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Abstract 
Reference oscillators are used in a wide range of electronic devices for timing and for providing 
the frequency reference signals for wireless communications. Typically, an oscillator has to be 
based on a mechanical resonator, and for many decades, quartz crystals have served for this 
purpose. With the progress of microelectromechanical system (MEMS) technologies, silicon 
resonators have been developed for providing similar functionality as quartz. A silicon MEMS 
resonator can offer several advantages over quartz, such as smaller device size, decreased costs, 
and integration with other electronics. 
This work focuses on two challenges in silicon resonators: First, electromechanical 
transduction of silicon resonators has typically been achieved with electrostatic coupling, 
which is inherently quite weak and requires DC biasing of the devices and tends to complicate 
fabrication. Transduction based on a piezoelectric thin film on top of the resonator has been 
investigated as an alternative. Second, the resonance frequency of a silicon resonator is orders 
of magnitude more sensitive to temperature variations than that of a quartz crystal. Degenerate 
doping of silicon can be used to drastically reduce this effect. 
The first part of the work concentrates on the design, fabrication and characterization of 
piezoelectrically transduced silicon resonators. An oscillator based on a width extensional 
resonator operating at a frequency 24 MHz is demonstrated to have a phase noise -128 dBc/Hz 
at a 1-kHz offset from the carrier. An experimental test is conducted on piezoelectrically 
transduced square extensional mode resonators, whose dimensions are varied so that the main 
resonance mode occurs at a frequency range of f = 13 ... 30 MHz. As a result, an anchor coupling 
effect is identified and a subharmonic nonlinear coupling mechanism is discovered. 
In the second part of the work, the effect of degenerate doping on the elastic parameters of 
silicon is investigated experimentally, with a focus on temperature compensation. Resonance 
modes that can be temperature compensated using doping are identified, and design rules for 
the optimization of the frequency stability are developed. The elastic parameters of silicon are 
determined as a function of temperature and n-type doping up to a level of n = 7.5x1019cm-3, 
enabling modelling of the frequency-vs-temperature characteristics of an arbitrary resonator 
design. Extrapolation from the results yields a prediction of full second order temperature 
compensation in optimally designed resonators for n-type doping level above 1020cm-3. The 
prediction is experimentally verified by the demonstration of piezoelectrically transduced 
resonators with frequency stability within +/- 10 ppm on a temperature range of 
T = -40 ... +85C, on par with the best quartz crystals. 
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Tiivistelmä 
Referenssioskillaattoreita käytetään monissa elektronisissa laitteissa ajastukseen ja 
langattomassa kommunikoinnissa tarvittavina taajuusreferensseinä. Yleensä oskillaattorissa 
on mekaaninen värähtelijä, ja vuosikymmenien ajan tähän tarkoitukseen on käytetty 
kvartsikiteitä. Mikroelektromekaanisten systeemien (MEMS) valmistusteknologian kypsyessä 
piiresonaattoreita on kehitetty kvartsikiteen korvaajaksi. Piistä tehdyllä MEMS-
resonaattorilla on kvartsiin nähden useita etuja, kuten pienempi koko, pienemmät 
valmistuskustannukset ja parempi integroitavuus muuhun elektroniikkaan. 
Tässä työssä keskitytään piiresonaattorin kahteen kehitystarpeeseen. Ensimmäiseksi, 
piiresonaattorin sähkömekaaninen transduktio järjestetään tyypillisesti sähköstaattisella 
kytkennällä, joka on luonnostaan melko heikko, vaatii DC-biasoinnin ja on 
valmistusnäkökulmasta monimutkainen. Vaihtoehtoisena tapana on kehitetty resonaattorin 
päälle kasvatetun pietsosähköisen ohutkalvon avulla tapahtuvaa transduktiota. Toiseksi, piistä 
valmistetun resonaattorin taajuus on suuruusluokkia herkempi lämpötilanvaihteluille kuin 
mitä kvartsikiteillä saavutetaan. Hyvin voimakasta seostusta voidaan käyttää tehokkaasti piin 
lämpötilaherkkyyden pienentämiseen. 
Työn ensimmäisessä osassa suunnitellaan, valmistetaan ja karakterisoidaan pietsosähköisesti 
herätettyjä piiresonaattoreita. Taajuudeltaan 24 MHz:n leveysvenymämoodiresonaattoriin 
perustuvalle oskillaattorille mitataan -128 dBc/Hz vaihekohina 1 kHz:n päässä kantoaallosta. 
Neliövenymämoodiresonaattoreille tehdään koesarja, jossa resonaattorin kokoa varioidaan 
siten, että pääresonanssin taajuus on alueella f = 13 ... 30 MHz. Tuloksena löydetään 
ankkurikytkentäefekti sekä aliharmoninen epälineaarinen kytkentämekanismi. 
Työn toisessa osassa tutkitaan kokeellisesti hyvin vahvan seostuksen vaikutusta piin elastisiin 
vakioihin keskittyen seostuksen sovellettavuuteen lämpötilakompensoinnissa. 
Lämpötilakompensoitavia resonanssimoodeja identifioidaan, ja esitetään suunnittelusäännöt 
optimaalisen taajuusstabiilisuuden saavuttamiseksi. Piin elastiset vakiot määritetään 
lämpötilan ja seostustason funktiona seostukseen n = 7.5x1019cm-3 asti, mikä mahdollistaa 
mielivaltaisen resonaattorin taajuuden lämpötilariippuvuuden mallintamisen. Tulosten 
ekstrapolointiin perustuen ennustetaan, että toisen kertaluvun lämpötilakompensointi on 
mahdollista optimaalisesti suunnitelluissa resonaattoreissa, kun n-tyypin seostustaso on yli 
1020cm-3. Ennustuksen paikkansapitävyys varmistetaan kokeellisesti pietsosähköisesti 
herätetyillä resonaattoreilla, joiden taajuusstabiilisuus saavuttaa lämpötila-alueella T = -40 ... 
85C arvon +/- 10 ppm, mikä vastaa parhaita kvartsikiteitä. 
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1. Introduction

1.1 Motivation

Reference oscillators are everywhere. They are needed in almost any electronic
device for keeping track of time, for clocking of digital electronics, and for
providing the frequency reference signal needed in wireless communications.
Wristwatches, cell phones, bluetooth radios, GPS modules, and computers in
general are some examples of applications to name but a few. The volume of
the annual oscillator market is approximately $4 billion [1], and considerable
growth is expected through drivers such as the Internet of Things and the
continuous expansion of wireless communications.
For most needs, an all-electronic implementation of an oscillator is not suffi-

cient for producing a stable enough signal, and a mechanical frequency-setting
element is needed. Quartz crystal resonators have been used for the purpose
for over five decades. Quartz is piezoelectric, which enables straightforward
electrical interfacing, and it is exceptionally stable: the mechanical resonance
frequency of a single crystal quartz resonator changes very little in the long
term and it is also very independent of temperature.
Use of microelectromechanical system (MEMS) technologies has been rapidly

expanding during the latest decades. MEMS technologies leverage the batch
fabrication methods of the semiconductor device industry for fabrication of
small components with a mechanical function, such as accelerometers, pressure
sensors and gyroscopes. Tens of thousands of components can be processed on
a single wafer. Research on silicon MEMS resonators started in the 1990s, as
it was identified that silicon MEMS resonators could offer several advantages
[2] over quartz crystals such as

• Miniaturization: a MEMS resonator can be considerably smaller than a
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quartz crystal.

• Decreased fabrication costs can be reached by using batch fabrication meth-
ods combined with the smaller size of the component itself.

• A silicon MEMS component could be eventually integrated with other elec-
tronics.

Silicon has many of the qualities needed for a good mechanical resonator, but,
when compared to quartz, there are two key challenges:

• Silicon is not piezoelectric, and hence another means of electrical interfacing
is needed. Typically this has been achieved with electrostatic coupling, which
results in relatively weak transduction and/or is challenging for fabrication.

• The temperature sensitivity of the frequency of a silicon resonator is orders
of magnitude larger than that of quartz. While a quartz resonator is stable
to within ±10ppm on a temperature range from −40◦C to +85◦C, the fre-
quency of a silicon resonator changes over ±1500 ppm, see Fig. 1.1. This
feature can be fundamentally problematic for a device whose purpose is to
provide a stable output under varying conditions.

The focus of this PhD thesis is at the heart of these challenges: in developing
silicon resonators that are transduced using a piezoelectric thin film layer
added to the resonator, and in tailoring of the material properties of silicon
for better frequency stability under varying ambient temperature.

1.2 Background

The concept of a MEMS resonator, and of a MEMS component in general,
dates back to the seminal paper by Nathanson et al. [3], which often is said to
have been ahead of its time when published in 1967. The attractive mechani-
cal properties of silicon started to find widespread use in MEMS components
1980s [4], and with maturing of the fabrication technologies, MEMS resonator
research started to take off at the turn of the millennium. Active research
groups on the field were, for example, in the US in Berkeley [5, 2] and in
Michigan [6], which work led to founding of the first companies, SiTime and
Discera, for commercialization of the silicon resonator technology. VTT had a
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Figure 1.1. Temperature dependency of the frequency of an AT-cut quartz crystal res-
onator vs. that of a silicon resonator.

central role in MEMS resonator research right from the beginning. Electrostat-
ically coupled beam resonators with record high quality factors [7, 8, 9] were
an important step towards radiofrequency reference oscillators, and the tight
wireless communication noise specifications were met first with the square-
extensional mode resonators reported in 2004 [10]. Resonator nonlinearities
[11] and the theoretical limits of MEMS-based oscillator phase noise were thor-
oughly investigated [12]. Also the stability of silicon resonators was measured
to be at good enough level for most frequency reference applications [13].
Commercial silicon MEMS resonators of today typically rely on active tem-

perature compensation: temperature is measured very accurately close to the
resonator and the frequency error is corrected in frequency synthesis with
phase-locked-loop (PLL) techniques [14]. This approach, however, degrades
the noise performance of an oscillator, adds cost and increases power consump-
tion. Also, addition of amorphous SiO2 thin film layers to resonator structures
has been used to reduce the temperature drift approximately by an order of
magnitude [15], but the achieved frequency stability remains still inferior to
that of quartz.
The fact that the elastic properties of silicon are affected by doping was

known already in the 1960’s through the theoretical work by Keyes [16] and
experiments by Hall [17], but this understanding and its applicability to silicon
MEMS resonators had not reached the MEMS community until 2010 [18]. This
topic is central to this dissertation and it is discussed further in Chapter 4,
where also parallel progress by other research groups is referred to.
Piezoelectrically transduced silicon resonators, assessed in Chapter 3 of this

dissertation, has attracted attention as an alternative to electrostatically trans-
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duced bare silicon resonators. In the earlier investigations, transduction was
based on a piezoelectric ZnO thin film grown on top of the resonator [19,
20, 21], but later aluminum nitride as the piezoelectric thin film material was
found to ensure better resonator performance [22, 23]. Commercialization of
piezoelectrically coupled silicon resonators has been pursued by companies
such as IDT [24] and Sand9 [25].
Several review papers on MEMS resonators have been published during the

latest ten years. The early capacitively coupled silicon resonators have been
reviewed in [2], and the business aspects of MEMS oscillators have been as-
sessed by Lam in [1]. A recent review on resonant MEMS devices has been
given by Beek and Puers [26]. A book by Fedder et al. assesses most re-
cent developments [27], and also the books by Kaajakari [28] and by Senturia
[29] are good sources of information. In addition, the PhD theses by Ho [30],
Samarao [31], Tabrizian [32] and Harrington [33] are noted, as they deal with
similar themes as this dissertation.
As the whole field of timing and frequency control devices is closely tied

to the evolution of quartz-based technology, a few references of this area are
highlighted as well. Introductions to quartz devices are, for example, included
in the review by Vig and Ballato [34], the book by Neubig and Briese [35], and
the tutorial by Vig [36], all with open online access. The IEEE UFFC society
learning site is a source of additional reviews and tutorials [37].

1.3 Silicon as a resonator material

Single crystalline silicon is a very attractive material to be used in resonators.
Its intrinsic mechanical losses are very low , it can be fabricated in such a way
that its material properties are repeatable and well known, and, importantly, it
is a very stable material (over time) [38, 4, 28]. The elasticity of single crystal
silicon is anisotropic, i.e., the elastic properties are dependent on which crystal
direction the material is deformed. Silicon belongs to the m3m class of the
cubic crystal system, and three independent elastic constants c11, c12 and c44

fully characterize it.
The frequency of a resonator should be as immune to temperature variations

as possible. In general, most materials get softer when heated, and this is true
for moderately doped silicon as well — the way that silicon has been typically
used in MEMS resonators thus far. Moderately doped silicon behaves “nor-
mally” with temperature: its stiffness decreases with temperature and, despite
anisotropy, its temperature coefficient is near −60ppm/◦C, which results in
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the temperature coefficient of frequency for any resonance mode being around
−30 ppm/◦C.
However, heavy doping of silicon, in particular with n-type dopants, changes

its elastic characteristics drastically. It turns out that the temperature sensi-
tivity of certain elastic constants can be made positive with suitable doping:
silicon starts to behave anomalously by getting stiffer when heated. As a re-
sult, very stable behavior of the resonance frequency of a resonance mode can
be obtained by balancing the negative and positive contributions from differ-
ent elastic parameters to the temperature sensitivities. This is an analogous
effect to what is utilized in temperature stabilized quartz crystals [39] 1.
In this work, doped silicon is divided into three categories, which will be

denoted followingly:

• n-Si refers to “normal” silicon, which is moderately doped to a level of
n < 1018cm−3.

• HD-Si stands for heavily doped silicon, having a dopant concentration
1× 1019cm−3 < n < 8× 1019cm−3.

• UHD-Si refers to ultra-heavily doped silicon with doping level above 1020cm−3.

Doping level of UHD-Si corresponds to approximately 0.2% of the silicon atoms
of the crystal lattice being replaced by the dopant elements. While n-Si and
HD-Si wafers are commercially available, a proprietary process was developed
at VTT for producing UHD-Si material.

1.4 Fabrication

Two fabrication technologies were used in this work. Electrostatically cou-
pled (bare silicon) resonators were fabricated on SOI wafers with typically
20-µm-thick silicon device layers (Fig. 1.2(a),(b)). The resonator structures
and transduction gaps were defined by deep reactive ion etching (DRIE). Two
versions of the process were used: In the first one, the devices were released
by etching the buried oxide with hydrofluoric acid (HF). In the second process
version, the SOI wafers included pre-etched cavities [40] at the device sites, so
that the devices were released immediately by the DRIE process step. Results
1The same effect is behind the anomalous behavior (positive temperature coefficient
of stiffness) of polycrystalline SiO2. Quartz is the single crystal form of SiO2.
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Figure 1.2. Schematic illustrations of the VTT process platforms for fabricating electro-
statically and piezoelectrically coupled MEMS devices.

of vacuum encapsulated capacitively coupled resonators are discussed in Sec-
tion 4.6. These devices were vacuum encapsulated on wafer level using anodic
bonding with a glass/silicon cap wafer [13].
Piezoelectrically transduced resonators were fabricated using the VTT cavity-

SOI PiezoMEMS process platform, see Fig. 1.2(c). The process started here,
as well, with SOI wafers with pre-etched cavities. AlN, with a typical thickness
of ~1µm, was deposited and patterned right onto the Si device layer, which
acted as a substrate and as the bottom electrode for device operation. An
insulating layer of SiO2 was deposited on the wafer. AlN was located only on
top of the resonator, while SiO2 was used as the insulator between the top and
bottom electrodes elsewhere. Openings were etched to the SiO2 layer, one onto
the AlN layer and another onto the place where the bottom electrode contact
would be formed. Molybdenum (in some cases aluminum) was deposited and
patterned as the top electrode material. DRIE was used to define the device
geometry and to release the resonator.
Details of the VTT process for electrostatically coupled devices are described

in the dissertation by Kiihamäki [41]. General references to microfabrication
technologies are books by Franssila [42] and by Madou [43].

1.5 Oscillator specifications

There is a variety of oscillator specifications depending on the specific end
application, including kHz to MHz crystal resonators (Xtal), crystal oscilla-
tors (XO) and temperature compensated crystal oscillators (TCXO) [44]. The
TCXO specification is of most relevance for this work. This kind of oscillators
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are used, e.g., in the 2G/3G/4G/LTE phones of today. Typical TCXO specifi-
cations are collected in Table 1.1 — the exact numbers depend on the specific
application. TCXOs of today are realized with an AT cut quartz crystal hav-
ing a passive temperature dependent frequency stability of ±10ppm at best,
and a temperature dependent tuning capacitor is used to enhance the stability
to ±2.5ppm or better. It should be noted that all error sources are contained
in the specification for the frequency stability: aging, initial accuracy (initial
frequency error), and temperature dependent frequency variation.

Table 1.1. General TCXO specifications. Exact specifications may vary slightly according
to the application.

As discussed, current commercially available silicon MEMS products rely
on the active correction of the temperature dependent frequency drift with a
PLL-synthesizer circuit. Also the initial frequency error associated with man-
ufacturing tolerances is corrected with the PLL. This approach is associated
with a penalty in a degraded noise performance and/or an increased current
consumption, which has made it challenging for silicon MEMS to compete
with quartz-based oscillators on the TCXO market with tight specifications.
Complementary to the MEMS approach on the market today, the goal of

this work was to target a quartz-like silicon MEMS resonator, enabling per-
formance good enough for fulfilling TCXO specifications. Key elements for
realizing this vision were:

• Operating frequency in the range of 10 . . . 50 MHz.

• No frequency synthesis used at all, no PLL.

• Phase noise, oscillator power consumption and long term stability good
enough to meet the TCXO specifications.

• High enough electromechanical coupling, so that the frequency adjustment
needed for the correction of the initial frequency error (as well as the re-
maining temperature dependency of frequency) could be realized with tuning
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capacitors (see Section 2.5).

1.6 Objectives and scope of the work

The objective of the work was to pursue a TCXO based on a silicon MEMS
resonator by

1. investigating the achievable performance of silicon resonators whose trans-
duction mechanism is based on a piezoelectric AlN thin film grown on top
of the resonator, and by

2. investigating the possibility of passive temperature compensation of silicon
resonators through heavy doping of silicon.

Chapter 2 introduces the necessary characteristics of silicon resonators needed
for the discussion in subsequent chapters. Chapters 3 and 4 on piezoelectrically
transduced silicon resonators and on doping-based temperature compensation,
respectively, are the key chapters of this dissertation, and they contain a sum-
mary of the results published in Papers I—X as well as some non-published
results2 that are considered relevant for the discussion. Implications of the
findings are discussed in Chapter 5, and a summary is presented in Chapter
6. Appendices A and B contain methodological details and numerical tables,
respectively, and some relevant derivations are collected in Appendix C.
Aspects such as (wafer-level) chip packaging, fabrication cost issues, device

manufacturability, and application of the free electron theory (Section 4.1)
for comparison with the experimental results are left outside the scope of this
dissertation. It is acknowledged that Paper II on our latest results of UHD-Si
resonators with ±10 ppm stability does not fully comply with the standards
of transparent scientific reporting, since the details of the resonator design
as well as a description of the doping process are not entirely disclosed due
to IPR protection reasons. Even so, the UHD-Si results are contained in this
dissertation in Section 4.7, since they provide the evidence for the applicability
of the findings and predictions made in Section 4.5.

2These results include the simulation result of Fig. 3.4(c), the oscillator characteri-
zation results of Section 3.3, and the quality factor measurement of an UHD-silicon
resonator, Fig. 4.13(a).
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2. Characteristics of silicon resonators

2.1 Resonance modes

Figure 2.1. A micrograph of a chip, fabricated at VTT, containing two piezoelectrically
transduced silicon resonators. On the left is a 200-kHz tuning fork resonator,
and on the right is a 26-MHz square extensional mode resonator.

A silicon MEMS resonator can be designed to operate in various resonance
modes, spanning a frequency range from ∼10 kHz to ∼100 MHz and having
other differences in characteristics such as

• temperature-vs-frequency characteristics

• achievable strength of electromechanical transduction by using electrostatic
actuation or piezoelectric actuation

• power handling capability

• tolerance to manufacturing inaccuracies

• dissipation mechanisms limiting the quality factor of the resonator

9



Characteristics of silicon resonators

• possibility of low-loss-anchoring

• linearity

• appearance of spurious modes.

An example micrograph of two MEMS resonators are shown in Fig. 2.1, and
Fig. 2.2 illustrates some examples of mode shapes encountered in this work
(see also Fig. 4.7(c)): length extensional (LE) and width extensional (WE)
modes of a beam resonator, Lamé and square extensional (SE) modes of a
square plate, and a flexural mode of a beam resonator - which in practice
is realized with the well-known tuning fork geometry. The flexural modes
are suitable for use in kHz-range resonators, while the others of the above
mentioned resonance modes are suitable for frequencies above ∼ 5MHz, when
fabricated in lateral dimensions of ∼ 500µm or less. Some descriptive qualities
of LE, WE, Lamé and SE modes are discussed in the following.

Figure 2.2. Top view schematic illustrations of the mode shapes of the length extensional
(LE), Lamé, square extensional (SE), width extensional (WE), flexural, and
tuning fork modes, respectively.

First reports on MEMS resonators operated in the LE mode include [8].
While demonstrated to have a high quality factor, this mode has the disad-
vantage of relatively low electromechanical coupling with both electrostatic
actuation as well as with piezoelectric actuation. In this dissertation, it is
found that the LE mode is very well suited for doping-based temperature
compensation (Section 4.4.2). From the point of view of temperature com-
pensation, flexural modes behave in a very similar way to the LE mode.
Width extensional mode resonators have been reported, e.g., in Ref. [30].

The WE mode can be better electromechanically coupled than the LE mode,
and can be anchored with very low losses, since nodal points of the resonance
mode shape are located at the perimeter of the resonator, when the aspect
ratio of the resonator geometry fulfils certain conditions [45]. The SE mode is
closely related to the WE mode (see Section 4.4.2), and has been at the focus
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of many studies at VTT, starting with [10].
The Lamé mode of a plate resonator geometry can exist, when the plate

sides are aligned with the [100] or [110] directions, respectively. It can be
anchored at the corners of the plate with very low losses. The Lamé mode has
the specific limitation in that it cannot be piezoelectrically transduced at all
using the approach presented in Section 2.4, see Appendix C.3.
In general, the frequency of a resonator is given by

f = v

2L, (2.1)

where L is the characteristic dimension for the resonator and the resonance
mode in question, and

v =
√
c/ρ (2.2)

is the generalized acoustic velocity, given by the material density ρ and by the
characteristic stiffness c. Importantly, the characteristic stiffness c is a function
of the three elastic coefficients c11, c12 and c44 of silicon (see Section 1.3), which
depends on the resonator geometry and on the resonance mode. For most of
the resonance modes the frequency-vs-cij relation cannot be expressed in a
closed form, and numerical methods are needed. The following special cases
are highlighted:

• The Lamé mode can be solved in closed form, since the mode can be de-
scribed as superpositions of two in-plane polarized standing shear waves
propagating along the diagonals of the resonator. The acoustic velocities of
the shear waves along the [100] and [110] directions are given by

v100 =
√
c44
ρ
, v110 =

√
(c11 − c12)/2

ρ
, (2.3)

respectively [46]. The related modal frequencies are given by

f110 = 1√
2L

√
c44
ρ
, f100 = 1√

2L

√
(c11 − c12)/2

ρ
(2.4)

for the Lamé mode resonators whose sides are aligned with the [110] and
[100] directions, respectively.

• The characteristic stiffness for an LE or flexural mode of a beam resonator
is given by the Young’s modulus in the direction of the beam, which, for
example, in the [100] direction can be approximated [28] by

Y[100] = c11 − 2c2
12/(c11 + c12). (2.5)
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2.2 Temperature dependent resonance frequency

The temperature dependent resonance frequency of a resonator is customarily
expanded as a power series (up to the second order)

f(T ) = f0 [1 + TCF1 ×∆T + TCF2 ×∆T 2], (2.6)

where ∆T = T − T0 is the temperature difference and f0 is the resonance fre-
quency at the reference temperature T01. The parameters TCF1 and TCF2 are
the first and second order temperature coefficients of frequency2, respectively,
defined also at the reference temperature T0. In this work, the temperature
dependencies are studied over the extended industrial temperature range of
T = −40... + 85◦C, and the convention of selecting T0 = +25◦C is followed.
Higher-order temperature coefficients of frequency are neglected. Mostly the
relative frequency changes are of interest, given by

∆f
f0

= f − f0
f0

= TCF1 ×∆T + TCF2 ×∆T 2, (2.7)

and typically expressed in units of ppm. As a figure of merit for the frequency
stability of a resonator, the total relative frequency deviation over the full
temperature range is used:

∆ftotal = max
T

(∆f/f0)−min
T

(∆f/f0) . (2.8)

When the temperature dependence of the elastic parameters cij(T ) is known
and, assuming that the thermal expansion is known, the temperature depen-
dence of the resonance frequency can be calculated. The relative frequency
change due to a change in the elastic parameters δcij(T ), thermal expansion
δL(T )/L and change in density δρ(T )/ρ can be denoted as

δf

f
(T ) = 1

f

∑
ij=11,12,44

∂f

∂cij
δcij(T )− δL

L
(T )− 1

2
δρ

ρ
(T ). (2.9)

For the calculations in this work, it is accurate enough to evaluate the effects
from thermal expansion up to second order:

δL

L
(T ) = (α1∆T + α2∆T 2). (2.10)

The last term in Eq. (2.9) can be expressed through thermal expansion (see
the detailed derivation in Appendix C.1) , and the relative frequency change
1Variation of f0 among a population of devices, caused by fabrication tolerances,
is referred to as the initial accuracy, as the frequency scatter or as the frequency
repeatability.
2When TCF is discussed without any subscript in this work, it refers to TCF1.
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can be written as
δf

f
(T ) ≈ 1

f

∑
ij=11,12,44

∂f

∂cij
δcij(T ) + 1

2(α1∆T + α2∆T 2). (2.11)

The temperature dependency of the elastic parameters for a given doping level
n is given by a second order expansion such that

cij(T, n) = c0
ij(n)[1 + aij(n)∆T + bij(n)∆T 2], (2.12)

where aij(n) and bij(n) are the first- and second-order temperature coeffi-
cients of the elastic parameters, respectively, and c0

ij(n) is the constant term.
The linear temperature coefficient of frequency, TCF1, is defined as the first
derivative of Eq. (2.11)

TCF1 = 1
f

df
dT

∣∣∣∣
T =T0

= 1
f

∑
ij

∂f

∂cij
c0

ijaij + α1/2, (2.13)

and the second order temperature coefficient of frequency, TCF2, is obtained
as

TCF2 = 1
2f

d2f

dT 2

∣∣∣∣∣
T =T0

= 1
f

∑
ij

∂f

∂cij
c0

ijbij + α2/2. (2.14)

2.3 Equivalent circuit representation

A generic mechanical resonator with distributed vibrations can be represented
with a lumped model, where the physical properties of the resonator, such as
mass, stiffness (spring), damping, and displacement are represented by single
elements [47, 28]. The lumped spring-mass model of a generic resonator and its
electrical equivalent circuit are shown in Fig. 2.3(a). A detailed derivation of
the electrical equivalent circuit, commonly referred to as the BVD equivalent
circuit [48], can be found, e.g., in [28], in [47] or in [26]. An intuitive and
easy-to-reproduce derivation is given here.
Assume that there is a transduction mechanism, which relates the force F

applied on the mass m to the electrical voltage U through a transduction
factor η, and that the same transduction factor relates the output current I
to the velocity,

F (t) = ηU(t), (2.15)

I(t) = ηẊ(t). (2.16)

The transduction factor η itself is discussed in the following Section. Assuming
a harmonic motion at angular frequency ω0 = 2πf0, and neglecting any phase
information, we obtain

F = ηU, I = ηω0X, (2.17)
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Figure 2.3. (a) The lumped spring-mass model of a mechanical resonator and its electrical
equivalent circuit. (b) An example of the frequency response of a measured
24-MHz resonator, and the fitted response of an equivalent circuit. Additional
calculated responses with figure of merit FOM = 1/(2πfC0Rm) = 10, 5, 2
illustrate how the response would be modified if the motional resistance Rm

would be increased through decreased electromechanical coupling factor η (see
Eq. (2.20).

where F , U , X and I denote the amplitudes of the force, voltage, displacement
and current, respectively. At resonance, the electrical impedance of the system
is purely resistive. Thus, the motional resistance Rm of the resonator is given
as the ratio of the input voltage and output current,

Rm = U/I = F

η2ω0X
. (2.18)

Now, at resonance the vibration amplitude X of the resonator is the static
displacement multiplied by the quality factor Q,

X = F

k
Q. (2.19)

Using this in Eq. 2.18 we can relate the motional resistance with the mechan-
ical parameters and the transduction factor,

Rm = mω0
η2Q

=
√
km

η2Q
. (2.20)

The latter form has been obtained by applying the relation ω0 =
√
k/m. The

reactive components Lm and Cm are obtained through the knowledge that the
quality factor of an RLC-circuit is given as the fraction of the capacitive or
inductive reactance and the resistivity,

Q = XC

Rm
= 1
ω0CmRm

, (2.21)
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Q = XL

Rm
= ω0Lm

Rm
, (2.22)

respectively. Hence, we obtain

Lm = m/η2

Cm = η2/k. (2.23)

In a typical electrical transduction scheme, there is always a direct electrical
feedthrough path between the input and output, represented by capacitance
C0. The four equivalent circuit parameters Rm,Cm, Lm and C0 characterize a
micromechanical resonator. Often, when discussing resonator characteristics,
f0 and Q are referred to instead of Cm, Lm. These can be mapped back to
Cm and Lm by

Cm = 1/(2πf0RmQ)

Lm = RmQ/(2πf0). (2.24)

Figure 2.3(b) shows an example of the measured frequency response of a res-
onator together with a response of a equivalent circuit fitted to the measured
data.

2.4 Electrostatic and piezoelectric transduction

Figure 2.4. Illustrations of (a) electrostatic parallel-plate transduction of an LE mode res-
onator and (b) piezoelectric transduction of a similar resonator.

Electrostatic and piezoelectric transduction methods, and the related trans-
duction factors ηES and ηpz, respectively, are introduced here with a simplified
example of an LE mode resonator. Equations (2.15) and (2.16) relate the force
F with voltage U , and current I with velocity Ẋ , respectively, through the
transduction factor η. In general, the voltage-to-force and velocity-to-current
transduction mechanisms do not have to be symmetric, but for this introduc-
tion it suffices to assume so. The transduction factors are derived for the
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electrostatic and piezoelectric cases, respectively, through Eq. (2.15), i.e., by
examining how the drive voltage U is converted to actuation force F .
Let us investigate a parallel plate capacitor at the end(s) of an LE beam

resonator, Fig. 2.4(a). The capacitance is given by

C = ε0
A

d0 − x
, (2.25)

where the gap is given by d = d0− x and area by A = hw. The force between
the capacitor plates is given by the derivative of the energy stored in the
capacitor

F = − ∂

∂x
(1
2CU

2) = 1
2U

2 ∂

∂x
C(x) = 1

2(UDC + UAC)2 ∂

∂x
C(x) (2.26)

where U is the voltage over the capacitor, consisting of a DC biasing term
UDC as well as of the harmonic AC drive voltage UAC . Expanding the squared
voltage term yields

F = 1
2(U2

DC + 2UDCUAC + U2
AC) ∂

∂x
C(x). (2.27)

Of relevance is here only the harmonic component at the frequency of the drive
signal, i.e., 2UDCUAC . The derivative of the capacitance can be linearized to
obtain

F ≈ UDCε0
A

d2
0
UAC , (2.28)

and a comparison to Eq. 2.15 gives for the electrostatic transduction factor

ηES = UDCε0
A

d2
0
. (2.29)

Focus now on the case of an LE resonator, on top of which is a piezoelectric
thin film of thickness hpz, Fig. 2.4(b). The x-directed strain S1, stress T1 =
F/Apz, and a z-directed electric field E3 are coupled together through the
simplified constitutive relation [28]

T1 = e31E3 + Y S1, (2.30)

where e31 is a piezoelectric coefficient, and Y is the Young’s modulus of the
piezoelectric material. Assuming that the piezoelectric film is rigidly clamped
to the underlying silicon beam is equivalent to having S1 = 0. Expressing the
stress T1 through the force per cross-sectional area, and writing the electric
field as Ez = U/hpz yields

F

wpzhpz
= e31

U

hpz
, (2.31)

from which the piezoelectric transduction factor is obtained as

ηpz = we31. (2.32)
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A three-dimensional derivation in Appendix C.2 shows that the vertical electric
field contributes to a lateral force also through the piezoelectric constant e33,
making the effect slightly stronger.

2.5 Tunability

Figure 2.3(b) shows that there is one resonance peak and one anti-resonance
peak, or valley, in the frequency response of a resonator. These are referred
to as the series and parallel resonances with frequencies

fs = 1
2π

√
k

m
= 1

2π

√
1

LmCm
(2.33)

and
fp = 1

2π

√
Cm + C0
Lm(CmC0) . (2.34)

For fs, resonance is formed in the mechanical RmCmLm -branch, while for
fp, the resonance forms over the loop with the mechanical branch and C0

connected in series. The separation between the two peaks, fp − fs, is of im-
portance, since, by using a loading capacitor in an oscillator circuit [49], it is
possible to tune the resonance frequency by a fraction of this distance. Typi-
cally in MEMS resonators, the relative frequency separation is a few thousand
ppm at most; through a series of approximations, this metric can be expressed
with equivalent circuit parameters C0 and Cm, or with the transduction factor
η as

fp − fs

fp
≈ 1

2
f2

p − f2
s

f2
p

≈ 1
2
f2

p − f2
s

f2
s

≈ 1
2
Cm

C0
= 1

2
η2

kC0
. (2.35)

It is clear that the distance between the parallel and series frequencies increases
with stronger coupling. It is customary to define a coupling coefficient k2

eff as

k2
eff =

f2
p − f2

s

f2
p

, (2.36)

through which the relative frequency separation is expressed as

fp − fs

fp
≈ 1

2k
2
eff . (2.37)

Given that the real tunability in a practical oscillator is typically ∼ 30% of
the distance between the two resonances, k2

eff × 1/6 is used as a metric for
the resonator tunability in this work (e.g. in Table 3.1).
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2.6 Resonator as a part of an oscillator circuit

2.6.1 Requirements for sustained oscillation

An oscillator is a combination of an active drive circuit (amplifier) and a
frequency-setting resonator element. In an idealized form, the amplifier can
be a transimpedance amplifier (TIA) characterized by its negative resistance
RT IA, see Fig 2.5(a). For sustained oscillation, the two Barkhausen criteria
[50] need to be fulfilled.

1. First, the loop gain needs to equal unity, thus the negative resistance RT IA

needs to cancel the motional resistance Rm, i.e., RT IA = Rm.

2. The phase shift around the loop needs to be zero (or an integer multiple of
2π).

The first criterion relates to the power consumption of the oscillator: realizing
higher RT IA requires more power.
The second criterium is fulfilled if the phase swing of the response of a

resonator is large enough so that a zero phase shift is reached (or crossed) at
the resonance. This can be examined in the calculated example responses of
Fig. 2.3(b), where the coupling factor η has been varied so as to vary the
resonator’s figure of merit FOM, defined as the ratio of the impedance Z0 of
the shunt capacitance C0 to the motional resistance Rm:

FOM = Z0
Rm

= 1
2πf0C0Rm

. (2.38)

An equivalent expression for Eq. (2.38) is

FOM = k2
eff ×Q. (2.39)

Deducing from the plots with varied FOM , it is seen that FOM needs to
be above 2 for sufficient phase swing. In practical oscillators, a rule of thumb
of having a FOM of over 5 is often used for increased robustness for fulfilling
the phase condition3. An in-depth treatment of TIA topology is found in Ref.
[26], and other commonly used oscillator topologies have been analyzed by
Vittoz et al. in Ref. [51].
3Parasitic capacitances typically add in parallel with C0, and thus decrease FOM as
well as tunability, see Eq. (2.35).
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Figure 2.5. (a) Idealized oscillator topology based on a transimpedance amplifier. (b)
Qualitative behavior of oscillator phase noise according to Eq. (2.40). The
red and green lines illustrate how phase noise would be modified if the signal
power P or the quality factor Q were increased, respectively.

2.6.2 Phase noise of an oscillator

The short term instability of an oscillator is quantified by the phase noise. The
output of an ideal oscillator would be a pure sine wave, and its power would
be concentrated at the oscillator frequency f0, represented as a spectrum by
the Dirac delta function. In real oscillators, this power is spread around the
carrier frequency f0. The expression for the phase noise, originally derived by
Leeson [52], can be given in a simplified form [26] as

L(∆f) = FkBT

2P

((
f0

2Q∆f

)2
+ 1

)
, (2.40)

where f0 is the carrier frequency, ∆f is the deviation from the carrier fre-
quency, kBT is the thermal noise, F is the noise figure of the amplifier, Q is
the quality factor of the resonator, and P is the signal power at the amplifier
input. The phase noise is seen to consist of a ∆f−2 -decay near the carrier
component and a constant noise floor, qualitatively illustrated in Fig. 2.5(b).
The following general conclusions can be made on the factors affecting the
noise performance of an oscillator:

• An increased quality factor Q results in lower near carrier noise (Section
2.7).

• The near carrier noise and the noise floor can be decreased if the signal
power P is increased. This is ultimately limited by the power handling
capability of the resonator (Section 2.8).

In reality, factors like nonlinearities [12], coupling of other external noise
sources such as a DC bias generator, and details of the oscillator topology
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and its amplifier circuit often complicate the picture and make optimization
of the phase noise a nontrivial task. Although typical quartz crystal quality
factors are well over 100 000 at ~20 MHz, decent phase noise can be reached
with a considerably lower quality factor, such as seen in Section 3.3.
To compare the phase noise performance LfH

(∆f) of an oscillator at fre-
quency fH to the phase noise LfL

(∆f) of another oscillator (or specification)
at a lower frequency fL, a scaling law

LfL
(∆f) = LfH

(∆f)( fL

fH
)2 (2.41)

applies [26].

2.7 Quality factor

The dissipations in a resonator are quantified by the quality factor Q, af-
fected by several independent loss mechanisms such as anchoring (clamping)
losses, thermoelastic dissipation (TED), air damping, intrinsic (material re-
lated) damping and possible other sources of damping:

Q = [Q−1
anchor+Q

−1
T ED +Q−1

air +Q−1
intrinsic +Q−1

other]−1. (2.42)

A high quality factor implies a better short-term frequency stability (phase
noise) of an oscillator (Section 2.6.2).
In MEMS resonators, the anchoring losses play an important role. The

resonator has to be mechanically attached to the surrounding substrate in one
way or another, and the anchoring tethers always lead to some level of leakage
of the acoustic energy trapped in the resonator. However, appropriate selection
of the resonance mode shape, and a proper anchoring design can reduce these
losses to a very low level. As a practical rule of thumb, anchoring should
be done at nodal points of the resonance mode shape, such as the corners of
the Lamé mode plate (Fig. 2.2), but this may not always be possible due to
other design constraints. High quality factor without nodal anchoring can still
be achieved, such as demonstrated for the SE mode resonator in [28], where
anti-nodally attached very flexible anchors were used. A new finding of this
dissertation, related to this type of anchoring is discussed in Section 3.2.3.
Thermoelastic dissipation [53] originates from density gradients within the

resonator during the oscillation, and it can be the dominating dissipation
mechanism for low frequency (flexural) resonators. In bulk mode resonators,
such as the extensional mode resonators in Fig. 2.2, TED can usually be
neglected.
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Air damping [54] can be a very strong dissipation mechanism for resonators
operating at frequencies up to ∼ 100 MHz. As a result, resonators typically
need to be encapsulated to a vacuum below 1 mbar to ensure high quality
factor operation.
The factor Qintrinsic captures the intrinsic dissipations of the resonator ma-

terial, which in silicon are caused by phonon-phonon interactions [55]. The
Lamé mode resonator is a rather ideal special case from the point of view of
low losses: it can be nodally anchored at the plate corners, and TED is wholly
absent, since the shear mode character causes no local density variations at all
in the device during oscillation. A Q× f product of the order of 1013 of Lamé
mode resonators reflects the low level of intrinsic dissipation in silicon4 [56]. In
this dissertation, Lamé mode resonators were used for verifying the low level
of intrinsic dissipations in heavily doped silicon, see Section 4.6 (Paper IV).
Finally, Qother stands for any other sources of dissipation, which in some

cases may not be entirely known. For example, in the case of piezoelectrically
actuated silicon resonators, the origin of the mechanisms limiting the quality
factor are not fully understood, see Section 3.1.

2.8 Power handling capability

As seen in Eq. (2.40), the phase noise of an oscillator circuit is inversely pro-
portional to the oscillator drive power P . Hence, for optimal performance,
the energy stored in the resonator needs to be maximized. At first sight,
competing with larger quartz crystals with miniaturized silicon MEMS ap-
pears very challenging from the energy storage aspect, but it has been shown
that the maximum energy density in silicon resonators can be 1000× higher
than that in quartz [11]. The maximum vibration amplitude of a resonator
is dictated by the limit at which a nonlinear effect would cause problems to
oscillator operation. Typically, this limit is associated with the nonlinearity of
the transduction method (piezoelectric or capacitive), nonlinear geometrical
effects caused by dynamic shape variations, or, ultimately, the nonlinearity
of the resonator material itself. In these cases, after the bifurcation point,
i.e., at high enough vibration amplitude, the resonance frequency is not any
more single valued and this threshold is considered to be the limit for the
vibration amplitude. These limits are thoroughly discussed in Refs. [11] and
[57]. Another way that nonlinearities can limit the power handling capability
of resonators is through coupling between resonance modes. The desired res-
4For reference, the Q× f product of quartz is of similar magnitude.
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onance mode can “leak” energy to other modes at higher (super-) harmonic
frequencies, or even to modes at lower (sub-) harmonic frequencies, thus limit-
ing the vibration amplitude of the main mode [58]. In this dissertation, a new
subharmonic nonlinear coupling mechanism was identified (Paper VI) and it
is discussed in Section 3.2.4.

2.9 Design objectives for resonators

Synthesis of the oscillator specifications (Section 1.5) and the above discussed
resonator characteristics yields the following design objectives for resonators:

1. The total frequency variation due to temperature variations, ∆ftotal, should
be minimized.

2. To maintain good phase noise properties, the quality factor and power han-
dling capability of the resonator should be maximized.

3. FOM , given by Eq. (2.38) or (2.39), needs to be at least 5 for operation
as a part of an oscillator circuit.

4. The motional resistance Rm should be minimized for low oscillator power
consumption (Section 2.6.1)

5. Electromechanical coupling needs to be sufficiently large to allow for enough
tuning of the frequency (Section 2.5), in order to correct for the initial fre-
quency error as well as for the temperature-induced frequency error.

The design objectives can be interdependent: for example, the needed level
of tunability is dependent on the achievable level of temperature stability
(objective 1). Optimization of a resonator with all these design objectives is
a complex optimization task with “fuzzy”5 boundary conditions.

5The (technological) boundary conditions may not be accurately known at a given
time, and they may be changing constantly.
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3. Piezoelectrically transduced silicon
resonators

Piezoelectric transduction, as an alternative to electrostatic transduction, is
motivated by the design objective of achieving a strong electromechanical cou-
pling of a silicon resonator. The ratio of the electrostatic and piezoelectric
transduction factors, given by Eqs. (2.29) and (2.32), is

ηES

ηpz
= UDC

h

d2
ε0
e31

, (3.1)

where h and d are the height and width of the capacitive gap, and UDC is
the DC biasing voltage. A numerical example illustrates the relatively strong
transduction factor that can be obtained using aluminum nitride with piezo-
electric coefficient e31 = −0.58 Cm−2 [59]: To match the transduction factor
achieved with AlN, a bias voltage higher than 34V is needed for a capacitive
gap of width d = 0.1µm and height h = 20µm. A trench this narrow is very
challenging to fabricate reliably, and a DC voltage larger than 3 volts can be
considered out of question for most of low-cost CMOS fabrication processes
that would be used for a commercial oscillator. A clear advantage of piezoelec-
tric transduction is that no DC bias voltage is needed at all. In this Chapter,
the results obtained with piezoelectrically transduced silicon resonators are
discussed.
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3.1 Piezoelectically transduced LE, WE and SE resonators

Table 3.1. Performance summary of generations of piezoelectrically transduced silicon res-
onators fabricated at VTT.

The progress of the performance of different generations of piezoelectrically
driven resonators fabricated at VTT is summarized in Table 3.11. Our initial
experiments are reported in Papers IX and X. First, 14-MHz beam resonators
operating in the LE mode were fabricated. A very modest performance with
FOM less than 1 was observed, due to the weak coupling implying a tunability
of only 10 ppm. An in-vacuum quality factor approaching 20 000 was mea-
sured. The dependence of the quality factor on resonator in-plane orientation
was investigated. It was found out that the anchor losses (see discussion in
Section 2.7) for a [100]-aligned LE mode resonator were greatly increased due
to the anisotoropic behavior of the silicon poisson ratio, limiting the quality
factor to Q ∼ 3500. A qualitative match with the result was obtained with
FEM modelling in two dimensions.
The fabrication process was accommodated to allow for the flexible meander-

1The measurement data presented in Paper IX contains a calibration error leading to
underestimation of device admittance by approximately 50%. Therefore, parameters
Rm and C0 reported in Paper IX have been be halved and doubled, respectively, to
obtain the values for the SE resonator shown in the table. FOM ∼ 1/(C0Rm) is not
affected by this calibration error. Characterization results in subsequent papers were
obtained with the approach described in Appendix A.1, where the above described
calibration error was eliminated.
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spring anchors needed by the square plate resonator operating in the SE mode,
see Fig. 3.1(b). In comparison with the LE mode, much more efficient coupling
was achieved and the performance was increased to FOM ∼ 5.6. Interferomet-
ric imaging was used for getting more insight to device operation; the optical
method reveals the full vibration field of the device, which cannot be deduced
from the electrical measurements. It was verified that the SE mode was cleanly
excited without unwanted out-of-plane vibration components. Before this ver-
ification there was no direct evidence of whether breaking the symmetry in the
out-of-plane direction by introducing of the AlN/Mo thin films on top of the
resonator could lead to perturbation of the resonance mode. It was found out
that excitation by the piezoelectric thin film on top of the resonator may excite
also unwanted parasitic modes more easily than with capacitive transduction.
Anchoring and dimensioning of the SE mode resonator was studied in fine
detail, with an experimental parametric study discussed in Section 3.2.
The performance of the LE and SE mode resonators was compromised by

the relatively thin AlN layer of 0.3 µm, whose effect was seen in increased
static capacitance C0 (over the this piezoelectric layer) and, correspondingly,
in decreased figure of merit FOM (note that FOM , given by Eq. (2.38) scales
as Rm/C0 ∼ η2/C0, where η is thickness independent as seen in Eq. (2.32)).
A performance increase was achieved through a sputtering system upgrade,
which enabled thicker AlN film deposition. The boosted WE resonator perfor-
mance (Table 3.1) reflects this change. The WE designs were fabricated at a
time when the temperature compensation properties of resonators fabricated
on HD-silicon were understood (Section 4.4.2), and a transition from the SE
mode design to the WE mode resonator was done to reach an optimal (first
order compensated) frequency stability of ±150 ppm. Similar work was pub-
lished by [60]. Discussion on the results with the UHD-Si resonator design of
the best temperature stability is presented in Section 4.7.
The quality factor of piezoelectrically driven silicon high-frequency resonators

in the range of 10 000 . . . 20 000 is seen to be clearly reduced from the qual-
ity factor in excess of 100 000 of capacitively coupled bare silicon resonators
operating in similar resonance modes [7, 10]. Addition of the piezoelectric
(AlN) and top metal (Mo or Al) thin film layers onto the silicon resonator
structure degrades the quality factor, but there is currently no consensus on
what the exact mechanisms for the quality factor degradation are. The losses
cannot be related to the AlN/metal stack alone, as higher Q×f products have
been demonstrated for such resonators [61]. Interfacial dissipation mechanisms
have been suggested [62], but recently, some counterevidence against this ex-
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Figure 3.1. (a) An illustration of a SE plate resonator (SiO2 and Mo layers have been ex-
cluded from the image). (b) Corner anchor design used in all of the variations.
(c) Micrographs of the largest and smallest SE resonator variation. (Paper
VIII)

planation has been presented [63]. We also hypothesize increased anchoring
losses: addition of the AlN/metal stack breaks the out-of-plane symmetry of
the resonator, which can lead to increased acoustic energy leakage through
the anchors. Nevertheless, despite the quality factor degradation, Q ∼10 000
can be enough for frequency reference applications, see the phase noise result
in Section 3.3.

3.2 Statistical study of size-varied SE resonators

3.2.1 Introduction

A statistical parametric study was done with a set SE mode plate resonators,
whose lateral dimensions were varied so that the main resonance mode oc-
curred at a frequency range of f = 13. . .30 MHz. Findings of these experiments
are reported in Papers VIII, V and VI. The objective was to experimen-
tally probe the limits of the resonator design by mapping the resonance mode
branches and their properties as a function of the resonator size, and, in partic-
ular, to investigate whether the in-plane extensional modes of the resonators
are excited “cleanly”, i.e., with a relatively low frequency scatter. Further-
more, the extensive experimental data set allowed a comprehensive compari-
son with simulated data. The wafer level characterization infrastructure was
at the time of the study developed to a state, which enabled measurement
and analysis of large amounts of data - see Appendix A.1. The investigated
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Figure 3.2. (a) Dispersion of the resonance frequency as a function of square resonator
size: experimental data and simulation. To simplify the simulation models,
the corner anchors were not included. Note that the data points are semi-
transparent, and hence the colors are stronger for data points stacked on top
of each other. For the same reason, the blue and red colors mix to make purple
for overlying data from wafers A and B. (b) Frequency scatter of the reso-
nances modes. We have defined the frequency scatter ∆f as the full range of
frequencies measured for the mode under investigation. (c) Resonator figure of
merit FOM = Z0/Rm. (d) Quality factors of the measured resonances. The
measurements have been done at atmospheric pressure. (Paper VIII)

set of devices consisted of 64 variations, where the lateral dimension L of the
resonator plate was varied from 131 µm to 320 µm with 3-µm steps, see Fig.
3.1(c). Each variation had similar corner anchors (Fig. 3.1(b)).

3.2.2 Characteristics of modal branches

The dispersion curves of the measured and simulated resonance frequencies
as a function of the resonator size are shown in Figure 3.2(a). Circa 1200
devices from two wafers were characterized, and five of the largest resonances
were measured for each device. For most of the measured modal branches
the frequency scatter is noticeable, typically more than 15 000 ppm. This
was interpreted to be attributed to the flexural character of such modes: The
resonance frequency of a flexural mode is sensitive to the device thickness, and
the SOI device layer thickness variation across a wafer results in corresponding
variations of the resonance frequency. Additionally, a systematic difference
of resonance frequencies is observed for the high-scatter branches between
wafers A and B. Wafer A resonance frequencies tend to be slightly lower than
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Figure 3.3. Measured and simulated out-of-plane (oop) and in-plane (ip) vibration fields of
the resonance modes of selected resonance modes labelled in Fig. 3.2(a). (a)-
(b) high- and low frequency tails of the SE mode branch SEH and SEL, (c)
higher-order extensional mode hE, (d) modes S1 and S2 at the splitting region
of the SE mode branch, and (e) flexural mode F1. Optical measurements
were done by Department of Applied Physics, Aalto University. (Papers V
and VIII)
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those for devices from wafer B, which can be attributed to a device layer
thickness difference between wafers A and B. Figure 3.2(b) illustrates the
frequency scatter in more detail. Figure 3.3(e) shows the mode shape of the
low-frequency flexural mode F1. For this mode, the match between simulation
and measurement is excellent.
On the other hand, it is evident from the dispersion plot that the spread

of measured resonance frequencies is relatively small for certain resonances.
Comparing with data from simulation, one finds that the low-scatter branches
correspond to the SE mode and to a higher-order extensional mode — we
have labeled these branches as SEH , SEL and hE according to their mode
type (subindices H and L denote the high/low-frequency region of the SE
branch, respectively). The frequency scatter within the SEH , SEL and hE
branches is typically ∆f ∼ 2000 ppm. We have defined the frequency scatter
∆f as the full range of frequencies measured for the mode under investigation.
The relatively small frequency scatter was interpreted to indicate that these
extensional modes have been excited “cleanly”, i.e., with a very small flexural
component. The frequency of an extensional mode is only weakly dependent
on the resonator thickness, and the SOI device layer thickness variations do not
contribute much to the resonator frequency repeatability. It was hypothesized
that the frequency scatter of these modes originates mainly from variations of
the resonator lateral dimensions. Figures 3.3(a)-(c) show the in-plane and out-
of-plane vibration fields of these low-scatter modes. Side-to-side comparison
of the experimental and simulated data yields a relatively good match for the
vibration fields.
For certain branches, such as F1, SEH , SEL and hE, simulated modal fre-

quencies and the experimental data match well with each other (Fig. 3.2(a)).
The few percent difference in the resonance frequencies can be explained by
the difference in real stiffness parameters and those used in the simulation,
and by the exclusion of the top metal layer from simulation model. However,
some of the experimentally observed resonances do not overlap with the sim-
ulated data. Most strikingly, the simulation fails to capture the SE resonance
branch splitting at intermediate plate dimensions (regions S1 and S2): each
sample from the splitting region has two separate resonances, instead of a sin-
gle SE resonance peak. Optical probing data of these resonance modes (Figure
3.3(d)) reveals that the in-plane vibration field of both of the modes has the
SE resonance characteristics, while the out-of-plane vibration pattern is some-
what different for the two modes. The origin of the splitting is discussed in
the following Section.
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Figure 3.2(d) illustrates the quality factors of the resonances. The losses
are observed to increase, when approaching the splitting region along the SE
resonance branches. At the SEL and SEH regions we observe Q ∼10 000.
Interestingly, the highest quality factors of Q ∼ 20 000 are measured at the
hE region. Air damping in atmospheric pressure limits the quality factor of
all resonances. Figure 3.2(c) indicates that FOM ∼ 5 is reached for the SE
resonance. It is also observed, that at intermediate dimensions also the flexural
mode F1 is relatively strongly coupled, and that at the SE resonance splitting
region the performance degrades. All other modes appear to be weakly coupled
with FOM < 1.

3.2.3 Splitting effect caused by a coupled anchor resonance

Based on the optical characterization of the vibration fields, the observed
splitting of the main resonance mode was suspected to be caused by coupling of
the main resonance with an in-plane flexural resonance mode of the anchors. A
parametric FEM model including the corner anchors reproduced the splitting
effect, Fig. 3.4(c). The coupling effect could be explained with a simple
analytic model of two coupled spring-masses, Fig. 3.4(a).
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Figure 3.4. (a) A model of two coupled spring-masses (green line) captures the splitting
effect seen in the SE mode branch. (b) Phase sensitive imaging covering a
corner of the plate and an anchor shows that the relative vibrations of the edge
of the resonator plate are in phase/antiphase for the lower/higher frequency
resonances at the splitting region, respectively. Optical measurements were
done by Department of Applied Physics, Aalto University. (Paper V) (c)
Modal analysis of a FEM model including the anchors shows the splitting
effect.

A spring-mass system with an effective massm1 and a spring constant k1 de-
scribes the SE mode of the resonator plate. When another spring-mass system
(k2,m2), representing all four corner anchors as a single entity, is introduced in
the model, this coupled resonator model results in a good fit to the electrically
measured resonance frequency data. In the upper branch the two resonators
move in antiphase with each other, and the lower branch is the case when
the two parts move in unison2. Phase-sensitive imaging of the vibration fields
confirmed the in-phase/antiphase vibration between the resonator plate and
the anchor on the two branches, respectively, as seen in Fig. 3.4(b). Splitting,
or anti-crossing behavior of modal frequencies, is a characteristic fingerprint
of strongly coupled systems, encountered in various classical and quantum
mechanical systems [64].

2This is analogous to optical and acoustic branches of lattice vibrations.
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3.2.4 Excitation of a subharmonic rotational mode

Measurements of the set of size varied plate resonators revealed an interesting
non-linear phenomenon having the potential to degrade the power handling
capability (see Section 2.8) of a SE resonator. It was found in electrical mea-
surements under vacuum, that the frequency response of one 257-µm-sized SE
resonator turned nonlinear when the drive was higher than Udrive ∼140 mV
(rms), see Fig. 3.5(a). The effect was not found on all devices of similar
size, so it was hypothesized that an unidentified mode coupling mechanism,
sensitive to process-variation-induced frequency changes could be causing the
effect.

Figure 3.5. (a) Frequency responses of two plate resonators from different parts of the same
wafer. One of the devices showed a severe nonlinearity (amplitude compression)
after a drive amplitude threshold of Udrive ∼ 140mVrms, while the other was
seen to have only a minor drive level dependency of frequency. (b) Measured
relative in-plane vibration amplitude A at fSE = 16.670MHz and at fR =
0.725MHz as a function of the input drive power at frequency fin = fSE =
16.670MHz.(c) IP vibration amplitude Avib and vector fields of the SE mode
and the (d) rotational mode. Optical measurements were done by Department
of Applied Physics, Aalto University. (Paper VI)

Optical measurements, presented in Paper VI, revealed that the nonlinear-
ity was caused by the fact that a rotational in-plane mode was excited at a
significantly lower frequency (0.725 MHz) than the SE mode (16.670 MHz),
see Figs. 3.5(c), (d). When driving the resonator at 16.670 MHz with increas-
ing drive level, the SE mode vibration amplitude increased until it saturated
at a threshold value of ∼ 10 nm, after which all additional excitation energy
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was inserted into the rotational mode (Fig. 3.5(b)). The 1:23 frequency ratio
between the rotational and the SE modes suggests a subharmonic nonlinear
coupling between these two modes. The exact coupling mechanism was not
modelled. It is worth noting that the rotational resonance mode was not seen
at all in the electrical measurements, so it could not be directly excited at all
through the piezoelectric transduction mechanism.

3.2.5 Discussion

Findings such as the splitting of the main resonance branch and the subhar-
monic nonlinear effect, respectively, illustrate a delicate aspect in resonator
design: it is not enough for a good resonator to have a well-designed main
resonance mode - other (parasitic) modes have the potential to degrade the
resonator performance in many ways. Device dimensions need to be accurately
selected to avoid harmful coupling and/or degeneracies of the main resonance
mode with other resonances and with its super-/subharmonics.
Anchoring

Undoubtedly the best way to anchor a resonator is at the locations that are
nodal points of the resonance mode shape. Understanding of the splitting ex-
periment yielded new understanding for anchoring of resonators. When nodal
anchoring is not possible, low-loss anchoring can be achieved with flexible
enough anchor bridges. In this type of anchoring, special care needs to be
taken in order not to have any of the anchor’s resonances close to the fre-
quency of the main resonance. If the frequencies of the main mode and that
of an anchor are brought too near to each other, resonator performance can
be severely compromised:

• Resonator performance (FOM) as well as the quality factor of the main
mode can be decreased.

• The frequency scatter can be increased as the anchor resonance frequency
is typically more sensitive to process variations.

• At worst, the main resonance can be split into two weak resonances around
the intended resonance frequency.

In general, as flexible as possible an anchor appears at first sight to provide
the lowest anchoring losses for a resonator. However, there is an important
tradeoff: the more flexible an anchor is, the lower the frequency of the first
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Figure 3.6. Frequency response of a 24-MHz WE mode resonator on a wide frequency
range of f = 0.1 . . . 35MHz.

resonance mode of the anchor is, and the more densely its overtones are spaced
in the frequency space. It is increasingly hard to avoid degeneracy of an an-
chor resonance with the main mode, in particular when process variations are
taken into account. Anchors also need to be stiff enough to prevent stiction
during fabrication and device operation, and to provide high enough tolerance
against external shocks.

Subharmonic or superharmonic nonlinear coupling

The nonlinear excitation of the rotational mode through the SE mode showed
an adverse effect of frequency degeneracy of the main mode to an unwanted
mode at 1/23 frequency of the main mode. Nonlinear coupling to a subhar-
monic mode is a known phenomenon [65], but also superharmonic nonlinear
coupling (although not demonstrated in our experiments) can occur to a reso-
nance mode at that occurs at the 2nd or 3rd harmonic frequency of the drive
frequency [66, 67]. Figure 3.6 illustrates the response of a 24-MHz WE mode
resonator on a wide frequency range, revealing the appearance of some par-
asitic resonances at frequencies below the main resonance mode. Although
FOM of the parasitic resonances is clearly lower than that of the main mode,
thus preventing an oscillator from locking into any of the parasitics, subhar-
monic coupling could potentially cause harmful effects if the relative frequen-
cies match unfavorably. As seen in the context of the rotational mode excited
by the SE resonance, a parasitic mode can be fully absent in the electrical fre-
quency response of the device, and still potentially cause unwanted coupling.
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It can be concluded that it is wise to design resonators in such a way that
the resonator frequency is not an integer multiple of any of the parasitic modes
at a lower frequency and that the frequencies of the parasitic modes are not
2nd or 3rd harmonics of the frequency of the main mode3. In practice, the
challenge in following this design rule is enlarged by two factors: 1) processing
variations will cause the frequencies of the main mode and those of the para-
sitics to be varied and 2) the temperature dependencies of different modes can
be very different (See Section 4.4.2 to see how the temperature dependencies
can vary), and, as a result, a device performing well at room temperature
may experience problems at some other temperature. This is, actually, a
well-known problem in quartz devices, known as “activity dips” [68]: modal
frequencies (or their harmonics) cross at some point in temperature and the
coupling between modes can adversely affect resonator performance. MEMS
resonators, having more design freedom due to their different fabrication ap-
proach when compared to quartz manufacturing, are often considered to have
better possibilities for avoiding such activity dip effects [15].
Looking from another perspective, coupling between resonances could be also

be taken advantage of: our experiment revealing the subharmonic nonlinearity
demonstrated the possibility of driving a resonance mode that otherwise could
not be directly excited with a piezoelectric thin film at all. Superharmonic
coupling of modes could potentially be exploited in a same manner. Also cou-
pling of resonances at the same frequency can be employed to tailor resonator
properties. A good example of this approach is the resonator design of Ho
et al. in [69], where extensional and flexural resonance modes were coupled
together to create a compound resonance mode having a better tunability of
the resonance frequency than the original extensional mode.

3.3 Oscillator characterization

In this work, resonators were mostly characterized as passive components (fre-
quency sweep based characterization, see Appendix A.1). However, simple os-
cillators leveraging a standard drive circuit intended for quartz crystals were
constructed for demonstrating that the resonators operated in their intended
operation mode as desired. Figure 3.7 shows the phase noise of an oscillator
consisting of a piezoelectrically driven HD-silicon 24-MHz WE mode MEMS
resonator (see Table 3.1) and a Seiko 5016 drive circuit [70]. A noise floor near
3This design rule does not fully protect against unwanted nonlinear coupling, since
the main mode can couple simultaneously to multiple parasitic modes, see Ref. [65].
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-150 dBc/Hz and a near carrier phase noise of almost -128.5 dBc/Hz at 1 kHz
offset was measured. Scaling the noise for a 13-MHz carrier according to Eq.
(2.41) yields a result of -134 dBc/Hz at 1kHz offset for the near carrier phase
noise, which clearly meets the TCXO specification (Table 1.1). The measure-
ment was done under atmospheric pressure, so even better performance is
expected in vacuum or reduced pressure.

Figure 3.7. Phase noise of an oscillator based on a piezoelectrically actuated HD-Silicon res-
onator at 24 MHz and a Seiko 5016 driver circuit (intended for quartz crystals).
The measurement was done with a Rohde&Schwartz FSW8 signal and spec-
trum analyzer. (Circuit design and measurements performed by Arto Rantala,
VTT)
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4. Temperature compensation by
degenerate doping of silicon

The content with the main focus of this dissertation is presented in this Chap-
ter. The generic effect of the elastic properties of silicon being influenced by
doping was known already in the 1960’s [16, 17], but this knowledge had not
been applied in the field of MEMS resonators until in recent years. For temper-
ature compensation of MEMS resonators, the effect of doping on the thermal
dependencies of the elastic constants becomes of value for very high doping
levels above n ∼ 2 × 1019cm−3, which has been unknown territory. First ex-
periments of heavily doped silicon resonators were published by Samarao et
al. in 2010 [18], who demonstrated first-order temperature compensation in
p-type doped WE mode resonators. The effect was extended to resonators
containing alternating p/n doped layers [71]. N-type doped first order tem-
perature compensated resonators were reported by Hajjam et al. in 2010 [72],
and piezoelectrically activated first order temperature compensated resonators
by Shahmohammadi et al. in 2012 [60]. Similar results to those of Paper III
were later published by Ng et al. in [73], supporting our findings. Our publi-
cations (Papers I—IV, VII) on the topic date to years 2011 - 2015, and their
content is discussed in this Chapter.
In the following Sections, first the theoretical background is discussed, and

the early experimental results are introduced. Our first experimental findings
on this topic are reviewed. The experimental determination of the temperature
dependent elastic properties of silicon on a wide doping range is described, and
modelling and identification of classes of resonance modes that can be temper-
ature compensated is presented. The qualitative prediction of a possibility of
full 2nd-order temperature compensation in silicon MEMS resonators is intro-
duced, and the recently achieved experimental evidence for the validity of the
prediction is presented by reviewing our results of ultra-heavily doped silicon
resonators with ±10 ppm frequency stability .
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4.1 Theoretical background and early experiments

In a many-valley semiconductor such as Si, certain strain components lift
the conduction band valley degeneracy, which changes the energy of the free
electron system. The elastic constants cij are strain derivatives of the Gibbs
free energy G,

cij = 1
V0

∂2G

∂Si∂Sj
, (4.1)

where V0 is the volume of the non-deformed crystal, and Si and Sj are the
strain components. Since the Gibbs free energy is affected by the charge carrier
concentration, a coupling of the carrier concentration to the elastic constants
is formed. For free electrons, Keyes [16] presents an expression for the free
energy, from which the electronic contributions to the elastic constants can be
derived. In the case of n-type Si these are

δc11 = −Φ4
3Ξ2

u

δc12 = Φ2
3Ξ2

u (4.2)

δc44 = 0,

where Ξu is the uniaxial deformation potential constant [74], Φ is defined as

Φ = −
ˆ
dENi(E) ∂

∂E
f0(E), (4.3)

where Ni(E) is the density of states for valley i, and where the temperature
dependence arises from the Fermi-Dirac distribution

f0(E) =
[
e(E−EF )/(kBT ) + 1

]−1
. (4.4)

The theory [75] for p-type doped silicon is more involved due to the different
nature (holes) of the charge carriers and will not be introduced here.
As for the experimental research on the topic, Hall [17] investigated the

acoustic velocities of n-type doped silicon, and found out that the absolute
value and the temperature dependency of the shear elastic constant (c11 −

c12)/2 was notably affected by doping at a carrier concentration of n ∼ 2 ×
1019cm−3 . Wang et al. [76] observed temperature compensated behavior
in composite ZnO/Si and AlN/Si shear mode resonators, where silicon was
p-type doped to a level of n ∼ 1020cm−3.

4.2 First Experiments at VTT

Paper VII highlights the results of the first set of experiments at VTT with
heavily n- and p-type doped silicon resonators. The results are illustrated in

38



Temperature compensation by degenerate doping of silicon

Fig. 4.1. Resonators were fabricated on commercially available SOI wafers
with three different types of heavily boron/phosphorus doped silicon device
layers from Okmetic oyj. The most heavily boron doped wafer contained also
germanium to relieve the stress associated with the very high boron concen-
trations.

Figure 4.1. (a) A micrograph of a square plate resonator, which can resonate both in the
Lamé and SE resonance mode. (b) Measured linear temperature coefficients
of frequency for the Lamé and SE resonance modes of resonators fabricated
on n/p-type heavily doped wafers in two different orientations (resonator plate
side aligned either to [100] or [110] direction). (Paper VII)

The devices were electrostatically actuated and fabricated with the 1st vari-
ant of the VTT Electrostatic MEMS process (see section 1.4) in order to
investigate the characteristics of doped silicon alone, and to keep the fabrica-
tion process as simple as possible. As a side effect of this simplicity, however,
the resonator plates had to be perforated with a grid of release etch holes. The
etch hole grid was assumed to cause a minor perturbation to the cij depen-
dencies of the resonance modes, which would have been hard to model due to
the size of the needed FEM model, and due to the fact that the dimensions
of the realized holes were not accurately known. Despite this inaccuracy, the
main effects to the temperature characteristics of the resonators, caused by n-
or p-type doping were identified:

• The n-type (phosphorus) doped resonators showed remarkable thermal com-
pensation effects. The high overcompensation (TCF1 = +18ppm/K) of the
[100]-oriented Lamé mode at n-type doping level of n = 5× 1019 cm−3 indi-
cated that there had to be an intermediate doping level at which TCF1 for
the very same mode crosses zero (knowing that TCF1 ∼ −30 ppm/K at very
low doping levels). Any shear modes with a similar c11 − c12 (see Eq. 2.4)
dependence on the elastic parameters were expected to behave similarly.

• It was seen that TCF1 of the c44 characterized (see Eq. 2.4) Lamé110

resonance mode was practically unaffected by n-type doping with its value
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staying at -30ppm/K, which was in line with theory (Eq. 4.2). This ob-
servation led to the hypothesis that there had to be such resonance modes
for which the dependencies on the elastic constants cij would be balanced
in such a way that TCF1 would be zero. This notion is studied in detail in
Section 4.4. The SE100 mode with its temperature coefficient of -0.9 ppm/K
turns out to be close to such optimal mode at the tested doping level. The
thermal drift of a SE resonator had been reduced from over 3000 ppm over
the temperature range of T = −40 . . .+ 85◦C to less than 300 ppm.

• In the case of p-type (boron) doped resonators, it was seen that the c44 char-
acterized Lamé110 mode resonators were affected the most. However, even
with the heaviest p-type doping, the linear coefficient stayed negative, and
thus the applicability to temperature compensation appeared more limited
than with n-type doping.1

4.3 Determination of doping dependent elastic parameters

Motivated by the results of our first experiments, a systematic effort was
undertaken to find out how the elastic constants of doped silicon behave as
a function of doping and temperature. The study is reported in Paper III2.
The objectives were:

• To eliminate the inaccuracy of the first experiments related with the release
etch holes.

• To test the effects of as high doping as possible (using commercially available
wafers).

• To try to see doping-dependent trends in the behavior of the elastic prop-
erties. In particular, sufficiently accurate extraction of the second order
temperature coefficients was of interest, since understanding of these effects
was the key for approaching quartz-level temperature stability.

1Patent families A-C (Appendix D) are related to designs that are amenable to tem-
perature compensation by p-type doping.
2Initially published as a conference paper of narrower scope [77]
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The error source associated with the release etch holes in the resonator plates
was eliminated by fabricating monolithic resonators using the second varia-
tion of the VTT electrostatic MEMS process (Section 1.4). With this process
choice, the angular alignment of the resonators with respect to the silicon crys-
tal orientation was somewhat degraded, but this could be characterized with
dedicated test resonator designs (see Appendix A.3) and taken into account
in the analysis.
An n-type doping range up to a carrier concentration of n = 7.5× 1019cm−3

was covered by fabricating resonators on five arsenic/phosphorus doped wafers.
Results for p-type doped silicon were obtained from two boron doped wafers,
up to a concentration of n = 3 × 1019cm−3. Wafers were grown with the
Czochralski method and provided by Okmetic oyj. Specifications for the wafers
are given in Appendix B.1, and they are referred to with shorthands B3, B0.6,
As1.7, As2.5, P4.3, P4.7 and P7.5, indicative of the dopant element and level,
respectively.

4.3.1 Experimental approach

All the fabricated wafers included seven different types of resonator variations,
each of which had a different functional dependency on the elastic parameters.
The variations consisted of five LE mode resonators and two Lamé mode res-
onators, each having different in-plane orientation and their main resonance
mode around 10 MHz, see Fig. 4.2. Importantly, the air damping of the res-
onators was low enough (Q ∼ 10 000 for all designs) so that the resonance
frequencies could be measured under atmospheric pressure with sufficient res-
olution, see Appendix A.1 for details.
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Figure 4.2. Determination of the elastic constants c11, c12 and c44 was based on seven
resonance modes, whose frequencies have different dependencies on the cij pa-
rameters. Alignment of the resonators was varied from [110] to [100]. The table
contains the analytical formulas for the resonance frequency f(c11, c12, c44) –
which exist only for the two Lamé modes – and the sensitivities 1/f × ∂f/∂cij

for each mode. These exemplary sensitivities have been calculated at a lin-
earization point of (c11, c12, c44) = (163, 65, 79)GPa using the finite element
approach outlined in Section A.2 (zero angular alignment error and device
layer thickness of 15µm has been assumed). The listed numbers only illustrate
the character of the variation of the sensitivities within the set of modes. For
individual wafers, the sensitivities differ due to different linearization points,
device layer thicknesses and angular misalignments, respectively, and these
effects were taken into account in the analysis. (Paper III)

By measuring the frequency-vs-temperature curves of the resonators, the
three unknown elastic parameters could be determined from the seven mea-
sured data points at each temperature using a least squares fit. Details of the
method are described in Appendix A.2.
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4.3.2 Extracted elastic parameters

Figure 4.3. (a)–(g): Measured f vs. T data of all resonance modes on all wafers is shown
with blue open circles. Dashed blue lines are second order polynomial fits to
the data; fit coefficients are collected in Table B.2. All plots have a similar
scaling of axes. (e): Experimental data from wafer P4.1 have been overlaid
with corresponding numerical estimates fthk (T ) which use the fitted parameters
cij(T ) as an input (red lines with dots). (Paper III)

The measured frequency vs. temperature curves are shown for all modes on
all wafers in Fig. 4.3, and the related temperature coefficients of frequency are
collected in Table B.2.On the weakest doped wafer B0.6, all f vs. T curves lie
almost on top of each other, and the linear temperature coefficients are near -
30 ppm/K. On wafer B3, the slopes of the curves are decreased in magnitude,
and the biggest change is observed for the Lamé-0◦ mode. On the n-type
doped wafers larger effects are observed. The slope of the f vs. T curve of
the Lamé-45◦ mode is gradually increased with increasing doping, and above
2× 1019 cm−3 the slopes are positive. Lamé-0◦ mode is almost unaffected by
doping, and the f vs. T curves of the LE modes span the region between
the two Lamé modes. The elastic parameters cij(T ) were extracted from the
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measured frequency data. Results are shown in Fig. 4.4. The magnitude of
the elastic constants is observed to decrease upon increased doping, except for
the c12 elastic constant which gets larger with increasing n-type doping. For
closer investigation of the thermal dependency of the cij(T ) curves, second-
order polynomials centered at T0 = 25◦C were fitted to the elastic parameter
data as

cij(T ) = c0
ij [1 + aij(T − T0) + bij(T − T0)2], (4.5)

where aij and bij are the first-order and second-order temperature coefficients,
respectively, and c0

ij is the constant term. A second-order expansion of cij(T )
was found to be valid to within ±20ppm for all cij(T, n). The results are
collected in Figs. 4.5(a)–(l) and in Table B.3. One should note that, in
Fig. 4.5, we have chosen to accommodate data points from both n- and p-
type doped wafers within same axes by representing p/n type doping with
negative/positive carrier concentrations. A detailed error analysis is provided
in Paper III.
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Figure 4.4. Elastic parameters c11, c12, c44, and c11 − c12 as a function of temperature
and doping. The legends denote the dopant elements and the doping level, see
Table B.1. Dashed lines are second-order fits to the cij vs. T data, and the fit
coefficients are displayed in Fig. 4.5 and in Table B.3. (Paper III)

4.3.3 Discussion

Extracted temperature coefficients of the elastic constants correspond rather
well to the previously published results at low dopant levels [78, 17]. Overall,
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Figure 4.5. Temperature coefficients of the elastic parameters cij as a function of carrier
concentration n. Data from p-type doped wafers are represented with nega-
tive carrier concentrations. The first, second and third columns represent the
constant terms c0

ij , linear coefficients (aij), and second-order coefficients (bij)
at T = 25◦C, respectively, see (4.5). c0

11−12, a11−12 and b11−12 are shorthands
for the coefficients of c11 − c12. Open blue circles are the experimentally de-
termined values of this work. Numerical values are given in Table B.3. Values
reported Bourgeois in [78] are shown as red triangles pointing down (weak p-
type doping) and as green triangles pointing left (weak n-type doping). Data
reported by Hall in Ref. [17] was used for calculating data points shown as
black triangles pointing up. Horizontal error bars indicate the carrier concen-
tration ranges calculated from the resistivity specification for each wafer (see
Table B.1). Vertical error bars are based on the error analysis presented in
Paper III. (Paper III)

the data points in Fig. 4.5 show clearly detectable trends. In general, it is seen
that arsenic (data points with 0 < n < 4 × 1019 cm−3) and phosphorus (n >
4× 1019 cm−3) as dopants do not stand out from the plots as separate groups,
which supports the view of the effects being of mainly electronic origin[16].
The magnitudes of the elastic parameters, i.e., the constant terms c0

ij , are
affected to within a few percent by increased doping over the tested wafers
with a decreasing trend for parameters c11, c44 and c11 − c12.
The effects on the elastic properties of silicon from n-type doping are best

observed in the shear elastic constant c11−c12 and, in particular, in its temper-
ature coefficients a11−12 and b11−12. Figure 4.5(k) shows that the linear tem-
perature coefficient a11−12 crosses zero at approximately n = 2 × 1019 cm−3.
When doping is further increased, a11−12 reaches a level of over +40ppm/K.
The effect appears to saturate with increasing doping. Figure 4.5(l) shows that
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the second order coefficient b11−12 is negative for all studied doping levels, with
a maximum deviation from zero of approximately −200 ppb/K2. This would
translate to a 250 ppm frequency deviation over a range of 100◦C3. Impor-
tantly, one finds that the second order coefficient b11−12 appears to approach
zero when the n-type doping level is above n = 4.1×1019 cm−3. This suggests
a possibility of a flat or positive second order response at high enough doping,
strongly motivating further investigation of n-type doping beyond 1020 cm−3,
see Sections 4.5 and 4.7.
The main effect to temperature compensation with p-type doping is ob-

servable in Fig. 4.5(h). The linear temperature coefficient a44 approaches
zero with increasing p-type dopant concentration. However, zero level is not
crossed even with the highest doping level of 3×1019 cm−3. The second-order
coefficient b44 is seen to grow in magnitude with increased p-type doping4. N-
type doping is observed to have a relatively small effect on coefficients a44 and
b44. Ideally, according to Keyes’ theory, there should be no effect at all, see
Eq. (4.2).
It was estimated that using the extracted elastic parameters, one can simu-

late the frequency of an arbitrary resonance mode, fabricated on a wafer with
similar carrier concentration as in our experiments, with following accuracies:

• The absolute frequency of a resonator can be predicted with ±1000ppm
accuracy.

• The f − vs − T curve can be predicted with ±25 ppm accuracy over a
temperature range of T = −40 . . .+ 85◦C

3For a resonance mode whose frequency is purely dependent on c11 − c12.
4Later work by Ng et al. [73] included p-type doped wafers with doping level exceeding
1020 cm−3, where a44 ∼ +2ppm/K was observed. The second-order coefficient b44

remained clearly negative still at this (high) concentration level.
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4.4 Temperature compensated resonance modes

4.4.1 Simulations

Finite element modelling of parametrically varied beam and plate resonator
geometries was used to identify classes of resonance modes that can be tem-
perature compensated by n-type doping. This study is presented in Paper I (a
less detailed treatment was published at an earlier point as a conference paper
[79]). Linear sensitivities ∂f/∂cij of the resonance frequencies to the elastic
parameters were calculated through eigenfrequency analyses, and the first and
second order temperature coefficients TCF1 and TCF2were calculated using
Eqs. (2.13) and (2.14), respectively, based on the extracted elastic parameters
of Section 4.3 (interpolation data are presented in Appendix B.4). Details of
simulations are given in Appendix A.4. Two types of parametric sweeps for
geometry variation were performed to reveal modes amenable to temperature
compensation. The starting point for the parametric variations was a beam
resonator having dimensions of W × L×H = 40× 320× 10µm3 on a <100>
oriented silicon wafer with its length aligned along the [100] direction (see Fig.
4.6(a)). In simulation S1, the in-plane rotation angle θ of the beam was varied
from 0◦ to 45◦ so that the beam alignment changed from [100] to [110] (Fig.
4.6(b)). In simulation S2 (Fig. 4.6(c)), the beam width W was increased
from 40µm to 640µm so that the aspect ratio W/L changed from ∼ 0.1 to
2. No boundary conditions were applied to the model in order to allow for an
unrestricted appearance of resonance modes in the modal analysis.

Figure 4.6. Parametrically varied resonator geometry used for finite element modelling. (a)
Basic geometry used as a starting point of the simulations. (b) In simulation
S1, the orientation of the beam was varied from [100] to [110]. (c) The in-plane
aspect ratio was varied from ~0.1 to 2 in simulation S2. (Paper I)
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4.4.2 Classes of temperature compensated modes

The analysis first concentrated on identifying the resonance modes that have
a potential for (at least) first order temperature compensation. This was
achieved by evaluating TCF1 for all resonance modes that were obtained from
simulations S1 and S2. Evaluation of TCF1 was done at n = 7.5× 1019cm−3,
where the elastic parameters are changed the most from their values at low
doping levels. Resonance modes with TCF1 ≥ 0 were searched for, since they
can be temperature compensated to first order by decreasing the doping level
to a level at which TCF1 reaches zero.
Figure 4.7(a) shows the dispersion of the modal frequencies as a function

of the parametric variations. Results of simulations S1 and S2 are combined
in the same plot. The linear temperature coefficient TCF1, calculated at the
doping level of n = 7.5 × 1019cm−3, is illustrated with color coding for each
resonance mode. The coefficient TCF1 of selected resonance mode branches
are plotted in detail in Fig. 4.7(b), and representative mode shapes from
important branches are shown in Fig. 4.7(c).
The following modal families fulfilling the criterion TCF1 ≥ 0 can be iden-

tified in the dispersion plot5. The branch labels in parentheses correspond to
those in Fig. 4.7, and the subscript indices stand for overtones of the modal
branches.

• Out-of-plane flexural modes (OPF1 . . . OPF5): At θ = 0, W/L ∼ 0.1 these
modes have their TCF1 in the range of +8 ppm/K. . .+14 ppm/K (decreasing
with increasing overtone order). Within the OPF1 branch, TCF1 is observed
to peak at +20 ppm/K near W/L = 1, where the mode shape has evolved
into a saddle mode.

• In-plane flexural modes (IPF1 . . . IPF2): The behavior of these modes in
terms of TCF1 is largely similar to the OPF modes.

5Patent application family D (Appendix D) covers embodiments of these resonance
modes.
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Figure 4.7. (a) Resonance frequencies and their linear temperature coefficients TCF1 (color
coding) as a function of the resonator orientation θ (Simulation S1) and in-
plane aspect ratio W/L (Simulation S2). The top illustrations show how the
geometry is modified in the parametric simulations S1 and S2, respectively.
Dopant concentration of 7.5×1019cm−3 has been assumed for evaluating TCF1.
Modes with TCF1 ≥ 0 (from yellow to red) are the desired ones, since their
TCF1 can be set to zero by lowering the doping. Following modal branches and
their overtones (denoted by subscripts) are identified in the plot: out-of-plane
flexural modes (OPF ), in-plane flexural modes (IPF ), torsional modes (T ),
width extensional / square extensional modes (WE/SE), and length exten-
sional / Lamé modes. (LE/Lamé). (b) TCF1 for selected branches plotted in
detail. Solid lines show TCF1 evaluated at a doping level of n = 7.5×1019cm−3,
while their dashed counterparts denote the corresponding TCF1 evaluated at
n = 2.4 × 1017cm−3. The grey dashed line represents the TCF1 based on the
approximation discussed in the context of Eq. (2.5). (c) Illustrations of the
mode shapes of selected modes from the modal branches. Labels 1-8 correspond
to those found in plots (a) and (b). (Paper I)
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• Torsional modes (T1 . . . T3): These modes have a clearly positive TCF1 with
a maximum value of +18 ppm/K, which is attained when the resonator beam
is aligned with the [110] direction. TCF1 slightly decreases with increasing
overtone order. Branch T1 is coupled to OPF3, resulting in branch splitting
near θ = 10◦. Therefore, the T1 curve in plot 4.7(b) is missing at the splitting
region. Similar coupling occurs between T2/OPF4 and T3/OPF5 branches,
respectively.

• Width-Extensional / Square Extensional mode resonance branch (WE/SE):
the mode shape evolves from an x-directed WE mode at low in-plane aspect
ratios W/L (not shown in the dispersion plot due to the high modal fre-
quency) to an SE mode of a square plate (W = L), and then again to a
y-directed WE mode at W/L > 1. The WE modes approach a TCF1 value
of approximately +8 ppm/K, while TCF1 of the SE mode is close to zero.

• Length-extensional / Lamé mode resonance branch (LE/Lamé): This branch
has a clearly positive TCF1 for all aspect ratios and for θ deviating from
zero by less than approximately 20◦. The mode shape evolves from a y-
directed length extensional (LE) mode into the Lamé (or wineglass) mode of
a square resonator (W/L = 1), and then further to an x-directed LE mode
as the resonator’s in-plane aspect ratio is further increased. For [100] align-
ment, maximal TCF1 of slightly more than +20 ppm/K occurs with the
pure Lamé mode, while TCF1 of the length extensional modes approaches
+14 ppm/K when the resonator geometry becomes more beam-like.

4.4.3 Detailed temperature behavior

The LE/Lamé, T1 and WE/SE branches were investigated in more detail.
First, results from simulation S1 were used to find optimal configurations,
which minimize the total frequency deviation ∆ftotal (Eq. (2.8)) on the
LE/Lamé and T1 branches, when the resonator orientation θ and doping n
are varied (simulation S1). Then, optimal combinations of the in-plane aspect
ratio W/L and doping n were searched from the WE/SE and LE/Lamé

branches using data from simulation S2.
Figure 4.8 shows the results for the LE/Lamé and torsional T1 branches,

respectively, when θ is varied. It was found in Figs. 4.8(a),(e) that the lowest
carrier concentration that yields TCF1 = 0 within the LE/Lamé branch is
n0,LE ∼ 2.4 × 1019cm−3, while the corresponding limit for the T1 branch is
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slightly smaller, n0,T1 ∼ 2.1 × 1019cm−3. Above these carrier concentration
limits, there always exists an angle at which TCF1 ≈ 0 can be obtained.
The second order coefficient TCF2 (Figs. 4.8(b),(f)) is most negative between
n ∼ 2 . . . 4×1019cm−3 for both modal branches, and its magnitude is decreased
towards low and high doping concentrations. The total frequency deviation
∆ftotal is dominated by the non-zero linear coefficient TCF1 below the limits
n0,LE or n0,T1 , respectively. At higher doping levels, travelling along the
“valleys” of Figs. 4.8(c),(g), it is found that the total frequency variation
deviation ∆ftotal steadily decreases on both branches to ~150 ppm, reached
at the maximal doping level of nmax = 7.5× 1019cm−3. Optimal orientations
at this doping level are θ ∼ 23◦ and θ ∼ 28◦ degrees for the LE/Lamé and
T1 branches, respectively. The paths for minimum total frequency variation
coincide with the TCF1 = 0 curves. As discussed in the previous section, the
behavior of the IPF1 and OPF1 branches is very similar to the LE/Lamé
branch characteristics when θ is varied. Therefore, one can expect the results
of Fig. 4.8(a)-(d) to describe the behavior of these modes as well.
Figure 4.9 illustrates TCF1, TCF2 and ∆ftotal for the LE/Lamé and

WE/SE branches, respectively, when the aspect ratio W/L is varied. The
value TCF1 = 0 is reached at first at the doping level of n0,Lamé ∼ 1.9 ×
1019cm−3 for the LE/Lamé branch, and on the WE/SE branch the corre-
sponding limit is n0,W E ∼ 3.1×1019cm−3. The second order coefficient TCF2

stays below zero for all n and W/L, and its magnitude is again most negative
for n ∼ 2 . . . 4 × 1019cm−3. Since the zero-TCF1 region for the LE/Lamé
branch is limited to the doping range of n ∼ 1.9 . . . 2.3 × 1019cm−3(which
coincides with the most negative region for TCF2), the minimum total fre-
quency deviation remains at a comparatively high level of ~380 ppm. For the
WE/SE branch, the region with TCF1 = 0 is found at a doping range of
n ∼ 3.1 . . . 5.1× 1019cm−3, and a minimum total frequency deviation of ~250
ppm is reached with a square geometry (W/L = 1) at the upper limit of this
doping range.
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Figure 4.8. Details of temperature dependent behavior of the LE/Lamé branch (top row)
and the T1 branch (bottom row) as a function of doping level n and resonator
orientation θ. The angles θ = 0◦/45◦ correspond to alignment with [100]/[110].
Color coding of (a)/(e) and (b)/(f) illustrate the first and second order temper-
ature coefficients of frequency. The dashed lines of (a)/(e) denote the locus of
points (n, θ) for which TCF1 equals zero. The total frequency variation ∆ftotal
over the full temperature range of T = −40 . . .+85◦C is shown in (c)/(g). The
dashed lines of (c)/(g) denote the in-plane rotation angle θ, which minimizes
∆ftotal for each n. Figures (d)/(h) are plots of ∆ftotal along this line. Note
that orientations of θ below 16◦ have been omitted for the T1 branch due to
coupling with the OPF3 branch (see discussion in Section 4.4.2). (Paper I)

Figure 4.9. Details of temperature behavior within the LE/Lamé branch (top row) and
the WE/SE branch (bottom row) as a function of doping level n and the
resonator’s in-plane aspect ratioW/L. The plots are similar to that of Fig. 4.8
with the exception that here the ordinate θ has been replaced by W/L. (Paper
I)
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4.4.4 Discussion

It was seen in Section 4.3 that the shear term c11 − c12 was most affected by
n-type doping, and that it could be overcompensated with a good margin. The
simulation results of Fig. 4.7 show that many modes have this shear character.
Most intuitive of these modes are the torsional modes of a beam resonator.
Also the Lamé mode of a square plate resonator is a pure shear mode, as was
discussed in Section (2.1), since the following relationship holds for the [100]
aligned geometry,

fLamé ∼
√
c11 − c12. (4.6)

Figure 4.7 provides insight into as why also the length extensional mode has
a dominant shear mode character: it belongs to the same branch as the Lamé
mode, and much of the shear character is preserved even when the geometry of
the resonator is deviated from the shape of a square. Using the approximation
of Eq. (2.5) to evaluate the resonance frequency of an LE mode resonator,
and linearizing it with respect to the changes in the elastic parameters δcij ,
one finds the relationship

δfLE ∼ (δc11 − δc12) + 0.2δc12. (4.7)

It is apparent that the functional dependence of the LE mode on the cij

parameters is to a large part similar to that of the Lamé mode - except for the
added term 0.2δc12. The same reasoning applies also to the IPF and OPF
flexural modes, as the approximation based on Eq. (2.5) applies for these
modes as well.
The WE/SE branch is of special practical interest due to the fact that

the WE and SE bulk mode silicon resonators have shown good performance
in terms of phase noise as well as good electromechanical coupling, as seen
in Section 3.3 and Table 3.1. These modes, with their TCF1 in the range
0...+ 8 ppm/K, can still benefit from n-doping for temperature stabilization,
although the WE/SE bulk modes have clearly less shear-mode character than
the LE/Lamé modes. The lessons of Section 3.2.5 may become of value when
resonators with optimal temperature compensated behavior are designed. It
may occur that a design with the best frequency stability does not have any
nodal points at its perimeter, and flexible non-nodal anchoring has to be used.
In addition to the five highlighted modal families, one can pinpoint other

branches in Fig. 4.7(a) that fulfil the TCF1 ≥ 0 criterion. Typically these are
overtone modes of the five identified modal families or coupled modes having
combined characteristics.

53



Temperature compensation by degenerate doping of silicon

Temperature compensated behavior of the presented modal branches can be
found also in resonators fabricated on <110> oriented wafers. The presented
parametric geometry sweeps on a <100> oriented silicon wafer were chosen,
since they portrayed the temperature compensated behavior of all five modal
families. A calculation similar to simulation S2 was presented in [79], but
with geometry aligned with the [110] direction. There it was observed that
neither the LE/Lamé branch nor the WE/SE branch could be temperature
compensated by n-type doping when using this alignment. Interestingly, the
elastic properties are isotropic in the plane of <111> oriented silicon wafers
[80], and thus temperature compensated behavior similar to that discussed
above cannot be found.

4.5 Possibility of 2nd order temperature compensation

It was seen in Section 4.4.3 that the total frequency deviation ∆ftotal can
be minimized down to a level of ∼ 150ppm for certain modal branches. The
decreasing nature of the total frequency deviation ∆ftotal of Figs. 4.8(d),(h)
raises the question of whether this trend would continue at even increased
doping. Most of the contribution to the remaining (non-zero) second order
coefficient TCF2 comes from the second order temperature coefficient b11−12,
which has a decreasing magnitude for n > 4× 1019cm−3 (see Fig. B.1(f)). To
illustrate the possible existence of a resonance mode with full second order
temperature compensation, b11−12(n) was assumed to grow linearly so that it
crosses zero at n ∼ 11×1019cm−3, Fig. 4.10(f). To simplify the treatment, all
other temperature constants c0

ij , a0
ij and b0ij of Fig. B.1 were assumed to remain

unchanged from their values at n = 7.5× 1019cm−3. Using these assumptions,
calculations for the LE/Lamé mode branch (Fig. 4.8(a)-(d)) for θ = 0◦ . . . 45◦

were repeated, now extending the doping level to n = 13 × 1019cm−3. The
results are shown in Figs. 4.10(a)-(e).
It was found in Fig. 4.10(b) that TCF2 approaches zero with increasing

doping, and finally reaches it at n ∼ 11.3 × 1019cm−3. Figure 4.8(e) shows
that the curves for TCF1 = 0 and TCF2 = 0 intersect each other at θ = 22.5◦

when the doping level is n ∼ 12× 1019cm−3. At this point the total frequency
deviation ∆ftotal reaches zero, as seen in Fig. 4.8(d).
Again, due to the similarity of the IPF , OPF and LE/Lamé branches (with

θ variation), the qualitative result obtained here can be expected to apply
among all of these branches. Analogously, there is a possibility of a similar
optimum (with regard to the in-plane aspect ratio W/L) on the WE/SE
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Figure 4.10. Extrapolated temperature behavior of the LE/Lamé branch, when orienta-
tion θ and doping n are varied. (a)-(d) are similar to Fig.4.8(a)-(d). (e)
reproduces TCF1 = 0 and TCF2 = 0 curves from plots (a) and (b) and high-
lights their crossing. (f) Used extrapolation (blue dashed line) for b11−12(n)
for calculation of the result. (Paper I)

branch6.

4.6 Long term stability and quality factors of heavily doped Si

The long-term stability of a resonator is of high importance for its applicability
as a frequency reference. It was a justified concern, whether heavy doping of
silicon with phosphorus atoms might degrade the stability of silicon. It also
had to be verified if the low level of dissipations in silicon (see Section 2.7)
would be preserved with high doping levels. These aspects had the potential
to act as show stoppers for the whole concept of doping based temperature
compensation in Si MEMS.
Results presented in Paper IV remove the concerns. For HD-silicon, a long

term stability of better than ∼ 1 ppm/year was demonstrated (Fig. 4.11), and
the intrinsic material losses were shown to stay at a very low level, maintaining
the resonator Q× f product at the 1013 level (Fig. 4.12).

6Patent family E (Appendix D) relates to second-order temperature compensated
resonators.
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Figure 4.11. (a) Temperature of the climate chamber during the stability measurement.
The profile consisted of repeated temperature ramps on a range of T =
−20 . . . + 60◦C and sections where the temperature was held constant at
T = +30/ + 40◦C . Samples were removed from the climate chamber for
periods with no data (for example t = −130 . . . − 70 days). (b) Frequency
drift of the resonators. The greyed out regions represent 1-ppm corridors.
Rows of data have been ordered according to the magnitude of the TCF of
the resonators. (c) Design type, resonance frequency, TCF and doping level
of the resonators. (Paper IV)

4.7 Experimental verification of 2nd order temperature
compensation: ±10 ppm Si resonators

After the prediction presented in Section 4.5, there was a strong incentive to
search for full second order temperature compensated behavior of a resonator,
by doping silicon ultra-heavily to (n-type) carrier concentration levels above
n ∼ 1020cm−3. In commercially available (Czochralski grown) silicon wafers,
the attainable doping level was practically limited to n ∼ 7.5× 1019cm−3. In
semiconductor processing, ion implantation can routinely be used for regions
with doping levels above 1020cm−3, but typically the penetration depths are
very small [42]. A proprietary process was developed at VTT for doping the
silicon device layer of SOI/cavity-SOI wafers with phosphorus well beyond
1020cm−3. The results of ultra-heavily doped (UHD) silicon resonators are
summarized in Paper II. Details of the VTT UHD fabrication process as well
as the used resonator designs are excluded from the scientific scope of this
dissertation.
First, electrostatically coupled (bare UHD-silicon) resonators were fabri-

cated. Figure 4.13(a) shows that the intrinsic material losses (See Section
2.7) stay at a very low level even at extreme doping levels, although the Q×f
product appears to be reduced to ∼ 30% of that seen for HD-silicon (Fig.
4.12). The prediction of the possibility of full second-order temperature com-
pensation was shown to be true: TCF2 of extensional mode resonators was
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Figure 4.12. Quality factors of sets of two types of Lamé mode resonators on a moderately
boron-doped wafer and on two heavily phosphorus-doped wafers. (Paper IV)

indeed observed to cross zero, when the doping level was high enough. The
results of Fig. 4.13(b) indicated that

1. There is an optimal doping level which, together with a correct design,
yields TCF1 ∼ TCF2 ∼ 0 simultaneously, which results in quartz level
frequency stability. The best experimentally demonstrated level of stability
was ±10 ppm for a temperature range of T = −20 . . .+ 85◦C .

2. The initially negative second order temperature coefficient TCF2 could be
made positive, up to TCF2 ∼ +15ppb/◦C2.

Observation 1 leads to attractive possibilities for realizing various types of
passively temperature compensated bare silicon resonators, but observation 2
is the key for realizing piezoelectrically transduced silicon MEMS resonators
with quartz class frequency stability: Piezoelectric actuation requires addi-
tion of piezoelectric and metal (electrode) layers to the resonator device,
and, practically all such materials (typically AlN + Mo/Al) have negative
first- and second-order temperature coefficients TCF1 and TCF2, respectively
[81, 82, 83]. By balancing the positive contribution from the UHD-Si resonator
body and the negative effect from the piezoelectric and metallic layers to both
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Figure 4.13. (a) Quality factor of a bare UHD-Si (n > 1020cm−3) 10-MHz Lamé mode res-
onator with [100] alignment under vacuum of p < 0.1mbar. (b) Temperature
characteristics of electrostatically coupled (bare silicon) extensional mode res-
onators made at VTT. Resonators made of ordinary silicon (n ∼ 1018cm−3),
heavily doped silicon (HD-Si, n ∼ 5 × 1019cm−3 ), and ultra heavily doped
silicon (UHD-Si, n > 1020cm−3) are compared. With optimized doping and
resonator design, a stability of ±10 ppm was reached. In UHD-Si devices, the
initially negative second order temperature coefficient can be made positive,
up to TCF2 ∼ +15ppb/◦C2. (Paper II)

Figure 4.14. Illustration of matching the thicknesses of the UHD-Si/AlN/Al layers for an
optimally flat f -vs-T curve. (Paper II)

TCF1 and TCF2 by correct composition of the resonator, it is possible to
reach quartz level frequency stability, see Fig. 4.14.
The PiezoMEMS process flow (Section 1.4) was made compatible with UHD

silicon device layer fabrication, and Si/AlN/Al stack thicknesses were opti-
mized for minimizing TCF1 and TCF2. At best, this optimization resulted in
resonators having a frequency stability of ±10ppm over T = −40 . . .+ 85◦C,
see Fig. 4.157.

7It should be noted that the quality factor of Q ∼ 4200 was limited here by suboptimal
anchoring of the resonator. Low intrinsic dissipation in UHD-Si allows for orders of
magnitude higher quality factor, see Fig. 4.13(a).
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(a)

(b)

Figure 4.15. a) f−vs−T curves of three 23 MHz PiezoMEMS extensional mode resonators.
Data points are shown as red dots, and the blue line is a 2nd order polynomial
fit. The scatter between measured data and the fit is expected to be caused
by the fact that the measured resonators were non-packaged and measured
in open-air. (b) Example frequency response of the resonator. (Paper II)
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5. Conclusions

Some of the consequences of the findings with piezoelectrically transduced
silicon resonators have already been presented in Section 3.2.5, and the results
on the elastic parameter extraction and identification of classes of temperature
compensated modes were discussed in Sections 4.3.3 and 4.4.4, respectively.
In this Chapter, these conclusions are summarized on a more general level and
extended with a few new ones.

5.1 Physical origin of temperature compensation

The physics behind the elastic constants of silicon being affected by the doping
level is mainly electronic in origin, and can be described qualitatively in the
following way. The density of charge carriers n, or doping level, affects how
the (multiple) conduction bands are filled. The distribution of the charge
carriers within the band structure is also affected by the temperature through
the Fermi-Dirac distribution, Eq. (4.4). As a result, the Gibbs free energy
G(n, T ) is a function of both doping level n as well as temperature T, and
this is propagated to the behavior of the elastic constants cij(n, T ) as they are
the strain derivatives of G, see Eq. (4.1). It was seen in this work that these
mechanisms can act together very favorably for temperature compensation of
silicon resonators.

5.2 Progress towards a MEMS-based TCXO

Realization of a quartz-like silicon MEMS resonator, enabling performance
good enough for fulfilling TCXO specifications has moved much closer to re-
ality through the results achieved in this work.

• Achieving the required noise performance with piezoelectrically transduced
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silicon resonators was shown to be possible.

• The result of ±10ppm frequency stability shows that passively temperature
compensated piezoelectrically coupled silicon MEMS resonators can reach a
similar performance to quartz crystals of best possible frequency stability.
Tunability of the resonator is enough for correcting the remaining tempera-
ture dependent variation in the same way as is done in today’s quartz based
TCXOs. For oscillators with slightly more relaxed frequency stability spec-
ifications, a temperature sensor might not be needed at all.

Manufacturability, or repeatability of the resonator characteristics, is a key
challenge to overcome for commercial applicability of the approach pursued in
this work. Figure 5.1 illustrates the scatter between the f -vs-T curves as well
as the initial accuracy error of resonators on a wafer of piezoelectrically trans-
duced UHD-Si resonators. For approximately two thirds of the resonators,

Figure 5.1. f -vs-T curves from ∼ 30 resonators spanning the wafer on the south-north
direction. Note that the ∆f is given in relative units, and hence the initial
frequency error is absent. The top inset shows the initial frequency f0 error,
which has a standard deviation of 1500 ppm. Bottom inset illustrates the
location of the measured dies on the wafer. (Paper II)

the frequency stability is within ±20ppm. The distribution of the initial ac-
curacy has a standard deviation of 1500 ppm. The tunability of approximately
250 ppm (See Table 3.1) of these resonators is clearly not enough for correct-
ing an initial accuracy error of this size. However, one of the advantages of
the piezoelectric transduction scheme is that it sensitizes the frequency (and
its temperature dependency) to the thicknesses of the material layers of the
composite resonator. Both the temperature characteristics as well as the fre-
quency of the resonator are functions of the thicknesses of the layers in the
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Si/AlN/Al stack. Thus, selective addition or removal of material can be used
for the correction of the initial accuracy and/or tuning of the f -vs-T curves
for better overlap with each other. Mapped ion beam trimming, used in the
microacoustic filter (SAW, BAW, FBAR) industry, is a technique that could
potentially be used for achieving this goal [84].

5.3 Outlook

The findings of this work are applicable to timing and frequency references
outside the TCXO specification as well. The frequency stability of ±10 ppm,
although currently demonstrated with devices at∼ 20MHz, can be straightfor-
wardly realized e.g. with low frequency (typically 32 KHz) flexural resonators
— the best quartz resonators for kHz-frequencies perform at ±50 ppm.
There is a possibility that the achievable frequency stability of UHD-Si res-

onator can be optimized to be remarkably less than the currently demonstrated
level of ±10 ppm. The results obtained thus far suggest that the 3rd order
temperature coefficient of frequency TCF3 could be considerably smaller than
that in quartz crystals. To study this possibility, more accurate characteriza-
tion of UHD-Si devices is needed, where the perturbations caused by open air
effects are removed.
There is some indication that the mechanical nonlinearities of HD-silicon

can be affected by doping [85]. The mechanical nonlinear limits of UHD-
Si are unknown, and they pose a relevant topic for investigation. Also the
long term stability characteristics have not yet been studied for UHD-silicon
resonators.
The demonstration of making silicon as temperature insensitive as quartz

can have general significance outside the field of frequency references - sili-
con belongs now to the rare selection of materials that can be very temper-
ature stable. The steps demonstrated in this work may help silicon MEMS
resonators to increase their penetration on the timing and frequency control
market. Considering the inertia, speed of development and scalability of sili-
con based MEMS fabrication, it is tempting to predict that quartz is going to
face tougher competition in the times ahead.
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6. Summary

In this dissertation, new scientific understanding was achieved on the design
and fabrication of piezoelectrically transduced silicon resonators that are pas-
sively temperature compensated with heavy doping. The research was moti-
vated by the two challenges silicon resonators were known to need improve-
ment on: the electrostatic transduction method was problematic due to the
requirement for a high bias voltage and narrow-gap fabrication process, and
the temperature stability of silicon resonators was orders of magnitude worse
than that of quartz crystals.
Chapter 3 discussed generations of piezoelectrically transduced silicon res-

onators that were designed, fabricated and characterized. The electrical per-
formance of the resonators progressed to a point at which an oscillator, based
on a width extensional mode resonator operating at 24 MHz, was demon-
strated to have a phase noise -128 dBc/Hz at 1 kHz offset from the carrier
frequency, which is good enough to meet the specification for a TCXO (temper-
ature compensated crystal oscillator). An experimental study was conducted
on piezoelectrically transduced square extensional mode resonators, whose di-
mensions were varied so that the main resonance mode occurred at a frequency
range of f = 13. . .30 MHz. As a result, an anchor coupling effect was iden-
tified, and design rules were developed for avoiding it. Also a subharmonic
nonlinear coupling mechanism was discovered, coupling a rotational resonance
mode to the main mode of the resonator at certain dimensions.
The effect of degenerate n- and p-type doping on the elastic parameters of

silicon was investigated experimentally, with a focus on the applicability to
temperature compensation, Chapter 4. It was identified that n-type doping
was more applicable for the purpose. Families of resonance modes that can
be temperature compensated using doping were identified, and design rules
for the optimization of the frequency stability were developed. The elastic
parameters of silicon cij(n, T ) were determined as a function of temperature
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(T = −40 . . . + 85◦C) and of n-type doping level up to n = 7.5 × 1019cm−3,
enabling modelling of the frequency-vs-temperature characteristics of an ar-
bitrary resonator design with good accuracy. Extrapolation from the results
resulted in a prediction of full second order temperature compensation in op-
timally designed resonators when the n-type doping level is above 1020cm−3.
The prediction was experimentally verified with demonstration of piezoelec-
trically transduced resonators, whose frequency stability was measured to be
within ±10ppm on a temperature range of T = −40 . . . + 85◦C, on par with
the best quartz crystals.
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A. Methods

A.1 Electrical characterization measurements

A.1.1 Frequency sweeps and f − vs−T curve determination

Electrical characterization of the resonators discussed in this thesis was based
on measuring the frequency response (frequency dependent complex impedance)
of the devices. Typically the resonators were measured on wafer level in at-
mospheric pressure on a Cascade Summit probe station using a HP 4294A
impedance analyzer. A two-needle probe card was used for the measurements,
and an open-short-load calibration was performed in the beginning of the
measurement. Measurements were done in the four-terminal pair configura-
tion with four 2-m BNC cables, and the two end connections to the probe
needles were ∼ 15 cm long. In the case of electrostatically transduced res-
onators, a DC bias voltage (up to 40 V) was applied between the resonator
and the electrodes.

T = -40C -20C 0C +20C +40C +60C +85C 
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Figure A.1. Measured admittance traces of the Lamé-45◦ resonators on wafer P7.5 mea-
sured at different temperatures. (Paper III)
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Determination of the frequency-vs-temperature behavior of resonators was a
routine measurement needed for example in Papers II, III and VII. For this,
the frequency responses at the resonance peaks were recorded at temperatures
from -40◦C to +85◦C with seven steps using the temperature-controlled wafer
chuck. Example traces are shown in Fig. A.1. A 15 minute stabilization
period followed after each temperature step before probing of the resonators
was started; the chuck temperature was well stabilized in less than 10 minutes
for all temperature steps. Clean dry air flow at a rate of 30 l/min was used
for purging. The effect from room temperature gas flow to resonator temper-
ature was found to be smaller than the specified uncertainty of ±0.5◦C of the
temperature control system (see Paper III).

A.1.2 Automatization

A measurement that is based on frequency sweeps is relatively slow: a full
f −vs−T characterization measurement for a set of 100 devices could take 12
hours1. Automatization of the measurements was implemented so that long
measurements could be performed during nights and weekends with minimal
intervention.
A LabView frontend for controlling the movements (stepping) of the probe

station chuck and selection of the devices to be measured was implemented2,
and both the temperature controller as well as the impedance analyzer were
steered over GPIB by an external Python program launched by the LabView
frontend. A typical measurement algorithm on the impedance analyzer would
first scan for resonance peaks on a wide frequency range around the expected
peak frequency (the resonance frequency would vary with temperature and
from device to device due to initial frequency scatter), and then zoom into a
detected resonance peak at a narrower frequency span. A web interface was
implemented to enable remote monitoring and control of the measurement.
The measurement data (including the measurement conditions such as the
chuck temperature and the impedance analyzer parameters), log files and mi-
croscope images of the devices were stored into a hierarchy of files and pushed
also to a MySQL database for later analysis.
1Probing should be done much faster in a production environment. This is possible,
e.g., by measuring the resonators as oscillators while probed, by connecting them with
an oscillator drive circuit integrated on a probe card.
2The first version of was created by Jerome Lamy, VTT.
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A.1.3 Parameter fitting and data analysis

The measured frequency responses were fitted to the Rm − Lm − Cm − C0

equivalent circuit (Fig. 2.3(a)). A Matlab algorithm, based on nonlinear
optimization (fminsearch), was implemented for running the fits for a large
set of recorded frequency responses in a batch. Typically, the fits were very
good for well-behaved resonances, see Fig. 2.3(b).
The measurement data was pulled from the measurements database to Mat-

lab using the mYm MySQL connector for Matlab [86]. Using SQL queries
made it possible to filter the data with, e.g., a device type or a measure-
ment condition, which enabled fast retrieval of the data sets of interest. This
approach made it flexible to write data analysis procedures, and to produce
outputs such as that in Fig. 4.3, for example.

A.2 Solving for elastic parameters from resonance frequencies

Section 4.3.1 (Paper III) introduced the experiment, where the values of the
elastic parameters were solved from the resonance frequencies of seven differ-
ent resonators, each having a different functional dependency on the elastic
parameters. The details of the extraction procedure are given here. The ap-
proach was influenced by that used by Bourgeois in Ref. [78].
The experimental data consists of measured resonance frequencies at dif-

ferent temperatures for all seven resonance modes fexpk (T ) (k = 1, . . . , 7).
Denote the corresponding theoretical estimates containing the cij dependen-
cies – obtained through finite element modelling (see Appendix A.4) – as
fthk (c11, c12, c44). We use an approach of first matching fexpk and fthk at a
reference temperature T0 (here T0 = 20◦C) by numerical minimization of a
cost function

g(cij) =
∑

k

[fexpk − fthk (cij)]2 (A.1)

to find elastic parameters cij(T0). Then, Eq. (2.11) can be written for each of
the individual modes,

δf
exp
k (T )
f
exp
k0

= 1
fthk0

∑
ij

∂fthk

∂cij
δcij(T ) + 1

2(α1∆T + α2∆T 2), (A.2)

where, fexpk0 and fthk0 refer to the measured and theoretical frequencies at the
reference temperature T0. In matrix form, Eq. (A.2) can be denoted as

δfexp(T ) = A · δc(T ) + β(T ). (A.3)
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where the vector δfexp contains the relative frequency changes, β(T ) is a
shorthand for the thermal expansion part, and the elements of the sensitivity
matrix A are defined as

akn = 1
fthk0

∂fthk

∂cn
, n = 11, 12, 44; k = 1, ..., 7. (A.4)

Sensitivity matrix elements are illustrated in Fig. 4.2. One should note that
Eq. (A.4) depends on the linearization point at which it is evaluated. The
changes in elastic parameters δc(T ) can be solved as a least squares fit from
Eq. (A.3),

δc(T ) = (ATA)−1AT [δfexp(T )− β(T )]. (A.5)

A.3 Test design for measuring an angular alignment error

In the study described in Section 4.3 (Paper III), fabrication of the devices
resulted in a small deviation of the resonator orientation from the intended
alignment with the crystal axes, which could have affected the accuracy of the
extraction of the elastic parameters. For the determination of the elastic pa-
rameters, it was of importance to take into account the angular misalignment
∆θ of the devices that had occurred during the fabrication. This deviation
was determined using the method illustrated in Fig. A.2. Due to anisotropy
of silicon, the resonance frequency of an LE mode beam resonator increases
by ~10% when the resonator alignment is rotated from [100] to [110]. Between
these directions, i.e., at ±22.5◦ from [110], the resonance frequency is most
sensitive to angular misalignment with ∆f/∆θ ∼ ±460 ppm/0.1 deg. Copies of
two LE resonators identical in dimensions, but oriented 45◦ to each other, both
at the most sensitive orientation of ±22.5◦ were included on the wafers. The
angular misalignment could be deduced from the up/down frequency shifts
±∆f of these resonators.

A.4 Finite element modelling

Comsol Multiphysics (version 3.6) was used for finite element modelling of
the resonators. In Paper III, numerical estimates of the modal frequencies
fthk (c11, c12,, c44) were calculated. Resonance frequencies were obtained with
modal analysis of full 3D geometries of the devices including the anchoring
regions. The calculations were performed for parameters c11, c12 and c44

spanning ranges of [160 . . . 168GPa], [63 . . . 68GPa] and [78 . . . 80GPa], re-
spectively, discretized to a grid of 5 × 5 × 5 points. Values were stored in
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+22.5˚ -22.5˚ 

2f 

[110] 

-22.5  

[110] 

    

Deviation  
from [110] 

Figure A.2. In-plane angular misalignment of the wafers can be deduced from the difference
of the resonance frequencies of two types of LE beam resonators, which are
designed at an angle of ±22.5◦ from [110] direction. In-plane rotation of the
resonators shifts the resonance frequencies up/down by ±460ppm/0.1 deg.
(Paper III)

lookup tables, and later retrieved for evaluation of Eqs. A.1 and A.4. Cu-
bic interpolation was used for evaluation of fthk (c11, c12,, c44) between the grid
points. The discretization was verified to be dense enough for accurate evalu-
ation of the linear sensitivity terms ∂fthk /∂cij in Eq. (A.4).
Similarly, the sensitivities were calculated for evaluation of the temperature

coefficients TCF1 and TCF2 in Section 4.4.2 (Paper I). For parametric simu-
lations such as those of Fig. 4.6, a scripted procedure was developed to vary
the simulation geometries: i) The 2D starting geometry was read from a mask
file by a Python program in which a geometry object was constructed. This
object had methods for deformation of the geometry with operations such as
scaling, rotation or overetch of the geometries. ii) The final mesh was defined
in the Gmsh 3D finite element mesh generator [87], and finally, iii) the mesh
was imported into Comsol for running the final analysis3. Simulation data
objects were stored into a MySQL database in the same manner as described
in Section A.1.3, enabling flexible analyses and fast generation of plots such
as those in Fig. 4.7.
The two-dimensional simulations of Paper X for modelling of the anchoring

losses were performed with the HiQLAB simulation package [88].

3In Comsol version 4.0 the scripting capabilities were upgraded, and, it appears that
now the procedure for parametric simulations could be implemented fully inside Com-
sol.
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B. Numerical data

B.1 Specifications for wafers used for cij(n, T ) determination

Table B.1. Details of the wafers for the silicon device layers used for elastic parameter
determination (Section 4.3). Wafers were grown with the Czochralski method
and provided by Okmetic oyj. Carrier concentrations were calculated from
the resistivity specification using Ref. [89]. Carrier concentration ranges are
included as error bars in Fig. 4.5. Angular misalignment was measured using
the method described in Appendix A.3. (Paper III)

wafer id dopant min max min max avg [deg] [ m] [μm]μ

B3 B 3.49 3.66 2.88 3.04 2.96 -0.6 23.8 3.1

B0.6 B 10 20 0.33 0.86 0.60 -0.1 15.6 3.5

As1.7 As 3.96 4.36 1.55 1.77 1.66 0.3 15.4 2.7

As2.5 As 2.94 3.08 2.39 2.52 2.46 -0.6 14.5 2.5

P4.1 P 1.67 1.76 3.98 4.22 4.10 0.0 14.6 2.6

P4.7 P 1.47 1.59 4.45 4.86 4.66 1.6 14.5 3.7

P7.5 P 0.95 1.05 7.05 7.89 7.47 0.5 14.5 1.7

angular

alignment

error

device

layer

thickness

total

thickness

variation

specified

resistivity

calculated carrier

concentration

[mOhm cm] [1019 cm-3]
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Numerical data

B.2 Measured TCF s of resonators on wafers with varied doping

Table B.2. Temperature coefficients of frequency TCF1, TCF2 and f0 of the resonance
modes of Fig. 4.3. The fits reproduced the f vs. T curves to within ±10 ppm
for all cases. (Paper III)
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B.3 Values of temperature coefficients of the elastic parameters
cij as a function of doping level

Table B.3. Values of temperature coefficients of the elastic parameters cij(T ) = c0
ij [1 +

aij(T − T0) + bij(T − T0)2]. Corresponding data points are plotted in Fig.
4.5. Confidence intervals ∆c0

ij , ∆aij and ∆bij are based on the error analysis
presented in Paper III. (Paper III)
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Numerical data

B.4 Interpolation of elastic parameter data

The temperature coefficients of the elastic constants of silicon for n type doping
range of n = 0 . . . 7.5× 1019cm−3 were interpolated using third order polyno-
mials fitted to the data of Table B.3 (also presented in Fig. 4.5). The data
points, the interpolation functions used in the simulations and the associated
coefficients are shown in Fig. B.1(a)–(j).

Figure B.1. Third order polynomial interpolation functions for the temperature coeffi-
cients of the elastic parameters cij as a function of carrier concentration
n. The dependent coefficient a12 is readily evaluated as a12 = (a11c

0
11 −

a11−12c
0
11−12)/c0

12, and a similar equation holds for b12. Coefficients of the
polynomial fits are given in (j). (Paper III)
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C. Derivations

C.1 Change in density vs. thermal expansion

The last two terms
− δL

L
(T )− 1

2
δρ

ρ
(T ) (C.1)

of Eq. (2.9) were expanded as

1
2(α1∆T + α2∆T 2) (C.2)

to arrive at Eq. (2.11), when a second order expansion for the thermal expan-
sion was used:

δL

L
(T ) = (α1∆T + α2∆T 2). (C.3)

Justification for this is the following. Let us see what happens if second
order effects are taken into account when expanding the density term

δρ/ρ = −δV/V, (C.4)

where V stands for the volume under investigation.
An infinitesimal change in volume δV relates to length changes δL through

V + δV = (L+ δL)3

= L3 + 3L2δL+ 3L(δL)2 + δL3

= L3 + 3L3 δL

L
+ 3L3(δL

L
)2 + L3(δL

L
)3

We have of course L3 = V , so

(V + δV ) = V + 3V δL
L

+ 3V (δL
L

)2 + V (δL
L

)3

⇒

δV/V = 3δL
L

+ 3(δL
L

)2 + (δL
L

)3. (C.5)
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Now, plugging Eq. (C.3) into Eq. (C.5) yields:

δV/V = 3α1∆T + 3α2∆T 2

+3(α2
1∆T 2 + 2α1α2∆T 3 + α2

2∆T 4)

+(α3
1∆T 3 + 3α2

1α2∆T 3 + 3α1α
2
2∆T 3 + α3

2∆T 6).

Keeping only terms up to second order in ∆T we obtain

δV/V = 3α1∆T + 3α2∆T 2

+3(α2
1∆T 2)

= 3[α1∆T + (α2 + α2
1)∆T 2]. (C.6)

Using values α1 = 2.84 × 10−6 K−1 and α2 = 8.5 × 10−9 K−2 for the ther-
mal expansion coefficients [78], one can approximate term α2

1 as negligible in
comparison with α2. Thus,

δρ/ρ ∼ −3[α1∆T + α2∆T 2], (C.7)

and Eq. (2.11) results.

C.2 Model for piezoelectric transduction

The piezoelectric transduction factor η is modelled here taking the three-
dimensional piezoelectric constitutive relation into account (neglecting any
shear terms). The result can be compared with that derived in Section 2.4.
Suppose that the piezo film is clamped to the resonator beam. We approxi-

mate that the strains in the lateral directions are zero (Sx = Sy = 0), which is
expected to give an upper estimate of the true coupling, and assume that the
piezolayer may move freely in the z direction so the vertical stress component
is zero (Tz = 0) [90]. When a z-directed electric field E3 is applied, we can
write the piezoelectric constitutive relation T = eE + cS in matrix form [38]:

Tx

Ty

0

 =


0 0 e31

0 0 e31

0 0 e33




0
0
Ez



+


c11 c12 c13

c21 c22 c23

c31 c32 c33




0
0
Sz

 (C.8)

Here we have neglected all the shear terms in e and c1. Only the nonzero
elements e31and e33 for AlN have been preserved. Solving for the unknown
1Simplifying the 6 × 1 vectors and 6 × 6 matrices to 3 × 1 and 3 × 3 dimensions,
respectively, when the engineering notation is used [38].

75
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lateral stresses and using elastic constant values of c13 = c23 = 120GPa and
c33 = 395GPa [59] yields

Tx = Ty =
(
e31 −

c13
c33

e33

)
E3 ≈ (e31 − 0.3× e33)E3, (C.9)

Following the derivation of Section 2.4, one obtains the following result for the
transduction factor:

ηpz = w (e31 − 0.3× e33) . (C.10)

Comparing with Eq. (2.32), it is seen that the z-directed electrical field
couples to a lateral force also through the piezoelectric coefficient e33, making
the effect stronger. For AlN, the piezoelectric coefficients are e33 = 1.55 Cm−2,
e31 = −0.58 Cm−2 [59].

C.3 Lamé mode and piezoelectric transduction

The elastic and piezoelectric properties of sputtered aluminum nitride are
isotropic in the plane of the wafer due to the polycrystallinity of the material.
Therefore, as seen in Eq. (C.9), the lateral stresses Tx and Ty are equal.
The Lamé mode, being a superposition of shear waves, is isochoric, which
means that each infinitesimal volume element dV of the material preserves its
volume. The resonator thickness does not change at all during oscillation, and
therefore, each area element dA at the top surface of the resonator preserves its
area accordingly. Equal lateral stresses Tx = Ty would deform an area element
dA in a way that would contradict the element’s area staying constant. Thus,
piezoelectric transduction of the Lamé mode cannot be achieved with an AlN
thin film.
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D. List of Patents & Public Patent
Applications

Table D.1. Patents and public patent applications
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Design Rules for Temperature Compensated
Degenerately n-Type-Doped Silicon

MEMS Resonators
Antti Jaakkola, Mika Prunnila, Tuomas Pensala, James Dekker, and Panu Pekko

Abstract— The first- and second-order temperature coefficients
and the total temperature-induced frequency deviation of degen-
erately n-type-doped silicon resonators are modeled. Modeling
is based on finite element modelling-based sensitivity analysis of
various resonator geometries combined with the experimental
results on doping-dependent elastic constants of n-type-doped

silicon. The analysis covers a doping range from 2.4 × 1017

to 7.5 × 1019 cm−3. Families of resonance modes that can be
temperature compensated via n-type doping are identified. These
include bulk modes, such as the width/length extensional modes
of a beam, Lamé/square extensional modes of a plate resonator,
as well as flexural and torsional resonance modes. It is shown that
virtually all resonance modes of practical importance can reach
zero linear temperature coefficient of frequency when correctly
designed. Optimal configurations are presented, where a total
frequency deviation of ∼150 ppm can be reached. The results
suggest that full second-order temperature compensation familiar
from AT cut quartz is not possible in silicon resonators with
doping below 7.5 × 1019 cm−3. However, an analysis relying
on extrapolated elastic constant data suggests the possibility of
full second-order temperature compensation for a wide range of
resonance modes when doping is extended beyond 1020 cm−3.
[2015-0018]

Index Terms— Micromechanical devices, radiofrequency
microelectromechanical systems, acoustic waves, temperature
dependence, design for manufacture.

I. INTRODUCTION

DURING recent years, single-crystal silicon MEMS res-
onators have gained a foothold in timing and

frequency control applications, but the market is still
dominated by quartz crystals. The main disadvantage of silicon
resonators has been their high thermal drift of about
-30 ppm/K, which needs to be compensated in one way or
another. Typically temperature compensation of silicon MEMS
resonators is achieved with active circuit level compensation
techniques, often improved with passive structural compensa-
tion based on added amorphous SiO2 structures.

In this paper, we extend our previous work [1], and identify
classes of resonance modes that can be first order temperature
compensated through n-type doping and correct resonator
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design. Passive temperature compensation through heavy dop-
ing of silicon has attracted wide attention recently [2]–[5],
and experimental results have suggested that temperature
stabilization with n-doping is applicable to various types of
resonance modes. However, design rules and methodology
for finding suitable temperature stabilized resonator designs
resonators are missing thus far.

In this work, the first part of the analysis identifies a set of
resonance modes that can be temperature compensated with
n-type doping. To achieve this, the temperature coefficients
for various resonance modes are calculated by combining a
finite element modelling based sensitivity analysis with recent
experimental data on doping dependent elastic constants of
silicon with n-type doping in the range of n = 1.7 . . .7.5 ×
1019cm−3 [6]. This part of the analysis builds upon our prior
results [1], which were based on a theoretical model for
estimating the values of the elastic constants. After identifying
modal families that could be temperature compensated by n
doping, properties of these modal families are investigated
in detail. First and second order temperature coefficients,
and the total frequency stability, are calculated for various
resonator geometries, orientations and doping levels. Optimal
configurations are found, where the total frequency deviation
is minimized to ∼150 ppm over the full temperature range of
T = −40... + 85 °C.

The results suggest that full second order temperature
compensation, available for certain quartz cuts, is not possible
for doping levels below or equal to 7.5×1019cm−3, for which
experimental data exists. However, elastic parameter data
beyond 7.5×1019cm−3 is extrapolated, and it is illustrated that
there is a possibility of second order temperature compensation
for doping beyond 1020cm−3.

II. METHODS

A. Temperature Coefficients of Frequency and
Total Frequency Deviation

The temperature dependent frequency of a resonator
is customarily expanded as a power series (up to the
second order)

f (T ) = f0 [1 + T C F1 × �T + T C F2 × �T 2], (1)

where �T = T − T0 is the temperature difference and
f0 is the frequency at the reference temperature T0. T C F1 and
T C F2 are the first and second order temperature coefficients
of frequency, respectively, defined also at the reference tem-
perature T0. In this work, the temperature dependencies are
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studied over the extended industrial temperature range of
T = −40... + 85 °C, and the convention of selecting
T0 = +25 °C is followed. Higher-order temperature
coefficients of frequency are neglected.

As a figure of merit for the temperature stability of a
resonator, the total relative frequency deviation over the full
temperature range is used:

� ftotal = max
T

(� f/ f0) − min
T

(� f/ f0) , (2)

where the relative frequency change is given by

� f

f0
= f − f0

f0
= T C F1 × �T + T C F2 × �T 2. (3)

Next, typical orders of magnitude of the total frequency
deviation � ftotal are discussed shortly. For weakly doped
silicon (n < 1018cm−3), the first order temperature coefficient
of frequency dominates, and typically the total frequency
drift for any resonance mode is more than 3000 ppm over
T = −40... + 85 °C. N-type doped silicon resonators with
first order temperature compensation (T C F1 = 0) have been
demonstrated [4], [6], whereby the total frequency deviation
� ftotal of <300 ppm comes then from T C F2 alone. Full
second order temperature compensation, i.e. where both T C F1
and T C F2 are simultaneously set to zero, has not been
demonstrated for doped silicon resonators. This is available in
certain quartz cuts, where the remaining small (∼20 ppm) total
frequency deviation comes from a higher-order temperature
dependency.

B. Calculation of T C F1 and T C F2

The frequency of an acoustic resonator is given by

f = 1

L

√
c

ρ
, (4)

where ρ, c and L are the resonator material density, char-
acteristic stiffness and characteristic length, respectively. The
characteristic stiffness depends on the elastic parameters, and
for silicon, the three independent parameters c11, c12 and c44
fully describe the elastic properties. The relative frequency
change due to a change in the (temperature dependent) elastic
parameters δci j (T ), thermal expansion δL(T )/L and change
in density δρ(T )/ρ can be denoted as

δ f

f
(T ) = 1

f

∑
i j=11,12,44

∂ f

∂ci j
δci j (T ) − δL

L
(T ) − 1

2

δρ

ρ
(T ).

(5)

We assume a second order approximation for thermal
expansion

δL

L
(T ) = (α1�T + α2�T 2), (6)

where α1 and α2 are the first and second order thermal
expansion coefficients, respectively. The last term in (5) can
be expressed as

δρ

ρ
= −δV

V
= −3

δL

L
− 3(

δL

L
)2 − (

δL

L
)3, (7)

where relation to δL/L is justified by isotropy of thermal
expansion in silicon. Using (6) in (7) and keeping terms up to
second order in �T one obtains

δρ

ρ
= −3[α1�T + (α2 + α2

1)�T 2]. (8)

Using values α1 = 2.84×10−6 K−1 and α2 = 8.5×10−9 K−2

for the thermal expansion coefficients [7], one can approximate
term α2

1 as negligible in (8), and express (5) as

δ f

f
(T ) ≈ 1

f

∑
i j=11,12,44

∂ f

∂ci j
δci j (T ) + 1

2
(α1�T + α2�T 2).

(9)

The temperature dependency of the elastic parameters for
a given doping level n is given by a second order expansion
such that

ci j (T, n) = c0
i j (n)[1 + ai j (n)�T + bi j (n)�T 2], (10)

where ai j (n) and bi j (n) are the first- and second-order temper-
ature coefficients of the elastic parameters, respectively, and
c0

i j (n) is the constant term. The linear temperature coefficient
of frequency T C F1 is defined as the first derivative of (9)

T C F1 = 1

f

d f

dT

∣∣∣∣
T =T0

= 1

f

∑
i j

∂ f

∂ci j
c0

i j ai j + α1/2, (11)

and the second order temperature coefficient of frequency
T C F2 is obtained as

T C F2 = 1

2 f

d2 f

dT 2

∣∣∣∣
T =T0

= 1

f

∑
i j

∂ f

∂ci j
c0

i j bi j + α2/2. (12)

C. Numerical Sensitivity Analysis

Linear sensitivities ∂ f/∂ci j of the resonance frequen-
cies to the elastic parameters are needed for evaluation
of (11) and (12); these derivatives were calculated using finite
element modelling with Comsol Multiphysics. Eigenfrequency
analyses were used for calculating ∂ f/∂ci j for the resonance
modes. Two routines of parametric sweeps for geometry
variation were performed. A starting point for the paramet-
ric variations was a beam resonator having dimensions of
W × L × H = 40 × 320 × 10 μm3 on a 100 oriented silicon
wafer with its length aligned along the 100 direction
(see Fig. 1(a)). In simulation S1, the in-plane rotation angle θ
of the beam was varied from 0° to 45° so that the beam
alignment changed from 100 to 110 (Fig. 1(b)). In simula-
tion S2 (Fig. 1(c)), the beam width W was increased from
40 μm to 640 μm so that the aspect ratio W/L changed from
∼ 0.1 to 2. No boundary conditions were applied to the model
in order to allow an unrestricted appearance of resonance
modes in the modal analysis.

D. Interpolation of Elastic Parameter Data

Elastic constants that were used as input for the calculations
over the full doping range of n = 0 . . . 7.5 × 1019cm−3

were based on recent experimentally determined data set
for heavily-doped (n > 1.7 × 1019cm−3) silicon [6]
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Fig. 1. Parametrically varied resonator geometry used for finite element
modelling. (a) Basic geometry used as a starting point of the simulations.
(b) In simulation S1, the orientation of the beam was varied from 100 to 110.
(c) The in-plane aspect ratio was varied from ∼0.1 to 2 in simulation S2.

(supported by results in [8]), and on the data for relatively
weakly-doped (n = 2.4 × 1017cm−3) silicon [7]. Third order
polynomials were fitted to the data to form the doping depen-
dent functions c0

i j (n), ai j (n) and bi j (n). The data points,
the interpolation functions used in the simulations and the
associated coefficients are shown in Fig. 2(a)–(j).

E. Analysis Procedure

The following analysis concentrates first on identifying
the resonance modes that have a potential for (at least)
first order temperature compensation. This is achieved by
evaluating T C F1 for all resonance modes that were obtained
from simulations S1 and S2. Evaluation of T C F1 is done
at n = 7.5 × 1019cm−3, where the elastic parameters are
maximally deviated from their original values at low doping
levels. Resonance modes with T C F1 ≥ 0 are searched for,
since they can be temperature compensated to first order by
decreasing the doping level.

After identifying the interesting resonance modes, we inves-
tigate the whole parameter space of orientation, in-plane aspect
ratio and doping to find optimal combinations producing the
lowest total frequency deviations.

III. RESULTS

A. Identification of Modal Branches Which Can Be
Temperature Compensated

Fig. 3(a) shows the dispersion of the modal frequencies as
a function of the parametric variations. Results of simulations
S1 and S2 are combined in the same plot. The linear tem-
perature coefficient T C F1, calculated at the doping level of
n = 7.5 × 1019cm−3, is illustrated with color coding for each
resonance mode. T C F1 of selected resonance mode branches
are plotted in detail in Fig. 3(b), and representative mode
shapes from important branches are shown in 3(c).

The following five modal families fulfilling the criterion
T C F1 ≥ 0 can be identified in the dispersion plot. The branch
labels in parentheses correspond to those in Fig. 3, and the
subscript indices stand for overtones of the modal branches.

1) Out-of-Plane Flexural Modes (O P F1 . . . O P F5):
At θ = 0, W/L ∼ 0.1 these modes have their T C F1
in the range of +8 ppm/K. . .+14 ppm/K (decreasing
with increasing overtone order). Within the O P F1
branch, T C F1 is observed to peak at +20 ppm/K near

W/L = 1, where the mode shape has evolved into a
saddle mode.

2) In-Plane Flexural Modes (I P F1 . . . I P F2): The behav-
ior of these modes in terms of T C F1 is largely similar
to the O P F modes.

3) Torsional Modes (T1 . . . T3): These modes have a clearly
positive T C F1 with a maximum value of +18 ppm/K,
which is is attained when the resonator beam is aligned
with the 110 direction. T C F1 slightly decreases with
increasing overtone order. Branch T1 is coupled to
O P F3, resulting in branch splitting near θ = 10°.
Therefore, the T1 curve in plot 3(b) is missing at
the splitting region. Similar coupling occurs between
T2/O P F4 and T3/O P F5 branches, respectively.

4) Width-Extensional/Square Extensional Mode
Resonance Branch (W E/SE): the mode shape
evolves from an x-directed WE mode at low in-plane
aspect ratios W/L (not shown in the the dispersion plot
due to the high modal frequency) to an SE mode of a
square plate (W = L), and then again to a y-directed
WE mode at W/L > 1. The WE modes approach a
T C F1 of approximately +8 ppm/K, while T C F1 of the
SE mode is close to zero.

5) Length-Extensional/Lamé Mode Resonance Branch
(L E/Lamé): This branch has a clearly positive T C F1
for all aspect ratios and for θ deviating from zero by
less than approximately 20°. The mode shape evolves
from a y-directed length extensional (LE) mode into
the Lamé (or wineglass) mode of a square resonator
(W/L = 1), and then further to an x-directed LE mode
as the resonator in-plane aspect ratio is further increased.
For 100 alignment, maximal T C F1 of slightly more
than +20 ppm/K occurs with the pure Lamé mode,
while T C F1 of the length extensional modes approaches
+14 ppm/K when the resonator geometry becomes more
beam-like.

Fig. 3(b) shows that the T C F1 curves for the O P F1,
I P F1 and L E branches are very similar to each other for
θ = 0° . . . 45°. The characteristic stiffness, introduced
in Eq. (4), for an LE or flexural mode of a beam resonator
is given by the Young’s modulus in the direction of the
beam, which, for example, in the [100] direction can be
approximated by

Y[100] = c11 − 2c2
12/(c11 + c12). (13)

This approximation was calculated numerically for all orien-
tations θ and applied to solve the linear sensitivities ∂ f/∂ci j

of (11). The obtained approximate T C F1 curve has been
plotted in Fig. 3(b), and it is seen to follow the O P F1, I P F1
and L E branches rather well.

In Fig. 3(b), values of T C F1 at doping level of
n = 2.4 × 1017cm−3 have been plotted as well, in addition to
the corresponding values calculated at the maximum doping
level. T C F1 was found to be near −30 ppm/K for all cases.

B. Detailed Temperature Behavior

In this Section, branches L E/Lamé, T1 and W E/SE are
investigated in more detail. First, results from simulation
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Fig. 2. (a)–(i) Temperature coefficients of the elastic parameters ci j as a function of carrier concentration n. Blue dots with error bars represent experimental
data from [6] and the black triangles at the lowest doping level represent data from [7]. Red dashed lines are third order polynomial fits to the experimental
data; these fits were used in the simulations to evaluate (11), (12) and (2) with varying n. The first, second and third column represent the constant terms c0

i j ,

linear coefficients ai j , and second-order coeffients bi j at T = 25 °C , respectively, see (10). c0
11−12, a11−12 and b11−12 are shorthands for the coefficients

of c11 − c12. The dependent coefficient a12 is readily evaluated as a12 = (a11c0
11 − a11−12c0

11−12)/c0
12, and a similar equation holds for b12. (j) Coefficients

of the polynomial fits.

S1 are used to find optimal configurations which minimize the
total frequency deviation � ftotal (Eq. (2)) on the L E/Lamé
and T1 branches when the resonator orientation θ and doping n
are varied (simulation S1). Then, optimal combinations of
the in-plane aspect ratio W/L and doping n are searched
from the W E/SE and L E/Lamé branches using data from
simulation S2.

Figure 4 shows the results for the L E/Lamé and tor-
sional T1 branches, respectively, when θ is varied. It is
found in Figs. 4(a),(e) that the lowest carrier concentration

that yields T C F1 = 0 within the L E/Lamé branch is
n0,LE ∼ 2.4 × 1019cm−3, while the corresponding limit for
the T1 branch is slightly smaller n0,T1 ∼ 2.1 × 1019cm−3.
Above these carrier concentration limits, there always exists
an angle at which zero T C F1 can be obtained. The
second order coefficient T C F2 (Figs. 4(b),(f)) is most negative
between n ∼ 2 . . . 4 × 1019cm−3 for both modal branches,
and its magnitude is decreased towards low and high
doping concentrations. The total frequency deviation � ftotal
is dominated by the non-zero linear coefficient T C F1 below
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Fig. 3. (a) Resonance frequencies and their linear temperature coefficients T C F1 (color coding) as a function of the resonator orientation θ (Simulation S1) and
in-plane aspect ratio W/L (Simulation S2). The top illustrations show how the geometry is modified in parametric simulations S1 and S2, respectively. Dopant
concentration of 7.5×1019cm−3 has been assumed for evaluating T C F1. Modes with T C F1 ≥ 0 (from yellow to red) are desired ones, since their T C F1 can
be set to zero by lowering the doping. Following modal branches and their overtones (denoted by subscripts) are identified in the plot: out-of-plane flexural
modes (O P F), in-plane flexural modes (I P F), torsional modes (T ), width extensional/square extensional modes (W E/S E), and length extensional/Lamé
modes. (L E/Lamé). (b) T C F1 for selected branches plotted in detail. Solid lines show T C F1 evaluated at a doping level of n = 7.5×1019cm−3, while their
dashed counterparts denote the corresponding T C F1 evaluated at n = 2.4×1017cm−3. The grey dashed line represents the T C F1 based on the approximation
discussed in the context of Eq. (13). (c) Illustrations of the mode shapes of selected modes from the modal branches. Labels 1-8 correspond to those found
in plots (a) and (b).

the limits n0,LE or n0,T1 , respectively. At higher doping levels,
travelling along the “valleys” of Figs. 4(c),(g), it is found
that the total frequency variation deviation � ftotal steadily
decreases on both branches to ∼150 ppm, reached at the
maximal doping level of nmax = 7.5×1019cm−3. Optimal ori-

entations at this doping level are θ ∼ 23° and θ ∼ 28° degrees
for the L E/Lamé and T1 branches, respectively. The paths
for minimum total frequency variation coincide with the
T C F1 = 0 curves. As discussed in previous section, the
behavior of the I P F1 and O P F1 branches was very similar
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Fig. 4. Details of temperature dependent behavior within the L E/Lamé branch [(a)–(d)] and the T1 branch [(e)–(h)] as a function of doping level n and
resonator orientation θ . θ = 0°/45° correspond to alignment with 100/110. Color coding of (a)/(e) and (b)/(f) illustrate the first and second order temperature
coefficients of frequency. The dashed lines of (a)/(e) denote the locus of points (n, θ) for which T C F1 equals to zero. The total frequency variation � ftotal
over the full temperature range of T = −40 . . . + 85 °C is shown in (c)/(g). The dashed lines of (c)/(g) denote the in-plane rotation angle θ which minimizes
� ftotal for each n. Figs. (d)/(h) are plots of � ftotal along this line. Note that orientations of θ below 16° have been omitted for the T1 branch due to coupling
with the O P F3 branch (see discussion in Section III-A).

Fig. 5. Details of temperature behavior within the L E/Lamé branch [(a)–(d)] and the W E/S E branch [(e)–(h)] as a function of doping level n and resonator
in-plane aspect ratio W/L . Color coding of (a)/(e) and (b)/(f) illustrate the first and second order temperature coefficients of frequency. The dashed lines
of (a)/(e) denote the locus of points (n, W/L) for which T C F1 equals to zero. The total frequency variation � ftotal over the full temperature range of
T = −40 . . . + 85 °C is shown in (c)/(g). The dashed lines of (c)/(g) denote the in-plane aspect ratio W/L which minimizes � ftotal for each n. Figs. (d)/(h)
are plots of � ftotal along this line.

to the L E/Lamé branch characteristics when θ was varied.
Therefore, one can expect the results of Fig. 4(a)-(d) to
describe the behavior of these modes as well.

Fig. 5 illustrates T C F1, T C F2 and � ftotal for the
L E/Lamé and W E/SE branches, respectively, when the
aspect ratio W/L is varied. With increasing doping,
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T C F1 = 0 is first attained at the doping level of
n0,Lamé ∼ 1.9 × 1019cm−3 on the L E/Lamé branch,
and on the W E/SE branch the corresponding threshold is
n0,W E ∼ 3.1×1019cm−3. The second order coefficient T C F2
stays below zero for all n and W/L, and its magnitude is
again most negative for n ∼ 2 . . . 4 × 1019cm−3. Since the
zero-T C F1 region for the L E/Lamé branch is limited to the
doping range of n ∼ 1.9 . . . 2.3 × 1019cm−3(which coincides
with the most negative region for T C F2), the minimal total
frequency deviation remains at a comparatively high level
of ∼380 ppm. For the W E/SE branch, The region with
T C F1 = 0 is found at a doping range of n ∼ 3.1 . . . 5.1 ×
1019cm−3, and a minimum total frequency deviation of
∼250 ppm is reached with a square geometry (W/L = 1)
at the end of this doping range.

IV. DISCUSSION

Five modal families were identified by inspecting the disper-
sion curves in Figs. 3. As discussed in [4], shear modes whose
dependency on elastic parameters ci j is a function of only the
(c11 − c12) term are maximally affected by n-doping. This
was exemplified by the behavior within the LE/Lamé modal
branch, where the largest T C F1 was found for the Lamé mode
and a lower T C F1 was found for the LE modes. The reason for
the difference can be illuminated by inspecting the formulas of
the modal frequencies. Closed form expression for the Lamé
mode frequency exists and the following relationship holds:

fLamé ∼ √
c11 − c12.

Using the approximation of Eq. (13) to evaluate the resonance
frequency of an LE mode resonator, and linearizing it with
respect to the changes in the elastic parameters δci j , one finds
the relationship

δ fL E ∼ (δc11 − δc12) + 0.2δc12.

It is apparent that the functional dependence of the LE mode
on the ci j parameters is to a large part similar to that of the
Lamé mode - except for the added term 0.2δc12.

The WE/SE-branch is of special practical interest due to
the fact that the WE and SE bulk mode silicon resonators
have shown good performance in terms of phase noise as well
as good electromechanical coupling [9], [10]. Additionally,
these resonance modes can be effectively transduced with
piezoelectric thin films, see Refs. [11], [12]. These modes,
with their T C F1 in the range 0...+ 8 ppm/K, can still take full
advantage of n-doping for temperature stabilization, although
the WE/SE bulk modes have clearly less shear-mode character
than the LE/Lamé modes.

It is an anticipated outcome of the analysis that the torsional
modes with evident shear character belong to the group of
modes that can be temperature stabilized. However, the fact
that the maximum T C F1 (Fig. 3(b), label “5”) of the torsional
mode branch T1 is slightly smaller than that of the pure shear
Lamé mode (Fig. 3(b), label “4”) shows that the dependency
on the elastic parameters is not of pure (c11 − c12) form.

In addition to the five highlighted modal families one can
pinpoint other branches in Fig. 3(a) that fulfil the T C F1 ≥ 0
criterion. Typically these are overtone modes of the five

Fig. 6. Extrapolation (blue dashed line) for b11−12(n) used for calculation
of the results of Fig. 7.

identified modal families or coupled modes having combined
characteristics.

Temperature compensated behavior of the presented modal
branches can be found also in resonators fabricated on
110 oriented wafers. The presented parametric geometry
sweeps on a 100 oriented silicon wafer were chosen, since
they portrayed the temperature compensated behavior of all
five modal families. A calculation similar to simulation S2
was presented in [1], but with geometry aligned with the
110 direction. There it was observed that neither the
L E/Lamé branch nor the W E/SE branch could be tempera-
ture compensated by n type doping when using this alignment.

V. POSSIBILITY OF SECOND ORDER TEMPERATURE

COMPENSATION WITH INCREASED DOPING

It was seen in Section III-B that the total frequency deviation
� ftotal can be minimized at the highest doping level of
nmax = 7.5 × 1019cm−3 for certain modal branches. The
decreasing nature of the total frequency deviation � ftotal of
Figs. 4(d),(h) and 5(h) raises the question of whether this
trend would be continued at even increased doping. Most
of the contribution to the remaining (non-zero) second order
coefficient T C F2 comes from the second order temperature
coefficient b11−12 (see Fig. 2(f)), which has a decreasing
magnitude for n > 4 × 1019cm−3. To illustrate the possibility
of the existence of a resonance mode with full second order
temperature compensation, we assume b11−12(n) to grow
linearly so that it crosses zero at n ∼ 11 × 1019cm−3, Fig. 6.
To simplify the treatment, all other temperature constants c0

i j ,
a0

i j and b0
i j of Fig. 2 are assumed to remain unchanged from

the values they have at nmax = 7.5 × 1019cm−3. Using these
assumptions, calculations for the L E/Lamé mode branch
(Fig. 4(a)-(d)) for θ = 0° . . . 45° were repeated, now extending
the doping level to n = 13×1019cm−3. The results are shown
in Fig. 7.

It is found in Fig. 7(b) that T C F2 approaches zero
with increasing doping, and, finally reaches zero at
n ∼ 11.3 × 1019cm−3. Fig 7(e) shows that the curves for
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Fig. 7. Extrapolated temperature behavior of the L E/Lamé branch, when
orientation θ and doping n are varied. (a)-(d) are similar to Fig. 4(a)-(d).
(e) reproduces T C F1 = 0 and T C F2 = 0 curves from plots (a) and (b) and
highlights their crossing.

T C F1 = 0 and T C F2 = 0 intersect each other at θ = 22.5°
when the doping level is n ∼ 12 × 1019cm−3. At this point
the total frequency deviation � ftotal reaches zero, as seen
in Fig. 7(d).

Again, due to the similarity of the I P F , O P F and
L E/Lamé branches (with θ variation), the qualitative result
obtained here can be expected to apply among all of these
branches. This, on the other hand, implies that resonators
covering a wide range of frequencies from <100 kHz
(flexural modes) to 100 MHz (overtone length extensional)
could potentially be second order temperature compensated.

VI. CONCLUSIONS

First and second order temperature coefficients and the
total temperature induced frequency deviation of degenerately
n-type doped silicon resonators were modelled covering a
doping range from 2.4 × 1017cm−3 to 7.5 × 1019cm−3.

Families of resonance modes that can be temperature com-
pensated via n-type doping were identified: These included
bulk modes such as the width/length extensional modes of a
beam, Lamé/square extensional modes of a plate resonator, as
well as flexural and torsional resonance modes. It is shown
that virtually all resonance modes of practical importance can

reach zero linear temperature coefficient of frequency when
correctly designed. Optimal configurations were found, where
a total frequency deviation of ∼150 ppm can be reached.

The results indicated that full second order temperature
compensated familiar from AT cut quartz crystals is not pos-
sible in silicon resonators with doping below 7.5×1019cm−3.
However, an analysis relying on extrapolated elastic parameter
data suggests this could be possible if doping is extended
beyond 1020cm−3.
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Abstract—We report quartz level temperature stability of
piezoelectrically driven silicon MEMS resonators. Frequency
stability of better than ±10 ppm is measured for 23 MHz
extensional mode resonators over a temperature range of T =
−40 . . . + 85◦C. The temperature compensation mechanism is
entirely passive, relying on the tailored elastic properties of
heavily doped silicon with a doping level of n > 1020cm−3, and
on an optimized resonator geometry. The result highlights the
potential of silicon MEMS resonators to function as pin-to-pin
compatible replacements for quartz crystals without any active
temperature compensation.

I. INTRODUCTION

While silicon MEMS based solutions have well known
advantages to offer to the timing and frequency control ap-
plications, the market is still dominated by quartz devices.
The adoption of silicon MEMS resonator technology could
be greatly enhanced if the devices could be made pin-to-pin
compatible with quartz crystals through the combination of
piezoelectric actuation and fully passive doping based temper-
ature compensation. This paper reports progress towards this
goal: we have designed and fabricated piezoelectrically driven
23-MHz silicon MEMS resonators, which have a ±10 ppm
temperature stability corresponding to that of an AT cut quartz
crystal, and whose electrical characteristics approach those of
quartz at the same frequency.

Recent research has shown that heavy phosphorus doping
(1019cm−3 -range) of silicon can be used for reducing the
thermal drift of a MEMS resonator frequency from over 3000
ppm to less than 300 ppm over the industrial temperature
range [1]. It has been identified that further doping to carrier
concentrations above 1020cm−3 has the potential to reduce the
temperature dependency through its effect on the 2nd order
temperature coefficient TCF2 [2]. Recently, we have verified
this to be true with ultra heavily doped (UHD) capacitively
coupled (bare silicon) resonators, illustrated in Fig 1. This
data leads to two observations:

Figure 1. Temperature characteristics of capacitively coupled (bare silicon)
extensional mode resonators made at VTT. Resonators made of ordinary
silicon (n ∼ 1018cm−3), heavily doped silicon (HD-Si, n ∼ 5× 1019cm−3

), and ultra heavily doped silicon (UHD-Si, n > 1020cm−3 ) are compared.
With optimized doping and resonator design a stability of ±10 ppm has been
reached. In UHD-Si devices, the initially negative second order temperature
coefficient can be made positive, up to TCF2 ∼ +15 ppb/◦C2.

Table I
PERFORMANCE COMPARISON OF QUARTZ AND VTT UHD/HD SI

ALN-DRIVEN MEMS RESONATORS AT ∼ 24 MHZ.

1) There is an optimal doping level which, together with
a correct design, produces near zero TCF2, and yields
quartz level temperature stability. The best experimen-

978-1-4799-8866-2/15/$31.00 ©2015 IEEE

©2015 IEEE. Reprinted, with permission, from A. Jaakkola, P. Pekko, J. Dekker, M. Prunnila, T. Pensala, "Second Order
Temperature Compensated Piezoelectrically Driven 23 MHz Heavily Doped Silicon Resonators with ±10 ppm Temperature
Stability", Proc. IEEE International Frequency Control Symposium , 2015, pp. 420—422.
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tally demonstrated level of stability is ±10 ppm for
T = −20 . . . + 85◦C .

2) The usually negative second order temperature coef-
ficient TCF2 can be made positive, up to TCF2 ∼
+15 ppb/◦C2.

Observation 1 leads to attractive possibilities for realizing var-
ious types of passively temperature compensated bare silicon
resonators, but observation 2 is the key for realizing piezo-
electrically driven silicon MEMS resonators with quartz class
temperature stability: Piezoelectric actuation requires addition
of piezoelectric and metal (electrode) layers to the resonator
device, and, practically all such materials (typically AlN +
Mo/Al) have negative first- and second order temperature
coefficients TCF1 and TCF2, respectively [3], [4], [5]. By
balancing the positive contribution from the UHD silicon
resonator body and the negative effect from the piezoelectric
and metallic layers to both TCF1 and TCF2 by correct
composition of the resonator, it is possible to reach quartz
level frequency stability.

II. METHODS

A. Resonator design and fabrication

The resonators were fabricated using the VTT cavity-SOI
based process platform, see Fig. 2. First, SOI wafers featuring
ultra heavily doped (doping in excess of 1020cm −3) Si device
layers, including pre-etched cavities were prepared (steps 1,2).
Next, AlN was deposited and patterned (3) right onto the Si
device layer acting as a substrate and as the bottom electrode
for device operation. SiO2 was deposited on the wafer (4).
AlN was located only on top of the resonator, while SiO2 was
used as the insulator between the top and bottom electrodes
elsewhere. Openings were etched to the SiO2 layer, one
onto the AlN layer and another onto the place where the
bottom electrode contact would be formed (5). Aluminum was
deposited and patterned as the top electrode material (6). Deep
reactive ion etching was used to define the device geometry
and to release the resonator (7).

Figure 2. Fabrication process. UHD-Si refers to ultra heavily doped silicon
with n-type carrier concentration above 1020cm −3.

B. Measurements

The frequency-vs-temperature curve measurements were
performed on wafer level under atmospheric pressure on a
Cascade Summit probe station using a HP 4294A impedance
analyzer. The resonance frequencies were extracted by fitting
the response of a BVD equivalent circuit to the measured
admittance traces spanning the resonance peak (see Fig. 4).
The wafer was held on a temperature-controlled chuck, whose
temperature was varied from −40°C to +85°C with seven steps.
A flow of dry air was used to prevent condensation of moisture
on the non-packaged resonators. A total of ∼ 30 resonators
were characterized on a wafer.

III. RESULTS

A frequency stability better than ±10 ppm was measured for
several devices over a temperature range of T = −40 . . . +
85◦C. The frequency-vs-temperature curves of three resonators
are shown in Figure 3. Typical resonator performance pa-
rameters were: Rm ∼ 100 Ω, C0 ∼11 pF, Q ∼ 4000,
fp − fs ∼750 ppm, and k2 ∼0.15% — a frequency response
of a resonator is shown in Fig. 4. The scatter between the
f − vs − T curves of the set of ∼ 30 resonators spanning the
whole wafer are shown in Fig. 5.

Figure 4. Frequency response of the resonator. Q, C0, Rm and f0 were
obtained by fitting a BVD equivalent circuit to the data.

IV. DISCUSSION

The result of ±10 ppm frequency stability shows that
passively temperature compensated piezoelectrically coupled
silicon MEMS resonators can reach a similar performance to
AT cut quartz crystals. With further optimization (reduction of
TCF2), there is a potential for even better stability.

It can be seen in Fig. 3 that the measured data points
do not accurately lay on top of the quadratic fit for the
f -vs-T curve. At maximum, a fit error of ∼ 5 ppm is
observed. The measurement was done in open air, which
could cause instability of the resonance frequency at this level.
Encapsulation of the devices is needed for performing more
accurate measurements.
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Figure 3. f − vs−T curves of three 23 MHz extensional mode resonators. Data points are shown as red circles, and the blue line is a 2nd order polynomial
fit. The scatter between measured data and the fit is expected to be caused by the fact that the measured resonators were non-packaged and measured in
open-air.

Figure 5. f -vs-T curves from ∼ 30 resonators spanning the wafer on the
south-north direction. Note that the ∆f is given in relative units, and hence
the initial frequency error is absent. The top inset shows the initial frequency
f0 error, which has a standard deviation of 1500 ppm. Bottom inset illustrates
the location of the measured dies on the wafer.

The performance parameters of two types of VTT MEMS
resonators (HD-Si and UHD-Si) and a typical quartz crystal
at the same frequency are compared in Table I. It can be
seen that the electrical performance in terms of the equivalent
series resistance (ESR) and shunt capacitance C0 corresponds
to that of quartz for the case of HD-Si resonators, however,
in this case the frequency instability is an order-of-magnitude
too high (see Fig. 1 as well). For the UHD-Si resonator of
this work, frequency stability is sufficient, but the electrical
performance parameters do not yet quite reach those of quartz,
and thus complete pin-to-pin compatibity is not yet realized
for these devices. Our further work includes reduction of ESR
(through increased Q) by more optimized anchoring of the
resonator. Reduction of the shunt capacitance will be assessed
in particular by using thicker AlN layer on the resonator.
The target is that the resonator can be driven with a standard
oscillator IC intended for quartz crystals.

Figure 5 illustrates the scatter between the f -vs-T curves

as well as the initial accuracy error of resonators on a
wafer. For approximately two thirds of the resonators, the
frequency stability is within ±20 ppm. The distribution of
the initial accuracy has a standard deviation of 1500 ppm.
It is of paramount importance to develop an economically
viable way of reducing the scatter of these properties. Both
the temperature characteristics as well as the frequency of the
resonator are functions of the Si/AlN/Al stack. Thus, selective
addition or removal of material can be used for their fine
tuning. Mapped ion beam trimming is a particularly promising
technique for assessing this problem [6].

V. CONCLUSION

Piezoelectrically driven 23-MHz silicon MEMS resonators
having a ±10 ppm temperature stability and electrical char-
acteristics approaching those of quartz crystals were demon-
strated. The presented result greatly improves the competi-
tiveness of silicon based resonator technology in timing and
frequency reference applications, and presents an attractive
alternative to current silicon MEMS approaches using active
(PLL-based) temperature compensation. The work suggests
that eventual pin-to-pin compatibility between silicon MEMS
resonators and quartz is within reach.
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Determination of Doping and Temperature-
Dependent Elastic Constants of Degenerately 

Doped Silicon From MEMS Resonators
antti Jaakkola, Mika Prunnila, Tuomas Pensala, James dekker, and Panu Pekko

Abstract—Elastic constants c11, c12, and c44 of degenerately 
doped silicon are studied experimentally as a function of the 
doping level and temperature. First- and second-order tem-
perature coefficients of the elastic constants are extracted from 
measured resonance frequencies of a set of MEMS resonators 
fabricated on seven different wafers doped with phosphorus 
(carrier concentrations 4.1, 4.7, and 7.5 × 1019 cm−3), arsenic 
(1.7 and 2.5 × 1019 cm−3), or boron (0.6 and 3 × 1019 cm−3). 
Measurements cover a temperature range from −40°C to 
+85°C.

It is found that the linear temperature coefficient of the 
shear elastic parameter c11 − c12 is zero at n-type doping 
level of n ~ 2 × 1019 cm−3, and that it increases to more than 
40 ppm/K with increasing doping. This observation implies 
that the frequency of many types of resonance modes, includ-
ing extensional bulk modes and flexural modes, can be tem-
perature compensated to first order. The second-order tem-
perature coefficient of c11 − c12 is found to decrease by 40% 
in magnitude when n-type doping is increased from 4.1 to 7.5 
× 1019 cm−3.

Results of this study enable calculation of the frequency 
drift of an arbitrary silicon resonator design with an accuracy 
of ±25 ppm between the calculated and real(ized) values over 
T = −40°C to +85°C at the doping levels covered in this 
work. Absolute frequency can be estimated with an accuracy 
of ±1000 ppm.

I. Introduction

single-crystal silicon MEMs resonators are challeng-
ing quartz devices in timing and frequency control ap-

plications. The main disadvantage of silicon resonators is 
their high frequency drift of about −30 ppm/K, which 
must be compensated to make a stable reference. Heavy 
doping of silicon has recently been found as an attractive 
way to significantly reduce this temperature dependency. 
doping dependency of the elastic constants of silicon can 
be explained as a free carrier effect. The band structure 
of si depends on strain and, therefore, the charge carri-
ers (introduced to the silicon crystal lattice with doping) 
redistribute between different bands under strain [1], [2]. 
This leads to strain dependency of the carriers’ free energy 
and introduces doping-dependent correction terms to the 

elastic constants. In n + si (p + si) the redistribution in-
volves electrons (holes) that redistribute between different 
conduction band minima (valence band maxima).

doping-based temperature compensation of silicon res-
onators started with p-type doping [3], but n-type doping 
soon appeared as a viable alternative [4]. our work with 
bulk mode resonators has shown that n-type doping is 
an effective and versatile way of tailoring the tempera-
ture behavior of silicon resonators; we have demonstrated 
resonators with their f-versus-T turnover point near room 
temperature, overcompensated devices (+18 ppm/K) [5], 
and shown that n-type doping is applicable to virtually 
all resonance modes of practical importance [6]. recent-
ly, resonators made of strongly n-type doped epitaxially 
grown silicon [7] have been reported.

The main contribution to the temperature-dependent 
frequency drift of a resonator comes from the elastic con-
stants of the resonator material. Thus, to optimize the 
thermal stability of a silicon MEMs resonator, a designer 
needs to know the temperature behavior of the elastic pa-
rameters of silicon; in particular, the first- and second-
order thermal derivatives of the elastic constants are of 
interest. However, experimental data on the temperature 
dependency of the elastic parameters of heavily doped sili-
con is limited; most usable results of n-type doped silicon 
have been published by Hall [8] for carrier concentration 
of 2 × 1019 cm−3.

In this work, silicon elastic constants c11, c12, and c44 
are studied experimentally as a function of doping level 
and temperature. First- and second-order temperature 
coefficients of the elastic constants are extracted from 
the resonance frequencies of a set of MEMs resonators 
fabricated on seven different wafers with varied doping. 
In section II, the analysis method for extracting the un-
known elastic parameters from the measured f-versus-T 
curves of the resonators is introduced. The fabrication of 
the devices and the measurements are covered in section 
III. results are presented in section IV. Implications of 
the results are discussed in section V, concentrating on 
the aspects important for temperature compensation of 
MEMs resonators. reliability of the elastic parameter ex-
traction procedure is assessed, and this provides a way to 
estimate how accurately the frequency and its thermal 
drift of an arbitrary resonator design can be calculated. 
an error analysis of the extracted elastic parameters is 
presented, and, additionally, MEMs resonator manufac-
turability aspects are covered.
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II. Methods

A. Extraction of Elastic Constants From  
Resonance Frequencies

The frequency of an acoustic resonator is given by

 f L c= 1 ,/ /× ρ  (1)

where ρ, c, and L are the resonator material density, char-
acteristic stiffness, and characteristic length, respectively. 
The characteristic stiffness depends on the elastic con-
stants c11, c12, and c44, which can be solved from a set 
of measured resonance frequencies of different resonance 
modes when their functional dependency on constants cij 
varies among the modes, and when there are three or more 
modes within the set. In our case, the set of two lamé 
mode resonators and five length-extensional (lE) modes 
in different orientations fulfill these conditions. The test 
resonator set, and their exemplary sensitivities on the cij 
parameters are illustrated in Fig. 1, and micrographs of 
the two types of resonators are shown in Fig. 2(a). ad-
ditional constraints that led to the selection of this par-
ticular set of devices were: 1) the resonators had to be 
actuated electrostatically over vertical coupling gaps; 2) 
air damping needed to be low enough to allow detection 
of resonances in atmospheric pressure; 3) the resonators 
had to be relatively large in lateral dimensions to mini-
mize effects from processing inaccuracies; 4) the resonance 
frequencies and their sensitivities on cij should be insensi-
tive to device thickness variations (see error E5 in sec-
tion V-d); and 5) the number of different resonator types 
had to be relatively large in comparison with the three 
unknowns cij to allow assessment of the reliability of the 
results (section V-c).

The experimental data consists of measured resonance 
frequencies at different temperatures for all seven reso-
nance modes f Tk

exp( ) (k = 1, …, 7). let us denote the cor-
responding theoretical estimates containing the cij depen-
dencies—obtained through FEM modeling—as 
f c c ck
th( , , )11 12 44 . We use an approach of first matching fk

exp 
and fkth at T0 = 20°c by numerical minimization of

 g c f f cij
k

k k ij( ) = [ ( )]2∑ −exp th  (2)

to find elastic parameters cij(T0), and then linearize (1) to 
obtain the relation

 
δ

δ
δf T

f f
f
c c T

L
L T

k

k k ij

k

ij
ij

exp

exp th

th( )
=
1

( )
1
2 ( ).

0 0
∑∂∂ +  (3)

Here, δcij(T ) are the unknown changes in elastic parame-
ters, δf Tk

exp( ) are the measured frequency differences, and 
fk0
exp and fk0th are shorthands for f Tk

exp( )0  and f c Tk ij
th( ( ))0 . 

sensitivities ∂ ∂f ck ij
th/  are calculated from the theoretical 

estimates. The last term accounts for thermal expansion, 

and it has been obtained by employing the isotropic na-
ture of length changes for silicon. We use a third-order 
expansion for this term

 
1
2 ( ) = ( ) 2,1 2

2
3

3δ
α α α

L
L T T T T∆ ∆ ∆+ + /  (4)

where values of α1 = 2.84 × 10−6K−1, α2 = 8.5 × 10−9K−2, 
and α3 = −32 × 10−12K−3 are assumed. These expansion 
coefficients are based on the values reported for undoped 
silicon in [9]; thus, it is assumed that thermal expansion 
is not affected by doping. The assumption is supported 
by our measurements with mechanical dilatometry (see 
section V-E).

In matrix form, (3) can be rewritten as

 δ δ βf cexp( ) = ( ) ( )T A T T⋅ + , (5)

Fig. 1. (a) determination of the elastic constants c11, c12, and c44 is based 
on seven resonance modes whose frequencies have different dependencies 
on the cij parameters. alignment of the resonators is varied from [110] 
to [100]. The table contains the analytical formulas for the resonance 
frequency f (c11, c12, c44)—which exist only for the two lamé modes—and 
the sensitivities 1/f × ∂f/∂cij for each mode. These exemplary sensi-
tivities have been calculated at a linearization point of (c11, c12, c44) = 
(163, 25, 79) GPa using the finite element approach outlined in section 
II-B (zero angular alignment error and device layer thickness 15 μm of 
has been assumed). The listed numbers only illustrate the character 
of the variation of the sensitivies within the set of modes. For indi-
vidual wafers, the sensitivities differ because of the different linearization 
points, device layer thicknesses, and angular misalignments, respectively. 
(b) Illustration of the mode shapes of the lamé/lE resonances. 

P
ap

er
II
I



jaakkola et al.: determination of doping and temperature-dependent elastic constants 1065

where δ fexp contains the relative frequency changes and 
elements of the sensitivity matrix A are defined as

 a
f

f
c n kkn

k

k

n
=
1

, = 11,12, 44; = 1,..., 7.
0
th

th∂
∂

 (6)

sensitivity matrix elements are illustrated in Fig. 1. one 
should note that (6) depends on the linearization point at 
which it is evaluated.

The changes in elastic parameters δc(T ) can be solved 
as a least-squares fit from (5):

 δ δ βc f exp( ) = ( ) [ ( ) ( )].1T A A A T TT T− −  (7)

B. Numerical Modeling

numerical estimates of the modal frequencies 
f c c ck
th( , , )11 12 44  were calculated by finite element analysis 

with comsol Multiphysics (comsol Inc., Burlington, Ma). 
resonance frequencies were obtained with modal analysis 
of full 3-d geometries of the devices including the anchor-
ing regions; see illustration of the finite element mesh in 
Fig. 2(b). nominal thicknesses of 15 or 24 μm of the wa-
fers were used in the calculations, see Table I. The maxi-
mum size of the mesh elements was 20 × 20 × 4 μm.

calculation was performed for parameters c11, c12, and 
c44 spanning ranges of 160 to 168 GPa, 63 to 68 GPa, and 
70 to 80 GPa, respectively. The ranges were discretized to 
a grid of 5 × 5 × 5 points. Values were stored in tables, 
and later retrieved for evaluation of (2) and (6). cubic 
interpolation was used for evaluation of f c c ck

th( , , )11 12 44  be-
tween grid points. The discretization was verified to be 
dense enough for accurate evaluation of the derivatives of 
(6). simulations took into account different angular mis-
alignments of the wafers.

C. Measurement of Angular Misalignment

In practice, fabrication of the devices results in a small 
deviation of the resonator orientation from the intended 
alignment with the crystal axes, which can affect accu-
racy of the extraction of elastic parameters. This devia-
tion, or angular misalignment Δθ, was determined using 
the method illustrated in Fig. 3. Because of silicon an-
isotropy, the resonance frequency of an lE-mode beam 
resonator increases by ~10% when resonator alignment 
is rotated from [100] to [110]. Between these directions, 
i.e., at ±22.5° from [110], the resonance frequency is 
most sensitive to angular misalignment with Δf /Δθ ~ 
±460 ppm/0.1°. copies of two lE resonators identical in 
dimensions, but oriented 45° to each other, both at the 

Fig. 2. (a) Micrographs of lamé- and lE-mode resonators. (b) Illustration of the finite element mesh at one corner of the lamé-mode resonator. 
Meshing was done in similar fashion for the lE-mode resonator models. 
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most sensitive orientation of ±22.5°, were included on the 
wafers. The angular misalignment could be deduced from 
the up/down frequency shifts ±Δf of these resonators.

III. Experimental

The resonators [Fig. 2(a)] were fabricated on seven dif-
ferent 150-mm c-soI wafers (silicon-on-insulator wafers 
with pre-etched cavities [10]) manufactured in co-oper-
ation with okmetic oyj (Vantaa, Finland). The handle 
wafers with drIE-etched cavities were thermally oxidized 
before they were fusion bonded to the device wafers. de-
vice layers were fabricated from 100-oriented wafers grown 
with the czochralski method. The resonator fabrication 
process started with the c-soI wafers with circular cavi-
ties of a diameter of 500 μm for each resonator. The pro-
cess flow consisted of two lithographic layers: 1) al con-
tact metallization and patterning, and 2) drIE release 
etch, producing vertical gaps of minimum nominal width 
of 0.5 μm.

dopant (B, P, and as) concentrations of the wafers for 
the silicon device layer were varied according to Table I. 
carrier concentration range for each wafer was calculated 
from the specified resistivity range using the conversion 
method of [11]. device layer nominal thickness was 15 μm 
(24 μm for wafer B3), and the manufacturer-specified c-
soI stack total thickness variation (including the handle 
wafer) was within ±2 μm for all wafers.

Because the wafers featured pre-etched cavities, it was 
possible to fabricate monolithic resonators without a grid 
of release etch holes within the devices, and thus the elas-
tic properties of the resonators could be accurately mod-
eled. In our previous studies [5], existence of release etch 
holes was a source of uncertainty for the determination of 
the elastic constants.

The resonators were measured on wafer level in atmo-
spheric pressure on a cascade summit probe station (cas-
cade Microtech Inc., Beaverton, or) using a HP 4294a 
impedance analyzer (agilent Technologies Inc., santa 
clara, ca). a two-needle probe card was used for the 
measurements, and an open-short-load calibration was 
performed at T = 40°c at the beginning of the measure-

ment. Measurements were done in the four-terminal pair 
configuration with four 2-m Bnc cables, and the two end 
connections to the probe needles were ~15 cm long. a dc 
bias voltage of 40 V was applied between the resonator 
and the electrodes for electromechanical coupling. The ef-
fect on the resonance frequencies from the dc bias was neg-
ligible because of the relatively wide coupling gaps and the 
high mechanical spring constant of the resonance modes. 
The excitation ac voltage level was set to 1 V to maximize 
signal-to-noise ratio. The resonators still operated at their 
linear regime because of the weak electromechanical cou-
pling. The measured devices were located near the wafer 
center. quality factors of Q ~ 10 000 were measured for 
all resonance modes, and the resonance frequencies were 
extracted by fitting a BVd equivalent circuit to the mea-
sured admittances. Example traces are shown in Fig. 4.

The wafer was held on a temperature-controlled chuck, 
whose temperature was varied from −40°c to +85°c with 
seven steps (for wafer as1.7, the highest temperature was 

TaBlE I. details of the Wafers for the silicon device layers. 

Wafer Id dopant

specified 
resistivity 
(mΩ·cm)

calculated carrier 
concentration 
(1019 cm−3)

angular 
alignment 

error 
(°)

device 
layer 

thickness 
(μm)

Total 
thickness 
variation 

(μm)Min Max Min Max avg

B3 B 3.49 3.66 2.88 3.04 2.96 −0.6 23.8 3.1
B0.6 B 10 20 0.33 0.86 0.60 −0.1 15.6 3.5
as1.7 as 3.96 4.36 1.55 1.77 1.66 0.3 15.4 2.7
as2.5 as 2.94 3.08 2.39 2.52 2.46 −0.6 14.5 2.5
P4.1 P 1.67 1.76 3.98 4.22 4.10 0.0 14.6 2.6
P4.7 P 1.47 1.59 4.45 4.86 4.66 1.6 14.5 3.7
P7.5 P 0.95 1.05 7.05 7.89 7.47 0.5 14.5 1.7

carrier concentrations were calculated from the resistivity specification using [11]. carrier concentration ranges are included as error bars in Fig. 
8. angular misalignment was measured using the method described in section II-c.

Fig. 3. In-plane angular misalignment of the wafers can be deduced from 
the difference of the resonance frequencies of two types of lE beam reso-
nators, which are designed at an angle of ±22.5° from the [110] direction. 
In-plane rotation of the resonators shifts the resonance frequencies up/
down by ±460 ppm/0.1°.
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80°c). The specified temperature accuracy of the system 
(Temptronic TP3200a) including the temperature con-
troller and the chuck was ±0.5°c. a 15 min stabilization 
period followed after each temperature change before 
probing of the resonators was started; the chuck tempera-
ture was well stabilized in less than 10 min for all tem-
perature steps. clean dry air flow at a rate of 30 l/min 
was used for purging. The effect from room-temperature 
gas flow to resonator temperature was found to be smaller 
than the specified uncertainty of ±0.5°c by the follow-
ing comparison: lamé-45° resonator f-versus-T curves on 
wafer B0.6 were compared with corresponding data from 
a similar wafer that was wafer-level encapsulated by a 
silicon/glass wafer (the encapsulation method is described 
in [12]). Encapsulated resonators can be assumed to be 
free from thermal gradients caused by the gas flow, but 
it could potentially affect temperature of resonators on 
uncapped wafers like B0.6. f-versus-T curves of resona-
tors near the wafer center on these two wafers were found 
to overlap with each other within 15 ppm, implying that 
device temperatures were within ~0.5°c with each other 
[assuming identical temperature coefficients for the reso-
nators on both wafers (see Table II)].

IV. results

Measured f-versus-T curves are shown for all modes 
on all wafers in Fig. 5, and the related temperature coef-
ficients are collected in Table II.

on the weakest doped wafer, B0.6, all f-versus-T curves 
lie almost on top of each other, and the linear temperature 
coefficients are near −30 ppm/K. on wafer B3, the slopes 
of the curves are decreased in magnitude, and the big-
gest change is observed for the lamé-0° mode. on n-type 
doped wafers larger effects are observed. The slope of the 

f-versus-T curve of the lamé-45° mode is gradually in-
creased with increasing doping, and above 2 × 1019 cm−3, 
the slopes are positive. lame-0° mode is almost unaffected 
by doping, and the f-versus-T curves of the lE modes 
span the region between the two lamé modes.

Frequencies of more than 20 lE beam resonators were 
measured on each wafer for determination of the angular 
misalignment, as described in section II-c. The results 
are tabulated in Table I. Fig. 6 shows an example of the 
resonance curves for wafer P7.5.

The elastic parameters cij(T ) were extracted from the 
measured frequency data using the least squares method 
of section II-a. results are shown in Fig. 7. The magni-
tude of the elastic constants is observed to decrease upon 
increased doping, except for the c12 elastic constant, which 
gets larger with increasing n-type doping.

For closer investigation of the thermal dependency of 
the cij(T ) curves, second-order polynomials centered at T0 
= 25°c were fitted to the elastic parameter data as

 c T c a T T b T Tij ij ij ij( ) = [1 ( ) ( ) ],0
0 0

2+ − + −  (8)

where aij and bij are the first-order and second-order tem-
perature coefficients, respectively, and cij0 is the constant 
term.1 a second-order expansion of cij(T ) was found to be 
valid to within ±20 ppm for all cij(T, n). The results are 
collected in Figs. 8(a)–(l) and in Table III. one should 
note that, in Fig. 8, we have chosen to accommodate data 
points from both n- and p-type doped wafers within same 
axes by representing p/n type doping with negative/posi-
tive carrier concentrations. observations are discussed in 
the following section.

V. discussion

A. Comparison to the Literature

Temperature coefficients measured in this work are 
compared with previously reported values in Fig. 8. Val-
ues for relatively weakly n- or p-doped silicon, reported by 
Bourgeois et al. [13], appear to be in satisfactory agree-
ment with our data; the data points near zero carrier 
concentration follow the trends observable from our data 
points. data by Hall [8] differs somewhat from our results, 
in particular for the second-order temperature coefficients. 
However, it should be noted that the temperature coeffi-
cients for Hall’s data are based on graphical extraction of 
the published cij(T ) curves.

Fig. 4. Measured admittance traces of the lame-45° resonators on wafer 
P7.5 measured at different temperatures. 

1 note that the least squares method of section II-a uses T = 20°c as 
the linearization point, because it was one of the measurement points. 
However, expansions of (8) and that of Table II are customarily centered 
at 25°c.
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B. Behavior of Elastic Coefficients With Doping

Figs. 8(a), 8(d), 8(g), and 8(j) show that the magnitude 
of the elastic parameters, i.e., the constant terms cij0 , are 
affected to within a few percent by increased doping over 
the tested wafers. These changes should be taken into ac-
count when dimensioning resonator designs targeting a 
specific resonance frequency. although the offsets have a 
negligible effect for temperature compensation purposes, 
the effect has the potential to degrade the initial frequen-
cy accuracy within a set of devices on a single wafer or 
within a batch of wafers.

In general, it is seen that arsenic (data points with 0 < 
n < 4 × 1019 cm−3) and phosphorus (n > 4 × 1019 cm−3) 
as dopants do not stand out from the plots as separate 
groups, which supports the view of the effects being of 
mainly electronic origin [1].

The effects on silicon elastic properties from n-type 
doping are best observed in the shear elastic constant c11 
− c12 and, in particular, in its temperature coefficients 
a11−12 and b11−12. Fig. 8(k) shows that the linear tem-
perature coefficient a11−12 crosses zero at approximately 
n = 2 × 1019 cm−3. This is the effect of most practical 
importance for temperature compensation of MEMs ap-
plications, because many shear-type resonance modes are 
purely dependent on the c11 − c12 term, and hence the lin-
ear temperature coefficient of frequency of such resonators 
can be brought to zero at this doping level. For example, 
the lame 45° mode of Fig. 1(a) is a mode whose frequency 
depends solely on c11 − c12. When doping is further in-
creased, a11−12 reaches a level of more than +40 ppm/K. 
The effect appears to saturate with increasing doping. a 
wide class of resonance modes, such as torsional, flexural, 
and extensional modes have an amount of shear mode 
character, i.e., their frequency depends on c11 − c12 with 
a large weight factor. Thus, their f-versus-T curves are 
largely determined by the behavior of the c11 − c12 term. 
The fact that a11−12 attains relatively large positive val-
ues enables first-order temperature compensation of such 
modes. These aspects are discussed in more detail in [6].

Fig. 8(l) shows that the second-order coefficient b11−12 
is negative for all studied doping levels, with a maximum 
deviation from zero of approximately −200 ppb/K2. This 
would translate to a 250 ppm frequency deviation over a 
range of 100°c. Importantly, one finds that the second-
order coefficient b11−12 appears to approach zero when the 
n-type doping level is above n = 4.1 × 1019 cm−3. This 
suggests a possibility of a flat or positive second-order 
response at high enough doping, motivating further inves-
tigation of n-type doping beyond 1020 cm−3.

The key effect on temperature compensation with p-
type doping is observable in Fig. 8(h). The linear tem-
perature coefficient a44 approaches zero with increasing 
p-type dopant concentration. However, the zero level has 
not yet been crossed with the highest doping level of 3 × 
1019 cm−3. The second-order coefficient b44 is seen to grow 
in magnitude with increased p-type doping. n-type doping 
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is observed to have a relatively small effect on coefficients 
a44 and b44

C. Reliability of Elastic Parameter Extraction

seven data points were used for the extraction of the 
three unknown elastic parameters cij(T ) at each tempera-
ture. Hence, the reliability of the method can be assessed 
by comparing the measured frequency data to the corre-
sponding numerical estimates obtained from FEM simula-
tions which use the solved parameters cij(T ) as an input. 
First, Fig. 9(a) shows the correspondence of measured 

and simulated resonance frequencies at T0 = 20°c, where 
cij(T0) has been obtained from a fit to (2). The difference 
is within ±1000 ppm.

correspondingly, the quality of the least-squares fit of 
(7) can be judged from the overlap of the measured and 
simulated data, exemplified in Fig. 5(e). This is seen in 
closer detail in Fig. 9(b), where the difference between the 
measured relative frequency changes δf Tk

exp( ) and the cor-
responding theoretical estimates δf c Tk ij

th( ( )) has been plot-
ted for all modes on all wafers. Maximum deviation be-
tween the measured and simulated data points was less 
than 25 ppm for all seven resonance modes on all wafers, 

Fig. 5. (a)–(g) Measured f versus T data of all resonance modes on all wafers is shown with blue open circles. dashed blue lines are second-order 
polynomial fits to the data; fit coefficients are collected in Table II. all plots have similar scaling of axes. (e) Experimental data from wafer P4.1 has 
been overlaid with corresponding numerical estimates f Tkth( ) which use the fitted parameters cij(T ) as an input (red lines with dots). The overlap is 
shown in more detail in Fig. 9(b). 
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which speaks for the reliability of the extraction method. 
It should be noted that without correction of the angular 
misalignments (section II-c), the least-squares method 
would have resulted in errors up to 60 ppm.

Validity of the linearization step needed for the least-
square method was confirmed. Frequency changes from 
approximation of (3) were calculated for each of the ex-
tracted elastic parameters cij(T ), and compared with the 
nonlinearized counterpart δf c Tk ij

th( ( )). linearization error 
was found to be less than 5 ppm for all cases.

Based on the preceding analysis, we expect that by us-
ing the extracted elastic parameters, one can estimate the 
frequency of an arbitrary resonance mode, fabricated on a 
wafer with similar carrier concentration as in our experi-
ments, with the following accuracies:

•	absolute frequency of a resonator can be predicted 
with ±1000 ppm accuracy.
•	Thermal drift over a temperature range of T −40°c 
to +85°c can be predicted with ±25 ppm accuracy.

D. Accuracy of Temperature Coefficients of cij Parameters

although the analysis of the previous section provides 
a way to establish a confidence level on the resonance fre-
quencies that can be calculated from the extracted elastic 
parameters of this work, one can also obtain estimates for 
the accuracy of the temperature coefficients of elastic con-
stants. let us denote these confidence intervals as ∆cij0 , 
Δaij, and Δbij. They are listed in Table III and are shown 
as vertical error bars in Fig. 8.

For ∆cij0 , an upper limit of ±2000 ppm is obtained by 
starting from the previously discussed absolute frequency 
accuracy of ±1000 ppm, and by applying (1). other po-
tential error sources of smaller magnitude are:

•	The mass of dopant atoms differs from that of silicon. 
assuming that the volume of the crystal stays con-

Fig. 6. admittance traces of 32 lE mode beam resonators (16 pairs) 
on wafer P7.5 at ±22.5° offset from the [110] direction. closest pairs 
(one resonator with +22.5° offset and the other with −22.5°) have 
been colored similarly, and all pairs have different colors. Inset: dis-
tribution of the frequency differences between the closest pairs. angu-
lar misalignment is calculated from the median of this distribution (see  
section II-c). 

Fig. 7. Elastic parameters c11, c12, c44, and c11 − c12 as a function of temperature and doping. The legends denote the dopant element types and the 
doping level, see Table I. dashed lines are second-order fits to the cij-versus-T data, and the fit coefficients are displayed in Fig. 8 and in Table III.
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stant, the maximal density change is less than 
200 ppm, which would be reflected as a similar inac-
curacy in cij0 .
•	The dimensions of the resonators may vary slightly 
from the designed measures because of potential mask 
bias and imperfections in drIE etching. a conserva-
tive estimate for the lateral dimension change of 
±0.1 μm of the resonators would cause deviation of 
the resonance frequency by approximately ±300 ppm, 
and thus have an effect of ±600 ppm on cij0 .

•	a thickness variation of ±2 μm of the device layer 
would have a very small effect on frequencies of the 
resonators: FEM analysis indicated that the frequen-
cies of the lE modes stay within ±20 ppm, and 
changes are even smaller for the lamé modes.

To assess the inaccuracy of the first- and second-order 
temperature coefficients of the elastic parameters, a Monte 
carlo approach was used to simulate the effect of several 
error sources. a large number of copies of the experimen-

Fig. 8. Temperature coefficients of the elastic parameters cij as a function of carrier concentration n. data from p-type doped wafers is represented 
with negative carrier concentrations. First, second and third columns represent the constant terms cij0 , linear coefficients (aij), and second-order coef-
fients (bij) at T = 25°c, respectively, see (8). c11 120

− , a11−12, and b11−12 are shorthands for the coefficients of c11 − c12. open blue circles are the ex-
perimentally determined values of this work. numerical values are given in Table III. Values reported in [13] are shown as red triangles pointing down 
(weak p-type doping) and as green triangles pointing left (weak n-type doping). data reported by Hall [8] were used for calculating data points shown 
as black triangles pointing up. Horizontal error bars indicate the carrier concentration ranges calculated from the resistivity specification for each 
wafer (see Table I). Vertical error bars are based on the error analysis of section V-d. 
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tal data sets (of Fig. 5) were taken, and perturbed accord-
ing to the following sources of uncertainty, labeled as E1 
through E5:

•	E1: relative frequencies were varied by δ f × |ΔT |/
ΔTmax, where δ f was taken from a normally distrib-
uted population with a standard deviation of 10 ppm, 
ΔT was defined as T − 20°c, and ΔTmax was set 
to 65°c. The distribution is visualized by the shaded 
region of Fig. 9(b). In this way, a distribution corre-
sponding to the observed errors in relative frequencies 
was reproduced.
•	E2: The accuracy specified for the temperature con-
troller and chuck was taken into account by varying 
the temperature points by δT taken from a normally 
distributed population with a standard deviation of 
0.5°c.
•	E3: sensitivities of (6) were evaluated at the lineariza-
tion points cij0 , which was estimated previously to have 
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Fig. 9. (a) difference between measured frequencies f Tk
exp( )0  and theo-

retical estimates f c Tk ij
th( ( )0 ) at T0 = 20°c for all resonance modes on all 

wafers. Theoretical estimates are based on cij(T0), which are the fitted 
elastic parameters obtained through numerical minimization of (2). (b) 
difference between the measured relative frequency changes δ f Tk

exp( ) and 
the corresponding theoretical estimates δ f c Tk ij

th( ( )0  + δcij(T )) for all 
resonance modes on all wafers. Theoretical estimates are calculated using 
δcij(T ) that have been fitted using (7). The shaded region illustrates the 
frequency measurement uncertainty that has been assumed in error anal-
ysis of section V-d.
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an uncertainty within ±2000 ppm. Error caused by 
this was simulated by perturbing the linearization 
points accordingly.
•	E4: Thermal expansion was assumed constant in the 
calculations, and our measurements suggested this to 
hold for linear thermal expansion within a ±7% error 
margin (section V-E). The thermal expansion effect 
in (4) was perturbed to take this uncertainty into ac-
count.
•	E5: Thickness of the devices deviated from the nomi-
nal thicknesses used in the simulations. sensitivities 
of (6) were perturbed to take into account a thickness 
variation of ±2 μm.

Extraction of the elastic parameters cij(T ) was per-
formed on the perturbed data sets in the same way as it 
was done on the real measurement data and distributions 
of aij and bij were obtained. confidence intervals Δaij and 
Δbij were calculated for each error source E1 to E5 sepa-
rately, and the total effect was estimated as the rms sum. 
Values for E1 and E2 were obtained as standard deviations 
of the aij/bij distributions, whereas the full range was used 
for E3 to E5. Inaccuracy of the first-order coefficient aij 
was found to range from Δa11−12 = ±0.3 ppm/K to a12 = 
±1.5 ppm/K. correspondingly, error of the second-order 
coefficient was seen to vary from Δb11−12 = ±7 ppb/K2 to 
Δb12 = ±33 ppb/K2. Error in measured frequencies (E1) 
and inaccuracy of temperature (E2) were major sources of 
uncertainty for all aij/bij parameters, and the linearization 
point error (E3) was a top contributor for a11 and a12.

E. Doping Independency of Thermal Expansion

The procedure for extracting the elastic parameters 
relied on the assumption that thermal expansion of (4) 
would be insensitive to doping. To our knowledge, effects 
from heavy doping on thermal expansion of silicon have 
not been studied experimentally. For verification, me-
chanical dilatometry was used for measuring the thermal 
expansion of samples with doping levels similar to wafers 
B3, as1.7, and P7.5. The linear thermal expansion coef-
ficient α1 was found to be constant within the ±7% error 
margin of the measurement.

F. Manufacturability of Temperature-Compensated  
MEMS Resonators

Eventual manufacturability of silicon resonators whose 
temperature compensation is based on degenerate dop-
ing crucially depends on the statistical variations of the 
f-versus-T curves among devices fabricated on a single wa-
fer or on a batch of wafers. This aspect was addressed by 
studying a set of 30 square extensional mode resonators of 
[5], which were fabricated on a wafer with a specification 
similar to that of wafer P4.7 of this work. The f-versus-
T curves of the devices are shown in Fig. 10. These de-
vices were temperature compensated to first-order with 
their turnover temperatures near 20°c. The overall fre-

quency drift over the whole temperature range of 120°c 
stays within 250 ppm, and maximum deviation between 
samples is approximately 20 ppm. one should note that 
the data of this example is from devices on a czochralski-
grown wafer, where the doping level may vary ±5% within 
the wafer. a better control of doping level is achievable 
with diffusion-based doping, or with epitaxially grown sili-
con, for which doping can be controlled during the crystal 
growth process.

VI. conclusion

Elastic constants c11, c12, and c44 of degenerately doped 
silicon were studied experimentally as a function of the 
doping level and temperature. First- and second-order 
temperature coefficients of the elastic constants were ex-
tracted from measured resonance frequencies of a set of 
MEMs resonators fabricated on wafers with varied dop-
ing.

The linear temperature coefficient of the shear elas-
tic parameter c11 − c12 was found to be zero at n-type 
doping level of n ~ 2 × 1019 cm−3. It was observed to 
increase to more than +40 ppm/K with higher level of 
doping, which implies that the frequency of many types 
of resonance modes, including extensional bulk modes and 
flexural modes, can be temperature compensated to first 
order. The second-order temperature coefficient of c11 − 
c12 was found to decrease by 40% in magnitude when n-
type doping was increased from 4.1 to 7.5 × 1019 cm−3, 
suggesting a further reduction of the second-order effect 
with increased doping.

It was found that the frequency drift of an arbitrary 
silicon resonator design, fabricated on a wafer with doping 
level similar to those investigated in this work, can be es-

Fig. 10. superposed f versus T curves of 28 square extensional resona-
tor samples similar to those of [5]. Measurements are shown as black 
open circles, whereas second-order polynomial fits to the data are shown 
with gray lines. The wafer has been doped with phosphorus to a con-
centration of n ~ 5 × 1019 cm−3. Histograms (a), (b), and (c) illustrate 
the distribution of the turnover temperature, and the first-/second-order 
temperature coefficients of frequency, respectively. Wafer map (d) shows 
the location of the measured devices on the wafer. 
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timated with an accuracy of ±25 ppm over a temperature 
range of T = −40°c to 85°c using the elastic parameters 
of this work. absolute frequency can be calculated with an 
accuracy of ±1000 ppm.
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Abstract—Effect of degenerate doping on the long term sta-
bility and quality factors of silicon resonators was studied. The
long term stability of electrostatically coupled tuning fork and
width extensional mode resonators was found to be better than 1
ppm during a measurement spanning 220 days. Resonators were
phosphorus doped to a carrier concentration of 4.1× 1019cm−3.
Quality factors of ~10-MHz Lamé mode resonators on wafers
doped up to a concentration of 7.5 × 1019cm−3 were found
to range from 900,000 to 1,500,000, which is comparable to
that reported for similar resonators with moderate doping. The
results indicate that the effect from heavy phosphorus doping
on resonator stability or on silicon intrinsic losses is low at the
studied doping levels.

I. INTRODUCTION

Degenerate doping of silicon has been found as a viable
way of reducing the temperature dependency of the frequency
of MEMS resonators, and, in particular, n-type doping up
to 7.5 × 1019cm−3 has been shown to be applicable to
temperature compensation of a variety of flexural and bulk
resonance modes [1], [2], [3], [4].

However, it has remained largely uncovered whether the
performance of resonators is affected by doping in terms of
their aging behavior and quality factors. In this work, the long
term stability and quality factors of heavily doped MEMS
resonators are studied experimentally.

II. METHODS

A. Resonator fabrication and encapsulation

Electrostatically coupled silicon resonators were fabri-
cated on SOI wafers with heavily phosphorus/boron doped
Czochralski-grown device wafers with 100 orientation. Res-
onator wafer process was similar to that discussed in [5], [6].
Device wafers were vacuum encapsulated on wafer level using
anodic bonding with a glass/silicon cap wafer [7]. Several
types of bulk and flexural mode resonators were included in
the measurements, see Fig. 1. Resonator frequencies ranged
from 1 MHz to 20 MHz , and the temperature coefficients
spanned a range of TCF = −32 . . . + 16 ppm/K (see Fig.
4(c)).

B. Long term stability measurement

Encapsulated resonator wafer stacks were diced into 1 ×
1 mm2 dies. A set of these dies were picked and attached
with Electrolube silver conductive paint onto carrier boards
(Fig. 2(a)) each accommodating four resonators. Electrical

Figure 1. Illustration of the geometries and mode shapes of Lamé, width
extensional (WE), length extensional (LE) and tuning fork (TF) resonators
used in the study. The arrows indicate the 100 and 110 crystal orientations.
Rotation angles 0◦, 22.5◦and 45◦ have been defined relative to the 110
direction. Temperature coefficients and resonance frequencies are listed in
Fig. 4(c).

connections were made with wire bonding. The carrier boards
included a Maxim DS600 temperature sensor which was in
good electrical contact with the resonators through the ground
plane. The specified accuracy of the temperature sensor was
±0.5◦C. Carrier boards were connected to a circuit board,
which contained ADG1206 multiplexers for selection of a
single active resonator at a time.

The approach that was used to measure the frequency re-
sponse of the resonators is illustrated in Fig. 2(b). A HP4195A
network analyzer was used for measuring the forward trans-
mission coefficient S21 = vout/vin across the resonator and
amplifier (AD825), whose function was to perform the current-
to-voltage conversion. A constant bias of 10 volts was applied
to all measured resonators to achieve electromechanical cou-
pling.

Circuit boards containing the resonator dies were placed
into a climate chamber (Weiss WKL 34/70), whose temper-
ature profile was varied as shown in Fig. 4(a). The profile
consisted of sections, where the temperature was ramped
over T = −20 . . . + 60◦C at a pace of approximately one
full ramp per day, and of sections where the temperature
was held constant at T = +30/ + 40◦C. The purpose of
the temperature ramps was twofold: to determine the f vs.

©2014 IEEE. Reprinted, with permission, from A. Jaakkola, S. Gorelick, M. Prunnila, J. Dekker, T. Pensala, P. Pekko, "Long
term stability and quality factors of degenerately n-type doped silicon resonators", Proc. IEEE International Frequency Con-
trol Symposium, 2014, pp. 1-5. http://dx.doi.org/10.1109/FCS.2014.6859866
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Figure 2. (a) Carrier board used in the long term stability measurement. (b)
The frequency response accross the resonator and amplifier was recorded as
the transmission coefficient S21 = vout/vin.

T curves of the resonators (used in (1)) and to accelerate
resonator aging. Sections with constant temperature served for
eventual determination of the long term stability itself. At each
temperature point, the frequency responses of the resonators
were measured successively, one resonator at a time.

During the course of the measurement, it turned out that
the temperature control of the climate chamber was deficient:
the DS600 sensors indicated that the temperature drifted by
approximately one centigrade during the constant temperature
sections (from t = −220 d to t = 0 d), even though the
temperature setpoint was kept unchanged. As a result, the
frequency deviation with time at constant temperature could
not be followed anymore. However, one could monitor if the
frequency drifts off from the f vs. T curve of the device at
any temperature, and this could then be used as a measure
of (in)stability. Therefore, in this work, the frequency drift is
defined as

drift(t) =
fexp(t)− ftheo(T )

f0
, (1)

where fexp(t) is the measured frequency at time t, T = T (t)
is the measured temperature at this point of time, and ftheo(T )
is the value from the f vs. T curve in temperature point T (t).
ftheo was as obtained as a 3rd order polynomial fit to all
(fexp, T ) data pairs measured for a resonator. The denominator
is given by f0 = ftheo(T = 25◦C).

Resonators from two phosphorus doped wafers were in-
cluded in stability measurements. First, measurements were
started with seven samples from a wafer with a doping level
of 4.1 × 1019cm−3 and later five more samples were added

from a wafer with doping of 7.5× 1019cm−3.

C. Quality factor measurement

Resonators were probed on wafer level before dicing of the
encapsulated wafer stacks. The impedances of the resonators
were measured with an impedance analyzer HP4294A using
the procedure described in [6]. In addition to the two phospho-
rus doped wafers discussed above, a boron-doped wafer with
doping level of 0.6 × 1019cm−3 was characterized as well.
Quality factors of the resonators were extracted by fitting the
frequency responses to a BVD equivalent circuit (an example
is shown in Fig.3). In this paper the focus is on the quality
factor of the Lamé mode resonators, since these designs are
known to have minimal anchor losses, and therefore the quality
factor conveys information about the intrinsic losses in doped
silicon (assuming air damping is at a negligible level due to
vacuum encapsulation).

Figure 3. Example frequency response of a Lamé-0◦ resonator on wafer with
4.1× 1019cm−3 phosphorus doping. Z denotes the resonator impedance. Q
is the quality factor, Rm is the electromechanical resistance and C0 is the
parallel capacitance of the device (obtained from the BVD fit).

III. RESULTS AND DISCUSSION

A. Long term stability

Figure 4 shows the frequency drift of the tested resonators
over a period of 220 days (70 days for the samples that were
added later). The following observations can be made:

1) The frequency drift is less than 1 ppm for resonators
with a small temperature coefficient (|TCF | < 10)
during the observation periods where the temperature
is held constant.

2) The frequency drift is degraded with increasing magni-
tude of resonator TCF .

3) Noise in the frequency drift signal (in particular during
the constant temperature phases) is smallest with lowest
magnitude of TCF .

4) Frequency drift is larger during the temperature ramps.
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Figure 4. (a) Temperature of the climate chamber during the stability measurement. The profile consisted of repeated temperature ramps on a range of
T = −20 . . .+ 60◦C and sections where the temperature was held constant at T = +30/+ 40◦C . Samples were removed from the climate chamber for
periods with no data (for example t = −130 . . .−70 days). (b) Frequency drift (see (1) for the definition) of the resonators. The greyed out regions represent
1-ppm corridors. Rows of data have been ordered according to the magnitude of the TCF of the resonators. (c) Design type, resonance frequency, TCF
and doping level of the resonators.

The observation that the frequency drift and its noise level
increase with growing magnitude of resonator TCF can be
explained by the drift and noise from the used temperature
sensor, which had a limited accuracy of ±0.5◦C, and/or
by temperature fluctuations during the measurement leading
to temperature differences between the resonators and the
temperature sensors. Increased sensitivity to temperature error
(through increased magnitude of the TCF ) is propagated to
apparent frequency drift through the definition of (1). Thus, it
could be that the real stability is better than what is shown in
Fig. 4(b).

In any case, regardless of potential error sources in temper-
ature measurement (and in temperature control, see discussion
in Section II-B), the fact that many resonators showed less than
1 ppm drift is a strong indication that degenerate phophorus

doping does not affect the stability of silicon resonators
detrimentally at the studied doping levels.

The relatively large frequency drifts observed during the
temperature ramp periods can be explained by the fact that
the 3rd order fits for obtaining ftheo(T ) of (1) do not fully
represent the real f vs. T curves of the resonators, and, also
by the possibility of increased temperature gradients in the
climate chamber during the ramps.1

1The originally submitted pre-conference abstract for this paper discussed
a frequency jump observed for certain devices at a time t < −220 days. This
was erroneously identified as a burn-in effect, and in reality the reason was a
change in the drive amplitude of these resonators. In this paper the first month
of data (with different drive level for some resonators) has been excluded for
consistency.
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Figure 5. Quality factors of sets of two types of Lamé mode resonators on a moderately boron-doped wafer and on two heavily phosphorus-doped wafers.

B. Quality factors

Figure 5 shows histograms of the quality factors for the
100/110 aligned Lamé mode resonators on three different
wafers. Quality factors were seen to range from 900,000 to
1,500,000. The corresponding Q× f product was found to be
within the range of Q× f = 1 . . . 2.1× 1013. These findings
match well with previously published results of similar sili-
con resonators with considerably weaker doping, where the
Akhiezer effect losses have been considered to be the major
loss mechanism [8], [9].

Evidence for the negligible role of air damping is given by
the observation that the average quality factors for the 100/110
oriented Lamé modes differ from each other on the same
wafer, while air damping for both modes should be essentially
the same due to similar geometries and modeshapes.

IV. CONCLUSIONS

A frequency drift below 1 ppm over 220 days of observation
was found for several types of heavily phosphorus doped
MEMS resonators. The results confirm that heavy n-type
doping of silicon does not degrade the long term stability of

resonators at the studied doping levels. The stability appears
on par or better than that of previously reported for weakly
doped silicon resonators, e.g. in [7]. The aging requirement
for TCXOs in 3G/LTE/4G phones is less than 1 ppm/year,
and this work suggests it could be met with solutions based
on heavily doped silicon resonators.

The quality factor measurements indicate that the impact
from heavy doping to silicon intrinsic losses is very small.
Losses were found to be of a similar order of magnitude when
compared to silicon resonators with considerably weaker dop-
ing. For most silicon resonator designs of practical importance,
the quality factors are limited by other loss mechanisms such
as thermoelastic damping or anchor losses.
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We present an experimental study of the frequency scaling of the main, square-extensional mode

in a piezoelectrically actuated plate resonator. The studied set consists of resonators of different

plate sizes with identical anchors. The behavior of the square-extensional mode is analyzed using

electrical impedance measurements and optical characterization of the mechanical vibration fields.

The results reveal a detrimental anchor effect, where for certain plate sizes the square-extensional

mode branch is split into two due to a coupled oscillation of the resonator plate and the anchors.
VC 2012 American Institute of Physics. [doi:10.1063/1.3673558]

Recent progress in microelectromechanical systems

(MEMS) technology has opened up possibilities for the use of

single-crystal silicon resonators in frequency control and tim-

ing applications, dominated for decades by quartz crystal

based components. The foreseen benefits of MEMS resonators

include, e.g., low cost, compact size, low power consumption,

and added functionality due to compatibility with complemen-

tary metal-oxide-semiconductor (CMOS) processing. It has

already been demonstrated that capacitively driven square-

extensional (SE) mode MEMS resonators can fulfill the per-

formance requirements for frequency reference applications.1

There is a further interest to excite MEMS resonators piezo-

electrically2,3 in order to avoid the need for bias voltage and

sub-100-nm sized gaps as in capacitive excitation.

In a MEMS resonator, the energy has to be mechanically

well confined within the resonating structure. Since anchor-

ing is needed to support the resonator, the whole device

structure, including the anchors, should be carefully designed

to minimize the leakage of acoustic energy to the surround-

ings. Both analytical4 and numerical5 methods exist to calcu-

late such structures, but in practice, empirical testing is often

required to truly optimize a device. Experimental studies of

the anchoring geometry of bulk mode MEMS resonators6–8

suggest that in order to minimize the acoustic loss, the

anchors should be flexible and preferably be located at the

nodal points of the vibration mode.

In SE-mode operation, the resonator plate expands and

contracts, while preserving its shape and, therefore, does not

have a nodal point at the plate perimeter. As the in-plane

(IP) vibration component of the SE mode contains most of

the vibration energy, the existing nodal point of the IP vibra-

tion at the center of the plate would be an optimal anchor

site. Unfortunately, anchoring at this point is challenging in

the type of resonators discussed here,3 in which the SE mode

is excited using a piezoelectric thin film on top of the resona-

tor plate, see Fig. 1(a). In our resonators, the anchors are

therefore placed at the plate corners. Even though in this

design the SE mode vibration maxima fall at the anchor posi-

tions, it has been demonstrated that a high quality-factor SE

resonance (Q� 130 000) can be achieved in a capacitively

excited SE mode resonator, using such an anchor structure.1

In this letter, we present an experimental study of the

frequency scaling of the SE vibration mode as a function of

the resonator plate size. A starting point for the analysis was

the measurements of the electrical response of a set of 1200

MEMS resonators.9 It was observed that, at certain device

sizes, the SE mode branch appeared to split into two distinct

frequency branches. In order to gain physical insight into

(b)
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III

Rm Lm Cm

C0
Electrical equiv. circuit

d = 28 µm

SiO2

d

300 nm Mo layer

350 nm AlN layer

Si

anchor 
w = 4 µm

L

(a)

I

FIG. 1. (a) Structure of the square-plate resonator. The 28-lm-thick, single-

crystalline silicon resonator plate is attached to the substrate at the plate cor-

ners with 4-lm-wide meander anchors. A 350-nm-thick piezoelectric AlN

layer is deposited on top of the plate. A 300-nm Mo layer on top of the AlN

layer acts as a top electrode, and the Si resonator plate itself acts as a bottom

electrode. (b) Photograph of the L¼ 209 lm resonator sample and the rec-

tangular scan areas I (scan step 1.54 lm), II (0.44 lm), and III (0.44 lm)

used for laser probe measurements. To enable in-plane laser probe measure-

ments, the top-electrode Mo layer is patterned with a 5-lm grid of circular

2.5-lm-diameter holes. The electrical equivalent circuit model of the resona-

tor is shown at the bottom-right corner.a)Electronic mail: lauri.lipiainen@tkk.fi.
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this adverse behavior, 8 devices of different plate sizes were

selected for optical characterization of the IP and out-of-

plane (OP) vibration fields (preliminary findings reported in

Ref. 10). The results of the optical measurements indicate a

coupled resonance between the resonator plate and the

anchors. This finding is further supported by a good fit of an

analytic model of two coupled resonators with the experi-

mental data.

The resonator structure is illustrated in Fig. 1(a). The

fabricated set consists of resonators of 64 different sizes; the

side length of the plate is varied from L¼ 131 lm to

L¼ 320 lm in steps of 3 lm. This plate size range corre-

sponds to a designed SE frequency range from 13 to

32 MHz. The design and the dimensions of the anchors were

kept the same in all resonators. Each size variation was repli-

cated 10 times on a single wafer, and the replicas were dis-

tributed over the whole wafer. The fabrication process is

described in Ref. 3.

The electrical responses of approximately 1200 resona-

tors from two wafers were measured with an impedance ana-

lyzer (Agilent Technologies A4294). The resonance

frequency f0, motional resistance Rm, quality factor Q, and

the parallel capacitance C0 were determined by fitting an

electrical equivalent circuit model of the resonator [see inset

in Fig. 1(b)] to the measured impedance data.

Eight devices with L ranging from 137 lm to 305 lm (in

steps of 24 lm) were selected for laser probe measurements.

The laser probing was carried out using a scanning Michel-

son laser interferometer.11 The instrument enables amplitude

and phase measurements of both the OP12 and IP compo-

nents13,14 of the surface vibrations.

The OP and IP scan areas and their relation to the sam-

ple geometry are depicted in Fig. 1(b). To get an overview of

the acoustic behavior of the sample, the OP data were first

measured over the whole resonator [scan area I in Fig. 1(b)]

including the resonator plate, anchors, and a part of the sub-

strate. The IP vibration fields were then obtained from the

resonator plate (scan area II). In addition, both vibration

components were measured over the top-right anchor and a

part of the resonator plate (scan area III). All the optical

measurements were carried out at low pressure (<0.2 mbar)

and at room temperature.

An analytic spring-mass model of the resonator, in

which the contribution of the anchors is excluded (see inset

A in Fig. 2), predicts that the resonance frequency of the SE

mode is inversely proportional to the plate side length L. In

the electrical characterization results, however, a deviation

from the expected 1/L frequency scaling is observed, see

Fig. 2. In particular, at the intermediate plate sizes,

160 lm<L< 260 lm, instead of a single resonance, two

strong resonances are observed above and below the pre-

dicted SE resonance frequency such that the SE mode branch

appears to split into two distinct frequency branches. In addi-

tion, for these plate dimensions, the spread of the resonance

frequencies between samples of the same plate size increases

when the upper or lower resonance frequency branches

diverges away from the expected 1/L scaling.

In the eight optically measured samples, despite of the

frequency splitting, the IP vibration field of the two branches

corresponds to what is characteristic to the SE mode, except

for the L¼ 185 lm plate size at the lower frequency branch

and for the L¼ 233 lm and L¼ 257 lm plate sizes at the

higher frequency branch (see the symbolic representation in

Fig. 2). These three non-SE modes are observed to vibrate

strongly in the OP direction, indicating that another mode,

with a strong OP component, is excited instead of the SE

mode at these plate dimensions.

It is also observed that the IP vibration amplitudes and

the electrically characterized resonances are stronger for the

branch that is closer to the predicted frequency of the SE

mode. The electrical Q values of the resonances on the stron-

ger branch are typically between 12 000 and 18 000 and Rm

between 80 and 200 X at a pressure of <10 mbar, whereas

on the weaker branch they are significantly worse,

Q� 100–1000 and Rm> 1 kX.

The laser probing measurements reveal an increased

vibration activity at the anchors within the 20–22 MHz fre-

quency range for all plate sizes. In this frequency range, sev-

eral resonances are observed that feature stronger IP and OP

vibration amplitudes at the anchors than at the resonator

plate. An example of the frequency response of such a reso-

nance is illustrated in Fig. 2 (enlarged in the inset E).

The IP phase data give further evidence on the role of

the increased anchor activity at the 20–22 MHz frequency

range to the splitting of the SE mode. The phase data in

insets C and D of Fig. 2 show that the resonator plate and the

anchor are moving in opposite phase on the higher-

frequency branch, whereas on the lower-frequency branch,

they vibrate in phase. This would indicate that the resonan-

ces on the upper and lower branches are the two eigenmodes

of a coupled oscillation between the SE mode and a parasitic

anchor mode. The trends of the behavior of the two fre-

quency branches also suggest that this anchor mode exists

between 20 and 22 MHz.

A coupled two-resonator model, depicted in inset B of

Fig. 2, was used to give further support to our conclusion. A

spring-mass system with an effective mass m1 and a spring

constant k1 describes the SE mode of the resonator plate.

When another spring-mass system (k2, m2) is introduced in

the model to take into account the anchor, this coupled reso-

nator model results in a good fit to the electrically measured

resonance frequency data.

The extensive electrical and laser probe characterizations

of this study have provided us with valuable information on the

anchor resonance effects to the operation of the MEMS plate

resonator. It is evident that even small and flexible anchors may

have a significant impact on the resonance behavior of the mas-

sive plate (relative to the anchors), at least in the case when the

resonator plate is not anchored at a nodal point of the plate’s

vibrational motion. As seen from the electrical data in Fig. 2,

the deviation of the stronger SE resonance branch from the 1/L
scaling starts already at around L¼ 170 lm (upper branch) and

L¼ 230 lm (lower branch), although the resonance frequencies

are more than 1 MHz away from the 20 to 22 MHz frequency

range where the anchors are active.

The coupling between the SE mode and a parasitic anchor

resonance leads to unwanted consequences. First of all, certain

operation frequencies cannot be achieved by simply scaling

the size of the resonator plate unless the anchor design is

changed accordingly. More importantly, the spread of the SE

013503-2 Lipiäinen et al. Appl. Phys. Lett. 100, 013503 (2012)
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resonance frequencies between resonator samples of the same

size is too high for frequency control and timing applications

in the region where the SE frequency deviates from the 1/L
relationship due to the mode coupling. In this study, this fre-

quency spread is unsatisfactorily high over an operational fre-

quency range of 19–25 MHz. To avoid the adverse effects of

the anchor-plate coupling, a large frequency margin between

the main and anchor resonance is therefore required.

L.L. acknowledges Aalto University School of Science

and Technology for scholarships.
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FIG. 2. (Color) The electrical characterization and laser probing results. The electrically characterized resonance frequencies (black “þ”) are plotted as a

function of the plate side length L. Only the resonances corresponding to the two frequency branches closest to the pure SE mode frequency curve (black line)

predicted by the single spring-mass model (shown in inset A) are presented. The red curves represent the least squares fit of the coupled resonator model

(shown in inset B) to the electrical data. The measured OP (colormap) and IP amplitude data (black arrows on the OP data) of selected plate sizes are shown as

insets. To visualize the vibration fields, each OP data figure has a separate logarithmic scaling normalized to its maximum OP amplitude, and also the lengths

of the arrows indicating the IP fields have a separate linear scaling for each data figure. Insets C and D: The IP phase data of the top-right anchor of the

L¼ 209 lm resonator. The instantaneous movement directions of the anchor and the resonator plate are depicted with red and yellow arrows. Inset E:

Frequency sweep of the IP vibration amplitude of a selected resonance within the 20-22 MHz range, in which increased anchor activity is observed (measured

from the top-right anchor).

013503-3 Lipiäinen et al. Appl. Phys. Lett. 100, 013503 (2012)

 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to IP:

130.188.235.206 On: Sun, 06 Sep 2015 07:56:31

P
ap

er
V

http://scitation.aip.org/termsconditions


Nonlinear excitation of a rotational mode in a piezoelectrically excited
square-extensional mode resonator
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We present an experimental study of the nonlinear behavior of a square-extensional (SE) mode

microelectromechanical resonator, actuated with a piezoelectric AlN thin film. The acoustic

vibration fields of the device are characterized using laser probing. A nonlinear vibration behavior

of the SE mode is observed above a drive power level of �10 dBm such that the vibration

amplitude of the SE mode saturates and a rotational in-plane vibration mode is excited at a

significantly lower frequency (0.725 MHz) than the SE mode (16.670 MHz). Interestingly, the

measured �10 nm saturation amplitude of the SE mode is more than a decade below the amplitude

value at which mechanical or electromechanical nonlinearities are estimated to become significant.
VC 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.3703119]

Microelectromechanical system (MEMS) silicon resona-

tors are considered as potential alternatives to quartz crystals

in timing and frequency control applications. Compared to

quartz crystals that have dominated these markets over deca-

des, the foreseen benefits of MEMS resonators include low

cost, small size, low power consumption, and integrability

with CMOS processing.1 Piezoelectric thin-film actuation is

a promising transduction method for MEMS silicon resona-

tors.2,3 While the more commonly used capacitive transduc-

tion provides resonances with a higher quality factor, even

as high as Q � 100000 in the 10–100 MHz range4,5 and

Q � 10000 in the GHz range,6 piezoelectric thin-film excita-

tion can offer a better electromechanical coupling and, more-

over, no DC bias or sub-100 nm gap structures are required

as in capacitive coupling.

Compared to quartz crystals, the desirable smaller size

of MEMS resonators unavoidably results in poorer energy

storage, making it challenging to achieve an adequate phase

noise performance.7 Hence, the MEMS resonator should pro-

vide a vibration amplitude as high as possible for the best

performance. In capacitively actuated Si resonators, the

power handling capacity in linear operation is limited by

both the nonlinear nature of the transduction method and the

mechanical structure of the resonator.7 The nonlinearity of

the transduction is often the dominant one in capacitively

driven resonators, but the effect can be reduced, e.g., by a

more dedicated electrode configuration such as those used in

comb-drive structures. The main mechanical nonlinearities

are typically the nonlinearity of the resonator materials and

the nonlinear geometrical effects caused by dynamic shape

variations during vibration.

In the case of piezoelectric AlN thin-film-actuated

MEMS Si resonators discussed here, the power handling

capacity in linear operation is ultimately limited by the me-

chanical nonlinearities of the vibrating AlN-Si structure8 and

by the electromechanical nonlinearity of the AlN thin film.

In a recent study,9 the most dominant nonlinearity of AlN

was shown to be the electromechanical nonlinearity, which,

however, was observed to be nearly negligible at electric

field strengths below 10 V=lm. In our experiments, the elec-

tric field strength was <1V=lm, and hence, the nonlinear-

ities of the AlN layer are expected to be small compared to

the mechanical nonlinearities of the Si resonator structure.

The mechanical nonlinearities (and transduction nonli-

nearities in capacitive resonators) cause vibration amplitude

dependent changes to the center frequency of the resonance,

so-called spring-softening or spring-hardening effects (a.k.a.

duffing effect). Increasing the vibration amplitude either

decreases (spring softening) or increases (hardening) the cen-

ter frequency of the resonance, and eventually, above a criti-

cal vibration amplitude Ac, the amplitude-frequency curve

shows hysteresis (bifurcation). Although there have been

some ideas of taking advantage of the bifurcation effect,10–12

this effect is usually considered detrimental to resonators

designed for linear operation, which in practice limits their

power handling capacity.

In this letter, we have experimentally studied the acous-

tic behavior of a piezoelectrically driven square-extensional

(SE) mode MEMS silicon resonator as a function of the input

power. The in-plane (IP) and out-of-plane (OP) acoustic

vibration fields of the device are characterized using optical

probing. It is observed that when linearly increasing the drive

power, the vibration amplitude of the 16.670-MHz SE mode

first linearly increases and then, above a drive power level of

PTH ¼ �10 dBm, saturates to a nearly constant value. The

corresponding saturation amplitude of the IP vibration is

measured to be approximately 10 nm, which is more than an

order of magnitude below the anticipated critical amplitude

of bifurcation resulting from the mechanical nonlinearities of

the resonator structure. Furthermore, the results show that,

by driving the SE mode into the nonlinear regime where its

vibration amplitude is saturated, a very pure rotational IP

vibration mode is excited at 0.725 MHz, corresponding to the

23rd subharmonic frequency of the SE mode.

The structure of the square-plate resonator is illustrated

in Fig. 1(a). The resonator is designed to operate in the SE

mode at 16.670 MHz. The electrically measured quality fac-

tor for the SE mode operation (in vacuum, <1 mBar) is

Q¼ 18 000 and the motional resistance is R ¼ 80 X. The

electrical characterization method is described in Ref. 13.

0003-6951/2012/100(15)/153508/4/$30.00 VC 2012 American Institute of Physics100, 153508-1
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The acoustic vibration fields were measured using a

scanning homodyne Michelson interferometer,14 which is ca-

pable of amplitude and phase measurements of IP (Refs. 15

and 16) and OP (Ref. 17) surface vibration fields. The setup

enables the use of different excitation and detection frequen-

cies for studies of nonlinear acoustic phenomena.

The measurement areas in the sample geometry are

depicted in Fig. 1(b). First, the amplitude of the IP and OP

vibrations were measured at a single point as a function of

the drive power of the single-frequency excitation. Care was

taken to choose the measurement position in such a way that

all relevant acoustic modes were detected. The OP measure-

ment point, marked with “X” in Fig. 1(b), is located on the

metal surface between the holes at the top-right corner of the

resonator plate. The IP measurement point is at the right-

hand side edge of the hole depicted with a white circle in

Fig. 1(b). For each IP vibration mode, only the most sensi-

tive point at the edge of the hole, i.e., the point where the

normal of the edge is collinear with the direction of the

vibration, is selected as the IP detection point. Areal meas-

urements were then carried out on the resonator plate at

selected excitation and detection frequency combinations in

which the nonlinear acoustic behavior was observed. The OP

measurement area I (267 lm� 267 lm) covers the whole

resonator plate with a scan step of 1:54 lm. Due to the sym-

metry of the IP modes obtained in this study, the IP vibration

field was measured only at the top-right quarter of the plate

(scan area II: 134 lm� 134 lm, scan step 0:44 lm). The

measurements were carried out in a low pressure environ-

ment (<0:2 mBar) at room temperature.

It should be noted that the laser interferometric OP and

the vectorial IP detection methods are themselves nonlinear

in nature. Consequently, all the acoustic modes which simul-

taneously exist in the sample at different resonance frequen-

cies are mixed in the detection, leading to artifacts in the

detected signal. A schematic spectrum of such a measure-

ment signal is depicted in Fig. 1(c) for the case of a MEMS

resonator that features one mode at the input drive frequency

fin and one nonlinearly excited mode at fNL � fin. In our

experiments, we utilize the IP data of the areal measurements

to identify the true acoustic modes based on the fact that,

contrary to the laser interferometric OP data, the artifacts

result in a different spatial content in the IP data than the real

acoustic fields.

In the sample resonator, a nonlinear acoustic behavior

was observed which was similar to the illustrative case of

Fig. 1(c). When driving the sample at the SE mode excitation

frequency of fin ¼ fSE ¼ 16:670 MHz above a threshold

power of PTH ¼ �10 dBm, another mode gets nonlinearly

excited at fR ¼ 0:725 MHz. The fR mode could not be electri-

cally detected with this electrode geometry, but it was read-

ily observed with the optical detection.

The detected IP vibration amplitudes of the two modes

are presented in Fig. 2(a) as a function of the input drive

power Pin, when the sample is driven at fSE ¼ 16:670 MHz.

The nominal drive power Pin is swept in the range from �41

to �6 dBm with 0.5 dBm steps. The mode at fR abruptly

emerges at PTH ¼ �10 dBm. Above PTH, the IP amplitude

of the SE mode saturates, whereas the IP amplitude of the fR
mode starts to increase with a slope approaching unity at

Pin > �9 dBm. This indicates that above Pin ¼ �9 dBm all

the added power goes to the fR mode. Importantly, it should

be noted that the fR mode cannot be directly excited via pie-

zoelectric actuation at fR in this electrode geometry. Hence,

the fR mode is a result of a truly nonlinear effect, emerging

only by actuating the resonator at fSE with Pin > PTH.

The IP vibration amplitudes of the SE and fR modes are

illustrated in Fig. 2(b) as a function of the drive frequency,

using three different drive power levels in the nonlinear re-

gime (Pin > PTH) and one in the linear regime. The drive fre-

quency is swept both into increasing (fin�up sweep) and

decreasing frequency (fin�down sweep) with 100 Hz frequency

steps. In the nonlinear regime, the SE mode data clearly

show the amplitude cutoff effect. However, the behavior is

different for the fin�up and fin�down sweeps. For the up

sweeps, the resonances extend higher in frequency, until, at

certain drive frequencies depending on the power level, the

FIG. 1. (a) Schematic view of the sample. The 257 lm� 257 lm� 28 lm,

single-crystalline Si resonator plate is piezoelectrically actuated with an AlN

thin film. The Mo layer on top of the AlN layer acts as the top electrode, and

the Si plate itself is used as the bottom electrode. The resonator is attached

to the substrate at its corners with 4-lm-wide, meander anchors. (b) A

microscope image of the resonator and illustration of the measurement areas

used for optical characterization of the vibration fields. The top-electrode

Mo layer is patterned with a 5-lm-period grid of circular, 2.5-lm-diameter

holes in order to create reflectivity variations for IP detection. (c) Schematic

representation of the frequency spectrum of the measurement signal, includ-

ing signal artifacts caused by the nonlinearity of the optical detection

(dashed lines) and the signals from the real acoustic modes (solid lines). The

resonator is driven at fin, resulting in the excitation of one vibration mode at

fin and another at fNL.
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amplitude abruptly drops down. No such asymmetric broad-

ening of the resonance is observed for the down sweeps.

Similar broadening behavior for the fin�up sweeps is

observed also for the fR mode. In addition, the fin�up and

fin�down sweeps of the fR mode show hysteresis effect which

is characteristic for spring hardening.

The measured IP vibration fields of the fSE mode and the

fR mode are illustrated in Figs. 2(c) and 2(d). In these areal

scans, the resonator is driven in the nonlinear regime with

Pin ¼ �8 dBm at fSE. Although the IP vibration amplitude of

the SE mode is saturated to a maximum of �10 nm in this

regime, its vibration field pattern is still characteristic to the

SE mode, similar to the one obtained in the linear operation

range, Pin < PTH. Also the shape of the OP SE vibration field

was found to stay unchanged in the nonlinear range, but the

amplitude saturates.

The IP data of the fR mode correspond to an IP vibration

mode with radially symmetric rotational vibration of the res-

onator plate with the corner anchors acting as springs. Inter-

estingly, there is no detectable OP component, indicating the

mode to be purely rotational. The measured maximum IP

amplitude of this rotational mode is even higher than that of

the SE mode, see Figs. 2(c) and 2(d). It was also confirmed

using FEM simulations that such a fR mode indeed can exist

in this resonator structure at this frequency.

The nonlinearity observed in this study severely degrades

the power handling capacity of the resonator sample. The

obtained IP saturation amplitude for the SE mode is approxi-

mately 10 nm, whereas the bifurcation amplitude due to

mechanical nonlinearities has been estimated to be > 300 nm

in this resonator structure. This estimation is based on a limit

obtained previously in a capacitive SE mode resonator with a

similar Si resonator structure,7 which is scaled to the dimen-

sions and the Q value of our resonator. Hence, the mechanical

nonlinearity of the resonator structure does not explain the

low nonlinearity limit obtained.

Avoort et al.18 have reported a nonlinear behavior in

capacitively actuated MEMS resonators, which shows simi-

larities to the observations of our study, such as the ampli-

tude saturation and the excitation of another acoustic mode at

a different frequency than the excitation frequency. They

proposed the nonlinear behavior to be related to an autopara-

metric resonance. However, we observe an amplitude-

frequency hysteresis in our sample resonator, a feature not

explained by the autoparametric resonance in a linear system.

The 1:23 frequency ratio between the fR and fSE modes would

indicate that they may be mechanically coupled, thus result-

ing in a nonlinear parametric excitation.19 Dedicated simula-

tions and further experiments in varying dimensions are

needed to explain in detail the nonlinear effects observed.

A.J. acknowledges funding from the Academy of Finland.

1C. T.-C. Nguyen, IEEE Trans. Ultrason. Ferroelectr. Freq. Control. 54,

251–270 (2007).
2R. Abdolvand, H. Lavasani, G. Ho, and F. Ayazi, IEEE Trans. Ultrason.

Ferroelectr. Freq. Control 55, 2596–2606 (2008).
3A. Jaakkola, P. Rosenberg, S. Asmala, A. Nurmela, T. Pensala, T. Riekki-

nen, J. Dekker, T. Mattila, A. Alastalo, O. Holmgren, and K. Kokkonen, in

Proceedings of the IEEE Ultrasonics Symposium, Beijing, China, 2-5 No-

vember 2008 (IEEE, New York, 2008), pp. 717–720.
4V. Kaajakari, T. Mattila, A. Oja, J. Kiihamäki, and H. Seppä, IEEE Elec-
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Abstract—Passive temperature compensation of silicon MEMS
resonators based on heavy n- and p-type doping is studied. Res-
onators are fabricated utilizing silicon with phosphorus doping
level of 5·1019 cm−3 and boron doping levels of 5·1019 cm−3 and
2 · 1020 cm−3, the latter being stress compensated with germa-
nium. The temperature behavior of the resonance frequencies of
Lamé and square extensional (SE) modes is measured. Depending
on the vibration mode and crystal orientation, significant tem-
perature compensation effects are observed: as a result of heavy
n-type doping the temperature coefficient of frequency (TCF) of
the SE mode is reduced from -32 ppm/K to ca. -1 ppm/K, while a
Lamé mode resonator exhibits an overcompensated TCF of +18
ppm/K. In p-type resonators a TCF of ca. -2 ppm/K is observed
in a Lamé-mode. Keyes’ [1] theory of free carrier contribution
to the elastic constants of many-valley semiconductors is used
to predict the temperature behavior of the n-type resonators.
Good agreement is obtained between predicted and observed
temperature behavior. The n-type doping can be applied to the
TCF reduction of a large class of resonators and shows great
potential in improving Si resonator performance.

I. INTRODUCTION

Silicon based MEMS resonators have been investigated
for a long time as a replacement for quartz resonators in
oscillators and timing circuits. The driving forces have been
miniaturization further than possible with quartz, integration
with CMOS, manufacturing cost reduction, and potentially
better noise performance. One of the most serious challenges
of the technology has been the temperature coefficient of
frequency (TCF), typically around −30 ppm/K for silicon
[2], whereas quartz achieves essentially zero linear TCF. A
Si MEMS resonator exhibits a frequency drift of over 3000
ppm over the temperature range from -40 to +80 C, while an
AT cut quartz crystal stays within ±10 ppm of the frequency
at room temperature.

Methods of compensation of the large intrinsic TCF of
Si MEMS resonators include addition of amorphous SiO2

structures having an opposite sign of temperature drift, ex-
ternal electronic compensation via phase-locked-loop (PLL)
techniques, electrostatic spring stiffening, and doping.

Application of SiO2 makes the structure more complicated.
In order to be effective in compensation, the oxide needs to
be placed in a position of large stress in the resonator. Certain
flexural mode resonators may be compensated by oxidation
of the surfaces but an extensional mode resonator would need
significant amount of SiO2 to be placed preferably in the depth
of the device leading to complicated processing.

Although the PLL based solution adds noise and jitter
and consume power, it has been successfully applied in
certain timing products of e.g. companies SiTime and Discera.
Adjusting the stiffness of the electrostatic spring by DC
bias in electrostatically actuated devices is applicable only to
resonators whose mechanical spring constant is low, that is,
flexural mode devices.

Intrinsic passive compensation by doping of Si has been
reported in [3], [4], [5], [6]. The advantages include keeping
the manufacturing process and the structure simple and re-
moved or relaxed requirements for the external compensation
oscillator circuitry.

In the approach of this paper, there is no need for additional
process steps for doping, since homogenously doped material
is used for the device layers. Even overcompensation by a large
margin is demonstrated with reasonable doping concentration.
Moreover, a modeling method for predicting the TCF of a res-
onator as function of n-type doping concentration, resonance
mode, and crystal orientation has been developed.

II. THEORY

A. Temperature coefficient of frequency of a mechanical res-
onator

The frequency of an acoustic λ/2-resonator with character-
istic dimension L is given by

f =
v

2L
=

1

2L

√
c

ρ
, (1)

where the acoustic velocity is given by v =
√

c
ρ , c being

the stiffness of the material and ρ its density. The linear
temperature coefficient of frequency of the resonator is given
by

TCf =
1

f

df

dT
(2)

=
1

f

df

dL

∂L

∂T
+

1

f

df

dc

∂c

∂T
+

1

f

df

dρ

∂ρ

∂T

= −TCL +TCc −
1

2
TCρ

=
1

2
(TCc + α)

where TCL is the linear coefficient of thermal expansion α
and TCρ = −3α. For silicon and many other materials TCc
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is much larger than α and thus forms the primary source of
temperature drift. In order to intrinsically temperature stabilize
a resonator, this coefficient must be reduced or counteracted.

B. Effect of Doping

Doping affects the elastic constants of semiconductors by
two main mechanisms: dissimilarity of the doping atom with
respect to the host lattice and free charge carriers introduced
by the doping. Here we will focus on the latter effect, which
is assumed dominant at least below doping concentrations of
1021 cm−3.

In a many-valley semiconductor such as Si, certain strain
components lift the conduction band valley degeneracy chang-
ing the energy of the free electron system. Since the elastic
constants cij are second derivatives of the free energy,

cij =
1

V0

∂2G

∂Si∂Sj
, (3)

where V0 is the volume of the non-deformed crystal, G the
Gibbs free energy, and S is the strain (in the contracted
notation), a coupling between the charge carrier concentration
and the elastic constants is established. A similar mechanism
applies for the free holes.

For free electrons Keyes [1] presents an expression for the
free energy based on which electronic contributions to the
elastic constants can be derived. In the case of n-type Si we
have

δc11 = −Φ
4

3
Ξ2
u (4)

δc12 = Φ
2

3
Ξ2
u

δc44 = 0,

where Ξu is the uniaxial deformation potential constant [7],

Φ = −
∫

dENi(E)
∂

∂E
f0(E), (5)

Ni(E) is the density of states for valley i, and f0(E) is the
Fermi-Dirac distribution

f0 =
[
e(E−EF )/kBT + 1

]−1

(6)

from which the temperature dependence arises. With parabolic
bands and deformation potential constant of Ξu = 9.6 eV
obtained from a fit to the measurement data of Hall [8]
(using the data at range T = 100 . . . 308 K), the electronic
contributions (Eq. 4) can be calculated.

C. Mode frequencies

The Lamé-mode is a pure shear mode present in square
plates. Its frequency is given by

fL =
1√
2L

√
cxy,shear

ρ
, (7)

where L is the plate side length and cxy,shear is c44 for plates
with sides oriented along 110 and 1

2 (c11 − c12) for plates
with sides oriented along 100 directions. Other modes such
as the SE mode have a more complicated dependence on the

Fig. 1. Photograph of a resonator. The 0.5 μm actuation gaps are at the top
and bottom sides of the square plate to facilitate excitation of both SE and
Lamé modes. The dots in the resonator are the 3 μm holes for the HF vapor
release etch.

elastic parameters with usually no exact analytic expression
available. In such a case one can perform a sensitivity analysis
by numerical FEM simulation to obtain a linearized function
for the frequency of the form

f(δc11, δc12, δc44) = f0

⎛
⎝1 +

∑

ij

1

f0

∂f

∂cij
δcij ,

⎞
⎠ (8)

where ij = 11, 12, 44. Differentiating this with respect to
T using the temperature derivatives of cij from calculation
described in Sec. II-B and assuming a doping independent
thermal coefficient of expansion α = 2.84 ppm/K [2] one can
calculate the TCF of a resonance mode according to Eq. (2).

III. EXPERIMENTAL

Silicon-On-Insulator wafers with heavily doped device layer
were fabricated in three different types:

1) n-type Czochralski wafers with phosphorus doping
concentration of 5 · 1019cm−3.

2) p-type Czochralski wafers with boron doping con-
centration of 5 · 1019cm−3.

3) p-type epitaxially grown wafers with boron concen-
tration of 2 · 1020cm−3 and Ge of 1.6 · 1021cm−3

(stress compensation).
The doping concentrations were chosen to be maximal

without expecting fabrication complications. The device layer
orientation was 100 and thickness was 10 μm in all samples.

Resonators were fabricated by a process including Al con-
tact metallization and patterning, DRIE etching of vertical
gaps (width 0.5 μm) and release etch holes (diam. 3 μm),
and finally release etching by HF vapor. A photograph of a
resonator is shown in Fig. 1. The samples included square plate
resonators in different orientations on the wafer which could
be electrostatically actuated to resonate both in the square
extensional and the Lamé modes.

The resonators were measured in atmospheric pressure on
wafer level with an impedance analyzer while applying a
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Fig. 2. The elastic constants c11, c12, and 0.5(c11 − c12) calculated for
the n-type doping concentration 5 · 1019 cm−3 of the experimental samples
and for a lower level of 1 · 1019 cm−3 for reference.
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Fig. 3. Measured and predicted resonance frequency f0 vs. T of the n-type
doped SE(100)-mode. The coefficients a and b are the fitted linear and 2nd

order TCFs, respectively. The dependence is quadratic with a small negative
slope at RT.

DC bias of 40 V over the gaps. The wafers were held on
a temperature controlled chuck, the temperature of which was
varied from 20 ◦C to 100 ◦C (n-type wafers) and 40 ◦C to
80 ◦C (p-type wafers). The Lamé and SE resonances were
identified and their frequency was tracked over temperature.
A second-order polynomial centered at T = 25 ◦C was fitted
to the frequency vs. temperature data to obtain the linear and
second-order TCFs.

IV. RESULTS

The temperature behavior of the elastic constants cij pre-
dicted by the calculation described in II-B are presented in
Fig. 2 for the case of n-type doping with doping concentration
5·1019 cm−3 of the experimental samples and for a lower level
of 1 · 1019 cm−3 for reference. Doping is seen to both change
the absolute value of cij at given T but also to affect the shape
of the cij(T ) curves. Most remarkably, the slope of the shear
elastic constant 1

2 (c11 − c12) changes sign from negative to
positive between the two doping levels.

Measured resonance frequency vs. T data and the 2nd order
polynomial fits for the n-type doped 100-oriented SE mode
and the 100-oriented Lamé modes are shown in Figs. 3 and
4, respectively.

The linear TCFs extracted from measurements are presented
in Table I. For reference, with standard doping level in the
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Fig. 4. Measured and predicted resonance frequency f0 vs. T of the n-type
doped Lamé(100)-mode. The coefficients a and b are the fitted linear and 2nd

order TCFs, respectively. The curve is quadratic with a large positive slope
at RT.

TABLE I
MEASURED LINEAR TCF FOR THE LAMÉ AND SQUARE EXTENSIONAL

PLATE MODES. PLATE SIDE CRYSTAL ORIENTATION IS INDICATED.

Lamé 110 Lamé 100 SE 110 SE 100
n (P) -32 ppm/K +18 ppm/K -6.5 ppm/K -0.9 ppm/K
p (B) -3.0 ppm/K -14 ppm/K -21 ppm/K -22 ppm/K

p (B+Ge) -1.8 ppm/K -14 ppm/K -21 ppm/K -22 ppm/K

range below 5 · 1018 cm−3 all modes exhibit a TCF in the
range -32 · · · -29 ppm/K.

The phosphorus doped n-type devices show remarkable
thermal compensation effects. The strongest effect is seen
in the 1

2 (c11 − c12) -characterized 100-oriented Lamé mode,
which exhibits a large positive TCF of +18 ppm/K. The TCF of
the 100-SE mode is -0.9 ppm/K, more than one decade below
the starting point, while the c44 characterized Lamé mode is
practically unaffected. It is to be noted that this is in harmony
with the last row of Eq. (4).

The p-type boron doping results in a reduction of the TCF
of the 110-oriented Lamé mode characterized by the shear
elastic constant c44 by one full decade to -3 ppm/K. The TCF
of the 1

2 (c11− c12) -characterized 100-oriented Lamé-mode is
reduced in magnitude to -14 ppm/K, and the TCF of the SE
modes for the two resonator orientations are -21 ppm/K and
-22 ppm/K, respectively.

With even heavier p-type doping with boron associated
with Ge doping for stress compensation, the TCF of the 110
oriented Lamé mode is reduced further to -1.8 ppm/K but no
changes are observed in the 100 Lamé nor the SE mode as
compared to the first p-type case.

Table II compares the measured and calculated TCFs of the
three vibration modes in the case of n-type doping. The values
show good agreement.

In 1 atm the Q-values of the devices are limited by air
damping to ∼ 10 000. The p-type devices were also measured
in vacuum and exhibited Q-values above 100 000.

V. DISCUSSION

The TCF of the resonators was measured with only the
wafer bottom contacted to the heat sink at the desired temper-
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TABLE II
MEASURED VS. CALCULATED LINEAR TCF FOR THE LAMÉ AND SQUARE

EXTENSIONAL PLATE MODES IN PHOSPHORUS DOPED (N-TYPE) SI
RESONATORS. PLATE SIDE CRYSTAL ORIENTATION IS INDICATED.

Lamé 110 Lamé 100 SE 110 SE 100
calc. -26 ppm/K +20 ppm/K -4.9 ppm/K +0.0 ppm/K
meas. -32 ppm/K +18 ppm/K -6.5 ppm/K -0.9 ppm/K

ature. Finite element method thermal simulations of the SOI
wafer stack and of that of the resonator were performed to
estimate the temperature error caused by the ambient room-
temperature air. An upper limit estimate of 2K difference
between the chuck and the resonator element was obtained
assuming a highly overestimated convection coefficient of
Hair = 50W/(m2K) for the ambient air. This would lead
to less than 1 ppm/K underestimation of the magnitude of the
linear TCFs reported in Table I. Furthermore, TCF measure-
ment of conventionally doped resonators with the same setup
yielded the same TCF as that obtained in an oven within 1
ppm/K.

Some uncertainty exists in the actual doping concentration
of the devices under test. Variation in the order of several
percents over the wafer is known to exist, depending on the
manufacturing method and level of doping. In the quest for
repeatable minimization of the TCF of resonators, this matter
needs attention.

In the n-type devices the agreement between the theoretical
prediction due to free carrier contribution is good in qualitative
sense as the c44 is only weakly affected (Eq. (4). Furthermore,
good quantitative agreement is obtained using the deformation
potential constant fitted to the data of Hall [8]. This forms
strong evidence for the fact that the effect of doping on the
elastic constants is mainly of electronic origin.

For n-type doped Si resonators, a modeling method for
predicting the TCF of a resonator as function of doping
concentration, resonance mode and crystal orientation has
thus been established. For p-type Si the modeling is more
demanding due to a more complex band structure of the free
holes, but should be possible. It is to be noted that a doping
independent thermal expansion coefficient has been assumed
for calculated TCFs (Table II) while it is possible that the
heavy doping does have an effect on it.

The n-type doped 100 SE-mode shows an extrapolated total
frequency drift of below 300 ppm in the range of -20 · · · 80
◦C as compared to a typical ∼ 3000 ppm of conventional
MEMS resonators - an improvement by one decade. The 100
Lamé-mode shows overcompensation at +18 ppm/K showing
that there is large margin of compensation available by n-type
doping.

Most importantly, n-type compensation affects most effec-
tively the elastic constant 1

2 (c11 − c12) which contributes to
a large class of resonance modes. This makes the range of
applicability of n-type doping wide while p-type doping is
limited more special modes characterized by the pure shear
elastic constant c44.

It is foreseen that heavy n-type doping of Si allows for
developing resonators approaching quartz in intrinsic temper-
ature stability.

In further work we plan to study the accuracy, repeatabil-
ity, and 2nd order effects of the temperature compensation
by doping, in addition to extracting elastic constants from
measurements as function of both doping concentration and
temperature varied in wider ranges.

VI. CONCLUSION

Si MEMS resonators were manufactured using SOI wafers
with heavily p- and n-type doped device layers. It was demon-
strated that doping of Si can be used to reduce temperature
drift of MEMS resonators significantly via electronic effects.
By n-type doping the TCF of a resonance with dependency
only on the shear elastic constant 1

2 (c11 − c12) can be made
positive, while the TCF of certain other modes can be reduced
in magnitude.

By p-type doping the temperature drift of the elastic con-
stant c44 is reduced most significantly. A model developed
based on Keyes’ theory on free electron contribution to the
elastic constants allows for prediction of the of the TCF of
n-type doped Si resonators with good agreement with exper-
iment. Especially the n-type doping is found very versatile
and shows great promise in improving the Si resonator per-
formance for the timing and frequency reference applications.
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Abstract—We report results of a parametric study on a set of
single-crystal-silicon plate resonators, whose lateral dimensions
are varied so that the main resonance mode occurs at a range
of f = 13. . .30 MHz. The resonator transduction is based on
a piezoelectric AlN thin film. Measurements spanning >1000
devices and two wafers indicate that with certain device dimen-
sions the square extensional resonance mode and a higher-order
extensional mode are excited with a relatively low frequency
scatter of ∆f ∼ 2 000 ppm (full range). Other resonance modes
typically have a frequency scatter larger than 15 000 ppm, which
we interpret to be an indication of their flexural character.
Additionally, we observe a splitting of the main resonance mode
branch at intermediate device dimensions.

I. INTRODUCTION

Single-crystal silicon (SCS) MEMS resonators are being
considered as potential alternatives for quartz crystals in timing
and frequency control applications due to their small size, good
noise performance and compatibility with CMOS processing.
SCS MEMS resonators transduced with a piezoelectric thin
film deposited on top of the resonator bulk have been studied
with increasing interest [1], [2], [3]. Main merits of piezo-
electric transduction — as compared to the traditional method
of capacitive transduction — are the inherently stronger elec-
tromechanical coupling and the fact that no DC bias is needed.
Additionally, processing of narrow gaps is not needed. On
the other hand, the piezoelectric stack may degrade resonator
quality factor, and it may affect resonator frequency repeata-
bility. Additionally, with piezoelectric transduction, parasitic
resonance modes are often relatively easily excited; to create
a successful design it is important to identify the unwanted
resonances in the vicinity of the intended main resonance
mode, and to minimize their effects.

In this work we report experimental results of a statistical
parametric study on a set of piezoelectrically transduced plate
resonators, whose lateral dimensions are varied so that the
main resonance mode occurs at a frequency range of f =
13. . .30 MHz. The study extends our previous work with
plate resonators [4], [5]. The objective is to experimentally
probe the limits of the resonator design by mapping the
resonance mode branches and their properties as a function of
the resonator size, and, in particular, to investigate whether the
bulk extensional modes of the resonators are excited “cleanly”,
i.e., with a relatively low frequency scatter. Furthermore,

Figure 1. Schematic representation of a plate resonator (SiO2 and Mo layers
have been excluded from the image).

the extensive experimental data set allows a comprehensive
comparison with simulated data, which helps us to evaluate
whether the simplifications in our finite element models are
justified.

II. PLATE RESONATOR DESIGN

The schematic structure of the plate resonator design is
shown in Figure 1. The resonator is comprised of a 30-
µm-thick square-shaped block of single-crystalline strongly p-
doped silicon, which is attached to the substrate at its corners
with flexible anchors (Figure 2b). Electromechanical coupling
is achieved with a 350-nm thin film of AlN deposited on top
of the resonator plate. A 300-nm layer of molybdenum acts
as the top electrode, and the silicon device layer serves as the
bottom electrode. AlN is patterned to cover only the resonator
plate: a SiO2 layer provides insulation between the electrodes
elsewhere.

The studied set of devices consisted of 64 variations, where
the resonator plate lateral dimension L was varied from
131 µm to 320 µm with 3-µm steps. Micrographs of the
biggest and smallest device variation are shown in Figure 2a.
Each variation had similar corner anchors (Figure 2b). The
resonators were designed to be connected electrically as one-
port devices.
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Figure 2. a) Micrographs of the largest and smallest resonator variation. b)
Corner anchor design used in all of the variations.

The main vibration mode of the resonators is the square-
extensional (SE) mode, which is characterized by the con-
traction/expansion of the plate. Neglecting the effects of the
piezo stack and of the anchors, the SE mode frequency is
given by f =

√
Y2D/ρ/(2L), where ρ and L are the silicon

density and the length of the plate side, respectively. Y2D is
the effective Young’s modulus for the SE mode, and it is given
by Y2D = c11 + c12−2c212/c11 = 181 GPa [4], where c11 and
c12 are the elastic matrix elements of silicon.

The transduction principle is described briefly with the help
of the following approximative model: Suppose that the AlN
film is clamped to the resonator plate. We approximate that
the strains in the lateral directions are zero (Sx = Sy = 0) —
which is expected to overestimate the transduction strength to
some extent — and assume that the piezoelectric layer may
move freely in the z direction so the vertical stress component
is zero (Tz = 0) [6]. When a z-directed electric field Ez is
applied, we can solve the piezoelectric constitutive relation
T = eE + cS [7] for the unknown lateral stresses:

Tx = Ty =

(
ν

1 − ν
e33 − e31

)
Ez, (1)

where ν is the Poisson ratio of AlN, and e31 and e33 are
the AlN piezoelectric coupling constants. We observe that the
out-of-plane electric field results in lateral forces by direct
coupling via the piezoelectric constant e31, and by indirect
coupling through the term e33.

The resonators were fabricated with our cavity-SOI based
process, which is described in more detail in References [8]
and [5]. To enable optical detection of the in-plane vibrations,
the top metal layer of every second variation was patterned
with a grid of circular holes (see discussion in Section III-B).

III. MEASUREMENTS AND MODELLING

A. Wafer level electrical characterization

A total of ∼1200 devices were electrically characterized
from two wafers: each of the 64 variations was replicated
10 times on a wafer, and the locations of these devices
spanned the central region as well as the edges. The electrical
impedance Z of the resonators was measured with Agilent

Figure 3. SE mode resonance of a resonator with plate side length L =
181µm measured in ambient air. Inset: equivalent circuit which was fitted to
the measured data.

4294A impedance analyzer. The following automatic measure-
ment scheme was implemented to gather the resonance data of
each device: First, a relatively coarse scan was performed at a
frequency range of f = 5 . . . 80 MHz. Then the trace was
analyzed and the resonances were identified. Subsequently,
five strongest resonances were measured using a narrower
frequency span. The equivalent circuit (see Figure 3 inset)
response was then fitted to the measured data, and the motional
resistance Rm, resonance frequency f0, quality factor Q and
parallel capacitance C0 were obtained for the top five reso-
nances. Figure 3 shows example trace of the SE resonance of
a resonator with L = 181µm. The wafer level characterization
was done in ambient air pressure, and as a consequence air
damping is a prominent loss mechanism. Some devices were
afterwards measured in vacuum: typically the Q factors were
enchanced by a factor of 2 under p <0.1 mbar.

B. Optical probing

After the wafer-level electrical measurements, a set of res-
onators was selected for optical probing. Vibration fields in the
resonators were measured using a scanning Michelson laser
interferometer [9]. Both in-plane and out-of-plane vibrations
were measured. The lateral resolution of the setup is better
than 1 µm and the minimum detectable out-of-plane vibration
amplitude is typically less than 1 pm. With a small modifica-
tion to the setup also in-plane vibrations can be measured [10],
[11]. Utilizing the circular holes in the metal layer, a vectorial
detection of the in-plane vibration was accomplished. It should
be noted, however, that the in-plane and out-of-plane vibration
amplitudes cannot be directly compared to each other due to
the different detection methods. Measured out-of-plane and
in-plane vibration patterns of selected modes are shown in
Figures 6. . .8 and they are discussed in more detail in Section
IV.

C. Finite element modelling

The vibration modes of the resonator plate were solved with
Comsol Multiphysics using the eigenfrequency analysis mode.
The model geometry was simplified by excluding the corner
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Figure 4. a) Dispersion of the resonance frequency as a function of resonator size: experimental data and simulation. Note that the data points are
semitransparent, and hence the colors are stronger for data points stacked on top of each other. For the same reason, the blue and red colors mix to make
purple for overlying data from wafers A and B. b) Frequency scatter of the resonances modes. We have defined the frequency scatter ∆f as the full range of
frequencies measured for the mode under investigation. c) FOM = Z0/Rm, i.e., the ratio of impedances at the shunt capacitance branch and the motional
branch of the equivalent circuit. d) Quality factor of the measured resonances. The measurements have been done at atmospheric pressure.

anchors and the top metal layer. The modal frequencies are
plotted in Fig. 4a along with the experimental data. It should
be noted that the plot contains only modes, whose symmetry
allows piezoelectric coupling with a piezo that covers the
whole resonator plate. The mode shapes of selected modes
are shown in Figures 5, 6, 7 and 8 together with the optical
probing data.

IV. RESULTS AND DISCUSSION

The dispersion curves of the measured and simulated
resonance frequencies as a function of the resonator size
are shown in Figure 4a. For most of the measured modal
branches the frequency scatter is noticeable, typically more
than 15 000 ppm. We interpret this to be attributed to the
flexural character of these modes: The resonance frequency of
a flexural mode is sensitive to the device thickness, and the
SOI device layer thickness variation across a wafer is seen as
corresponding resonance frequency variations. Additionally, a
systematic difference of resonance frequencies is observed for

the high-scatter branches between wafers A and B. Wafer A
resonance frequencies tend to be slightly lower than those
for devices from wafer B, which we attribute to a device
layer thickness difference between wafers A and B. Figure
4b illustrates the frequency scatter in more detail. Figure 5a
shows the mode shape of the low-frequency flexural mode F1.
For this mode, match between simulation and measurement is
excellent.

On the other hand, it is evident from the dispersion plot that
the spread of measured resonance frequencies is very small for
certain resonances. Comparing with data from simulation, one
finds that the low-scatter branches correspond to the SE mode
and to a higher-order extensional mode — we have labeled
these branches as SEH , SEL and hE according to their
mode type (subindices H and L denote the high/low-frequency
region of the SE branch, respectively). The frequency scatter
within the SEH , SEL and hE branches is typically ∆f ∼
2000 ppm. We have defined the frequency scatter ∆f as the
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a)

Figure 5. Measured and simulated out-of-plane (oop) vibration field of the
low-frequency flexural mode F1.

full range of frequencies measured for the mode under inves-
tigation1. We interpret the relatively small frequency scatter to
indicate that these bulk extensional modes have been excited
“cleanly”, i.e., with a very small flexural component. The
frequency of an extensional mode is only weakly dependent
on the resonator thickness, and the SOI device layer thickness
variations do not affect the resonator frequency repeatibility.
Our working hypothesis is that the frequency scatter of these
modes originates mainly from variations of the resonator
lateral dimensions. Figures 6 and 7 show in-plane and out-of-
plane vibration fields of these low-scatter modes. Side-to-side
comparison of the experimental and simulated data yields a
relatively good match for the vibration fields.

For certain branches, such as F1, SEH , SEL and hE,
simulated data from the FEM modal analysis and the exper-
imental data match well with each other (Fig. 4a). The few
percent difference in resonance frequencies can be explained
by the difference in real stiffness parameters and those used
in the simulation, and by the exclusion of the top metal layer
from simulation model. However, some of the experimentally
observed resonances do not overlap with the simulated data.
Most strikingly, simulation fails to capture SE resonance
branch splitting at intermediate plate dimensions (regions S1

and S2): each sample from the splitting region has two separate
resonances, instead of a single SE resonance peak. Optical
probing data of these resonance modes (Figure 8) reveals that
the in-plane vibration field of both of the modes have the
SE resonance characteristics, while the out-of-plane vibration
pattern is somewhat different for the two modes. We refrain
from an attempt to explain the SE resonance splitting by
these observations from optical probing alone; we are currently
working on a refined FEM model, which will capture the
resonator geometry more accurately by containing the corner
anchors.

The ratio of the shunt impedance Z0 = 1/2πfC0 and the
motional resistance Rm is a figure of merit from the point of
view of building an oscillator circuit based on the resonator.
FOM = Z0/Rm ∼ 10 or more is needed for a realization

1Standard deviation was not used due to relatively small number (N = 20)
of measured samples of each variation type.

Figure 6. Measured and simulated out-of-plane (oop) and in-plane (ip)
vibration fields of the resonance modes of branches SEH and SEL.

based on a simple oscillator topology, e.g., the Pierce topology.
Figure 4c indicates that in atmospheric pressure FOM ∼ 5
is reached for the SE resonance — in vacuum the Q values
are typically doubled and FOM ∼ 10 would be reached.
It is also observed, that at intermediate dimensions also the
flexural mode F1 is relatively strongly coupled, and that at the
SE resonance splitting region the performance degrades. All
other modes appear to be weakly coupled with FOM . 1. In
general, we notice that a 2-port realization of the piezoactuated
plate resonator design would be more practical for oscillator
applications since the feedthrough capacitance is reduced and,
consequently, FOM is increased.
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Figure 7. Measured and simulated out-of-plane (oop) and in-plane (ip)
vibration fields of the resonance modes of branch hEL.

Figure 4d illustrates the quality factors of the resonances.
Air damping in atmospheric pressure masks other damping
mehcanisms to some extent but some observations can be
made: The losses are observed to increase, when approaching
the splitting region along the SE resonance branches. At SEL

and SEH regions we observe Q ∼10 000. Interestingly, the
highest quality factors of Q ∼20 000 are measured at the hE
region.

V. CONCLUSIONS

The parametric study of this work with statistics from over
1000 devices has given valuable new insight to plate resonator
operation. It was observed, that with certain device dimensions
bulk extensional modes can be excited with a relatively low
frequency scatter of ∆f ∼ 2 000 ppm (full range), as opposed
to the flexural resonance modes, whose frequency scatter
was seen to be larger than 15 000 ppm. Modal analysis
of a simplified FEM model reproduces relatively well the
resonance frequencies observed in the measurements. The
mode shapes of selected modes were probed optically, and
good correspondence with simulated mode shapes was found.
However, importantly, the experimentally observed clear split-
ting of the main resonance branch was not reproduced by the
FEM model. As a consequence, we are currently working on
a refined FEM analysis which includes the corner anchors.
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Abstract—We report on the design, fabrication and
characterization of piezoelectrically actuated single-
crystal silicon plate resonators vibrating mainly in
their bulk acoustic wave modes. Two resonator types
are presented: one operates in the square extensional
mode at 26 MHz with Q ∼ 18000 and motional
resistance Rm ∼ 0.24 kΩ, while the other resonator
features a resonance at 22 MHz with Q ∼ 51000
and Rm ∼ 1.5 kΩ. The resonators are characterized
electrically and by scanning laser interferometry.
Measured vibration fields are compared to simulated
eigenmodes.

I. INTRODUCTION

Micromechanical resonators are considered as
candidates for replacing quartz crystals used as fre-
quency reference components in modern wireless
applications. Typically MEMS resonators rely on
capacitive transduction. For good electromechani-
cal coupling, sub-100 nm capacitive gap sizes and
biasing voltages in excess of 10 V are needed.
Especially the latter need is problematic to meet
with low cost integrated circuits.

To overcome these problems we have studied
single-crystal silicon (SCS) BAW plate resonators,
which are transduced using a piezoelectric alu-
minum nitride (AlN) layer grown on top of the res-
onator. SCS resonators based on a similar transduc-
tion principle have been reported, e.g., in [1], how-
ever, for beam resonators operating in 1D length-
extensional vibration modes. In this paper, we ex-
tend our previous work with beam resonators [2]
to plate resonators, motivated by the good stability
and noise properties observed in capacitively cou-
pled resonators of this type [3], [4]. Two resonator
designs are studied. Device A operates in the square
extensional mode at 26 MHz with Q ∼ 18000 and
has motional resistance Rm ∼ 0.24 kΩ. Device B

features a resonance at 22 MHz with Q ∼ 51000
and motional resistance Rm ∼ 1.5 kΩ, and also two
other well-coupled high-Q resonances. In addition
to electrical characterization, the vibration fields
in the resonators were measured with a scanning
laser interferometer [5]. Measured mode shapes
are found to correspond well with finite element
method simulations.

II. RESONATOR DESIGN

A microgaph of resonator A is shown in Fig.
1a. The resonator is designed to be connected
electrically as a one-port device, and the intended
vibration mode of the resonator is the square-
extensional (SE) mode [4] at 26 MHz. The SE
mode occurs when the resonator plate side length is
half of the acoustic wavelength, and its frequency
is given by f =

√
Y2D/ρ/(2L), where ρ and L

are the plate material density and the length of
the plate side, respectively. Y2D is the effective
Young’s modulus for the SE mode, and it is given
by Y2D = c11 + c12 − 2c212/c11 = 181 GPa, where
c11 and c12 are silicon elastic matrix elements.

320 um

Figure 1. Micrographs of resonators A and B. The thickness
of the resonators is 20 µm.
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The in-plane mode shape can be approximated by
a superposition of two orthogonal acoustic waves
with displacements

ux = A sin(πx/L) and uy = A sin(πy/L), (1)

where A is the vibration amplitude and x and y
denote the coordinates on the plate with the origin
located in the center of the plate.

The principle of exciting in-plane vibration
modes by a piezoelectric thin film located on top
of the resonator body can be described with the
help of an approximative model. Suppose that the
AlN film is clamped to the resonator plate. We
approximate that the strains in the lateral directions
are zero (Sx = Sy = 0) — which is expected
to overestimate the transduction strength to some
extent — and assume that the piezoelectric layer
may move freely in the z direction so the vertical
stress component is zero (Tz = 0) [6]. When a z-
directed electric field Ez is applied, we can solve
the piezoelectric constitutive relation T = eE+ cS
[7] for the unknown lateral stresses:

Tx = Ty =

(
ν

1− ν e33 − e31
)
Ez, (2)

where ν is the Poisson ratio of AlN, and e31 and
e33 are the AlN piezoelectric coupling constants.
We observe that the out-of-plane electric field re-
sults in lateral forces by direct coupling via the
piezoelectric constant e31, and by indirect coupling
through the term e33.

Fig. 1b shows a micrograph of resonator B. As
compared to resonator A, the plate is doubled in
size, and the resonator is aligned with the [100]
crystal direction. In order to better excite other than
the SE mode the piezo geometry is modified to
cover the plate only partially.

III. RESONATOR FABRICATION

In the fabrication process, special attention was
paid for the creation of narrow anchoring tethers
for the resonators: the narrowest meander anchors
measured 4 microns in width (Fig. 1b). Figure 2
illustrates the processing steps. SOI wafers with
pre-etched cavities [8] were first prepared (steps
1,2). Highly boron doped, (100) oriented silicon
wafers were used for the device layer, and therefore
no metallization was needed for forming the piezo
bottom electrode. Next, AlN was deposited and
patterned (3). SiO2 was deposited on the wafer,
and thinned with chemical mechanical polishing

(4). AlN was located only on top of the resonator
plate, while SiO2 was used as the insulator between
the top and bottom electrodes elsewhere. Openings
were etched to the SiO2, one onto the AlN layer and
another onto the place where the bottom electrode
contact would be formed (5). Molybdenum was
deposited and patterned so that the bottom and
top electrode contacts were electrically isolated (6).
The last etch step (7) consisted of successive etches,
where Mo and SiO2 were first removed around the
resonator plate and the anchors, and, finally, the
resonator was released and the electrode pad areas
were defined using deep reactive ion etching.

Figure 2. The fabrication process.

IV. EXPERIMENTAL RESULTS

The electrical transmission response of the res-
onators was measured with a network analyzer
(HP4195A). The samples were measured in a vac-
uum chamber with pressure p < 0.1 mbar in order
to reduce the air-damping effects to a negligible
level. The resonator current was detected using a
transresistance amplifier with a low input resistance
to avoid loading of the resonator quality factor. The
resonator parameters f0, Q, Rm and C0 were ob-
tained by fitting the simulated response of an equiv-
alent circuit (inset in Fig. 3) to the measurements.
Modal analysis with Comsol Multiphysics 3.4 was
used for simulating the resonance modeshapes.

Vibration fields in the resonators were measured
using a scanning Michelson laser interferometer
[5]. Both in- and out-of-plane vibrations were mea-
sured. The out-of-plane vibration was measured
using the setup in its original Michelson inter-
ferometer configuration. The lateral resolution of
the setup is better than 1 µm and the sensitivity
of the interferometer is 10−4 Å/

√
Hz, correspond-

ing to minimum detectable vibration amplitude of
0.35 pm with the 1 kHz measurement bandwidth
used. With a small modification to the setup, also
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in-plane vibrations can be measured [9], [10]. In
this work, a grid of circular holes was etched to
the top metal electrode to enable detection of the
in-plane vibrations. Utilizing the circular holes in
the metal layer, a vectorial detection of the in-
plane vibration can be accomplished. It should be
noted, however, that the in-plane and out-of-plane
vibration amplitudes cannot be directly compared
to each other due to the different detection methods.

Figure 3. Measured transmission response of resonator A. The
grey (dashed) line indicates the signal baseline level resulting
from the feedthrough capacitance C0. The upper-left inset shows
the resonator equivalent circuit.

Resonator A transmission response is shown in
Fig. 3. The SE mode occurs at f = 26 MHz and it
is the strongest resonance with Rm = 0.24 kΩ
and Q = 18000. The interferometric image of
the out-of-plane vibration (Fig. 4) indicate that the
SE mode is excited rather cleanly. In particular,
it should be observed that parasitic out-of-plane
modes are absent, unlike in the capacitively coupled
SE plate resonator discussed in [10]. The other
strong resonance at f = 68 MHz (Rm = 0.52 kΩ
and Q = 18000) was observed to have a prominent
out-of-plane character in its vibration (Fig. 5). All
other resonances up to 70 MHz were found to be
electrically relatively weak.

The transmission response of resonator B (Fig.
6) is observed to be somewhat richer than that of
resonator A. Strongly coupled high-Q resonances
occur at 9 MHz, 22 MHz and 36 MHz. For the
measurement of in-plane vibrations, a replica of
resonator B was fabricated, however with a grid
of holes added to the top metal electrode. The
modified resonator B, denoted hereafter B2 featured
similar transmission response to that of resonator
B. The 9-MHz resonance (Rm = 1.6 kΩ and
Q = 17000) was found to be a flexural resonance
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Figure 4. Relative amplitudes of the out-of-plane vibration of
resonator A at 26 MHz. The measurement was done in vacuum
(p <1 mbar).
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Figure 5. Relative amplitudes of the out-of-plane vibration of
resonator A at 68 MHz.

mode with dominant out-of-plane character. The
simulated modeshape agrees well with the mea-
sured one (Fig. 7). The 22-MHz resonance has the
highest quality factor of the three main resonances:
Rm = 1.5 kΩ and Q = 51000. Fig. 8 shows that
the out-of-plane component of the vibration mode
is relatively weak while the resonance has a strong
in-plane character. The measured in-plane vector
field has a vortex in the center of the plate, which
we have not yet reproduced in our simulations. The
36-MHz resonance has the best electromechanical
coupling with Rm = 0.6 kΩ and Q = 27000. The
vibration mode has prominent in-plane and out-
of-plane components, and the measurements and
simulations correspond to each other fairly well.

Figure 6. Measured transmission response of resonator B.
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Figure 7. Relative amplitudes of the out-of-plane vibration
of resonator B2 at 9 MHz. The measurement was done in
atmospheric pressure..
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Figure 8. The out-of-plane and in-plane vibration modes of
resonator B2 at 22 MHz.

V. CONCLUSIONS

We have designed, fabricated and characterized
single crystal silicon plate resonators, which are
transduced by a piezoelectric AlN thin film grown
on top of the resonator. High quality factor reso-
nances with good electromechanical coupling were
observed. Furthermore, by using optical probing,
we have shown that resonance modes vibrating
mainly in the resonator plane can be successfully
excited with the transduction method.

Our future work on the subject contains more
accurate numerical modelling of the resonators, and
the optimization of anchoring and top electrode
geometries.
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Abstract—We report on the design, fabrication and
measurement of 13-MHz piezoelectrically actuated
single-crystal silicon beam resonators operating in
the first length-extensional mode. The transduction
mechanism is based on an aluminum nitride layer
grown on top of the resonator beam. The resonators
are measured to have a quality factor of Q ∼ 20000
at p < 1 mbar and typical motional resistance of
Rm ∼ 3 kΩ. The electromechanical transduction
factor is η ∼20 µN/V, representing a coupling of the
same order as produced by 20 V over a 100-nm gap
for capacitively coupled resonators. The quality factor
is observed to be dependent on the crystal direction
of the resonator beam. A qualitative explanation for
this effect is given.

I. INTRODUCTION

Micromechanical resonators offer a promise of
compact size, low power consumption, integrability
with IC electronics, and a price advantage. They are
thus considered as candidates for replacing bulky
off-chip quartz devices used as filter and frequency
reference components in modern wireless applica-
tions. Capacitively coupled MEMS resonators need
sub-100 nm gap sizes and bias voltages in excess
of 10 V in order to reach a good electromechanical
coupling. Especially the latter need is problematic
to meet with low cost integrated circuits.

To overcome these problems we have studied
single-crystal silicon (SCS) BAW resonators, which
are transduced with a piezoelectric aluminum ni-
tride layer grown on top of the resonator beam. SCS
resonators based on a similar transduction principle
have been reported [1], [2], however, using ZnO as
the piezoelectric material. In this paper, we present
measurement results of 13-MHz piezoelectrically
actuated SCS beam resonators operating in their
first length-extensional mode. Quality factors of
Q ∼ 20000 at p < 1 mbar are observed, and
a typical motional resistance is Rm ∼ 3 kΩ. A
model of the piezoelectric transduction is derived,

and it is found that the measured transduction factor
η ∼ 20µN/V is ∼70% of the value obtained from
the model using bulk AlN piezoelectric coefficients.
The quality factor is observed to be dependent on
the crystal direction of the resonator beam. This
effect is modelled as anchor loss by using a 2D
finite element model featuring a perfectly matched
layer boundary condition, and a qualitative match
with measurements is found.

II. RESONATOR DESIGN

The dimensioning of the 13-MHz resonator is
shown in Fig. 1. The resonator is designed to be
connected electrically as a one-port device, and
the desired operation mode of the resonator is the
first lateral length-extensional mode [3]. This mode
occurs when the resonator length is half of the
acoustic wavelength, and its frequency is given by
f =

√
Y/ρ/(2L), where Y and ρ are the Young’s

modulus in the x direction and the material density,
respectively. The mode shape can be approximated
by X(x, t) = X0(t) sin (πx/L) , where x denotes
the position along the resonator arm, and X0 is the
resonator endpoint displacement. We have assumed
that the piezolayer and the top electrode do not
have any other parasitic effects than to slightly
change the effective Young’s modulus and density
of the silicon resonator, and hence alter the mode
frequency.

By integrating the wave equation over the mode
shape we arrive at a 1D model of the resonator [4]:

MẌ(t) +

√
KM

Q
Ẋ(t) +KX(t) = F (t). (1)

Here Q denotes the quality factor of the resonator,
and the generalized mass and spring constant are
given by

M = ρAL/2, K = π2Y A/(2L), (2)
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Figure 1. Micrograph of a wire-bonded resonator. The beam
dimensions are L × w × h, and the piezolayer size is Lpz ×
wpz × hpz . Lbrand wbr denote the anchor dimensions.

where A is the cross sectional area of the resonator
beam. The force term on the right-hand side is
given by

F (t) =

∫ L/2

−L/2

∂Fe(x, t)

∂x
sin

(π

L
x
)
dx, (3)

where Fe is the excitation force within the beam.
Now, we assume that the electromechanical cou-

pling to voltage U and current I is described by
the transduction factor η as

F (t) = ηU(t), I(t) = ηẊ(t). (4)

Here we assume a symmetry of drive and sense
coupling. Using (1) and (4) we obtain

M

η2
İ(t)+

√
KM

Qη2
I(t)+

K

η2

∫
I(t)dt = U(t). (5)

This can be identified with a series RLC circuit
with motional equivalent parameters

Rm =
√
KM/(Qη2), Lm = M/η2, Cm = η2/K.

(6)
The electrical-equivalent circuit of the resonator
consists of an RLC branch connected in parallel
with the capacitance C0 between the piezo elec-
trodes (see the inset in Fig. 3).

The piezoelectric transduction factor η is mod-
elled next. Suppose that the piezo film is clamped to
the resonator beam. We approximate that the strains
in the lateral directions are zero (Sx = Sy = 0),
which is expected to give an upper estimate of
the true coupling, and assume that the piezolayer
may move freely in the z direction so the vertical
stress component is zero (Tz = 0) [4]. When a z-
directed electric field Ez is applied, we can write

the piezoelectric constitutive relation T = eE+ cS
in matrix form [5]:



Tx

Ty

0


 =




0 0 e31
0 0 e31
0 0 e33






0
0
Ez




+




c11 c12 c12
c12 c11 c12
c12 c12 c11






0
0
Sz


(7)

Here we have neglected all the shear terms in e and
c, and the isotropic form of c has been used. Only
the nonzero elements e31and e33 for AlN have been
preserved. Solving for the unknown lateral stresses
yields

Tx = Ty =

(
ν

1− ν
e33 − e31

)
Ez. (8)

where ν is the Poisson ratio of AlN.
Because the length-extensional resonance of the

beam is in the x direction, only Tx is of interest
for further analysis. Expressing the electric field
as Ez(t) = U(t)/hpz , where U(t) is the voltage
across the piezolayer, we obtain an expression for
the force exerted on the resonator by the piezolayer
at their interface, i.e., for −Lpz/2 < x < Lpz/2 :

Fe(x, t) = Txwpzhpz

=

(
ν

1− ν
e33 − e31

)
wpzU(t). (9)

We can now solve (3):

F (t) =

(
e31 −

ν

1− ν
e33

)
2wpzU(t) sin

(
π

2

Lpz

L

)
.

(10)
Comparing the result with (4) we obtain

η =

(
e31 −

ν

1− ν
e33

)
2wpz sin

(
π

2

Lpz

L

)
.

(11)
The electromechanical coupling to the resonator is
at maximum when the piezoelectric layer covers
the whole beam: ηmax =

(
e31 − ν

1−ν e33

)
2wpz.

Humad et al. [2] arrived at a similar result, however,
neglecting the effect of the term e33.

The validity of the model was verified by mod-
elling the piezoelectric transduction mechanism in
3D with ANSYS finite element package. It was
found, as expected, that (11) overestimates the
transduction factor by ~20%. This discrepancy
between the simulation and our model is well
explained by the approximation, where the lateral
strains were set to zero.
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Using (11) with the geometry in Fig. 1 we obtain
a transduction factor ηtheor = 28µN/m, when
values e33 = 1.55 Cm−2, e31 = −0.58 Cm−2 [6],
and ν = 0.2 are used, and a correction factor of 0.8
suggested by the simulation is applied. We stress
that with capacitive coupling a gap size of 100 nm
and a bias voltage of 20 V would be required to
reach a corresponding strength of coupling.

III. RESONATOR FABRICATION

The resonators were fabricated on silicon-on-
insulator (SOI) wafers featuring pre-etched cavities
[7], see Fig. 2. The used wafers were (100)-oriented
highly boron-doped silicon wafers. The device
layer thickness was 20 µm. AlN and Mo were
sputtered on top of the silicon layer and patterned
by wet etching. The resonators were released using
deep reactive-ion etching. Resonators aligned in the
[110] and [100] crystal directions were produced.

IV. EXPERIMENTAL RESULTS

The transmission response of the resonators
was measured with a standard network analyzer
(HP4195A). To reduce the air-damping effects to a
negligible level, the measured samples were placed
in a vacuum chamber with pressure p < 0.1 mbar.
The resonator current was detected with an ampli-
fier block with a capacitive input to avoid loading
of the resonator quality factor.

A typical response of a resonator with beam
orientation in the [110] crystal direction is shown
in Fig. 3. Quality factors of Q ∼ 20000 were
measured. The four-parameter equivalent-circuit re-
sponse was fitted to the measured data: the motional
resistance level of the resonators was Rm ∼ 3 kΩ.
Assuming an effective mass M = 3 × 10−10 kg
and using (6), a transduction factor of η ∼ 20µN/V
was obtained. This is ∼70% of the modelled cou-
pling strength ηtheor calculated in section II. Also
resonators with the beam orientation in the [100]

Figure 2. Resonator fabrication process flow: 1) — 3) the
SOI wafer with pre-etched cavities is formed. 4) Aluminum
Nitride deposition and patterning. 5) Molybdenum deposition
and patterning. 6) Release etch using DRIE.

Figure 3. The resonator impedance calculated from the
transmission data. Blue markers denote measured data, and the
line is the fitted equivalent circuit response. The insets show the
resonator equivalent circuit and its parameter values.

crystal direction were measured. Measurements in-
dicate a clear difference in Q factors in comparison
with their [110]-oriented counterparts: the Q factors
were limited to ∼3500.

V. ANCHOR LOSS SIMULATION

The dependence of the Q factor on the resonator
beam orientation can be explained by anchor losses.
Due to the anisotropy of SC silicon, the in-plane
Poisson ratio νxy varies: For the (100) plane, the
maximal mechanical coupling of νmax = 0.28
occurs between the [100] and [010] directions,
whereas the minimum value of νmin = 0.06
appears between crystal directions [110] and [1̄10]
[8]. Resonators with their beam in the [100] di-
rection should thus have larger anchor losses than
the corresponding [110]-oriented resonators, since
more resonator energy would be “pumped” through
the anchor bridges.

The anchor losses were modelled using the open-
source finite-element simulation tool HiQLab [9],
[10]. The resonator energy leakage through the
anchors to the substrate can be modelled in HiQLab
by employing a perfectly-matched-layer (PML)
boundary condition [11]: at a PML boundary waves
are absorbed from any angle of incidence with
no impedance mismatch. A 2D simulation model
was used (see the inset in Fig. 4). The resonator
was modelled as isotropic silicon, and the plane-
stress approximation was used. The quality factors
were extracted from the eigenfreqency analysis of
the model. The PML boundary conditions lead to
complex-valued eigenfrequencies ωi of the system,
from which the quality factor of the mode under in-
terest is readily calculated: Q = Re(ω)/(2Im(ω)).

Fig. 4 shows a simulation result, where the
silicon Poisson ratio is varied. The result matches
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Figure 4. Quality factor as the function of the in-plane
Poisson ratio. Inset: 2D resonator model. The thin dashed lines
denote the symmetry axis, and the thick dashed lines show the
boundaries at which the PML boundary condition is applied.

qualitatively with the measurements. The simu-
lated Q factors for Poisson ratios 0.06 and 0.28
were approximately 10000 and 1000, respectively,
whereas the corresponding measured figures were
20000 and 3500. The lack of a quantitative agree-
ment can be attributed to the simplifications of the
model. In reality, the anchor bridge is connected
to a contact pad, and some of the acoustic energy
coming through the anchor is reflected back by
the contact pad vertical edges and by the material
layer interfaces (see the inset in Fig. 5). Thus
the measured Q factors should indeed be larger
than those of the simulations. Some effects can be
missed also by the fact that silicon was modelled as
an isotropic material, and the anisotropy of silicon
was mimicked by varying the Poisson ratio directly.

Also the relation between the bridge width and
the Q factor was studied (Fig. 5). A clear increase
of the Q factor is observed as the anchor bridge
is thinned. The results of Mattila et al. [3] match
qualitatively with the simulation: a [110]-oriented
beam resonator reminiscent of ours — but featuring
bridge width below 10 µm — was measured to have
a quality factor of 180000.

VI. CONCLUSIONS

Piezoelectrically transduced beam resonators
were designed, fabricated and tested. A good elec-
tromechanical coupling was observed, and Q fac-
tors of ∼ 20000 were measured. The losses were
observed to depend on the resonator orientation.
With numerical simulation, this effect was ex-
plained at a qualitative level as anchor loss.

In our future experiments, we plan to investigate
dissipations related to the piezolayer and to the
top metal electrodes, since our modified process

Figure 5. Quality factor value as a function of the anchor
bridge width. Inset: resonator anchoring in 3D. The arrows
indicate where the buried oxide (SiO2) layer and the silicon
substrate extend and into which directions the acoustic energy
thus “leaks”.

allows fabrication of narrower anchor bridges and
consequently a suppression of the anchor losses.
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