normalized version of it. The normalized version of the 
FxLMS algorithm corresponds to the filtered-x recursive-

 3023

this novel power control method fast and accurate control can 
be achieved. 

Usually the channel is slowly fading in the physical system. 
In addition to time-variance, many functions like for example 
automatic gain control (AGC) and open-loop power control 
have an effect on the performance of the whole system. In this 
work we concentrate on the closed-loop power control which 
is employed using the FxLMS algorithm. 

In general, analysis of adaptive systems is not a simple task. 
In order to get an initial insight on the feasibility of the 
FxLMS algorithm in the power control loop, we carried out 
numerical analysis using accurate simulation models. The 
parts of the system have been tested to precisely respond the 
desired situation and the results of simulations have been 
compared to theoretical results presented in the literature.  

This paper is organized as follows. Section II introduces the 
model used in power control simulations. Conventional power 
control is described in Section III. A novel FxLMS power 
control structure is introduced in Section IV. Section V 
provides the simulation results and performance comparison to 
FSAPC in time-variant channel. Section VI draws the 
conclusion. 

II. SYSTEM MODEL 
The system model, which tranmits the input data x[k] from the 
transmitter to the receiver, is illustrated in Figure 2. The data 
are assumed to be known in the receiver, and thus the system 
is data-aided (DA). The complex fading gain of the channel is 
h[k] = α[k]ejθ[k] and n[k] is additive white Gaussian noise 
(AWGN) at time k. The amplitude of the fading gain is α[k] 
and θ[k] is the phase shift. The data are transmitted through 
the channel and the instantaneous transmit power P[k] is 
allocated based on the channel gain estimate ĥ[k] sent by the 
receiver. Direct LS estimation of h[k] is made online. The 
transmission data are BPSK modulated with a rate of 10 
kilobits per second. 

A. Channel modelling 
A time-variant channel can be modelled using the Doppler 

power spectrum. Our channel is modelled with a flat Doppler 
power spectrum that corresponds to urban (where the 
transmitter is set above rooftop level) and indoor 
environments [10]. The rate of the channel variation can be 
characterized by Doppler frequency fd. In Jakes’ method 
sinusoids with different Doppler shifts are summed up [11]. 
Since a channel with a flat Doppler power spectrum is needed, 
N equal amplitude sinusoids are summed. The time-variant 
channel gain can be written as 
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where N is the number of multipath components, a is the 
amplitude of every component, fi is the Doppler shift of the ith 
component, φi  is the random uniformly distributed phase shift 
of the ith component in range [0, 2π[ and k is time. 
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Figure 2. System model. 

 
If the Doppler shifts of sinusoids are equally spaced 

between [-fd, fd] the channel gain becomes periodic. 
Periodicity can be removed if the shifts are chosen so that the 
channel gain becomes quasi-periodic. The Doppler shift range 
is divided into N parts with equal size. The first component 
lies at frequency -fd but the frequencies of other components 
differ a random amount from the equal space solution. With 
these selections we obtain the whole spectrum range to use in 
every simulation. The spectrum is made symmetric over zero 
frequency, which makes the autocorrelation function of the 
channel real. In this way the simulations are made faster. 

B.  Method to compare performance 
A good analytical way to investigate the accuracy of 

different power control methods is to use the concept of 
standard deviation, which is defined as the square root of 
variance. Because the aim of the control is to keep the received 
SNR in the desired level, we want to know the standard 
deviation of it. We have followed the common tradition that 
decibel values are used instead of absolute values in 
computations. 

III. CONVENTIONAL POWER CONTROL 
The structure of the FSAPC control [3] is presented in 

Figure 3. The power of the received signal averaged over three 
(m = 3) symbols is compared to the reference power level Pref 
in the receiver. If the error signal εk is positive, power is 
adjusted upwards while negative error causes downward 
adjustment. The power control algorithm can be written as 

 
  PCPP kkk ∆+= −1  [dB]                         (2)  

where the power control command is 




<ε−
≥ε+

=
0,1
0,1

k

k
kC . The 

typical step size ∆P is 1 dB. If the step size is smaller, the 
control is slower, but it can be more accurate. With a larger 
step size the control is faster but it cannot achieve good 
accuracy. The power level is adjusted once in a millisecond.  
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Figure 3. FSAPC control structure. 

 
The FSAPC method approximates the channel inversion. 

The weakness of this method is that closed loop control is too 
slow. The fading can typically be tens of dB even every half a 
carrier wavelength. If the mobile device moves fast (e.g. in a 
car), the controlling rate 1 dB/ms is not fast enough to 
compensate fading. Larger steps or diversity is required in 
such situations. 

The control structure presented in Figure 3 can be used also 
in the variable step adjustment power control (VSAPC) [5]. 
The idea is that when the power of the received signal is far 
from the desired, the control step is increased to reach the 
desired level faster. When the error signal is small, the 
transmitted power is kept in the same level. The power control 
command for VSAPC is 
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where Perr is the power of error signal in dB and κ = 0.5∆P. 

IV. FXLMS POWER CONTROL 

A. Control structure 
The power control structure based on the FxLMS algorithm 

is introduced in Figure 4. It also approximates the channel 
inversion. The algorithm updates the coefficient c[k] of a one-
tap filter. The algorithm can be written as  

 
  kkkk xcc εµ+= −

'
1                                       (4) 

 
where µ is the adaptation step size of the algorithm, the 

filtered input signal is xk
’ =|xk ĥk | and εk  is the error signal to 

be minimized. If the variation of channel is slow enough, the 
algorithm can track the changes and invert the channel. 
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Figure 4. FxLMS power control. 

B. Convergence of the algorithm 
The choice of initial conditions for the FxLMS algorithm is 

not critical [9]. The algorithm is stable if µ is small enough, 
and transients die out just as with the conventional LMS 
algorithm. In a slowly fading channel hk can be assumed 
constant over the memory of the LMS algorithm and the 
amplitude of the data is constant. Thus the stability condition 
to the structure when noise is neglected and the channel state 
is known is  

 

  )/(20 22
kk hx<µ< .           (5) 

 
An optimal step size can be found for each different hk. The 

optimum value for the adaptation step size is in the middle of 
the defined range [12]. Therefore the optimum adaptation step 
size should be time variant. The optimum step size in a known 
channel can be defined as 

 
  )/(1 22

opt kk hx=µ .                         (6) 
 
When the channel gain is estimated, the system becomes 

unstable if this step size is used. To stabilize the control the 
optimum step size is given by  

 
  

term
22opt
)ˆ(

1

chx kk +
=µ              (7) 

     
where cterm is a small number that prevents the adaptation step 
size to grow to infinity when the estimated received power is 
very small [13]. 

Usually the adaptation step size of the FxLMS algorithm is 
not time-variant. However, the algorithm with a fixed 
adaptation step size corresponds to a first-order system. It 
cannot track the fastest changes in time-variant channel 
without lag error that can be quite large. The best performance 
is achieved by optimizing the adaptation step size with the 
instantaneous power of the input signal. It means that the 
FxLMS algorithm with a fixed step size is changed to the 
normalized version of it. The normalized version of the 
FxLMS algorithm corresponds to the filtered-x recursive-
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TABLE I 
STANDARD DEVIATIONS OF DIFFERENT RECEIVED SNR VALUES (IN DECIBELS) 

0.370.390.511.221.1130 dB

0.480.510.601.251.1325 dB

0.680.760.781.371.2420 dB

1.121.221.181.581.4415 dB

1.901.921.952.292.0210 dB

2.933.033.444.353.495 dB

FxLMS, known
channel

FxLMS, 
estimated channel

VSAPCFSAPC 
(step size = 2 dB)

FSAPC 
(step size = 1 dB)

Average 
received SNR 

0.370.390.511.221.1130 dB

0.480.510.601.251.1325 dB

0.680.760.781.371.2420 dB

1.121.221.181.581.4415 dB

1.901.921.952.292.0210 dB

2.933.033.444.353.495 dB

FxLMS, known
channel

FxLMS, 
estimated channel

VSAPCFSAPC 
(step size = 2 dB)

FSAPC 
(step size = 1 dB)

Average 
received SNR 

 
 

 
The reason that makes the FSAPC control attractive in 

practical systems is that power control command is only one 
bit. Therefore the transmission rate of the feedback channel 
can be kept low. VSAPC and FxLMS algorithms need a 
higher bit rate in the feedback channel to achieve accurate 
control. But accuracy and fast control are required in many 
systems. Consequently, the methods with variable step size 
like the FxLMS power control are important to investigate.  

VI. CONCLUSIONS 
The adaptive inverse power control employed with the 
normalized FxLMS algorithm is more accurate and faster than 
the conventional FSAPC method or the variable step method 
presented in [5]. These initial results using the proposed 
method are promising and encouraging. When the FxLMS 
algorithm is used, the power is adjusted up- and downwards in 
a linear scale. The algorithm is a variable step algorithm that 
adjusts the step size in a nearly optimal way. The authors do 
not know any algorithm that converges faster when the 
channel is assumed to be slowly fading. However, the 
approximations of the introduced method are needed for 
practical use. One possibility could be to put the method into 
practice in the dB domain like the FSAPC method. It would be 
interesting to study the performance of the FxLMS power 
control under practical assumptions, e.g., with delayed and 
noisy feedback. One problem to be solved is to analyze the 
needed amount of control information and to compare it to the 
VSAPC control. 

A large part of the transmission power is now used to 
compensate the deepest fades. The performance of the 
proposed method can be further improved by using a cutoff 
that interrupts the transmission if the channel state deteriorates 
to bad enough. This kind of method is used in the well known 
truncated channel inversion [1]. The use of the cutoff could 
clearly improve the performance of the whole system. 
However, it should be noted that no data are transmitted below 
the cutoff. 
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least-squares (FxRLS) algorithm [12] that can also be used in 
power control.  

V. PERFORMANCE IN TIME-VARIANT CHANNEL 
It is very interesting to know how well the well-known 

FSAPC method performs in the channel defined in the system 
model. In this system fd is chosen to be 10 Hz and the 
normalized Doppler frequency is 0.001, which corresponds to 
a slowly fading channel. The number of multipath 
components, N, is chosen to be 12.  The variance of nk is 
chosen so that the average received SNR is 20 dB. The 
performance with the step size of 1 dB is shown in Figure 5. 
The standard deviation of received SNR is now 1.24 dB. The 
control cannot compensate deep fades well. The received SNR 
is too low during a deep fade. Then the transmission power is 
adjusted upwards and because of lag error it is too high for a 
while after the fade. Clearly we need a faster power control 
method.  
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Figure 5. The received SNR with FSAPC power control when step size is 1 

dB. 
 
When the step size is doubled to 2 dB the tracking ability is 

improved and the method can compensate the deep fades in 
the channel quite well. The large deterioration following this 
selection is that the best achievable accuracy of control suffers 
significantly. It can be seen in Figure 6 that the level of 
received SNR fluctuates significantly all the time.  As 
expected, the standard deviation is bigger with 2 dB step size 
than with 1 dB step size. The dB-scale value for it is 1.37 dB. 
This means that more accurate control is achieved with 1 dB 
step size. The main reason for that is that the received signal is 
kept in desired power level more accurately most of the time 
even though the performance during deep fades is worse. 
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Figure 6. The received SNR with FSAPC when step size is 2 dB. 

 
The performance of VSAPC method is shown in Figure 7. 

Clear improvement can be noticed when compared to the 
performance of FSAPC method. Deep fades can now be 
compensated and also between the deep fades the received 
signal is kept in the desired level quite accurately.  The value 
of standard deviation is 0.78 dB. 
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Figure 7. The received SNR with VSAPC power control. 

 
When the normalized FxLMS algorithm is used in power 

control, the performance of the system is further improved. 
The power level is adjusted once in a millisecond as in the 
FSAPC and VSAPC methods. The value of cterm was chosen to 
be 2/SNR, where SNR is the transmitted SNR [14]. The bigger 
SNR is used the more stable the control is and smaller 
correction term is needed. It can be seen from Figure 8 that 
with FxLMS power control the level of received signal-to-
noise ratio can be held in the desired level with good accuracy. 
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Figure 8. The received SNR with FxLMS power control. 

 
During a deep fade in the channel the signal is a little bit 

weaker than it should be and after the fade the transmission 
power is too large for a while. When the results are compared 
to the results shown in the Figures 5-7 it can be seen that the 
system with FxLMS power control clearly outperforms the 
reference systems. The received SNR is held in the desired 
level with a better accuracy all the time. The value of standard 
deviation is 0.76 dB. Standard deviations for different SNRs 
are presented in Table 1. We can see that the accuracy of 
FxLMS power control is the best among the methods 
compared. Performance is only slightly deteriorated with an 
estimated channel. 

 3024



I/5

TABLE I 
STANDARD DEVIATIONS OF DIFFERENT RECEIVED SNR VALUES (IN DECIBELS) 

0.370.390.511.221.1130 dB

0.480.510.601.251.1325 dB

0.680.760.781.371.2420 dB

1.121.221.181.581.4415 dB

1.901.921.952.292.0210 dB

2.933.033.444.353.495 dB

FxLMS, known
channel

FxLMS, 
estimated channel

VSAPCFSAPC 
(step size = 2 dB)

FSAPC 
(step size = 1 dB)

Average 
received SNR 

0.370.390.511.221.1130 dB

0.480.510.601.251.1325 dB

0.680.760.781.371.2420 dB

1.121.221.181.581.4415 dB

1.901.921.952.292.0210 dB

2.933.033.444.353.495 dB

FxLMS, known
channel

FxLMS, 
estimated channel

VSAPCFSAPC 
(step size = 2 dB)

FSAPC 
(step size = 1 dB)

Average 
received SNR 

 
 

 
The reason that makes the FSAPC control attractive in 

practical systems is that power control command is only one 
bit. Therefore the transmission rate of the feedback channel 
can be kept low. VSAPC and FxLMS algorithms need a 
higher bit rate in the feedback channel to achieve accurate 
control. But accuracy and fast control are required in many 
systems. Consequently, the methods with variable step size 
like the FxLMS power control are important to investigate.  

VI. CONCLUSIONS 
The adaptive inverse power control employed with the 
normalized FxLMS algorithm is more accurate and faster than 
the conventional FSAPC method or the variable step method 
presented in [5]. These initial results using the proposed 
method are promising and encouraging. When the FxLMS 
algorithm is used, the power is adjusted up- and downwards in 
a linear scale. The algorithm is a variable step algorithm that 
adjusts the step size in a nearly optimal way. The authors do 
not know any algorithm that converges faster when the 
channel is assumed to be slowly fading. However, the 
approximations of the introduced method are needed for 
practical use. One possibility could be to put the method into 
practice in the dB domain like the FSAPC method. It would be 
interesting to study the performance of the FxLMS power 
control under practical assumptions, e.g., with delayed and 
noisy feedback. One problem to be solved is to analyze the 
needed amount of control information and to compare it to the 
VSAPC control. 

A large part of the transmission power is now used to 
compensate the deepest fades. The performance of the 
proposed method can be further improved by using a cutoff 
that interrupts the transmission if the channel state deteriorates 
to bad enough. This kind of method is used in the well known 
truncated channel inversion [1]. The use of the cutoff could 
clearly improve the performance of the whole system. 
However, it should be noted that no data are transmitted below 
the cutoff. 
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Abstract—This paper studies the analytical relationship be-
tween the average transmitted and received energies under several
adaptive transmitter power control methods, including water fill-
ing, truncated power inversion, and downlink beamforming. The
study is applicable to many fading channel scenarios, including
frequency-nonselective, frequency-selective, and multiple-input–
multiple-output (MIMO) channels. Both the average transmitted
and received energies are commonly used in performance compar-
isons, and the selection depends on what one wants to investigate.
The transmitted energy is known to be the basic system resource.
In the case of adaptive transmission, the average transmitted
energy should, in general, be used instead of the average received
energy. The use of transmitted energy leads to the normalization
problem of the channel. The ratio of received energy to transmit-
ted energy is the energy gain of the channel. All physical systems
follow an energy-conservation law, which implies that the energy
gain of the channel is less than or equal to 1. The major approaches
for normalization include the setting of either the average energy
gain or the peak energy gain to unity. In the normalization, the av-
erage energy gain is defined for a signal whose energy is uniformly
distributed across the frequency and spatial dimensions. The peak
energy gain of many mathematical fading models is not bounded,
and those models cannot be normalized by the peak energy gain.
We show that the proper normalization of the mathematical
model and the selection of the correct performance measure are
of critical importance in comparative performance analysis of
adaptive transmission systems.

Index Terms—Energy-conservation law, multiantenna systems,
multipath fading, multiple-input–multiple-output (MIMO) sys-
tems, transmitter power control.

I. INTRODUCTION

ENERGY is a basic resource in digital transmission links,
and systems should be analyzed on the basis of how

efficiently it is used [1]. We divide systems into energy limited
and power limited. In power-limited systems, such as a base
station connected to the electrical network, the available power
is limited, but energy is essentially unbounded. In energy-
limited systems, such as a mobile terminal using a battery, the
available energy is limited. In practice, to make the problem
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analytically tractable, systems are usually optimized as if they
were power limited, but performance is often measured as if
they were energy limited by using the energy-to-noise power
spectral density ratio.

There appear to be two alternative modes of performance
measurement in terms of energy. Either the average transmitted
or received energy per symbol is used, and both are usually
normalized by the receiver noise spectral density. This leads to
the average transmitted SNR per symbol [2, pp. 40–127], [3]–
[6] and average received SNR per symbol [7], [8], respectively.
The use of average transmitted and received SNRs was briefly
discussed in [9, p. 2628], but no recommendation was made
concerning their preferred usage.

It is known that system performance depends in part on
the average received SNR. If we compare different receivers
for the same transmitted signal and for the same channel, we
can measure how well the receiver is matched to the channel.
However, we do not necessarily know how well the transmitted
signal is matched to the channel. In energy-limited systems, the
transmitted energy is the basic system resource since it is the
transmitted energy rather than the received energy that is taken
from the battery and is necessarily limited. The actual received
energy is typically a small fraction of the transmitted energy due
to the finite effective aperture of the antennas. The authors of [7]
and [8] optimize the use of the transmitted energy in adaptive
transmission in a fading channel, but their numerical results
show how efficiently the received energy is used. The reader is
led to believe that the system is almost as good as if there were
no fading at all, although significant improvement is actually
possible. The use of the received SNR was emphasized in [10],
but when the transmitter was optimized [10, p. 572], the trans-
mitted power was fixed, following the theory presented in [2].

Since the average energy gain of the channel is a function
of the transmitted signal, particularly in adaptive transmission
systems, it is crucial to use the transmitted SNR rather than the
received SNR for performance measurements. However, it is
still possible to use the average transmitted SNR referred to
the receiver, which is to be defined in Section III-E, provided
that the channels are properly normalized. The average received
SNR can be used if the channels are correctly normalized and
the transmitters exploit no form of channel selectivity.

The major approaches for normalization of the channel in-
clude normalization of the average energy gain or the peak
energy gain to unity [11]. For brevity, we call them average
and peak normalization, respectively. In the normalization, the
average energy gain is defined for a signal whose energy is uni-
formly distributed across the frequency and spatial dimensions.
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Relationship of Average Transmitted and Received
Energies in Adaptive Transmission
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and Desmond P. Taylor, Life Fellow, IEEE

Abstract—This paper studies the analytical relationship be-
tween the average transmitted and received energies under several
adaptive transmitter power control methods, including water fill-
ing, truncated power inversion, and downlink beamforming. The
study is applicable to many fading channel scenarios, including
frequency-nonselective, frequency-selective, and multiple-input–
multiple-output (MIMO) channels. Both the average transmitted
and received energies are commonly used in performance compar-
isons, and the selection depends on what one wants to investigate.
The transmitted energy is known to be the basic system resource.
In the case of adaptive transmission, the average transmitted
energy should, in general, be used instead of the average received
energy. The use of transmitted energy leads to the normalization
problem of the channel. The ratio of received energy to transmit-
ted energy is the energy gain of the channel. All physical systems
follow an energy-conservation law, which implies that the energy
gain of the channel is less than or equal to 1. The major approaches
for normalization include the setting of either the average energy
gain or the peak energy gain to unity. In the normalization, the av-
erage energy gain is defined for a signal whose energy is uniformly
distributed across the frequency and spatial dimensions. The peak
energy gain of many mathematical fading models is not bounded,
and those models cannot be normalized by the peak energy gain.
We show that the proper normalization of the mathematical
model and the selection of the correct performance measure are
of critical importance in comparative performance analysis of
adaptive transmission systems.

Index Terms—Energy-conservation law, multiantenna systems,
multipath fading, multiple-input–multiple-output (MIMO) sys-
tems, transmitter power control.

I. INTRODUCTION

ENERGY is a basic resource in digital transmission links,
and systems should be analyzed on the basis of how

efficiently it is used [1]. We divide systems into energy limited
and power limited. In power-limited systems, such as a base
station connected to the electrical network, the available power
is limited, but energy is essentially unbounded. In energy-
limited systems, such as a mobile terminal using a battery, the
available energy is limited. In practice, to make the problem
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analytically tractable, systems are usually optimized as if they
were power limited, but performance is often measured as if
they were energy limited by using the energy-to-noise power
spectral density ratio.

There appear to be two alternative modes of performance
measurement in terms of energy. Either the average transmitted
or received energy per symbol is used, and both are usually
normalized by the receiver noise spectral density. This leads to
the average transmitted SNR per symbol [2, pp. 40–127], [3]–
[6] and average received SNR per symbol [7], [8], respectively.
The use of average transmitted and received SNRs was briefly
discussed in [9, p. 2628], but no recommendation was made
concerning their preferred usage.

It is known that system performance depends in part on
the average received SNR. If we compare different receivers
for the same transmitted signal and for the same channel, we
can measure how well the receiver is matched to the channel.
However, we do not necessarily know how well the transmitted
signal is matched to the channel. In energy-limited systems, the
transmitted energy is the basic system resource since it is the
transmitted energy rather than the received energy that is taken
from the battery and is necessarily limited. The actual received
energy is typically a small fraction of the transmitted energy due
to the finite effective aperture of the antennas. The authors of [7]
and [8] optimize the use of the transmitted energy in adaptive
transmission in a fading channel, but their numerical results
show how efficiently the received energy is used. The reader is
led to believe that the system is almost as good as if there were
no fading at all, although significant improvement is actually
possible. The use of the received SNR was emphasized in [10],
but when the transmitter was optimized [10, p. 572], the trans-
mitted power was fixed, following the theory presented in [2].

Since the average energy gain of the channel is a function
of the transmitted signal, particularly in adaptive transmission
systems, it is crucial to use the transmitted SNR rather than the
received SNR for performance measurements. However, it is
still possible to use the average transmitted SNR referred to
the receiver, which is to be defined in Section III-E, provided
that the channels are properly normalized. The average received
SNR can be used if the channels are correctly normalized and
the transmitters exploit no form of channel selectivity.

The major approaches for normalization of the channel in-
clude normalization of the average energy gain or the peak
energy gain to unity [11]. For brevity, we call them average
and peak normalization, respectively. In the normalization, the
average energy gain is defined for a signal whose energy is uni-
formly distributed across the frequency and spatial dimensions.
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Fig. 1. Block diagram of the system.

and zeros elsewhere. The matrix equation (1) can then be
rewritten as

r = UDV ∗y + n. (3)

Finally, the vector channel model is transformed into a set of
orthogonal subchannels when the input and output vectors y
and r are left multiplied by matrices V ∗ and U ∗, respectively.
Thus, we obtain

r̃ = U ∗r = DV ∗y + U ∗n = Dỹ + ñ (4)

where ỹ = V ∗y, and ñ = U ∗n.
The channel model described by H and its virtual represen-

tation as specified by the unitary matrices U and V and the
diagonal matrix D are equivalent in the sense that the total
input and output energies remain the same, i.e., z∗z = z̃∗z̃,
n∗n = ñ∗ñ, and y∗y = ỹ∗ỹ. This is due to the fact that the
inner product is invariant to unitary similarity transformations
[19, p. 283].

B. Transmitter Model

Typically, a transmitter includes some form of transmitter
power control, which can be represented by the matrix equa-
tion [20]

ỹ = Qx (5)

which is equivalent to y = V Qx, where Q is the power
control matrix, and x is a vector of complex source symbols
(see Fig. 1). The linear precoder formed by V Q [20], [21]
introduces correlation between the symbols. We assume that
Q ∈ Rn×n and x ∈ Cn with its last n − w entries equal to
zero, where w = rank(Q) ≤ rank(A) is the number of symbols
actually transmitted within n symbol intervals. Furthermore, we
let the entries of x be independent and identically distributed
(i.i.d.) random variables with unit variance. This does not
restrict our transmitter model in any way because the required
transmission energy is achieved by properly scaling the entries
of Q. Any channel coding, including space–time coding, is
excluded from our system model.

In general, the power control matrix Q may be nondiagonal.
If the entries of x are normal and our aim is to maximize chan-
nel capacity, the matrix Q is diagonal [22]. In addition, in some
simple suboptimal schemes for discrete signal constellations,
the matrix Q is diagonal [23]. Here, Q is assumed to be a
diagonal matrix whose entries are some function f : Rn → R
of the energy gains λi of the orthogonal subchannels, i.e.,
qii = f(λ1, . . . , λn), 1 ≤ i ≤ n.

A number of adaptive power control rules, together with
corresponding mappings f , can be used in practical commu-

nication systems. For example, with the water-filling power
control rule, the transmitted signal is controlled according to
[9, p. 2827], [24]

qii =
√(

μ−1
wf − λ−1

i

)+
, 1 ≤ i ≤ n. (6)

On the other hand, with truncated power inversion, the trans-
mitted signal is controlled according to [9, p. 2629]

qii =
{√

β/λi, λi > μtci

0, λi ≤ μtci.
(7)

Furthermore, with a simple power control method, sometimes
referred to as downlink beamforming [25], only the uth sub-
channel (that having the largest energy gain) is used for trans-
mission, i.e.,

qii =
{

δ, i = u
0, i �= u.

(8)

The scalars β and δ and the cutoff values or transmission
thresholds μwf and μtci are chosen such that the long-term
average energy or power constraint is fulfilled [20, p. 2279].
In general, the average power constraint takes a simpler form
because the average transmitted power per symbol Pav is

Pav =
E[Etx]
nTs

=
E[ỹ∗ỹ]
nTs

=
E[x∗Q∗Qx]

nTs
(9)

where Ts is the sampling interval. On the other hand, the
average transmitted energy per symbol Eav is

Eav = E
[
Etx

w

]
= E

[
ỹ∗ỹ

w

]
= E

[
x∗Q∗Qx

w

]
(10)

because energy expenditure takes place only when it is used for
transmission. The number w of symbols actually transmitted
can be a fixed number or a random variable. If the channel is
time invariant or the power-control rule is such that the rank of
Q remains constant, then there is a simple relationship between
the average transmitted power and energy. On the other hand, w
is likely to be a random variable when a power-control scheme
with a transmission threshold μ is used. Hence, the exact
relationship between average transmitted power and energy
is difficult to establish. For those reasons, unless otherwise
specified, in the remainder of this paper, we will consider
only power-limited systems due to their analytical tractabil-
ity. For a random w, the probability of outage or no trans-
mission is

Pout = Pr(w = 0). (11)

III. BASIC CONCEPTS

A. Energy Gain of the Channel

The energy gain of the channel is the ratio of the signal
component of the received energy Erx to the transmitted energy
Etx and is given by

G =
Erx

Etx
=

z∗z

y∗y
=

y∗H∗Hy

y∗y
(12)
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We will refer to this specific average energy gain as the repre-
sentative energy gain. Energy conservation is known to hold for
all physical systems. Therefore, the output energy of a passive
system cannot be larger than the input energy, and the peak
energy gain should be less than or equal to 1 because a major
part of the energy is lost in the channel from the receiver point
of view. In most of the literature on fading channels, average
normalization is used. However, as is shown in [11] and in the
present paper, this approach must be reconsidered when either
the transmitted signal or the channel exhibits selectivity in time,
frequency, or space. The authors of [11] noticed that the peak
energy gain of a linear time-invariant frequency-selective filter
can be larger than unity if average normalization is used.

Our major contribution is to extend the results of [11]
to a general class of linear vector channels. A linear vector
model can represent a wide range of physical channels. These
vector channels can be time variant or time invariant, fre-
quency selective or frequency nonselective, and may have many
inputs or outputs corresponding to, for example, multiple anten-
nas. These systems are usually called multiple-input–multiple-
output (MIMO) systems. Finally, the transmitter may use an
arbitrary power control scheme. We show the analytical rela-
tionship between the average transmitted and received SNRs
by using the covariance between the transmitted energy and the
energy gain of the channel. The covariance specifies how well
the transmitted signal is statistically matched to the channel. We
also show that the conclusions from performance comparisons
depend on whether the transmitted or the received SNR is used
in the comparisons. In general, the transmitted SNR should
be used, and the proper normalization method is shown to be
peak normalization. We present novel bounds on the average
received SNR that can be achieved with an adaptive power-
control scheme and generalize previous analysis [11] to include
time, frequency, and spatial domains.

Parts of this paper were presented in our earlier conference
papers [12]–[14]. In the present combined paper, we have
extended these results and have unified and elaborated the
explanations and examples. We have made a clear distinction
between power- and energy-limited systems. We have also
derived analytical expressions for the distributions of the SNRs
and shown the deviations if the channel is not peak normalized.

The remainder of this paper is organized as follows: In
Section II, we introduce models of a linear vector channel
and an adaptive transmitter. The basic concepts related to the
transmission of energy through linear vector channels are cov-
ered in Section III. Section IV contains analysis for frequency-
selective and frequency-nonselective fading channels with
multiple antennas. Numerical results are presented in Section V
and conclusions in Section VI.

Notation: Boldface lowercase letters a denote column vec-
tors; A = [aij ]

m,n
i,j=1 denotes an m × n matrix whose (i, j)th

entry is aij ; (·)∗ denotes the conjugate transpose of a matrix;
tr(·) is the trace of a matrix; rank(·) is the rank of a matrix;
diag(d11, . . . , dkk) is a k × k diagonal matrix with entries dii,
1 ≤ i ≤ k; Im is the m × m identity matrix; {ai}u

i=1 denotes
an ordered set of u elements, a1 ≤ ai ≤ au; Pr[·] denotes
probability; E[X] and X denote expectation of a random vari-
able X; E[X|Y ] denotes conditional expectation of a random

variable X given a random variable Y ; Var[·] denotes variance
of a random variable; Cov[·, ·] denotes the covariance of two
random variables; f(x)+ = max[0, f(x)]; and C and R denote
the fields of complex and real numbers, respectively.

II. SYSTEM MODEL

A. Channel Model

We consider a discrete-time linear vector channel with n
inputs and m outputs, where n ≤ m for reliable detection. Let
y ∈ Cn denote a vector of complex input symbols, n ∈ Cm

denote a vector of complex noise samples, and r ∈ Cm be a
vector of complex output symbols. The output r and input y
symbols are related by the matrix equation [15]–[18]

r = Hy + n = z + n (1)

where z = Hy denotes the signal component of the received
signal. The complex channel coefficients between the jth input
and the ith output, which is denoted by hij , are assembled
into a channel matrix H = [hij ]

m,n
i,j=1. We assume that the

entries of n are complex zero-mean Gaussian random variables
with variance σ2

n = N0/Ts, where N0 denotes the noise power
spectral density, and Ts is the sampling interval. Furthermore,
we assume that the noise samples are uncorrelated, that is,
E[nn∗] = σ2

nIm.
The vector channel defined in (1) models a wide range of

physical channels.

1) Frequency-nonselective fading channel with a single
antenna—H is a random scalar.

2) Frequency-selective time-invariant channel with a single
antenna—H is an arbitrary Toeplitz matrix that is fixed
for the whole transmission duration.

3) Frequency-nonselective fading channel with multiple
antennas—H is an arbitrary matrix that randomly
changes from one channel use to another.

4) Frequency-selective block-fading channel with a single
antenna—H is an arbitrary Toeplitz matrix that randomly
changes from one transmission block to another.

5) Frequency-selective block-fading channel with multiple
antennas—H is a block-Toeplitz matrix that randomly
changes from one transmission block to another.

Frequency-selective fading can be modeled by (1), provided
that the channel memory is assumed to be finite. The channel
matrix H is then, as will be shown later, a convolution matrix
with a Toeplitz or a block-Toeplitz structure.

The performance analysis is simplified if the channel model
described by the matrix H is transformed into a virtual set of
parallel orthogonal subchannels [15]–[18]. The transformation
of the channel into its virtual structure is achieved with singular
value decomposition. Let {λi}u

i=1 be the nonzero eigenvalues
of the matrix A = H∗H . Then, we may write [19, p. 193]

H = UDV ∗ (2)

where U ∈ Cm×m and V ∈ Cn×n are unitary, and the m × n
diagonal matrix D has

√
λi in the (i, i) position (1 ≤ i ≤ u)
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Fig. 1. Block diagram of the system.

and zeros elsewhere. The matrix equation (1) can then be
rewritten as

r = UDV ∗y + n. (3)

Finally, the vector channel model is transformed into a set of
orthogonal subchannels when the input and output vectors y
and r are left multiplied by matrices V ∗ and U ∗, respectively.
Thus, we obtain

r̃ = U ∗r = DV ∗y + U ∗n = Dỹ + ñ (4)

where ỹ = V ∗y, and ñ = U ∗n.
The channel model described by H and its virtual represen-

tation as specified by the unitary matrices U and V and the
diagonal matrix D are equivalent in the sense that the total
input and output energies remain the same, i.e., z∗z = z̃∗z̃,
n∗n = ñ∗ñ, and y∗y = ỹ∗ỹ. This is due to the fact that the
inner product is invariant to unitary similarity transformations
[19, p. 283].

B. Transmitter Model

Typically, a transmitter includes some form of transmitter
power control, which can be represented by the matrix equa-
tion [20]

ỹ = Qx (5)

which is equivalent to y = V Qx, where Q is the power
control matrix, and x is a vector of complex source symbols
(see Fig. 1). The linear precoder formed by V Q [20], [21]
introduces correlation between the symbols. We assume that
Q ∈ Rn×n and x ∈ Cn with its last n − w entries equal to
zero, where w = rank(Q) ≤ rank(A) is the number of symbols
actually transmitted within n symbol intervals. Furthermore, we
let the entries of x be independent and identically distributed
(i.i.d.) random variables with unit variance. This does not
restrict our transmitter model in any way because the required
transmission energy is achieved by properly scaling the entries
of Q. Any channel coding, including space–time coding, is
excluded from our system model.

In general, the power control matrix Q may be nondiagonal.
If the entries of x are normal and our aim is to maximize chan-
nel capacity, the matrix Q is diagonal [22]. In addition, in some
simple suboptimal schemes for discrete signal constellations,
the matrix Q is diagonal [23]. Here, Q is assumed to be a
diagonal matrix whose entries are some function f : Rn → R
of the energy gains λi of the orthogonal subchannels, i.e.,
qii = f(λ1, . . . , λn), 1 ≤ i ≤ n.

A number of adaptive power control rules, together with
corresponding mappings f , can be used in practical commu-

nication systems. For example, with the water-filling power
control rule, the transmitted signal is controlled according to
[9, p. 2827], [24]

qii =
√(

μ−1
wf − λ−1

i

)+
, 1 ≤ i ≤ n. (6)

On the other hand, with truncated power inversion, the trans-
mitted signal is controlled according to [9, p. 2629]

qii =
{√

β/λi, λi > μtci

0, λi ≤ μtci.
(7)

Furthermore, with a simple power control method, sometimes
referred to as downlink beamforming [25], only the uth sub-
channel (that having the largest energy gain) is used for trans-
mission, i.e.,

qii =
{

δ, i = u
0, i �= u.

(8)

The scalars β and δ and the cutoff values or transmission
thresholds μwf and μtci are chosen such that the long-term
average energy or power constraint is fulfilled [20, p. 2279].
In general, the average power constraint takes a simpler form
because the average transmitted power per symbol Pav is

Pav =
E[Etx]
nTs

=
E[ỹ∗ỹ]
nTs

=
E[x∗Q∗Qx]

nTs
(9)

where Ts is the sampling interval. On the other hand, the
average transmitted energy per symbol Eav is

Eav = E
[
Etx

w

]
= E

[
ỹ∗ỹ

w

]
= E

[
x∗Q∗Qx

w

]
(10)

because energy expenditure takes place only when it is used for
transmission. The number w of symbols actually transmitted
can be a fixed number or a random variable. If the channel is
time invariant or the power-control rule is such that the rank of
Q remains constant, then there is a simple relationship between
the average transmitted power and energy. On the other hand, w
is likely to be a random variable when a power-control scheme
with a transmission threshold μ is used. Hence, the exact
relationship between average transmitted power and energy
is difficult to establish. For those reasons, unless otherwise
specified, in the remainder of this paper, we will consider
only power-limited systems due to their analytical tractabil-
ity. For a random w, the probability of outage or no trans-
mission is

Pout = Pr(w = 0). (11)

III. BASIC CONCEPTS

A. Energy Gain of the Channel

The energy gain of the channel is the ratio of the signal
component of the received energy Erx to the transmitted energy
Etx and is given by

G =
Erx

Etx
=

z∗z

y∗y
=

y∗H∗Hy

y∗y
(12)
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diagonal entry qii is a function only of λi, i.e., g : [0,∞) → R,
we have

E[Etx] = E

[
u∑

i=1

g(λi)

]
= u

∞∫

0

g(λ)h(λ) dλ (26)

E[Erx] = E

[
u∑

i=1

λig(λi)

]
= u

∞∫

0

λg(λ)h(λ) dλ (27)

where h(λ) is the pdf of a single eigenvalue [26]. It can easily be
verified that, under the long-term average energy or power con-
straint [20, p. 2279], the scalars β, δ, μwf , and μtci depend on
the specific joint distribution of eigenvalues (λ1, . . . , λn) rather
than their instantaneous values. Consequently, water filling and
the truncated channel inversion and downlink beamforming
power-control schemes fall under this special case because, in
all of them, qii, as (6)–(8) suggest, depends on only a single
eigenvalue λi.

E. Average Transmitted and Received SNRs

The average transmitted and received energies are usually
normalized by the receiver noise spectral density N0, leading
to the average transmitted SNR per symbol

γtx =
1
n

E[Etx]
N0

=
1
n

E[ỹ∗ỹ]
N0

(28)

and the average received SNR per symbol

γrx =
1
n

E[Erx]
N0

=
1
n

E[Etx · G]
N0

=
1
n

E[z̃∗z̃]
N0

. (29)

The average transmitted SNR per symbol referred to the re-
ceiver is defined as

γ̆tx =
1
n

E[Etx] · G0

N0
= γtxG0 (30)

where G0 is given by (21). The averages in (28)–(30) include
outages. In [6, eq. (13)], the SNR corresponding to (30) was
called the average transmitted energy-to-noise ratio. To avoid
confusion, we have reserved the term average transmitted SNR
per symbol for (28) because of the scaling by G0 in (30).
The scaling is used for convenience to take into account the
average attenuation of the channel for a signal having a uniform
distribution in frequency and spatial dimensions.

The relationship between the average transmitted SNR per
symbol γtx, the average transmitted SNR per symbol referred
to the receiver γ̆tx, and the average received SNR per symbol
γrx can be established through the covariance of the transmitted
energy Etx and channel energy gain G. In particular

γrx = γtxE[G] +
ϑ

nN0
=

γ̆tx

G0
E[G] +

ϑ

nN0
(31)

where

ϑ = Cov[Etx, G] = E[Etx · G] − E[Etx] · E[G]. (32)

Mathematically, the covariance ϑ can be bounded as

−
√

Var[Etx]Var[G] ≤ ϑ ≤
√

Var[Etx]Var[G]. (33)

However, in the present system model, there is an alternative
lower bound on the covariance. It is obtained by imposing the
physical constraint on the received energy that it cannot be
negative so that E[Etx · G] ≥ 0. After some algebra in (32),
we obtain ϑ ≥ −E[Etx] · E[G]. Finally, the lower bound for the
covariance is given by

ϑ ≥ −min
{

E[Etx]E[G],
√

Var[Etx]Var[G]
}

. (34)

By substituting (18) into (31), we obtain

γrx = γtx(Ğ + θ) +
ϑ

nN0
=

γ̆tx

G0
(Ğ + θ) +

ϑ

nN0
. (35)

To summarize, we have defined three different averages of
the energy gain G. The statistical average (17) is denoted by G.
If θ = 0 in (18), we obtain G = Ğ. If, in addition, ϑ = 0 in (35),
we obtain G = G0. The covariance ϑ specifies how well the
transmitted energy is statistically matched to the energy gain
of the channel. The covariance θ specifies how well the energy
allocations εi are statistically matched to the energy gains λi of
the orthogonal subchannels. The covariances ϑ and θ describe
the change of γrx due to power control in the transmitter.
Since they can take negative and positive values, γrx could be
smaller or greater than Ğγtx. The upper and lower bounds on
covariance ϑ, which lead to the respective bounds on γrx with
respect to γtx(Ğ + θ), can be used in link budget calculations
for adaptive links.

We want to emphasize that it would be misleading to refer
to (30) as the average received SNR per symbol because the
covariances θ and ϑ in (35) are, in general, nonzero and depend
on the transmitted signal. Furthermore, if we want to know
how efficiently the basic resource, i.e., transmitted energy, is
used, we should not use (29) instead of (30) in performance
comparisons.

So far, all the SNRs are presented as if the system were power
limited. In energy-limited systems, we use the expurgated SNRs

γ̆
(e)
tx =

1
n

E[Etx|Etx > 0] · G0

N0
=

γ̆tx

1 − Pout
(36)

γ(e)
rx =

1
n

E[Etx · G|Etx · G > 0]
N0

=
γrx

1 − Pout
(37)

where the probability of outage Pout is defined in (11). In a
similar way, the transmitted SNR in (28) can be expurgated.
A summary of the various SNRs is given in Table I. We
have borrowed the term “expurgation” from the channel-coding
literature [27]. The purpose of this expurgation process is
to remove the effect of outage from the calculation of the
average SNR values of (36) and (37). That is, we remove the
effect of not transmitting during outage from the average SNR
calculation.
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when Etx > 0. On the other hand, when Etx = 0, no transmis-
sion takes place, and the energy gain of the channel is defined
to be zero.

The energy gain G is in fact a Rayleigh quotient for an n × n
Hermitian matrix A = H∗H [19, p. 282]. The form of the
Rayleigh quotient is simplified if we use the virtual channel
model [15]–[18] and take advantage of the invariance property
of the Rayleigh quotient under unitary similarity transforma-
tions to obtain

G =
z∗z

y∗y
=

z̃∗z̃

ỹ∗ỹ
=

ỹ∗D∗Dỹ

ỹ∗ỹ
=

∑n
i=1 λi|ỹi|2∑n
i=1 |ỹi|2

(13)

where ỹi is the ith element of vector ỹ. Let

εi =
|ỹi|2∑n
i=1 |ỹi|2

, i = 1, 2, . . . , n (14)

denote the fraction of the total transmitted energy allocated to
the ith subchannel. Then, (13) can be rewritten as

G =
n∑

i=1

λiεi (15)

which shows that the energy gain G depends on the distribution
of the available energy among subchannels rather than its total
amount. Furthermore, by the properties of a Rayleigh quotient
[19, p. 285], the energy gain of the channel G is bounded as

λl ≤ G ≤ λu (16)

where λl and λu are the minimal and the maximal eigenvalues
of A, respectively.

B. Average Energy Gain of the Channel

In general, the average energy gain of the channel is

G = E[G] = E[Erx/Etx] (17)

which is equal to E[Erx]/E[Etx] if and only if Etx and G are
uncorrelated, for example, if Etx is fixed. By substituting (15)
into (17), we obtain

G =
n∑

i=1

E[λiεi] = Ğ + θ. (18)

The parameter

Ğ =
n∑

i=1

E[λi]E[εi] (19)

describes the average energy gain as if there was no correlation
between the energy εi allocated to the ith subchannel and the
subchannel energy gain λi. On the other hand, the term

θ =
n∑

i=1

Cov[λi, εi] (20)

in (18) describes how G changes when there is correlation
between εi and λi.

C. Representative Energy Gain of the Channel

Our aim now is to find a representative energy gain of
the channel that does not depend on the transmitted signal
as do the energy gain in (13) and the average energy gain
in (18). The average energy gain of (18) is independent of
the transmitted signal if and only if the transmitted energy is
uniformly distributed over all orthogonal subchannels associ-
ated with eigenvalues of the channel matrix, that is, εi = 1/n
for all i. Thus, the representative energy gain is uniquely de-
fined to be

G0 =
1
n

E

[
n∑

i=1

λi

]
=

1
n

E [tr(A)] . (21)

The representative energy gain describes the average attenua-
tion of the channel for a special transmitted signal. The defi-
nition in (21) is consistent with and is in fact a generalization
of the one used, for example, in [11] in a frequency-selective
channel. In fact, the representative energy gain is the energy of
the impulse response of the channel [11]. In frequency-selective
time-invariant or frequency-selective block-fading channels,
distinct frequencies create orthogonal subchannels. In multiple-
antenna channels, orthogonal subchannels are created by beam-
forming matrices. Thus, a uniform energy distribution over the
orthogonal subchannels implies a uniform energy distribution
across both the frequency and spatial dimensions.

D. Average Transmitted and Received Energies

The average transmitted energy is

E[Etx] = E

[
n∑

i=1

|ỹi|2
]

(22)

whereas the average received energy is

E[Erx] = E

[
n∑

i=1

λi|ỹi|2
]

. (23)

When water filling, truncated channel inversion, or downlink
beamforming are used, the power control matrix Q is diagonal.
Then, the average transmitted and received energies, respec-
tively, become

E[Etx] = E

[
u∑

i=1

q2
ii|xi|2

]
= E

[
u∑

i=1

q2
ii

]
(24)

E[Erx] = E

[
u∑

i=1

λiq
2
ii|xi|2

]
= E

[
u∑

i=1

λiq
2
ii

]
. (25)

To obtain the simplified forms of (24) and (25), we take advan-
tage of the assumption that the entries of x are i.i.d. random
variables with unit variance.

In the most general case, q2
ii follows a mapping g : Rn →

R, and the evaluation of (24) and (25) requires averaging over
the joint probability density function (pdf) p(λ1, . . . , λn) of the
eigenvalues of A. However, in the special case where the ith
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diagonal entry qii is a function only of λi, i.e., g : [0,∞) → R,
we have

E[Etx] = E

[
u∑

i=1

g(λi)

]
= u

∞∫

0

g(λ)h(λ) dλ (26)

E[Erx] = E

[
u∑

i=1

λig(λi)

]
= u

∞∫

0

λg(λ)h(λ) dλ (27)

where h(λ) is the pdf of a single eigenvalue [26]. It can easily be
verified that, under the long-term average energy or power con-
straint [20, p. 2279], the scalars β, δ, μwf , and μtci depend on
the specific joint distribution of eigenvalues (λ1, . . . , λn) rather
than their instantaneous values. Consequently, water filling and
the truncated channel inversion and downlink beamforming
power-control schemes fall under this special case because, in
all of them, qii, as (6)–(8) suggest, depends on only a single
eigenvalue λi.

E. Average Transmitted and Received SNRs

The average transmitted and received energies are usually
normalized by the receiver noise spectral density N0, leading
to the average transmitted SNR per symbol

γtx =
1
n

E[Etx]
N0

=
1
n

E[ỹ∗ỹ]
N0

(28)

and the average received SNR per symbol

γrx =
1
n

E[Erx]
N0

=
1
n

E[Etx · G]
N0

=
1
n

E[z̃∗z̃]
N0

. (29)

The average transmitted SNR per symbol referred to the re-
ceiver is defined as

γ̆tx =
1
n

E[Etx] · G0

N0
= γtxG0 (30)

where G0 is given by (21). The averages in (28)–(30) include
outages. In [6, eq. (13)], the SNR corresponding to (30) was
called the average transmitted energy-to-noise ratio. To avoid
confusion, we have reserved the term average transmitted SNR
per symbol for (28) because of the scaling by G0 in (30).
The scaling is used for convenience to take into account the
average attenuation of the channel for a signal having a uniform
distribution in frequency and spatial dimensions.

The relationship between the average transmitted SNR per
symbol γtx, the average transmitted SNR per symbol referred
to the receiver γ̆tx, and the average received SNR per symbol
γrx can be established through the covariance of the transmitted
energy Etx and channel energy gain G. In particular

γrx = γtxE[G] +
ϑ

nN0
=

γ̆tx

G0
E[G] +

ϑ

nN0
(31)

where

ϑ = Cov[Etx, G] = E[Etx · G] − E[Etx] · E[G]. (32)

Mathematically, the covariance ϑ can be bounded as

−
√

Var[Etx]Var[G] ≤ ϑ ≤
√

Var[Etx]Var[G]. (33)

However, in the present system model, there is an alternative
lower bound on the covariance. It is obtained by imposing the
physical constraint on the received energy that it cannot be
negative so that E[Etx · G] ≥ 0. After some algebra in (32),
we obtain ϑ ≥ −E[Etx] · E[G]. Finally, the lower bound for the
covariance is given by

ϑ ≥ −min
{

E[Etx]E[G],
√

Var[Etx]Var[G]
}

. (34)

By substituting (18) into (31), we obtain

γrx = γtx(Ğ + θ) +
ϑ

nN0
=

γ̆tx

G0
(Ğ + θ) +

ϑ

nN0
. (35)

To summarize, we have defined three different averages of
the energy gain G. The statistical average (17) is denoted by G.
If θ = 0 in (18), we obtain G = Ğ. If, in addition, ϑ = 0 in (35),
we obtain G = G0. The covariance ϑ specifies how well the
transmitted energy is statistically matched to the energy gain
of the channel. The covariance θ specifies how well the energy
allocations εi are statistically matched to the energy gains λi of
the orthogonal subchannels. The covariances ϑ and θ describe
the change of γrx due to power control in the transmitter.
Since they can take negative and positive values, γrx could be
smaller or greater than Ğγtx. The upper and lower bounds on
covariance ϑ, which lead to the respective bounds on γrx with
respect to γtx(Ğ + θ), can be used in link budget calculations
for adaptive links.

We want to emphasize that it would be misleading to refer
to (30) as the average received SNR per symbol because the
covariances θ and ϑ in (35) are, in general, nonzero and depend
on the transmitted signal. Furthermore, if we want to know
how efficiently the basic resource, i.e., transmitted energy, is
used, we should not use (29) instead of (30) in performance
comparisons.

So far, all the SNRs are presented as if the system were power
limited. In energy-limited systems, we use the expurgated SNRs

γ̆
(e)
tx =

1
n

E[Etx|Etx > 0] · G0

N0
=

γ̆tx

1 − Pout
(36)

γ(e)
rx =

1
n

E[Etx · G|Etx · G > 0]
N0

=
γrx

1 − Pout
(37)

where the probability of outage Pout is defined in (11). In a
similar way, the transmitted SNR in (28) can be expurgated.
A summary of the various SNRs is given in Table I. We
have borrowed the term “expurgation” from the channel-coding
literature [27]. The purpose of this expurgation process is
to remove the effect of outage from the calculation of the
average SNR values of (36) and (37). That is, we remove the
effect of not transmitting during outage from the average SNR
calculation.
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where ⊗ denotes the Kronecker product, F K is the K × K
Fourier matrix

F K =
1√
K

�
ω(i−1)(j−1)

�K,K

i,j=1
(45)

with ω = e−2π
√
−1/K , and D ∈ CKr×Kt is a block-diagonal

matrix D = diag(D0,D1, . . . ,DK−1) with Dk ∈ Cr×t

given as

Dk =
L�

l=0

ωklH l. (46)

The entries of Dk are zero-mean complex Gaussian random
variables as are the entries of H l. The variance of the entries
of Dk is the sum of variances of respective entries of H l, i.e.,
σ2 =

�L
l=0 σ2

l .
The joint pdf of the unordered eigenvalues of A =

diag(A0, . . . ,AK−1), where Ak = D∗
kDk is a complex

Wishart matrix, is unknown [36]. This precludes the derivation
of the cdf of the largest eigenvalue. However, the average
received energy can still be found approximately as

E[Erx] ≈
Ku�
i=1

∞�

0

· · ·
∞�

0

λig(λi)p(λ1, . . . , λKu) dλ1 · · · dλKu

= K

u�
i=1

∞�

0

· · ·
∞�

0

λig(λi)p(λ1, . . . , λu) dλ1 · · · dλu

= Ku

∞�

0

λg(λ)h(λ) dλ (47)

where u = min(r, t), v = max(r, t), and h(λ) is given by (38).
The average transmitted energy can be obtained in a similar
way. The representative energy gain of the channel is then

G0 ≈ E [tr(A)]
Kt

=
1

Kt
E

�
K−1�
k=0

tr(Ak)

�
= r

L�
l=0

σ2
l . (48)

A frequency-selective block-fading channel with a single
transmitter and single receiver antennas is a special case of a
frequency-selective fading channel where t = r = 1. Conse-
quently, H ∈ CK×K is a Toeplitz matrix with the entry hij

being the jth sample of the channel impulse response at the
ith time instant.

Fig. 2. Upper and lower bounds on the covariance value in a single-antenna
channel with Rayleigh fading and σ2 = 1.

V. NUMERICAL RESULTS

A. Covariance

The covariances in (35) are a measure of how well the trans-
mitted signal is matched in a statistical sense to the channel:
The larger the covariances θ and ϑ, the larger the ratio γrx/γtx.
In Fig. 2, we show a comparison of water filling and truncated
channel inversion in a single-antenna channel with Rayleigh
fading and σ2 = 1. Since, in any single-antenna channel θ =
0, the power control methods are compared according to the
achievable covariance value ϑ. The upper bound (33) and the
lower bound (34) of the covariance are plotted for comparison.

The numerical results suggest that, in a single-antenna
Rayleigh fading channel with low-power transmission, one
approaches the covariance upper limit with water filling. On
the other hand, with truncated channel inversion, one operates
close to the covariance lower limit. In other words, water filling
gives almost the highest possible average received SNR γrx,
whereas truncated channel inversion gives almost the lowest
possible average received SNR γrx, provided that γtx and G0

are kept constant in comparisons. Truncated channel inversion
remains useful because performance is improved by keeping
the received SNR constant during transmission.

We plot the ratio γrx/γ̆tx that can be achieved in a frequency-
nonselective or a frequency-selective MIMO channel with wa-
ter filling and truncated channel inversion in Figs. 3 and 4,
respectively. The numerical results show that γrx is larger than
γ̆tx when water filling is used. On the other hand, if truncated

⎡
⎢⎢⎢⎢⎢⎣

...
z0

z1

z2
...

⎤
⎥⎥⎥⎥⎥⎦

� �� �
z∈CKr

=

⎡
⎢⎢⎢⎢⎢⎣

. . .
. . .

. . .
. . .

. . .
. . .

· · · 0 HL · · · H1 H0 0 · · ·
· · · 0 HL · · · H1 H0 0 · · ·

· · · 0 HL · · · H1 H0 0 · · ·
. . .

. . .
. . .

. . .
. . .

. . .

⎤
⎥⎥⎥⎥⎥⎦

� �� �
H∈CKr×Kt

⎡
⎢⎢⎢⎢⎢⎣

...
y0

y1

y2
...

⎤
⎥⎥⎥⎥⎥⎦

� �� �
y∈CKt

(43)
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TABLE I
SUMMARY OF THE DIFFERENT SNR CONCEPTS USED IN THIS PAPER

IV. EXAMPLES

A. Frequency-Nonselective Fading Channel

We consider a frequency-nonselective fading channel with
t transmitter and r receiver antennas. The number of channel
inputs n is equal to t, and the number of channel outputs
m is equal to r. Furthermore, we assume that the entries of
the channel matrix H are i.i.d. circularly symmetric com-
plex Gaussian random variables with zero mean and variance
σ2. Consequently, the n × n matrix A = H∗H is a complex
Wishart matrix, and the pdf of a single unordered eigenvalue of
A is [28, eq. (15)]

h(λ) =
e−λ/σ2

uσ2

u−1∑
k=0

k!
(k + α)!

(
λ

σ2

)α [
L

(α)
k

(
λ

σ2

)]2

(38)

where u = min(m,n), v = max(m,n), α = v − u, and
L

(α)
k (x) is the associated Laguerre polynomial of order α. The

cumulative distribution function (cdf) of the largest eigenvalue
Fλ(x) is [29, p. 421]

Fλ(x) =
Γu(u)

Γu(u + v)

( x

σ2

)uv

1F1

(
v;u + v;− x

σ2
Iu

)
(39)

where Γu(·) is the complex multivariate Gamma function
[30, eq. (83)], and pFq(·; ·; ·) is the complex hypergeometric
function of a matrix argument [30, eq. (87)]. These functions
can efficiently be evaluated using algorithms developed in [31].
The representative energy gain of the channel is given by

G0 =
1
n

E [tr(A)] =
1
n

mnσ2 = mσ2. (40)

A frequency-nonselective fading channel with a single trans-
mitter and single receiver antennas is a special case of a
frequency-nonselective fading channel where the channel ma-
trix H is a random scalar. The entry h11 simply describes the
channel response at a given time instant, and λ1 =a11 = |h11|2.

In our simulations, we use a channel whose fading gain is
represented by the sum [32]–[34]

h11 =
1
N

N−1∑
n=0

exp
(√

−1ψn

)
(41)

where N is the number of complex equal-amplitude subpaths,
and ψn is the phase of the nth subpath. If the phases are all
equal, the sum (41) is a coherent sum whose magnitude is
equal to unity. Thus, peak normalization is used in (41). The

amplitudes of the subpaths in (41) are identical, which is only a
convenient selection for our numerical results [32].

If the phases ψn in (41) are random, independent, and
uniformly distributed, (41) corresponds to a noncoherent sum.
The pdf of the magnitude of (41) can be derived from the results
presented in [34] for the values N = 2 and 3. For large N ,
it can be approximated with a truncated Rayleigh distribution.
The pdf of the squared magnitude of (41) can be derived from
the work of [32]. For large N , it can be approximated with a
truncated exponential distribution. Its peak value is unity, and
the average value is 1/N . We can alternatively use average
normalization. In that case, we replace 1/N in (41) by 1/

√
N .

B. Frequency-Selective Block-Fading Channel

We next consider a frequency-selective fading channel with
t transmitter and r receiver antennas. We assume that the
matrix-valued channel impulse response is finite and spans
L + 1 < ∞ symbol intervals. Furthermore, we assume that
the channel is quasi-static1 for K � L + 1 symbol intervals.
Finally, we assume that symbols are transmitted in blocks of
K symbols and that there is no interblock interference.

Let yk ∈ Ct and zk ∈ Cr denote the transmitted and re-
ceived vectors, respectively, at time instant k. The vector of
received symbols at the kth time instant is then given as

zk =
L∑

l=0

H lyk−l (42)

where H l is a matrix-valued channel model corresponding to
the lth tap. We assume that the matrices H l are independently
distributed complex Gaussian matrices with variance σ2

l . By
stacking the vectors yk and zk, we obtain (43), shown at
the bottom of the next page, where H ∈ CKr×Kt is a block-
Toeplitz convolution matrix.

Block-Toeplitz matrices are asymptotically equivalent to
block-circulant matrices, which implies that the eigenvalues
of a block-Toeplitz matrix and a properly constructed block-
circulant matrix asymptotically converge [35]. Since a block-
circulant matrix can be block diagonalized by a block-Fourier
matrix, the eigenvalues of the block-Toeplitz matrix can easily
be approximated [35]. More precisely, for a sufficiently large
ratio K/L � 1, we obtain

H ≈ (F K ⊗ Ir)∗D(F K ⊗ It) (44)

1That is, it remains constant for K symbol intervals and randomly changes
from block to block.
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where ⊗ denotes the Kronecker product, F K is the K × K
Fourier matrix

F K =
1√
K

�
ω(i−1)(j−1)

�K,K

i,j=1
(45)

with ω = e−2π
√
−1/K , and D ∈ CKr×Kt is a block-diagonal

matrix D = diag(D0,D1, . . . ,DK−1) with Dk ∈ Cr×t

given as

Dk =
L�

l=0

ωklH l. (46)

The entries of Dk are zero-mean complex Gaussian random
variables as are the entries of H l. The variance of the entries
of Dk is the sum of variances of respective entries of H l, i.e.,
σ2 =

�L
l=0 σ2

l .
The joint pdf of the unordered eigenvalues of A =

diag(A0, . . . ,AK−1), where Ak = D∗
kDk is a complex

Wishart matrix, is unknown [36]. This precludes the derivation
of the cdf of the largest eigenvalue. However, the average
received energy can still be found approximately as

E[Erx] ≈
Ku�
i=1

∞�

0

· · ·
∞�

0

λig(λi)p(λ1, . . . , λKu) dλ1 · · · dλKu

= K

u�
i=1

∞�

0

· · ·
∞�

0

λig(λi)p(λ1, . . . , λu) dλ1 · · · dλu

= Ku

∞�

0

λg(λ)h(λ) dλ (47)

where u = min(r, t), v = max(r, t), and h(λ) is given by (38).
The average transmitted energy can be obtained in a similar
way. The representative energy gain of the channel is then

G0 ≈ E [tr(A)]
Kt

=
1

Kt
E

�
K−1�
k=0

tr(Ak)

�
= r

L�
l=0

σ2
l . (48)

A frequency-selective block-fading channel with a single
transmitter and single receiver antennas is a special case of a
frequency-selective fading channel where t = r = 1. Conse-
quently, H ∈ CK×K is a Toeplitz matrix with the entry hij

being the jth sample of the channel impulse response at the
ith time instant.

Fig. 2. Upper and lower bounds on the covariance value in a single-antenna
channel with Rayleigh fading and σ2 = 1.

V. NUMERICAL RESULTS

A. Covariance

The covariances in (35) are a measure of how well the trans-
mitted signal is matched in a statistical sense to the channel:
The larger the covariances θ and ϑ, the larger the ratio γrx/γtx.
In Fig. 2, we show a comparison of water filling and truncated
channel inversion in a single-antenna channel with Rayleigh
fading and σ2 = 1. Since, in any single-antenna channel θ =
0, the power control methods are compared according to the
achievable covariance value ϑ. The upper bound (33) and the
lower bound (34) of the covariance are plotted for comparison.

The numerical results suggest that, in a single-antenna
Rayleigh fading channel with low-power transmission, one
approaches the covariance upper limit with water filling. On
the other hand, with truncated channel inversion, one operates
close to the covariance lower limit. In other words, water filling
gives almost the highest possible average received SNR γrx,
whereas truncated channel inversion gives almost the lowest
possible average received SNR γrx, provided that γtx and G0

are kept constant in comparisons. Truncated channel inversion
remains useful because performance is improved by keeping
the received SNR constant during transmission.

We plot the ratio γrx/γ̆tx that can be achieved in a frequency-
nonselective or a frequency-selective MIMO channel with wa-
ter filling and truncated channel inversion in Figs. 3 and 4,
respectively. The numerical results show that γrx is larger than
γ̆tx when water filling is used. On the other hand, if truncated
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Fig. 6. Cdf of the energy gain of the channel.

Fig. 7. Cdf of the transmitted SNR in water filling and truncated channel
inversion.

analytical pdf’s by assuming that the energy gain is exponen-
tially distributed. We also present the simulated histograms by
using the noncoherent sum of complex exponentials in (41) to
represent a frequency-nonselective channel model. In the pdf’s
of the SNRs, there is an impulse at the origin corresponding to
an outage with no transmission. When we include the impulse,
the area under the pdf’s is unity. We use the cdf’s to illustrate
the distributions.

In Fig. 6, we show the cdf of the energy gain of the channel
when Etx is always positive. The cdf of the exponential distri-
bution has the form

F (λ) = 1 − exp(−λ/σ2) (49)

for λ ≥ 0, where λ = |h11|2. We can compare the cdf of
(41) with peak normalization and (49) by setting σ2 = 1/N .
If N � 1, the cdf’s are almost identical, except for λ > 1 [32].
If the transmission threshold is μ, the probability of outage (11)
for the exponential distribution is

Pout = Pr(λ < μ) = 1 − exp(−μ/σ2). (50)

In Figs. 7 and 8, we present the cdf’s for the transmitted
and received SNRs for water filling and truncated channel

Fig. 8. Cdf of the received SNR in water filling and truncated channel
inversion.

inversion when the average transmitted SNR is 20 dB, that
is, 10 log10 γtx = 20 dB, and we assume that the noise power
spectral density is unity. The transmission thresholds are se-
lected for water filling and truncated channel inversion by
using [38, eqs. (8) and (47)], respectively. When the average
transmitted SNR is 20 dB, the parameters are μwf = 0.0074,
μtci = 0.0271, and β = 9.871. The theoretical probability of
outage for the exponential distribution is with these parameters
Pout = 0.0853 for water filling and Pout = 0.2780 for trun-
cated channel inversion. Our aim is not to minimize the bit
error probability but to demonstrate how the different power
control rules behave. Corresponding analytical results for the
SNR distributions are obtained from the results presented in
[39, pp. 90–104] by using (6), (7), and (49). These results are
summarized in the following sections.

1) Transmitted SNR: The cdf of the transmitted SNR is
shown in Fig. 7. In water filling, the cdf has the form

Fwf(γtx) =

⎧⎪⎨
⎪⎩

Pout, for γtx = 0
F

�
μwf

1−γtxμwf

�
, for 0 < γtx ≤ μ−1

wf

1, for γtx > μ−1
wf

(51)

where F (·) is the cdf of the channel energy gain. In truncated
channel inversion, the cdf is

Ftci(γtx)=

⎧⎨
⎩

Pout, for γtx = 0
Pout+1−F (β/γtx), for 0 < γtx ≤ β/μtci

1, for γtx > β/μtci.
(52)

2) Received SNR: In Fig. 8, we show the cdf of the received
SNR for water filling. The analytical cdf is

Fwf(γrx) = F [μwf(γrx + 1)/γrx] (53)

where γrx ≥ 0. For truncated channel inversion, the cdf of the
received SNR is

Ftci(γrx) =
�

Pout, for γrx ≤ β
1, for γrx > β.

(54)
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Fig. 3. Relationship between the average received SNR γrx and the average
transmitted SNR referred to the receiver G0γtx in a multiantenna channel with
water filling and σ2 = 1.

Fig. 4. Relationship between the average received SNR γrx and the average
transmitted SNR referred to the receiver G0γtx in a multiantenna channel with
truncated channel inversion and σ2 = 1.

channel inversion is used, γrx could be larger or smaller than
γ̆tx, depending on the threshold μtci. The relationship between
γrx and γ̆tx does not depend on the average transmitted SNR
per symbol γtx when truncated channel inversion is used be-
cause β cancels when dividing (27) by (26).

In a multiple-input–single-output (MISO) system with a
two-transmitter/one-receiver antenna (2 × 1) and a single-
input–multiple-output (SIMO) system with one-transmitter/
two-receiver antennas (1 × 2), the average received SNR γrx

is actually the same. It is because there is only one orthogonal
subchannel, which implies that θ = 0, and the distribution of
the corresponding positive eigenvalue is the same in both cases.
The difference in γrx/γ̆tx shown in Figs. 3 and 4 comes from
the fact that the representative energy gain differs. Specifically,
in a MISO 2 × 1 system, G0 = 1, whereas in a SIMO 1 × 2
system, G0 = 2. Since γrx is equal to γ̆tx if θ = 0 and ϑ = 0,
i.e., when there is no power control at the transmitter, the results
in Figs. 3 and 4 demonstrate how beneficial power control is at
the transmitter in a MISO system.

Fig. 5. Cdf of the largest eigenvalue λu in a frequency-nonselective multi-
antenna channel.

The peak energy gain of the channel is bounded by the largest
eigenvalue λu of the matrix A. The cdf of λu in a number
of frequency-nonselective multiantenna channels is shown in
Fig. 5. For MISO and MIMO channels, we also plot the results
in the case when average normalization is used, i.e., when
G0 = 1.

In general, the peak energy gain should be less than or equal
to 1 to satisfy the energy-conservation law. The problem of
the proper normalization of the peak energy gain does not
normally arise if one includes path loss in the model, which
scales down the maximum eigenvalue, and uses the average
transmitted SNR γtx to compare different systems. However,
a common practice is to use the average transmitted SNR
referred to the receiver γ̆tx or the average received SNR γrx

and compare different systems against each other or against a
unit-gain additive white Gaussian noise (AWGN) channel.

The results in Fig. 5 suggest that, in all the considered
channel models, there is a nonnegligible probability, even if
the channels are normalized according to the representative
energy gain, the peak energy gain exceeds 1. Consequently, a
comparison of the performance attained by an adaptive system
in the presented channel models and in a unit-gain AWGN can
lead to erroneous conclusions. This effect could be particularly
visible in adaptive systems that are able to take advantage of
λu > 1.

A solution to the problem is to normalize the channel with re-
spect to the peak energy gain. Unfortunately, this is not always
possible because the peak energy gain could be unbounded
as in the Rayleigh fading model. In this case, we propose to
normalize the channel in a statistical sense, i.e., to normalize it
such that the peak energy gain exceeds 1 only with some small
probability ζ. For instance, the actual value of ζ can be adopted
from a “six sigma” rule in production quality assessment, where
ζ = 3.4 · 10−6 [37].

B. SNR Distributions

We assume that both the receiver and the transmitter know
the channel. The modulation method in the examples is binary
antipodal. One sample is taken per symbol. We present the
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Fig. 6. Cdf of the energy gain of the channel.

Fig. 7. Cdf of the transmitted SNR in water filling and truncated channel
inversion.

analytical pdf’s by assuming that the energy gain is exponen-
tially distributed. We also present the simulated histograms by
using the noncoherent sum of complex exponentials in (41) to
represent a frequency-nonselective channel model. In the pdf’s
of the SNRs, there is an impulse at the origin corresponding to
an outage with no transmission. When we include the impulse,
the area under the pdf’s is unity. We use the cdf’s to illustrate
the distributions.

In Fig. 6, we show the cdf of the energy gain of the channel
when Etx is always positive. The cdf of the exponential distri-
bution has the form

F (λ) = 1 − exp(−λ/σ2) (49)

for λ ≥ 0, where λ = |h11|2. We can compare the cdf of
(41) with peak normalization and (49) by setting σ2 = 1/N .
If N � 1, the cdf’s are almost identical, except for λ > 1 [32].
If the transmission threshold is μ, the probability of outage (11)
for the exponential distribution is

Pout = Pr(λ < μ) = 1 − exp(−μ/σ2). (50)

In Figs. 7 and 8, we present the cdf’s for the transmitted
and received SNRs for water filling and truncated channel

Fig. 8. Cdf of the received SNR in water filling and truncated channel
inversion.

inversion when the average transmitted SNR is 20 dB, that
is, 10 log10 γtx = 20 dB, and we assume that the noise power
spectral density is unity. The transmission thresholds are se-
lected for water filling and truncated channel inversion by
using [38, eqs. (8) and (47)], respectively. When the average
transmitted SNR is 20 dB, the parameters are μwf = 0.0074,
μtci = 0.0271, and β = 9.871. The theoretical probability of
outage for the exponential distribution is with these parameters
Pout = 0.0853 for water filling and Pout = 0.2780 for trun-
cated channel inversion. Our aim is not to minimize the bit
error probability but to demonstrate how the different power
control rules behave. Corresponding analytical results for the
SNR distributions are obtained from the results presented in
[39, pp. 90–104] by using (6), (7), and (49). These results are
summarized in the following sections.

1) Transmitted SNR: The cdf of the transmitted SNR is
shown in Fig. 7. In water filling, the cdf has the form

Fwf(γtx) =

⎧⎪⎨
⎪⎩

Pout, for γtx = 0
F

�
μwf

1−γtxμwf

�
, for 0 < γtx ≤ μ−1

wf

1, for γtx > μ−1
wf

(51)

where F (·) is the cdf of the channel energy gain. In truncated
channel inversion, the cdf is

Ftci(γtx)=

⎧⎨
⎩

Pout, for γtx = 0
Pout+1−F (β/γtx), for 0 < γtx ≤ β/μtci

1, for γtx > β/μtci.
(52)

2) Received SNR: In Fig. 8, we show the cdf of the received
SNR for water filling. The analytical cdf is

Fwf(γrx) = F [μwf(γrx + 1)/γrx] (53)

where γrx ≥ 0. For truncated channel inversion, the cdf of the
received SNR is

Ftci(γrx) =
�

Pout, for γrx ≤ β
1, for γrx > β.

(54)
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Fig. 9. Expurgated BER as a function of expurgated average received SNR
per bit (truncated channel inversion).

Fig. 10. Expurgated BER as a function of expurgated average transmitted
SNR per bit referred to the receiver (truncated channel inversion).

C. BER With Power Control

In our simulated system, the bit rate is constant above the
threshold μtci in (7). We want to demonstrate how the bit-
error-rate (BER) performance should be presented in an energy-
limited system after we have analyzed the system as if it were
power limited. The power-limited model has been used for
mathematical tractability. We measure the BER only when we
actually transmit energy in (7). Consequently, the average of the
different SNRs is also measured under the condition that there
is transmission. This implies that we use the expurgated SNRs
defined in (36) and (37). Now, we are using the average energy
actually transmitted per bit, but due to the outages, the average
bit rates of different systems may be different, even in the same
channel.

The BER performance for truncated channel inversion is
presented in Figs. 9 and 10 by using either the expurgated
average received SNR or the transmitted SNR referred to the
receiver, respectively. We have used both peak and average

normalization. In Fig. 9, the normalization method does not
have any effect on the performance. One could conclude that no
performance gain can be obtained, but Fig. 10 shows that signif-
icant gain is possible, for example, by using diversity. Since the
channel is assumed to be known, there is no performance loss in
Fig. 9 compared with the AWGN channel. The BER curve with
peak normalization in Fig. 10 does not go below the AWGN
curve, although when using average normalization, it may
happen. Thus, to avoid confusion in energy-limited adaptive
transmission systems, we must use peak normalization of the
channel, the expurgated average transmitted SNR referred to
the receiver, and the expurgated BER.

VI. CONCLUSION

Reliable and fair comparison of the performance of different
systems that operate with different antenna configurations can
be problematic. Both the average transmitted and received en-
ergies are used in performance comparisons, and the selection
depends on what one wants to investigate. The transmitted
energy is known to be the basic system resource. To avoid con-
fusion in performance comparisons in energy-limited adaptive
transmission systems, we must use peak normalization of the
channel, the expurgated average transmitted SNR referred to
the receiver, and the expurgated BER.

The whole idea of this paper is a generalization of the fact
that, for correlated random variables X and Y and for Z =
XY , we have the property E[Z] = E[XY ] = E[X]E[Y ] +
Cov[X,Y ]. In our system model, X corresponds to the trans-
mitted energy, Y corresponds to the energy gain of the channel,
and Z corresponds to the received energy. The random variables
X and Y are correlated because of adaptive transmission,
for example, when using transmitter power control. Therefore,
the channel not only scales the transmitted energy, but the
covariance Cov[X,Y ] also plays a crucial role. The covari-
ance describes how well the transmitted energy is statistically
matched to the channel. If there are several orthogonal sub-
channels, a second covariance is needed to show how well the
transmitted energy is statistically matched to the energy gains of
the subchannels. In addition, the expression E[X]E[Y ] should
not be referred to as the average received energy because the
latter has the form E[XY ].

The systems under study should also be properly normalized.
For example, it is reasonable to assume that a receiver equipped
with two receiver antennas is able to receive twice as much
energy as one with only one receiver antenna. The peak energy
gains of the respective channel models should be scaled accord-
ingly. Furthermore, the peak energy gain of the better channel
should not exceed unity, or at the very least, the probability that
the peak energy gain exceeds a respective limit should be the
same for both channels.
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Abstract—In this paper we study the performance of adaptive 
transmission methods using the rational decision theory based 
concept. We introduce a channel model and a diversity model for 
simulations and develop a method for performance evaluation 
using the rational decision theory and the developed channel and 
diversity models. Optimal scheme based on this metric differs 
from the traditional capacity maximization scheme because the 
proposed metric takes transmission related risks into account. 
Several theoretical and practical power control methods are 
investigated through analysis and simulations. Both single-input 
single-output (SISO) and diversity channels are considered. The 
proposed filtered-x least mean square (FxLMS) algorithm 
outperforms other practical approaches and it can be actually 
seen as a generalization of practical algorithms. 

I. INTRODUCTION  
New generalized adaptive radios called cognitive radios 

(CRs) are using various sensors to estimate the status of the 
environment and making intelligent decisions based on the 
obtained information [1]. The aim of CRs is to improve the 
performance of the network; especially the efficiency of 
spectrum use has been under study. Realization of cognitive 
radios in practice requires use of adaptive transmission. 

Finding good performance measures to compare different 
adaptive transmission methods and to determine best strategies 
e.g., for cognitive communication in the military environment 
is far from a trivial task. In ergodic channels, the mean of some 
quantity, for example link spectral efficiency, is a valid 
performance measure because one observes all possible 
channel states [2], [3]. In nonergodic channels, there is an 
uncertainty because only part of the channel states is observed. 
A common performance measure is then the outage 
probability, i.e., the probability that the performance value is 
below a certain threshold. Capacity maximization has been 
traditionally used in performance measurements and optimal 
transmission methods using this metric are provided e.g., in [2]. 
A new method for performance measurements was provided in 
[3] and [4] by exploring similarities between the optimal 
portfolio selection problem in finance theory and the finding of 
a valid performance measure for adaptive transmission in 
nonergodic channels. The proposed approach jointly considers 
reward and risk provided by adaptive transmission and 
formulates the performance measure as a certain risk-reward 
ratio. Optimal transmission strategy was also analytically 
derived. Another theory based on economics and used in 
communication systems is game theory [5]. 

In this paper we propose channel and diversity models for 
simulation studies and develop a performance metric taking 
into account both rewards and risks as well as the proposed 
models. Unlike in seminal studies in [3] and [4], we develop 
and apply the metric to rank several practical adaptive 
transmission strategies, including the recently developed 
FxLMS power control method [6]. The FxLMS algorithm was 
initially introduced in [7] for noise cancellation purposes. 
Channel and diversity models are tested with analysis and 
simulations and by comparing them with the literature. Several 
simulation studies are performed with the practical algorithms.  

The paper is organized as follows. In Section II we present 
the channel and diversity models. Basic rational decision 
theory concepts and the performance metric are introduced in 
Section III. The power control methods under study are 
presented in Section IV. In Section V the performance of these 
methods are measured and discussed. Finally, the paper is 
concluded in Section VI with a summary of the main results. 

II. SYSTEM MODEL 
Wireless links can be considered within the framework of 

individual rationality used in the decision theory. We consider 
a nonergodic slowly varying channel, corresponding to low 
mobility that can be modelled using the Doppler power 
spectrum [8]. The rate of the channel variation, i.e., the effect 
of mobility, can be characterized by Doppler frequency fd. A 
flat Doppler power spectrum corresponds to urban, where the 
transmitter is set above rooftop level, and indoor environments 
[6]. To obtain flat Doppler power spectrum, the time-variant 
channel gain is written using sum of complex exponentials as 

 ∑=
=

+
N

i

iikfjeakh
1

)2(][ φπ                              (1) 

where N is the number of multipath components, a is the 
amplitude of every complex exponential, fi is the Doppler shift 
of the ith component, φi  is the random phase shift of the ith 
component uniformly distributed in range [0, 2π[ and k is time. 

If the Doppler shifts of complex exponentials are equally 
spaced between [-fd, fd] the channel gain becomes periodic. 
Periodicity can be removed if the shifts are properly chosen to 
make channel gain quasi-periodic. The Doppler shift range is 
divided into N equal size parts. The frequencies of the 
components differ a random uniformly distributed amount 
from the equal space solution. With these selections, we obtain 
the whole spectrum range to use in every simulation. The 

This work has been performed in the framework of the RATIONALE project, 
which is partly funded by MATINE, i.e., Scientific Advisory Board of the 
Finnish Defense Forces. 
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spectrum is made symmetric over zero frequency, which makes 
the autocorrelation function of the channel real. This selection 
makes simulations faster. 

Major approaches for normalization of the channel include 
normalization of the average energy gain or the peak energy 
gain to unity, i.e., average and peak normalization, respectively 
[9]. When peak normalization is used, a = 1/N in (1). If average 
normalization is used, a = N/1 . 

In a diversity system the transmitter power control 
algorithm should control the power of the diversity combiner 
output in the receiver. The model for simulating diversity is 
shown in Fig.1. The proposed model is equivalent with the 
analysis done in [10]. Data can be added as shown when no 
intersymbol interference (ISI) is present and the system is 
coherent. ISI would make the noise correlated at separate 
sampling instants and thus the model would not be applicable. 
We assume linear, slowly fading, and frequency nonselective 
channel. 

2

2

 
Figure 1.  Simulation model for diversity, coherent system. 

III. RATIONAL DECISION THEORY CONCEPTS 
In finance theory the reward is measured as an expected 

return r on investment in excess of some predefined threshold t 
[3]. In adaptive transmission, the return is the actual link 
spectral efficiency r for certain energy “investment”. The 
reward d is the difference between the expected value of the 
link spectral efficiency μr = E[r], and the target link spectral 
efficiency t, d = E[r – t] = μr – t.  

The notion of risk is applied in economics as a property of 
uncertain options or lotteries, which affects decision-making. 
In adaptive transmission the risk can be measured with nth root 
of the nth order lower partial moment of the link spectral 
efficiency distribution pr(r) [3] 

 ∫ ∞−
− ≥−=
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r

n
n ndrrprttl 0,)()()( .  (2) 

When n = 0, we have the outage probability. A risk 
measure with value n = 1 is called expected shortfall [11]. This 
meter is commonly used in nuclear engineering. In addition to 
the probability, the metric includes the magnitude of the 
potential shortfall. However, large infrequent losses represent 
the same risk as small and frequent losses. When n > 1, user’s 
risk aversion can be used. The risk aversion means that a 
rational user, when offered several power control schemes with 
the same expected link spectral efficiency, prefers the scheme 
with the lowest risk. For analytical tractability, n = 2 is used in 

[3] and [4]. The second order partial moment )(2 tl −  is known as 
the below-target semivariance.  

Basically, the proposed risk measure defines how far we are 
from the desired value. When probability of outage is used as a 
performance criterion, the performance of the link is good 
enough above the certain threshold and not working at all 
below the threshold. Proposed risk measure defines how badly 
fading affects the performance in a smoother way. The 
usability worsens when distance to the desired value increases. 
Video transmission is a good example of the phenomenon. The 
quality of the video becomes worse but still something can be 
seen and understood. 

In decision theory, and especially in mean-risk models, the 
term “efficiency” refers to the optimal trade-off between mean 
performance and risk associated with a given mean 
performance. A trade-off between reward and risk is measured 
quantitatively by a reward-to-semivariability ratio. The most 
general reward-to-semivariability ratio is Kappa ratio, which is 
defined as the ratio of the reward to the nth root of the nth 
order partial moment, 
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The optimal scheme is the one with the highest reward-to-
semivariability ratio κn(t) since it maximizes the reward per 
unit of risk taken. The optimal combinations of mean 
performance and risk are called efficient combinations [12]. 
The efficient frontier is the fundamental limit of the mean-risk 
performance because no other scheme can be constructed that 
achieves the performance above the efficient frontier.  

IV. ADAPTIVE POWER CONTROL METHODS 

A. Theoretical methods 
Power control algorithms can, in general, be divided into 

water filling and truncated channel inversion (TCI). If water 
filling is used the transmitted energy is Etx = Ētx(1/ γ0 −1/ γH ) 
for γH ≥ γ0 and zero otherwise where quality of the channel is 
defined as γH = Ētx|H|2 / N0, γ0 is a cut-off value, which is found 
by numerically solving (4.15) in [13]. Ētx is average transmitted 
energy per symbol, and |H|2 is the instantaneous energy gain of 
the channel. If truncated channel inversion is used, the 
transmitted energy is  

 Etx = Ētx(σ0 / γH )     (4) 

for γH ≥ γ0 and zero otherwise where σ0 is a constant selected so 
that the average transmitted energy is Ētx. The cut-off value is 
found by numerically maximizing (4.22) in [13]. The cut-off 
value is γ0 = 0 for full channel inversion. Ē denotes expectation 
of a random variable E. Basically the difference between the 
described two approaches is that the water filling allocates 
more power to the better channel states whereas channel 
inversion aims at maintaining the desired signal strength at the 
receiver by inverting the channel power gain based on the 
channel estimates. Several practical approaches can be called 
inverse power control approaches.  
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B. FxLMS algorithm 
Filtered-x least-mean-square (FxLMS) algorithm was 

proposed for adaptive inverse power control in [6]. The 
algorithm updates the coefficient ck of a one-tap filter as  

 kkkk xcc εμ '
1 += −                                        (5) 

where μ is the adaptation step size of the algorithm, the filtered 
input signal is xk

’ =|xk ĥk | , ĥk   is the estimated instantaneous 
channel gain, and εk  is the error signal to be minimized. The 
optimum step size with estimated channel gain is given by  

 

term

22
opt

)ˆ(

1

chx kk +
=μ    (6)  

where cterm is a small number that prevents the adaptation step 
size to grow to infinity when the estimated received power is 
very small. When we are using the FxLMS algorithm for 
power control, we can reduce the complexity of the transmitter 
by doing as much as possible calculations at the receiver. This 
reduces also information in the feedback channel since only 
signal ck-1 is needed to be sent to the transmitter. 

C. Fixed and variable step adjustment power control 
Typically the power control time interval in the code 

division multiple access (CDMA) system is around 1 ms [14]. 
CDMA power control employs both closed and open loop 
methods; we restrict our investigation purely on closed loop 
part and use the same 1 ms interval. Base station measures the 
signal-to-interference ratio (SIR) or the average received power 
over m symbols and compares it to a reference power level Pref. 
As a result of a comparison the base station tells mobile station 
to adjust its transmission power upwards or downwards by a 
control step size ΔP. Practical fixed-step adjustment power 
control (FSAPC) method uses 1 dB steps. The power control 
algorithm can be written as 

 PCPP kkk Δ+= −1  [dB]                          (7)  

where the power control command is 
⎩
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weakness of this fixed-step power control method is that it is 
still too slow for fast moving vehicles since the fading can be 
tens of dB even every half a carrier wavelength. 

Variable step power control methods have been proposed to 
overcome the weakness of the fixed step solution. The basic 
idea is that when the power of received signal is far from the 
desired, the control step is increased to reach the desired level 
faster [15], [6]. The power control command for variable step 
adjustment power control (VSAPC) is [15] 
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where Perr is the power of error signal in dB and κ = 0.5ΔP. 
Thus, the control speed with this method is up to 3 dB/power 
control command. 

A recently proposed adaptive closed loop power control 
(ACLPC) method is described in [16]. The uplink receiver 
estimates the signal-to-interference and noise ratio (SINR) of 
the received signal and compares it with the SINR target value. 
If the estimated value is below the target, transmission power is 
increased. Otherwise, the transmitted power will be decreased. 
TPC command is checked in every subframe whose duration is 
1 ms. Thus, we use the same model as previously to see the 
performance of the closed loop part. Power control command 
Ck values are Ck = {–4, –1, 1, 4} (dB) which means that only 
two bits are needed for transmitter power control (TPC) 
command.  

V. RESULTS 
Probability density function of the received SNR value 

using diversity is plotted in Fig. 2. The analytical result is 
plotted using (14.4–13) from [10] and the simulated result 
using our proposed model shown in Fig. 1. Number of diversity 
channels is L = 4. In simulations, a channel is modeled using 
(1). Simulated results match very well with the analytical ones. 
The results shown here verify that the channel model and the 
diversity model can be used in adaptive transmission technique 
studies.  
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Figure 2.  Probability density function of SNR for diversity system. 

We considered both single-input single-output (SISO) and 
diversity channels in TCI simulations. MRC diversity (L = 2 
and L = 4) was considered in diversity experiments and the 
model proposed in Fig. 1 was used. The results are plotted in 
Figs. 3–5. The analytical Rayleigh channel results in Fig. 3 are 
plotted using (48) and (50) from [17] to define the value of r 
for calculations. Target link spectral efficiency for the 
experiments was set to t = 2 bits/s/Hz. The mean link spectral 
efficiency is averaged over transmitted values, excluding the 
outages. 

When SISO channel is considered, there is a clear turning 
point in the risk-return curve. The capacity of the Rayleigh 
fading channel with the total channel inversion is zero which 
means that the risk is very high. The risk is also high with sum-
of-complex exponentials channel but the capacity is not zero. 
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approaches because it can keep the received SNR high enough 
also during the deep fades.  
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Figure 6.   Risk-reward performance of practical power control rules in a 
SISO channel. 

The FxLMS method gives the best performance and the 
FSAPC method is clearly the worst. FxLMS, VSAPC, and 
ACLPC methods have bigger step sizes which make adaptation 
faster. This can be seen in the rise times in Table 1. Rise time is 
the time required for the received signal to change from the 
initial value, when transmitted signal is 0 dB, to the required 10 
dB value in a time-variant channel. The results shown are 
average values over several simulations. In addition, the system 
does not spend so much time during the deep fade than with 
smaller adaptation steps. That is the reason for the better risk 
performance. Since the FxLMS control is the best in reward 
and equally good with the VSAPC in risk performance, it 
achieves the best risk-reward values using the Kappa ratio 
defined in (3) as a measure. The risk-reward performance 
difference between methods is very clear when we look at the 
Kappa ratio values in Table I.  

TABLE I.  PERFORMANCE OF THE PRACTICAL ALGORITHMS 

 Rise time 
(ms) 

Standard 
deviation 

(dB) 

Kappa 
ratio 

Average 
transmitted 

SNR (dB) [9] 
FSAPC 19 1.48  1.32 25.71 
ACLPC 7 1.09 1.66 26.75 
VSAPC 9 1.04 2.30 26.68 
FxLMS 4  1.03 2.48 26.65 

 

There is a problem with the nonfixed average power 
constraint in the performance comparison since different 
methods use different amount of transmitted energy for 
communication. However, the difference is very small between 
ACLPC, VSAPC, and FxLMS methods as shown in Table 1. 
Thus, the performance comparison between these methods is 
pretty fair. FSAPC method suffers since it is spending more 
time during deep fades with a lower power and consequently 
the outage is also higher. Standard deviation of the received 
SNR, averaged in decibel domain, shows clearly the gain of 
using adaptive step sizes in control. Based on the achieved 
results, adaptive step sizes are much more preferable to be used 
in communication.  The FxLMS algorithm achieves the best 
performance with a given fundamental metric. 

VI. CONCLUSIONS 
We have presented models for fading channel and diversity 

combining and verified the models with the simulations and 
results from the literature. Risk-reward performance metric is 
given for the developed channel and diversity models and used 
in the performance measurements. Both analytical and 
simulated results show that the proposed method leads to a 
solution that gives a slightly worse capacity with a better delay 
performance than the state-of-the art solution, giving new 
insights for the adaptive transmission strategy development. 
Our proposed FxLMS outperforms other practical methods in 
rise time, standard deviation of the SNR values, and in risk-
reward performance. Actually, many practical algorithms can 
be seen as special cases of it. Use of the FxLMS algorithm 
makes general investigation of adaptive power control possible. 
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The high risk comes from the fact that without any cutoff the 
transmitted signal has to be transmitted also during the deepest 
fades in the channel. 
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Figure 3.  Risk-return curves of truncated channel inversion over SISO and 
diversity channels 

Total channel inversion can be used only with channels 
having E[1/|h|²] < ∞ which is not valid for the Rayleigh channel 
[2]. Sum-of-complex exponentials channel achieves slightly 
better risk-reward performance since the model does not 
include zero gain and the peak gain is limited. In the following 
figures, only sum-of-complex exponentials channel is 
considered. 
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Figure 4.  Risk curves of truncated channel inversion over SISO and diversity 
channels. 

When we start to increase the cutoff value from the zero in 
SISO channel the below-target semideviation reduces and at 
the same time the link spectral efficiency increases. Risk 
reduces since the power is not wasted in deepest fades. After a 
certain minimum-risk point, the risk starts to increase again 
because the probability of outage increases. The risk curve for 
all the cases can be seen in Fig. 4. The link spectral efficiency 
increases further when cutoff is increased until the maximum 
capacity scheme is achieved and after that increasing outage 
probability starts to reduce the return as seen in Fig. 5. With 
very high cutoff the risk is again very high and the link spectral 
efficiency approaches zero. When diversity is applied the risk 
is very small with low cutoff values and thus the risk-return 

performance is also good. However, maximum capacity point 
is achieved with a higher cutoff than in the SISO channel. 

Traditionally used maximum capacity approach gives 
different rules for power control than the rational decision 
theory. Actually, even though the maximum capacity scheme 
for diversity channel requires use of the cutoff, authors in [17] 
suggest that with diversity total channel inversion might be 
better choice than truncated channel inversion. The rational 
decision-making leads unambiguously to this solution. 
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Figure 5.  Return curves of truncated channel inversion over SISO and 
diversity channels. 

Results shown above suggest rethinking of optimal way to 
set thresholds for truncated channel inversion power control. 
Use of risk-reward approach gives lower threshold for SISO 
channel, leading to slightly lower link spectral efficiency but 
also with a lower probability of outage. This means that delays 
are shorter. When diversity is applied the proposed approach 
leads clearly to the conclusion of using full inversion for 
transmission, again with slightly lower reward but with no risk, 
i.e., without outages. The curves are mostly smooth but with 
low cutoff values there is small inaccuracy in SISO channel. 
This is due to the fact that we are operating with the tail values 
of the energy distribution. There are fewer samples in these 
values and thus the estimate of the average obtained with 
Monte Carlo method is not so accurate anymore. The problem 
disappears when diversity is applied. 

Risk-reward performance of the practical full inversion 
power control algorithms cannot be measured using exactly the 
same method than above. The reason is that outage has to be 
defined in a different way and the average transmission power 
cannot be fixed if the aim is to keep the received SNR 
adaptively at the target level. We define an outage as a received 
signal level that is more than 2 dB below the target. Based on 
Vysochanskij-Petunin inequality and assuming 1 dB standard 
deviation, roughly 90 percent of cases are closer than 2 dB to 
the desired value. Now the risk-reward performance is given 
with one single point for each power control rule. The results 
are shown in Fig. 6. The result of a simulation with an optimal 
inversion is also provided and the risk of being 2 dB below the 
target is shown to be zero. Mean link spectral efficiency with 
the optimal inversion is slightly better than with the adaptive 
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approaches because it can keep the received SNR high enough 
also during the deep fades.  
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Figure 6.   Risk-reward performance of practical power control rules in a 
SISO channel. 

The FxLMS method gives the best performance and the 
FSAPC method is clearly the worst. FxLMS, VSAPC, and 
ACLPC methods have bigger step sizes which make adaptation 
faster. This can be seen in the rise times in Table 1. Rise time is 
the time required for the received signal to change from the 
initial value, when transmitted signal is 0 dB, to the required 10 
dB value in a time-variant channel. The results shown are 
average values over several simulations. In addition, the system 
does not spend so much time during the deep fade than with 
smaller adaptation steps. That is the reason for the better risk 
performance. Since the FxLMS control is the best in reward 
and equally good with the VSAPC in risk performance, it 
achieves the best risk-reward values using the Kappa ratio 
defined in (3) as a measure. The risk-reward performance 
difference between methods is very clear when we look at the 
Kappa ratio values in Table I.  

TABLE I.  PERFORMANCE OF THE PRACTICAL ALGORITHMS 

 Rise time 
(ms) 

Standard 
deviation 

(dB) 

Kappa 
ratio 

Average 
transmitted 

SNR (dB) [9] 
FSAPC 19 1.48  1.32 25.71 
ACLPC 7 1.09 1.66 26.75 
VSAPC 9 1.04 2.30 26.68 
FxLMS 4  1.03 2.48 26.65 

 

There is a problem with the nonfixed average power 
constraint in the performance comparison since different 
methods use different amount of transmitted energy for 
communication. However, the difference is very small between 
ACLPC, VSAPC, and FxLMS methods as shown in Table 1. 
Thus, the performance comparison between these methods is 
pretty fair. FSAPC method suffers since it is spending more 
time during deep fades with a lower power and consequently 
the outage is also higher. Standard deviation of the received 
SNR, averaged in decibel domain, shows clearly the gain of 
using adaptive step sizes in control. Based on the achieved 
results, adaptive step sizes are much more preferable to be used 
in communication.  The FxLMS algorithm achieves the best 
performance with a given fundamental metric. 

VI. CONCLUSIONS 
We have presented models for fading channel and diversity 

combining and verified the models with the simulations and 
results from the literature. Risk-reward performance metric is 
given for the developed channel and diversity models and used 
in the performance measurements. Both analytical and 
simulated results show that the proposed method leads to a 
solution that gives a slightly worse capacity with a better delay 
performance than the state-of-the art solution, giving new 
insights for the adaptive transmission strategy development. 
Our proposed FxLMS outperforms other practical methods in 
rise time, standard deviation of the SNR values, and in risk-
reward performance. Actually, many practical algorithms can 
be seen as special cases of it. Use of the FxLMS algorithm 
makes general investigation of adaptive power control possible. 
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ABSTRACT 

Secondary use of the satellite spectrum by a terrestrial system is studied in this paper, focusing on 

broadcasting satellite services. Both spectrum sensing based access and database based access are 

discussed. Link budget analysis is used to define operational limits for spectrum sensing and transmission 

power control when the primary system is a digital video broadcasting – satellite services to handheld 

devices (DVB-SH) system. The results show that cognitive radio techniques should be applied with 

caution in satellite bands. The energy detection method does not support well spectrum sharing in the 

studied band. Rather the sensing should be based on the feature detection or matched filter detection. The 

results show that only short-range transmission can be used on a secondary basis in many environments 

when the secondary spectrum use is based on the sensing. 

KEYWORDS 

Cognitive Radio, Dynamic Spectrum Access, Mobile Network.  

1. INTRODUCTION 

Emergence of cognitive radio (CR) techniques has had a significant role in the wireless research 

during the last decade. CR techniques have been proposed to improve the spectrum occupancy 

by exploiting the unused parts of the spectrum without interfering with the primary users (PU) 

having either higher priority or legacy rights [1], [2]. The CR research work has focused 

strongly to the terrestrial systems, identifying solutions to spectrum awareness, resource 

management, and interference problems. Even though the work has progressed considerably, it 

is estimated that CRs will be adopted by mainstream only after 10+ years [3]. One of the key 

factors slowing down the adoption process is the difficulty in defining suitable bands for 

secondary operation. 

 

There are several interesting spectrum band candidates for the secondary spectrum use, 

including e.g., TV bands due to the deterministic traffic and the suitable penetration 

characteristics. However, many other bands need to be studied carefully to find space for the 

ever-increasing demand for wireless services. Satellite communications and bands have not 

been explored much in the CR research literature. However, cognitive radio techniques could be 

applied in satellite communication systems in several different ways. A secondary system can 

operate at the satellite bands using the cognitive principles to avoid interfering with the primary 

satellite system. The satellite system itself can be made more intelligent by applying cognitive 

techniques in it. It is even possible that the satellite system accesses the band used by another 

communication system and operates as a secondary user in that band [4].  
 
The purpose of our paper is to study the secondary terrestrial use of the satellite DVB-SH 

spectrum, focusing especially on the spectrum sensing requirements and transmission power 

limits for the secondary system while assuming realistic models for propagation. A part of our 
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Figure 1.  A secondary spectrum use scenario with a DVB satellite.  

3. SYSTEM MODEL 

Fig. 1 presents the system model for the studies. A terrestrial secondary system provides data 

transmission for its users. The secondary network operates in the same frequency band and 

geographical area with the primary DVB-SH satellite system. The primary system architecture 

is a hybrid one combining a satellite component and where necessary, terrestrial repeaters to 

complement reception in areas where the satellite reception is difficult. Repeaters may send 

information from the local content or from the satellite signal. The system can transmit either an 

orthogonal frequency division multiplexing (OFDM) or a time-division multiplexing (TDM) 

signal over the satellite link or an OFDM signal over the terrestrial link. The frequency band is 

the S band between 2.17 GHz and 2.2 GHz. 

The secondary system is using the spectrum resources that are available, without interfering 

with the primary satellite system that is located in the geosynchronous earth orbit (GEO). The 

secondary network uses either spectrum sensing or database access to spectrum that it is using at 

times and locations where the primary user is not present. Fig. 2 describes the spectrum sensing 

task inside the satellite spot both for the terrestrial signal sent by the DVB-SH repeater and for 

the satellite signal. Sensing can be performed either via mobile devices or via fixed sensing 

stations with high-gain antennas. 

Energy detection is a simple method that can be used to detect any signals in the band with a 

fast manner. However, it is not a suitable method for detection in the very low SNR regime. The 

limitations of the real energy detection equipment have been reported in the literature. For 

example, in the article [13] the sensing threshold of a commercial energy detection device is 10 

dB above the noise floor that is already a rather sensitive threshold. Very low threshold causes 

significant amount of false alarms, i.e., the sensor claims that there is a user in the band even if 

there is no user at all. In addition, detection of weak signals requires a longer integration time 

than the detection of strong signals in the band. However, the sensor cannot detect signals below 

a fundamental limit called SNR wall, no matter how long it can observe the channel. The SNR 

wall for energy detection is -3.3 dB when the noise uncertainty is 1 dB [14]. 
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work done in the satellite downlink is reported in [4]. However, our previous paper studies only 

satellite downlink sensing. Since spectrum sensing performance partly defines the transmission 

power of the secondary system, we consider here the research question: What transmission 

power levels are supported by which spectrum sensing techniques/detection thresholds? That 

information is used to define what kind of secondary systems could operate in this band.   

 

The studied DVB-SH system can be seen as a general broadcasting scenario in frequencies 

below 3 GHz and thus the carried research provides useful information on the applicability of 

CR techniques in related scenarios as well. Both the indoor and outdoor scenarios in the urban 

and suburban environments are considered. The proposed estimation method does not require 

exact channel knowledge between the primary transmitter and the secondary sensor. We focus 

on the terrestrial part of the hybrid satellite-terrestrial system. In addition to sensing related 

investigation, we will also discuss about the possibility to use databases for spectrum sharing 

between systems. 

 

The organization of the paper is as follows. Related work is presented in Section II and the 

system model in Section III. Achieved results concerning link budget and spectrum sensing 

ranges are shown in Section IV. Transmission power limits are estimated in Section V. The 

database approach is reviewed in Section VI and finally the paper is concluded in Section VII. 

2. RELATED WORK 

Spectrum sharing in satellite bands has been discussed by regulation authorities actively, e.g., in 

[5], [6] where Worldwide Interoperability for Microwave Access (WiMAX) and International 

Mobile Telecommunications-Advanced (IMT-Advanced) systems were considered. The results 

of [5] show that criteria where the fixed satellite services (FSS) antennas cannot co-exist with 

WiMAX systems range from 50 km to over 200 km. Use of adaptive antennas is shown to 

remarkably reduce the range requirements in [6].  

 

There is a growing interest in spectrum sharing in satellite bands in the research community. 

Secondary use of terrestrial spectrum by a satellite system in the Ka band using highly directed 

antennas was considered in [4]. An extension of a terrestrial 3GPP Long Term Evolution (LTE) 

network by a satellite LTE system to provide coverage in areas where building infrastructure is 

too expensive was also investigated in [4]. Both the satellite and terrestrial components were 

operating in the 2.6 GHz band. Load-balancing in satellite-terrestrial wireless networks was 

investigated in [7]. Other hybrid satellite terrestrial systems have been proposed in [8] and [9]. 

The idea in these papers is to use the satellite to assist the terrestrial secondary network. In [8], 

the satellites are used to connect the terrestrial cells, which are operating as secondary users of 

the spectrum, to each other. The base station sends uplink data towards satellite. Downlink data 

are in both scenarios received by the base stations. In the architecture described in [9], the 

satellite is the central controller; i.e., it is in charge of the spectrum allocation and management.  

 

It is shown in [10] that cyclostationary features of satellite signals help secondary operation in 

the same spectrum. Cyclostationarity affects both the secondary signal design and reliable 

detection of the satellite signals. A recent paper [11] proposes a satellite-based multi-resolution 

compressive spectrum detection algorithm to help the coexistence of a mobile satellite system 

and an infrastructure based wireless terrestrial network. Secondary use of satellite spectrum is 

considered also in [12]. The article investigates power allocation strategy for cognitive radio 

terminals which are using the spectrum of a primary DVB-SH system. In the proposed strategy 

it is assumed that the secondary system is able to collect all the relevant propagation 

information of both secondary and primary systems. In reality, the exact PU system information 

might not be available.  
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Figure 1.  A secondary spectrum use scenario with a DVB satellite.  

3. SYSTEM MODEL 

Fig. 1 presents the system model for the studies. A terrestrial secondary system provides data 

transmission for its users. The secondary network operates in the same frequency band and 

geographical area with the primary DVB-SH satellite system. The primary system architecture 

is a hybrid one combining a satellite component and where necessary, terrestrial repeaters to 

complement reception in areas where the satellite reception is difficult. Repeaters may send 

information from the local content or from the satellite signal. The system can transmit either an 

orthogonal frequency division multiplexing (OFDM) or a time-division multiplexing (TDM) 

signal over the satellite link or an OFDM signal over the terrestrial link. The frequency band is 

the S band between 2.17 GHz and 2.2 GHz. 

The secondary system is using the spectrum resources that are available, without interfering 

with the primary satellite system that is located in the geosynchronous earth orbit (GEO). The 

secondary network uses either spectrum sensing or database access to spectrum that it is using at 

times and locations where the primary user is not present. Fig. 2 describes the spectrum sensing 

task inside the satellite spot both for the terrestrial signal sent by the DVB-SH repeater and for 

the satellite signal. Sensing can be performed either via mobile devices or via fixed sensing 

stations with high-gain antennas. 

Energy detection is a simple method that can be used to detect any signals in the band with a 

fast manner. However, it is not a suitable method for detection in the very low SNR regime. The 

limitations of the real energy detection equipment have been reported in the literature. For 

example, in the article [13] the sensing threshold of a commercial energy detection device is 10 

dB above the noise floor that is already a rather sensitive threshold. Very low threshold causes 

significant amount of false alarms, i.e., the sensor claims that there is a user in the band even if 

there is no user at all. In addition, detection of weak signals requires a longer integration time 

than the detection of strong signals in the band. However, the sensor cannot detect signals below 

a fundamental limit called SNR wall, no matter how long it can observe the channel. The SNR 

wall for energy detection is -3.3 dB when the noise uncertainty is 1 dB [14]. 
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Table 1. Terrestrial link budget with interference margins and spectrum sensing link 

budget for terrestrial signals. 

                  Indoor with interference        Outdoor with  interference 

Parameters Unit Urban Suburban Urban  Suburban 

Useful 

bandwidth 

MHz 4.75 4.75 4.75 4.75 

Modulation  QPSK QPSK QPSK QPSK 

EIRP dBm 55.1 55.1 55.1 55.1 

Required 

C/N 

dB 2.8 2.8 2.8 2.8 

Rx antenna 

gain 

dB -3.0 -3.0 -3.0 -3.0 

Noise figure dB 4.5 4.5 4.5 4.5 

Rx noise 

level 

dBm -102.7 -102.7 -102.7 -102.7 

Minimum Rx 

level at the 

antenna, Rs 

dBm -96.9 -96.9 -96.9 -96.9 

Avg. 

building 

penetration 

loss 

dB 16.0 14.0 0.0 0.0 

Shadow 

fading 

margin  

dB 11.6 11.6 8.7 8.7 

SFN network 

gain, G 

dB 4.7 0.0 4.7 0.0 

Minimum 

signal level  

dBm -74.0 -71.3 -92.9 -88.2 

Maximum 

path loss, Lm 

dB 129.1 126.4 148.0 143.3 

Interference 

margin 

dB 0.5 or 1.0 0.5 or 1.0 0.5 or 1.0 0.5 or 1.0 

Cell range, 

COST231-

HATA 

model 

km 0.519 0.987 1.786 2.978 

Cell range, 

0.5 dB 

margin 

km 0.502 0.955 1.727 2.882 

Cell range,  

1.0 dB 

margin 

km 0.486 0.924 1.672 2.789 

Sensing parameters 

Detection 

threshold 

dBm Ss Ss Ss Ss 

Combined 

losses Lc 

dB 27.6 25.6 8.7 8.7 

Maximum 

path loss,  

Lm 

dB 55.1–27.6+ 

G–Ss 

55.1–25.6+ G–

Ss 

55.1–8.7+ G–Ss 55.1–8.7+ G–Ss 
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Figure 2.  Spectrum sensing of A) terrestrial signal and B) satellite downlink signal inside the 

satellite spot. 

The performance of sensing can be increased with the knowledge of the primary signal. The 

feature detection requires partial knowledge of the signal whereas the matched filter detection 

needs a perfect knowledge on the signal. For example, reliable sensing of the DVB-T signal can 

be achieved at SNR = -20dB even with a hardware implementation [15]. The matched filter 

detection can provide even better performance since it is the optimal detection method for a 

known signal. The feature detection method seems to be very promising for the satellite DVB-

SH signal detection as well. 

It was shown in [4] that portable sensing devices can be used for downlink sensing only if the 

sensing method itself is good enough. The feature detection and especially matched filter 

detection can perform reliably in the satellite downlink signal sensing even with portable 

devices. Separate sensing stations with high gain antennas are required if energy detection is 

used for the same purpose. An interesting task then is to define requirements both for the 

sensing and transmission power of the secondary system when the terrestrial component of the 

DVB-SH system is considered as well. 

4. SENSING RANGES OF DIFFERENT METHODS FOR TERRESTRIAL 

TRANSMISSION 

The requirement to detect the terrestrial DVB-SH transmission in decibel domain is 

 

 Pdvb – rs  Ss           (1) 

 

where Pdvb is the transmission power of the terrestrial repeater, rs is the attenuation between the 

repeater and a sensing radio, and Ss is the detection threshold of the CR. If no detection occurs, 

there is no signal present or it is attenuated so much that it cannot be sensed. From (1) we can 

define 

  

 max = Pdvb – Ss          (2) 

 

for the maximum path loss. Usual transmission power Pdvb for the repeater given in EIRP is 55.1 

dBm [16]. Assuming shadowing margins calculated for the 95 % coverage in [16] we can now 

define the values for the sensing. Link budget for sensing is presented in the Table 1. 
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Table 1. Terrestrial link budget with interference margins and spectrum sensing link 

budget for terrestrial signals. 

                  Indoor with interference        Outdoor with  interference 

Parameters Unit Urban Suburban Urban  Suburban 

Useful 

bandwidth 

MHz 4.75 4.75 4.75 4.75 

Modulation  QPSK QPSK QPSK QPSK 

EIRP dBm 55.1 55.1 55.1 55.1 

Required 

C/N 

dB 2.8 2.8 2.8 2.8 

Rx antenna 

gain 

dB -3.0 -3.0 -3.0 -3.0 

Noise figure dB 4.5 4.5 4.5 4.5 

Rx noise 

level 

dBm -102.7 -102.7 -102.7 -102.7 

Minimum Rx 

level at the 

antenna, Rs 

dBm -96.9 -96.9 -96.9 -96.9 

Avg. 

building 

penetration 

loss 

dB 16.0 14.0 0.0 0.0 

Shadow 

fading 

margin  

dB 11.6 11.6 8.7 8.7 

SFN network 

gain, G 

dB 4.7 0.0 4.7 0.0 

Minimum 

signal level  

dBm -74.0 -71.3 -92.9 -88.2 

Maximum 

path loss, Lm 

dB 129.1 126.4 148.0 143.3 

Interference 

margin 

dB 0.5 or 1.0 0.5 or 1.0 0.5 or 1.0 0.5 or 1.0 

Cell range, 

COST231-

HATA 

model 

km 0.519 0.987 1.786 2.978 

Cell range, 

0.5 dB 

margin 

km 0.502 0.955 1.727 2.882 

Cell range,  

1.0 dB 

margin 

km 0.486 0.924 1.672 2.789 

Sensing parameters 

Detection 

threshold 

dBm Ss Ss Ss Ss 

Combined 

losses Lc 

dB 27.6 25.6 8.7 8.7 

Maximum 

path loss,  

Lm 

dB 55.1–27.6+ 

G–Ss 

55.1–25.6+ G–

Ss 

55.1–8.7+ G–Ss 55.1–8.7+ G–Ss 
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Figure 3. Spectrum sensing of terrestrial DVB-SH transmission in urban environment, sensor 

located indoor. 

 

5. TRANSMISSION POWER LIMITS 

The interference caused by simultaneous transmission at the same band causes interference if 

the coexisting system is located too close. The interference management in the spatial domain in 

sensing-based system [18] is shown in Fig. 4. The red circle with a red receiver represents the 

primary DVB-SH system whereas the secondary system is shown with the blue colour. 

Communication ranges of the primary and secondary systems are marked with rt and rd, 

respectively. Inside the communication range, the signal-to-noise ratio (SNR) is large enough to 

decode transmitted data. Transmission power of the transmitter, together with the channel, 

defines both the communication range and the interference range of the system. When the 

secondary transmitter is sending data, it is interfering with the victim receivers up to the 

interference range of ri > rd. The interference range of the primary system is rw.  

A cognitive radio can only detect the local situation around it. The sensing range of the 

secondary system, i.e., the maximum range to detect the primary transmission is rs and is 

defined using (2) and (3). The range should be rs  ri + rt to protect the PU from interference. 

The Table I includes also estimates on the cell sizes for the different interference margins. The 

interference range of the secondary transmission system can be calculated using the 1 dB or 0.5 

dB coexistence criterion, i.e., signal power received at the DVB-SH receiver by secondary 

transmission Psp should be 6 dB below the noise floor to decrease C/N by 1 dB or 9 dB below 

the noise floor to decrease C/N only by 0.5 dB. Now, 

 Psp   N + NF – X dB,    (8) 

 

where N is the noise floor and NF is the noise figure of the primary receiver, and X is either 6 dB 

or 9 dB. Because the CR system does not receive any information from other systems we 

assume the worst case scenario to guarantee interference-free communication for the primary 

system. Thus, there is only path loss between the secondary transmitter and the primary receiver 

but fading between the primary transmitter and the secondary receiver as well as in the 

secondary link. Inequality (8) can be written as 

 Psp = Psu – rs  N + NF – X dB.          (9) 
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The Cost231-HATA model that was also adopted in [16] has been used in calculations. The 

standard median path loss L in urban areas is given by [17] 

L50 (urban) = 46.3 + 33.9 log f -13.82 log hB – a(hR) + (44.9 – 6.55 log hB)log d + C,  (3) 

where f is the frequency (in MHz), hB is the effective transmitter (base station) antenna height 

(in meters) ranging from 30 m to 200 m, hR is the effective receiver (mobile) antenna height (in 

meters) ranging from 1 m to 10 m, d is the distance between the transmitter and the receiver (in 

km), and a(hR) is the correction factor (in dB) for an effective mobile antenna height which is a 

function of the size of the coverage area. The correction factor for a small to medium sized city 

is 

  a(hR) = (1.1 log f -0.7) hR – (1.56 log f – 0.8)         (4) 

 

and for a large city, it is given as 

 a(hR) = 8.29(log 1.54 hR)
2
 – 1.1 for f  300 MHz        (5a) 

    a(hR) = 3.2(log 11.75 hR)2 – 4.97 for f  300 MHz.     (5b) 

 

To obtain the path loss in a suburban area, the equation (3) is modified as 

 Ls = L50(urban) – 2[log (f / 28)]2 –5.4.          (6) 

 

The factor C = 0 dB for a medium sized city and suburban areas and C = 3 dB for metropolitan 

areas. The building penetration loss and a larger shadowing margin are applied in the indoor 

environment scenarios. 

The maximum median path loss Lm for the signal to be detected in the urban environment, 

defining the attenuation to be used in the sensing range calculations is 

 

 Lm = max – Lc + G    (7) 

 

where max is defined in (2) and Lc defines the combined losses in the signal path such as the 

building penetration loss and the shadowing margin. Parameter G is the network gain that is 4.7 

dB in case of a single frequency network (SFN) that is used in the urban area [16]. The same 

equation can be used in the cell range calculations when a small modification is made. 

Parameter Ss in (2) needs to be changed to the minimum required power level at the receiving 

antenna of the primary node, parameter Rs, i.e., max = Pdvb – Rs.  

Fig. 3 shows the sensing results for the urban indoor scenario. Sensing thresholds exactly at the 

noise floor and -20 dB below the noise floor are set as examples in the figure. It can be seen that 

the energy detector able to operate exactly at the noise floor level would provide roughly 750 m 

sensing range. If the sensor can detect signals 20 dB below the noise floor, the sensing range is 

increased by 2 km. The lower threshold allows a better operational environment for the 

secondary system that starts to use the band when the DVB signal is not present at that location. 

Higher transmission powers can be used without interfering with the DVB-SH receivers. 
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Figure 3. Spectrum sensing of terrestrial DVB-SH transmission in urban environment, sensor 

located indoor. 

 

5. TRANSMISSION POWER LIMITS 

The interference caused by simultaneous transmission at the same band causes interference if 

the coexisting system is located too close. The interference management in the spatial domain in 

sensing-based system [18] is shown in Fig. 4. The red circle with a red receiver represents the 

primary DVB-SH system whereas the secondary system is shown with the blue colour. 

Communication ranges of the primary and secondary systems are marked with rt and rd, 

respectively. Inside the communication range, the signal-to-noise ratio (SNR) is large enough to 

decode transmitted data. Transmission power of the transmitter, together with the channel, 

defines both the communication range and the interference range of the system. When the 

secondary transmitter is sending data, it is interfering with the victim receivers up to the 

interference range of ri > rd. The interference range of the primary system is rw.  

A cognitive radio can only detect the local situation around it. The sensing range of the 

secondary system, i.e., the maximum range to detect the primary transmission is rs and is 

defined using (2) and (3). The range should be rs  ri + rt to protect the PU from interference. 

The Table I includes also estimates on the cell sizes for the different interference margins. The 

interference range of the secondary transmission system can be calculated using the 1 dB or 0.5 

dB coexistence criterion, i.e., signal power received at the DVB-SH receiver by secondary 

transmission Psp should be 6 dB below the noise floor to decrease C/N by 1 dB or 9 dB below 

the noise floor to decrease C/N only by 0.5 dB. Now, 

 Psp   N + NF – X dB,    (8) 

 

where N is the noise floor and NF is the noise figure of the primary receiver, and X is either 6 dB 

or 9 dB. Because the CR system does not receive any information from other systems we 

assume the worst case scenario to guarantee interference-free communication for the primary 

system. Thus, there is only path loss between the secondary transmitter and the primary receiver 

but fading between the primary transmitter and the secondary receiver as well as in the 

secondary link. Inequality (8) can be written as 

 Psp = Psu – rs  N + NF – X dB.          (9) 
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Figure 5.  Maximum transmission power of a secondary user in urban environment, sensor 

located indoor.  
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Figure 6.  Maximum transmission power of secondary user in suburban environment, sensor 

located indoor. 

Fig. 7 and Fig. 8 show results for outdoor scenarios that are much easier for the spectrum 

sensing. In the suburban environment even the energy detectors with a sensing threshold 10 dB 

above the noise floor would allow WLAN type secondary transmission in the spectrum. In the 

urban environment the sensor has to be able to detect signals reliably 10 dB below the noise 

floor to make LTE type transmission possible. In the suburban case the threshold needs to be 

only slightly below the noise level. 
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Figure 4.  Interference, sensing, and communication ranges in a primary-secondary scenario. 

We can now define the limit for the secondary transmission power as 

 Psu  L50(rs–dc) + N + NF – X dB,          (10) 

 

where rs is the sensing range of sensor, dc is the cell range of the terrestrial DVB-SH repeater 

and the path loss L is calculated using (3).  

In order to allow 0.5 dB or 1 dB degradation to the SNR level, new cell ranges need to be 

calculated for the primary system. This means that in the edge of the cell, we allow either 0.5 

dB or 1 dB attenuation to the signal due to interference. Calculations can be done with the 

modified version of (7) as discussed in the section below the equation. Now we will increase the 

minimum required power level at the receiving antenna by 0.5 dB or 1.0 dB for calculations. 

The estimated cell ranges are shown in the Table I. The results show that the reduction in the 

cell size is in the order of 3 % with the 0.5 dB margin and 6 % with the 1 dB margin. 

Estimations for the transmission power limits for the secondary user are shown in Figs. 5–8. 

Typical transmission power levels of a WLAN access point (20 dBm) and the LTE base station 

(43-48 dBm) are marked in the figures as reference points. The results are calculated for a single 

transmitter in several different scenarios. Indoor and outdoor scenarios in urban and suburban 

environments are considered. 

In Fig.5 the sensor is located indoor in the urban environment. The sensing threshold should be 

clearly below the noise level to allow even a WiFi type transmission on the same frequency 

band. The result means that energy detection cannot be used here but more powerful methods 

such as the matched filter detection are needed. The situation changes clearly when the 

suburban environment is considered as can be seen in Fig. 6. Now the sensor able to detect 

signals a few dB above the noise floor is enough for WLAN type transmission. Even LTE 

powers could be possible in the suburban indoor scenario with a sensor that can operate reliably 

more than 10 dB below the noise level. It should be remembered that the reported thresholds for 

implemented energy detectors are e.g., 10 dB above noise floor. Thus, these devices would not 

allow even short-range transmission in the studied scenario. 
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Figure 5.  Maximum transmission power of a secondary user in urban environment, sensor 

located indoor.  
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Figure 6.  Maximum transmission power of secondary user in suburban environment, sensor 

located indoor. 

Fig. 7 and Fig. 8 show results for outdoor scenarios that are much easier for the spectrum 

sensing. In the suburban environment even the energy detectors with a sensing threshold 10 dB 

above the noise floor would allow WLAN type secondary transmission in the spectrum. In the 

urban environment the sensor has to be able to detect signals reliably 10 dB below the noise 

floor to make LTE type transmission possible. In the suburban case the threshold needs to be 

only slightly below the noise level. 
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However, this is not a very realistic model. More accurate would be to use statistical models 

such as the Poisson-point process used in [19] for the secondary node placement and include the 

probability to sense the PU signal at certain location in the analysis. Cooperative sensing brings 

additional gain to the sensing, affecting also the aggregate interference value. Based on this 

discussion, we might assume that reduction of some decibels in the transmission power might 

be enough to handle the aggregate interference issue.  This is a good topic for further studies. 

6. DATABASE APPROACH 

Other approaches for spectrum sharing need to be considered since spectrum sensing, especially 

if energy detection is used, cannot support well secondary operation. The database method is a 

promising approach for spectrum sharing between the hybrid DVB-SH system and a terrestrial 

secondary system. Frequencies used by the licensed system as well as unused frequencies can 

be seen from the database. Spectrum databases are currently heavily supported in many 

terrestrial scenarios, including TV white space operation [20]. 

 

Figure 9. Spectrum access with a database. 

When the secondary system needs to transmit, it requires spectrum from the spectrum broker 

that is governing the database, and available band is given for it. Other secondary users in the 

area can then see that this particular band is occupied. Thus, the method can be used to spectrum 

sharing among secondary systems as well. The proposed method for the spectrum access using a 

database is shown in Fig. 9. First the secondary system sends the request to access the spectrum 

to the spectrum broker governing the spectrum use in that area. The location information of the 

requesting device is attached. The spectrum broker sends back a set of possible channels that 

could be used in the secondary transmission. This set is idle at the request time.  

Then, the secondary device selects a channel X to be used in the transmission and informs the 

broker about the choice. This band is reserved to the secondary system in the database so that it 

will not be offered to other requesting secondary users. The broker sends information about the 

time and power limits of the channel. The secondary system acknowledges it has received the 

restrictions regarding the channel use. Finally, it receives permission to use that channel and 

starts data transmission.  

Interference management and avoidance are easier with databases than with the spectrum 

sensing. However, the database method is not as dynamic and fast as sensing and this can 

restrict the way to operate. In addition, the use of this approach requires an extra infrastructure 

for the operation. Unlike spectrum sensing, it cannot be used straight away with the existing 

International Journal of Wireless & Mobile Networks (IJWMN) Vol. 5, No. 1, February 2013 

10 

 

 

 

-10 0 10 20 30 40 50 60
-130

-125

-120

-115

-110

-105

-100

Maximum transmission power [dBm]

R
e

q
u

ir
e

d
 d

e
te

c
tio

n
 t
h

re
s
h

o
ld

 f
o

r 
th

e
 s

e
n

s
o

r 
[d

B
m

]

Outdoor urban scenario

Noise floor

0.5 dB criterion

1 dB criterion

Typical
LTE

Typical
Wlan

 

Figure 7.  Maximum transmission power of secondary user in urban environment, sensor 

located outdoor. 

The most difficult environment is the urban case where the sensor is located indoor. The sensing 

threshold should be clearly below the noise level to allow even WiFi type transmission on the 

same frequency band. The only scenario where the conventional energy detector could support 

even the short range transmission is the suburban outdoor scenario. In other cases, more 

powerful sensing methods are needed. The difference between the transmission power limits is 

3 dB with the same detection threshold for the two considered coexistence criterions (0.5 dB 

and 1.0 dB). 
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Figure 8.  Maximum transmission power of secondary user in suburban environment, sensor 

located outdoor. 

The shown figures are restricted to a single secondary user case. Already these results show well 

that spectrum sensing should be used with caution for the spectrum access in the studied 

satellite band. In a more realistic situation, aggregate interference of several secondary users 

should be taken into account as well. A very rough estimate for the interference addition is to 

use constructive interference principle, i.e., assuming same parameters for all secondary 

transmitters and adding the interference powers together. The interference power is then 

increased by 10log (N) dB where N is the number of interferers. This means the correspondent 

reduction in the allowed transmission power for the secondary users.  
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However, this is not a very realistic model. More accurate would be to use statistical models 

such as the Poisson-point process used in [19] for the secondary node placement and include the 

probability to sense the PU signal at certain location in the analysis. Cooperative sensing brings 

additional gain to the sensing, affecting also the aggregate interference value. Based on this 

discussion, we might assume that reduction of some decibels in the transmission power might 

be enough to handle the aggregate interference issue.  This is a good topic for further studies. 

6. DATABASE APPROACH 

Other approaches for spectrum sharing need to be considered since spectrum sensing, especially 

if energy detection is used, cannot support well secondary operation. The database method is a 

promising approach for spectrum sharing between the hybrid DVB-SH system and a terrestrial 

secondary system. Frequencies used by the licensed system as well as unused frequencies can 

be seen from the database. Spectrum databases are currently heavily supported in many 

terrestrial scenarios, including TV white space operation [20]. 

 

Figure 9. Spectrum access with a database. 

When the secondary system needs to transmit, it requires spectrum from the spectrum broker 

that is governing the database, and available band is given for it. Other secondary users in the 

area can then see that this particular band is occupied. Thus, the method can be used to spectrum 

sharing among secondary systems as well. The proposed method for the spectrum access using a 

database is shown in Fig. 9. First the secondary system sends the request to access the spectrum 

to the spectrum broker governing the spectrum use in that area. The location information of the 

requesting device is attached. The spectrum broker sends back a set of possible channels that 

could be used in the secondary transmission. This set is idle at the request time.  

Then, the secondary device selects a channel X to be used in the transmission and informs the 

broker about the choice. This band is reserved to the secondary system in the database so that it 

will not be offered to other requesting secondary users. The broker sends information about the 

time and power limits of the channel. The secondary system acknowledges it has received the 

restrictions regarding the channel use. Finally, it receives permission to use that channel and 

starts data transmission.  

Interference management and avoidance are easier with databases than with the spectrum 

sensing. However, the database method is not as dynamic and fast as sensing and this can 

restrict the way to operate. In addition, the use of this approach requires an extra infrastructure 

for the operation. Unlike spectrum sensing, it cannot be used straight away with the existing 
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2) Based on the analysis and the related uncertainties, database information/passive 

spectrum awareness should be prioritized when possible. 

a. Use of these can guarantee the QoS of both the secondary and the primary 

systems.  

b. In addition, business models for this are easier to develop. 

Several issues need to be still considered before the use of cognitive radios can be allowed in 

the satellite bands. Possible topics for future studies include: A) What bands are most promising 

for spectrum sharing? B) How the selection of terrestrial channel model affects the 

performance? C) How reliably the sensor needs to be able to detect transmission? We used 95 % 

value for the sensing analysis but higher values might be needed in practice. D) Open issues for 

the database approach described in Section V need to be investigated. 
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satellite systems. When the database operation is considered, the satellite system needs to play 

its part in sharing, i.e., provide the needed information for the operation.  

A clearly advantageous feature of this type of spectrum sharing is the possibility to keep the 

situation in control. When the sharing of spectrum between the terrestrial and the satellite 

system is controlled, the systems can experience the predictable quality of service (QoS). The 

passive spectrum awareness helps the secondary system to avoid chaotic situations since the 

passively received spectrum use pattern shows the spectrum opportunities in advance. Instead 

on reactive operation, it helps the secondary user to be proactive. 

In addition, leasing the spectrum enables the primary user to get financial advantage of the 

secondary operation at the same frequencies. Actually, guaranteed QoS requirements can be met 

for both primary and secondary users only if primary users promise not to interfere. This is most 

likely only true for a fee. All these features strongly support the use of database/broker based 

access to the spectrum. 

The following requirements and open issues can be seen in this operation. 1) Location 

awareness. The secondary nodes need to have location information available. Otherwise they 

are not allowed to use the spectrum database for accessing the S band. 2) Satellite 

system/operator provides information to spectrum broker. Without the knowledge on the 

current spectrum use the broker cannot allocate resources to the users requesting it. 3) Analysis 

and experiments are needed to provide time and power limits for secondary operation. What are 

the acceptable transmission powers and continuous tranmission times when the database access 

is used? How much mobility affects to these in satellite bands? How often the secondary user 

needs to connect to the database to update the information? 

7. CONCLUSIONS 

We have investigated the secondary use of the spectrum in a satellite band below 3 GHz. 

Primary system is a DVB-SH hybrid network that is operating in the S band between 2170 MHz 

and 2200 MHz. Both a sensing based access method and a database based access method were 

described. We have calculated link budgets for the system in several different indoor and 

outdoor scenarios. Requirements for the spectrum sensing and transmission power control for 

the secondary system in these scenarios have been provided. Following conclusions can be 

drawn.  

1) With sensing, short range communication is preferred, especially in the urban scenario.  

a. The sensing threshold and the environment where the secondary system is 

operating have significant effects to the allowed transmission power level. 

b. Energy detection with the same kind of devices that are used nowadays cannot 

be used at all in many scenarios even when low power short range secondary 

operation is considered. 

c. Matched filter detection and the feature detection are needed especially when 

the secondary transmitters are using higher transmission powers.  

d. Only a single secondary transmitter was considered. If the aggregate effect of 

several transmitters is considered, even better performing sensors are needed to 

fulfil the secondary power requirements. The effects might be different in each 

of the studied scenario. 
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2) Based on the analysis and the related uncertainties, database information/passive 

spectrum awareness should be prioritized when possible. 

a. Use of these can guarantee the QoS of both the secondary and the primary 

systems.  

b. In addition, business models for this are easier to develop. 

Several issues need to be still considered before the use of cognitive radios can be allowed in 

the satellite bands. Possible topics for future studies include: A) What bands are most promising 

for spectrum sharing? B) How the selection of terrestrial channel model affects the 

performance? C) How reliably the sensor needs to be able to detect transmission? We used 95 % 

value for the sensing analysis but higher values might be needed in practice. D) Open issues for 

the database approach described in Section V need to be investigated. 
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Abstract— In this paper, a modified filtered-x least mean
square (MFxLMS) algorithm for closed loop power control is
proposed and analyzed. A practical version of the algorithm is
also developed. The FxLMS algorithm is widely used for inverse
control such as noise cancellation. This is the first paper to apply
the algorithm for power control. We have modified the
conventional FxLMS algorithm by adding absolute value blocks
since power control does not need phase information. The
modification makes the algorithm more robust and requires
fewer bits to be transmitted in the feedback link. The proposed
algorithm can be seen as generalized inverse control to be used in
power control research. It gives a unified framework for several
existing algorithms, linking them to the LMS literature.
Numerical results are provided, comparing the performance of
the proposed algorithm to existing practical algorithms used e.g.,
in wideband code division multiple access (W-CDMA) systems.

Index Terms—Power control, feedback control systems,
adaptive signal processing

I. INTRODUCTION

NVERSE control has been used for several applications
such as channel equalization [1], [2], automatic gain control

(AGC) [3], noise and interference cancellation [4], and
transmission power control [5], which is the topic of this
paper. Due to stability problems the least-mean square (LMS)
algorithm is not directly suitable for active control
applications where the adaptive filter works as a controller for
a time-variant system. Instead, the FxLMS algorithm is a good
choice for that kind of applications [4]. It is essentially the
LMS algorithm with a few little changes so that algorithm can
remain stable. The FxLMS algorithm is developed from the
LMS algorithm by inserting the model of the controlled
system between the input data signal and the adaptive
algorithm that updates the coefficients of adaptive filter. The
algorithm was introduced independently in [6], [7], and [8] for
adaptive control and noise cancellation. We propose and
demonstrate a new use of the FxLMS algorithm in this article,
namely power control.

We described the FxLMS method initially for power control
in [9] and compared it by numerical simulations to other
practical algorithms in [9] and [10]. We developed also a
truncated version of the algorithm in [11] to improve energy

Manuscript received February 25, 2014. This work was performed in the
framework of the SANTA CLOUDS project, which was partly funded by the
Finnish Funding Agency of Technology and Innovation, decision number
40196/11.

The authors are with VTT Technical Research Centre of Finland, P.O. Box
1100, FI-90571 Oulu, Finland, email: {marko.hoyhtya, aarne.mammela}
@vtt.fi.

efficiency. Truncation means that the transmission is
interrupted and transmission power is zero when the
magnitude of the channel gain deteriorates under a certain
cutoff value. Since transmission power control is a new
application for the algorithm, new phenomena occur and
modifications are needed.  Fading in the wireless channel has
a wide dynamic range and changes are fast compared to
conventional control systems.  In addition, wireless feedback
channel limits the number of bits used in control commands
[12].

In this paper, we show with analysis that the proposed
algorithm converges exactly to the wanted solution in a
noiseless channel. We restrict our investigation purely to the
closed loop part, focusing on the algorithm and thus assuming
ideal feedback [12]. Simulations show that the algorithm
converges well also in a noisy channel. We create a unified
framework for inverse power control for cellular systems. The
proposed algorithm links the existing algorithms to LMS type
of adaptive algorithms. The MFxLMS algorithm can be seen
as a generalized adaptive inverse control method and several
practical algorithms as special cases of it. In addition to
theoretical analysis, we develop a practical quantized version
of the algorithm and compare its performance to state-of-the-
art algorithms. The proposed algorithm provides a fast
adapting inverse power control solution that does not
overshoot  the  power  level  as  much  after  a  fade  as  the
conventional solution in [13]. Thus, it decreases interference
to other users in these cases. We also propose an efficient way
to implement the closed loop algorithm described in [14] as an
enhanced version of the algorithm presented in [13].

Furthermore, we present novel fast simulation models for a
fading channel and diversity. It was reported in [15] that
Jakes’ model [16] does not produce wide-sense stationary
signals. The authors of [15] proposed to improve the model by
randomizing the phase shifts of the low-frequency oscillators.
We have modified Jakes’ model further by randomizing also
the frequency shifts in the model. Several simulation studies
are performed with the practical power control algorithms
both in additive white Gaussian noise (AWGN) and fading
channels.
 The organization of the paper is as follows.  Section II
discusses related literature and Section III presents the system
model. Performance metrics are introduced in Section IV. The
MFxLMS algorithm with the convergence analysis is
presented with other adaptive inverse power control schemes
in Section V. Achieved results are provided in Section VI and
conclusions with recommendations for further work are drawn
in Section VII.

Adaptive Inverse Power Control Using the Modified
Filtered-x Least Mean Square Algorithm

Marko Höyhtyä, Member, IEEE and Aarne Mämmelä, Senior Member, IEEE
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[31].  Periodicity  can  be  removed  if  the  shifts  are  properly
chosen. The Doppler spread is divided into N equal  size
frequency bins. Within these bins the frequencies �� ,�  differ a
random uniformly distributed amount from the equal space
solution. Thus, we obtain the whole Doppler spread to use in
every simulation. The power spectrum is made symmetric
with respect to zero frequency, which makes the
autocorrelation function of the channel real. This selection
also makes simulations faster. The random phases � ,� are not
symmetric with respect to the zero frequency.

B. Diversity channel
A time-variant frequency selective channel model can be

represented with a tapped delay line as

�(�, �) = �
�
� ��(�)�(� � ��)�
��� (4)

where L is the number of tap weights and �� is the delay of �th
tap generated using (3). Now we have a flat impulse response
instead of usual exponentially decreasing model. However,
from power control point of view this does not affect since the
optimal demodulator for this signal is a coherent demodulator
that collects the signal energy from all the received signal
paths within the delay span 0 to ��  [2]. In a diversity system,
the transmitter power control algorithm should control the
power of the diversity combiner output in the receiver. There
is no loss in performance in dividing the total transmitted
signal energy differently among the L channels and thus the
model does not change the comparison between the selected
power control algorithms. Actually the time-variant channel
gain of the diversity channel can be given as

�(�) = ��
�
� |��(�)|��
��� (5)

where ��(�) is  the  channel  gain  of  the lth diversity branch,
generated using (3), and L is the number of diversity branches.
Equation (5) corresponds to the ideal maximal-ratio
combining. The channel can thus represent also a frequency
selective channel. From the subcarrier point of view,
frequency selective channel looks frequency nonselective in
an  OFDM  system  [2].  We  assume  that  no  intersymbol
interference (ISI) or interpulse interference (IPI) is present
since we use compressed pulses [2].

IV. PERFORMANCE METRICS

Suitable performance metrics are needed to fairly compare the
performance of the adaptive algorithms. One of the most
important ones to consider is the signal-to-noise ratio (SNR)
concept. The average transmitted and the average received
energies are usually normalized by the receiver noise spectral
density �� leading to the average transmitted SNR per symbol
[30]

� �� = ����/�� (6)

and the average received SNR per symbol [30]

��� = ����/��. (7)

The parameter ���� is the average transmitted energy per
symbol and ���� is the average received energy per symbol.
Transmitted energy is a basic system resource. In a mobile
system it is taken from the battery of the transmitter and is
therefore limited. Transmitted energy or equivalently
transmitted SNR should be used as a performance metric in
order to obtain fair comparisons between different adaptive
transmission systems. In adaptive transmission the average
energy gain of the channel is a function of the transmitted
signal due to correlation between the instantaneous
transmission power and the instantaneous energy gain of the
channel. The use of the received SNR as a performance
criterion in adaptive transmission system studies can lead to
misleading results as was shown in [30].

Learning curve, i.e., plotting the mean square error (MSE)
against the number of iterations, can be used to measure the
statistical performance of adaptive algorithms [1], [2]. The
MSE �(�) can be approximated as

�(�) = �
�
� |����|�
���
��� (8)

where �� is the error signal measured as a difference between
the output of the adaptive algorithm and the desired signal.
Parameter � defines the number of samples used for
averaging. Usually MSE is compared to signal power, in this
case transmission power.

V. ADAPTIVE POWER CONTROL METHODS

A. Theoretical inverse control methods
If the truncated channel inversion is used, the transmitted

energy is [32]

���(�) = ����(��/��(�)) (9)

for ��(�) � ��  and zero otherwise where �� is a constant
selected so that the average transmitted energy is ����. The
quality of the channel is defined as ��(�) = ����|�(�)|�/��,
�� is a cut-off value, which is found by numerically
maximizing (4.22) in [32], and |�(�)|� is the instantaneous
energy gain of the channel. The cut-off value is �� = 0 for full
channel inversion. Channel inversion aims at maintaining the
desired signal strength at the receiver by inverting the channel
power gain based on the channel estimates.

B. Adaptive FxLMS algorithm
The power control structure based on the MFxLMS algorithm
is introduced in Fig. 2. It approximates the channel inversion.
In the following, we will present both original and modified
versions of the algorithm.
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II. RELATED LITERATURE

Power control methods can in general be divided into water
filling and channel inversion [5]. Basically the difference
between these two approaches is that the water filling allocates
more power to the better channel instants whereas channel
inversion aims at inverting the channel power gain while
maintaining the desired signal strength at the receiver.

Several adaptive inverse control methods have been
proposed in the literature for power control, e.g., [13], [14],
[17]–[20]. The conventional 1-bit adaptive power control
(CAPC-1) method [13], [17] employs delta modulation, i.e.,
adjusts the previous transmission power up or down by a fixed
step. In this paper, the acronym CAPC-x refers to conventional
power control using x bits in the power control command.
Conventional inverse power control approaches have been
proposed and used e.g., for CDMA, 3GPP Long Term
Evolution (LTE), and TV white space transmission. A clear
aim of these approaches is energy and interference reduction;
to use only sufficient power to meet the transmission rate
requirements. For example, CDMA power control employs
both closed and open loop methods. In the open loop method,
the mobile station measures the average received total power
by an AGC circuit and adjusts its transmission power so that it
is inversely proportional to the received power [21]. Nonlinear
control is used to allow fast response to the reduced channel
attenuation with a maximum of 10 dB/ms but slow response to
increased attenuation. This is to avoid additional interference
to other users.

Required dynamic range with a limited feedback can be
achieved by nonlinear quantization of feedback signalling [22]
and variable step (VS) algorithms [23]–[25]. Nonlinear AGC
control can be exponential or approximately exponential [3].
A simple way to compress power control commands is to
operate the algorithm in decibel domain [18]. Logarithmic
quantization such as µ-law and A-law companding are used in
speech codecs [22]. Companding amplifies weak input signals
and compresses strong signals to save the needed number of
bits to be transmitted. Companding is applied also for
reducing peak-to-average power ratio (PAPR) in orthogonal
frequency division multiplexing (OFDM) signals [26].

Many variable step size LMS algorithms have been
proposed in order to improve the performance of the LMS
algorithm  by  using  large  step  sizes  in  the  early  stages  of  the
adaptive process, and small step sizes when the system
approaches convergence [23]–[25]. The step size can be
adapted e.g., based on the received signal power [9] or the
squared error signal [17]–[18]. Optimization of the step size
has been studied in [27], where lag error of an adaptive system
is also considered. This error is caused by the attempt of an
adaptive system to track variations of the nonstationary input
signal.

III. SYSTEM MODEL

The system model for adaptive transmission is illustrated in
Fig. 1. The input data xk are binary phase shift keying (BPSK)
modulated and transmitted from the transmitter to the receiver

kĥ

kn

kx

kx̂

kh

ky

Figure 1. System model for adaptive transmission.

over a fading channel. The received signal �� can be given as

�� = ������ + ��. (1)

The complex gain of the channel is ��  =  ������  and nk is
additive white Gaussian noise at time k. The amplitude of the
fading gain is �� and �� is the phase shift. The data are
transmitted through the channel and the instantaneous transmit
power Pk is allocated based on the channel gain estimate ���
sent by the receiver. LMS estimation of the channel gain is
done as

����� = ��� + �����  (2)

where � is  the  step  size  of  the  algorithm  and �� is  the
estimation error [1]. A typical value for the step size � is 0 –
0.99. Larger values lead to faster convergence with the cost of
reduced accuracy since noise averaging does not work so well
[28].

We consider a slowly varying channel that can be modelled
using the Doppler power spectrum [15], [16]. The rate of the
channel variation, i.e., the effect of mobility, can be
characterized by the Doppler frequency fd. We are using a flat
Doppler power spectrum that corresponds to an urban
environment where the transmitter is set above rooftop level
[29].

A. Sum-of-sinusoids fading channel
To obtain a flat Doppler power spectrum, the time-variant

channel gain of a channel with index l is represented by the
sum of complex exponentials as

��(�) = �
��

� ��(����,��� �,�)�
��� (3)

where � is the number of subpaths with the same delay, ��,�
is the Doppler shift of the ith subpath, �,� is the random phase
shift of the ith subpath uniformly distributed in the range [0,
2 [ and � is time. The amplitudes of the subpaths in (3) are
identical due to the flat spectrum. The average energy gain of
the channel is normalized to unity [30]. The model is
straightforward to generalize to multiple delays.

If  the  Doppler  shifts  of  the  complex  exponentials  are
equally spaced in the interval [-fd,  fd], the channel gain (3)
becomes periodic in time. Sampling in time domain
corresponds to periodicity in frequency domain and vice versa
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[31].  Periodicity  can  be  removed  if  the  shifts  are  properly
chosen. The Doppler spread is divided into N equal  size
frequency bins. Within these bins the frequencies �� ,�  differ a
random uniformly distributed amount from the equal space
solution. Thus, we obtain the whole Doppler spread to use in
every simulation. The power spectrum is made symmetric
with respect to zero frequency, which makes the
autocorrelation function of the channel real. This selection
also makes simulations faster. The random phases � ,� are not
symmetric with respect to the zero frequency.

B. Diversity channel
A time-variant frequency selective channel model can be

represented with a tapped delay line as

�(�, �) = �
�
� ��(�)�(� � ��)�
��� (4)

where L is the number of tap weights and �� is the delay of �th
tap generated using (3). Now we have a flat impulse response
instead of usual exponentially decreasing model. However,
from power control point of view this does not affect since the
optimal demodulator for this signal is a coherent demodulator
that collects the signal energy from all the received signal
paths within the delay span 0 to ��  [2]. In a diversity system,
the transmitter power control algorithm should control the
power of the diversity combiner output in the receiver. There
is no loss in performance in dividing the total transmitted
signal energy differently among the L channels and thus the
model does not change the comparison between the selected
power control algorithms. Actually the time-variant channel
gain of the diversity channel can be given as

�(�) = ��
�
� |��(�)|��
��� (5)

where ��(�) is  the  channel  gain  of  the lth diversity branch,
generated using (3), and L is the number of diversity branches.
Equation (5) corresponds to the ideal maximal-ratio
combining. The channel can thus represent also a frequency
selective channel. From the subcarrier point of view,
frequency selective channel looks frequency nonselective in
an  OFDM  system  [2].  We  assume  that  no  intersymbol
interference (ISI) or interpulse interference (IPI) is present
since we use compressed pulses [2].

IV. PERFORMANCE METRICS

Suitable performance metrics are needed to fairly compare the
performance of the adaptive algorithms. One of the most
important ones to consider is the signal-to-noise ratio (SNR)
concept. The average transmitted and the average received
energies are usually normalized by the receiver noise spectral
density �� leading to the average transmitted SNR per symbol
[30]

� �� = ����/�� (6)

and the average received SNR per symbol [30]

��� = ����/��. (7)

The parameter ���� is the average transmitted energy per
symbol and ���� is the average received energy per symbol.
Transmitted energy is a basic system resource. In a mobile
system it is taken from the battery of the transmitter and is
therefore limited. Transmitted energy or equivalently
transmitted SNR should be used as a performance metric in
order to obtain fair comparisons between different adaptive
transmission systems. In adaptive transmission the average
energy gain of the channel is a function of the transmitted
signal due to correlation between the instantaneous
transmission power and the instantaneous energy gain of the
channel. The use of the received SNR as a performance
criterion in adaptive transmission system studies can lead to
misleading results as was shown in [30].

Learning curve, i.e., plotting the mean square error (MSE)
against the number of iterations, can be used to measure the
statistical performance of adaptive algorithms [1], [2]. The
MSE �(�) can be approximated as

�(�) = �
�
� |����|�
���
��� (8)

where �� is the error signal measured as a difference between
the output of the adaptive algorithm and the desired signal.
Parameter � defines the number of samples used for
averaging. Usually MSE is compared to signal power, in this
case transmission power.

V. ADAPTIVE POWER CONTROL METHODS

A. Theoretical inverse control methods
If the truncated channel inversion is used, the transmitted

energy is [32]

���(�) = ����(��/��(�)) (9)

for ��(�) � ��  and zero otherwise where �� is a constant
selected so that the average transmitted energy is ����. The
quality of the channel is defined as ��(�) = ����|�(�)|�/��,
�� is a cut-off value, which is found by numerically
maximizing (4.22) in [32], and |�(�)|� is the instantaneous
energy gain of the channel. The cut-off value is �� = 0 for full
channel inversion. Channel inversion aims at maintaining the
desired signal strength at the receiver by inverting the channel
power gain based on the channel estimates.

B. Adaptive FxLMS algorithm
The power control structure based on the MFxLMS algorithm
is introduced in Fig. 2. It approximates the channel inversion.
In the following, we will present both original and modified
versions of the algorithm.
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fastest with this selection. Thus, the optimal step size is now

���� = �
�|�|�. (16)

With this selection the fixed step FxLMS algorithm is
changed to the normalized version of it.

b) Non-coherent case
From the power control point of view we would only need

the inverse of the absolute value of the channel gain instead of
the result of (14) since we are interested in inverting the power
level to maintain the received signal power at a constant level.
Thus,  let  us  now  consider  the  MFxLMS  algorithm  with
absolute value blocks in a time-invariant, noiseless channel,
assuming perfect channel estimation, i.e., ��� = �. The error
signal is given as

�� = |��| � |�������|. (17)

Thus, (10) becomes

�� = ���� + �|�|�|��|� � �|����||��|�|�|. (18)

In general we should consider two separate cases: �� > 0
and �� < 0. However, there is no need to use negative values
in  power  control  since  the  solution  we  want  to  achieve  is  to
maintain certain SNR at the receiver. The case �� < 0 leads to
the converged solution that is a negative version of the
solution for the case of �� > 0. When �� > 0, |��| = ��. Now,

�� = (1 � �|��|�|�|�)���� + �|��|�|�|. (19)

Convergence conditions for the MFxLMS algorithm can be
found from this version quite straightforwardly, leading to the
same solution as is shown in (13). Therefore, we can write

�� = �
|�| ,   �� > 0. (20)

The algorithm converges exactly to the inverse of the absolute
value of the channel gain. We can see from the results above
that  in  order  to  keep  the  algorithm  stable,  the  step  size  for
updating the algorithm coefficients should be exactly in the
same interval as the one shown in (15). Thus, the optimal step
size for the MFxLMS algorithm in a noiseless channel is given
in (16).

Convergence of the MFxLMS algorithm when noise is
present in the system becomes mathematically intractable due
to the absolute value blocks. Now, (10) can be rewritten as

�� = ���� + �|�||��|� � �|���||������� + ��|.  (21)

The algorithm cannot be analysed straightforwardly due to
absolute value of the term that includes noise. Simulations are
also used instead of analysis in reference state-of-the art
algorithm developments due to mathematical intractability

[13], [14], [17] – [19]. Based on simulations the MFxLMS
algorithm behaves and converges almost identically with the
algorithm without absolute blocks in a fading channel when
the transmitted SNR is high enough. Actually, the MFxLMS
algorithm is more robust since fast phase changes do not affect
its performance. Nonlinearity causes threshold phenomenon
for the modified algorithm in low SNR regime that is always a
problem in noncoherent systems using some combining or
averaging.

2) Time-variant channel:
Usually the adaptation step size of the FxLMS algorithm is

not time-variant. The algorithm with a fixed adaptation step
size  corresponds  to  a  first-order  system.  It  cannot  track  the
fastest changes in the time-variant channel without a lag error
[27] that can be quite large. A better performance is achieved
by optimizing the adaptation step size with the instantaneous
power of the input signal. It means that the FxLMS algorithm
with a fixed step size is changed to the normalized version of
it. The normalized version of the FxLMS algorithm
corresponds to the filtered-x recursive-least-squares (FxRLS)
algorithm when � =  1 � � where � is the forgetting factor
which gives exponentially less weight to older samples.

In a slowly fading channel �� can be assumed to be
constant over the memory [4] of the MFxLMS algorithm.
Thus the stability condition to the structure when noise is
ignored and the channel state is known is the same as
presented in (15) when � is replaced by �� . The optimal step
size can be found for each different �� in (16) by replacing �
by ��. Therefore the optimal adaptation step size should be
time variant. When the channel gain is estimated in (16), the
system becomes unstable if this step size is used due to errors
in the estimate [38]. To stabilize the control, the step size is
given by

�� = �

���������
(22)

where � is a small real number that prevents the adaptation
step size to grow uncontrollably when the estimated received
power is close to zero.  Parameters � and � are dependent e.g.,
on SNR and � but the values need to be found experimentally
to optimize the trade-off between lag error and noise
averaging for different channel dynamics. Default values for
these parameters can be given as � =  1/�� and � =  0.2/����
where ���� is the received SNR defined in (7). Smaller � means
slower convergence, better noise averaging, and a larger lag
error while the parameter � has an opposite effect.

3) Quantized MFxLMS power control:
In the following sections, only the MFxLMS algorithm is

considered. In practice, the power control command has to be
quantized while still obtaining a decent performance. In the
case of the MFxLMS algorithm, the signal �� has to be fed
back  to  the  transmitter  as  shown  in  Fig.  2.  With  a  limited
number of quantization levels, it is good to quantize frequently
occurring small values of the signal in more detail and then
use coarser steps for the less frequent large signal levels [22].
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Figure 2. FxLMS algorithm based power control, modified version.

The FxLMS algorithm updates the coefficient �� of a one-
tap filter as

�� = ���� + �� (10)

where �� = ���� �� is the correction term,  is the adaptation
step size of the algorithm that regulates the speed and stability
of adaptation, and �� is the error signal to be minimized. The
filtered input signal for the FxLMS algorithm is ��� =
(������)�, where �� is the complex conjugate version of �, ��� is
the estimated input signal, and ��� is the estimated
instantaneous channel gain. The filtered input signal is
��� = �������� for the MFxLMS algorithm and the parameter ��
is additive white Gaussian noise. The channel can be modelled
using (3) – (5).

We have modified the conventional FxLMS structure by
adding the absolute value blocks to the algorithm and having a
wireless channel as a system to be controlled and inverted. In
addition, a large difference in our system to conventional
control systems comes with a separate receiver and
transmitter. The main reason for the addition of absolute value
blocks is that we are adjusting power levels and thus interested
only in amplitude values, similarly to AGC circuits [3]. Phases
are not important from the power control point of view, and in
this way we can reduce control information to be carried. This
also makes the system more robust since phases can change
fast during deep fades and thus cause problems to the adaptive
algorithm [33].

The model is discretized using a matched filter [2],
assuming slow changes compared to the symbol rate. Thus we
can use  one  sample  of  a  symbol  in  the  system model.  When
we  are  using  the  MFxLMS  algorithm  for  power  control,  we
can reduce the complexity of the transmitter by doing the main
part of the calculations at the receiver. This reduces also
information in the feedback channel since only the correction
term �� is sent to the transmitter.  The filtered input signal ���
affects the operation of the algorithm. Thus, the control
structure is decision directed (DD) [2]. Error propagation is
known in DD approaches and remedy strategies have been

developed [34], [35]. It was proposed in [35] that pilot on
request training (PRQT) is used to mitigate the error
propagation. The pilot is requested when error propagation is
detected in the system. We assume our system to operate with
the PRQT principle. When the error probability is very small,
we can assume ��� to be ��.

1) Convergence analysis for the MFxLMS power control
algorithm:

The choice of initial conditions for the FxLMS algorithm is
not critical [4]. The algorithm is stable if µ is small enough,
and transients die out just as with the conventional LMS
algorithm. A primary concern with the MFxLMS algorithm is
its convergence to the optimal solution where �[���] is
minimized. Since absolute value blocks make the analysis of
the algorithm very complicated in a noisy channel, we will
first analyse the conventional FxLMS algorithm that can also
be  used  in  power  control.  A general  analysis  for  the  FxLMS
algorithm can be found in [37].

a) Coherent case
Let us assume a time-invariant channel with perfect channel

estimation, i.e., ��� = �. The error signal is now

�� = �� � (������� + ��), (11)

leading to

�[��] = (1 � �|�|��)�[����] + ���� (12)

where � = �[|��|�]. The white noise nk is assumed to be
uncorrelated with the input ��. In addition, we assume that the
input �� is independent of the weight �� as in the analysis of
the LMS algorithm in [4]. The first part of the function in the
right-hand side will clearly form a geometric series that will
converge only if the geometric ratio has a magnitude of less
than unity,

|1 � �|�|��| < 1. (13)

Therefore, we can define

�� = lim���(1 � �|�|��)� �� + ����

��(���|�|��) = ��

|�|� =
��

���
= �

�
.                    (14)

Since the first part of the sum in (14) will approach zero, the
algorithm converges exactly to the inverse of the channel gain.
We can see from (14) that in order to keep the algorithm
stable, the step size for updating the algorithm coefficients
should be

0 < � < �
�|�|�. (15)

The optimal step size for the FxLMS algorithm lies in the
middle of stability interval [36], [37]. The convergence will be
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fastest with this selection. Thus, the optimal step size is now

���� = �
�|�|�. (16)

With this selection the fixed step FxLMS algorithm is
changed to the normalized version of it.

b) Non-coherent case
From the power control point of view we would only need

the inverse of the absolute value of the channel gain instead of
the result of (14) since we are interested in inverting the power
level to maintain the received signal power at a constant level.
Thus,  let  us  now  consider  the  MFxLMS  algorithm  with
absolute value blocks in a time-invariant, noiseless channel,
assuming perfect channel estimation, i.e., ��� = �. The error
signal is given as

�� = |��| � |�������|. (17)

Thus, (10) becomes

�� = ���� + �|�|�|��|� � �|����||��|�|�|. (18)

In general we should consider two separate cases: �� > 0
and �� < 0. However, there is no need to use negative values
in  power  control  since  the  solution  we  want  to  achieve  is  to
maintain certain SNR at the receiver. The case �� < 0 leads to
the converged solution that is a negative version of the
solution for the case of �� > 0. When �� > 0, |��| = ��. Now,

�� = (1 � �|��|�|�|�)���� + �|��|�|�|. (19)

Convergence conditions for the MFxLMS algorithm can be
found from this version quite straightforwardly, leading to the
same solution as is shown in (13). Therefore, we can write

�� = �
|�| ,   �� > 0. (20)

The algorithm converges exactly to the inverse of the absolute
value of the channel gain. We can see from the results above
that  in  order  to  keep  the  algorithm  stable,  the  step  size  for
updating the algorithm coefficients should be exactly in the
same interval as the one shown in (15). Thus, the optimal step
size for the MFxLMS algorithm in a noiseless channel is given
in (16).

Convergence of the MFxLMS algorithm when noise is
present in the system becomes mathematically intractable due
to the absolute value blocks. Now, (10) can be rewritten as

�� = ���� + �|�||��|� � �|���||������� + ��|.  (21)

The algorithm cannot be analysed straightforwardly due to
absolute value of the term that includes noise. Simulations are
also used instead of analysis in reference state-of-the art
algorithm developments due to mathematical intractability

[13], [14], [17] – [19]. Based on simulations the MFxLMS
algorithm behaves and converges almost identically with the
algorithm without absolute blocks in a fading channel when
the transmitted SNR is high enough. Actually, the MFxLMS
algorithm is more robust since fast phase changes do not affect
its performance. Nonlinearity causes threshold phenomenon
for the modified algorithm in low SNR regime that is always a
problem in noncoherent systems using some combining or
averaging.

2) Time-variant channel:
Usually the adaptation step size of the FxLMS algorithm is

not time-variant. The algorithm with a fixed adaptation step
size  corresponds  to  a  first-order  system.  It  cannot  track  the
fastest changes in the time-variant channel without a lag error
[27] that can be quite large. A better performance is achieved
by optimizing the adaptation step size with the instantaneous
power of the input signal. It means that the FxLMS algorithm
with a fixed step size is changed to the normalized version of
it. The normalized version of the FxLMS algorithm
corresponds to the filtered-x recursive-least-squares (FxRLS)
algorithm when � =  1 � � where � is the forgetting factor
which gives exponentially less weight to older samples.

In a slowly fading channel �� can be assumed to be
constant over the memory [4] of the MFxLMS algorithm.
Thus the stability condition to the structure when noise is
ignored and the channel state is known is the same as
presented in (15) when � is replaced by �� . The optimal step
size can be found for each different �� in (16) by replacing �
by ��. Therefore the optimal adaptation step size should be
time variant. When the channel gain is estimated in (16), the
system becomes unstable if this step size is used due to errors
in the estimate [38]. To stabilize the control, the step size is
given by

�� = �

���������
(22)

where � is a small real number that prevents the adaptation
step size to grow uncontrollably when the estimated received
power is close to zero.  Parameters � and � are dependent e.g.,
on SNR and � but the values need to be found experimentally
to optimize the trade-off between lag error and noise
averaging for different channel dynamics. Default values for
these parameters can be given as � =  1/�� and � =  0.2/����
where ���� is the received SNR defined in (7). Smaller � means
slower convergence, better noise averaging, and a larger lag
error while the parameter � has an opposite effect.

3) Quantized MFxLMS power control:
In the following sections, only the MFxLMS algorithm is

considered. In practice, the power control command has to be
quantized while still obtaining a decent performance. In the
case of the MFxLMS algorithm, the signal �� has to be fed
back  to  the  transmitter  as  shown  in  Fig.  2.  With  a  limited
number of quantization levels, it is good to quantize frequently
occurring small values of the signal in more detail and then
use coarser steps for the less frequent large signal levels [22].
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Figure 4. Learning curves for studied algorithms in an AWGN
channel.

E. Comparison between the FxLMS and conventional
algorithms

The  idea  to  use  the  FxLMS  algorithm  started  from  the
observation that analogy can be seen between the control
structure in Fig. 3 and the LMS algorithm. Actually the
conventional algorithms can be seen as a special case of the
FxLMS algorithm. Following modifications are needed from
the MFxLMS structure in Fig. 2 to the CAPC structure in Fig.
3: 1) First, the CAPC structure uses square-law detection
instead of envelope detection used in the MFxLMS structure.
These have shown to provide comparable performance but the
former is usually easier to analyse [39] while the latter allows
a larger dynamic range [40]. 2) The CAPC method uses
averaging to remove noise. The LMS algorithms are in
principle based on exponential averaging [1]. An additional
averaging block could be used as well, but it does not provide
additional performance gain for the algorithm [41]. Instead, it
can slow down the adaptation loop due to additional delay and
the achieved gain is overridden [42]. It is better to use
instantaneous gradient estimates as is used in our power
control structure. 3)  Companding, i.e., going first to decibel
domain (compressing) and then back to linear domain
(expanding) is used in the CAPC algorithm.  Compressing is
used to cover the large dynamic range in a fading channel. In
the practical MFxLMS structure, companding focuses on the
task of nonlinear quantization, i.e., to reduce the number of
bits in the power control command.  4) 1 bit quantization is
used in the CAPC-1 method to simplify feedback signalling.
The MFxLMS method is using quantization as in (23)-(24).
Power  control  command  needs  to  be  more  than  1  bit  for
variable step power control. That is true also for the variable
step algorithms that are based on the structure shown in Fig. 3.
5) The CAPC-1 method uses a fixed scaling factor ��
whereas in the MFxLMS method the step size scales based on
the channel state. However, the similarities between the
investigated practical methods and the LMS method are so
clear that the MFxLMS method can be seen as a
generalization of inverse power control approaches.

VI. RESULTS

A. Power control over an AWGN channel
We made simulations for FxLMS variants with a fixed

channel gain h =  1.  The  error  signal �� used  in  the  MSE
calculations is given in (11) with �� = 0, leading to �� = 1
that is set as the first value to (8). The parameter � used in the
simulations was � = 6, increasing from � = 1 in the beginning
until enough samples for � = 6 were achieved. Ensemble
averaging over 100 independent trials was performed to obtain
the results for the FxLMS and the MFxLMS algorithms. We
used BPSK signal in transmission and thus the choice of � = 1
corresponds to the normalized algorithm using the optimum
step size defined in (16). As expected, the larger the step size
is the higher the converged mean squared error is. The
performance of the algorithms is almost identical in the
AWGN channel.

Learning curves for the practical algorithms are shown in
Fig. 4 together with the normalized MFxLMS algorithm and
the normalized FxLMS algorithm, using 20 dB received SNR.
Numbers of iterations to the convergence are 28, 10, 5, and 4
for the CAPC-1, CAPC-3, CAPC-2, and MFxLMS algorithms,
respectively. Used error signal in simulations for CAPC-x
algorithms was �� = �� � (������ + ��) to obtain a fair
comparison with the MFxLMS results. The step sizes for
CAPC-x algorithms are defined in (26) – (28) and the
parameter �ref =  20  dB.  For  the  criterion  for  the  convergence
we used 10 % misadjustment [4].

The  CAPC-1 is  the  slowest  one  due  to  fixed  step  size  and
the variable step size algorithms clearly outperform it. The
CAPC-2 is faster than CAPC-3 since it uses a larger maximum
step size for fast adaptation. CAPC-1 and CAPC-2 algorithms
adapt the power up and down all the time. Other variable step
algorithms can  set  the  power  to  the  wanted  level  and  keep it
there.

B. Power control over a fading channel with the non-
quantized MFxLMS algorithm

Both conventional and modified versions of the FxLMS
algorithm operate well in the AWGN channel as expected.
However,  robustness  of  the  FxLMS  is  not  as  good  as  the
robustness  of  the  MFxLMS  algorithm  when  we  look  at  the
performance in the fading channel modelled with (3). Two
different channel realizations are considered in Fig. 5. It shows
the received SNR levels for the simulations over a fading
channel modeled using (3) with value of � = 12 and �� = 10
Hz. The LMS channel estimation with parameter value of � =
0.1 is used in the FxLMS simulations. In addition, the values
of � = 1 and � = 0.2/����, where ���� is the received SNR, were
chosen for  (22).  The  larger  SNR is  used,  the  more  stable  the
control is and the smaller correction term is needed. In all the
shown simulations the power control update rate was 1000 Hz.

In the first row in Fig. 5, the channel variations both in
phases and amplitudes are not too fast for the algorithms to
make inversion accurately. The performance of the
conventional and modified FxLMS algorithms is almost
identical. However, in the second row the faster phase

0 10 20 30 40 50 60
10-3

10-2

10
-1

100

101

Number of iterations

M
ea

n
sq

ua
re

er
ro

r

CAPC-1
CAPC-3

CAPC-2

MFxLMS and FxLMS

Journal draft 6

Figure 3. Conventional power control structure.

This preserves needed information to be used when adapting
the system. The signal �� is first compressed, then quantized
uniformly, and sent to the channel. The received signal is
expanded to get close to the original version of the power
control command.

The �-law compression is defined for real input signal ��
as

�� = �(��) = sgn(��) � ������q|��|/��

������q�
.  (23)

where V is  the  peak  magnitude  of  the  input  signal.  This  is
also peak value of the output. A typical value for the
compression parameter �q is between 50 and 300. In our case
we have quantized the signal in the range [-1, 1] to be able to
effectively combat the deep fades even though the average
power of the signal �� is roughly 0.1. The maximum value is
close to unity during the deepest fades. We have not scaled the
signal  before  quantization.  If  the  signal  is  scaled  up,  the
clipping is increased while the quantization noise is reduced.
Scaling down reduces clipping but increases noise. Received
quantized signal �� is expanded using

��� = ���(��) =
���(��) � �

�q
� ��|��|������q�/� � 1�, 0 � |��| � 1.  (24)

The proposed practical version of our MFxLMS algorithm
allows fair comparison with other practical algorithms
presented in the literature.

C. Conventional adaptive power control
Typically the time interval between power control

commands in CDMA systems is around 1 ms [13]. The
method  is  shown  in  Fig.  3.  The  base  station  measures  the
average received power over � symbols and compares it to a
reference signal to interference plus noise (SINR) level ����.
As a result of a comparison the base station tells the mobile
station to adjust its transmission power upwards when the
error signal �� is positive or downwards with negative error
by a control step size ��. Practical CAPC-1 method [13], [17]
uses 1 dB steps. The power control algorithm can be written as

�� = ���� + ���� [dB] (25)

where the power control command is

�� = �+1,  �� > 0
�1,    �� � 0. (26)

The weakness of this fixed-step power control method is that
it is too slow to track changes in a fading channel.

D. Variable step adjustment power control
Variable step power control methods have been proposed to

overcome the weakness of the fixed step solution. The basic
idea is that when the power of received signal is far from the
desired, the control step is increased to reach the desired level
faster. A recently proposed 2-bit version of the CAPC (CAPC-
2) method is described in [14] where power control command
�� values are �� =  {–4,  –1,  1,  4}  (dB).  In  the  mentioned
document [14] only step sizes are given. No rules how to use
them in practice are included. Based on the simulation studies
we have conducted the following rule that was found to
achieve a good performance:

�� = �

4,                    when �� < �5� 
1,               � 5� �  �� < 0      
�1,                    0 �  �� < 5�    
�4,                             �� > 5�    

  (27)

where  =  0.5 �.  An  asymmetric  3-bit  version  of  the
conventional adaptive power control (CAPC-3) proposed in
[18] is

�� =

�
�
�

�
�

3,               when     �� < �5�
2,             � 5� �  �� < �3�
1,             � 3� �  �� < ��   
0,                � � �  �� < �       
�1,                 � �  �� < 3�    
�2,                           �� � 3�    

 (28)

Variable step algorithms can be implemented with the
structure depicted in Fig. 3. The only difference to the 1-bit
CAPC method is  in  the  quantization,  i.e.,  more  bits  are  used
for power control commands in CAPC-2 and CAPC-3.



VII/7

Journal draft 7

Figure 4. Learning curves for studied algorithms in an AWGN
channel.

E. Comparison between the FxLMS and conventional
algorithms

The  idea  to  use  the  FxLMS  algorithm  started  from  the
observation that analogy can be seen between the control
structure in Fig. 3 and the LMS algorithm. Actually the
conventional algorithms can be seen as a special case of the
FxLMS algorithm. Following modifications are needed from
the MFxLMS structure in Fig. 2 to the CAPC structure in Fig.
3: 1) First, the CAPC structure uses square-law detection
instead of envelope detection used in the MFxLMS structure.
These have shown to provide comparable performance but the
former is usually easier to analyse [39] while the latter allows
a larger dynamic range [40]. 2) The CAPC method uses
averaging to remove noise. The LMS algorithms are in
principle based on exponential averaging [1]. An additional
averaging block could be used as well, but it does not provide
additional performance gain for the algorithm [41]. Instead, it
can slow down the adaptation loop due to additional delay and
the achieved gain is overridden [42]. It is better to use
instantaneous gradient estimates as is used in our power
control structure. 3)  Companding, i.e., going first to decibel
domain (compressing) and then back to linear domain
(expanding) is used in the CAPC algorithm.  Compressing is
used to cover the large dynamic range in a fading channel. In
the practical MFxLMS structure, companding focuses on the
task of nonlinear quantization, i.e., to reduce the number of
bits in the power control command.  4) 1 bit quantization is
used in the CAPC-1 method to simplify feedback signalling.
The MFxLMS method is using quantization as in (23)-(24).
Power  control  command  needs  to  be  more  than  1  bit  for
variable step power control. That is true also for the variable
step algorithms that are based on the structure shown in Fig. 3.
5) The CAPC-1 method uses a fixed scaling factor ��
whereas in the MFxLMS method the step size scales based on
the channel state. However, the similarities between the
investigated practical methods and the LMS method are so
clear that the MFxLMS method can be seen as a
generalization of inverse power control approaches.

VI. RESULTS

A. Power control over an AWGN channel
We made simulations for FxLMS variants with a fixed

channel gain h =  1.  The  error  signal �� used  in  the  MSE
calculations is given in (11) with �� = 0, leading to �� = 1
that is set as the first value to (8). The parameter � used in the
simulations was � = 6, increasing from � = 1 in the beginning
until enough samples for � = 6 were achieved. Ensemble
averaging over 100 independent trials was performed to obtain
the results for the FxLMS and the MFxLMS algorithms. We
used BPSK signal in transmission and thus the choice of � = 1
corresponds to the normalized algorithm using the optimum
step size defined in (16). As expected, the larger the step size
is the higher the converged mean squared error is. The
performance of the algorithms is almost identical in the
AWGN channel.

Learning curves for the practical algorithms are shown in
Fig. 4 together with the normalized MFxLMS algorithm and
the normalized FxLMS algorithm, using 20 dB received SNR.
Numbers of iterations to the convergence are 28, 10, 5, and 4
for the CAPC-1, CAPC-3, CAPC-2, and MFxLMS algorithms,
respectively. Used error signal in simulations for CAPC-x
algorithms was �� = �� � (������ + ��) to obtain a fair
comparison with the MFxLMS results. The step sizes for
CAPC-x algorithms are defined in (26) – (28) and the
parameter �ref =  20  dB.  For  the  criterion  for  the  convergence
we used 10 % misadjustment [4].

The  CAPC-1 is  the  slowest  one  due  to  fixed  step  size  and
the variable step size algorithms clearly outperform it. The
CAPC-2 is faster than CAPC-3 since it uses a larger maximum
step size for fast adaptation. CAPC-1 and CAPC-2 algorithms
adapt the power up and down all the time. Other variable step
algorithms can  set  the  power  to  the  wanted  level  and  keep it
there.

B. Power control over a fading channel with the non-
quantized MFxLMS algorithm

Both conventional and modified versions of the FxLMS
algorithm operate well in the AWGN channel as expected.
However,  robustness  of  the  FxLMS  is  not  as  good  as  the
robustness  of  the  MFxLMS  algorithm  when  we  look  at  the
performance in the fading channel modelled with (3). Two
different channel realizations are considered in Fig. 5. It shows
the received SNR levels for the simulations over a fading
channel modeled using (3) with value of � = 12 and �� = 10
Hz. The LMS channel estimation with parameter value of � =
0.1 is used in the FxLMS simulations. In addition, the values
of � = 1 and � = 0.2/����, where ���� is the received SNR, were
chosen for  (22).  The  larger  SNR is  used,  the  more  stable  the
control is and the smaller correction term is needed. In all the
shown simulations the power control update rate was 1000 Hz.

In the first row in Fig. 5, the channel variations both in
phases and amplitudes are not too fast for the algorithms to
make inversion accurately. The performance of the
conventional and modified FxLMS algorithms is almost
identical. However, in the second row the faster phase
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Figure 8. The bit error rate as a function of average transmitted SNR
in channel (5), L=1.

channel (3) using the same parameters as for generating the
Fig. 5. The results are average values over several simulations.
The MFxLMS algorithm sets the transmission power to the
required level fast. In addition, the system is able to
compensate deep fades without suffering lag error. That is the
reason for the better performance for adaptive step size
algorithms.

It is impossible to obtain identical received and transmitted
SNRs since different algorithms use different amount of
transmitted energy for communication due to their different
adjustment methods. However, the difference is very small
between CAPC-2, CAPC-3, and MFxLMS methods as shown
in Table I. Thus, the performance comparison between these
methods is fair. The performance of the CAPC-1 method is
decreased since it is spending more time during deep fades
with a lower power and consequently the outage time is also
higher. Standard deviation of the received SNR, averaged in
the decibel domain, shows clearly the gain of using adaptive
step sizes in control with the studied control command rate.
Standard deviation is measured after the rise time to exclude
large differences between the required SNR and the actual
signal level at that time. The MFxLMS algorithm achieves the
best performance among the compared algorithms.

The bit error rate (BER) performance of the studied
algorithms in the channel (5) when L = 1 is considered in Fig.
8. The same metric was applied in [43] to compare fixed step
and adaptive step power control. Simulations are carried out to
establish the effect of power control step size (variable versus
fixed) on the average BER performance. BPSK modulation is
used in the simulations. The performance of the full channel
inversion (FCI), referring to (9) with �� = 0,  and  the  optimal
TCI in a known channel are plotted as references to show the
effect of adaptation in the BER performance. The difference
of roughly 5 dB between the FCI and AWGN curves is caused
by fading. The difference can be reduced with diversity. In the
low SNR regime the noise error is the dominating source of
errors and the variable step algorithms are not performing
better than the CAPC-1 method that was studied with 2
different step sizes, �� = 0.5 dB and �� = 1 dB. The crossing
in the BER curves between the MFxLMS and CAPC-1

Figure 9. Bit error rate performance comparison in a diversity
channel (L = 2).

methods  around  12  dB  SNR  is  due  to  effect  of  noise.  When
the SNR is higher, the standard deviation of the MFxLMS and
the corresponding BER values are smaller. Variable step
methods are using larger step sizes to correct the errors caused
by the noise and that makes their performance worse in the
low  SNR  regime.  Smaller  step  sizes  are  better  for  noise
averaging.

Also the theoretical FCI method is worse than the CAPC-1
method in the low SNR regime since it allocates more power
to the deep fades whereas the CAPC-1 method cannot invert
the channel totally, making it actually a truncated algorithm.
When the SNR is increasing, the variable step methods can
follow better the channel fading. The CAPC-1 method is too
slow to invert the channel during fast changes especially with
the smaller step size and the lag error makes the performance
of it worse when SNR is increasing. The FxLMS method
outperforms the other algorithms in the high SNR regime
when the fastest converging step size defined in (22) is used,
i.e., with � = 1. However, during low SNR values, the smaller
step size is better due to better noise averaging properties. The
FCI performance approaches the TCI curve when SNR
increases since the probability of outage of the TCI method is
reducing.

C.  Power control over a diversity channel with the quantized
MFxLMS algorithm

The previous results are provided for the nonquantized
MFxLMS algorithm to see its capabilities. Quantized version
is needed to verify the practicality of the algorithm. The
experiments were made over the diversity channel since that
would be an obvious feature to be used in practical systems.
The diversity channel with L =  2  branches  for  simulation
studies was generated using (5) and parameter values � = 12
and �� = 10 Hz. In order to see the effect of companding in the
results, we made several simulation runs where we used either
companding or pure quantization the feedback channel. The
standard deviation of the received SNR of the algorithm with
quantization was significantly lower with companding. Thus,
we use companding in the following simulations. In addition
to the proposed use of sending the correction term (10) in the
feedback channel, we made experiments by sending the signal
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Figure 5. Performance of the FxLMS algorithm in two different fading channels.

Figure 6. Performance of the FxLMS algorithm in low and medium
SNR regimes.

variations during deep fades [33]  cause clearly problems to
the conventional FxLMS algorithm. The MFxLMS algorithm
performs robustly and the received SNR variation remains at
an acceptable level since it follows the amplitude variations
rather well also during the deep fades.

Fig. 6 presents performance of the FxLMS and the
MFxLMS algorithms in a fading channel in low and medium
SNR regimes when the channel realization of row 1 of the Fig.
5  is  used.  When  the  transmitted  SNR  is  above  8  dB,  the
performance of the algorithms measured with standard
deviation of received SNR is almost identical. The more
robust MFxLMS obtains better performance than the
conventional  FxLMS below 8  dB due  to  problems caused  by
rapid phase variations to the latter. However, the performance
of the MFxLMS collapses when the transmitted SNR drops
below 5 dB while the FxLMS operates also below this limit.
The reason for the collapse is the inclusion of noise term in
(21) inside the last absolute value term. When the noise term
is strong enough compared to the signal power the algorithm
cannot converge anymore. Above this performance limit the
MFxLMS  is  more  robust  and  provides  either  equal  or  better
performance compared to the conventional FxLMS. Thus, in
all the remaining results, only the MFxLMS algorithm is
considered in comparison with the CAPC-x algorithms.

Results with the channel model shown in the row two of the
Fig.  5  are  presented  in  Fig.  7.  With  the  CAPC-1 method the
received  SNR  is  too  low  during  a  deep  fade.  Then  the

Figure 7. Received SNR values with different power control
methods.

transmission power is adjusted upwards and because of lag
error  the  power  is  too  high  for  a  while.  The  variable  step
methods perform better. The CAPC-3 and MFxLMS methods
can keep the received signal close to the desired value. The
CAPC-2 and CAPC-1 methods are changing the power by 1
dB up and down even when they are close to the target level.

Variable step size methods have larger step sizes which
make adaptation faster. This can be seen in the rise times in
Table I. The rise time is the time required for the received
signal to change from the initial value, when transmitted
signal is 0 dB, to the required 20 dB value in a time-variant

Table I. Performance of the practical algorithms
Rise time
(ms)

Standard
deviation (dB)

Average
transmitted SNR
(dB)

CAPC-1 19 1.186 25.46

CAPC-2 7 0.798 26.25

CAPC-3 9 0.613 26.31

MFxLMS 4 0.573 26.18
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Figure 8. The bit error rate as a function of average transmitted SNR
in channel (5), L=1.

channel (3) using the same parameters as for generating the
Fig. 5. The results are average values over several simulations.
The MFxLMS algorithm sets the transmission power to the
required level fast. In addition, the system is able to
compensate deep fades without suffering lag error. That is the
reason for the better performance for adaptive step size
algorithms.

It is impossible to obtain identical received and transmitted
SNRs since different algorithms use different amount of
transmitted energy for communication due to their different
adjustment methods. However, the difference is very small
between CAPC-2, CAPC-3, and MFxLMS methods as shown
in Table I. Thus, the performance comparison between these
methods is fair. The performance of the CAPC-1 method is
decreased since it is spending more time during deep fades
with a lower power and consequently the outage time is also
higher. Standard deviation of the received SNR, averaged in
the decibel domain, shows clearly the gain of using adaptive
step sizes in control with the studied control command rate.
Standard deviation is measured after the rise time to exclude
large differences between the required SNR and the actual
signal level at that time. The MFxLMS algorithm achieves the
best performance among the compared algorithms.

The bit error rate (BER) performance of the studied
algorithms in the channel (5) when L = 1 is considered in Fig.
8. The same metric was applied in [43] to compare fixed step
and adaptive step power control. Simulations are carried out to
establish the effect of power control step size (variable versus
fixed) on the average BER performance. BPSK modulation is
used in the simulations. The performance of the full channel
inversion (FCI), referring to (9) with �� = 0,  and  the  optimal
TCI in a known channel are plotted as references to show the
effect of adaptation in the BER performance. The difference
of roughly 5 dB between the FCI and AWGN curves is caused
by fading. The difference can be reduced with diversity. In the
low SNR regime the noise error is the dominating source of
errors and the variable step algorithms are not performing
better than the CAPC-1 method that was studied with 2
different step sizes, �� = 0.5 dB and �� = 1 dB. The crossing
in the BER curves between the MFxLMS and CAPC-1

Figure 9. Bit error rate performance comparison in a diversity
channel (L = 2).

methods  around  12  dB  SNR  is  due  to  effect  of  noise.  When
the SNR is higher, the standard deviation of the MFxLMS and
the corresponding BER values are smaller. Variable step
methods are using larger step sizes to correct the errors caused
by the noise and that makes their performance worse in the
low  SNR  regime.  Smaller  step  sizes  are  better  for  noise
averaging.

Also the theoretical FCI method is worse than the CAPC-1
method in the low SNR regime since it allocates more power
to the deep fades whereas the CAPC-1 method cannot invert
the channel totally, making it actually a truncated algorithm.
When the SNR is increasing, the variable step methods can
follow better the channel fading. The CAPC-1 method is too
slow to invert the channel during fast changes especially with
the smaller step size and the lag error makes the performance
of it worse when SNR is increasing. The FxLMS method
outperforms the other algorithms in the high SNR regime
when the fastest converging step size defined in (22) is used,
i.e., with � = 1. However, during low SNR values, the smaller
step size is better due to better noise averaging properties. The
FCI performance approaches the TCI curve when SNR
increases since the probability of outage of the TCI method is
reducing.

C.  Power control over a diversity channel with the quantized
MFxLMS algorithm

The previous results are provided for the nonquantized
MFxLMS algorithm to see its capabilities. Quantized version
is needed to verify the practicality of the algorithm. The
experiments were made over the diversity channel since that
would be an obvious feature to be used in practical systems.
The diversity channel with L =  2  branches  for  simulation
studies was generated using (5) and parameter values � = 12
and �� = 10 Hz. In order to see the effect of companding in the
results, we made several simulation runs where we used either
companding or pure quantization the feedback channel. The
standard deviation of the received SNR of the algorithm with
quantization was significantly lower with companding. Thus,
we use companding in the following simulations. In addition
to the proposed use of sending the correction term (10) in the
feedback channel, we made experiments by sending the signal
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channel. Some related work has been done for direct
estimation and decision feedback equalization in [27] but
more investigation is needed to find solutions for inverse
control. Another interesting problem to study would be the
development of the algorithm to handle vector type signals.
The algorithm could be able to take into account correlation
between subcarriers in the OFDM system.
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Figure 10. Performance comparison in a diversity channel (L = 2).

���� in the feedback channel to minimize calculations at the
transmitter. However, the signal level variation using the
correction term �� is smaller in the diversity channel,
providing better performance with the quantization.
Simulation results using the quantized correction term are
shown in Figs. 9–11.

The bit error rate performances of the studied algorithms are
shown  in  Fig.  9  as  a  function  of  transmitted  SNR.  The
performance of the full channel inversion in a known channel
is plotted as a reference. It is actually a better reference in a
diversity channel than in a channel without diversity where
truncation gives a clear advantage. Full channel inversion
without cutoff is the optimal inversion method in a diversity
channel [10]. Control rate of the adaptive algorithms is 1000
Hz. Control step size of the MFxLMS algorithm in a diversity
channel was experimentally found to provide good tradeoff
between lag error and noise averaging when the parameters in
(22) were � = 1/�� and � = 0.2/����. With higher SNRs the
inversion is more accurate due to reducing effect of the noise
error. All the tested algorithms work rather well in a diversity
channel. The MFxLMS algorithm needs less SNR than other
adaptive algorithms to achieve BER < 10-4 due to accuracy of
the adaptation. Very close to the performance of the
nonquantized MFxLMS algorithm is achieved already with a 4
bit power control command. The performance of the
MFxLMS algorithm approaches the ideal inversion when the
channel is changing more slowly. The performance
differences between the algorithms in the high SNR regime
can be  well  understood when we look at  the  accuracy  of  the
algorithms measured with the standard deviation of received
SNRs.

It can be seen from the results shown in Fig. 10 that the 3-
bit MFxLMS control achieves comparable performance to the
best earlier algorithm studied, i.e., the CAPC-3 method.
Accuracy of the CAPC-1 and CAPC-2 algorithms is restricted
due to the minimum step size of 1 dB. When the step size of
the CAPC-1 algorithm is set to 0.5 dB, the performance is
clearly better. The crossing in the BER curves between the
MFxLMS and CAPC-1 methods around 12 dB SNR is seen
also  in  Fig.  10.  When  the  SNR  is  higher,  the  standard
deviation of the MFxLMS and the corresponding BER values

Figure 11. Performance comparison in a diversity channel (L = 2)
with different control rates.

are smaller. In a diversity channel, the additional larger step
size of the CAPC-2 decreases the accuracy of the control
compared to the simple CAPC-1 control since the fading can
be controlled with smaller steps. Variable step size algorithms
are still outperforming fixed step algorithms in a diversity
channel in the high SNR regime. However, the gain is
achieved by using a higher feedback channel rate.

In order to see the effect of control rate to the accuracy of
the control, simulations were performed with two different
control rates, 1000 Hz and 500 Hz. Results are shown in Fig.
11. Main comparison is made between the most accurate
variable step algorithms, the MFxLMS and the CAPC-3
algorithm. CAPC-1 results with 1000 Hz control rate using 0.5
dB step size are provided as a reference curve. The results
show that reduction in the control rate causes the accuracy of
variable step algorithms to drop roughly to the same level with
a 1-bit algorithm with 1000 Hz rate. Still the number of
control bits needed to send over the feedback channel is 1500
bits/s and 2000 bits/s for variable step CAPC and MFxLMS
algorithms, respectively. CAPC-1 with a higher control rate
requires only 1000 bits/s, i.e., with a proper step size selection
it gives rather good performance with a low feedback control
rate. The rate depends on the fading rate of the channel and
can be decreased e.g., when higher order diversity is applied.

VII. CONCLUSIONS

In centralized wireless systems the transmission power
control is often based on inverse control. We have developed
the MFxLMS algorithm for power control. We analyzed the
algorithm in a noiseless channel and simulations show that it
converges well also in a noisy channel. The proposed
algorithm provides a unified framework for many existing
practical algorithms and can be seen as a generalization of
inverse power control algorithms. We compared the proposed
method to the well-known CAPC-1 method and its variable
step variants. Simulations in fading channels with diversity
show that the best conventional algorithms give comparable
performance to the theory based MFxLMS solution. An
interesting future topic would be to study the optimization of
the step size (22) of the MFxLMS algorithm in a timevariant
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channel. Some related work has been done for direct
estimation and decision feedback equalization in [27] but
more investigation is needed to find solutions for inverse
control. Another interesting problem to study would be the
development of the algorithm to handle vector type signals.
The algorithm could be able to take into account correlation
between subcarriers in the OFDM system.
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Abstract—Prediction of future availability times of different 
channels based on history information helps a cognitive radio 
(CR) to select the best channels for control and data 
transmission. Different prediction rules apply to periodic and 
stochastic ON-OFF patterns. A CR can learn the patterns in 
different channels over time. We propose a simple classification 
and learning method to detect the pattern type and to gather the 
needed information for intelligent channel selection. Matlab 
simulations show that the proposed method outperforms 
opportunistic random channel selection both with stochastic and 
periodic channel patterns. The amount of channel switches 
needed over time reduces up to 55%, which reduces also the 
delay and increases the throughput.  

I. INTRODUCTION  
Cognitive radio should be more than only an adaptive 
opportunistic radio. In order to be called intelligent, it should 
have the ability to learn from experiences. However, a huge 
majority of cognitive radio research is focused on methods 
that use only instantaneous information about the environment 
as a basis for dynamic operation. Available channels for 
selection can be assumed to be equally good [1]–[3] or 
characterized based on interference level [4] or bandwidth [5]. 
Secondary users sense their environment and react to detected 
changes in spectrum availability in an opportunistic way. Such 
an approach results in a bad channel selection for secondary 
users since the system randomly selects channels that may be 
heavily utilized by primary users (PU). This may cause 
frequent service disruptions for secondary users since they 
have to refrain from transmission, and result in interference to 
primary users. In addition, every channel switch causes a non-
negligible delay for the transmission. If a single channel can 
be used over a long period, such delays can be avoided and the 
capacity is improved.  
 

The problem has not been explored much in the literature. 
However, there are a couple of papers that present some 
possible solutions to the problem. The seminal paper [6] 
emphasized that a dynamic spectrum management algorithm 
should include information about the traffic pattern of the 
primary user occupying the channel. In a wireless 
environment, two basic classes of traffic patterns exist [6]: 1) 
Deterministic patterns where the PU transmission is ON, then 
OFF during a fixed time slot. 2) Stochastic patterns where 
traffic can be described only in statistical terms. Poisson 
distributed traffic is one example of stochastic traffic. 

 

Perfect knowledge of traffic patterns in different primary 
channels would make spectrum sharing easy. We could plan 
our spectrum usage including routing and frequency switches 
in a non-interfering manner. The capacity could be maximized 
and the control would be extremely robust. However, we 
cannot know exactly what is going on around us and it is 
especially hard to know how things will be in the future. 
 

In order to plan the secondary use of the spectrum better 
without cooperation with the primary user, some authors have 
proposed predictive models to be used in spectrum sharing 
[7]–[9]. These papers propose prediction models for specific 
types of primary traffic patterns. Reference [7] investigates the 
predictability when the primary traffic is assumed to be 
representable by a cyclostationary random process. In [8], the 
authors propose a proactive access method to utilize holes in 
TV broadcast channels. The main goal of paper [9] is to 
minimize interference to primary users by predicting the 
future idle times and by changing to better channels before the 
primary user appears on the currently used channel. The 
authors investigate specifically the usability of prediction 
under exponential ON-OFF traffic models, and also periodic-
exponential models where the duration of either ON or OFF 
times is fixed and only the other period is exponentially 
distributed.  

 

One limitation of the mentioned papers is that the proposed 
method should not be restricted to one possible traffic model 
only. It should work with a variety of traffic classes and thus, 
a general model would be needed. Basically, a CR should 
characterize whether the traffic is deterministic or stochastic 
and based on that it should use different methods for selecting 
the channel.  
 

Our contributions are a simple classification and learning 
method to detect the pattern type (periodic or stochastic) and 
to gather needed information, a method for availability time 
prediction both for periodic and stochastic traffics and a rule 
for intelligent channel selection for data transmission and 
control exchange. We tested our method with different traffic 
patterns using Matlab simulations in comparison with an 
opportunistic random selection approach and achieved very 
encouraging results. Focus in this paper is on the prediction; 
the classification method will be covered more thoroughly in 
the future. 
 

The organization of the paper is as follows.  Section II 
presents the model used in simulations. The prediction method 
is introduced in Section III and results are presented in Section 

This work has been performed in the framework of the CHESS project, which is partly funded by Tekes. 
Dr. Pollin is also affiliated with the Interuniversity Microelectronics Center (IMEC), Kapeldreef 75, B-3001 Leuven, Belgium 
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length. We define the period so that there is only one ON time 
followed by one OFF time. This pseudocode can be used to 
check if the binary sequence is periodic or not: 
 
1. Computation of parameters 

1. Compute autocorrelation Rxx of the input sequence 
2. Search global (tau_max) and local maximums of Rxx 
3. Check if the local maximum is too local, not showing the 
place of a real period. It should be larger than value of Rxx 
a few samples away. 
4. Calculate average separation between consecutive local 
max values, tau_ave  
5. Calculate standard deviation of separations, std 
 

2. Traffic type classification: Traffic is periodic if separation 
between consecutive local max values is constant enough. 
Limit value for std should be chosen based on tau_ave to 
allow larger deviation for longer periods. 
 if tau_ave = = tau_max, 
  Period length  is tau_max, 
  Sequence is periodic = TRUE 
 elseif std is smaller than limit value     

tau = round(tau_ave) 
  sequence is periodic = TRUE 

else 
 sequence is stochastic  

 
The autocorrelation function is sensitive to the sampling 

rate and therefore the sensing resolution restricts the ability to 
detect very short periods. Traffic patterns can change over time 
and thus we have to limit the time horizon by using a moving 
time-window for collecting samples and making estimations. 

III. PREDICTION OF IDLE TIMES 

A. Periodic traffic 
Statistics about the length of ON and OFF times gives 
valuable information about how the channel has been utilized 
in the past. This information helps us to predict future idle 
times. In the fixed period case, it is possible that ON and OFF 
times are fixed or random. In the first case, we can make exact 
predictions about the future and fully utilize all available 
resources for secondary transmissions. For the first case, the 
starting point of the OFF time for M consecutive periods is 
 

ONnns TtT +=, , n = 1,…,M,                 (2) 
 

where the beginning time of period n with length τ is tn. The 
length of period is  
  

ONOFFl TTT −== τ ,           (3) 
 

where TON and TOFF are the lengths of the ON and OFF times. 
In the latter case, after the channel becomes idle at time to, we 
know exactly how long it will be available before the PU 
appears again, namely 
 

)(, nonidle ttT −−= τ , n = 1,…,M.                  (4) 
 
When the period length is not fixed, we have to make our 
decisions based on the statistics gathered. In case of fixed OFF 

times, we know the remaining idle time after the channel 
becomes available at time to. 
 

B. Random traffic 
When the ON time is fixed and the OFF time random, we 
know the starting time of the idle time but the length can be 
only estimated in a probabilistic way. When both times are 
random, we can calculate the expected remaining idle time 
after we detect the channel to become idle. To be usable with a 
wide variety of traffic patterns, the prediction should be 
simple and general.  
 

Each cognitive radio stores the measurements of idle and 
busy times to the database and constructs a histogram from 
them. One good thing to look at is the average utilization over 
the time window. It tells us how heavily the channel is used on 
average. However, to know more exactly what kind of traffic 
is going on, one should look at the distribution of idle and 
busy times. From the database, the probabilities that different 
channels will be available at least X seconds can then be 
calculated as 

 

valuestimeidleallofamount
Xvaluestimeidleofamount

XtP
≥

=≥ )(          (5) 

 
A good metric for channel quality is the median 

availability time that is met with 50% probability. There is a 
50% chance for the real idle time to be at least that long. The 
longer the time the better. Using the database, a CR could also 
estimate the time to transmit under an interference constraint 
(i.e., W% guarantee not to interfere with PU). This means that 
it would transmit continuously without sensing certain amount 
of time and trust the distribution. To achieve this, the CR 
should choose transmission time Z so that 

 
           WZtP −=≤ 1)( .             (6) 

 
In this way the CR could adaptively loose its sensing period 
requirements. However, doing so the sampling process slows 
down and in the future the database cannot give as accurate 
information.  
 

C. Intelligent channel switching 
Secondary users utilize the past channel observations to build 
predictive models of spectrum availability, and schedule their 
spectrum use in order to maximize spectrum utilization while 
minimizing the disruption rate to primary users. To do that, 
the CRs have to select the channel to switch to in an intelligent 
way.  
 

 
Figure 3.  Different times of signal. 

IV. Discussion of the topic is provided in Section V and 
conclusions with recommendations for further work are drawn 
in Section VI. 

II. SYSTEM MODEL 
Availability time prediction helps to choose the best channels 
to use. In addition, temporal history information gives 
valuable information to the sensing process. A CR system can 
abandon some channels after a certain learning time if it seems 
that the band is used almost all the time. It is not reasonable to 
waste resources for the bands that cannot offer communication 
possibilities. Energy efficiency is better if the system 
concentrates only on channels that seem to have potential idle 
times.  

A. System model 

 

Figure 1.  System model for predictive transmission. 

Fig. 1 represents the architecture for a predictive cognitive 
radio system. 1) First, the CR collects information about 
spectrum use in different frequency channels through spectrum 
sensing and stores this information into the channel history 
database.  The last spectrum sensing result tells what the 
current situation in a particular channel is. If the channel is 
free, the channel state (CS) flag is set to 0 and if not, CS = 1. 2) 
Based on the collected history, the traffic patterns of different 
channels are classified into stochastic and periodic ones by 
using the autocorrelation function (see Section B). 3) Different 
prediction methods apply for different traffic patterns and the 
selection is made by classification. 4) The availability time 
prediction uses information from three sources. The CS flag of 
channels is checked first. If CS = 1, the predicted availability 
time is 0 s. If CS = 0, the remaining idle time of these channels 
is estimated based on the channel history and selected 
prediction method for that particular channel. 5) If the channel 
used currently is still free, continue transmission. If not, switch 
to the channel with longest expected remaining idle time. 6) 
Data transmission and then back to the point 1) after ∆t seconds 
where ∆t is the maximum length of interference the PU can 
tolerate.  

B. Classification of traffic pattern 
The goal of traffic prediction is to forecast future traffic rate 
variations as precisely as possible, based on the measurement 
history [10]. In a cognitive radio context the prediction aims to 
determine idle times in PU traffic that can be utilized by 

secondary transmissions. The first thing to learn from the 
traffic before making actual predictions is the traffic type. 
 

There are different types of traffic appropriate for 
prediction:  

1) periodic traffic with fixed ON+OFF time, 
2) fixed OFF times, random ON times, 
3) fixed ON times, random OFF times, 
4) both ON and OFF times are random. 

In each of the cases, the exact ON and OFF times can vary 
across channels. In fact, the goal of the prediction is then to 
choose the channel with the largest predicted OFF time. 
However, for each of the cases the prediction algorithm should 
be different. 
 

Sensing of primary channels is a sampling process to 
determine the state (ON or OFF) of the channels at every 
sampling instant. The outcome of sensing is a binary sequence 
for each channel as shown in Fig. 2. This sequence tells us 
about the traffic that is ongoing. It has sufficient information 
to determine the periodicity, distribution of idle and busy 
times, and utilization percentage of the channel. As you can 
see from Fig. 2, the detected pattern can differ from the actual 
one; the starting and ending times of ON and OFF times are 
slightly shifted because of the limited sensing resolution. 
 

  

Figure 2.  Detection of primary traffic. 

Since the traffic patterns in different channels can be 
anything from the 4 types mentioned above, it would be 
desirable if the cognitive radio could identify the type of traffic 
after a short learning period from the binary sequences 
gathered during that period. ON and OFF times can be 
assumed to be random in each channel before learning period is 
over. 
 

First, the periodicity is searched from the binary sequence. 
Authors in [7] proposed to use the global maximum of the 
autocorrelation function for detection of the period length. 
Actually, this does not work if the period is fixed and the ON 
and OFF times are not. The discrete autocorrelation function 
at lag m over N samples for discrete signal x[n] is 
 

∑
−−

=

+=
1

0

])[][(][
mN

n
xx mnxnxmR .          (1) 

 
Computing the autocorrelation function over many periods 
gives several peak values. Identical periods give us identical 
peak values. When the ON and OFF times can vary within the 
period, the peak values are not constant anymore. However, 
one can use local maximums when calculating the period 



VIII/3

length. We define the period so that there is only one ON time 
followed by one OFF time. This pseudocode can be used to 
check if the binary sequence is periodic or not: 
 
1. Computation of parameters 

1. Compute autocorrelation Rxx of the input sequence 
2. Search global (tau_max) and local maximums of Rxx 
3. Check if the local maximum is too local, not showing the 
place of a real period. It should be larger than value of Rxx 
a few samples away. 
4. Calculate average separation between consecutive local 
max values, tau_ave  
5. Calculate standard deviation of separations, std 
 

2. Traffic type classification: Traffic is periodic if separation 
between consecutive local max values is constant enough. 
Limit value for std should be chosen based on tau_ave to 
allow larger deviation for longer periods. 
 if tau_ave = = tau_max, 
  Period length  is tau_max, 
  Sequence is periodic = TRUE 
 elseif std is smaller than limit value     

tau = round(tau_ave) 
  sequence is periodic = TRUE 

else 
 sequence is stochastic  

 
The autocorrelation function is sensitive to the sampling 

rate and therefore the sensing resolution restricts the ability to 
detect very short periods. Traffic patterns can change over time 
and thus we have to limit the time horizon by using a moving 
time-window for collecting samples and making estimations. 

III. PREDICTION OF IDLE TIMES 

A. Periodic traffic 
Statistics about the length of ON and OFF times gives 
valuable information about how the channel has been utilized 
in the past. This information helps us to predict future idle 
times. In the fixed period case, it is possible that ON and OFF 
times are fixed or random. In the first case, we can make exact 
predictions about the future and fully utilize all available 
resources for secondary transmissions. For the first case, the 
starting point of the OFF time for M consecutive periods is 
 

ONnns TtT +=, , n = 1,…,M,                 (2) 
 

where the beginning time of period n with length τ is tn. The 
length of period is  
  

ONOFFl TTT −== τ ,           (3) 
 

where TON and TOFF are the lengths of the ON and OFF times. 
In the latter case, after the channel becomes idle at time to, we 
know exactly how long it will be available before the PU 
appears again, namely 
 

)(, nonidle ttT −−= τ , n = 1,…,M.                  (4) 
 
When the period length is not fixed, we have to make our 
decisions based on the statistics gathered. In case of fixed OFF 

times, we know the remaining idle time after the channel 
becomes available at time to. 
 

B. Random traffic 
When the ON time is fixed and the OFF time random, we 
know the starting time of the idle time but the length can be 
only estimated in a probabilistic way. When both times are 
random, we can calculate the expected remaining idle time 
after we detect the channel to become idle. To be usable with a 
wide variety of traffic patterns, the prediction should be 
simple and general.  
 

Each cognitive radio stores the measurements of idle and 
busy times to the database and constructs a histogram from 
them. One good thing to look at is the average utilization over 
the time window. It tells us how heavily the channel is used on 
average. However, to know more exactly what kind of traffic 
is going on, one should look at the distribution of idle and 
busy times. From the database, the probabilities that different 
channels will be available at least X seconds can then be 
calculated as 

 

valuestimeidleallofamount
Xvaluestimeidleofamount

XtP
≥

=≥ )(          (5) 

 
A good metric for channel quality is the median 

availability time that is met with 50% probability. There is a 
50% chance for the real idle time to be at least that long. The 
longer the time the better. Using the database, a CR could also 
estimate the time to transmit under an interference constraint 
(i.e., W% guarantee not to interfere with PU). This means that 
it would transmit continuously without sensing certain amount 
of time and trust the distribution. To achieve this, the CR 
should choose transmission time Z so that 

 
           WZtP −=≤ 1)( .             (6) 

 
In this way the CR could adaptively loose its sensing period 
requirements. However, doing so the sampling process slows 
down and in the future the database cannot give as accurate 
information.  
 

C. Intelligent channel switching 
Secondary users utilize the past channel observations to build 
predictive models of spectrum availability, and schedule their 
spectrum use in order to maximize spectrum utilization while 
minimizing the disruption rate to primary users. To do that, 
the CRs have to select the channel to switch to in an intelligent 
way.  
 

 
Figure 3.  Different times of signal. 
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channels were [3.5 3.2 3.5 3.6] s. Random selection follows 
approximately the average idle time distribution with more 
switches with lower average idle times whereas the intelligent 
method takes advantage of the increasing number of good 
channels. 

 
Figure 5.  Amount of channel switches with stochastic traffic. 

The performance with periodic traffic patterns is shown in 
Fig. 6. The intelligent selection method can predict the idle 
times almost perfectly and can select the best channels very 
well. The gain compared to the random method is large all the 
time. With 15 and 20 channels, the amount of switches with 
intelligent selection is 55% lower than with random selection. 
The average mean idle times for channels are now [7.0 6.1 6.6 
6.5] s. Again, the performance of random selection depends on 
the average values of channels whereas the intelligent 
selection method concentrates to good channels and can take 
advantage of an increasing number of them.  

V. DISCUSSION 
A reactive CR switches to different channel after a PU is 
sensed to appear in the same channel. To reduce the 
interference with PUs, a CR could switch proactively to a new 
channel before the PU appears in the current band. It can 
change the channel when the predicted Tj is over, and it does 
not wait until the PU appears. Especially with deterministic 
traffic this proactive method is preferred.  
 

In some cases the prediction of busy times in addition to 
idle times could make sense. Depending on the application 
used and its QoS requirements, this allows estimating if we 
could stay and wait for the channel to become idle instead of 
frequency hopping. Multi-hop ad hoc networks are possible 
target systems for this kind of operation. In multi-hop 
networks, every frequency change causes a need for an update 
of the routing table. If this happens very frequently, a large 
amount of energy and bandwidth resources are consumed to 
keep those tables up-to-date and as a result, the capacity of the 
system decreases. 

VI. CONCLUSIONS 
Intelligent channel selection helps to select the best channels 
for control and data transmission. Even with totally random 
exponential traffic patterns the amount of switches reduces 

clearly when using intelligence which improves the efficiency 
of the spectrum use. Cognitive radios should have learning 
abilities to be able to intelligently select channels for 
secondary use in a way that minimizes delays and maximizes 
throughput.  

 
Figure 6.  Amount of channel switches with periodic traffic. 

 

However, more work is needed in this area. Interesting 
things to look at are the use of intelligent selection models with 
a wide variety of primary traffic patterns and the reliability of 
the classification method. Also we can test the approach with 
real measured network traffic. We should also investigate the 
effect of proactive channel selection on the amount of switches, 
delays and throughput. In addition, the case with multiple 
secondary users sharing the spectrum would be interesting to 
look at since a channel may now become busy also by CR 
activity. These things will be investigated in future.  
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When switching channels, a user switches to the available 
channel j with the largest expected remaining idle time Tj, 
chosen as 
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where Tj is the calculated remaining idle time. Below, we 
specify the prediction rules for different traffic types based on 
different times that are defined in Fig. 3.  In the case of 
periodic signals, the prediction is  

  
jj
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For stochastic signals we estimate the remaining idle time with 
the probability of 0.5,  
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This means that from the predicted idle time for the channel 
the consumed idle time is subtracted (i.e., the time when CR 
was operating in a different channel) and then the channel 
with the longest idle time is selected. To avoid time-
consuming median search in case of stochastic traffic, also the 
mean time of idle times could be used. 
 

 
Figure 4.  Different channel switching schemes. 

Fig. 4 shows different channel selection possibilities. A 
CR can select the next channel randomly or based on 
prediction. The next channel should be selected based on the 
predicted value: channel j is a much better choice than channel 
k because it offers a longer time for CR operation and helps to 
avoid interference with a PU.  

 

IV. RESULTS 
In order to see how well the proposed intelligent channel 
selection approach works when compared to random 
opportunistic channel selection we made experiments with 
periodical and stochastic traffic patterns. Parameters for the 
simulation are shown in Table 5. We tested the classification 
method with stochastic and periodic traffic with parameter 
values mentioned in Table 5. Stochastic pattern was always 
classified right. With the periodic traffic where the amount of 

possible ON times was limited as is the case of packet-based 
network, the classification made right decision in 80 % of 
tests. 

 

TABLE 5. SIMULATION PARAMETERS 
Parameter Value 

Transmission period 90 ms 
Sensing period 10 ms 
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Number of channels 5-20 
Primary user traffic models Stochastic channels with exponentially 

distributed ON and OFF times  
Periodic channels with fixed ON and 

OFF times 
Utilization, mean idle times, and 
period lengths of primary traffic 

Almost uniformly distributed utilization 
[0.1, 0.9], mean idle times between [1s, 

10s], period lengths [2s, 20s] 
 

Simulation time 10 000 s 
Channel selection methods Intelligent channel selection ,  

random selection 
 
We examined the number of channel switches during the 
simulation time when either the random or intelligent channel 
selection method was used. For simplicity, the classification 
was assumed to work perfectly. Intelligent selection procedure 
then took the exact traffic type into account. 
 

Learning and intelligence always seem to improve the 
efficiency of the system. When stochastic traffic over 8 
primary channels with exponentially distributed idle and busy 
times was used, the number of switches with the intelligent 
method was 17% smaller than with random selection. With 
periodic traffic the difference was 43%. When both periodic 
channels and stochastic channels were used, the improvement 
was around 20%. 
 

We made simulations with different channel selection 
methods to see how the number of channels affects the 
performance. The number of channels varied from 5–20. Both 
exponential and periodic traffic patterns were examined. Since 
the search of the median time for stochastic traffic can be 
time-consuming, we tried also a method were the expected 
time is the mean idle time of the channel. Results for 
exponential traffic are shown in Fig. 5. 

 

With 5 channels the methods are almost equally good since 
there are not many channels to choose from. When the amount 
of primary channels is increased, the difference between 
intelligent and random selection increases. The intelligent 
method can concentrate on the best channels. Quite 
interestingly, the mean idle time based selection outperformed 
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the median based selection. This means more conservative 
approach and probable abandoning of good channels. The 
result is good since it shows significant gains for relatively 
simple prediction method. The gain in channel switches ranges 
from 6% with 5 channels to 39% with 20 channels while the 
average number of available channels increases approximately 
linearly as [2.2 4.7 7.4 9.4]. The mean average idle times for 



VIII/5

channels were [3.5 3.2 3.5 3.6] s. Random selection follows 
approximately the average idle time distribution with more 
switches with lower average idle times whereas the intelligent 
method takes advantage of the increasing number of good 
channels. 

 
Figure 5.  Amount of channel switches with stochastic traffic. 

The performance with periodic traffic patterns is shown in 
Fig. 6. The intelligent selection method can predict the idle 
times almost perfectly and can select the best channels very 
well. The gain compared to the random method is large all the 
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V. DISCUSSION 
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frequency hopping. Multi-hop ad hoc networks are possible 
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of the routing table. If this happens very frequently, a large 
amount of energy and bandwidth resources are consumed to 
keep those tables up-to-date and as a result, the capacity of the 
system decreases. 

VI. CONCLUSIONS 
Intelligent channel selection helps to select the best channels 
for control and data transmission. Even with totally random 
exponential traffic patterns the amount of switches reduces 

clearly when using intelligence which improves the efficiency 
of the spectrum use. Cognitive radios should have learning 
abilities to be able to intelligently select channels for 
secondary use in a way that minimizes delays and maximizes 
throughput.  
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However, more work is needed in this area. Interesting 
things to look at are the use of intelligent selection models with 
a wide variety of primary traffic patterns and the reliability of 
the classification method. Also we can test the approach with 
real measured network traffic. We should also investigate the 
effect of proactive channel selection on the amount of switches, 
delays and throughput. In addition, the case with multiple 
secondary users sharing the spectrum would be interesting to 
look at since a channel may now become busy also by CR 
activity. These things will be investigated in future.  

REFERENCES 
 

[1] V. Kanodia, A. Sabharwal, and E. Knightly, “MOAR: A multi-channel 
opportunistic auto-rate media access protocol for ad hoc networks,” in 
Proc. BROADNETS, pp. 600–610, October 2004. 

[2] N. Nie and C. Comaniciu, “Adaptive channel allocation spectrum 
etiquette for cognitive radio networks,” in Proc. DySPAN 2005, pp. 
269–278, November 2005. 

[3] H. Zheng and L. Cao, “Device-centric spectrum management,” in Proc. 
DySPAN, pp. 56–65, November 2005. 

[4] X. Jing, S.-C. Mau, D. Raychaudri, and R. Matyas, “Reactive cognitive 
radio algorithms for co-existence between IEEE 802.11b and 802.16a 
networks,” in Proc. GLOBECOM, pp. 2465–2469, November/December 
2005. 

[5] T. C. Clancy, Dynamic Spectrum Access in Cognitive Radio Networks. 
Ph. D. thesis, University of Maryland, College Park, MD, 2006. 

[6] S. Haykin, “Cognitive radio: Brain-empowered wireless 
communications,” IEEE Journal on Selected Areas in Communications, 
vol. 25, pp. 201–220, Feb. 2005. 

[7] T. C. Clancy and B. D. Walker, “Predictive dynamic spectrum access,” 
presented in SDR Forum, November 2006. 

[8] P. A. K. Acharya, S. Singh, and H. Zheng, “Reliable open spectrum 
communications through proactive spectrum access,” in Proc. TAPAS, 
August 2006. 

[9] L. Yang, L. Cao, and H. Zheng, “Proactive channel access in dynamic 
spectrum networks,” in Proc. CrownCom, August 2007. 

[10] A. Sang and S. Li, “A predictability analysis of network traffic,” 
Elsevier Computer Networks, vol. 39, pp. 329–345, January 2002. 





PAPER IX

Classification-based predictive 
channel selection for cognitive 

radios 

In: Proc. IEEE International Conference on 
Communications (ICC), pp. 1–6.

Copyright 2010 IEEE.
Reprinted with permission from the publisher.



IX/1



IX/1

Classification-based predictive channel selection for 
cognitive radios 

Marko Höyhtyä1, Sofie Pollin2, and Aarne Mämmelä1  
1VTT Technical Research Centre of Finland 2Interuniversity Microelectronics Center (IMEC) 

P.O. Box 1100, FI-90571 Oulu Kapeldreef 75, B-3001 Leuven 
Finland Belgium 

 
 

Abstract—The proposed method classifies traffic patterns of 
primary channels in cognitive radio systems and applies different 
prediction rules to different types of traffic. This allows a more 
accurate prediction of the idle times of primary channels. An 
intelligent channel selection scheme then uses the prediction 
results to find the channels with the longest idle times for 
secondary use. We tested the method with Pareto and 
exponentially distributed stochastic traffic and with deterministic 
traffic.  The predictive method using past information improves 
the throughput of the system compared to a system based on 
instantaneous idle time information.  The classification-based 
predictive method improves the performance compared to pure 
prediction when the channels of interest include both stochastic 
and deterministic traffic. The amount of collisions with a primary 
user can drop 60 % within a given interval compared to a 
predictive system operating without classification. 

I. INTRODUCTION  
A cognitive radio (CR) should have the ability to learn from 
past experiences to improve future performance compared to 
the case where only instantaneous information is taken into 
account.  This implies the need of prediction algorithms, and 
most importantly, it assumes that the future can actually be 
predicted from past observations. In this paper, we consider the 
channel selection problem for secondary users, and study how 
to improve that channel selection based on sensed past 
information about the channel use. For channels where the 
activity of the primary users (PU) is varying much over time, 
instantaneous sensing information might become obsolete in 
the near future, causing frequent service disruptions for 
secondary users since they have to refrain from transmissions 
and search for new available channels. Frequent channel 
switching causes delays and reduces throughput. In addition, 
interference is produced towards PUs. Therefore, the channel 
selection algorithm should take into account the cost or 
probability of such future change in channel availability when 
selecting a channel.  

As was emphasized in [1], the dynamic spectrum 
management algorithm should include information about the 
traffic pattern of the PU occupying the channel. In a wireless 
environment, two basic classes of traffic patterns exist: 1) 
Deterministic patterns where the PU transmission is ON, then 
OFF during a fixed time slot; 2) Stochastic patterns where the 
traffic can be described only in statistical terms. Poisson 
distributed traffic is one example of stochastic traffic. Frame 
structures make traffic patterns fully or partially deterministic. 
Partially deterministic means that the ON time starts 
periodically but its length can vary while the period Tp is fixed 
as illustrated in Fig. 1. A period consists of one ON time 
followed by one OFF time. This definition covers also the 

deterministic periodic case where ON and OFF times are fixed. 
In our study, the traffic patterns are either stochastic or partially 
deterministic, and we will loosely use the term deterministic 
from now on for the latter. The terms OFF time and idle time as 
well as ON time and busy time are used interchangeably in this 
paper. 

 
Figure 1. Partially deterministic traffic pattern. 

Predictive models have been proposed for cognitive radios 
to make channel selection more intelligent [2]–[5]. However, 
these approaches have a common problem of restricting the 
prediction to the known traffic model only. In [2] the 
exponential weighted moving average based method is 
proposed to use idle times in TV broadcast channels. 
Exponential ON-OFF traffic models and periodic-exponential 
models are investigated in [3]. Reference [4] investigates the 
predictability when primary traffic is assumed to be a 
cyclostationary random process. Traffic prediction in [5] is 
performed using binomial distributed call arrival times and 
gamma distributed call holding times. We proposed a more 
general method that works with a variety of traffic classes in 
[6]. The method classifies the traffic in the sensed PU channels 
as deterministic and stochastic and uses specific prediction 
methods for different types of traffic to estimate what the 
expected idle times in the different channels will be. We have 
also analytically shown the optimal prediction rule for 
exponential traffic in [7]. The rule is shown also to work well 
with a Weibull distributed stochastic pattern. 

Previous work does not show how much classification 
helps to improve the performance of the system, measured by 
throughput and collision rate. This work extends the work 
presented in [6] and shows how classification-based predictive 
method works with various traffic models and analyses the 
impact of sensing and switching times on the throughput. 
Proposed classification-based prediction decreases the amount 
of collisions with PUs greatly compared to the pure prediction 
based selection when the channels of interest include both 
stochastic and deterministic traffic. Analysis, simulations, and 
following discussions define how different parameters affect 
the performance and what scenarios are most useful for 
predictive operation. We verified our method with numerical 
analysis and careful simulations with different traffic patterns.  

Organization of the paper is as follows. Section II presents 
the system model. The classification and prediction methods 
and used traffic patterns are introduced in Section III. Results 

This work has been performed in the framework of the COGNAC project, which is partly funded by the Finnish Funding Agency 
of Technology and Innovation (Tekes), decision number 40028/08.  The first author would like to thank Nokia Foundation and 
Jenny and Antti Wihuri Foundation for their support during the work. 
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period is over, the CR has made a decision about the 
determinism or randomness of the traffic and can adapt the 
prediction method. The length of the learning period depends 
on the ON and OFF times of the traffic. With perfect sensing 
only few traffic periods is needed but if there are errors in the 
sensing the learning period has to be longer. 

A very distinctive feature for classification in our case is 
the periodicity. First, the periodicity is searched from the 
binary sequence. We can use the autocorrelation function [6] 
to find out the length of Tp in different channels. First the 
discrete autocorrelation function (ACF) at lag m for a discrete 
signal x[n] of length N is calculated as 
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Computing the autocorrelation function over many periods 
gives several periodic peak values. The average separation of 
the peak values τ can be used for estimation of the 
deterministic period length, and the standard deviation of 
separations tells whether the traffic can be seen as 
deterministic or not. When the standard deviation is zero or 
smaller than some predefined value σ that is set trough 
experiments, the traffic is classified as deterministic. 
Otherwise, it is stochastic. However, as shown in Fig. 3, when 
the ON and OFF times are not fixed, i.e., for partially 
deterministic traffic, there will be small peak values or fake 
maximums between real maximum peaks that have to be 
filtered away before averaging. These small peaks can be 
difficult to detect and remove in many situations. To 
circumvent this limitation of the ACF method we propose an 
alternative method based on the use of edge detection. These 
edges or starting points of the ON times are found from input 
sequence where ‘0’ turns to ‘1’. The average separation of the 
raising edges and the standard deviation of the separations tell 
whether the traffic is deterministic or not.  

 

Figure 3. Autocorrelation sequence for partially deterministic 
traffic. 

C. Predictive channel selection 
With random selection, a CR senses the spectrum and 

picks up randomly one channel. The same channel is used as 
long as it is available. When switching is required, the channel 
selection is done randomly using a uniform distribution across 
channels. If prediction is used for channel selection, the CR 
can select those channels offering the longest idle times. When 
switching channels, a user switches to the available channel j 
with the largest expected remaining idle time Tj, chosen as Tj = 

jj
Tmaxarg , where Tj is the calculated or estimated remaining 

idle time.  
The prediction method for this idle time is selected based 

on the classification. As we proved in [7], the maximum 
likelihood (ML) estimate of the idle time in the case of 
stochastic traffic is the average of idle times in the channel. 
This is optimal for exponential traffic and leads almost equally 
good improvements in channel switching also with Pareto and 
Weibull distributed traffic. Thus, the best prediction is then the 
average of the previous idle times, 

j
j TT mean= .      (4) 

In practice, the observation interval for average calculation 
should be restricted. One potential way to do calculation is to 
use the exponential weighted moving average method that has 
been shown to be a very good choice for prediction purposes 
in business and economic time series [10]. It calculates the 
weighted averages of previous data samples which in our case 
may be idle times of the channel. The weighting of each older 
data sample decreases exponentially, giving more importance 
to the recent observations. 

In the case of deterministic signals, the prediction is  
jj

j TTTT CONSONp −−= .    (5) 

This means that from the predicted idle time for the channel 
the consumed idle time jTCONS  is subtracted, i.e., the time 
when the channel was already idle while the CR was operating 
in a different channel, and then the channel with the longest 
idle time is selected. 

Since deterministic traffic can be predicted very 
accurately, weighting can be used in channel selection to favor 
deterministic channels when the estimated idle times of 
stochastic and deterministic channels are close to each other. 
The prediction of the OFF time in deterministic traffic is then 
as shown in (5) but the prediction of the stochastic traffic is 
weighted as w·Tj, w ≤ 1. Furthermore, deterministic traffic 
makes proactive operation proposed in [2] possible. Proactive 
means that the channel is switched before a PU is predicted to 
appear on the current channel. In reactive operation, channel 
switching is performed after the PU appears only. 

IV. RESULTS 

A. Classification 
The simulation results shown in this section validate the 

performance improvement achieved by using the 
classification-based prediction. We tested both ACF based and 
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are shown in Section IV and finally Section V concludes the 
paper. 

II. SYSTEM MODEL 

We use the same system model as in our previous paper [6]. 
The total available spectrum is divided into multiple primary 
channels to be sensed and used by cognitive radios. Each 
channel has its own independent traffic pattern. Fig. 2 
represents the architecture of our predictive cognitive radio 
system. The CR collects information about spectrum use in the 
different channels through spectrum sensing and stores this 
information into the channel history database in binary format. 
Since the traffic patterns of channels might slowly vary over 
time the database should include information only over limited 
time interval. The method works as follows. 1) All channels 
are sensed and the channel history database is updated with 
the most recent sensing information. The last spectrum sensing 
result is used to define the current situation in a particular 
channel. If the channel is free, the channel state (CS) flag is 
set to 0 and if not, CS = 1. 2) Based on the collected history, 
the traffic patterns of different channels are classified as 
stochastic or deterministic. 3) Different prediction methods 
apply to different traffic patterns and the method selection is 
made following the traffic type classification. 

Figure 2. System model for predictive transmission. 

4) The idle time prediction uses information from three 
sources. The CS flag of channels is checked first. If CS = 1, 
the predicted idle time is 0 s. If CS = 0, the remaining idle 
time of these channels is estimated based on the channel 
history and selected prediction method for that particular 
channel. 5) If the channel used currently is still free, secondary 
transmission continues. If not, the CR switches to the channel 
with the longest expected remaining idle time. 6) Data is 
transmitted and the system goes then back to the task 1) after 
Δt seconds to check and update the channel state and improve 
the channel selection. Δt is the maximum length of 
interference the PU can tolerate. It is a system dependent 
parameter that should be known for licensed systems 
operating on the same frequency band as the cognitive radio. 
Requirements from standards and manufacturers together with 
interference measurement studies can be used to define 
numerical values for the parameter. 

III. TRAFFIC MODELS AND PREDICTIVE CHANNEL SELECTION 

The sensing of primary channels is a periodic sampling 
process to determine the state (ON or OFF) of the channels at 
every sampling instant. The outcome of sensing is a binary 
sequence for each channel. When a sufficiently long history of 
traffic patterns of channels is stored to the database, patterns 
can be classified and appropriate prediction performed. For 
stochastic and deterministic cases the prediction algorithm 
should be different. The goal of the prediction is to find the 
channel with the largest predicted OFF time. First we discuss 
the range of traffic models considered, then the classification 
and finally the prediction algorithms per class. 

A. Traffic models 
The (partially) deterministic traffic was already fully 

defined in Section I. Deterministic traffic can be observed e.g., 
in TV transmission, where the periods can be long such as 
hours, days, or weeks. Moreover, the traffic in a network can 
be regulated periodic ON–OFF traffic with fixed ON and OFF 
times [8].  In addition, we define two types of stochastic 
models. A Poisson model with exponentially distributed ON 
and OFF times has traditionally been used to model voice 
traffic and is often used also in other network traffic studies. 
Suppose we have a vector of n samples of idle times from 
channel i, )...,,,( 21

i
n

iii xxx=X . Assuming exponentially 
distributed OFF times with traffic parameter λ > 0 the 
probability density function of the exponential distribution is 
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The model is analytically tractable but does not fit so well to 
bursty data traffic carried in a network. A model that has been 
found to model nicely ON/OFF periods in real network traffic is 
the Pareto distribution [9]. The probability density function of 
this distribution is given by 
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where β > 0 and α > 0 are the shape and scale parameters of 
the distribution. The mean value of the distribution is defined 
as E[x] = αβ/(β – 1) for β > 1. If β ≤ 1 the expected value is 
infinite. Another important characteristic of the distribution is 
that the variance of a random variable x is infinite if β ≤ 2. The 
degree of self-similarity [9] is measured by Hurst parameter 
given by H = (3 – β)/2. Traffic is self-similar if 0.5 < H < 1. 

B. Classification of traffic 
Since the traffic patterns in different channels differ from 

each other, it would be desirable if the cognitive radio could 
identify the type of traffic even after a short initial learning 
period from the binary sequences gathered during that period. 
Initially the CR works under the assumption that the ON and 
OFF times are stochastic in each channel. After the learning 
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period is over, the CR has made a decision about the 
determinism or randomness of the traffic and can adapt the 
prediction method. The length of the learning period depends 
on the ON and OFF times of the traffic. With perfect sensing 
only few traffic periods is needed but if there are errors in the 
sensing the learning period has to be longer. 

A very distinctive feature for classification in our case is 
the periodicity. First, the periodicity is searched from the 
binary sequence. We can use the autocorrelation function [6] 
to find out the length of Tp in different channels. First the 
discrete autocorrelation function (ACF) at lag m for a discrete 
signal x[n] of length N is calculated as 
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Computing the autocorrelation function over many periods 
gives several periodic peak values. The average separation of 
the peak values τ can be used for estimation of the 
deterministic period length, and the standard deviation of 
separations tells whether the traffic can be seen as 
deterministic or not. When the standard deviation is zero or 
smaller than some predefined value σ that is set trough 
experiments, the traffic is classified as deterministic. 
Otherwise, it is stochastic. However, as shown in Fig. 3, when 
the ON and OFF times are not fixed, i.e., for partially 
deterministic traffic, there will be small peak values or fake 
maximums between real maximum peaks that have to be 
filtered away before averaging. These small peaks can be 
difficult to detect and remove in many situations. To 
circumvent this limitation of the ACF method we propose an 
alternative method based on the use of edge detection. These 
edges or starting points of the ON times are found from input 
sequence where ‘0’ turns to ‘1’. The average separation of the 
raising edges and the standard deviation of the separations tell 
whether the traffic is deterministic or not.  

 

Figure 3. Autocorrelation sequence for partially deterministic 
traffic. 

C. Predictive channel selection 
With random selection, a CR senses the spectrum and 

picks up randomly one channel. The same channel is used as 
long as it is available. When switching is required, the channel 
selection is done randomly using a uniform distribution across 
channels. If prediction is used for channel selection, the CR 
can select those channels offering the longest idle times. When 
switching channels, a user switches to the available channel j 
with the largest expected remaining idle time Tj, chosen as Tj = 
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Tmaxarg , where Tj is the calculated or estimated remaining 

idle time.  
The prediction method for this idle time is selected based 

on the classification. As we proved in [7], the maximum 
likelihood (ML) estimate of the idle time in the case of 
stochastic traffic is the average of idle times in the channel. 
This is optimal for exponential traffic and leads almost equally 
good improvements in channel switching also with Pareto and 
Weibull distributed traffic. Thus, the best prediction is then the 
average of the previous idle times, 

j
j TT mean= .      (4) 

In practice, the observation interval for average calculation 
should be restricted. One potential way to do calculation is to 
use the exponential weighted moving average method that has 
been shown to be a very good choice for prediction purposes 
in business and economic time series [10]. It calculates the 
weighted averages of previous data samples which in our case 
may be idle times of the channel. The weighting of each older 
data sample decreases exponentially, giving more importance 
to the recent observations. 

In the case of deterministic signals, the prediction is  
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This means that from the predicted idle time for the channel 
the consumed idle time jTCONS  is subtracted, i.e., the time 
when the channel was already idle while the CR was operating 
in a different channel, and then the channel with the longest 
idle time is selected. 

Since deterministic traffic can be predicted very 
accurately, weighting can be used in channel selection to favor 
deterministic channels when the estimated idle times of 
stochastic and deterministic channels are close to each other. 
The prediction of the OFF time in deterministic traffic is then 
as shown in (5) but the prediction of the stochastic traffic is 
weighted as w·Tj, w ≤ 1. Furthermore, deterministic traffic 
makes proactive operation proposed in [2] possible. Proactive 
means that the channel is switched before a PU is predicted to 
appear on the current channel. In reactive operation, channel 
switching is performed after the PU appears only. 

IV. RESULTS 

A. Classification 
The simulation results shown in this section validate the 

performance improvement achieved by using the 
classification-based prediction. We tested both ACF based and 
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edge detection based classification methods with stochastic 
and deterministic traffic with parameter values mentioned in 
Table 1. We assumed that the traffic has been sensed 
perfectly. In practice, noise is always present and causes 
problems to detection and classification; results shown here 
provide an upper bound of the performance for the methods. 
The value of σ was set to τ /10. Exponentially distributed and 
Pareto distributed stochastic patterns were always classified 
right with both methods. With the deterministic traffic both 
methods found patterns with fixed ON and OFF times without 
problems. When ON and OFF times can vary inside the period, 
the ACF method is not working so reliably anymore due to 
fake maximums that cannot always be filtered away. Success 
percentage was around 70 %. The edge detection method 
classified also this type of partially deterministic traffic 
perfectly.   

 

TABLE 1. SIMULATION PARAMETERS 
Parameter Value 

Transmission period Td 90 ms  
Sensing period   Ts 10 ms 

Switching delay   Tw 10 ms 
Number of channels 5, 10, 15, 20 

Primary user traffic models Stochastic channels with 
exponentially or Pareto 

distributed ON and OFF times  
Deterministic channels  

Spectrum occupancy Between [0.1, 0.9] in different 
channels 

Simulation time 10 000 s 
Channel selection methods Intelligent channel selection,  

random selection 
 

B. Prediction: Impact on channel switching and throughput 
A first performance metric we consider is the number of 

channel switching that is required by the cognitive radio. 
When there are not many channels to choose from (5 
channels), the gain obtained with intelligent channel selection 
is smaller, as seen in Fig. 4. When the amount of primary 
channels is increased, the difference between intelligent and 
random selection increases. The intelligent method can 
concentrate on the best channels and outperforms clearly the 
random method.  

Fig. 4 shows the situation for Pareto distributed traffic for 
the parameter value β = 2.2 that is chosen to be over 2 to keep 
variability at a finite level. Intelligent selection clearly 
outperforms the random selection also in this case. The 
difference in channel switching is 30 % when 20 primary 
channels are considered. The optimal selection refers to the 
situation when we have perfect information about traffic 
patterns in the future. 

A good performance metric for the cognitive radio system 
is the percentage of time during which it can successfully 
transmit without colliding with the PU [11]. We call this 
metric throughput. Assuming that on average a collision takes 
half of the transmission time of the CR away between sensing 
instants and following transmission time is shorter by 
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Figure 4. Number of channel switching with Pareto traffic. 

 

switching time, throughput over time interval [0, T] including 
m transmission and sensing periods is 

 

T
TTTmT

C wds
CR

2/- ⋅−⋅−⋅
=

θδ
  (6) 

 
where δ is number of collisions, θ is the number of switching 
events, Td is the transmission time of a CR packet, Ts is the 
sensing time, and Tw is the switching delay. With the reactive 
channel selection method the number of collisions equals the 
number of channel switching events. 

Simulations above were made with transmission period 
length of 100 ms and idle times of channels were between [1 s 
10 s]. We made experiments to see how changing of them 
affects the performance of the system. We used 10 primary 
channels having idle times uniformly distributed between [0.5 
s, 2 s]. Transmission period length was 100 ms, 200 ms, and 
500 ms in different simulations. The throughput results for 
exponential and Pareto traffic are shown in Fig. 5.  
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Figure 5. Throughput with different transmission period 

lengths when idle times of PU traffic between [0.5 s, 2 s].  
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The result shows that throughput increases when Td 
increases from 100 ms to 200 ms. When Td is 500 ms, the 
throughput is clearly smaller since the amount of collisions 
becomes higher and thus decreases the efficient transmission 
time. Intelligent selection outperforms the random selection in 
all cases and the largest gain is achieved with larger Td since 
decreasing the amount of collisions affects the throughput 
more in this case. 

Fig. 6 shows the situation when the idle times of primary 
traffic are distributed in the range of [1 s, 5 s]. The trend is 
almost the same here. However, throughput is now better 
when Td is 500 ms compared to the 100 ms case with both 
traffic models. This is due to longer idle times than in the Fig. 
5. Frequent sensing affects more the performance than 
collisions that do not occur so often. The performance 
variations between the different transmission lengths are now 
smaller since longer idle times mean smaller amount of 
collisions and channel switching.  
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Figure 6. Throughput with different transmission periods 

when idle times of PU traffic between [1 s, 5 s].  

We then also change the sensing and switching times from 
10 ms to 20 ms or to 50 ms. Especially with shorter Td the 
increase of Ts decreases the throughput remarkably as shown 
in Fig. 7. Since the CR senses the spectrum periodically, the 
lower the Td is the more time is consumed sensing. When the 
same parameters as in Fig. 5 are used, the increase of Ts from 
10 ms to 20 ms decreases the throughput by 0.1 when Td = 100 
ms and only 0.02 when Td = 500 ms. The difference decreases 
with larger Td since the sensing is not performed so often. 

Changing the switching time does not have such a large 
effect to the total performance when Td is small since the 
sensing time always dominates. With higher values of Td the 
effect of switching is close to the effect of sensing. The 
throughput decreases drastically if Ts is set to remarkably 
higher values, e.g., to 50 ms. When Td = 100 ms, this would 
mean that half of the potential transmission time is spent for 
sensing. 
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Figure 7. Throughput with different sensing and switching 

times. 

Overall, the sensing time dominates the switching time in 
impact on the achieved throughput when stochastic traffic 
patterns are considered. This is especially true when the 
transmission period is short. The time spent for switching 
channels has a significant effect when the used idle periods of 
primary traffic are short and frequent switching is performed. 
Compared to the sensing time, another significant effect 
comes when the transmission period is not very short. 
Tolerable interference time Δt of the PU sets limits for the 
length of transmission period since sensing has to be 
performed periodically in order to notice whether there is 
primary transmission on or not. In addition, the more the 
traffic is varying across the channels the better learning and 
prediction are working compared to the method based on 
instantaneous information.  

C. Classification-based prediction 
Previous results basically show the benefit of prediction in 

the channel selection as well as the effect of the sensing and 
switching times to the performance. When classification is 
included in the prediction, there is even more gain. Fig. 8 
shows the number of channel switching as well as number of 
collisions for situation where there are 10 primary channels 
including 5 stochastic and 5 deterministic ones. The stochastic 
traffic is Pareto distributed. Idle times of channels are between 
1 s and 10 s. Results are shown for mean time based prediction 
and for classification based prediction with weightings of w = 
{1 0.7 0.5}. The smaller the value the more deterministic 
traffic is favored. 

Results show that the intelligent mean-time based 
prediction already improves both channel switching and 
collision results significantly. When classification and more 
accurate predictions with deterministic traffic are employed 
the situation becomes even better. With all values of w the 
number of switching is slightly lower than without 
classification.  But the true difference comes in collisions. 
When classification is employed, the CR knows when it is 
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using a deterministic channel and can switch to the new 
channel just before collision. The amount of collisions drops 
by 35 % already when w = 1 and the reductions are 54 % and 
62 % when w = 0.7 and w = 0.5, respectively. The results lead 
to a conclusion that weighting is preferred in channel selection 
to favor deterministic channels. 
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Figure 8. Performance results for classification-based 

prediction. 

The proactive method is only worth to be used with 
predictable traffic. Since the expected idle time of stochastic 
traffic does not depend on the currently consumed idle time of 
the channel, there is no use to switch the channel before the 
PU appears. If the longest idle time offering channel was 
already selected and it is still available it should be used since 
it most probably offers longest idle time for secondary 
operation. Thus, either the proactive CR system has to be 
restricted to work inside certain primary system transmitting 
deterministic traffic or it has to have ability to classify the 
traffic. The classification makes prediction more accurate 
increasing the throughput and decreasing collisions with 
primary user. A CR system employing classification is able to 
work efficiently with variety of primary systems.  
 

V. CONCLUSIONS 
Learning and classification methods improve the performance 
of a cognitive radio system. Classification divides traffic 
patterns into stochastic and deterministic ones, both needing 
own prediction rules. The intelligent channel selection scheme 
uses prediction results to find out channels offering the longest 
idle times for secondary use. The proposed method was 
verified by simulations with different traffic patterns. 
Prediction reduces the number of channel switching and 
increases throughput. An even higher gain is achieved with 
classification-based prediction since there it is possible to 
adapt the prediction to deterministic traffic and take advantage 
of the improved predictability when possible. Especially 
classification helps in reducing the collisions with primary 
users. Classification makes proactive operation possible also 
in the case where both stochastic and deterministic traffic 

patterns exist together in primary channels. It was shown that 
sensing time has a larger effect on the performance than 
channel switching time when the transmission period is short. 
The prediction based method is most useful when there is a 
high variability in the traffic across the channels. 

However, more work is needed in this area. An interesting 
thing to look at is the application of the method with real 
traffic measurements. Classification method should be further 
tested and developed for a noisy environment where sensing 
would work imperfectly. In addition to traffic patterns, 
learning and prediction could be incorporated in the spatial 
domain. Sensing results stored in the database together with 
geolocation information could give valuable information about 
spectrum use in different locations. CR nodes could possibly 
use beamforming antennas together with sensing to get even 
more detailed information about spatio-temporal use. This 
spatio-temporal use can also have some patterns over time and 
space which could be used in predicting where and when to 
operate with cognitive radio system. 
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Abstract—We propose a method that uses long term information 
on the use of primary channels to select the most auspicious ones 
to be sensed and exploited by cognitive radios at the requesting 
time. These channels are investigated in more detail over the 
short term. Sensing results are stored in the short term database 
and used to predict which channels are best for data 
transmission. The method makes the operation of cognitive 
radios more reliable and efficient in terms of delay and 
throughput, and decreases collisions with primary users.  

I. INTRODUCTION  
The radio frequency spectrum bands are mostly allocated to 

licensed users but many bands are used only part of the time in 
a certain geographical location. Future wireless systems will 
accommodate more and more users and high performance 
services, thus needing more spectrum that is a scarce natural 
resource. Therefore, cognitive radios (CR) have been proposed 
for lower priority secondary systems aiming at improving 
spectral efficiency by sensing the environment and filling the 
discovered gaps of unused licensed spectrum by their own 
transmission. However, there are problems to be solved. 

Spectrum sensing of all licensed channels consumes a lot of 
time that could be used for cognitive radio operation. In 
addition, channel switching based on instantaneous channel 
occupancy information may result in poor channel selection 
since the selected channel might be heavily utilized by primary 
user even though it happened to be available during the sensing 
time. This may cause frequent service disruptions for 
secondary users, thus resulting in interference to primary users. 
That would also increase delays of transmission and limit the 
capacity of the system. To solve the described problem, a CR 
could use databases including history information and 
prediction to make operation more efficient.  

Predictive models have been proposed for spectrum sharing 
in [1]-[4] but these approaches have a common problem of 
restricting the prediction to a certain traffic model only. 
Exponentially weighted moving average based method to 
utilize idle times in TV broadcast channels is proposed in [1]. 
Exponential ON-OFF traffic models and periodic-exponential 
models are investigated in [2]. Reference [3] investigates the 
predictability when primary traffic is assumed to be 
representable by cyclostationary random process. Traffic 
prediction in [4] is performed using binomial distributed call 
arrival and gamma distributed call holding times. This method 
uses long term information in 24 hour periods in prediction.  

Figure 1. Impact shown in frame structure: a) original frame b) 
with the proposed method. 

 

Long term information was proposed to be used to guide 
sensing in [5]. We proposed more general method that works 
with a variety of traffic classes in [6], [7]. The method 
classifies the traffic in different channels to deterministic and 
stochastic and uses specific prediction methods for different 
types of traffic to estimate what the following idle times in 
different channels will be. In addition, a recent patent [8] 
considers the use of database and prediction for cognitive 
radios for exploiting idle periods of TV channels.  

The proposed method brings new aspects to the prior work 
by joint long term and short term database use. The proposed 
method is not limited to a certain type of traffic, but works with 
a variety of traffic patterns. Long term (LT) database aids the 
operation of cognitive radio system and reduces its sensing 
time by prioritization of channels. Short term (ST) database 
allows classification and prediction in the bands of interest. 
This leads to intelligent channel selection for data and control 
transmission and thus improves the system performance both 
by increasing the throughput of the secondary system and also 
reducing interference caused towards primary users. 
Combination of the LT and the ST database makes the 
operation faster and more efficient than either of these 
techniques alone. The combination seems to be unique in 
cognitive radio environment. The method is flexible and 
independent of the used frequencies and CR types. During the 
normal operation the LT database cooperates with CRs but if 
the connection to the LT database is lost, CRs can continue 
operating independently. 

Impact and motivation of the proposed method in a simple 
way to the operation of cognitive radios is shown in Fig. 1. The 
use of the LT database shortens the sensing time Ts because 
number of the channels to be sensed reduces. 

This work has been performed in the framework of the COGNAC project,
which is partly funded by Finnish Funding Agency of Technology and
Innovation (Tekes), decision number 40028/08.   
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III. DETAILED DESCRIPTION OF THE METHOD 
More detailed description is provided with Fig. 3 that is a 

flow chart diagram for the proposed method. Operation of the 
different blocks is described below. 

 
Figure 3. Flow chart of the proposed method. 

 

Channel query from the LT database: A CR needs 
spectrum for data transmission and sends query to the LT 
database to get information about the most auspicious channels 
to sense and exploit. The query can be aimed to obtain only 
information about available channels or it can also include 
some additional information, e.g., estimated time for the total 
data transmission or needed capacity so that the LT database 
can response based on additional information.  

Receive set of channels: LT database sends back 
information about suitable and auspicious channels, giving N 
channels to be investigated, where N > 1. Time and capacity 
estimations can be used to define channels that are wide 
enough and offer needed time for transmission. 

Sense given channels: Given N channels are sensed to 
know whether they are now free or not. 

Store information to the ST database: Sensing 
information of N channels is stored into the short term database 
to be used in predictive channel selection. Dashed line 
connection between the ST and the LT database means that 
there is an option that the ST database can give feedback to the 
LT database especially when the given channels are not good 
for secondary use to update the situation. The spectrum use at 
the same area can change time to time and thus, LT database 
need to be updated. 

Classify traffic patterns of the channels: It takes some 
time from the start of the operation to collect information to the 
ST database for prediction purposes. After the learning period 
the ST database has enough history information about given N 
channels to analyze the traffic patterns of the channels. 
Prediction of future idle times depends on the pattern of the 
traffic. Thus, classification enables the use of specific 
prediction method for specific type of the traffic, making the 
prediction more accurate. A CR classifies the traffic patterns of 
all N channels. 

Decide prediction method: A CR decides the prediction 
method based on the classification. Prediction using short term 
information aims at finding most suitable channels for 
transmission, offering longest idle times to maximize the 
capacity of the secondary user as well as to reduce interference 
towards primary users. Short term information makes it 
possible to find the best ones from the list of channels provided 
by the LT database. 

Select channel using prediction: Future idle times of the 
channels are predicted taking into account the classification 
result and the history from the ST database. The channels 
estimated to offer the longest idle times are selected into use. P 
� 1 channels are to be used in data transmission and the rest N 
– P channels are returned to be offered to others requesting 
access to the spectrum.  

Transmit data for �t seconds: After channel selection is 
done, the CR sends data for �t seconds in the channel. The 
parameter �t is the maximum tolerable interference time for the 
primary system which can, in practice, be a rather short period. 
If there are still data to be sent, the CR senses again the 
channels and continues transmission on an available channel. 
The parameter �t is a system dependent parameter that should 
be known for licensed systems operating on the same 
frequency band as the CR. Value for the parameter could be 
stored in the LT database and given to the requesting CRs 
simultaneously with other information of the set of N channels. 

After data transmission is over, P channels are returned to 
the LT database. The LT database has to be updated regularly 
in order to keep the database up to date since radio 
environment and traffic patterns in different channels may 
change over time. Timescale for updating the information in 
the database needs to be carefully considered to avoid 
unnecessary overhead while offering valuable data for 
spectrum sharing purposes. However, this is a topic itself for 
research and is not covered in this paper. 
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Figure 2. a) An example of the network and b) Block diagram of the system. 

 

The use of the ST database reduces the channel switching rate. 
Thus, fewer reconfigurations consuming each Tw from the 
operation time are needed. These both affect so that more time 
is left for data transmission, making data period Td longer. For 
that reason, capacity is increased and due to proper channel 
choices interference with primary users is reduced. 

II. SYSTEM DESCRIPTION 

A. Long term database and network model 
A long term database aids and speeds up the sensing 

process by prioritizing the channels so that only most 
auspicious ones will be considered, thus reducing time needed 
for sensing. The LT database includes information about 
activities over different channels over long time period, e.g., a 
week. When access to primary channel is required, long term 
database could be used to check what the most auspicious 
bands are at that time (e.g., on Monday at 2 pm).  

An example of the operating network and the block 
diagram of the system are shown in Figs. 2a and 2b, 
respectively. The spectrum broker includes the long term 
database in the example. However, the LT database can be 
included, e.g., in the base station or even exist separately. The 
LT database includes information from the channels of interest 
over the long term. Physically the LT database has to be local 
to its users since otherwise it cannot offer relevant information. 
It can be shared with several CRs located near each other, for 
example, in a campus area or in a company. Only the spectrum 
use spatially close to requesting cognitive radios is important to 
be known to assist the operation of them. Channel information 
can be gathered to the LT database with various approaches, 
including spectrum sensing and obtaining the spectrum 
knowledge through beacons or control channels or by sharing 
databases with licensed users. The LT database can also 
include policy database, which includes information about 
different quality of service (QoS) parameters for the channels 
to be used in channel selection, e.g., interference levels and 
parameters for different licensed systems. The LT database 
should be immobile to offer relevant information over its 
serving area. 

Cognitive radio has a wireless interface to the LT database to 
change information with it. When a CR wants to access 
channel to send its data, it first connects to the LT database to 

ask what the most auspicious channels are. The LT database 
sends back N channels to be sensed. In addition to frequency 
information such as centre frequency and bandwidth of the 
channel, the request and feedback includes information about 
how long channels are needed or predicted to be available. 
Thus, if a CR does not need spectrum for a long time, such 
channels can be offered to those users requesting longer times. 

B. Short term database and short method description 
Short term database gives more detailed information over 

the bands of interest. The information about local channel use 
is gathered by periodical sensing and stored into the ST 
database. Every CR has its own ST database. Using pattern 
recognition and classification techniques that are crucial parts 
of an intelligent system, a cognitive radio can recognize and 
classify traffic patterns in different channels. This allows the 
system to use specific prediction methods for different types of 
traffic to make idle time prediction of channels as accurate as 
possible. Channels with the longest idle times are selected for 
operation. Mathematically the method works in a following 
way: 

1) Pre-selection of N out of M channels using the LT 
database, N < M. 

2) Final selection of P out of N channels using the ST 
database and sensing, 1 � P < N 

3) Returns N – P channels into use of others. 

Thus, the method uses three different timescales in the 
operation; long term, short term and instantaneous. Long term 
database includes information which is collected, e.g., over a 
day or a week. Short term information covers the channel use 
concerning current data transmission, e.g., over a few seconds 
or minutes. Spectrum sensing gives instantaneous information 
about channel use. Sensing can be performed cooperatively 
with other CRs to improve the detection probability [9]. 
Sensing information stored in the ST database can be just own 
sensing results or cooperative sensing data. 

Periodically, a CR stops transmission to perform sensing to 
check the availability of channels, selects the channel, and 
continues transmission until all the needed data are sent. Only 
part of the N given channels is used in the current transmission. 
Rest are returned to the LT database to be shared again. 
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Channel query from the LT database: A CR needs 
spectrum for data transmission and sends query to the LT 
database to get information about the most auspicious channels 
to sense and exploit. The query can be aimed to obtain only 
information about available channels or it can also include 
some additional information, e.g., estimated time for the total 
data transmission or needed capacity so that the LT database 
can response based on additional information.  

Receive set of channels: LT database sends back 
information about suitable and auspicious channels, giving N 
channels to be investigated, where N > 1. Time and capacity 
estimations can be used to define channels that are wide 
enough and offer needed time for transmission. 

Sense given channels: Given N channels are sensed to 
know whether they are now free or not. 

Store information to the ST database: Sensing 
information of N channels is stored into the short term database 
to be used in predictive channel selection. Dashed line 
connection between the ST and the LT database means that 
there is an option that the ST database can give feedback to the 
LT database especially when the given channels are not good 
for secondary use to update the situation. The spectrum use at 
the same area can change time to time and thus, LT database 
need to be updated. 

Classify traffic patterns of the channels: It takes some 
time from the start of the operation to collect information to the 
ST database for prediction purposes. After the learning period 
the ST database has enough history information about given N 
channels to analyze the traffic patterns of the channels. 
Prediction of future idle times depends on the pattern of the 
traffic. Thus, classification enables the use of specific 
prediction method for specific type of the traffic, making the 
prediction more accurate. A CR classifies the traffic patterns of 
all N channels. 

Decide prediction method: A CR decides the prediction 
method based on the classification. Prediction using short term 
information aims at finding most suitable channels for 
transmission, offering longest idle times to maximize the 
capacity of the secondary user as well as to reduce interference 
towards primary users. Short term information makes it 
possible to find the best ones from the list of channels provided 
by the LT database. 

Select channel using prediction: Future idle times of the 
channels are predicted taking into account the classification 
result and the history from the ST database. The channels 
estimated to offer the longest idle times are selected into use. P 
� 1 channels are to be used in data transmission and the rest N 
– P channels are returned to be offered to others requesting 
access to the spectrum.  

Transmit data for �t seconds: After channel selection is 
done, the CR sends data for �t seconds in the channel. The 
parameter �t is the maximum tolerable interference time for the 
primary system which can, in practice, be a rather short period. 
If there are still data to be sent, the CR senses again the 
channels and continues transmission on an available channel. 
The parameter �t is a system dependent parameter that should 
be known for licensed systems operating on the same 
frequency band as the CR. Value for the parameter could be 
stored in the LT database and given to the requesting CRs 
simultaneously with other information of the set of N channels. 

After data transmission is over, P channels are returned to 
the LT database. The LT database has to be updated regularly 
in order to keep the database up to date since radio 
environment and traffic patterns in different channels may 
change over time. Timescale for updating the information in 
the database needs to be carefully considered to avoid 
unnecessary overhead while offering valuable data for 
spectrum sharing purposes. However, this is a topic itself for 
research and is not covered in this paper. 
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Figure 4. Number of channels to sense before an unoccupied 

one is found. 
 

IV. CHALLENGES AND POSSIBILITIES 
Disadvantage of the solution is that complexity increases 

compared to the cognitive radio operating purely based on 
instantaneous sensing information. The proposed method 
requires also infrastructure for the database. However, there are 
several possible cases where the proposed method could be 
exploited, and the infrastructure itself can exist already. For 
example, to mention a few network models, spectrum brokers 
or spectrum servers can be used to enable coordinated dynamic 
spectrum access in a certain region [10], [11]. The server could 
include an LT database to make the spectrum use very 
efficient. When part of the decision making would be included 
in the cognitive radio side, the control signalling would not 
consume so much spectrum, allowing more time to cognitive 
radios for data transmission. Therefore, a CR including ST 
database would do intelligent decisions among the proposed 
resources from the server.  

Another case is clustering that is a concept for network 
formation [12]. Clusters in the network are formed by 
connecting neighbour nodes sharing common channels that are 
locally available, and the network by interconnecting clusters 
through gateway nodes. Clustered mesh networks have been 
interesting in many commercial and military applications. The 
proposed system could be used in this kind of networks, each 
cluster including their own local LT database and devices 
having their ST databases. Applications that could be used with 
the proposed system are, for example, different wireless 
devices and wireless Internet access, e.g., for data 
downloading. The method could improve the performance and 
reliability of different CR systems used for military, 
emergency, and commercial purposes. 

V. PERFORMANCE ANALYSIS 

A. Sensing time with the LT database 
The performance of the LT database can be measured with 

the sensing time that depends on the amount of channels 
needed to be sensed before an unoccupied one is found. As it 
was mentioned in [13], average number of sensed channels in 
random search is  

 

1
1

+
+=

K
Nm ,     (1) 

 

where N is the total number of channels and K is the number of 
unoccupied channels. On average, this leads to the total sensing 
time to be Ts = mts, where ts is the sensing time of a single 
channel.  

Assuming our system to cover 100 channels we can 
estimate the number of sensed channels depending on the way 
the LT database operates. This covers only the LT part, short 
term operation is not considered. The Fig. 4 shows that if all 
the 100 channels have to be covered, tens of channels are 
needed to be sensed in high occupancy situation. When the LT 
database proposes lower amount of channels, time needed to 
find a channel reduces. Parameter N will have a smaller value 
and parameter K will have proportionally higher value. 
However, the difference e.g., with 100 and 20 channels is very 
small when percentage of unoccupied channels is over 20 %.  

However, in addition to smaller number of channels, the 
percentage of unoccupied channels is higher when the channels 
are selected by the LT database. Thus, one should compare 
random method with the LT one with a clearly higher 
percentage of unoccupied channels. One example is marked 
with ovals in Fig. 4. When percentage in random selection is 
10 %, it can be clearly more than 20 % in the channels 
proposed by the LT database. This would mean that required 
number of sensed channels to find an available one drops down 
to a fraction of the original. As an example, if there are 10 
available channels originally among 100 possible ones, these 
10 available channels can be included in the set of 50 channels 
proposed by the LT database. In that case the percentage of 
unoccupied channels is doubled. The results indicate that the 
LT information always improves the performance, especially 
when the number of channels is restricted to 10 or below. 

B. Throughput performance with the combination of the LT 
and the ST database 
 Throughput values for the random, pure ST, and both 

methods combined with the LT database are shown in Fig. 5. 
Primary traffic is purely deterministic. Throughput is defined 
as the percentage of time during which the CR system can 
successfully transmit without colliding with the primary user. 
Assume that on average a collision takes half of the 
transmission time of a SU away between sensing instants as is 
the case with exponential traffic, and the following 
transmission time is shorter by a switching time. Then, 
throughput over a time interval [0, T] including n transmission 
and sensing periods is 

 

T
TTTnT

C wds
CR

2/- ⋅−⋅−⋅
=

θδ
,  (2) 

 

where number of collisions is �, � is the number of switching, 
Td is the transmission time of SU, Ts is the sensing time, and Tw 
is the switching delay.  
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Figure 5. Throughput performance for the used methods. 
 

We used 20 channels in simulations. Traffic in the channels 
has exponentially distributed ON and OFF times, and average 
OFF times in the traffic are distributed between 0.5 s and 2 s. 
Occupancy of the channels is uniformly distributed between 10 
% and 90 %. As shown in Fig. 5, the worst performance is 
achieved with the pure random method. Inclusion of the ST 
database improves the performance clearly and with the longer 
transmission periods the improvement is higher. 

The numbers in the figure legends tell how long the sensing 
periods are, e.g., R20 means random selection with 20 ms 
sensing time. We assume that both the pure ST and the pure 
random methods need 20 ms sensing time to go through all the 
channels. When the LT is applied, sensing time is smaller. We 
have tried sensing time values 5 ms and 10 ms in our 
simulations, meaning that 25 % or 50 % of channels are sensed 
after pre-selection made by the LT database. Switching time is 
fixed to 10 ms.  

With low transmission period values the LT database gives 
a large performance improvement comparing to the methods 
without it. Reason for the behaviour is that with short 
transmission periods sensing time dominates in (2). A CR stops 
frequently data transmission to perform sensing. The LT based 
method enables shorter sensing times and thus the throughput 
is high when transmission period is short. 

In addition to sensing, another significant effect comes with 
collisions when transmission periods are longer. As shown in 
(2), every collision takes half of the transmission period away. 
Thus, the longer the transmission period is the more a collision 
affects the throughput. Collision rate is decreased when the ST 
database is applied in channel selection process which 
improves clearly the situation.  

When the LT with random short term selection is used, the 
performance is worse than with a pure ST method with longer 
transmission periods. Clearly the best performance with any 
transmission period is achieved with a combination of the ST 
and the LT database.  

VI. CONCLUSIONS 
A cognitive radio system needs history information to 

operate efficiently in a heterogeneous radio environment. In 
this paper we present a method using both long and short term 
history information in radio resource management. Pure long 
term information improves the performance of cognitive radios 
in terms of sensing time. However, a lot of channel queries are 
needed when used channel changes frequently if the only 
source of information is a centralized LT database. When more 
detailed information locally is offered via an ST database, it 
becomes easier to avoid congested channels and use the ones 
offering good transmission opportunities. This reduces query 
delays in transmission. The results indicate that a hybrid 
system combining both long term and short term history 
information increases throughput of a CR system and decreases 
interference towards primary users of the spectrum. 
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Improving the Performance of Cognitive Radios

through Classification, Learning, and Predictive

Channel Selection
Marko Höyhtyä, Sofie Pollin, and Aarne Mämmelä

Abstract—Prediction of future idle times of different channels
based on history information allows a cognitive radio (CR)
to select the best channels for control and data transmission.
In contrast to earlier work, the proposed method works not
only with a specific type of traffic but learns and classifies
the traffic type of each channel over time and can select the
prediction method based on that. Different prediction rules apply
to partially deterministic and stochastic ON-OFF patterns. New
prediction methods for both traffic classes are developed in
the paper. A CR predicts how long the channels are going to
be idle. The channel with the longest predicted idle time is
selected for secondary use. Simulations show that the proposed
classification method works well and predictive channel selection
method outperforms opportunistic random channel selection both
with stochastic and deterministic ON-OFF patterns. Weibull,
Pareto, and exponentially distributed traffic patterns are used
in stochastic simulations to show general applicability of the
proposed method. The classification-based method has even a
higher gain when channels of interest include both stochastic and
deterministic traffic. The collision rate with primary user over
a given time interval can drop by more than 70% compared to
the predictive system operating without classification.

Index Terms—Spectrum access, prediction, history information

I. INTRODUCTION

A
cognitive radio should be more than a radio taking

immediate advantage of spectrum opportunities. It should

have the ability to learn from experiences. Learning makes

the operation of cognitive radios more efficient compared

to the case where only information available at the design

time is possible. Ideally, information gathered during the

lifetime of the radio should be used. However, the majority of

cognitive radio research is focused on methods that use only

instantaneous information about the environment as a basis

for dynamic operation. Available channels for selection can

be assumed to be equally good [1]–[3] or characterized based
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on the interference level [4] or bandwidth [5] to prefer the

ones with the lowest interference levels or the ones with the

widest bandwidths. Secondary users sense their environment

and react to estimated changes in spectrum availability in

an opportunistic way. Such an approach can result in a bad

channel selection since the system randomly selects channels

that may be heavily used by primary users (PU) if that

channel happened to be available during the sensing time. This

may cause frequent service disruptions for secondary users

since they have to refrain from transmission, and result in

interference to primary users. In addition, every channel switch

causes a non-negligible delay for the transmission. If a single

channel can be used over a long period, such delays can be

avoided and the capacity is improved.

The problem of using learning in channel selection has not

been explored much in the literature. The seminal paper [6]

emphasized that a dynamic spectrum management algorithm

should include information about the traffic pattern of the

primary user occupying the channel. The durations of ON

and OFF times of the traffic are random variables determining

the traffic pattern i.e., the ON-OFF pattern. In a wireless

environment, two basic classes of traffic patterns exist [6]: 1)

Deterministic patterns where the PU transmission is ON, then

OFF during a fixed time slot; 2) Stochastic patterns where

the traffic can be described only in statistical terms. Frame

structures make traffic patterns fully or partially deterministic.

Partially deterministic means that the ON time starts period-

ically but its length can vary while the length of the period,

Tp, is fixed as illustrated in Fig. 1. A period consists of one

ON time followed by one OFF time, i.e., a time interval from

the raising edge of the signal to the next raising edge. This

definition covers also the deterministic periodic case where

ON and OFF times are fixed. In our study, the traffic patterns

are either stochastic or partially deterministic ones, and we

will loosely use term deterministic from now on for the latter.

Terms OFF time and idle time as well as ON time and busy

time are used interchangeably in this paper.

In order to plan the secondary use of the spectrum better

without cooperation with the primary user1, some authors

have proposed predictive models to be used in spectrum

sharing [9]–[11]. One limitation of the mentioned papers is

that the proposed method should not be restricted to one

possible traffic model only. It should work with a variety of

1In addition to the primary/secondary model, prediction can also be applied
to systems relying cognitive techniques for recognition of radio resource
availability in a heterogeneous environment [7]– [8].
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Fig. 2. System model for predictive transmission.

in that band. Requirements from standards and manufac-

turers, and interference measurement studies can be used

to define numerical values for the parameter. However,

this part is a research area on its own and out of scope

of this paper.

B. Classification of the traffic pattern

Sensing of primary channels is a periodic sampling process

to determine the state (ON or OFF) of the channels at every

sampling instant. The outcome of sensing is a binary sequence

for each channel. This sequence tells us about the traffic

that is ongoing. It has sufficient information to determine the

periodicity, distribution of idle and busy times, and occupancy

of the channel. Occupancy defines the fraction of the time

that the primary user is transmitting in a channel. We assume

perfect sensing in this paper. We do not consider the case

where the primary users’ ON or OFF times are shorter than

the sampling interval which in our case equals to ∆t. The
real detected pattern is noisy and if the signal is weak that

can cause some changes to the detected pattern.

Cognitive radio should identify the type of the traffic after

a short learning period from the binary sequences gathered

during that period. There are different types of traffic appro-

priate for prediction but basically they can be divided into two

basic groups as discussed in the introduction. For stochastic

and deterministic cases the prediction algorithm should be

different. Initially the CR works under the assumption that

the ON and OFF times are random in each channel. After the

learning period is over, the CR has made a decision about the

determinism or randomness of the traffic and can adapt the

prediction method.

A very distinctive feature for classification in our case is the

periodicity. We propose an edge detection based method, given

as a pseudocode in Table I, for period search. The edges are

found from input sequence where ‘0’ turns to ‘1’. The average

separation of these raising edges and the standard deviation of

the separations tell us whether the traffic is deterministic or

not.

III. PREDICTION OF IDLE TIMES

A. Deterministic traffic

Deterministic patterns can be found from different channels

and with different timescales. In TV transmission periods can

be really long, e.g., a day or a week. Shorter periods can be

found e.g., from air-traffic control radar and weather radars

[21]. In the fixed period case, it is possible that ON and

OFF times are fixed or random. In the first case, we can

make exact predictions about the future and fully use all

available resources for secondary transmissions. For this case,

the starting point of the OFF time for M consecutive periods

with length Tp is Ts,m = tm + TON, m = 1, 2, . . .,M where

the beginning time of the period m is tm = m ·Tp. The length

of the OFF time is TOFF = Tp − TON where TON and TOFF

are the lengths of the ON and OFF times. In the second case,

the ON time is not fixed. When the channel becomes idle at

time t0, we know exactly how long it will be available before

the PU appears again, namely

TOFF,m = Tp − (t0 − tm)m = 1, 2, . . . ,M, t0 ≥ tm. (1)

B. Stochastic traffic

When the ON time is fixed and the OFF time random, we

know the starting time of the idle time, but the length can

be only estimated in a probabilistic way. In the case of fixed

OFF times, we know the remaining idle time after the channel

becomes available at time t0. If both times are random, we

estimate the expected remaining idle time after detecting the

channel to become idle.

Each cognitive radio stores the measurements of idle and

busy times in the database and constructs a histogram of them.

Average occupancy over the observation interval tells us

how heavily the channel is used on average. To know more

exactly what kind of traffic is going on, one should look at

the distribution of idle and busy times. From the database,

the probabilities that different channels will be available for

at least X seconds can then be calculated as

P (t ≥ X) =
The number of idle time values ≥ X

The number of all idle times
. (2)

Using the database, a CR could estimate the time to transmit

under an interference constraint, i.e., W % guarantee not

to interfere with PU. This means that it would transmit

continuously without sensing a certain amount of time and

trust in the distribution. To achieve this, the CR should choose

its transmission time Z so that P (t ≤ Z) = 1 − W/100.
Probability for real idle time to be smaller than Z would then

be (100−W ) %. Using this approach the CR could adaptively

loosen its sensing period requirements. However, doing so the

sampling process slows down and in the future the database

cannot give as accurate information.

1) Prediction analysis:: Suppose we have a vector of

n samples of idle times from the channel i, Xi =
(xi

1, x
i
2, . . . , x

i
n). Assuming exponentially distributed OFF

times with traffic parameter λOFF > the probability density

function of the exponential distribution is

f (x) =

{
λOFFe

−λOFFx, x ≥ 0
0, x < 0

. (3)

The maximum likelihood (ML) estimate for the traffic param-

eter is λ̂OFF = 1/x̄, where x̄ = (1/n)
∑n

j=1 xj is the sample

mean. Because of the invariance property of the ML estimator
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Fig. 1. Partially deterministic traffic pattern.

traffic classes and thus, a general model would be needed. A

radio can determine the modulation type from the incoming

signal [12], [13] or classify jammers in spread spectrum burst

transmission systems [14]. In order to work with a variety

of traffic classes, a CR should recognize traffic patterns in

different channels to be able to improve the use of the OFF

times. Basically, a CR should characterize whether the traffic

pattern is deterministic or stochastic and based on that it should

use different methods for idle time prediction before selecting

the channel.

Our contributions are an idea of using classification in

the prediction, a simple classification and learning method

to detect the pattern type and to gather needed information,

an analytically derived method for idle time prediction both

for deterministic and stochastic traffic patterns, and a rule

for smart channel selection for data transmission and control

exchange. In contrast to methods from [9]–[11], [15], the

proposed method works not only with a specific type of traffic

but learns and classifies the traffic type of each channel over

time and can select the prediction method based on that. We

verified our method with the measurement studies and tested it

with different traffic patterns using simulations in comparison

with an opportunistic random selection approach and achieved

very encouraging results. The proposed classification-based

prediction decreases the collision rate with the PUs greatly

compared to the pure prediction based selection when the

channels of interest include both stochastic and deterministic

traffic. Actually, a recent article shows using extensive set of

measurements that spectrum use in several different frequency

bands is well modeled using the geometric distribution [16].

Thus, our proposed prediction method for stochastic traffic

that is developed using maximum likelihood (ML) estimate for

exponential distribution, continuous counterpart of geometric

distribution, is close to optimal in many cases. Conducted

tests with several different traffic models show the general

applicability of the method.

Parts of this paper were presented in our earlier confer-

ence papers [17]–[19]. In the present combined paper we

have extended the results and unified and elaborated the

explanations and examples. Extended simulations with various

traffic models have been conducted. In addition, we have

made measurement studies both with 802.11 traffic and in the

450 MHz band to verify the practicability of the proposed

approach. The classification is discussed with more details.

The organization of the paper is as follows. Section II

presents the system model. The prediction method and traf-

fic models are introduced in Section III. Channel switching

schemes are presented in Section IV and performance metrics

are defined in Section V. Measurement studies are discussed in

Section VI and simulation results in Section VII. Applicability

of the method in different situations is discussed in Section

VIII and the conclusions are drawn in Section IX.

II. SYSTEM MODEL

Traffic prediction aims at forecasting future traffic as pre-

cisely as possible, based on the measurement history [20].

In a CR context the prediction aims at determining idle

times in PU traffic to be used by secondary transmissions.

In addition, history information gives valuable information to

the sensing process. A CR system can abandon some channels

after a certain learning time if it decides that the band is used

almost all the time. It is not reasonable to waste resources to

the bands that cannot offer communication possibilities. The

energy efficiency is better if the system concentrates only on

channels that seem to have long enough idle times.

A. System model

We assume that the total available spectrum is divided into

multiple primary channels to be sensed and used by cognitive

radios. Each channel has its own independent traffic pattern.

Fig. 2 represents the architecture for a predictive cognitive

radio system. The CR collects information about the spectrum

use in the different channels through spectrum sensing and

stores this information into the channel history database in a

binary format. Since the traffic patterns of the channels might

slowly vary over time, the database should include information

only over a limited time interval. Cooperative sensing may be

needed to detect primary users reliably in the same area. The

performance improvement of the cooperative spectrum sensing

results from the exploitation of spatial diversity. The method

works as follows.

1) All channels are sensed and the channel history database

is updated with the most recent sensing information. The

last sensing result is used to define the current situation

in a particular channel. If the channel is free, the channel

state (CS) flag is set to 0 and if not, CS = 1.

2) Based on the collected history, the traffic patterns of

different channels are classified as stochastic and deter-

ministic ones (see Section B).

3) Different prediction methods apply to different traffic

patterns and the method selection is made following the

traffic type classification.

4) The idle time prediction uses information from three

sources. The CS flag of channels is checked first. If

CS = 1, the predicted idle time is 0 s. If CS = 0, the

remaining idle time of these channels is estimated based

on the channel history and selected prediction method

for that particular channel.

5) If the channel used currently is still free, secondary

transmission continues. If not, the CR switches to the

channel with the longest expected remaining idle time.

6) Data is transmitted and the system goes then back to

the task 1) after ∆t seconds where ∆t is the maximum

length of interference the PU can tolerate. It is a system

dependent parameter that should be known for licensed

systems operating on the same frequency band as the

cognitive radio. If ∆t = 0, CR operation is not allowed
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Fig. 2. System model for predictive transmission.

in that band. Requirements from standards and manufac-

turers, and interference measurement studies can be used

to define numerical values for the parameter. However,

this part is a research area on its own and out of scope

of this paper.

B. Classification of the traffic pattern

Sensing of primary channels is a periodic sampling process

to determine the state (ON or OFF) of the channels at every

sampling instant. The outcome of sensing is a binary sequence

for each channel. This sequence tells us about the traffic

that is ongoing. It has sufficient information to determine the

periodicity, distribution of idle and busy times, and occupancy

of the channel. Occupancy defines the fraction of the time

that the primary user is transmitting in a channel. We assume

perfect sensing in this paper. We do not consider the case

where the primary users’ ON or OFF times are shorter than

the sampling interval which in our case equals to ∆t. The
real detected pattern is noisy and if the signal is weak that

can cause some changes to the detected pattern.

Cognitive radio should identify the type of the traffic after

a short learning period from the binary sequences gathered

during that period. There are different types of traffic appro-

priate for prediction but basically they can be divided into two

basic groups as discussed in the introduction. For stochastic

and deterministic cases the prediction algorithm should be

different. Initially the CR works under the assumption that

the ON and OFF times are random in each channel. After the

learning period is over, the CR has made a decision about the

determinism or randomness of the traffic and can adapt the

prediction method.

A very distinctive feature for classification in our case is the

periodicity. We propose an edge detection based method, given

as a pseudocode in Table I, for period search. The edges are

found from input sequence where ‘0’ turns to ‘1’. The average

separation of these raising edges and the standard deviation of

the separations tell us whether the traffic is deterministic or

not.

III. PREDICTION OF IDLE TIMES

A. Deterministic traffic

Deterministic patterns can be found from different channels

and with different timescales. In TV transmission periods can

be really long, e.g., a day or a week. Shorter periods can be

found e.g., from air-traffic control radar and weather radars

[21]. In the fixed period case, it is possible that ON and

OFF times are fixed or random. In the first case, we can

make exact predictions about the future and fully use all

available resources for secondary transmissions. For this case,

the starting point of the OFF time for M consecutive periods

with length Tp is Ts,m = tm + TON, m = 1, 2, . . .,M where

the beginning time of the period m is tm = m ·Tp. The length

of the OFF time is TOFF = Tp − TON where TON and TOFF

are the lengths of the ON and OFF times. In the second case,

the ON time is not fixed. When the channel becomes idle at

time t0, we know exactly how long it will be available before

the PU appears again, namely

TOFF,m = Tp − (t0 − tm)m = 1, 2, . . . ,M, t0 ≥ tm. (1)

B. Stochastic traffic

When the ON time is fixed and the OFF time random, we

know the starting time of the idle time, but the length can

be only estimated in a probabilistic way. In the case of fixed

OFF times, we know the remaining idle time after the channel

becomes available at time t0. If both times are random, we

estimate the expected remaining idle time after detecting the

channel to become idle.

Each cognitive radio stores the measurements of idle and

busy times in the database and constructs a histogram of them.

Average occupancy over the observation interval tells us

how heavily the channel is used on average. To know more

exactly what kind of traffic is going on, one should look at

the distribution of idle and busy times. From the database,

the probabilities that different channels will be available for

at least X seconds can then be calculated as

P (t ≥ X) =
The number of idle time values ≥ X

The number of all idle times
. (2)

Using the database, a CR could estimate the time to transmit

under an interference constraint, i.e., W % guarantee not

to interfere with PU. This means that it would transmit

continuously without sensing a certain amount of time and

trust in the distribution. To achieve this, the CR should choose

its transmission time Z so that P (t ≤ Z) = 1 − W/100.
Probability for real idle time to be smaller than Z would then

be (100−W ) %. Using this approach the CR could adaptively

loosen its sensing period requirements. However, doing so the

sampling process slows down and in the future the database

cannot give as accurate information.

1) Prediction analysis:: Suppose we have a vector of

n samples of idle times from the channel i, Xi =
(xi

1, x
i
2, . . . , x

i
n). Assuming exponentially distributed OFF

times with traffic parameter λOFF > the probability density

function of the exponential distribution is

f (x) =

{
λOFFe

−λOFFx, x ≥ 0
0, x < 0

. (3)

The maximum likelihood (ML) estimate for the traffic param-

eter is λ̂OFF = 1/x̄, where x̄ = (1/n)
∑n

j=1 xj is the sample

mean. Because of the invariance property of the ML estimator



XI/4 XI/5

32 ADVANCES IN ELECTRONICS AND TELECOMMUNICATIONS, VOL. 2, NO. 4, DECEMBER 2011

Fig. 4. Different times of channel usage.

where Tj j = 1 . . . ,m, is the calculated or estimated remain-

ing idle time of the channel j. Below, we specify the prediction
rules for different traffic types based on different times that are

defined in Fig. 4. In the case of the deterministic signals, the

prediction is

Tj = Tp − T j
ON − T j

CONS. (8)

This means that from the predicted idle time for the channel

the consumed idle time T j
CONS is subtracted, i.e., the time

when the channel was already idle while the CR was operating

in a different channel. For stochastic signals we estimate the

remaining idle time with the mean idle time due to previous

analysis and the measurement study provided in Section 6.

The predicted idle time is Tj = T j
mean, i.e., the mean idle time

of the channel.

When the distribution of idle times is memoryless, as is the

case with the exponential distribution, the consumed idle time

does not affect the probability of the channel being idle in the

future. With memoryless property we mean that observations

from the past do not affect the recent situation. If the channel

was idle in the previous time instant, it will be idle at the next

instant with a constant probability that only depends on the

parameters of the distribution. Therefore, there is no need to

subtract the consumed idle time from the prediction.

Since a deterministic traffic can be predicted very accurately,

weighting can be used in channel selection to favor deter-

ministic channels. The deterministic channel is selected if the

estimated idle times of stochastic and deterministic channels

are close to each other. The prediction of the OFF time in a

deterministic traffic is then as shown in (8) but the prediction

of the stochastic traffic is weighted as w · Tj , w ≤ 1, i.e.,

Tj =

{
Tj = Tp − T j

ON − T j
CONS, if traffic is deterministic

w · T j
mean, if traffic is stochastic.

(9)

B. Random channel switching

A random channel selection scheme corresponds to a sit-

uation when only instantaneous information of the channel

conditions is known. A cognitive radio senses the spectrum

and picks up randomly one channel among all available ones

into use. The same channel is used as long as it is available.

When switching is required, the next channel selection is done

randomly using the uniform distribution. Suppose the sensing

gives a vector of m samples C = (c1, c2, . . . , cm) showing the

current channels available for secondary use, lowest frequen-

cies first. Random selection happens by roundingm·U into the

nearest greater integer and selecting the corresponding channel

from C. Symbol U is a random number that is uniformly

distributed in the interval (0, 1).

C. Optimal channel switching

Optimal channel selection could be done if all the traffic

patterns with exact ON and OFF times in different channels

were known in detail also in the future. When switching is

required, the channel that is free and offers longest remaining

idle time at the moment of switching is selected. Ideal switch-

ing scheme is used in simulations to show the lower bound for

the channel switching rate, i.e., number of channel switching

in a time unit.

Fig. 5 shows channel selection possibilities. Sensing is done

through all channels and during sensing the cognitive radio is

not transmitting. A CR can select the next channel randomly

or based on prediction. Prediction improves selection: channel

j is a much better choice than channel k because it offers a

longer time for CR operation. CR can select the next channel

reactively or proactively. The reactive method switches to a

different channel after the PU is sensed to appear in the same

channel. The proactive method changes the channel before

collision. It predicts that the PU will appear soon and switches

to the next channel.

V. PERFORMANCE MEASURES

Channel switching rate: Every channel switch causes some

delays for the transmission and frequent switching decreases

the capacity and makes the network management more dif-

ficult. Thus, a good metric for the frequency control is the

channel switching rate, i.e., the number of channel switching in

a second. Minimization of the switching rate decreases also the

probability for collisions with primary user since the switching

rate is partly dependent on the collisions.

Throughput: A good performance metric for the cognitive

radio system is the percentage of time during which it can suc-

cessfully transmit without colliding with the PU. Throughput

of each SU over a time interval [0, T ] is defined now as

CCR = lim
T→∞

Successful transmission time in [0, T ]

T
. (10)

Assuming that on average, collision takes half of the trans-

mission time of a SU away between sensing instants as is the

case with exponential traffic, and following transmission time

is shorter by a switching time, throughput over a time interval

[0, T ] including n transmission and sensing periods is

CCR =
T − n · Ts − δ · Td

2 − θ · Tw

T
(11)

where number of collisions is δ, θ is the number of switching,

Td is the transmission time of SU, Ts is the sensing time, and

Tw is the switching delay. With the reactive channel selection

method the number of collisions equals to the number of

channel switching.

Collision rate: Collision happens when both primary and

secondary users simultaneously transmit on the same channel.

Collision rate between SUs and PUs can be used as a PU

protection metric since one aim of cognitive radio networks is
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TABLE I
PSEUDOCODE FOR CLASSIFICATION

1. Computation of parameters

1.1. Search edges from the input sequence

1.2. Calculate average separation between consecutive raising edges, tau ave

1.3. Calculate standard deviation of separations, std

2. Traffic type classification

if std = 0 or smaller than limit % When the period length is constant,

sequence is periodic = TRUE % the sequence is periodic

tau = round(tau ave) % The estimated traffic period length is tau ave rounded

% an integer

else

sequence is periodic = FALSE % If standard deviation is too large, the sequence is not periodic

[22], ML estimate for idle time can be written as

T̂OFF =
1

λ̂OFF

= x̄. (4)

This means that, using the ML criterion, the best prediction

of the next idle time is the average of the previous ones. In

practice, traffic patterns of different channels might slowly

vary over time. Thus, the observation interval for average

calculation should be restricted. One possible way to do the

calculation is to use the exponential weighted moving average

(EWMA) method.

2) Other distributions to describe wireless traffic: Weibull

process: Poisson model with exponentially distributed ON

and OFF times has traditionally been used to model voice

traffic and is often used in other network traffic studies. It is

analytically tractable but does not fit so well to a bursty data

traffic carried in a network. There are many different models

where the burstiness of the traffic is taken into account [23].

Two widely used models, Weibull and Pareto processes, will

also be under study.

The probability density function of a Weibull random vari-

able x is given by

f (x) =

{
αβxβ−1e−αxβ

, x ≥ 0
x, x < 0

, (5)

Fig. 3. Probability density functions of the distributions

where the scale and shape parameters are α > 0 and β ≥
0. When β < 1, the Weibull distribution is heavy-tailed and

can model the ON/OFF period lengths of self-similar network

traffic [23]. The mean value for the distribution is E[x] =
1/[αΓ(1 + 1/β)], where Γ(z) =

∫∞
0

tz−1e−t is the gamma

function. If z is a positive integer, then Γ(z) = (z − 1)!. We

consider here the case β = 1/2 which leads to E[x] = 2/α.

Pareto Process: Another model that has been found to

model nicely ON/OFF periods in the real network traffic is

the Pareto distribution [23]. The probability density function

of this distribution is given by

f (x) = β
αβ

xβ+1
, x > α (6)

where β > 0 and α > 0 are the shape and scale parameters

of the distribution. The mean value of the distribution is

E[x] = αβ/(β − 1) for the shape parameter value of β > 1.
The expected value is infinite if β ≤ 1. Other important

characteristic of the distribution is that the variance of a

random variable x is infinite if β ≤ 2. The degree of

self-similarity is measured by the Hurst parameter given by

H = (3− β)/2. Traffic is self-similar if 0.5 < H < 1.
The probability density functions of the three discussed

distributions are shown in Fig. 3. The mean value for the

distributions is fixed to 3 and the parameter β in Pareto

distribution is 2. The tails of the distributions can be seen

in the lower part of the figure, showing the heavier tails of the

Weibull and Pareto distributions compared to the exponential

distribution.

IV. CHANNEL SWITCHING SCHEMES

A. Predictive channel switching

Secondary users use the predictive models of spectrum

availability, and schedule their spectrum use in order to max-

imize spectrum occupancy while minimizing the disruption

rate to primary users. To do that, the CRs have to select the

channel to switch to in a smart way.

When switching channels, a user switches to the available

channel i with the largest predicted remaining idle time Ti,

chosen from the set of the m channels as

Ti = maxjTj (7)
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Fig. 4. Different times of channel usage.

where Tj j = 1 . . . ,m, is the calculated or estimated remain-

ing idle time of the channel j. Below, we specify the prediction
rules for different traffic types based on different times that are

defined in Fig. 4. In the case of the deterministic signals, the

prediction is

Tj = Tp − T j
ON − T j

CONS. (8)

This means that from the predicted idle time for the channel

the consumed idle time T j
CONS is subtracted, i.e., the time

when the channel was already idle while the CR was operating

in a different channel. For stochastic signals we estimate the

remaining idle time with the mean idle time due to previous

analysis and the measurement study provided in Section 6.

The predicted idle time is Tj = T j
mean, i.e., the mean idle time

of the channel.

When the distribution of idle times is memoryless, as is the

case with the exponential distribution, the consumed idle time

does not affect the probability of the channel being idle in the

future. With memoryless property we mean that observations

from the past do not affect the recent situation. If the channel

was idle in the previous time instant, it will be idle at the next

instant with a constant probability that only depends on the

parameters of the distribution. Therefore, there is no need to

subtract the consumed idle time from the prediction.

Since a deterministic traffic can be predicted very accurately,

weighting can be used in channel selection to favor deter-

ministic channels. The deterministic channel is selected if the

estimated idle times of stochastic and deterministic channels

are close to each other. The prediction of the OFF time in a

deterministic traffic is then as shown in (8) but the prediction

of the stochastic traffic is weighted as w · Tj , w ≤ 1, i.e.,

Tj =

{
Tj = Tp − T j

ON − T j
CONS, if traffic is deterministic

w · T j
mean, if traffic is stochastic.

(9)

B. Random channel switching

A random channel selection scheme corresponds to a sit-

uation when only instantaneous information of the channel

conditions is known. A cognitive radio senses the spectrum

and picks up randomly one channel among all available ones

into use. The same channel is used as long as it is available.

When switching is required, the next channel selection is done

randomly using the uniform distribution. Suppose the sensing

gives a vector of m samples C = (c1, c2, . . . , cm) showing the

current channels available for secondary use, lowest frequen-

cies first. Random selection happens by roundingm·U into the

nearest greater integer and selecting the corresponding channel

from C. Symbol U is a random number that is uniformly

distributed in the interval (0, 1).

C. Optimal channel switching

Optimal channel selection could be done if all the traffic

patterns with exact ON and OFF times in different channels

were known in detail also in the future. When switching is

required, the channel that is free and offers longest remaining

idle time at the moment of switching is selected. Ideal switch-

ing scheme is used in simulations to show the lower bound for

the channel switching rate, i.e., number of channel switching

in a time unit.

Fig. 5 shows channel selection possibilities. Sensing is done

through all channels and during sensing the cognitive radio is

not transmitting. A CR can select the next channel randomly

or based on prediction. Prediction improves selection: channel

j is a much better choice than channel k because it offers a

longer time for CR operation. CR can select the next channel

reactively or proactively. The reactive method switches to a

different channel after the PU is sensed to appear in the same

channel. The proactive method changes the channel before

collision. It predicts that the PU will appear soon and switches

to the next channel.

V. PERFORMANCE MEASURES

Channel switching rate: Every channel switch causes some

delays for the transmission and frequent switching decreases

the capacity and makes the network management more dif-

ficult. Thus, a good metric for the frequency control is the

channel switching rate, i.e., the number of channel switching in

a second. Minimization of the switching rate decreases also the

probability for collisions with primary user since the switching

rate is partly dependent on the collisions.

Throughput: A good performance metric for the cognitive

radio system is the percentage of time during which it can suc-

cessfully transmit without colliding with the PU. Throughput

of each SU over a time interval [0, T ] is defined now as

CCR = lim
T→∞

Successful transmission time in [0, T ]

T
. (10)

Assuming that on average, collision takes half of the trans-

mission time of a SU away between sensing instants as is the

case with exponential traffic, and following transmission time

is shorter by a switching time, throughput over a time interval

[0, T ] including n transmission and sensing periods is

CCR =
T − n · Ts − δ · Td

2 − θ · Tw

T
(11)

where number of collisions is δ, θ is the number of switching,

Td is the transmission time of SU, Ts is the sensing time, and

Tw is the switching delay. With the reactive channel selection

method the number of collisions equals to the number of

channel switching.

Collision rate: Collision happens when both primary and

secondary users simultaneously transmit on the same channel.

Collision rate between SUs and PUs can be used as a PU

protection metric since one aim of cognitive radio networks is
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Fig. 6. 3D surface spectrogram of the measurement set

Fig. 7. Traffic pattern from the measurements.

were extracted using the same threshold as the one used in

[24], i.e., -80 dBm. The spectrogram of the measurement set

is shown in Fig. 6.

The mean spectrum occupancy over the band is only about

7 % which means that roughly 93 % of spectrum is available

for spectrum use. It is easy to see the areas that can be

efficiently used by a CR. However, also the parts of the

spectrum that have wireless transmission on have lots of

opportunities for secondary operation, especially using the

proposed classification-based method. We were interested in

looking at the patterns in the channels having both ON and

OFF periods.

For example, a channel shown in Fig. 7 included determin-

istic traffic pattern that is used approximately 50 % of time.

Long periodically repeating idle periods in this channel are

slightly more than 28 seconds long which means that they are

very well suitable for secondary use by cognitive radios.

VII. CLASSIFICATION AND CHANNEL SELECTION

SIMULATIONS

We made experiments with deterministic and stochastic

traffic patterns in order to see how well the proposed predictive

channel selection approach works when compared to the

random opportunistic channel selection. Parameters for the

simulation are shown in Table III. The chosen parameter values

correspond to the maximum tolerable interference time of a

PU to be 100 ms. Actual transmission time Td of the SU

in one transmission period is 100 ms – (Ts + Tw). Latter is
dropped out if channel switching is not needed. We tested

the edge detection based classification method with noiseless

TABLE III
SIMULATION PARAMETERS

Parameter Value

Transmission period 100 ms

Sensing period Ts

Switching delay Tw

Number of channels 5, 10, 15, 20

Primary user traffic models Stochastic channels with exponen-
tially, Pareto, and Weibull dis-
tributed ON and OFF times
Deterministic channels with fixed
ON and OFF times

Occupancy, mean idle times of
stochastic, and period lengths of
deterministic primary traffic

Occupancy of channels between
[0.1, 0.9], mean idle times [1 s, 10
s], period lengths [2 s, 20 s]

Simulation time 10 000 s

Channel selection methods Predictive channel selection,
random selection

Fig. 8. Channel switching rate with exponential traffic: two different idle
value distribution sets (A and B)

stochastic and deterministic traffic and the method classified

patterns without problems. In practice, noise is always present

and causes problems to detection and classification; results

shown here provide an upper bound of the performance for

the method.

A. Prediction: Impact on channel switching

We examined the channel switching rate with the presented

methods. For simplicity, the classification was assumed to

work perfectly. Every simulation was conducted 10 times and

the results were averaged. Results for exponential traffic are

shown in Fig. 8.

Fig. 8a shows the situation with the parameters in Table II.

In Fig. 8b the mean idle time of channels were between 4 s

and 6 s. Regarding Fig. 8a, with 5 channels the methods are

almost equally good since there are not many channels to

choose from. When the number of primary channels is in-

creased, the difference between the predictive and the random

selection increases since the former can concentrate on the

best channels.

As can be expected with distribution having memoryless

property, a better performance is achieved without subtracting

the consumed idle time away from the prediction. The reduc-

tion in channel switching ranges from 9 % with 5 channels to

39 % with 20 channels while the average number of available
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Fig. 5. Different channel switching schemes.

to keep interference with primary users in a minimum level.

The collision rate RC can be defined as

RC = lim
T→∞

The number of PUs collided packets in [0, T ]

T
.

(12)

VI. MEASUREMENT STUDIES

A. The 802.11 traffic

We tested the proposed mean time based prediction with the

exponential weighted moving average (EWMA) method using

real 802.11 traffic measured at the University of California,

Berkeley. ON/OFF patterns were derived from the timestamps

of reception and the length of packets. The mean OFF time

for traffic was 5.6 ms which is roughly speaking ten times

longer than the usual packet size 0.5 ms. Idle time values

were between [2.07× 10−4ms, 97.6ms]. Most idle times were

very short. EWMA method was tested with different µ values

to see if we can predict next idle times based on history. The

method is given as

Tn+1 = µ · In + (1− µ)Tn (13)

where Tn+1 is the new estimated idle time, Tn is the last

estimated idle time, In is the latest real idle time, and µ is a

constant attenuation factor between 0 and 1. Time-window for

estimation is selected with the parameter µ, which defines the

weighting for time samples. Weighting decreases exponentially

for each older sample. When µ is close to 1, recent samples

are heavily weighted, and older history does not affect much.

With small µ older samples get more weight.

The prediction was done over a set of M = 27000
samples and the accuracy was measured with average squared

prediction error ε

ε =
1

M

M∑
n=1

(In − Tn)
2

(14)

where In is the real idle time and Tn the predicted idle time.

Small values of µ give the best performance as can be seen

from Table II. Actually the best “prediction” was achieved with

averaging over all values (ε = 2.37 × 10−4) which confirms

the stochastic prediction rule.

It is sufficient to know the probability distributions of the

idle and busy times to characterize random traffic. If idle times

are exponentially, or in the discrete analogous case, geomet-

rically distributed, the mean is a sufficient characterization of

the whole probability distribution. In reality, we do not know

exact lengths of idle times as we are sensing every∆t seconds
for Y seconds to obtain reliable results, which limits our ability

to measure and detect short times. In addition, every channel

switch can take several milliseconds with today’s equipment.

Thus, CR should concentrate on using channels that offer

longer OFF times. Also, to use OFF times efficiently, they

should rather be tens of times longer than the switching times,

i.e., times needed to reconfigure transceivers for new frequency

and to continue transmission.

B. 450 MHz band

To see whether we can find deterministic patterns from real

traffic we investigated also spectrum measurements conducted

in Netherlands in 2007 around 450 MHz band. The measure-

ment set was performed over frequency range [459.62 MHz,

467.82 MHz] with a bandwidth resolution of 100 kHz. The

band of interest is allocated to several wireless systems includ-

ing intercom connection and land mobile services. Measure-

ment had 10 000 samples of data with an intersample period

of 120 ms for all 500 channels. To reduce the impact of noise

we filtered the measured data with a moving average filter

with window of 5 samples before performing the analysis.

The window size has been experimentally shown to represent

the optimal relation between noise filtering and a possible in-

formation loss in [24] where more details in the measurement

setup can be found. Binary ON-OFF patterns for all channels

TABLE II
MEAN SQUARED PREDICTION ERRORS WITH DIFFERENT VALUES OF µ

µ 0.1 0.3 0.5 0.7 0.9 1.0

ε 2.48×10−4 2.92×10−4 3.40×10−4 3.93×10−4 4.58×10−4 5.00×10−4
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Fig. 6. 3D surface spectrogram of the measurement set

Fig. 7. Traffic pattern from the measurements.

were extracted using the same threshold as the one used in

[24], i.e., -80 dBm. The spectrogram of the measurement set

is shown in Fig. 6.

The mean spectrum occupancy over the band is only about

7 % which means that roughly 93 % of spectrum is available

for spectrum use. It is easy to see the areas that can be

efficiently used by a CR. However, also the parts of the

spectrum that have wireless transmission on have lots of

opportunities for secondary operation, especially using the

proposed classification-based method. We were interested in

looking at the patterns in the channels having both ON and

OFF periods.

For example, a channel shown in Fig. 7 included determin-

istic traffic pattern that is used approximately 50 % of time.

Long periodically repeating idle periods in this channel are

slightly more than 28 seconds long which means that they are

very well suitable for secondary use by cognitive radios.

VII. CLASSIFICATION AND CHANNEL SELECTION

SIMULATIONS

We made experiments with deterministic and stochastic

traffic patterns in order to see how well the proposed predictive

channel selection approach works when compared to the

random opportunistic channel selection. Parameters for the

simulation are shown in Table III. The chosen parameter values

correspond to the maximum tolerable interference time of a

PU to be 100 ms. Actual transmission time Td of the SU

in one transmission period is 100 ms – (Ts + Tw). Latter is
dropped out if channel switching is not needed. We tested

the edge detection based classification method with noiseless

TABLE III
SIMULATION PARAMETERS

Parameter Value

Transmission period 100 ms

Sensing period Ts

Switching delay Tw

Number of channels 5, 10, 15, 20

Primary user traffic models Stochastic channels with exponen-
tially, Pareto, and Weibull dis-
tributed ON and OFF times
Deterministic channels with fixed
ON and OFF times

Occupancy, mean idle times of
stochastic, and period lengths of
deterministic primary traffic

Occupancy of channels between
[0.1, 0.9], mean idle times [1 s, 10
s], period lengths [2 s, 20 s]

Simulation time 10 000 s

Channel selection methods Predictive channel selection,
random selection

Fig. 8. Channel switching rate with exponential traffic: two different idle
value distribution sets (A and B)

stochastic and deterministic traffic and the method classified

patterns without problems. In practice, noise is always present

and causes problems to detection and classification; results

shown here provide an upper bound of the performance for

the method.

A. Prediction: Impact on channel switching

We examined the channel switching rate with the presented

methods. For simplicity, the classification was assumed to

work perfectly. Every simulation was conducted 10 times and

the results were averaged. Results for exponential traffic are

shown in Fig. 8.

Fig. 8a shows the situation with the parameters in Table II.

In Fig. 8b the mean idle time of channels were between 4 s

and 6 s. Regarding Fig. 8a, with 5 channels the methods are

almost equally good since there are not many channels to

choose from. When the number of primary channels is in-

creased, the difference between the predictive and the random

selection increases since the former can concentrate on the

best channels.

As can be expected with distribution having memoryless

property, a better performance is achieved without subtracting

the consumed idle time away from the prediction. The reduc-

tion in channel switching ranges from 9 % with 5 channels to

39 % with 20 channels while the average number of available
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Fig. 10. Achievable throughput with two different idle value distribution sets
(A and B).

B. Impact on throughput and collision rates

Throughput results for various transmission period values

with the exponential and Pareto traffic are shown in Fig. 10.

PU idle times of the 10 primary channels are uniformly

distributed in the range of [0.5 s, 2 s] in Fig. 10a and in the

Fig. 10b the idle times are between [1 s, 5 s]. Same legends

apply for both. We used period lengths from 100 ms to 500 ms.

The results show that throughput increases in both figures

when Td increases from 100 ms since larger proportion of

time is used for data transmission instead of sensing. In Fig.

10a the increase of Td up to 500 ms clearly reduces the

throughput since the collisions decrease more the efficient

transmission time. The main reason is that it takes longer to

find a new available channel for transmission when the time

between two consecutive sensing is longer. When the situation

in Fig. 10b is considered the throughput with Td = 500 ms

is actually better compared with the 100 ms case with both

traffic models. This is due to longer idle times since frequent

sensing affects more the performance than collisions that do

not occur so often. The performance variations between the

different transmission periods are now smaller since longer

idle times mean smaller collision and channel switching rates.

Predictive selection outperforms the random selection in all

cases and the largest gain is achieved with larger Td since

decreasing the collision rate affects the throughput more in

this case.

Fig. 11 represents the situation where sensing and switching

times can be 10 ms, 20 ms, or 50 ms. Especially with shorter

Td the increase of Ts decreases the throughput remarkably.

Since the CR senses the spectrum periodically, the lower the

Td is the more time is consumed in sensing. When the same

parameters as in Fig. 10a are used, the increase of Ts from

10 ms to 20 ms decreases the throughput by 0.1 when Td

= 100 ms and only 0.02 when Td = 500 ms since sensing

cuts away part of the transmission time, i.e., loss is Ts/Td.

The difference decreases with larger Td since the sensing is

not performed so often. Changing the switching time does not

have such a large effect on the total performance when Td is

small since the sensing time always dominates. With higher

values of Td the effect of switching is close to the effect of

sensing. The throughput decreases drastically if Ts is set to a

remarkably higher value, e.g., to 50 ms. When Td = 100 ms

this would mean that half of the potential transmission time

Fig. 11. Throughput with different sensing and switching times.

is spent for sensing.

Sensing time dominates the switching time Tw in impact

on the achieved throughput when stochastic traffic patterns

are considered. This is especially true when Td is short. The

time spent for switching channels has a significant effect

when the idle periods of the primary traffic are short and

frequent switching is performed. Compared to the sensing

time, another significant effect comes when the Td is not very

short. Tolerable interference time ∆t of the PU sets limits

for the length of the transmission period since sensing has to

be performed periodically in order to notice whether there is

primary transmission on or not.

C. Classification-based prediction

As shown in Fig. 5, a reactive CR switches to a different

channel after a PU is sensed to appear in the same channel.

To reduce the interference with the PUs, a CR could switch

proactively to a new channel before the PU appears in the

current band.Previous results basically show the benefit of the

prediction in the channel selection as well as the effect of the

sensing and switching times to the performance. Now, classi-

fication and proactive operation are also considered. Fig. 12

shows the channel switching rate as well as the collision rate

for a situation where there are 10 primary channels including

5 stochastic and 5 deterministic ones. The stochastic traffic

is Pareto distributed. Idle times of the channels are between

1 s and 10 s. Results are shown for random selection, for the

mean time based prediction, and for the classification-based

prediction with weightings of w in (9). The smaller the value

w is, the more the deterministic traffic is favored. Reactive

channel selection is used with the random and predictive

methods, i.e., the channel switching rate equals the collision

rate.

Results show that the predictive mean-time based prediction

already improves both channel switching and collision results

significantly. When classification and more accurate predic-

tions with deterministic traffic are employed the situation

becomes even better. With all values of w > 0, the switching

rate is close to the result without classification. Smallest values

are achieved when w = 0.5. But the true difference comes

in collisions. When classification is employed the CR knows

when it is using a deterministic channel and can switch to
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Fig. 9. Channel switching rate with Pareto traffic. The subfigures show results with parameter values β = 1.8, β = 2, and β = 2.2.

channels increases approximately linearly as {2.5, 5.8, 8.1,
9.7} when number of primary channels are {5, 10, 15, 20}.
The mean idle times for the channels were 5.5 s.

With lower variation the gain of prediction is smaller as can

be seen in Fig. 8b. The reason is the fact that the quality of

good channels is not much better than the average quality of

the channels. In the previous results the average value for mean

idle times of all channels was 5.5 s while the best channels

had almost two times larger value. Now the average value is

5 s and the best channel offers only 1 s longer mean idle time.

The difference between the proposed predictive method and

the optimal selection can be quite large since the optimal

method can take advantage of long idle time values that come

from the tail of the distribution. Predictive method makes the

decision based on the average time. The random selection

follows approximately the average idle time distribution with

more switches with lower average idle times whereas the

predictive method takes advantage of the increasing number

of good channels. The more the traffic is varying across

the channels the better learning and prediction are working

compared to methods based on the instantaneous information.

Weibull traffic simulations lead to the same kind of results

as the exponential traffic simulations, as shown in Table IV,

even though the distribution has a long, heavy tail. The number

of switching is always lower with the predictive method and

the difference gets larger as the number of channels increases.

The reduction in channel switching ranges from 13 % with 5

channels to 36 % with 20 channels. The bigger average idle

time value determines the better channel well also in this case.

Pareto simulations were done with different values of the

parameter β. Very interesting values are around 2 since the

variance of Pareto distributed random variables is infinite when

β ≤ 2. When β is larger than 2 and becomes smaller, the

variability increases. The same limit also defines the self-

similarity of the traffic. When β = 2, the Hurst parameter

value is H = 0.5. It is larger with the lower values of β and

vice versa.

Results with the parameter values β = 1.8, β = 2, and
β = 2.2 are shown in Fig. 9a, 9b, and 9c, respectively. The

TABLE IV
REDUCTION IN CHANNEL SWITCHING

5 channels 10 channels 15 channels 20 channels

Exponential 9 % 33 % 35 % 39 %

Weibull 13 % 26 % 30 % 36 %

predictive selection offers better performance than random

selection with all parameter values. Interestingly the difference

in performance between different selection methods is smaller

when the number of channels increases with parameter values

β ≤ 2. One reason behind this phenomenon is the fact that

the quality of the available channels measured by mean values

is closer to each other with higher number of channels. This

together with high variability leads to the situation where the

mean time based selection does not offer great advantage

over the random selection. The channel with a lower mean

value can easily have a longer idle time to offer. The optimal

selection curve shows that with a lower value of β the number

of optimal switches is lower due to higher variability inside the

channels. There are more long idle times in the traffic. When

the value of β increases, the variability decreases, and the gain

of using the predictive selection method increases compared

to the random selection. The performance gain, measured in

reduction of channel switching, of using the predictive method

is up to 30 % with 20 channels. The largest gains are achieved

with the parameter value β = 2.2.

The performance with deterministic traffic patterns is very

good since the predictive selection method can predict the idle

times perfectly to select the best channels for secondary use.

The method is identical to the optimal selection method when

the traffic is deterministic. The gain compared to the random

method is large all the time. With 20 channels, the switching

rate with the predictive selection is 64 % lower than with the

random selection. Deterministic traffic is more deeply covered

in Section 7C.
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Fig. 10. Achievable throughput with two different idle value distribution sets
(A and B).

B. Impact on throughput and collision rates

Throughput results for various transmission period values

with the exponential and Pareto traffic are shown in Fig. 10.

PU idle times of the 10 primary channels are uniformly

distributed in the range of [0.5 s, 2 s] in Fig. 10a and in the

Fig. 10b the idle times are between [1 s, 5 s]. Same legends

apply for both. We used period lengths from 100 ms to 500 ms.

The results show that throughput increases in both figures

when Td increases from 100 ms since larger proportion of

time is used for data transmission instead of sensing. In Fig.

10a the increase of Td up to 500 ms clearly reduces the

throughput since the collisions decrease more the efficient

transmission time. The main reason is that it takes longer to

find a new available channel for transmission when the time

between two consecutive sensing is longer. When the situation

in Fig. 10b is considered the throughput with Td = 500 ms

is actually better compared with the 100 ms case with both

traffic models. This is due to longer idle times since frequent

sensing affects more the performance than collisions that do

not occur so often. The performance variations between the

different transmission periods are now smaller since longer

idle times mean smaller collision and channel switching rates.

Predictive selection outperforms the random selection in all

cases and the largest gain is achieved with larger Td since

decreasing the collision rate affects the throughput more in

this case.

Fig. 11 represents the situation where sensing and switching

times can be 10 ms, 20 ms, or 50 ms. Especially with shorter

Td the increase of Ts decreases the throughput remarkably.

Since the CR senses the spectrum periodically, the lower the

Td is the more time is consumed in sensing. When the same

parameters as in Fig. 10a are used, the increase of Ts from

10 ms to 20 ms decreases the throughput by 0.1 when Td

= 100 ms and only 0.02 when Td = 500 ms since sensing

cuts away part of the transmission time, i.e., loss is Ts/Td.

The difference decreases with larger Td since the sensing is

not performed so often. Changing the switching time does not

have such a large effect on the total performance when Td is

small since the sensing time always dominates. With higher

values of Td the effect of switching is close to the effect of

sensing. The throughput decreases drastically if Ts is set to a

remarkably higher value, e.g., to 50 ms. When Td = 100 ms

this would mean that half of the potential transmission time

Fig. 11. Throughput with different sensing and switching times.

is spent for sensing.

Sensing time dominates the switching time Tw in impact

on the achieved throughput when stochastic traffic patterns

are considered. This is especially true when Td is short. The

time spent for switching channels has a significant effect

when the idle periods of the primary traffic are short and

frequent switching is performed. Compared to the sensing

time, another significant effect comes when the Td is not very

short. Tolerable interference time ∆t of the PU sets limits

for the length of the transmission period since sensing has to

be performed periodically in order to notice whether there is

primary transmission on or not.

C. Classification-based prediction

As shown in Fig. 5, a reactive CR switches to a different

channel after a PU is sensed to appear in the same channel.

To reduce the interference with the PUs, a CR could switch

proactively to a new channel before the PU appears in the

current band.Previous results basically show the benefit of the

prediction in the channel selection as well as the effect of the

sensing and switching times to the performance. Now, classi-

fication and proactive operation are also considered. Fig. 12

shows the channel switching rate as well as the collision rate

for a situation where there are 10 primary channels including

5 stochastic and 5 deterministic ones. The stochastic traffic

is Pareto distributed. Idle times of the channels are between

1 s and 10 s. Results are shown for random selection, for the

mean time based prediction, and for the classification-based

prediction with weightings of w in (9). The smaller the value

w is, the more the deterministic traffic is favored. Reactive

channel selection is used with the random and predictive

methods, i.e., the channel switching rate equals the collision

rate.

Results show that the predictive mean-time based prediction

already improves both channel switching and collision results

significantly. When classification and more accurate predic-

tions with deterministic traffic are employed the situation

becomes even better. With all values of w > 0, the switching

rate is close to the result without classification. Smallest values

are achieved when w = 0.5. But the true difference comes

in collisions. When classification is employed the CR knows

when it is using a deterministic channel and can switch to
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Fig. 12. Performance results for classification-based prediction.

a new channel just before a collision. The collision rate

drops by 25 % already when w = 1 and the reductions are

44 %, 55 %, 67 %, and 77 % when w = 0.7, w = 0.5,
w = 0.3, and w = 0.1, respectively. When w = 0, both the

channel switching rate and also the collision rate increase. The

reason is that the parameter w should be > 0 to be able to

select good stochastic channels if deterministic ones are not

available. If w = 0, the system cannot differentiate quality of

stochastic channels and thus can select bad channels for use.

The collision rate would be zero only if during every time

instant a deterministic channel would be available. This was

not the case here.

The results lead to a conclusion that weighting is preferred

in the channel selection to favor the deterministic channels.

However, in order to find good channels among stochastic ones

when needed, parameter w should be positive.

VIII. APPLICATION OF THE METHOD IN DIFFERENT

SITUATIONS

One clear conclusion drawn here is that a proactive method

is only worth to be used with the predictable traffic. Since

the expected idle time of a stochastic traffic does not depend

on the currently consumed idle time of the channel, there is

no use to switch the channel before the PU appears. If the

longest idle time offering channel was already selected and

it is still available it should be used since it most probably

offers longest idle time for secondary operation. Thus, either

the proactive CR system has to be restricted to work inside a

certain primary system transmitting deterministic traffic or it

has to have an ability to classify the traffic.

The method can be used also when many SU users or

even several SU systems are active simultaneously at the same

geographical area. One way to do that is to have additional

governing entity i.e., spectrum broker, operating at the same

area. This entity gives permission to the SU to operate over

a set of channels, different systems having their own sets.

Then, predictive method is applied in these channels. Actually

the set of channels could be selected so that only the most

promising ones would be given to the SU systems to reduce

the sensing time and be able to operate on the channels

offering good possibilities for secondary use. This would

require measurements and analysis over a long term. The topic

is discussed in [25].

IX. CONCLUSIONS

We investigated both classification and prediction methods

separately. Simulations and measurements were used to verify

methods. The proposed prediction method is a general one,

applicable to a variety of traffic models unlike the previous

proposals. With all investigated traffic models the number

of channel switching reduces and throughput increases when

prediction is applied. An even higher gain is achieved with

the classification-based prediction since there it is possible to

adapt the prediction to deterministic traffic and take advantage

of improved predictability when possible. Especially classi-

fication helps in reducing the collisions with primary users.

Classification makes proactive operation possible also in the

case where both stochastic and deterministic traffic patterns

exist together in primary channels. It was shown that the

sensing time has a larger effect on the performance than the

channel switching time when the transmission period is short.

The more the traffic is varying across the channels the better

learning and prediction are working compared to the method

based on instantaneous information.

However, more work is needed in this area. Studies here

were made assuming perfect detection and a delayless channel.

Classification method should be further tested and developed

for a noisy environment. In some cases the prediction of busy

times in addition to idle times could make sense. Depending

on the application used and its quality of service requirements,

this allows estimating if we could stay and wait for the

channel to become idle instead of frequency switching. Multi-

hop ad hoc networks are possible target systems for this

kind of operation. In multi-hop networks, every frequency

change causes a need for an update of the routing table

that is a database that stores the routes to particular network

destinations. If this happens very frequently, a large amount of

energy and bandwidth resources are consumed to keep those

tables up-to-date and as a result, the capacity of the system

decreases.
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Abstract—This paper proposes a autocorrelation-based method 
to classify traffic patterns of primary channels in cognitive radio 
systems to allow a more accurate prediction of the future idle 
times. The classification algorithm uses binary information 
collected by spectrum sensing. It searches periodicity from the 
sensed binary pattern using a discrete autocorrelation function. 
Errors that are caused by noise and possible false sensing reports 
are filtered away from the autocorrelation function. We tested 
the method with Pareto, Weibull, and exponentially distributed 
stochastic traffic, and with deterministic traffic. The proposed 
method finds the type of traffic with a high probability when the 
channels of interest include both stochastic and deterministic 
traffic. Stochastic traffic is always classified right and regarding 
the deterministic traffic the probability of correct classification is 
over 95 % when the probability of missed detection or 
probability of false alarms is below 10 %. 

I. INTRODUCTION  
Predictive models have been proposed for cognitive radios 
(CR) to make channel selection more intelligent, and to 
improve the performance of CR systems [1]–[4]. The proposed 
approaches have had a common problem of restricting the 
prediction to the known traffic model only. We proposed a 
more general method that works with a variety of traffic classes 
in [5] and made a more detailed investigation of this approach 
in [6]. The method classifies the traffic in the sensed primary 
user (PU) channels as deterministic and stochastic and uses 
specific prediction methods for different types of traffic to 
estimate what the expected idle times in the different channels 
will be. It was shown in [6] that classification-based predictive 
channel selection method works well with various traffic 
models. The classification makes prediction more accurate 
increasing the throughput and decreasing collisions with the 
PU. A CR system employing classification is able to work 
efficiently with variety of primary systems. However, the paper 
did not consider the classification problem very deeply. 

Classification of signals in CR environment has been 
considered in different studies. The classification has usually 
meant modulation classification. A good example of this kind 
of study is presented in [7]. However, good traffic pattern 
classification studies do no exist. It was emphasized already in 
[8] that a CR should know about the traffic pattern of the PU 
occupying the channel. In a wireless environment, two basic 
classes of traffic patterns exist: 1) Deterministic patterns where 
the PU transmission is ON, then OFF during a fixed time slot; 2) 
Stochastic patterns where the traffic can be described only in 
statistical terms. Poisson distributed traffic is one example of 
stochastic traffic. Prediction of future idle times for the 
stochastic signals can be made using the mean values of 
previous idle times [6]. Frame structures make traffic patterns 

fully or partially deterministic. Deterministic traffic can be 
observed e.g., in TV transmission, where the periods can be 
long such as hours, days, or weeks. The terms OFF time and 
idle time as well as ON time and busy time are used 
interchangeably in this paper. 

Following the discussion above, it is useful to develop a 
classification method to distinguish between stochastic and 
deterministic patterns. Periodicity search has been proposed in 
[3] using the maximum value of the autocorrelation function. 
However, this method has clear restrictions as is shown in 
Section III. Thus, we have proposed modifications for the 
method in our previous papers in [5] and [6]. To extend the 
previous work, we investigate now the classification part in 
detail. We show the performance of classification under noisy 
or unreliable sensing and compare our modified method to the 
one proposed in [3]. We verified our method with numerical 
analysis and careful simulations with different traffic patterns. 
The developed algorithm is shown to work reliably under 
imperfect detection. 

Organization of the paper is as follows. Section II presents 
the predictive channel selection model. The classification 
method and used traffic patterns are introduced in Section III. 
Performance metrics are presented in Section IV, classification 
results in Section V and finally Section VI concludes the paper. 

II. SYSTEM MODEL FOR PREDICTIVE TRANSMISSION 

The system model for predictive channel selection is the same 
as considered in our previous papers [5], [6]. The total 
available spectrum is divided into multiple primary channels 
to be sensed and used by CRs. Each channel has its own 
independent traffic pattern. Initially the system operates using 
instantaneous sensing information. Prediction can be applied 
after a short initial learning period. Fig. 1 represents the 
architecture of our predictive cognitive radio system.  

The CR collects information about spectrum use in the 
different channels through spectrum sensing and stores this 
information into the channel history database in a binary 
format. Since the traffic patterns of the channels might slowly 
vary over time the database should include information only 
over a limited time interval. The predictive transmission works 
as follows. 1) All channels are sensed and the channel history 
database is updated with the most recent sensing information. 
The last spectrum sensing result is used to define the current 
situation in a particular channel. If the channel is free, the 
channel state (CS) flag is set to 0 and if not, CS = 1. 2) Based 
on the collected history, the traffic patterns of different 
channels are classified as stochastic or deterministic. 3) 
Different prediction methods apply to different traffic patterns  

This work has been performed in the framework of the SMAS project, which is partly funded by the Academy of Finland, decision number 
134624.  The first author would like to thank Seppo Säynäjäkangas Research Foundation and Riitta and Jorma J. Takanen Foundation for their 
support during the work. 
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TABLE I. Classification algorithm as a pseudocode.

1. Computation of parameters 
   1.1. Compute autocorrelation of the input sequence 
   1.2. Filter fake maximums away using median and mean filtering       
   1.3. Calculate average separation between consecutive local max values, τav 
   1.4. Calculate standard deviation of separations, std 
 
2. Traffic type classification 
     if σ = 0 or smaller than limit η               % When the period length is constant,  

sequence is periodic = TRUE     % the sequence is periodic 
τ = round(τav)                               % The estimated traffic period length is τav rounded   
                                                    % an integer 

else 
 sequence is periodic = FALSE        % If standard deviation is too large, the sequence 
                                                                        % is not periodic            

 

Rmm[m] = ( Rxm[m-2]+ Rxm[m-1]+...+ Rxm[m+2])/5.           (3) 
 
Combination of median filtering followed by a mean filter 
smoothes the ACF defined in (1), filtering out both the noise 
and fake maximums from it. The peaks of the smoothed signal 
(3) can then be used by the classification algorithm shown in 
Table I both to detect the traffic type and in case of 
deterministic signal to define the period Tp. 

The smoothing of the signal is shown in Fig. 3. Original 
ACF of the noisy signal is shown in Fig 3a and the modified 
filtered ACF signal in Fig 3b. As can be seen from the figure, 
the filtering smoothes the signal very well which makes it 
applicable for further analysis.  
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Figure 3. Autocorrelation sequence for noisy signal, before (a) 

and after (b) filtering. 

However, some small peaks can still exist in the valleys of 
the signal. A simple additional filtering can be done to remove 
them by comparing a value of the peak to the value of the 

previous peak. When the difference is too high, i.e., the new 
peak κ is under β % of the previous one, we can conclude that 
this is not the real maximum, i.e., if κ(i) < β/100 · κ(i-1). 

c) Calculation of average separation of peaks 
From the filtered signal, average separation between peaks 

is calculated. First, local maximums are searched using an 
algorithm that exploits the following information: Local 
maximum κ is the point m∗ if there is some ε > 0 such 
that Rmm(m∗) ≥ Rmm (m) when |m − m∗| < ε. The average 
separation of N consecutive peaks can be calculated as 
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where d(i-1) = κ(i) – κ(i–1). 

d) Calculation of standard deviation and final decision 
To make the classifier even more robust to small errors, 

minor deviations in the peak separation is allowed. The concept 
of standard deviation  
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is used before the final decision is made. For the classification 
decision, i.e., Part 2 in Table I, the limit for standard deviation 
is set to σ < η, where η is a value that is proportional to τav. The 
longer the period is the bigger the deviation is allowed to be. 

IV. PERFORMANCE METRICS 
The reliability of the classification is partly dependent on the 
sensing. Classification works very well with perfect sensing. 
However, there are always errors affecting the sensing 
performance. Let us check the sensing process. 

The goal of the spectrum sensing is to decide between the 
two hypotheses, namely  
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Figure 1. System model for predictive transmission. 

and the method selection is made following the traffic type 
classification. 4) The idle time prediction uses information 
from three sources. The CS flag of channels is checked first. If 
CS = 1, the predicted idle time is 0 s. If CS = 0, the remaining 
idle time of these channels is estimated based on the channel 
history and selected prediction method for that particular 
channel.  

5) If the channel used currently is still free, secondary 
transmission continues. If not, the CR switches to the channel 
with the longest expected remaining idle time. 6) Data is 
transmitted and the system goes then back to the task 1) after Δt 
seconds to check and update the channel state and improve the 
channel selection. Δt is the maximum length of interference the 
PU can tolerate. It is a system dependent parameter that should 
be known for licensed systems operating on the same 
frequency band as the cognitive radio. Requirements from 
standards and manufacturers together with interference 
measurement studies can be used to define numerical values 
for the parameter. 

III. TRAFFIC CLASSIFICATION 

A. Traffic models 
The sensing of primary channels is a periodic sampling process 
to determine the state (ON or OFF) of the channels at every 
sampling instant. The outcome of sensing is a binary sequence 
for each channel. When a sufficiently long history of traffic 
patterns of channels is stored in the database, the patterns can 
be classified and appropriate prediction performed. A couple of 
periods is enough for deterministic traffic. 

Frame structures make traffic patterns fully or partially 
deterministic. Partially deterministic means that the ON time 
starts periodically but its length can vary while the length of the 
period, Tp, is fixed as illustrated in Fig. 2. A period consists of 
one ON time followed by one OFF time, i.e., a time interval from 
the raising edge of the signal to the next raising edge.  This 
definition covers also the deterministic periodic case where ON 
and OFF times are fixed. 

In addition to the deterministic traffic, we use also 
stochastic traffic models in our study. This covers the use of 
exponential, Pareto, and Weibull distributed traffic. 
Exponentially distributed ON and OFF times have traditionally 
been used to model voice traffic and is often used in other 
network traffic studies. However, Weibull and Pareto distribu-
tions match better to packet traffic that consists of bursts of 
packets [10]. The mean idle time is an optimal prediction for 
exponential traffic. It is shown to be a good prediction also for 

the other mentioned stochastic traffic patterns [6]. In practice, 
prediction is made as an average of the previous idle times. 

 

Figure 2. Partially deterministic traffic pattern. 

B. Classification method 
Initially the CR works under the assumption that the ON and 
OFF times are stochastic in each channel. After the short 
learning period is over, the CR has made a decision about the 
determinism or randomness of the traffic and can adapt the 
prediction method. The length of the learning period depends 
on the ON and OFF times of the traffic. With perfect sensing 
only few traffic periods is needed but if there are errors in the 
sensing the learning period has to be longer. 

a) Autocorrelation computation 
A very distinctive feature for classification in our case is 

the periodicity. First, the periodicity is searched from the 
binary sequence. We can use the autocorrelation function [5] 
to find out the length of Tp in different channels. First the 
discrete autocorrelation function (ACF) at lag m for a discrete 
signal x[n] of length N is calculated as 
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 Authors in [3] proposed to use the global maximum of the 
ACF for detection of the period length. The problem is that 
this does not work if the period is fixed and the ON and OFF 
times are not. It works well only if all the times are fixed. 
When the ON and OFF times can vary within the period, the 
peak values are not constant anymore. In addition, a variation 
in the lengths of ON and OFF times inside the fixed period 
creates random local maximums in the autocorrelation 
function that are much smaller [6]. We call these fake 
maximums. In order to calculate the period based on the 
maximums in the ACF, one has to filter fake maximums away 
to obtain correct results. We propose a modified ACF based 
binary classifier to detect deterministic and stochastic traffic 
patterns from the binary sensing information. A pseudocode 
for the algorithm is given in the Table I.  

b) Fake maximum filtering 
Filtering of fake maximums as well as noise reduction is 

done with a median filter [11]. The window size we 
experimentally found good for our purposes is 5, i.e., the entry 
itself and two preceding and two following entries are 
considered in filtering. Thus, median filtered signal is 

 
Rxm[m] = Median (Rxx[m-2], Rxx[m-1],..., Rxx[m+2])        (2) 
 

The window size is enough to smooth the signal efficiently but 
not too large to avoid losing useful information. Even though 
the median filter itself is a pretty powerful technique for noise 
reduction, additional processing using a mean filter is required 
for the signal to enable more reliable classification, i.e., 
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TABLE I. Classification algorithm as a pseudocode.

1. Computation of parameters 
   1.1. Compute autocorrelation of the input sequence 
   1.2. Filter fake maximums away using median and mean filtering       
   1.3. Calculate average separation between consecutive local max values, τav 
   1.4. Calculate standard deviation of separations, std 
 
2. Traffic type classification 
     if σ = 0 or smaller than limit η               % When the period length is constant,  

sequence is periodic = TRUE     % the sequence is periodic 
τ = round(τav)                               % The estimated traffic period length is τav rounded   
                                                    % an integer 

else 
 sequence is periodic = FALSE        % If standard deviation is too large, the sequence 
                                                                        % is not periodic            

 

Rmm[m] = ( Rxm[m-2]+ Rxm[m-1]+...+ Rxm[m+2])/5.           (3) 
 
Combination of median filtering followed by a mean filter 
smoothes the ACF defined in (1), filtering out both the noise 
and fake maximums from it. The peaks of the smoothed signal 
(3) can then be used by the classification algorithm shown in 
Table I both to detect the traffic type and in case of 
deterministic signal to define the period Tp. 

The smoothing of the signal is shown in Fig. 3. Original 
ACF of the noisy signal is shown in Fig 3a and the modified 
filtered ACF signal in Fig 3b. As can be seen from the figure, 
the filtering smoothes the signal very well which makes it 
applicable for further analysis.  
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Figure 3. Autocorrelation sequence for noisy signal, before (a) 

and after (b) filtering. 

However, some small peaks can still exist in the valleys of 
the signal. A simple additional filtering can be done to remove 
them by comparing a value of the peak to the value of the 

previous peak. When the difference is too high, i.e., the new 
peak κ is under β % of the previous one, we can conclude that 
this is not the real maximum, i.e., if κ(i) < β/100 · κ(i-1). 

c) Calculation of average separation of peaks 
From the filtered signal, average separation between peaks 

is calculated. First, local maximums are searched using an 
algorithm that exploits the following information: Local 
maximum κ is the point m∗ if there is some ε > 0 such 
that Rmm(m∗) ≥ Rmm (m) when |m − m∗| < ε. The average 
separation of N consecutive peaks can be calculated as 
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where d(i-1) = κ(i) – κ(i–1). 

d) Calculation of standard deviation and final decision 
To make the classifier even more robust to small errors, 

minor deviations in the peak separation is allowed. The concept 
of standard deviation  
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is used before the final decision is made. For the classification 
decision, i.e., Part 2 in Table I, the limit for standard deviation 
is set to σ < η, where η is a value that is proportional to τav. The 
longer the period is the bigger the deviation is allowed to be. 

IV. PERFORMANCE METRICS 
The reliability of the classification is partly dependent on the 
sensing. Classification works very well with perfect sensing. 
However, there are always errors affecting the sensing 
performance. Let us check the sensing process. 

The goal of the spectrum sensing is to decide between the 
two hypotheses, namely  
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capable of filtering the effect of sensing errors out. Regarding 
the probability of incorrect detection curve, we can see that 
when the errors can be caused both by missed detection and 
false alarms as is the case in reality, the classifier is even more 
robust. Probability of correct classification is almost 95 % 
when the Pid is 12 %. The performance gap to the other curves 
increases after this point. From the classification algorithm 
point of view, it is better that errors are spread randomly 
throughout the sequence. Pure missed detections or false 
alarms hide the periodicity more efficiently. Actually 
probability of incorrect classification figure is the most 
interesting one, since the false alarms and missed detections 
affect the performance equally, depending partly on the values 
of P(H1) and P(H0). In the realistic systems both of these are 
present.  

The results indicate that the proposed classifier can work 
well under sensing errors and even tolerates some sensing 
targeted attacks [9] when stochastic and purely deterministic 
signals are considered. The acceptable values for Pfa and Pmd 
in real systems are below 10 % to keep interference towards 
PUs low enough and the throughput of the own transmission 
in an acceptable level. Especially the values of Pmd are needed 
to be low in CR systems to avoid interference toward PUs. 
The results indicate that the proposed classifier suits very well 
for a practical system.   

When ON and OFF times can vary inside the period, the 
ACF method is not working so reliably anymore due to 
additional fake maximums that cannot always be filtered 
away. We present only the most interesting results for the 
partially deterministic traffic, i.e., probability of correct 
classification as a function of probability of incorrect 
detection. The results are presented in Fig. 5. 
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Figure 5. Probability of correct classification, partially 

deterministic traffic. 
 

The performance results show that even with the perfect 
detection the classification method cannot always make right 
decisions when partially deterministic traffic is considered. 
Compared to the full deterministic signal results, we can see 
for example that when the Pid = 10 %, the Pc is below 75 %. 
This is more than 20 percent units lower than in the previous 
case. However, this means that most of the time the system is 

able to use more accurate prediction algorithms in these 
channels to estimate precisely the idle times. As mentioned 
previously, the results are averaged over several channels. 
Short periods were found clearly more efficiently than the 
long ones. When Pid was set to 0.15, the Pc was 0.97 when Tp 
was 3 s while the Pc was 0.47 with the Tp = 16 s. The longer 
the periods are the more the sensing errors there are and 
especially the varying ON and OFF times hide the correlation 
between consecutive periods. 

VI. CONCLUSION 
Learning and classification methods are essential for a 

cognitive radio system, improving the performance in terms of 
throughput and delay. We proposed a classification method 
that divides traffic patterns into stochastic and deterministic 
ones, both needing own prediction rules. The method can be 
used by CR systems to allow more accurate predictive channel 
selection. Furthermore, traffic classification can enable a good 
resource management tool for optimization of the network. 
From the practical point of view the proposed method is based 
on autocorrelation function that can be used in real-time 
applications. The results indicate that the proposed method 
works reliably in the presence of sensing errors. However, 
more testing with real measured data for the method is still 
needed and we plan to continue the work in this area. 
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where x(t) is the complex signal received by the cognitive 
radio, s(t) is the transmitted signal of the primary user, n(t) is 
the additive white Gaussian noise (AWGN) and h(t) is the 
complex amplitude gain of the channel. H0 is a null hypothesis, 
which states that no licensed user signal is present. H1 is the 
alternative hypothesis which indicates that a primary user 
signal exists. 

The following metrics can be used to measure the 
performance of a spectrum sensor. Probability of missed 
detection is defined as the probability that an occupied 
spectrum is sensed to be idle, while the probability of false 
alarm is the probability that an idle spectrum is sensed to be 
occupied by a licensed user. To define more formally, the 
probability of missed detection is 
 

Pmd = P{Y < λ | H1}                           (7) 
 
where Y is a decision statistic and λ the decision threshold. The 
probability of false alarm can be defined as 
 

Pf = P{Y > λ | H0}.                           (8) 
 

Both of these metrics affect to the performance of the 
classifier. Probability of incorrect detection [12] is defined as 
 

Pid = P(H1)Pmd + P(H0)Pf.            (9) 
 
This metric takes both false alarms and missed detections into 
account. From the classification point of view, any deviation in 
an estimated binary pattern to the real situation is significant. 
Thus, Pid is a natural performance metric for the study. There 
are clear causes for the incorrect detection. When the signal-to-
noise ratio is not high enough, errors occur in detection. An 
example of this kind of situation is shown in Fig. 3a. Another 
source for errors is malicious operation by other wireless users. 
For example, sensing targeted attacks [9] can cause problems 
for sensing. Thus, it is important that the classifier works well 
under non-ideal circumstances. 

The performance of a classifier itself is most 
straightforwardly measured by the probability of correct 
classification 

 
Pc = P{ĉ = c}                   (10) 
 

where ĉ is the estimated traffic class and c is the real traffic 
class. In words, it is defined as the probability that the traffic 
pattern is classified as deterministic when it is actually 
deterministic and for stochastic when it actually is stochastic. 

V. CLASSIFICATION RESULTS 
We tested the classification method with different 

stochastic and deterministic traffic patterns. We investigated 
both the case of perfect sensing and a more practical approach 
where noise is present and causes problems for detection and 
classification. Perfect sensing results provide an upper bound 
of the performance for the methods. The stochastic patterns, 
including Weibull, exponentially distributed, and Pareto 
distributed stochastic patterns were always classified right in 

the simulations, also in the noisy situation. The classifier 
recognizes this without problems. The fact that the 
classification is based on the periodicity search explains this 
well. Stochastic patterns are not periodic. The parameter value 
β for simulations was 0.7 and η = τav /10. We had 5 primary 
channels with stochastic traffic and 5 channels with 
deterministic traffic in our simulations. A single simulation 
covered 300 seconds time. The period length Tp for the 
deterministic traffic varied between 3 s and 20 s, sensing 
period Δt was 100 ms. All the simulations were done 100 
times and the results are shown as averages of all the 
simulations as well as averaging over the channels. Thus, a 
deterministic result means that the result is an average 
classification result of 5 channels over 100 hundred 
simulations.  
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Figure 4. Probability of correct classification using the    
modified ACF based method, deterministic traffic. 

 
With a deterministic traffic the proposed method found 

patterns with fixed ON and OFF times without problems when 
perfect sensing results are used.  The situation changes when 
the method is tested with a noisy deterministic traffic. The 
results are shown in Fig. 4. The probability of correct 
classification is presented in terms of the sensing performance 
that is measured both with the probability of missed detection, 
with the probability of false alarms, and with the probability of 
incorrect detection. In the experiments, either missed 
detections or false alarms occur, or both of them. For example, 
when the Pmd is 0.05, it means that 5 percent of the bits ‘1’ in 
the binary pattern have been changed to ‘0’. When probability 
of incorrect detection is considered, any bit is changed with a 
given probability. The selected bits have been randomly 
chosen using uniform distribution. The aim was to see whether 
the algorithm is more sensitive to missed detections or to false 
alarms. However, no large differences can be seen. The 
achieved performance is very good with low probability of 
missed detection as well as with the low probability of false 
alarms. The probability of correct classification is more than 
95 % when the probabilities of missed detection and false 
alarms are below 10 %.  

When the probability of sensing errors increases, 
performance drops down. The reason is the fact that it 
becomes harder and harder to search periodicity from the 
binary sequence and the classification method is not anymore 
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capable of filtering the effect of sensing errors out. Regarding 
the probability of incorrect detection curve, we can see that 
when the errors can be caused both by missed detection and 
false alarms as is the case in reality, the classifier is even more 
robust. Probability of correct classification is almost 95 % 
when the Pid is 12 %. The performance gap to the other curves 
increases after this point. From the classification algorithm 
point of view, it is better that errors are spread randomly 
throughout the sequence. Pure missed detections or false 
alarms hide the periodicity more efficiently. Actually 
probability of incorrect classification figure is the most 
interesting one, since the false alarms and missed detections 
affect the performance equally, depending partly on the values 
of P(H1) and P(H0). In the realistic systems both of these are 
present.  

The results indicate that the proposed classifier can work 
well under sensing errors and even tolerates some sensing 
targeted attacks [9] when stochastic and purely deterministic 
signals are considered. The acceptable values for Pfa and Pmd 
in real systems are below 10 % to keep interference towards 
PUs low enough and the throughput of the own transmission 
in an acceptable level. Especially the values of Pmd are needed 
to be low in CR systems to avoid interference toward PUs. 
The results indicate that the proposed classifier suits very well 
for a practical system.   

When ON and OFF times can vary inside the period, the 
ACF method is not working so reliably anymore due to 
additional fake maximums that cannot always be filtered 
away. We present only the most interesting results for the 
partially deterministic traffic, i.e., probability of correct 
classification as a function of probability of incorrect 
detection. The results are presented in Fig. 5. 
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Figure 5. Probability of correct classification, partially 

deterministic traffic. 
 

The performance results show that even with the perfect 
detection the classification method cannot always make right 
decisions when partially deterministic traffic is considered. 
Compared to the full deterministic signal results, we can see 
for example that when the Pid = 10 %, the Pc is below 75 %. 
This is more than 20 percent units lower than in the previous 
case. However, this means that most of the time the system is 

able to use more accurate prediction algorithms in these 
channels to estimate precisely the idle times. As mentioned 
previously, the results are averaged over several channels. 
Short periods were found clearly more efficiently than the 
long ones. When Pid was set to 0.15, the Pc was 0.97 when Tp 
was 3 s while the Pc was 0.47 with the Tp = 16 s. The longer 
the periods are the more the sensing errors there are and 
especially the varying ON and OFF times hide the correlation 
between consecutive periods. 

VI. CONCLUSION 
Learning and classification methods are essential for a 

cognitive radio system, improving the performance in terms of 
throughput and delay. We proposed a classification method 
that divides traffic patterns into stochastic and deterministic 
ones, both needing own prediction rules. The method can be 
used by CR systems to allow more accurate predictive channel 
selection. Furthermore, traffic classification can enable a good 
resource management tool for optimization of the network. 
From the practical point of view the proposed method is based 
on autocorrelation function that can be used in real-time 
applications. The results indicate that the proposed method 
works reliably in the presence of sensing errors. However, 
more testing with real measured data for the method is still 
needed and we plan to continue the work in this area. 
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This thesis studies (1) channel selection in a cognitive radio system 
(CRS) using history information and (2) power allocation in a selected 
frequency band assuming a fading channel. Both can be seen as 
methods to manage interference between in-system users as well as to 
the users of other systems operating in the same geographical area and 
frequency band. Adaptive techniques proposed in this thesis enable 
efficient operation of CRSs in varying radio environment.

Intelligent use of history information affects throughput, collisions and 
delays since it helps to guide the sensing and channel selection processes. 
This thesis proposes a classification-based prediction that is applicable 
to a variety of traffic classes. Classification-based prediction is shown 
to increase the throughput and reduce the number of collisions with the 
primary user up to 70% compared to the predictive system operating 
without classification.

In terms of the power allocation work, the thesis defines the transmission 
power limit for secondary users. The main focus has been on the 
development and performance comparison of practical inverse power 
control methods. One of the key achievements of the work is the 
development of the filtered-x LMS (FxLMS) algorithm based power 
control that can be seen as a generalized inverse control to be used in 
power control research. 
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