
Measurement-based management of global
software development projects

Collaborative, global software development (GSD) has become the
norm in software-intensive systems development. Because
software products are developed in such dynamic environments,
where requirements, priorities, participating sites, development
processes and tools, and even partners are continuously changing,
project control and management activities are increasingly
important. In practice, measurements and metrics provide support
for decision making during projects' lifecycle.

In this thesis, the main challenges related to measurements and
metrics in GSD projects have been studied and analysed in detail.
The thesis provides a definition for dynamic measurements, where
metrics are defined based on demands of each project's
collaboration settings, metrics data is collected and analysed
continuously from various tools and databases, and measurement
data is analysed and visualised for easy to read format. During the
research process, the implemented proof of concept tool
integration solution enabled the researcher to study the benefits
and industrial experiences of dynamic measurements. The thesis
pointed out that automatically produced real-time metrics are a
robust and feasible method to produce reliable and up-to-date
information for decision making in GSD projects.

The measurement-based management of GSD projects is a very
valuable and effective way to provide support for project
management in challenging settings of collaborative and
distributed software development.

ISBN 978-951-38-8177-1 (Soft back ed.)
ISBN 978-951-38-8178-8 (URL: http://www.vtt.fi/publications/index.jsp)
ISSN-L 2242-119X
ISSN 2242-119X (Print)
ISSN 2242-1203 (Online)

V
T

T
 S

C
IE

N
C

E
 7

0
M

e
a

su
re

m
e

n
t-b

a
se

d
 m

a
n

a
g

e
m

e
n

t o
f g

lo
b

a
l so

ftw
a

re
...

•V
IS

IO
N

S•
SCIENCE•TEC

H
N

O
L

O
G

Y
•RESEARCHHIGHLI

G
H

T
S

Dissertation

70

Measurement-based
management of global
software development
projects

Maarit Tihinen

VTT SCIENCE 70

Measurement-based
management of global
software development
projects

Maarit Tihinen

Thesis for the degree of Doctor of Philosophy to be presented with

due permission for public examination and criticism in auditorium

IT116, at University of Oulu, Linnanmaa, on the 28th of November,

2014, at 12 noon.

ISBN 978-951-38-8177-1 (Soft back ed.)
ISBN 978-951-38-8178-8 (URL: http://www.vtt.fi/publications/index.jsp)

VTT Science 70

ISSN-L 2242-119X
ISSN 2242-119X (Print)
ISSN 2242-1203 (Online)

Copyright © VTT 2014

JULKAISIJA – UTGIVARE – PUBLISHER

VTT
PL 1000 (Tekniikantie 4 A, Espoo)
02044 VTT
Puh. 020 722 111, faksi 020 722 7001

VTT
PB 1000 (Teknikvägen 4 A, Esbo)
FI-02044 VTT
Tfn +358 20 722 111, telefax +358 20 722 7001

VTT Technical Research Centre of Finland
P.O. Box 1000 (Tekniikantie 4 A, Espoo)
FI-02044 VTT, Finland
Tel. +358 20 722 111, fax +358 20 722 7001

Grano Oy, Kuopio 2014

3

Preface
This research was carried out as part of several research projects at VTT Technical
Research Centre of Finland. Many people have helped me during this long
process 2003–2014. First, I mention my supervisor Professor Veikko Seppänen.
Veikko became my thesis supervisor in the 2003, when there was some vague
idea about a thesis related to measurements and metrics and their utilisation in
software development, at both project and organisational levels. During the research
process, the topic appeared to grow or even change, but measurements and metrics
have been part of my research activities throughout the process. In fact, the
research topic has matured into measurement-based management of global
software development projects, and now the work is ready. I wish to thank Veikko
for helping to define the scope of the thesis, for encouraging me during the writing,
and for, sometimes, even providing a light push forward. I cannot thank him
enough for all the guidance, valuable comments and support during the process. I
wish also to thank my supervisor Markku Oivo for promoting my writing process with
valuable discussions and for advising me to concentrate on the most important
activities and topics. Without the support of my supervisors, this work would not
have been possible.

The manuscript of this thesis was reviewed by Professor Hannu Jaakkola, of
the Tampere University of Technology in Finland and Professor Sandro Morasca,
of the University of Insubria in Italy. I deserve my sincere thanks for their time and
effort they have spent in reviewing my research and giving their extremely
constructive comments and recommendations, which have helped me to improve
the quality of the thesis.

I am also grateful for VTT for giving me the opportunity to work on such
interesting topics and complete my thesis in research projects. Over the years, I
have worked with many great people, both at VTT and in the companies
participating in the projects, and I offer many thanks to you all. This thesis is based
on research carried out in collaboration with several participants acting together.
The results were reported in six publications by key participants and the author of
this thesis. I thank all co-authors for their contributions.

Without the industrial interest and involvement this research would not have
been possible. I wish to give special thanks to Rob Kommeren from Philips and
Jim Rotherham from Symbio for their active participation in workshops, case

4

studies and publications as well as for their valuable comments, ideas and
feedback during the research.

My special thanks to my friend and workmate Dr. Päivi Parviainen for your
friendship and encouragement throughout. You have helped and inspired me with
discussions, innovations, and support and you have engaged my motivation to
finalise this thesis. I would also like to mention Dr. Tuomo Tuikka who has
encouraged me to finish this work and has allocated the time in which to do it.
Furthermore, I would like to express my thanks to Tekes for funding the projects
where this research has been carried out.

Finally, I wish to express my sincere gratefulness to my beloved ones for their
loving support, understanding encouragement through the years: My mother-in-
law, Raija, who has supported me in myriad domestic works without questions; my
boys, Jorma and Henri, who have kept me in touch with reality with their tricks,
delights, and love; and my husband, Vesa, who has supported me with altruistic
love and patience. You have shown endless understanding of my evening and
weekend working periods by unselfishly providing me the possibility to concentrate
on the research. Thank you from the bottom of my heart.

Olhava, Finland, October 2014
Maarit Tihinen

5

Academic dissertation
Supervisors Professor Veikko Seppänen

Professor Markku Oivo
University of Oulu
Department of Information Processing Science
P.O. Box 3000, 90014 University of Oulu, Finland

Reviewers Professor Hannu Jaakkola
Tampere University of Technology
P.O. Box 300, FI-28101 Pori, Finland

Professor Sandro Morasca
University of Insubria
Department of Computer Science and Communication
Via Valleggio 11, I-22100 Como, Italy

Opponent Professor Tommi Mikkonen
Tampere University of Technology
P.O. Box 527, FI-33101 Tampere, Finland

6

List of publications
This thesis is based on the following original publications, which are referred to in
the text as I–VI. The publications are reproduced with kind permission from the
publishers.

I Komi-Sirviö, S. and Tihinen, M. (Alphabetical order.) 2005. Lessons learned
by participants of distributed software development. The Journal of
Knowledge and Process Management. ISSN 1099-1441, Volume 12,
Number 2, DOI: 10.1002/kpm.225. Pp. 108–122.

II Tihinen, M. and Järvinen, J. 2006. How to build and sustain a measurement
data management environment in a SME. In: Proceedings of Software
Measurement European Forum (SMEF). Rome, Italy. Pp. 225–236.

III Tihinen, M., Parviainen, P., Suomalainen, T., Karhu, K. and Mannevaara, M.
2011. ABB Experiences of Boosting Controlling and Monitoring Activities in
Collaborative Production. In: Proceedings of the 6th IEEE International
Conference on Global Software Engineering (ICGSE). Helsinki, Finland.
Pp. 1–5.

IV Parviainen, P. and Tihinen, M. (Alphabetical order.) 2011. Knowledge-
related challenges and solutions in GSD. The Journal of Expert Systems:
Knowledge Engineering, Wiley-Blackwell. Article first published online: 28
June 2011. DOI: 10.1111/j.1468-0394.2011.00608.x.

V Tihinen, M., Parviainen, P., Kommeren, R. and Rotherham, J. 2011. Metrics
in distributed product development. In: Proceedings of the 6th International
Conference on Software Engineering Advances (ICSEA). Barcelona, Spain.
Pp. 275–280.

VI Tihinen M., Parviainen P., Kommeren R. and Rotherham J. 2012. Metrics
and Measurements in Global Software Development. The International
Journal on Advances in Software. Volume 5, Number 3&4. Pp. 278–292.

7

Contents
Preface ... 3

Academic dissertation ... 5

List of publications .. 6

1. Introduction ... 9
1.1 Research questions and scope ... 10
1.2 Research design... 11

1.2.1 Author’s contribution to the research....................................... 15
1.2.2 Research process .. 16

1.3 Outline of the thesis .. 20

2. Related work ... 21
2.1 Measurements and metrics ... 22

2.1.1 Approaches for measurements and metrics 22
2.1.2 Measurements automation ... 25

2.2 Global software development .. 26
2.3 Management of GSD projects ... 29

2.3.1 Management challenges .. 30
2.3.2 Knowledge-related challenges .. 31
2.3.3 Information needs for management .. 33

2.4 Measurements and metrics in GSD ... 35
2.4.1 Development-environment-related challenges 36
2.4.2 Metrics in the GSD literature .. 39
2.4.3 Measurements and metrics related challenges........................ 39

2.5 Challenges in current measurements practices 42

3. Measurement-based management of GSD projects 46
3.1 Dynamic measurements in GSD projects... 47

3.1.1 Knowledge management and transfer in GSD 47
3.1.2 Requirements for dynamic measurements 49

3.2 Implementation of dynamic measurements in GSD projects 51
3.2.1 Technical viewpoints .. 52
3.2.2 Measurements viewpoints .. 55

8

3.2.3 Examples of industrial cases .. 59
3.3 Benefits of dynamic measurements ... 66

4. Original publications ... 72
4.1 Introduction .. 72
4.2 Paper I: Lessons learned by participants of distributed software

development... 75
4.3 Paper II: How to build and sustain a measurement data

management environment in a SME .. 75
4.4 Paper III: ABB experiences of boosting controlling and

monitoring activities in collaborative production 76
4.5 Paper IV: Knowledge related challenges and solutions in GSD 76
4.6 Paper V: Metrics in distributed product development 77
4.7 Paper VI: Metrics and measurements in global software

development... 78

5. Discussion .. 79
5.1 Validity of the research ... 79
5.2 Evaluation of the results .. 83

5.2.1 Theoretical contribution .. 84
5.2.2 Implications for the practice .. 86

5.3 Limitations of the research .. 88

6. Summary and conclusions ... 90
6.1 Summary of the results ... 90
6.2 Future research .. 91

References ... 94

Appendixes
Papers I–VI

9

1. Introduction

Today globally distributed product development is a common practice in industry
because of its potential benefits, such as lower costs or taxes, the ability to
respond to local customer’s needs, and the possibilities to utilise resources
globally. With distributed product development, either the development processes
are distributed within an organisation (called multisite development) or two or more
companies are involved in development activities. Although distribution brings its
own special features for product development, products are increasingly more
complicated, requiring multidisciplinary knowledge during the development
processes. For example, trends in global software development show that the size
and complexity of software-intensive systems will continue to grow. In spite of the
potential benefits of global software development, several challenges and
problems have been reported in task coordination, project management, and
communication affected by distributed settings. Merely, the understanding of each
other may not be straightforward, because of different backgrounds in the terms of
terminologies and cultures (Komi-Sirviö and Tihinen 2003; Noll et al. 2010).

Managing a distributed product development project is more challenging than
managing traditional development (da Silva et al. 2010). Based on an industrial
survey (Komi-Sirviö and Tihinen 2003), one of the most important topics in project
management associated with distributed software development is detailed project
planning and control during the project, such as dividing work by sites into sub-
projects and clearly defining responsibilities, dependencies, and timetables, along
with regular meetings and status monitoring. In globally distributed development,
cultural differences bring new challenges for management. For instance, there can
be different viewpoints to problem reporting; at one site, it may be a regular,
natural, and necessary action originating from a basic development procedure,
whereas at another site, the required reporting can be understood as an insult for
inducing active problem hiding. In addition, commitment to decisions and
timetables can vary between stakeholders from different countries or continents.

Measurement is the process by which numbers or symbols are assigned to
attributes of entities in the real world in such a way as to describe them to clarify
defined rules (Fenton and Pfleeger 1998). It is generally understood that
measurement and metrics are key technologies for managing and controlling product
development projects. For example, the main purpose of both measurements and
metrics in software production is to create the means for monitoring and controlling

10

which provide support for decision making and project management (Basili 1992).
A successful measurement program can prove to be an effective tool for keeping
on top of the development effort, especially for large distributed projects (Umarji
and Shull 2009). However, many problems and challenges have been identified
that reduce or even eliminate all interests in measurements. For example, not
enough time is allocated for the measurement activities during a project or not
enough visible benefits are gained for the project by doing the measurement work
(e.g., data is useful only at the end of project, not during the project). Further, in
many organisations, so called metric enthusiasts have produced and defined too many
metrics, which have made collecting and analysing the data too time consuming.

Globally distributed development generates new challenges and difficulties in
measurement practice results and metrics interpretation. For example, the
gathering of the measurements data can be problematic because of various
reasons, including the use of different development tools and their versions; work
practices with related concepts, which can vary according to the project
stakeholders; and the reliability of the gathered data, which can vary due to
cultural differences, especially, in subjective evaluations. In addition, interpretation
and decision making based on the measurement results require that the
distributed development implications be taken carefully into consideration.

1.1 Research questions and scope

As global software development has huge potential benefits and possibilities, it is
important to concentrate on avoiding identified problems and, thereby, to create
new understanding, awareness, and means for successful production. The
purposes of this thesis are to analyse, in detail, the effects of global software
development and to research how project management practices within
measurements and metrics can be improved. Research on global software
development exists, but the viewpoint of measurement-based management has
not been examined in its larger perspective. Only single company or case
experiences and studies of specific aspects of project management practices or
example metrics can be found. Thus, the research questions of this thesis are as
follows:

Q1. What are the main measurements- and metrics-related challenges faced
by companies when managing global software development projects?

Q2. What kinds of means and solutions can be found to respond to these
identified challenges?

Q3. How can measurement-based management be implemented in global
software development projects?

The first research question is aimed to clarify what kinds of measurements- and
metrics-related challenges companies face during global software development,
and how do measurements, metrics, and interpretations of measurement results

11

differ between a traditional ‘single-site’ development and a distributed development.
The research question also makes clear how distribution affects measurements,
measurements needs, as well as interpretations of measurement results in global
software development (GSD).

The second research question is focused on tackling identified challenges while
managing GSD projects. The aim is to clarify what kinds of measurements and
metrics can be utilised for producing information for the management of GSD
projects, and what kind of practical means or knowledge- related solutions for
measurements and metrics should be considered in managing distributed software
development projects. This research question is not only focused on potential
metrics and measurements in GSD projects, instead the aim is also to clarify the
features and requirements to determine the most useful measurement-based
solutions for the management of GSD projects.

The third research question is posed to clarify how measurement-based
management can be implemented in GSD. The main aim is to clarify the main
requirements and the practical means for supporting measurement-based
management and determining how those can be implemented; for example, to
determine what kinds of features tools or selected reporting solutions should be
involved in proposed management solution in GSD projects.

1.2 Research design

Creswell (2009) suggests that researchers should make explicit the larger
philosophical ideas they espouse because this information helps to explain their
decision to choose qualitative, quantitative, or mixed-methods approaches for their
research. He introduced four worldviews that represent ‘a basic set of beliefs that
guide action’. The main elements of each worldview are presented in Table 1.

Table 1. The major elements of four worldviews, based on (Creswell 2009).

Post positivism Constructivism

 Determination
 Reductionism
 Empirical observation and measurement
 Theory verification

 Understanding
 Multiple participant meanings
 Social and historical construction
 Theory generation

Advocacy/Participatory Pragmatism

 Political
 Empowerment issue-oriented
 Collaborative
 Change oriented

 Consequences of actions
 Problem centred
 Pluralistic
 Real-world-practice oriented

The author espouses the constructivist worldview, even if some pragmatic
approaches could be appropriated. Constructivists focus on the specific contexts

12

in which people live and work, to understand the settings of the participants.
Researchers seek to understand the context or setting of the participants through
visiting this content and gathering information personally. The researchers also
recognise that their own backgrounds shape their interpretation, and they position
themselves in the research to acknowledge how their interpretation flows from
their personal, cultural, and historical experiences. The researchers develop
subjective meanings of their experiences. The meanings are directed towards
certain objects. These meanings are varied and multiple, leading the researcher to
look for the complexity of views rather than narrowing meanings into fewer
categories or ideas. The constructivism worldview utilises qualitative research
methods (e.g., asking open-ended questions so that the participants can share
their views). The process of qualitative research is typically inductive, whereas the
researchers inductively develop a theory or a pattern of meaning (Creswell 2009;
Järvinen 2012).

The author, to some extent, also considers a pragmatic worldview, especially,
that research always occurs in social, historical, political, and other contexts.
Pragmatism opens the door to multiple methods, different worldviews, and
different assumptions, as well as different forms of data collection and analysis.
The pragmatism worldview considers that individual researchers have the freedom
of choice: they are free to choose the methods, techniques, and procedures of
research that best meet their needs and purposes. The pragmatism worldview
applies to mixed-methods research, in that the researchers draw liberally from
both quantitative and qualitative assumptions when they engage in their research
(Creswell 2009).

The structured taxonomy (Järvinen 2012) can be utilised while identifying,
planning, or selecting the research approach and methods. Järvinen (2012)
enumerates research strategies using mathematical approaches, conceptual-
analytical approaches, theory-testing and theory-creating approaches, and the
building and evaluation of innovations. The taxonomy of different research
approaches is presented in Figure 1.

13

Research approaches

Theory-
testing
approaches
- dissensus
- consensus

Conceptual-
analytical
approaches

Mathematical approachesApproaches studying reality

Researches stressing what is reality Researches stressing utility of innovation

Approaches for
empirical
studies

Innovation-
building
approaches

Innovation-
evaluating
approaches

Theory-
creating
approaches
- dissensus
- consensus

Figure 1. Järvinen and Järvinen’s taxonomy, based on (Järvinen 2012).

The research of this thesis can be classified as applied research, and more
specifically, as constructive research. Järvinen (2012) introduces ‘constructive
research’ as involving the building and evaluating of innovation based on existing
knowledge (research) and new technical or organisational advancements.
Furthermore, Järvinen suggests that in constructive research, it is possible to
accept a prototype or even a plan as a research outcome instead of a final
product. This approach was utilised during the research process because there is
no only one exact solution that is appropriate for all situations in GSD. Thus, a
proof of concept tool integration solution was developed to enable the study of
measurements and metrics in different collaborative settings (e.g., industrial
experiences, such as the challenges and benefits). In addition, the design science
approach was emphasised for building and evaluating the innovation. The design
science is focused on the utility of the innovation: the new artefact is built for
identified business needs. In fact, the principles of design science bring into sharp
focus knowledge and understanding of design problems and their solutions in the
building and application of artefacts (Hevner and Chatterjee 2010).

Yin (2009) introduces three main conditions: 1) the type of research questions,
2) the extent of control an investigator has, during actual behavioural events, and
3) the degree of focus on contemporary as opposed to historical events. In
addition, Yin (2009) discusses how each is related to the five major research
methods: experiments, surveys, archival analyses, histories, and case studies.
The importance of each condition in distinguishing amongst the five methods is
presented in Table 2.

14

Table 2. Relevant situations for different research methods, based on (Yin 2009).

(1) (2) (3)
METHOD Form of research

questions
Does it require
control of
behavioural events?

Does it focus on
contemporary
events?

Experiment How, why? Yes Yes

Survey Who, what, where, how
many, how much?

No Yes

Archival analysis Who, what, where, how
many, how much?

No Yes /no

History How, why? No No

Case study How, why? No Yes

This study utilises case study research to build and evaluate the research
outcomes of the thesis. As shown before (Table 2), case studies are the most
useful approach to answer ‘why’ and ‘how’ questions in situations where controls
over behavioural events are not required, and where the focus is on contemporary
events (Yin 2009). Furthermore, during the research process of this thesis, several
literature studies were conducted for creating an appropriate, extensive, and well-
focused theoretical framework of the research topics introduced in this thesis.
Because the actual research was performed during several years (in fact, over ten
years), within several research projects, it was possible to construct the achieved
results of case studies based on existing knowledge and research. Thus, the
research process involved several literature studies focused on the most relevant
topics to the research questions.

In this thesis, various single-case studies were investigated. The data and
information gathering methods were interviews, observations, e-mail inquiries, and
becoming familiar with the documentation, databases, tools, and Intranet of the
case study companies. Järvinen (2012) emphasises the possibilities of case
studies to examine very complicated circumstances and, in this way, to gather
new information for creating new knowledge. According to Yin (2009), the single-
case design is eminently justifiable if the case represents (a) a critical test of
existing theory, (b) a rare or unique circumstance, or (c) a representative or typical
case, where the case serves a revelatory or longitudinal purpose. The author of
the thesis emphasises that the environments and circumstances of measurements
and metrics in each organisation are unique depending on cultural, historical, and
technical issues and backgrounds, production processes, or collaboration modes,
for example. Thus, the use of case research was selected to provide experiences and
to gather new information and gain understanding of complicated circumstances.
Case studies are especially appropriate when the context is expected to play a
role in the phenomena (e.g., if the stresses of a real project affect developers’
behaviour), or when effects are expected to be wide ranging or are expected to
take a long time (e.g., weeks, months, or years) to appear (Easterbrook et al.

15

2008), which was the case in the present research. Further, in design science
research, a designer answers questions that are relevant to human problems via
the creation of innovative artefacts. Therefore, the designed artefacts are both
useful and fundamental in understanding those identified problems and in
contributing new knowledge to the body of scientific evidence (Hevner and
Chatterjee 2010).

1.2.1 Author’s contribution to the research

Since 2000, the author has participated in several research and customer projects
where it has been possible to research topics – measurements and metrics,
knowledge management, project management, and GSD – in greater detail, not
only based on literature studies but also in industrial environments.

The author was as a research scientist in the MIKKO project during 2000–2001
(MIKKO project – Comprehensive collection and utilisation of software
measurement data) funded by Tekes, the Finnish Funding Agency for Innovation
(www.tekes.fi/en). The main goal of the project was to develop a comprehensive
measurement framework for the industrial software processes to support
measurement data collection and utilisation at the project and organisational level.
During the research project, the author participated in few case studies, co-
authored conference papers, and participated in producing the MIKKO Handbook
(Vierimaa et al. 2001), the main result of the project. In addition, the author did her
secondary subject thesis for the University of Oulu, titled ‘Analysis of the Quality
Measurement Processes in Software Production’ (Tihinen 2001). The MIKKO
research project included large literature studies that built the firm’s basis for
further research work with measurements and metrics and in environments of
GSD.

During 2001–2003, the author participated as a project manager in the Knots-Q
project funded by the Finnish Academy (Knots-Q project – Knowledge-centered
tools and methods for software process quality improvement,
http://virtual.vtt.fi/virtual/proj1/projects/knots-q/index.htm). The goal of the project
was to develop knowledge-centred tools and methods for improving the quality of
software production. The author’s research interests expanded to knowledge
management aspects. The Knots-Q project enabled an industrial survey of
distributed software development (Komi-Sirviö and Tihinen 2003), for gathering
information and constructing new knowledge of GSD. The author contributed to
creating the questionnaire as well as gathering the responses and analysing the
work. The survey exposed the most serious problems faced in distributed software
development. In addition, the survey elicited practical knowledge and examples of
the problems experienced along with the potential solutions that have been
developed and tested by developers. The research not only enriched the author’s
skills of distributed software development but also led to consideration of a
knowledge engineering approached, both in global software development as well
as in practices of measurement and metrics of GSD projects.

16

During 2004–2007, the author continued the research in the ITEA MERLIN
project (MERLIN project – Embedded Systems Engineering in Collaboration,
http://virtual.vtt.fi/virtual/proj1/projects/merlin/), which focused on embedded
systems engineering and software engineering technologies from a collaboration
perspective. During the project, the author contributed actively with other research
scientists and partners in producing the MERLIN Collaboration Handbook
(Parviainen et al. 2008), which was the main result of the project. The Internet-
based handbook provides concrete solutions to support collaboration in practice;
solutions were collected from a large number of experiences from industrial
companies. In addition, literature resources were included to guarantee a solid
methodological basis for decision making. The MERLIN Collaboration Handbook
covers various collaboration modes and describes solutions to support success in
the critical activities of collaborative product development project. The author
participated in literature studies as well as industrial cases during the MERLIN
project. For example, the first construct of a measurement-data management
framework was created and studied via the case environment.

The ITEA2 project PRISMA project (PRISMA – Productivity in Collaborative
Systems Development, https://itea3.org/project/prisma.html) 2008–2011 was
focused on improving the productivity of collaborative systems development
through improved development technologies. The author was responsible for
research actions according to the project plan (e.g., participating in several case
studies that built a basis for the thesis). In addition, the author was responsible for
packaging results by leading the dissemination work package of the project. All
project results were packaged to be available from the Intranet
(www.SameRoomSpirit.org). The SameRoomSpirit Wiki was based on the
MERLIN Collaboration Handbook developed during the MERLIN project. This wiki-
based handbook was updated and enhanced based on literature studies and
industrial case studies processed during the PRISMA project.

1.2.2 Research process

In this subsection, the research process and the most relevant research outcomes
in relation to the thesis are summarised. As mentioned before, the author has
actively participated as a research scientist in several research projects. Figure 2
depicts how those research projects were chronologically scheduled and what
kinds of research results were produced. In Figure 2, the horizontal axis shows
time and how the three main phases of the research process can be distinguished.
The vertical axis depicts how each main phase includes the three dimensions of
the research: 1) literature studies with focused industrial inventories or surveys, 2)
actual case studies, and 3) main research results based on analyses and
conclusions.

17

2000 2005 2010

MIKKO project Knots-Q project MERLIN project PRISMA project

D
ev

el
op

in
g

an
d

m
od

ify
in

g
th

eo
ry

C
as

e
st

ud
ie

s:
Pr

ep
ar

e,
co

lle
ct

an
d

an
al

ys
e

R
es

ea
rc

h
re

su
lts

:
A

na
ly

se
an

d
co

nc
lu

de

Li
te

ra
tu

re
st

ud
y

Li
te

ra
tu

re
st

ud
y

Li
te

ra
tu

re
st

ud
y

Lit
er

at
ur

e
stu

dy

Su
rv

ey

PAPER
I

PAPER
II

Industrial partnes
involved the project

Solid
case study ABB

case study

Philps
case study

PAPER
III

PAPER
V

PAPER
IV

Symbio
case study

Collaboration
Handbook

Industrial partnes
involved the project

PAPER
VI

Up
da

te
d

In
du

st
ria

l in
ve

nt
or

y

In
du

str
ia

l in
ve

nt
or

y

Industrial partnes
involved the project

MIKKO
Handbook SameRoomSpirit

Wiki based
Handbook

Knowledge of
measurements and

metrics

Figure 2. Overview of the research process.

The first phase included the MIKKO and Knots-Q research projects from 2000 to
2003. This phase provided a theoretical background for measurements and
metrics and practices of distributed software development, as well as a base for
further research activities. The second phase included the MERLIN research
project (2004 to 2007) with a literature study and an industrial inventory focusing
on collaboration issues during software development. In this phase, the first case
study and two original papers (Paper I and Paper II) were finalised and published.
In the third phase, the PRISMA project (2008–2011) was carried out. This phase
included a more detailed literature study, an updated industrial inventory, case
studies focused on the research questions of the thesis, and the four original
publications (Paper III, IV, V and VI).

As shown in Figure 2, literature studies were carried out in several phases. The
first literature study was done in 2000 during the MIKKO project. The purpose of
the study was to gather and become familiar with the existing research of
measurements, metrics, and process improvement practices used during software
production. Even if this literature study was partially utilised in producing the
MIKKO Handbook, the author’s goal was to build a theoretical background for her
secondary subject thesis. These research results together built a strong theoretical
base for software measurement processes and metrics. Based on the research, a
reference model – a measurement-data management framework – was built, and
its applicability in a case company was studied (Paper II). Further, from the
viewpoint of a project manager, it is important to understand the circumstances of
the projects being managed. Thus, knowledge-management practices for

18

improving the quality of software production were taken into consideration during
the Knots-Q project (2001–2003). Meanwhile, it was also recognised that distributed
development was increasingly common product-development practice. Therefore,
a second literature study was performed to focus on gathering other researchers’
views on and experimental results of distributed SW production. This literature
research built the theoretical background that was utilised while the survey (Paper I)
was being planned and carried out. Hence, the research context of the thesis was
specified: measurements, metrics, project management, and GSD.

The next literature study was carried out in 2004, at the beginning of the
MERLIN project. The MERLIN project focused on production technologies and
methods from a collaboration perspective. The main goal of the study was to gain
knowledge of collaborative work and practices that is more detailed (e.g., what
kind of collaboration modes can be identified, what are the most problematic or
critical issues relating to collaborative work, and what are the most important
areas to which research activities should be directed. Based on the study, a
framework was defined to collect information during an industrial inventory. The
author participated in both studies, focusing on topics of project management,
quality management, and measurement and metrics, amongst others. The
research revealed information of GSD, in greater detail; for example, how different
collaboration modes – customer-supplier relationship, technology exchange
/licensing, joint research and development, or in-house distributed development
(Parviainen 2012) – affect project management. Based on the literature study and
the industrial inventory, the most important challenges for GSD were identified.
Then solutions for these challenges were sought and tested in industrial practice.
These challenges and solutions were collected for the MERLIN Collaboration
Handbook (Parviainen et al. 2008), the main result of the project. Thus, during the
MERLIN project, the author was able to connect the produced research results to
her earlier research results (e.g., the MIKKO Handbook, Paper I, and Paper II).
The author understood that project management plays a central and very
important role during GSD that needs to be supported by all possible means. In
GSD, production processes vary greatly from project to project depending on
factors such as the product, collaboration modes, or the number of stakeholder
involved. Because traditional software-process-improvement actions lose ground,
metrics and measurements shall be focused on supporting management practices.

The next literature study was carried out in 2009, during the PRISMA project.
Because of the literature and industrial studies that were done in the earlier MERLIN
project, this literature study could be focused on searching for new concrete
solutions from experiments in GSD. In addition, a workshop with ten industrial
partners was arranged to identify new challenges that the companies were facing
in their GSD projects as well as their proposed solutions. Thus, the research could
be focused on those topics for which solutions were not be found or reported.
Then new potential solutions were sought, and the proposed solutions were tested
in industrial circumstances (e.g., Paper III, Paper V, and Paper VI). In addition,
because the survey (Paper I) highlighted the crucial role of knowledge and
knowledge engineering in managing GSD projects, the research of knowledge-

19

related challenges and knowledge needs from the viewpoint of different
stakeholders in global software development were also further examined (Paper
IV) during the PRISMA project. In practice, all collected, developed, or tested
challenges and solutions were included in the second version of the Collaboration
Handbook. The research process and results are introduced and discussed in
more detail in the dissertation (Parviainen 2012). Because of the large amount of
information involved, the challenges and solutions were also documented as a wiki
solution (www.SameRoomSpirit.org), being freely available from the Internet.

Figure 3 summarises the research outputs and depicts how the research was
adjusted piece by piece for finding answers to research questions.

Figure 3. Summary of the research process.

The main new contributions of the thesis include the research results in the
context of measurement-based management of GSD projects.

20

1.3 Outline of the thesis

The structure of the thesis is presented as follows:

 Section 1 introduces the background and focus of the thesis, with research
questions and the author’s contribution to the research projects where the
research results have been processed and validated. Moreover, the
research design with a description of the research process is presented.

 In Section 2, the related work of the thesis is discussed. The related work
consists of the main research topics: 1) measurements and metrics in
general, 2) GSD, 3) management of GSD projects, and 4) measurements
and metrics in GSD. Also, the identified challenges faced in the current
measurements practices are summarised.

 Section 3 analyses the research results provided via industrial case studies
and literature studies during the research projects. In addition, a definition
of dynamic measurements is introduced and the concept of measurement-
based management of GSD projects is discussed.

 Section 4 introduces the original publications that the thesis summarises,
and how each publication answers or clarifies the research questions of the
thesis. Also, author’s contribution to each publication is clarified.

 Section 5 discusses the research results, including evaluation of the results
with respect to the research goals and validity of the research. Moreover,
the limitations of the research are discussed.

 Section 6 summarises and concludes the research results, and offers
insights for future research.

Even if each section provides the main content for the thesis, a logical interrelationship
among the sections is clear.

21

2. Related work

GSD is shortly defined as software development that uses teams from multiple
geographic locations. According to (Sangwan et al. 2006), GSD can include teams
from the same organisation or teams from different organisations that are involved
by collaboration or outsourcing, for example. They point out that the distance of
teams is an essential factor when teams are working together to develop software
systems. Thus, GSD can even consider software development where teams are
within one country, if the development teams are separated by more than 50
metres (Sangwan et al. 2006).

GSD has become the norm in software-intensive systems development. In
practice, the products are increasingly developed globally, in collaboration
between subcontractors, third-party suppliers and in-house developers (Hyysalo et
al. 2006; Noll et al. 2010). Project control and management activities are now
increasingly important, as software products are developed in dynamic
environments where requirements, priorities, participating sites, development
processes and tools, and even partners are continuously changing. In fact, up-to-
date information of project status is now critical to completing project management
activities effectively.

In this section, the research relevant to the thesis is introduced. The related
work includes the results of the literature studies and also results of large industrial
inventories carried out during the MERLIN and PRISMA projects. The results of
inventories were included as they enabled the author to collect a large set of
empirical data about industrial challenges as well as views of potential solutions
relating to measurements and project management in GSD. This empirical work
was carried out over several years. The first industrial inventory was made during
the MERLIN project, included also industrial experiences reported in the literature.
During the PRISMA project, several industrial workshops were held to define
challenges and potential solutions for these challenges. These industrial
inventories not only provided empirical data to the author but also assisted to
focusing the literature studies in the context of the thesis.

22

2.1 Measurements and metrics

The main purpose of measurements and metrics in software production is to
create the means for monitoring and controlling that provide support for decision
making and project management (Basili 1992). In this subsection, the works
related to measurements and metrics are introduced.

2.1.1 Approaches for measurements and metrics

Since the 1960s, software measurements and metrics have been discussed.
Software metrics are a valuable factor for the management and control of many
software-related activities; for example, costs, effort and schedule estimation,
productivity, reliability, and quality measures. Traditionally software measurement
has been understood as an information gathering process. Software measurement
is defined (van Solingen and Berghout 1999) as ‘the continuous process of
defining, collecting and analysing data on the software development process and
its products in order to understand and control the process and its products and to
supply meaningful information to improve that process and its products’. Further,
traditionally, software metrics are divided into process, product, and resource
metrics (Fenton and Pfleeger 1998). In a comprehensive measurement program,
all of these dimensions should be taken into consideration while interpreting
measurement results; otherwise, the interpretation may lead to wrong decisions or
incorrect actions. A successful measurement program can prove to be an effective
tool for keeping on top of the development effort, especially for large distributed
projects (Umarji and Shull 2009).

The measurement data items consist of numeric data (e.g., efforts and
schedules) or a pre-classified set of categories (e.g., severity of defects: minor,
medium, or major). Software metrics can consist of several measurement data
items, singly or in combination. In fact, the literature often considers several kinds
of static measures, such as lines of code, cohesion, or coupling. Instead, (Lavazza
et al. 2012) proposed measures of dynamic internal software attributes and
provided examples to show how dynamic measures can be defined, collected, and
used. The dynamic measures provide new approaches.

Metric visualisation is a visual representation of the collected and processed
information about software systems. Typically, software metrics are visualised for
presenting the information in a meaningful way that can be understood quickly.
For example, visualising metrics through charts or graphs is usually easier to
understand than are long textual or numerical descriptions. Thus, metrics
visualisation is an important task in a measurement process. Tufte and Graves-
Morris (1983) emphasise that excellence in statistical graphics consists of complex
ideas communicated with clarity, precision, and efficiency. Furthermore, they
introduce that graphical displays should:

23

 show the data
 induce the viewer to think about the substance rather than about

methodology, graphic design, the technology of graphic production, or
something else

 avoid distorting what the data have to say
 present many numbers in a small space
 make large data sets coherent
 encourage the eye to compare different pieces of data
 reveal the data at several levels of detail, from a broad overview to the

fine structure
 serve a reasonably clear purpose: description, exploration, tabulation, or

decoration
 be closely integrated with the statistical and verbal descriptions of a data set.

Tufte and Graves-Morris (1983) advice that often the most effective way to
describe, explore, and summarise a set of numbers is to look at pictures of those
numbers.

In addition to data items, development projects can also be classified. Typically,
the project classification is used as a baseline for further interpretation of the
metrics and measurements. For example, all kind of predictions or comparisons
should be done within the same kind of development projects, or at the least
differences should be taken into account. Traditional project characteristics are, for
example, size and duration of a project, type of a project (development,
maintenance, operational lifetime, etc.), project position (contractor, subcontractor,
internal development, etc.), type of software (hardware-related software
development, application software, etc.), or used software development
approaches (agile, open source, scrum, spiral-model, test driven development,
model-driven development, V-model, waterfall model, etc.). Further, different
phases of development projects have to be taken into consideration while
analysing the gathered measurement data.

In the literature, many potential approaches for supporting measurements
activities have been introduced, from their planning to taking into daily practices.
For example, the IEEE standard for a software-quality-metrics methodology is a
systematic approach to establishing quality requirements and identifying,
implementing, analysing, and validating the process and product of software
quality metrics for a software system (IEEE Std 1061-1992). The software-quality-
metrics methodology can be used in all software at all phases of the software life
cycle. The methodology applies to those associated with the acquisition,
development, use, support, maintenance, and audit of software as well as most of
the people who measure and assess the quality of the software. The methodology
introduced has five main steps: 1) establish software quality requirements, 2)
identify software quality metrics, 3) implement the software quality metrics, 4)
analyse the software quality metric results, and 5) validate the software quality
metrics. In addition, the IEEE standard defines factors and associated sub-factors
for software quality. The factor metrics approach is a practical way to define

24

metrics because there are many examples associated with the factor and sub-
factor metrics in the literature.

One of the most commonly used measurement methods at the end of 1990 and
the beginning of 2000 was the Goal/Question/Metric (GQM) method. The GQM
paradigm (Basili 1992) represents a systematic approach for tailoring and
integrating the objectives of an organisation into measurement goals and their
step-by-step refinement into measurable values. The GQM method was commonly
known and was often used for searching and identifying organisations’ strengths
and weaknesses relating to the identified improvement goals. Further, several
assessment methods, for example CMMI (2006) and SPICE (Software Process
Improvement and Capability Determination, further known as a standard ISO/IEC
15504 Information technology – Process assessment), were generally used for
identifying possible improvements areas and gaining knowledge of the software
process of an organisation. In fact, most of the traditional measurement methods
are based on expressions of the famous Shewhart cycle, also called the Deming
cycle: PDCA (Plan–Do–Check–Act) (Shewhart 1939). The PDCA cycle is an
iterative four-step management method that is used in business for the control and
continuous improvement of processes and products. The traditional methods used
in software measurements were generally based on clearly defined and largely
stabile processes that could be adjusted and improved. In those cases, the
improvement actions were mainly done afterwards, for example, in the next
project.

A balanced score card (BSC) is widely used for monitoring the performance of
an organisation towards strategic goals. The original BSC approach covers a
small number of performance metrics from four perspectives, called Kaplan &
Norton perspectives: Financial, Customer, Internal Processes, Learning & Growth
(Kaplan and Norton 1992). The BSC framework added strategic nonfinancial
performance measures to traditional financial metrics to give managers and
executives a more ‘balanced’ view of organisational performance. However, many
early BSCs failed because clear information and knowledge about the selection of
measures and targets were not available. For example, organisations had
attempted to use Kaplan & Norton perspectives without thinking about whether
they were suitable in their situation. Many improvements and enhancements have
been made to the BSC approach, and, since 2000, it has been described as a
‘Third Generation’ of balanced scorecard designs. The BSC has evolved to be a
strategic management tool that involves a wide range of managers in the strategic
management process. In addition, it provides boundaries of control but is not
prescriptive or constrictive, and, more importantly, it removes the separation
between the formulation and implementation of strategy (Lawrie and Cobbold
2004). The BSC suggests that the organisation should be viewed from four
perspectives (learning & growth perspective, business process perspective,
customer perspective, and financial perspective) and that metrics should be
developed and data should be collected and analysed in relation to these
perspectives. Even if BSC are generally intended to deal with strategic issues, the
balancing of various perspectives of BSC has also been emphasised in

25

measurements. In fact, it has been proven that practical software measurement
and the balanced scorecard are both compatible and complementary (Card 2003).
Especially in the GSD context, in making decisions or taking actions based on the
analysis of metrics and measurements collected from different development
parties or stakeholders need to consider the specific GSD factors as well.

2.1.2 Measurements automation

Komi-Sirviö et al. (2001) define measurement automation as a means to
automated data collection, calculation, and formation of analysis graphs
repeatedly in a predefined way, using data stored in one or several data sources.
In addition, Batagelj et al. (2008) introduced the prerequisites for measurement
automation, such as measurement instruments with communication interfaces,
computers with matching communication interfaces, and software development
platforms for the measurement automation. Accordingly, in the literature, there are
many reported approaches for solutions for measurement automation, ranging
from simple data-acquisition applications to complex laboratory information
systems, which combine data acquisition, data processing, data presentation, and
data management. For example, Komi-Sirviö et al. (2001) found that
measurement automation support could be a feature of a tool where the data
originally exists or it could be a separate software package that executes the
measurement automation tasks. Batagelj et al. (2008) found that measurement
automation software must be as follows: 1) reliable and robust, 2) user-friendly
and easy to use, without ambiguous settings and parameters, 3) properly
validated, 4) equipped with instructions for use and/or built-in help, 5) protected
against intrusion in data and program code, and 6) provided with means for the
detection and correction of procedural and measurement errors.

Komi-Sirviö et al. (2001) pointed out that measurement automation, with proper
tool support, is a key success factor to effectively managing projects in a large,
multisite software-development environment. In addition, measurement
automation can also be used to enhance the visibility of the measurement
process, which can lead to a greater awareness of the reasoning behind collecting
measurement data and utilising it within an organisation (Komi-Sirviö et al. 2001).
According to Batagelj et al. (2008), the benefits of measurement automation
include reduced workload, improved insight in the measurement process and data
processing, and increased reliability of measurement results because of reduction
of human errors. However, it has been determined that automated systems for
measurement and analysis are not adopted widely in companies despite the
opportunities they offer (Coman et al. 2009). From a measurements viewpoint,
only data collected from different sources meet the essential but demanding
requirements for technical implementation. In practice, measurement activities,
such as planning the measurements and packaging the experiences, fall outside
the measurement-automation context because they depend on human judgement
(Komi-Sirviö et al. 2001). Hence, measurement automation is not a

26

comprehensive solution for the challenges of measurements and project
management. As Buse and Zimmermann (2010) argued, the information currently
delivered by existing tools does not match the needs of project managers. The
information is not valid for making good decisions. Measurement automation is not
the answer to these problems; other practices are needed. For example,
information and support needs in GSD have to be studied and the weaknesses of
current practices need to be reviewed.

2.2 Global software development

Trends in GSD show that the size and complexity of software-intensive systems
will continue to grow, making it difficult for companies to develop all of the required
functionality alone (Forrester 2010; Fryer and Gothe 2008). Thus, the products are
being increasingly developed in a globally distributed fashion (Hyysalo et al. 2006;
Noll et al. 2010).

In practice, GSD enables many advantages that organisations are seeking
while selecting strategies for distributed software development (Lings et al. 2007).
It has created opportunities for companies to distribute their software
development, for example, to economically favourable countries, to gain needed
expertise from top universities, or to get closer to customers. The collaboration
also offers an opportunity to leverage time-zone differences, or organisations are
able to keep their key workers who had chosen to move, for example. Based on
industrial inventory (including 12 interviews in five companies and two
questionnaires filled in two companies) made during the MERLIN project, the most
common motivation for collaboration, mentioned by almost all of the inventoried
companies, was to save money. The next most commonly mentioned reasons
were to acquire competence (technology competence or knowledge of a certain
market) that is not available in house, and to avoid investing in the company’s
non-core competence areas. Other reasons for collaboration were to save time, to
establish new business opportunities with new partners, to have flexibility with
respect to the number and the availability of in-house resources. In some cases
(e.g., COTS (Commercial-Off-The-Shelf), the developer is a pure subcontracting
or consulting company, and the whole business is based on collaboration.

In practice, distributed projects struggle with the same problems as single-site
projects, including problems related to managing quality, schedules, and costs,
and distribution makes it more difficult to handle and control these problems
(Herbsleb et al. 2000; Herbsleb 2007; Jiménez et al. 2009). The actual challenges
can be caused from various issues; for example, the distance between partners
reduces communication, causing wrong assumptions and misunderstandings or
differences in the background knowledge and skills of the partners can lead to
wrong conceptions of the task/problem involved.

Parviainen (2012) describes problems and challenges that are directly caused
by the basic GSD circumstances. These challenges influence measurements and
metrics and their interpretation during GSD. These challenges are mainly an

27

intrinsic and natural part of GSD, and they can either complicate distributed product
development or cause further challenges. The basic GSD circumstances are:

 Multiple parties, meaning two or more different teams and sites (locations)
of a company or different companies

 Time difference and distance that are caused by the geographical
distribution of the parties or teams.

Problems caused by these circumstances centre on issues of clarity of, for
example, about roles and responsibilities for the different stakeholders in different
parties or locations, knowing the contact persons (e.g., responsibilities, authorities,
and knowledge) from different locations, and establishing and ensuring a common
understanding across distance. The basic GSD circumstances can also lead to
poor transparency and control of remote activities as well as difficulties in
managing dependencies over distance, problems in coordination and control of
the distributed work, and integration problems, for example. Problems may also be
caused by basic circumstances in terms of accessing remote databases and tools
or, accordingly, they may generate data transfer problems caused by the various
data formats between the tools or different versions of the tools used by the
different teams. The basic circumstances may also cause problems with data
security and access to databases or another organisation's resources.

A commonly referenced classification for the challenges caused by GSD is as
follows (Carmel 1999; Carmel and Tija 2005):

 Communication breakdown (loss of communication richness)
 Coordination breakdown
 Control breakdown (geographical dispersion)
 Cohesion barriers (loss of ‘teamness’)
 Culture clash (cultural differences).

Communication breakdown (loss of communication richness). Human beings
communicate best when they are communicating face to face. In GSD, face-to-
face communication decreases because of distance. Minor or decreased
communication causes misunderstandings and a lack of information regarding the
sites or stakeholders involved in the project. For example, there can be
information that is self-explanatory for the most of project members but is never
known by others, and, on the other hand, communication over great distances
(and cross-culturally) can lead to misinterpretations because people cannot
communicate well due to language barriers. In addition, there are many
differences in how different cultures use speech and communicate at meetings,
listen to others, oversee their subordinates, or manage their staff (Lewis 1999).
These kinds of differences may cause communication breakdowns, as even
silence can be misunderstood depending on one’s cultural background.

Coordination breakdown. Software development is a complex process that
requires on-going adjustments and coordination of shared tasks. In geographically
distributed projects, the small adjustments usually made in face-to-face contact do

28

not take place or it is not easy to make adjustments. This can cause problem
solving to be delayed or the project to go down the wrong track until it becomes
very expensive to correct the course. GSD also sets additional requirements for
planning; for example, the need for coordination between teams and the
procedures and contacts for how to work with partners needs to be defined
(Damian and Zowghi 2003; Herbsleb and Mockus 2003; Paasivaara and
Lassenius 2003). Coordination breakdown can also cause a number of specific
problems; for example, Battin et al. (2001) reported a number of software
integration problems, which were due to the large number of independent teams.
Wahyudin et al. (2007) stated that GSD demands more from project management.
In addition to the project managers, the project members such as testers,
technical leaders, and developers also need to be kept informed and notified of
certain information and events that are relevant to their roles’ objectives in timely
manner, which provides the conditions for in-time decision making.

Control breakdown (geographical dispersion). GSD means that management
by walking around the development team is not feasible and, instead, telephones,
e-mail, and other communication means (e.g., chat servers) must be used. These
types of communication tools could be consider as less effective, not always
providing the clear and correct status of the development site. Moreover, dividing
the tasks and work across development sites and managing the dependencies
between sites is difficult because of the restraints of the available resources, the
level of expertise, and the infrastructure (Battin et al. 2001; Herbsleb and Moitra
2001; Welborn and Kasten 2003). According to Holmstrom et al. (2006), creating
the overlap in time between different sites is challenging, despite the flexible
working hours and communication technologies that enable asynchronous
communication. Lack of overlap leads to a delay in responses with feelings of
‘being behind’, ‘missing out’, and even ‘losing track’ of the overall work process.

Cohesion barriers (loss of ‘teamness’). In working groups that are composed of
dispersed individuals, the team is unlikely to form the tight social bonds that are a
key to the project’s success. Lack of informal communication and the use of
different processes and practices have a negative impact on teamness (Battin et
al. 2001; Damian and Zowghi 2003; Herbsleb and Mockus 2003). Further, fear
(e.g., of losing one’s job to the other site) has direct negative impact on trust, team
building co-operation, and knowledge transfer, even where good relationships
existed beforehand. According to Casey and Richardson (2008), fear and lack of
trust negatively affect the building of effective distributed teams, resulting in clear
examples of not wanting to cooperate and share knowledge with remote
colleagues. Al-Ani and Redmiles (2009) discussed the role that the existing tools
can play in developing trust and providing insights on how future tools can be
designed to promote trust. They found that tools could promote trust by sharing
information derived from each developer’s activities and their interdependencies,
leading to a greater likelihood that team members will rely on each other, which
leads to a more effective collaboration.

Culture clash (cultural differences). Each culture has different communication
norms. In any cross-cultural communication, the receiver is more likely to

29

misinterpret messages or cues. Hence, miscommunication across cultures is
usually present. Hofstede (1984) argued that national and regional cultural groups
influence the behaviour of societies and organisations. He introduced four
dimensions of national culture through which cultural values and behaviour can be
analysed: individualism-collectivism, uncertainly avoidance, power distance
(strength of social hierarchy), and masculinity-femininity (task orientation versus
person orientation). Borchers (2003) used Hofstede’s model as a framework to
study how cultural differences affected the software engineering techniques used
in the analysed case projects. The results showed that the cultural indexes –
power distance (e.g., degree of inequality of managers versus subordinates),
uncertainty avoidance (e.g., tolerance for uncertainty about the future), and
individualism (like the strength of the relationship between an individual and their
societal group) – were found to be relevant from the software engineering point of
view (Borchers 2003). Furthermore, Lewis (2006) stated that the national and
regional cultures of the world can be generally classified into three groups: linear-
active, multi-active, and reactive. These classifications take individual
characteristics into consideration, such as being task or people oriented, highly or
loosely organised, introverted or extroverted, time or task oriented, and
confrontational or reserved. The Lewis model of cross-cultural communications
provides a practical framework for understanding and communicating with people
of other cultures. For example, Holmstrom et al. (2006) discussed the challenge of
creating a mutual understanding between people from different backgrounds.
They concluded that often, general understanding in terms of English was good,
but more subtle issues, such as political or religious values, caused
misunderstandings and conflicts during projects.

2.3 Management of GSD projects

Project control and management activities and abilities are highly important when
the products are developed globally in distributed manners, such as in
collaboration between subcontractors, third-party suppliers (open source, COTS,
components, etc.), or in-house developers. It is commonly understood that project
management covers activities such as planning, scheduling, organising,
controlling, and managing tasks and resources to achieve the successful
completion of a set of specific project goals. For example, Lotlikar et al. (2008)
highlighted the importance of tracking and coordination in their definition of project
management as the tracking and coordinating of tasks in a project so that the
entire project is completed on time and within budget.

The Standish Group research (CHAOS Report 2014) shows that about 31.1%
of projects will be cancelled before they are ever completed, and 52.7% of projects
will cost 189% of their original estimates. The sample included large, medium, and
small companies across major industry segments (e.g., banking, securities,
manufacturing, retail, wholesale, health care, insurance, services, and local, state,
and federal organisations). The cost of these failures and overruns are not

30

measureable but could easily be in the trillions of dollars. Thus, it is important to
research in detail why projects fail or succeed. Based on the Standish Group
research, the three major reasons that a project will succeed are 1) user
involvement (15.9% of responses), 2) executing management support (13.9%),
and 3) clear statement of requirements (13.0%). There are also other success
criteria identified in the research, but with these elements in place, the chances of
success are much greater. Without them, chance of failure increases dramatically.
In GSD, a project manager may be far away from the development teams, which
creates a visibility problem, and makes it easier to hide problems. In other words,
distribution makes the project progress more difficult to estimate and control
because of the decreased visibility. That is why, in distributed projects, the
systematic controlling and status reporting of the project work is especially
important, and, in fact, measurement and metrics provide important means to do
that effectively.

2.3.1 Management challenges

Managing a distributed product development project is more challenging than
managing a traditional development project (da Silva et al. 2010). In fact, project
management and coordination mechanisms are largely emphasised as means for
avoiding project failure in GSD. For example, Herbsleb (2007) argued that the key
phenomenon of GSD is coordination over distance: the need to manage a variety
of dependencies across sites drives the essential problems of GSD. Accordingly,
Wu et al. (2009) argued that project management is one of the primary factors to a
software project’s success or failure. They noted that software projects often fail
because the mangers do not know the true project status. Project managers need
to get real-time information of project progress for performing various kinds of
analysis on project data and for making decisions based on the analysis. In
addition, software project planning is one of the most critical activities in the
project management process. Without a realistic and objective software project
plan, the software development process cannot be managed in an effective way
(Wu et al. 2009). In GSD, the planning includes (e.g., dividing work by sites into
subprojects, clearly defined responsibilities, dependencies, and timetables, along
with regular meetings and status monitoring). The same kind of management
challenges were identified in our survey (Paper I) that focused on the most serious
problems faced in distributed software development. Paper I concludes that
successful distributed software development requires both structured – and
disciplined – software engineering and knowledge-management solutions
embodying, most particularly, communication management and the utilisation of
effective substitutes for face-to-face communication. Moreover, Jones (2004)
introduces the congruent results via the analysis of about 250 large software
projects that were examined between 1995 and 2004. Table 3 summarises six
major factors noted at opposite ends of the spectrum in terms of failure versus
success, as they were revealed in Jones’s study analysis.

31

Table 3. Major factors for successful and failing projects, based on (Jones 2004).

Successful projects Failing projects

Effective project planning Inadequate project planning

Effective project cost estimating Inadequate cost estimating

Effective project measurements Inadequate measurements

Effective project milestone tracking Inadequate milestone tracking

Effective project change management Inadequate change management

Effective project quality control Inadequate quality control

Jones (2004) argues that project management is the factor that tends to push
projects along either the path of success or the path of failure. The critical
activities for successful projects are project’s planning, estimating, change control,
and quality control. Thus, the most important software development practices
leading to success are those of planning and estimating before the project starts,
absorbing changing requirements during the project, and successfully minimising
bugs or defects. However, the management and control of GSD projects is very
demanding and complicated because there can be limited availability or no access
at all to the needed project data.

2.3.2 Knowledge-related challenges

In global product-development projects, collaboration between persons, teams,
various roles, sites, and organisations may result in new challenges that need to
be managed during development projects. During the MERLIN project, industrial
partners were interviewed to identify the management problems they faced in their
own collaborative development projects. The following are brief descriptions of the
kinds of challenges and problems they faced in practice:

 Some managers find it difficult to establish an effective relationship with the
staff of other organisations. Clearly, the project manager is not able simply
to issue instructions. The most common failing, however, seems to be
hesitant management that leaves team members unclear about what is
expected of them.

 Collaboration usually means that the project is split across two or more
sites, possibly a considerable distance apart. This makes communication,
particularly informal communication and the quick identification and
resolution of problems, more difficult.

 The different organisations may well have different or even conflicting
standards and work practices that must be resolved at an early stage.

32

 At a deeper level, every organisation has its own culture, reflected in work
patterns, the way the organisation interacts with the outside world, and the
way authority is distributed, and the general level of competence-collaboration
involves adapting to the culture of one or more other organisations.

 The complications of multiorganisation management, communications,
standards, and culture may also increase the difficulty of handling
personality problems within a project. Team building is harder without
frequent personal contact. Personality conflicts may be harder to resolve if
they occur within inter-organisation relations. It may well be impossible to
remove someone who is uncooperative from a project.

 Although the project manager normally reports to a steering committee or
project board, which is formally responsible for the direction and success of
the project, in practical terms, it falls to the project manager to ensure that
the management of each of the partners is committed to the project
throughout its lifetime. The project manager, therefore, in effect, has
several, possibly conflicting, masters who need to be persuaded of the
continuing value of what is being done.

 Intellectual, creative, work normally goes well if there is a critical mass of
people working together. Ideas and understanding grow if they can be
bounced around a group. A project that is split across several sites may not
achieve this critical mass unless significant investment is put into travel,
telephone calls, and electronic communication.

In addition, Herbsleb et al. (2005) introduced several project management and
collaboration management issues that were in proportion with the previously
described problems. For example, their lessons learned based on Siemens’
experiences of nine projects pointed out that communicating what is desired of the
service provider is likely to be more difficult, often much more difficult, than
anticipated. They propose to develop ways of testing the service provider’s
understanding; especially, if schedules and plans seem optimistic, management
should dig into details and make sure the service provider really understands what
is required. From a project management viewpoint, they suggested to agree on
the ‘management infrastructure’ of detailed milestones, tracking metrics, and
reporting up front. Herbsleb et al. (2005) advised, ‘Be prepared to be intimately
involved in project management of staff at the service provider organisation. Either
from the outset, or at the first sign of trouble, manage them as you manage your
own staff, being aware of what they are doing on a day-to-day basis. Do not
assume that the project management will be adequate until the service provider
has a track record’. Further, Herbsleb et al. (2005) emphasise the importance of
communication and how communication shall be planned and managed in GSD.
Utilisation of collaboration tools, travels, and shared development environments
have to be carefully planned, implemented, and communicated amongst the
partners of collaborative projects. This means that the project management
process includes also many collaboration management tasks in global product-

33

development projects. For example, relations between collaboration partners,
such as customer-supplier relations, need to be systematically planned and
managed via appointed persons and activities in organisations. Moreover,
responsibilities and authorities (e.g., decision-making authorities) should be made
explicit between collaboration partners. That includes, for example, an organisation
for coordinating the collaboration and for escalation of problems and decisions,
involving management from each collaboration partner. In addition, a defined
interface (person) from all collaboration partners is useful to have. Regular
meetings between the partners to discuss situation are also useful.

2.3.3 Information needs for management

The success of software development depends highly on providing the right
knowledge at the right time, at the right place, and for the right person (Ruhe
2003). Management of global product-development projects may require new or
changed practices for project planning and tracking because of collaboration; for
example, because of schedule dependencies that need to be managed. In
addition, it is important to define clearly status reporting practices and change-
management procedures, including reporting channels, decision authorities, and
escalation channels. Based on MERLIN inventory interviews, identification of
dependencies between partners (e.g., the interdependencies of the subsystem
deliveries) and considering them in project schedules was seen as a critical issue.
The dependencies should also be made explicit by defining responsibilities for
delivery (who, what, when, to whom), authority to accept, as well as the acceptance
procedure. The status of the dependencies should then be checked proactively.

Dullemond and van Gameren (2013), in their empirical study, identified the
most important information needs during distributed software development. Table
4 summarises the list of the most important project-specific information items.

34

Table 4. Project-specific information items, based on (Dullemond and van
Gameren 2013).

Most Important Project-specific Information Items Importance
Technological agreements

e.g., on programming language, frameworks, and standards to use 0.89
Requirements 0.94
Risks (project specific) 0.94
Process agreements

e.g., roles, stakeholders, and the process type
0.88

Issues (tasks) 0.63
System under construction:

Source (repository) 0.37
Build status

e.g., build succeed /failed
0.63

Deployment status
e.g., currently deployed version, is it running?

0.74

Planning:
Deadlines 0.95
Meetings 0.84

Status:
Hours worked on the project 0.42
Milestones 0.84
Phase of project

e.g., starting up, active, commissioning, or done
0.58

Project-related communication with the customer
e.g., mail, phone calls, and transcripts

0.95

Project-related communication with the team
e.g., mail, phone calls, and transcripts

0.95

The table shows that quite a lot of information items were considered important or
very important. While taking the importance indicator value of 0.9 as a cut-off
point, the most important items were updates on requirements, risks, deadlines,
customer communication, and team communication from a project where the
engineer is was currently working. In addition, Dullemond and van Gameren
(2013) found over 0.9 importance indicators from updates on information items of
organisation-specific risks and personal contact information.

However, the information currently delivered by existing tools to project
managers is not meeting their needs. In reality, managers must rely primarily on
experience and intuition for critical decision making when data needs are not met,
either because the tools are unavailable, too difficult to use, too hard to interpret,
or they simply do not present useful or actionable information (Buse and
Zimmermann 2010). In fact, decision making will likely become even more difficult,
as software projects continue to grow in size and complexity. As a result, it has
been pointed out that there is an urgent need for measurements of large-scale

35

software systems, a need that poses great challenge for computer science
(Mingguang et al. 2009).

2.4 Measurements and metrics in GSD

Measurements and metrics create useful ways for controlling and managing a
project during product development. Especially, in global product development
measurements and metrics activities are emphasised. From the perspective of
measurements and metrics interpretation, data collection from multiple sources
even from different databases of various stakeholders is an essential process –
the data collection should be highly accurate but as unobtrusive as possible.
Actually, it is crucial to track and manage software development processes
efficiently by continuously collecting and analysing measurement data. Thus,
measurement automation is seen as a solution for continuously collecting and
analysing the measurement data.

Management of a distributed product-development project has been proven
more challenging than is the management of a single-site project. Based on the
industry survey (Paper I), one of the most important topics for project management
in distributed software development is detailed project planning and control during
the project. In GSD this includes, for example, dividing work by sites into subprojects
and establishing clearly defined responsibilities, dependencies, and timetables,
along with regular meetings and status monitoring. That is why, in distributed
projects, the systematic monitoring and reporting of the project work for providing
support for decision making and project management is especially important, and
measurement and metrics are important means to do that effectively.

Traditional measurement has been understood as an information gathering
process, where measurement data consist of numeric data or a pre-classified set
of categories. Because software metrics can consist of several measurement data
items individually or in combination, measurements and metrics have been
strongly linked to the development tools used during the production. Globally
distributed development generates new challenges and difficulties concerning
measurements. For example, the gathering of the measurements data can be
problematic because of different development tools and their versions; work
practices can vary by project stakeholders; or the reliability of the gathered data
can vary because of cultural differences, especially, in subjective evaluations.
Thus, there are good reasons to gather the measurement data from multiple
sources (i.e., from different tools and databases). Otherwise, for a successful
measurement process, all stakeholders have to transfer data items manually to a
certain tool or database from their own tools and databases. This kind of manual
process requires extra effort, which may create frustration and mistakes or errors
in the gathered measurement data.

Measurements bring several benefits for an organisation. The benefits include
better time-to-market estimation via improved project and product management,
better control over product development costs owing to a more visible

36

development process, and higher sales and improved customer satisfaction
because of higher product quality (Lawler and Kitchenham 2003). However, the
fact is that organisations usually cannot allocate enough time or resources to do
the measurements properly. Therefore, automation of the measurement process is
a critical success factor in carrying out the measurement programmes in a cost-
efficient and systematic way. Measurements automation allows organisations to
perform sophisticated measurements and investigate complex phenomena, which
would otherwise not be tackled because of the large amount of work required.
Thus, measurements automation enables the use of more advanced
measurement procedures (Batagelj et al. 2008).

2.4.1 Development-environment-related challenges

The business environment of collaborative and distributed development differs
fundamentally from that of local development. Collaboration involves two or more
companies, departments, or customers that combine their competencies and
technologies to create new shared-value, while, at the same time, managing their
respective costs and risks. The entities involved can combine in any one of
several different business relationships and for very different periods, ranging from
the duration needed to exploit a particular innovation or business opportunity, to a
much longer-term on-going relationship (adopted from (Welborn and Kasten
2003)). Even though GSD offers many opportunities for organisations, it is also
highly challenging. General risks for any mode of collaboration influence the
openness of communication between partners, trust between partners, agreement
on the intellectual property rights, the reliability of the partners’ development
schedule, and the clarity of assignments or specifications of the work under
contract (Hyysalo et al. 2006). For example, problem hiding may be a difficulty in
customer-supplier relations.

From a measurement and metrics viewpoint, the challenges derived from
business environments include a lack of a transparent and unified monitoring
process across all the sites, of traceability between work items, and poor or no
interoperability of the tools used. Organisations have their own processes,
practices, and tools (tool versions), and they are unwilling to change them. For
example, certain work practices or cultural differences themselves cause
challenges while collecting or interpreting measurement data (Komi-Sirviö and
Tihinen 2003). If no historical data is available, the utilisation of the data across
the sites is difficult or even impossible. In addition, lack of communication and
problems in knowledge management and transfer create challenges.

Now, several tool providers supply various solutions for managing collaborative
projects. However, most of the solutions have been developed to communicate
only within tools from the same provider. In GSD, partners and stakeholders
usually change according to the new collaboration setting. Thus, there are several
legacy tools used in the companies that they are not willing to change. For
example, some of the development tools can even be tailored to individual partner

37

needs. Moreover, the cost of such an investment is sometimes higher than
companies can afford. The main challenges that were found while managing
distributed collaborative-software-development projects are introduced as follows
(Eskeli and Maurolagoitia 2011):

Learning curve. People do not like to change the technology or tool on
which they are developing a product. They are not familiar with new tools
and technology, and they tend to resist when they have to change their
working platform. Thus, the learning curve will be very low.

Poor interoperability between tools. For example, when data is moved from
a requirements management tool to a test tool, defects are easily
introduced. Different partners may use different tools and when the data is
integrated, it can result in many errors and defects.

Responsibilities and roles are not properly defined: People do not know to
whom they should report or who is responsible for what task. In such
cases, the resulting problem was that the escalation mechanisms were not
clearly defined.

Lack of knowledge of standard solutions. Sometimes developers start
creating the same solution, that is, one that has already been implemented
as a standard solution, thus leading to a total waste of resources. Before
starting development, a proper background check for the product needs to
be completed, as developers do not always know why or for what purpose
they are creating a product.

Resource management. It is very difficult to manage resources in a
multisite-project environment. People with the right skills and real
competence are always busy with lots of work. Therefore, it is very difficult
to start work when proper resources are not available or the information
about them is unavailable.

Cost of currently available tools. Now, the market has a number of tool
providers that supply solutions for managing collaborative projects. Most of
these solutions will only communicate using the tools from the same
provider, which limits the options organisations have. In collaboration, there
can be several various tools and tool providers involved. Thus, the need for
finding a common solution is obvious but it should require investments from
some partners. Unfortunately, the costs of this kind of investments are
typically higher than companies can afford.

During the PRISMA project, tools as well as needs for development tools and
processes that require more support in GSD were investigated. In considering
tools, the kind of artefacts, tasks, or items that would need integration were
analysed or views between the partners during collaborative and distributed
development, and what would be the most important issues that should be
integrated in a proposal tool integration solution. The needs focused on

38

requirements capture and review processes, traceability needs, testing processes,
project management, and controlling tasks (including metrics capturing and
analysing needs). The used tools and the needs for support in GSD were as
follows (Eskeli and Maurolagoitia 2011):

Requirements capture. The tools used in this process were TRAC, SQS’s
AgileREQ, Focal Point, MS SharePoint, MS Excel sheets, and DOORS.
The needs for a requirement capture tool include having a common and
unique requirement repository that implements traceability mechanisms
with other information items (e.g., other requirements, bug reports, related
test cases, and requirement information sources).

Requirements review. The tools used in the process were TRAC, some
proprietary tools and MS SharePoint. A tool that helps during this vital
activity is needed, as it offers the possibility to keep track of a full history of
review comments and access to metrics (e.g., review effort or defects
found).

Traceability. The tools used were Subversion and TortoiseSVN, DOORS,
SVC, SQS’s Test WorkFlow, and Excel sheets. Because traceability was
seen as a key task in collaborative software development, the main need of
the partners was to have the possibility to assign and review the traceability
amongst all of the information items in the project (e.g., requirements, test
cases and reports, bug reports, and others).

Testing. The main tool used in the process was SQS’s Test WorkFlow. The
needs for testing tools include a way to determine which tests are required
to validate a release, specification of various test configurations, being able
to repeat standard set of tests quickly, and the ability to create
automatically test reports, easy definition of test scripts, continue
regression if an unexpected problem or defect is encountered, and to have
automatic defect reporting with attached information of test case, error
condition, and test data.

Metric capture and analysis. The tools used in this process included a
custom self-developed tool, Excel sheets, and MS SharePoint. Tools to
improve the reliability of the releases, and to decrease the validation times,
collect automatically metrics and generate reporting graphs and include
overview and detailed views are needed.

Further, the measurements and metrics challenges were also investigated in
detail. The metrics used by PRISMA industry partners included, for example, test
coverage and test results, effort spent, number of errors revealed, and
requirement changes count. The metrics were related to the processes where tool
support needs in collaborative development were highlighted. The tools used in
measurement process were custom self-developed tools, Excel sheets, and MS
SharePoint. In a collaborative distributed development, where development
partners, methods, and tools vary by project, measurements automation and

39

transparency between the partners are understood to be vital and necessary
(Parviainen 2012). In addition, the measurement process, from data definition and
collection to data calculation and analysis, should be made to be as easy and
effortless as possible.

2.4.2 Metrics in the GSD literature

In the literature, several papers and books that discuss metrics (in general and
specific aspects) have existed for decades. However, little GSD literature has
focused on metrics and measurements or even discussed the topic. Bourgault et
al. (2002) reported, ‘Clearly, research into distributed projects’ performance
metrics and measurement needs more attention from researchers and
practitioners so that it can contribute to the development and diffusion of well-
designed management information systems’. However, years later, da Silva et al.
(2010) reported a similar conclusion based on analysis of distributed software
development (DSD) literature published between 1999 and 2009. They state as
one of their key finding that the ‘vast majority of the reported studies show only
qualitative data about the effect of best practices, models, and tools on solving the
challenges of DSD project management. In other words, our findings indicate that
strong (quantitative) evidence about the effect of using best practices, models, and
tools in DSD projects is still scarce in the literature’.

The papers that have discussed metrics for GSE usually focus on some specific
aspect; for example, Korhonen and Salo (2008) discussed quality metrics to support
the defect management process in a multisite organisation. Simmons and Ma
(2006) discussed a software engineering expert system (SEES) tool, where the
software professional can gather metrics from case tool databases to reconstruct
all activities in a software project, from project initiation to project termination.
Misra (2009) presented a cognitive weight complexity metric (CWCM) for unit
testing in a GSD environment. Lotlikar et al. (2008) proposed a framework for
global project management and governance, including some metrics with the main
aim to support work allocation to various sites. Peixoto et al. (2010) discussed
effort estimation in global software engineering, and one of their conclusions is
that ‘GSD projects are using all kinds of estimation techniques and none of them is
being consider as proper to be used in all cases that it has been used’, meaning,
that there is no established technique for globally distributed projects. In addition,
some effort has also been invested in defining how to measure the success of
GSD projects (Sengupta et al. 2006), and these metrics mainly focus on cost-
related metrics, which are done after project completion.

2.4.3 Measurements and metrics related challenges

In the literature, many problems and challenges have been identified that might
reduce or even eliminate concern over measurements. For example, not enough
time is allocated for the measurement activities during a project or not enough

40

visible benefits are gained by the project doing the measurement work (e.g., data
are useful only at the end of project, not during the project). In addition, the ‘metric
enthusiasts’ may define too many metrics, making it too time consuming to collect
and analyse the data. Thus, it is beneficial (Umarji and Shull 2009) to define core
metrics to collect data across all projects, to provide benchmarking data for
projects and to focus on measurements that come naturally out of the existing
practices and tools. Further, metrics visualisation (e.g., through charts or graphs)
is a powerful means for interpreting measurement data.

In GSD, the systematic controlling and status reporting of the project work is
especially important, and measurement and metrics provide important means to
do that effectively. However, in daily software engineering work, measurements
and metrics appear unfamiliar, and their benefits are unclear (Umarji and Shull
2009). Even though now almost every project development artefact can be
measured with a high degree of automation, efficiency, and granularity, software
development continues to be risky and unpredictable. For that reason, Buse and
Zimmermann (2010) have claimed that there must be disconnect between the
information needed by project managers to make good decisions and the
information currently delivered by the existing tools.

More than ten years ago, it was realised that distributed software-development
projects are loaded with challenges, and measurement data is needed to back up
decision making (Komi-Sirviö et al. 2001; Lawler and Kitchenham 2003). In
addition, it was feared that there was a very high risk of getting no data at all, or of
getting incomplete or inaccurate data, which would lead to a hazardous decision-
making situation, where project decisions regarding execution could be based on
feelings and assumptions of the status, or even worse, on false data (Lawler and
Kitchenham 2003). Similarly, Lawler and Kitchenham (2003) pointed out that the
measurement programs, at that time, suffered both from a lack of metrics
standards that reduce data comparability and from invalid and missing data that
causes delays in data analysis and reduces confidence in any reports’ validity. He
argued that companies could avoid those problems by fully automating their
measurement programs and integrating them directly with their software-
development support tools (Coman et al. 2009). Now, ten years later, the
methods, processes, and tools for collecting and analysing measurement data
have substantially improved, and large volumes of data and many types of metrics
exist for project managers. However, Coman et al. (2009) claim that software
projects are still difficult to predict and risky to conduct.

The problems are caused by the high demands that force designers to solve
complex problem by building large-scale software. In addition, the increasing
complexity and expanding scale leads to many difficulties and uncontrollable
quality problems. From the developers’ perspective, the lack of comprehension
and effective evaluation makes it difficult to know their previous work and bring
useful suggestions for future development (Mingguang et al. 2009; Zhang et al.
2008). For example, Korhonen and Salo (2008) stated that defects are a
significant factor in software quality and in large-scale software systems where the
number of defects can be very high. However, the defects are difficult to manage,

41

especially in a multisite organisation. Therefore, software measurement plays an
important role in software engineering (Mingguang et al. 2009), and it is a powerful
tool for managing software projects (Soubra et al. 2011), even if there are several
challenges related to measurements.

The measurement data item consists of numeric data (e.g., efforts, schedules)
or a pre-classified set of categories (e.g., severity of defects: minor, medium,
major). Software metrics can consist of several measurement data items, both
individually or in combination. Further, metric visualisation is a visual
representation of the collected and processed information about software systems.
Typically, software metrics are put into a visual presentation to ensure that the
information is presented in a meaningful way that can be understood quickly. For
example, visualising metrics through charts or graphs is usually easier to
understand than long textual or numerical descriptions. In fact, the interpretation of
measurements data is more complicated in GSD than it is in single-site projects.
For example, distributed projects are often so unique (e.g., product domain and
hardware-software balance vary, or different subcontractors are used in different
phases of the project) that comparing them is impossible. From an interpretation
perspective, the visualisation of metrics is an essential task: including, for
example, a selection of the most relevant metrics to be visualised, the visualised
type, and the utilised effects of visualisation, such as trend lines or colours.

Now, there is so much data available in different databases about distributed
projects that it is impossible to browse manually through it all. Thus, the data
collection and metrics visualisation should be automated whenever possible. In
addition, automated data collection increases the validity of data and decreases
the overhead of the measurement program, which also decreases developers’
resistance to measurement (Coman et al. 2009).

On the contrary, as data collection has become a common practice in the
domain of software development engineering, the problem is not the availability of
data, or the ability to access them, but rather the mining of the relevant data.
Namely, most software development organisations have huge challenges to
effectively discover the relevance of the data and ultimately, potential patterns, for
example, when applying them to new releases or trying to enhance their products’
quality. Hence, Altidor et al. (2009) suggested using data mining techniques to
mine organisations’ software repositories, by which they can build predictive
models to ensure the quality of future software products or releases. Further, the
software measurement allows engineering principles to be applied to software
development, which provides an objective and quantitative base for process and
technology decisions. Soubra et al. (2011) stated, ‘For instance, software size
gives a measure of the software product itself, and it can be used to obtain
software development productivity ratios and to build objective estimation models
for predicting project effort and duration. In practice, software size, measured in
function points, for instance, is highly correlated with project work effort’.

Measurements are generally understood and recognised as a central and
important factor for management. However, in daily project work in software
production, measurements and metrics can be experienced as unfamiliar. Project

42

managers have argued that collect metrics for the organisation is time consuming,
although they actually need to have metrics that are relevant to the project
progressing (Umarji and Shull 2009). They have also suggested that there usually
is not enough time budgeted for measurements, and that is why it is difficult to get
approval from stakeholders for this kind of work. In addition, globally distributed
development generates new challenges and difficulties related to measurements.
For example, the gathering of the measurements data can be problematic
because of the use of different development tools and their versions, because
work practices with related concepts can vary by project stakeholders, or because
the reliability of the gathered data can vary because of cultural differences,
especially, in subjective evaluations. It has been also noted that distributed
projects are unique in practice (e.g., product domain and hardware-software
balance vary, or different subcontractors are used in different phases of the
project), hence comparisons between the projects is impossible. Further, the
interpretation of measurements data is more complicated in distributed projects
than it is single-site projects. Special attention has to be focused on the training of
the measurement data collection to ensure common understanding of them (e.g.,
used classifications). In addition, as measurements also tend to guide people’s
behaviour, it is important to ensure that all are aware of the purpose of the metrics
(i.e., it is not to measure individual performance), specifically in projects distributed
over different cultures.

2.5 Challenges in current measurements practices

Currently, collaborative software development is one of the most common
approaches adopted by many software engineering practices. However, GSD
generates new challenges and difficulties associated with the measurements. As
introduced before, the gathering of the measurements data can be problematic
when different development tools or their versions are used, work practices with
related concepts can vary by project stakeholders, or the reliability of the gathered
data can vary owing to cultural differences, especially, when doing subjective
evaluations. There are also some obvious demands to gather measurement data
from multiple sources.

In practice, measurements and metrics provide the means for managing
dependencies and traceability items across sites during collaborative work.
Because software metrics can consist of several measurement data items
individually or in combination, measurements and metrics have been strongly linked
to the development tools used during the production. Buse and Zimmermann (2010)
pointed out that the information currently delivered by existing tools to project
managers is not meeting their needs. Project managers must rely primarily on
experience and intuition for critical decision making when data needs are not met,
because either tools are unavailable, too difficult to use, too hard to interpret, or
they simply do not present useful or actionable information. Measurements and
metrics could create useful means for controlling and managing a project during

43

global software development; hence, those activities should be especially
emphasised in GSD. However, the fact is that organisations usually cannot
allocate enough time or resources to do the measurements properly. Therefore,
automation of the measurement process is a critical success factor in carrying out
the measurement programmes in a cost-efficient and systematic way.

In summary, some of the challenges relating to measurements and metrics are
cumulated from measurements practices, metrics, and tools, whereas others are
caused by people, and some result from collaboration settings. In addition, GSD
settings affect the current measurement practices by producing new challenges or
complicating old ones. For example, cultural differences and their consequences
as introduced by Hofstede (1984) or Lewis (1999) need to take consideration while
communicating measurements and metrics within project members and
stakeholders.

In the following list, challenges encountered in current measurement practices
have been summarised and described in detail, from the GSD viewpoint:

Challenge 1 (C1): Relevance of measurements in relation to project
progress. Generally, partners and stakeholders change according to new
collaboration setting. All partners or stakeholders have their own needs for
measurements. Moreover, there is a lack of a transparent and unified
monitoring process across all of the sites and traceability between work
items. Thus, in GSD, the relevance and purpose of measurements in
relation to project progress are more difficult to understand than they would
be in a one-site project.

Challenge 2 (C2): Extra work budgeting – Metrics design/selection &
Data collection. In GSD, there are needs to gather measurement data
from multiple sources (i.e., from partners’ different tools and databases).
Without automation, subcontractors are required to collect measurement
data and manually transfer data items to a certain tool. Without extra
budget, partners cannot allocate enough time or resources to do the
measurements properly. In addition, this kind of manual process creates
frustration and mistakes or errors in the data. However, in GSD, demands
for dynamic measurements are substantial as the metrics need to be
defined case by case and they should be followed on a daily basis.

Challenge 3 (C3): Data reliability issues caused by tools. In GSD, there
are several legacy tools used in the companies, and companies are not
willing to change them. Some of the tools are even tailored to individual
partner needs. This means that there is no or poor interoperability of used
tools. In addition, the used tools vary based on collaborative setting. Thus,
in the worst cases, the measurement data are manually collected by
stakeholders, which leads to extra work (C2) as well as poor understanding
of measurements relevance (C1).

Challenge 4 (C4): Data reliability caused by human beings. In GSD,
work practices can vary by project stakeholders, and the congruity and

44

even the reliability of the gathered data can vary due to cultural differences,
especially, in subjective evaluations. The challenge is the same as that
faced in one-site development, but it needs to be taken continuously into
consideration, as partners and stakeholders change according to the new
collaborative setting.

Challenge 5 (C5): Extra work budgeting – metrics interpretation.
Interpretation of measurements data generally requires extra work. In GSD,
the interpretation and decision making based on the measurements results
are more complicated than they are in one-site development. For example,
the decision making requires interpreted information gathered from several
sources (/metrics). Thus, the interpretation should be made as easy as
possible, i.e., using combined metrics and visualised graphs.

Challenge 6 (C6): Training needs. In GSD, cultural differences as well as
stakeholders’ views for measurements shall be considered in more detail
while planning and implementing trainings. With successful trainings, it is
possible to reduce data reliability problems caused by human being.

Challenge 7 (C7): Measurements affect to behaviour. This challenge is
same in one-site and in collaborative settings: the measurements should
not affect to people’s behaviour. This requires careful metrics design but
also trust between partners. Accordingly, just openness of communications
between partners and trust are not axiomatic in GSD.

Challenge 8 (C8): Metrics ethics. Measurements should be focused on
objectives, not a certain person: do not measure individuals’ performances.
The challenge is same in one-site and in collaborative settings.

Challenge 9 (C9): Responsibilities and roles are unclear. Because of
several partners with their diverse work practices in GSD, there can be
unclear assignments or specifications of work. In the worst cases, unclear
responsibilities and roles can cause a situation where people do not know
to whom they should report or who is responsible for each task. In fact,
unclear responsibilities often lead to the situation where no one takes up
the task.

Challenge 10 (C10): Continuous changes. In GSD, partners and
stakeholders change according to new collaborative setting and that itself
provides new challenges for measurements and metrics: dynamic, reliable,
and up to date support for the decision-making process is needed.

While studying the GSD related challenges introduced above in more detail, it can
be noticed that some of the challenges are strongly dependent from each other. In
fact, the challenges describe the situation from different viewpoints; those
perspectives are important to take consideration while trying to find solution to
measurements problems in GSD projects.

45

In GSD, partners and stakeholders change often according to the new project
and collaborative setting. Hence, no stabile single solution is appropriate for all
situations in GSD. Instead, while examining metrics and measurements in GSD,
the wholeness must be considered, which means that challenges in current
measurement practices need to be analysed from the viewpoint of managing GSD
projects. Thus, the research was focused on identifying the most useful metrics
set for providing appropriate information to respond to knowledge-management
and communication needs as well as project management needs in relation to the
tools used in GSD projects. Thus, the challenges caused by the dynamic
environments of GSD projects influence the measurements and metrics. Hence,
the need for measurements that are more dynamic becomes obvious.

46

3. Measurement-based management of GSD
projects

In traditional measurements programs metrics are defined at the beginning of the
project and then measurement data has been collected in pre-scheduled periods,
e.g., bi-weekly or once a month. In GSD projects, measurement process and
metrics have to be more dynamics because of development processes are rapidly
changing due to various stakeholders and tools involved the collaboration. In this
thesis, dynamic measurements are defined as measurement actions where
metrics are defined or updated based on needs of each project and demands of
each project’s collaboration settings. In addition, metrics data is collected and
analysed continuously from various tools and databases, even from stakeholders’
databases, and measurement data is analysed and visualised for easy to read
format. In dynamic measurements, metrics, used databases, and analysed results
of measurement data can be created, updated and changed dynamically based on
managerial needs of each project, the different phases and tasks, as well as the
management needs of various stakeholders in collaborative work.

Dynamic measurements create a base for measurement-based management of
GSD projects. Generally, measurements are seen as a supportive role in software
engineering. In GSD, projects’ controlling and managing activities are more and
more important. Distributed and collaborative product development forces to pay
attention to management and controlling activities for achieving awareness and
knowledge of distributed activities within the project and even over the projects in
an organisation.

In this section, the construct of measurement-based management of GSD
projects are discussed by describing demands and requirements for dynamic
measurements in Subsection 3.1 and by introducing an experimental implementation
of dynamic measurements in GSD setting with industrial experiences in
Subsection 3.2. Finally, the benefits of dynamic measurements are summarised in
Subsection 3.3.

47

3.1 Dynamic measurements in GSD projects

Typically, organisations may have a set of metrics that are followed from all
projects. In addition, those metrics may lightly be updated or even somehow
expanded based on demands of development projects. However, in GSD projects,
the demands for dynamic measurements are substantial and more often
expressed: the metrics need to be defined case by case, and they should be
followed even daily based, for example. In addition, it has been proved that lack of
communication cause challenges to information and knowledge management and
transfer in collaboration environments. In practice, the management of GSD
projects require well-optimised automated and real-time indicators that provide up-
to-date visibility to the stakeholders’ progresses and results. Thus, the dynamic
measurements are a key role while increasing transparency and information
sharing during collaborative distributed software development. For achieving most
optimal and well-balanced wholeness of the dynamic measurements, knowledge
related factors relation to the team activities need to be carefully examined.

3.1.1 Knowledge management and transfer in GSD

Herbsleb et al. (2005) and MERLIN industrial inventory (Hyysalo et al. 2006) point
out the importance of communication in GSD: communication shall be planned
and managed, e.g., by utilising of collaboration tools, travels, and shared
development environments. Those activities need to be carefully planned,
implemented, and communicated in within the partners of collaborative projects.
Because lack of communication and problems in knowledge management and
transfer create many challenges in GSD, the examination of challenges from a
cognitive perspective was performed. During the MERLIN and PRISMA projects,
from 2004 to 2010, in total 54 industrial case studies were studied and analysed.
The aim was to establish solutions that take into account the knowledge needs
from the viewpoint of different stakeholders in GSD. The analysis was performed
by utilising the model of Noble (2004), which illustrates the relationship between
knowledge (individual and shared understandings) and key team activities (team
set-up and adjustment, group problem-solving, and synchronize and act). The
team set-up and adjustment process includes analysing the mission, determining
the required members and resources, and assigning tasks and resources. Some
of this knowledge can be written down, but a large amount will remain tacit
knowledge in the minds of the team members. They will need this knowledge
while carrying out their group problem-solving process, while team members may,
for example, brainstorm, evaluate, prioritise, identify solutions, or make decisions.
To synchronise and act, team members draw on their knowledge to coordinate and
help each other. All teams perform all of the team activities, generally moving from
left to right, but they also switch back and forth among the activities depending on
their immediate needs. Figure 4 illustrates the results of the analysis.

48

Figure 4. Knowledge related factors in relation to the team activities and solutions
(Paper IV).

The upper part of the figure summarises the main knowledge-based factors for
each key team activity proposed by Noble (2004). Then, in the middle part of the
figure, examples of solutions are given according to the identified challenges. The
knowledge-based factors and the related solutions are introduced in detail in
Paper IV. The model of Noble (2004) was used as a framework for identifying and
analysing the knowledge needs of distributed teams and stakeholders. This
approach increases the visibility of knowledge based requirements and
challenges, thus it makes possible to take them into account while carrying out
improvement actions, and utilising general knowledge management solutions
more extensively to solve GSD challenges. The research results emphasised the
knowledge needs of distributed teams and stakeholders by analysing the
challenges encountered in GSD from the knowledge engineering viewpoint. Based
on the analysis of the research (Paper IV) it can be argue that knowledge
engineering holds a central role in order to succeed with globally distributed
product development. The analysis showed that by understanding the nature and
demands of the GSD, as well as the knowledge engineering challenges in depth,
software organisations would be able to reduce the risk of failure and to make their
operations successful.

As introduced in Paper IV, successful distributed software development
requires both structured and disciplined software engineering and knowledge

49

management solutions. Communication management and the utilisation of
effective substitutes for face-to-face communication have an important role in
GSD, to ensure knowledge sharing. A careful execution of project planning
activities, the exact definition and agreement of common rules, responsibilities,
and tools used, can greatly contribute to a successful implementation. This means
that project manager has to have a large amount of abilities and knowledge in
addition to technical competence and skills, such as cultural knowledge and
communication skills and particularly good project management capabilities. In
addition, ensuring the availability of information during the project to all of the
parties is essential for a successful project.

In GSD, a project manager may be far away from the development teams,
which creates a visibility problem, and makes it easier to hide problems. In other
words, distribution makes the project progress more difficult to estimate and
control due to the decreased visibility. That is why, in GSD projects the systematic
controlling and status reporting of the project work is especially important, and in
practise, measurement and metrics provide important means to do that effectively.
The research (Paper IV) emphasises the need of real-time and accurate
information in managing GSD projects. In addition, Paper IV points out that
metrics and measurements should increase transparency between teams and
stakeholders involved the project. Further, Paper IV highlighted that knowledge
sharing and lessons learned have to be taken consideration in order to analysis
and interpret metrics and then to make correct conclusions from the
measurements data.

3.1.2 Requirements for dynamic measurements

While identifying requirements and prerequisites for dynamic measurements in
GSD, it is valuable to analyse GSD related challenges summarised before in
Subsection 2.4.5. Table 5 introduces requirements for dynamic measurements
derived from GSD-related challenges in current measurement practices.

Table 5. Requirements for dynamic measurements derived from GSD-related
challenges in current measurement practices.

Descriptions of requirements for dynamic measurements

C1: Relevance of measurements in relation to project progress
Since each stakeholder has their own needs for measurements and for controlling the
project progress, it is important that metrics are planned and defined based on needs of
each partner. The actual measurement data can be same instead produced indicators can
change: the metrics contain the relevance information from each own viewpoint. In
addition, the metrics need to be updated or even changed, e.g., if some other metrics
indicate results that should be clarify or completed. Thus, the metrics set is good to keep
as compact as possible. In fact, the smaller metric set is more effortless to acquire, and to
update if needed. Thus, the relevance of measurements in relation to project progress is
easier to ensure in GSD even if partners and stakeholders change according to new
collaboration setting.

50

C2: Extra work budgeting – metrics design/selection & data collection
In GSD, the metrics need to be defined case by case and they should be followed daily
based. This means that metrics set cannot be too large; instead, a compact metrics set is
easier to adopt and update when needed. Because of needs to gather data from multiple
sources, even from partners, different tools, and databases, it sets requirements for
automating the measurements data gathering and the results visualising. Even if extra
work for measurements must always be budgeted for, the automation can reduce the
needed amount.

C3: Data reliability caused by tools
This challenge need to be investigated carefully since there are several legacy tools used
in the companies, and they are not willing to change them in GSD. This is also a
requirement for dynamic measurements: companies legacy tools have to be allowed. In
addition, during the automation process of measurement data gathering and results
visualising, the validity of data has to be ensured. In dynamic measurements, the
visualised indicators themselves offer also means for checking correctness of gathered
data (deviations are visible in graphs).
However, it has to be always ensured that agreed tools and data classifications are used in
uniform way by all stakeholders in GSD. This is done via kick-off meetings, project
meetings and specific communication and training sessions during the work.

C4: Data reliability caused by human beings
As described before (C3), in dynamic measurements, the visualised indicators themselves
offer means for checking the correctness of gathered data. However, it has to be always
ensured that the agreed-upon tools and data classifications are used in a uniform way by
all stakeholders. Continuous and active communications are extremely important while
ensuring data reliability issues caused by human beings. The reasons for measurements
and metrics have to be clarified and communicated appropriately; for example, there are
not aimed to measure performance of individuals, instead to get information for building the
conception of wholeness. Only this way, it is possible to re-scheduled or re-allocate
resources to difficult tasks in the right time.

C5: Extra work budgeting – metrics interpretation
In GSD, the interpretation should be made as easy as possible (i.e., using combined
metrics and visualised graphs). This requires automation of measurement data gathering
and results visualising processes as a whole or at least partially. From the metrics
interpretation view of point, it is good to combine various metrics in the same graph and
add limiting values with alarms while appropriate. Because of each stakeholder has own
needs for controlling the project progress, it requires that the metrics combined to the
results graph can be varied based on stakeholders.

C6: Training needs
In addition to measurements and metrics activities, the GSD settings require more-specific
training activities focusing on cultural differences, communication channels, and tools,
clarifying responsibilities, roles, etc. The automation of measurements can reduce some
training needs but training and communication are still essential for a successful project.
The dynamic measurements do not eliminate training needs in GSD.

C7: Measurements affect to behaviour
The challenge is same in one-site and in collaborative settings: the measurements should
not affect to people’s behaviour. Continuous and active communications is extremely
important: the reasons for measurements and metrics have to be clarified and
communicated appropriately. This challenge requires careful metrics design but also trust
between partners. The dynamic measurements cannot influence on this challenge.

51

C8: Metrics ethics
The challenge is same in one-site and in collaborative settings; the measurements should
not measure individuals’ performances. The reasons for measurements and metrics have
to be clarified and communicated appropriately. This challenge requires careful metrics
design but it is true that the dynamic measurements cannot influence on this challenge.

C9: Responsibilities and roles are unclear
GSD settings require more-specific planning, training and communication activities relating
to responsibilities and roles during the project. In dynamic measurements, data needs to
be gathered from multiple sources even if partners’ databases or tools, so measurements
automation is required. Manual data collection in this kind of challenging environment is
highly difficult to operate successfully. In practice, unclear responsibilities often lead to the
situation where no one takes up the task, so the dynamic measurements can even bring
out unclear assignments in GSD, if the measurements have been automatised.

C10: Continuous changes
In GSD, partners and stakeholders change according to new collaborative setting and
each stakeholder has their own needs for measurements and controlling the project
progress. Thus, it is important that metrics are planned and defined based on needs of
each partner. In addition, the metrics need to be updated or even changed, e.g., if some
other metrics indicate results that should be clarify or completed. Thus, the metrics set is
good to keep as compact as possible.

Based on descriptions of requirements for dynamic measurements (Table 5), it
can be easily deduced that automation is one important solution to the
requirements. However, it can be also concluded that the relevance of
measurements from the viewpoints of various stakeholders is emphasised. The
relevance of measurements effect on entities what to be measured and when.
This requirement produces also new requirements for measurements and metrics,
such as updating/change needs, visualised needs, interpreting needs. It can be
summarised that real-time and visualised indicators are needed for the decision
support, especially, when decisions have to be made in complex, uncertain, and
dynamic environments. However, when trying any solution to meet GSD-related
challenges in current measurement practices, there are several knowledge-
management and knowledge-intensive perspectives that must be taken into
consideration. For example, potential solutions should boost communication and
knowledge transfer and facilitate communication between the teams, sites, and
stakeholders involved the GSD project.

3.2 Implementation of dynamic measurements in GSD
projects

During the PRISMA project, a tool integration solution, PRISMA Workbench
(PSW), was developed. The tool integration solution is a proof of concept of the
technical implementation that enables dynamic measurements and metrics in
GSD. In this section, the produced solution is introduced with a reference scenario
for describing the typical setting of collaborative work in GSD. The technical

52

implementation was necessary for gathering experiences of dynamic measurements
as well as for proving eligibility of the proposed concept of dynamic measurements.

3.2.1 Technical viewpoints

The implemented PRISMA Workbench (PSW) was designed to support collaborative
and distributed software development. The actual tool set selected for the tool
integration solution consists of tools based on the principles of technical
implementation introduced in (Eskeli and Maurolagoitia 2011). The PSW solution
allows the connection of software development tools to create company specific
software development environment instances. The proposed solution fills the gap
that exists in current collaborative software development environments: it allows
distributed teams to integrate their own existing tools and link data amongst them.

Eskeli and Maurolagoitia (2011) point out that the studied challenges related to
the methodologies and tools during GSD projects are varied, complicated, and
multi-dimensional. However, one of the major design goals of the PSW was to
create a flexible and extendible solution that allows a configurable set of development
tools to be tailored to the needs of individual partners or projects. The solution was
designed and developed so that the legacy tools in the companies already in use
could be easily integrated into the proposed tool integration solution. The benefit
of this type of tool integration approach is that partners can continue to use the
tools with which they are familiar. In GSD, continued use of familiar legacy tools
was identified as an important factor for effective way of working that could be
easily disturbed by a sudden change of tools.

Another primary goal for PSW was that the integration of new tools be made as
easy to use as possible. To reach this goal the following steps were taken:
implement integration mechanism for simple integration, provide example
integrations, and created integration instructions. In practice, the connections
between data were managed in PSW via traceability relations. PSW provides
various real time views into data, e.g., the views create visibility into project’s
progress by gathering and formatting data from tools, managing connection
between data, and concentrating this information into easy to read dashboards
(Eskeli and Maurolagoitia 2011). Thus, PSW removes the need to create point-to-
point integrations between each of the tools because the solution can act as a hub
where tools are connected via the integration interface.

Communication related challenges play a central role in GSD. To support and
facilitate collaborative, distributed development, PSW provides a means for
asynchronous (e.g., chat) and synchronous (e.g., voice and video) communication
by utilising features on an open source tool called OpenMeetings. The notification
system provides users up-to-date information for any important events, like ‘build
status change’, in the project. The example tools that were selected for the
integration are presented in the following table (Table 6).

53

Table 6. Tools used in PRISMA Workbench (PSW).

Tool Tool type Role in the software development life cycle

TRAC1 Project management Requirement and change management

AgileReq
(proprietary tool)

Requirements management Requirements management

Eclipse2 Integrated Development
Environment

Software development (code editor,
subversion client, build tool, etc.)

Subversion3 Configuration management Software version control

Jenkins4 Continuous Integration (CI)
Server

Continuous build & integration
Unit test driver

CruiseControl5 CI Server Continuous build & integration
Unit test driver

JUnit6 Java unit testing Unit testing

Open Meetings7 Communication tool Communication (chat, voice over Internet,
document sharing, etc.)

TestLink8 Test case management Acceptance testing

Liferay9 Web portal software User interface for the tool integration
(traceability information, events, metrics, etc.)

Although PSW can be connected to several commercial tools or proprietary ones,
the development team of the PRISMA project made a selection of open source
solutions that provide support of the most typical software-development-process
activities. By using these free tools, companies will be able to start working
together even if they currently have no tools available for requirements-
specification, development or testing tasks. However, some proprietary tool was
also selected. For example, AgileReq tool was integrated based on the company’s
needs of the PRISMA project. In fact, one principle for the development work had
been that in GSD, companies have their own practices and tools, and the tool
integration solution should not enforce a specific process or tool set.

The tool integration solution was a server application developed in Java for
building customised tool integration instances. The selected architecture was
Service Oriented Architecture (SOA), which provided several services implemented
by tools (e.g., project management, test management, version management, and

1 http://trac.edgewall.org/ Accessed 15.10.2014
2 http://www.eclipse.org/ Accessed 15.10.2014
3 http://subversion.apache.org/ Accessed 15.10.2014
4 http://jenkins-ci.org/ Accessed 15.10.2014
5 http://cruisecontrol.sourceforge.net/ Accessed 15.10.2014
6 http://junit.org/ Accessed 15.10.2014
7 http://code.google.com/p/openmeetings/ Accessed 15.10.2014
8 http://testlink.org/ Accessed 15.10.2014
9 http://www.liferay.com/ Accessed 15.10.2014

54

requirements management). In addition, a set of core services like authentication,
security, and management of traceability between work items were implemented
in the server application. The architecture of the framework is shown in Figure 5.
The tool integration server was implemented using Apache Tuscany10, as it
provided support for implementing SOA. In addition, it provided the required
infrastructure for easy development and running of applications using a service-
oriented approach. The user interface via a web portal was implemented with the
open source enterprise portal software, Liferay, where all functionality was
provided via portlets.

Figure 5. The architecture of the implemented tool integration (PSW).

10 http://tuscany.apache.org/ Accessed 15.10.2014

55

In the tool integration, the connections between work products (i.e. requirements)
can be managed via traceability relations. The relations indicate some type of
dependency between work products. For example, a relation between a
requirement and a test case can indicate that the given requirement is validated by
the related test cases. The PSW provides the means to identify these relations
and the views to visualise them. The relations can also be used in reports, e.g. to
show requirements test coverage, requirements test status, etc. This kind of
feature is especially useful in maintaining control of the project when the work
products that should be logically dependant are managed in separate tools (and/or
sites). The PSW provides the visibility of how the project is running and what every
group is doing to the whole development team almost as if everybody would be
working in the same room.

In the example scenario, Eclipse is used to develop source code for Android
application based on the requirement tickets stored in TRAC. Subversion version-
management tool is used to commit the source code changes to the repository
(recorded as new change sets). Information about change sets is kept in TRAC for
each requirement ticket. After the source code change, the Jenkins CI server
creates a new ‘build’ and runs unit tests for it using JUnit. If the build is successful,
the acceptance tests are run (at a different site) and the results are stored in the
TestLink. All of these tools except Eclipse are integrated via the integration
framework, and their status can be monitored from the project portal (Liferay).

3.2.2 Measurements viewpoints

The tool integration solution, PSW, was used as a proof of concept of technical
implementation that enables dynamic measurements and metrics in GSD. The
PSW enables automated measurement data gathering and transferring between
various software-development tools in collaborative settings. This makes
information sharing easier between partners without having to change significantly
the current environment, tools, and processes. In addition, there was also a metric
set defined and implemented in the PSW. The metric set was designed with tight
co-operation with industrial partners involved the PRISMA project. In fact, metrics
were selected based on successful experiences of their use in real GSD projects
(Paper IV). This metrics set was especially aimed to provide means to respond
proactively and in real-time to potential issues in the project. From viewpoint of
measurements, it means that several metrics were combined and measurements
results were visualised with appropriate graphs. In fact, the PSW solution provides
several real-time views, visualised metrics, into data that had been stored into
various data sources even in separate stakeholders’ databases. The metrics were
designed to increase transparency by providing visibility to the issues encountered
in GSD.

The data visualisation need was one driver for the views developed to the
PSW. The following figure (Figure 6) shows with a metric example, budget status,

56

how the tool integration solution can integrate data from various tools and provide
a visualised view of the status.

Figure 6. A graph generated by PSW.

From viewpoint of dynamic measurements in GSD, the budget status metrics
(shown in the Figure 6) demonstrates the indicator, where measurement data are
collected from various tools such as:

 project management tools (used effort),

 requirements management tools (effort estimated for proposed vague,
proposed likely and remaining planned & agreed requirements), and

 defect management tools (effort estimated for known defects).

The tool integration solution provides the means to identify these relations and the
views to visualise them. In GSD, these kinds of attributes are typically processed
and managed in separate tools and even in different sites. Thus, in the worst
cases, these attributes are manually gathered and reported for measurements
purposes. Instead, the tool integration solution increases transparency between partners
and teams by providing visibility from the actions of each development group.

In GSD, the example metric offers better visibility to the stakeholders’
progresses and results by providing real-time and visualised information. The
budget status graph shows actual costs of the project in portion with the agreed
budget over a time. The metric also gives several dynamic indicators of estimated
prospective costs in each pre-scheduled period. The bars summarise amount of
costs, and each bar is composed from different cost-related data. The first block
(blue) describes actual cumulative costs of the project. The agreed budget for the
project is shown clearly as a black dash line in the middle of the graph. The red
block would describe remaining planned cost based on effort estimated for
requirements that have been accepted for implementation but not implemented.

57

The orange block indicates proposed cost that can be seen very likely costs for
the project. These costs are based on effort estimated for the proposed
requirements that are thought likely to be implemented, for example, a customer
will want them. The green block would describe proposed but vague costs for the
project. These costs are based on effort estimated for the proposed requirements,
which the likeliness for implementation is not known. Instead, the dark green block
indicates potential costs for the project, so-called ‘Known defects’ costs. In GSD,
the example real-time metric provides great advantages for daily project
management and decision making because the views are generated automatically
and continuously, for example, by daily based. Thus, the project manager can
control several processes – used efforts, requirements, and testing processes –
via one visualised graph even beyond partners’ borders.

The developed version of the tool integration solution contains a set of metrics
that were identified as being beneficial for stakeholders during GSD projects,
introduced more detail in Paper V. In addition, partners were able to define new
views by utilising measurements data gathered via the tools integrated to the
PSW. This was one important requirement for the solution because changes are
typical in GSD projects and so new or changed circumstances may require new
and updated indicators. Thus, PSW provide a proof of concept of measurement-
based management in a collaborative setting.

The real benefits of the proposed tool integration solution and generated views
by PSW can be achieved when several views can be read simultaneously. This is
also an important factor for measurement-based management of GSD projects.
Controlling and managing of distributed collaborative project can be supported
with real-time dashboard views of project activities and progress. Following figure
(Figure 7) illustrates how metrics set can be shown as a dashboard view providing
visibility into project’s progress. The figure has been generated by the implemented
PSW solution. From confidential reasons, the shown indicators in Figure 7 have
been generated from a demonstration project, not a real industrial project.

58

Figure 7. A dashboard illustration of the project status metrics.

In general, the interpretation of a project’s comprehensive status needs a variety
of metrics information – such as requirements status, progress status, testing
status, and budget status – for making decisions based on the data. In addition,
while interpreting or making decisions based on the measurement results the
distributed development implications need to be taken into account. Distributed
development requires ‘super-balancing’ – how to come to the right corrective
action if for instance, on the one side, the percentage of not accepted
requirements is high, and on the other side, the number of passed tests is lagging
behind. Distributed development may also affect the actual results of the
measurements. For example, taking into account the subjectivity of metrics, such
as effort estimation, differences between backgrounds of the people (cultural or
work experience) in different sites may affect the result.

59

In GSD, it is important to note that automated capturing reduces the chance of
variations caused by differences in recording the metrics data in different sites.
Additionally, some metrics correlate with each other, for example, metrics relating
to tests correlate with metrics about requirements, and that needs to be taken into
consideration while analysing measurement data.

When implementing the measurement framework (such as the tool integration
solution) for dynamic measurements there are several issues to be taken
consideration like defining and selecting metric set, identifying the optional metrics
combinations, automating measurements (partially or completely), and visualising
and interpreting the measurements results.

Communication and knowledge play an important role in GSD project and this
aspect need to be carefully considered and planned in the technical implementation.
In practice, project manager needs both technical competence and skills and
managerial abilities that can be supported by dynamic measurements, but she/he
needs also knowledge and communication skills. For example, taking into account the
subjectivity of metrics, such as effort estimation, differences between backgrounds of
the people (cultural or work experience) in different sites may affect the result. The
fact is that dynamic measurements can make visible some problems or deviations
and this way increase transparency between partners. In reality, the metrics can
also indicate some inconsistent results, so in those cases it requires trying to find
real reasons by interpreting other metrics related to the activities.

The results of using the PSW pointed out that the tool integration solution –
measurement-based management framework – can really be utilised while
managing and controlling GSD projects. Anyway, project management includes
knowledge management activities that need to be taken consideration, especially,
in GSD where partners, contact persons, and tools varied a lot. Tools or automation
cannot compensate face-to-face communication or offer knowledge that needed in
different collaboration settings. Instead, tools and automation can be an enabling
role or make communication easier in GSD projects. In practice, the measurement-
based management can offer views to the progress of partners’ project or tasks
and thus it can make visible possible problems or challenges in development
tasks, for example. The measurement-based management with dynamic measurements
creates transparency between the partners and teams in GSD projects.

3.2.3 Examples of industrial cases

As introduced before the metrics have to be defined case by case and they should
be followed daily based in GSD. Thus, in practice, there are needs for examples of
metrics as well as industrial experiences of their use (~the best practices).
Therefore, during the PRISMA project industrial case studies were performed for
identifying potential metrics set for GSD projects. The aim was to identify a basic
metric set that can be enhanced, update or modified based on the needs of the
certain GSD projects. Paper V points out that the successful metrics shall be easy
to capture, they shall be able to capture from used tools ‘for free’ and they shall be

60

quickly calculated at regular intervals. Thus, the metrics set is good to keep as
compact as possible since the smaller metric set is more effortless to be adopted
as well as combinations of metrics are easier to be updated. Then also, the
relevance of measurements in relation to project progress and stakeholders’
needs is easier to ensure even if partners and stakeholders change according to
new collaboration setting. This requires automation of measurement data
gathering and results visualising processes as a whole or at least partially.

The metrics set that was successfully used in distributed product development
was studied during the PRISMA project. The produced metric set is introduced
more details in Paper V. The main purpose of the study was to offer a set of
essential metrics with experiences of their use in GSD. Thus, the amount of the
metrics was knowingly kept as limited as possible. The proposed metric set was
generated based on experiences and needs of PRISMA project industrial partners
(Eskeli and Maurolagoitia 2011) as well as studies of information needs in GSD
(Dullemond and van Gameren 2013) and knowledge of the most critical project
management activities for successful projects reported in (Jones 2004). The
proposed metrics with their notations and definitions are summarised in the
following table (Table 7):

Table 7. Metrics set successfully used in GSD, based on Paper V.

Metric Notation Definition

Schedule:
-Planned
-Actual

DPLANNED

DACTUAL

The planned/actual date of delivery (usually
the completion of an iteration, a release or a
phase)

Personnel:
-Planned
-Actual

#FTPLANNED

#FTACTUAL

The planned/actual number of full-time
persons in the project at any given time

Documents:
-Planned
-Proposed
-Accepted

#Docs PLANNED

#Docs PROPOSED

#Docs ACCEPTED

The number (#) of
planned /proposed/accepted documents to be
reviewed during the project

Requirements:
-Proposed
-Accepted
-Not implemented
-Started
-Completed

#Reqs PROP.

#Reqs ACCEP.

#Reqs NOT_IMPL

#Reqs STARTED

#Reqs COMPLETED

The number (#) of
- proposed requirements
- reqs accepted by customer
- not implemented reqs
- reqs started to implement
- reqs completed

Change Requests:
-New CR
-Accepted
-Implemented

#CRs NEW

#CRs ACCEPTED

#CRs IMPL.

The number (#) of
- identified new CR or enhancement
- CRs accepted for implementation
- CRs implemented

61

Tests:
-Planned
-Passed
-Failed
-Not tested

#Tests PLANNED

#Tests PASSED

#Tests FAILED

#Tests NOT TESTED

The number (#) of
- planned tests
- passed tests
- failed tests
- not started to test

Defects
-by Priority: e.g.,
Showstopper,
Medium, Low

#Dfs PRIORITY The number (#) of
- defects by priority during the time period

Effort:
-Planned Effort
-Actual Effort

EPLANNED

EACTUAL

The planned/actual effort required of any given
iteration of the project

Size:
-Planned size
-Actual size

SIZEPLANNED

SIZEACTUAL

The planned/actual size of each iteration can
be measured as SLOC (source lines of code),
points, or any other commonly accepted way

Cost:
-Budgeted
-Expenditure

COST BUDGET

COST ACTUAL

The budgeted cost/actual expenditure for any
given iteration

Velosity:
- Planned / Actual
story points

#SP PLAN

#SP ACT

How many story points (SP) are planned to be
/actually implemented of any given iteration of
the project?

Productivity:

ACTUALE
ACTUALSP Number of acutally implemented story points

per used effort for each sprint /iteration

The metrics related to schedule and personnel are mostly needed to be able to
compare with actual schedule and personnel, in order to identify lack of available
resources as well as delays in schedule quickly. The amount of proposed
requirements tells about the progress of the product definition. The metrics related
to requirements, tests and documents indicate the technical progress of the
project from different viewpoints. Metrics related to changes indicate both on the
stability of the project technical content, and can explain schedule delays, and
unexpected technical progress. Accordingly, defect metrics tell both of the
progress of testing, as well as maturity of the product. A set of metrics (Effort,
Size, Cost, Velocity, and Productivity) can also be found in the table. These
metrics are proposed to be measured by any given iteration of the project because
they provide an indication of the project progress. Thus, all reasons for indicated
deviations should be carefully studied and analysed. All of the metrics introduced
before are proposed to be analysed together with other metrics results in order to
gain comprehensive picture of the status.

While developing PRISMA tool integration solution, PSW, project’s information
and knowledge needs were researched more detail. The needs were also
discussed within industrial partners of the project. The aim was to define set of
metrics – and their visualised examples – that selected to been implemented on
the PSW for demonstrating them in PSW solution. The most of the metrics were

62

same that were successfully used in industrial environments. Those metrics are
introduced in Paper V, and, in addition, the visualised examples and experiences
of the selected metric set have been presented in Paper VI. In Subsection 3.2.3, it
was illustrated how metrics set can be shown as a dashboard view providing
comprehensive visibility into project’s progress (Figure 7). In this subsection, each
of the dashboard metrics – budget status, testing status, and requirements status
– is introduced in details with industrial experiences of their use.

The budget status metrics shows actual costs of the project in portion with the
agreed budget over a time, visualised in Figure 8.

Figure 8. Visualisation of budget status metrics.

The budget status metric gives several indicators of estimated prospective costs in
each month. The bars summarise amount of costs for the month, and each bar is
composed from five different cost-related data. The first block (green) describes
actual cumulative costs of the project. The agreed budget for the project is shown
clearly as a green line in the middle of the graph. The second block (blue)
describes remaining planned cost based on effort estimated for requirements that
have been accepted for implementation but not implemented. The third block (light
blue), in the middle of the bar, indicates proposed cost that can be seen very likely
costs for the project. These costs are based on effort estimated for the proposed
requirements that are estimated likely to be implemented, for example, a customer
will want them. The fourth block (orange) describes proposed but vague costs for
the project. These costs are based on effort estimated for the proposed
requirements, which the likeliness for implementation is not known. Instead, the
fifth block (red) indicates potential costs for the project, so-called ‘Known defects’
costs. The costs are based on effort estimated to be needed to fix the known

63

critical, major, or average defects. Thus, the example graph the budget status
metric in Figure 8 indicates that the project’s costs will overrun the agreed budget.

The metric testing status combines effort, requirements, and test metrics in a
same graph, illustrated in Figure 9.

Figure 9. Visualisation of testing status metrics.

The testing status metric visualises the progress of testing phase by collecting
data from various phases. The bars in the graph summarise efforts relating to
tests in each month. Each bar is composed from four different sums of efforts. The
first block (green) describes a sum of efforts for tested requirements. The second
block (blue) describes a sum of efforts for requirements for which test case is
available, and, accordingly, the third block (purple) describes a sum of efforts for
requirements for which test cases are not available. The last, the fourth block (red)
is a very proactive indicator, describing a sum of effort estimated for uncertain
requirements. Even if ‘testing status’ shows easily how ‘mature’ the testing phase
is the metric requires other metrics – such as the before introduced metrics:
Budget status, progress status, and requirements status – make conclusions
based on the data.

The metric of requirements status combines the amount of planned effort with
status of requirements’ implementation over a time in the same graph, illustrated
in Figure 10.

64

Figure 10. Visualisation of requirements status metrics.

The bars summarise the amount of planned effort for the month. Each bar is
composed from four different data relating to identified requirements as follows.
The first block (green) describes a sum of planned efforts for all implemented
requirements. The second block (grey) describes a sum of planned efforts for
approved but not implemented requirements. The third block (blue) describes a
sum of planned efforts for proposed requirements and the last block (orange)
shows a sum of planned efforts for drafted requirements. It is important to note,
that the planned effort is used constantly, even for implemented requirements.
This is due to keeping the baseline in order to enable comparing project situation
over time, i.e., to be able to see the project trend with respect to planned work.
The planned effort may be updated for the requirements during the project, if a
new baseline is created. This information is then used together with the actuals, to
see how well the planning has succeeded to help learning to estimate better.

The visualised metric ‘requirements status’ indicates several status information
but also trend lines relating to requirements implementation, and is focused on
showing the uncertainly of the project, for example how much more work maybe
dedicated to be implemented in the project. In the example graph, a good signal is
that the sum of planned efforts for implemented requirements seems to increase
over time while the sum of planned efforts for approved, but not implemented
requirements, seems to reduce. However, the sums of planned efforts for
proposed and drafted requirements are still quite large in the month 8, especially,
while comparing them to the sums of planned efforts for approved requirements.
This indicates that the project is in the beginning phase rather than in the ending
phase. However, the interpretation needs other metrics information, such as
testing status or progress status to make any decisions.

During the PRISMA case studies, industrial experiences of using the metrics
were gathered. Industrial partners pointed out that budget metrics give a clear
understanding in the actual budget consumption, but, in general, they are poor in
predicting budget consumption for the remainder of the project. The budget status
metric suggested allows for trend analysis and by that extrapolation to the future,
resulting in better prediction of the budget consumption for the remainder of the

65

project. This was mentioned to improve the projects’ and the management’s
insight into the project and enable them to take required measures in a timely
fashion, as appropriate. However, the metric requires the project team and
stakeholders to agree upon a ‘definition of done’ which can be very difficult, and
even more so if the accepting and implementing parties are different entities or
located in different sites. The testing status metric provides effective means to get
early insight in the status of the product by the end of the project. Moreover, the
test-status trend analysis helps to initiate timely measures to work towards an
agreed project result. The case study partners pointed that the metric can really
improve the insight of project, management, and customer in the status of the
product-under-construction and better understanding of what could be expected
by the end of the project. The requirements status metric was also seemed very
promising. They mentioned that in practice the current projects lack insight into the
satisfaction of requirements. This lack of insight concerns both the actual status of
implementation of the requirements, as well as the expectation: ‘Up to what level
the project will be able to satisfy its requirements, and if not, what are measures to
accomplish that?’ The (leading) indicator as proposed in the metric seems to be a
good answer to this problem.

Concluding experiences can be highlighted that the interpretation of project’s
comprehensive status needs various metrics information (like requirements status,
progress status, testing status, and budget status metrics) for making conclusions
based on the data. Because the metrics need to be easy to read and interpret, it is
highly recommended to visualised metrics as a dashboard way for providing
effective support for management. This makes possible to interpret and make
decisions based on the measurement results so that also certain distributed
development implication is taken into account. For example, when interpreting
subjective metrics like effort estimation differences between backgrounds of the
people (cultural or work experience) may typically influence the results.

Further, collaborative product development forces to pay attention to
management and controlling activities for creating awareness of distributed
activities within the project and over the projects in an organisation. During the
PRISMA project a case study focusing on creating and improving project
monitoring, controlling, and reporting practices to attain better coordination
between and within the distributed projects as well as to build organisation wide
awareness of the status of the project portfolio (Paper III). The following reporting
issues were decided to consider with improvements actions in the case:

 Establish monthly synchronization meetings, where the project managers
and line managers are synchronizing their activities. The meetings are
organised mostly as face-to-face meetings; however, some project
managers need to attend the meeting also remotely (i.e., virtual meeting
practices are required)

 Request that all project documentation should be updated regularly

 For the project follow-up meeting, establish new monthly reporting templates

66

 Reporting templates should contain items related to tasks done, open
questions, problems, and outlook

 Establish a new project follow-up template into the project portal, so that it
is easy for everybody to follow the project portfolio status also remotely
from any location where our projects are carried out.

Although, the above practices may seem quite general, they can actually be
laboured, time-consuming, or even difficult to carry out during collaborative and
hectic projects’ situations. Especially, if there are not defined and agreed practices
or templates to be followed. The case study showed (Paper III) that the literature
and industrial solutions presented in SameRoomSpirit Wiki were relevant even to
organisation that was not purely focused on SW development. The results also
pointed out that project follow-up and controlling activities improve transparency,
e.g., of the project status, between and within the projects through the whole
organisation. One of the major findings of the case was that unnecessary work
had reduced even 45%. This huge improvement was due to the new implemented
reporting practices as well as partly due to other improvement actions made in the
unit at the same time (e.g., improving engineering and sales tools, improving
process descriptions and document templates). Positive finding was also that
project monthly follow-up meetings had been kept regularly each month and
reports had been filled in by the project managers into the implemented tool after
the implementations. Additionally, the visibility of the status of the customer
projects had been experienced to increase remarkably. Although the reporting
efforts of the project manager seemed to increase, it also provided them with a
communication channel to inform the business management where their efforts
were needed the most.

3.3 Benefits of dynamic measurements

In this section, the benefits of dynamic measurements are introduced in relation to
the identified measurements challenges in GSD. As introduced before the
dynamic measurements have been enabled via the use of automated and real-
time indicators with consolidated information via visualised dashboards that were
generated by the tool integration solution, PSW. The proposed solution is a proof
of concept that was utilised for proving eligibility of the measurement-based
management concept itself, for gathering industrial experiences and validating the
results as well as for studying further fields of research and development activities
in the context of GSD projects.

The dynamic measurements offer and generate a plenty of benefits for their
utilising organisations. In the dynamic measurements, metrics, used databases,
and analysed results of measurement data are created, updated, and changed
dynamically accordingly to managerial needs of projects and demands of various
stakeholders involved the collaboration. It has also required that metrics data is
collected and analysed continuously from various tools and databases, even from

67

stakeholders’ databases, and measurement data is analysed and visualised for
easy to read format. In GSD, this process should be made as easy and as
effortless as possible, so measurements automation is needed. Further, it has
been pointed out that dynamic measurements shall allow to using companies’
legacy tools. This kind of solution, measurement-based management framework,
makes possible that information of project progress is up-to-date and the right
information is offered to the right persons in timely.

The relevance of measurements needs always careful planning and definition.
The measurements have to be focused on the most critical activities and the most
important information needs during the collaborative DSD. During the PRISMA
project, there were investigated needs for development tools and processes that
require more support in GSD. The results showed that needs focused on
requirements capture and review processes, traceability needs, testing processes
and project management and controlling tasks (Eskeli and Maurolagoitia 2011).
Accordingly, Jones (2004) argue that project management have been proved to be
the factor that tends to push projects along either the path of success or the path
of failure. The most critical activities for successful projects were reported to be
project’s planning, estimating, change control, and quality control activities. These
kind of critical activities and processes need to be supported and managed by
relevance metrics in GSD. During the PRISMA project the metrics set that was
successfully used in GSD were studied, identified, and introduced in Paper V.
Those metrics were aimed especially to provide means to respond proactively to
potential issues in the project. Based on industrial experiences of using the
metrics (Paper VI), they were meant to be used as a whole, not interpreted as
single information of project status. In GSD, the relevance of measurements is
better seen by creating well-planned combinations of metrics and visualised
measurement results as a cockpit manner.

In the dynamic measurements, the metrics can be continuously updated or
even changed if needed. The updating includes also visualisation updates, for
example, there can be need to change combination the metrics that are selected
to the same visualised graph, or graphs’ limiting values need to be changed. In
addition, changes in collaboration partners require updates for selected metrics or
their combinations. Thus, the metrics set is good to keep as compact as possible
because the smaller metric set is easier to adopt, and to update when needed.
Even if in GSD the changes are almost continuously needed in metrics, metrics
combinations, or visualisation, the benefits are remarkable from viewpoint of
project controlling and management. The dynamic measurements make possible
to produce real-time, accuracy and focused information to each nominated
stakeholders such as project manager, test manager, programme manager and
site manager, for example. Based on industrial experiences (Paper VI) the
measurements and metrics in GSD should provide online information during the
projects, in order to enable fast reaction to potential problems during the project.
There were highlighted that one important reason for measurements was that they
offers proactive views for development activities, e.g., by introducing ‘early
warning’ signals for the project management. In addition, the metrics were seen as

68

a ‘balanced score card’, on which management can take the right measures,
balancing insights from time, effort, cost, functionality (requirements) and quality
(tests) perspective, for example.

In GSD, communication and training relating to used tools or agreed practices
are seen very important activities also from viewpoints of project controlling and
management. There need to be ensured that agreed tools or data classifications are
used in a uniform way by all partners. Missing data or mistakes in work practices
can lead to wrong signals from the project, wrong interpreting the metrics, and so
even to wrong decision-makings in the project. However, in dynamic measurements,
the visualised indicators themselves create means for checking the correctness of
gathered data. In practice, most deviations and missing data are easily seen from
visualised graphs. Hence, the dynamic measurements can also make visible
communication or training needs in collaborative work.

In GSD, the measurements and metrics should indicate a well-rounded view of
status in the various engineering disciplines and highlight potential issues in the
project. The dynamic measurements create real possibilities to act proactively
based on signals gathered from various engineering viewpoints. This is especially
important in GSD, where information of project status is not readily available but
needs special effort. This kind of measurements offers precious benefits for
management. In fact, the dynamic measurements make possible to avoid or
reduce ‘waste time’, for example, there are possible to re-allocate resources or re-
scheduled tasks based on actual needs indicated by metrics. There can be difficult
tasks that need more resources or some specific competences, or respectively,
the signals can indicate that personnel can be relieved of their tasks. Thus, project
management can be made more effective by re-planning project’s tasks. This kind
of re-planning can influence on project’s lead-time very positively.

The dynamic measurements create benefits for organisation management
level, too. Automation makes possible to utilise measurements over the projects.
The case study (Paper III) showed that project follow-up and controlling activities
improve transparency, e.g., of the project status, between and within the projects
through the whole organisation. For example, the reporting efforts of the project
manager increased during the case, and provided them with a communication
channel to inform the business management where their efforts were needed the
most. Even if, the case study was focused on boosting projects’ controlling and
monitoring activities in collaborative production, the results indicate improvements
also at project-portfolio management level.

The GSD-related challenges in current measurements practices were
summarised in Subsection 2.5.2. Then the requirements for dynamic measurements
derived from these GSD-related challenges were introduced and described in
Table 5, Subsection 3.1.2. Table 8 introduces how tool integration solution with
dynamic measurements can tackle to those challenges and requirements, and
what kinds of benefits the dynamic measurements provide stakeholders in
managing of GSD projects.

69

Table 8. The benefits of the dynamic measurements in GSD.

The benefits of the dynamic measurements

C1: Relevance of measurements in relation to project progress
The generated views and real-time indicators can be produced based on needs of various
roles like project manager, test manager, etc. in different GSD settings. From the
viewpoint of the measurements relevance, customisation is a key advantage. For
example, the metrics can be defined together with stakeholders ensuring that the
importance of the generated metrics has been agreed upon.

C2: Extra work budgeting – metrics design/selection & data collection
Even if metrics design/selection needs additional work within the tool integration solution,
the work can be moderated with the proposed set of metrics. However, the proposed tool
integration solution enables dynamic measurements in GSD. The solution enables to
define new metrics by utilising measurements data gathered via the integrated tools. In
addition, measurement data is automatically collected after the metrics and views
definition: it reduces the amount of extra work for data collection substantially.

C3: Data-reliability issues caused by tools
The framework allows a configurable set of development tools and their versions to be
tailored for generating real-time indicators of individual project needs. In GSD, the benefits
of using the legacy tools are major: the cost of investment of new development tools is
typically too high. In addition, people are familiar with their used tools and technology and
they tend to resist if they should change their working platform; it would take additional
time and extra work, too.

C4: Data-reliability issues caused by human beings
The framework cannot affect cultural differences; those divergences should be understood
by managers nominated to the tasks. However, the automation in data collection and
producing real-time indicators minimises data-reliability problems in these actions. If data
must be collected manually, it can induce frustration, especially, if measurements are not
understood as relevant for a person’s own work. Manual collection can also affect errors or
mistakes while transferring data from one tool or form to another.

C5: Extra work budgeting – metrics interpretation
Dynamic measurements require data integrations from various tools and sources, and
then they are used to construct of visualised graphs and to consolidate information into
easy-to-read dashboards. Thus, the dynamic measurements reduce the effort for creating
the material and make the analysis and metrics interpretation in GSD easier.

C6: Training needs
Dynamic measurements automate data collection for metrics and so reduce the manual
gathering and transferring of measurement data. Thus, in this way it also reduces a need
for training. However, there will always be training needs since cultural differences and
agreed work practices have to be taken into consideration in GSD.

C7: Measurements affects to behaviour
Dynamic measurements automate partly, measurements actions and can ‘hide’
measurements or actual metrics gathered; however, they cannot prevent that
measurements can be affected by people’s behaviour if metrics are inappropriately
selected or designed poorly. The truth is that it is difficult to avoid affecting people’s
behaviour: ‘You will get what you are measuring’. The hiding of measurements may have
a positive feature for avoiding problems.

70

C8: Metrics ethics
This challenge is merely a management-level issue that cannot be resolved by any
external solution.

C9: Responsibilities and roles are unclear
Dynamic measurements, as such, cannot clarify this kind of confusions totally. Instead, it
can promote clarifying process essential ways: while defining metrics and creating views it
makes visible the needs for metrics data. In addition, unclear responsibilities or roles
relating to actual measurements tasks like data gathering, transferring, analysing, and
reporting have to be clarified during the process. Further, the dynamic measurements can
indicate troubles of unclear assignments via visualised and easy-to-read dashboards.

C10: Continuous changes
Dynamic measurements are essential while increasing transparency and creating real-
time views between partners in GSD. Dynamic measurements enable integrations of
measurements data from various tools and databases as well as consolidate information
into easy-to-read dashboards.

Based on Table 8, it can be summarised that attaining measurements is always a
knowledge-intensive action, and so efforts by human beings are required. In
particular, metrics design and/or metrics selection as well as metrics visualisation
(and metrics combination) have to be carefully planned, and thus require some
extra work. In addition, metrics interpretation always needs the investment of
individuals. However, it is possible that the amount of work required to be done by
human beings can be reduced or minimised with the proposed tool integration.
The tool-integration solution enables dynamic measurements by creating a new
and indispensable approach for measurements and metrics in GSD. Dynamic
measurements can help with most challenges related to measurements and
metrics in collaborative and distributed software production. In dynamic
measurements, metrics can be defined or updated in an agility manner, based on
the needs of each project and the demands of each project’s collaboration
settings. Moreover, metrics data are automatically and continuously collected and
analysed from various tools and databases, even from stakeholders’ databases.
Thus, dynamic measurements can be used to overcome most challenges in
current measurement practices and those encountered in distribution and
collaboration settings. Traditionally, the metrics were mainly defined once per
project, at the beginning of the project. However, there are needs to define,
update, or change metrics demands of development settings. In addition, the
metrics should provide visibility of the stakeholders’ progresses and results, and
they need to be analysed and visualised in an easy-to-read format. Dynamic
measurements crucial while increasing transparency and supporting project
management during collaborative DSD.

As introduced earlier, in GSD, the metrics should be such that they provide
online and accurate information during the projects to enable fast reaction to
potential problems during the project. It is also important that metrics provide
indicators that are easy to read and interpret, and that the information provided
offer visibility for all development actions, even over sites and stakeholders in

71

GSD projects. The research provided the potential metrics set that was successfully
utilised in industrial GSD projects (Paper IV), as well as the industrial experiences
of dynamic measurements that were produced (Paper VI). Even if the proposed
metrics are quite similar to those encountered in single-site development, in GSD
projects, actual measurements data items are stored to distributed databases via
various tools by different partners. Thus, manual measurement data gathering is
experienced as a difficult and even time-consuming task. In GSD, this can lead to
managing projects more based on intuition than on facts. Management is
grounded in trust and on verbal and written documents informed by partners.
Thus, dynamic measurements are necessary to manage GSD projects effectively.

72

4. Original publications

This section introduces the research performed in the attached publications. Each
publication gives answers or clarifies the research questions of the thesis from
several perspectives. There are six publications included. Their perspectives
drawn from in the thesis and relations to the research process have been
introduced and clarified in Subsection 4.1. The topics of the publications are the
following:

I Survey of lessons learned by participants of distributed software
development

II Building and sustaining measurements practices and processes in a SME
(results of a case company, namely Solid)

III Experiences of boosting the controlling and monitoring activities in
collaborative production (results of a case company, namely ABB)

IV Knowledge-related challenges and solutions in GSD

V Metrics in distributed product development (results of two case studies,
namely Philips and Symbio)

VI Metrics and measurements in GSD (results of two case studies, namely
Philips and Symbio).

4.1 Introduction

The thesis covers three different research perspectives: 1) Metrics &
measurements, 2) project management, and 3) GSD. The research perspectives
have been examined by the author since the year 2000. The topics have been
researched during various research projects at the VTT Technical Research
Centre of Finland. The author has taken part in large research groups, which have
provided the research results from the theoretical approaches of her research
interests during the projects. The research projects have enabled the researcher
to perform several literature studies relating to the each topic and have offered
case study settings, which have arisen from the needs of the industrial partners

73

involved in the projects. Thus, each perspective has been examined with great
subtlety, thus enabling the integration of the research results of each perspective
into a newly constructed innovation about the measurement-based management
of GSD projects.

Papers I–IV provided a large theoretical background, knowledge, and research
results of industrial need and experiences in the context of the research topics.
Paper I introduces the results of the large survey of lessons learned by
participants of distributed software development. The paper focused on GSD
challenges and touched on measurements and project management practices.
Paper II discussed the experiences of an industrial case study where metrics and
measurements were implemented to practical actions – measurement-data-
management framework – in the SME. The paper focused on metrics-and-
measurements perspectives, providing an example of successful measurements
framework built by the industry. The paper considered metrics and measurements
in a quite traditional manner: partly from the viewpoint of software process
improvements inside one organisation. The paper focused on describing how to
build and sustain the practical measurements environment in the SME. Even if the
paper is not focused on the perspective of project management, it points out that
measurements provided benefits to project managers when automated and
visualised metrics were produced.

Paper III focused on the project management perspective. The paper described
how project controlling and monitoring activities could be boosted in a case
company environment. This paper did not concern actual metrics or measurements
practices but it did report on project managers’ needs to control and monitor
projects during collaborative, distributed work. The case study was focused on
globally distributed product development of software-intensive systems not on
software development projects. However, the proposed solutions utilised in the
case study were generated based on literature studies of controlling and
managing collaborative and distributed software development projects. Thus, the
results were included in the thesis. The results showed that project follow-up and
controlling activities improve transparency (e.g., of the project status) between and
within the projects through the whole organisation. In addition, the case study
indicated improvements at the portfolio-management level, even if the case study was
focused on boosting projects’ controlling and monitoring activities in collaborative
production. Then Paper IV discussed knowledge-related challenges and solutions
in GSD, as knowledge management and transfer were understood to be very
important factors during human-intensive software development. The paper
focused on knowledge-related challenges that need to be understood and
addressed in order to enable the success of GSD projects. Hence, the presented
challenges and solutions covered included metrics and measurements as well as
project management perspectives from the GSD viewpoint.

Figure 11 illustrates how these first four publications were situated in the
triangle of research perspectives during the research process. These four
publications, with large literature studies performed during the research process
introduced in Subsection 1.2.2, addressed the research question Q1 (What are the

74

main measurements and metrics related challenges faced by companies when
managing GSD projects?). In addition, the publications partially addressed Q2
(What kind of means and solutions can be found to respond to these identified
challenges?). Especially, Paper IV addressed Q2, even if merely from the
knowledge-management perspective.

Figure 11. Publications in the triangle of research perspectives.

Paper V introduces the metrics that were successfully used in industrial practice in
distributed software development. The paper addresses Q2, completing the results of
Paper IV, from viewpoint of metrics and measurements. In addition, the paper
provides the first insights for measurement-based management of GSD projects.

Then, Paper VI widened the examination of project management experiences
of metrics and measurements in GSD. The paper addressed the research
question Q3 (How measurement-based management are implemented in GSD
projects?). The research results of the paper were utilised while implementing the
proof-of-concept framework of measurement-based management for
demonstrating and validating research innovations of measurement-based
management of GSD projects. The summary of the research process and its main
outputs are shown in Figure 2, in Subsection 1.2.2.

75

4.2 Paper I: Lessons learned by participants of distributed
software development

The publication summarises results of the survey that was conducted as a part of
Knots-Q project (Knowledge-centered tools and methods for software process
quality improvement). The purpose of the survey was to gather and share lessons
learned to understand distributed software development better, by identifying the
most problematic areas and gathering practical knowledge and examples of the
problems experienced along with the potential solutions that have been developed
and tested by developers.

The article shows that project management activities such as a careful
execution of project start-up activities, detailed planning (splitting tasks, schedule,
and deliverables), and exact determination of common rules, responsibilities, etc.
can greatly contribute to a successful implementation. In addition, the article
pointed out problem areas and concrete lessons learned that should be involved
while managing distributed software projects. Being aware of possible pitfalls and
potential risks, the project manager should therefore be in a better position to
successfully plan and execute projects in the distributed software development
environment.

The author participated in a literature study that was as a basis for creating the
survey. The web-based questionnaire included both the content and technical
issues. In addition, the author was responsible for analysing the responses. The
author participated actively during the writing process as a co-author of the paper.
The author was also a project manager of the Knots-Q project.

4.3 Paper II: How to build and sustain a measurement data
management environment in a SME

The paper introduces the process while building a measurement-data
management framework in a SME. The paper shows, via an industrial case, that
automated data collection with scripts for visualising results and an Intranet-based
measurement environment enable data analysing and process improvement
actions in a case organisation. Even if improvements are typically made after the
process (as traditionally in process improvements were taken), the case showed
that in a SME organisation, corrective actions could be done flexibly during the
project work, too. In addition, the paper presents that root cause analysis for
achieving deeper knowledge of current practices and processes is possible as the
historical measurement data is available. However, these kinds of activities require
extra effort and resources, and so these activities are usually passed in a SME.

The author was a main author of the paper. The author conducted the literature
study of the measurement elements relating to quality of software products and
processes, and proposed the MDM framework for application in the SME
environment.

76

4.4 Paper III: ABB experiences of boosting controlling and
monitoring activities in collaborative production

The publication describes a case executed at ABB (http://www.abb.com/) during
the ITEA PRISMA (2008–2011) project. Distributed collaborative product
development requires that attention be paid to management and controlling
activities for creating awareness of distributed activities within the project and over
the projects in an organisation. The paper introduces ABB experiences in boosting
globally distributed project management activities by integrating those actions to
the portal of the company. The case focused on creating and improving project
monitoring, controlling, and reporting practices to attain better coordination
between and within the distributed projects as well as to build organisation-wide
awareness of the status of the project portfolio.

The case showed that the implemented reporting practices together with other
improvement actions, such as enhanced process descriptions, practices, and
engineering tools, reduced the unnecessary or free work done at ABB by 45%.
This successful result was achieved by careful current-state analysis, where the
requirements and goals for improvement actions were defined. In addition, the
improvement actions were defined by discussions with essential interest groups as
well as by considering the best practices and research results from the literature.

The paper points out that project follow-up and controlling activities improve
transparency (e.g., of the project status between and within the projects through
the whole organisation) in the globally distributed product development
environment. Project management practices play an important role in distributed
product development. In addition, the monitoring and reporting activities should
support and improve transparency with real-time and visualised indicators within
the project and over the projects in an organisation.

The author was the main author of the paper. In addition, the author was a
research partner and facilitator during the industrial case.

4.5 Paper IV: Knowledge related challenges and solutions in
GSD

The publication introduces knowledge-related challenges in the GSD that need to
be understood and addressed in order to enable the success of the GSD projects.
The role of knowledge and knowledge engineering is crucial in software
development projects, but it is even more important in GSD because of the
distance and cultural aspects.

This publication points out that a successful distributed software development
project requires both structured and disciplined software engineering and
knowledge-management solutions. Communication management and the utilisation
of effective substitutes for face-to-face communication have an important role in
GSD, to ensure knowledge sharing. For example, ensuring the availability of
information during the project to all of the parties is essential for a successful project.

77

From measurement and project management viewpoints, it is important to
understand the nature and demands of the GSD; for example, in a distributed
development project, a significant amount of effort is required for up-front planning
and follow-up activities to manage a project successfully. The distribution makes
the project progress more difficult to estimate and control because of the
decreased visibility. In addition, a manager has to have a large amount of abilities
and knowledge in addition to technical competence, such as cultural knowledge
and communication skills and particularly good project management capabilities.
In GSD, it is important to get real-time and accurate information on projects while
the work is performed in different sites or even by different companies. In addition,
knowledge engineering was recognised to hold a vital role in the analysis and
interpretation of the measurements. In order to make correct conclusions from the
data knowledge sharing, the lessons learned have to be taken into consideration.

The author is a co-author of the paper and is responsible for incorporating the
knowledge-engineering viewpoints to GSD; whereas, the author Päivi Parviainen
was responsible for analysing the challenges identified in over 50 case studies.
The author focused on case studies concerned with measurements, metrics, and
project and quality management issues in GSD projects.

4.6 Paper V: Metrics in distributed product development

The publication describes a set of metrics that was successfully used in industrial
environments during distributed product development. The main purpose of the
paper is to share knowledge by offering a set of essential metrics with concrete
experiences of their use. The metrics and experience presented in the paper are
based on metrics programs of two companies, Philips and Symbio. The paper
highlights, based on industrial experiences, that the metrics should be such that
they provide online information during the projects, to enable fast reaction to
potential problems during the project.

Metrics are seen as important activities for successful product development, as
they provide means to monitor the project progress effectively. However, globally
distributed development generates new challenges and difficulties in terms of
measurements. For example, the gathering of the measurements data can be
problematic because of the use of different development tools or their versions,
because work practices with related concepts can vary by project stakeholders, or
because the reliability of the gathered data can vary due to cultural differences,
especially, in subjective evaluations.

The paper focuses on describing a set of metrics that has been successfully
used in industrial practice in distributed product development. These metrics are
aimed especially to provide means to react proactively to potential issues in the
project, and they are meant to be used as a whole, not interpreted as single
information of project status. Moreover, they are easy to capture and can be
quickly calculated and analysed at regular intervals.

78

The author was the main author of the paper. In addition, the author was a
research partner and facilitator during the industrial case.

4.7 Paper VI: Metrics and measurements in global software
development

The publication is focused on describing a set of metrics with visualised examples
and experiences of their use. The main purpose is to introduce the selected metric
set from the viewpoint of their proactive role in decision making during globally
distributed software development. The chosen metrics indicate a well-rounded
view of status in the various engineering disciplines and highlight potential issues
in the project. This creates real possibilities to act proactively based on signals
gathered from various engineering viewpoints. This is especially important in GSD
projects, where information of project status is not readily available but requires
special effort, distributed over sites and companies.

The metrics and discussion in the article are based on GSD improvement work
carried out during several years, in several research projects. In this paper, the
first ideas of GSD specific metrics are presented based on the common
challenges in GSD practice.

Even if most of the introduced metrics are similar to those of single-site
development, their collection, and interpretation need to be taken into account
concerning the GSD aspects. This publication focuses especially on the
experiences of two companies, Philips and Symbio. One of the most important
reasons for choosing the proposed metrics was their provision of early warning
signs, to respond proactively to potential issues in the project. This is especially
important in distributed projects, where tracking the project status is needed and
proactively more complex. The balancing insights, from time, effort, cost,
functionality, and quality, are also seen as a very important aspect.

The author was the main author of the paper. In addition, the author was a
research partner and facilitator during the industrial case.

79

5. Discussion

In this section, the results of the thesis are discussed and evaluated. First, in
Subsection 5.1, a description of how the selected research methods were applied
in the research is given. Then in Subsection 5.2, the results of the research are
discussed according to theory (5.2.1) and practice (5.2.2). Finally, in Subsection
5.3, the limitations of the research are introduced and discussed.

5.1 Validity of the research

The main research methods used in this thesis were literature studies and case
studies within the design-science research approach. Because of the broad
theoretical context of the thesis, several literature studies were conducted as a
part of certain research projects introduced in Subsection 1.2.2. The main results
of the literature studies, such as published handbooks – MIKKO Handbook,
Collaboration Handbook, and SameRoomSpirit Wiki-based handbook – were
reviewed by internal and external reviewers during and after the projects.
According to Easterbrook et al. (2008), the major weakness of the case study
method is that the data collection and analysis is very open to interpretations
affected by the researchers’ biases or cultural backgrounds, for example. To
address this challenge, industrial case studies were led by the industrial
participants themselves and the results were collected, documented, and reported
by the researcher. All documented results were discussed and reviewed with the
industrial partners involved the cases. In addition, the construct validity of the main
research results and case studies utilised in the thesis were ensured by submitting
results to be reviewed and published in the various, carefully selected publication
forums introduced in Subsection 4.1.

Commonly used criteria to evaluate the validity of research (Easterbrook et al.
2008; Yin 2009) include construct validity, internal validity, external validity, and
reliability. Construct validity centres on whether the theoretical constructs are
interpreted and measured correctly. Internal validity centres on the study design
and particularly on whether the results really do follow from the data. External
validity focuses on whether claims for the generality of the results are justified.
Reliability focuses on whether the study yields the same results if other

80

researchers replicate it. The thesis contributes to understanding the phenomenon
called measurements-based management of GSD projects. In practice, the design
science research provides a wide perspective for the research, and it covers the
previously mentioned general requirements of construct, internal, and external
validity as well as reliability for case studies in the social sciences. In fact, Wohlin
et al. (2003) recommend that design science be applied also in empirical software
engineering. Thus, in the thesis, the design science research guidelines
introduced in Table 9 are used while discussing the validity of the research in
more detail.

Table 9. Design science research guidelines (Hevner and Chatterjee 2010).

Guideline Description

1: Design as an artefact Design science research must provide a viable artefact
in the form of a construct, a model, a method, or an
instantiation.

2: Problem relevance The objective of design science research is to develop
technology-based solutions to important and relevant
business problems.

3: Design evaluation The utility, quality, and efficacy of a design artefact must
be rigorously demonstrated via well-executed evaluation
methods.

4: Research contributions Effective design science research must provide clear
and verifiable constructions in the areas of the design
artefact, design foundations, and/or design
methodologies.

5: Researcher rigor Design science research relies upon the application of
rigorous methods in both the construction and evaluation
of the design artefact.

6: Design as a search process The search for an effective artefact requires utilising
available means to reach desired ends while satisfying
laws in the problem environment.

7: Communication of research Design science research must be presented effectively
to both technology-oriented and management-oriented
audiences.

The design science research guidelines (Table 9) are used to demonstrate the
validity of the research in the following paragraphs.

Design as an artefact. Because the thesis covers three different research
perspectives (metrics & measurements, project management, and global software
development) that were examined in various research projects, introduced in
Subsection 1.2.2, several artefacts were produced. The main instantiation from a
metrics and measurements viewpoint from the MIKKO project was the MIKKO
Handbook, Comprehensive collection and utilisation of software measurement
data, focusing on organisational and project level measurement utilisation. The

81

MERLIN project focused on embedded systems engineering and software
engineering technologies from a collaboration perspective, and it provided, as a
main result, the MERLIN Collaboration Handbook, which summarises the main
research results of the project. The purpose of the handbook is to support
operational collaborative development (e.g., it helps companies to take care of all
of the critical aspects during various phases of the collaborative work, providing
potential solutions to address these challenges). The solution were based on
literature, especially for management and support practices (including
measurements practices), and on the collection of the best practices from the
MERLIN industrial partners via focused interviews on selected topics. Further,
during the PRISMA project, the MERLIN Collaboration Handbook was further
developed with a widen context, being freely available from the Intranet as
SameRoomSpirit Wiki. The research projects offered environments where metrics
and measurements as well as project management practices could be
investigated in detail. This was done via literature surveys and case studies, which
were introduced and published as the attached papers. This large study enabled
the researcher to integrate the previously mentioned research perspectives with
the main construction, the tool integration framework, PSW. The implemented tool
integration solution has been discussed and published in (Pesola et al. 2008) and
in (Eskeli et al. 2011). PSW was utilised as a proof of concept of measurement-
based management of GSD projects, and it made it possible to demonstrate
dynamic measurements during collaborative and distributed software development
and to collect feedback and experiences of the construct introduced in Section 3.

Problem relevance. The industrial partners of both the MERLIN and PRISMA
projects actively participated in inventorying their challenges and problems in GSD
as well as in providing and evaluating new solutions addressed to them. In total,
52 industrial case studies were carried out to evaluate the solutions identified for
the challenges revealed in the industrial inventories, for example. These case
studies and research processes were introduced and discussed in (Parviainen
2012). In addition, project management and measurements-related challenges
arose from industrial needs. In fact, the main results of the PRISMA projects, the
SameRoomSpirit Wiki, and PSW tool integration solution were developed in tight
co-operation with the industrial partners involved the project. There were also case
studies of utilising those constructions from where gathered feedback and
experiences were utilised in their further development work. Thus, the developed
construction, the tool integration framework with implemented metrics, was very
important and relevant to the identified business problems. In fact, the problems
and challenges addressed during the industrial projects were defined by the
company themselves, not by the author.

Design evaluation. The thesis points out that measurement-based management
of GSD projects is possible and very important, and it provides many benefits for
all stakeholders in the collaborative setting. For demonstrating the construct, a
proof of concept of the technical implementation during the PRISMA project was
demonstrated. Because the construct contains the technical implementation (tool
integration solution, PSW) with proposed metrics as well as viewpoints for

82

measurements, evaluations were performed via many industrial cases and from
various aspects. First, the tool integration solution was designed, developed, and
evaluated in several phases. The first idea and implemented concept of tool
integration was developed and evaluated during the MERLIN project (Pesola et al.
2008). During the PRISMA project, the tool integration was further developed. The
industrial partners utilised and evaluated the tool integration solution in their real
world distributed project or in their own multisite software development projects
(Eskeli, Maurolagoitia, Polcaro 2011). In addition, the solution was tried within a
few demonstrations and research settings during the PRISMA project. The actual
set of tools and amount of people involved was dependent on the context and
duration of each trial. In fact, those experiments and demonstrations were fixed on
testing implementations and functionalities, and so focused on further developing
the solution itself. For example, one tool, AgileReq, was integrated based on the
company’s needs. In fact, one principle for the development work had been that, in
GSD, companies have their own practices and tools, and the tool integration
solution should not enforce a specific process or tool set. In addition, feedback
related to managerial issues and measurements in GSD were gathered during the
experiments. In addition, a set of metrics in the tool integration solution were
demonstrated. Because the development of metrics or the selection for producing
relevant ones for the project management is a challenging task, the metrics
development for the tool integration solution was done in close co-operation with
the PRISMA projects’ industry partners. The selected and implemented metrics
were experienced as being useful, and they were successfully used in industrial
practice (Paper VI). Actually, the research relation to the tool integration solution
covered several case studies in various companies, as well as case experience
reports published by others. Thus, they provided multiple sources of evidence. In
practice, the case studies were carried out in real industrial projects, and
conclusions were reached in co-operation with industrial representatives. The
results of case studies were also reviewed by more members from the companies
as well as other researchers involved the projects. The results of each case study
were also included on Internet-based handbook solution, SameRoomSpirit Wiki.

Research contributions. The main contribution of the thesis is the construct of
measurement-based management of GSD projects. The research provided the
tool integration solution that was utilised as a proof of concept, while
demonstrating and validating the results. In reality, a solution of measurement-
based management is depending on various factors such as on used/selected
tools, collaboration modes or amount of partners involved, so only one and stabile
solution cannot provide. For example, stakeholders have already selected tools
that support their way of working or companies have already defined practices that
work well and so they are not willing to change tools or practices. Thus, it was
necessary to provide a technical implementation that was used as a proof of
concept for the construct.

Researcher rigor. As described in Subsection 1.2.2., the research process has
been long, and it has involved several research projects. This has enabled several
literature studies for perceiving a strong theoretical background for the thesis as

83

well as finding a cap between theory and practice. In addition, the research
projects not only provided industrial environments for case studies but also
reviewers for the results, thus maintaining the high quality of the research. All case
studies were reported a structured manner and reports were reviewed by
researchers and industrial representatives involved the projects. In addition, all
main research results introduced in the thesis have been reviewed and published
in scientific forums, conferences, and journals.

Design as a search process. The research was performed in numerous
different research projects involving industrial representatives and researchers
with high and long-term expertise in the research topics of the projects. This made
possible constructive approaches for the research questions introduced in
Subsection 1.1. The performed research process has been described in detail in
Subsection 1.2.2. Several large literature studies were conducted, enabling the
researcher to construct innovations that were further studied in detail in the
industrial context. The gathered feedback and experiences were processed with
further and more focused literature studies. In addition, workshops were arranged
with industrial partners for identifying and analysing their problems faced in GSD.
Moreover, there was an agreed formal method for reviewing and validating all
provided case study and research reports during the projects.

Communication of research. As described previously, industrial representatives
of the research partners actively participated in the research process. In addition,
there were several public seminars where the main results of the research project
were communicated. For example, in spring 2010, the industrial seminar ‘Same
room spirit in multisite fashion’11 were held, where the tool integration solution,
SameRoomSpirit Wiki, and various industrial experiences relating to the topics of
the PRISMA research project were communicated. These seminars were aimed at
technology-oriented and management-oriented audiences. In addition, scientific
forums such as conferences and journals were utilised in communicating and
publishing the results of the projects. These scientific forums provided external review
processes for the results, being one valuable validation method for the results.

5.2 Evaluation of the results

In this section, the research results of the thesis are evaluated from the viewpoint
of theory and practice. First, theoretical contributions are discussed in Subsection
5.2.1, by evaluating how the research addresses the research questions
introduced in Subsection 1.2. Then, the main practical implications are discussed
in Subsection 5.2.2.

11 http://conference.erve.vtt.fi/srs2010/ Accessed 15.10.2014

84

5.2.1 Theoretical contribution

The main contribution of this work is to combine separate views, such as
measurements, metrics and their interpretations tools as well as challenges and
needs for administrative information in the context of the measurement-based
management of global software-development projects. The thesis brings together
these publications and industrial cases with a proof-of-concept implementation
that made it possible to evaluate the findings during the research.

Relating to the first research question, What are the main measurements and
metrics related challenges faced by companies when managing global software-
development projects? Trends in GSD show that the products are being
increasingly developed in a globally distributed fashion, where the size and
complexity of software-intensive systems are continuing to grow. Management of
a distributed product development project is proven more challenging than
traditional development is. Because measurements and metrics create useful
ways for controlling and managing projects, these activities are emphasised in the
management of GSD projects. The benefits and needs for measurements are
discussed in Subsection 2.4.1. Even if measurements bring several benefits for an
organisation, the fact is that organisations usually cannot allocate enough time or
resources to do the measurements properly. There are many problems and
challenges that have been identified that have reduced or even to eliminated
interest in the measurements in GSD. The measurements and metrics-related
challenges, can generally be summarised as 1) the measurements practices,
metrics, and tools themselves, 2) challenges caused by people, and 3) challenges
from the collaboration settings. In addition, these challenges are strongly
dependent on each other. For example, GSD settings affect the current
measurement practices by producing new challenges or complicating old ones.
The detailed list of challenges is presented and discussed in Subsection 2.4.5.
Many of the challenges occurring in a distributed development case are almost the
same as those faced in ‘single-site’ development. However, the distribution makes
these challenges more problematic and complicated. In addition, the distribution
brings new challenges in terms of measurements and metrics. Most challenges
concern the need to get reliable, real-time information (measurements results) as
automatically as possible. The needs centred on information that could be used in
decision making, especially, as proactively as possible. In GSD, the challenges
faced more complicated than those found in traditional one-site development
cases, because measurement data items were located in different tools and
databases, typically even in stakeholders’ databases.

The second research question was What kinds of means and solutions can be
found to respond to these identified challenges? The introduced measurements
needs and identified challenges in measurements practices built a base for
searching for and developing solutions for the measurements challenges faced in
GSD. These solutions were identified, developed, and adopted from the literature
as well as industrial cases during the MERLIN and PRISMA projects. The

85

research included the study of knowledge management and transfer-related
challenges and solutions as well as tools, methodologies, and metrics and
measurements–related challenges and their solutions in GSD. The industrial case
studies were performed to gain feedback and knowledge of measurements and
metrics needs and industrial experiences as well as to use successfully metrics
and projects’ controlling practices in GSD. The research pointed out that demands
for dynamic measurements are substantial: the metrics need to be defined and
updated, case by case; they should be followed on a daily based, and they should
provide support to several stakeholders in different roles during the collaborative
work. In practice, the management of GSD projects requires well-optimised
automated and real-time indicators that provide up-to-date visibility of the
stakeholders’ progress and results. For achieving optimal, well-balanced, and
complete dynamic measurements, knowledge-related factors need to be considered.

A set of requirements for dynamic measurements was provided as a research
result. The requirements were introduced in Subsection 3.1.2. These requirements
were derived from GSD-related challenges in current measurement practices.
They clarify the kinds of measurements and metrics that shall be utilised while
producing information to manage GSD projects, and how the main measurements
or metrics–related challenges can be tackled in GSD. The requirements help when
developing solution(s) for the identified needs and challenges in GSD.

To summarise the requirements, it can be easily detected that automation is
one important requirement: automation helps to provide reliable, real-time, and
visualised, easy-to-read indicators to support decision making in the complex,
uncertain, and dynamic environments of GSD. In addition, knowledge management
and knowledge-intensive perspectives should be considered while developing
solutions to GSD-related challenges of current measurement practices. The
dynamic measurements were important while increasing transparency and
information sharing during collaborative distributed software development. Dynamic
measurements were defined as measurement actions, where metrics are defined
or updated based on the needs of each project and the demands of each project’s
collaboration settings, where metrics data are collected and analysed continuously
from various tools and databases, even from stakeholders’ databases, and
measurement data are analysed and visualised in an easy-to-read format.

The third research question was How can measurement-based management
be implemented in GSD projects? The second research question provided the
main requirements and practical means for dynamic measurements in GSD. Thus,
these requirements were used while developing a proof-of-concept implementation
of measurement-based management in GSD. The proof of concept provided a
validation framework for measurement-based management approach in GSD. It
provided the framework where proposed requirements and potential metrics were
implemented for gathering industrial experiences and validating the results. The
introduced tool integration solution was designed, developed, and piloted during
the MERLIN and PRISMA research projects. The proof of concept with
demonstrative and piloting feedback was utilised for examining the third research
question. The technical implementation included a set of metrics, and it enabled

86

dynamic measurements and metrics in GSD. One important principle for the
implementation of the measurement-based management framework was that
solutions should not enforce a specific process or tool set; instead, the tool
integration shall be enabled with companies’ own practices and tools used in
GSD. The research showed that dynamic measurements were enabled via the
use of automated and real-time indicators with consolidated information via
visualised dashboards that were generated by the tool integration. The research
pointed out that the real benefits of the proposed tool-integration solution can be
achieved when several visualised views can be read simultaneously. The
interpretation of the project’s comprehensive status needs a variety of metrics
information, such as introduced requirements status, testing status, and budget
status metrics together. The results also pointed out that project follow-up and
controlling activities improve transparency (e.g., of the project status) between and
within the projects through the whole organisation. The measurement-based
management can really be utilised while managing and controlling GSD projects.

Project management includes knowledge management activities that need to
be taken into consideration, especially in GSD, where partners, contact persons, and
tools vary a lot. Tools or automation cannot replace face-to-face communication or
offer knowledge that is needed in different collaboration settings. However,
measurement-based management can offer views to the progress of partners’
project or tasks, and it can also make visible possible problems or challenges in
development tasks, and, thereby, it creates transparency between the partners in
GSD. Thus, measurement-based management is an important and valuable
framework while managing GSD projects. The thesis is focused on globally
relevant and important problems in software engineering. Some of the research
results confirm ‘held beliefs’ in reality and this way are scientifically important
arguments. Further, the thesis acquires further insights into the phenomenon of
measurement-based management of GSD projects, which enrich the current body
of knowledge and provide material for further research. This thesis is focused on
globally relevant and important problems in software engineering. The thesis
provides further insights into the phenomenon of measurement-based management
of GSD projects, which enriches the current body of knowledge and provides
material for further research.

5.2.2 Implications for the practice

The thesis provided results regarding the practical implications during the case
studies as well as more general implications for managing GSD projects. In the
following, these two main aspects of the practical implications from this thesis are
discussed.

The first implication concerns project-management practices in GSD the use of
metrics and measurements therein. In collaborative and distributed software
development, the importance of project management is emphasised. In addition,
the competencies and skill requirements of GSD project managers are extended.

87

For example, the continuously increasing complexity of the business requires the
project manager to deal with many roles, such as business managers, customer
managers, marketing managers, product managers, suppliers, etc. For example,
Wu et al. (2009) argued that project management is one of the primary factors to
software projects’ success or failure. In GSD, a project manager is often far away
from the development teams or stakeholders, which creates visibility and project
controlling problems. It is also easier to hide problems. Further, Herbsleb (2007)
pointed out that the key phenomenon within GSD projects is coordination over
distance: the need to manage a variety of dependencies across sites drives the
essential problems of GSD. Thus, systematic controlling and status reporting of
the project work is especially important in GSD. In practice, measurement and
metrics provide important means to do that effectively. Paper II introduced the
main elements that need to be considered while building and sustaining a
measurement framework in an organisation. Because the case study was
conducted in a SME environment and it was merely focused on building a
measurement framework for purposes of traditional measurements (not dynamic
measurements), the GSD-related challenges have to be carefully studied together
the proposed elements. For example, management of GSD projects may require
new or changed practices for project planning and tracking because of
collaboration, for example, due to schedule dependencies that need to be
managed. In addition, it is important that status reporting practices and change
management procedures be defined clearly, and this includes reporting channels,
decision authorities, and escalation channels. Thus, the dynamic measurements
are important while increasing transparency and information sharing during
collaborative distributed software development. The thesis included a set of
metrics that has been successfully used in GSD projects. The metrics are
introduced in detail along with the experiences of their use in the attached
publication Paper V. In addition, for achieving optimal, well-balanced, complete
dynamic measurements, knowledge-related factors in relation to the team
activities need to be carefully examined. Paper IV introduces the challenges that
the companies had faced in GSD, and it discusses their knowledge-engineering
aspects and presents example solutions for addressing the challenges. In GSD,
the effective and successful transfer of tacit knowledge requires extensive
personal contacts, communication, and trust. Cognitive perspectives have been
presented as a fundamental success factor for teams in collaboration. Any
knowledge gap within the team can expand into big problems and may lead to the
poor sharing of information or a lack of knowledge about what to do. Paper IV
provides a cognitive perspective on the challenges faced in GSD, and this way it
helps in finding solutions that take into account the knowledge needs of different
stakeholders in GSD. It was proved that successful distributed software
development requires both structured and disciplined software engineering and
knowledge management solutions.

Another implication concerns a practical tool integration solution for providing
measurement-based management solutions for managing GSD projects. The
thesis introduced the tool integration solution that was utilised as a technical

88

implementation of the measurement-based management framework. The thesis
discussed how GSD-related challenges affected metrics and measurements
practices and it also introduced a set of requirements for dynamic measurements.
Dynamic measurements concern metrics definition/selection, optional metrics
combinations, measurements automation (partially or completely), and metrics
interpretation with visualised indicators, for example. In addition, Paper VI
describes a set of essential metrics that were successfully used in GSD. Also
given, were visualised examples based on experiences for demonstrating their
use in industrial projects. The proposed metrics provide early warning signs for a
project and so they make possible to react proactively to potential issues in the
project. In the thesis, the technical implementation of the tool integration solution
was introduced in detail, by offering examples of dynamic measurements and their
benefits for project management in GSD. The example solution provides real-time
views of development assets and an infrastructure where assets are synchronized
and communicated efficiently. The actual workspace was a collaboration and
integration portal. The benefits of the proof-of-concept framework are that the
solution is vendor independent, and it allows for a configurable set of development
tools that can be tailored to individual partner or project needs. The implemented
tool integration solution provided a concrete example of the construct of
measurement-based management of GSD projects. Moreover, it offered a proof-
of-concept framework, where dynamic measurements were studied, demonstrated,
and evaluated during the research.

5.3 Limitations of the research

The research results provided were produced within several research projects
during the long period. The research projects made it possible to investigate
theoretical backgrounds from each research perspective introduced in Subsection
1.2.2. The thesis has been built from several research portions that were provided
via industrial case studies. These case studies were carried out in real industrial
projects, and the results of the case studies were validated during the research
process. The main research results included in the thesis have been published in
high-quality scientific forums. The introduced constructs of measurement-based
management and dynamic measurements are innovations that were produced by
the research results. It has been noticed that, increasingly, commercial tools are
being developed to provide support for project management with dynamic
measurements in GSD, by developing new product families or expanding old
ones; however, those kinds of big commercial solutions are often too ‘massive’
and expensive, at least for small companies. Thus, many companies are forced to
develop their own tools or tool integrations to support their GSD projects. For
example, many proprietary solutions have been developed for single tasks or
project phases that have been identified to be the most critical or the most cost-
effective in GSD practices. However, these kinds of tailored solutions are typically
aimed to solve single problems (e.g., providing integration for certain development

89

assets, being tools used in integration). The thesis introduced an example solution
that provides support for measurement-based management without depending on
certain vendors or tools. The proof-of-concept solution allows a configurable set of
development tools that can be tailored to individual partner or project needs. In
addition, it demonstrated how dynamic measurements could be utilised in
managing GSD projects.

The main research results were reviewed and evaluated during the research
projects and in the published papers attached. In addition, the construct of
measurement-based management of GSD projects has been evaluated via the
feasibility study of the PSW tool integration solution. However, long-term research
in real industrial projects is lacking. Thus, further research would address this
limitation: dynamic measurements would be implemented in several different
distributed software development projects, for example. This would make it
possible to examine and measure the effects on dynamic measurements to
increase transparency and support decision making actions from viewpoints of
various stakeholders in GSD projects.

90

6. Summary and conclusions

In this section, the results of the research are summarised (6.1), and further
research recommendations are discussed (6.2).

6.1 Summary of the results

This thesis summarised six original publications and extended them through the
construction of measurement-based management of GSD projects. The technical
implementation of the tool integration solution was introduced and discussed for
constituting a proof of concept of dynamic measurements in GSD.

In fact, software measurements and metrics in software production have been
discussed and studied over several decades because they are commonly
understood to create concrete means for monitoring and controlling projects and
providing support for projects’ decision making and management. The needs for
project controlling actions are emphasised in GSD because distributed product
development generates new measurement challenges and difficulties. For
example, gathering measurements data is problematic because of the different
development tools and their versions in use in the project, because work practices
can vary by project stakeholders, and because the reliability of the gathered data
can vary because of cultural differences, especially, in subjective evaluations. In
practice, there are needs to gather the measurements data from multiple sources,
such as different tools and databases, even from stakeholders’ databases, during
GSD projects.

In software production, measurements are understood as an information-
gathering process, where measurement data consist of numeric data or a pre-
classified set of categories. Because software metrics can consist of several
measurement data items individually or in combination, measurements and
metrics have been strongly linked to the development tools used during the
production. In the literature, many problems and challenges have been identified
that reduce or even eliminate all interests to the measurements. However, the
amount of GSD-specific literature on metrics and measurements or that even
discusses the topic is limited. In fact, some papers and books exist, but they
discuss metrics in general or only for specific aspects, such as quality metrics to

91

support the defect management process. In the thesis, challenges in current
measurement practices have been summarised and described in detail from a
GSD viewpoint. Further, requirements for dynamic measurements derived from
GSD-related challenges in current measurement practices have been introduced
and summarised.

This thesis defines dynamic measurements as actions where metrics are
defined or updated based on needs of each project and demands of each project’s
collaboration settings. The actual metrics data are collected and analysed
continuously from various tools and databases, even from stakeholders’
databases, and results of measurements are analysed with visualised indicators
that are easy to read. In dynamic measurements, metrics, the databases used,
and the analysed results of measurement data can be created, updated, and
changed dynamically, based on the managerial needs of each project, its different
phases and tasks, as well as the managerial needs of various stakeholders in
collaborative work. The construction of dynamic measurements could be
demonstrated and validated via the implemented tool-integration solution during
the research project. This thesis introduced a technical implementation that was
utilised as a proof of concept for the measurement-based management of GSD
projects. The example solution made it possible to demonstrate, evaluate, and
collect experiences of the construction in real industrial projects during the
research. It was reported that the tool integration solution offered better visibility
beyond stakeholders’ borders as well as into project progress through tool support
in communication and project management during the research. In addition,
resource management was assessed to be more efficient because of better
transparency (traceability of design assets, awareness, etc.) between sites and
stakeholders. The thesis concluded that the main results of the proof of concept
feasibility studies, measurement-based management of GSD projects, is a very
effective way to provide support for project management in the challenging
environments of collaborative and distributed software development.

6.2 Future research

The work introduced and discussed in the thesis is based on extensive empirical
work, carried out over several years. The actual research work included several
literatures studies that were processed from several perspectives: metrics and
measurements, project management, and GSD. In addition, knowledge
management and transfer were studied in order to expand on the understanding of
challenges in current measurement practices as well as creating and addressing
potential solutions to them.

The topics of the thesis are very large, and, therefore, there might be aspects
or exact problems that have not necessarily been covered in the thesis. However,
the thesis covers things that have been seen as important in the case companies
involved the MERLIN and PRISMA projects. In addition, literature studies attested
that those challenges and needs must be supported during the management of

92

collaborative projects. The thesis summarised the research results that have been
reviewed and evaluated during the research projects. The thesis provided the
construct of measurement-based management of GSD projects that were
demonstrated and evaluated via the feasibility study of the example tool-
integration solution. Because long-term research in real industrial projects is
lacking, further research is still needed.

Future research actions could be divided into theoretical and empirical research
approaches. From the theoretical viewpoint, future research would include a large
industrial survey of dynamic measurements in the context of GSD projects, for
example. The thesis covers studies of problems in current measurements and
metrics practices with studies of practical solutions developed and proposed to
meet those challenges in GSD projects. These studies were carried out within the
industrial partners that were involved the MERLIN and PRISMA research projects.
In addition, literature examinations were included. As a result, the context of
dynamic measurements was defined and tested via an implemented proof-of-
context research prototype of tool integration solution. Thus, the future research
would focus on measurements practices and metrics in various commercial and
proprietary tool integration solutions that provide support with dynamic
measurements for managing of GSD projects. This kind of survey could also
include different collaboration modes, such as customer-supplier relationships,
technology exchange, joint research and development, and in-house distributed
development, especially, their influences and demands for dynamic measurements.
Further research would also consider challenges and solutions from the viewpoint
of various stakeholders or different roles involved in collaboration. In addition, new
research fields could enrich the results and create new innovations for the
research. For example, regarding the approaches of cross-cultural groups and
organisations, how do they affect project management and how do they effect to
measurements and metrics or measurement practices in GSD?

From empirical viewpoints, the future research actions would focus on
gathering experiences from various kinds of GSD environments, metrics, and
projects. For example, dynamic measurements would be implemented in several
different DSD projects for providing real industrial environments to examine further
the challenges, needs, and potential solutions. One potential option could be to
implement the tool integration solution in an industrial product development
environment and then gather experiences via action research methods and
questionnaires for several years period. Another choice could be build different
kinds of infrastructures for experimental research purposes. In addition, adding
new types of tools (e.g., for change management or design) to potential tool
integration solution would provide new insights for controlling and managing the
GSD projects. Also, experiences of new potential GSD related metrics would be
gathered, studied, and analysed. For example, metrics focused on measuring the
project performance, especially, task and team performance in GSD would be
interesting. The potential metrics could be measurements related to time spent
idling, e.g., waiting for something, and the time blocked because of the
impediments elsewhere in the team as these affect productivity and highlight when

93

a team is not performing. All these kinds of experiences as well as experimental
methods could elicit new information and new contributions to the theory. For
example, experimental research could provide recommendations or restrictions of
dynamic measurements in different kinds of organisations or collaboration modes
involved. These kinds of experimental research and case studies make it possible
to investigate and measure effects on dynamic measurements in GSD.

The thesis summarised the long-term research activities and industrial case
studies about the challenges and solutions associated with measurements
practices and metrics in GSD projects. The thesis concluded with the construction
of measurement-based management of GSD projects that were demonstrated and
evaluated via the implemented tool integration solution and the proposed set of
dynamic measurements. The feasibility study provided experiences via industrial
demonstrations and case studies and hence showed several benefits of dynamic
measurements in management of GSD projects. However, long-term research in
real industrial projects is lacking. The implemented tool integration environment with
dynamic measurements is not extensively used in industrial product development
environments and projects. However, the implemented tool integration solution
provided a concrete example of the construct of measurement-based management
of GSD projects, and it offered a proof-of-concept framework, where dynamic
measurements were studied, demonstrated, and evaluated during the research.

The thesis concluded that dynamic measurements are a necessity in the
management of GSD projects. The thesis concluded that measurement-based
management of GSD projects is a very valuable and effective way to provide
support for project management in the challenging settings of distributed and
collaborative project work. The thesis pointed out that dynamic measurements
provide solutions to the identified challenges of current measurement and metrics
practices in managing GSD projects. In addition, several concrete benefits of
utilising dynamic measurements in GSD environments have been summarised.

94

References

Al-Ani B. and Redmiles D. 2009. Trust in distributed teams: Support through
continuous coordination. IEEE Software 26(6): 35–40.

Altidor W., Khoshgoftaar T. M. and Napolitano A. 2009. Wrapper-based feature
ranking for software engineering metrics. In proceedings of international
conference on machine learning and applications, ICMLA'09. IEEE. Pp.
241–246.

Basili V. R. 1992. Software modeling and measurement: The Goal/Question/Metric
paradigm. University of Maryland at College Park.

Batagelj V., Bojkovski J. and Drnovšek J. 2008. Software integration in national
measurement-standards laboratories. IET Science, Measurement &
Technology 2(2): 100–6.

Battin R., Crocker R., Kreidler J. and Subramanian K. 2001. Leveraging resources
in global software development. IEEE Software 18(2): 70–7.

Borchers G. 2003. The software engineering impacts of cultural factors on
multicultural software development teams. In proceedings of the 25th
international conference on software engineering (ICSE’03). IEEE. Pp.
540–545.

Bourgault M., Lefebvre E., Lefebvre L. A., Pellerin R. and Elia E. 2002. Discussion
of metrics for distributed project management: Preliminary findings. In
proceedings of the 35th annual Hawaii international conference on
system sciences HICSS'02. IEEE. 10 p.

Buse R. P. L. and Zimmermann T. 2010. Analytics for software development. In
proceedings of the FSE/SDP workshop on future of software engineering
research. ACM. Pp. 77–80.

Card D. 2003. Integrating practical software measurement and the balanced
scoreboard. In proceedings of the 27th annual international COMPSAC
2003. Pp. 362–363.

Carmel E. 1999. Global software teams: Collaborating across borders and time
zones. Upper Saddle River, NJ, USA: Prentice Hall PTR.

95

Carmel E. and Tija P. 2005. Offshoring information technology: Sourcing and
outsourcing to a global workforce. Cambridge, the United Kingdom:
Cambridge University Press.

Casey V. and Richardson I. 2008. Virtual teams: Understanding the impact of fear.
Software Process Improvement and Practice 13(6): 511–526.

CHAOS Report. 2014. The Standish Group report: Project Smart. Available from:
http://www.projectsmart.co.uk/docs/chaos-report.pdf. Accessed 15.10.2014.

CMMI. 2006. CMMI for development. Report nr version 1.2., Technical Report
CMU/SEI-2006-TR-008.

Coman I. D., Sillitti A. and Succi G. 2009. A case-study on using an automated in-
process software engineering measurement and analysis system in an
industrial environment. In proceedings of the 31st international
conference on software engineering, ICSE 2009; May 16–24. IEEE. Pp.
89–99.

Creswell J. W. 2009. Research design: Qualitative, quantitative, and mixed
methods approaches (third edition). Thousand Oaks, CA: SAGE
Publications, Inc.

da Silva F. Q. B., Costa C., França A. C. C. and Prikladinicki R. 2010. Challenges
and solutions in distributed software development project management:
A systematic literature review. In proceedings of international conference
on global software engineering (ICGSE2010). IEEE. Pp. 87–96.

Damian D. E. and Zowghi D. 2003. An insight into the interplay between culture,
conflict and distance in globally distributed requirements negotiations. In
proceedings of the 36th annual Hawaii international conference on
system sciences (HICSS'03). 10 p.

Dullemond K. and van Gameren B. 2013. What distributed software teams need to
know and when: An empirical study. In proceedings of the 8th
international conference on global software engineering (ICGSE 2013).
IEEE. Pp. 61–70.

Easterbrook S., Singer J., Storey M. and Damian D. 2008. Selecting empirical
methods for software engineering research. In: Shull, F. and Singer, J.,
(eds.). Guide to advanced empirical software engineering. Springer. Pp.
285–311.

96

Eskeli J., Maurolagoitia J. and Polcaro C. 2011. PSW: A framework-based tool
integration solution for global collaborative software development. In
proceedings of the sixth international conference on software
engineering advances (ICSEA'11). Barcelona, Spain. Pp. 124–129.

Eskeli J. and Maurolagoitia J. 2011. Global software development: Current
challenges and solutions. In proceedings of the 6th international
conference on software and data technologies, ICSOFT 2011. Pp. 29–34.

Fenton N. E. and Pfleeger S. L. 1998. Software metrics: A rigorous and practical
approach. 2nd ed. Boston, MA: PWS Publishing Co.

Forrester. 2010. Making collaboration work for the 21st century’s distributed
workforce. White paper, Forrester Consulting.

Fryer K. and Gothe M. 2008. Global software development and delivery: Trends
and challenges. Retrieved June 7, 2009, from http://www.ibm.com/
developerworks/rational/library/edge/08/jan08/fryer_gothe/index.html.
Accessed 15.10.2014.

Herbsleb J. and Mockus A. 2003. An empirical study of speed and communication
in globally distributed software development. IEEE Transactions on
Software Engineering 29(6): 481–494.

Herbsleb J. D. 2007. Global software engineering: The future of socio-technical
coordination. In proceedings of future of software engineering FOSE '07.
IEEE Computer Society. Pp. 188–198.

Herbsleb J. D. and Moitra D. 2001. Global software development. IEEE Software
18(2): pp. 16–20.

Herbsleb J. D., Mockus A., Finholt T. A. and Grinter R. E. 2000. Distance,
dependencies, and delay in a global collaboration. In proceedings of the
ACM conference on computer supported cooperative work. ACM. Pp.
319–328.

Herbsleb J. D., Paulish D. J. and Bass M. 2005. Global software development at
Siemens: Experience from nine projects. In proceedings of the 27th
international conference on software engineering (ICSE 2005). IEEE. Pp.
524–533.

Hevner A. and Chatterjee S. 2010. Design research in information systems:
Theory and practice. Springer.

97

Hofstede G. 2001. Culture’s consequences. Comparing values, behaviors,
institutions, and organizations. 2nd edition. London: Across Nations.
Sage Publications.

Holmstrom H., Conchuir E. O., Ågerfalk P. J. and Fitzgerald B. 2006. Global
software development challenges: A case study on temporal,
geographical and socio-cultural distance. In proceedings of IEEE
international conference on global software engineering (ICGSE’06).
IEEE. Pp. 3–11.

Hyysalo J., Parviainen P. and Tihinen M. 2006. Collaborative embedded systems
development: Survey of state of the practice. In proceedings of the 13th
annual IEEE international symposium and workshop on engineering of
computer based systems (ECBS 2006). IEEE. Pp. 1–9.

IEEE Std 1061-1992. 1992. IEEE standard for a software quality metrics
methodology. Piscataway, NJ: IEEE Computer Society.

Järvinen P. 2012. On research methods. Tampere, Finland: Tampereen
Yliopistopaino Oy.

Jiménez M., Piattini M. and Vizcaíno A. 2009. Challenges and improvements in
distributed software development: A systematic review. Advances in
Software Engineering Jan-2009 (No. 3): 1–16.

Jones C. 2004. Software project management practices: Failure versus success.
CrossTalk: The Journal of Defense Software Engineering, October 2004.
17 p.

Kaplan R. S. and Norton D. P. 1992. The balanced scorecard-measures that drive
performance. Harward Business Review (No. 92105): 71–79.

Komi-Sirviö S. and Tihinen M. 2003. Great challenges and opportunities of
distributed software development – an industrial survey. In proceedings
of the 15th international conference on software engineering and
knowledge engineering (SEKE2003); 1.–3. July; San Francisco, USA.
Pp. 489–496.

Komi-Sirviö S., Parviainen P. and Ronkainen J. 2001. Measurement automation:
Methodological background and practical solutions a multiple case study.
In proceedings of the 7th international software metrics symposium,
METRICS 2001. IEEE. Pp. 306–316.

98

Korhonen K. and Salo O. 2008. Exploring quality metrics to support defect
management process in a multi-site organization – A case study. In
proceedings of 19th international symposium on software reliability
engineering (ISSRE). IEEE. Pp. 213–218.

Lavazza L., Morasca S., Taibi D. and Tosi D. 2012. On the definition of dynamic
software measures. In proceedings of the ACM-IEEE international
symposium on empirical software engineering and measurement. ACM.
Pp. 39–48.

Lawler J. and Kitchenham B. 2003. Measurement modeling technology. IEEE
Software 20(3): 68–75.

Lawrie G. and Cobbold I. 2004. Third-generation balanced scorecard: Evolution of
an effective strategic control tool. International Journal of Productivity
and Performance Management 53(7): 611–623.

Lewis R. D. 2006 (revised edition). When cultures collide: Managing successfully
across cultures. Boston, MA & London, UK: Nicholas Brealey Publishing.

Lewis R. D. 1999. Cross cultural communication: A visual approach. Transcreen
Publications.

Lings B., Lundell B., Agerfalk P. J. and Fitzgerald B. 2007. A reference model for
successful distributed development of software systems. In proceedings
of the 2nd IEEE international conference on global software engineering,
(ICGSE 2007). IEEE. Pp. 130–139.

Lotlikar R. M., Polavarapu R., Sharma S. and Srivastava B. 2008. Towards
effective project management across multiple projects with distributed
performing centers. In proceedings of IEEE international conference on
services computing (CSC'08). IEEE. Pp. 33–40.

Mingguang Z., Haohua Z., Weiyi Q., Shijun M. and Chuanyi W. 2009. The
measurement and evaluation for large-scale object-oriented software
system. In proceedings of the 9th international conference on Hybrid
intelligent systems, HIS'09. IEEE. Pp. 70–73.

Misra S. 2009. A metric for global software development environment. In
proceedings of the Indian national science academy. Pp. 145–158.

99

Noble D. 2004. Knowledge foundations of effective collaboration. In proceedings
of the 9th International Command and Control Research and Technology
Symposium, September 14-16, Copenhagen, Denmark.

Noll J., Beecham S. and Richardson I. 2010. Global software development and
collaboration: Barriers and solutions. ACM Inroads 1(3): 66–78.

Paasivaara M. and Lassenius C. 2003. Collaboration practices in global inter-
organizational software development projects. Software Process:
Improvement and Practice 8(4): 183–199.

Parviainen P. 2012. Global software engineering. Challenges and solutions
framework. Doctoral Dissertation, VTT Science 6. Espoo, Finland: VTT.
106 p. + app. 150 p.

Parviainen P., Eskeli J., Kynkäänniemi T. and Tihinen M. 2008. Merlin
collaboration handbook – challenges and solutions in global collaborative
product development. In proceedings of the 3rd international conference
on software and data technologies; July 5–8; Porto, Portugal. Pp. 339–
346.

Peixoto C. E. L., Audy J. L. N. and Prikladnicki R. 2010. Effort estimation in global
software development projects: Preliminary results from a survey. In
proceedings of international conference on global software engineering.
IEEE Computer Society. Pp. 123–127.

Pesola J.-P., Eskeli J., Parviainen P., Kommeren R. and Gramza M. 2008.
Experiences of tool integration: Development and validation. In
proceedings of international conference on interoperability of enterprise,
software and applications. enterprise interoperability III – new challenges
and industrial approaches. Berlin, Germany: Springer. Pp. 499–510.

Ruhe G. 2003. Software engineering decision support – a new paradigm for
learning software organizations. In: S. Henninger and F. Maurer (eds.)
Advances in learning software organizations, LSO 2003. Berlin
Heidelberg: Springer. Pp. 104–113.

Sangwan R., Bass M., Mullick N., Paulish D. J. and Kazmeier J. 2006. Global
software development handbook. CRC Press.

Sengupta B., Chandra S. and Sinha V. 2006. A research agenda for distributed
software development. In proceedings of the 28th international
conference on software engineering. ACM. Pp. 731–740.

100

Shewhart W. A. 1939. Statistical method from the viewpoint of quality control.
Washington: Graduate School of Agriculture.

Simmons D. B. and Ma N. K. 2006. Software engineering expert system for global
development. In proceedings of 18th IEEE international conference on
tools with artificial intelligence (ICTAI'06). IEEE. Pp. 33–38.

Soubra H., Abran A., Stern S. and Ramdan-Cherif A. 2011. Design of a functional
size measurement procedure for real-time embedded software
requirements expressed using the simulink model. Joint conference of
the 21st international workshop on software measurement and the 6th
international conference on software process and product measurement.
IEEE. Pp. 76–85.

Tihinen M. 2001. Analysis of the quality measurement processes in software
production. Secondary Subject Thesis. Oulu, Finland: University of Oulu,
Department of Information Science.

Umarji M. and Shull F. 2009. Measuring developers: Aligning perspectives and
other best practices. IEEE Software 26(6): 92–94.

van Solingen R. and Berghout E. 1999. The goal/question/metric method: A
practical guide for quality improvement of software development.
McGraw-Hill.

Vierimaa M., Ronkainen J., Salo O., Sandelin T., Tihinen M., Freimut B. and
Parviainen P. 2001. Comprehensive collection and utilisation of software
measurement data. VTT Publications 445. Espoo, Finland: VTT.

Wahyudin D. M., Heindl S., Biffl A. and Schatten B. R. 2007. In-time project status
notification for all team members in global software development as part
of their work environments. In proceedings of SOFPIT workshop 2007,
Munich. SOFPIT/ICGSE. Pp. 20–25.

Welborn R. and Kasten V. 2003. The Jericho principle: How companies use
strategic collaboration to find new sources of value. Hoboken, NJ: John
Wiley & Sons.

Wohlin C., Höst M. and Henningsson K. 2003. Empirical research methods in
software engineering. In: R. Conradi and A. I. Wang (eds.) Empirical
methods and studies in software engineering. Springer. Pp. 7–23.

101

Wu C., Chang W. and Sethi I. K. 2009. A metric-based multi-agent system for
software project management. In proceedings of the 8th IEEE/ACIS
international conference on computer and information science (ICIS
2009). IEEE. Pp. 3–8.

Yin R. K. 2009. Case study research: Design and methods. 4th ed. Los Angeles:
SAGE Publications.

Zhang H., Zhao H., Cai W., Zhao M. and Luo G. 2008. A metrics suite for static
structure of large-scale software based on complex networks. In
proceedings of international conference on intelligent information hiding
and multimedia signal processing, IIHMSP'08. IEEE. Pp. 512–515.

PAPER I

Lessons learned by
participants of

distributed software
development

In: Knowledge and Process Management,
Vol. 2, No. 2, pp. 108–122.

Copyright 2005 John Wiley & Sons, Ltd.
Reprinted with permission from the publisher.

I/1

& Research Article

Lessons Learned by Participants of
Distributed Software Development

Seija Komi-Sirviö* and Maarit Tihinen

Technical Research Centre of Finland, VTT Electronics, Oulu, Finland

The maturation of the technical infrastructure has enabled the emergence and growth of dis-
tributed software development. This has created tempting opportunities for companies to dis-
tribute their software development, for example, to economically favourable countries so as to
gain needed expertise or to get closer to customers. Nonetheless, such distribution potentially
creates problems that need to be understood and addressed in order to make possible the gains
offered. To clarify and understand the most difficult problems and their nature, a survey of
individuals engaged in distributed software development was conducted. The purpose of
this survey was to gather and share lessons learned in order to better understand the nature
of the software development process when operating in a distributed software development
environment and the problems that may be associated with such distributed processes.
Through a clear appreciation of the risks associated with distributed development it becomes
possible to develop approaches for the mitigation of these risks. This paper presents the results
of the survey, focusing on the most serious problems raised by the respondents. Some practical
guidelines that have been developed by industry to overcome these problems are also briefly
summarized. Copyright # 2005 John Wiley & Sons, Ltd.

INTRODUCTION

Distributed software development enables soft-
ware production to take place independently of
the geographical location of the individuals/orga-
nizations concerned. Software subcontracting, part-
nership-based development and global business
ventures are all different business strategies
exploiting the advantages that such distributed is
expected to bring. Unfortunately, distributed soft-
ware development projects have inherited the
same problems that single-site software projects
have been struggling with. Thus, distributed pro-
jects suffer equally from quality, schedule and
cost related problems—the distribution only makes
these harder to handle. In addition, distribution
itself may create time slippage problems. A recent

study shows that the physical distance between
development sites alone is likely to create delays
in work (Herbsleb et al., 2001). Problems in task
coordination, project management and communi-
cation have also been reported (Hersleb and
Moitra, 2001). Over and above this, distribution has
also introduced new specific problems (De Souza
et al., 2002).

Despite the challenges entailed in distribution,
distributed software development is a develop-
ment strategy that is in increasing favour with the
industry (Herbsleb et al., 2001; Battin et al., 2001;
Ebert and De Neve, 2001). The expected benefits,
such as the possibility for high-speed development
through the use of individuals/teams in different
time zones (Hersleb and Moitra, 2001; Gorton and
Motwani, 1996; Mockus and Herbsleb, 2001), the
employment of more skilful staff, the lower devel-
opment costs (Hersleb and Moitra, 2001; Press,
1993) and the ability to respond to local customers’
needs, are expected to outweigh the risks involved.

Knowledge and Process Management Volume 12 Number 2 pp 108–122 (2005)

Published online in Wiley InterScience (www.interscience.wiley.com). DOI: 10.1002/kpm.225

Copyright # 2005 John Wiley & Sons, Ltd.

*Correspondence to: Seija Komi-Sirviö, Technical Research Cen-
tre of Finland, VTT Electronics, P.O. Box 1100, FIN-90571 Oulu,
Finland. Email: Seija.Komi-Sirvio@vtt.fi

I/1

& Research Article

Lessons Learned by Participants of
Distributed Software Development

Seija Komi-Sirviö* and Maarit Tihinen

Technical Research Centre of Finland, VTT Electronics, Oulu, Finland

The maturation of the technical infrastructure has enabled the emergence and growth of dis-
tributed software development. This has created tempting opportunities for companies to dis-
tribute their software development, for example, to economically favourable countries so as to
gain needed expertise or to get closer to customers. Nonetheless, such distribution potentially
creates problems that need to be understood and addressed in order to make possible the gains
offered. To clarify and understand the most difficult problems and their nature, a survey of
individuals engaged in distributed software development was conducted. The purpose of
this survey was to gather and share lessons learned in order to better understand the nature
of the software development process when operating in a distributed software development
environment and the problems that may be associated with such distributed processes.
Through a clear appreciation of the risks associated with distributed development it becomes
possible to develop approaches for the mitigation of these risks. This paper presents the results
of the survey, focusing on the most serious problems raised by the respondents. Some practical
guidelines that have been developed by industry to overcome these problems are also briefly
summarized. Copyright # 2005 John Wiley & Sons, Ltd.

INTRODUCTION

Distributed software development enables soft-
ware production to take place independently of
the geographical location of the individuals/orga-
nizations concerned. Software subcontracting, part-
nership-based development and global business
ventures are all different business strategies
exploiting the advantages that such distributed is
expected to bring. Unfortunately, distributed soft-
ware development projects have inherited the
same problems that single-site software projects
have been struggling with. Thus, distributed pro-
jects suffer equally from quality, schedule and
cost related problems—the distribution only makes
these harder to handle. In addition, distribution
itself may create time slippage problems. A recent

study shows that the physical distance between
development sites alone is likely to create delays
in work (Herbsleb et al., 2001). Problems in task
coordination, project management and communi-
cation have also been reported (Hersleb and
Moitra, 2001). Over and above this, distribution has
also introduced new specific problems (De Souza
et al., 2002).

Despite the challenges entailed in distribution,
distributed software development is a develop-
ment strategy that is in increasing favour with the
industry (Herbsleb et al., 2001; Battin et al., 2001;
Ebert and De Neve, 2001). The expected benefits,
such as the possibility for high-speed development
through the use of individuals/teams in different
time zones (Hersleb and Moitra, 2001; Gorton and
Motwani, 1996; Mockus and Herbsleb, 2001), the
employment of more skilful staff, the lower devel-
opment costs (Hersleb and Moitra, 2001; Press,
1993) and the ability to respond to local customers’
needs, are expected to outweigh the risks involved.

Knowledge and Process Management Volume 12 Number 2 pp 108–122 (2005)

Published online in Wiley InterScience (www.interscience.wiley.com). DOI: 10.1002/kpm.225

Copyright # 2005 John Wiley & Sons, Ltd.

*Correspondence to: Seija Komi-Sirviö, Technical Research Cen-
tre of Finland, VTT Electronics, P.O. Box 1100, FIN-90571 Oulu,
Finland. Email: Seija.Komi-Sirvio@vtt.fi

I/2 I/3

Within the survey sample software development
distribution was very extensive and also global. In
only four cases (14.8%) did respondents report
involvement in software development distribution
within one country. Ten responses (37.0%) referred
to software projects which were distributed within
one continent, and 13 responses (48.1%) reported
that software development projects had been
undertaken which were distributed over two or
several continents. Figure 2 illustrates the positions
of those who responded to the survey. Analysing
these positions we can conclude that to a large
extent they are characterized by extensive experi-
ence in software development.

Table 1 separates the responses by viewpoint
(organizational or project viewpoint) and further-
more by the extent to which distribution was
implemented. The survey was carried out within
the Finnish research programme; thus the
responses are mainly from Finland. The number

of software development projects involving team-
work between continents—namely Europe and
the USA and Europe and Asia (13 responses,
48.1%)—was essentially equal to the number of
projects involving cooperation within Europe (14
responses, 51.9%).

Figure 3 shows a geographical distribution of
software development represented by the survey
respondents. The arrows in Figure 3 illustrate the
direction (to a country or a continent) in which a
respondent reported that their software develop-
ment had been distributed. If the respondent had
named a city, a bullet is used as an identifier of
that place. Each line starts from a city correspond-
ing to the home address of the respondent. Further-
more, some lines have been drawn in bold,
indicating various responses reporting distribution
to the same city, country or continent. Two anon-
ymous responses have not been included in the fig-
ure since their home office is not known. One

Figure 1 Business scope of organizations

Figure 2 Positions of respondents

RESEARCH ARTICLE Knowledge and Process Management

110 S. Komi-Sirviö and M. Tihinen

In prior research a number of unique topics have
been studied by researchers that relate to distribu-
ted software engineering, for example, require-
ments engineering (Lloyd et al., 2002), project
management (Lam and Maheshwari, 2001; Gaeta
and Pierluigi, 2002; Aversano et al., 2003) and con-
figuration management (Van der Hoeak et al.,
1996). However, the viewpoints of these studies
are biased towards the use of software develop-
ment tools. For example, solutions are offered
by different researchers in the form of a software
configuration management tool (Surjaputra and
Maheswari, 1999), a process support system
(Gianpalo and Ghezzi, 1999) or a virtual corpora-
tion negotiation approach (Kötting and Maurer,
1999). More recently, some interesting industrial
experiences of distributed software development
have been published (e.g. Herbsleb et al., 2001; Bat-
tin et al., 2001; Ebert and De Neve, 2001; Karlsson
et al., 2000). In all, however, a thorough under-
standing of the complex of problems connected
with distributed software development has not
been developed.

The aim of this research is to gain a better under-
standing of the problems faced when software
development projects are distributed over multiple
sites in different geographical locations. The pur-
pose of the survey was to enable ranking of
problem areas according to their frequency of
occurrence and to gather practical knowledge and
examples of the problems experienced along with
the potential solutions that have been developed
and tested by developers. Being more aware of pos-
sible pitfalls and potential risks, those involved
with the development of distributed software pro-
jects should therefore be in a better position to suc-
cessfully plan and execute these projects.

As we have noted above, there may be several
reasons for organizations to distribute their soft-
ware development. One of the potential reasons is
the possibility of using the fact that individuals/
groups reside in different time zones to enable
rapid development, for example distributing devel-
opment and test sites across different time zones,
and then synchronizing them to a continuous
24-hour product development and testing cycle
(Gorton and Motwani, 1996). However, this
hypothesis was not verified by the results of this
survey as there were no indications that this was
either attempted or even desired. Primarily, the
motivation for distribution was ‘peopleware’ related:
the needed knowledge was distributed, there was
no local expertise to solve a development problem,
or the local demand for software development was
insufficient. The survey also sought to identify fac-
tors that would support project distribution. It

turned out that the duration and total effort asso-
ciated with the project were not as significant as
the size of the project measured in terms of the
number of people involved.

This paper is organized as follows. In the next
section the background information of the survey
is presented. In the third section the results of the
survey are introduced and the improvement
approaches raised are analysed. In addition, based
on those results and issues, observations of distrib-
uted software development process will be dis-
cussed. The final section presents the conclusions
of the survey.

SURVEY BACKGROUND

Knowledge acquisition was carried out in the form
of a questionnaire. The semi-structured question-
naire, containing a large set of open and closed
questions relating to distributed software develop-
ment, was sent by mail and e-mail to the recipients
(it was also accessible via the Internet). The ques-
tionnaire covered the following topic areas:

� characterization of the organization;
� characterization of the distributed projects;
� utilization rate of various communication tools;
� problems and the solutions developed to over-

come them;
� advantages of distribution; and
� overall satisfaction.

The survey was conducted during the summer of
2002. The questionnaire was posted to 44 organiza-
tions in Finland and it was also e-mailed to over
200 organizations around the world. The total num-
ber of responses was 31, representing 21 different
organizations. The regular mail proved to be the
best way of reaching the respondents: out of
retrieved 31 replies 24 were received by post. Con-
versely, e-mail turned out to be a very inefficient
way to reach respondents; only seven replies were
retrieved using e-mail. The replies came mainly
from Finland, but some also from the Netherlands
and the USA. Four replies were eliminated from
the analysis due to the fact that they were received
from organizations not carrying out distributed
software development. It turned out that these
organizations were distributed globally. Thus, in
the final analysis there were 27 responses included
in the survey.

In this paper, we concentrate on analyzing pro-
blems relating to distributed software develop-
ment. Most of the responses to the survey came
from the telecommunication or wireless telecom-
munication industries (see Figure 1).

Knowledge and Process Management RESEARCH ARTICLE

Lessons Learned in Distributed Software Development 109

I/3

Within the survey sample software development
distribution was very extensive and also global. In
only four cases (14.8%) did respondents report
involvement in software development distribution
within one country. Ten responses (37.0%) referred
to software projects which were distributed within
one continent, and 13 responses (48.1%) reported
that software development projects had been
undertaken which were distributed over two or
several continents. Figure 2 illustrates the positions
of those who responded to the survey. Analysing
these positions we can conclude that to a large
extent they are characterized by extensive experi-
ence in software development.

Table 1 separates the responses by viewpoint
(organizational or project viewpoint) and further-
more by the extent to which distribution was
implemented. The survey was carried out within
the Finnish research programme; thus the
responses are mainly from Finland. The number

of software development projects involving team-
work between continents—namely Europe and
the USA and Europe and Asia (13 responses,
48.1%)—was essentially equal to the number of
projects involving cooperation within Europe (14
responses, 51.9%).

Figure 3 shows a geographical distribution of
software development represented by the survey
respondents. The arrows in Figure 3 illustrate the
direction (to a country or a continent) in which a
respondent reported that their software develop-
ment had been distributed. If the respondent had
named a city, a bullet is used as an identifier of
that place. Each line starts from a city correspond-
ing to the home address of the respondent. Further-
more, some lines have been drawn in bold,
indicating various responses reporting distribution
to the same city, country or continent. Two anon-
ymous responses have not been included in the fig-
ure since their home office is not known. One

Figure 1 Business scope of organizations

Figure 2 Positions of respondents

RESEARCH ARTICLE Knowledge and Process Management

110 S. Komi-Sirviö and M. Tihinen

I/4 I/5

also some responses that reported on companies
developing software components for clients. The
business governance strategies adopted in distribu-
tion may take various forms, such as partnering,
subcontracting or the use of sister sites. The extent
of distribution, denoted by the distance between
cooperating development offices, vary from those
distributed over a single town to those distributed
between several continents. However, it is appro-
priate to observe that the results presented in this
paper primarily concern issues typical of organiza-
tions distributing their software development
activities both extensively and globally. Over half
of the responses (52%) had distributed develop-
ment activities to different continents, and more
than two-thirds of them (74%) to different coun-
tries. While subcontractors were used extensively,
the extent of distribution in this case was slightly
smaller: less than one-third (30%) had subcontrac-
tors in different continents and 41% had them in
different countries. In all, a total of 85% of the
respondents had used subcontracting as an
approach to software development.

The characteristics of the distributed projects
were determined in terms of duration, project size
in person years and the size of the development
team. It turned out that the duration of a distribu-
ted project was rarely longer than 2 years; 78% of
the projects were shorter than that and, of these,
one-third were of less than 1 year. Furthermore,
the size of the project measured in person years
turned out to be either rather large—almost half
of the projects were over 20 person years in
size—or rather small, half of the projects being
under 10 person years in size. Only 11% of the pro-
jects studied fell in the category between 10 and 20

years. The size of the development team showed
the least variation: in most cases (56%) the team
was smaller than 20 software developers. The
results suggest that globally distributed projects
tend to be rather large measured in terms of person
years, while the development team was often kept
quite small.

A closer look at the number of software develo-
pers in the organizations represented by the
respondents reveals that the majority of answers
(67%) were provided by respondents from compa-
nies having more than 100 software developers,
and one-third (33%) of the responses were received
from individuals employed by organizations with
under 100 software developers. These two groups
of organization were studied to detect possible dif-
ferences in their characteristics, and a noteworthy
difference was identified concerning the size of dis-
tributed projects in person years (see Figure 5).

Figure 5 shows that when the number of soft-
ware developers in an organization is under 100
the size of distributed projects is most often (67%)
smaller than 10 person years.

Problems in distributed software development

In the survey, respondents were given the choice of
identifying eight different problem areas. These
problem areas were identified on the basis of the
descriptions found in the literature (Herbsleb et al.,
2001; Mockus and Herbsleb, 2001; Karlsson et al.,
2000; Niederman et al., 1993; Zoran et al., 1995).
Respondents were asked to check all the problems
they had experienced in their projects and to
describe each of the problems identified in more
detail. Respondents were also provided with an

Figure 5 Size of distributed projects and number of software developers

RESEARCH ARTICLE Knowledge and Process Management

112 S. Komi-Sirviö and M. Tihinen

anonymous answer reported that their software
development had been distributed between two
continents, and another reported development
being distributed between three continents.

SURVEY RESULTS

In this section the results of the survey are pre-
sented. First, the characteristics of the organizations
and projects of those taking part in the survey are
outlined. Second, the problems introduced by the
distribution of software development are discussed
along with the solutions to overcome these pro-
blems as described by respondents. Lastly, based
on analysis of the preceding data, potential success
factors are identified.

Characteristics of the organizations
and the projects

Our survey results indicate that software develop-
ment distribution is carried out not only by large

organizations but also by small and medium-sized
enterprises: 47% of the respondents were employed
by companies having fewer than 500 employees in
total. Figure 4 depicts the distribution of responses
by organization size (measured in terms of the total
number of employees).

Most companies taking part in the survey were
operating in the area of embedded software. Com-
monly, the distributed development concerned a
proprietary product of a company, but there were

Table 1 Characteristics of responses

Response viewpoint Extent of software development distribution

Within Within one Between two Between three or
one country continent continents more continents

Organization 2 5 5 3
Project 2 5 3 2

Total number of answers 4 10 8 5

Figure 3 Geographical distribution of projects

of employees
in an organization:

12 %

53 %

0 %

20 %

40 %

60 %

80 %

100 %

% of responses

> 500

50 - 500

< 50

35 %

Figure 4 Distribution of responses by organization size

Knowledge and Process Management RESEARCH ARTICLE

Lessons Learned in Distributed Software Development 111

I/5

also some responses that reported on companies
developing software components for clients. The
business governance strategies adopted in distribu-
tion may take various forms, such as partnering,
subcontracting or the use of sister sites. The extent
of distribution, denoted by the distance between
cooperating development offices, vary from those
distributed over a single town to those distributed
between several continents. However, it is appro-
priate to observe that the results presented in this
paper primarily concern issues typical of organiza-
tions distributing their software development
activities both extensively and globally. Over half
of the responses (52%) had distributed develop-
ment activities to different continents, and more
than two-thirds of them (74%) to different coun-
tries. While subcontractors were used extensively,
the extent of distribution in this case was slightly
smaller: less than one-third (30%) had subcontrac-
tors in different continents and 41% had them in
different countries. In all, a total of 85% of the
respondents had used subcontracting as an
approach to software development.

The characteristics of the distributed projects
were determined in terms of duration, project size
in person years and the size of the development
team. It turned out that the duration of a distribu-
ted project was rarely longer than 2 years; 78% of
the projects were shorter than that and, of these,
one-third were of less than 1 year. Furthermore,
the size of the project measured in person years
turned out to be either rather large—almost half
of the projects were over 20 person years in
size—or rather small, half of the projects being
under 10 person years in size. Only 11% of the pro-
jects studied fell in the category between 10 and 20

years. The size of the development team showed
the least variation: in most cases (56%) the team
was smaller than 20 software developers. The
results suggest that globally distributed projects
tend to be rather large measured in terms of person
years, while the development team was often kept
quite small.

A closer look at the number of software develo-
pers in the organizations represented by the
respondents reveals that the majority of answers
(67%) were provided by respondents from compa-
nies having more than 100 software developers,
and one-third (33%) of the responses were received
from individuals employed by organizations with
under 100 software developers. These two groups
of organization were studied to detect possible dif-
ferences in their characteristics, and a noteworthy
difference was identified concerning the size of dis-
tributed projects in person years (see Figure 5).

Figure 5 shows that when the number of soft-
ware developers in an organization is under 100
the size of distributed projects is most often (67%)
smaller than 10 person years.

Problems in distributed software development

In the survey, respondents were given the choice of
identifying eight different problem areas. These
problem areas were identified on the basis of the
descriptions found in the literature (Herbsleb et al.,
2001; Mockus and Herbsleb, 2001; Karlsson et al.,
2000; Niederman et al., 1993; Zoran et al., 1995).
Respondents were asked to check all the problems
they had experienced in their projects and to
describe each of the problems identified in more
detail. Respondents were also provided with an

Figure 5 Size of distributed projects and number of software developers

RESEARCH ARTICLE Knowledge and Process Management

112 S. Komi-Sirviö and M. Tihinen

I/6 I/7

that their readiness to change development tools
was quite low; development sites were reported
to be reluctant to change the development tools
they were already familiar with. In one company
it was considered a highly sensitive question which
site had the dominant role in defining which tools
were to be used. Forcing the sites to use identical
tools appeared to make the problem even worse.
The respondents did not have any easy or assured
solutions to offer to solve this issue. Some respon-
dents described how they had had to visit the sites
themselves to be able to clarify what tools were
used, what they were capable of and how the inter-
operability with the various tools and their differ-
ent versions could be achieved without changing
the existing tool configuration.

The respondents also thought about the reasons
for the problems concerning development tools
and the development environment. The obvious
technology-based problem appeared to be aggra-
vated by distance and various human factors. Cul-
tural differences between countries and
organizations were pointed out as a potential pro-
blem factor, along with the lack of communication
and missing face-to-face-meetings; these are likely
to cause information and knowledge deficiencies,
further provoked by the different time zones. Con-
figuration and document management tools, test
environment, and replication and synchronization
of artifacts are critical for distributed software
development and therefore need to be carefully
studied and planned case by case. Obviously, the
most effective stage to address these tool-related
issues is when the distributed software develop-
ment project is set up.

In summary, the solutions disclosed by responde-
nts to overcome slow and unreliable network were:

� changing the development strategy from syn-
chronous to asynchronous and replicating once
a day; and

� increasing the bandwidth between the sites to
improve speed.

In addition to the solutions above, the respon-
dents gave the following practical advice for con-
trolling the tool environment:

� define and document acceptable tools and ver-
sions for the whole project life cycle;

� define configuration and version management
tools and practices;

� get official, explicit approval for the plan from all
parties involved; and

� arrange for the main developer site to take the
lead and responsibility for the tool environment
and for organizing identical tools for all sites.

Communication and contacts

The area ‘communication and contacts’ was
selected as a source of problems for distributed
projects by the majority (74%) of the respondents.
The result itself was not a great surprise but the
reasons stated by respondents for this selection
were interesting. There were two factors repeatedly
mentioned as causing problems with respect to
communications and contacts: cultural differences
(including language skills) and physical distance.

Cultural differences may give rise to misunder-
standings and exacerbate problems in oral
communication. The respondents described that
sometimes the level of language skills alone was
often so low that fluent conversation became
impossible, most particularly telephone confer-
ences. The problems that cultural differences are
likely to generate are introduced in more detail
later in this article.

The survey clarified how the frequency of face-
to-face meetings changed with increasing distance.
It turned out that when the development was done
at a single site, but in different buildings, 88% of
the projects involved having face-to-face meetings
one to three times per week or even every day.
When there were several sites involved either in a
single city or in different cities, the frequency of the
face-to-face meetings dropped, with only 4% hav-
ing weekly meetings. When the sites were situated
in different countries, the most active projects in
terms of communication still had face-to-face meet-
ings, one to three times per a month (48%), but the
rest of the projects had then only one to three times
per year (see Figure 7). This result supports the
respondents’ view that physical distance causes
miscommunication and that face-to-face meetings
really are the best means of communication.

Time zones play a role in globally distributed
projects. Especially when development is distribu-
ted over continents with extensive time differences,
this structure creates challenges and causes practi-
cal problems for projects. The survey results verify
that increase in physical distance increases pro-
blems as well (Herbsleb et al., 2001; Battin et al.,
2001). The time difference being the effective work-
ing days in different time zones reduces both the
willingness—and opportunities—to have meet-
ings. The reduction in the number of project meet-
ings, along with language barriers and cultural
differences (county or company related), causes a
number of problematic situations. Lack of knowl-
edge and misunderstandings are reported by
respondents to have led to redundant work or no
work at all due to mistaken assumptions concerning
who is in charge of different stages in the project

RESEARCH ARTICLE Knowledge and Process Management

114 S. Komi-Sirviö and M. Tihinen

opportunity to identify problems that were not
listed. This ‘other’ category was used by only two
respondents, which gives some confidence that
the proposed classification of problems adequately
covered the key issues associated with the projects
identified by the respondents. In addition to pro-
blem descriptions, respondents were also asked to
describe the solutions they had developed to over-
come the problems encountered and to evaluate the
success of these solutions. The overall distribution
of answers among problem areas is presented in
Figure 6.

Development tools and environment

While the existing technical infrastructure seems to
provide adequate support for distributed software
development, respondents indicated that the devel-
opment environment is not yet mature. Projects are
most often undermined by poor software develop-
ment environments and tools. Thus, tool-related
issues were most commonly experienced as a pro-
blem area, with a selection rate of 81%. The pro-
blems identified were diverse, though two main
problem streams could be clearly extracted, namely
those concerning network connections and the
compatibility of the tools used.

In the case of issues relating to network connec-
tions the specific issues that were identified related
to the reliability and usability of the network being
unsatisfactory. For example, the network connec-
tion was deemed to be too slow, with its reliability
further impaired by occasional server failures. Con-
nections that were too slow were considered to be
not only a source of frustration due to increased

waiting time, but were also reported to cause
usability problems with development tools. One
respondent described the problem as follows:
‘development tools are based on the assumption
that the network is extremely fast’.

The solutions that were adopted to address net-
work problems were varied; one solution was to
increase the bandwidth between the sites, which,
however, failed to have the desired effect on speed.
In this case the problem may not have been the
available bandwidth but rather latency in response
times. In several projects the slowness and unrelia-
bility of the network were successfully reduced
to an acceptable minimum level by changing
the development strategy from a synchronous
approach to an asynchronous one. That is, instead
of having one central database for the project, each
development site had its own local database, and
replication and reconciliation were done once a
day. This time-synchronized resolution may be a
good solution if real-time development is not obli-
gatory. Whether a time-synchronized solution is
favoured or not, the distributed development
environment emphasizes the need for having prop-
er configuration management tools and processes
in place.

Establishing a uniform software development
environment is a challenging task. Not only were
a diverse set of tools reported to cause problems
but also the different versions of a single tool
potentially caused problems as well. As it turned
out respondents are relatively well aware of the cri-
ticality of establishing a compatible environment;
the problem is how such an environment can be
established successfully. Respondents indicated

Figure 6 Problem areas

Knowledge and Process Management RESEARCH ARTICLE

Lessons Learned in Distributed Software Development 113

I/7

that their readiness to change development tools
was quite low; development sites were reported
to be reluctant to change the development tools
they were already familiar with. In one company
it was considered a highly sensitive question which
site had the dominant role in defining which tools
were to be used. Forcing the sites to use identical
tools appeared to make the problem even worse.
The respondents did not have any easy or assured
solutions to offer to solve this issue. Some respon-
dents described how they had had to visit the sites
themselves to be able to clarify what tools were
used, what they were capable of and how the inter-
operability with the various tools and their differ-
ent versions could be achieved without changing
the existing tool configuration.

The respondents also thought about the reasons
for the problems concerning development tools
and the development environment. The obvious
technology-based problem appeared to be aggra-
vated by distance and various human factors. Cul-
tural differences between countries and
organizations were pointed out as a potential pro-
blem factor, along with the lack of communication
and missing face-to-face-meetings; these are likely
to cause information and knowledge deficiencies,
further provoked by the different time zones. Con-
figuration and document management tools, test
environment, and replication and synchronization
of artifacts are critical for distributed software
development and therefore need to be carefully
studied and planned case by case. Obviously, the
most effective stage to address these tool-related
issues is when the distributed software develop-
ment project is set up.

In summary, the solutions disclosed by responde-
nts to overcome slow and unreliable network were:

� changing the development strategy from syn-
chronous to asynchronous and replicating once
a day; and

� increasing the bandwidth between the sites to
improve speed.

In addition to the solutions above, the respon-
dents gave the following practical advice for con-
trolling the tool environment:

� define and document acceptable tools and ver-
sions for the whole project life cycle;

� define configuration and version management
tools and practices;

� get official, explicit approval for the plan from all
parties involved; and

� arrange for the main developer site to take the
lead and responsibility for the tool environment
and for organizing identical tools for all sites.

Communication and contacts

The area ‘communication and contacts’ was
selected as a source of problems for distributed
projects by the majority (74%) of the respondents.
The result itself was not a great surprise but the
reasons stated by respondents for this selection
were interesting. There were two factors repeatedly
mentioned as causing problems with respect to
communications and contacts: cultural differences
(including language skills) and physical distance.

Cultural differences may give rise to misunder-
standings and exacerbate problems in oral
communication. The respondents described that
sometimes the level of language skills alone was
often so low that fluent conversation became
impossible, most particularly telephone confer-
ences. The problems that cultural differences are
likely to generate are introduced in more detail
later in this article.

The survey clarified how the frequency of face-
to-face meetings changed with increasing distance.
It turned out that when the development was done
at a single site, but in different buildings, 88% of
the projects involved having face-to-face meetings
one to three times per week or even every day.
When there were several sites involved either in a
single city or in different cities, the frequency of the
face-to-face meetings dropped, with only 4% hav-
ing weekly meetings. When the sites were situated
in different countries, the most active projects in
terms of communication still had face-to-face meet-
ings, one to three times per a month (48%), but the
rest of the projects had then only one to three times
per year (see Figure 7). This result supports the
respondents’ view that physical distance causes
miscommunication and that face-to-face meetings
really are the best means of communication.

Time zones play a role in globally distributed
projects. Especially when development is distribu-
ted over continents with extensive time differences,
this structure creates challenges and causes practi-
cal problems for projects. The survey results verify
that increase in physical distance increases pro-
blems as well (Herbsleb et al., 2001; Battin et al.,
2001). The time difference being the effective work-
ing days in different time zones reduces both the
willingness—and opportunities—to have meet-
ings. The reduction in the number of project meet-
ings, along with language barriers and cultural
differences (county or company related), causes a
number of problematic situations. Lack of knowl-
edge and misunderstandings are reported by
respondents to have led to redundant work or no
work at all due to mistaken assumptions concerning
who is in charge of different stages in the project

RESEARCH ARTICLE Knowledge and Process Management

114 S. Komi-Sirviö and M. Tihinen

I/8 I/9

face-to-face meetings was highlighted and regarded
as the fastest way to solve a design problem or to
obtain an answer to a specific question. Knowledge
transfer solely via design documents was regarded
as a slow and laborious process. This observation
addresses the need for having a design document
with clear and adequate structure, content and level
of detail to answer the requirements of the distrib-
uted software development.

The strategies used to overcome design
knowledge-related problems do not differ signifi-
cantly from the solutions already discussed. Once
again, face-to-face meetings are regarded as essen-
tial to build a common understanding of terminol-
ogy, approaches and the application area. Kick-off
meetings at the beginning of the project and techni-
cal meetings in the design phase are highly recom-
mended. To attenuate the communication needs, it
is recommended that the project be split into smal-
ler parts and that the responsibility for the parts is
distributed among sites. Moreover, practical guide-
lines for using common databases, tools, and ver-
sion and configuration management were listed as
helpful. In addition, training material available for
all in an electronic format made it easier for engi-
neers to acquire and use available knowledge.

As a summary, the following factors are consid-
ered to be important for improving a design phase:

� face-to-face kick-off and technical meetings to
discuss design rationale, terminology and appli-
cation area issues;

� division of work and responsibility into smaller
units;

� practical guidelines for developing design docu-
ments and using development tools; and

� training material provided in electronic form.

Project management

Project management is identified as a source of pro-
blems by 59% of respondents, making it the fourth
biggest problem area. Project management
challenges are harder to solve in a distributed envir-
onment than in a centralized development environ-
ment. It is noted that in distributed development
significantly more effort is required for up-front
planning and follow-up activities in order to be
able to manage a project successfully. Furthermore,
if this need is not recognized at the beginning of the
project, uncertainty, misunderstandings and man-
agement problems are most likely to appear later.
The manager of a globally distributed project has
to have varied abilities and knowledge, such as cul-
tural knowledge and communication skills in addi-
tion to technical competence and particularly good

project management capabilities. One respondent
gave the following example: ‘In centralized project
management, a project manager may be far away
from development groups, which creates a visibility
problem, and makes it easier to hide possible pro-
blems.’ In other words distribution, for example,
makes time slippage more difficult to estimate
and control due to the decreased visibility. Time
slippage and budget growth are listed as a problem
area in 52% of all responses, which is, naturally, an
issue relating to project management in general.
Generally speaking the budget can be adjusted to
take into account the higher costs involved due to
distribution, for example additional planning activ-
ities, communication, and lead to extra travelling
and meeting costs. However, if the project manager
does not know the software engineers involved in
the development at the other site(s), it becomes dif-
ficult for him or her to assess whether given esti-
mates are realistic or not. In addition to unrealistic
estimates, the project manager may suffer from pro-
blem hiding, which is more likely to take place in a
distributed environment for a longer period of time
than in single-site development. Eventually, this
may cause serious problems in keeping to the sche-
dule and achieving project development goals. One
respondent captures his experience in the following
down-to-earth heuristic: ‘The farther the subcon-
tractor the bigger the delays in the schedule.’

Several other problems are mentioned as well,
such as failure to inform other sites of decisions
or changes that have been made. Difficulties in get-
ting the information as requested were also
brought up, e.g. delays in getting status reports.
Again, the issues refer mainly to knowledge man-
agement and communication-related problems.

Respondents have good experience of solid pro-
ject management practices with strict control as
solutions to the types of project management pro-
blems discussed above. Breaking down project
tasks into weekly delivery results is reported to
be an efficient way to track the progress of develop-
ment projects. Another proven strategy is to plan
development blocks so that they can be indepen-
dently developed by different sites. If this solution
is adopted, a local project manager can take over
some planning and follow-up activities from the
main project manager. In addition, clearly estab-
lished rules, definitions of responsibilities, results
and timetables along with regular meetings and
the management and control of process are
reported to be highly important in a distributed
software development environment.

In summary, the following actions have helped
in the management of distributed software devel-
opment:

RESEARCH ARTICLE Knowledge and Process Management

116 S. Komi-Sirviö and M. Tihinen

being developed. Respondents also mentioned that
distance is likely to makes it easier to hide possible
problems and to withdraw from decision making.

Respondents use various strategies intended to
substitute for the missing face-to-face communica-
tion. The most common solutions applied are tele-
or videoconferences and e-mail. However, even
videoconference is regarded as problematic due
to the connection difficulties that are often experi-
enced. Despite this, communication problems
were not very often linked to the tools used; only
30% of respondents regarded communication tools
as a problem (see Figure 6). It may thus be specu-
lated that if communication tools are experienced
as good enough and communication is still a pro-
blem, better communication tools are not likely to
solve the underlying communication problem.

The foundations for effective communication are
laid at the beginning of the project. Informal team-
building sessions are identified by respondents as
one of the main means of building trust and feel-
ings of togetherness. Becoming thus acquainted
with each other, face-to-face substitutes, such as
e-mail, NetMeeting and tele- and videoconferences,
become ways of improving communication. Some
respondents suggest that project members should
know each other so well that the barrier to contact
becomes non-existent.

Another common and recommended means of
minimizing communication-related problems is to
decrease communication needs and contact points
to a minimum by splitting the project into smaller,
independent units managed by a local manager. If
no local project manager can be appointed, at least
a contact person should be named for answering
questions and acting as a contact point.

In summary, the following strategies are consid-
ered successful in improving communication in
practice:

� informal team-building sessions and face-to-face
meetings, especially at the beginning of the pro-
ject;

� decreasing the need for contacting other team
members by splitting projects into smaller, inde-
pendent and more manageable units; and

� appointing a contact person from each site.

Design knowledge

Design knowledge was the third most frequently
selected problem area by all respondents (67%).
The problem descriptions relating to this issue cov-
ered the following design mediating-related issues:
‘Interpretation of specification, understanding of design
rationale’ and ‘Difficult to transfer knowledge’. For
example, if architecture design is done at a site dif-
ferent from where the implementation takes place,
efforts must be made to ensure that the design
rationales are understood and communicated
across the sites, so as to verify that they are under-
stood correctly. Only a few respondents report pro-
blems originating from partner site incompetence
or insufficient ability to carry out their develop-
ment tasks. The problem descriptions indicate
mainly problems relating to knowledge transfer
and communication. They also noted that knowl-
edge is typically distributed asymmetrically.

Knowledge transfer and sharing was recognized
as a bottleneck especially when the chief architect
and software engineers were working at different
sites, as was often the case. Here again, the role of

Figure 7 Frequency of face-to-face meetings

Knowledge and Process Management RESEARCH ARTICLE

Lessons Learned in Distributed Software Development 115

I/9

face-to-face meetings was highlighted and regarded
as the fastest way to solve a design problem or to
obtain an answer to a specific question. Knowledge
transfer solely via design documents was regarded
as a slow and laborious process. This observation
addresses the need for having a design document
with clear and adequate structure, content and level
of detail to answer the requirements of the distrib-
uted software development.

The strategies used to overcome design
knowledge-related problems do not differ signifi-
cantly from the solutions already discussed. Once
again, face-to-face meetings are regarded as essen-
tial to build a common understanding of terminol-
ogy, approaches and the application area. Kick-off
meetings at the beginning of the project and techni-
cal meetings in the design phase are highly recom-
mended. To attenuate the communication needs, it
is recommended that the project be split into smal-
ler parts and that the responsibility for the parts is
distributed among sites. Moreover, practical guide-
lines for using common databases, tools, and ver-
sion and configuration management were listed as
helpful. In addition, training material available for
all in an electronic format made it easier for engi-
neers to acquire and use available knowledge.

As a summary, the following factors are consid-
ered to be important for improving a design phase:

� face-to-face kick-off and technical meetings to
discuss design rationale, terminology and appli-
cation area issues;

� division of work and responsibility into smaller
units;

� practical guidelines for developing design docu-
ments and using development tools; and

� training material provided in electronic form.

Project management

Project management is identified as a source of pro-
blems by 59% of respondents, making it the fourth
biggest problem area. Project management
challenges are harder to solve in a distributed envir-
onment than in a centralized development environ-
ment. It is noted that in distributed development
significantly more effort is required for up-front
planning and follow-up activities in order to be
able to manage a project successfully. Furthermore,
if this need is not recognized at the beginning of the
project, uncertainty, misunderstandings and man-
agement problems are most likely to appear later.
The manager of a globally distributed project has
to have varied abilities and knowledge, such as cul-
tural knowledge and communication skills in addi-
tion to technical competence and particularly good

project management capabilities. One respondent
gave the following example: ‘In centralized project
management, a project manager may be far away
from development groups, which creates a visibility
problem, and makes it easier to hide possible pro-
blems.’ In other words distribution, for example,
makes time slippage more difficult to estimate
and control due to the decreased visibility. Time
slippage and budget growth are listed as a problem
area in 52% of all responses, which is, naturally, an
issue relating to project management in general.
Generally speaking the budget can be adjusted to
take into account the higher costs involved due to
distribution, for example additional planning activ-
ities, communication, and lead to extra travelling
and meeting costs. However, if the project manager
does not know the software engineers involved in
the development at the other site(s), it becomes dif-
ficult for him or her to assess whether given esti-
mates are realistic or not. In addition to unrealistic
estimates, the project manager may suffer from pro-
blem hiding, which is more likely to take place in a
distributed environment for a longer period of time
than in single-site development. Eventually, this
may cause serious problems in keeping to the sche-
dule and achieving project development goals. One
respondent captures his experience in the following
down-to-earth heuristic: ‘The farther the subcon-
tractor the bigger the delays in the schedule.’

Several other problems are mentioned as well,
such as failure to inform other sites of decisions
or changes that have been made. Difficulties in get-
ting the information as requested were also
brought up, e.g. delays in getting status reports.
Again, the issues refer mainly to knowledge man-
agement and communication-related problems.

Respondents have good experience of solid pro-
ject management practices with strict control as
solutions to the types of project management pro-
blems discussed above. Breaking down project
tasks into weekly delivery results is reported to
be an efficient way to track the progress of develop-
ment projects. Another proven strategy is to plan
development blocks so that they can be indepen-
dently developed by different sites. If this solution
is adopted, a local project manager can take over
some planning and follow-up activities from the
main project manager. In addition, clearly estab-
lished rules, definitions of responsibilities, results
and timetables along with regular meetings and
the management and control of process are
reported to be highly important in a distributed
software development environment.

In summary, the following actions have helped
in the management of distributed software devel-
opment:

RESEARCH ARTICLE Knowledge and Process Management

116 S. Komi-Sirviö and M. Tihinen

I/10 I/11

itself. Detailed documentation can reduce misun-
derstanding, but it is also considered a slow and
cumbersome way of transferring information.
‘Changing requirements’ was ranked as the second
most significant error source by 70% of the respon-
dents. While changes in requirements are likely to
lead to errors in software development in general,
in distributed software development these changes
are even more difficult to manage and communi-
cate due to, for example, the number of stake-
holders and the distance involved. Problems
originating from ‘missing requirements’, which
was ranked third (59%), can be successfully pre-
vented by careful planning and execution of the
requirements engineering process.

The importance of organization size

When further analysing the survey results, differ-
ences were detected between large organizations
(over 500 employees) and small and medium-size
organizations (under 500 employees). Due to the
relatively limited number of answers from small
organizations, it was decided to analyse them
together with medium-size organizations.

When analysing the answers originating from
large organizations, tools and environment-related
issues turned out to be even more emphasized,
by 94% of all answers, as the most damaging fac-
tors likely to undermine the success of distributed
software development projects. Communication-
related problems were still in second position

with 76% of the responses. Issues related to cultural
differences were considered equally important as
project management issues, making up 65% of the
responses. The reasons for these problems were the
same as explained earlier in this paper.

The views of small and medium-size organizations
were slightly different, resulting in a change in
the ranking of the most damaging factors. The
area of design knowledge was assessed as causing
the most trouble by 80% of the respondents. Inter-
estingly enough, in smaller organizations, pro-
blems related to cultural differences were
mentioned by only 30% of the respondents. The
reason for this may be explained by the character-
istics of the related distributed projects: the extent
of distribution was not as great as that of large
organizations. When operating in Europe, cultural
differences were not recognized as a major factor,
as one respondent referred to this issue as follows:
‘Cultural differences are directly proportional to
geographical distance of sites. Inside Europe these
issues are much easier than between different con-
tinents.’

Issues contributing to satisfaction

The survey included a question focusing on the
overall satisfaction with the distributed software
development that had taken place at the respond-
ents’ own company. The following scale was used
to make assessment: completely satisfied, some-
what satisfied, somewhat dissatisfied, dissatisfied

Figure 8 Major sources of software errors

RESEARCH ARTICLE Knowledge and Process Management

118 S. Komi-Sirviö and M. Tihinen

� detailed up-front planning and strict control
activities; and

� splitting the project into sub-projects with local
project managers.

Cultural differences

Cultural differences are mentioned as a proble-
matic issue in 52% of all responses. Table 2 depicts
how cultural and also communication problems
grow while software project distribution extends
over one or several continents.

Different and divergent values and perceptions
may cause misunderstandings and even dissatis-
faction within the project. Depending on the cultur-
al differences, be they related to company culture
or the culture of a country, the same action can
have different interpretations. Cultural differences
create possibilities for misinterpretation, especially
when these cultural differences are not appre-
ciated, let alone understood. One respondent gave
an example of different viewpoints to problem
reporting: at one site it was a regular action origi-
nating from a basic development procedure; at
another site such reporting was understood as an
insult. It is also important to pay attention to how
things are expressed; when communicating in a
foreign language, it is easy to send unintentional
messages. In addition, terms and concepts may
vary between different countries and even within
one country. Commitment to decisions and timeta-
ble is also claimed to vary between countries and
continents.

To alleviate cultural differences, and to reconcile
conceptions, approaches and terminology in use, it
is recommended that actions be taken to enhance
communication inside the project. Face-to-face
communication appears to be an effective means
of lowering thresholds caused by cultural differ-
ences. Training and common sense are also consid-
ered to have an important role in tackling the

cultural differences in distributed projects. As
noted above, kick-off meetings at the beginning of
the project and technical meetings during the
design phase are highly recommended.

To summarize, the following factors are reported
to be important for improving the culture-related
problems associated with distributed development
projects:

� enhanced communication throughout the project
in order to build understanding between the
sites;

� defining and using predefined terminology; and
� improving language skills and developing and

sharing knowledge concerning cultural issues
and customs.

Requirements engineering: the main
software error source

Requirements engineering-related issues were
stressed when respondents were asked to deter-
mine the main sources of software error. The pre-
defined alternatives included various error
sources ranging from design, coding, interfaces,
environment problems and security vulnerabilities
to requirements engineering issues. We anticipated
requirements engineering to be one of the principal
problems (Damian, 2002) and therefore we divided
it into three categories. There was also one open
choice (Other, describe) in the questionnaire, which
was, however, not selected by anyone. The most
significant problem source was marked ‘1’ and
the least significant ‘8’.

Figure 8 illustrates how requirements engineer-
ing is ranked for software errors. ‘Misinterpretation
of requirements’ was ranked to be the most signifi-
cant error source, with 74% of answers ranking it as
1, 2 or 3. Problems also arise from insufficient com-
munication, poor quality of requirement docu-
ments and the requirements engineering process

Table 2 Extent of software development distribution and reported problems

Selected problem areas Extent of software development distribution

Within one Within one continent Between Between three or
countrya (10 replies two continents more continents

(4 replies in total) in total) (8 replies in total) (5 replies in total)

Communication—contacts 3 7 5 4
Communication—tool 1 2 4 1
Cultural differences 1 3 7 4

aAlthough four replied that their project distribution was carried out within one country, two of them had subcontractors in a different
country or countries.

Knowledge and Process Management RESEARCH ARTICLE

Lessons Learned in Distributed Software Development 117

I/11

itself. Detailed documentation can reduce misun-
derstanding, but it is also considered a slow and
cumbersome way of transferring information.
‘Changing requirements’ was ranked as the second
most significant error source by 70% of the respon-
dents. While changes in requirements are likely to
lead to errors in software development in general,
in distributed software development these changes
are even more difficult to manage and communi-
cate due to, for example, the number of stake-
holders and the distance involved. Problems
originating from ‘missing requirements’, which
was ranked third (59%), can be successfully pre-
vented by careful planning and execution of the
requirements engineering process.

The importance of organization size

When further analysing the survey results, differ-
ences were detected between large organizations
(over 500 employees) and small and medium-size
organizations (under 500 employees). Due to the
relatively limited number of answers from small
organizations, it was decided to analyse them
together with medium-size organizations.

When analysing the answers originating from
large organizations, tools and environment-related
issues turned out to be even more emphasized,
by 94% of all answers, as the most damaging fac-
tors likely to undermine the success of distributed
software development projects. Communication-
related problems were still in second position

with 76% of the responses. Issues related to cultural
differences were considered equally important as
project management issues, making up 65% of the
responses. The reasons for these problems were the
same as explained earlier in this paper.

The views of small and medium-size organizations
were slightly different, resulting in a change in
the ranking of the most damaging factors. The
area of design knowledge was assessed as causing
the most trouble by 80% of the respondents. Inter-
estingly enough, in smaller organizations, pro-
blems related to cultural differences were
mentioned by only 30% of the respondents. The
reason for this may be explained by the character-
istics of the related distributed projects: the extent
of distribution was not as great as that of large
organizations. When operating in Europe, cultural
differences were not recognized as a major factor,
as one respondent referred to this issue as follows:
‘Cultural differences are directly proportional to
geographical distance of sites. Inside Europe these
issues are much easier than between different con-
tinents.’

Issues contributing to satisfaction

The survey included a question focusing on the
overall satisfaction with the distributed software
development that had taken place at the respond-
ents’ own company. The following scale was used
to make assessment: completely satisfied, some-
what satisfied, somewhat dissatisfied, dissatisfied

Figure 8 Major sources of software errors

RESEARCH ARTICLE Knowledge and Process Management

118 S. Komi-Sirviö and M. Tihinen

I/12 I/13

involved with distributed software development
and had no experience of it. Despite the fact that
the size of the sample is rather small the sampling
itself is relevant in the context of this study.

While observing the software development dis-
tribution (refer to Table 1 and Figure 3), it is notable
that replies were almost equally divided between
those that addressed concerns relating to the devel-
opment of software in a distributed European set-
ting (51.9% of responses) and those that involved
distribution between different continents (Europe
and the USA and Europe and Asia), the latter con-
tributing 48.1% of responses. However, it has to be
acknowledged that replies represent Finnish
experience of software distribution to a large
extent. This being the case it is reasonable to pon-
der to what extent the results are generalizable.
Recently, Prikladnicki et al. (2003) analysed 22
interviews from one Brazilian and one US-based
company which had engaged in distributed soft-
ware development both locally and globally. In
their study the conclusions of the relevant proble-
matic issues are consistent with the problem state-
ments of this survey. They name language barriers,
communication, cultural differences, context shar-
ing, trust acquisition between teams, requirements
engineering, software development process, soft-
ware configuration, and knowledge management
in general, as problem areas in which projects are
suffering.

CONCLUSIONS

The challenges of distributed software develop-
ment must be recognized when aiming at diminish-
ing the risk of development failure and maximizing
the possibilities for success. The results of this sur-
vey put forward and clarify the target areas for
improvement regarding distributed software
development processes and suggest appropriate
work practices that have been tested in industrial
environment.

Software development is very knowledge-inten-
sive field of engineering. In each development
phase efficient knowledge creation, knowledge
transfer, knowledge storing and/or and knowl-
edge-sharing activities are vital. The results of this
survey point out that previously complex software
development processes are further complicated by
the distribution of the development process over
multiple sites. Diverse software development and
management knowledge needs and knowledge-
capturing and transfer-related problems were iden-
tified as being important. In the survey, misunder-
standings, ignorance and uncertainty are examples

of common words respondents use to describe ori-
gins for problems related to requirements engineer-
ing, development tools and environment, design
knowledge or project management.

Survey results show that the most problematic
area is related to software development tools and
environment, and more specifically the incompat-
ibility of tools and versions used by the different
development sites. This problem is most empha-
sized by large organizations employing more than
500 persons. Communication problems appear to
be extremely common within all organizations; in
all, this problem area was ranked as the second
toughest. However, a closer analysis of the
responses shows that the role of communication
is even greater than it appears at first sight. When
studying the reasons behind other problems, the
lack or poor quality of communication was often
mentioned as a root cause. When requesting the
three areas where respondents would need support
in distributed software development one respon-
dent condensed his answer to the following:
‘communication, communication, communication’.
When the efficient knowledge-capturing and shar-
ing mechanism (in the form of a face-to-face meet-
ing and personal contacts) is hampered by distance
and time differences supportive and substitute
solutions are self-evidently vital. Results of the
planning phase of a distributed development pro-
ject are decisive what comes to transferring knowl-
edge between sites. Because knowledge transfer is
problematic attempts should be made to minimize
it. When the project is divided into independently
developed and managed units whose interfaces are
clearly defined the needs, for example, for transfer-
ring design knowledge during development
should decrease.

When knowledge transfer has to take place,
appointing a contact person at each site is a means
of controlling communication both between sites
and within site(s). Numerous communication
points at each site raise the risk that knowledge
transfer becomes chaotic and uneven.

Requirements engineering and management
appeared highly problematic for distributed
development projects, causing many errors.
Requirements engineering is a large and multidis-
ciplinary process and traditionally is performed at
the beginning of the system development life cycle
(Royce, 1970). However, in the development of
large complex systems it has been realized that it
is impossible to define an accurate set of require-
ments that are likely to remain stable throughout
the months or years of development (Dorfman,
1990). Requirements engineering thus becomes an
incremental and iterative process, performed in

RESEARCH ARTICLE Knowledge and Process Management

120 S. Komi-Sirviö and M. Tihinen

and not applicable. The results yielded by this
question were very interesting: none of the respon-
dents were completely satisfied, while only 7%
were dissatisfied. The majority of respondents
(63%) were somewhat satisfied, most of them
representing large organizations with over 500
employees. The overall satisfaction rate of respon-
dents from small and medium-size organizations
was slightly lower and evenly scattered from some-
what satisfied to dissatisfied. However, the results
show that despite the risks and the problems dis-
cussed above, the respondents still perceive distri-
bution to be appropriate and, as such, an important
and fruitful development strategy.

The overall satisfaction and the issues behind
satisfaction or dissatisfaction deserve a more
detailed investigation. To clarify possible reasons
for this result, the group who expressed themselves
to be somewhat satisfied was selected for further
analysis. First, the selected answers were compared
with the related project duration (by calendar
years) and size by person months. However, no
clear relationship could be distinguished, although
a clear relationship between satisfaction and size of
project by the number of persons involved was
detected. Figure 9 depicts this relationship. The
most satisfied (59%) respondents were involved
with projects that employed fewer than 20 persons,
while the satisfaction diminishes to 12% as the
number of developers rises to over 50. Figure 9
also shows a similar outcome for the categories
somewhat dissatisfied and dissatisfied (both classes
grouped into the ‘Dissatisfied’ class in Figure 9:

57% of dissatisfied responses originate from pro-
jects involving over 50 persons.

The analysis suggests that the number of persons
involved in the project is a significant determinant
for the success of distributed software develop-
ment. Another implication is that since communi-
cation-related issues are an important factor
determining overall satisfaction then, if the number
of persons involved in the project is under 20, this
is likely to provide better teamwork-based thinking
and practices during the course of the distributed
software project. This outcome is worth consider-
ing when planning distributed project develop-
ment, e.g. when making decisions about splitting
and conducting project tasks into independent
and rational parts at each distributed site.

Limitations of the results

The moderate sample size of 27 allows only limited
analysis and study of interdependencies between
variables. The possibilities for a more fine-grained
analysis are inevitably to some degree limited.
The best response rate was achieved when using
regular mail (the questionnaire was also sent out
using e-mail). The questionnaire was sent to compa-
nies that were either known or assumed to have dis-
tributed their software development. The mailed
questionnaire was received by 101 recipients in 44
companies and of these recipients 24 completed
the survey. In total 31 replies were retrieved, of
which four were withdrawn from the sample size
due to the fact that these respondents were not

Figure 9 Overall satisfaction versus size of a project

Knowledge and Process Management RESEARCH ARTICLE

Lessons Learned in Distributed Software Development 119

I/13

involved with distributed software development
and had no experience of it. Despite the fact that
the size of the sample is rather small the sampling
itself is relevant in the context of this study.

While observing the software development dis-
tribution (refer to Table 1 and Figure 3), it is notable
that replies were almost equally divided between
those that addressed concerns relating to the devel-
opment of software in a distributed European set-
ting (51.9% of responses) and those that involved
distribution between different continents (Europe
and the USA and Europe and Asia), the latter con-
tributing 48.1% of responses. However, it has to be
acknowledged that replies represent Finnish
experience of software distribution to a large
extent. This being the case it is reasonable to pon-
der to what extent the results are generalizable.
Recently, Prikladnicki et al. (2003) analysed 22
interviews from one Brazilian and one US-based
company which had engaged in distributed soft-
ware development both locally and globally. In
their study the conclusions of the relevant proble-
matic issues are consistent with the problem state-
ments of this survey. They name language barriers,
communication, cultural differences, context shar-
ing, trust acquisition between teams, requirements
engineering, software development process, soft-
ware configuration, and knowledge management
in general, as problem areas in which projects are
suffering.

CONCLUSIONS

The challenges of distributed software develop-
ment must be recognized when aiming at diminish-
ing the risk of development failure and maximizing
the possibilities for success. The results of this sur-
vey put forward and clarify the target areas for
improvement regarding distributed software
development processes and suggest appropriate
work practices that have been tested in industrial
environment.

Software development is very knowledge-inten-
sive field of engineering. In each development
phase efficient knowledge creation, knowledge
transfer, knowledge storing and/or and knowl-
edge-sharing activities are vital. The results of this
survey point out that previously complex software
development processes are further complicated by
the distribution of the development process over
multiple sites. Diverse software development and
management knowledge needs and knowledge-
capturing and transfer-related problems were iden-
tified as being important. In the survey, misunder-
standings, ignorance and uncertainty are examples

of common words respondents use to describe ori-
gins for problems related to requirements engineer-
ing, development tools and environment, design
knowledge or project management.

Survey results show that the most problematic
area is related to software development tools and
environment, and more specifically the incompat-
ibility of tools and versions used by the different
development sites. This problem is most empha-
sized by large organizations employing more than
500 persons. Communication problems appear to
be extremely common within all organizations; in
all, this problem area was ranked as the second
toughest. However, a closer analysis of the
responses shows that the role of communication
is even greater than it appears at first sight. When
studying the reasons behind other problems, the
lack or poor quality of communication was often
mentioned as a root cause. When requesting the
three areas where respondents would need support
in distributed software development one respon-
dent condensed his answer to the following:
‘communication, communication, communication’.
When the efficient knowledge-capturing and shar-
ing mechanism (in the form of a face-to-face meet-
ing and personal contacts) is hampered by distance
and time differences supportive and substitute
solutions are self-evidently vital. Results of the
planning phase of a distributed development pro-
ject are decisive what comes to transferring knowl-
edge between sites. Because knowledge transfer is
problematic attempts should be made to minimize
it. When the project is divided into independently
developed and managed units whose interfaces are
clearly defined the needs, for example, for transfer-
ring design knowledge during development
should decrease.

When knowledge transfer has to take place,
appointing a contact person at each site is a means
of controlling communication both between sites
and within site(s). Numerous communication
points at each site raise the risk that knowledge
transfer becomes chaotic and uneven.

Requirements engineering and management
appeared highly problematic for distributed
development projects, causing many errors.
Requirements engineering is a large and multidis-
ciplinary process and traditionally is performed at
the beginning of the system development life cycle
(Royce, 1970). However, in the development of
large complex systems it has been realized that it
is impossible to define an accurate set of require-
ments that are likely to remain stable throughout
the months or years of development (Dorfman,
1990). Requirements engineering thus becomes an
incremental and iterative process, performed in

RESEARCH ARTICLE Knowledge and Process Management

120 S. Komi-Sirviö and M. Tihinen

I/14 I/15

Royce WW. 1970. Managing the development of large
software systems. Proceedings of IEEE Wescon. Rep-
rinted in Proceedings of the 9th International Conference
on Software Engineering (1987), Los Alamitos, CA.
IEEE Computer Society Press; 328–338.

Surjaputra R, Maheswari P. 1999. A distributed software
project management tool. In IEEE Proceedings of the 8th
International Workshops on Enabling Technologies: Infra-
structure for Collaborative Enterprises, USA.

Van der Hoeak A, Heimbigner D, Wolf AL. 1996.
Peer- to-peer repository for distributed configuration
management. In Proceedings of the 18th International
Conference on Software Engineering (ICSE ’96), Berlin;
308–317.

Zoran M, Berry A, Bond A, Raymond K. 1995. Support-
ing business contracts in open distributed systems. In
Proceedings of SDNE ’95. IEEE Computer Society Press:
Whistler, Canada.

RESEARCH ARTICLE Knowledge and Process Management

122 S. Komi-Sirviö and M. Tihinen

parallel with other system development activities,
such as designing and implementing, which is
why misinterpreted, changing and missing require-
ments are likely to be the main sources for software
errors according to the industry feedback.

Based on the analysis described in this article,
there is no doubt about the message of the study:
successful distributed software development
requires both structured—and disciplined—soft-
ware engineering and knowledge management
solutions embodying, most particularly, communi-
cation management and the utilization of effective
substitutes for face-to-face communication. A care-
ful execution of project start-up activities—includ-
ing planning (splitting tasks, schedule, delivers),
exact determination of common rules, responsibil-
ities, tools used and kick-off sessions—can greatly
contribute to a successful implementation. By
understanding the nature and demands of distrib-
uted software development in depth, software
organizations are able to reduce the risk of failure
and to make their operations successful.

ACKNOWLEDGEMENTS

This article is based on a survey conducted as a part
of the Knots-Q-program (Knowledge-Centered
Tools and Methods for Software Production Qual-
ity; see Knots-Q Project, 2004), which is funded by
the Finnish Academy and VTT, the Technical
Research Centre of Finland. The authors are grate-
ful for the voluntary help provided by the repre-
sentatives of the various organizations involved
in this study.

REFERENCES

Aversano L, De Lucia A, Gaeta M, Ritrovato P. 2003.
Genesis, 2003: a flexible and distributed environment
for cooperative software engineering. In Proceedings of
the Fifteenth International Conference on Software Engi-
neering and Knowledge Engineering (SEKE), 497–502.

Battin RD, Crocker R, Kreidler J, Subramanian K. 2001.
Leveraging resources in global software development.
IEEE Software March/April: 70–77.

Damian D. 2002. The study of requirements engineering
in global software development: as challenging as
important. In Proceedings of Global Software Develop-
ment, Workshop #9, organized in the International Con-
ference on Software Engineering (ICSE) 2002, Orlando,
FL.

De Souza CRB, Basaveswara SD, Redmiles DF. 2002. Sup-
porting global software development with event notifi-
cation servers. In Proceedings of Global Software
Development, Workshop #9, organized in the Interna-

tional Conference on Software Engineering (ICSE)
2002, Orlando, FL.

Dorfman M. 1990. System and software requirements
engineering. In IEEE System and Software Requirements
Engineering, Thayer RH, Dorfman M (eds). Tutorial.
IEEE Software Computer Society Press: Los Alamos,
CA.

Ebert C, De Neve P. 2001. Surviving global software
development. IEEE Software 18(2): 62–69.

Gaeta M, Pierluigi R. 2002. Generalised environment for
process management in cooperative software engineer-
ing. In Proceedings of the 26th Annual International Com-
puter Software and Applications Conference (COMPSAC),
2002. Oxford, UK; 1049–1053.

Gianpalo C, Ghezzi C. 1999. Design and implementation
of PROSYT: a distributed process support system. In
IEEE Proceedings of the 8th International Workshops on
Enabling Technologies: Infrastructure for Collaborative
Enterprises, Stanford, CA; 32–39.

Gorton I, Motwani S. 1996. Issues in co-operative soft-
ware engineering using globally distributed teams.
Information and Software Technology 38: 647–655.

Herbsleb J, Moitra D. 2001. Global software develop-
ment. IEEE Software 18(2): 16–20.

Herbsleb JD, Mockus A, Finholt TA, Grinter RE. 2001. An
empirical study of global software development: dis-
tance and speed. In Proceedings of the 23rd International
Conference on Software Engineering (ICSE), Toronto;
81–90.

Karlsson E-A, Andersson L-G, Leion P. 2000. Daily build
and feature development in large distributed projects.
In Proceedings of the International Conference on Software
Engineering (ICSE). ACM Press: Limerick, Ireland; 649–
658.

Knots-Q Project. 2004. VTT Electronics. http://
www.vtt.fi/ele/research/soh/projects/knots-q/index.
htm [23 February 2005].

Kötting B, Maurer FA. 1999. Concept for supporting the
formation of virtual corporations through negotiation.
In IEEE Proceedings of the 8th International Workshops on
Enabling Technologies: Infrastructure for Collaborative
Enterprises, Stanford, CA; 40–47.

Lam HE, Maheshwari P. 2001. Task and team manage-
ment in the distributed software project management
tool. In Proceedings of the 25th Annual International Com-
puter Software and Applications Conference (COMPSAC),
Chicago, IL, 401–408.

Lloyd WJ, Rosson MB, Arthur JD. 2002. Effectiveness of
elicitation techniques in distributed requirements engi-
neering. In Proceedings of the IEEE Joint International
Conference on Requirements Engineering (RE’02). 311–
318.

Mockus A, Herbsleb J. 2001. Challenges of global
software development. In Proceedings of the 7th IEEE
International Software Metrics Symposium (METRICS
2001), 4–6 April, London. IEEE Computer Society;
182–184.

Niederman F, Beise CM, Beranek PM. 1993. Facilitation
issues in distributed group support systems. In Pro-
ceedings of Conference on Computer Personnel Research.
ACM Press: New York; 299–312.

Press L. 1993. Software export from developing nations.
IEEE Computer December: 62–67.

Prikladnicki R, Audy JLN, Evaristo R. 2003. Global
software development in practice lessons learned.
Journal of Software Process Improvement and Practice
8(4): 267–279.

Knowledge and Process Management RESEARCH ARTICLE

Lessons Learned in Distributed Software Development 121

I/15

Royce WW. 1970. Managing the development of large
software systems. Proceedings of IEEE Wescon. Rep-
rinted in Proceedings of the 9th International Conference
on Software Engineering (1987), Los Alamitos, CA.
IEEE Computer Society Press; 328–338.

Surjaputra R, Maheswari P. 1999. A distributed software
project management tool. In IEEE Proceedings of the 8th
International Workshops on Enabling Technologies: Infra-
structure for Collaborative Enterprises, USA.

Van der Hoeak A, Heimbigner D, Wolf AL. 1996.
Peer- to-peer repository for distributed configuration
management. In Proceedings of the 18th International
Conference on Software Engineering (ICSE ’96), Berlin;
308–317.

Zoran M, Berry A, Bond A, Raymond K. 1995. Support-
ing business contracts in open distributed systems. In
Proceedings of SDNE ’95. IEEE Computer Society Press:
Whistler, Canada.

RESEARCH ARTICLE Knowledge and Process Management

122 S. Komi-Sirviö and M. Tihinen

PAPER II

How to build and sustain
a measurement data

management environment
 in a SME

In: Proceedings of Software Measurement
European Forum (SMEF 2006). Rome, Italy.

Pp. 225–236.
Copyright 2006 SMEF.

Reprinted with permission from the publisher.

II/1

 Published in the Proceedings of

 225

How to build and sustain a measurement data management

environment in a SME

Maarit Tihinen, Janne Järvinen

Abstract
Measurement is seen as a valuable way to get information and knowledge of a company’s

software development processes and possible improvement needs. However, measurement is

still experienced as a problematic and troublesome activity in the software production. This

paper shows that there are numerous standards, practices, methodologies and approaches

affecting the measurement process in an organisation. The number of possibilities may

appear confusing, especially because SMEs (Small and Medium-sized Enterprises) cannot

afford wrong decisions. In addition, there are many other challenges for building and

sustaining a measurement environment in the SME organisations; for example, limited

resources have been tied to “the real work”, and the added value of the measurements is

difficult to prove.

The purpose of this paper is to describe elements of measurement data management

(MDM) which have to be considered when building and sustaining a measurement framework

in a SME. This paper introduces step by step how MDM framework was built and also what

kind of experiences – weaknesses and strengths – were observed when MDM was built and

sustained in a SME. Shortly, MDM covers both organisation and project level processes,

tools and solutions for defining metrics, gathering, controlling and analysing measurement

data, aiming at a better understanding of processes and existing practices or improving them.

1. Introduction to the MDM framework
The measurement is still experienced as a problematic and troublesome activity in the

software production [1]. This paper shows that there are numerous standards, practices,

methodologies and approaches that affect the measurement process in an organisation.

Amount of possibilities may feel confusing, especially because SMEs cannot afford wrong

decisions. Also, there are many other challenges for building and sustaining measurement

environment in the SME organisations, for example, limited resources have been tied to “the

real work”, and gained add-value of measurements is difficult to prove. This paper proves

that it’s possible to build and sustain a successful measurement data management (MDM)

environment for a SME organisation.

This paper introduces, step by step, how the MDM framework was built and also what

kind of experiences – weaknesses and strengths – have been observed when MDM has been

built and sustained in a SME. The MDM framework is introduced with a case study where the

MDM solution has been successfully implemented at Solid Information Technology Corp.

[2], henceforth Solid. Solid is a SME that provides an advanced data management platform

for embedded products, such as network infrastructure, fleet management, consumer

electronics and digital home. VTT, Technical Research Centre of Finland [3], has experience

in applying software measurements in several process improvement projects with national

and international companies in embedded software engineering area. This paper is structured

as follows. In this section MDM framework processed by VTT and its theoretical background

are considered. In the second section, a case study where MDM has been applied for SME

organisation is introduced by following an identified list of MDM issues. At the end of the

paper, central observations and experiences are concluded.

II/1

 Published in the Proceedings of

 225

How to build and sustain a measurement data management

environment in a SME

Maarit Tihinen, Janne Järvinen

Abstract
Measurement is seen as a valuable way to get information and knowledge of a company’s

software development processes and possible improvement needs. However, measurement is

still experienced as a problematic and troublesome activity in the software production. This

paper shows that there are numerous standards, practices, methodologies and approaches

affecting the measurement process in an organisation. The number of possibilities may

appear confusing, especially because SMEs (Small and Medium-sized Enterprises) cannot

afford wrong decisions. In addition, there are many other challenges for building and

sustaining a measurement environment in the SME organisations; for example, limited

resources have been tied to “the real work”, and the added value of the measurements is

difficult to prove.

The purpose of this paper is to describe elements of measurement data management

(MDM) which have to be considered when building and sustaining a measurement framework

in a SME. This paper introduces step by step how MDM framework was built and also what

kind of experiences – weaknesses and strengths – were observed when MDM was built and

sustained in a SME. Shortly, MDM covers both organisation and project level processes,

tools and solutions for defining metrics, gathering, controlling and analysing measurement

data, aiming at a better understanding of processes and existing practices or improving them.

1. Introduction to the MDM framework
The measurement is still experienced as a problematic and troublesome activity in the

software production [1]. This paper shows that there are numerous standards, practices,

methodologies and approaches that affect the measurement process in an organisation.

Amount of possibilities may feel confusing, especially because SMEs cannot afford wrong

decisions. Also, there are many other challenges for building and sustaining measurement

environment in the SME organisations, for example, limited resources have been tied to “the

real work”, and gained add-value of measurements is difficult to prove. This paper proves

that it’s possible to build and sustain a successful measurement data management (MDM)

environment for a SME organisation.

This paper introduces, step by step, how the MDM framework was built and also what

kind of experiences – weaknesses and strengths – have been observed when MDM has been

built and sustained in a SME. The MDM framework is introduced with a case study where the

MDM solution has been successfully implemented at Solid Information Technology Corp.

[2], henceforth Solid. Solid is a SME that provides an advanced data management platform

for embedded products, such as network infrastructure, fleet management, consumer

electronics and digital home. VTT, Technical Research Centre of Finland [3], has experience

in applying software measurements in several process improvement projects with national

and international companies in embedded software engineering area. This paper is structured

as follows. In this section MDM framework processed by VTT and its theoretical background

are considered. In the second section, a case study where MDM has been applied for SME

organisation is introduced by following an identified list of MDM issues. At the end of the

paper, central observations and experiences are concluded.

II/2 II/3

 Published in the Proceedings of

 227

Organisational level; Software Process Quality: The software process improvement

activities can be considered from three viewpoints: 1) quality assurance, 2) assessment

models and 3) strategic software process improvement (Strategic SPI) models, adopted from

[12][13][14][15].

Quality assurance covers the organisation’s certified quality management systems (QMS),

such as ISO9001 [16] or TL9000 [17], but also the uncertified organisational quality

assurance systems or practices and process descriptions. The most important point of those

practices and systems is to harmonize both the organisational and project level activities and

processes through a company. In addition, there are several improvement methods available

that recommend the use of measurements to evaluate the usefulness of the improvements.

Examples of such methods are QIP [10], SigSigma [18], Pr2imer [19] and PROFES [20].

Software processes can be evaluated by using SW-CMM [21], CMMI [22] or ISO/EIC

15504 [23], for example. The models guide the developers in gaining control of their

development and maintenance processes and in evolving towards a culture of software

engineering and management excellence. The maturity structure helps software professionals

and managers to identify areas where improvement actions will be the most fruitful. While

quality management systems identify improvement approaches, continuous improvement

models (like CMMI or SPICE) identify practices that should exist in the organisation [24].

The assessments are typically used for finding process areas or activities that should be

systematically improved.

The strategic software process improvement (strategic SPI) models can be used for

identifying how the improvement issues should be implemented in a target organisation.

From measurement view of point, the strategic SPI also covers means like data mining or

ODC analysing [25] that can be used for obtaining deeper knowledge of current practices and

processes.

Measurement Data Management (MDM) framework: The main goal of MDM is to

integrate both project and organisation level measurement activities for producing an

environment of comprehensive measurement utilisation. The following MDM framework

issues should be taken into consideration one by one while building an organisation specific

solution:

• Management Commitment.

• Appropriate Practices and Processes.

• Used Tools and Techniques.

• Communicated Quality Goals.

• Selected and Updated Metrics.

• Analysed Measurement Data.

• Feedback Procedures.

• Improvement Actions.

• Knowledge Packaging and Dissemination.

To be successful, a measurement utilisation requires a firm support – commitment - from

the organisation’s management. The organisation strategy and vision, and the chosen quality

assurance or assessment models influence the appropriate practices and processes, also while

describing or defining them. Also, commitment to measurement throughout the organisation

is of utmost importance, and can be ensured by management activities and decisions.

 Published in the Proceedings of

 226

MDM covers both organisation and project level processes, tools and solutions for

defining metrics, gathering, controlling and analysing measurement data, aiming at a better

understanding of processes and existing practices or improving them. MDM is a framework

enabling several approaches, techniques or standardised processed for measuring by

indicating the most vital aspects from the measurements point of view. The importance of the

measurements culminates in activities related to software product quality (project level) and

software process improvement (organisation level), shown in Figure 1.

Measurement Data Management (MDM)

Management

Commitment

Appropriated Practices

and Processes

Used Tools and

Techniques

Communicated

Quality Goals

 Selected and Updated

Metrics

Analyzed Measurement

Data

Feedback Procedures

Improvement Actions

Knowledge Packaging

and Dissemination

Software Quality

Fundamentals:

 Software

Engineering

Culture and Ethics

 Value and Costs of

Quality

 Models and

Quality

Characteristics

 Quality

Improvement

Practical

Considerations:

 Application

Quality

Requirements

 Defect

Characterization

 Software Quality

Management

Techniques

 Software Quality

Measurement

Software Quality

Management

Processes:

 Software Quality

Assurance

 Verification and

Validation

 Reviews and

Audits

Strategic Software

Process

Improvement

(Strategic SPI):

 General SPI

models

 IDEAL process

model

 Data mining

Continuous

Improvement

Models:

 SW-CMM

 CMMI

 SPICE ISO/IEC

15504

Quality Assurance:

 ISO 9000 Standard

Family

(e.g., ISO 9001)

 TL9000 Quality

Management

System

 Six Sigma

Project Level:

SW Quality

Organizational Level:

SW Process Improvement

Figure 1: Elements of the MDM

Project level; Software Product Quality: At the project level, many practices and

processes are defined in separate standards. The SWEBOK [4] introduces that Software

Quality Key Area can be divided to the following topics: 1) software quality fundamentals, 2)

software quality management process and 3) practical considerations. In addition, the

SWEBOK emphasizes that software quality is a ubiquitous concern in software engineering.

The ISO/IEC 9126 standard [5] defines six quality characteristics and several sub-

characteristics with associated metrics and describes a software product evaluation process

model, the ISO/IEC 12207 standard [6] defines software quality management processes

(quality assurance process, verification process, validation process, review process, audit

process), and the ISO/IEC 15288 [7]defines life cycle processes of system engineering, for

example. In addition, The IEEE 1061 standard [8] is a systematic approach to establishing

quality requirements and identifying, implementing, analysing and validating the process and

product of software quality metrics for a software system, while the ISO/IEC 15939 standard

[9] comprehensively determines the software measurement process in software engineering.

Furthermore, the project level practices and processes reflect the decisions that have been

made at the organisation level, e.g., the chosen and certified quality management system,

conformed maturity requirements of selected assessment models or adopted measurement

approach. For example, the GQM paradigm [10] [11] represents a systematic approach for

tailoring and integrating the objectives of an organisation into measurement goals and their

stepwise refinement into measurable values.

II/3

 Published in the Proceedings of

 227

Organisational level; Software Process Quality: The software process improvement

activities can be considered from three viewpoints: 1) quality assurance, 2) assessment

models and 3) strategic software process improvement (Strategic SPI) models, adopted from

[12][13][14][15].

Quality assurance covers the organisation’s certified quality management systems (QMS),

such as ISO9001 [16] or TL9000 [17], but also the uncertified organisational quality

assurance systems or practices and process descriptions. The most important point of those

practices and systems is to harmonize both the organisational and project level activities and

processes through a company. In addition, there are several improvement methods available

that recommend the use of measurements to evaluate the usefulness of the improvements.

Examples of such methods are QIP [10], SigSigma [18], Pr2imer [19] and PROFES [20].

Software processes can be evaluated by using SW-CMM [21], CMMI [22] or ISO/EIC

15504 [23], for example. The models guide the developers in gaining control of their

development and maintenance processes and in evolving towards a culture of software

engineering and management excellence. The maturity structure helps software professionals

and managers to identify areas where improvement actions will be the most fruitful. While

quality management systems identify improvement approaches, continuous improvement

models (like CMMI or SPICE) identify practices that should exist in the organisation [24].

The assessments are typically used for finding process areas or activities that should be

systematically improved.

The strategic software process improvement (strategic SPI) models can be used for

identifying how the improvement issues should be implemented in a target organisation.

From measurement view of point, the strategic SPI also covers means like data mining or

ODC analysing [25] that can be used for obtaining deeper knowledge of current practices and

processes.

Measurement Data Management (MDM) framework: The main goal of MDM is to

integrate both project and organisation level measurement activities for producing an

environment of comprehensive measurement utilisation. The following MDM framework

issues should be taken into consideration one by one while building an organisation specific

solution:

• Management Commitment.

• Appropriate Practices and Processes.

• Used Tools and Techniques.

• Communicated Quality Goals.

• Selected and Updated Metrics.

• Analysed Measurement Data.

• Feedback Procedures.

• Improvement Actions.

• Knowledge Packaging and Dissemination.

To be successful, a measurement utilisation requires a firm support – commitment - from

the organisation’s management. The organisation strategy and vision, and the chosen quality

assurance or assessment models influence the appropriate practices and processes, also while

describing or defining them. Also, commitment to measurement throughout the organisation

is of utmost importance, and can be ensured by management activities and decisions.

II/4 II/5

 Published in the Proceedings of

 229

The measurement data is automatically collected from version management system (Lotus

Notes and Perforce), project management system (Planmill) and defect management system

(Bugzilla). Solid’s measurement environment covers tools that enable automatic data

collection shown in Figure 2.

Figure 2: Solid Measurement Environment

2.4. Communicated quality goals
According to the Solid strategy, the following quality goals were identified to be the most

important to Solid’s success from R&D point of view:

• Product Reliability.

• SW Development Predictability.

• Product Portability.

Solid’s SPI board set the quality goals, thus the link between the business strategy and the

quality goals were ensured. Also other quality goals were identified and those are to be

implemented during the next iterations of the measurements improvements. A specific

interest was to build traceable links between business goals and everyday activities of R&D

engineers. This made quality goals understandable and meaningful.

2.5. Selected and updated metrics
The GQM (Goal-Oriented-Measurement) paradigm was used for defining metrics for each

identified quality goal. The following table (Table 1) describes what kinds of metrics were

defined for monitoring the “Product Reliability” quality goal, for example.

 Published in the Proceedings of

 228

While tools and techniques should be taken into account while describing processes and

activities, they should also be studied from the viewpoint of measurements: e.g., tools can

enable automatic data collection and analysing. In addition, a comprehensive solution may

require needs for purchasing new tools or techniques. Needs for manual data collection and,

thus, needs for new templates or modifications to the available templates, etc. should also be

taken into account. Furthermore, maybe the most challenging aspects in measurement

environment are how to put the feedback procedures, improvement actions and knowledge

sharing into practice. It is important to realise that MDM is a general framework and a

detailed solution should be built step-by-step and adapted to organisation’s own needs and

quality goals communicated both on the project and the organisational level.

2. Case study – applying MDM for a SME environment
In this section a case study of how MDM was applied in a SME organisation is described in

detail. Each of the MDM framework issues has been studied when building the measurement

environment in Solid.

2.1. Management commitment
Generally, a successful measurement program requires strong commitment from the

organisation’s management. In Solid, there was a SPI (software process improvement) board

that set quality goals for measurements. The SPI board consisted of the CTO (Chief

Technology Officer), Director of R&D, Lead Architect and the SPI manager. The

measurement strategy was derived from Solid’s business strategy and defined by the SPI

board as follows: “Measurement strategic intent is to collect and use measures that help us to

determine and maintain the quality of our products and to continuously monitor that our SW

development processes are effective and efficient”.

2.2. Appropriate practices and processes
In Solid, all process descriptions, general practices and guides are available for the staff via

Intranet. Thus, Solid’s measurement environment was also planned to be used via Intranet to

being available when needed. In addition, because of the limited resources of the SME

organisation, it was a natural aim to build measurement environment as automatic as possible.

2.3. Used tools and techniques
The used tools are in a central role when considering what kind of data and information it

is possible to get out automatically. Although tools should not be in a dominant position but

they can limit the possibilities and/or act as a preventive factor. That is why it is necessary to

examine the used tools and techniques for understanding their possibilities, for example:

• What kind of data and data items they produce.

• Where data items are saved (data storages, databases).

• How data can be accessed and manipulated.

In Solid, the following software development related tools are used for measurement

purposes:

• Lotus Notes [26], used for handling of external problem reports.

• Buzilla [27], used for handling of internal bugs and errors.

• Perforce [28], used for version management.

• Planmill [29], used for planning and controlling of effort, cost and schedule.

II/5

 Published in the Proceedings of

 229

The measurement data is automatically collected from version management system (Lotus

Notes and Perforce), project management system (Planmill) and defect management system

(Bugzilla). Solid’s measurement environment covers tools that enable automatic data

collection shown in Figure 2.

Figure 2: Solid Measurement Environment

2.4. Communicated quality goals
According to the Solid strategy, the following quality goals were identified to be the most

important to Solid’s success from R&D point of view:

• Product Reliability.

• SW Development Predictability.

• Product Portability.

Solid’s SPI board set the quality goals, thus the link between the business strategy and the

quality goals were ensured. Also other quality goals were identified and those are to be

implemented during the next iterations of the measurements improvements. A specific

interest was to build traceable links between business goals and everyday activities of R&D

engineers. This made quality goals understandable and meaningful.

2.5. Selected and updated metrics
The GQM (Goal-Oriented-Measurement) paradigm was used for defining metrics for each

identified quality goal. The following table (Table 1) describes what kinds of metrics were

defined for monitoring the “Product Reliability” quality goal, for example.

II/6 II/7

 Published in the Proceedings of

 231

Table 2: Template for metrics description [30]

NAME OF THE METRIC

GENERAL

Purpose:

Characterization (classification):

GOAL AND USAGE

Quality goal

Use in project

Use in organisation

COLLECTION

Data items

Tools

Who

When

Procedure

ANALYSIS

Presentation options

Indicator example Figure.

Calculation

Interpretation

Associated measures

Target value

When (Who)

Tools used to generate indicator

The used template forces one to define the procedures of data collection and results

presentation and interpretation. The template guides one in determining an indicator example

and how the indicators should be interpreted.

All this – metrics descriptions, indicator examples, result graphs, interpretation guides,

associated metrics, etc. – were implemented in the Solid’s Intranet. A basic aim of Solid’s

measurement environment is that data collection and indicator (/graph) producing are done as

automatically as possible. A special concern was to keep measurement environment simple

and easy to maintain.

 Published in the Proceedings of

 230

Table 1: An example of metrics definition by using the GQM method

GOAL: Product Reliability

Measurement Goal:

Analyze the product and process for the purpose of understanding and control

with respect to reliability from the viewpoint of project team and management in

the context of Solid SW development.

Questions and Metrics

Q1: From the customers' viewpoint, is the reliability of the Solid products increasing?

M1.1 Product Release Defect Trend

M1.2 Release Size

M1.3 Release Defect Density

etc.

Q2: How are different test phases affecting to reliability?

M2.1 Cumulative Release Defect Count

M2.3 Project Testing Effort Distribution Over Time

M2.4 Project Defect Class Profile

M2.5 Release Test Coverage

M2.8 Release Testing Success Rate

etc.

After metrics definition, each metric and data elements were described using templates

(shown in Table 2) processed by Tihinen [30].

II/7

 Published in the Proceedings of

 231

Table 2: Template for metrics description [30]

NAME OF THE METRIC

GENERAL

Purpose:

Characterization (classification):

GOAL AND USAGE

Quality goal

Use in project

Use in organisation

COLLECTION

Data items

Tools

Who

When

Procedure

ANALYSIS

Presentation options

Indicator example Figure.

Calculation

Interpretation

Associated measures

Target value

When (Who)

Tools used to generate indicator

The used template forces one to define the procedures of data collection and results

presentation and interpretation. The template guides one in determining an indicator example

and how the indicators should be interpreted.

All this – metrics descriptions, indicator examples, result graphs, interpretation guides,

associated metrics, etc. – were implemented in the Solid’s Intranet. A basic aim of Solid’s

measurement environment is that data collection and indicator (/graph) producing are done as

automatically as possible. A special concern was to keep measurement environment simple

and easy to maintain.

II/8 II/9

 Published in the Proceedings of

 233

Table 3: An indicator example of the interpretation and mentioned associated metrics

Metric: Product Release Defect Trend

Interpretation:

For the reliability to increase, the number of defect found from the latest version should be

lower than what it has been in the previously released versions. If there seems to be a negative

trend, further analysis is required. It might be useful to take a look at the component defect

density to isolate the problem area. To estimate how the defect curve will develop after the

product release, the cumulative number of defects can be split to, for example, one week time

periods and compare the curve to the ones of previous releases.

Things that can distort the defect figures:

• Some parts of the product are not used as heavily as others defects in extensively

used parts show up earlier and the probability of finding is bigger that in the less used

parts

• Typically, size of the product is increasing in each new release assuming that the

defect injection rate remains the same, the total number of defects increases as the

product gets bigger

• On the other hand, if large parts of previously released software is reused, most defects

have already been found -> number of defects go down

The effect of these issues must be considered in the analysis of the results.

Associated Metrics:

Following metrics help interpret this metric

• Release Size

• Release Defect Density

2.7. Feedback procedures

In the project level feedback procedure is straightforward as the metrics and graphs are

available in the Intranet. The automated data presentation procedure (scripts) makes it

possible to get and give up-to-date information during project lifecycle. Thus, both project

managers and members have a choice to influence practices, for example, by studying reasons

or making corrective and improvement actions.

In the organisational level feedback procedure was not so easy to get working

systematically. Several metrics reports were defined to be produced in the predefined

schedule. In practice, however, operational priorities often delayed feedback processing. .

2.8. Improvement actions
The Intranet based measurement environment enables a fast response for deviations or

problems shown by the analysed results. Project managers and engineers can control and

follow the situation on real-time. This is well suitable to the SME organisation as

improvement actions can also be done immediately.

The built measurement environment enables the analysing of products and processes in

Solid. For example, in the Intranet, daily updated bar graphs and trend presentations are

available. Besides the continuous process analysing, Forschungszentrum Informatik (FZI)

[31] has assessed Solid’s database product. The product assessment contained metrics as

follows:

• Architecture violations.

• Measurement of coupling, encapsulation and complexity.

• Complexity and coupling of data objects.

• Complexity and call dependencies of functions.

 Published in the Proceedings of

 232

2.6. Analysed measurement data
All metrics indicators are produced automatically to Intranet by using scripts. The

collected measurement data is stored into the Solid metrics database from where automated

scripts produce the results in a visible form, e.g., graphs and bars. Typically, a script is run

once a day and the data is sent to the metrics database. Then, another script refreshes the data

in the Intranet. Ease of use of scripts was highly prioritised; for example, there is a link for

checking how a graph has been built, and also modification of scripts is possible (scripts are

under version control). The following figure shows an indicator example of “Product release

defect trend”. Figure 3 shows the numbers (#) of the problem report items that have been

assigned to R&D after 120 days of the release date.

0

2

4

6

8

10

12

14

16

18

20

Release 1 Release 2 Release 3

#
 o

f
T

P
R

 i
te

m
s

Component 6

Component 5

Component 4

Component 3

Component 2

Component 1

Figure 3: An indicator example of metric: Product release defect trend

Also, guides that help interpreting the graphs and observed things that can distort the

figures are also included in the Intranet for each metrics description. In addition, associated

metrics that can help interpretation are mentioned and introduced (see Table 3). Naturally it is

the experts who finally decide what interpretation makes sense in given circumstances.

II/9

 Published in the Proceedings of

 233

Table 3: An indicator example of the interpretation and mentioned associated metrics

Metric: Product Release Defect Trend

Interpretation:

For the reliability to increase, the number of defect found from the latest version should be

lower than what it has been in the previously released versions. If there seems to be a negative

trend, further analysis is required. It might be useful to take a look at the component defect

density to isolate the problem area. To estimate how the defect curve will develop after the

product release, the cumulative number of defects can be split to, for example, one week time

periods and compare the curve to the ones of previous releases.

Things that can distort the defect figures:

• Some parts of the product are not used as heavily as others defects in extensively

used parts show up earlier and the probability of finding is bigger that in the less used

parts

• Typically, size of the product is increasing in each new release assuming that the

defect injection rate remains the same, the total number of defects increases as the

product gets bigger

• On the other hand, if large parts of previously released software is reused, most defects

have already been found -> number of defects go down

The effect of these issues must be considered in the analysis of the results.

Associated Metrics:

Following metrics help interpret this metric

• Release Size

• Release Defect Density

2.7. Feedback procedures

In the project level feedback procedure is straightforward as the metrics and graphs are

available in the Intranet. The automated data presentation procedure (scripts) makes it

possible to get and give up-to-date information during project lifecycle. Thus, both project

managers and members have a choice to influence practices, for example, by studying reasons

or making corrective and improvement actions.

In the organisational level feedback procedure was not so easy to get working

systematically. Several metrics reports were defined to be produced in the predefined

schedule. In practice, however, operational priorities often delayed feedback processing. .

2.8. Improvement actions
The Intranet based measurement environment enables a fast response for deviations or

problems shown by the analysed results. Project managers and engineers can control and

follow the situation on real-time. This is well suitable to the SME organisation as

improvement actions can also be done immediately.

The built measurement environment enables the analysing of products and processes in

Solid. For example, in the Intranet, daily updated bar graphs and trend presentations are

available. Besides the continuous process analysing, Forschungszentrum Informatik (FZI)

[31] has assessed Solid’s database product. The product assessment contained metrics as

follows:

• Architecture violations.

• Measurement of coupling, encapsulation and complexity.

• Complexity and coupling of data objects.

• Complexity and call dependencies of functions.

II/10 II/11

 Published in the Proceedings of

 235

3. Conclusion
This paper shows that it is possible to build and sustain a MDM also in a SME

organisation. The paper points out the basic issues that should be taken into consideration in

order to achieve a successful solution. The base is the management commitment; it gives the

possibility for a successful building of a MDM framework. Measurements are considered

more significant if the goals are derived from the business strategy and goals. Solid’s SPI

board was in a central role in setting the quality goals. However, the link between business

goals and practices can be easier to find in a SME organisation than in a bigger one. In the

case of Solid the GQM method was used for deriving practical metrics from the defined

quality goals.

The building of the infrastructure (HTML –pages, determining data items, scripts for

collecting and analysing data, etc.) needs time and effort. The building can be done step by

step, for example, by starting with one quality goal at a time. However, automated data

collection seems to be the only choice for a SME organisation to make sure that the

measurement data is really stored and available. That is also good to recognise if one is

selecting new tools for use. For example, open source tools (e.g. Bugzilla) can often be more

easily modified further and integrated with other tools than commercial tools. Measurement

data validation, however, always needs manual care and effort.

Automated data collection, scripts for visualising results and Intranet based MDM

environment enable data analysing and also improvement actions. In a SME organisation

corrective actions can be done flexibly during the project work. Instead, extra effort and

resourcing needed attention, for example, detailed data analysing and systematic knowledge

packaging can be ignored because their ROI (return on investment) is not so easy to point out.

The paper proved that the built MDM environment is a base for systematic and continued

measurements in a SME. The MDM framework enables various methods for measuring; for

example, FZI assessments gave added value for assuring a product quality in the Solid case.

In addition, the built MDM creates a base for strategic SPI activities and further analysing;

e.g., ODC analysing for achieving deeper knowledge of current practices and processes is

possible as the historical measurement data is available. However, these kinds of activities

require extra effort and resources, and so these activities are usually passed in SME.

This paper described elements of MDM, which have to be considered while building and

sustaining a measurement framework in a SME. Even if the limited resources have been tied

to “the real work” and the added value of the measurements is difficult to prove, it is possible

to build and sustain a successful MDM environment for a SME organisation.

4. References
[1] Rifkin, S. “What makes measuring software so hard?” IEEE Software, May/June 2001, pp. 41-

45.

[2] Solid Information Technology corporation. Home page URL: http://www.solidtech.com

(accessed at 27.02.2006)

[3] VTT, Technical Research Centre of Finland. Home page URL: http://www.vtt.fi/indexe.htm

(accessed at 27.02.2006)

[4] Abran, A., Moore, J. (Co-executive Editors), Bourque, P., Dupuis (Co-Editors) R., Tripp, L.,

“Guide to the Software Engineering Body of Knowledge – 2004 Version - SWEBOK”, IEEE

Computer Society Press, April 2005, pp 200, ISBN 0-7695-2330-7.

[5] ISO /IEC 9126:2001. “Software Engineering – Software Product Quality evaluation” (Quality

characteristics and guidelines for their use), International Organisation for Standardisation.

[6] ISO/IEC 12207:1995 /AMD2:2004. “Information technology – Software life cycle processes”,

International Organisation for Standardisation.

 Published in the Proceedings of

 234

 Although the assessment proved that Solid’s product was in a good shape, the summary

report also pointed at areas that had to be carefully checked by experienced developers. As a

result, corrective actions were planned and implemented. A subset of the FZI product

assessment tools was installed in Solid R&D lab, and new versions of Solid have been

investigated using these tools.

Naturally, there are always activities, e.g., new quality goals, new or updated metrics, new

assessment or monitoring actions, which can be added to the Solid’s MDM solution. For

example, from the viewpoint of strategic SPI (illustrated in Figure 1) there are needs for

examining new improvement actions by measurement data mining and further analysing of

the results.

2.9. Knowledge packaging and dissemination
In SME organisation knowledge packaging and dissemination procedures should be as

light as possible. The automated data collection procedure ensures that the metrics database is

saved and the historical data is available when needed. In addition, the informing of the

metrics results can be done face-to-face in a SME. Generally, there is always a danger that

knowledge remains inside the heads of a few active persons and that knowledge is not saved

anywhere. Solid’s measurement environment minimises this problem as it makes it possible

to add information (e.g. interpretations and target values) that can be utilised beyond

specialists. For example, Figure 4 shows the severity 1 (i.e. serious) post-release defects for a

Solid DB product between 2000 and 2005. Post-release defects were a key measure for

product reliability that was a major quality goal. Figure 4 shows a clear improvement since

2002 when systematic SPI and measurement programme was introduced.

0 %

20 %

40 %

60 %

80 %

100 %

120 %

2000 2001 2002 2003 2004 2005

Severity 1 defects Linear (Severity 1 defects)

Figure 4: Solid Severity 1 Post-Release Defects in 2000-2005

II/11

 Published in the Proceedings of

 235

3. Conclusion
This paper shows that it is possible to build and sustain a MDM also in a SME

organisation. The paper points out the basic issues that should be taken into consideration in

order to achieve a successful solution. The base is the management commitment; it gives the

possibility for a successful building of a MDM framework. Measurements are considered

more significant if the goals are derived from the business strategy and goals. Solid’s SPI

board was in a central role in setting the quality goals. However, the link between business

goals and practices can be easier to find in a SME organisation than in a bigger one. In the

case of Solid the GQM method was used for deriving practical metrics from the defined

quality goals.

The building of the infrastructure (HTML –pages, determining data items, scripts for

collecting and analysing data, etc.) needs time and effort. The building can be done step by

step, for example, by starting with one quality goal at a time. However, automated data

collection seems to be the only choice for a SME organisation to make sure that the

measurement data is really stored and available. That is also good to recognise if one is

selecting new tools for use. For example, open source tools (e.g. Bugzilla) can often be more

easily modified further and integrated with other tools than commercial tools. Measurement

data validation, however, always needs manual care and effort.

Automated data collection, scripts for visualising results and Intranet based MDM

environment enable data analysing and also improvement actions. In a SME organisation

corrective actions can be done flexibly during the project work. Instead, extra effort and

resourcing needed attention, for example, detailed data analysing and systematic knowledge

packaging can be ignored because their ROI (return on investment) is not so easy to point out.

The paper proved that the built MDM environment is a base for systematic and continued

measurements in a SME. The MDM framework enables various methods for measuring; for

example, FZI assessments gave added value for assuring a product quality in the Solid case.

In addition, the built MDM creates a base for strategic SPI activities and further analysing;

e.g., ODC analysing for achieving deeper knowledge of current practices and processes is

possible as the historical measurement data is available. However, these kinds of activities

require extra effort and resources, and so these activities are usually passed in SME.

This paper described elements of MDM, which have to be considered while building and

sustaining a measurement framework in a SME. Even if the limited resources have been tied

to “the real work” and the added value of the measurements is difficult to prove, it is possible

to build and sustain a successful MDM environment for a SME organisation.

4. References
[1] Rifkin, S. “What makes measuring software so hard?” IEEE Software, May/June 2001, pp. 41-

45.

[2] Solid Information Technology corporation. Home page URL: http://www.solidtech.com

(accessed at 27.02.2006)

[3] VTT, Technical Research Centre of Finland. Home page URL: http://www.vtt.fi/indexe.htm

(accessed at 27.02.2006)

[4] Abran, A., Moore, J. (Co-executive Editors), Bourque, P., Dupuis (Co-Editors) R., Tripp, L.,

“Guide to the Software Engineering Body of Knowledge – 2004 Version - SWEBOK”, IEEE

Computer Society Press, April 2005, pp 200, ISBN 0-7695-2330-7.

[5] ISO /IEC 9126:2001. “Software Engineering – Software Product Quality evaluation” (Quality

characteristics and guidelines for their use), International Organisation for Standardisation.

[6] ISO/IEC 12207:1995 /AMD2:2004. “Information technology – Software life cycle processes”,

International Organisation for Standardisation.

II/12 1

 Published in the Proceedings of

 236

[7] ISO /IEC 15288:2002. “System engineering – System life cycle processes”, International

Organisation for Standardisation.

[8] IEEE Std 1061. “IEEE Standard for a software quality metrics methodology”, (ANSI) The

Institute of Electrical and Electronics Engineers, Piscataway, New Jersey. 1992.

[9] ISO/IEC 15939. “Software engineering -Software measurement process”, International

Organisation for Standardisation. 2002.

[10] Basili, V., Caldiera, G. and Rombach, H. “Goal Question Metric Paradigm”. In John J.

Marciniak, editor, Encyclopaedia of Software Engineering, Vol 1, John Wiley & Sons, 1994,

pp. 528–532.

[11] Solingen, R. and Berghout, E. ”The Goal/Question/Metric (GQM) method, a practical method

for quality improvement of software development”, McGraw-Hill, 1999.

[12] Järvinen, J. Doctoral Thesis: “Measurement based continuous assessment of software

engineering processes”, Espoo, Finland, VTT Publications 426. 2000. 97p. + app. 90p.

[13] Karlström, D., Runeson, P. and Wohlin, C. “Aggregating viewpoints for strategic software

process improvement – a method and case study”. IEEE Proceedings-Software, Vol. 149, No.5,

October 2002, pp. 143-152.

[14] Komi-Sirviö, S. Doctoral Thesis: “Development and evaluation of software process

improvement methods”. Espoo, Finland, VTT Publications 535. 2004. 175p. + app. 78p.

[15] Varkoi, T. “Management of Continuous Software Process Improvement”. Engineering

Management Conference (IEMC '02), Vol 1, 2002, pp. 334 – 337.

[16] ISO 9001:2000. Quality Management Systems – Requirements. December 2000.

[17] TL 9000 Telecommunications Industry Standard. 1999.

[18] SigSigma home page URL: http://www.sigsigma.com/ (accessed at 27.02.2006)

[19] Mäkäräinen, M. and Komi-Sirviö, S. “Practical process improvement for embedded real-time

software”, proceedings of the 5th European Conference on Software Quality, Dublin, IR, 16 -

19 September, 1996, pp. 408 – 416.

[20] Birk, A., Järvinen, J., Komi-Sirviö, S., Kuvaja, P., Oivo, M., and Pfahl, D. ”PROFES - A

product driven process improvement methodology”, European Conference on Software Process

Improvement (SPI '98), John Herriot. Monaco, 1 - 4 December 1998. 9 p.

[21] SW-CMM. Paulk, M. C., Curtis, B., Chrissis, M. B. and Weber, C. “Capability Maturity

Model for Software”, Version 1.1. Software Engineering Institute, Technical report CMU/SEI-

93-TR-24. 1993.

[22] CMMI. Capability Maturity Model Integration (CMMISM) for Systems Engineering, Software

Engineering, Integrated Product and Process Development, and Supplier Sourcing, version 1.1

(CMMI-SE/SW/IPPD/SS, V1.1), Staged Representation, CMU/SEI-2002-TR-012, March

2002.

[23] ISO /IEC 15504:2003. Information technology -Software Process Assessment. Parts 1-5.

[24] Card, D.N. “Research directions in software process improvement”, In the Proceedings of the

28th Annual International Computer Software and Applications Conference, 2004

(COMPSAC’04). Vol 1. pp. 238.

[25] Chillarege, R., Bhandari, I.S., Chaar, J.K., Halliday, M.J., Moebus, D.S., Ray, B.K. and Wong,

M-Y. “Orthogonal Defect Classification – A concept for In-Process Measurements”, IEEE

Transactions on Software Engineering, Vol.18, No.11, November, 1992.

[26] Lotus Notes home page, URL: http://www-306.ibm.com/software/lotus/ (accessed at

27.02.2006)

[27] Bugzilla home page, URL: http://www.bugzilla.org/ (accessed at 27.02.2006)

[28] Perforce home page, URL: http://www.perforce.com/ (accessed at 27.02.2006)

[29] Planmill home page, URL: http://www.planmill.com/ (accessed at 27.02.2006)

[30] Tihinen, M. Secondary subject thesis: “Analysis of the quality measurement processes in

software production”. University of Oulu. 42 p + app. 7p. 2001.

[31] FZI. Forschungszentrum Informatik Home page, URL: http://www.fzi.de/eng/index.php

(accessed at 27.02.2006)

1

PAPER III

ABB experiences of boosting
controlling and monitoring

activities in
collaborative production

In: Proceedings of the Sixth IEEE International
Conference on Global Software Engineering,

15–18 Aug. 2011, Helsinki. 5 p.
Copyright 2011 IEEE.

Reprinted with permission from the publisher.

III/1

ABB Experiences of Boosting Controlling and Monitoring Activities in
Collaborative Production

Maarit Tihinen, Päivi Parviainen, and Tanja
Suomalainen

Software Technologies
Technical Research Centre of Finland, VTT

Oulu, Finland
firtsname.lastname@vtt.fi

Katja Karhu and Malin Mannevaara

Electrification, Instrumentation and Composite Plants
ABB

Vaasa, Finland
firtsname.lastname@fi.abb.com

Abstract—In globally distributed projects, successful product
development requires companies to pay special attention to
project management and controlling activities during the
projects’ life cycle. If controlling activities are not done well,
the productivity of product development decreases. This is due
to, e.g., unnecessary work caused by unclear responsibilities,
missing information, and not managed dependencies. This
paper highlights ABB experiences in boosting globally
distributed project management activities by integrating those
actions to the portal of the company. The case showed that the
implemented reporting practices together with other
improvement actions such as enhanced process descriptions,
practices and engineering tools, reduced the unnecessary or
free work done at ABB by even 45%. This successful result was
achieved by careful current state analysis where the
requirements and goals for improvement actions were defined.
The improvement actions were defined by discussions with
essential interest groups as well as considering the best
practices and research results from the literature.

Keywords-project management; collaboration management;
global product development

I. INTRODUCTION
Project management covers the activities like planning,

scheduling, organizing, controlling, and managing tasks and
resources to achieve the successful completion of a set of
specific project goals. Nowadays, when the products are
increasingly developed globally, in collaboration between
subcontractors, third party suppliers and in-house developers
[1], proper project controlling and monitoring activities are
more and more important. Based on an industrial survey [2],
one of the most important topics in the project management
problem area, in distributed software development, is
detailed project planning and strict control during the project.
In global software development (GSD), this means, e.g.,
dividing work by sites into sub-projects, clearly established
rules, defined responsibilities, results and timetables along
with regular meetings and process controlling.

Distributed, collaborative product development forces to
pay attention to management and controlling activities for
creating awareness of distributed activities within the project
and over the projects in an organization. Modern technology
has improved and made possible to convert and deliver
project-based information, e.g., by using World Wide Web

(WWW) based solution to monitor information regardless of
time and location [3]. Today companies can purchase
commercial tool solutions or alternatively develop their own
tailored systems to track project progress according to their
goals and needs. The definition of current state as well as
needed improvement actions are the first steps for
development actions.

This paper describes experiences of a successful case
executed at ABB (http://www.abb.com/) during the ITEA
PRISMA (2008-2011) project [4]. ABB is a global leader in
power and automation technologies; it operates in more than
100 countries and has offices in 87 of those countries and has
about 117 000 employees. The case focused on creating and
improving project monitoring, controlling, and reporting
practices to attain better coordination between and within the
projects as well as to build organization wide awareness of
the status of the project portfolio at ABB. Controlling and
monitoring activities had been found challenging: most of
the projects at ABB are done in a globally distributed way,
i.e., to different ABB sites and to suppliers, and all the
collaborating sites are not technologically advanced but can
be rather basic (e.g., developing countries without internet
access).

The paper is structured as follows. Firstly, the case is
introduced giving the background analysis of the goals and
requirements setting of the case. Also, a brief description of
the main literature studies is introduced in section II. Then,
the execution of the case with identified requirements and
detailed examples of the implementation are described, in
section III. After that, the achieved experiences and results
are analysed. In the analysis, the strengths and weaknesses of
the case and also the business influence have been presented.
Finally, the conclusions are drawn in section V.

II. CASE DESCRIPTION
The case was conducted at ABB in the unit of

Electrification, Instrumentation and Composite Plants during
the ITEA PRISMA (2008-2011) project. First, a current state
analysis was conducted to identify challenges faced at ABB
in globally distributed projects. As part of the analysis, a
survey was sent to all project engineers in May 2009. The
purpose of the survey was to find out how much unnecessary
or free work was done and what were the major causes for

2011 Sixth IEEE International Conference on Global Software Engineering

978-0-7695-4503-5/11 $26.00 © 2011 IEEE
DOI 10.1109/ICGSE.2011.12

1

III/1

ABB Experiences of Boosting Controlling and Monitoring Activities in
Collaborative Production

Maarit Tihinen, Päivi Parviainen, and Tanja
Suomalainen

Software Technologies
Technical Research Centre of Finland, VTT

Oulu, Finland
firtsname.lastname@vtt.fi

Katja Karhu and Malin Mannevaara

Electrification, Instrumentation and Composite Plants
ABB

Vaasa, Finland
firtsname.lastname@fi.abb.com

Abstract—In globally distributed projects, successful product
development requires companies to pay special attention to
project management and controlling activities during the
projects’ life cycle. If controlling activities are not done well,
the productivity of product development decreases. This is due
to, e.g., unnecessary work caused by unclear responsibilities,
missing information, and not managed dependencies. This
paper highlights ABB experiences in boosting globally
distributed project management activities by integrating those
actions to the portal of the company. The case showed that the
implemented reporting practices together with other
improvement actions such as enhanced process descriptions,
practices and engineering tools, reduced the unnecessary or
free work done at ABB by even 45%. This successful result was
achieved by careful current state analysis where the
requirements and goals for improvement actions were defined.
The improvement actions were defined by discussions with
essential interest groups as well as considering the best
practices and research results from the literature.

Keywords-project management; collaboration management;
global product development

I. INTRODUCTION
Project management covers the activities like planning,

scheduling, organizing, controlling, and managing tasks and
resources to achieve the successful completion of a set of
specific project goals. Nowadays, when the products are
increasingly developed globally, in collaboration between
subcontractors, third party suppliers and in-house developers
[1], proper project controlling and monitoring activities are
more and more important. Based on an industrial survey [2],
one of the most important topics in the project management
problem area, in distributed software development, is
detailed project planning and strict control during the project.
In global software development (GSD), this means, e.g.,
dividing work by sites into sub-projects, clearly established
rules, defined responsibilities, results and timetables along
with regular meetings and process controlling.

Distributed, collaborative product development forces to
pay attention to management and controlling activities for
creating awareness of distributed activities within the project
and over the projects in an organization. Modern technology
has improved and made possible to convert and deliver
project-based information, e.g., by using World Wide Web

(WWW) based solution to monitor information regardless of
time and location [3]. Today companies can purchase
commercial tool solutions or alternatively develop their own
tailored systems to track project progress according to their
goals and needs. The definition of current state as well as
needed improvement actions are the first steps for
development actions.

This paper describes experiences of a successful case
executed at ABB (http://www.abb.com/) during the ITEA
PRISMA (2008-2011) project [4]. ABB is a global leader in
power and automation technologies; it operates in more than
100 countries and has offices in 87 of those countries and has
about 117 000 employees. The case focused on creating and
improving project monitoring, controlling, and reporting
practices to attain better coordination between and within the
projects as well as to build organization wide awareness of
the status of the project portfolio at ABB. Controlling and
monitoring activities had been found challenging: most of
the projects at ABB are done in a globally distributed way,
i.e., to different ABB sites and to suppliers, and all the
collaborating sites are not technologically advanced but can
be rather basic (e.g., developing countries without internet
access).

The paper is structured as follows. Firstly, the case is
introduced giving the background analysis of the goals and
requirements setting of the case. Also, a brief description of
the main literature studies is introduced in section II. Then,
the execution of the case with identified requirements and
detailed examples of the implementation are described, in
section III. After that, the achieved experiences and results
are analysed. In the analysis, the strengths and weaknesses of
the case and also the business influence have been presented.
Finally, the conclusions are drawn in section V.

II. CASE DESCRIPTION
The case was conducted at ABB in the unit of

Electrification, Instrumentation and Composite Plants during
the ITEA PRISMA (2008-2011) project. First, a current state
analysis was conducted to identify challenges faced at ABB
in globally distributed projects. As part of the analysis, a
survey was sent to all project engineers in May 2009. The
purpose of the survey was to find out how much unnecessary
or free work was done and what were the major causes for

2011 Sixth IEEE International Conference on Global Software Engineering

978-0-7695-4503-5/11 $26.00 © 2011 IEEE
DOI 10.1109/ICGSE.2011.12

1

III/2 III/3

that work. In order to define the improvement actions
workshops as well as a literature review was conducted.

The literature review was twofold: it included both
research articles from the field of the study (i.e. project
monitoring and controlling, management reporting, and
multi-project monitoring) and solutions from
SameRoomSpirit Wiki [5]. The wiki was used in the
literature review, since it provides solutions especially to the
global software development, and global distribution was
found significantly important in ABB’s projects.

After, the improvement actions were defined, the case
was implemented by taking the actions into use. Thereafter,
the first survey was repeated in order to verify the
effectiveness of the actions executed. The current state
analysis and the literature reviews are defined in more detail
next. Thereafter, case scoping is presented.

A. Identified challenges at ABB
ABB had identified problems relating to project and

supply management. For one, the customer had different
interpretations than ABB and thus change management
during the project was difficult. All gaps and overlaps would
create extra work which probably would not be paid by the
customer as the delivery limits were unclear (this is called
“free work”). Also, all customer requirements and
specifications were not forwarded to supplier or the scope of
supply was unclear. Based on the problems, “unnecessary
work” was defined. In ABB case “unnecessary work” means
time used for just waiting or doing duplicate work or unclear
tasks, for example.

The first step to find the right focus for improvements
was to investigate how much unnecessary work was done,
and what were the major causes for the unnecessary work. A
survey was sent in May 2009 to all project engineers via
electronic Intranet Survey tool. It was also agreed that the
effectiveness of the executed improvement actions would be
monitored and verified by repeating the same survey after
the actions had been implemented. The first survey showed
that even 19% of the project time was wasted to unnecessary
or free work. Thus, workshops were arranged to analyse
reasons behind that: the “five why” -method [6] was used for
clarifying the root causes of the unnecessary and free work.

The analysis of the reasons pointed out that a major part
of the unnecessary or free work was caused by that the
current process descriptions were not followed or they were
out-of-date or not applicable to all projects. Also, there was
no common systematic reporting practice. As a main result it
was agreed that better coordination between and within the
projects was needed and that following the process
instructions should be ensured. The improvement actions
would be focused on the coordination and monitoring needs
of project members, managers and different stakeholders
during distributed projects.

B. Proposed by SameRoomSpirit Wiki
During the literature study guidelines and solutions from

SameRoomSpirit Wiki [5] were researched in order to take
the distributed development viewpoint into account well.
SameRoomSpirit Wiki is a wiki-based tool developed during

the PRISMA project and it provides access to relevant
solutions about global software development (GSD) and
experiences of their use. The solutions are created based on
industrial experiences and literature studies. Based on the
solutions from SameRoomSpirit Wiki, the following general
advices regarding to better reporting practices were found
useful:

1. Distributing drafts of proposed schedules and task
assignments for each incremental release [7].

2. Weekly task reports [8].
3. Delivery reports (description of the changes /features

that are checked in) [8].
4. Quarterly sync-up meetings (face-to-face) [8].
5. Revising all documentation and updating documents

to reflect the current state of the development [9].
6. Informing and monitoring should be followed-up in

all directions. Parties should comment all points in
the follow-up report. The follow-up reports include
tasks done, open questions, problems, and future
outlook [10].

7. Also weekly meetings inside a subgroup were
proposed [11, 12].

Although, the above practices may seem quite general, they
need special attention in globally distributed context.

C. Literature proposals for project monitoring and
controlling
Several literature sources were studied in order to get

input from project monitoring and controlling viewpoint,
especially, in global context. The most relevant sources from
ABB situation viewpoint were CMMI and [13] which are
briefly presented next. CMMI® (Capability Maturity Model®
Integration) models are collections of best practices that help
organizations to improve their processes. CMMI for
Development (CMMI-DEV) [14] provides a comprehensive
integrated set of guidelines for developing products and
services. The Project Monitoring and Control (PMC) process
area is one of the maturity level 2 process areas of CMMI-
DEV. The purpose of the PMC process is to provide an
understanding of the project’s progress so that appropriate
corrective actions can be taken when the project’s
performance deviates significantly from the plan. In the
following table (TABLE I.) the summary of specific goals
and practices of the PMC has been introduced.

TABLE I. SPECIFIC GOALS AND PRACTICES BASED ON CMMI [14]

Project Monitoring and Control (PMC) process

Specific Goal: Monitor the
Project Against the Plan

Specific Goal: Manage
Corrective Action to Closure

- Monitor Project Planning
Parameters

- Monitor Commitments
- Monitor Project Risks
- Monitor Data Management
- Monitor Stakeholder
- Involvement
- Conduct Progress Reviews
- Conduct Milestone Reviews

- Analyze Issues
- Take Corrective Action
- Manage Corrective Actions

2

III/3

According to [13], concentrating on the main issues is the
key to success with multi-project monitoring and reporting.
Multi-project monitoring lies between strategic project
monitoring and individual project monitoring. Its aim is to
optimize the management of the project portfolio in
accordance with divisional and corporate goals. They [13]
classified the reporting to the three categories: 1) Decision-
based regulatory reporting with decision-support
information. 2) Standard reporting for other organizational
units and target groups. 3) Key Performance Indicators (KPI)
and other indicators. Furthermore, they proposed that to
support monitoring processes and enable rapid decision-
making, the management reporting must fulfil the
requirements presented in the following table (TABLE II.).

TABLE II. THE REPORTING REQUIREMENTS [13]

R# Requirements descriptions
R1 Integrate processes and systems to obtain data in real time.
R2 Reduce administrative effort to obtaining, prepare and supply data.
R3 Enable findings to be retained and reused as decision-support
R4 Streamline decision-making processes
R5 Provide also non-financial performance indicators.

D. Decisions and Case Scoping
As the status of the whole distributed project portfolio

was to be followed, the most relevant practices proposed by
SameRoomSpirit wiki were 4, 5 and 6 (see section II /B). In
addition, the item 2 was recognized as good practice, even if
weekly reports were not matching ABB’s maturity level and
the scope of the projects. In addition, specific practices
advised by CMMI-DEV were taken into consideration. Thus,
it was decided to consider the issues of ABB as follows:

- Establish monthly synchronization meetings, where the
project managers and line managers are synchronizing
their activities. The meetings are organized mostly as
face to face meetings, however, some project managers
need to attend the meeting also remotely, i.e. virtual
meeting practices are required.

- Request that all project documentation should be
updated regularly.

- For the project follow-up meeting, establish new
monthly reporting templates.

- Reporting templates should contain items related to
tasks done, open questions, problems and future
outlook.

- Establish a new project follow-up template into the
project portal, so that it is easy for everybody to follow
the project portfolio status also remotely from any
location where our projects are carried out.

While identifying in more details the content of new

reporting templates the categorised reporting issues by [13]
were taken into consideration. It was decided that the items
“Standard reporting for other organizational units and target
groups” and “Reporting KPIs and other non financial
indicators” shall be conformed. Thus, Project Monthly
Reporting was decided to call as a standard reporting for

other organizational units, and Quality Assurance (QA).
Reporting was targeted as reporting KPIs and other non-
financial indicators. In addition, the reporting requirements
(TABLE I.) were approved to be met while implementing
the monthly follow-ups.

III. CASE IMPLEMENTATION
Based on the current state analysis, it was agreed that

better coordination between and within the projects was
needed as well as assuring that process instructions would be
followed. Thus, it was decided to support line management
and the rest of the distributed organization with better project
monitoring and controlling practices.

A. Implementation
The implementation of the reporting templates started

with creating an example content for the reports (Monthly
Project Report and QA report), first in Microsoft Excel, and
then implementing a prototype into the ABB’s collaboration
portal. The link to the examples was sent to all project
managers for commenting, and also it was reviewed in small
review meeting among the people who sent the comments.

Monthly Reporting
The specification of the Monthly Report was started by

identifying the implementation approaches against to the
requirements (TABLE II.) and by emphasising the needs of
project members and managers in globally distributed
projects. The selected approaches for monthly reporting at
ABB are presented in the following table (TABLE III.).

TABLE III. APPROACHES FOR MONTHLY REPORTING AT ABB

R# Approach for Monthly Reporting at ABB
R1 Financial data will be manually fetched from the ERP

system. There is possibility to automate this in the future.
R2 We decided that drop down boxes contain default values,

text boxes use the content from the previous month, and
the project name is filled automatically. The project
information is entered in the project site, but transferred
to the project management department site for viewing,
which allows everybody to use the site they are most
familiar with.

R3 As the content of the report is available in the
collaboration portal, everybody working in the unit can
monitor the progress of the projects. Also, the line
managers who don’t have time to attend to the Follow-up
meeting can use it as a way to keep up.

R4 Decision-making is streamlined, as the projects fill the
Monthly Project Follow-Up beforehand, and they also
explicitly state the required decisions, and therefore all
the relevant line managers can prepare themselves for
making the required decisions.

R5 Previously, the unit was very focused on monitoring the
financial status of the projects only, instead, the new
reporting focused on multisided view of the projects.

The project report (Monthly Project Report) was

implemented containing at least the following issues to be
controlled and documented monthly via the portal:

3

III/4 III/5

A positive signal was also that project monthly follow-up
meetings had been kept regularly each month and reports had
been filled in by the project managers into the Project
Monthly Follow-Up tool. Especially the employees located
outside the main office in distributed offices (at sites or in
other engineering centers), appreciated the possibility to get
information on all ongoing projects whenever they need the
information. The other group benefiting from the follow-ups
was people who were not tightly integrated into the projects,
e.g., persons from purchasing, controllers, process
development etc. Instead, the QA reporting usage was still
low, proven that more improvement actions were needed in
that process.

As sudden travels sometimes prevented project managers
to join the meetings, back-up person to join the meeting was
needed. Also, participation from sales to the project follow-
ups was not as frequent as wished. On the other hand, the
meetings provided good feedback on the improvement
possibilities to sales as well. Therefore, it was suggested that
improvement ideas were started to be entered into the
collaboration portal, and published after the meeting to the
relevant people.

The importance of QA reporting was recognized,
however, it was unclear how to take the report fully into use
at the moment. It had been considered that the management
had a key role for committing new practices and tools.
However, more training and information sharing was needed,
too. There were also available some new features and tools
for the portal that could be studied in the future.

V. CONCLUSIONS
The successful project quality control is a diverse and

large entity. In this paper, the project controlling and
monitoring activities were discussed from the project
managers and the line management viewpoints in global
context. The paper presented a successful case conducted at
ABB focused on creating and improving project monitoring,
controlling, and reporting practices to attain better
coordination between and within the distributed projects as
well as to build organization wide awareness of the status of
the project portfolio.

The case study showed that the literature and industrial
solutions presented in SameRoomSpirit Wiki were relevant
even to organization that was not purely focused on SW
development. The results also pointed out that project
follow-up and controlling activities improve transparency,
e.g., of the project status, between and within the projects
through the whole organization. One of the major findings of
the case was that unnecessary or free work had reduced even
45%. This improvement was largely due to the implemented
reporting practices. Positive finding was also that project
monthly follow-up meetings had been kept regularly each
month and reports have been filled in by the project
managers into the Project Monthly Follow-Up tool.
Additionally, the visibility of the status of the customer
projects had increased remarkably. The reporting efforts of
the project manager increased during the case, and provided

them with a communication channel to inform the business
management where their efforts were needed the most.

ACKNOWLEDGMENT
This paper was written within the PRISMA project that is

an ITEA 2 project, number 07024. The authors would like to
thank the support of ITEA [15] and Tekes (the Finnish
Funding Agency for Technology and Innovation) [16].

REFERENCES
[1] J. Hyysalo, P. Parviainen and M. Tihinen, "Collaborative embedded

systems development: Survey of state of the practice," 13th Annual
IEEE International Symposium and Workshop on Engineering of
Computer Based Systems (ECBS 2006), IEEE, 2006, pp. 1-9.

[2] S. Komi-Sirviö and M. Tihinen, "Great challenges and opportunities
of distributed software development - an industrial survey," 15th
International Conference on Software Engineering and Knowledge
Engineering (SEKE2003), San Francisco, USA, 2003, pp. 489-496.

[3] J. S. Chou and W. K. Chong, "A web-based framework of project
performance and control system," IEEE Conference on Robotics,
Automation and Mechatronics (RAM 2008), IEEE, 2008, pp. 803-
807.

[4] PRISMA, Productivity in Collaborative Systems Development,
PRISMA project (2008-2011) homepage, URL: http://www.prisma-
itea.org/ (Accessed 1.2.2011).

[5] SameRoomSpirit Wiki, Available only for registered users, URL:
http://www.sameroomspirit.org (Accessed 1.2.2011).

[6] T. Ohno, The Toyota Production System: Beyond Large-Scale
Production. Productivity Press, 1988.

[7] M. Bass and D. Paulish, "Global software development process
research at siemens," The 3rd International Workshop on Global
Software Development, in Proceedings of the International
Conference on Software Engineering (ICSE 2004), 2004, pp. 11-14.

[8] D. Boland and B. Fitzgerald, "Transitioning from a co-located to a
globally-distributed software development team: A case study at
analog devices inc," The 3rd International Workshop on Global
Software Development, in Proceedings of the International
Conference on Software Engineering (ICSE 2004), 2004, pp. 4-7.

[9] J. D. Herbsleb and D. Moitra, "Global software development,"
Software, IEEE, vol. 18, (2), 2002, pp. 16-20.

[10] M. Paasivaara, "Communication needs, practices and supporting
structures in global inter-organizational software development
projects," The International Workshop on Global Software
Development, in Proceedings of the International Conference on
Software Engineering (ICSE 2003), 2003, pp. 59-63.

[11] R. D. Battin, R. Crocker, J. Kreidler and K. Subramanian,
"Leveraging resources in global software development," Software,
IEEE, vol. 18, (2), 2002, pp. 70-77.

[12] M. Paasivaara and C. Lassenius, "Collaboration practices in global
inter-organizational software development projects," Software
Process: Improvement and Practice, vol. 8, (4), 2003, pp. 183-199.

[13] C. Campana, E. Schott, M. Lappe and S. Haffner. Project portfolio
management multi-project monitoring and reporting. The Campana &
Schott Group.

[14] CMMI Product Team. (2010, Capability maturity model integration
for development (CMMI-DEV, V1. 3). Carnegie Mellon.

[15] ITEA 2, Information Technology for European Advancement, ITEA
2 homepage, URL: http://www.itea2.org/ (Accessed 1.2.2011).

[16] Tekes, the Finnish Funding Agency for Technology and Innovation,
Tekes homepage. URL: http://www.tekes.fi/eng/ (Accessed
1.2.2011).

5

- Time Schedule (agreed with customer) and Comment
on time schedule

- Financials (alternatives: On budget/Risk of exceeding
budget /Budget exceeded)) and Comment on Financials

- Forecast updated in SAP
- Customer payments: (alternatives: No issues/Delays

expected/Payments overdue)
- Resources & Comments on resources
- Technical risks/issues/Other risks
- Possible additional sales
- Positive/negative issues
- Main focus last month/main focus next month
- Proposal of needed decisions

Quality Assurance Reporting
The QA Report was also specified by identifying

approaches against to the reporting requirements proposed
(TABLE II.) and specific needs in global context. The
approaches for the further specification were selected as
introduced in the following table (TABLE IV.).

TABLE IV. APPROACHES FOR QA REPORTING AT ABB

R# Approach for QA Reporting at ABB
R1 The report will be monitored in the follow-up meeting.

Therefore, it is integrated to the process itself manually.
There is possibility to improve this in the future.

R2 We decided that the project name is filled automatically.
The project information is entered in the project site, but
transferred to the project management department site for
viewing, which allows everybody to use the site they are
most familiar with.

R3 The content of the report is used to assure that the most
important practices from the defined processes are in use.
Also the KPIs collected based on the filled content are
used to evaluate the overall situation of the challenge of
“process are not followed”.

R4 Controlling is streamlined, as summarized data is
available for the decision makers. This was not the case
earlier, and therefore controlling was time consuming
activity.

R5 Earlier, the unit was very focused on monitoring the
financial status of the projects only, the new reporting
focused on multisided view of the projects.

IV. EXPERIENECES AND RESULTS OBTAINED
At first, the both reporting practices - the Monthly

Project Report and QA Report - were taken into use as
“hands-off” practice, which means that during the first
follow-up meeting, the project managers reported the status
verbally, and the status was entered to the portal during the
meeting. This was to ensure an easy way of learning, and to
avoid the need for a separate training session.

A. Experiences of Implementation
Experience of using SameRoomSpirit Wiki showed that

the responsible people felt that most of the proposals
presented were relevant even to organization that is not

purely focused on SW development. The experiences also
pointed out that the requirement to integrate processes and
systems to obtain data in real time was the most difficult
requirement to be implemented, and the integration was only
done on the process level but not in the information systems.
Therefore, there are possibilities to improve the functionality
of the Monthly Follow-Up Report and the QA Report
regarding the integrations.

For the Monthly Report, one could consider that the time
schedule related to the information in the ERP system would
be used to select the default value from the list of options for
the time schedule related question. The same way the cost
related information could be fetched from the ERP system (if
the project is on budget and if there are issues with the
customer payments). However, the free text comments
should always be added by the project managers, and
therefore fully automating the reporting based on data
integration is not possible. Due to this fact, the value and the
cost of system integration should be carefully evaluated.

For the QA Report, one could consider that all the
planned dates and actual dates could be fetched from the
ERP system. Alternatively, such report could be produced by
ERP system or another reporting system, and the results
would be visualized in the collaboration portal. Therefore,
full integration for the QA Report could be the next step, if it
is seen to bring value for the money. However, if the report
should be used in distributed organization setup, where
different participating units have different ERP systems or
ways to implement, the integration would need to be done
for each of the organizations separately.

B. Business Influence
As planned, the survey was repeated after the actions

(Monthly Follow-Up Report and the QA Report) were
executed for verifying the effectiveness of the improvement
actions. During the spring 2010, it was measured that
unnecessary or free work was reduced to almost half (45%):
in the first survey (2009) unnecessary or free work was 19%
of the project time whereas one year later, in the second
survey, 10.5% of the project time was wasted to unnecessary
or free work. It can’t be claimed that the improvement was
not only due to the implemented reporting practices because
there were made some other improvement actions in the unit
at the same time. Those actions cover general process and
tool improvement actions that are continuously done in all
big organisations, including, e.g., new and enhancement
process instructions and templates and some new features
implemented in engineering tools. The main effort and
attention was paid in improving coordination and monitoring
practices between and within the project by developing
reporting practices as agreed based on the current state
analysis.

Also, another main goal was successfully achieved: the
visibility of the status of the customer projects had increased
remarkably. Although reporting efforts of the project
manager seemed to increase, it also provided them with a
communication channel to inform the business management
where their efforts were needed the most.

4

III/5

A positive signal was also that project monthly follow-up
meetings had been kept regularly each month and reports had
been filled in by the project managers into the Project
Monthly Follow-Up tool. Especially the employees located
outside the main office in distributed offices (at sites or in
other engineering centers), appreciated the possibility to get
information on all ongoing projects whenever they need the
information. The other group benefiting from the follow-ups
was people who were not tightly integrated into the projects,
e.g., persons from purchasing, controllers, process
development etc. Instead, the QA reporting usage was still
low, proven that more improvement actions were needed in
that process.

As sudden travels sometimes prevented project managers
to join the meetings, back-up person to join the meeting was
needed. Also, participation from sales to the project follow-
ups was not as frequent as wished. On the other hand, the
meetings provided good feedback on the improvement
possibilities to sales as well. Therefore, it was suggested that
improvement ideas were started to be entered into the
collaboration portal, and published after the meeting to the
relevant people.

The importance of QA reporting was recognized,
however, it was unclear how to take the report fully into use
at the moment. It had been considered that the management
had a key role for committing new practices and tools.
However, more training and information sharing was needed,
too. There were also available some new features and tools
for the portal that could be studied in the future.

V. CONCLUSIONS
The successful project quality control is a diverse and

large entity. In this paper, the project controlling and
monitoring activities were discussed from the project
managers and the line management viewpoints in global
context. The paper presented a successful case conducted at
ABB focused on creating and improving project monitoring,
controlling, and reporting practices to attain better
coordination between and within the distributed projects as
well as to build organization wide awareness of the status of
the project portfolio.

The case study showed that the literature and industrial
solutions presented in SameRoomSpirit Wiki were relevant
even to organization that was not purely focused on SW
development. The results also pointed out that project
follow-up and controlling activities improve transparency,
e.g., of the project status, between and within the projects
through the whole organization. One of the major findings of
the case was that unnecessary or free work had reduced even
45%. This improvement was largely due to the implemented
reporting practices. Positive finding was also that project
monthly follow-up meetings had been kept regularly each
month and reports have been filled in by the project
managers into the Project Monthly Follow-Up tool.
Additionally, the visibility of the status of the customer
projects had increased remarkably. The reporting efforts of
the project manager increased during the case, and provided

them with a communication channel to inform the business
management where their efforts were needed the most.

ACKNOWLEDGMENT
This paper was written within the PRISMA project that is

an ITEA 2 project, number 07024. The authors would like to
thank the support of ITEA [15] and Tekes (the Finnish
Funding Agency for Technology and Innovation) [16].

REFERENCES
[1] J. Hyysalo, P. Parviainen and M. Tihinen, "Collaborative embedded

systems development: Survey of state of the practice," 13th Annual
IEEE International Symposium and Workshop on Engineering of
Computer Based Systems (ECBS 2006), IEEE, 2006, pp. 1-9.

[2] S. Komi-Sirviö and M. Tihinen, "Great challenges and opportunities
of distributed software development - an industrial survey," 15th
International Conference on Software Engineering and Knowledge
Engineering (SEKE2003), San Francisco, USA, 2003, pp. 489-496.

[3] J. S. Chou and W. K. Chong, "A web-based framework of project
performance and control system," IEEE Conference on Robotics,
Automation and Mechatronics (RAM 2008), IEEE, 2008, pp. 803-
807.

[4] PRISMA, Productivity in Collaborative Systems Development,
PRISMA project (2008-2011) homepage, URL: http://www.prisma-
itea.org/ (Accessed 1.2.2011).

[5] SameRoomSpirit Wiki, Available only for registered users, URL:
http://www.sameroomspirit.org (Accessed 1.2.2011).

[6] T. Ohno, The Toyota Production System: Beyond Large-Scale
Production. Productivity Press, 1988.

[7] M. Bass and D. Paulish, "Global software development process
research at siemens," The 3rd International Workshop on Global
Software Development, in Proceedings of the International
Conference on Software Engineering (ICSE 2004), 2004, pp. 11-14.

[8] D. Boland and B. Fitzgerald, "Transitioning from a co-located to a
globally-distributed software development team: A case study at
analog devices inc," The 3rd International Workshop on Global
Software Development, in Proceedings of the International
Conference on Software Engineering (ICSE 2004), 2004, pp. 4-7.

[9] J. D. Herbsleb and D. Moitra, "Global software development,"
Software, IEEE, vol. 18, (2), 2002, pp. 16-20.

[10] M. Paasivaara, "Communication needs, practices and supporting
structures in global inter-organizational software development
projects," The International Workshop on Global Software
Development, in Proceedings of the International Conference on
Software Engineering (ICSE 2003), 2003, pp. 59-63.

[11] R. D. Battin, R. Crocker, J. Kreidler and K. Subramanian,
"Leveraging resources in global software development," Software,
IEEE, vol. 18, (2), 2002, pp. 70-77.

[12] M. Paasivaara and C. Lassenius, "Collaboration practices in global
inter-organizational software development projects," Software
Process: Improvement and Practice, vol. 8, (4), 2003, pp. 183-199.

[13] C. Campana, E. Schott, M. Lappe and S. Haffner. Project portfolio
management multi-project monitoring and reporting. The Campana &
Schott Group.

[14] CMMI Product Team. (2010, Capability maturity model integration
for development (CMMI-DEV, V1. 3). Carnegie Mellon.

[15] ITEA 2, Information Technology for European Advancement, ITEA
2 homepage, URL: http://www.itea2.org/ (Accessed 1.2.2011).

[16] Tekes, the Finnish Funding Agency for Technology and Innovation,
Tekes homepage. URL: http://www.tekes.fi/eng/ (Accessed
1.2.2011).

5

PAPER IV

Knowledge-related challenges
and solutions in GSD

In: Expert Systems –
The Journal of Knowledge Engineering. 22 p.

Copyright 2011 Blackwell Publishing Ltd.
Reprinted with permission from the publisher.

IV/1

IV/1

Knowledge-related challenges and solutions in
GSD

Päivi Parviainen and Maarit Tihinen
VTT Technical Research Centre of Finland, Finland
Email: paivi.parviainen@vtt.fi

Abstract: A number knowledge-related challenges may complicate the work in global software development

(GSD) projects. In practice, even a small amount of missing knowledge may cause an activity to fail to create
and transfer information which is critical to later functions, causing these later functions to fail. Thus,
knowledge engineering holds a central role in order to succeed with globally distributed product development.

Furthermore, examining the challenges faced in GSD from a cognitive perspective will help to find solutions that
take into account the knowledge needs of different stakeholders in GSD and thus help to establish conditions for
successful GSD projects. In this paper, we will discuss these challenges and solutions based on an extensive

literature study and practical experience gained in several international projects over the last decade.
Altogether, over 50 case studies were analysed. We analysed the challenges identified in the cases from a
cognitive perspective for bridging and avoiding the knowledge gaps and, based on this analysis, we will present
example solutions to address the challenges during the GSD projects. We will conclude that through

understanding both the nature of GSD and the KE challenges in depth, it will be possible for organizations to
make their distributed operations successful.

Keywords: knowledge engineering, global software development, industrial challenges

1. Introduction

Trends in global product developments show

that the size and complexity of software inten-

sive systems will continue to grow, making it

difficult for companies to develop all of the

required functionality alone (van Solingen

et al., 2008). Thus, the products are being

increasingly developed in a globally distributed

fashion (Carmel & Agarwal, 2001; Hyysalo

et al., 2006; Noll et al., 2010). At the same time,

several papers have reported that software pro-

jects miss their schedules, exceed their budgets,

and deliver software products of poor quality or

in the worst cases, even with the wrong func-

tionality (The CHAOS Reports, 1996, 1998,

2000, 2002, 2004 and 2006; Olson & Olson,

2000; Herbsleb et al., 2001; Damian & Zowghi,

2002; Bhat et al., 2006; Jimènez et al., 2009).

Furthermore, the traditional product and soft-

ware development technologies (practices, pro-

cesses, tools) do not support globally distributed

product developments well. For example, the

development teams are usually dispersed geo-

graphically and this alone causes new require-

ments for used technologies; such as higher

demands on communication and teamwork

methods (Aranda et al., 2006; Layman et al.,

2006). Furthermore, in global software develop-

ments (GSDs), different time zones and dis-

tances make communication more difficult than

in a local (single-site) development. The physical

distance between the development sites alone,

causes problems in task coordination, project

DOI: 10.1111/j.1468-0394.2011.00608.x

Article _____________________________

c� 2011 Blackwell Publishing Ltd Expert Systems 1

IV/2 IV/3

management and communication tasks (Olson

&Olson, 2000; Carmel&Agarwal, 2001;Herbsleb

& Moitra, 2001; Damian & Zowghi, 2002; De

Souza et al., 2002; Herbsleb, 2007; Jimènez

et al., 2009). Moreover, the understanding of

each other is not straightforward, due to differ-

ent backgrounds in the terms of terminologies

and cultures (Komi-Sirviö & Tihinen, 2005;

Noll et al., 2010). Thus, the whole product

development process differs significantly from

the local development process and everything

needs to be supported by technologies.

The role of knowledge and knowledge engi-

neering (KE) is crucial in product developments,

but it is even more important in global product

developments due to distance and cultural as-

pects, for example. Davenport and Prusak

(1998) describe knowledge as a dynamic blend

of experience, values, contextual information

and expert insight. This kind of knowledge

provides a framework for evaluating and incor-

porating new experiences and information.

Furthermore, Noble (2004) points out that a

cognitive perspective is a fundamental factor of

success for teams in collaboration. He describes

both, the kind of knowledge which is important

to team effectiveness, and how teams employ

this knowledge to coordinate, make decisions,

and achieve consensus. Thus, KE and knowl-

edge-related challenges hold a central role, while

developing solutions for supporting globally

distributed product developments.

This paper introduces knowledge-related

challenges in GSDs that need to be understood

and addressed in order to enable the success of

the GSD projects. Some practical solutions

(methods, practices, tools) that have been devel-

oped to overcome these problems are also de-

scribed in the paper. The discussed challenges

and solutions have been gathered during

research performed in several international

projects at VTT Technical Research Centre

of Finland (VTT, 2011) over the last decade.

We argue that the examination of challenges

from a cognitive perspective will help to estab-

lish solutions that take into account the knowl-

edge needs from the viewpoint of different

stakeholders in GSD.

2. Background and related work

The terms, data, information and knowledge

can be understood to be overlapping concepts.

When considering their levels of abstraction,

data is the lowest level, information is the next

level, and knowledge is at the highest level of the

three. Data are defined to be facts about events,

without any interpretation about the event.

Information can be described as a message from

a sender to a receiver. The main purpose of

information is to have an impact on the recei-

ver’s judgement and behaviour. Davenport and

Prusak (1998) pointed out that knowledge is

more; it is a dynamic blend of experience,

values, contextual information and expert in-

sights. Nonaka (1994) distinguished these two

dimensions of knowledge: explicit and tacit

knowledge. Explicit knowledge is understood

to be knowledge that can be articulated, codified

or stored in a certain media. It can also be

transmitted to others. To a large degree, tacit

knowledge is knowledge that cannot be articu-

lated. In the knowledge management (KM)

domain, the conversion of tacit knowledge to

explicit knowledge is seen as a highly critical

process, since tacit knowledge consists of such

habits and culture that we do not possess our-

selves. This means that an effective and success-

ful transfer of tacit knowledge requires extensive

personal contacts and trust.

Davenport and Prusak (1998) define knowl-

edge as follows: ‘Knowledge is a fluid mix of

framed experience, values, contextual informa-

tion, and expert insight that provides a frame-

work for evaluating and incorporating new

experiences and information. It originates and

is applied in the minds of knowers. In organiza-

tions, it often becomes embedded, not only in

documents or repositories but also in organiza-

tional routines, processes, practices, and norms.’

Thus, knowledge can and should be evaluated

by the decisions or actions to which it leads. For

example, improved knowledge increases the ef-

fectiveness of product developments and pro-

duction. Knowledge can be used for making

wiser decisions about strategies, potential custo-

mers, main competitors, distribution channels,

2 Expert Systems c� 2011 Blackwell Publishing Ltd

IV/3

products and services (Davenport & Prusak,

1998).

2.1. KE for bridging knowledge gaps in GSD

KE is a relatively new branch of software

engineering. KE is an evolutionary process of

engineering artefacts and using them to gain

new understandings, and these new understand-

ings are then used to further engineer or modify

artefacts, whereupon the process continues.

Over recent years, common awareness has been

created about that, a strong interplay exists

between software engineering andKE, and stu-

dies have been directed as to how KE methods

can be applied to software engineering, and vice

versa. Noble (2004) illustrated the relationship

between knowledge (‘Individual and Shared

Understandings’) and some key team activities,

as shown in Figure 1.

All teams perform all of the team activities

described above, generally moving from left to

right, but also switching back and forth among

the activities, depending on their immediate

needs. According to Noble (2002), the team

leader analyses the mission and determines the

required members and resources, and then re-

cruits the team, and assigns tasks and resources

during a ‘set up and adjustment’ process. The

team revises its set up whenever members decide

to change their team organization, tasks, or

infrastructure. Some of this knowledge can be

written down, but a large amount will remain as

tacit knowledge in the minds of the team mem-

bers. They will need this knowledge while carry-

ing out their ‘group problem solving’ process,

while team members may brainstorm, critique

and enrich, evaluate and prioritize, discover

differences, negotiate, reach a consensus, identi-

fy solutions, and make decisions. In ‘synchro-

nize and act’, they draw on their knowledge to

coordinate and help each other. This coordina-

tion enables the team as a whole to realize the

benefits of teamwork. These include the en-

abling of task continuity over time and space

through coordinated handoffs, increasing phy-

sical impacts through the massing of effects,

improved efficiency by team members laying

Figure 1: The relationship between Knowledge and Team Activities (Noble, 2004).

c� 2011 Blackwell Publishing Ltd Expert Systems 3

IV/4 IV/5

the groundwork for each other, and an in-

creased reliability by team members backing

each other up. Figure 1 shows that any knowl-

edge gap within the team can grow into larger

problems and may lead to the poor sharing of

information or lack of knowledge of what to do.

Software development is a very knowledge-in-

tensive field of engineering, as in each develop-

ment phase, efficient knowledge creation,

knowledge transfer, knowledge storing and=or
knowledge sharing activities are vital. Thus, all

of the problems faced and the challenges in GSD

should be analysed from a cognitive perspective

for bridging and avoiding the knowledge gaps.

This analysis will also enable the identification

of the best available solutions to the challenges

during the work.

2.2. The role of knowledge in GSD

Several articles have been published where KM

based challenges have been discussed in more

detail. For example, Rus and Lindvall (2002)

provided an overview of over 40 submitted

papers presenting the Software Engineering ap-

plications of KM. Furthermore, Rus and Lind-

vall (2002) and Desouza et al. (2006) introduced

a large number of knowledge needs and chal-

lenges during the software development. They

also present how these activities should be

systematically approached in the context of

distributed software development, via a propo-

sal that an organization must construct a con-

certed global KM strategy. Rus and Lindvall

(2002) discuss the importance of individuals

having access to the correct information and

knowledge when they need to complete a task or

make a decision. Knowledge must be managed

in all the stages of software development: from

the encapsulation of requirements, to the crea-

tion and testing of a program, to the software’s

installation and maintenance and even extend-

ing to the improvement of organizational soft-

ware development processes and practices.

These tasks are more complicated in a distrib-

uted development than that which is local. Also,

Damian and Moitra (2006) point out several

improvement areas in GSD that are KE related,

including KM strategies, distributed software

development, requirements engineering, distrib-

uted requirements, and managing offshore col-

laborations. However, there are only a small

number of papers where knowledge-related

challenges in GSD have been discussed.

Furthermore, most of these papers focus on

building a KM system or a strategy for an

organization, or on the other hand, the intro-

duction of experiences gathered from a tool-

based solution of sharing information, experi-

ences or documents, inside and over the pro-

jects. The importance of socio-technical or

cognitive aspects of the challenges identified in

GSD were only discussed in a few articles

(Aranda et al., 2006; Noll et al., 2010). In this

article, we will focus on introducing the chal-

lenges faced in the industry during a global

product development, how these challenges are

knowledge related, and what kind of solutions

are available to solve these challenges. We will

use the model of Noble (2004) for identifying

and analysing the knowledge needs of distribu-

ted teams and stakeholders. This approach

increases the visibility of knowledge based

requirements and challenges, thus making it

possible to take them into account while carry-

ing out improvement actions, and utilizing gen-

eral KM solutions more extensively to solve

GSD challenges.

2.3. Research design

Our research results, presented in this paper, are

based on the following main sources:

� A survey (Komi-Sirviö & Tihinen, 2005)

showed that the challenges of distributed

software developments must be recognized

when the objective is to minimize the chance

of development failures and maximize the

possibilities for success.

� The MERLIN (2004–2007) ITEA project,

where a more detailed study about the pro-

blems and solutions for collaborative SW

development was carried out. During the

project, several industrial cases were also

performed, aimed at improving GSD in the

participating companies.

4 Expert Systems c� 2011 Blackwell Publishing Ltd

IV/5

� The PRISMA (2009–2011) ITEA2 project,

where an update of both the state of the art

and the state of the practice was made and

further industrial case studies are carried out.

First, we used a questionnaire to survey the most

problematic areas and knowledge based chal-

lenges in distributed software development

(Komi-Sirviö & Tihinen, 2005). The semi-struc-

tured questionnaire was posted to 44 organiza-

tions in Finland and it was also e-mailed to over

200 organizations around the world (the ques-

tionnaire was also accessible via the Internet).

The total number of responses was 31, represent-

ing 21 different organizations. This survey estab-

lished a base for further research investments.

During the MERLIN project, we examined

the most critical issues related to collaboration

work and identified the most important areas

for future research activities. The results of the

study were published in Hyysalo et al. (2006).

The study was carried out by performing inter-

views and reviewing existing material, including

the process descriptions, templates, and guide-

lines, of the companies participating in the

MERLIN project. The interviews were carried

out using a specific framework. A total of 12

interviews of senior managers, project man-

agers, software developers and testers from six

different companies were carried out. The in-

dustrial partners represent several divergent

embedded SW business areas: mobile and wire-

less systems, data management solutions, tele-

communications, IT services, and consumer

electronics.

A case study research method was used for

the creation and trialling of new practices or

other kinds of solutions against identified chal-

lenges and problems in collaboration. Accord-

ing to Yin (2003), a case study is an empirical

inquiry that investigates a contemporary phe-

nomenon within its real-life context, especially

when the boundaries between the phenomenon

and the content are not clearly evident. During

the MERLIN and PRISMA projects, from 2004

to 2010, a total of 54 industrial case studies were

carried out. In our context, an industrial case

means a trial of a new or enhanced practice,

method, technique or tool(s), carried out in

industrial settings, i.e., in product development

projects. Each case study has been documented

in a structured way as an experience report.

In addition, a literature search was performed

to find experiences and solutions published

by others.

Thereafter, we have studied and analysed all

54 cases with respect to the knowledge inten-

siveness of the addressed challenges and tried

solutions. Although all of the cases were some-

what knowledge related – as all activities in

product developments are – we identified 40

cases from 12 different companies that were

intensively knowledge related. In this paper, we

have grouped these 40 cases into the following

classes: (1) requirements engineering, (2) archi-

tecture and design, (3) integration and testing,

(4) management and (5) support practices. The

classification was made to assist the facilitation

and clarification of the presentation of the

results. After that, we summarized and identi-

fied challenges in GSD, according to the key

team activities introduced by Noble (2004).

Finally, we have collected solutions to address

the challenges identified in the cases. These

solutions have been tried out in the industrial

cases, and have often been presented in litera-

ture by others. In this paper, the solutions are

presented using the Noble’s model for empha-

sizing the knowledge needs of each perspective.

More solutions (including these and more de-

tails for them) are described in the MERLIN

Collaboration Handbook (2007) – a collection

of the best practices that support collaborative

software developments (Parviainen et al., 2008).

The background for the handbook was litera-

ture, and the surveys and industrial cases carried

out during the MERLIN project. For example,

Philips’ experiences and lessons learned over 10

years of global distributed development at Phi-

lips, derived from about 200 projects (Komme-

ren & Parviainen, 2007), were included in the

collaboration handbook. During the PRISMA

project, the collaboration handbook has been

further developed and a new wiki-based imple-

mentation is being developed. In total, in the

current version of the wiki, the solutions are

c� 2011 Blackwell Publishing Ltd Expert Systems 5

IV/6 IV/7

based on more than 130 published scientific

articles. The solution descriptions are based

purely on the industrial partners’ experience

(30%), purely on literature (50%) and a combi-

nation of both experience and literature (30%).

However, the solutions are partly overlapping,

i.e., separate solutions can have similar topics,

and thus, more than the 30% of the solutions

are addressed both in literature as well as in the

industrial cases.

3. Knowledge-related challenges in GSD

In this section, knowledge-related challenges in

GSD are introduced. First, the challenges that

came up based on the surveys carried out in the

projects mentioned earlier are presented. Then

the challenges from the industrial cases are

discussed according to the product development

activity that they are part of. Finally, the identi-

fied challenges are discussed via their knowledge

based perspective based on the Noble’s key team

activities.

3.1. Challenges based on surveys

The survey (Komi-Sirviö & Tihinen, 2005) was

conducted, relating to knowledge based chal-

lenges in distributed software development. The

survey results showed (Figure 2) that the most

problematic area was tools and the environ-

ment, and more specifically, the incompatibility

of the tools and versions used by the different

development sites. This problem was empha-

sized most by large organizations employing

more than 500 persons.

Problems relating to communication and con-

tacts appeared to be very common within all of

the organizations; this problem area was ranked

as the second toughest. A closer analysis of the

responses showed that the role played by com-

munication was even greater than it appeared at

first: the lack or poor quality of communication

was often mentioned as a root cause behind

other problems. One respondent described the

problem: ‘Sometimes, the level of English does

not even allow for phone-conferences’. In addi-

tion, requirements engineering (RE) appeared

highly problematic for distributed development

projects, causing a large number of errors

(Komi-Sirviö & Tihinen, 2005).

Another study about the problems and their

solutions in collaborative SW development was

carried out during the MERLIN project. The

main challenges in the collaboration, as seen by

the partners, varied including:

� The openness of communication between

partners, e.g., problem hiding may be an

issue.

� Unclear assignments=specifications of the

work in contracts and establishing good

understanding between the partners con-

cerning each others work: When all of the

collaboration partners have the same view=a
shared understanding of what is to be done

Figure 2: Problem areas in distributed SW development (Komi-Sirviö & Tihinen, 2005).

6 Expert Systems c� 2011 Blackwell Publishing Ltd

IV/7

and if that’s written down well, fewer con-

flicts will occur.

� Trust between the partners. If trust is not

there, more formal practices for a follow-up

need to be applied, resulting in more work.

� The reliability of the partners’ development

schedule, especially when there are depen-

dencies in the partner’s work.

� A real need for co-operation, that is, a

mutual benefit from the collaboration. Part-

ners who complement each others expertise

makes, e.g., agreements concerning the shar-

ing of work and decision authorities easier.

� Becoming too dependent on one partner,

e.g., when a partner has strong competence

in something you do not have in-house, it is

essential to accurately prioritize that part-

ner’s work, for example, in order to get the

required features in the partner’s future

releases as there may not be any other way

to get those features into the product.

3.2. Challenges based on industrial cases

In this subsection, the challenges based on

industrial cases are introduced according to

their main activity area in collaborative SW

development. The identified challenges are dis-

cussed in detail from KE viewpoint.

3.2.1. Requirements engineering Requirements

engineering contains a set of activities for dis-

covering, analysing, documenting, validating

and maintaining a set of requirements for a

system (Sommerville & Sawyer, 1997). The ana-

lysis is based on 16 cases in 11 different compa-

nies as well as several workshops arranged in the

PRISMA project.

Requirements gathering and prioritization: Sev-

eral challenges have been identified relating to

requirements gathering from various stake-

holders, high level analysis and the prioritization

of requirements by product management, and

transferring the requirements to R&D. For ex-

ample, improving the understanding of the cus-

tomer needs, and the requirement acquisition

and recording methods to improve the quality

of recorded information have been addressed.

These were seen as important topics in order to

enable detecting when insufficient knowledge of

the application and needs could result in wrong

decisions and design errors. These challenges are

very knowledge intensive, for example, knowl-

edge is needed of the relevant stakeholders and

their importance, so that the loudest do not

automatically obtain the highest priority. As a

company stated: ‘There often seems to be more

ideas and possibilities for a new product than

what is feasible. Among other things, there are

numerous internal stakeholders who view the

market from different perspectives, customers

have their own priorities and competition always

needs to be regarded.’ Also, communicating

priorities to other sites is important, so that the

work is performed based on correct priorities.

Furthermore, describing requirements so that

they are understood similarly by all stakeholders

– with different backgrounds and tacit knowl-

edge – is important, but challenging.

Requirements traceability: Requirement trace-

ability means identifying requirements and then

following their lifecycle, both forwards and

backwards (Gotel & Finkelstein, 1994). Distrib-

uted development brings additional challenges

to creating and maintaining the traceability, as it

may need to be performed over company bor-

ders and to various tools. Traceability is impor-

tant for providing information to change

management, for example, for analysing the

impact of a change proposal, as it is easier to

define which modules and tests are affected when

a change is accepted. Traceability has been

addressed in the cases from the viewpoint of

establishing and automating requirements trace-

ability. In order to manage the traceability, one

requires knowledge about how things are related

to each other. This requires knowledge about the

product structure and the development process

artefacts, for example. A good management of

traceability is important, so that the work is

performed based on correct information, when

the background understanding of the people

involved is not necessarily the same.

Requirements communication=transfer=flow-
down: Requirements communication, transfer

and flowdown mean describing the requirements

c� 2011 Blackwell Publishing Ltd Expert Systems 7

IV/8 IV/9

so that they are understandable for others,

transferring them to other partners, and flowing

them down to subsystems. A common challenge

that has been addressed in the cases has been to

improve requirements documentation practices.

A company expressed: ‘We have trouble with

requirements being interpreted, when the defini-

tion process is distributed.’ Good requirement

descriptions are very important in GSD, as they

are important means of sharing information,

e.g., the work performed by different si-

tes=partners is often based on the requirement

documents. People from different cultures and

backgrounds do not necessarily understand the

things the same way, so it is essential that

requirement descriptions are unambiguous, con-

sistent and clear. For example, in a company, a

challenge was stated as follows ‘Our subcontrac-

tor does not always ask for clarifications of

unclear requirements, but instead, they have

invented their own solutions that have subse-

quently not fitted with the rest of the product.’

On the other hand, the time and resources

available for the requirements definition are

limited, so a challenge is to know the correct

level of requirement descriptions. Also, ensuring

the common understanding is challenging, as

partners may be unwilling to communicate the

unclear issues, or they are not aware of the

different interpretations of the requirements un-

til late in the project. As a company stated: ‘It is

challenging to validate each stakeholder’s inter-

pretation of requirements before the implemen-

tation takes place. Validation is typically

performed with the delivery of a prototype or

early build; this may result in wasted time and

effort.’ This is all very knowledge intensive; it

requires proper knowledge creation and specifi-

cally a correct transfer of knowledge in the

distributed development situation.

Several cases addressed challenges relating to

non-functional requirements, often referred to as

the qualities, for example, usability, maintain-

ability and performance. Few cases have ad-

dressed the challenge of what methods and tools

can be used to handle non-functional require-

ments in a multi-partner embedded software

project. Non-functional requirements are vul-

nerable to different kinds of interpretations,

which are more likely in GSD, due to different

backgrounds of people. Thus, describing non-

functional requirements well is even more im-

portant in GSD, so that they will be taken into

account in everyone’s work.

3.2.2. Architecture and design In this section,

we will discuss challenges based on five cases in

five different companies. A common challenge

has been to establish a good architecture for a

product or product-line. The design of good

architecture is a very knowledge intensive activ-

ity. As one of the purposes of architecture

description is to facilitate communication, simi-

lar challenges apply as with requirements. Es-

tablishing a common understanding over

sites=partners is challenging due to different

backgrounds, for example. Architecture should

also be designed so that it supports the division

of work to the various partners, which requires

knowledge of the partners’ capabilities and

product requirements. The working culture

may cause architectural differences in collabora-

tion as the architectural views for problem sol-

ving can differ quite a great deal, for example,

due to different foci (e.g., efficiency vs. imple-

mentation).

A related challenge has been to define a ‘good

enough’ level of design in order to result in a

reasonable level of documentation, while still

providing the necessary information to all sta-

keholders, i.e., to detect a too little design or

‘analysis paralysis’. In order to define what is

necessary information in the design documents,

knowledge about the stakeholders and their

work is required. This is especially important in

GSD, as the role of documentation is more

important in knowledge sharing than in a single

site. Furthermore, it is more complicated to

define the relevant information for the stake-

holders that are not so well known to you,

and that can have different backgrounds and

tacit knowledge. Some cases have also focused

on validating the current architecture to im-

prove the product architecture itself from de-

fined viewpoints, e.g., the adaptability of the

architecture: ‘How software systems can adapt

8 Expert Systems c� 2011 Blackwell Publishing Ltd

IV/9

to multiple platforms at an architecture level

and how adaptability mechanisms can be added

to architectures of software systems developed

in collaborative work?’ Good architecture and

communication about the architecture are im-

portant, so that the parts which are made in

different sites can be integrated together well,

and so that there is no duplicate work or areas

which are not covered.

3.2.3. Integration and testing Four cases from

five companies (one shared case between com-

panies) have addressed integration and testing.

Several cases addressed integration issues, such

as when the integration of the software takes

place at different locations, it often finally lead

to a non-buildable product, or as stated by a

company: ‘We have problems at integration,

when remote programmers throw their build

code ‘‘over the wall’’ to a build manager who

must resolve conflicts’. Also, the required ex-

pertise and its availability during integration

have been addressed in the cases. From a KE

viewpoint, it is important to make sure that the

integrator has enough competence, when pro-

duct parts are made in remote sites and the

integrator does not have continuous visibility

with the work. Also, the developers should

know that their work is only done when the

product is integrated.

Some cases have addressed challenges related

to that testing in a collaborative embedded soft-

ware development is perceived to be inefficient,

taking a too high portion of the total develop-

ment effort. These cases have focused on devel-

oping common test practices (including test sets,

and tool environments) usable for distributed

projects. For example, extra effort can be caused

by, e.g., repeating the defects due to the non-

transparent and different view of the status of

the software, due to working with tools which

are not probably connected. Another example is

related to sharing information: ‘Tests done and

their results are not known by the component

provider’s customers that run their own regres-

sion tests with their test data. I.e., the customers

have limited knowledge of the tests already run

and the impact of the changes made vs. previous

versions, thus resulting in overlapping tests and

duplicate work.’ From a KE viewpoint, sharing

information about the test plans, test environ-

ment, and the tests that have been carried out

between partners is important to avoid dupli-

cate work. Defining effective testing for a dis-

tributed project requires knowledge of the

product, work distribution and schedules, test

methods etc. and the discipline and tools to

share the information between the partners.

3.2.4. Management The discussion in this sec-

tion is based on 12 cases from 10 companies. In

a distributed development, significantly more

effort is required for up-front planning and

follow-up activities in order to be able to man-

age a project successfully. The manager in a

GSD project has to have a large amount of

abilities and knowledge in addition to technical

competence, such as cultural knowledge and

communication skills and particularly good

project management capabilities. As a company

stated: ‘In GSD, a project manager may be far

away from the development groups, which creates

a visibility problem, and makes it easier to hide

problems.’ In other words, distribution makes the

project progress more difficult to estimate and

control due to the decreased visibility.

Identification of the dependencies between

partners – e.g., the interdependencies of the sub-

system deliveries – and taking them into account

in project schedules was seen as a critical issue.

The dependencies should also bemade explicit, by

defining the responsibilities for the delivery

(who, what, when, to whom), the authority to

accept, as well as the acceptance procedure. The

status of the dependencies should then be checked

pro-actively.

Communication and information sharing: The

challenge of sharing information and knowledge

about the ongoing projects and other related

information in GSD was also addressed in four

industrial cases. Communication with the peers

located on different sites was mentioned as a

specific challenge. Additionally, the diminished

contact with a dedicated project owner meant

that the project team did not possess sufficient

vision or one-on-one guidance to make important

c� 2011 Blackwell Publishing Ltd Expert Systems 9

IV/10 IV/11

design choices during the development. There

were also knowledge based goals in the analysed

industrial trials, such as improving the collabora-

tive skills in projects development, and identifying

problems which occurred during the case project

related to the supporting tools, process and com-

munication.

Resource Management: From a KE viewpoint,

resource management is specifically challenging

in a distributed development, for example, know-

ing what expertise is available in different sites

over time requires specific attention (e.g., being

aware of changes in project schedules and re-

source loads, when some expert can suddenly be

available for other projects etc.). In practice, pro-

ject managers prefer to use known resources –

people they know to be good or experts in the

topic, instead of finding out the available resources

from other sites. Thismay result in the sub-optimal

use of resources and expertise in projects.

Measurements and analysis: In GSD, it is im-

portant to get real-time and accurate information

on projects while thework is performed in different

sites or even by different companies. Two cases

(from two companies) addressed measurements

and analysis challenges in a collaboration situa-

tion. In both cases, KE was recognized to be in a

vital role: in the analysis and interpretation of the

measurements, knowledge sharing and lessons

learned have to be taken into consideration, in

order to make correct conclusions from the data.

Subcontract management: Subcontracting is a

very typical activity in GSD and many of the

challenges which are described in previous sections

are also relevant in subcontracting. Five industrial

cases from two companies have been carried out,

where subcontracting practices were the targets of

improvement actions. Generally, the cases focused

on strengthening the companies’ subcontracting

practices or finding new practices for carrying out

subcontracting, in order to improve the subcon-

tracted outputs as well as the controllability and

efficiency of the subcontracting. As a company

stated: ‘We have noticed that the subcontracting

R&D projects in the HW SW development area is

a challenging issue. SW is an abstract thing which

can be difficult to specify comprehensively. The

synchronization of simultaneous HW and SW

projects, so that they are ready to be integrated on

time, is quite demanding. The different back-

grounds of project members and the distance of

locations and the time difference can be significant.

These things cause extra challenges in projects

where the technical content itself is demanding.

Therefore, it is not surprising that misunderstand-

ings, delays, conflicts etc. can happen in collabora-

tion projects.’

KE and management were considered to be

highly significant aspects. Firstly, knowledge holds

a major role when selecting a subcontractor: a

company can complement its own knowledge via

subcontracting or a company can decide that some

knowledge will be outsourced. Second, subcon-

tracting management is very knowledge intensive:

differences in skills and knowledge between the

partners need to be managed, and real-time and

exact information sharing has to be ensured. In

practice, the effort required by the subcontracting

party to manage the subcontractor has often been

underestimated: ‘We had underestimated the time

and effort that would have been needed from our

own people to monitor and guide the subcontrac-

tor. As that time was not allocated, the subcon-

tracted work was not as we had hoped.’ Proper

subcontracting management is exclusively possible

if KE aspects such as knowledge gathering, trans-

ferring and sharing have been addressed.

3.2.5. Support practices Support practices

mean all those activities that occur as ongoing

or cross-section practices during a project’s life-

cycle. Several cases were somehow related to the

support practices in collaboration. In three cases

from three companies, KE aspects were in a

major role. One case focused on ensuring effec-

tive configuration management in a situation

where the work was distributed based on devel-

opment phases and the project involved people

of various backgrounds. There were, for exam-

ple: ‘Agreeing about the configuration manage-

ment tool was difficult, as there were sites with

different backgrounds and preferences. It is

clear that selecting a configuration manage-

ment tool and practices causes a great deal of

sentimental arguing, some people like a certain

tool and others some other and there is often no

10 Expert Systems c� 2011 Blackwell Publishing Ltd

IV/11

real factual reasoning.’ Another case was fo-

cused on the defect management process: ‘Re-

porting about the defects found during product

development has been troublesome, as there are

no general guidelines or common tools for doing

that. Communication is performed via email

and by the phone between the resellers, integra-

tor and subcontractor.’ In the third case, intel-

lectual property right (IPR) management was

addressed, especially from the communication

and agreement of IPR in the GSD viewpoint.

All of these cases are knowledge intensive, as

they involve sharing information that can be

interpreted differently due to the different back-

grounds of involved people. Thus, the practices

related to these topics should be defined utilizing

KE principles.

3.3. The summary of challenges

In this section, we will summarize the identified

knowledge-related industrial challenges by pre-

senting the knowledge needs from the viewpoint

of the key team activities illustrated by Noble

(2004). Noble’s model was used since it was the

best model that we found concerning knowledge

intensive software production from a cognitive

perspective, whereas, the models which are pre-

sented in literature usually focus on the KM and

strategy viewpoint. Noble’s model illustrates

activities for effectively identifying knowledge

needs and sharing knowledge during the colla-

boration in practice. This way, the cognitive

perspectives of the challenges can be better

perceived, enabling the identification of solu-

tions to the challenges.

3.3.1. The challenges for ‘Team Set Up and

Adjustment’ activities ‘The Team Set Up and

Adjustment’ covers activities such as team form-

ing, goals reviewing, tasks identifying and roles

determining that have to be continuously up-

dated to reflect the new knowledge which has

been gathered and shared during GSD. In the

following table (Table 1), the identified knowl-

edge intensive challenges will be presented,

along with examples from cases.

The factors behind the challenges were identi-

fied as described in Figure 3. Factors are the

causes of the challenges and can be addressed

with practices that take them into account. The

relation of the factors to the activities defined by

Noble is also shown in the figure, so that the KE

solutions can be identified to address these

factors and thus the challenges.

In GSD, the partners’ tacit knowledge, relat-

ing to the different backgrounds, competencies

and motivations of the stakeholders, have to be

addressed during the ‘team set up and adjust-

ment’ process. These factors should be ad-

dressed while identifying potential solutions for

the challenges. In order to address the different

backgrounds and tacit knowledge, KE activities

related to forming teams and reviewing goals are

relevant. On the other hand, in order to address

the motivation of the partners, well defined roles

and activities for reviewing and thus sharing the

Table 1: A summary of the challenges for ‘Team Set Up and Adjustment’

Identified challenges Examples from cases

Setting up the project, e.g., the selection of a
partner (either external companies, or sites
within a company)
Defining the roles of different parties
The optimal use of resources and competences
over sites
Dividing work, so that unnecessary
dependencies over a distance can be avoided
Describing the goals clearly and
understandably
The communication and social skills of
project members

Agreeing about IPR
Establishing good understanding between partners about
requirements
Ensuring mutual benefit between partners
Managing dependency to the component provider
Documenting non-functional requirements
Establishing good architecture (distribution support) and
shared understanding about it
The identification of dependencies between partners
Resource allocation in GSD
Selecting a subcontractor

c� 2011 Blackwell Publishing Ltd Expert Systems 11

IV/12 IV/13

knowledge of the goals of the project are useful.

Relating to sharing knowledge of the compe-

tences of the project partners over sites defining

roles and tasks clearly are helpful.

3.3.2. The challenges for ‘Group Problem Solving’

activities ‘Group Problem Solving’ covers activ-

ities such as brainstorming, prioritizing, discovering

differences, negotiating, and reaching a consensus,

for example. In the following table (Table 2), the

identified knowledge intensive challenges are pre-

sented, along with examples from cases.

The main knowledge based factors causing the

challenges were identified as shown in Figure 4.

The relation of these factors to the activities defined

by Noble is also shown in the figure.

In the ‘group problem solving’ process, a team

engages in its ‘collaborative dialog’ to reach a

consensus and decide what to do. If the identified

factors have not been recognized and minimized,

they can cause wrong conclusions and decisions.

There is a great deal of tacit knowledge behind the

factors and thus, solutions that increase commu-

nication, trust, openness and the awareness of each

other, as well as solutions that make knowledge

available in an explicit form, have to be emphasized

in GSD. Activities such as prioritizing and nego-

tiating help to address complications caused by

Team Set Up and
Adjustment

The partner competencies may not be so well known from distance sites (and
it’s common to favour people you know, even though their competences may
not be the best available for the task at hand).

The partners’ backgrounds and thus tacit knowledge are different, causing
different interpretations of ambiguous or undefined issues.

The motivation to be in the project may vary

Form team

Review goals

Identify tasks

Determine roles

Figure 3: Main knowledge based factors for ‘Team Set Up and Adjustment’.

Table 2: Summary of the challenges for ‘Group Problem Solving’

Identified challenges Examples from cases

Identifying problems or potential problems early
The brainstorming of problems or design issues over a
distance
The negotiation of conflicts
Sufficient communication about design rationale and
decisions
The availability and correct interpretation of
measurement data

Identifying differences in requirement
interpretations
Repeating defects found in tests effectively
Resource management in GSD
Un-communicated changes made by other
partners

Group Problem
Solving

Openness and trust between the partners may not be optimal, and not all
problems or potential problems may be communicated openly

Distances complicate working together and involving e.g., the best experts
from various sites.

Problems, and interpretation differences’ may only occur during integration

Communication over distances often lacks the “body language”, which
complicates sharing feelings and thus understanding each other.

Brainstorm

Prioritize

Discover differences

Negotiate

Reach consensus

Figure 4: Main knowledge based factors for ‘Group Problem Solving’.

12 Expert Systems c� 2011 Blackwell Publishing Ltd

IV/13

distances, and interpretation differences can be

addressed by brainstorming,making priorities clear

and actively discovering differences. The establish-

ing of openness and trust can be supported by

activities related to negotiating, brainstorming

freely and reaching a consensus that can also help

in creating a better understanding of each other.

3.3.3. The challenges for ‘Synchronize and Act’

activities ‘Synchronize and Act’ covers activities

such as mass effects, laying the groundwork,

hand-off tasks, backups, cueing to a situation,

for example. In the following table (Table 3), the

identified knowledge intensive challenges are pre-

sented, along with examples from cases.

The main knowledge based factors causing the

challenges were analysed and identified as shown

in Figure 5. The relation of these factors to

the activities defined by Noble is also shown in

the figure.

In the ‘synchronize and act’ process, team

members coordinate and help each other to

achieve the most benefits from the teamwork.

This coordination will fail in so far as the identi-

fied challenges and factors are not addressed. In

GSD, it is important to recognize that, e.g.,

practices for follow-up and tracking work, knowl-

edge sharing methods and tools, and the quality

of documentation has been established. The qual-

ity of the documentation can be addressed via a

proper laying of groundwork for other team

members, and different interpretations can be

avoided through good and coordinated hand-offs

and the laying of groundwork. Sufficient commu-

nication can be ensured via backups, cueing to the

situation and the massing of effects. Any chal-

lenges caused by distances can be addressed via

proper hand-offs and cueing to the situation, so

that the relevant information and knowledge is

shared between partners.

3.3.4. The challenges for ‘Individual and

Shared Understanding’ activities ‘Individual

and Shared Understanding’ (�knowledge)

Table 3: Summary of the challenges for ‘Synchronize and Act’

Identified challenges Examples from cases

The follow-up and tracking of work and dependencies
A good level of communication
A shared understanding of the basis of the work (e.g.,
requirements, architecture) and dependencies
Ensuring the availability of required information

The reliability of partners’ schedules
Creating and maintaining traceability
Ensuring the shared understanding of
requirements
Synchronization with the integrator and
component supplier
Sharing test information
The availability of required integration
competence
Subcontract management

Figure 5: Main knowledge based factors for ‘Synchronize and Act’.

c� 2011 Blackwell Publishing Ltd Expert Systems 13

IV/14 IV/15

activities combine information and knowledge

perceiving from each of the three key team

activities, as well as an interactive shared under-

standing of team adjustments, problem settings

and synchronized situations. In the following

table (Table 4), the knowledge intensive chal-

lenges are presented, along with examples from

cases.

The main knowledge based factors causing

the challenges were analysed and identified as

shown in Figure 6. The relation of these factors

to the activities defined by Noble is also shown

in the figure.

Individual and shared understanding, i.e.,

knowledge creation requires communication,

communication and again communication, as

communication increases mutual trust between

partners. This means that informal communica-

tion is necessary and that is why selected tools

should support asynchronous communication

as well as the knowledge sharing process.

4. Proposed solutions

In this section, we will discuss example solutions

according to the identified challenges with the

perspectives proposed by Noble (2004). The

presented solutions are typically things that

need to be considered when carrying out a

GSD project, as well as some practical way of

working descriptions, which help to take into

account the things mentioned. The solutions

presented in this section have also usually been

described in other publications, and have been

chosen to be discussed here as they address the

KE viewpoint well.

4.1. Solutions relating to ‘Team Set Up and

Adjustment’

In this section, solutions for ‘Team Set Up and

Adjustment’ activities will be discussed. Figure 7

shows the relation of the Noble’s activities to the

example practical solutions explained here.

Conditions for collaboration: An organiza-

tion should base its business=project decisions
on a collaboration strategy, and it should under-

stand the consequences and impact of colla-

boration decisions on its business (benefits and

disadvantages=risks). Each partner should un-

derstand their role in the project (e.g., resource

provider vs. strategic partner), as that helps in

Table 4: Summary of the challenges for ‘Individual and Shared Understanding’

Identified challenges Examples from cases

Creating a shared understanding
Knowing what individual knowledge each participant
possesses
Documentation is an important means to share
information, and its quality is essential for success

Communication with remote peers
The incompatibility of tools
The openness of communication
Establishing trust
Ensuring sufficient knowledge to base the work
and decisions on
An adequate level of design
Interpreting measurement data in GSD

Figure 6: Main knowledge based factors for ‘Individual and Shared Understanding’.

14 Expert Systems c� 2011 Blackwell Publishing Ltd

IV/15

defining the required interaction and goals for

the work. A rewarding policy helps to increase

awareness and motivation for collaborations.

Also, the creation of a functional and purpose-

ful project organization is important for GSD

project success.

Clear agreement roles, responsibilities and

authorities: The roles of all of the parties in-

volved should be clearly described and commu-

nicated, e.g., the responsibilities and authorities,

including the escalation path, should be defined

and communicated. Example roles include the

project leader=responsible for achieving the pro-
ject targets, a project management team repre-

senting the major cultures within the project, a

supplier=relationship manager, team leaders

and teams which are fully accountable and

responsible for their results, in addition to a

project level steering group including members

from all of the organizations and sites.

An explicit statement of the project goals

ensures that all of the project partners work on

the same basis. In order to define the goals

explicitly, the following aspects should be con-

sidered: the scope of the work to be performed,

the risks to be incurred, the resources to be

required, the tasks to be accomplished, the mile-

stones to be tracked, the effort (cost) to be

expended, and the schedules to be followed.

Before a project can be planned, the objectives

and scope should be established, alternative solu-

tions should be considered and the technical and

management constraints should be identified.

Communication about the design rationale,

e.g., the information concerning why some de-

sign decision has been made, and why some

other decision is not acceptable is important

knowledge in order to avoid conflicting

decisions made by other partners of the project.

These are worthwhile to include in the architec-

ture documentation, including the recom-

mended design patterns.

Managing resources and aligning teams, in

order to effectively utilize critical resources, they

need to be identified, and knowledge of their

availability needs to be updated and communi-

cated continuously. In order to align the teams’

work, communication (what, when, who, how),

and responsibilities and dependencies within

and between the teams need to be defined.

Understanding each other: In GSD, the project

manager requires specific skills in addition to

the usual project management and technical

knowledge, namely communication skills, and

knowledge of the cultures (countries, or compa-

nies), and competencies involved in the project.

It is also good to analyse the different cultures

who are involved in the project in the beginning,

in order to become aware of the differences and

thus be able to take them into account during

the project.

4.2. Solutions relating to ‘Group Problem

Solving’

In this section, solutions for ‘Group Problem

Solving’ activities are discussed. The relations of

these solutions to the activities of the Noble

model are shown in Figure 8. In addition to

these solutions, some of the solutions addressed

in the previous section are also valid concerning

this topic, e.g., ‘managing resources and align-

ing teams’ and ‘understanding each other’.

Escalation channels: Acceptance procedures

and decision authorities need to be agreed upon

in order to enable the management of problems

Figure 7: Solutions relation to ‘Team Set Up-up and Adjustment’ activities.

c� 2011 Blackwell Publishing Ltd Expert Systems 15

IV/16 IV/17

and conflicts. In particular, when multiple com-

panies are involved, explicit and predefined

escalation channels are required to cope with

problems that cannot be controlled by the pro-

ject itself, as it requires the involvement of the

(authorized) management of basically all of the

partners. There are two major categories of

conflicts; technical, such as conflicts in design

approaches and design implementations, and

business, non-technical conflicts, such as sche-

dules and task priorities.

Status reporting practices: The reporting for-

mat, reporting channels, decision authorities, and

problem solving practices should be defined. The

following reporting practices have been found to

be useful in a distributed development:

� Distributing drafts of schedules and task

assignments for each incremental release.

� Weekly task reports and meetings within a

subgroup.

� Delivery reports (a description of the chan-

ges=features that are checked in).

� Quarterly sync-up meetings (the developers

meet together face-to-face for a week).

� Revising all of the documents to reflect the

current state of the development.

� Frequent deliveries of codes and several

iteration cycles and builds.

� Frequent and incremental integration and

testing.

Adequate communication means and information

sharing: Adequate communication means, facil-

ities and information sharing have a major

impact in collaboration, due to the need for

intensified communication. Active communica-

tion and information sharing supports the

fast establishment of fluent co-operation. The

communication items and roles should be de-

fined, communication channels and tools should

be defined and the availability ensured, potential

communication bottlenecks should be identified

and the mechanisms for managing them defined.

Managing collaboration related risks: Colla-

boration related risks should be managed as part

of a normal risk management. It is necessary to

look at the sources of technical, organizational

and communication risks. Typically, risks are

related to unclear assignments or specifications

of work in the contract, the openness of commu-

nication, trust between the partners, and the

reliability of the partner’s development schedule.

Defined and shared change management prac-

tices: InGSD, the scope of the impact assessment,

information sharing, and viewpoints that need to

be taken into account in decision making, are

affected by collaborative environment. When

multiple teams or partners are involved, the level-

ling of change requests analysis is important to

optimize the use of resources and to ensure an

adequate level of communication, meaning that

the changes are managed at their level of impact.

Practices for the resolution of conflicting re-

quirements: A generic requirements interrela-

tionship model can be used when identifying

conflicts between the requirements. When the

conflicting requirements have been identified,

different stakeholders must decide upon which

quality attributes are favoured over others, and

these priorities need to be consistently respected

when making decisions.

4.3. Solutions relating to ‘Synchronize and Act’

In this section, solutions for ‘Group Problem

Solving’ activities are discussed. The relations of

Figure 8: Solutions relation to ‘Group Problem Solving’ activities.

16 Expert Systems c� 2011 Blackwell Publishing Ltd

IV/17

these solutions to the activities of the Noble

model are shown in Figure 9. Some of the

solutions which were addressed in the previous

section are also valid relating to this topic, e.g.,

‘escalation channels’, ‘status reporting prac-

tices’, ‘adequate communication means and in-

formation sharing’, ‘managing resources and

aligning teams’ and ‘understanding each other’

help to achieve fluent co-operation during the

project.

Clear and fixed requirements: The effect of

unambiguous and changing requirements is

higher in GSD due to the leverage effect caused

by the multiple levels of control. In order to

avoid misunderstandings and create a mutual

vision of a project, specifications should be

unambiguous and clear. It is also important to

ensure that people with enough competence

are involved in the requirements analysis

(from all of the partners). Establishing a com-

mon understanding can be supported via con-

tinuous communication about the requirements,

and by using an agreed upon structure for

the requirements.

A common=shared understanding of the archi-

tecture: The establishment of a common under-

standing can be supported via continuous

communication about the architecture, via good

architecture documentation, including recom-

mended design patterns and by architects re-

viewing the further work products made by

other members of the project.

Information about the performed tests and test

results: The responsibilities and authority for

test reporting coordination and acceptance

should be defined and the practices for the

communication of the performed tests and

test results followed. Common tools and

repositories assist in the sharing of information

process.

The compatibility of the partners’ development

tools and environments: In GSD, it is not possi-

ble to select or determine what development

tools and environments each partner shall use.

That is why it is important to recognize and

define, for example, what kind of visibility is

needed for another partner’s work or how

communication and data sharing can be sup-

ported between the partners during the project.

This is discussed in more detail in the following

section (4.4).

Cultural differences: The identification of cul-

tural differences in a GSD project is important

in order to better understand each other and to

avoid problems and conflicts. Several publica-

tions exist, giving examples of differences be-

tween various cultures. It is important not to

assume that the motivations, actions, and rea-

soning of those from other countries match

yours. Failing to recognize the differences be-

tween cultures may result in some serious con-

sequences. Note that there can also be different

cultures between different companies.

4.4. Solutions relating to ‘Individual and Shared

Understanding’

The solutions presented in earlier sections are

also all relevant from the ‘Knowledge: Individual

and Shared Understanding’ viewpoint, but in

this section, we will focus on one specific solu-

tion, namely the Compatibility of partners’ devel-

opment tools and environments. This is because it

has become clear, through several of the cases,

that if the development tools and environments

are not compatible, several knowledge-related

Figure 9: Solutions relation to ‘Synchronize and Act’ activities.

c� 2011 Blackwell Publishing Ltd Expert Systems 17

IV/18 IV/19

problems have occurred. For example, if the

data in different tools is not connected, whether

the product meets the requirements in a colla-

borative development becomes untraceable, the

sharing of the test environment and results is not

possible if partners use different tools, and the

visibility of the collaborative development sta-

tus beyond the partner borders is lacking, in so

far as the data is spread out between various

isolated tools. These challenges have been ad-

dressed in many of the cases discussed in this

paper.

In order to support the sharing of informa-

tion during a GSD project, development tool

interoperability and the accessibility of data are

important topics to address. Over several years,

we have been working on tool interoperability

concepts and have developed prototypes for

tool integration. These solutions aim to provide

an enhanced awareness and synchronization of

assets in a GSD environment, by enabling the

interoperability of various software develop-

ment tools in collaborative settings. The tool

integration solution has been carried out in

co-operation with the participating companies:

the requirements have been derived from the

companies and from the cases in particular.

Also, the implemented solution has been vali-

dated in the industrial cases. One important

aspect of our solution is that it enables the use

of a company’s legacy development tools, con-

figurable for an individual partner or project

needs, in order to minimize the costly and risky

changes in a tool environment.

Figure 10 presents the idea behind the tool

integration solution: meaning that the integra-

tion layer connects the data from different tools

and provides the same view to the data for all

partners. This enables the use of the same ver-

sions in different sites, as well as seeing the

progress that other partners are making online.

Currently, we are also working on context

aware communication support, e.g., seeing who

are working on related topics online, and estab-

lishing communication with them. Also, knowl-

edge storing, meaning the storing of relevant

communication records, so that they are avail-

able for those who didn’t participate in the

actual communication situation, but need the

information for their work, is an interesting

topic. We also aim to support the creation of

awareness at the workspace, i.e., finding out

Figure 10: Tool integration concepts.

18 Expert Systems c� 2011 Blackwell Publishing Ltd

IV/19

easily what has happened since a person was last

online.

First, the complete ToolChain was developed

in the Merlin project (Heinonen et al., 2007) and

(Pesola et al., 2008). The main goal for the

Merlin ToolChain was to evaluate and validate

the concept of tool integration supporting a

globally distributed development, i.e., when the

work of several partners is distributed around

the world, using various development tools, and

needing to share information. Merlin Tool-

Chain demonstrated that the integration of

tools from different vendors is possible, and it

also answered directly to the identified chal-

lenges in collaboration. Further developments

of the ToolChain are reported in Eskeli &

Parviainen (2010) and in the seminar presenta-

tion (Eskeli, 2010).

The experience of using the tool integration

solution in industrial cases has shown that the

tool integration has enabled a full transparency

on real-life project data, and has provided a

unified user-interface for various views (tasks,

requirements, code, build & test). This has been

beneficial for the projects, as it has improved the

knowledge sharing while doing the same work

as before, i.e., not adding extra tasks.

5. Discussion

In this article, we have introduced the challenges

that companies have faced in GSD, discussed

their KE aspects, and presented example solu-

tions for addressing the challenges. In GSD, the

effective and successful transfer of tacit knowl-

edge requires extensive personal contacts, com-

munication and trust. Cognitive perspectives

have been presented as a fundamental success

factor for teams in collaboration. Any knowl-

edge gap within the team can expand into big

Figure 11: Knowledge based factors relation to the team activities and solutions.

c� 2011 Blackwell Publishing Ltd Expert Systems 19

IV/20 IV/21

problems and may lead to the poor sharing of

information or a lack of knowledge about what

to do. We used the model of Noble (2004) to

emphasize the knowledge needs of distributed

teams and stakeholders by analysing the chal-

lenges encountered in GSD from the KE view-

point. This enabled us to find relevant solutions

to address these challenges and to further utilize

KE principles to solve GSD challenges. Figure

11 summarizes the knowledge based factors

(discussed in section 3.3) and their relation to

the team activities and the related solutions

(discussed in section 4).

This article pointed out that a successful

distributed software development requires both

structured and disciplined software engineering

and KM solutions. Communication manage-

ment and the utilization of effective substitutes

for face-to-face communication have an impor-

tant role in GSD, to ensure knowledge sharing.

A careful execution of project start-up activities

– including the planning (dividing work, sche-

dule, mutual deliveries), the exact definition and

agreement of common rules, responsibilities,

and tools used – can greatly contribute to a

successful implementation. Also, ensuring the

availability of information during the project to

all of the parties is essential for a successful

project. By understanding the nature and de-

mands of the GSD, as well as the KE challenges

in depth, software organizations will be able to

reduce the risk of failure and to make their

operations successful.

Acknowledgements

This paper was written within the PRISMA

project (http://www.prisma-itea.org/), which is

an ITEA 2 project, number 07024. The authors

would like to thank the support of ITEA (http://

www.itea2.org/) and Tekes – the Finnish Fund-

ing Agency for Technology and Innovation

(http://www.tekes.fi/eng/).

References

ARANDA, G.N., A. VIZCAINO, A. CECHICH and M.
PIATTINI (2006) Technology selection to improve
global collaboration, in Proceedings of International

Conference on Global Software Engineering ICGSE
’06, Florianopolis, Brazil, pp. 223–232.

BHAT, J.M., G. MAYANK and S.N. MURTHY (2006)
Overcoming requirements engineering challenges:
lessons from offshore outsourcing, Journal of IEEE
Software, IEEE Computer Society, 23, 38–44.

CARMEL, E. and R. AGARWAL (2001) Tactical ap-
proaches for alleviating distance in global software
development, Journal of IEEE Software, IEEE Com-
puter Society, 18, 22–29.

CHAOS Reports (1996, 1998, 2000, 2002, 2004 and
2006) the Standish Group International Inc. Avail-
able at http://www.standishgroup.com (accessed 10
January 2011)

CMMI for development, version 1.2. (2006) Tech-
nical Report CMU=SEI-2006-TR-008. Available at
http://www.sei.cmu.edu/cmmi/ (accessed 10 January
2011)

DAMIAN, D. and D. MOITRA (2006) Global software
development: How far have we come?, Journal of
IEEE Software, 23, 17–19.

DAMIAN, D.E. and D. ZOWGHI (2002) The impact of
stakeholders’ geographical distribution on managing
requirements in a multi-site organization, in Pro-
ceeding of IEEE Joint International Conference on
Requirements Engineering. pp. 319–328.

DAVENPORT, T.H. and L. PRUSAK (1998) Working
Knowledge, Boston, USA: Harvard Business School
Press.

DE SOUZA, C.R.B., S.D. BASAVESWARA and D.F. RED-

MILES (2002) Supporting Global Software Develop-
ment with Event Notification Servers, in Proceedings
of Global Software Development, Workshop #9,
organized in the International Conference on Soft-
ware Engineering (ICSE) 2002, Orlando, Florida,
USA.

DESOUZA, K.C., Y. AWAZU and P. BALOH (2006) Mana-
ging knowledge in global software development
efforts: issues and practices, Journal of IEEE Soft-
ware, 23, 30–37.

ESKELI, J. (2010) Tools for breaking the walls, Same-
RoomSpirit seminar presentation. Available at:
http://conference.erve.vtt.fi/srs2010/files/EskeliJuho_
Tools_for_breaking_the_walls_20100506.pdf (acces-
sed 10 January 2011)

ESKELI, J. and P. PARVIAINEN (2010) Supporting Hard-
ware-related Software Development with Integra-
tion of Development Tools, in Proceedings of Fifth
International Conference on Software Engineering
Advances ICSEA’10, August 22–27, 2010, Nice,
France, pp. 353–358.

GOTEL, O. and A. FINKELSTEIN (1994) An Analysis of
the Requirements Traceability Problem, in Proceed-
ings of the 1st International Conference on Require-
ments Engineering, April 18–22, 1994, pp. 94–101.

HEINONEN, S., J. KÄÄRIÄINEN and J. TAKALO (2007)
Challenges in Collaboration: Tool Chain Enables

20 Expert Systems c� 2011 Blackwell Publishing Ltd

IV/21

Transparency Beyond Partner Borders, in Proceed-
ings of 3rd International Conference Interoperability
for Enterprise Software and Applications 2007, Fun-
chal, Portugal.

HERBSLEB, J.D. (2007) Global Software Engineering:
the future of socio-technical coordination, in Pro-
ceedings of Future of Software Engineering FOSE
’07, May 23–25, 2007 IEEE Computer Society.

HERBSLEB, J.D., A. MOCKUS, T.A. FINHOLT and R.E.
GRINTER (2001) An Empirical Study of Global Soft-
ware Development: Distance and Speed, in Proceed-
ings of the 23rd International Conference on Software
Engineering (ICSE), May 12–19, 2001, Toronto,
Ontario, Canada, pp. 81–90.

HERBSLEB, J.D. and D. MOITRA (2001) Global software
development, Journal of IEEE Software, 18, 16–20.

HYYSALO, J., P. PARVIAINEN and M. TIHINEN (2006)
Collaborative Embedded Systems Development:
Survey of State of the Practice, in Proceedings of
ECBS’06, 13th Annual IEEE International Confer-
ence on the Engineering of Computer Based Sys-
tems, March 27–30, Germany 2006.

JIMÈNEZ, M., M. PIATTINI and A. VIZCAÍNO (2009)
Challenges and Improvements in Distributed Soft-
ware Development: A Systematic Review. Hindawi
Publishing Corporation, Advances in Software En-
gineering Volume 2009, Article ID 710971, 14pp.

KOMI-SIRVIÖ, S. andM. TIHINEN (2005) Lessons learned
by participants of distributed software development,
Journal of Knowledge and Process Management, 12,
108–122.

KOMMEREN, R. and P. PARVIAINEN (2007) Philips ex-
periences in global distributed software develop-
ment, Journal of Empirical Software Engineering,
12, 647–660.

LAYMAN, L., L. WILLIAMS, D. DAMIAN and H. BURES

(2006) Essential communication practices for Ex-
treme Programming in a global software develop-
ment team. Information and Software Technology
Volume 48, Issue 9, September 2006, Special Issue
Section: Distributed Software Development, pp.
781–794.

MERLIN (2004-2007) ITEA project, Embedded Sys-
tems Engineering in Collaboration, Available at
http://virtual.vtt.fi/virtual/proj1/projects/merlin/in-
dex.html (accessed 10 January 2011)

MERLIN Collaboration Handbook (2007) Available
at http://www.merlinhandbook.org (accessed 10
January 2011)

NOBLE, D. (2002) A Cognitive Description of Colla-
boration and Coordination to Help Teams Identify
and Fix Problems, in Proceedings of 7th International
Command and Research Control and Technology
Symposium, September 16–20, Quebec, Canada.

NOBLE, D. (2004) Knowledge Foundations of Effective
Collaboration, in Proceedings of 9th Interna-
tional Command and Control Research and Technol-

ogy Symposium, September 14–16, Copenhagen,
Denmark.

NOLL, J., S. BEECHAM and I. RICHARDSON (2010) Global
software development and collaboration: barriers
and solutions, Journal of ACM Inroads, 1, 66–78.

NONAKA, I. (1994) A dynamic theory of organisational
knowledge creation, Organisation Science, 5, 14–37.

OLSON, G.M. and J.S. OLSON (2000) Distance matters,
Human-Computer Interaction, 15, 139–178.

PARVIAINEN, P., J. ESKELI, T. KYNKÄÄNNIEMI and M.
TIHINEN (2008) Merlin Collaboration Handbook:
Challenges and Solutions, in Proceedings of the 3rd
International Conference on Software and Data Tech-
nologies ICSOFT 2008. Porto, Portugal, 5–8 July
2008. INSTICC. Vol. SE (2008), No: GSDCA=M=,
339–346.

PESOLA, J-P., J. ESKELI, P. PARVIAINEN, R. KOMMEREN

and M. GRAMZA (2008) Experiences of tool integra-
tion: development and validation, in Enterprise In-
teroperability III – New Challenges and Industrial
Approaches, K. Mertins, R. Ruggaber, K. Popplewell
and X. Xu (eds), London, UK: Springer, 499–510.

PRISMA (2009-2011) ITEA2 project, Productivity in
Collaborative Systems Development, Available at:
http://www.prisma-itea.org (Accessed 10 January
2011)

RUS, I. and M. LINDVALL (2002) Knowledge manage-
ment in software engineering, IEEE Journal of Soft-
ware, 19, 26–38.

SOMMERVILLE, I. and P. SAWYER (1997) Requirements
Engineering: A Good Practice Guide, Chichester:
John Wiley & Sons.

VAN SOLINGEN, R., P. PARVIAINEN and M. TIHINEN

(2008) Solutions for challenges in global collabora-
tive product development, ITEA Innovation report,
March 2008, available at http://www.itea2.org/at-
tachments/428/innovation_report_MERLIN.pdf
(accessed 10 January 2011)

VTT (2011) VTT Technical Research Centre of Fin-
land, available at http://www.vtt.fi/?lang¼ en (ac-
cessed 10 January 2011)

YIN, R.K. (2003) Case Study Research: Design and
Methods, Third Edition, Applied Social Research Meth-
ods Series, Vol. 5, USA, Sage Publications Inc.,
181pp.

The authors

Päivi Parviainen

Päivi Parviainen is a Principal Scientist and team

manager in the Software Technologies center

at VTT Technical Research Centre of Finland.

She has worked at VTT since 1995. She has

c� 2011 Blackwell Publishing Ltd Expert Systems 21

IV/22 1

experience in software process improvement,

measurement, software reuse, software develop-

ment tools and their integration, systems and

software requirements engineering and global

software development practices, for example.

Maarit Tihinen

Maarit Tihinen is a Research Scientist and

Quality Manager at VTT (VTT Technical

Research Centre of Finland). Before joining

VTT at year 2000, she worked as a mathe-

matics and information technology teacher

at Kemi-Tornio Polytechnic during the

nineties. Her research interests are focused on

software processes, especially, on improving

software processes as well as measurements and

metrics.

22 Expert Systems c� 2011 Blackwell Publishing Ltd

1

PAPER V

Metrics in distributed
product development

In: Proceedings of the Sixth International
Conference on Software Engineering Advances

(ICSEA 2011). Barcelona, Spain.
Pp. 275–280.

Copyright 2011 IARIA.
Reprinted with permission from the publisher.

V/1

V/1

Metrics in Distributed Product Development

Maarit Tihinen and Päivi
Parviainen

Software Technologies
VTT Technical Research Centre of

Finland
maarit.tihinen@vtt.fi

paivi.parviainen@vtt.fi

Rob Kommeren

Digital Systems & Technology
Philips,

The Netherlands
r.c.kommeren@philips.com

Jim Rotherham

Project Management Office
Symbio,
Finland

jim.rotherham@symbio.com

Abstract— Nowadays the products are increasingly developed
globally in collaboration between subcontractors, third party
suppliers and in-house developers. However, management of a
distributed product development project is proven to be more
challenging and complicated than traditional one-site
development. From the viewpoint of project management, the
measurements and metrics are important activities for
successful product development. This paper is focused on
describing a set of metrics that is successfully used in industrial
practice in distributed product development. Based on the
experiences, the reasoning for selecting these metrics was
similar: they are easy to capture and can be quickly calculated
and analysed on a regular interval. One of the most important
reasons for choosing these metrics was that they were aimed
especially to provide early warning signals, i.e., means to
proactively react to potential issues in the project. This is
especially important in distributed projects, where specific
means to track project status are needed.

Keywords-metrics; measurements; global software
development; distributed product development

I. INTRODUCTION

Globally distributed software development enables
product development to take place independently of the
geographical location of the individuals or organizations. In
fact, nowadays the products are increasingly developed
globally in collaboration between subcontractors, third party
suppliers and in-house developers [1]. In practice distributed
projects struggle with the same problems than single-site
projects including problems related to managing quality,
schedule and cost. Distribution only makes it even harder to
handle and control these problems [2][3][4][5]. These
challenges are caused by various issues, for example, less
communication – especially informal communication –
caused by distance between partners, and differences in
background knowledge of the partners. That’s why, in
distributed projects the systematic monitoring and reporting
of the project work is especially important, and measurement
and metrics are an important means to do that effectively.

Management of a distributed product development
project is more challenging than traditional development [6].

Based on an industrial survey [7], one of the most important
topics in the project management in distributed software
development is detailed project planning and control during
the project. In global software development (GSD), this
includes, e.g., dividing work by sites into sub-projects,
clearly defined responsibilities, dependencies and timetables,
along with regular meetings and status monitoring.

The main purpose of measurements and metrics in
software production is to create means for monitoring and
controlling and this way to provide support for decision
making [8]. Traditionally, the software metrics are divided
into process, product and resource metrics [9]. In the
comprehensive measurement program, all these dimensions
should be taken into consideration while interpreting
measurement results, otherwise, the interpretation may lead
to wrong decisions or incorrect actions. Successful
measurement program can prove to be an effective tool for
keeping on top of development effort, especially, for large
distributed projects [10]. However, many problems and
challenges have been identified that reduce and may even
eliminate all interests to the measurements. For example, not
enough time is allocated for measuring and metrics during a
project, or not enough benefit is visibly gained by the project
doing the measurement work (e.g., data is useful only at the
end of project, not during the project). In addition, the
“metric enthusiasts” may define too many metrics making it
too time consuming. Thus, it’s beneficial [10] to define core
metrics to collect across all projects to provide benchmarking
data for projects, and to build on measures that come
naturally out of existing processes and tools.

This paper is focused on describing a metrics set that are
successfully used in distributed product development. The
main purpose of the paper is to offer a set of essential metrics
with experiences of their use. The amount of the metrics is
knowingly kept as limited as possible. Also, the metrics
should be such, that they provide online information during
the projects, in order to enable fast reaction to potential
problems during the project. The metrics and experience
presented in the paper are based on metrics programs of two
companies, Philips and Symbio. Royal Philips Electronics is
a global company providing healthcare, consumer life-style

275

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

V/2 V/3

and lighting products and services. Digital Systems &
Technology is a unit within Philips Research that develops
first of a kind products in the area of healthcare, well-being
and lifestyle. The projects follow a defined process and are
usually distributed over sites and/or use subcontractors as
part of product development. Symbio Services Oy provides
tailored services to organizations seeking to build tomorrow's
technologies. Well-versed in a variety of software
development methodologies and testing best practices,
Symbio's specialized approaches and proprietary processes
begin with product design and stem through globalization,
maintenance and support. Symbio has built a team of
worldwide specialists that focus on critical areas of the
product development lifecycle. Currently Symbio employs
around 1400 people and their project execution is distributed
between sites in the US, Sweden, Finland and China.

The paper is structured as follows. Firstly, an overview of
related work – literature studies and their limitations related
to measurements and metrics of distributed product
development – is introduced in Section II. Then, proposed
metrics are presented using Rational Unified Process (RUP)
[11] approach as a framework. After that, industrial
experiences of using the metrics are discussed. Finally, the
conclusions are drawn in Section V.

II. MEASUREMENTS IN GSD
There are several papers that discuss globally distributed

software engineering and its challenges, for example, [10],
[12] and [13]. Also, metrics in general and for specific
aspects have been discussed in numerous papers and books
for decades. However, little global software development
(GSD) literature has focused on metrics and measurements
or even discusses the topic. Da Silva et al. [6] report similar
conclusion based on analysis of DSD literature published
during 1999 – 2009: they state as one of their key finding
that the “vast majority of the reported studies show only
qualitative data about the effect of best practices, models,
and tools on solving the challenges of distributed software
development (DSD) project management. In other words,
our findings indicate that strong (quantitative) evidence
about the effect of using best practices, models, and tools in
DSD projects is still scarce in the literature.”

The papers that have discussed some metrics for GSD
usually focus on some specific aspect, for example,
Korhonen and Salo [13], discuss quality metrics to support
defect management process in a multi-site organization.
Simmons and Ma [14] discuss a software engineering expert
system (SEES) tool where the software professional can
gather metrics from CASE tool databases to reconstruct all
activities in a software project from project initiation to
project termination. Misra [15] presents a cognitive weight
complexity metric (CWCM) for unit testing in a global
software development environment. Lotlikar et al. [16]
propose a framework for global project management and
governance including some metrics with main aim to support
work allocation to various sites. Peixoto et al. [12] discuss
effort estimation in global software development, and one of
their conclusions is that “GSD projects are using all kinds of

estimation techniques and none of them is being consider as
proper to be used in all cases that it has been used”, meaning,
that there is no established technique for GSD projects.

Some effort has also been invested in defining how to
measure success of GSD projects [17], and these metrics
mainly focus on cost related metrics and are done after
project completion. The focus of this paper is to discuss
metrics for monitoring ongoing GSD projects and that way
identify needs for corrective actions early.

A. Traditional metrics and project characteristics
Software measurements and metrics have been discussed

since 1960’s. The metrics have been classified many
different ways, for example, they can be divided into basic
and additional metrics [18] where basic metrics are size,
effort, schedule and defects, and the additional metrics are
typically metrics that are calculated or annexed from basic
metrics (e.g., productivity = software size per used effort).
The metrics can be divided also into objective or subjective
metrics [18]. The objective metrics are easily quantified and
measured, examples including size and effort, while the
subjective metrics include less quantifiable data such as
quality attitudes (e.g., excellent, good, fair, poor). An
example of the subjective metrics is customer satisfaction.
Furthermore, software metrics can be classified according to
the entities of product, processes and resources [9]. Example
metrics of product entities are size, complexity, reusability
and maintainability. Example metrics of process entities are
effort, time, number of requirements changes, number of
specification/coding faults found and cost. Furthermore,
examples of resource entities are age, price, size, maturity,
standardization certification, memory size or reliability.
These classifications, various viewpoints and the amount of
examples merely prove how difficult the selection of metrics
really can be during the project.

In addition to different ways of metrics classification,
development projects can also be classified. Typically, the
project classification is used as a baseline for further
interpretation of the metrics and measurements. For example,
all kind of predictions or comparison should be done within
the same kind of development projects, or the differences
should be taken into account. Traditional project
characteristics are, e.g., size and duration of a project, type of
a project (development, maintenance, operational lifetime
etc.), project position (contractor, subcontractor, internal
development etc.), type of software (hardware-related
software development, application software, etc.) or used
software development approaches (agile, open source,
scrum, spiral-model, test driven development, model-driven
development, V-model, waterfall model etc.). Furthermore,
different phases of development projects have to be taken
consideration while analyzing gathered measurement data.

B. Metrics and measurements during product development
A phase of lifecycle of development project affects to the

interpretation of the metrics. Thus, in this paper, proposed
metrics are introduced by using commonly known approach
of software development Rational Unified Process (RUP).
RUP is a process that provides a disciplined approach to

276

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

V/3

assigning tasks and responsibilities within a development
organization. Its goal is to ensure the production of high-
quality software that meets the needs of its end-users, within
a predictable schedule and budget [11].

The software lifecycle is divided into cycles, each cycle
working on a new generation of the product. RUP divides
one development cycle in four consecutive phases [11]: 1)
inception phase, 2) elaboration phase, 3) construction phase
and 4) transition phase. Furthermore, there can be one or
more iterations within each phase during the software
generation. The phases and iterations of RUP approach are
illustrated in following Figure 1.

Figure 1. Phases and Iterations of RUP approach [11].

From a technical perspective the software development is
seen as a succession of iterations, through which the software
under development evolves incrementally [11]. From
measurement perspective this means that some metrics can
be focused on one or two phases of the development cycle,
and some can be continuous metrics that can be measured in
all phases, and can be analysed, e.g., in iterations.

C. Measurements and metrics in GSD
Software measurement is defined by [19] as follows:

“The software measurements is the continuous process of
defining, collecting and analysing data on the software
development process and its products in order to understand
and control the process and its products and to supply
meaningful information to improve that process and its
products”. In the daily software development work, the
measurements are still seen as unfamiliar or even an extra
burden for projects. For example, project managers feel it as
time consuming to collect metrics for the organization (e.g.,
business-goal-related metrics) while they need to have
metrics that are relevant to the project. Furthermore, they
have impressed that there has not been budgeted enough time
for measurements, and that’s why it’s really difficult to get
approval from stakeholders for this kind of work [10].

Globally distributed development generates new
challenges and difficulties for the measurements. For
example, the gathering of the measurements data can be
problematic because of different development tools or their
versions, work practices with related concepts can vary by
project stakeholders or reliability of the gathered data can
vary due to cultural differences, especially, in subjective

evaluations. In addition, distributed projects are often so
unique (e.g., product domain and hardware-software balance
vary, or different subcontractors are used in different phases
of the project) that their comparison is impossible. Thus, the
interpretation of measurements data is more complicated in
GSD than one site projects. That’s why it’s recommended to
select moderate amount of metrics. In this paper we will
present a set of metrics to use during GSD. Also industrial
experiences about the metrics will be discussed.

The common metrics (effort, size, schedule etc.) are also
applicable for GSD projects. However, special attention may
be needed in training the metrics collection, to ensure
common understanding of them (e.g., used classifications).
Also, as measurements also tend to guide people’s behavior,
it’s important to ensure that all are aware of the purpose of
the metrics (i.e., not to measure individual performance),
specifically in projects distributed over different cultures.

III. EXAMPLES OF INDUSTRIAL PRACTICES

In this Section the metric set used in the companies is
introduced. The metrics are introduced according to the RUP
phases where the metric is seen most relevant to measure.
For each metric, a name, a notation and a detailed definition
is introduced. The main goal is to offer a useful, yet a
reasonable amount of metrics, for supporting the on-time
monitoring of the GSD projects. Thus, the indicators are
supposed to be leading indicators rather than lagging
indicators, for example, planned / actual schedule
measurements should be implemented as milestone trend
analysis: measure the slip in the first milestone and predict
the consequences for the other milestones and project end.

A. Metrics for Inception Phase
During the inception phase, the project scope has to be

defined and the business case has to be established. The
business case includes success criteria, risk assessment, and
estimate of the resources needed, and a phase plan showing
dates of major milestones. Inception is the smallest phase in
the project, and ideally it should be quite short. Example
outcomes of the inception phase are a general vision
document of the core project's requirements, main
constraints, an initial use-case model (10% -20% complete),
and a project plan, showing phases and iterations [20].
Proposed metrics to be taken consideration in this phase are
introduced in Table I.

TABLE I. METRICS FOR THE INCEPTION PHASE

Metric Notation Definition
Planned
Schedule

DPLANNED The planned Date of delivery (usually
the completion of an iteration, a
release or a phase)

Planned
Personnel

FTPLANNED The planned number of Full Time
persons in the project at any given
time

Proposed
Requirements

Reqs The number of proposed
requirements.

The metrics Planned Schedule and Planned Personnel are
mostly needed for comparison with actual schedule and

277

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

V/4 V/5

personnel, in order to identify lack of available resources as
well as delays in schedule quickly. The amount of Proposed
Requirements tells about the progress of the product
definition.

B. Metrics for Elaboration Phase
During the elaboration phase a majority of the system

requirements is expected to capture. The purpose of the
phase is to analyze the problem domain, establish a sound
architectural foundation, develop the project plan, and
eliminate the highest risk elements of the project. The final
Elaboration phase deliverable is a plan (including cost and
schedule estimates) for the construction phase. Example
outcomes of the elaboration phase are a use-case model (at
least 80% complete), a software architecture description,
supplementary requirements capturing the non-functional
requirements and any requirements that are not associated
with a specific use case, a revised risk list and a revised
business case, and a development plan for the overall project.
Proposed metrics to be taken consideration in this phase are
introduced in Table II.

TABLE II. METRICS FOR THE ELABORATION PHASE

Metric Notation Definition
Schedule:
Planned
/Actual Schedule

DPLANNED
DACTUAL

The planned/actual Date of
delivery (usually the
completion of an iteration, a
release or a phase)

Staff:
Planned
/Actual Personnel

#FTPLANNED

#FTACTUAL

The planned/actual number
of Full Time persons in the
project at any given time

Requirements
-Proposed
-Accepted
-Not implemented

#Reqs PROP.

#Reqs ACCEP.
#Reqs NOT_IMPL

The number (#) of
- proposed requirements
- reqs accepted by customer
- not implemented reqs

Tests
-Planned #Tests PLANNED

The number (#) of
- planned tests

Documents:
-Planned
-Proposed
-Accepted

#Docs PLANNED
#Docs PROPOSED
#Docs ACCEPTED

The number (#) of
planned /proposed /accepted
documents to be reviewed
during the project.

The metrics related to requirements, tests and documents
indicate the technical progress of the project from different
viewpoints. Staffing metric may explain deviations in the
expected progress vs. the actual progress, both from
technical as well as from schedule viewpoint. Note that those
metrics that are more relevant to measure by iterations (e.g.,
effort and size) are introduced later (in Section E).

C. Metrics for Construction Phase
Construction is the largest phase in the project. During

the phase, all remaining components and application features
are developed and integrated into the product, and all
features are thoroughly tested. System features are
implemented in a series of short, time boxed iterations. Each
iteration results in an executable release of the software.
Example outcomes of the phase consist of a software product
integrated on the adequate platforms, user manuals, and a
description of the current release. Proposed metrics to be
taken consideration in this phase are introduced in Table III.

Note that those metrics that are continuously measured are
introduced later (in Section E).

TABLE III. METRICS FOR THE CONSTRUCTION PHASE

Metric Notation Definition
Planned
/Actual Schedule
Planned
/Actual Personnel

DPLANNED

DACTUAL
#FTPLANNED
#FTACTUAL

Defined in the elaboration
phase.

Requirements:
-Proposed
-Accepted
-Not implemented
-Started
-Completed

#Reqs PROP.
#Reqs ACCEP.

#Reqs NOT_IMPL
#Reqs STARTED
#Reqs COMPLETED

The number (#) of
- proposed requirements
- reqs accepted by customer
- not implemented reqs
- reqs started to implement
- reqs completed

Change Requests:
-New CR

-Accepted

-Implemented

#CRs NEW

#CRs ACCEPTED

#CRs IMPL.

The number (#) of
- identified new CR or
enhancement
- CRs accepted for
implementation
- CRs implemented

Tests:
-Planned
-Passed
-Failed
-Not tested

#Tests PLANNED.

#Tests PASSED
#Tests FAILED
#TestsNOT TESTED

The number (#) of
- planned tests
- passed tests
- failed tests
- not started to test

Defects
-by Priority: e.g.,
Showstopper,
Medium, Low

#Dfs PRIORITY

The number (#) of
- defects by Priority during
the time period

Documents:
-Planned
-Proposed
-Accepted

#Docs PLANNED

#Docs PROPOSED
#Docs ACCEPTED

Defined in the elaboration
phase.

The metrics related to requirements, tests and documents
indicate the technical progress of the project from different
viewpoints. Metrics related to changes indicate both on the
stability of the project technical content, and can explain
schedule delays, and unexpected technical progress. Defect
metrics tell both of the progress of testing, as well as
maturity of the product.

D. Metrics for Transition Phase
The final project phase of the RUP approach is transition.

The purpose of the phase is to transfer a software product to
a user community. Feedback received from initial release(s)
may result in further refinements to be incorporated over the
course of several transition phase iterations. The phase also
includes system conversions, installation, technical support,
user training and maintenance. From measurements
viewpoint the metrics identified in the phases relating to
schedule, effort, tests, defects, change requests and costs are
still relevant in the transition phase. In addition, customer
satisfaction is generally gathered in the transition phase.

E. Metrics for Iterations
Each iteration results in an increment, which is a release

of the system that contains added or improved functionality
compared with the previous release. Each release is
accompanied by supporting artifacts: release description,
user’s documentation, plans, etc. Although most iterations
will include work in most of the process disciplines (e.g.,

278

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

V/5

requirements, design, implementation, testing) the relative
effort and emphasis will change over the course of the
project. Proposed metrics to be taken consideration in this
phase are introduced in Table IV.

TABLE IV. METRICS FOR ITERATIONS

Metric Notation Definition
Effort:
-Planned Effort
-Actual Effort

EPLANNED
EACTUAL

The planned/actual effort
required of any given
iteration of the project.

Size:
-Planned size
-Actual size

SIZEPLANNED

SIZEACTUAL

The planned /actual size of
each iteration can be
measured as SLOC
(Source Lines of Code),
Points or any other
commonly accepted way.

Cost:
-Budgeted
-Expenditure

COSTBUDGET

COSTACTUAL

The budgeted cost /actual
expenditure for any given
iteration.

Velosity:
-planned /actual
story points

#PTS PLAN
#PTS ACT

How many story points are
planned to be /actually
implemented of any given
iteration of the project.

Productivity:

ACTUALPTS#
EACTUAL

Use effort per acutally
implemented story points
for each sprint /iteration

All of these metrics provide indication of the project
progress and reasons for deviations should be analysed.
These metrics should be analysed together with other metrics
results (presented in Tables I-III) in order to gain
comprehensive picture of the status.

IV. EXPERIENCES AND DISCUSSION

The metrics presented in previous section were common
for both of the companies. Although the metrics were chosen
independently by both companies, the reasoning behind
choosing these metrics was similar. An important reason was
to come from a re-active into a pro-active mode, i.e., to
introduce ‘early warning’ signals for the project and
management. Specifically these metrics have been chosen as
they indicate a well-rounded view of status in the various
engineering disciplines and highlight potential issues in the
project. This creates real possibilities to act proactively based
on signals gathered from various engineering viewpoints.
This is especially important in GSD, where information of
project status is not readily available but needs special effort,
distributed over sites and companies. Accordingly, the
metrics set can be seen as a ‘balanced score card’, on which
management can take the right measures, balancing insights
from time, effort (e.g., staffing), cost, functionality
(requirements) and quality (tests) perspective.

An important aspect was also that the metrics are easy of
capture and that they can be captured from the used tools
“for free”, or can be quickly calculated at regular intervals.
Costs and budgets are good examples of metrics that can be
easily captured from the tools. This is also important from
GSD viewpoint, as automated capturing reduces the chance
of variations caused by differences in recording the metrics

data in different sites. Neither of the companies use metrics
based on lines-of-code as they did not find it to be a reliable
indicator of progress, size or quality of design.

As can be seen, the metrics are quite similar as in single
site development. However, the metrics may be analysed
separately for each site, and comparisons between sites can
thus be made in order to identify potential problems early.
Also, while interpreting or making decisions based on the
measurement results the distributed development
implications need to be taken into account. Distributed
development requires ‘super-balancing’: how to come to the
right corrective action if for instance, in one side the % of
not accepted requirements is high, and in the other side the #
of passed tests is lagging behind. Distributed development
may also affect the actual results of the measurements. For
example, relating to subjective metrics, such as effort
estimation, differences between backgrounds of the people
(e.g., cultural or work experience) in different sites may
affect the result.

The companies also use the measurement results to gain
insight into why a measure varies between similar single site
and multi-site projects in order to try to reduce potential
variances. This also partially explains the use of the same
metrics as single-site development. Furthermore, the
challenges in communication and dynamics of distributed
teams mean that working practices need to be addressed
continuously. However, in addition to metrics results, paying
close attention and acting on feedback from retrospectives is
as important, if not more important than drawing strong
conclusions from metrics alone.

Currently, both companies are in process of revamping
their metric usage, but feel confident that these metrics are
the right ones. Easy implementation and by that easy
acceptance is the most crucial thing to get these metrics as
established practice within the company.

Both companies are careful in introducing new metrics,
as it’s well known that too many metrics leads to overkill
and rejection by the organization, and does not provide the
right insights and indication for control measures. However,
a potential measurement to be added to the set specifically
from distributed development viewpoint, could be
measurements related to time spent idling, i.e., waiting for
something, and the time blocked because of the impediments
elsewhere in the team as these affect productivity and
highlight when a team is not performing. These additional
metrics should be focused on measuring the project
performance, especially task and team performance in GSD.

V. CONCLUSION

The management of the increasingly common distributed
product development project is proven to be more
challenging and complicated than traditional one-site
development. Metrics are seen as important activities for
successful product development as they provide means to
effectively monitor the project progress. However, defining
useful, yet reasonable amount of metrics is challenging, and

279

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

V/6 1

there is little guidance available for a company to define
metrics for its distributed projects.

Globally distributed development generates new
challenges and difficulties for the measurements. For
example, the gathering of the measurements data can be
problematic because of different development tools or their
versions, work practices with related concepts can vary by
project stakeholders or reliability of the gathered data can
vary due to cultural differences, especially, in subjective
evaluations. Furthermore, especially interpretation and
decision-making based on the measurement results require
that the distributed development implications are taken
carefully into consideration.

This paper focused on describing a set of metrics that is
successfully used in industrial practice in distributed product
development. These metrics, are aimed especially to provide
means to proactively react to potential issues in the project,
and are meant to be used as a whole, not interpreted as single
information of project status.

The metrics presented in the paper were common for
both of the companies. Based on experiences, the reasoning
for selecting these metrics was similar: they are easy to
capture and can be quickly calculated and analysed at regular
interval. Also, one of the most important reasons was that
these metrics were aimed especially to provide means to
proactively react to potential issues in the project. The
balancing insights from time, effort, cost, functionality and
quality was also seen as very important aspect.

ACKNOWLEDGMENT

This paper was written within the PRISMA project that is
an ITEA 2 project, number 07024 [21]. The authors would
like to thank the support of ITEA [22] and Tekes (the
Finnish Funding Agency for Technology and Innovation)
[23].

REFERENCES

[1] J. Hyysalo, P. Parviainen, and M. Tihinen, "Collaborative
embedded systems development: Survey of state of the
practice," 13th Annual IEEE International Symposium and
Workshop on Engineering of Computer Based Systems
(ECBS 2006), IEEE, 2006, pp. 1-9.

[2] J. D. Herbsleb, "Global software engineering: The future of
socio-technical coordination," In Proceedings of Future of
Software Engineering FOSE '07, IEEE Computer Society,
2007, pp. 188-198.

[3] J. D. Herbsleb, A. Mockus, T. A. Finholt, and R. E. Grinter,
"Distance, dependencies, and delay in a global collaboration,"
In Proceedings of the ACM Conference on Computer
Supported Cooperative Work, ACM, 2000, pp. 319-328.

[4] M. Jiménez, M. Piattini, and A. Vizcaíno, "Challenges and
improvements in distributed software development: A
systematic review," Advances in Software Engineering, 2009,
pp. 14.

[5] S. Komi-Sirviö and M. Tihinen, "Lessons learned by
participants of distributed software development," Knowledge
and Process Management, vol. 12, (2), 2005, pp. 108-122.

[6] F. Q. B. da Silva, C. Costa, A. C. C. França, and R.
Prikladinicki, "Challenges and solutions in distributed
software development project management: A systematic
literature review," In Proceedings of International Conference

on Global Software Engineering (ICGSE2010), IEEE, 2010,
pp. 87-96.

[7] S. Komi-Sirviö and M. Tihinen, "Great challenges and
opportunities of distributed software development - an
industrial survey," 15th International Conference on Software
Engineering and Knowledge Engineering (SEKE2003), San
Francisco, USA, 2003, pp. 489-496.

[8] V. R. Basili, "Software modeling and measurement: The
Goal/Question/Metric paradigm," 1992.

[9] N. E. Fenton and S. L. Pfleeger, Software Metrics: A
Rigorous and Practical Approach. PWS Publishing Co.
Boston, MA, USA, 1998.

[10] M. Umarji and F. Shull, "Measuring developers: Aligning
perspectives and other best practices," IEEE Software, vol.
26, (6), 2009, pp. 92-94.

[11] P. Kruchten, The Rational Unified Process: An Introduction.
Addison-Wesley Professional, 2004.

[12] C. E. L. Peixoto, J. L. N. Audy, and R. Prikladnicki, "Effort
estimation in global software development projects:
Preliminary results from a survey," In Proceedings of
International Conference on Global Software Engineering,
IEEE Computer Society, 2010, pp. 123-127.

[13] K. Korhonen and O. Salo, "Exploring quality metrics to
support defect management process in a multi-site
organization - A case study," In Proceedings of 19th
International Symposium on Software Reliability Engineering
(ISSRE), IEEE, 2008, pp. 213-218.

[14] D. B. Simmons and N. K. Ma, "Software engineering expert
system for global development," In Proceedings of 18th IEEE
International Conference on Tools with Artificial Intelligence
(ICTAI'06), IEEE, 2006, pp. 33-38.

[15] S. Misra, "A metric for global software development
environment," In Proceedings of the Indian National Science
Academy 2009, pp. 145-158.

[16] R. M. Lotlikar, R. Polavarapu, S. Sharma, and B. Srivastava,
"Towards effective project management across multiple
projects with distributed performing centers," In Proceedings
of IEEE International Conference on Services Computing
(CSC'08), IEEE, 2008, pp. 33-40.

[17] B. Sengupta, S. Chandra, and V. Sinha, "A research agenda
for distributed software development," In Proceedings of the
28th International Conference on Software Engineering,
ACM, 2006, pp. 731-740.

[18] K. H. Möller and D. J. Paulish, Software Metrics: A
Practitioner's Guide to Improved Product Development.
Institute of Electrical & Electronics Enginee, London, 1993.

[19] R. Van Solingen and E. Berghout, The Goal/Question/Metric
Method: A Practical Guide for Quality Improvement of
Software Development. McGraw-Hill, 1999.

[20] P. Kruchten, "A rational development process," CrossTalk,
vol. 9, (7), 1996, pp. 11-16.

[21] PRISMA, Productivity in Collaborative Systems
Development, PRISMA project (2008-2011) homepage,
URL: http://www.prisma-itea.org/ (Accessed 1.6.2011).

[22] ITEA 2, Information Technology for European Advancement,
ITEA 2 homepage, URL: http://www.itea2.org/ (Accessed
1.6.2011).

[23] Tekes, the Finnish Funding Agency for Technology and
Innovation, Tekes homepage. URL: http://www.tekes.fi/eng/
(Accessed 1.6.2011).

280

ICSEA 2011 : The Sixth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-165-6

1

PAPER VI

Metrics and measurements in
global software development

In: International Journal on Advances in
Software, Vol. 5, No. 3&4, pp. 278–292.

Copyright 2012 Authors.
 Published under agreement with IARIA.

VI/1

278

International Journal on Advances in Software, vol 5 no 3 & 4, year 2012, http://www.iariajournals.org/software/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Metrics and Measurements in Global Software Development

Maarit Tihinen and Päivi
Parviainen

Digital Service Research
VTT Technical Research Centre of

Finland
maarit.tihinen@vtt.fi

paivi.parviainen@vtt.fi

Rob Kommeren

Digital Systems & Technology
Philips,

The Netherlands
r.c.kommeren@philips.com

Jim Rotherham

Project Management Office
Symbio,
Finland

jim.rotherham@symbio.com

Abstract—Today products are increasingly developed globally
in collaboration between subcontractors, third-party suppliers
and in-house developers. However, management of a
distributed product development project is proven to be more
challenging and complicated than traditional single-site
development. From the viewpoint of project management, the
measurements and metrics are important elements for
successful product development. This paper is focused on
describing a set of essential metrics that are successfully used
in Global Software Development (GSD). In addition, visualised
examples are given demonstrating various industrial
experiences of use. Even if most of the essential metrics are
similar as in single-site development, their collection and
interpretation need to take into account the GSD aspects. One
of the most important reasons for choosing proposed metrics
was their provision of early warning signs - to proactively react
to potential issues in the project. This is especially important in
distributed projects, where tracking the project status is
needed and more complex. In this paper, the first ideas of GSD
specific metrics are presented based on the common challenges
in GSD practice.

Keywords-metrics; measurements; global software development;
distributed product development

I. INTRODUCTION

Global Software Development (GSD) is increasingly
common practice in industry due to the expected benefits,
such as lower costs and utilising resources globally. GSD
brings several additional challenges to the development,
which also affects the measurement practices, results and
metrics interpretation. A current literature study showed that
there is little research on GSD metrics or experiences of their
use. This paper is enhanced and extended version of the
ICSEA 2011 conference paper “Metrics in distributed
product development” [1] where the metrics set had been
successfully used in GSD were introduced. In this paper, the
published metric set (with an example set of visualised
metrics) was given with industrial experiences of their use.
In addition, challenges faced during GSD are discussed from
the viewpoint of metrics and measurements as well as
potential GSD specific metrics.

Software metric is a valuable factor for the management
and control of many software related activities, for example;
cost, effort and schedule estimation, productivity, reliability
and quality measures. Traditionally software measurement
has been understood as an information gathering process. For
example, software measurement is defined by [2] as follows:
“The software measurements is the continuous process of
defining, collecting and analysing data on the software
development process and its products in order to understand
and control the process and its products and to supply
meaningful information to improve that process and its
products”. The measurement data item consists of numeric
data (e.g., efforts, schedules) or a pre-classified set of
categories (e.g., severity of defects: minor, medium, major).
Software metrics can consist of several measurement data
items singly or in combination. Metric visualisation is a
visual representation of the collected and processed
information about software systems. Typically software
metrics are visualised for presenting this information in a
meaningful way that can be understood quickly. For
example, visualising metrics through charts or graphs is
usually easier to understand than long textual or numerical
descriptions.

The main purpose of measurements and metrics in
software production is to create the means for monitoring
and controlling which provide support for decision-making
and project management [3]. Traditionally, the software
metrics are divided into process, product and resource
metrics [4]. In the comprehensive measurement program, all
these dimensions should be taken into consideration while
interpreting measurement results; otherwise the
interpretation may lead to wrong decisions or incorrect
actions. A successful measurement program can prove to be
an effective tool for keeping on top of the development
effort, especially for large distributed projects [5]. However,
many problems and challenges have been identified that
reduce and may even eliminate all interests to the
measurements. For example, not enough time is allocated for
the measurement activities during a project, or not enough
visible benefits are gained by the project doing the
measurement work (e.g., data is useful only at the end of

VI/1

278

International Journal on Advances in Software, vol 5 no 3 & 4, year 2012, http://www.iariajournals.org/software/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Metrics and Measurements in Global Software Development

Maarit Tihinen and Päivi
Parviainen

Digital Service Research
VTT Technical Research Centre of

Finland
maarit.tihinen@vtt.fi

paivi.parviainen@vtt.fi

Rob Kommeren

Digital Systems & Technology
Philips,

The Netherlands
r.c.kommeren@philips.com

Jim Rotherham

Project Management Office
Symbio,
Finland

jim.rotherham@symbio.com

Abstract—Today products are increasingly developed globally
in collaboration between subcontractors, third-party suppliers
and in-house developers. However, management of a
distributed product development project is proven to be more
challenging and complicated than traditional single-site
development. From the viewpoint of project management, the
measurements and metrics are important elements for
successful product development. This paper is focused on
describing a set of essential metrics that are successfully used
in Global Software Development (GSD). In addition, visualised
examples are given demonstrating various industrial
experiences of use. Even if most of the essential metrics are
similar as in single-site development, their collection and
interpretation need to take into account the GSD aspects. One
of the most important reasons for choosing proposed metrics
was their provision of early warning signs - to proactively react
to potential issues in the project. This is especially important in
distributed projects, where tracking the project status is
needed and more complex. In this paper, the first ideas of GSD
specific metrics are presented based on the common challenges
in GSD practice.

Keywords-metrics; measurements; global software development;
distributed product development

I. INTRODUCTION

Global Software Development (GSD) is increasingly
common practice in industry due to the expected benefits,
such as lower costs and utilising resources globally. GSD
brings several additional challenges to the development,
which also affects the measurement practices, results and
metrics interpretation. A current literature study showed that
there is little research on GSD metrics or experiences of their
use. This paper is enhanced and extended version of the
ICSEA 2011 conference paper “Metrics in distributed
product development” [1] where the metrics set had been
successfully used in GSD were introduced. In this paper, the
published metric set (with an example set of visualised
metrics) was given with industrial experiences of their use.
In addition, challenges faced during GSD are discussed from
the viewpoint of metrics and measurements as well as
potential GSD specific metrics.

Software metric is a valuable factor for the management
and control of many software related activities, for example;
cost, effort and schedule estimation, productivity, reliability
and quality measures. Traditionally software measurement
has been understood as an information gathering process. For
example, software measurement is defined by [2] as follows:
“The software measurements is the continuous process of
defining, collecting and analysing data on the software
development process and its products in order to understand
and control the process and its products and to supply
meaningful information to improve that process and its
products”. The measurement data item consists of numeric
data (e.g., efforts, schedules) or a pre-classified set of
categories (e.g., severity of defects: minor, medium, major).
Software metrics can consist of several measurement data
items singly or in combination. Metric visualisation is a
visual representation of the collected and processed
information about software systems. Typically software
metrics are visualised for presenting this information in a
meaningful way that can be understood quickly. For
example, visualising metrics through charts or graphs is
usually easier to understand than long textual or numerical
descriptions.

The main purpose of measurements and metrics in
software production is to create the means for monitoring
and controlling which provide support for decision-making
and project management [3]. Traditionally, the software
metrics are divided into process, product and resource
metrics [4]. In the comprehensive measurement program, all
these dimensions should be taken into consideration while
interpreting measurement results; otherwise the
interpretation may lead to wrong decisions or incorrect
actions. A successful measurement program can prove to be
an effective tool for keeping on top of the development
effort, especially for large distributed projects [5]. However,
many problems and challenges have been identified that
reduce and may even eliminate all interests to the
measurements. For example, not enough time is allocated for
the measurement activities during a project, or not enough
visible benefits are gained by the project doing the
measurement work (e.g., data is useful only at the end of

VI/2 VI/3

280

International Journal on Advances in Software, vol 5 no 3 & 4, year 2012, http://www.iariajournals.org/software/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

defect management process in a multi-site organization.
Misra [20] presents a cognitive weight complexity metric
(CWCM) for unit testing in a global software development
environment. Lotlikar et al. [21] propose a framework for
global project management and governance including some
metrics with the main goal to support work allocation to
various sites. Lane and Agerfalk [22] use another framework
as an analytic device to investigate various projects
performed by distributed teams in order to explore further
the mechanisms used in industry both to overcome obstacles
posed by distance and process challenges and also to exploit
potential benefits enabled by GDS. Similarly, Piri and
Niinimäki [23] applied Word Design Questionnaire (WDQ)
that consists of total of 21 sum variables in four categories
(task characteristics, knowledge characteristics, social
characteristics, and work context) to compare differences
between the co-located and the distributed projects by
metrics - “work design”, “team dynamics”, “teamwork
quality”, “project performance” and “individual
satisfaction”. These kinds of frameworks could be used to
evaluate effectiveness of distributed team configuration
during GSD projects as well. Peixoto et al. [17] discuss effort
estimation in GSD, and one of their conclusions is that “GSD
projects are using all kinds of estimation techniques and
none of them is being consider as proper to be used in all
cases that it has been used”, meaning, that there is no
established technique for GSD projects. In addition, some
effort has also been invested in defining how to measure
success of GSD projects [24], and these metrics mainly focus
on cost related metrics and are done after project completion.
These papers usually use common metrics that are not
specific for GSD projects. For example, Ramasubbu and
Balan [25] use 11 metrics (productivity, quality, dispersion,
prevention QMA (Quality Management Approach), appraisal
QMA, failure QMA, code size, team size, design rework,
upfront investment and reuse), development productivity and
conformance quality to evaluate how work dispersion effects
to identified metrics. However, these metrics have not been
used to gather information, indicators or experiences from
ongoing distributed development.

Furthermore, only few papers discuss measurement
tooling for GSD projects. Simmons [26] describes a PAMPA
tool, where an intelligent agent tracks cost driver dominators
to determine if a project may fail and tells managers how to
modify project plans to reduce probability of project failure.
Additionally, Simmons and Ma [27] discuss a software
engineering expert system (SEES) tool where the software
professional can gather metrics from CASE tool databases to
reconstruct all activities in a software project from project
initiation to project termination. Da Silva et al [28] discuss
software cockpits from GSD viewpoint. They propose to
examine various visualizations in the context of software
cockpits, at-a-glance computer controlled displays of
development-related data collected from multiple sources.
They present three visualizations: (1) shows high-level
information about teams and dependencies among them in an
interactive world map, (2) displays the system design
through a self-updating view of the current state of the
software implementation, and (3) is a 3D visualization that

presents an overview of current and past activities in
individual workspaces.

The focus of this paper is to introduce a metrics set that
creates real possibilities to act proactively based on signals
gathered from various engineering viewpoints. Furthermore,
the paper gives several visualised examples of metrics that
can be utilised while monitoring on-going GSD projects. The
introduced metrics set can be seen as ‘balanced score card’,
on which management can balance insights (~status) from
time, effort, cost, functionality (requirements) and quality
(tests) perspective.

III. BASIC GSD CIRCUMSTANCES WITH CHALLENGES

Parviainen [14] describes problems and challenges that
are directly caused by the basic GSD circumstances. These
challenges influence measurements and metrics and their
interpretation during distributed software development.
These challenges are mainly an intrinsic and natural part of
GSD and they can either complicate globally distributed
product development or even cause further challenges. The
basic circumstances are:

Multiple parties, meaning two or more different
teams and sites (locations) of a company or
different companies.
Time difference and distance that are caused by the
geographical distribution of the parties.

Problems caused by these circumstances include; issues
such as unclear roles and responsibilities for the different
stakeholders in different parties or locations, knowing the
contact persons (e.g., responsibilities, authorities and
knowledge) from different locations and establishing and
ensuring a common understanding across distance. The basic
GSD circumstances can also lead to poor transparency and
control of remote activities as well as difficulties in
managing dependencies over distance, problems in
coordination and control of the distributed work and
integration problems, for example. Problems may also be
caused by basic circumstances in terms of accessing remote
databases and tools or accordingly they may generate data
transfer problems caused by the various data formats
between the tools or different versions of the tools used by
the different teams. The basic circumstances may also cause
problems with data security and access to databases or
another organisation's resources.

A commonly referenced classification for challenges
caused by GSD is [29][30]:

Communication breakdown (loss of communication
richness)
Coordination breakdown
Control breakdown (geographical dispersion)
Cohesion barriers (loss of “teamness”)
Culture clash (cultural differences).

Communication breakdown (loss of communication
richness). Human beings communicate best when they are
communicating face-to-face. In GSD, face-to-face
communication decreases due to distance, causing
misunderstandings and lack of information over sites. For
example, communication over distance can lead to

279

International Journal on Advances in Software, vol 5 no 3 & 4, year 2012, http://www.iariajournals.org/software/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

project, not during the project). In addition, the “metric
enthusiasts” may define too many metrics making it too time
consuming to collect and analyse the data. Thus, it’s
beneficial [5] to define core metrics to collect across all
projects to provide benchmarking data for projects, and to
focus on measurements that come naturally out of existing
practices and tools.

GDS development enables product development to take
place independently of the geographical location, individuals
or organizations. In fact, today the products are increasingly
developed globally in collaboration between subcontractors,
third party suppliers and in-house developers [6]. In practice
distributed projects struggle with the same problems as
single-site projects including problems related to managing
quality, schedule and cost. Distribution only makes it even
harder to handle and control these problems
[7][8][9][10][11]. These challenges are caused by various
issues, for example, less communication – especially
informal communication – caused by distance between
partners, and differences in background knowledge of the
partners. That’s why, in distributed projects the systematic
monitoring and reporting of the project work is especially
important, and measurement and metrics are an important
means to do that effectively.

Management of a distributed product development
project is more challenging than traditional development
[12]. Based on an industrial survey [13], one of the most
important topics in the project management in distributed
software development is detailed project planning and
control during the project. In GSD, this includes; dividing
work by sites into sub-projects, clearly defined
responsibilities, dependencies and timetables, along with
regular meetings and status monitoring.

In this paper, a set of essential metrics used in GSD is
discussed with experiences of their use. The main purpose is
to introduce the selected metric set from the viewpoint of
their proactive role in decision-making during globally
distributed software development. The chosen metrics
indicate a well-rounded view of status in the various
engineering disciplines and highlight potential issues in the
project. This creates real possibilities to act proactively based
on signals gathered from various engineering viewpoints.
This is especially important in GSD, where information of
project status is not readily available but requires special
effort, distributed over sites and companies.

 The amount of the metrics is intentionally kept as
limited as possible. Also, the metrics should be such, that
they provide online information during the projects, in order
to enable fast reaction to potential problems during the
project. The metrics and experience presented in the paper
are based on metrics programs of two companies, Philips and
Symbio. Royal Philips Electronics is a global company
providing healthcare, consumer lifestyle and lighting
products and services. Digital Systems & Technology is a
unit within Philips Research that develops first-of-a-kind
products in the area of healthcare, well-being and lifestyle.
The projects follow a defined process and are usually
distributed over sites and/or use subcontractors as part of
product development. Symbio Services Oy provides tailored

services to organizations seeking to build tomorrow's
technologies. Well-versed in a variety of software
development methodologies and testing best practices,
Symbio's specialized approaches and proprietary processes
begin with product design and continue through
globalization, maintenance and support. Symbio has built a
team of worldwide specialists that focus on critical areas of
the product development lifecycle. Currently, Symbio
employs around 1400 people and their project execution is
distributed between sites in the US, Sweden, Finland and
China.

The metrics and discussion in the paper is based on GSD
improvement work carried out during several years, in
several research projects, including experiences from 54
industrial cases (see Parviainen [14], SameRoomSpirit Wiki
[15]). This paper focuses especially on the experiences of
two companies, Philips and Symbio.

The paper is structured as follows. Firstly, an overview of
related work – available literature and its limitations related
to measurements and metrics in distributed product
development. This is introduced in Section II. In Section III,
basic GSD circumstances with challenges are presented in
order to explain the special requirements for measurements
in GSD where the proposed metrics set is to be collected and
utilised. In Section IV, measurement and metrics background
and used terminology are introduced. In Section V, proposed
metrics are presented using Rational Unified Process (RUP)
[16] approach as a framework. The proposed metric set is
presented with visualised examples and industrial
experiences of their use. Furthermore, some GSD specific
metrics are introduced in Section VI. Finally, discussion
about metrics and their experiences is presented in Section
VII and the conclusions are discussed in Section VIII.

II. RELATED WORK

There are several papers that discuss globally distributed
software engineering and its challenges, for example, [5],
[17] and [18]. Also, metrics in general and for specific
aspects have been discussed in numerous papers and books
for decades. However, little GSD literature has focused on
metrics and measurements or even discusses the topic. Da
Silva et al. [12] report similar conclusion based on analysis
of distributed software development (DSD) literature
published during 1999 – 2009: they state as one of their key
findings that the “vast majority of the reported studies show
only qualitative data about the effect of best practices,
models, and tools on solving the challenges of DSD project
management. In other words, our findings indicate that
strong (quantitative) evidence about the effect of using best
practices, models, and tools in DSD projects is still scarce in
the literature.” Bourgault et al. [19] reported similar findings,
“Clearly, research into distributed projects’ performance
metrics and measurement needs more attention from
researchers and practitioners so that it can contribute to the
development and diffusion of well-designed management
information systems.”

The papers that have discussed some metrics for GSD
usually focus on some specific aspect, for example,
Korhonen and Salo [18], discuss quality metrics to support

VI/3

280

International Journal on Advances in Software, vol 5 no 3 & 4, year 2012, http://www.iariajournals.org/software/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

defect management process in a multi-site organization.
Misra [20] presents a cognitive weight complexity metric
(CWCM) for unit testing in a global software development
environment. Lotlikar et al. [21] propose a framework for
global project management and governance including some
metrics with the main goal to support work allocation to
various sites. Lane and Agerfalk [22] use another framework
as an analytic device to investigate various projects
performed by distributed teams in order to explore further
the mechanisms used in industry both to overcome obstacles
posed by distance and process challenges and also to exploit
potential benefits enabled by GDS. Similarly, Piri and
Niinimäki [23] applied Word Design Questionnaire (WDQ)
that consists of total of 21 sum variables in four categories
(task characteristics, knowledge characteristics, social
characteristics, and work context) to compare differences
between the co-located and the distributed projects by
metrics - “work design”, “team dynamics”, “teamwork
quality”, “project performance” and “individual
satisfaction”. These kinds of frameworks could be used to
evaluate effectiveness of distributed team configuration
during GSD projects as well. Peixoto et al. [17] discuss effort
estimation in GSD, and one of their conclusions is that “GSD
projects are using all kinds of estimation techniques and
none of them is being consider as proper to be used in all
cases that it has been used”, meaning, that there is no
established technique for GSD projects. In addition, some
effort has also been invested in defining how to measure
success of GSD projects [24], and these metrics mainly focus
on cost related metrics and are done after project completion.
These papers usually use common metrics that are not
specific for GSD projects. For example, Ramasubbu and
Balan [25] use 11 metrics (productivity, quality, dispersion,
prevention QMA (Quality Management Approach), appraisal
QMA, failure QMA, code size, team size, design rework,
upfront investment and reuse), development productivity and
conformance quality to evaluate how work dispersion effects
to identified metrics. However, these metrics have not been
used to gather information, indicators or experiences from
ongoing distributed development.

Furthermore, only few papers discuss measurement
tooling for GSD projects. Simmons [26] describes a PAMPA
tool, where an intelligent agent tracks cost driver dominators
to determine if a project may fail and tells managers how to
modify project plans to reduce probability of project failure.
Additionally, Simmons and Ma [27] discuss a software
engineering expert system (SEES) tool where the software
professional can gather metrics from CASE tool databases to
reconstruct all activities in a software project from project
initiation to project termination. Da Silva et al [28] discuss
software cockpits from GSD viewpoint. They propose to
examine various visualizations in the context of software
cockpits, at-a-glance computer controlled displays of
development-related data collected from multiple sources.
They present three visualizations: (1) shows high-level
information about teams and dependencies among them in an
interactive world map, (2) displays the system design
through a self-updating view of the current state of the
software implementation, and (3) is a 3D visualization that

presents an overview of current and past activities in
individual workspaces.

The focus of this paper is to introduce a metrics set that
creates real possibilities to act proactively based on signals
gathered from various engineering viewpoints. Furthermore,
the paper gives several visualised examples of metrics that
can be utilised while monitoring on-going GSD projects. The
introduced metrics set can be seen as ‘balanced score card’,
on which management can balance insights (~status) from
time, effort, cost, functionality (requirements) and quality
(tests) perspective.

III. BASIC GSD CIRCUMSTANCES WITH CHALLENGES

Parviainen [14] describes problems and challenges that
are directly caused by the basic GSD circumstances. These
challenges influence measurements and metrics and their
interpretation during distributed software development.
These challenges are mainly an intrinsic and natural part of
GSD and they can either complicate globally distributed
product development or even cause further challenges. The
basic circumstances are:

Multiple parties, meaning two or more different
teams and sites (locations) of a company or
different companies.
Time difference and distance that are caused by the
geographical distribution of the parties.

Problems caused by these circumstances include; issues
such as unclear roles and responsibilities for the different
stakeholders in different parties or locations, knowing the
contact persons (e.g., responsibilities, authorities and
knowledge) from different locations and establishing and
ensuring a common understanding across distance. The basic
GSD circumstances can also lead to poor transparency and
control of remote activities as well as difficulties in
managing dependencies over distance, problems in
coordination and control of the distributed work and
integration problems, for example. Problems may also be
caused by basic circumstances in terms of accessing remote
databases and tools or accordingly they may generate data
transfer problems caused by the various data formats
between the tools or different versions of the tools used by
the different teams. The basic circumstances may also cause
problems with data security and access to databases or
another organisation's resources.

A commonly referenced classification for challenges
caused by GSD is [29][30]:

Communication breakdown (loss of communication
richness)
Coordination breakdown
Control breakdown (geographical dispersion)
Cohesion barriers (loss of “teamness”)
Culture clash (cultural differences).

Communication breakdown (loss of communication
richness). Human beings communicate best when they are
communicating face-to-face. In GSD, face-to-face
communication decreases due to distance, causing
misunderstandings and lack of information over sites. For
example, communication over distance can lead to

VI/4 VI/5

282

International Journal on Advances in Software, vol 5 no 3 & 4, year 2012, http://www.iariajournals.org/software/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

characteristics are, for example; size and duration of a
project, type of a project (development, maintenance,
operational lifetime, etc.), project position (contractor,
subcontractor, internal development etc.), type of software
(hardware-related software development, application
software, etc.) or used software development approaches
(agile, open source, scrum, spiral-model, test driven
development, model-driven development, V-model, waterfall
model etc.). Furthermore, different phases of development
projects have to be taken consideration while analysing
gathered measurement data.

B. Traditional Software Measurement and GSD
One of the most commonly used measurement methods

at the end of 1990 and the beginning of 2000 was the Goal
/Question /Metric (GQM) method. The GQM paradigm [3]
represented a systematic approach for tailoring and
integrating the objectives of an organisation into
measurement goals and their step-wise refinement into
measurable values. The GQM method was commonly known
and was often used for searching and identifying
organisations’ strengths and weaknesses relating to the
identified improvement goals. Furthermore, several
assessment methods, for example CMMI [44] and SPICE
(Software Process Improvement and Capability
Determination, further known as a standard ISO/IEC 15504
Information technology — Process assessment), were
generally used for identifying possible improvements areas
and gaining knowledge of the software process of an
organisation. In fact, the most of traditional measurements
methods were based on expressions of the famous Shewhart
cycle, called also the Deming cycle: PDCA (Plan–Do–
Check–Act) [45]. The PDCA circle is an iterative four-step
management method that is used in business for the control
and continuous improvement of processes and products. The
traditional methods used in software measurements were
generally based on clearly defined and largely stabile
processes that could be adjusted and improved. In those
cases, the improvement actions were mainly done
afterwards, for example, in the next project.

In GSD environment, where project stakeholders, work
practices and development tools can vary by projects and
partners, traditional measurement methods and actions are
not adequate if they are used for process improvement
purposes. There is little sense, if measurements only prove
after the project what has happened during the project,
because then it is too late to correct the situation.
Furthermore, the lessons learned may not be suitable in the
next projects. Overly large measurement programs with time
consuming assessments are not worth paying the effort in
dynamic GSD context. The traditional methods should be
utilised for specific and well-aimed purposes. For example,
the GQM method can be utilised while identifying new GSD
specific metrics.

In GSD, development processes are dynamic and thus
results of measurements and their interpretation vary. In this
paper, GSD metrics used in the companies were focused on
‘early warning’ signals for the project and management. In a
changing environment it’s also an important aspect that the

measurement data is easy to collect and that the metrics can
be quickly calculated at regular intervals. Ease of use and
speed are also central factors from metrics interpretation
viewpoint. This also emphasises the importance of metrics
visualisation. Interestingly, GSD literature has rarely focused
on metrics and measurements or given experimental
examples of successfully used metrics during GDS
development.

C. Balancing Measurements
A Balanced Scorecard (BSC) is widely used for

monitoring performance of an organisation towards strategic
goals. The original BSC approach covers a small number of
performance metrics from four perspectives, called as
Kaplan & Norton perspectives: Financial, Customer, Internal
Processes, Learning & Growth [46]. The BSC framework
added strategic non-financial performance measures to
traditional financial metrics to give managers and executives
a more 'balanced' view of organizational performance.
However, many early BSCs failed, because clear information
and knowledge about the selection of measures and targets
were not available. For example, organisations had attempted
to use Kaplan & Norton perspectives without thinking about
whether they were suitable in their situation. After that many
improvements and enhancements have been completed on
BSC approach. Since 2000, it has been described as a “Third
Generation” of Balanced Scorecard designs. The BSC has
evolved to be a strategic management tool that involves a
wide range of managers in the strategic management process,
provides boundaries of control, but is not prescriptive or
constrictive and more importantly, removes the separation
between formulation and implementation of strategy [47].
The BSC suggests that organisation should be viewed from
four perspectives (Learning & Growth perspective, Business
process perspective, Customer perspective, and Financial
perspective) and metrics should be developed, data collected
and analysed in relation to these perspectives.

Even if BSC are generally intended to deal with strategic
issues, in this paper, the balancing of various perspectives of
BSC has been emphasised. In fact, it has been proved that
Practical Software Measurement and the Balanced Scorecard
are both compatible and complementary [48]. In GSD
context, decisions or actions taken based on the analysis of
metrics and measurements collected from different
development parties or stakeholders need to take specific the
GSD factors into account as well.

D. Measurement Challenges in GSD
Even in the daily software development work, the

measurements are still seen as unfamiliar or an extra burden
for projects. For example, project managers feel it is time
consuming to collect metrics for the organization (business-
goal-related metrics), yet they need to have metrics that are
relevant to the project. Furthermore, in many cases, not
enough time is budgeted for measurements, and this is why it
is very difficult to obtain approval from stakeholders for this
kind of work [5].

Globally distributed development generates new
challenges and difficulties for the measurements. For

281

International Journal on Advances in Software, vol 5 no 3 & 4, year 2012, http://www.iariajournals.org/software/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

misinterpretation because people cannot communicate well
due to language barriers.

Coordination breakdown. Software development is a
complex process that requires on-going adjustments and
coordination of shared tasks. In geographically distributed
projects, the small adjustments usually made in face-to-face
contact do not take place or it is not easy to make
adjustments. This can cause problem solving to be delayed
or the project to go down the wrong track until it becomes
very expensive to x. GSD also sets additional requirements
for planning, for example, the need for coordination between
teams and the procedures and contacts for how to work with
partners needs to be defined [31][32][33]. Coordination
breakdown can also cause a number of specific problems; for
example, Battin et al. [34] reported a number of software
integration problems, which were due to a large number of
independent teams. Wahyudin et al. [35] state that GSD
demands more from project management. In addition to the
project managers, the project members such as testers,
technical leaders, and developers also need to be kept
informed and notified of certain information and events that
are relevant to their roles’ objectives in timely manner which
provides the conditions for in-time decision making.

Control breakdown (geographical dispersion). GSD
means that management by walking around the development
team is not feasible and, instead, telephones, email and other
communication means (e.g., chat servers) must be used.
These types of communication tools could be consider as
less effective - not always providing a clear and correct
status of the development site. Also, dividing the tasks and
work across development sites, and managing the
dependencies between sites is difficult due to the restraints of
the available resources, the level of expertise and the
infrastructure [34][36][37]. According to Holmstrom et al.
[38], creating the overlap in time between different sites is
challenging despite the flexible working hours and
communication technologies that enable asynchronous
communication. Lack of overlap leads to a delay in
responses with a feeling of “being behind”, “missing out”
and even losing track of the overall work process.

Cohesion barriers (loss of “teamness”). In working
groups that are composed of dispersed individuals, the team
is unlikely to form tight social bonds, which are a key to a
project’s success. Lack of informal communication, different
processes and practices have a negative impact on teamness
[31][32][34]. Furthermore, fear (e.g., of losing one’s job to
the other site) has direct negative impact on trust, team
building co-operation and knowledge transfer, even where
good relationships existed beforehand. According to Casey
and Richardson [39] fear and lack of trust negatively impact
the building of effective distributed teams, resulting in clear
examples of not wanting to cooperate and share knowledge
with remote colleagues. Al-Ani and Redmiles [40] discuss
the role that the existing tools can play in developing trust
and providing insights on how future tools can be designed
to promote trust. They found that tools can promote trust by
sharing information derived from each developer’s activities
and their interdependencies, leading to a greater likelihood

that team members will rely on each other which leads to a
more effective collaboration.

Culture clash (cultural differences). Each culture has
different communication norms. In any cross-cultural
communication the receiver is more likely to misinterpret
messages or cues. Hence, miscommunication across cultures
is usually present. Borchers [41] discusses observations of
how cultural differences impacted the software engineering
techniques used in the case projects. The cultural indexes,
power distance (degree of inequality of managers vs.
subordinates), uncertainty avoidance (tolerance for
uncertainty about the future) and individualism (strength of
the relationship between an individual and their societal
group), discussed by Hofstede [42], were found to be
relevant from the software engineering viewpoint.
Holmstrom et al. [38] discuss the challenge of creating a
mutual understanding between people from different
backgrounds. They concluded that often general
understanding in terms of English was good, but more subtle
issues, such as political or religious values, caused
misunderstandings and conflicts during projects.

IV. MEASUREMENT BACKGROUND

In this section measurement background, the used
terminology and traditional measurement methods, with
GSD related challenges are introduced.

A. Traditional Metrics and Project Characteristics
Software measurements and metrics have been discussed

since 1960’s. The metrics have been classified many
different ways. For example, they can be divided into basic
and additional metrics [43] where basic metrics are size,
effort, schedule and defects, and the additional metrics are
typically metrics that are calculated or annexed from basic
metrics (productivity = software size per used effort). The
metrics can also be divided into objective or subjective
metrics [43]. The objective metrics are easily quantified and
measured, examples including size and effort, while the
subjective metrics include less quantifiable data such as
quality attitudes (excellent, good, fair, poor). An example of
the subjective metrics is customer satisfaction. Furthermore,
software metrics can be classified according to the
measurement target, product, processes and resources [4].
Example metrics of product entities are size, complexity,
reusability and maintainability. Example metrics of process
entities are effort, time, number of requirements changes,
number of specification/coding faults found and cost.
Furthermore, examples of resource entities are age, price,
size, maturity, standardization certification, memory size or
reliability. These classifications, various viewpoints and the
amount of examples merely prove how difficult the selection
of metrics really can be during the project.

In addition to different ways of metrics classification,
development projects can also be classified. Typically, the
project classification is used as a baseline for further
interpretation of the metrics and measurements. For example,
all kind of predictions or comparison should be done within
the same kind of development projects, or the differences
should be taken into account. Traditional project

VI/5

282

International Journal on Advances in Software, vol 5 no 3 & 4, year 2012, http://www.iariajournals.org/software/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

characteristics are, for example; size and duration of a
project, type of a project (development, maintenance,
operational lifetime, etc.), project position (contractor,
subcontractor, internal development etc.), type of software
(hardware-related software development, application
software, etc.) or used software development approaches
(agile, open source, scrum, spiral-model, test driven
development, model-driven development, V-model, waterfall
model etc.). Furthermore, different phases of development
projects have to be taken consideration while analysing
gathered measurement data.

B. Traditional Software Measurement and GSD
One of the most commonly used measurement methods

at the end of 1990 and the beginning of 2000 was the Goal
/Question /Metric (GQM) method. The GQM paradigm [3]
represented a systematic approach for tailoring and
integrating the objectives of an organisation into
measurement goals and their step-wise refinement into
measurable values. The GQM method was commonly known
and was often used for searching and identifying
organisations’ strengths and weaknesses relating to the
identified improvement goals. Furthermore, several
assessment methods, for example CMMI [44] and SPICE
(Software Process Improvement and Capability
Determination, further known as a standard ISO/IEC 15504
Information technology — Process assessment), were
generally used for identifying possible improvements areas
and gaining knowledge of the software process of an
organisation. In fact, the most of traditional measurements
methods were based on expressions of the famous Shewhart
cycle, called also the Deming cycle: PDCA (Plan–Do–
Check–Act) [45]. The PDCA circle is an iterative four-step
management method that is used in business for the control
and continuous improvement of processes and products. The
traditional methods used in software measurements were
generally based on clearly defined and largely stabile
processes that could be adjusted and improved. In those
cases, the improvement actions were mainly done
afterwards, for example, in the next project.

In GSD environment, where project stakeholders, work
practices and development tools can vary by projects and
partners, traditional measurement methods and actions are
not adequate if they are used for process improvement
purposes. There is little sense, if measurements only prove
after the project what has happened during the project,
because then it is too late to correct the situation.
Furthermore, the lessons learned may not be suitable in the
next projects. Overly large measurement programs with time
consuming assessments are not worth paying the effort in
dynamic GSD context. The traditional methods should be
utilised for specific and well-aimed purposes. For example,
the GQM method can be utilised while identifying new GSD
specific metrics.

In GSD, development processes are dynamic and thus
results of measurements and their interpretation vary. In this
paper, GSD metrics used in the companies were focused on
‘early warning’ signals for the project and management. In a
changing environment it’s also an important aspect that the

measurement data is easy to collect and that the metrics can
be quickly calculated at regular intervals. Ease of use and
speed are also central factors from metrics interpretation
viewpoint. This also emphasises the importance of metrics
visualisation. Interestingly, GSD literature has rarely focused
on metrics and measurements or given experimental
examples of successfully used metrics during GDS
development.

C. Balancing Measurements
A Balanced Scorecard (BSC) is widely used for

monitoring performance of an organisation towards strategic
goals. The original BSC approach covers a small number of
performance metrics from four perspectives, called as
Kaplan & Norton perspectives: Financial, Customer, Internal
Processes, Learning & Growth [46]. The BSC framework
added strategic non-financial performance measures to
traditional financial metrics to give managers and executives
a more 'balanced' view of organizational performance.
However, many early BSCs failed, because clear information
and knowledge about the selection of measures and targets
were not available. For example, organisations had attempted
to use Kaplan & Norton perspectives without thinking about
whether they were suitable in their situation. After that many
improvements and enhancements have been completed on
BSC approach. Since 2000, it has been described as a “Third
Generation” of Balanced Scorecard designs. The BSC has
evolved to be a strategic management tool that involves a
wide range of managers in the strategic management process,
provides boundaries of control, but is not prescriptive or
constrictive and more importantly, removes the separation
between formulation and implementation of strategy [47].
The BSC suggests that organisation should be viewed from
four perspectives (Learning & Growth perspective, Business
process perspective, Customer perspective, and Financial
perspective) and metrics should be developed, data collected
and analysed in relation to these perspectives.

Even if BSC are generally intended to deal with strategic
issues, in this paper, the balancing of various perspectives of
BSC has been emphasised. In fact, it has been proved that
Practical Software Measurement and the Balanced Scorecard
are both compatible and complementary [48]. In GSD
context, decisions or actions taken based on the analysis of
metrics and measurements collected from different
development parties or stakeholders need to take specific the
GSD factors into account as well.

D. Measurement Challenges in GSD
Even in the daily software development work, the

measurements are still seen as unfamiliar or an extra burden
for projects. For example, project managers feel it is time
consuming to collect metrics for the organization (business-
goal-related metrics), yet they need to have metrics that are
relevant to the project. Furthermore, in many cases, not
enough time is budgeted for measurements, and this is why it
is very difficult to obtain approval from stakeholders for this
kind of work [5].

Globally distributed development generates new
challenges and difficulties for the measurements. For

VI/6 VI/7

284

International Journal on Advances in Software, vol 5 no 3 & 4, year 2012, http://www.iariajournals.org/software/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

metric can be utilised in the first time or where the metric is
seen to be the most relevant to measure, even if some metrics
are relevant in several phases. In fact, many of the introduced
metrics can be used also in the following product
development phases. For each metric - a name, a notation
and a detailed definition is introduced. The main goal is to
offer a useful, yet reasonable amount of metrics, for
supporting the on-time monitoring of the GSD projects. The
indicators are supposed to be leading indicators rather than
lagging indicators. For example, planned/actual schedule
measurements should be implemented as milestone trend
analysis which measures the slip in the first milestone and
predicts the consequences for the other milestones and
project end.

B. Metrics and their Visualisation for Inception Phase
During the inception phase, the project scope has to be

defined and the business case has to be established. The
business case includes success criteria, risk assessment, and
estimate of the resources needed, and a phase plan showing
dates of major milestones. Inception is the smallest phase in
the project, and ideally it should be quite short. Example
outcomes of the inception phase are a general vision
document of the project's core requirements, main
constraints, an initial use case model (10% -20% complete),
and a project plan, showing phases and iterations [52].
Proposed metrics to be taken into consideration in this phase
are introduced in Table I.

TABLE I. METRICS FOR THE INCEPTION PHASE

Metric Notation Definition
Planned
Schedule

DPLANNED The planned Date of delivery (usually
the completion of an iteration, a
release or a phase)

Planned
Personnel

FTPLANNED The planned number of Full Time
persons in the project at any given
time

Planned
Effort

EPLANNED The planned Effort for project tasks
(/requirements) at any given time

Proposed
Requirements

Reqs The number of proposed
requirements.

The metrics Planned Schedule and Planned Personnel
/Effort are mostly needed for comparison with actual
schedule, personnel and effort, in order to identify lack of
available resources as well as delays in schedule quickly.
The amount of Proposed Requirements tells about the
progress of the product definition.

Figure 2 shows how some of the proposed metrics can be
utilised during product development for visualising the
progress of project. The metric of progress status combines
effort and schedule metrics in a visualised way. The first
and top line (blue) in the Figure 2 is a cumulative planned
effort over time calculated from project tasks. The next line,
the red line describes the cumulative updated planned effort
and accordingly, the green line describes the cumulative
actual used effort over time summarised from project tasks.
The bottom and last line in lilac shows the earned value that
indicates the cumulative effort of completed tasks
(/workproducts).

Figure 2. Visualised Metric: Progress Status

The graph visualises the project progress and easily
gives several kinds of information as well as proactive
insights, such as, is the project resourcing in place, and is
the project completing work as planned. In the shown graph,
it is a good signal that cumulative planned effort (blue line)
is continuously above the cumulative updated planned effort
(red line); it means the project is running on schedule.
Another good signal is if actual used effort (green line) and
earned value (lilac line) is relatively close to each others; it
means that the results (~completed tasks) have been
achieved with the used effort. The status in the Month 11
indicates that there are still several open tasks that are not
completed even if actual used effort (green line) seems to
draw closer to the cumulative updated planned effort (red
line); this indicates a potential threat. Depending on
project’s phase (for example, in the middle phase or at the
ending phase) corrective actions would be needed. The
actions are not needed if the project is at the ending phase
because the cumulative planned effort (blue line) is still
clearly the upmost line.

Industrial comments
In the Philips company example, the Progress status

metric has proven to give a timely insight in the actual
consumption of effort compared to planned effort in large
first-of-a-kind Consumer Electronics projects. The
representation over time enables the ability to analyse trends,
and take actions pro-actively. Moreover, the use of earned
value gives insight in the effectiveness of the effort spent
answering the question: “Does the effort spent contribute to
realizing the agreed results?”

In the Symbio company example, indicators of earned
value and tracking of unplanned work were seen as
especially important from a management perspective.
Unplanned work may yield a strong indication of a variety of
causes early in the project, such as technical infeasibility or a
lack of shared vision between project stakeholders.
Accordingly, they identified that from a budget perspective,
justifying workshops early in the project to shape a shared
vision and collaborate on scoping project goals is often
difficult to qualify for many stakeholders. It is a typical case
that only when problems manifest, or a sharp trend in
unplanned work is experienced will stakeholders react.
Usually, remedying the problem requires unplanned trips to

283

International Journal on Advances in Software, vol 5 no 3 & 4, year 2012, http://www.iariajournals.org/software/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

example, the gathering of the measurements data can be
problematic because of different development tools which
have different versions, work practices with related concepts
can vary by project stakeholders or reliability of the gathered
data can vary due to cultural differences, especially, in
subjective evaluations. In addition, distributed projects are
often so unique (e.g., product domain and hardware-software
balance vary, or different subcontractors are used in different
phases of the project) that their comparison is impossible.
Thus, the interpretation of measurements data is more
complicated in GSD than one-site projects. This is why it is
recommended to select a moderate amount of metrics. In this
paper, we will present a set of metrics as well as examples of
their visualisation possibilities to support decision making in
GSD. Also industrial experiences about the metrics will be
discussed.

The common metrics (effort, size, schedule, etc.) are also
applicable for GSD projects. However, special attention may
be needed in training the metrics collection, to ensure a
common understanding of them (e.g., used classifications).
In addition, as measurements also tend to guide people’s
behaviour, it is important to ensure that all are aware of the
purpose of the metrics (i.e., not to measure individual
performance), specifically in projects distributed over
different cultures. In GSD content the automation of
measurements is highly recommended to avoid
misunderstanding - even if it is not easy to implement. The
focus is to generate real-time information shown in a format
that is easy and quickly interpreted. This means that great
attention should be paid to metrics visualisation.

V. GENERIC MEASUREMENTS AND METRICS IN GSD
In this section, the metric set used in the companies is

introduced. In addition, several visualised examples of
proposed metrics are given and discussed. The metric set and
their visualisation examples have been produced during the
ITEA PRISMA (2008-2011) project [49]. The main goal of
the PRISMA project was to boost productivity of
collaborative systems development. One of the project’s
results was the Prisma Workbench (PSW), a tool integration
framework [50]. PSW provides several real-time views into
data that has been collected from various data sources even
from separate stakeholders’ databases. The PSW enabled the
visualisation of metrics in GSD and collection of the
experiences of their use. The work was done in close co-
operation with industrial partners and experimental views
were generated based on their needs or challenges. The
original metrics were the same that the industrial partners
had successfully used in their globally distributed projects,
published in [1]. During the PRISMA project, the
development of the PSW tool enabled further development
of the proposed metrics set and their visualisation in co-
operation with the industrial partners. The industrial partners
had identified metrics, and defined their collection and
visualisation. They had also tried the metrics in few projects
to collect experiences. These experiences were then shared
among the industrial partners of the project. The researchers
analysed the measurements and experiences to find
commonalities from these measurement practices. Results of

this analysis was discussed in workshops with the
companies, and updated based on the comments. This paper
presents the results of this work. In following sub-sections,
the developed example views are shown and discussed.
Industrial experiences, opinions and ideas for improvement
are also presented. The industrial experiences were gathered
during the industrial cases by interviewing companies’
personnel who had developed the metrics and measurement
programs.

A. Rational Unified Process (RUP) Approach
Each phase in the lifecycle of a development project

affects the interpretation of the metrics. Thus, in this paper,
proposed metrics and visualisation examples are introduced
by using commonly known approach of software
development called Rational Unified Process (RUP). Also
the processes used in the companies were similar to the RUP
phasing, so it was chosen as a presentation framework for
this paper. RUP is a process that provides a disciplined
approach to assigning tasks and responsibilities within a
development organisation. Its goal is to ensure the
production of high quality software that meets the needs of
its end-users within a predictable schedule and budget
[16][51].

The software lifecycle is divided into cycles, each cycle
working on a new generation of the product. RUP divides
one development cycle in four consecutive phases [51]: (1)
inception phase, (2) elaboration phase, (3) construction phase
and (4) transition phase. There can be one or more iterations
within each phase during the software generation. The
phases and iterations of RUP approach are illustrated in
following Figure 1.

Figure 1. Phases and Iterations of RUP Approach [51]

From a technical perspective, the software development
is seen as a succession of iterations, through which the
software under development evolves incrementally [16].
From measurement perspective this means that some metrics
can be focused on during one or two phases of the
development cycle, and some can be continuous metrics that
can be measured in all phases, and can be analysed in each
iteration.

In this paper, the metrics are introduced according to the
RUP phases. Each metric is presented in the phase where the

VI/7

284

International Journal on Advances in Software, vol 5 no 3 & 4, year 2012, http://www.iariajournals.org/software/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

metric can be utilised in the first time or where the metric is
seen to be the most relevant to measure, even if some metrics
are relevant in several phases. In fact, many of the introduced
metrics can be used also in the following product
development phases. For each metric - a name, a notation
and a detailed definition is introduced. The main goal is to
offer a useful, yet reasonable amount of metrics, for
supporting the on-time monitoring of the GSD projects. The
indicators are supposed to be leading indicators rather than
lagging indicators. For example, planned/actual schedule
measurements should be implemented as milestone trend
analysis which measures the slip in the first milestone and
predicts the consequences for the other milestones and
project end.

B. Metrics and their Visualisation for Inception Phase
During the inception phase, the project scope has to be

defined and the business case has to be established. The
business case includes success criteria, risk assessment, and
estimate of the resources needed, and a phase plan showing
dates of major milestones. Inception is the smallest phase in
the project, and ideally it should be quite short. Example
outcomes of the inception phase are a general vision
document of the project's core requirements, main
constraints, an initial use case model (10% -20% complete),
and a project plan, showing phases and iterations [52].
Proposed metrics to be taken into consideration in this phase
are introduced in Table I.

TABLE I. METRICS FOR THE INCEPTION PHASE

Metric Notation Definition
Planned
Schedule

DPLANNED The planned Date of delivery (usually
the completion of an iteration, a
release or a phase)

Planned
Personnel

FTPLANNED The planned number of Full Time
persons in the project at any given
time

Planned
Effort

EPLANNED The planned Effort for project tasks
(/requirements) at any given time

Proposed
Requirements

Reqs The number of proposed
requirements.

The metrics Planned Schedule and Planned Personnel
/Effort are mostly needed for comparison with actual
schedule, personnel and effort, in order to identify lack of
available resources as well as delays in schedule quickly.
The amount of Proposed Requirements tells about the
progress of the product definition.

Figure 2 shows how some of the proposed metrics can be
utilised during product development for visualising the
progress of project. The metric of progress status combines
effort and schedule metrics in a visualised way. The first
and top line (blue) in the Figure 2 is a cumulative planned
effort over time calculated from project tasks. The next line,
the red line describes the cumulative updated planned effort
and accordingly, the green line describes the cumulative
actual used effort over time summarised from project tasks.
The bottom and last line in lilac shows the earned value that
indicates the cumulative effort of completed tasks
(/workproducts).

Figure 2. Visualised Metric: Progress Status

The graph visualises the project progress and easily
gives several kinds of information as well as proactive
insights, such as, is the project resourcing in place, and is
the project completing work as planned. In the shown graph,
it is a good signal that cumulative planned effort (blue line)
is continuously above the cumulative updated planned effort
(red line); it means the project is running on schedule.
Another good signal is if actual used effort (green line) and
earned value (lilac line) is relatively close to each others; it
means that the results (~completed tasks) have been
achieved with the used effort. The status in the Month 11
indicates that there are still several open tasks that are not
completed even if actual used effort (green line) seems to
draw closer to the cumulative updated planned effort (red
line); this indicates a potential threat. Depending on
project’s phase (for example, in the middle phase or at the
ending phase) corrective actions would be needed. The
actions are not needed if the project is at the ending phase
because the cumulative planned effort (blue line) is still
clearly the upmost line.

Industrial comments
In the Philips company example, the Progress status

metric has proven to give a timely insight in the actual
consumption of effort compared to planned effort in large
first-of-a-kind Consumer Electronics projects. The
representation over time enables the ability to analyse trends,
and take actions pro-actively. Moreover, the use of earned
value gives insight in the effectiveness of the effort spent
answering the question: “Does the effort spent contribute to
realizing the agreed results?”

In the Symbio company example, indicators of earned
value and tracking of unplanned work were seen as
especially important from a management perspective.
Unplanned work may yield a strong indication of a variety of
causes early in the project, such as technical infeasibility or a
lack of shared vision between project stakeholders.
Accordingly, they identified that from a budget perspective,
justifying workshops early in the project to shape a shared
vision and collaborate on scoping project goals is often
difficult to qualify for many stakeholders. It is a typical case
that only when problems manifest, or a sharp trend in
unplanned work is experienced will stakeholders react.
Usually, remedying the problem requires unplanned trips to

VI/8 VI/9

286

International Journal on Advances in Software, vol 5 no 3 & 4, year 2012, http://www.iariajournals.org/software/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

attention to the coverage of requirements affecting
architecture to ensure the construction phases run more to
plan as the team sizes may scale and involve more sites.
Whilst iterative development can be seen as promoting
elaboration of requirements later in the lifecycle, core
functions that separate the project output from competition
should be conceptualized and approved for implementation.
Project managers may consider implementation of these
differentiating use cases to be made geographically or
temporally close to the project owner. Non-approved
requirements should be managed accordingly and not
planned for implementation off-site until they are suitably
elaborated and accepted into the development roadmap.
Misunderstanding of the requirements needs to be
minimalized if the team size and development sites scale
during construction phases otherwise projected cost savings
from multi-site development can be quickly eliminated.

D. Metrics and their Visualisation for Construction Phase
Construction is the largest phase in the project. During

the phase, all remaining components and application features
are developed and integrated into the product, and all
features are thoroughly tested. System features are
implemented in a series of short, time boxed iterations. Each
iteration results in an executable release of the software.
Example outcomes of the phase consist of a software product
integrated on the adequate platforms, user manuals, and a
description of the current release. Proposed metrics to be
taken into consideration in this phase are introduced in Table
III.

TABLE III. METRICS FOR THE CONSTRUCTION PHASE

Metric Notation Definition
Planned
/Actual Schedule
Planned
/Actual Personnel

DPLANNED

DACTUAL

#FTPLANNED

#FTACTUAL

Defined in the elaboration
phase.

Requirements:
-Proposed
-Approved
-Not implemented
-Started
-Completed

#Reqs PROPOSED

#Reqs APPROVED.

#Reqs NOT_IMPL

#Reqs STARTED

#Reqs COMPLETED

The number (#) of
- proposed requirements
- reqs approved by customer
- not implemented reqs
- reqs started to implement
- reqs completed

Change Requests:
-New CR

-Accepted

-Implemented

#CRs NEW

#CRs ACCEPTED

#CRs IMPL.

The number (#) of
- identified new CR or
enhancement
- CRs accepted for
implementation
- CRs implemented

Tests:
-Planned
-Passed
-Failed
-Not tested

#Tests PLANNED.

#Tests PASSED

#Tests FAILED

#TestsNOT TESTED

The number (#) of
- planned tests
- passed tests
- failed tests
- not started to test

Defects
-by Priority: e.g.,
Showstopper,
Medium, Low

#Dfs PRIORITY

The number (#) of
- defects by Priority during
the time period

Documents:
-Planned
-Proposed
-Accepted

#Docs PLANNED

#Docs PROPOSED

#Docs ACCEPTED

Defined in the elaboration
phase.

Note that those metrics that are continuously measured
are introduced later (in Section E).The metrics related to
requirements, tests and documents indicate the technical
progress of the project from different viewpoints. Metrics
related to changes indicate both the stability of the project
technical content, and can explain schedule delays, and
unexpected technical progress. Defect metrics describe both
the progress of testing as well as the maturity of the product.

In the construction phase, all components and features
are developed and integrated into the product. In addition,
they are also thoroughly tested, so there are many
simultaneous actions that can be implemented by multiple
partners or/and in different locations in GSD. This is why the
metrics interpretation needs to be done very carefully by
utilising indicators from different data sources and from
different partners. In this subsection two metrics: “Budget
status” and “Testing status” are introduced with discussion
about indicators and proactive signals that they provide.

The visualisation of Budget status combines cost,
requirements and defects metrics in the same graph shown in
Figure 4.

Figure 4. Visualised Metrics: Budget Status

The Budget status graph shows actual costs of the project
in portion with the agreed budget over a time period. The
metric also gives several indicators of estimated prospective
costs in each month. The bars summarise amount of costs for
the month, and each bar is composed from five different
cost-related data. The first block (green) describes actual
cumulative costs of the project. The agreed budget for the
project is shown clearly as a green line in the middle of the
graph. The second block (blue) describes remaining planned
cost based on effort estimated for requirements that have
been accepted for implementation but not yet implemented.
The third block (light blue), in the middle of the bar,
indicates proposed cost that can be seen very likely costs for
the project. These costs are based on effort estimated for the
proposed requirements that are estimated likely to be
implemented, for example, a customer will want them. The
fourth block (orange) describes proposed but vague costs for

285

International Journal on Advances in Software, vol 5 no 3 & 4, year 2012, http://www.iariajournals.org/software/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

put people together into the same room to hammer out
solutions that essentially consume budget.

C. Metrics and their Visualisation for Elaboration Phase
During the elaboration phase a majority of the system

requirements are expected to be captured. The purpose of the
phase is to analyse the problem domain, establish a sound
architectural foundation, develop the project plan, and
eliminate the highest risk elements of the project. The final
elaboration phase deliverable is also a plan (including cost
and schedule estimates) for the construction phase. Example
outcomes of the elaboration phase are; a use case model (at
least 80% complete), a software architecture description,
supplementary requirements capturing the non-functional
requirements and any requirements that are not associated
with a specific use case, a revised risk list and a revised
business case, and a development plan for the overall project.
Proposed metrics to be taken into consideration in this phase
are introduced in Table II.

TABLE II. METRICS FOR THE ELABORATION PHASE

Metric Notation Definition
Schedule:
Planned
/Actual Schedule

DPLANNED

DACTUAL

The planned/actual Date of
delivery (usually the
completion of an iteration, a
release or a phase)

Staff:
Planned
/Actual Personnel
Planned
/Actual Effort

#FTPLANNED

#FTACTUAL

EPLANNED

EACTUAL

The planned/actual number
of Full Time persons in the
project at any given time.
The planned/actual Effort for
project tasks (/requirements)
at any given time.

Requirements
-Drafted
-Proposed
-Approved
-Not implemented

#Reqs DRAFTED

#Reqs PROPOSED

#Reqs APPROVED.

#Reqs NOT_IMPL

The number (#) of
- drafted requirements
- proposed requirements
- reqs approved by customer
- not implemented reqs

Tests
-Planned #Tests PLANNED

The number (#) of
- planned tests

Documents:
-Planned
-Proposed
-Accepted

#Docs PLANNED

#Docs PROPOSED

#Docs ACCEPTED

The number (#) of
planned /proposed /accepted
documents to be reviewed
during the project.

The metrics related to requirements, tests and documents
indicate the technical progress of the project from different
viewpoints. The Staffing metric may explain deviations in
the expected progress vs. the actual progress, both from a
technical as well as from a schedule viewpoint. Note that
those metrics that are more relevant to measure by iterations
(effort and size) are introduced later (in Section E).

Figure 3 shows how some of the proposed metrics can be
visualised in order to describe the project’s status. The metric
of requirements status combines the amount of planned
effort with status of requirements’ implementation over a
time in the same graph. The bars summarise the amount of
planned effort for the month. Each bar is composed from
four different data relating to identified requirements as
follows. The first block (green) describes a sum of planned
efforts for all implemented requirements. The second block
(grey) describes a sum of planned efforts for approved but
not implemented requirements. The third block (blue)

decribes a sum of planned efforts for proposed requirements
and the last block (orange) shows a sum of planned efforts
for drafted requirements.

Figure 3. Visualised Metrics: Requirements Status

It is important to note, that the planned effort is used
constantly, even for implemented requirements. This is due
to keeping the baseline in order to enable comparing project
situation over time, i.e., to be able to see the project trend
with respect to planned work. The planned effort may be
updated for the requirements during the project, if a new
baseline is created. This information is then used together
with the actuals, to see how well the planning has succeeded
to help learning to estimate better.

The visualised metric “Requirements status” indicates
several status information but also trend lines relating to
requirements implementation, and is focused on showing
the uncertainly of the project, for example how much more
work maybe dedicated to be implemented in the project. In
the example graph, a good signal is that the sum of planned
efforts for implemented requirements seems to increase over
time while the sum of planned efforts for approved, but not
implemented requirements, seems to reduce. However, the
sums of planned efforts for proposed and drafted
requirements are still quite large in the Month 8, especially,
while comparing them to the sums of planned efforts for
approved requirements. This indicates that the project is in
the beginning phase rather than in the ending phase.
However, the interpretation needs other metrics information,
such as “Progress status” or “Testing status” to make any
decisions.

Industrial comments
In the Philips company example, the current projects

lack insight into the satisfaction of requirements. This lack
of insight concerns both the actual status of implementation
of the requirements, as well as the expectation: “Up to what
level the project will be able to satisfy its requirements, and
if not, what are measures to accomplish that?” The (leading)
indicator as proposed in this document seems to be a good
answer to this problem. The metric has been introduced in a
few (one-roof) projects yet and initial results seem
promising. However, no data with experiences on a metric
like this have been collected yet.

According to Symbio’s practice, when looking to exit an
elaboration phase, product owners should pay special

VI/9

286

International Journal on Advances in Software, vol 5 no 3 & 4, year 2012, http://www.iariajournals.org/software/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

attention to the coverage of requirements affecting
architecture to ensure the construction phases run more to
plan as the team sizes may scale and involve more sites.
Whilst iterative development can be seen as promoting
elaboration of requirements later in the lifecycle, core
functions that separate the project output from competition
should be conceptualized and approved for implementation.
Project managers may consider implementation of these
differentiating use cases to be made geographically or
temporally close to the project owner. Non-approved
requirements should be managed accordingly and not
planned for implementation off-site until they are suitably
elaborated and accepted into the development roadmap.
Misunderstanding of the requirements needs to be
minimalized if the team size and development sites scale
during construction phases otherwise projected cost savings
from multi-site development can be quickly eliminated.

D. Metrics and their Visualisation for Construction Phase
Construction is the largest phase in the project. During

the phase, all remaining components and application features
are developed and integrated into the product, and all
features are thoroughly tested. System features are
implemented in a series of short, time boxed iterations. Each
iteration results in an executable release of the software.
Example outcomes of the phase consist of a software product
integrated on the adequate platforms, user manuals, and a
description of the current release. Proposed metrics to be
taken into consideration in this phase are introduced in Table
III.

TABLE III. METRICS FOR THE CONSTRUCTION PHASE

Metric Notation Definition
Planned
/Actual Schedule
Planned
/Actual Personnel

DPLANNED

DACTUAL

#FTPLANNED

#FTACTUAL

Defined in the elaboration
phase.

Requirements:
-Proposed
-Approved
-Not implemented
-Started
-Completed

#Reqs PROPOSED

#Reqs APPROVED.

#Reqs NOT_IMPL

#Reqs STARTED

#Reqs COMPLETED

The number (#) of
- proposed requirements
- reqs approved by customer
- not implemented reqs
- reqs started to implement
- reqs completed

Change Requests:
-New CR

-Accepted

-Implemented

#CRs NEW

#CRs ACCEPTED

#CRs IMPL.

The number (#) of
- identified new CR or
enhancement
- CRs accepted for
implementation
- CRs implemented

Tests:
-Planned
-Passed
-Failed
-Not tested

#Tests PLANNED.

#Tests PASSED

#Tests FAILED

#TestsNOT TESTED

The number (#) of
- planned tests
- passed tests
- failed tests
- not started to test

Defects
-by Priority: e.g.,
Showstopper,
Medium, Low

#Dfs PRIORITY

The number (#) of
- defects by Priority during
the time period

Documents:
-Planned
-Proposed
-Accepted

#Docs PLANNED

#Docs PROPOSED

#Docs ACCEPTED

Defined in the elaboration
phase.

Note that those metrics that are continuously measured
are introduced later (in Section E).The metrics related to
requirements, tests and documents indicate the technical
progress of the project from different viewpoints. Metrics
related to changes indicate both the stability of the project
technical content, and can explain schedule delays, and
unexpected technical progress. Defect metrics describe both
the progress of testing as well as the maturity of the product.

In the construction phase, all components and features
are developed and integrated into the product. In addition,
they are also thoroughly tested, so there are many
simultaneous actions that can be implemented by multiple
partners or/and in different locations in GSD. This is why the
metrics interpretation needs to be done very carefully by
utilising indicators from different data sources and from
different partners. In this subsection two metrics: “Budget
status” and “Testing status” are introduced with discussion
about indicators and proactive signals that they provide.

The visualisation of Budget status combines cost,
requirements and defects metrics in the same graph shown in
Figure 4.

Figure 4. Visualised Metrics: Budget Status

The Budget status graph shows actual costs of the project
in portion with the agreed budget over a time period. The
metric also gives several indicators of estimated prospective
costs in each month. The bars summarise amount of costs for
the month, and each bar is composed from five different
cost-related data. The first block (green) describes actual
cumulative costs of the project. The agreed budget for the
project is shown clearly as a green line in the middle of the
graph. The second block (blue) describes remaining planned
cost based on effort estimated for requirements that have
been accepted for implementation but not yet implemented.
The third block (light blue), in the middle of the bar,
indicates proposed cost that can be seen very likely costs for
the project. These costs are based on effort estimated for the
proposed requirements that are estimated likely to be
implemented, for example, a customer will want them. The
fourth block (orange) describes proposed but vague costs for

VI/10 VI/11

288

International Journal on Advances in Software, vol 5 no 3 & 4, year 2012, http://www.iariajournals.org/software/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

satisfaction is generally gathered in the transition phase, and
post-mortem analysis carried out.

F. Metrics for Iterations
Each iteration results in an increment, which is a release

of the system that contains added or improved functionality
compared with the previous release. Each release is
accompanied by supporting artifacts: release description,
user’s documentation, plans, etc. Although most iterations
will include work in most of the process disciplines
(requirements, design, implementation, testing) the relative
effort and emphasis will change over the course of the
project. Proposed metrics for each iteration to be taken into
consideration, are introduced in Table IV.

TABLE IV. METRICS FOR ITERATIONS

Metric Notation Definition
Effort:
-Planned Effort
-Actual Effort

EPLANNED
EACTUAL

The planned/actual effort
required of any given
iteration of the project.

Size:
-Planned size
-Actual size

SIZEPLANNED

SIZEACTUAL

The planned /actual size of
each iteration can be
measured as SLOC
(Source Lines of Code),
Points or any other
commonly accepted way.

Cost:
-Budgeted
-Expenditure

COSTBUDGET

COSTACTUAL

The budgeted cost /actual
expenditure for any given
iteration.

Velosity:
-planned /actual
story points

#PTS PLAN

#PTS ACT

How many story points are
planned to be /actually
implemented of any given
iteration of the project.

Productivity: EACTUAL / #PTS
ACT

Use effort per acutally
implemented story points
for each sprint /iteration

All of these metrics provide indications of the project
progress and reasons for deviations should be analysed.
These metrics should be analysed together with other metrics
results (presented in Tables I-III) in order to gain a
comprehensive picture of the status.

VI. SPECIFIC MEASUREMENTS AND METRICS IN GSD
Section V discussed metrics, which are not specific for

GSD, but they provide valuable information to follow a GSD
project progress. So, in GSD, metrics can be similar or same
as in single-site development. However, in order to prevent
potential problems during distributed projects some specific
GSD metrics could be added to be used together with the
metrics presented in Section V. These metrics should be
focused on the specific challenges in GSD that were
presented in general level in Section III and they would help
to quickly detect the GSD related source of problems that are
identified in the metrics presented in Section V.

Measuring the generic GSD challenges (Section III) is
difficult, and in fact, measuring the challenges does not
provide clear value from project monitoring viewpoint. It is
more beneficial to follow and detect the symptoms that
indicate problems in the GSD practice. Example problems
[14] caused by lack of communication, coordination

breakdown, and different backgrounds include, for example,
ineffective use of resources as competences are not known
from other sites, obstacles in resolving seemingly small
problems and faulty work products due to a lack of
competence or background information. These causes can
also lead to a lack of transparency in the other parties’ work,
misunderstood assignments and, thus, faulty deliveries from
parties, delays caused by waiting for the other parties’ input
and duplicate work or uncovered areas. Further problems
that can be caused by these issues include differences in tool
use or practices in storing information, misplaced restrictions
on the access to data and unsuitable infrastructure for the
distributed setting.

Example problems [14] caused by lack of teamness and
lack of trust include hiding problems and unwillingness to
ask for clarification from others, expending a lot of effort in
trying to find that the cause of problems (defects) has
occurred in the other parties’ workplace, an unwillingness to
help others and an unwillingness to share information and
work products until specifically requested to do so. These
causes may also appear as difficulties in agreeing about the
practices to be used and then not following the process and
practices as agreed, for example. Further problems caused by
these issues include the use of other tools than those agreed
to for the project and plentiful technical issues that hinder
communication and use of the tools, as agreed.

The following problems are among the most common
ones in companies GSD practice (based on 54 industrial
cases during several research projects):

1. unclear responsibilities and escalation channels,
2. unavailability of information timely for all who need

it,
3. unclear information and misunderstandings (for

example of requirements and task assignments),
4. problem hiding,
5. non-communicated and unexpected changes,
6. lack of visibility and transparency of all sites work

and progress,
7. faulty and/or delayed (internal) deliveries, and
8. sub optimal use of resources.
Next we discuss potential measurements to indicate as

early as possible if these problems are present. These
proposals have not been applied in practice, yet. Instead,
their implementations and possible selections were discussed
with industrial partners.

Relating to problems 1-3, a measurement could be a short
questionnaire asking the project members if they know their
responsibilities and when and to whom to escalate problems,
and is the required information available and clear. In
addition, from GSD viewpoint, a potential measurement
could be related to time spent idling (a team member is
waiting because of wrong, incorrect or missing information
or input from other members) or percentage of unplanned
work (a team member is working with unplanned or
duplicated tasks).

For problems 4 – 6, a measure is amount and type of
communication over sites. For example, communications
activeness could be monitored via metrics like amount of
status reports, meeting memos, chats, calls between

287

International Journal on Advances in Software, vol 5 no 3 & 4, year 2012, http://www.iariajournals.org/software/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

the project. These costs are based on effort estimated for the
proposed requirements which the likeliness for
implementation is not known. Instead, the fifth block (red)
indicates very potential costs for the project, so-called
“Known defects” costs. The costs are based on effort
estimated to be needed to fix the known critical, major or
average defects. In the example graph, the Budget status
metric in Figure 4, the project’s costs will overrun the agreed
budget.

Industrial comments
At Philips, the current applied budget metrics generally

give a clear understanding in the actual budget consumption,
but are poor in predicting budget consumption for the
remainder of the project. The metric suggested allows for
trend analysis and by that extrapolation to the future,
resulting in better prediction of the budget consumption for
the remainder of the project. This will improve the projects’
and the management’s insight into the project and enable
them to take required measures in a timely fashion, as
appropriate. The metric has not yet been applied in our
projects.

In Symbio, managers will often track cost against budget
throughout construction for project sponsors, but earned
value becomes increasingly more important in the latter
stages of the lifecycle. Earned value can be tracked with
relative ease if defined requirements are quantified for
business importance. Product backlogs imply the importance
by a requirement’s position in the backlog; however some
backlogs may include other items than requirements such as
operational tasks for deployment and so on. To compensate
all project requirements (both functional and non-functional)
can be attributed with a business value, its value based in
comparison to the cumulative value of all project
requirements. When a requirement is delivered its value is
added to cumulative total to provide an earned value
delivered by the project. This approach is ideal if the backlog
of the product development stabilizes throughout
construction. However significant changes in the business
value of requirements will weaken the importance of
tracking this metric over time. Also this metric requires the
project team and stakeholders to agree upon a “definition of
done” which can be very difficult, and even more so if the
accepting and implementing parties are different entities or
located in different sites.

The metric of Testing status combines effort,
requirements and test metrics in a same graph. The Testing
status metric visualises the progress of testing phase by
collecting data from various phases. The bars in the graph
summarise efforts relating to tests in each month. Each bar is
composed from four different sums of efforts. The first block
(green) describes a sum of efforts for tested requirements.
The second block (blue) describes a sum of efforts for
requirements for which test case is available, and
accordingly, the third block (purple) describes a sum of
efforts for requirements for which test cases are not
available. The last, the fourth block (red) is a very proactive
indicator describing a sum of effort estimated for uncertain
requirements. Figure 5 shows the visualisation of Testing
status metric.

Figure 5. Visualised Metrics: Testing Status

Even if “Testing status” shows easily how ‘mature’ the
testing phase is the metric requires other metrics – such as
the before introduced metrics: Budget status, Progress status
and Requirements status – make conclusions based on the
data.

Industrial comments
According to Philips, one of the most important

indicators of a development project is insight in what will be
the status of the product at the delivery time - what will the
product actually contain and what is the quality of those
contents? This metric is an effective means to get early
insight in the status of the product by the end of the project.
Moreover, the test status trend analysis helps to initiate
timely measures to work towards an agreed project result.
The metric has been applied in a single project at Philips and
results were promising - it really improved the insight of
project, management and customer in the status of the
product-under-construction and better understanding of what
could be expected by the end of the project.

According to Symbio, earned value is especially
invaluable in the close down phases of a project. Projects
may deteriorate into loss making, unplanned iteration as
stakeholders become overly conscious on metrics of
requirements coverage. This situation is can be further
exacerbated if the value of requirements is not continually
reviewed and communicated to all stakeholders throughout
the project.

E. Metrics for Transition Phase
The final project phase of the RUP approach is transition.

The purpose of the phase is to transfer a software product to
a user community. Feedback received from initial release(s)
may result in further refinements to be incorporated over the
course of several transition phase iterations. The phase also
includes system conversions, installation, technical support,
user training and maintenance. From measurements
viewpoint the metrics identified in the phases relating to
schedule, effort, tests, defects, change requests and costs are
still relevant in the transition phase. In addition, customer

VI/11

288

International Journal on Advances in Software, vol 5 no 3 & 4, year 2012, http://www.iariajournals.org/software/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

satisfaction is generally gathered in the transition phase, and
post-mortem analysis carried out.

F. Metrics for Iterations
Each iteration results in an increment, which is a release

of the system that contains added or improved functionality
compared with the previous release. Each release is
accompanied by supporting artifacts: release description,
user’s documentation, plans, etc. Although most iterations
will include work in most of the process disciplines
(requirements, design, implementation, testing) the relative
effort and emphasis will change over the course of the
project. Proposed metrics for each iteration to be taken into
consideration, are introduced in Table IV.

TABLE IV. METRICS FOR ITERATIONS

Metric Notation Definition
Effort:
-Planned Effort
-Actual Effort

EPLANNED
EACTUAL

The planned/actual effort
required of any given
iteration of the project.

Size:
-Planned size
-Actual size

SIZEPLANNED

SIZEACTUAL

The planned /actual size of
each iteration can be
measured as SLOC
(Source Lines of Code),
Points or any other
commonly accepted way.

Cost:
-Budgeted
-Expenditure

COSTBUDGET

COSTACTUAL

The budgeted cost /actual
expenditure for any given
iteration.

Velosity:
-planned /actual
story points

#PTS PLAN

#PTS ACT

How many story points are
planned to be /actually
implemented of any given
iteration of the project.

Productivity: EACTUAL / #PTS
ACT

Use effort per acutally
implemented story points
for each sprint /iteration

All of these metrics provide indications of the project
progress and reasons for deviations should be analysed.
These metrics should be analysed together with other metrics
results (presented in Tables I-III) in order to gain a
comprehensive picture of the status.

VI. SPECIFIC MEASUREMENTS AND METRICS IN GSD
Section V discussed metrics, which are not specific for

GSD, but they provide valuable information to follow a GSD
project progress. So, in GSD, metrics can be similar or same
as in single-site development. However, in order to prevent
potential problems during distributed projects some specific
GSD metrics could be added to be used together with the
metrics presented in Section V. These metrics should be
focused on the specific challenges in GSD that were
presented in general level in Section III and they would help
to quickly detect the GSD related source of problems that are
identified in the metrics presented in Section V.

Measuring the generic GSD challenges (Section III) is
difficult, and in fact, measuring the challenges does not
provide clear value from project monitoring viewpoint. It is
more beneficial to follow and detect the symptoms that
indicate problems in the GSD practice. Example problems
[14] caused by lack of communication, coordination

breakdown, and different backgrounds include, for example,
ineffective use of resources as competences are not known
from other sites, obstacles in resolving seemingly small
problems and faulty work products due to a lack of
competence or background information. These causes can
also lead to a lack of transparency in the other parties’ work,
misunderstood assignments and, thus, faulty deliveries from
parties, delays caused by waiting for the other parties’ input
and duplicate work or uncovered areas. Further problems
that can be caused by these issues include differences in tool
use or practices in storing information, misplaced restrictions
on the access to data and unsuitable infrastructure for the
distributed setting.

Example problems [14] caused by lack of teamness and
lack of trust include hiding problems and unwillingness to
ask for clarification from others, expending a lot of effort in
trying to find that the cause of problems (defects) has
occurred in the other parties’ workplace, an unwillingness to
help others and an unwillingness to share information and
work products until specifically requested to do so. These
causes may also appear as difficulties in agreeing about the
practices to be used and then not following the process and
practices as agreed, for example. Further problems caused by
these issues include the use of other tools than those agreed
to for the project and plentiful technical issues that hinder
communication and use of the tools, as agreed.

The following problems are among the most common
ones in companies GSD practice (based on 54 industrial
cases during several research projects):

1. unclear responsibilities and escalation channels,
2. unavailability of information timely for all who need

it,
3. unclear information and misunderstandings (for

example of requirements and task assignments),
4. problem hiding,
5. non-communicated and unexpected changes,
6. lack of visibility and transparency of all sites work

and progress,
7. faulty and/or delayed (internal) deliveries, and
8. sub optimal use of resources.
Next we discuss potential measurements to indicate as

early as possible if these problems are present. These
proposals have not been applied in practice, yet. Instead,
their implementations and possible selections were discussed
with industrial partners.

Relating to problems 1-3, a measurement could be a short
questionnaire asking the project members if they know their
responsibilities and when and to whom to escalate problems,
and is the required information available and clear. In
addition, from GSD viewpoint, a potential measurement
could be related to time spent idling (a team member is
waiting because of wrong, incorrect or missing information
or input from other members) or percentage of unplanned
work (a team member is working with unplanned or
duplicated tasks).

For problems 4 – 6, a measure is amount and type of
communication over sites. For example, communications
activeness could be monitored via metrics like amount of
status reports, meeting memos, chats, calls between

VI/12 VI/13

290

International Journal on Advances in Software, vol 5 no 3 & 4, year 2012, http://www.iariajournals.org/software/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

It can be seen that the metrics are quite similar as in
single-site development. However, the metrics may be
analysed separately for each site, and comparisons between
sites can thus be made in order to identify potential problems
early. On the other hand, it is important to recognise that
some metrics correlate with each other, for example, metrics
relating to tests correlate with metrics about requirements,
and that needs to take consideration while analysing. In
general, the interpretation of project’s comprehensive status
needs various metrics information – like Requirements
status, Progress status, Testing status and Budget status – for
making conclusions based on the data. In addition, while
interpreting or making decisions based on the measurement
results the distributed development implications need to be
taken into account. Distributed development requires ‘super-
balancing’ - how to come to the right corrective action if for
instance, on the one side, the % of not accepted requirements
is high, and on the other side, the # of passed tests is lagging
behind. Distributed development may also affect the actual
results of the measurements. For example, relating to
subjective metrics, such as effort estimation, differences
between backgrounds of the people (cultural or work
experience) in different sites may affect the result.

The companies also use the measurement results to gain
insight into why a measure varies between similar single-site
and multi-site projects in order to try to reduce potential
variances. This also partially explains the use of the same
metrics as single-site development. This was experienced by
the representative of Symbio: “These points presented should
be by now well known. From an economic perspective these
points must be considered when evaluating and comparing
costs of different project models of delivery.”, and
“Benchmarking and tracking of historical data across the
entire project portfolio is still only an initial step to shape
more informed cost estimations when composing project
teams with distributed elements. Continuous effort is
required not only in definition and capture of metrics but
also in the effects on working practices in general.”

Furthermore, the challenges in communication and
dynamics of distributed teams mean that working practices
need to be addressed continuously as impressed by Symbio
representative: “Often a practical solution to working
procedures can result in compensation for potential lost
productivity. For example a testing team in China lags their
working week by one day (Tuesday to Saturday) in order to
test the results from an implementation team in Finland
(working Monday to Friday). In this example the Finland
team agrees to ensure continuous integration in order to not
block the testing team. If these two practices have a positive
effect on productivity when compared against similar project
models, future cost estimations should then be benchmarked
on the new working practices.” However, in addition to
metrics results, paying close attention and acting on feedback
is as important, if not more important than drawing strong
conclusions from metrics alone.

Currently, both companies are in process of revamping
their metric usage, but feel confident that the metrics
introduced in this paper are the right ones. This was pointed
out by Philips by the following: “Applying the metrics

suggested in this document to the parties involved in the
GSD project already gives better insight in the relative
performances of the groups, and enables to take measures
over time (e.g., systematically improve a party’s
performance, or replace it). We have applied detailed effort
consumption metrics to our single-roof and multi-side
development projects. Those metrics learned that staff of
multi-side projects spend significantly more time on things
they call ‘communication’ or ‘overhead’ (up to 50%!). Our
understanding of the matter is that no new metric needs to be
‘invented’ for that: standard effort distribution metrics
would do. The main challenge is to have it introduced in a
systematic way, with the same understanding and
interpretation of the metrics by the parties involved.
Especially the first element is often a challenge: third parties
are often reluctant to provide this level of transparency of
their performance.”

Both companies are careful in introducing new metrics,
as it is well known that too many metrics lead to overkill and
rejection by the organization, and do not provide the right
insights and indication for control measures. Easy
implementation and by that, easy acceptance is the most
crucial thing to get these metrics as established practice
within the company. However, the few specific GSD metrics
presented in Section VI are intended to be used together as
the proposed metrics set. These additional metrics should be
focused on measuring the project performance, especially
task and team performance in GSD.

VIII. CONCLUSION

The management of the more and more common
distributed product development project has proven to be
more challenging and complicated than traditional one-site
development. Metrics are seen as important activities for
successful product development as they provide the means to
effectively monitor the project progress. However, defining
useful, yet reasonable amount of metrics is challenging, and
there is little guidance available for a company to define
metrics for its distributed projects.

Globally distributed development generates new
challenges and difficulties for the measurements. For
example, the gathering of the measurements data can be
problematic because of different development tools and their
versions, work practices with related concepts can vary by
project stakeholders or reliability of the gathered data can
vary due to cultural differences, especially, in subjective
evaluations. Furthermore, interpretation and decision-making
based on the measurement results require that the distributed
development implications are taken carefully into
consideration.

This paper focused on describing a set of metrics that is
successfully used in industrial practice in GSD and given
examples of their visualisation with industrial experiences of
their use. These metrics, are aimed especially to provide the
means to proactively react to potential issues in the project,
and are meant to be used as a whole, not interpreted as single
information of project status. The basic GSD circumstances
with challenges are discussed from viewpoints of metrics

289

International Journal on Advances in Software, vol 5 no 3 & 4, year 2012, http://www.iariajournals.org/software/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

locations, etc. Communication activeness is especially
important between distributed teams where their
development tasks are highly coupled or dependent on
deliveries and results of each other. For example, silence or
communication only via documents (official reports) can be
an indicator of problem, whereas active informal
communication over sites indicates active discussion of work
at hand. In the worst case in GSD, lack of face-to-face
communication can lead to “reportmania” where
communication is handled only through large amount of
documents. Long textual descriptions can be easily omitted
or alternatively misunderstood because of high amount of
effort and time required for adopting the content.

For problem 7, metrics related to defects and schedule
are relevant and for problem 8, a potential measurement is
time spent idling and the time blocked because of the
impediments elsewhere in the team as these affect
productivity and highlight when a team is not performing.
Also, communication related metrics are valuable for these
problems.

The metrics relating to team trust, project commitment
and team identifications describes team dynamics that can
provide lot of explaining information for the problems in
GSD project. Some indicators, such as how many people
have left from the project, refer the individual satisfaction as
well as project commitment. Because software development
is fundamentally team oriented action [53], metrics relating
to team dynamics and teamwork quality is highly
recommended to monitor in GSD. Potential metrics are
related to communication, tasks coordination, balance of
member contributions, mutual support, effort and cohesion
as introduced by Hoegl and Gemuenden [54]. Examples of
questions are as follows:

Communication: Is there sufficient frequent, informal,
direct, and open communication?
Coordination: Are individual efforts well-structured and
synchronised within the team?
Balance of member contributions: Are all team members
able to bring in their expertise to its full potential?
Mutual support: Do team members help and support
each other in carrying out their tasks?
Effort: Do team members exert all efforts to team tasks?
Cohesion: Are team members motivated to maintain the
team? Is there team spirit?

These questions can be used to measure team dynamics
and team work quality during a GSD project.

VII. DISCUSSION

A. GSD Metrics
As discussed, little focus has been paid on GSD metrics

in the literature. In fact, the research has been focused on
clarifying differences between collocated and distributed
projects and also, identifying variables that differ the most.
Although this kind of approach is important for gaining
knowledge about the issues that need to be monitored in
GSD, a specific focus on the metrics and their collection and
analysis is also needed. For example, project performance is

even more complicated and multi-level concept to measure
in GSD than in single-site. It concerns team members’
individual performance, teamwork performance and tasks
performance as well as management performance.
Bourgault et al. [19] pointed out that distributed projects’
performance metrics and measurement needs more attention
so that well designed management information systems
could be developed in order to create effective monitoring
systems for distributed projects. This kind of development
was seen as necessary to provide decision makers with
dynamic, user-friendly information system that would
support management activities, not only for project
managers, but also for top managers. However, the issue of
performance metrics in the context of distributed projects
needs to be investigated in more detail. Furthermore, a
dispersion of work has significant effects on productivity
and, indirectly, on the quality of the software. However, it is
currently difficult to specify metrics, measurement processes
and activities that best suit different companies and specific
GSD circumstances. We have presented a first step towards
taking into account the specific aspects of GSD in
measurement programs, but more work is needed. For
example, specific GSD metrics are currently collected and
processed manually, thus requiring extra and error prone
effort. In the world of the hectic and dynamic GSD practice,
the metrics collection and visualisation should also be
automated to be valuable in large-scale use. The automation
is an important issue for further research.

B. Industrial Viewpoint
The metrics presented in Section V were common for

both of the companies. Although the metrics were chosen
independently by both companies, the reasoning behind
choosing these metrics was similar. An important reason was
to come from a re-active into a pro-active mode, for example
to introduce ‘early warning’ signals for the project and
management. Specifically these metrics have been chosen as
they indicate a well-rounded view of status in the various
engineering disciplines and highlight potential issues in the
project. This creates real possibilities to act proactively based
on signals gathered from various engineering viewpoints.
This is especially important in GSD, where information of
project status is not readily available but needs special effort,
distributed over sites and companies. Accordingly, the
metrics set can be seen as a ‘balanced score card’, on which
management can take the right measures, balancing insights
from time, effort (e.g., staffing), cost, functionality
(requirements) and quality (tests) perspective.

An important aspect was also that the metrics are easy to
capture and that they can be captured from the used tools
“for free”, or can be quickly calculated at regular intervals.
Costs and budgets are good examples of metrics that can be
easily captured from the tools. This is also important from
GSD viewpoint, as automated capturing reduces the chance
of variations caused by differences in recording the metrics
data in different sites. Neither of the companies use metrics
based on lines-of-code as they did not find it to be a reliable
indicator of progress, size or quality of design.

VI/13

290

International Journal on Advances in Software, vol 5 no 3 & 4, year 2012, http://www.iariajournals.org/software/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

It can be seen that the metrics are quite similar as in
single-site development. However, the metrics may be
analysed separately for each site, and comparisons between
sites can thus be made in order to identify potential problems
early. On the other hand, it is important to recognise that
some metrics correlate with each other, for example, metrics
relating to tests correlate with metrics about requirements,
and that needs to take consideration while analysing. In
general, the interpretation of project’s comprehensive status
needs various metrics information – like Requirements
status, Progress status, Testing status and Budget status – for
making conclusions based on the data. In addition, while
interpreting or making decisions based on the measurement
results the distributed development implications need to be
taken into account. Distributed development requires ‘super-
balancing’ - how to come to the right corrective action if for
instance, on the one side, the % of not accepted requirements
is high, and on the other side, the # of passed tests is lagging
behind. Distributed development may also affect the actual
results of the measurements. For example, relating to
subjective metrics, such as effort estimation, differences
between backgrounds of the people (cultural or work
experience) in different sites may affect the result.

The companies also use the measurement results to gain
insight into why a measure varies between similar single-site
and multi-site projects in order to try to reduce potential
variances. This also partially explains the use of the same
metrics as single-site development. This was experienced by
the representative of Symbio: “These points presented should
be by now well known. From an economic perspective these
points must be considered when evaluating and comparing
costs of different project models of delivery.”, and
“Benchmarking and tracking of historical data across the
entire project portfolio is still only an initial step to shape
more informed cost estimations when composing project
teams with distributed elements. Continuous effort is
required not only in definition and capture of metrics but
also in the effects on working practices in general.”

Furthermore, the challenges in communication and
dynamics of distributed teams mean that working practices
need to be addressed continuously as impressed by Symbio
representative: “Often a practical solution to working
procedures can result in compensation for potential lost
productivity. For example a testing team in China lags their
working week by one day (Tuesday to Saturday) in order to
test the results from an implementation team in Finland
(working Monday to Friday). In this example the Finland
team agrees to ensure continuous integration in order to not
block the testing team. If these two practices have a positive
effect on productivity when compared against similar project
models, future cost estimations should then be benchmarked
on the new working practices.” However, in addition to
metrics results, paying close attention and acting on feedback
is as important, if not more important than drawing strong
conclusions from metrics alone.

Currently, both companies are in process of revamping
their metric usage, but feel confident that the metrics
introduced in this paper are the right ones. This was pointed
out by Philips by the following: “Applying the metrics

suggested in this document to the parties involved in the
GSD project already gives better insight in the relative
performances of the groups, and enables to take measures
over time (e.g., systematically improve a party’s
performance, or replace it). We have applied detailed effort
consumption metrics to our single-roof and multi-side
development projects. Those metrics learned that staff of
multi-side projects spend significantly more time on things
they call ‘communication’ or ‘overhead’ (up to 50%!). Our
understanding of the matter is that no new metric needs to be
‘invented’ for that: standard effort distribution metrics
would do. The main challenge is to have it introduced in a
systematic way, with the same understanding and
interpretation of the metrics by the parties involved.
Especially the first element is often a challenge: third parties
are often reluctant to provide this level of transparency of
their performance.”

Both companies are careful in introducing new metrics,
as it is well known that too many metrics lead to overkill and
rejection by the organization, and do not provide the right
insights and indication for control measures. Easy
implementation and by that, easy acceptance is the most
crucial thing to get these metrics as established practice
within the company. However, the few specific GSD metrics
presented in Section VI are intended to be used together as
the proposed metrics set. These additional metrics should be
focused on measuring the project performance, especially
task and team performance in GSD.

VIII. CONCLUSION

The management of the more and more common
distributed product development project has proven to be
more challenging and complicated than traditional one-site
development. Metrics are seen as important activities for
successful product development as they provide the means to
effectively monitor the project progress. However, defining
useful, yet reasonable amount of metrics is challenging, and
there is little guidance available for a company to define
metrics for its distributed projects.

Globally distributed development generates new
challenges and difficulties for the measurements. For
example, the gathering of the measurements data can be
problematic because of different development tools and their
versions, work practices with related concepts can vary by
project stakeholders or reliability of the gathered data can
vary due to cultural differences, especially, in subjective
evaluations. Furthermore, interpretation and decision-making
based on the measurement results require that the distributed
development implications are taken carefully into
consideration.

This paper focused on describing a set of metrics that is
successfully used in industrial practice in GSD and given
examples of their visualisation with industrial experiences of
their use. These metrics, are aimed especially to provide the
means to proactively react to potential issues in the project,
and are meant to be used as a whole, not interpreted as single
information of project status. The basic GSD circumstances
with challenges are discussed from viewpoints of metrics

VI/14 VI/15

292

International Journal on Advances in Software, vol 5 no 3 & 4, year 2012, http://www.iariajournals.org/software/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Measurement-Based Cockpits for Distributed Software and Systems
Engineering Projects, 2007, pp. 14-19.

[29] E. Carmel, Global Software Teams: Collaborating Across Borders
and Time Zones. Prentice Hall PTR, Upper Saddle River, NJ, USA,
1999.

[30] E. Carmel and P. Tija, Offshoring Information Technology: Sourcing
and Outsourcing to a Global Workforce. Cambridge University Press,
the United Kingdom, 2005.

[31] D. E. Damian and D. Zowghi, "An insight into the interplay between
culture, conflict and distance in globally distributed requirements
negotiations," In Proceedings of the 36th Annual Hawaii International
Conference on System Sciences (HICSS'03), 2003, 10 p.

[32] J. Herbsleb and A. Mockus, "An empirical study of speed and
communication in globally distributed software development," IEEE
Transactions on Software Engineering, vol. 29, (6), 2003, pp. 481-
494.

[33] M. Paasivaara and C. Lassenius, "Collaboration practices in global
inter-organizational software development projects," Software
Process: Improvement and Practice, vol. 8, (4), 2003, pp. 183-199.

[34] R. Battin, R. Crocker, J. Kreidler and K. Subramanian, "Leveraging
resources in global software development," IEEE Software, vol. 18,
(2), 2001, pp. 70-77.

[35] D. M. Wahyudin, S. Heindl, A. Biffl and B. R. Schatten, "In-time
project status notification for all team members in global software
development as part of their work environments," In Proceeding of
SOFPIT Workshop 2007, SOFPIT/ICGSE, Munich, 2007, pp. 20-25.

[36] J. D. Herbsleb and D. Moitra, "Global software development," IEEE
Software, vol. 18, (2), 2001, pp. 16-20.

[37] R. Welborn and V. Kasten, The Jericho Principle, how Companies
use Strategic Collaboration to Find New Sources of Value. John
Wiley & Sons, Inc., Hoboken, New Jersey, 2003.

[38] H. Holmstrom, E. O. Conchuir, P. J. Ågerfalk and B. Fitzgerald,
"Global software development challenges: A case study on temporal,
geographical and socio-cultural distance," In Proceedings of IEEE
International Conference on Global Software Engineering
(ICGSE’06), IEEE, 2006, pp. 3-11.

[39] V. Casey and I. Richardson, "Virtual teams: Understanding the
impact of fear," Software Process Improvement and Practice, vol. 13,
(6), 2008, pp. 511-526.

[40] B. Al-Ani and D. Redmiles, "Trust in distributed teams: Support
through continuous coordination," IEEE Software, vol. 26, (6), 2009,
pp. 35-40.

[41] G. Borchers, "The software engineering impacts of cultural factors on
multicultural software development teams," In Proceedings of the 25th

International Conference on Software Engineering (ICSE’03), IEEE,
2003, pp. 540-545.

[42] G. Hofstede, Culture’s Consequences. Comparing Values, Behaviors,
Institutions, and Organizations, Across Nations. Sage Publications.
London, 2nd edition, 2001.

[43] K. H. Möller and D. J. Paulish, Software Metrics: A Practitioner's
Guide to Improved Product Development. Institute of Electrical &
Electronics Enginee, London, 1993.

[44] CMMI, "CMMI for development," Tech. Rep. version 1.2., Technical
Report CMU/SEI-2006-TR-008, 2006.

[45] W. A. Shewhart, Statistical Method from the Viewpoint of Quality
Control. Graduate School of Agriculture, Washington, 1939.
Referenced in W.E. Deming: Out of Crisis. Cambridge, Mass.: MIT
Center for Advanced Engineering Study, 1986.

[46] R. S. Kaplan and D. P. Norton, "The balanced scorecard-measures
that drive performance," Harward Business Review, (No. 92105),
1992, pp. 71-79.

[47] G. Lawrie and I. Cobbold, "Third-generation balanced scorecard:
Evolution of an effective strategic control tool," International Journal
of Productivity and Performance Management, vol. 53, (7), 2004, pp.
611-623.

[48] D. Card, "Integrating practical software measurement and the
balanced scoreboard," In Proceedings of the 27th Annual International
Computer Software and Applications Conference COMPSAC 2003,
3-6 Nov. 2003, pp. 362- 363.

[49] PRISMA, Productivity in Collaborative Systems Development, ITEA
project (2008-2011) number 07024, Project info page, URL:
http://www.itea2.org/project/index/view/?project=237 (Accessed
19.12.2012).

[50] J. Eskeli, J. Maurolagoitia and C. Polcaro, "PSW: A framework-based
tool integration solution for global collaborative software
development," In Proceedings of the Sixth International Conference
on Software Engineering Advances (ICSEA'11), Barcelona, Spain,
2011, pp. 124-129.

[51] I. Jacobson, G. Booch and J. Rumbaugh, The Unified Software
Development Process. Addison-Wesley Pub Co, Addison-Wesley
Object Technology Series, 1999.

[52] P. Kruchten, "A rational development process," CrossTalk, vol. 9, (7),
1996, pp. 11-16.

[53] E. Demirors, G. Sarmasik and O. Demirors, "The role of teamwork in
software development: Microsoft case study," In Proceedings of the
23rd EUROMICRO Conference, New Frontiers of Information
Technology, 1997, pp. 129-133.

[54] M. Hoegl and H. G. Gemuenden, "Teamwork quality and the success
of innovative projects: A theoretical concept and empirical evidence,"
Organization Science, vol. 12, (4), 2001, pp. 435-449.

[55] ITEA 2, Information Technology for European Advancement, ITEA
2 homepage, URL: http://www.itea2.org/ (Accessed 19.12.2012).

[56] Tekes, the Finnish Funding Agency for Technology and Innovation,
Tekes homepage. URL: http://www.tekes.fi/eng/ (Accessed
19.12.2012).

291

International Journal on Advances in Software, vol 5 no 3 & 4, year 2012, http://www.iariajournals.org/software/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

and measurements in order to create awareness and
knowledge of potential GSD specific metrics.

The metrics presented in the paper were common for
both of the companies. Based on experiences, the reasoning
for selecting these metrics was similar: they are easy to
capture and can be quickly calculated and analysed at regular
intervals. Also, one of the most important reasons was that
these metrics were aimed especially to provide the means to
proactively react to potential issues in the project. The
balancing insights from time, effort, cost, functionality and
quality was also seen as very important aspect.

ACKNOWLEDGMENT

This paper was written within the PRISMA project that is
an ITEA 2 project, number 07024 [49]. The authors would
like to thank the support of ITEA [55] and Tekes (the
Finnish Funding Agency for Technology and Innovation)
[56].

REFERENCES

[1] M. Tihinen, P. Parviainen, R. Kommeren and J. Rotherham, "Metrics
in distributed product development," In Proceedings of the Sixth
International Conference on Software Engineering Advances
(ICSEA'11), Barcelona, Spain, 2011, pp. 275-280.

[2] R. Van Solingen and E. Berghout, The Goal/Question/Metric
Method: A Practical Guide for Quality Improvement of Software
Development. McGraw-Hill, 1999.

[3] V. R. Basili, Software modeling and measurement: The Goal
/Question/Metric paradigm. Computer Science Technical Report CS-
TR-2956, UNIMACS-TR-92-96, University of Maryland at College
Park, Sep. 1992, pp. 1-24.

[4] N. E. Fenton and S. L. Pfleeger, Software Metrics: A Rigorous and
Practical Approach. PWS Publishing Co. Boston, MA, USA, 1998.

[5] M. Umarji and F. Shull, "Measuring developers: Aligning
perspectives and other best practices," IEEE Software, vol. 26, (6),
2009, pp. 92-94.

[6] J. Hyysalo, P. Parviainen and M. Tihinen, "Collaborative embedded
systems development: Survey of state of the practice," In Proceedings
of 13th Annual IEEE International Symposium and Workshop on
Engineering of Computer Based Systems (ECBS 2006), IEEE, 2006,
pp. 1-9.

[7] J. D. Herbsleb, "Global software engineering: The future of socio-
technical coordination," In Proceedings of Future of Software
Engineering FOSE '07, IEEE Computer Society, 2007, pp. 188-198.

[8] J. D. Herbsleb, A. Mockus, T. A. Finholt and R. E. Grinter,
"Distance, dependencies, and delay in a global collaboration," In
Proceedings of the ACM Conference on Computer Supported
Cooperative Work, ACM, 2000, pp. 319-328.

[9] M. Jiménez, M. Piattini and A. Vizcaíno, "Challenges and
improvements in distributed software development: A systematic
review," Advances in Software Engineering, vol. Jan-2009, (No. 3),
2009, pp. 1-16.

[10] S. Komi-Sirviö and M. Tihinen, "Lessons learned by participants of
distributed software development," Knowledge and Process
Management, vol. 12, (2), 2005, pp. 108-122.

[11] M. Tihinen, P. Parviainen, T. Suomalainen, K. Karhu and M.
Mannevaara, "ABB experiences of boosting controlling and
monitoring activities in collaborative production," In Proceedings of
the 6th IEEE International Conference on Global Software
Engineering (ICGSE'11) Helsinki, Finland, 2011, pp. 1-5.

[12] F. Q. B. da Silva, C. Costa, A. C. C. França and R. Prikladinicki,
"Challenges and solutions in distributed software development project
management: A systematic literature review," In Proceedings of

International Conference on Global Software Engineering
(ICGSE2010), IEEE, 2010, pp. 87-96.

[13] S. Komi-Sirviö and M. Tihinen, "Great challenges and opportunities
of distributed software development - an industrial survey," In
Proceedings of the15th International Conference on Software
Engineering and Knowledge Engineering (SEKE2003), San
Francisco, USA, 2003, pp. 489-496.

[14] P. Parviainen, "Global software engineering. challenges and solutions
framework," Doctoral Dissertation, VTT Science 6, Finland, 2012,
pp. 106 p. + app. 150 p.

[15] Prisma-wiki, SameRoomSpirit wiki homepage. URL:
http://www.sameroomspirit.org/index.php/Main_Page (Accessed
19.12.2012).

[16] P. Kruchten, The Rational Unified Process: An Introduction.
Addison-Wesley Professional, 2004.

[17] C. E. L. Peixoto, J. L. N. Audy and R. Prikladnicki, "Effort estimation
in global software development projects: Preliminary results from a
survey," In Proceedings of International Conference on Global
Software Engineering, IEEE Computer Society, 2010, pp. 123-127.

[18] K. Korhonen and O. Salo, "Exploring quality metrics to support
defect management process in a multi-site organization - A case
study," In Proceedings of 19th International Symposium on Software
Reliability Engineering (ISSRE), IEEE, 2008, pp. 213-218.

[19] M. Bourgault, E. Lefebvre, L. A. Lefebvre, R. Pellerin and E. Elia,
"Discussion of metrics for distributed project management:
Preliminary findings," In Proceedings of the 35th Annual Hawaii
International Conference on System Sciences HICSS'02, IEEE, 2002,
10 p.

[20] S. Misra, "A metric for global software development environment,"
In Proceedings of the Indian National Science Academy 2009, pp.
145-158.

[21] R. M. Lotlikar, R. Polavarapu, S. Sharma and B. Srivastava,
"Towards effective project management across multiple projects with
distributed performing centers," In Proceedings of IEEE International
Conference on Services Computing (CSC'08), IEEE, 2008, pp. 33-40.

[22] M. T. Lane and P. J. Ågerfalk, "Experiences in global software
development - A framework-based analysis of distributed product
development projects," In Proceedings of the Fourth IEEE
International Conference on Global Software Engineering (ICGSE
2009). 2009, pp. 244-248.

[23] A. Piri and T. Niinimaki, "Does distribution make any difference?
quantitative comparison of collocated and globally distributed
projects," In Proceedings of the Sixth IEEE International Conference
on Global Software Engineering Workshop (ICGSEW'11), 2011, pp.
24-30.

[24] B. Sengupta, S. Chandra and V. Sinha, "A research agenda for
distributed software development," In Proceedings of the 28th
International Conference on Software Engineering, ACM, 2006, pp.
731-740.

[25] N. Ramasubbu and R. K. Balan, "Globally distributed software
development project performance: An empirical analysis," In
Proceedings of the the 6th Joint Meeting of the European Software
Engineering Conference aNd the ACM SIGSOFT Symposium on the
Foundations of Software Engineering (ESEC-FSE '07), ACM, 2007,
pp. 125-134.

[26] D. B. Simmons, "Measuring and tracking distributed software
development projects," In Proceedings the Ninth IEEE Workshop on
Future Trends of Distributed Computing Systems (FTDCS 2003).
IEEE, 2003, pp. 63-69.

[27] D. B. Simmons and N. K. Ma, "Software engineering expert system
for global development," In Proceedings of 18th IEEE International
Conference on Tools with Artificial Intelligence (ICTAI'06), IEEE,
2006, pp. 33-38.

[28] I. A. da Silva, M. Alvim, R. Ripley, A. Sarma, C. M. L. Werner and
A. van der Hoek, "Designing software cockpits for coordinating
distributed software development," In the First Workshop on

VI/15

292

International Journal on Advances in Software, vol 5 no 3 & 4, year 2012, http://www.iariajournals.org/software/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Measurement-Based Cockpits for Distributed Software and Systems
Engineering Projects, 2007, pp. 14-19.

[29] E. Carmel, Global Software Teams: Collaborating Across Borders
and Time Zones. Prentice Hall PTR, Upper Saddle River, NJ, USA,
1999.

[30] E. Carmel and P. Tija, Offshoring Information Technology: Sourcing
and Outsourcing to a Global Workforce. Cambridge University Press,
the United Kingdom, 2005.

[31] D. E. Damian and D. Zowghi, "An insight into the interplay between
culture, conflict and distance in globally distributed requirements
negotiations," In Proceedings of the 36th Annual Hawaii International
Conference on System Sciences (HICSS'03), 2003, 10 p.

[32] J. Herbsleb and A. Mockus, "An empirical study of speed and
communication in globally distributed software development," IEEE
Transactions on Software Engineering, vol. 29, (6), 2003, pp. 481-
494.

[33] M. Paasivaara and C. Lassenius, "Collaboration practices in global
inter-organizational software development projects," Software
Process: Improvement and Practice, vol. 8, (4), 2003, pp. 183-199.

[34] R. Battin, R. Crocker, J. Kreidler and K. Subramanian, "Leveraging
resources in global software development," IEEE Software, vol. 18,
(2), 2001, pp. 70-77.

[35] D. M. Wahyudin, S. Heindl, A. Biffl and B. R. Schatten, "In-time
project status notification for all team members in global software
development as part of their work environments," In Proceeding of
SOFPIT Workshop 2007, SOFPIT/ICGSE, Munich, 2007, pp. 20-25.

[36] J. D. Herbsleb and D. Moitra, "Global software development," IEEE
Software, vol. 18, (2), 2001, pp. 16-20.

[37] R. Welborn and V. Kasten, The Jericho Principle, how Companies
use Strategic Collaboration to Find New Sources of Value. John
Wiley & Sons, Inc., Hoboken, New Jersey, 2003.

[38] H. Holmstrom, E. O. Conchuir, P. J. Ågerfalk and B. Fitzgerald,
"Global software development challenges: A case study on temporal,
geographical and socio-cultural distance," In Proceedings of IEEE
International Conference on Global Software Engineering
(ICGSE’06), IEEE, 2006, pp. 3-11.

[39] V. Casey and I. Richardson, "Virtual teams: Understanding the
impact of fear," Software Process Improvement and Practice, vol. 13,
(6), 2008, pp. 511-526.

[40] B. Al-Ani and D. Redmiles, "Trust in distributed teams: Support
through continuous coordination," IEEE Software, vol. 26, (6), 2009,
pp. 35-40.

[41] G. Borchers, "The software engineering impacts of cultural factors on
multicultural software development teams," In Proceedings of the 25th

International Conference on Software Engineering (ICSE’03), IEEE,
2003, pp. 540-545.

[42] G. Hofstede, Culture’s Consequences. Comparing Values, Behaviors,
Institutions, and Organizations, Across Nations. Sage Publications.
London, 2nd edition, 2001.

[43] K. H. Möller and D. J. Paulish, Software Metrics: A Practitioner's
Guide to Improved Product Development. Institute of Electrical &
Electronics Enginee, London, 1993.

[44] CMMI, "CMMI for development," Tech. Rep. version 1.2., Technical
Report CMU/SEI-2006-TR-008, 2006.

[45] W. A. Shewhart, Statistical Method from the Viewpoint of Quality
Control. Graduate School of Agriculture, Washington, 1939.
Referenced in W.E. Deming: Out of Crisis. Cambridge, Mass.: MIT
Center for Advanced Engineering Study, 1986.

[46] R. S. Kaplan and D. P. Norton, "The balanced scorecard-measures
that drive performance," Harward Business Review, (No. 92105),
1992, pp. 71-79.

[47] G. Lawrie and I. Cobbold, "Third-generation balanced scorecard:
Evolution of an effective strategic control tool," International Journal
of Productivity and Performance Management, vol. 53, (7), 2004, pp.
611-623.

[48] D. Card, "Integrating practical software measurement and the
balanced scoreboard," In Proceedings of the 27th Annual International
Computer Software and Applications Conference COMPSAC 2003,
3-6 Nov. 2003, pp. 362- 363.

[49] PRISMA, Productivity in Collaborative Systems Development, ITEA
project (2008-2011) number 07024, Project info page, URL:
http://www.itea2.org/project/index/view/?project=237 (Accessed
19.12.2012).

[50] J. Eskeli, J. Maurolagoitia and C. Polcaro, "PSW: A framework-based
tool integration solution for global collaborative software
development," In Proceedings of the Sixth International Conference
on Software Engineering Advances (ICSEA'11), Barcelona, Spain,
2011, pp. 124-129.

[51] I. Jacobson, G. Booch and J. Rumbaugh, The Unified Software
Development Process. Addison-Wesley Pub Co, Addison-Wesley
Object Technology Series, 1999.

[52] P. Kruchten, "A rational development process," CrossTalk, vol. 9, (7),
1996, pp. 11-16.

[53] E. Demirors, G. Sarmasik and O. Demirors, "The role of teamwork in
software development: Microsoft case study," In Proceedings of the
23rd EUROMICRO Conference, New Frontiers of Information
Technology, 1997, pp. 129-133.

[54] M. Hoegl and H. G. Gemuenden, "Teamwork quality and the success
of innovative projects: A theoretical concept and empirical evidence,"
Organization Science, vol. 12, (4), 2001, pp. 435-449.

[55] ITEA 2, Information Technology for European Advancement, ITEA
2 homepage, URL: http://www.itea2.org/ (Accessed 19.12.2012).

[56] Tekes, the Finnish Funding Agency for Technology and Innovation,
Tekes homepage. URL: http://www.tekes.fi/eng/ (Accessed
19.12.2012).

Series title and number

VTT Science 70

Title Measurement-based management of global
software development projects

Author(s) Maarit Tihinen

Abstract Collaborative, global software development has become the norm in software-intensive
systems development. Because software products are developed in such dynamic
environments, where requirements, priorities, participating sites, development processes
and tools, and even partners are continuously changing, project control and management
activities are increasingly important. In fact, up-to-date information of project status is now
critical to completing project management effectively. However, management of a global
software development project is more challenging than traditional development. Thus,
project management and coordination mechanisms are important means for avoiding
project failure in global software development.
Measurements and metrics create useful ways for controlling and managing a project
during product development. In addition, measurements bring several benefits for an
organisation (e.g., better time-to-market estimation via improved project and product
management, better control over product development costs owing to a more visible
development process, higher sales, and improved customer satisfaction because of higher
product quality). However, in practise, organisations usually cannot allocate enough time
nor resources to plan and carry out the measurements properly. In fact, in daily project
work, measurements and metrics can be experienced as unfamiliar. In global software
development, partners and stakeholders change according to each new collaborative
setting, and this brings new challenges for measurements, which means that one solution
is not appropriate for all situations. Instead, while defining metrics and measurements in
global software development, the larger picture must be considered.
In this thesis, the main challenges related to measurements and metrics in global software
development projects have been studied and analysed in detail. In addition, development
tools and methodologies-related challenges are identified and analysed to draw insights to
create a proof-of-concept solution to be implemented. This tool-integration solution was
developed for supporting project management with automated and real-time indicators
during global software development projects. The thesis pointed out that automatically
produced real-time metrics, whose original measurement data are gathered from various
databases, even from different stakeholders, are a robust and feasible method to produce
valuable, reliable, and up-to-date information for decision making in global software
development projects.
The thesis provides a definition for dynamic measurements, where metrics are defined
based on demands of each project's collaboration settings, metrics data is collected and
analysed continuously from various tools and databases, and measurement data is
analysed and visualised for easy to read format. The implemented proof of concept tool
integration solution enabled the researcher to study the benefits and industrial experiences
of dynamic measurements. The thesis concluded that dynamic measurements are highly
beneficial for managing a global software development project. Based on the case studies,
dynamic measurements were proved to be feasible via the use of automated and real-time
metrics with consolidated information via visualised dashboards. The thesis concluded
that the measurement-based management of global software development projects is not
only possible but also a very valuable and effective way to provide support for project
management in challenging settings of collaborative and distributed software
development.

ISBN, ISSN ISBN 978-951-38-8177-1 (Soft back ed.)
ISBN 978-951-38-8178-8 (URL: http://www.vtt.fi/publications/index.jsp)
ISSN-L 2242-119X
ISSN 2242-119X (Print)
ISSN 2242-1203 (Online)

Date October 2014

Language English, Finnish abstract

Pages 101 p. + app. 89 p.

Name of the project

Commissioned by

Keywords Measurements, metrics, global software development, distributed
development, project management

Publisher VTT Technical Research Centre of Finland
P.O. Box 1000, FI-02044 VTT, Finland, Tel. 020 722 111

Julkaisun sarja ja numero

VTT Science 70

Nimeke Mittaamiseen perustuva globaalien
ohjelmistokehitysprojektien hallinta

Tekijä(t) Maarit Tihinen

Tiivistelmä Ohjelmistot kehitetään nykyisin globaalisti hajautetuissa, hyvin dynaamisissa
ympäristöissä, missä tuotevaatimukset, niiden prioriteetit, tuotekehitysprosessit, työkalut,
kehitystyöhön osallistuvat tiimit tai yhteistyökumppanit vaihtuvat tuotteen mukaan.
Tällaisten projektien hallinta ja kontrollointi on vaikeaa, joten on tärkeä etsiä uusia
menetelmiä projektinhallinnan tueksi. Käytännössä ajantasaisen tilannetiedon saaminen on
kriittistä projektin tehokkaan hallinnoinnin kannalta. Toimivien ja tehokkaiden
projektinhallinta- ja koordinointimenetelmien avulla on mahdollista jopa välttää
ohjelmistokehitysprojektin epäonnistuminen.
Ohjelmistokehityksen mittaamisen ja metriikoiden on todettu tuovan useita hyötyjä
organisaatiolle. Esimerkiksi kehittyneemmän projektin- ja tuotteenhallinnan kautta on
mahdollista päästä tarkempaan arvioon tuotteen markkinoilletuloajasta. Mittaamisen avulla
voidaan myös luoda parempaa näkyvyyttä itse tuotekehitysprosessiin ja siten paremmin
kontrolloida esim. tuotekehityksen kustannuksia. Niin ikään mittaamisen avulla voidaan
parantaa tuotteen laatua ja näin päästä suurempiin myyntimääriin sekä parempaan
asiakastyytyväisyyteen. Tyypillisesti yritykset eivät kuitenkaan varaa tarpeeksi aikaa tai
resursseja, jotta mittaamiset voitaisiin tehdä tarkoituksenmukaisella tavalla. Päivittäisessä
ohjelmistojen kehitystyössä mittaaminen ja metriikat koetaan jopa vieraiksi. Koska
globaalissa ohjelmistokehityksessä tiimit, kumppanit ja kehitysympäristöt vaihtuvat
projektikohtaisesti, mittausten toteuttaminen on alati haasteellisempaa. Tällaisiin
dynaamisiin ympäristöihin ei ole olemassa yhtä tiettyä stabiilia ratkaisua, joka soveltuisi
kaikkiin tilanteisiin. Näin ollen globaalin ohjelmistokehityksen mittareiden ja
mittaamiskäytäntöjen rakentamisessa on tarkasteltava toimintaympäristöä kokonaisuutena.
Tässä työssä on tutkittu ja analysoitu mittaamiseen ja metriikoihin liittyviä ongelmia
globaalien ohjelmistokehitysprojektien aikana. Myös kehitystyökaluihin ja -menetelmiin
liittyviä haasteita on tunnistettu ja analysoitu. Analysoinnin avulla muodostettiin näkemys
esimerkkiratkaisusta, työkaluintegraatiosta. Esimerkin avulla kerättiin tietoa mittaamiseen
perustuvasta ohjelmistokehitysprojektien hallinnasta erilaisissa globaaleissa
tuotekehitysympäristöissä.
Väitöstyössä määritellään dynaamisen mittaamisen käsite, jota tutkittiin kehitetyn
työkaluintegraatioesimerkin avulla. Dynaamisen mittaamisen käsite on laaja. Se käsittää
mittarit, mittaridatan, tulosten analysoinnin sekä itse mittausprosessin. Mittarit määritellään
projektikohtaisesti eri yhteistyötahot huomioiden. Mittaustiedot kerätään eri työkaluista ja
tietokannoista, jopa eri yhteistyökumppaneiden tietokannoista. Mittaustulokset muutetaan
helposti luettavaan muotoon esimerkiksi visualisoinnin avulla. Toteutettu
työkaluintegraatioratkaisu mahdollisti dynaamisen mittaamisen hyötyjen tutkimisen sekä
käytännön kokemusten keräämisen yrityksiltä.
Tutkimus osoittaa, että dynaaminen mittaaminen tuo hyötyjä globaalien
ohjelmistokehitysprojektien hallintaan. Tapaustutkimusten avulla todettiin, että dynaamiset
mittaukset mahdollistavat automaattisten ja reaaliaikaisten mittareiden käytön.
Mittaustulosten esitystapaan kiinnitettiin erityistä huomiota toteuttamalla visualisoituja
helppolukuisia diagrammeja. Tutkimus osoittaa, että automaattisesti tuotetut reaaliaikaiset
indikaattorit, joiden mittaustieto on kerätty erilaisista työkaluista ja tietokannoista, jopa eri
yhteistyötahojen tietokannoista, ovat erinomainen tapa tuottaa hyödyllistä, luotettavaa ja
ajantasaista informaatiota globaalin ohjelmistokehitysprojektin päätöksenteon tueksi.

ISBN, ISSN ISBN 978-951-38-8177-1 (nid.)
ISBN 978-951-38-8178-8 (URL: http://www.vtt.fi/publications/index.jsp)
ISSN-L 2242-119X
ISSN 2242-119X (Painettu)
ISSN 2242-1203 (Verkkojulkaisu)

Julkaisuaika Lokakuu 2014

Kieli Englanti, suomenkielinen tiivistelmä

Sivumäärä 101 s. + liitt. 89 s.

Projektin nimi

Rahoittajat

Avainsanat Measurements, metrics, global software development, distributed
development, project management

Julkaisija VTT
PL 1000, 02044 VTT, puh. 020 722 111

Measurement-based management of global
software development projects

Collaborative, global software development (GSD) has become the
norm in software-intensive systems development. Because
software products are developed in such dynamic environments,
where requirements, priorities, participating sites, development
processes and tools, and even partners are continuously changing,
project control and management activities are increasingly
important. In practice, measurements and metrics provide support
for decision making during projects' lifecycle.

In this thesis, the main challenges related to measurements and
metrics in GSD projects have been studied and analysed in detail.
The thesis provides a definition for dynamic measurements, where
metrics are defined based on demands of each project's
collaboration settings, metrics data is collected and analysed
continuously from various tools and databases, and measurement
data is analysed and visualised for easy to read format. During the
research process, the implemented proof of concept tool
integration solution enabled the researcher to study the benefits
and industrial experiences of dynamic measurements. The thesis
pointed out that automatically produced real-time metrics are a
robust and feasible method to produce reliable and up-to-date
information for decision making in GSD projects.

The measurement-based management of GSD projects is a very
valuable and effective way to provide support for project
management in challenging settings of collaborative and
distributed software development.

ISBN 978-951-38-8177-1 (Soft back ed.)
ISBN 978-951-38-8178-8 (URL: http://www.vtt.fi/publications/index.jsp)
ISSN-L 2242-119X
ISSN 2242-119X (Print)
ISSN 2242-1203 (Online)

V
T

T
 S

C
IE

N
C

E
 7

0
M

e
a

su
re

m
e

n
t-b

a
se

d
 m

a
n

a
g

e
m

e
n

t o
f g

lo
b

a
l so

ftw
a

re
...

•V
IS

IO
N

S•
SCIENCE•TEC

H
N

O
L

O
G

Y
•RESEARCHHIGHLI

G
H

T
S

Dissertation

70

Measurement-based
management of global
software development
projects

Maarit Tihinen

