
Dynamic modelling and fault analysis of wear 
evolution in rolling bearings 
 
The rolling element bearing is one of the most critical components 
that determines the health of the machine and its remaining lifetime 
in modern production machinery. Robust condition monitoring 
tools are needed to guarantee the healthy state of rolling element 
bearings during the operation. The condition of the monitoring 
tools indicates the upcoming failures which provides more time for 
maintenance planning by monitoring the deterioration i.e. wear 
evolution rather than just detecting the defects. 
  
Several methods for diagnosis and prognosis that are commonly 
used in practise have challenge to track the wear fault over the 
whole lifetime of the bearing. The measurements in the field are 
influenced by several factors that might be ignored or de-limited in 
the experimental laboratory tests where those advanced diagnosis 
and prognosis methods are usually validated. Moreover, those 
advanced methods are verified with the help of simulation models 
that are based on specific definitions of fault and not on 
considering the fault development process during the lifetime of 
the component. 
  
Therefore, in this thesis a new dynamic model was developed to 
represent the evolution of the wear fault and to analyse the fault 
features of a rolling bearing under the entire wear evolution 
process. The results show the extracted defect features and how 
they change over the entire wear evolution process. The results 
show how the topographical and tribological changes due to the 
wear evolution process might influence the bearing dynamics over 
the entire lifetime of the bearing and the effectiveness of the fault 
detection process. 
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1. Introduction 

1.1 Background and motivation 

In order to make condition-based maintenance (CBM) an effective option for dif-

ferent industrial machines, the health measurements e.g. vibration, debris, should 

be automatically processed and diagnosed in the correct way and as early as 

possible. Thus, the maintenance procedures can be planned in a cost-effective 

manner. The diagnosis and prognosis procedures are essential so as to determine 

the health status i.e. severity of the machine in question and to predict the remain-

ing lifetime.  

 

The basic approaches to predicting the remaining lifetime are based on data, 

physical model or a combination of data and physical model. The drawback of the 

data-driven prognosis e.g. statistical and artificial neural networks, appears in the 

cases where the system conditions are rapidly and heavily fluctuating. The wear 

evolution is a complex process of fault development i.e. a degradation process 

where it influences the bearing dynamic response. As the fault is developing in a 

non-linear manner, then the dynamic response is also influenced non-linearly by 

that. Therefore, several studies (Al-Ghamd & Mba 2006), (Sassi et al. 2006), 

(Nakhaeinejad & Bryant 2011), have introduced the degradation process as a 

localized fault within the dynamic models, with different defect sizes to represent 

the development of defect severity. It is clear that this kind of approach assumes a 

linear relationship between the defect size and the obtained dynamic response. In 

fact, Al-Ghamd & Mba (2006) showed the change in the defect topography over 

time by introducing different defect shapes and sizes. This study shows that the 

defect shape is significantly important together with defect size. The defect devel-

opment is a continuous process which involves changes in the fault shape over 

time that make the dynamic impact response differ a great deal with the above 

assumption (linear relationship between the defect size and the obtained dynamic 

response). Therefore, the condition monitoring and diagnosis of wear and degra-

dation of the machine can be improved and made more reliable if the degradation 

process and its physics is understood (Jantunen 2004). 
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In fact, the rolling element bearing (REB) is one of the most critical components 

that determines the machine health and its remaining lifetime in modern produc-

tion machinery. Robust predictive health monitoring (PHM) tools are needed to 

guarantee the healthy state of REBs during the operation. Therefore, the following 

reasons underlie the motivation to enhance the monitoring of REBs: 

 REBs are one of the most critical components in many industrial applica-

tions due to their failure and severity rates. REBs are all wearing compo-

nents and inevitably produce some debris from their natural operation. For 

example, the REB failure rate in wind turbines (based on figures in Ribrant 

& Bertling (2007) is about 3.5% of total failures, which lead to 9.5% of total 

downtimes. 

 The size of modern REBs in large-scale rotating applications becomes a 

critical lifetime issue. For example, Tavner et al. (2008) observed that 

large-scale wind turbines (>800 kW) have in general higher failure rates 

compared to small- (<500 kW) and medium-sized ones.  

 The modern REBs are allocated in complex design configurations which 

lead to different failure rates and downtimes, for example, Tavner et al. 

(2008) observed that a direct drive has a higher failure rate than its indirect 

drive partners of the same size. 

 The modern REBs are operated at harsher installation sites and in tougher 

conditions e.g. offshore and cold climate sites. Such sites produce load ir-

regularities and sudden impacts (Holttinen 2005). 

 Early detection of REBs becomes a critical requirement for modern renew-

able energy applications e.g. wind energy due to their limited maintenance 

window related to the site and seasonal conditions. The maintenance ac-

tions outside the limited windows are extremely costly and in some cases 

are impossible. Thus, detecting the failure just before it occurs does not of-

fer a cost-effective option for maintenance action. The CBM scenario tries 

to utilise the predictive capabilities in order to monitor an industrial asset 

and later perform the maintenance work as a planned maintenance (i.e. 

annual maintenance) or opportunistic maintenance (i.e. low production 

seasons). That means, in principle, the prediction must be able to cover the 

time interval between two planned maintenance intervals i.e. one-year-

before in the case of wind turbines. 

1.2 Research question 

In order to understand and overcome the challenges of monitoring the wear evolu-

tion in REBs, more detailed dynamic and fault analyses of the wear evolution are 

needed. This leads to the research question: How can the wear evolution process 

of the rolling bearings be effectively modelled? 

 

The bearing wear modelling is difficult due to the non-linear wear evolution pro-

gress in REBs. Therefore, in the beginning, there is a need for a descriptive model 
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that simply illustrates the wear evolution over the REB’s lifetime. Later, a devel-

oped numerical model based on that descriptive model is required to provide the 

dynamic response of the modelled REB over its lifetime. The simulated outcome 

of the developed dynamic model will be analysed in order to determine the fault 

features and their changes due to the wear development process throughout the 

entire lifetime. The developed dynamic model can be also used for remaining 

useful lifetime prediction.  

1.3 Objectives of the research 

The main objective of the thesis is to develop a dynamic model which can repre-

sent the wear evolution process in REBs over the entire lifetime. Thus, it can be 

used as a tool to analyse the fault features and to potentially verify the signal 

analysis methods and the prognosis techniques. For this purpose, a number of 

sub-goals have to be reached.  

 

 It is necessary to describe the wear evolution in REBs. 

 It is necessary to develop a dynamic model of wear evolution in REBs. 

 It is necessary to identify the fault features and their changes over the en-

tire lifetime in order to provide effective indicators to track the wear evolu-

tion progress.  

1.4 Contents of the thesis 

The thesis is divided into seven further chapters as follows: 

 

 Chapter 2 reviews the state of the art of wear monitoring in REBs. 

 Chapter 3 builds a descriptive model of the wear evolution in REBs 

based on a wide range of the experimental findings that have been pre-

sented in the contact mechanics literature. 

 Chapter 4 develops a numerical dynamic model of the wear evolution in 

REBs. 

 Chapter 5 presents the experimental testing and the used data set for 

validation process of the developed dynamic model.  

 Chapter 6 presents the fault analysis based on the simulated vibration 

data. 

 Chapter 7 discusses the results and their contributions with respect to 

current contributions.  

 Chapter 8 provides the thesis conclusions and suggestions for future 

work.  
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1.5 Scope of the research 

The thesis covers the dynamic modelling, testing work and fault analysis of rolling 

bearings under a wear evolution process. Therefore, it is a multi-disciplinary thesis 

where the accumulated knowledge of wear and contact mechanics has been util-

ised for dynamic modelling. The dynamic model aims ultimately to give the in-

sights and knowledge for further enhancements of current monitoring practices.  

Wear scope: The thesis covers quite a wide range of wear issues. However, the 

focus is the wear in rolling contact, in particularly, the REBs. The work is delimited 

to mechanical wear mechanisms i.e. fatigue wear, abrasive wear and adhesive 

wear and not corrosive wear. The actual wear evolution progress in REBs as a 

physical phenomenon is covered in this work and summarized in a descriptive 

wear evolution model. Therefore, the descriptive wear evolution model is based on 

the experimental findings in the literature which are provided by both direct and 

indirect monitoring techniques. However, it describes the evolution of wear proc-

ess rather than the wear process itself. Therefore, it utilises the idea of describing 

the wear evolution based on stages. It also tries to describe the most probable 

wear evolution scenario and determines the key parameters that might influence 

such a scenario.  

Modelling approach scope: Even though this thesis is based on a comprehensive 

review which covers most of the literature on wear in rolling contact, the modelling 

work is simplified by several means. First, the developed model does not try to 

model the individual wear mechanisms e.g. a model of fatigue, abrasive and ad-

hesive wear. It merely tries to model the overall wear process that covers the 

interactions and competitions of the individual wear mechanisms with respect to 

the topographical changes. Second, a lot of emphasis is given to the considera-

tions of how the wear evolution model can be made computationally simple. 

Therefore, the developed model determines a number of topographical changes 

based on the wear process stages. The topographical changes influence the dy-

namics and contact mechanics outcomes. It is a simplified modelling approach 

instead of developing a continuous model that provides updated topological 

changes e.g. using finite element methods. A continuous topological change 

means heavy computational and time consuming tasks. Third, the developed 

model starts with a single-degree-of-freedom (DOF) under stationary operating 

conditions to provide simple explanations of the outcomes and reduce the risk of 

computational errors in such a complex problem. The complexity comes from the 

integration of several dynamics and contact mechanics models covering the whole 

wear evolution by means of wear stages. However, the developed model can 

easily be scaled up to cover higher degrees of freedom, load variation, lubrication 

film, and debris.  

Testing approach scope: Neither the artificially introduced defect nor rolling con-

tact apparatus (e.g. ball on disc) are used. The experimental tests are based on 

the natural accelerated testing of REB to provide more insights and knowledge of 

the whole wear evolution process and based on component that are used in indus-
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trial applications. However, only the indirect monitoring measurements have been 

collected.  

Fault analysis scope: Neither new measuring nor signal processing techniques are 

developed. However, the commonly used monitoring and signal processing tech-

niques have been discussed in the light of the wear evolution model, and some 

future enhancements are proposed. The research work used a simple fault analy-

sis technique to illustrate the effect of the fault topography on the bearing dynamic 

behaviour over its entire lifetime, which might establish methods of better suitabil-

ity for wear evolution monitoring in REBs. The purpose is simply to illustrate the 

changes in the fault features over the lifetime, which indicates the evolution of the 

wear severity.  

1.6 Scientific contribution of the thesis 

The scientific contribution of the thesis can be summarised as the development of 

wear evolution model that can be used for monitoring purposes. The new ap-

proach is based on the integration of dynamics and contact mechanics models to 

involve several wear mechanisms (i.e. fatigue, abrasive, adhesive) and stress 

concentration mechanisms (i.e. dent, asperities, debris, sub-surface inclusions) 

over the REB’s lifetime. These involvements and their interactions and competi-

tions produce a wear evolution progress which varies significantly with respect to 

surface topographical and tribological changes. These involvements provide the 

fluctuations in the dynamic response that represent real data. The wear evolution 

model is simple and does not require heavy computational and time-consuming 

tasks. The research work consists of: 

 

 A descriptive wear evolution model has been established which can be 

used to describe the most probable wear evolution scenario in REBs and 

illustrate their physical phenomena.  

 A simplified dynamic model of wear evolution has been developed which 

can be used to generate simulated data with features similar to real data. 

Thus, the model helps to understand what the expected behaviour of a 

faulty REB is over its lifetime. This model can be used in the physical ex-

planation, training and testing the predictive health monitoring tools. 

 Exploring the changes in the fault features due to the wear evolution 

process over its entire lifetime.  

 A simplified dynamic model is also counted as a potential prediction 

model which can be a part of the prognosis approach. Therefore, the 

prediction model can be used to prognosis the remaining useful lifetime 

once the health state is effectively diagnosed.  
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2. Rolling bearings: Faults, models and 
analytical techniques 

In modern production machinery the rolling bearing is one of the most critical 

components that determine the machinery’s health and its remaining lifetime. 

Robust PHM tools are needed to guarantee the healthy state of REBs during their 

operation. The PHM tool indicates the upcoming failures which provides more time 

for maintenance planning. The PHM tool aims to monitor the deterioration i.e. 

wear evolution, rather than just detecting the defects. There are a number of litera-

ture reviews which are related to the condition monitoring of REBs (Howard 1994), 

(Tandon & Choudhury 1999), (Jardine et al. 2006), (Jantunen 2006), (Halme & 

Andersson 2009), (Randall & Antoni 2011). These reviews explain very well the 

developed signal processing (SP), diagnosis and prognosis analysis methods and 

their challenges, enhancements and limitations. Many experiments and studies 

have been made to explore the nature of bearing defects with the help of several 

monitoring techniques such as vibration, acoustic emission (AE), oil-debris, ultra-

sound, electrostatic, Shock-Pulse Measurements (SPM), etc. Some simple sig-

nal/data processing techniques have been applied to process the signals, such as 

root mean square (RMS), kurtosis, Fast Fourier Transform (FFT), etc. However, 

there are several challenges that require more advanced SP methods, e.g. to 

remove the background noise effect, the smearing effect and the speed fluctuation 

effect. The most important challenge is to deal with the signal response due to 

defective REBs. Bearing faults are assumed to generate impulses due to the 

passing of the rolling element over the defective surface. The difficulty is to detect 

and track such impulses, especially, in the early stage of wear process where the 

defect is quite small and can easily be hidden by other vibration phenomena. 

Therefore, most of the PHM studies have concentrated on the development of 

more advance SP techniques such as envelope detection, cyclostationary analy-

sis, wavelets, data-driven methods, expert systems, fuzzy logic techniques, etc.  

In the field of machinery vibration monitoring and analysis, a variety of relevant 

standards are developed and published by ISO (International Organization for 

Standardization). A wide variety of ISO standards describe acceptable vibration 

limits, such as the ISO/7919 series (5 parts) “Mechanical vibration of non-

reciprocating machines – Measurements on rotating shafts and evaluation criteria” 
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and the ISO/10816 series (6 parts) “Mechanical vibration – Evaluation of machine 

vibration by measurements on non-rotating parts”. The scope covers the methods 

of measurement, handling and processing of the data required to perform condi-

tion monitoring and diagnostics of machines. In industry, the most commonly used 

techniques are RMS, crest factor, probability density functions, correlation func-

tions, band pass filtering prior to analysis, power and cross power spectral density 

functions, transfer and coherence functions as well as Cepstrum analysis, narrow 

band envelope analysis and shock pulse methods. These methods try to extract 

the expected defect features. The frequency equations of the bearing defects (i.e. 

for outer-race, inner-race and rolling elements, cage defects) are the main way to 

provide a theoretical estimate of the frequencies to be expected when various 

defects occur on the REB. They are based on the assumption that sharp force 

impacts will be generated whenever a bearing element encounters a localized 

bearing fault such as spall and pitting. These techniques have continued to be 

used and have been further developed over time (Howard 1994). 

The ultimate purpose of the PHM system is to indicate the upcoming failures 

which provide sufficient lead time for maintenance planning. Therefore, apart from 

the experimental studies, there are several analytical and numerical models to: (1) 

simulate the faulty REBs; (2) verify the ability of SP and diagnosis methods to 

extract the defect features; and (3) predict the remaining useful lifetime of the 

faulty REBs. Several studies have explored data-driven and model-based progno-

sis methods for REBs applications.  

Publication I gives the fundamentals of rolling bearing and their modelling tech-

niques, monitoring techniques, SP, diagnostic methods and prognosis analysis. 

The following subsections give a good summary of what have been published and 

how the wear in rolling bearing is understood, analysed and diagnosed. 

2.1 Bearing faults  

A rolling bearing is a mechanical component which carries a load and reduces the 

sliding friction by placing rolling elements i.e. balls or rollers between two bearing 

rings i.e. outer and inner raceway. Depending on the internal design, rolling bearings 

may be classified as radial bearings i.e. carrying radial loads or thrust bearings i.e. 

carrying axial loads. Practically all rolling bearings consist of four basic parts: inner 

ring, outer ring, rolling elements, and cage, as illustrated in Figure 1. 

 

http://en.wikipedia.org/wiki/Bearing_(mechanical)
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Cage

Outer race

Roller

Inner race

 

Figure 1. Elements of rolling bearing. 

Therefore, the bearing faults may be classified by their locations as outer, inner, 

rolling element and cage fault. The general reason behind these faults is the roll-

ing contact stresses that might increase due to increased operating loads, addi-

tional loads due to faults i.e. imbalance, misalignment, bent shaft, looseness, 

and/or distributed defects i.e. high degree of surface roughness and waviness, 

contaminations, inclusions. Therefore, some topographical changes might occur. 

These topographical changes in the contact area generate stress concentration 

points and lubrication film disturbances and lead to the wear evolution process.  

2.2 Dynamic simulation models 

Over the years, several dynamic models have been developed to investigate the 

dynamic behaviour and features of REBs. The dynamic models of REB were first 

introduced by Palmgren (1947) and Harris (1966). However, total non-linearity and 

time varying characteristics were not addressed at that time. After that, Gupta 

(1975) provided the first completed dynamic model of REB and later Fukata et al. 

(1985) presented a comprehensive non-linear and time-variant model. The more 

advanced issues of time-variant characteristics and non-linearity were raised and 

studied by several authors. For example, Wijnat et al. (1999) reviewed the studies 

concerning the effect of the Elasto-Hydrodynamic Lubrication (EHL) on the dy-

namics of REB. Tiwari & Vyas (1995), Tiwari et al. (2000a) and Tiwari et al. 

(2000b) studied the effect of the ball bearing clearance on the dynamic response 

of a rigid rotor. Sopanen & Mikkola (2003) reviewed different dynamic models with 

the discussion of the effect of waviness, EHL, and localised faults and clearance 

effect. Later, the finite element method (FEM) was used to provide more accurate 

results. Kiral & Karagülle (2003) presented a defect detection method using FEM 

vibration analysis for REBs with single and multiple defects. The vibration signal 

includes impulses produced by the fault, modulation effect due to non-uniform load 
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distribution, bearing induced vibrations, and machinery induced vibrations and the 

noise which is encountered in any measurement system. Sopanen & Mikkola 

(2003) implemented the proposed ball bearing model using a commercial multi-

body system software application, MSC.ADAMS. First, the FEM model was util-

ized to simulate the variation of the mesh stiffness for two types of faults under 

varying static load conditions. Then the model was integrated into the lumped 

parameter dynamic model. The study obtained the dynamic transmission error and 

acceleration responses under different loads and speeds. Sawalhi & Randall 

(2008) developed a 34-DOF model of a gearbox in order to simulate spall and 

cracks in the REB. Massi et al. (2010) studied the wear that results from false 

brinelling at the contact surfaces between the balls and races of the bearings. 

Several models have been developed to study the effects of several distributed 

and localized defect on REB dynamics: clearance effect (Tiwari et al. 2000b), 

(Sopanen & Mikkola 2003), (Purohit & Purohit 2006), (Cao & Xiao 2008), (Nak-

haeinejad 2010), waviness effect (Jang & Jeong 2002), (Sopanen & Mikkola 

2003), (Cao & Xiao 2008), disturbances effect of EHL (Sopanen & Mikkola 2003), 

(Sawalhi & Randall 2008), and the effect of localized faults (McFadden & Smith 

1984), (McFadden & Smith 1985),(Tandon & Choudhury 1997), etc. 

The largest proportion of the studies has focused on the localized faults using 

different modelling techniques. McFadden & Smith (1984), McFadden & Smith 

(1985), Tandon & Choudhury (1997) and Sawalhi & Randall (2008) simulated the 

defect as a signal function of an impulsive train into the modelled system. For 

example, Tandon & Choudhury (1997) have introduced the defect as pulse func-

tion with three different pulse shapes: rectangular, triangular and half-sine pulse. 

Wang & Kootsookos (1998) introduced defects as a function of a basic impulse 

series. Ghafari et al. (2007) have virtually introduced a defect into the equation of 

motion as a triangular impulse train at the related characteristic frequencies of a 

defect. Rafsanjani et al. (2009) modelled the localized defects as a series of im-

pulses having a repetition rate equal to the characteristics frequencies. The ampli-

tude of the generated impulses is related to the loading and angular velocity at the 

point of contact. Malhi (2002), Kiral & Karagülle (2003), Sopanen & Mikkola 

(2003), Massi et al. (2010) and Liu et al. (2012) introduced the defect as force 

function into their FEM models i.e. as a constant impact factor. More preciously, 

Liu et al. (2012) introduced the localized defect as a piecewise function.  

Ashtekar et al. (2008), Sassi et al. (2007), Cao & Xiao (2008), Rafsanjani et al. 

(2009), Patil et al. (2010), and Tadina & Boltezar (2011) modelled the defect 

based on its geometrical features i.e. as a surface bump or a dent that has length, 

width and depth. Tadina & Boltezar (2011) modelled the defect as an impressed 

ellipsoid on the races and as flattened sphere for the rolling elements. Nakhaeine-

jad (2010) utilised the bond graphs to study the effects of defects on bearings 

vibrations. The model incorporated gyroscopic and centrifugal effects, contact 

deflections and forces, contact slip and separations, and localized faults. Dents 

and pits on inner race, outer race and balls were modelled through surface profile 

changes i.e. type, size and shape of the localized faults. The main difficulty with 
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the use of complex dynamic models lies in experimentally verifying the predicted 

results (Howard 1994). 

El-Thalji & Jantunen (2014) reviewed the most relevant studies and experimental 

findings in order to describe the wear process over the lifetime for the rolling bear-

ings. In summary, the wear evolution process is quite complex due to the involve-

ment of several wear mechanisms (i.e. fatigue, abrasive, adhesive, corrosive) and 

several stress concentration mechanisms (i.e. dent, asperities, debris, sub-surface 

inclusions). These mechanisms and their interactions and competitions produce a 

wear evolution progress which varies significantly with respect to surface topog-

raphical and tribological changes. As the fault topography is changing over the 

lifetime that simply means the fault features are changing over time. In this sense, 

the fault topography that is assumed in the simulation models should change. 

Moreover, there is a need to clearly determine the fault features of specific wear 

evolution stages and to understand how different signal analysis methods cope 

with such features, in order to effectively track the detected fault features. 

In this sense, the dynamic models deal with the wear phenomenon as a localized 

defect with fixed features over the lifetime. The reason is that the purpose of these 

models is to detect the defect within the generated vibration signals and not the 

incremental deterioration process i.e. wear evolution. These dynamic models start 

from the point where the defect is localized as a simulated defect in the models or 

artificially introduced into the experiments. That ignores the prior stages of the 

localization process. The localized defects and their associated impact remain 

constant over the whole lifetime. That ignores the topographical and tribological 

changes of the defected surface.  

In order to model the wear evolution, an incremental numerical procedure should 

be developed which is able to integrate the contact information continuously into 

the dynamic model. This means that the applied force due to the wear progress 

and its associated topological and tribological conditions should be iteratively 

updated in the dynamic model. 

2.3 Monitoring methods  

Several experiments have been conducted in order to study specific monitoring 

techniques such as vibration, acoustic emission, oil-debris, ultrasound, electro-

static, shock-pulse measurements, and their use in faulty REBs detection. Many 

studies have used simple signal/data processing techniques such as RMS, kurto-

sis, FFT, etc. However, the largest proportion of studies has focused on the devel-

opment of the advanced SP e.g. envelope, wavelets, and decision making tech-

niques e.g. expert systems, fuzzy logic techniques. The majority of the advanced 

SP techniques are related to vibration measurements, and these studies will be 

discussed in the next section. There are basically two testing approaches. The first 

is the naturally accelerated testing with the help of applying overload, adjusting the 

lubricant film thickness or adding contaminated oil. The second approach is the 
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artificially introduced defects by cutting, false-brinelling, electric charge (i.e. ero-

sion dent) and scratching.  

2.3.1 Testing techniques 

Several experiments with the help of vibration measurements have been con-

ducted on bearings and on other rolling contact mechanisms. Quite large numbers 

of studies have explored the effectiveness of the AE technique for rolling contact 

mechanisms. Other AE experiments have been performed on bearings. Compara-

tive studies that combine vibration and AE measurements have been conducted in 

order to explore defect features with the help of rolling contact test, and some 

other with the help of REBs. Some studies have investigated the capability of 

electrostatic charge measurements (when a charged particle passes the sensor) 

in detecting a bearing defect. The studies have investigated the capability of ultra-

sound measurements in detecting a bearing defect, in particular, for the low speed 

bearings.   

Many detection issues were studied, such as the effect of surface roughness 

(Tandon & Choudhury 1999), the influence of running parameters on the AE of 

grease lubricated REB (Miettinen 2000), the effect of λ factor (i.e. film thick-

ness/surface roughness) (Serrato et al. 2007), the running-in process (Massouros 

1983),(Peng & Kessissoglou 2003), the effects of low speed, the large scale bear-

ings and operating conditions (lubrication type, temperature) (Momono & Noda 

1999) and the effects of geometrical imperfections (i.e. variation of roller diame-

ters, inner ring waviness), abrasive and fatigue wear (Sunnersjö 1985). The effect 

of contaminant concentration on vibration was also studied (Maru et al. 2007), 

(Boness & McBride 1991), (Momono & Noda 1999). 

2.3.2 Wear evolution 

Jantunen (2006) and Yoshioka & Shimizu (2009) observed two main stages of 

wear progress: steady state and instability. The steady-state stage is roughly 

stable. However, a clear offset in the RMS values of monitoring signals is ob-

served at the instability stage, together with instability and a rapid increase of 

these values before the final failure. Schwach & Guo (2006) and Harvey et al. 

(2007) observed three stages of wear progress. Moreover, the instability stage is 

observed to follow a steeply-offset propagation. Harvey et al. (2007) observed that 

electrostatic charge measurements indicate the wear initiation as a region of high 

signal amplitude (with respect to normal signal state), where it disappears (i.e. 

goes back to normal single state) until the failure occurs. Therefore, electrostatic 

measurement indicates instantaneous occurrences of wear mechanisms in the 

region of high signal amplitude rather than progressive stages. Manoj et al. (2008) 

observed that the 3rd harmonic of the roller contact frequency of vibration has very 

good correlation with the wear and, when the pitting takes place, the amplitude of 
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the 3rd harmonic of contact frequency increases to nearly four to five times the 

amplitude of other harmonics. In the same manner, the frequency analysis of 

sound signals shows that the 3rd and 1st harmonics of roller contact frequency 

have good correlation to the wear trend. Zhi-qiang et al. (2012) observed two 

stages of wear progress using vibration measurements. However, four stages of 

wear progress were observed using AE: running-in, steady-state, a stage of minor-

instability due to distributed defects, and finally a stage of major-instability due to 

pitting and spall. Sawalhi & Randall (2011) investigated the trend of kurtosis val-

ues of faulty signals, with relation to the development of the fault size. The kurtosis 

increases almost linearly in the early stage of testing time as the defect size in-

creases. However, it stabilizes later as the defect size slowly extends. It could be 

due either to the existence of a smoothing process or the surface becoming very 

rough where the effectiveness has become weak.  

The artificially introduced defect approach is widely used due to its simplicity. The 

researchers can virtually introduce a well-known shape and size of a defect. what 

is more, they can artificially introduce the same defect features in the validation 

experiment. Furthermore, this approach delimits the testing complexity, as it fo-

cuses on a single artificial defect, compared to the natural defect propagation 

approach. However, the natural wear process highlights that the bearing defect is 

changing over the time with respect to the topological and tribological changes 

due to different wear and stress concentration mechanisms. The drawback of the 

artificially introduced defect approach is that the damage criterion is somehow 

artificially determined, which might be totally different from the defect in real opera-

tion. Therefore, the artificially defective bearing tests are helpful in the develop-

ment of new analysis and diagnosis techniques; however, they are not the best 

way to investigate the evolution of real wear progress. 

The impulsive response is clearly seen when the impact of the rolling element that 

passes over a defect is strong. The impact severity is related to the size of the 

impact area and the sharpness of the defect edges. The impact area is the area 

on the trailing edge of the dent, asperity or the defect that comes into contact with 

the rolling element. Based on the literature, this area is quite small at the defect 

initiation stage and depends on the length, depth and width of the defect. Al-

Ghamd & Mba (2006) observed that increasing the defect width increased the 

ratio of burst amplitude-to-operational noise (i.e. the burst signal was increasingly 

more evident above the operational noise levels). It was also observed that in-

creasing the defect length increased the burst duration. The first observation indi-

cates that the width of defect increases the impact area on the trailing edge and, 

therefore, stronger amplitude and high signal-to-noise ratio was observed. In fact, 

most of the studies show the ability of the envelope analysis to detect such a size 

and feature of the impact area. However, the problem with wear evolution is when 

the impact areas are rapidly and continuously changing due to the loading and 

wear progress.  

In the early stage of the wear process, the defect is quite small and can easily be 

concealed by other vibration phenomena. Most of the SP methods are validated 
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based on experimental tests in which the defects are introduced artificially into the 

bearings. Such a testing approach guarantees the availability of the impulsive 

response due to the introduced defect and somehow its severity is quite enough to 

be detected. The natural accelerated testing experiments (Jantunen (2006) and 

Yoshioka & Shimizu (2009)) show that it is quite hard to detect the impulsive re-

sponse at an early stage and much harder to track its evolution. The basic reason 

behind the difficulty is that the relation between the defect growth i.e. to become 

larger is not linear with its dynamic impact. It is a nonlinear relation due to the high 

stochastic nature of defect growth i.e. wear evolution. Also, it depends greatly on 

the wear and stress contraction mechanisms that are involved. The experiments 

show that the wear process is slow in nature and can hardly produce detectable 

impacts at an early stage. Moreover, the experiments in the literature show that 

the impulsive response of bearing defect is changing over the time with respect to 

the topographical and tribological changes.  

The natural accelerated tests show fluctuations in the impulsive response of bear-

ing defects and at some time intervals it is hard to detect them. For example, the 

over-rolling and abrasive wear effects make the defected surface smoother and 

the impact events softer. These empirical facts are quite important to explain the 

capabilities and limitations of the applied monitoring methods, in order to enhance 

their suitability for wear evolution monitoring in REBs. 

2.4 Signal analysis methods  

2.4.1 Statistical measures 

At the beginning, the SP methods were very simple and mainly based on the sta-

tistical parameters i.e. RMS, mean, kurtosis, crest factor, etc. The trending based 

on RMS value is one of the most used methods, which shows the correlation be-

tween vibration acceleration and the REB wear over the whole lifetime (Jantunen 

2006), (Schwach & Guo 2006), (Harvey et al. 2007), (Yoshioka & Shimizu 2009), 

(Zhi-qiang et al. 2012). Kurtosis and crest factors increase as the spikiness of the 

vibration increases. In this sense, the kurtosis and the crest factor are very sensi-

tive to the shape of the signal. However, the third central moment (Skewness) was 

found to be a poor measure of fault features in rolling bearings (Tyagi 2008), in 

general Skewness can be an effective measure for signals that contain unsymmet-

rical signals i.e. non-linearity. The kurtosis is sensitive to the rotational speed and 

the frequency bandwidth. It is efficient in narrow bands at high frequencies espe-

cially for incipient defects (Pachaud et al. 1997), (Djebala et al. 2007). More ad-

vanced approaches of time-domain analysis are the parameter identification 

methods, where a time series modelling is applied to fit the waveform data to a 

parametric time series model and extract the features (Jardine et al. 2006). Baillie 

& Mathew (1996) introduced the concept of an observer bank of autoregressive 

time series models for fault diagnosis of slow speed machinery under transient 
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conditions, where a short set of vibration data is needed. Due to instantaneous 

variations in friction, damping, or loading conditions, machine systems are often 

characterised by non-linear behaviours. Therefore, techniques for non-linear pa-

rameter estimation provide a good alternative for extracting defect-related features 

hidden in the measured signals (Yan & Gao 2007). A number of non-linear pa-

rameter identification techniques have been investigated, such as Correlation 

Dimension (Logan & Mathew 1996), (Logan & Mathew 1996), (Yan & Gao 2007) 

and Complexity (the degree of regularity of a time series) Measure (Yan & Gao 

2004). As the bearing system deteriorates due to the initiation and/or progression 

of defects, the vibration signal will increase, resulting in a decrease in its regularity 

and an increase in its corresponding entropy value (Yan & Gao 2007). In the early 

stage of machinery faults, the signal-to-noise ratio is very low due to relatively 

weak characteristic signals. Therefore, a chaotic oscillator was proposed (Logan & 

Mathew 1996), (Logan & Mathew 1996), (Wei et al. 2008) to extract the fault bear-

ing features due to its sensitiveness to weak periodic signals. The complexity 

measure analysis shows that the inception and the growth of faults in the machine 

could be correlated with the changes in the complexity value (Yan & Gao 2004). 

The biggest drawback of statistical methods is the need for a suitable quantity of 

data for training and testing the system during the development phase. The large 

quantity of data points that need to be calculated leads to lengthy computational 

time unsuitability for on-line, real-time applications (Yan & Gao 2007). 

2.4.2 Frequency domain methods 

The frequency domain methods have been introduced to provide another way to 

detect the fault-induced signal. FFT is one of the most common methods to trans-

form the signal from time domain into the frequency components and produce a 

spectrum. However, it is often not clear enough to observe the fault peak, because 

of slip and masking by other stronger vibrations, apart from the effects of the de-

fect frequency harmonics and sidebands (Ocak et al. 2007). Moreover, the FFT 

method is actually based on the assumption of periodic signals, which is not suit-

able for non-stationary signals. The output signals of running REB contain non-

stationary components due to the changes in the operating conditions and faults 

from the machine and bearing itself (Peng & Chu 2004). Time–frequency analysis 

is the most popular method to deal with non-stationary signals. The Wigner–Ville 

distribution, the short time Fourier transform and Wavelet transform (WT) repre-

sent a sort of compromise between the time- and frequency-based views of a 

signal and contain both time and frequency information. Mori et al. (1996) applied 

the discrete wavelet transform so as to predict the occurrence of spall in REBs. 

Shibata et al. (2000) used the WT to analyse the sound signals generated by 

bearings. Peng et al. (2005) highlighted that the Hilbert–Huang transform has 

good computational efficiency and does not involve the frequency resolution and 

the time resolution.  
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2.4.3 Challenges of feature extraction process 

There are several challenges to remove the speed fluctuations, the smearing 

effect of signal transfer path and the background noise. The effect of speed fluc-

tuation, e.g. chirp signals, is important and needs to be removed. The chirp signal 

or sweep signal, i.e. a signal in which the frequency increases ('up-chirp') or de-

creases ('down-chirp') with time, might be generated due to speed fluctuations, 

running-in, cut-out operations. It should be noticed that there have been several 

methods proposed to deal with the chirp signals such as chirp z-transform, chirp 

Fourier transform, adaptive chirplet transforms, and high-order estimations. More-

over, The order tracking methods are used to avoid the smearing of discrete fre-

quency components due to speed fluctuations (Randall & Antoni 2011). To solve 

the smearing effect due to the signal transmission path, the Minimum entropy de-

convolution method has been developed (Endo & Randall 2007), (Sawalhi et al. 

2007). 

For the background noise problem, different de-noising filters have been devel-

oped such as discrete/random separation (Antoni & Randall 2004b), adaptive 

noise cancellation (Chaturvedi & Thomas 1982), (Tan & Dawson 1987), self-

adaptive noise cancellation (Ho 2000), (Antoni & Randall 2001), (Antoni & Randall 

2004a) or linear prediction. However, for a situation, where the noise type and 

frequency range are unknown, the traditional filter designs could become compu-

tationally intense processes (Qiu et al. 2003). For example, the WT methods per-

form very well on Gaussian noise and can almost achieve optimal noise reduction 

while preserving the signal. However, it is still a challenge how to select an opti-

mum wavelet for a particular kind of signal i.e. to select the optimum wavelet ba-

sis, to select the corresponding shape parameter and scale level for a particular 

application. Moreover, how to perform thresholding is another challenge. There 

are two major wavelet-based methods, which are used for mechanical fault diag-

nosis: The first method focuses on selecting a suitable wavelet filter, e.g. the Mor-

let wavelet, impulse response wavelet, and the second method focuses on select-

ing a suitable decomposition process e.g. adaptive network based fuzzy inference. 

Based on the WT, many kinds of fault features can be obtained, all of which can 

be classified as the wavelet coefficients-based, wavelet energy-based, singularity-

based and wavelet function-based (Peng & Chu 2004). The continuous WT of the 

Morlet wavelet function has been used (Lin & Qu 2000). Junsheng et al. (2007) 

proposed the impulse response wavelet base function to describe the vibration 

signal characteristics of the REB with fault, instead of the Morlet wavelet function. 

Liu et al. (2008) proposed a weighted Shannon function in order to synthesize the 

wavelet coefficient functions to enhance the feature characteristics, i.e. optimal 

wavelet shape factor and minimizes the interference information. Djebala et al. 

(2007) presented a denoising method of the measured signals-based on the opti-

mization of wavelet multi-resolution analysis based on the kurtosis value. Liu et al. 

(1997) proposed a wavelet packet-based method for the fault diagnostics of REB, 

where the wavelet packet coefficients were used as features. Altmann & Mathew 

http://en.wikipedia.org/wiki/Signal_(information_theory)
http://en.wikipedia.org/wiki/Frequency
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(2001) presented a method based on an adaptive network-based fuzzy inference 

system, so as to select the wavelet packets of interest as fault features automati-

cally, to enhance the detection and diagnostics of low speed REB faults. Su et al. 

(2010) presented a new hybrid method based on optimal Morlet wavelet filter and 

autocorrelation enhancements i.e. to eliminate the frequency associated with 

interferential vibrations, reduce the residual in-band noise and highlight the peri-

odic impulsive feature.  

2.4.4 Bearing fault signals 

Some studies (Sun & Tang 2002), (Peng et al. 2007), (Altmann & Mathew 2001), 

(Hao & Chu 2009) highlight the fact that the most relevant information of a signal 

is often carried by the singularity points, such as the peaks, the discontinuities, 

etc. Therefore, singularity detection methods are proposed (Sun & Tang 2002), 

(Peng et al. 2007) based on calculating the Lipschitz exponents of the vibration 

signals. A large Lipschitz exponent indicates a regular point in the signal, while a 

small Lipschitz exponent indicates a singular point. The WT is very successful in 

singularity detection, however before the singularity is detected, the signal pre-

processing must be carried out, so as not to overlook some singularities (Peng & 

Chu 2004). Hao & Chu (2009) observed that the impulse components cannot be 

seen clearly due to the existence of harmonic waves. The WT filtering removes 

the noise, but; the harmonic waves are not suppressed, since the impulse fre-

quency was very close to the harmonic wave frequencies (Hao & Chu 2009). 

Therefore, the scalogram (i.e. a visual method of displaying a wavelet transform) 

is proposed to reveal more information about the signal.  

Several methods try to extract the periodic information of the impulsive response 

of faulty REB such as the time synchronous average (McFadden 1987), (Dalpiaz 

et al. 2000), (Miller 1999). The bearing fault signals have a deterministic part and a 

quasi-cyclostationary part, where the envelope and the squared envelope of the 

bearing vibration signal is the way to overcoming this problem (Randall et al. 

2001). The envelope analysis utilizes the idea of detecting the fault impulses that 

are amplified by structural resonance. However, it is a challenge to determine the 

spectrum band which contains the highest signal-to-noise ratio. Randall (2011) 

has highlighted that determining the suitable demodulation band is recently solved 

by means of e.g. spectral kurtosis (SK) (Sawalhi & Randall 2005), (Antoni 2006), 

(Antoni & Randall 2006), (Sawalhi 2007). Tse et al. (2001) compared the effec-

tiveness of the wavelet and the envelope detection methods for REBs fault diag-

nosis. The results showed that both the wavelet and envelope detection methods 

are effective in finding the bearing fault, but the wavelet method is less time-

consuming. The shortcoming of the envelope detection approach is the increasing 

difficulty in analysing the vibration spectrum when the signal-to-noise ratio is low 

(Chiementin et al. 2007), in which case the fault-imposed frequencies can be 

masked by noise and other frequency components. To overcome this problem, 

some morphological operators are proposed (Hao & Chu 2009) with the aim of 

http://en.wikipedia.org/wiki/Wavelet_transform


 

26 

extracting the envelope of impulsive type periodic vibration signals by modifying 

(i.e. using morphological operators such as dilation, erosion, opening, closing) the 

geometrical features of the signals in the time domain. That constructs a kind of 

envelope which accentuates information corresponding to the impact series pro-

duced by a fault.   

The impacts on the fault do not occur exactly in a periodic manner, because of 

random slips, possible speed fluctuations, and variations of the axial to radial load 

ratio. Therefore, the bearing fault signals are more likely to be described as cyc-

lostationary (McCormick & Nandi 1998), (Kilundu et al. 2011), as pseudo-

cyclostationary (Randall 2011), as quasi-cyclostationary (Randall et al. 2001), 

(Antoni et al. 2004) and as poly-cyclostationary (Antoni et al. 2004). The cyclosta-

tionary signal is defined as a random signal in which the statistical parameters 

vary in time with single or multiple periodicities (Da Costa 1996) and as a signal 

which, although not necessarily periodic, is produced by a hidden periodic mecha-

nism (Randall & Antoni 2011). The quasi-cyclostationary signal is generated when 

the existence of a common cycle is not allowed due to the fact that some rotating 

components are not locked together such as in REBs. Antoni et al. (2004) high-

lighted that poly-cyclostationary signals are generated since many mechanical 

components in the machinery introduce various different periodicities, so they are 

a combination of cyclostationary processes with different basic cycles. Antoni et al. 

(2004) explained that all kinematical variables in the machinery that are periodic 

with respect to some rotation angles are intrinsically angle-cyclostationary rather 

than time-cyclostationary. The synchronous averaging, comb-filters, blind filters 

and adaptive comb-filters are of the type of first-order cyclostationary methods. 

Synchronous auto-covariance function, Instantaneous variance, and spectral 

correlation density are second-order cyclostationary methods. The spectral correc-

tion is proposed by Gardner (1986) where the second-order periodicity can be 

characterized i.e. the degree of coherence of a time series. Several studies have 

discussed the cyclostationary and spectral correlation technique for fault detection 

in REBs, such as (Randall et al. 2001), (Antoni et al. 2004), (Antoni 2007), (Antoni 

2007), (Antoni 2009). The envelope analysis gives the same result as the integra-

tion of the cyclic spectral density function over all frequencies, thus establishing 

the squared envelope analysis as a valuable tool for the analysis of (quasi-) cyc-

lostationary signals more generally (Randall et al. 2001). Moreover, since the 

autocorrelation of a periodic signal is both periodic vs. time and time-lag, it pro-

duces a spectral correlation function discrete in both the “f” and “α” directions like 

a ‘‘bed of nails’’. The higher-order spectra describe the degree of phase correla-

tion among different frequencies present in the signal (Liu et al. 1997). Therefore, 

Li & Ma (1997) used bi-coherence spectra so as to derive features that relate to 

the condition of a bearing. Collis et al. (1998) explained that the bi-spectrum can 

be viewed as a decomposition of the third moment ‘skewness’ of a signal over 

frequency, and that it proves useful for analysing systems with asymmetric non-

linearities. However, this statistical approach requires a rather large set of data in 

order to obtain a good estimation (Mori et al. 1996). Pineyro et al. (2000) com-
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pared the second-order power spectral density, the bi-spectral technique and the 

WT, and found this last to be useful in the short transient detection, since it could 

eliminate the background noise. 

The signal analysis methods, which are applied to signals measured from bear-

ings with an artificially introduced defect, are quite effective. However, a careful 

comparison between the defect features of a natural wear process and the artifi-

cially introduced defect should be taken in consideration. Simply put, the artificially 

introduced defects are the dominated damage mechanism and in general they are 

large, sharp and strictly localised. A natural fault is smaller, less sharp and has 

evolved with the help of different wear and stress concentration mechanisms. In 

fact, the impulse due to wear defect is changing over the whole lifetime (El-Thalji & 

Jantunen 2015a). 

It is also clear from the literature, the definition of bearing fault signal type i.e. 

stationary, cyclostationary, non-stationary, etc. is the main reason and motivation 

for the variety of SP methods. Some methods are just for specific types of signals 

and it is hard to illustrate their outcomes or there is no point in using them if the 

fault-induced signals are not of that type. Thus, it is more realistic to illustrate how 

the bearing fault-induced signal evolves over the whole REB’s lifetime. The fault-

induced signal is usually of the impulsive signal type due to the impact event when 

the rolling element passing over e.g. an asperity, dent or defect. The defect topol-

ogy affects the impact severity when a rolling element passes over it. Therefore, 

the impulsive nature of wear is changing as the wear defect evolves. Moreover, at 

some wear progression intervals, there is no clear impulsive impact, where some 

monitoring and diagnosis techniques are not effective.  

2.5 Fault diagnosis methods  

The fault diagnosis task consists of the determination of fault type with as many 

details as the fault size, location, and severity. Since a machine has many compo-

nents and is highly complex, diagnosis of a machine fault usually requires techni-

cal skill and experience. It also requires extensive understanding of the machine’s 

structure and operation, general concepts of diagnosis and an expert engineer to 

have domain-specific knowledge of maintenance and to know the ‘ins-and-outs’ of 

the system. In reality, the expert is either too busy with several tasks or a specific 

component expert is not available at all (Yang et al. 2005). In order to automatize 

the diagnosis procedures and provide a decision about the REB’s health state, a 

number of automatic feature diagnosis methods have been developed. Several 

diagnosis methods are proposed to diagnose the faulty REBs such as artificial 

neural network (ANN), expert systems, fuzzy logic, support vector machine (SVM), 

state observes, and model-based methods.  

The ANN methods have been applied to diagnose the REB’s fault and such as 

(Roemer et al. 1996), (Paya et al. 1997). Larson et al. (1997) performed the phase 

demodulation by means of neural networks. Li et al. (2000) utilised the FFT as a 
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pre-processor for Feed-Forward Neural network to perform fault detection. 

Samanta & Al-Balushi (2003) developed a back-propagation neural network model 

to reduce the number of inputs which leads to faster training requiring far fewer 

iterations. Moreover, Baillie & Mathew (1996) illustrated the better noise rejection 

capabilities of the back-propagation networks compared to traditional linear meth-

ods. However, noise still remains a problem, and the best way to combat this is to 

use longer data lengths so that the noise can effectively be cancelled by the sig-

nal-to-noise ratio averaging process. Alternatively, it also highlights the importance 

of signal pre-processing techniques, such as amplitude demodulation in the case 

of REBs (Baillie & Mathew 1996). The cascade correlation algorithm offers the 

advantage that the number of hidden units does not have to be determined prior to 

training. Spoerre (1997) applied the cascade correlation algorithm so as to predict 

the imbalance fault in rotor-bearing configuration. Radial basis functions are used 

(Baillie & Mathew 1996) for REB, and compared to back-propagation networks 

these show superior outcome due to their rapid training time. Since the unsuper-

vised learning does not require external inputs, Wang & Too (2002) applied the 

unsupervised neural networks, self-organising map and learning vector quantisa-

tion to rotating machine fault detection. Tallam et al. (2002) proposed some self-

commissioning and on-line training algorithms for feed-forward a neural network 

with particular application to electric machine fault diagnostics. However, the build-

ing and training of artificial neural networks typically requires a trial and error ap-

proach and some experience (Baillie & Mathew 1996). The scope of the reviewed 

ANN methods is to classify the following fault features i.e. health state, defect 

type, defect location, defect severity, etc. Paya et al. (1997) used the ANN to dif-

ferentiate between each fault and establish the exact position of the fault occurring 

in the drive-line. Samanta & Al-Balushi (2003) developed a back-propagation 

neural network model which obtains the fault features directly using very simple 

pre-processing i.e. root mean square, variance, skewness, kurtosis and normal-

ised sixth central moment of the time-domain vibration signals, to classify the 

status of the machine in the form of normal or faulty bearings. 

Different expert systems have been proposed for diagnosing abnormal measure-

ments such as rule-based reasoning (Yang et al. 2005), case-based reasoning 

(Yang et al. 2004), and model-based reasoning. It would be wise to present the 

cause-symptom relationship in a tabular form for quick comprehension and a 

concise representation. Yang et al. (2005) developed a decision table i.e. IF 

(symptom) and THEN (cause) to link the causes of fault and symptoms from an 

empirical knowledge gained either by direct experience with the system or through 

another expert in the field. The ANNs are required to gradually learn knowledge in 

the operating process, and to have the adaptive function expanding the knowledge 

continuously without the loss of the previous knowledge during learning new 

knowledge. Therefore, Yang et al. (2004) proposed the integrated approach of 

Adaptive Resonance Theory and Kohonen Neural Network. However, the previous 

cases may influence a case-based reasoning system in different directions without 

giving it many hints on which cases to consider as more important. This problem, 
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associated with other difficulties in case-based indexing and retrieval, suggests 

that combining the case-based reasoning with complementary forms of reasoning, 

such as rule-based, model-based or neural network, may be fruitful (Yang et al. 

2004).  

In order to have flexible classification practices, the fuzzy logic approach is intro-

duced. Fuzzy logic has gained wide acceptance as a useful tool for blending ob-

jectivity with flexibility. Fuzzy logic is also proving itself to be a powerful tool when 

used for knowledge modelling, particularly when used in condition monitoring and 

diagnostics applications. Liu et al. (1996) developed a fuzzy logic based expert 

system for rolling bearing faults. Mechefske (1998) applied fuzzy logic method to 

classify frequency spectra representing various REB faults. Unlike other neural 

networks, fuzzy neural networks adopt bidirectional association. They make use of 

the information from both fault symptoms and fault patterns and improve recogni-

tion rate. Therefore, Zhang et al. (2003) applied a neural network to diagnosing 

the fault on a rotary machine. Jantunen (2004) proposed the use of a simplified 

fuzzy logic for automated prognosis. It saves the history of measured parameters 

and gives a prognosis of further development. 

In practice, the huge number of possible loading conditions, i.e. measuring situa-

tions, makes the ANN task more complicated. Therefore, it is always a question of 

whether the training results can be moved from one machine to others. An SVM is 

another classification technique based on statistical learning theory. Three meth-

ods were used to find the separating hyper-plane, namely Quadratic Program-

ming, Least-Squares and Sequential Minimal Optimization method. Yang et al. 

(2007) used intrinsic mode function envelope spectrum as input to SVMs for the 

classification of bearing faults. Hu et al. (2007) used improved wavelet packets 

and SVMs for the bearing fault detection. Abbasion et al. (2007) used the SVM as 

a classifier to compute optimum wavelet signal decomposition level, in order to 

find an effective method for multi-fault diagnosis. Gryllias & Antoniadis (2012) 

proposed the hybrid two stage one-against-all SVM approach for the automated 

diagnosis of defective REBs. In SVM approach, it is quite necessary to optimize 

the parameters which are the key factors impacting the classification performance. 

Li et al. (2013) proposed an improved ant colony optimization (IACO) algorithm to 

determine these parameters, and then the IACO-SVM algorithm is applied to the 

REB fault detection. Liu et al. (2013) proposed a multi-fault classification model 

based on Wavelet SVM. Particle swarm optimization is applied in order to seek the 

optimal parameters of Wavelet SVM and pre-processed using empirical model 

decomposition. Guo et al. (2009) investigated the SVM method based on enve-

lope analysis to diagnose REB with a ball fault, inner race fault or outer race fault. 

The SVM is originally designed for two-class classification problem; however bear-

ing fault diagnosis is a multi-class case. Tyagi (2008) observed that more accurate 

classification of bearing conditions is achieved by using SVM classifiers as com-

pared to ANN. In fact, the ANN uses traditional empirical risk minimization princi-

ples to minimize the error in training data, while SVM utilizes structural risk mini-

mization principles to minimize the upper boundary of expected risk (Guo et al. 
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2009). Pan et al. (2009) proposed a combined method based on improved wavelet 

packet decomposition and support vector data description to achieve better speed 

in training. However, Jack & Nandi (2002) observed that the ANN tends to be 

faster to train and slightly more robust than the SVM.  

The other non-linear classifiers such as the Gaussian Mixture Model and Hidden 

Markov Model have been used for classification problems in specific applications. 

Therefore, Nelwamondo et al. (2006) introduced the Gaussian mixture model and 

hidden Markov model to diagnose faults in rolling bearing features, based on ex-

tracted features using Multi-Scale Fractal Dimension, Mel frequency Cepstral 

Coefficients and kurtosis. However, the major drawback of the hidden Markov 

model classifier is that it is computationally expensive, taking more than 20 times 

longer than the time required to train the GMM. Ocak et al. (2007) developed a 

new scheme based on wavelet packet decomposition and the hidden Markov 

model for tracking the severity of bearing faults. Zhang & Kang (2010) proposed 

and hidden Markov model to represent the states of bearing through partition sub-

state for the five states. 

The model-based methods utilise the physics models to diagnose the health of the 

monitored REB. Vania & Pennacchi (2004) proposed a diagnostic technique 

where the fault is obtained by evaluating the system of excitations that minimizes 

the error i.e. residual, between the machine experimental response and the nu-

merical response evaluated with the model. Söffker et al. (2013) introduced Pro-

portional-Integral Observer method to detect a crack by detecting small stiffness 

changes. The very detailed and physically-oriented understanding that is provided 

by the model-based approach enhances the interpretation problem of signal-

based approaches. However, the necessity for fault models and the hypotheses 

about the location of the fault is a limitation. The majority of real industrial proc-

esses are nonlinear and are not effective to be modelled by using linear models 

for all operating conditions.  

In summary, one important issue is the early detection of the fault i.e. earliness. 

There are wide and qualitative definitions of earliness of detection within the litera-

ture. In fact, many studies which utilised the artificially introduced defects can be 

recognised to be a severe state in the real application and, therefore, can also be 

detected with simple methods. It is clear that the signal analysis methods aim to 

detect the defect as early as possible. Most of the feature diagnosis methods 

classify the REB’s state into either a healthy or faulty state. Some other methods 

aim to classify the defect types i.e. imbalance, defect, and defect locations i.e. 

outer race, inner race, rolling element. Few studies classify the defect evolution in 

terms of wear stages.  

2.6 Prognosis analysis 

Several researchers have reviewed prognosis contributions (Engel et al. 2000), 

(Jardine et al. 2006), (Lee et al. 2006), (Heng et al. 2009), (Peng et al. 2010), 
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(Jammu & Kankar 2011), etc. There are two types of methods of prognosis: a 

physics ‘model’-based and data-driven method, i.e. statistical and artificial intelli-

gence. Physics-based prognostic models describe the physics of the system and 

failure modes based on mathematical models such as Paris’ law, Forman law, 

fatigue spall model, contact analysis and ‘stiffness-based damage rule’ model. 

Data-driven prognostic models attempt to be driven by routinely and historically 

collected data (condition monitoring measurements). Data-driven prognostic mod-

els cover a high number of different techniques and artificial intelligence algo-

rithms such as the simple trend projection model, time series prediction model, 

exponential projection using (ANN, data interpolation using ANN, particle filtering, 

regression analysis and fuzzy logic, recursive Bayesian technique, hidden Markov 

model, hidden semi-Markov model, system identification model, etc. Data-driven 

methods utilize data from past operations and current machine conditions, in order 

to forecast the remaining useful life. There are several reviews concerning the 

data-driven approaches (Schwabacher 2005), (Schwabacher & Goebel 2006) and 

(Camci et al. 2012).  

2.6.1 Statistical approach 

Yan et al. (2004) explored a method to assess the performance of assets and to 

predict the remaining useful life. At first, a performance model is established by 

taking advantage of logistic regression analysis with maximum-likelihood tech-

nique. Two kinds of application situations, with or without enough historical data, 

are discussed in detail. Then, real-time performance is evaluated by inputting 

features of online data to the logistic model. Finally, the remaining life is estimated 

using an Auto-Regressive–Moving Average model based on machine perform-

ance history; the degradation predictions are also upgraded dynamically. Vlok et 

al. (2004) proposed a residual life estimation method based on a proportional 

intensity model for non-repairable systems which utilise historic failure data and 

corresponding diagnostic measurements i.e. vibration and lubrication levels. Yang 

& Widodo (2008) proposed a prognosis method using SVM. The statistics-based 

models assume that historical data is representative of the future wear progress, 

which is not always the case. Probabilistic-based models assume that the whole 

wear evolution progress is represented by a probability distribution function i.e. 

Weibull. 

2.6.2 AI approach 

Li et al. (1999) utilized a recurrent neural network approach. Yam et al. (2001) 

proposed a model based on the recurrent neural network approach for the critical 

equipment of a power plant. Dong et al. (2004) proposed a model that combines 

condition prediction for equipment in a power plant based on grey mesh GM (1,1) 

model and BPNN on the basis of characteristic condition parameters extraction. 

Wang et al. (2004) evaluated the performance of recurrent neural networks and 
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neuro-fuzzy systems. By comparison, it was found that if a neuro-fuzzy system is 

properly trained, it performs better than recurrent neural networks in both forecast-

ing accuracy and training efficiency. However, they often suffer from the need for 

complex training due to the huge number of possible combinations of damage 

scenarios that might occur in the case of rolling contact wear.  

2.6.3 Physics-based approach  

Physics-based prognostic models describe the physics of the system and failure 

modes based on mathematical models such as Paris’ law, Forman’s law, fatigue 

spall model, contact analysis and the stiffness-based damage rule model. Physics-

based prognostic models are based on crack length, and defect area as illustrated 

in (Li et al. 1999), and (Li et al. 2000), or relations of stiffness as shown by Qiu et 

al. (2002). However, the most challenging issue within physics-based prognostic is 

to define the loading-damage relationship and to model it. There are models 

based on damage rules such as the linear damage rule, damage curve rule, and 

double-linear damage rule (Qiu et al. 2002). The drawback of these simplified 

functions is that they all use the constant damage factor, which is hard to estimate 

or measure. Moreover, these functions are either linear or multi-linear functions. 

That means that the estimated results might seem to match, with the overall 

measured results; however, both of they might describe different damage scenar-

ios in behind. Therefore, the prediction based on such functions makes the prog-

nosis a risky task. Recently, some model-based models have been utilised for the 

contact stress analysis to illustrate the wear evolution progress. These models 

provide more accurate predictions. Some models are based on contact stress 

analysis (Marble & Morton 2006) and some are based on system dynamics (Begg 

et al. 1999), (Begg et al. 2000). Chelidza & Cusumano (2004) proposed a method 

based on a dynamic systems approach to estimate the damage evolution. The 

results of these models also depend on the stress-damage function and the con-

stant damage factor in use. These models assume that each wear mechanism 

generates stresses that in total equal the overall measured stresses. Therefore, 

the wear mechanics interactions and competitions are somehow ignored.  

In summary, the survey shows that the data-driven approach is more suited to 

prognosis of rolling bearings than the physics-based approach. All prognosis ap-

proaches i.e. physics-based or data-driven have advantages and drawbacks in 

different applications and operating cases, specially, in the case of variable oper-

ating conditions. Moreover, the prognosis models try to control or delimit the effect 

of some operational variables. However, that is somehow possible in the experi-

mental tests but not in real applications. The prediction based on simplified ex-

perimental tests, i.e. the ball on disc test, is easier than tests that use REBs. The 

statistical models represent the wear evolution as one function with the possibility 

of inserting weights. The statistical models assume that the past history profile 

represents the future failure mechanism of a specific component. However, the 

failure mechanisms are changing with respect to the failure evolution and the 
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involvement of failure mechanisms. This means that the statistical approach is not 

fully valid and might not represent wear progress, especially, if the evolution 

stages are highly varying, as they are in the case of wear evolution stages. ANN 

models use specific functions and multiple weights. However, ANN models have 

drawbacks once the system conditions are rapidly fluctuating. The model-based 

models are still representing the wear evolution with two stages. Moreover, the 

damage is represented as a damage factor. This really is a dramatic simplification 

to describe the wear evolution as a two-stage stabile phenomenon, whereas by 

nature it has a complex evolution process. Consequently, this kind of approach is 

very far from reality and its usability can be strongly criticized. The prognosis 

models can be improved remarkably by understanding the physics of the wear 

evolution progress and its associated measured outcomes. Actually, that will help 

the model-based approaches to provide better results and the data-driven ap-

proach to have better interpretations of the results and training inputs.  
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3. A descriptive model of wear evolution 

The review and the discussions in publication I summarise the capabilities, advan-

tages and disadvantages of bearing modelling and monitoring procedures i.e. SP, 

diagnosis and prognosis methods. It is observed that several experimental agree-

ments with their associated analytical models are valid for specific wear defini-

tions. The most commonly used method for wear testing is to artificially introduce 

a localised defect into the surface i.e. sharp, large enough and at specific radial 

location. However, in reality, the fault features change over the lifetime due to 

topographical and tribological changes. These changes are due to the fact that 

wear progresses in rolling contact because of the involvement of different wear 

and stress concentration mechanisms. Therefore, the review highlights the evolu-

tion monitoring challenge of the wear fault over the REB’s lifetime. Moreover, it 

discusses the directions and implications of understanding the natural evolution of 

the wear process in REB and how can it be monitored and modelled effectively.  

The discussion in the previous chapter highlights the need for a wear evolution 

model e.g. incremental numerical procedure which would be able to simulate and 

integrate the contact information continuously into a dynamic model. This means 

that the applied force due to the wear progress and its associated topographical 

and tribological conditions should be iteratively updated into the dynamic model. 

The review part of the monitoring and experimental testing methods highlights the 

need to understand the dominant physical damage mechanism of each testing 

method in order to interpret the measured signal in the correct way. In terms of 

signal processing and diagnosis method, it is very clear that several methods 

might show considerable capabilities at specific time intervals within the whole 

lifetime. However, they might have poor capability to indicate the fault at specific 

time intervals due to the change in the surface topography. Therefore, there is a 

need to study and validate these methods with the data of time intervals that con-

tain several topographical changes due to wear evolution.  

Generally, it is hard to describe the wear evolution progress due to the variety of 

the wear and contact mechanisms involved, which might produce different wear 

evolution scenarios. Therefore, the development of the wear fault over the lifetime 

is described in detailed in publication II. Publication II provides a new descriptive 

model of wear interaction and evolution which combines and integrates the large 
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experimental and numerical findings that have been accumulated in the literature. 

The descriptive model aims to generalise the most probable wear evolution sce-

nario in REBs. First, it explains the interaction of multiple wear mechanisms in 

rolling contact. Second, it explains both the wear evolution on and beneath the 

contact surface from the running-in stage until spall occurs. Third, it explains the 

wear transition points during the wear evolution progress. Therefore, this chapter 

describes the wear evolution in rolling bearings over the whole lifetime in terms of 

the wear progression stages, surface topography evolution, wear mechanics inter-

action and influence factors of wear progression. 

The detailed illustration of the new descriptive model with the supportive experi-

mental findings in the literature is presented in publication II. In this section, a 

summary of the descriptive model and its characteristics are provided.   

3.1.1 Wear evolution process 

The bearing lifetime is described based on five stages. The wear evolution model 

assumes that, at a certain time interval of the steady-state stage, a transition into 

the defect initiation stage will take a place. Later, the evolution model describes 

the wear progress with the help of two assumptions: the existence of multiple 

stages that have specific transition events and existence of multiple wear and 

stress concentration mechanisms that are acting in each progress stage. There-

fore, the wear evolution model that has been described in details with the help of 

literature (i.e. experimental findings) can be summarized as follows: 

Some topographical changes might occur when the stresses in rolling contact 

increase due to the increased operating loads, additional loads due to faults i.e. 

imbalance, misalignment, bent shaft, looseness, and/or distributed defects i.e. 

high degrees of surface roughness and waviness, contaminations, inclusions. 

These topographical changes in the contact area generate stress concentration 

points and lubrication film disturbances.  

At early stage, the concentrated stresses are not strong enough to produce a 

defect. It is mainly located in the loading zone and in the normal running track i.e. 

pure rolling points. Later, some sliding events, lubrication film transfers, false 

brinelling events due to stand-still events, might occur and introduce some degree 

of surface interaction. These surface interactions might appear as a reduction in 

the lubrication film, gapping, miss-matching between the rolling element profile 

and race profile, etc. Therefore, such surface conditions allow some abrasive wear 

events, some contaminations to enter the contact zone and minor vibration im-

pacts. As a result of these actions, some surface dents might be generated. 

Therefore, the model describes how dents and in particular their asperities has the 

main role in the defect initiation and propagation process. The main assumption is 

that, as long as the asperity is large and sharp, the contact force between the 

rolling element and the asperity is large. The contact force and other loading 

forces contribute to the applied tangential force. The tangential force and the fric-
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tion force are the main forces that generate a sufficient stress intensity factor (SIF) 

for crack opening and later for the crack propagation. However, since the rolling 

elements are rolling over the asperity and the asperity can be abraded, the original 

shape of the dent might change over the time. Therefore, the impact force and the 

crack opening and propagation progress are influenced. However, although the 

asperities are plastically deformed during the over-rolling cycles and degraded by 

abrasive and adhesive wear actions, they remain sufficiently high to produce ten-

sile surface stresses. In the end, the propagated crack needs a secondary crack to 

reach the surface or it can attach to the rolling element once a sufficient adhesive 

bonding exists. During this process, the lubrication film is distorted and transfers 

into surface crack where another mechanical and chemical actions might acceler-

ate the defect creation. When the defect is completed and the material is detached 

from the surface, new asperity is generated, new debris is generated, severe 

disturbances of lubrication film are generated, and the less hardening material (i.e. 

the material that was below the removed defect material) became the new sur-

face.  

This new descriptive model highlights the features of the generated defect and its 

asperity. The length of the generated defect depends on how long the crack could 

propagate in parallel to the surface before the detachment process occurred. The 

depth of the generated defect depends on how deep the crack was opened before 

it matches with a secondary or sub-surface inclusion. It also depends on the fric-

tion force and its depth of stress concentration. The width of the generated defect 

depends how far the force trajectories were propagating. The defect’s length, 

depth and width are the basic elements of the new impact area. Therefore, a new 

impact force will be generated when the rolling element passes over the new de-

fect i.e. especially at the trailing edge of new defect. The new defect will generate 

a number of defect serials, and the generated debris will generate several dents in 

different locations. First, the tangential force will be larger, since the asperity is 

larger and rougher than the initial dent asperities. Second, the new debris will 

generate a more severe dent, since it is larger and sharper than contamination 

particles. Debris might act as moving and distributed asperity. Moving asperities 

have a more random and non-linear way of action compare to the fixed ones, i.e. 

dent asperities. Large portion of debris will be pressed into the surface and gener-

ate more dents. Moreover, debris can act as an asperity and minor indenter and 

generate abrasive wear.  

The five stages are schematically illustrated in Figure 2. The wear evolution pro-

gress produces several surface topographical changes. These topographical 

changes have a significant effect on the physical measurements, in particular, for 

condition monitoring purposes. At the end of the running-in stage, the roughness 

of the surface becomes smooth. Therefore, the steady-state stage is characterized 

by uniform lubricant film and contact mechanics, under normal operating condi-

tions. When the surface is dented, the surface looks like peelings. Later, the 

shapes of the dents change due to the over-rolling and wear actions. However, the 

trailing edge acts as a stress raiser and the micro-cracking is initiated and opened 
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on and under the surface. The micro-cracks propagate from the surface downward 

with inclination, which depends on the rolling direction. The crack propagates later 

in parallel with rolling direction until it meets a secondary crack and connects to 

the surface or detaching process occur. Therefore, a relatively large material will 

be detached from the surface as debris particles. After the first pit, a number of 

pits and spalls are expected to occur in a serial pattern and extend in a wider and 

deeper manner, where the defect area becomes larger and rougher. 

Figure 2. Evolution of dynamic behaviour and surface topography due to wear 

evolution. 

It is worth explaining that several bearing manufacturers indicate that their lifetime 

estimation formula (e.g. the SKF bearing rating life formula) is based on the load 

and capacity assuming that the lubrication, oil contamination and operating condi-

tions are ideal. Based on this assumption, such lifetime prediction shows quite a 

long lifetime and they fit very well with applications where the influences of the 

lubrication, oil contamination and operating conditions are controlled and ne-

glected. The damage in the bearings of such applications are related to sub-surface 

defect which appear after a long period of operation i.e. after high repeated stress 

cycles, inclusions in the sub-surfaces and the degradation of the material properties.  

However, several studies in the literature (Xu & Sadeghi 1996), (Mota & Ferreira 

2009), (Morales-Espejel & Brizmer 2011), etc. show that under the normal loading 

conditions, the damage might appear much earlier once the lubrication, oil con-

tamination and operating conditions are disturbed. Moreover, the rating life for-

mula expresses the capacity to load ratio with an exponential factor that is related 

to contact type i.e. ball contact, rolling contact. Therefore, the studies show that 

lubrication disturbances might generate boundary lubricated contact, abrasive 

actions, pressing particles between surfaces, etc. and these actions in fact initiate 
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the surface dents. Therefore, the “service life factors” have been introduced to the 

life rating formula including lubrication, the degree of contamination, misalignment, 

proper installation and environmental conditions. These service life factors can 

easily influence the bearing lifetime at an early stage and initiate surface dents 

much earlier than sub-surface defects, in particular, for bearings that are operated 

under normal loading conditions (with some degree of variation) and assuming 

high material quality (which have been used in other applications and showed a 

long lifetime). In fact, several studies (Dwyer-Jones 1999), (Maru et al. 2007), 

(Morales-Espejel & Brizmer 2011) highlighted the fact that the probability of getting 

disturbances in lubrication, contamination degree and operating conditions are 

higher than having sub-surface inclusions at an early stage. 

3.1.2 Rolling wear interactions 

The new descriptive model of wear evolution i.e. five-stages emphasise the dy-

namic nature of wear. This dynamic nature is produced as a combination of wear 

mechanisms, stress concentration mechanisms, and operating conditions. This 

dynamic nature changes significantly the wear evolution scenario over the lifetime. 

Therefore, there is a need to understand the interactions and competitions among 

the involved wear mechanisms. The wear interaction process involves multi-stress 

concentration mechanisms (dent, debris and asperity) and multi wear mechanisms 

(fatigue, abrasive, and adhesive). The interactions among those different mecha-

nisms might follow several stages as follows:  

Interaction between stresses i.e. loading and fatigue wear: Assume that the rolling 

bearing is running under good operational conditions. The interaction process at 

this stage depends on the loading patterns and lubrication regimes. Therefore, the 

cyclic load and friction coefficient are the main attributes for contact damage crite-

ria. The stress concentration might vary based on friction coefficient. Low friction 

means that stresses will most probably be concentrated in the subsurface. High 

friction means that stresses will be concentrated on the surface. The low-friction 

produces subsurface stresses which might accumulate and initiate a sub-surface 

crack. However, the high-friction produces micro-cracking. Later, the sub-surface 

crack propagates until a secondary or branching crack occurs before it reaches 

the surface. Therefore, based on the interaction process, the location of the fa-

tigue wear might differ. 

Interaction between stresses i.e. dent and different wear mechanisms: The dent-

related wear mechanism can be produced by three different mechanisms: due to 

high stresses, local hardening (where one surface presses against the other sur-

face in stand-still operations) and debris particles. The dent usually increases the 

surface roughness and might lead to the lubrication disconnect points during roll-

ing, as the lubrication film move toward the bottom of the dent. Once the dent is 

generated, the interaction between the dent as stress mechanism and the fatigue 

wear might start. The generated dent might increase the contact stresses which 
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might initiate a new surface crack or might be accumulated to propagate an exist-

ing crack. On the other hand, the dent is considered as a stress concentration 

point which has the potential to be over-rolled by repetitive rolling mechanism 

(rolling elements in rolling bearing) or to be abraded by abrasive wear mechanism. 

The over-rolling and abrasive wear might smooth the dent sharpness and reduce 

the stresses which influence the fatigue wear mechanism. However, the abrasive 

wear might produce debris which generates another type of stress concentration 

point. Debris might act as a minor movable indenter (cutting object) where more 

abrasive wear might occur. Therefore, the wear interactions are important in order 

to understand how the wear and stress concentration mechanism might accelerate 

or de-accelerate the entire wear progress.  

3.1.3 Influencing factors 

The new descriptive model of wear evolution, i.e. five-stages, emphasises the 

influencing factors that can vary greatly within each stage. Therefore, it is impor-

tant to consider influencing factors within each stage. Kappa (2006) had illustrated 

the influencing factors on the lubricant film quality. Therefore, in this study, the 

influencing factors are illustrated for the whole wear evolution in the same manner. 

In summary, the wear progress depends on the evolution and the changes of the 

loading conditions, surface quality, lubrication film quality and subsurface quality. 

These four factors generate together specific patterns of stress concentration and 

the damage progression scenarios.  

In this sense, the wear modelling can utilise the descriptive model to acquire the 

required fundamentals about the wear mechanisms, stages transitions. The wear 

testing can also utilise the descriptive model to design experiments that can de-

limit the mechanisms underlying the natural wear evolution process. In fact, there 

are two approaches to wear testing, either using natural accelerated damage by 

applying overloads, adjusting the lubricant film thickness, and adding contami-

nated oil, or introducing an artificial defect into the surface by false-brinelling, 

erosion charge and scratching. The latter approach is widely used due to it is 

simplicity of modelling and validations, where the researchers can virtually intro-

duce a well-known shape and size of the defect. They can also artificially intro-

duce the same defect in the validation experiment. Furthermore, this approach 

delimits the testing complexity, as it focuses on a single artificial defect, compared 

to the natural defect approach where a number of defects might be produced. The 

drawback of this approach is that the damage criterion is somehow artificially 

determined which might be totally different from the defect in the real operation. 

Therefore, the artificially defected bearing tests have not much to tell us about the 

evolution of real wear progress. Finally, the wear monitoring can utilise the de-

scriptive model to understand the physical phenomenon and surface topographical 

changes underlying the measured signals and provide better ability to diagnosis 

the wear severity over the time. 
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4. Simulation model of wear evolution  

The new descriptive model, which was presented in the previous chapter, explains 

and links the pre-stages with the crack initiation in the rolling contact i.e. steady 

state, defect localization and dent. In particular, the explanation of defect localiza-

tion provides five potential stress localization mechanisms beside the contamina-

tion effect, lubrication disturbances and impact events. Moreover, it explains and 

links the post-stage of crack propagation i.e. damage growth. These stages and 

their associated issues provide the whole wear evolution progress, supported by 

the scientific experimental findings within the literature. The new descriptive model 

enhances the understanding of the fatigue wear i.e. crack initiation and propaga-

tion by considering the wear interactions i.e. over-rolling, abrasive, and adhesive. 

The model shows that the interaction among the involved wear mechanisms might 

accelerate or decelerate the wear evolution. That provides better understanding of 

the measured data and better estimation for the remaining useful time. In sum-

mary, the new descriptive model highlights the evolution stages, the transition 

event between the stages, the involved mechanisms in each stage, and the sur-

face topographical changes over the lifetime and the influencing factors. The im-

plication of the new descriptive model is to provide the basis for more realistic 

modelling, testing, and monitoring of the wear evolution in REBs. 

The development of artificial forces influenced by the wear evolution and a simpli-

fied dynamic model that can be used for producing vibration simulation data are 

described in detail in publications III and IV. The purpose of developing this simple 

model is to gain a better understanding of the dynamics that influence rolling bear-

ing, specially, due to the wear evolution process. The simulated signals over the 

whole lifetime can be used in the testing and training the automatic diagnosis 

tools. The forces due the wear evolution process are based on simple single de-

gree of freedom, therefore, is not supposed to predict the absolute level of rolling 

bearing forces correctly. In fact, in the following sub-sections, the main assump-

tions and simplifications of the simulation model are presented.  
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4.1 Bearing force model 

A real shaft-bearing system is generally very complicated and difficult to model 

(Arslan & Aktürk 2008). In addition to that, the modelling of wear evolution in REBs 

makes it even more complicated. Thus, the developed model obtains simple equa-

tions of motion based on single-degree-of-freedom system. The dynamic simula-

tion models are basically described with help of the following equation of motion: 

 

                             ………………….……… (1) 

Where            , and       are respectively matrices of system mass(es), damp-

ing coefficient(s), stiffness(es) and external forces. M is 11 kg, K is 5.96    N/m 

(For outer race), and C is 5    N.s/m. In fact, the dynamic simulation model 

covers four main phenomena and their forces: machine fault, surface imperfec-

tions, and defect fault. 

The forces due to imbalance, surface roughness and waviness and surface defect 

faults can be represented in the system equation of motion as: 

 

                                    ……………… (2) 

Where,      is the imbalance force,    is the force due to surface roughness and 

waviness and    is the force due to surface defect. In the following sub-sections, 

the force magnitudes and frequencies of          and    will be determined. 

4.1.1 Force due to imbalance  

If the structure holding the bearings in such a system is infinitely rigid, the centre 

of rotation is constrained from moving, and the centripetal force resulting from 

the imbalance mass can be found by the following formula: 

 

                     
 
    ………..…….…………… (3) 

Where      is the imbalance force,    is the mass, r is distance from the pivot,   

is the angular frequency, and    is the machine fault frequency i.e. the frequency 

at first speed order. For this model, the imbalance mass is considered to be 0.005 

kg, r is 0.1 m, and the angular frequency is 160 rad/sec. 

4.1.2 Force due to surface imperfections  

The surface peaks and valleys influence the rolling contact forces. Therefore, the 

force generated due to surface texture is related to the frequency of surface waves 
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i.e. waviness and roughness. Harsha et al. (2004) presented a formula to calculate 

the restoring force due to waviness, which can be represented as the relation 

between local Hertzian contact force and deflection, as follows: 

 

         
  ………………………… (4) 

Where k is the material deflection factor and p is related to contact type (i.e. it is 

3/2 for ball bearings and 10/9 for rolling bearings). The parameter    is the radial 

deflection at the contact angle   , which is given as: 

                           ……………… (5) 

Where, x is the horizontal direction, y is the vertical direction,   is the internal ra-

dial clearance, and   is the amplitude of the waves at the contact angle and is 

given as: 

                 ………………… (6) 

Where    is the maximum amplitude of waves,    is the initial wave amplitude and 

N is the number of wave lobs. The contact angle is a function of the number of 

rolling elements and cage speed, which is given as: 

 

   
  

  
             ………………… (7) 

Where i = 1,…,   . The number of waves for the entire surface length L is given 

as: 

  
 

 
 ……………..….……… (8) 

Where     , and λ is the wavelength of roughness or waviness. The total restor-

ing force is the sum of restoring forces from all of the rolling elements. Therefore, 

the total restoring force (considering waviness and clearance) is given as: 

 

                             
 

 
  
    ……….……… (9) 

When the magnitude of contact angle is substituted in the total restoring force 

formula, the effects of the cage speed       and bearing diameter   becomes 

clear. 

In this research work, the waviness order is around 80. The number of waves N is 

defined (Harsha et al. 2004) as follows: 

  
     

 
 ………….………….……… (10) 



 

43 

Where r is the radius of outer or inner race, and λ is the wavelength. The common 

wavelength from bearing manufacture is measured to be about 0.8 mm. There-

fore, the waviness order of an outer race of e.g. 10 mm in diameter and wave-

length of 0.8 mm is about 78.5. With the same logic, the roughness waves can be 

estimated, where the roughness wavelength is 0.02 mm. 

4.1.3 Force due to bearing defect   

The force amplitude due to a surface defect can be represented as contact deflec-

tion or impact force. Several dynamic models simulate the force due to the defect 

as an expression of deflection: 

            
 ……………….……… (11) 

Where k is the material deflection factor and p is related to the contact type, it is 3 

for ball bearing and 10/3 for roller bearing. However, the radial deflection        

depends on the defect location. Therefore                represent the deflection 

due to an outer race defect, inner race defect and rolling eminent defect, respec-

tively. In this paper, the focus is to consider only the outer race defect, therefore, it 

is given (Tadina & Boltezar 2011) as: 

                 ……….……… (12) 

Where,    is the radial position of the rolling element,    is the radius of the rolling 

element,    is the radius of the non-deformed outer race and    is the depth of 

the defect at the contact position. Epps (1991) shows that the radial deflection 

depends on contact mode at the entry and exit points of the defect. However, 

Sassi et al. (2007) described the total impacting force    as a sum of the static and 

dynamic components, as follows: 

                   ………….……… (13) 

The static component of the impact force depends on the maximum load     , 

separation angle between rolling elements    and load distribution factor  : 

 

               
         

  
 
   

………….……… (14) 

The static component of the impact force is a function of the static component of 

the impacting force, shock velocity    and impacting material factor         : 

 

                         
 ………….……… (15) 

Where     is given as: 

    
  

  
  

    

  
 
 

………………………… (16) 
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Where      is the defect length (in the rolling direction), and   is the gravitational 

constant and equal to 9.81 m/  .  

Basically, the changes are related to the leading and trailing edge of the 

dent/defect. Therefore, a load function of five steps was defined, to represent the 

transient impacts, i.e. due to defect into the dynamic model, as shown Figure 3.  

1

2

3

4

5

 

Figure 3. The simulated force diagram of wear defect. 

4.1.4 Force due to wear evolution 

The evolution of the wear defect stages is described in Figure 4, where the main 

defect topologies are illustrated with their force diagrams (on the right-hand side). 

The solid lines in Figure 4 show either dent or defect, while the dotted lines illus-

trate the potential cracking trajectories. To the right of Figure 4, the force diagrams 

of each defect topology are schematically illustrated and used to generate impul-

sive force series of the topographical features. 

Dent initiation

Dent geometrical 
changes

Defect initiation

Defect 

Propagation

Spalling

Damage growth
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Dent zone

Crack path (material is 

not removed)

Defect zone Force diagrams

Legend

Defect path (material is 

removed)

Dent topography

Original simplified dent 

topography

Changing defect 

topography

Figure 4. Wear defect and surface topology evolution (El-Thalji & Jantunen 
2015b).  

These load functions vary based on the variation of the surface topography as 

illustrated in Figure 4. Each stages of wear evolution progress were introduced 

http://en.wikipedia.org/wiki/Gravitational_constant
http://en.wikipedia.org/wiki/Gravitational_constant
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into the dynamic model by its corresponding force diagram (as shown in Figure 4 

and with dimensions illustrated in Table 1. For each stage of wear evolution pro-

gress, different parameters of the load function are given in order to simulate the 

surface topographical variations due to wear progress. 

Table 1. Specific events of wear evolution process. 
 

# Wear evolution cases Asperity 
height of the 
defect (in µm) 

defect di-
ameter/ size 
(in µm) 

Reference 

1 Real dent 0.4  50 (Dwyer-Joyce 
2005) 

2 Smoothed dent 0  50 (Dwyer-Joyce 
2005) 

2 Mild defect 20 300 (Dwyer-Joyce 
2005) 

3 Medium defect 20 1000 (Mota et al. 
2008) 

4 Large defect 30 3000 (Al-Ghamd & 
Mba 2006), 
(Nakhaeinejad 
2010) 

5 Smoothed large defect 4 3000 (Al-Ghamd & 
Mba 2006) 

6 Damage growth, Multiple 
defects, two large defects 

30 3000 (Al-Ghamd & 
Mba 2006) 

There are two issues that influence the non-linear phenomena of wear evolution in 

rolling bearing. First, the bearing defect phenomenon is quite complex to be mod-

elled due to the nonlinear evolution of wear defect. For example, the over-rolling 

and mild abrasive wear might smooth the trailing edge of the new defect. There-

fore, the measured impact severity might be reduced as the asperity height and 

impact area is reduced.  

Second, the width of the defect is the key parameter in impact severity. The wider 

the defect is the larger the impact area at the trailing edge. A wider impact area 

means higher peak amplitudes at the bearing defect frequency zone (Al-Dossary 

et al. 2009).  

Several studies explain wear aspects and their evolutions with different rates and 

frequencies, depending on loading and operating conditions (Wang & Hadfield 

1999), (Chue & Chung 2000), (Datsyshyn & Panasyuk 2001). Therefore, the wear 

progress is a nonlinear physical phenomenon. 

4.1.5 Bearing fault frequency 

The bearing fault frequency is basically based on the impact events which are 

generated when the rolling elements pass over a dent or defect. The fundamental 

train frequency FTF is given (Harris 1966) as: 
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      ……………….……… (17) 

Where, F is the shaft frequency,    is the rolling element diameter, P is the pitch 

diameter, and    is the contact angle. The ball pass frequency for outer race fault 

BPFO is given (Harris 1966) as: 

 

     
 

 
      

  

 
             ……….……… (18) 

Where, N is the number of rolling elements. The ball pass frequency for inner race 

fault BPFI is given (Harris 1966) as: 

 

     
 

 
      

  

 
                 ………………… (19) 

The ball spin frequency BSF is given (Harris 1966) as: 

 

    
 

   
       

  

 
      

 

   …………….……… (20) 

4.1.6 Bearing natural frequency  

The amplitudes of spectral components at bearing fault frequencies are very weak 

at early stages of the fault. Epps (1991) has observed that the amplitudes of the 

spectral components at bearing fault frequency are very low, since the defect is 

very small at an early stage of degradation. Therefore, it is more effective to detect 

the frequency peaks at a high frequency band (bearing natural frequency) which 

already exists there at an early stage of fault development. Simply put, when the 

rolling element passes over a defect, the contact and impact events between the 

rolling elements and the raceways might excite the natural frequency of the race-

ways. Therefore, the frequency peaks at the bearing natural frequency might ap-

pear. Over time, when the defect becomes larger and the deflection amount also 

becomes larger, higher peaks at the bearing fault frequency become clear. There-

fore, the bearing natural frequency is quite important as well as the bearing fault 

frequencies.  

The contact events with the help of a small degree of loose fit between the race-

way and the housing might excite the natural frequency of the raceway. Sassi et 

al. (2007) have shown that natural frequency    of bearings for flexural vibration 

mode ‘n’ can be given as: 

   
       

     
 

  

        in Rad/s…………………….……… (21) 

Where E is the modulus of elasticity, I is the moment of inertia of the race cross 

section,   is the mass per unit length, R is the radius of the ring and n is the order 
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of flexural vibration. In fact, n is the number of deformation waves in each mode 

(i+1). Sassi et al. (2007) highlighted that    and    correspond to rigid modes, 

therefore the flexural vibration modes start from n=2.  

However, the value of the sectional secondary moment is needed before using 

Equation (21). Due to the difficulties in obtaining the exact value for a bearing ring 

with a complicated cross- sectional shape, equation (22) is suggested by NSK as 

best used when the radial natural frequency is known approximately for the outer 

ring of a radial ball bearing (NSK 2013). 

 

            
      

           
 

       

     
      in Hz…………….……… (22) 

Where   is the bearing bore in mm, D is the bearing outside diameter in mm, K is 

the cross-sectional constant (K=.15 for outer ring of an open type) (NSK 2013). 

Therefore, the approximate natural frequency of the raceway depends greatly on 

the effective diameter of the raceway. For simplicity, the natural frequency of bear-

ing raceway can be estimated based on ring vibration theory by the following for-

mula (Irvine 2014): 

 

   
 

  
 ………………………….……… (23) 

Where, E is the speed of sound in the material.  

It is worth mentioning that the time between impact events is known as the epicyc-

lical frequency. However, the topographical change due to the wear evolution 

most probably might change the drag and driving tangential forces, which makes 

the cage and rolling element travel more slowly than its epicyclical value, which is 

one of the main causes of slippage phenomenon. The simulation model introduces 

some degree of random slippage. However, the amount is related to the wear 

evolution stages. It is basically related to topographical features at each stage 

which influences the tribological features i.e. drag and driving tangential forces. 

4.2 Wear mechanics  

4.2.1 Wear interaction events 

The over-rolling and abrasive actions have the potential to take place within the 

wear process once the asperity interaction degree allows this. The over-rolling and 

abrasive actions act as asperity degradation processes. Therefore, their actions 

are clear when the asperities of dents and defects are generated. It is clear that 

the impact effect of the asperity will be reduced as long as the asperity degrades. 

The developed model considers the degradation effect i.e. smoothing effect as 

degradation function. Sahoo & Banerjee (2005) present an analysis of the effect of 
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asperity interaction in elastic-plastic contact. Therefore, the developed model 

adopted their equation to estimate the asperity deformation due to the contact 

pressure at the asperity, which is given as follows: 

          
     

 
 …………………………..(24) 

Where,   is the deformation due to the contact pressure at the asperity, z is the 

height of a given asperity, d is the mean separation between the rigid flat and the 

rough surface,   is the contact pressure on a single asperity,   is the global mean 

contact pressure on the surface and E is the modulus of elasticity. More details of 

the deformation of asperity can be found in (Sahoo & Banerjee 2005) and (Kim et 

al. 2013).  

Abrasive wear depends on the lambda ratio (i.e. degree of asperity interaction). 

This is the ratio of lubricant film thickness to composite surface roughness and is 

given by the expression (Begg et al. 1999): 

  
 

           
            

 
 ………………………..(25) 

Where    is degree of asperity interaction, h is the lubricant film thickness, 

           is the RMS roughness of the roller surface, and            is the RMS 

roughness of the raceway. If   is less than unity, it is unlikely that the bearing will 

attain its estimated design life because of the surface distress, which can lead to a 

rapid fatigue failure of the rolling surfaces. In general,   ratios greater than three 

indicate complete surface separation. A transition from full elasto hydrodynamic 

lubrication (EHL) to mixed lubrication (partial EHL film with some asperity contact) 

occurs in the   range between 1 and 3 (Begg et al. 1999). 

Therefore, under specific tribological conditions, the abrasive wear is taking place 

in the asperity deformation as well. The abrasive wear depends of the height of 

the rolling element asperity which cuts part of the surface asperity of the raceway. 

Therefore, the developed model has adopted the abrasive wear model provided 

(Masen et al. 2005). It is assumed that the abrasive wear process gradually cuts 

over time a specific amount of the surface asperity with specific depth (d). This 

process will continue until the surface asperity reaches a specific height where no 

interaction with rolling element asperities.  

4.2.2 Wear progression stages 

The first transition event within the whole wear evolution process is the transition 

from running-in stage to steady-state stage. However, this transition event is not of 

interest for the developed model. Therefore, the second transition event is be-

tween the steady state and defect initiation stage, in particular, when the denta-

tions occur. There are several potential defect locations and four denting mecha-

nisms i.e. high stress, contamination, vibration, and lubrication disturbances. In 
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general, the dent might occur the applied stresses reach the yield stress limit (Y). 

In the elastic-plastic stage, the plastic deformation is small enough to be accom-

modated by an expansion of the surrounding area. The model has adopted the 

formula in (Harris 1991) to estimate the yield stresses for permanent deformation. 

Therefore, the model can estimate when the dent occurs by accumulating the 

applied stresses until the yield stress limit is reached. 

The third transition point is between the dent and crack opening stage. Several 

models show that the stress fields resulting in elastic and plastic deformations 

introduce some changes to the shape of the surface (Kim & Olver 1998), (Kar-

makar et al. 1996), (Jaing & Sehitoglu 1996), (Franklin et al. 2001), (Masen et al. 

2005), (Holmberg et al. 2005). These models help to estimate how much induced 

stresses (to initiate and accelerate the crack opening) are applied on the surface 

due to the surface asperity. The asperity-induced stresses are accumulated either 

by the time for crack opening process or the accumulated loading cycles. Different 

subscripts are used to designate the stress intensity factor for different modes. 

The stress intensity factor for mode I is designated    and applied to the crack 

opening mode. The asperity-induced stresses    can be estimated by the formula 

of Hannes & Alfredsson (2011). The model assumes that the crack is straight. 

Therefore, the developed model utilises the asperity model to estimate the asper-

ity-induced stresses and accumulate the stresses until the crack opening limit is 

reached. The crack opening limit is determined by the stress intensity factor of 

mode I.  

The fourth transition point is between the crack propagation and defect comple-

tion. Ringsberg & Bergkvist (2003) studied crack length, crack angle, crack face 

friction and coefficient of surface friction near the contact load. Tsushima (2007), 

Liu et al. (2007), Liu & Choi (2008), Donzella & Petrogalli (2010) and Leonel & 

Venturini (2011) have defined a number of issues that are required while model-

ling crack propagation: high stress location, depth below surface and the direction 

and angle of crack inclination. Therefore, based on these preliminary studies, quite 

a large number of models related to crack propagation have been developed 

(Glodez & Ren 2000), (Bogdanski & Brown 2002), (Bogdański & Trajer 2005), 

(Choi & Liu 2006), (Fajdiga et al. 2007), (Raje et al. 2008), (Canadinc et al. 2008), 

(Sadeghi et al. 2009), (Slack & Sadeghi 2010), (Slack & Sadeghi 2011), (Warhad-

pande et al. 2012), (Weinzapfel & Sadeghi 2012), (Santus et al. 2012), (Tarantino 

et al. 2013). The developed model in this thesis assumes that the crack propaga-

tion process will continue and the induced stresses will be accumulated until the 

crack propagation limit is reached. The crack propagation speed depends on the 

applied SIF. The crack propagation distance is accumulated until it reaches a pre-

specified crack length. Navarro & Rios (1988) and Sun et al. (1991) proposed the 

model where the crack growth rate da/dN is assumed to be proportional to the 

crack tip plastic displacement    . 

  

  
        

  ……………………………..(26) 
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                 are material constants that are determined experimentally. The 

total number of stress cycles N required for a short crack to propagate from the 

initial crack length    to any crack length ‘a’ can then be determined as (Sun et al. 

1991): 

     
 
   ………………..…………………..(27) 

Later, the damage growth stage will start and continue iteratively in a rapid grow-

ing manner. The developed model assumes that whenever the accumulated 

stress reaches the crack propagation limit, a new defect is generated. 

4.3 Results of the simulation model 

The basic estimation principle of the induced stresses due to wear evolution is 

based on the influence of the surface asperities that are generated by the topog-

raphical change. A surface asperity generates concentrated stresses at a certain 

point of line in the rolling contacted area.  

Therefore, the fatigue wear theory is highly dependent on the asperity size and 

shape. However, as it is described in the literature (El-Thalji & Jantunen 2014), the 

wear process is a process of multiple wear and stress concentration mechanisms, 

and there are interactions and competitions among those mechanisms. For exam-

ple, the surface asperity-induced stresses which are sufficient to initiate and 

propagate the fatigue wear process. At the same time, this asperity might be 

smoothed by the over-rolling and wear actions, which in return causes a reduction in 

the induced stresses. Therefore, the wear interactions and competitions should be 

considered as well. However, the wear modes that are modelled in this research 

work are fatigue and abrasive wear, besides the influence of over-rolling mecha-

nism. 

A groove ball bearing (SKF 61810-4) was used for the modelling and testing pur-

poses. The bearing inner diameter is 50 mm, the outer diameter is 65 mm and the 

weight is 0.052 kg. As can be seen in Figure 5, the simulated time response of the 

bearing status over the entire lifetime indicates the healthy state i.e. good condi-

tion for a long period. Then, some degree of distortion appears in the simulated 

signal due to small degree of dent effect. The dent effect is introduced into the 

dynamic model as impact force function, as illustrated in (El-Thalji & Jantunen 

2015b). At the dent stage, the topographical shape of the dent might generate 

some impact forces when the rolling element passes over the dent. Even though 

the edges of the dent are quite small and less sharp compare to a defect, the 

accumulated impact forces can initiate and propagate a crack which ends as a 

defect. Therefore, after the dent stage, the defect stage appears in Figure 5, 

where the impact force effect becomes stronger than at the previous stage. 

It is worth mentioning that the new generated defect produces a rough topography 

i.e. larger edges, sharper edges, and deeper emptiness, which might initiate and 

sequentially propagate another defect at its trailing edge. Therefore, the simulated 
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signals show an increase in the impact force effect due to the number of the de-

fects and their size in the defect stage. Later, the simulated signals show a de-

crease in the impact force effect due to some degree of smoothing effect. The 

smoothing effect is explained in (El-Thalji & Jantunen 2014) to be due to the inter-

action among different wear mechanisms i.e. abrasive, adhesive and over-rolling. 

Those smoothing actions change the defect features to generate weaker impact 

forces due to smaller and less sharp asperities within the defected area. However, 

the smoothing actions are responsible to change the surface topography where 

more asperities might generate and be in contact with the rolling element. There-

fore, as the simulated signal shows, the noise degree increases over the smooth-

ing period. In fact, during the smoothing period more debris is generated which 

also act as moving asperities and produce higher noise. Even though, the impact 

forces due the defected area have decreased over the smoothing period, but the 

accumulated impact forces are enough to initiate and propagate few cracks that 

end up with large defects. Those defects are large in terms of length, width and 

depth as illustrated in the experimental studies in the literature (Al-Ghamd & Mba 

2006).   

Steady-state

Smoothening

Damage

Defect initiation 

and propagation

Dentation

 

Figure 5. The simulated time response of bearing over the entire lifetime. 
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5. Experimental findings 

The experimental data set that has been used to validate the simulation model is 

described in publication III and in (Jantunen 2006). The discussion of a different 

and wide range of testing methods in publication I highlighted several significant 

testing aspects that should be considered so as to verify and validate the devel-

oped simulation model of this thesis.  

First, the defect should be naturally created in order to let different wear and stress 

concentration mechanisms interact with each other and progress the wear devel-

opment. This means, the approach of artificially introduced defect into the rolling 

bearings, is not applicable for this thesis. Since it is de-limiting the experimental 

tests of wear evolution in terms of ignoring some actors that are needed to pro-

duce the wear interaction and the evolution phenomenon that we are looking for.  

Second, as we are looking for the entire lifetime, there is no chance of stopping 

the test and have a look or even take a sectional cut of the bearings raceways to 

prove the relation between the measured impacts and the topographical surface 

changes. 

As mentioned in the modelling part, a groove ball bearing (SKF 61810-4) was 

used for the modelling and testing purposes. The bearing inner diameter is 50 

mm, the outer diameter is 65 mm and the weight is 0.052 kg. The results of the 

developed model are shown in Figure 6 where the main wear events have been 

illustrated. There is a sudden increase in the response amplitude after the dent 

occurs, approximately around the middle of the lifetime, as shown in Figure 6. The 

effect of over-rolling and abrasive actions is clearly observed after the dent and 

defect completion stages. Later, the system response rapidly increased when the 

defect was completed and material removed. The response rapidly increases due 

to the generation of new asperities and wear-debris, which means the damage 

growth will continue. A number of bearings were tested in accelerated laboratory 

tests and the normalised RMS acceleration response is shown in Figure 7.  
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Figure 6. Normalized RMS value of vibration acceleration of simulated system. 
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Figure 7. Normalized RMS value of vibration acceleration of laboratory tests (Jan-

tunen 2006). 

Both results in Figure 6 and Figure 7 indicate the steady-state nature of vibration 

acceleration during the first half of the lifetime. However, the simulated results 

show some variation due to the surface dent. Later, during the second half of the 

lifetime, a lot of variation is shown. Therefore, the simulated data illustrates the 

principal phenomena of dynamic response due to wear evolution process. The 
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principal agreement that can be observed in the predicted response compared to 

the measured response is related to the principal stages and events of wear evo-

lution process. However, the simulation is based on multiple models that estimate 

the response, transition conditions and stress accumulations with certain degree 

of uncertainties. These models that are used, e.g. Hertzian contact theory, ap-

proximated impact area, stress intensity factors, are approximated models which 

can accumulate the uncertainties and give origin to error propagation. 

Moreover, the measured data contains several issues related to different applica-

tions, boundary conditions, environments, third-body features, etc. At this stage of 

the model development, the model aims to simulate the wear evolution process in 

a simplified manner. These issues, which are mentioned above, might significantly 

influence the level of uncertainty of such a simplified model. Therefore, further 

development of the model should address them in order to enhance the accuracy 

level. 

This study intends to provide reliable interpretations of the measured data and to 

predict the future wear progress. Therefore, at this stage, it aims firstly to achieve 

a principle agreement between the simulated and measured data. However, for 

quantitative comparison purposes, determining the shift between the simulated 

and measured curves is important. It requires having a comparable timeline for 

both simulated and measured data sets. At this stage of model development, it is 

a heavy computational task to generate the simulated dynamic response for the 

whole lifetime e.g. 6 million cycles. Keep in mind that the ultimate goal is to inter-

pret and predict at certain time intervals by samples, rather than to get a well fitted 

curve over the whole lifetime. This model might help to tune the multiple models 

that are used to estimate the response, transition conditions and stress accumula-

tions and to gain better accuracy degree, once the entire lifetime progress is con-

sidered.  
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6. Fault analysis 

The detailed descriptions of the fault analysis and results are given in publication 

IV. The simulated data shown in Figure 5 is analysed in this chapter.  

A deep groove ball bearing (SKF 61810-4) was used for modelling purposes. 

Because of various assumptions made in developing this model, the model was 

continuously verified with the model in (Sassi et al. 2007), both in their numerical 

and experimental figures. However, the dimension and feature differences be-

tween the modelled bearing type in this model (SKF 661819-4) and the type (SKF 

6206) which considered in (Sassi et al. 2007) should be noticed. 

In industry, the amplitude peaks at the bearing fault frequencies in the spectrum is 

the most commonly used indicator. Therefore, the amplitude peaks are extracted 

and tracked over the time. Several studies e.g. (STI 2012), (Graney & Starry 2012) 

have represented the evolution of the amplitude peaks in the spectrum.  

In fact, these spectrum charts also represent the main characteristic frequencies 

related to the high frequency zone, the bearing natural frequency, and the bearing 

fault frequency zone, as shown in Figure 8.  
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Figure 8. Schematic spectrum of vibration signal that contain bearing fault. 
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The spectrum correlates the amplitude change in these peaks at certain frequen-

cies to the wear evolution progress. However, the topographical and tribological 

features e.g. defect shape, size and the uniformity of the lubrication film might 

change over the lifetime. Therefore, when the rolling element is passing over the 

defected area, the impulsive nature of the contact is changing as well. Moreover, 

the topographical and tribological changes might disturb the time between the 

impacts (between rolling element and the defected area), which introduces some 

degree of slippage. The slippage might delay the rotational time of the rolling ele-

ment and, therefore, disturb the periodic phenomenon of rolling element con-

tacts/impacts. Therefore, the frequency peaks which are related to those impact 

events might not be as clear (i.e. amplitudes) as if the impacts occurred in a per-

fectly periodic manner. 

The time history signal is sampled at specific events of wear evolution process in 

order to apply several signal processing techniques. The aim is to illustrate the 

defect features and their changes over the time. There are several events which 

represent the wear evolution in rolling bearings. Eight different time intervals were 

sampled so as to study eight events of wear evolution: (1) normal operation; (2) 

mild surface roughness and waviness; (3) excitation of bearing natural frequency; 

(4) dent stage; (5) dent smoothing; (6) slippage case; (7) defect completion; (8) 

defect smoothing; (9) damage growth. The results of each case event are briefly 

illustrated as follows. 

6.1 Machine imbalance fault  

Under normal operation, the REBs are expected to work in a steady state manner, 

especially after the running-in stage.  

 

 

Figure 9. Time response and spectrum of the bearing under imbalance fault. 
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However, due to machine faults such as imbalance, bent shaft, misalignment, a 

number of distortions might be detected. For example, the imbalance fault can be 

detected once the spectrum starts showing peak amplitudes at 1xrpm (25 Hz), as 

shown in Figure 9. 

6.2 Dented surface fault 

When a dent is localised, it might be expected to see peak amplitudes at the bear-

ing defect frequency zone in the spectrum, as shown in Figure 10. However, these 

are very weak peaks (compare to the defect stage). The amplitude peaks are 

observed at bearing natural frequency zone (around 1100 Hz) due the impact 

phenomenon when the rolling element passes over the dent. Epps (1991) ex-

plained the appearance of amplitude peak at bearing natural frequency (around 

1100 Hz) and the amplitude peak in the bearing fault frequency zone (around 170 

Hz). It was observed that the defect signal is of two parts: the first part originates 

from the entry of the rolling element into the defect, which generates an amplitude 

peak at bearing fault frequency zone. The second part originates due to the impact 

events between the rolling element and the trailing edge of the defect, which gen-

erates an amplitude peak at high frequency zone. However, the first part of the 

impact signals depends to a great extent on the defect size, which is very small at 

dent stage.  

 

 

Figure 10. Time response and spectrum of the dent event. 
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Over the time, the over-rolling and mild abrasive wear make the dent impacts to 

become smaller. The reduction of peak amplitudes at bearing natural frequency 

zone due to smoothing actions is noticeable, as shown in Figure 11. 

 

 

Figure 11. Time response and spectrum of the smoothed dent. 

6.3 Defected surface fault 

Even though, the smoothing process is taking place and reducing the impact 

forces, the stresses at the trailing edge of the dent might still be enough to initiate 

a crack. The crack will propagate and eventually end as a defect. The impact 

events at the trailing edge of the defect are much higher compared to the ones 

due to the dent. Therefore, it is expected to see higher peak amplitudes at the 

bearing defect frequency zone in the spectrum, as shown in Figures 12, 13 and 

14. In fact, the impact events when the rolling element passes over the trailing 

edge do not only generate impulsive impact, but also distort the rolling element 

motion i.e. signal flatness. This distortion phenomenon is responsible for produc-

ing peak amplitudes at the harmonics of the bearing defect frequencies.  
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Figure 12. Time response and spectrum of the bearing with defect (0.3 mm). 

 

Figure 13. Time response and spectrum of the bearing with defect (1 mm). 
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Figure 14. Time response and spectrum of the bearing with defect (3 mm). 

6.4 Smoothed defect fault 

The defect impacts also become smaller due to the over-rolling and mild abrasive 

wear. The reduction of peak amplitudes at bearing natural frequency zone can be 

clearly noticeable due to smoothing actions, as shown in Figure 15. 

 

 

Figure 15. Time response and spectrum of the bearing with smoothed defect. 
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6.5 Damage growth fault 

One important physical feature in the damage growth is the defect width. A wider 

defect means a wider impact area at the trailing edge. A wider impact area means 

higher peak amplitudes at the bearing fault frequency zone. Moreover, the length 

and the depth of the defect are expected to propagate over time until a failure 

occurs. In Figure 16, the wear fault features are illustrated. It is worth mentioning 

that Figure 16 represents an early-stage of damage growth. As the damage 

grows, it becomes more complicated to visualise the features of the spectrum due 

to the complex distortions associated with damage growth process. 

 

 

Figure 16. Time response and spectrum of the bearing under damage growth 

state. 

In summary, the wear evolution stages can be illustrated in the following descrip-

tions, with physical justification related to the topographical and tribological evolu-

tion of the defected bearing. 

High frequency zone: The experimental findings that are discussed in (El-Thalji & 

Jantunen 2013) have shown that surface roughness is the main reason behind the 

amplitude peaks at the high frequency zone of the spectrum. The surface rough-

ness and waviness generate the surface peaks and valleys which increase the 

probability of race surface peaks contact with rolling element surface. These con-

tact events present amplitude peaks in the high frequency zone. Over time, the 

contact events between the surface peaks of the race and rolling element surface 

smooth the surface. Moreover, the film thickness will be stabilised and become 

uniform. However, the bearing geometrical and tribological characteristics might 

change due to the loading and operating conditions. For example, there is all the 
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time some degree of error in the contact profile between the race and the rolling 

element which disturbs the pure rolling contact (Morales-Espejel & Brizmer 2011). 

Another example is the lubrication transfer into surface valleys (Kotzalas & Doll 

2010). Such contact disturbances produce high stresses when the rolling elements 

pass over the surface asperities. These stresses will appear as amplitude peaks in 

the high frequency zone in the spectrum. These contact events might involve 

minor abrasive wear which make the surface smoother, and higher stresses will 

be generated from those events. Later, the distributed wear debris will be the main 

issue in generating high stresses. That means higher amplitude peaks in the high 

frequency zone are expected at a later stage.  

Bearing natural and bearing fault frequency zones: The impact events when the 

rolling element passes over the defective area (i.e. with the help of a small degree 

of loose fit between the raceway and the housing might) excite the natural fre-

quency of the raceway. Epps (1991) observed that the defect signal is of two 

parts: the first part originates from the entry of the rolling element into the defect, 

which generates an amplitude peak in the bearing fault frequency zone. The sec-

ond part originates due to the impact event between the rolling element and the 

trailing edge of the defect, which generates an amplitude peak at bearing natural 

frequency zone. However, the defect signal might change as the wear (defected 

area) is evolved over time.  

The abrasive wear generates some internal debris, which might be transferred 

with the oil lubrication into the valleys of either the surface waviness or the contact 

deflection. At the moment when the rolling element passes over the valleys that 

contain debris, the rolling element might press the debris into the surface and 

generate a localised dent. This localised dent generates impact events that might 

excite the bearing natural frequency. Therefore, the peak amplitudes at the bear-

ing natural frequency might be seen. In fact, the dent acts as a stress riser in par-

ticular at the trailing edge of the dent (Alfredsson et al. 2008). However, the impact 

event which is generated when the rolling element passes over the new dent is 

very small. Moreover, it becomes even smaller due to the over-rolling and mild 

abrasive wear of the asperity at the trailing edge of the new dent. However, the 

high stresses at the trailing edge are still enough to initiate a crack. The crack will 

propagate and end eventually become a defect. The defect will have leading and 

trailing edges as well. 

However, the impact events at the trailing edge of the defect are much higher 

compared to that of the dent. Therefore, it is expected to see higher peak ampli-

tudes at the bearing natural frequency in the spectrum. In fact, the impact event 

(i.e. generated when the rolling element passes over the trailing edges) generates 

impulsive impact and distorts the rolling element motion. The distortion phenome-

non is responsible for producing peak amplitudes at the harmonics of the bearing 

defect frequencies. It depends on whether the impact area (the trailing edge area 

in contact) is large enough to distort the impact signals. 



 

63 

The over-rolling and mild abrasive wear will act again to smooth the trailing edge 

of the new defect. Therefore, a clear reduction in peak amplitudes at both the 

bearing defect and bearing natural frequency zones is expected. However, the 

high stresses at the trailing edge are enough to initiate a crack for the next defect. 

The width of the defect is the key parameter in the impact severity. In fact, the 

impact area of a dent is smaller than the impact area of the defect. Therefore, the 

crack trajectories of the defect will be further from each other when compared to 

the crack trajectories of the dent. The crack trajectories are the main issue that 

determines the width of the new defect. A wider impact area means higher peak 

amplitudes at both bearing defect and bearing natural frequency zones. 

A significantly important issue of this simulation model is the consideration of the 

slippage phenomenon and its effect on frequency domain features. The time be-

tween impact events is known as the epicyclical frequency, which we try to extract 

from the spectrum. For example, the topographical change due to the wear evolu-

tion might most probably change the drag and driving tangential forces which 

make the cage and rolling element travel more slowly than its epicyclical value. In 

fact, as the wear become more severe, the topographical and tribological features 

of the surface generate and influence stronger the drag and driving tangential 

forces, which means more slip and disturbances. Therefore, the amplitude peaks 

at the defect frequency might not be clear, and several harmonics and sideband 

peaks will appear. 

Rotating frequency zone: The machine faults e.g. imbalance, bent shaft, mis-

alignment, looseness have specific characteristic features at the rotating speeds 

and their orders. In fact, those machine faults have in-direct influence on the wear 

initiation and evolution, as they introduce some changes in the contact character-

istics and load distribution; for example, the misalignment introduces higher con-

tact stresses at specific part of the raceway, which is one of the main reasons for 

wear initiation.  
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7. Discussion 

The largest proportion of the studies which have been reviewed in publication I 

focused on the localized faults at a certain time interval rather than the fault devel-

opment over the entire lifetime. In summary, the wear evolution process is quite 

complex due to the involvement of several wear mechanisms (i.e. fatigue, abra-

sive, adhesive, corrosive) and several stress concentration mechanisms (i.e. dent, 

asperities, debris, sub-surface inclusions). These involvements and their interac-

tions and competitions produce a wear evolution progress which varies signifi-

cantly with respect to surface topographical and tribological changes. As the fault 

topography is changing over the lifetime that simply means the fault features are 

changing over time. In this sense, the fault topography, which is assumed to be 

constant in several simulation models, should be changing over time. Moreover, 

there is a need to clearly determine the fault features of specific wear evolution 

stages and to understand how different signal analysis methods can detect such 

features, in order to effectively track the fault features detected.  

The approach described in publication II and modelled in publication III simply tries 

to show the possible influence of various artificial dynamic loads (i.e. forces due to 

the fault topography) related to wear evolution progress. Therefore, the influence 

of wear has been introduced into the excitation forces. It should be noted that the 

simulation described in Chapter 4 and publications III and IV is limited to the first 

radial vibration mode, as it is the most important vibration mode. Moreover, with 

this kind of simplified model i.e. a one-degree-of-freedom model, the vibration at 

the natural frequency is very dominant.  

The industrial applications utilise the in-field measurements in order to plan the 

required maintenance actions in a cost-effective manner. The available signal 

processing techniques have been developed to deal with speed fluctuation effect, 

signal noise, and smearing effect. However, the main challenge of fault analysis in 

this thesis is to illustrate the expected fault features due to the wear evolution 

process over the lifetime. The fault features can serve as diagnostic indicators, 

which can be used to track the wear evolution progress over the lifetime of the 

bearing. The simulation dynamic model of wear evolution, which is described in 

publications III and IV, provides a simplified way to mimic the wear process in 

rolling bearings. In fact, it is capable of mimicking the topographical surface evolu-
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tion due to wear fault in rolling bearings over their lifetime. However, the study is 

based on multiple models that estimate the response, transition conditions and 

stress accumulations with certain degree of uncertainties. Thus, the potential fault 

features of wear defect have been analysed with the help of simple fault analysis. 

The dynamic nature of the wear process, i.e. interaction among different wear 

mechanisms, makes the clarity of the fault features vary over the time.  

The results represent and illustrate the fluctuation in the clarity of the indicators at 

different deterioration stages of the bearing. Thus, the tracking process based on 

specific indicators might be not sufficient to diagnose the wear evolution and the 

bearing health. In this sense, the study shows how fault indicators might be influ-

enced by the wear evolution process i.e. surface topography changes due to wear. 

Thus, it provides the potential changes in the tracked indicator, and highlights the 

need to combine different tracked indicators in order to enhance the tracking effec-

tiveness. 

The wear fault development is quite complex evolution process that can involve 

different wear mechanisms. The interactions among the wear mechanisms might 

accelerate or de-accelerate the overall wear process. Therefore, the assumption 

that fault size is increasing over time might not be the best way to represent the 

wear process over the entire lifetime. In this sense, the simulation model could in a 

simplified manner represent the real wear process. The real wear process con-

tains several aspects e.g. steady-state conditions, dent stage, defect initiation and 

propagation, defect completion, defect smoothing, multi defects generation, and 

failure. These aspects have different physical phenomena where the signal analy-

sis methods might vary in their effectiveness in extracting and detecting such 

phenomena.  

The fault analysis shows the basic challenges that might influence the effective-

ness of extracting the required fault features, e.g. at the dent stage due the high 

health state variations, at the defect completion stage which lasts for a somewhat 

short time interval and diminishes again, at the smoothing period where the impul-

sive phenomenon is somewhat diminished, and at the rapid increase of the wear 

severity at the end of the lifetime. The simulation model can predict the bearing 

dynamic response for the remaining lifetime as long as the fault follows the as-

sumed wear evolution scenario. Therefore, the developed dynamic model can be 

used in the future to represent the wear evolution process in more realistic way 

than just considering the increase in the fault size.  
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8. Conclusions 

The modern machineries demand reliable and effective predictive health monitor-

ing tools. Prognosis of machine health is of the greatest importance to achieve 

cost-effective production and maintenance. There is great potential in enhancing 

the prognosis of bearing health if the degradation process is understood.  

A comprehensive review of rolling contact wear was carried out in order to de-

scribe the wear evolution process in rolling bearings over the whole lifetime. 

Based on the experimental tests in the literature, a descriptive wear evolution 

model is developed to represent the most probable wear evolution scenario that 

might occur for the rolling bearing over the lifetime. The scenario described is 

suggested to cover several wear mechanisms, stress concentration mechanisms 

and their interactions to represent real wear fault development.  

A dynamic model is developed based on the descriptive wear evolution model. 

The simulation model shows, in other words predicts the dynamic behaviour of the 

rolling bearing during the entire wear evolution progress. The results of the simula-

tion model were compared with the data sets of comprehensive experimental tests 

(as described in chapter 5) in order to validate the simulation model. The results 

show a principle agreement with the experimental results. The simulation model is 

beneficial, as it contains different physical phenomena that might occur during the 

real wear evolution process. The results show that fault and contact topographies, 

significantly influence the dynamic response and not just the size of the fault (i.e. 

as is the commonly used assumption in the literature). The data from laboratory 

tests represent the overall dynamic behaviour; however it is complicated to trace 

back the influencing factors. In this sense, the simplified simulation model is an 

effective tool for understanding the dynamic behaviour of the rolling bearing which 

is influenced by the wear evolution progress, loading and operating factors.   

The importance of the wear mechanisms and their interactions is apparent in the 

simplified simulation model, experimental tests and fault analysis that were carried 

out. The use of the simulated data, i.e. which covers the wear evolution aspects, is 

suggested to be used in the future for verifying the effectiveness of fault detection 

methods. Moreover, the use of, simulated data can be suggested for the future 

development of a novel diagnosis method that can effectively extract the health 
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state of the bearing. The dynamic model which was used to generate the simu-

lated data can also be used in the future to develop a prognosis model that can 

simulate the response of the remaining lifetime.  

Even though the simulation data provides a promising understanding of the bear-

ing behaviour and health during the wear evolution progress, there are no test 

results from a real production environment. It should be noted that the simulation 

results are based on simplified stress accumulation approach and unfortunately 

the stress accumulation based on finite element approach is more demanding. It 

should also be noted that the simulation model has been developed with several 

simplifications, and unfortunately the modelling of wear evolution over the whole 

lifetime is more demanding. Thus, the simulation is based on multiple models that 

estimate the response, transition conditions and stress accumulations with certain 

degree of uncertainties. However, the simulation model has two significant and 

potential benefits. First, it can be used as a tool so as to verify the diagnostic tech-

niques that are available for wear monitoring. Therefore, it can illustrate several 

diagnostic indicators that might be utilised for tracking the wear evolution process 

in rolling bearings. Second, the simulation model can be used as a part of a prog-

nosis model to predict the response of remaining lifetime during wear evolution 

process. 

Based on the research reported in this thesis and the above conclusions, some 

suggestions can be made for further work: 

 

 Wider testing of the developed approach both in the laboratory and in in-

dustry is suggested. In these tests the benefits of the descriptive wear 

evolution model could be tested more thoroughly, including the variation 

in the wear mechanisms and influencing factors i.e. loading and operat-

ing factors. Furthermore, the tests could also be used to study the scale 

influence on the dynamic behaviour of the rolling bearings. 

 One further step in gaining a better understanding of bearing wear moni-

toring could be the extension of the simulation approach to represent real 

machines i.e. higher degrees of freedom and several influencing factors 

of real environments.  

 Further work could also be done in verifying several signal analysis and 

diagnosis methods that are suggested in the literature.  
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element bearing s during the operation. A Predictive Health Monitoring tool indicates the
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1. Introduction

The rolling element bearing (REB) is one of the most critical components that determine the machinery health and its
remaining lifetime in modern production machinery. Robust Predictive Health Monitoring (PHM) tools are needed to
guarantee the healthy state of REBs during the operation. The PHM tool indicates the upcoming failures and provides more
time for maintenance planning. The PHM tool aims to monitor the deterioration i.e. wear evolution rather than just
detecting the defects. There are a number of literature reviews which are related to the condition monitoring of REBs [1–6].
These reviews explain very well the developed signal processing (SP), diagnosis and prognosis analysis methods and their
challenges, enhancements, and limitations. Many experiments and studies have been performed to explore the nature of
bearing defects with the help of several monitoring techniques such as vibration, AE, oil-debris, ultrasound, electrostatic,
Shock-Pulse Measurements (SPM), etc. Some simple signal/data processing techniques have been applied to process the
signals such as root mean square (RMS), kurtosis, Fast Fourier Transform (FFT), etc. However, there are several challenges
that require more advanced SP methods, e.g. to remove the background noise effect, the smearing effect and the speed
fluctuation effect. The most important challenge is to deal with the signal response due to defected REBs. Bearing faults are
assumed to generate impulses due to the passing of the rolling element over the defected surface. The difficulty is to detect
and track such impulses, specially, in the early stage of wear process where the defect is quite small and can be easily buried
by other vibration phenomena. Therefore, most of the PHM studies have concentrated to the development of more advanced
SP techniques such as envelope detection, cyclostationary analysis, wavelets, data-driven methods, expert systems, fuzzy
logic techniques, etc.

In the field of machinery vibration monitoring and analysis, a variety of relevant standards are developed and published by
ISO (International Organization for Standardization). A number of ISO standards describe acceptable vibration limits, such as
the ISO/7919 series (5 parts) “Mechanical vibration of non-reciprocating machines—Measurements on rotating shafts and
evaluation criteria” and the ISO/10816 series (6 parts) “Mechanical vibration—Evaluation of machine vibration by measure-
ments on non-rotating parts”. The standards cover the methods of measurement, handling, and processing of the data
required to perform condition monitoring and diagnostics of machines. In the industry, the most commonly used techniques
are RMS, crest factor, probability density functions, correlation functions, band pass filtering prior to analysis, power and cross
power spectral density functions, transfer and coherence functions as well as Cepstrum analysis, narrow band envelope
analysis and shock pulse method. These methods try to extract the expected defect features. The frequency equations of the
bearing defects (i.e. for outer-race, inner-race, rolling elements, and cage defects) are the main way to provide a theoretical
estimate of the frequencies to be expected when various defects occur in the REB. They are based upon the assumption that
sharp force impacts will be generated whenever a bearing element encounters a localized bearing fault such as caused by
spalling and pitting. These techniques have continued to be used and have been further developed over the time [1].

The ultimate purpose of the PHM system is to indicate the upcoming failures in order to provide sufficient lead time for
maintenance planning. Beside the experimental studies, there are several analytical and numerical models to (1) simulate the
faulty REBs; (2) verify the ability of SP and diagnosis methods to extract the defect features; and (3) to predict the remaining
useful lifetime of the faulty REBs. Several studies have explored the data-driven and model-based prognosis methods for REBs
applications. Therefore, the purpose of this study is to review and discuss the entire PHM procedures i.e. detection, diagnosis
and prognosis based on experimental studies and simulation models that have been made available in the literature.

The study begins with presenting the fundamentals of rolling bearing and their modelling techniques. Then, the monitoring
techniques, SP, diagnostic methods and prognosis analysis for REB are reviewed. Later, all these issues are critically discussed in
order to draw some the conclusions of current research, emerging trends and the areas where more work and research is
needed.
Please cite this article as: I. El-Thalji, E. Jantunen, A summary of fault modelling and predictive health monitoring of
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2. Bearing faults and dynamic simulation methods

Rolling bearing is a mechanical component which carries loads and eliminates the sliding friction by placing rolling
elements i.e. balls or rollers between two bearing rings i.e. outer and inner raceway. Depending on the internal design,
rolling bearings may be classified as radial bearings i.e. carry radial loads or thrust bearings i.e. carry axial loads. Practically
all rolling bearings consist of four basic parts: inner ring, outer ring, rolling elements, and cage, as illustrated in Fig. 1.

The bearings faults may be classified based on their locations as outer, inner, rolling element and cage fault. The general
reason behind these faults is the rolling contact stresses that might increase due to the increase of operating loads, additional
loads due to faults i.e. imbalance, misalignment, bent shaft, looseness, and/or distributed defects i.e. high degree of surface
roughness and waviness, contamination, and inclusions. Therefore, some topological changes might occur. These topological
changes in the contact area generate stress concentration points and lubrication film disturbances and lead to the wear evolution
process. El-Thalji and Jantunen [7] reviewed the most relevant studies and experimental findings in order to describe the wear
evolution process over the lifetime for the rolling bearings. In summary, the wear evolution process is quite complex due to the
involvement of several wear mechanisms (i.e. fatigue, abrasive, adhesive, and corrosive) and several stress concentration
mechanisms (i.e. dent, asperities, debris, and sub-surface inclusions). These involvements and their interactions and competitions
produce a wear evolution progress which varies significantly with respect to the surface topographical and tribological changes.
As the fault topography is changing over the lifetime, the fault features are changing over the lifetime. In this sense, the fault
topology that is assumed in the simulation models should also be changing. Moreover, there is a need to clearly determine the
fault features of specific wear evolution stages and to understand how different signal analysis methods cope with such features,
in order to effectively track the detected fault features. Therefore, the review starts with the simulation models, followed by the
complete predictive monitoring procedures i.e. monitoring, signal analysis, diagnosis, and prognosis.

2.1. Dynamic simulation models

Over the years, several dynamic models have been developed to investigate the dynamic behaviour and features of REBs, as
shown in Table 1. The dynamic models of REB were first introduced by Palmgren [8] and Harris [9]. However, total non-
linearity and time varying characteristics were not addressed at that time. After that Gupta [3,10] provided the first complete
dynamic model of REB and later Fukata et al. [11] presented a comprehensive non-linear and time variant model. The more
advanced issues of time variant characteristics and non-linearity were raised and studied by several authors. For example,
Wijnat et al. [12] reviewed the studies concerning the effect of the Elasto-Hydrodynamic Lubrication (EHL) on the dynamics of
REB. Tiwari and Vyas [13] and Tiwari et al. in [14] and [15] studied the effect of the ball bearing clearance on the dynamic
response of a rigid rotor. Sopanen and Mikkola [16] reviewed different dynamic models with the discussion of the effect of
waviness, EHL, and localised faults and clearance effect. Later, the finite element method (FEM) was used to provide more
accurate results. Kiral and Karagülle [17] presented a defect detection method using FEM vibration analysis for REBs with
single and multiple defects. The vibration signal includes impulses produced by the fault, modulation effect due to non-
uniform load distribution, bearing induced vibrations, and machinery induced vibrations and the noise which is encountered
in any measurement system. Sopanen and Mikkola [16] implemented the proposed ball bearing model using a commercial
multi-body system software application MSC.ADAMS. First, the FEM model was utilized to simulate the variation of the mesh
stiffness for two types of faults under varying static load conditions. Then the model was integrated into the lumped
parameter dynamic model. The study obtained the dynamic transmission error and acceleration responses under different
loads and speeds. Sawalhi and Randall [18] developed a 34-DOF model of a gearbox in order to simulate spalling and cracks in
the REB based on Endo’s model of 16-DOF. This model includes additional 18-DOF due to the consideration of a five DOF
bearing model and the consideration of translational DOF both along the line of action and perpendicular to it. Massi et al. [19]
studied the wear that is resulting from false Brinelling at the contact surfaces between the balls and races of the bearings.
Please cite this article as: I. El-Thalji, E. Jantunen, A summary of fault modelling and predictive health monitoring of
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Table 1
Summary of dynamic models for bearing faults.

Reference Bearing contact Clearances EHL contact Distributed defect Localised defect

[26] x x
[13,14] x
[15] x x
[23] x X
[16] x x x X x
[27] x
[20] x x
[28] x x
[18,29] x x x
[21] x x X x
[30–35] x x
[22] x x x

Table 2
Dynamic models of localised defect.

Reference System dynamic modelling Fault dynamic modelling

Analytical dynamic FEM Geometrical defect function Force defect function defect function

[24–26] X X
[17,37,38] X X
[16,27] X X
[18] X X
[21,22,28,30,32,33] X X
[19] X X X
[34] X X
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Several models have been developed to study the effects of distributed and localized defects on REB dynamics: clearance effect
[15,16,20–22], waviness effect [16,21,23], disturbances effect of EHL [16,18], and the effect of localized faults [24–26], etc.

2.2. Dynamic models of localised defect

The largest share of the studies has focused on the localized faults using different modelling techniques, as shown in
Table 2. McFadden and Smith [24], McFadden and Smith [25], Tandon and Choudhury [26] and Sawalhi and Randall [18]
simulated the defect as a signal function of impulsive train in the modelled system. For example, Tandon and Choudhury
[26] have introduced the defect as pulse function with three different pulse shapes: rectangular, triangular and half-sine
pulse. Wang and Kootsookos [171] introduced defects as a function of a basic impulse series. Ghafari et al. [36] have virtually
introduced a defect into the equation of motion as a triangular impulse train at the related characteristic frequencies of a
defect. Rafsanjani et al. [31] modelled the localized defects as a series of impulses having a repetition rate equal to the
characteristics frequencies. The amplitude of the generated impulses is related to the loading and angular velocity at the
point of contact. Malhi [37], Kiral and Karagülle [17], Sopanen and Mikkola [16], Massi et al. [19], and Liu et al. [34]
introduced the defect as force function in their FEM models i.e. as a constant impact factor. More precisely Liu et al. [25]
introduced the localized defect as a piecewise function.

Ashtekar and Sadeghi [30], Sassi et al. [28], Cao and Xiao [21], Rafsanjani et al. [31], Patil et al. [32], and Tadina and
Boltezar [33] modelled the defect based on its geometrical features i.e. as a surface bump or a dent that has length, width
and depth. Tadina and Boltezar [33] modelled the defect as an impressed ellipsoid on the races and as flattened sphere for
the rolling elements. Nakhaeinejad [22] utilised the bond graphs to study the effects of defects on bearing vibrations. The
model incorporated gyroscopic and centrifugal effects, contact deflections and forces, contact slip and separations, and
localized faults. Dents and pits on inner race, outer race, and balls were modelled through surface profile changes i.e. type,
size and shape of the localized faults. The main difficulty with the use of complex dynamic models lies in experimentally
verifying the predicted results [1].

3. Monitoring methods

Several experiments have been conducted to study specific monitoring techniques such as vibration, acoustic emission
(AE), oil-debris, ultrasound, electrostatic, SPM, etc. and their use in faulty REBs detection. Many studies have used simple
signal/data processing techniques such as RMS, kurtosis, FFT, etc. However, the largest share of studies has focused to develop
Please cite this article as: I. El-Thalji, E. Jantunen, A summary of fault modelling and predictive health monitoring of
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Table 3
Wear monitoring techniques for rolling bearings.

Reference Test type Measurement type

Vibration/SPM AE Electro-static Ultrasound Oil/debris

[39–41] RC x
[42,43] RC x x
[18,44,45] REB x
[46–48] REB x x
[49–61] RC x
[62–70] REB x
[71] REB x x
[72] RC x x
[73] REB x x
[4] REB x x x
[74] REB x x x
[75] RC x x

I. El-Thalji, E. Jantunen / Mechanical Systems and Signal Processing ] (]]]]) ]]]–]]] 5
new SP techniques: envelope, wavelets, data-driven methods, expert systems, fuzzy logic techniques, etc. The majority of the
advanced SP techniques are related to vibration measurements and these studies will be discussed in the next section. There
are basically two testing approaches. The first one is the naturally accelerated testing with the help of applying overload,
adjusting the lubricant film thickness or adding contaminated oil. The second approach is the artificially introduced defects by
cutting, false-Brinelling, electric charge (i.e. erosion dent) and scratching. Moreover, some studies are based on the use of REBs
and others utilise rolling contact test rigs e.g. ball on disc apparatus. In Table 3, a summary is given of the tests that have been
applied to deteriorate either REB or other rolling contact (RC) mechanisms.
3.1. Testing techniques

Several experiments with the help of vibration measurements have been conducted with bearings such as [18,44,45],
and on other rolling contact mechanisms such as [39–41]. Quite large number of studies have been interested to explore the
AE technique on rolling contact mechanisms [49–61]. Other AE experiments have been performed with bearings [62–70].
Comparative studies that combine vibration and AE measurements have been conducted to explore defect features with the
help of rolling contact test [42,43] and some other with the help of REBs [46–48]. Some studies [72,74] have investigated the
capability of electrostatic charge measurements (when a charged particle passes the sensor) in detecting a bearing defect.
The studies [73,75] have investigated the capability of ultrasound measurements in detecting a bearing defect, in particular,
for the low speed bearings. In Table 1, it is clear that AE and vibration measurements are the most studied monitoring
techniques. Also, quite a large share of the experimental tests have been done with the help of RC test rigs e.g. ball on disc.
The oil/debris technique is commonly used as supportive techniques in several studies [4,71,74].
3.2. Influencing factors

Many detection issues have been studied such as the effect of surface roughness [2], the influence of running parameters
on the AE of grease lubricated REB [76], the effect of λ factor (i.e. film thickness/surface roughness) [77], the running-in
process [71,78], the effects of low speed, the large scale bearings and operating conditions (lubrication type, temperature)
[79] and the effects of geometrical imperfections (i.e. variation of roller diameters, inner ring waviness), abrasive and fatigue
wear [44]. The effect of contaminant concentration on vibration has also been studied [79–81].
3.3. Crack detection

Few studies have been conducted with the aim to detect the surface crack initiation [43,82] with the help of AE
measurements. Sawalhi and Randall [45] observed the impulse effect of dent shoulders to the dynamic response. Few studies
have been conducted to study the subsurface crack detection [49,83,84]. It was observed that AE is capable to detect subsurface
cracks prior to pitting, however, based on the assumption that the detected bursts in the signal indicate near-surface cracking.
The detection of defect propagation has been studied in [47,73,85,86]. It was observed that first, increasing the defect width
increased the ratio of burst amplitude-to-operational noise (i.e. the burst signal was increasingly more evident above the
operational noise levels). Second, it was reasoned that increasing the defect length increased the burst duration. The ultrasound
signals were observed at low speeds and display a number of impulses which are generated by localized defects [73].
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3.4. Wear evolution

Jantunen [3] and Yoshioka and Shimizu [20] observed two main stages of wear progress: steady state and instability. The
steady-state stage is roughly stable. However, a clear offset in the root mean square (RMS) values of monitoring signals is
observed at instability stage, together with instability and rapid increase of these values before the final failure. Schwach
and Guo [84] and Harvey et al. [74] observed three stages of wear progress. Moreover, the instability stage is observed to
follow a steep-offset propagation. Harvey et al. [74] observed that electrostatic charge measurement indicate the wear
initiation as a region of high signal amplitude (with respect to normal signal state), where it disappears (i.e. goes back to
normal single state) until the failure occurs. Therefore, electrostatic measurement indicates instantaneous occurrences of
wear mechanisms in the region of high signal amplitude rather than progressive stages. Manoj et al. [75] observed that the
3rd harmonic of the roller contact frequency of vibration has very good correlation with wear and when the pitting takes
place, the amplitude of the 3rd harmonic of contact frequency increases to nearly four to five times the amplitude of other
harmonics. In the same manner, the frequency analysis of sound signal shows that the 3rd and 1st harmonics of roller
contact frequency have good correlation with the wear trend. Zhi-qiang et al. [43] observed two stages of wear progress
using vibration measurements. However, four stages of wear progress were observed using AE: running-in, steady-state, a
stage of minor-instability due to distributed defects, and finally a stage of major-instability due to pitting and spalling.
Sawalhi and Randall [45] investigated the trend of kurtosis values of faulty signals, with relation to the development of the
fault size. The kurtosis increases almost linearly in the early stage of testing time as the defect size increases. However, it
stabilizes later as the defect size slowly extends. It could be either due to the existence of a smoothing process or the surface
becoming totally rough without pronounced peaks/values when the effectiveness becomes weak.

4. Signal analysis methods

Over the years, several SP methods have been developed to extract the detect features from the raw signal of faulty REBs.
A summary of signal analysis methods that have been used for the fault detection in REBs is given in Table 4.

4.1. Statistical measures

In the beginning, the SP methods were very simple and mainly based on statistical parameters such as RMS, mean, kurtosis,
crest factor, etc. The trending based on RMS value is one of the most used methods which shows the correlation between
vibration acceleration and the REB wear over the whole lifetime [4,43,74,84,87]. Kurtosis and crest factors increase as the
spikiness of the vibration increases. In this sense, the kurtosis and the crest factor are very sensitive to the shape of the signal.
However, the third central moment (Skewness) was found to be a poor measure of fault features in rolling bearings [142], in
general skewness can be an effective measure for signals that are unsymmetrical i.e. non-linearity. The kurtosis is sensitive to
the rotational speed and the frequency bandwidth. It is efficient in narrow bands at high frequencies especially for incipient
defects [127,143]. More advanced approaches of time-domain analysis are the parameter identification methods, where a time
series modelling is applied to fit the waveform data to a parametric time series model and extract the features [3]. Baillie and
Mathew [94] introduced the concept of an observer bank of autoregressive (AR) time series models for fault diagnosis of slow
speed machinery under transient conditions, where a short set of vibration data is needed. Due to instantaneous variations in
friction, damping, or loading conditions, machine systems are often characterised by non-linear behaviour. Therefore,
techniques for non-linear parameter estimation provide a good alternative for extracting defect-related features hidden in the
measured signals [97]. A number of non-linear parameter identification techniques have been investigated, such as Correlation
Dimension [95–97] and Complexity (the degree of regularity of a time series) Measure [144]. As the bearing system
deteriorates due to the initiation and/or progression of defects, the vibration signal will increase, resulting in a decrease in its
regularity and an increase in its corresponding entropy value [97]. In the early stage of machinery faults, the signal-to-noise
ratio (SNR) is very low due to relatively weak characteristic signals. Therefore, chaotic oscillator was proposed [95,96,98] to
extract the fault bearing features due to its sensitiveness to weak periodic signals. The complexity measure analysis shows that
the inception and the growth of faults in the machine could be correlated with the changes in the Complexity value [144]. The
biggest drawback of statistical methods is the need for a suitable quantity of data for training and testing the system during
the development phase. A high number of data points that are needed to be calculated, which leads to lengthy computational
time unsuitable for on-line, real-time applications [97].

4.2. Frequency domain methods

The frequency domain methods have been introduced to provide another way to detect the fault induced signals. FFT is
commonly used method to transform the signal from time domain into its frequency components and produce a spectrum.
However, it is often not clear enough method to observe the fault peaks, because of slip and masking by other stronger
vibrations, beside the effects of harmonics of the defect frequencies and sidebands [88]. Moreover, the FFT method is actually
based on the assumption of periodic signal, which is not suitable for non-stationary signals. The output signals of running REB
contain non-stationary components due to the changes in the operating conditions and faults of the machine and bearing itself
[145]. Time–frequency analysis is the most popular method to deal with non-stationary signals. The Wigner–Ville distribution
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(WVD), the short time Fourier transform (STFT) and Wavelet transform (WT) represent a sort of compromise between the time
and frequency based views of a signal and contain both time and frequency information. Mori et al. [130] applied the discrete
wavelet transform (DWT) to predict the occurrence of spalling in REBs. Shibata et al. [146] used the WT to analyse the sound
signals generated by bearings. Peng et al. [98] highlighted that Hilbert–Huang transform (HHT) has good computational
efficiency and does not involve challenges with the frequency resolution and the time resolution.

4.3. Challenges of feature extraction process

There are several challenges to remove the speed fluctuations, the smearing effect of signal transfer path and the
background noise. The effect of speed fluctuation (e.g. chirp signals) is important and need to be removed. The chirp signal
or sweep signal i.e. a signal in which the frequency increases (‘up-chirp’) or decreases (‘down-chirp’) with time might be
generated due to speed fluctuations, running-in, cut-out operations. It should be noticed that there has been several
methods proposed to deal with the chirp signals such as chirp z-transform, chirp Fourier transform, adaptive chirplet
transforms, and high-order estimations. Moreover, the order tracking methods are used to avoid the smearing of discrete
frequency components due to speed fluctuations [6]. To solve the smearing effect problem, the Minimum entropy de-
convolution (MED) method [121,122] has been developed.

For the background noise problem, different de-noising filters have been developed such as Discrete/random separation
(DRS) [117], adaptive noise cancellation (ANC) [112,113], self-adaptive noise cancellation (SANC) [114–116] or linear
prediction methods. However, for a situation, where the noise type and frequency range are unknown, the traditional
filter designs could become computationally intense processes [123]. For example, the WT methods perform very well on
Gaussian noise and can almost achieve optimal noise reduction while preserving the signal. However, it is still a challenge
how to select an optimum wavelet for a particular kind of signal i.e. to select the optimum wavelet basis, to select the
corresponding shape parameter and scale level for a particular application. Moreover, how to perform thresholding is
another challenge. There are two major wavelet-based methods which are used for mechanical fault diagnosis: wavelet
decomposition-based and wavelet filter-based method. Based on the WT, many kinds of fault features can be obtained, all of
which can be classified as the wavelet coefficients based, wavelet energy based, singularity based and wavelet function
based [145]. The continuous WT of Morlet wavelet functions have been used by Lin and Qu [126]. Junsheng et al. [128]
proposed the impulse response wavelet base function to describe the vibration signal characteristics of the REB with fault,
instead of the Morlet wavelet function. Liu et al. [129] proposed a weighted Shannon function to synthesize the wavelet
coefficient functions to enhance the feature characteristics i.e. optimal wavelet shape factor and minimize the interference
information. Djebala et al. [127] presented a denoising method of the measured signals based on the optimization of wavelet
multi-resolution analysis based on the kurtosis value. Liu et al. [125] proposed a wavelet packet based method for the fault
diagnostics of REB, where the wavelet packet coefficients were used as features. Altmann and Mathew [141] presented a
method based on adaptive network based fuzzy inference system to select the wavelet packets of interest as fault features
automatically, to enhance the detection and diagnostics of low speed REB faults. Su et al. [134] presented a new hybrid
method based on optimal Morlet wavelet filter and autocorrelation enhancements i.e. to eliminate the frequency associated
with interferential vibrations, reduce the residual in-band noise and highlight the periodic impulsive feature.

4.4. Bearing fault signals

Some studies [93,139–141] highlight that the most relevant information of a signal is often carried by the singularity
points, such as the peaks, the discontinuities, etc. Therefore, singularity detection methods are proposed [139,140] based on
calculating the Lipschitz exponents of the vibration signals. A large Lipschitz exponent indicates a regular point in the signal
while a small Lipschitz exponent indicates a singular point. The WT is very successful in singularity detection, however
before the singularity is detected, the signal pre-processing must be carried out, not to overlook some singularities [145].
Hao and Chu [93] observed that the impulse components cannot be seen clearly due to the existence of harmonic waves.
The WT filtering removes the noise, however, the harmonic waves were not suppressed, since the impulse frequency was
very close to the harmonic wave frequencies [93]. Therefore, the scalogram (i.e. a visual method of displaying a wavelet
transform) is proposed to reveal more information about the signal.

Several methods try to extract the periodic information of the impulsive response of faulty REB such as the time
synchronous average (TSA) [89–91]. The bearing fault signals have a deterministic part and a quasi-cyclostationary part,
where the envelope and the squared envelope of the bearing vibration signal is the way to overcome this problem [99]. The
envelope analysis utilizes the idea of detecting the fault impulses that are amplified by structural resonance. However, it is a
challenge to determine the spectrum band which contains the highest signal-to-noise ratio (SNR). Randall [16] has
highlighted that determining the suitable demodulation band is recently solved by means of e.g. spectral kurtosis (SK)
[29,118–120]. Tse et al. [132] compared the effectiveness of the wavelet and the envelope detection methods for REBs fault
diagnosis. The results showed that both the wavelet and envelope detection methods are effective in finding the bearing
fault, but the wavelet method is less time expensive. The shortcoming of the envelope detection approach is the increasing
difficulty in analysing the vibration spectrum when the signal-to-noise ratio is low [147], in which case the fault-imposed
frequencies can be masked by noise and other frequency components. To overcome this problem, some morphological
operators are proposed [93] with the aim to extract the envelope of impulsive type periodic vibration signals by modifying
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(i.e. using morphological operators such as dilation, erosion, opening, closing) the geometrical features of the signals in the
time domain. This constructs a kind of envelope which accentuates information corresponding to the impact series
produced by a fault.

The impacts on the fault do not occur exactly in a periodic manner, because of random slips, possible speed fluctuations,
and variations of the axial to radial load ratio. Therefore, the bearing fault signals are more likely described as
cyclostationary [105,106], as pseudo-cyclostationary [104], as quasi-cyclostationary [99,100] and as poly-cyclostationary
[100]. The cyclostationary is defined as a random signal in which the statistical parameters vary in time with single or
multiple periodicities [148] and as a signals which, although not necessarily periodic, are produced by a hidden periodic
mechanism [6]. The quasi-cyclostationary signal is generated when the existence of a common cycle is not allowed since
some rotating components are not locked together such as is the case in REBs. Antoni et al. [100] highlighted that poly-
cyclostationary signals are generated since many mechanical components in the machinery introduce various different
periodicities, so they are a combination of cyclostationary processes with different basic cycles. Antoni et al. [100] explained
that all kinematical variables in the machinery, which are periodic with respect to some rotational angles, are intrinsically
angle-cyclostationary rather than time-cyclostationary. The synchronous averaging, comb-filters, blind filters and adaptive
comb-filters are of the type of first-order cyclostationary methods. Synchronous auto-covariance function, Instantaneous
variance, and Spectral correlation density are second-order cyclostationary methods. The Spectral correlation is proposed by
Gardner [149] where the second-order periodicity can be characterized as the degree of coherence of a time series. Several
studies have been discussed based on the cyclostationary and spectral correlation technique for fault detection in REBs [99–
103]. The envelope analysis gives the same result as the integration of the cyclic spectral density function over all
frequencies, thus establishing the squared envelope analysis as a valuable tool for the analysis of (quasi-) cyclostationary
signals more generally [99]. Moreover, since the autocorrelation of a periodic signal is both periodic vs. time and time-lag, it
produces a spectral correlation function which is discrete in both f and α directions like a “bed of nails”. The Higher-order
spectra describe the degree of phase correlation among different frequencies present in the signal [83]. Therefore, Li and Ma
[124] used Bi-coherence spectra to derive features that relate to the condition of a bearing. Collis et al. [150] explained that
the bi-spectrum can be viewed as a decomposition of the third moment ‘skewness’ of a signal over frequency and that it
proves useful for analysing systems with asymmetric non-linearities. However, this statistical approach requires a rather
large set of data to obtain a good estimation [130]. Pineyro et al. [111] compared the second-order power spectral density,
the bi-spectral technique and the WT and found the later to be useful in the short transient detection, since it could
eliminate the background noise.

5. Feature diagnosis methods

The fault diagnosis task consists of the determination of fault type with such many details as the fault size, location,
and time to detection. Since a machine has many components and is highly complex, diagnosis of a machine fault
usually requires technical skill and experience. It also requires extensive understanding of the machine’s structure and
operation, general concepts of diagnosis and an expert engineer to have domain specific knowledge of maintenance and
to know the ‘ins-and-outs’ of the system. In reality, the expert is either too busy with several tasks or a specific
component expert is not available at all [151]. In order to automatise the diagnosis procedures and provide the decision
about the REB’s health state, a number of automatic feature diagnosis methods have been developed. Several diagnosis
methods are proposed to diagnose the faulty REBs such as artificial neural network (ANN), expert systems, fuzzy logic,
support vector machine (SVM), state observes, and model-based methods. A summary of diagnostic methods that have
been studied for REBs is presented in Table 5. However, since most of the diagnosis methods are utilising specific signal
analysis methods, these combinations are illustrated in Table 5 as well. Moreover, many machinery fault diagnostic
techniques have been developed to in order to increase the accuracy and reduce the errors caused by subjective human
judgment [152].

5.1. Artificial neural network methods

The ANN methods have been applied to diagnose the REB’s fault such as [153,157]. Larson et al. [154] performed the phase
demodulation by means of neural networks. Li et al. [158] utilised the FFT as a pre-processor for Feed-Forward Neural network
(FFNN) to perform fault detection. Samanta and Al-Balushi [156] developed a back-propagation neural network BPNN model,
to reduce the number of inputs which leads to faster training requiring far less iterations. Moreover, Baillie and Mathew [94]
illustrated the better noise rejection capabilities of the back-propagation networks compared to traditional linear methods.
However, noise still remains a problem, and the best way to combat this is to use longer data lengths so that the noise can be
effectively cancelled by the SNR averaging process. Alternatively, it also highlights the importance of signal pre-processing
techniques, such as amplitude demodulation in the case of REBs [94]. The cascade correlation algorithm (CCA) offers the
advantage of that the number of hidden units does not have to be determined prior to training. Spoerre [155] applied the CCA
to predict the imbalance fault in rotor-bearing configuration. Radial basis functions are used by Baillie and Mathew [94] for
REB, and compared to back-propagation networks, they show superior outcome due to their rapid training time. Since the
unsupervised learning does not require external inputs, Wang and Too [159] applied the unsupervised neural networks, self-
organising map (SOM) and learning vector quantisation to rotating machine fault detection. Tallam et al. [160] proposed some
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self-commissioning and on-line training algorithms for FFNN with particular application to electric machine fault diagnostics.
However, the building and training of artificial neural networks typically requires a trial and error approach and some
experience [94]. The scope of the reviewed ANN methods is to classify the following fault features i.e. health state, defect type,
defect location, defect severity, etc. Paya et al. [157] used the ANN to differentiate between each fault and establish the exact
position of the fault occurring in the drive-line. Samanta and Al-Balushi [156] developed a BPNNmodel which obtains the fault
features directly using very simple pre-processing i.e. root mean square, variance, skewness, kurtosis and normalised sixth
central moment of the time-domain vibration signals, to classify the status of the machine in the form of normal or faulty
bearings.

5.2. Expert systems

Different expert systems (ES) have been proposed for diagnosing abnormal measurements such as rule-based reasoning
[151], case-based reasoning (CBR) [161], and model-based reasoning. It would be wise to present the cause-symptom
relationship in a tabular form for quick comprehension and a concise representation. Yang et al. [151] developed a decision
table i.e. IF (symptom) and THEN (cause) to link causes of fault and symptoms from an empirical knowledge gained either by
direct experience with the system or through another expert in the field. The ANNs are required to learn gradually the
knowledge in operating process, and to have the adaptive function expanding the knowledge continuously without the loss of
the previous knowledge during learning new knowledge. Therefore, Yang et al. [161] proposed the integrated approach of
Adaptive Resonance Theory and Kohonen Neural Network (ART-KNN). However, the previous cases may influence a CBR
system in different directions without giving it many hints on which cases to consider as more important. This problem,
associated with other difficulties in case-based indexing and retrieval, suggests that to combine the CBR with complementary
forms of reasoning, such as rule-based, model-based or neural network, may be fruitful [161].

5.3. Fuzzy logic

In order to have flexible classification practices, the Fuzzy logic approach has been introduced. Fuzzy logic has gained wide
acceptance as a useful tool for blending objectivity with flexibility. Fuzzy logic is also proving itself to be a powerful tool when
used for knowledge modelling particularly when used in condition monitoring and diagnostics applications. Liu et al. [162]
developed a fuzzy logic based expert system for rolling bearing faults. Mechefske [152] applied fuzzy logic method to classify
frequency spectra representing various REB faults. Unlike other neural networks, fuzzy neural networks adopt bidirectional
association. It makes use of the information from both fault symptoms and fault patterns and improves recognition rate.
Therefore, Zhang et al. [140] applied fuzzy-neural network to diagnosis the fault of rotary machine. Jantunen [141] proposed
the use of simplified fuzzy logic for automated prognosis. It saves the history of measured parameters and prognoses the
further development.

5.4. Support vector machine

In practice, the huge number of possible loading conditions i.e. measuring situations makes the ANN task very complicated.
Therefore, it is always a question that can the training results be moved from one machine to another. A SVM is another
classification technique based on statistical learning theory. Three methods have been used to find the separating hyper-plane
namely Quadratic Programming, Least-Squares and Sequential Minimal Optimization method. Yang et al. [170] used intrinsic
mode function envelop spectrum as input to SVMs for the classification of bearing faults. Yang et al. [172] used improved
wavelet packets and SVMs for the bearing fault detection. Abbasion et al. [166] used the SVM as a classifier to compute
optimumwavelet signal decomposition level, in order to find an effective method for multi-fault diagnosis. Gryllias et al. [167]
proposed the hybrid two stage one-against-all SVM approach for the automated diagnosis of defective REBs. In SVM approach,
it is quite necessary to optimize the parameters which are the key factors impacting the classification performance. Li et al.
[137] proposed an improved ant colony optimization (IACO) algorithm to determine these parameters, and then the IACO-SVM
algorithm is applied on the REB fault detection. Liu et al. [138] proposed a multi-fault classification model based on Wavelet
SVM (WSVM). Particle swarm optimization (PSO) is applied to seek the optimal parameters of WSVM and pre-processed using
empirical model decomposition (EMD). Guo et al. [171] investigated the SVM method based on envelope analysis to diagnose
REB with ball fault, inner race fault and outer race fault. The SVM is originally designed for two-class classification problem,
while bearing fault diagnosis is a multi-class case. Tyagi [101] observed that more accurate classification of bearing condition is
achieved by using SVM classifiers as compared to ANN. In fact, the ANN uses traditional empirical risk minimization principles
to minimize the error on training data, while SVM utilizes structural risk minimization principles to minimize the upper bound
of expected risk [171]. Pan et al. [173] proposed a combined method based on improved wavelet packet decomposition (IWPD)
and support vector data description (SVDD) to gain better speed of training. However, Jack et al. [165] observed that the ANN
tends to be faster to train and slightly more robust than the SVM.

The other non-linear classifiers like Gaussian Mixture Model (GMM) and Hidden Markov Model (HMM) have been used
for classification problems in specific applications. Nelwamondo et al. [180] introduced GMM and HMM to diagnose fault in
rolling bearings, based on extracted features using Multi-Scale Fractal Dimension (MFD), Mel frequency Cepstral Coefficients
and kurtosis. However, the major drawback of HMM classifier is that it is computationally expensive, taking more than 20
Please cite this article as: I. El-Thalji, E. Jantunen, A summary of fault modelling and predictive health monitoring of
rolling element bearings, Mech. Syst. Signal Process. (2015), http://dx.doi.org/10.1016/j.ymssp.2015.02.008i

http://dx.doi.org/10.1016/j.ymssp.2015.02.008
http://dx.doi.org/10.1016/j.ymssp.2015.02.008
http://dx.doi.org/10.1016/j.ymssp.2015.02.008


Ta
b
le

6
A
su

m
m
ar
y
of

ap
p
ro
ac
h
es

ad
op

te
d
fo
r
p
ro
gn

os
is

of
R
EB

s.

R
ef
er
en

ce
D
at
a-
d
ri
ve

n
m
od

el
s

Ph
ys
ic
s-
ba

se
d
m
od

el
s

R
eg

re
ss
io
n

an
al
ys
is

Pr
ob

ab
ili
ty

es
ti
m
at
io
n

Pr
in
ci
p
al

co
m
p
on

en
t

an
al
ys
is

Su
p
p
or
t

ve
ct
or

m
ac
h
in
e

N
eu

ra
l

n
et
w
or
ks

Se
lf
-

or
ga

n
iz
in
g

m
ap

Re
cu

rr
en

t
n
eu

ra
l

n
et
w
or
ks

N
eu

ro
-

fu
zz
y

M
ar
ko

v
m
od

el
lin

g,
G
en

et
ic

al
go

ri
th
m

D
et
er
m
in
is
ti
c

d
am

ag
e

St
oc

h
as
ti
c

d
am

ag
e

C
on

ta
ct

st
re
ss

an
al
ys
is

D
yn

am
ic

an
al
ys
is

[1
89

,1
90

],
X

[1
91

,1
92

]
X

X
[1
93

–
19

9]
X

[2
0
0]

X
[2
01

–
20

4]
X

[2
05

,2
06

]
X

X
[1
38

]
X

[2
07

]
X

X
[2
08

–
21

2]
X

[2
13

–
21

7]
X

[2
18

,2
19

]
X

[1
64

]
X

X
[2
20

]
X

X
[2
21

]
X

X
[2
22

,2
23

]
X

[2
24

–
22

6]
X

X
[1
73

]
X

[2
27

]
X

X

Please cite this article as: I. El-Thalji, E. Jantunen, A summary of fault modelling and predictive health monitoring of
rolling element bearings, Mech. Syst. Signal Process. (2015), http://dx.doi.org/10.1016/j.ymssp.2015.02.008i

I. El-Thalji, E. Jantunen / Mechanical Systems and Signal Processing ] (]]]]) ]]]–]]]12

http://dx.doi.org/10.1016/j.ymssp.2015.02.008
http://dx.doi.org/10.1016/j.ymssp.2015.02.008
http://dx.doi.org/10.1016/j.ymssp.2015.02.008


I. El-Thalji, E. Jantunen / Mechanical Systems and Signal Processing ] (]]]]) ]]]–]]] 13
times longer than the duration required to train the GMM. Ocak et al. [88] developed a new scheme based on wavelet packet
decomposition and HMM for tracking the severity of bearing faults. Zhang and Kang [176] proposed HHM model to
represent the states of bearing through partition sub-state for the five states.

5.5. Model-based methods

The model-based methods utilise the physics models to diagnose the health of the monitored REB. Vania and Pennacchi
[178] proposed a diagnostic technique where the fault is obtained by evaluating the system of excitations that minimizes the
error i.e. residual, between the machine experimental response and the numerical response evaluated with the model.
Söffker et al. [179] introduced Proportional-Integral Observer (PIO) method to detect a crack by detecting small stiffness
changes. The very detailed and physical-oriented understanding that is provided by the model-based approach enhances
the interpretation problem of signal based approaches. However, the necessity of fault models and the hypotheses about the
location of the fault is a limitation. The majority of real industrial processes are nonlinear and is not effective to be modelled
by using linear models for all operating conditions.

6. Prognosis analysis

Several researchers have reviewed the prognosis contributions such as Engel et al. [181], Jardine et al. [3], Lee et al. [182],
Heng et al. [183], Peng et al. [184], Jammu and Kankar [185], etc. There are two types of methods of prognosis: physics
‘model’-based and data-driven i.e. statistical and artificial intelligence (AI). In Table 6, an updated summary of the
approaches adopted for prognosis of REBs is represented. The physics-based prognostic models describe the physics of the
system and failure modes based on mathematical models such as Paris’ law, Forman law, fatigue spall model, contact
analysis and ‘stiffness based damage rule’ model. The data-driven prognostic models attempt to be driven by routinely and
historically collected data (condition monitoring measurements, SCADA measurements, etc.). The data-driven prognostic
models cover a high number of different techniques and artificial intelligence algorithms such as simple trend projection
model, time series prediction model, exponential projection using (ANN, data interpolation using ANN, particle filtering,
regression analysis and fuzzy logic, recursive Bayesian technique, HMM, hidden semi-Markov model, system identification
model, etc. The data driven methods utilize data from past operations and current machine conditions, in order to forecast
the remaining useful life. There are several reviews concerning the data-driven approaches such as [186–188].

6.1. Statistical approach

Yan et al. [218] explored a method to assess the performance of assets and to predict the remaining useful life. At first, a
performance model is established by taking advantage of logistic regression analysis with maximum-likelihood technique.
Two kinds of application situations, with or without enough historical data, are discussed in detail. Then, real-time
performance is evaluated by inputting features of online data to the logistic model. Finally, the remaining life is estimated
using an Auto-Regressive–Moving Average (ARMA) model based on the machine performance history; the degradation
predictions are also upgraded dynamically. Vlok et al. [138] proposed a residual life estimation method based on proportional
intensity model for non-repairable systems which utilise historic failure data and corresponding diagnostic measurements i.e.
vibration and lubrication levels. Yang and Widodo [224] proposed a prognosis method using SVM. The statistics-based models
assume that historical data is representative for the future wear progress, which is not always the case. Probabilistic-based
models assume that the whole wear evolution progress is represented by a probability distribution function i.e. Weibull.

6.2. AI approach

Li et al. [191] utilized recurrent neural network (RNN) approach. Yam et al. [200] proposed a model based on the RNN
approach for the critical equipment of a power plant. Dong et al. [197] proposed a model that combines condition prediction
for equipment in a power plant based on grey mesh GM (1,1) model and BPNN on the basis of characteristic condition
parameters extraction. Wang et al. [207] evaluated the performance of RNNs and neuro-fuzzy (NF) systems. Through
comparison, it was found that if an NF system is properly trained, it performs better than RNNs in both forecasting accuracy
and training efficiency. However, they often suffer from the need for complex training due to the huge number of possible
combinations of damage scenarios that might take place in the case of rolling contact wear.

6.3. Physics-based approach

Physics-based prognostic models describe the physics of the system and failure modes based on mathematical models such
as Paris’ law, Forman law, fatigue spall model, contact analysis and stiffness based damage rule model. Physics-based
prognostic models are based on crack length, and defect area as illustrated by Li et al. [191], and Li et al. [192], or relations of
stiffness as shown by Qiu et al. [201]. However, the most challenging issue within physics-based prognostic is to define the
loading-damage relationship and to model it. There are models based on damage rules such as linear damage rule, damage
curve rule, and double-linear damage rule [201]. The drawback of these simplified functions is that they all use the constant
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damage factor which is hard to estimate or measure. Moreover, these functions are either linear or multi-linear functions. That
means that the estimated results might seem matching with the overall measured results, however, they might describe
different damage scenarios. Therefore, the prediction based on such functions makes the prognosis a risky task. Recently, some
model-based models have been utilised for the contact stress analysis to illustrate the wear evolution progress. These models
provide more accurate predictions. Some models are based on contact stress analysis [215] and some are based on system
dynamics [189,190]. Chelidza and Cusumano [217] proposed a method based on a system dynamics approach to estimate the
damage evolution. The results of these models depend also on the stress-damage function and the constant damage factor that
are in use. These models assume that each wear mechanism generates stresses that in total equal to the overall measured
stresses. Therefore, the wear mechanics interactions and competitions are somehow ignored.

7. Discussions

7.1. Modelling techniques

The dynamic models deal with the wear phenomenon as a localized defect with fixed features over the lifetime. The
reason is that the purpose of these models is to detect the defect within the generated vibration signals and not the
incremental deterioration process, i.e. wear evolution. These dynamic models start from the point where the defect is
localized as a simulated defect in the models or artificially introduced into the experiments. That ignores the prior stages of
the localization process. The localized defects and their associated impact stay constant over the whole lifetime. This kind of
approach ignores the topological and tribological changes of the defected surface.

In order to model the wear evolution an incremental numerical procedure should be developed which would be able to
integrate the contact information continuously into the dynamic model. This means that the applied force due to the wear
progress and its associated topological and tribological conditions should be iteratively updated into the dynamic model.

7.2. Monitoring techniques

The artificially introduced defect approach is widely used due to its simplicity. The researchers can virtually introduce a
well-known shape and size of a defect. Besides, they can artificially introduce the same defect features in the validation
Fig. 2. The impact area of a defect.

Time

Dentation Over-rolling Over-rolling &
abrasive actions Crack opened Defectc ompleted Over-rolling Over-rolling &

abrasive actions Damage growth

Fig. 3. The evolution of the faulty bearing response.

Please cite this article as: I. El-Thalji, E. Jantunen, A summary of fault modelling and predictive health monitoring of
rolling element bearings, Mech. Syst. Signal Process. (2015), http://dx.doi.org/10.1016/j.ymssp.2015.02.008i

http://dx.doi.org/10.1016/j.ymssp.2015.02.008
http://dx.doi.org/10.1016/j.ymssp.2015.02.008
http://dx.doi.org/10.1016/j.ymssp.2015.02.008


I. El-Thalji, E. Jantunen / Mechanical Systems and Signal Processing ] (]]]]) ]]]–]]] 15
experiment. Furthermore, this approach delimits the testing complexity, as it focuses on a single artificial defect, compared
to the natural defect propagation approach. However, the natural wear process highlights that the bearing defect is
changing over the time with respect to the topological and tribological changes due to different wear and stress
concentration mechanisms. The drawback of the artificially introduced defect approach is that the damage criterion is
somehow artificially determined which might be totally different than the defect in the real operation. Therefore, the
artificial defected bearing tests are helpful in the development of new analysis and diagnosis techniques; however they are
not helpful in the investigation of the evolution of real wear progress.

The impulsive vibration response is clearly seen when the impact of the roller element that passes over a defect is strong.
The impact severity is related to the size of impact area and the sharpness of the edges of the defect. The impact area is the
area on the trailing edge of the dent, asperity or the defect that becomes in contact with rolling element, as shown in Fig. 2.
Based on the literature, this area is quite small at the defect initiation stage and depends on the length, depth and width of
the defect. Al-Ghamd and Mba [47] observed that increasing the defect width increased the ratio of burst amplitude-to-
operational noise (i.e. the burst signal was increasingly more evident above the operational noise levels). It was also
observed that increasing the defect length increased the burst duration. The first observation indicates that the width of
defect increases the impact area on the trailing edge and therefore stronger amplitude and high SNR was observed. In fact,
most of the studies show the ability of the envelope analysis to detect such influence of the impact area. However, the
challenge with wear evolution is when the impact areas are rapidly and continuously changing due to the loading and wear
progress.

In the early stage of wear process, the defect is quite small and can be easily buried by other vibration phenomena.
Most of the SP methods are validated based on experimental tests in which the defects are introduced artificially into
the bearings. Such testing approach guarantees the availability of the impulsive response due to the introduced defect
and somehow its severity is quite enough to be detected. The natural accelerated testing experiments [4,87] show that
it is quite hard to detect the impulsive response at an early stage and much harder to track its evolution. The basic
reason behind the difficultly is that the relation between the defect growth i.e. to become larger is not linear with its
dynamic impact. Also it significantly depends on the wear and stress contraction mechanisms that are involved. The
experiments show that the wear process is slow in nature and can hardly produce detectable impacts at early stage.
Moreover, the experiments in literature show that the impulsive response of bearing defect is changing over the
time with respect to the topological and tribological changes, as shown in Fig. 3. The natural accelerated tests
show fluctuations in the impulsive response of bearing defects and in some time intervals it is hard to detect them.
For example, the over-rolling and abrasive wear effects make the defected surface smoother and the impact events
softer.

These empirical facts are quite important to explain the capabilities and limitations of the applied monitoring methods,
in order to enhance their suitability for wear evolution monitoring in REBs.

7.3. Signal analysis and diagnosis methods

In many cases, the measured signals have very low signal-to-noise ratio (SNR) which makes the feature extraction of the
studied components difficult. In fact, in the early stage of bearing failures, the bearing characteristic frequencies contain very
little energy and are often overwhelmed by noise and higher level structural vibrations. An effective SP method would be
necessary to remove such corrupting noise and interference [134]. The overlapping and interference of signals might
mislead the analysis of signals [145]. The interference terms should be reduced in order to improve the readability of many
methods. It is usually difficult to explain the results due to the REB complexity in terms of structure and operate under noisy
or uncertain environment [129]. As summarised by Sawalhi [29] the signal analysis methods try to cope with five main
challenges as have been highlighted by many studies: (1) remove the speed fluctuation; (2) remove the noise effect; (3)
remove the smearing effect of transfer path; (4) select optimal band of high Signal-to-Noise ratio; and (5) extract clear fault
features. However, the evolution of the fault induced signal requires effective tracking of the extracted fault features over the
bearing lifetime. This is the sixth challenge. The important issue of tracking technique is the signal and feature extraction
analysis method it uses and how effective and clear indication it can provide. Tracking the evolution progress demand more
features than just the normal detection of a bearing fault.

The signal analysis methods, which are applied on signals measured from bearings with artificially introduced defect, are
quite effective. However, a careful comparison between the defect features of a natural wear process and the artificial
introduced defect should be taken into consideration. Simply, the artificially introduced defects are in general large, sharp
and strictly localised. A natural fault is smaller, less sharp and has evolved with the help of different wear and stress
concentration mechanisms. In fact, the impulse due to wear defect is changing over the whole lifetime as schematically
illustrated in Fig. 3.

It is also clear from the literature that the definition of the bearing fault signal type i.e. stationary, cyclostationary, non-
stationary, etc. is the main reason and motivation for the variety of SP methods. Some methods are just for specific type of
signals and it is hard to illustrate their outcomes or there is no point to use them if the fault-induced signals are not from that
specific type. Thus, it is more realistic to illustrate how the bearing fault-induced signal is evolved over the whole REB’s lifetime.
The fault-induced signal is usually of the impulsive signal type due to the impact event when the rolling element is passing over
e.g. asperity, dentation or defect. The defect topology affects the impact severity when a rolling element passes over it.
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Therefore, the impulsive nature of wear is changing as the wear defect evolves. Moreover, in some wear progression intervals,
there is no clear impulsive impact, and consequently some monitoring and diagnosis techniques are not effective during that
period.

One important issue is the early detection of the fault i.e. earliness. There are wide and qualitative definitions of the
detection earliness within the literature. In fact, many studies which have utilised the artificially introduced defects can be
recognised to represent a severe wear state in the real application which might also be detected with simple SP methods. It
is clear that the signal analysis methods should detect the defect as early as possible. Most of the feature diagnosis methods
classify the REB’s state into healthy or faulty state. Some other methods aim to classify the defect types i.e. imbalance, defect,
and defect locations i.e. outer race, inner race, rolling element. Very few studies classify the defect evolution in terms of
wear stages.
7.4. Prognosis methods

The survey shows that the data driven approach is more adopted in the prognosis of rolling bearings than the physics
based approach. All prognosis approaches i.e. physics based or data driven have advantages and drawbacks in different
applications and operating cases, specially, in case of variable operating conditions. Moreover, the prognosis models try to
control or delimit the effect of some operational variables. However, that is somehow possible in the experimental tests but
not in real applications. The prediction based on simplified experimental tests i.e. ball on disc test is easier than tests that
use REBs. The statistical models represent the wear evolution as one function with the possibility to insert weights. The
statistical models assume that the past history profile represents the future failure mechanism of a specific component.
However, the failure mechanisms are changing with respect to the failure evolution and the involvement of failure
mechanisms. It means that the statistical approach is not fully valid and might not represent wear progress, especially, if the
evolution stages are highly varying, as they are in the case of wear evolution stages. ANN models use specific functions and
multiple weights. However, ANN models have drawbacks once the system conditions are rapidly fluctuating. The model
based models are still representing the wear evolution with two stages. Moreover, the damage is represented as a damage
factor. This really is a dramatic simplification to describe the wear evolution as a two stage stabile phenomenon, whereas it
by nature has a complex evolution process. Consequently, this kind of approach is very far from reality and the usability can
be highly criticized. The prognosis models can be improved remarkably by understanding the physics of the wear evolution
progress and its associated measured outcomes. Actually, that will help the model based approaches to provide better
results and the data driven approach to have better interpretations of the results and training inputs.
8. Conclusions

The survey reviews the capabilities, advantages and disadvantages of bearing modelling and monitoring procedures i.e.
SP, diagnosis and prognosis methods. It emphasises the main PHM capabilities, limitation and challenges for REBs. It is
observed that several experimental agreements with their associated analytical models are valid for specific wear
definitions. The most commonly used definition of wear is to artificially introduce a localised defect into the surface i.e.
sharp, large enough and at specific radial location. However, in reality, the fault features are changing over the lifetime due
to topological and tribological changes. These changes are due to the wear progression in rolling contact because of the
involvement of different wear and stress concentration mechanisms. Therefore, the review highlights the evolution
monitoring challenge of the wear fault over the REB’s lifetime. Moreover, it discusses the directions and implications of
understanding the natural evolution of the wear process in REB and how can it be monitored and modelled effectively.

The review of modelling methods highlights the need for a wear evolution model e.g. incremental numerical procedure
which would be able to simulate and integrate the contact information continuously into a dynamic model. This means that
the applied force due to the wear progress and its associated topological and tribological conditions should be iteratively
updated into the dynamic model. The review part of the monitoring and experimental testing methods highlights the need
to understand the dominant physical damage mechanism of each testing method in order to interpret the measured signal
in the right way. In terms of signal processing and diagnosis method, it is very clear that several methods might show high
capabilities at specific time intervals within the whole lifetime. However, they might have poor capability to indicate the
fault at other time interval, due to the change in the surface topography. Therefore, there is a need to study and validate
these methods with data at time intervals that contain the several topographical changes due to wear evolution. Moreover,
the prognosis models can be also improved remarkably by understanding the physics of the wear evolution progress and its
associated measured outcomes.
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Rolling contact wear is a complex phenomenon that might involve different wear
mechanisms (adhesive, abrasive, fatigue and corrosive) and different stress concentration
mechanisms (asperity, dent, debris, inclusions, etc.). The interactions among these mecha-
nisms might accelerate or decelerate the overall wear progress. Therefore, it is complicated
to model and monitor the fluctuations of wear progress. The current descriptive models are
either describing individual physical phenomena within rolling contact wear or describing
a specific stage of wear progress. Thus, the interactions among different wear mechanisms
and the transition events among different stages of wear progress are not sufficiently
addressed. Therefore, the purpose of this paper is to propose a descriptive model of the
wear evolution process in rolling bearings over the whole lifetime. The descriptive model
utilises a wide range of empirical findings in the literature to describe the wear interactions
and evolution in the five-stage scenario: running-in, steady-state, defect initiation, defect
propagation, and damage growth. The new descriptive model provides the most probable
scenario of wear evolution in rolling bearings, which is useful for modelling and monitor-
ing the wear progress. It illustrates the wear evolution stages, the involved wear mecha-
nisms in each stage, the interaction among wear mechanisms in each stage, the surface
topology changes and the influencing factors within each stage. For design, condition mon-
itoring and prognosis purposes, these aspects are significantly important to understand,
model, test and monitor the wear evolution process.

� 2014 Elsevier Ltd. All rights reserved.
1. Introduction

The rolling element bearing (REB) is one of the most critical components that determine the machinery health and its
remaining lifetime in modern production machinery. REBs are all wearing components and inevitably the REB health will
degrade over the lifetime. Therefore, there is significant interest in the whole wear evolution progress over the REB’s lifetime,
to gain the benefits for REB design and condition monitoring purposes. Over the years, the interest in exploring the wear
evolution has rapidly increased. The determination of transition point between mild and severe wear was the starting point.
Mild wear is considered as acceptable wear state whereas the transition to severe conditions often represents a change to
commercially unacceptable situations [1]. Therefore, the wear maps were developed [2–5]. However, there are more infor-
mation about wear evolution needs to be revealed than just single transition point. Therefore, Voskamp [6] described the
material degradation due to rolling contact fatigue as a three-stage process: shakedown, steady-state elastic response,
and instability. These stages are corresponding to what is known as three-stage model: running-in, steady-state and damage
stages of wear progress. However, the three stages model represents roughly the evolution of rolling contact wear. A number

http://crossmark.crossref.org/dialog/?doi=10.1016/j.engfailanal.2014.06.004&domain=pdf
http://dx.doi.org/10.1016/j.engfailanal.2014.06.004
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of complex damage phenomena are taking place in each of these stages and require better understanding. The result of these
complex damage phenomena is the probability to produce different wear progression scenarios. The wear progression sce-
nario is significantly important to predict the length and propagation rate of each stage and to estimate the remaining
lifetime.

Therefore, more studies have been conducted to explore the detailed phenomena of wear in rolling contact. In fact, a
number of researchers have specifically studied the evolution of surface deterioration due to wear and material response
over the lifetime, as listed in Table 1. Different wear progression scenarios are described in the literature. Longching et al.
[7] and Raje et al. [8] described the wear progression of subsurface inclusions. Gao et al. [9] and Mota [10] investigated
the wear progression of dented surfaces. These models illustrate several defect initiation and propagation aspects: determine
the location of first micro-crack, direction of propagation, and crack branching and propagation. Other studies illustrate the
complex damage phenomena such as dentation, stress concentration, distress, micro-cracking, adhesive and abrasive
actions. In Table 1, a summary of wear evolution studies are presented. The direct and indirect measurements, i.e. under
the ‘point of view’ column, are also illustrated in Table 1. Direct measurement refers to the experimental validation methods
which deal directly with the damaged surface such as surface topography. Indirect measurement refers to experimental val-
idation method which utilise condition monitoring techniques such as vibration, acoustic emission, and oil-debris.

The indirect measurement studies describe the overall dynamic impacts of wear evolution process. Therefore, El-Thalji
and Jantunen [11] discussed how the indirect measurement methods could help to monitor he wear evolution process. Jant-
unen [12] and Yoshioka and Shimizu [13] could describe the wear evolution process based on the indirect measurements. It
was observed two main stages of wear progress: steady state and instability. The steady-state stage is roughly stable and a
clear offset in the root mean square (RMS) values of measured signals is observed at instability stage, later a rapid increase of
these values occurs before the final failure. Dempsey et al. [14] observed that no debris is detected (using filter of 10 lm) in
the early stage (around 25%) of testing time. All spall lengths and wear volumes increase sharply at the beginning and then
take stable increment state before it increase sharply again. However, it is still hard either to describe the whole wear evo-
lution process based on the direct measurements or to provide a reliable speculation based on the indirect measurements.

In fact, the models in Table 1 give great insight into defect initiation and propagation in REBs over the lifetime and from
different points of views such as material microstructure [16,17,19,8], stress wave response [21], dynamic response [12] and
debris particles [18]. However, these models consider (1) either subsurface wear progression or surface wear progression, (2)
a single specific damage stage e.g. crack initiation or crack propagation, (3) a single wear mechanism e.g. fatigue wear, abra-
sive wear, and (4) a single stress concentration mechanism e.g. dent, asperity, debris, inclusion. Thus, the interactions among
different wear mechanisms and the transition events among different stages of wear progress are not sufficiently addressed.

Fortunately, in the literature, these complex issues have been separately investigated by several experimental studies i.e.
related to the abrasive wear and rolling contact fatigue. In summary, different studies have developed several descriptions
and models to explain the wear in rolling contact. These studies have investigated the wear mechanisms i.e. fatigue, adhe-
sive, abrasive and corrosive. The studies have mainly investigated the effect of different stress concentration mechanisms e.g.
asperity and dent [24–26], debris [27–31], inclusions [32–35]. Moreover, a wide range of studies i.e. as classified in Table 2
have investigated several issues of wear behaviour: lubrication regimes i.e. elasto-hydrodynamic (EHL), debris, denting,
micro-cracking, asperity formation, subsurface crack formation, crack propagation, adhesive wear, abrasive wear, pitting,
spalling.

However, these studies explain separately several individual physical phenomena. In reality, almost every wear process in
REBs involves all these aspects and their evolutions with different rates and frequencies, depending on loading and operating
conditions [36–38]. Therefore, the wear progress is a nonlinear physical phenomenon. In fact, even though having a good
Table 1
Summary of wear evolution studies in rolling contact.

Reference based
on date of
publication

Running-
in stage

Debris
involvement

Dentation Micro cracking Pitting Abrasive
wear

Crack propagating Spalling Point
of view

Validation

Surface Subsurface Surface Subsurface

[6] X X X X M X
[15] X X X X M X
[16] X X X M X
[9] X X X X X M X
[17] X X X X M X
[18] X X X X P
[10] X X X X X M X
[12] X X X X D,P,S X
[19,20] X X X M X
[21] X X X D,P,S X
[22] X X X M
[8] X X X M
[14] X X X X P X
[23] X X X D X

M: material, D: dynamic, S: stress wave, P: debris-particles.



Table 2
Classified literature survey of wear in rolling bearings.

Wear issue Reference(s)

General wear [44–51]
Adhesive wear [52–54]
Abrasive wear [54–60,1,61–67,1,68–73]
Fatigue wear [74–78,39,79–82]
Stress modelling and RCF [83–90,22,91,92]
Multi-axial fatigue criteria [93–97]
Crack initiation [32–35,98–115]
Crack propagation [116–127]
Crack propagation modelling [128–136,79,137–141,43]
Damage mechanics [142–147]
Surface roughness and asperity effect [24–26,128,129,148–151]
Debris formation [152–154]
EHL contact [155–167]
EHL-rolling contact, rolling friction [168–174]
Lubrication regimes [175,176]
EHL modelling [177–179]
Hydrodynamic contact [180–184,156]
Elastic–plastic contact [185,186]
Visco-elastohydrodynamic [187–189]
Starvation effect [190,191]
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understanding of specific wear aspects is needed, it might not be sufficient to understand the whole wear evolution process.
A good understanding of wear evolution requires to define how the wear is progressing over the lifetime [39]. Therefore, the
interactions among the wear and stress concentration mechanisms have been discussed to explore how these mechanisms
accelerate each other or compete with each other [39]. For example, it is widely observed that the tendency for the spalled
area to become worn is increasing over the time [40], however, the measured impacts due spall might be much smaller in
certain time interval than in the early stages. This phenomenon is called wear competition and explained physically in few
studies [41–43] based on the interaction of abrasive wear and over-rolling action with surface asperities, that leads to sur-
face smoothing. Moreover, the studies in the literature have partially illustrated the evolution of rolling contact wear.

In fact, there are slightly large differences between the simulated and the actual results in most of the studies that focus
on wear progression over the specific lifetime [40]. Up to date, it is hard to describe the wear evolution progress due to the
variety of the involved wear and contact mechanisms, which might produce different wear evolution scenarios. Therefore,
there is a need for a descriptive model that is able to address the wear evolution over the whole REB’s lifetime with the above
mentioned complexity. The purpose of the paper is to develop a new descriptive model of wear interaction and evolution
which combines and integrates the large experimental and numerical findings that have been accumulated in the literature.
The descriptive model aims to generalise the most probable wear evolution scenario in REBs. First, it explains the interaction
of multiple wear mechanisms in rolling contact. Second, it explains both the wear evolution on and beneath the contact
surface from running-in stage until spalling occurs. Third, it explains the wear transition points during the wear evolution
progress. Therefore, the paper describes the wear evolution in rolling bearings over the whole lifetime in terms of the wear
progression stages, surface topology evolution, wear mechanics interaction and influence factors of wear progression.
2. The descriptive model of wear evolution in rolling bearings

The descriptive model is developed with the support of experimental findings published in the literature listed in Table 2.
It illustrates the wear evolution progress based on five stages. First, in each stage, it illustrates the potential involvement of
different wear mechanisms (adhesive, abrasive, fatigue and corrosive) and different stress concentration mechanisms (asper-
ity, dent, debris, inclusions, etc.). Second, different mechanisms require definitely the consideration of the interactions
among them, which helps to address the non-linear evolution of wear in REBs. Third, the descriptive model illustrates the
transitions events between the stages, since it covers the whole lifetime. The new descriptive model is presented in detail
in the following sub-sections with the help of experimental findings in the literature.

However, before the presentation of the descriptive model, two issues are worth to be highlighted. First, there are many
industrial applications where wear behave differently, even though, the rolling contact in common [39] e.g. hard steels (i.e.
REB) and soft steels (i.e. railway track). The multi-axial stresses of compressive type are also common. However, the distin-
guished factor is the friction coefficient, whether it is low or high. In the case of REB, the lubrication provides low friction
rolling contact result in low friction coefficient and elastic deformation. The railway rolling contact is characterized with high
friction coefficient and plastic deformation. Such differences in the wear phenomena generate difference in the applied stress
regime, defect origin, defect propagation stages and other affecting factors. The wear in REB originates from surface asper-
ities and subsurface inclusions. The crack propagates through inclined short growth in REB, in compared to the inclined long
crack growth type in railway track case. The most significant factors that affect the wear in REB are: the slide-to-roll ratio,
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hoop stress, surface roughness and operating environment effects (i.e. lubricant, hydrogen, and debris). It is widely accepted
that pits propagate when fluid is present due to fluid pressurization and/or fluid entrapment.

Second issue is related to the system where the REB is allocated. Mukras et al. [51] observed that wear prediction of the
component without considering the system as whole will lead in most of cases to inaccurate predictions. The formulas and
models that are developed to describe wear mechanisms are valid under specific assumptions. For example, adhesive wear is
described based on sliding actions. However, it is very hard to estimate the sliding events in the rolling contact as the pure
rolling is dominant. Morales-Espejel and Brizmer [92] indicated also that low speed applications have thinner film
thicknesses. There are a number of critical aspects have been studied to enhance the wear understanding with respect to
the rolling bearing as a system. The considerations are mainly related to the operating conditions and system configurations:
thermal effect [192–198], machine-induced and process-induced residual stress effect [199–202], wear particles and debris
contamination [27–31,203], interference fits, environment and component configuration [204–207], cleanliness, filtration
[208,209], large scale effect [210–212]. Therefore, it is really important to be aware of these characteristics of the rolling con-
tact in REBs.

2.1. Running-in stage

In general, the REBs have some degrees of surface waviness and surface roughness due to the surface manufacturing
processes. Therefore the surface asperities have potential to interact with each other in running-in stage. Arakere and Sub-
hash [213] explained that running-in stage involves localized microplastic flow, work hardening and shakedown. Therefore,
the residual stresses are induced with increase in material strengthening and microyield stress. Surface properties during the
running-in stage have great importance and influence on lubricant film, friction and state of vibration. There is a non-linear
relationship between contact deformation and force at the beginning due to the surface asperities [213]. However, running-
in contact cycles smoothen the surface asperities and the lubrication film become uniform over time. The subsurface
hardness increases during first stage of cyclic loading (shakedown response) [213]. However, the surface hardness increase
until the work hardening saturates which means the steady-state stage started. Andersson [214] states that interacting
surfaces show only some mild wear during the running-in phase followed by a nearly no wear phase, which indicate the
steady-stage stage. The interaction of major asperities during running-in stage might be detected with help of vibration mea-
surements, however, it might not be clearly appeared in the presence of lubricant additives [215].

2.2. Steady state stage

In the steady-state stage, the response is steady state due to uniform Hertzian stresses, uniform lubrication film, forma-
tion of dark etching region and white etching bands and texture strengthening. Arakere and Subhash [213] mentioned that
the length of steady-state stage is a function of maximum load induced stress, material characteristics and operating
temperature. The steady state is well known as the healthy stage of the lifetime of any component. Therefore, it is signifi-
cantly important to understand their physical outcomes in order to detect the abnormalities once the wear progress reaches
the instability stage. The relationship between RMS vibration values in high frequency band and lambda (k) factor (i.e. film
thickness/surface roughness) is observed [216]. However, the detection of defects is more difficult in real cases due to the
high and variable influences of operating parameters compare to experimental testing environment. Massouros [217]
observed shifts in the vibration frequencies in the range of 0.2–10 kHz due to running-in process. The vibration progress
due to the wear process in running-in stage has high amplitudes at the shaft’s rotational frequency during the first interval
of testing time, later the vibration amplitudes are reduced due to the smoothening effect of the wear process [218]. The mild
and severe wear can be distinguished in terms of the operating conditions and the involvement of the fundamental wear
mechanisms [214]. The effect of operating conditions and different damage scenarios of rolling contact wear can be observed
in several studies, due to differences in lubrication type and film thickness [10].

2.3. Defect initiation

In reality, the REBs have quite long lifetime. Most of the bearing lifetime equations [219] show that the lifetime is an
exponential function of loading i.e. approximately exponential of 3. This means, if the load increases, the life decreases with
approximate three times. The loading might increase due to increasing in applied load or some changes in the contact sur-
face, which concentrate more loads at specific locations rather than keeping the designed distribution of the contact loads. In
fact, Dizdar and Andersson [220] indicated that the properties of the boundary layers and the changes in contact conditions
are much more important factors than the degree of plastic deformation. Refereeing to bearing lifetime equations, Ioannides
et al. [219] showed that the evolution of the equation over the time and the importance of estimating accurate life adjust-
ment factors e.g. reliability factor, material factor and operating condition factor, are highly influencing the whole bearing
lifetime. The literature e.g. [27,28,204,205] shows that most of the causes of the wear phenomena have a random and dis-
tributed nature such as surface roughness, waviness, debris, and inclusions.

Therefore, the descriptive model explains what is taking place in the end of the steady state stage and how defect start to
appear on and under the surface. It explains how the distributed defects initiate and/or influence the localized defects. The
new descriptive model considers five stress localization phenomena to be the responsible mechanisms for raising the cyclic
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stresses at specific locations in the REBs. These five phenomena are extracted from the literature and related to the contact
feature of REBs i.e. running track, roller profile. Furthermore, the descriptive model considers three fundamental issues i.e.
contamination, lubrication disturbances and impact vibrations. These issues are significantly important as external mecha-
nisms that have additional contributions in the defect initiation progress.

2.3.1. Defect localization
The five phenomena that are responsible to raise the cyclic stresses highlight the highly potential locations of wear. First,

it is observed that defect is most probably located in the loading contact zone of the REBs. Second, the investigations of high-
est stress location show that the normal running track of the rolling elements is one of most probably location of wear
defects. It is observed that the normal running track of the rolling elements is usually located on the pure-rolling points (zero
sliding points). The spall is usually located at the normal running track of the rolling elements, but also there are more severe
spalls at the edges of the normal running track of the rolling elements [221]. Under abnormal operation e.g. shaft imbalance
and misalignment, or other patterns of high stresses can influence the defect localization process.

Third, the Heathcote slip phenomenon might explain the zones of greater damage which is located mainly outside the
normal running track. Kotzalas and Doll [221] defined the heath-coat slip as a geometrical constraint suffered by all spherical
roller bearings, as illustrated in Fig. 1, if surface velocities between the inner ring and the rollers match at locations R1 and
R3, then the surface velocities must differ at location R2, which means that there is sliding between the roller and the centre
of the raceway. Therefore, the inner raceway might have micro-pit as the slower velocity component in the contact. Olofsson
et al. [222] found that wear in the area outside the zero sliding points is less than in the area of the zero sliding points during
the early life of a bearing. In the later stage during long-term wear process, the wear is almost the same in both areas. Nilsson
et al. [72] studied later the abrasive wear of spherical roller and observed a trend of worn coating depth with respect to roller
profile as shown by the two schematics curves in Fig. 1. Furthermore, Massi et al. [223] concluded with help of the finite
element modelling (FEM) that a concentration of the local stress distribution is located at the boundaries of the contact
between ball and race. Moreover, a local sliding is also predicted in this area, with a consequent large value of the shear
stress. The severe indentation damage which was observed relatively outside the running track has same space distance
as between rolling elements.

Fourth, some empirical observations show that defect locations might have specific spacing [224]. The specific spacing
between multiple defects is due to static false-brinelling occurred at stand-still events or dynamic impact loads. One of
the reason behind the false-brinelling is due to the fact that EHL contact behave as dry contact in case of non-rotating
situations of bearing [224]. The false-brinelling might initiated defects as same as denting by debris. It is also observed that
the false-brinelling defects allocate usually some debris particles.

Fifth, the localization possibility might be due to a subsurface defect. In fact, the higher the sliding imposed on the EHL
contact, the higher the maximum shear stresses in the subsurface due to the frictional force [92]. Thus, phase transforma-
tions might produce ‘butterflies’ and ‘dark and white etching’ regions. It might not be critical for the crack initiation but it can
involve some degree of strain localization, however, it leads to accumulation of plastic strain in the local region. It will be
continually accompanied with changes in residual stresses and local mechanical properties such as phase transformations,
surface intrusions and extrusions.
Fig. 1. Physical description of Heathcote slip phenomenon in a spherical roller bearing.
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These five phenomena explain where the defect might be potentially localized. Besides that, some experimental obser-
vations in the literature help us to explain how dentation might happen. Dentation might occur due to: (1) debris particles
which enter the contact zone, (2) lubrication disturbances and (3) impact vibrations.

Contamination particles might be naturally produced within running-in and in latest stage of steady state stage. Contam-
ination particles of lubricant oil is one of the main reason of distributed defects [225]. It is observed that when solid hard
particles go into the contact region, surface dentation is inevitable. Contaminations might generate non-linear film thickness
and stress concentration. Basically, when particles of sizes (5–20 lm) larger than the oil film thickness pass through the
contact region, localized pressure peaks have greater chance to occur in the contact region. However, it is important to notice
that when the particle size is large, there is less chance to enter the contact region [225]. The grease of small thickener
particles (that enter the contact region) will increase the risk of pitting damage. However, the large particles can originate
oil starvation in the inlet of the contact zone, once they are big or gathered. The thickener particles can cause deep elastic
indentations accompanied by large pressure fluctuations and cause high stress concentration [226]. Hence, increased stress
is expected. The pressure level will be doubled due to thickener particles entering the contact region. The pressures fluctu-
ations due to large thickener particles are less significant compare to small ones, since the load is distributed over a larger
area. Once the particles enter the contact region and the loads are high enough, the particles might be squashed into either
platelets or fragments. It depends on particles ductility. Ductile particles cause smooth rounded and relatively shallow
indents, while the brittle particles cause deep steep sided dents [18]. The dent size that is initiated by smashed particles
is usually varied with depth range of 2.5–32 lm and 30–360 lm in width. Moreover, the dent has usually shoulders of
0.4–4 lm height. It is noted also that the surfaces indentations vary in depth and spatial extent. In general, the dent is ana-
lytically characterized by depth, diameter, distance between shoulders peaks and height of its shoulders [227].

The surface and operating imperfections (waviness, clearances, preload, etc.) disturb the lubrication film uniformity. The
lubrication film transfers to the surface valleys. The peaks of wavy surfaces act as preload where the clearances between con-
tact bodies become smaller. Therefore, boundary lubricated contact is more possible to exist between the rolling element
and the race [225]. The stress concentrations are caused by local film thickness fluctuations and pressure ripples [92]. There-
fore, the surface imperfections and EHL conditions can generate local film thickness fluctuations and pressure ripples, as
causes for stress concentration. Moreover, the higher the sliding imposed on the EHL contact, the higher the maximum shear
stresses in the subsurface [92]. The increasing correlation between the influence of surface layer thickness and viscosity on
the operating load and friction coefficient is observed [158]. This observation is quite important for the applications which
are running in conditions of high loads, low speeds and lack of lubricant, where insufficient hydrodynamic forces may enable
the asperities on the opposing surfaces to interact. Halme and Andersson [228] illustrated the lubrication regime effects and
their detectable symptoms of rolling bearing defects. In Table 2, the literature that illustrates different lubrication regimes is
classified for more detailed information.

Vibrations due to sudden impact events might dent the contact surfaces [229]. Vibrations might generate high contact
stresses which cause permanent plastic deformation of balls, raceways and lubricant degradation. Söchting et al. [229] high-
lighted that the vibration forces are much higher than the applied bearing preload, in which the bearing might momentarily
offload and allow a gap between the rolling element and raceway to occur, this phenomenon named as gapping. The small
bearing stiffness change result in relatively large variations in gapping. When gap (28–48 lm) is occurred, large dynamic
loadings (shock or hammering) can result on the rolling element and raceway when they come into contact. The vibration
force might produce gapping phenomenon normally in starting-up, launching [229], cut-off situations, and disturbances
during operations. The lubricant type is significantly important in gapping phenomenon, it was experimentally noted that
natural frequency of solid lubricant (grease) was 50–100 Hz higher than the recorded for the liquid lubricant (base oil)
[230]. The solid lubricants produced powdery particles as a result of vibration forces, which also reduce the lubricant dura-
bility. Moreover, it is quite possible for bearings debris particles to be created during period of subjected vibration forces
[229]. These debris particles could become entrained into the lubricant and may damage the bearing surface later.

Therefore, the surface properties have the great importance and influence on bearing endurance, lubricant film, friction
and vibration. Vibrations caused by varying compliance arise in radially loaded bearings because of the non-linear relation-
ship between contact deformation and forces. The spectrum of vibration contains bins at the rolling element passing
frequency and its harmonics. Therefore, surface properties and their non-linear effects make the generated vibration of such
contact is not strictly periodic and quite complex [231]. The vibration characteristics are highly dependent on the effects of
geometrical imperfections (i.e. variation of roller diameters, inner ring waviness), abrasive and fatigue wear [232].

2.3.2. Dentation
The transition from running-in stage to steady-state stage represents the first transition event within the whole wear evo-

lution progress. The second transition event is from the steady state to the defect initiation stage. In the previous section, five
potential defect locations and four mechanisms of how the dentation might occur i.e. high stress, contamination, vibration,
and lubrication disturbances were presented. The remaining question is when the dentation might start within the REB’s
lifetime? It is basically related to the yield stress limit (Y). This limit is required in order to generate a dentation by the
applied forces. There are three theories predict when the dentation might occur. The first theory is related to contact
mechanics. The other two dentation theories are related to the contamination and impact vibration mechanisms, and both
are dependent on external initiator i.e. contamination in oil or vibration due to sudden impact events. Contact mechanics
approach offers the possibility of treating the contact region as a continuous dynamic phenomenon. It is done either with
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the restitution coefficient model or with the contact force approach. The contact force approach relies heavily on a mathe-
matical model for the force-indentation and indentation rate relationship. Hertz theory predicts the stress distribution in the
contact zone between two bodies having a surface of revolution [233]. The common force–indentation relation for the sphere
to sphere contact is [233]:
F ¼ Kd
3
2

where F is the normal force pressing the solids together, d is the deflection of the two spheres i.e. the total of deformation of
both surfaces, K is a constant depending on the sphere radii and the elastic properties of the sphere materials. Beyond the
elastic loading we consider two other stages i.e. elastic–plastic and fully plastic. In the elastic–plastic stage, the plastic defor-
mation is small enough to be accommodated by an expansion of the surrounding area. As the load increases, the plastic zone
grows and the displaced material flows to the sides of the indenter. For example, the sphere contact yield will initiate when
the mean contact pressure is 1.1Y and the flow will become fully plastic at about 3.0Y [234].

2.3.3. Crack initiation
Once the surface is dented, the asperities act as the stress raisers. Thus, the crack initiation process will have the sufficient

stress intensity factor to start the progress. The crack initiation process is considered as the core of the fatigue wear process.
Fatigue wear process generates wear particles after repeated cycles of contact. It is related to whether the applied contact is
high or low-cycle [76]. Lundgren and Palmgren [74] defined experimentally the critical number of rolling cycles for gener-
ation of wear particles. The formula depends on applied load and shape factor of rolling element. It is assumed that contact
pressure is high enough to introduce yield in the contact region, however, it is not. The local yield is generated in the contact
region because of the existence of material micro-defects e.g. inclusions, vacations, boundaries, asperities. Later, the fatigue
wear progress will have several life cycle processes: incubation, formation, propagation, and removal process [77]. Sadeghi
et al. [79] have reviewed and discussed fatigue wear due to subsurface inclusions in rolling contact and the bearing life pre-
diction models i.e. probabilistic and deterministic. The material microstructure has influence on the fatigue wear, due to the
inhomogeneous and random nature of material microstructure, related to randomly shaped, sized and oriented grains [79].
However, the descriptive model try to consider the effect of other mechanisms such as asperities, dents and debris on the
whole fatigue wear, to reveal their roles in the wear evolution progress.

The wear progression of dented surfaces have investigated [15,9,10] to determine the location of first micro-crack. Several
empirical observations of these studies are presented below to draw up the fundamental mechanism of crack initiation phe-
nomenon that supports the descriptive model. Gao et al. [9] observed that the presence of a surface indentation can modify
the EHL condition and the film thickness, which increase the pressure and stress concentration on the trailing edge of the
defect. The defect starts with a crack on the surface near to the trailing edge of original dent, instead of the edge of the
deformed dent [9]. Mota [10] observed the damaged area around the dents. The dent was found to be always larger for the
tests using base oils that for those using greases [10]. The dent itself remains as prominent feature and creates relatively high
local surfaces stress around the dent edges, where the new defect later initiate [27]. The high surface stresses around the dent
shoulders create correspondingly high shear stresses in the subsurface. When the lubrication is poor, surface distress (micro-
spalls) can be observed in the trailing edge of the dent, while the substantial wear occurs at the leading edge, possibly because
of the local film collapse [92]. In summary, the high surface contact pressure and sub-surface stresses from the dentation
shoulders are the main cause of defect [9,10]. The residual compressive stress around the dents can prolong the contact fati-
gue life [9]. The same effect might exist due to the over-rolling and abrasive/adhesive wear, which is well-known as smooth-
ening phenomenon. It explains how the asperities that generate stresses might be smoothened. It was observed in many
studies that there are shape changes of the dents’ asperities during several contact cycles [9]. Mota [10] refers the surface
smoothening of damaged area to the abrasive and adhesive wear actions. Ueda and Mitamura [20] refer the shape changes
of the dent to the over-rolling phenomenon, where asperities become smaller during the first few contact cycles. It can be
concluded that these asperities and their topological changes clarify the physical mechanisms of crack opening. Moreover,
it is concluded that the descriptive model should consider three key mechanisms to illustrate the crack initiation in REB. These
three mechanisms are: tangential forces acting on the dented surface, friction forces, and the impact forces due to associated
vibrations. Therefore, the descriptive model illustrates and considers the crack initiation phenomenon as the following:

First, for healthy surface, tensile stress is generated at the entrance of contact point, while compressive stress is generated
at the exit. Therefore, the magnitude of tensile and compressive stress generated by the tangential force is assumed to be the
same at each contact point, due to a constant tangential force. In the case of dented surface, two issues are important to
understand the Leading–Trailing Impulse Phenomenon:

� At the leading edge: the compressive stress which is generated at exit of the leading edge is larger than the tensile stress
which is generated at the entrance of the leading edge.
� At the trailing edge: the tensile stress which is generated at entrance of the trailing edge is larger than the compressive

stress which is generated at the exit of the trailing edge.

The direction of tangential forces depends on whether the surface is driven or driving, since the surface friction direction
is different [10]. The direction of tangential forces is the same as the rolling direction for driven surface, while it is in opposite
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direction for driving surface. Micro-cracks tend to occur at the one edge of dents with respect to rolling direction. It occurs
mainly at the trailing edge of the dent of driven surfaces, due to the influence of large tensile stress.

Second, the friction force is one of the most important issues that is pulling the lubricant film and causing tensile stresses
in the sliding direction [235–237]. The wear and possibly surface distress can be expected at the leading edge of the dent,
due to thinner film thicknesses. The sliding might result due to larger traction forces when the roller rotational speed is
reduced and the roller become the slower component at the roller–raceway contacts [221]. The zone of surface distress
was observed in the trailing edge of the dent, while substantial wear occurs at the leading edge. When the asperity friction
increases, the cracks go deeper [150]. Therefore, the frictional forces are quite significant issue to design durable REB. The
coating material and its effect on wear process have been further illustrated in [238,25,239,240,208,211]. Moreover, several
stress estimation models based on multi-axial fatigue criteria have been proposed in [93–97].

Third, the impact forces that are generated when the rolling element hits the trailing edge of the dent, explain the stress
concentration and the initiation of several micro-cracks near to that edge. In fact, Kotzalas and Doll [221] observed the num-
ber of micro-cracks after the trailing edges that have relative spaces between them. It indicates the dynamic effect of rolling
element after hitting the trailing edge, which might result as hammering loads with specific spacing once enough gapping is
available. Kocich et al. [241] investigated the white-noise with low energy character of AE signals, in order to detect the plastic
deformation event. The results show that a sudden rising of AE counts rate occurs near the yield point. It is induced from the
movement of several dislocation bands. However, the dislocation density rises in the surface layer, but not in a continuous
manner. Zhi-qiang et al. [242] highlighted the great influence of strain rate on the level of emitted AE signal. It is worth to
highlight that the experiments which introduced artificial defects somehow ignored the earlier stages of wear progress. In
such studies and tests, the further wear progress is totally dependent on the artificial defect size (length, width and depth),
shape (dent, line defect) and its radial location. Therefore, it might not represent the real wear evolution progress. In order to
represent a real wear evolution progress, the wear interactions should be considered. The descriptive model adopts the asper-
ity theory proposed by Alfredsson et al. [148] to illustrate the wear interactions. Alfredsson et al. [148] introduce the asperity
as a stress raiser mechanism that initiate the surface cracks. However, the new descriptive model considers also the degra-
dation effect of the asperity due to over-rolling, adhesive and abrasive wear. Moreover, the descriptive model considers
the effect of asperity-lubrication film on the subsurface crack. These novel considerations present how the descriptive model
is able to address the wear interaction. These novel considerations are based on several studies that are discussed below.

2.3.3.1. Asperity as stress raiser. Kaneta et al. [24], Polonsky et al. [25], Dahlberg and Alfredsson [26] and Jouini et al. [151]
have studied the asperity-induced stresses. Alfredsson et al. [148] observed that the single asperity served as stress raisers,
when it enters and leaves the dry rolling contact. The critical asperity height was found to be small approximately 2 lm. The
largest principle stresses in the un-cracked materials determine the cracking trajectories (in depth, width and length) [149],
as illustrated in Fig. 2. In fact, the crack trajectories can explain how the wear defect might propagate in the width direction.
The asperity size, friction and residual surface stress are all have influences on the crack initiation. The asperity height and
local asperity friction have the largest effect on the crack initiation risk. Therefore, any reduction in the asperity friction will
lengthen the surface lives and decrease the progression of the fatigue wear process. When the asperity friction increases, the
cracks go deeper [150]. However, the crack depth is mainly influenced by the residual surface stress. Therefore, the defect
size is best reduced by increasing the compressive residual stress, due to the fact that compressive residual stress tends
to give more shallow fatigue wear. Mota et al. [227] highlighted that the shoulder sharpness is one of the most important
parameters of dent characteristics. Shoulder sharpness is defined as ratio of shoulder height to the difference between
the dent diameter and the diameter of shoulders peaks. From dynamic point of view, the dent edges are the potential impact
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area when the rolling elements pass over the dent. These impact events produce sudden high stresses which are function of
rolling element speed and impact area. In fact, there are impulsive effect of shoulders on the dynamic response due to the
impact effects of entry edge and exit edge of the defect zone. This phenomenon named as which called the double-impulse
phenomenon [23]. The entry edge is called leading edge and the exit edge is called as trailing edge in contact mechanics field.
It is commonly observed that the impact of leading edge is quite smaller than trailing edge. The impulse interval in time
domain could indicate the dent size (i.e. diameter, dent length). Moreover, the impact amplitude at leading edge corresponds
to the dent’s shoulder height. The impact amplitude at trailing edge corresponds relatively also to the dent depth and size. In
this sense, the impulsive responses at leading and trailing edges are not symmetrical.

2.3.3.2. The effects of over-rolling, adhesive and abrasive wear. The shape of the dent changes to become smaller, during the
first few contact cycles [20]. The material at leading edge of the dent deforms to broaden the dent due to high tensile stress,
while the material at the trailing edge of the dent deforms and fills in the dent due to high compressive stress [20]. Thus, the
measured dynamic impact of the dent is much smaller when its shoulders are smoothened. The impact at trailing edge might
be also higher in case the roller element hits the modified bulge material at that edge [20]. Therefore, a plastic flow of the
material is generated around the dent. Kim et al. [243] highlighted that the effective softening of the contact is due to
asperity plasticity. Therefore, the over-rolling process modifies the surface topography i.e. asperity and plastic deformation.
The over-rolling on the surface topography usually flattens the top of the asperity. However, although the asperities are
plastically deformed during the over-rolling cycles, they remain sufficiently high to produce tensile surface stresses during
a second steady-state roll cycle [148].

The effects of adhesive and abrasive wear on the asperity degradation are quite significant in rolling contact. Kato and
Adachi [76] explained that the probability of wear particle generation depends on several issues: (1) microscopic shape of
the contact, (2) microstructure of the material in the contact region, (3) microscopic surface contamination, and (4)
disturbances in the surroundings. The scanning electron microscope (SEM) examination of rubbing surfaces showed that
the gradual transfer of material from the rough rotating cylinder to the smoother stationary ball. The adhesive wear might
act in the contact interface which has enough adhesive bonding strength and introduce a plastic deformation. This plastic
deformation is due to dislocations which occur in the contact interface region under compression and shearing. Adhesive
wear coefficient varies between 10�7 and 10�2 [76].

The abrasion actions are peeling-like mechanism the produce abrasion particles with sizes up to 200 lm. However, it is
strongly affected by the material properties and geometry of contacting surfaces. Therefore, it is the most complicate param-
eter to estimate as well. The abrasive wear occurs when a single contact point is hard and sharp enough to remove a surface
material of other contact point [54,55]. Abrasive cutting results in ploughing edges, groove and removed material (i.e. deb-
ris). Therefore, the hard abrasive asperity is assumed to act as indenter with three different modes: micro-cutting, wedge
forming and ploughing. Hamblin and Stachowiak [66] observed a good correlation between quadratic spike parameter
and abrasive wear rates. Abrasive wear resistance is linearly proportional to hardness of wearing materials [76]. Abrasive
wear coefficient varies between 10�4 and 10�1 [76]. The wear particles are approximately spheres with diameter of 1 lm
and the number of wear particles is about 18 � 10�9 for 0.6 g weight loss due to wear [65]. The correlation between bearing
wear and the debris particle size is observed [68]. The accumulated RMS signal is seen to be directly proportional to the wear
scar volume [215]. A wear test with a polished cylinder (i.e. that established a full elasto-hydrodynamic film) shows no RMS
signal above the noise level. This observation indicates that the asperity contact is the prime source of the AE signals. Wear
tests with particle inclusions (1 lm) show both RMS signal and wear volume were reduced by the inclusion of the particles
[215]. Such observation illustrates the potential competition between adhesive and abrasive wear. The increase in RMS sig-
nal in the beginning of testing time was associated with material transfer from the cylinder to the ball by adhesion, later, the
abrasive wear was dominant.

The volume of the abrasive wear can be predicted based on several modes: micro-cutting, wedge forming and ploughing.
Several enhancements have been conducted to enhance the abrasive wear predictions such as the shear and attack angle
based model [56], two-body abrasive wear model [57,58,66], slip-line field model [59,60], subsequent abrasion approach
[62], artificial abrading surface model [63], coating-abrasion model [64]. However, the analytical estimation of wear based
on metal cutting theory overestimates the wear [1]. This is due to the assumption that all the material from the groove is lost
from the surface. The observations show that in general only some of the displaced material is actually detached while the
remainder is piled up at the edges of resultant groove.

These asperity degradation mechanisms i.e. over-rolling, adhesive and abrasive wear are depending on the amount of the
asperity interactions. A common parameter used to estimate the degree of asperity interaction is the lambda ratio k as the
ratio of lubricant film thickness to composite surface roughness. It is given by the following expression [244]
k ¼ hffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2

Surface 1 þ R2
Surface 2

q

where k is degree of asperity interaction, h is the lubricant film thickness, RSurface 1 is the RMS roughness of the roller surface,
and RSurface 2 is the RMS roughness of the raceway. If k is less than unity it is unlikely that the bearing will attain its estimated
design life because of surface distress, which can lead to a rapid fatigue failure of the rolling surfaces. In general k ratios
greater than three indicate complete surface separation. A transition from full elastohydrodynamic lubrication (EHL) to
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mixed lubrication (partial EHL film with some asperity contact) occurs in the k range between 1 and 3 [244]. These asperity
degradation mechanisms might de-accelerate the crack opening phenomenon as the asperity will be partially removed. A
correlation between vibration levels and presence of wear particles (i.e. concentration) is observed over the test lifetime
[225]. The AE data may be related to the source mechanisms due to different phenomena such as asperity contact, micro-
crack initiation and propagation, plastic deformation and flow [215]. However, since any combination of these mechanisms
may be active at any time, the interpretation of AE signals can be complicated. Peng and Kessissoglou [218] detected wear
debris by vibration spectrum analysis in the low-frequency range, up to 0.3 kHz. Moreover, the wear was represented in the
frequency domain as narrowband of increasing energy content (offset) around 260–280 Hz.

2.3.3.3. Subsurface crack initiation. It was discussed previously that the sub-surface crack either initiation by inclusion or
stress concentration due to frictional forces. Larger size roller bearings operating typically at low to moderate Hertzian pres-
sure are most susceptible to frictional surface loading [245]. Tangential forces by sliding friction acting on a rolling contact
increase the von Mises equivalent stress and shift its maximum, i.e. the position of incipient plastic deformation, toward the
surface [246,247]. Moreover, the subsurface crack can propagate due to dentation load [128,129]. The correlation between
the AE location results (based on cumulative RMS values) and the subsurface cracks locations is observed [248]. The cracks
were propagated approximately parallel to the surface with the maximum length of 200 lm and were distributed between
50 and 200 lm below the surface. Price et al. [249] observed that AE is capable to detect subsurface cracks prior to pitting.
Schwach and Guo [202] observed bursts in the signal that indicate near-surface cracking. Also, the noise in the AE signal may
indicate that crack initiation and propagation is occurring. The noise feature depends on the crack propagation features
(shape, direction, angle, etc.). The detection of spalls depends on the thickness of the white layer of the surface. The white
layer is a brittle layer often associated with high tensile residual stresses which may allow sudden fracture at the crack tip.
Therefore, the signals detect the aggressive and rapid crack growth.

2.3.3.4. Wear mechanisms interaction. Watson et al. [48] highlighted the difficulty to develop wear prediction models as the
ability to consider several wear and stress concentration mechanisms. The prediction based on individual wear mechanism
is usually not a good assumption for practical applications. The most complicated issue is to consider the interactions among
these wear and stress concentration mechanisms. This descriptive model illustrates the effect of asperities-induced stresses
on the crack initiation, in the same time, the effect of over-rolling, adhesive wear and abrasive wear which smoothen the
asperities. Smoothening the asperities prolong the surface life. Such physical interactions among the wear and stress concen-
tration mechanisms lead to non-linear wear evolution which is well observed in the experimental and field data [12,13].
Therefore, there is a need to determine the deformation rate i.e. degradation rate of the generated asperities over the time.
Olver [39] stated that mild wear at the surface can act to shorten cracks as time progresses. The influence of wear on the
crack length can be observed as mitigation effect of fatigue. Moreover, the small changes in the shape of the contacting sur-
faces have a very large effect on the stresses and fluid pressures generated in each subsequent passes of rollers. Therefore,
the asperity topography should be modified continuously with respect to the interacted mechanisms.

2.4. Crack initiation to crack opening state

A defect is expected to take place after a critical number of plastic strain cycles in the wave [250]. Jiang and Sehitoglu
[251] and Jiang and Sehitoglu [252] stated that at the point where the maximum contact pressure is above the critical value
of the elastic shakedown limit, the repeated plastic deformation takes places. Therefore, the fatigue wear coefficient is a
function of the attack angle and normalised shear strength. This plastic deformation phenomenon is known as cyclic plastic
or ratchetting, which have been further studied [139,253,254]. The several models show that the stress fields result in elastic
and plastic deformations introduce some changes to the shape of the surface [83–87,235]. Therefore, the new descriptive
model utilises these observations to define key factors of the crack opening phenomenon. First, the loading pattern must
contain minimum and maximum peak values with large enough variation or fluctuation. The peak values may be in tension
or compression and may change over time but the reverse loading cycle must be sufficiently great for the fatigue crack ini-
tiation. Second, the peak stress levels must be of sufficiently high. If the peak stresses are too low, no crack initiation will
occur. Third, the material must experience a sufficiently large number of cycles of applied stress. The number of cycles
required to initiate and grow a crack is largely dependent on the first two factors. These three conditions help to estimate
how much the surface asperity is applying additional stresses that will initiate and accelerate the crack opening. Moreover, it
helps to estimate how the asperity-induced stresses are accumulated either by the time for crack opening process or the
accumulated loading cycles. Different subscripts are used to designate the stress intensity factor for different modes. The
stress intensity factor for mode I is designated KI and applied to the crack opening mode. The mode II stress intensity factor
KII applies to the crack sliding mode and the mode III stress intensity factor KIII applies to the tearing mode. Hannes and
Alfredsson [149] defined a formula of asperity induced-stresses r0 assumes that the crack is straight.

2.5. Defect propagation

As the crack is opened, the focus will shift from plasticity at pre-existing stress–strain concentration points into the plas-
ticity at the tip of the crack [39]. The crack is described by the strength of the stress intensity factor (SIF) at the tip. The most
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straight-forward assumption of crack propagation is the linear elastic fracture mechanics [116–118]. The crack is described
by the strength of the SIF at the tip. There are three main stages of propagation process: incubation, stable, and crack-to-
surface [39]. It has been observed that the pit does not result from the return of the crack itself to the surface but rather
the secondary cracks connecting the original crack to the surface [255]. Before that the crack continues to extend so that
it often eventually becomes parallel to the surface. Wang and Hadfield [119] and Mota [10] state that the cracks depend
on the direction of tractive or friction forces. Therefore, cracks extend usually in depth at about 20� to the surface, beside
the role of crystallographic texture [34,7]. The crack continues to extend so that it often eventually becomes parallel to
the surface [256,124]. Later, the pits results once the secondary crack(s) connecting the original one to the surface. The direc-
tion of cracking in stable fatigue stage (second stage) controlled by the direction of the motion of the contact zone cross the
affected surface [39]. When cracks grow due to the increased stresses and unite with other cracks, debris is formed when it
detach from the surface. This is the origin of the fatigue wear process [88–90,22,91].

There are three mechanisms that are driving the cracking process: shear stresses (mode II and III), fluid pressurization due
to lubrication [162,163,170] and fluid entrapment [156,157], as illustrated in Fig. 3. Moreover, enough adhesive bonding
influence and propagates the crack in a combined damage mode of tensile and shearing. The crack propagates downward
to the depth of the maximum stress in a smooth Hertzian contact [9]. Olver [39] stated that mild wear at the surface can
act to shorten cracks as time progresses. The influence of wear on the crack length can be observed as mitigation effect
of fatigue [41]. Moreover, the small changes in the shape of the contacting surfaces have a very large effect on the stresses
and fluid pressures generated in each subsequent passes of rollers. Therefore, we can conclude that the shape and size of pits
and spalls are significant aspects to determine the new defected surface topology. Fluid entrapment refers to the closure of
the mouth sealed fluid to the crack. It generates fluid pressure result in a high SIF on the crack tip. Balcombe et al. [156,157]
observed that the pressurized fluid is the factor driving the crack opening. It is directly linked to the severity of crack prop-
agation in the normal mode. In fact, that is due to an increase in SIF, which is directly related to the severity of crack opening
displacement. The SIF is the govern crack propagation and critical to determine the crack propensity to grow. Furthermore,
the combined effect of the external loading and crack opening generates shearing at the crack tip, which is strongly affected
by the angle of inclination. It was also observed that the magnitude of SIF is directly related to the length of the crack. There-
fore, longer cracks yield higher SIF, in which the acceleration of crack growth rate might occur. Balcombe et al. [156]
summarized the second group i.e. crack lubrication film and listed four main lubrication influences on crack growth: (1)
it reduces the friction between crack faces. (2) It applies direct pressure on the crack faces. (3) It causes hydrostatic pressure
at crack tip. (4) It causes transient effecting due to the squeeze fluid layer mechanism.

The dent-initiated micro-crack(s) propagates down to the subsurface until either it meets another surface crack or an
adhesive action removes the material. The first option depends on the high surface contact pressure and sub-surface stresses
which are generated at the indentation edges. The tangential forces might be enough to initiate secondary cracks. The sec-
ondary cracks are usually responsible to connect the subsurface crack with the surface. The effects of material flow and grain
size are observed in the defect clustering process [257,258]. The white etching layer phenomenon has significant role in the
secondary crack initiation [259,255]. The development of heavily branching and widely spreading trans-crystalline crack
systems is also depends on the chemically assisted crack growth by corrosion fatigue [245]. Chang and Jackson [152], Heyes
[153], and Li et al. [154] provide detailed explanations of debris formation and asperity interactions. The formation of debris
particles and natural dents are observed [10]. However, the wear volume was always higher for the tests using base oils, for
each pair of grease/base oil (i.e. have almost same k) [10]. In general, the defected surface results in more aggressive contact
which increase the applied loading [12]. Yoshioka and Fujiwara [260] measured the defect propagation time as the time dif-
ference between the times at which AE signals increase at the position of failure on the raceway to the time when vibration
acceleration increases at the same position of failure.
Fig. 3. Schematics of three mechanisms that are driving the cracking process.
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2.6. Defect completion to damage growth

Wang and Hadfield [119] studied surface crack defect characteristics. Ringsberg and Bergkvist [120] studied crack length,
crack angle, crack face friction and coefficient of surface friction near the contact load. Zhao et al. [121] and Zhao et al. [122]
studied the ring crack propagation. Further, Tsushima [123], Liu et al. [124], Richard Liu and Choi [125], Donzella & Petrogalli
[126] and Leonel and Venturini [127] have defined a number of issues that are required while modelling crack propagation:
high stress location, depth below surface and the direction and angle of crack inclination. Therefore, based on these preli-
minary studies, quite large number of models related to crack propagation have been developed [130–136,79,137–141,43].

The crack propagation process will continue and the damage factor will be accumulated until the defect is completed and
material is removed from the surface. The defect completion means the damage growth stage will start and continue iter-
atively in rapid growing manner. The crack propagation speed depends on the applied SIF. The crack propagation distance
will be accumulated until it reaches a pre-specified crack length. Therefore, it is important to estimate how long time the
crack propagation process will take. Also, it is important to know how the crack propagation phenomenon accumulates
the asperity-induced stresses. Navarro and Rios [261] and Sun et al. [262] proposed the model where the crack growth rate
da/dN is assumed to be proportional to the crack tip plastic displacement dpl.
da
dN
¼ C0ðdplÞm0
where C0, and m0 are material constants that are determined experimentally. It is known that short cracks do not behave in
accordance with linear elastic fracture model (LEFM). However, in view of the numerical simulation, it is beneficial to
express the plastic displacement dpl in terms of the stress intensity factor K [106]. The total number of stress cycles N
required for a short crack to propagate from the initial crack length a0 to any crack length ‘a’ can then be determined as
[262]:
N ¼
Xz

j¼1

Nj
As the crack extends through ten or more grains, the influence of the material structure on the crack growth becomes
negligible and the linear elastic fracture mechanic theory can be applied thereafter. In the framework of the LEFM the
propagation rate of long cracks can be described by the Paris’ equation [262].
da
dN
¼ C0ðDKÞm0
where C0, and m0 are experimentally determined material parameters. However, this equation holds only before the crack
reaches some critical crack length, when the crack growth rapidly increases until it becomes uncontrollable. Expressing the
plastic displacement dpl in terms of the stress intensity range K enables treatment of short and long cracks in a similar fash-
ion. If the relationship between the stress intensity range and the crack length K = f(a) can be derived in some way, the
remaining service life of a mechanical element with the crack can be estimated with appropriate integration of rate da/
dN. Considering small crack lengths observed during pitting in the contact area of mechanical elements, only the theory
of short cracks is usually needed for describing crack propagation from the initial to the critical crack length. The effect of
over-rolling and abrasion on the SIF has essential role in crack prorogation process.

2.7. Damage growth

After the propagation stage, a complete defect is existing. The new descriptive model explains damage growth stage as a
combination of defect growth in three directions (length, width and depth). In the depth direction, the spall phenomena can
occur and deeper defect might be generated. Spalling is defined by ISO 15234 standards as advanced stage of flaking or
rolling/sliding contacting surfaces during service. Therefore, the defect might propagate as extended area or propagates
downward of the depth of the maximum stress in a smooth Hertzian contact. One important factor to be considered in
the wear progress is the material response and hardness. In fact, it is well known that the instability stage might exposed
to: decrease in yield stresses due to material softening, increase in the volume of deformed subsurface, microstructure
changes and increase the radial tensile stress. The hardness profile of the virgin material is determined as a function of depth
[238,25,239,240,208,211]. Therefore, it is quite important to consider the material softening, since some region of the first
surface layers (i.e. the most hardened layer), are already partially removed. It means that in this stage the rolling element
will contact softer and rougher surfaces. Therefore, it is expected that the defect will generates more stresses and propagates
faster to become wider and deeper. In the length direction, the first defect has also leading and trailing edges which can ini-
tiate a new micro-crack and once again new defect is occurred. Therefore, the new trailing edge of pits will function as the
stress raiser and initiate further spall [15]. However, at this stage, several wear mechanisms are involved and therefore the
wear progress is accelerated. The wear curve tends to have aggressive and rapid increase in this stage. Al-Ghamd and Mba
[263] observed that increasing the defect length increased the burst duration. In the width direction, the defect area is
defined by the width and depth of the defect. Therefore, as the defect area become larger the rolling element hits stronger.



216 I. El-Thalji, E. Jantunen / Engineering Failure Analysis 45 (2014) 204–224
Al-Ghamd and Mba [263] observed that increasing the defect width increased the ratio of burst amplitude-to-operational
noise (i.e. the burst signal was increasingly more evident above the operational noise levels).

The surface become rougher after some material related to first defect is removed. Therefore, adhesive and abrasive wear
have higher possibility to occur. Moreover, the lubrication film is not uniform anymore and a number of surface disturbances
are easily expected to happen. The defect also generates a number of larger sizes and sharper of surface asperities. Altogether
produce clearance between the contacting surface which become gradually larger and therefore the contact gapping is
expected. Moreover, the impact, which is generated while rolling element hit the defect area (the area of defect trailing
edge), become stronger. The wear debris particles of first defect(s), which have large size and sharper shape, act a stress
raiser and abrasive particles. Once the defect is completed and material is removed from surface as debris, new asperities
are generated and the damage growth will continue and repeat slightly in the same damage scenario. Thus, the crack open-
ing, crack propagation, over-rolling and abrasion will repeat again and again until a new defect is completely removed from
surface, and so on. Moreover, the effect of multiple asperities is significantly important in damage growth stage.

Most of the experiments that have studied this stage have introduced a quite large size artificial defect which is even larger
than the real size of spall defects. Dempsey et al. [14] observed that the spall length increases sharply at the beginning and
then settles to a stable increment state before increasing sharply again. Sawalhi and Randall [23] investigated the trend of
kurtosis values of faulty signals, with relation to the development of the fault size. The kurtosis increases almost linearly
in the early stage of testing time interval as the defect size increases. However, it stabilizes later as the defect size is slowly
extended. It could be either due to the existence of smoothing process or the surface becoming highly rough which the
kurtosis might not be any more effective to detect. Kakishima et al. [264] utilised the vibration and AE measurements to
detect artificial defects for both ball and rolling bearings. The AE sidebands were smaller in the case of wider artificial defect.
In general, the AE and vibration magnitudes of the defect frequency component increase with increasing defect size. The
vibration magnitude of the defect frequency component is more sensitive to the width of defect. Therefore, the vibration mag-
nitude is related to the impact area (the contact area where the rolling element hits the raceway). This area can be calculated
by the defect width and the inclined depth of defect. The length of the defect has indirect impact on the impact area, due to
the fact that a longer defect space lets the rolling element fall deeper and hit a larger area of the trailing edge of the defect.
Moreover, the roller element contacts/hits wider area of the defect than the ball element. Kim et al. [265] have observed that
the ultrasound signals are clear at low speeds and display a number of impulses which are generated by localized defects.
3. The evolution of rolling contact wear and surface topology features

The detailed illustration of the new descriptive model with the supportive experimental findings in the literature is pre-
sented in previous section. In this section, a summary of the descriptive model and its characteristics are provided.

The bearing lifetime is described based on five stages. The wear evolution model assumes that at certain time interval of
the steady-state stage, a transition into the defect initiation stage will take a place. Later, the evolution model describes the
wear progress with help of two assumptions: the existence of multiple stages that have specific transition events and
existence of multiple wear and stress concentration mechanisms that are acting in each progress stage. Therefore, the wear
evolution model that has been described in details with help of literature (i.e. experimental findings) can be summarized as
follows. When the stresses in rolling contact increase due to the increase operating loads, additional loads due to faults i.e.
imbalance, misalignment, bent shaft, looseness, and/or distributed defects i.e. high degrees surface roughness and waviness,
contaminations, inclusions, some topological changes might occur. These topological changes in the contact area generate
stress concentration points and lubrication film disturbances. At early stage, the concentrated stresses are not strong enough
to produce a defect. It is mainly located in the loading zone and in the normal running track i.e. pure rolling points. Later,
some sliding events, lubrication film transfers, false brinelling events due to stand-still events might occur and introduce
some degree of surface interaction. These surface interactions might appear as reduction in the lubrication film, gapping,
miss-matching between the rolling element profile and race profile, etc. Therefore such surface conditions allow some abra-
sive wear event, some contaminations to enter the contact zone and minor vibration impacts. As a result of these actions,
some surface dentations might be generated. Therefore, the model describes how dentations and in particular their asper-
ities has the main role in the defect initiation and propagation process. The main assumption is that as long as the asperity is
larger and sharper, the contact force is larger when the rolling element passes over the asperity. The contact force and other
loading forces increase and concentrate the applied tangential force. The tangential force and the friction force are the main
forces that generate sufficient SIF for crack opening and later for the crack propagation. However, since the rolling element is
rolling over the asperity over the time and the asperity can be abraded, the original shape of dent is changing over the time.
Therefore, the impact force can be degraded and the crack opening and propagation progress as well. However, although the
asperities are plastically deformed during the over-rolling cycles and degraded by abrasive and adhesive wear actions, they
remain sufficiently high to produce tensile surface stresses. In the end, the propagated crack need a secondary crack to reach
the surface or it can attach to the rolling element once sufficient adhesive bonding is exist. During this process, the lubrica-
tion film is distorted and transfer into surface crack where another mechanical and chemical actions might accelerate the
defect completion. When the defect is completed and the material is detached from the surface: new asperity is generated,
new debris is generated, sever disturbances of lubrication film is generated, and the less hardening material (i.e. the material
that was below the removed defect material) became the new surface.
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The new descriptive model highlights the features of the generated defect and its asperity. The length of the generated
defect depends on how long the crack could propagate in parallel to the surface before the detachment process occurred.
The depth of the generated defect depends on how deep the crack was opened before it matches with a secondary or
sub-surface inclusion. It also depends on the friction force and its depth of stress concentration. The width of the generated
defect depends how far the force trajectories were propagating. The defect’s length, depth and width are the basic elements
of the new impact area. Therefore, a new impact force will be generated when the rolling element passes over the new defect
i.e. specially at the trailing edge of new defect. The new defect will generate a number of defect serials and the generated
debris will generate several dentations in different locations. First, the tangential force will be larger since the asperity is
larger and rougher than initial dent asperities. Second, the new debris will generate more sever dentation since it is larger
and sharper than contamination particles. Debris might act as moving and distributed asperity. Moving asperities have more
random and non-linear way of action compare to the fixed ones i.e. dent asperities. Large portion of debris will be pressed
into the surface and generate more dents. Moreover, debris can act as asperity and minor indenter and generate abrasive
wear. Third, the surface hardness of the new appeared surface is less than the initial surface hardness.

The five stages are schematically illustrated in Fig. 4. The wear evolution progress produces several surface topology
changes. These topology changes have significant effect on the physical measurements, in particular, for condition monitor-
ing purposes. At the end of running-in stage, the roughness of the surface becomes smoother. Therefore, the steady-state
stage is characterized by uniform lubricant film and contact mechanics, under normal operating conditions. When the
surface is dented, the surface look likes peelings. Later, the shapes of dents change due to the over-rolling and abrasive wear
actions. However, the trailing edge acts as stress raiser and the micro-cracking is initiated and opened on and under the
surface. The micro-cracks propagate from the surface downward with inclination, which depends on rolling direction. The
crack propagate later in parallel with rolling direction until it meet a secondary crack and connect to the surface or detaching
process occur. Therefore, relatively large material will be detached from the surface as debris particles. After first pit a
number of pits and spalls are expected to occur in a serial pattern and extend in wider and deeper manner, where the defect
area becomes larger and rougher.

Rolling wear interactions: the new descriptive model of wear evolution i.e. five-stages emphasise the dynamic nature of
wear. This dynamic nature is produced as a combination of wear mechanisms, stress concentration mechanisms, and
operating conditions. Thus, rolling contact wear is not generated by single and individual wear mechanism. This dynamic
nature changes significantly the wear evolution scenario over the lifetime. Therefore, we need to understand the interactions
and competitions among the involved wear mechanisms. In Fig. 5, the schematic description of surface mechanism, wear
interactions and wear evolution are simply illustrated within three frameworks respectively. The wear interaction frame-
work presents the involved wear mechanisms (fatigue, abrasive, and adhesive) together with the dent, debris and asperity
mechanisms. First, fatigue wear mechanism depends on the loading patterns and lubrication regimes. Therefore, the cyclic
load and friction coefficient are main attributes for contact damage criteria. The stress concentration might vary based on
friction coefficient. Low friction means that stress will be most probably concentrated in subsurface. High friction means that
stress will be concentrated on surface. The low-friction produces subsurface stresses which might accumulate and initiate a
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Fig. 4. Evolution of dynamic behaviour and surface topology due to wear evolution.



Fig. 5. Interaction and competition of wear mechanisms.
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crack, as shown in 2C-4 track in Fig. 5. However, the high-friction produces micro-cracking. Later this crack propagates until
a secondary or branching crack occurs before it reaches the surface, as illustrated in the track 2.A-8 in Fig. 5.

The dent-related wear mechanism can be produced by three different mechanisms: (i) due to high stresses as represented
by (2.A), (ii) due to local hardening as (1.C), where one surface press (i.e. as brinelling) the other surface in stand-still
operations and (iii) due to debris particles (2.D) which is pressed and left the surface. The dent usually increases surface
roughness and might lead to lubrication disconnect points during rolling, as the lubricated film move toward the bottom
of the dent in (11). Third, debris might be produced by abrasive wear, (2.B). On other hand, debris produce a stress concen-
tration points (as illustrated in track 12–10), also debris might act as minor indenter (cutting object) where more abrasive
wear might occur (as illustrated in track 12-2B). Moreover, the debris produce moving particles (12), and fixed asperities (10)
on the surface, in terms of ploughing edges on the sides of abrasion track. Fourth, asperities are represented once the
dentation is occurring on the surface. They are also considered a stress concentration points and as potential objects for
abrasive wear. The interactions are represented in Fig. 5 as (+) sign which shows how the different mechanisms interact
and accelerate the performance and consequence of each other. However, mechanism competitions are represented by
(�) sign. One of the clear examples of the mechanism competition is the crack initiation and abrasive wear. In this case,
the over-rolling and abrasive wear mechanism smoothen the rough asperities which are generated by dentation.

Influencing factors: the new descriptive model of wear evolution i.e. five-stages emphasise the influencing factors that can
highly vary within each stage. Therefore, it is important to consider influencing factors within each stage. Kappa [266] had
illustrated the influencing factors on the lubricant film quality. Therefore, in the study the influencing factors are illustrated
for the whole wear evolution in the same manner. In summary, the wear progress depends on the evolution of loading con-
ditions, surface quality, lubrication film quality and subsurface quality as illustrated in Fig. 6. These four factors generate
together specific patterns of stress concentration and the damage progression scenarios. In Fig. 6, these four factors which
influence the wear evolution are illustrated.

In this sense, the wear modelling can utilise the descriptive model to gain the required fundamentals about the wear
mechanisms, stages transitions. The wear testing can also utilise the descriptive model to design experiments that can deli-
mit the mechanisms behind the natural wear evolution process. In fact, there are two approaches for wear testing either
using natural accelerated damage by applying overloads, adjusting the lubricant film thickness, and adding contaminated
oil, or Introducing artificial defect into the surface by false-brinelling, erosion charge and scratching. The later approach is
widely used due to it is simplicity of modelling, where the researchers can virtually introduce a well-known shape and size
of the defect. They can also artificially introduce the same defect in the validation experiment. Furthermore, this approach
delimits the testing complexity, as it focuses on a single artificial defect, compared to the natural defect approach where a
number of defects might be produced. The drawback of this approach is that the damage criterion is somehow artificially
determined which might be totally different than the defect in the real operation. Therefore, the artificial defected bearing
tests have not much to tell us about the evolution of real wear progress. Finally, the wear monitoring can utilise the
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descriptive model to understand the physical phenomenon and surface topology changes behind the measured signals and
provide better ability to diagnosis the wear severity over the time.
4. Conclusions

The published literature contains a wide range of numerical and experimental findings related mainly to crack initiation
and propagation. These two phenomena are important and central phenomena to explain the wear evolution. However they
are not sufficient. Therefore, the new descriptive model explains and links the pre-stages with the crack initiation in the roll-
ing contact i.e. steady state, defect localization and dentation. In particular, the explanation of defect localization provides
five potential stress localization mechanisms beside the contamination effect, lubrication disturbances and impact events.
Moreover, it explains and links the post-stage of crack propagation i.e. damage growth. These stages and their associated
issues provide the whole wear evolution progress, supported by the scientific experimental findings within the literature.
The new descriptive model enhances the understanding of the fatigue wear i.e. crack initiation and propagation by consid-
ering the wear interactions i.e. over-rolling, abrasive, and adhesive. The model shows that the interaction among the
involved wear mechanisms might accelerate or decelerate the wear evolution. That provides better understanding of the
measured data and better estimation for the remaining useful time. In summary, the new descriptive model highlights
the evolution stages, the transition event between the stages, the involved mechanism in each stage, and the surface topol-
ogy changes over the lifetime and the influencing factors. The implication of the new descriptive model is to provide the
basis for more realistic modelling, testing, and monitoring of the wear evolution in REBs.
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a b s t r a c t

Condition monitoring tools aim to monitor the deterioration process i.e. wear evolution of defects. The
wear evolution is quite complex process due to the involvement of several wear and stress concentration
mechanisms. Therefore, the purpose of this paper is to provide a dynamic model of wear evolution that
considers the topographical and tribological changes over the lifetime. The model suggests the use of
multiple force diagrams to simulate the dynamic impact and utilises several models of contact
mechanics to estimate the transition points between the wear evolution stages. The simulated results
of the developed evolution model are in principal agreement with the experimental results.

& 2014 Elsevier Ltd. All rights reserved.

1. Introduction

The rolling element bearing (REB) is one of the most critical
components that determine the machinery health and its remain-
ing lifetime in modern production machinery. Robust condition
monitoring (CM) tools are needed to guarantee the healthy state of
REB during the operation. CM tools indicate the upcoming failures
which provide more lead time for maintenance planning. CM tools
aim to monitor the deterioration i.e. wear evolution rather than
just detecting the defects. One way to get significant knowledge
and insights concerning the wear process and how to monitor its
evolution is by dynamic modelling. However, the current dynamic
models in the literature lack to model the dynamic response over
the whole life time. The wear evolution process is quite complex
due to the involvement of several wear mechanisms (i.e. fatigue,
abrasive, adhesive, corrosive) and several stress concentration
mechanisms (i.e. dent, asperities, debris, sub-surface inclusions).
These involvements and their interactions and competitions
produce a wear evolution progress which varies significantly with
respect to surface topographical and tribological changes. Thus,
the wear evolution model requires a continuous two-way feed-
back between the contact mechanics and the dynamic mechanics
processes over the REB’s lifetime.

Over the years, several dynamic models have been developed
to investigate the dynamic behaviour and features of REBs. The
dynamic models of REB were first introduced by Palmgren [1] and
Harris [2]. However, total non-linearity and time varying

characteristics were not addressed at that time. After that Gupta
[3] completed the first dynamic model of REB and later Fukata
et al. [4] presented a comprehensive non-linear and time variant
model. The more advanced issues of time variant characteristics
and non-linearity were raised and studied by several authors. For
example, Wijnat et al. [5] reviewed the studies concerning the
effect of the Elasto-Hydrodynamic Lubrication (EHL) on the
dynamics of REB. Tiwari and Vyas [6] and Tiwari et al. in [7,8]
studied the effect of the ball bearing clearance on the dynamic
response of a rigid rotor. Sopanen and Mikkola [9] reviewed
different dynamic models with the discussion of the effect of
waviness, EHL, and localised faults and clearance effect. Later, the
finite element method (FEM) was used to provide more accurate
results. Kiral and Karagülle [10] presented a defect detection
method using FEM vibration analysis for REBs with single and
multiple defects. The vibration signal includes impulses produced
by the fault, modulation effect due to non-uniform load distribu-
tion, bearing induced vibrations, and machinery induced vibra-
tions and the noise which is encountered in any measurement
system. Sopanen and Mikkola [9] implemented the proposed ball
bearing model using a commercial multi-body system software
application MSC.ADAMS. Endo [11] developed a 16-degree-of-
freedom (DOF) model of a gearbox in order to simulate spall and
cracks in the gear teeth. First, the FEM model was utilized to
simulate the variation of the mesh stiffness for two types of faults
under varying static load conditions. Then the model was inte-
grated into the lumped parameter dynamic model. The study
obtained the dynamic transmission error and acceleration
responses under different loads and speeds. Sawalhi and Randall
[12] developed a 34-DOF model of a gearbox in order to simulate
spall and cracks in the REB based on Endo’s model of 16-DOF. This
model includes extra 18-DOF due to the consideration of a five-
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DOF bearing model and the consideration of translational DOF
both along the line of action and perpendicular to it. Massi et al.
[13] studied the wear that is resulting from false Brinelling at the
contact surfaces between the balls and races of the bearings.
Several models have been developed to study the effects of several
distributed and localized defect on REB dynamics: clearance effect
[8,9,14–16], waviness effect [17,9,15], disturbances effect of EHL
[9,12], and the effect of localized faults [18–20] etc.

In the past, the largest share of the studies has focused on the
localized faults using different modelling techniques. McFadden and
Smith [18], McFadden and Smith [19], Tandon and Choudhury [20]
and Sawalhi and Randall [12] simulated the defect as a signal function
of impulsive train into the modelled system. For example, Tandon and
Choudhury [20] have introduced the defect as pulse function with
three different pulse shapes: rectangular, triangular and half-sine
pulse. Wang and Kootsookos [21] introduced defects as a function of
basic impulse series. Ghafari et al. [22] have virtually introduced a
defect into the equation of motion as a triangular impulse train at the
related characteristic frequencies of a defect. Rafsanjani et al. [23]
modelled the localized defects as a series of impulses having a
repetition rate equal to the characteristics frequencies. The amplitude
of the generated impulses is related to the loading and angular
velocity at the point of contact. Malhi [24], Kiral and Karagülle [10],
Sopanen and Mikkola [9], Massi et al. [13] and Liu et al. [25] intro-
duced the defect as force function into their FEM models i.e. as a
constant impact factor. More preciously Liu et al. [25] introduced the
localized defect as a piecewise function. Ashtekar and Sadeghi [26],
Sassi et al. [27], Cao and Xiao [15], Rafsanjani et al. [23], Patil et al.
[28], and Tadina and Boltezar [29] modelled the defect based on its
geometrical features i.e. as a surface bump or a dent that has length,
width and depth. Tadina and Boltezar [29] modelled the defect as an
impressed ellipsoid on the races and as flattened sphere for the
rolling elements. Nakhaeinejad [16] utilised the bond graphs to study
the effects of defects on bearings vibrations. The model incorporated
gyroscopic and centrifugal effects, contact deflections and forces,
contact slip and separations, and localized faults. Dents and pits on
inner race, outer race and balls were modelled through surface profile
changes i.e. type, size and shape of the localized faults.

However, these dynamic models deal with wear phenomenon
as a localized defect with fixed features over the lifetime. The
reason is that the purpose of these models is to detect the defect
within the generated vibration signals and not the incremental
deterioration process i.e. wear evolution. These dynamic models
start from the point where the defect is localized as simulated
defect in the models or artificially introduced into experiments.
That ignores the prior-stage(s) of the localization process. These
dynamic models assume that the localized defects and their
associated impact stay constant over the whole lifetime. That
ignores the topographical and tribological changes of the defected
surface. In order to model the wear evolution, an incremental
numerical procedure should be developed that is able to integrate
the contact information continuously into the dynamic model.
This means that the applied force due to the wear progress and its
associated topographical and tribological conditions should be
iteratively updated into the dynamic model.

Physics-based prognostic models describe the physics of the
system and failure modes based on mathematical models such as
Paris’ law, Forman law, fatigue spall model, contact analysis and
stiffness based damage rule model. Physics-based prognostic
models are based on crack length, and defect area as illustrated
by Li et al. [30], and Li et al. [31], or relations of stiffness as shown
by Qiu et al. [32]. However, the most challenging issue within
physics-based prognostic is to define the loading–damage rela-
tionship and to model it. There are models based on damage rules
as linear damage rule, damage curve rule, and double-linear
damage rule [32]. The drawback of these simplified functions is

that they all use the constant damage factor which is hard to
estimate or measure. Moreover, these functions are either linear or
multi-linear functions. That means that the estimated results
might seem matching with the overall measured results, however,
both of them might describe different damage scenarios in behind.
Therefore, the prediction based on such functions makes the
prognosis a risky task. Recently, some model-based models have
been utilised for the contact stress analysis to illustrate the wear
evolution progress. These models provide more accurate predic-
tions. Some models are based on contact stress analysis [33] and
some are based on system dynamics [34], [35]. Chelidza and
Cusumano [36] proposed a method based on a dynamical systems
approach to estimate the damage evolution. The results of these
models depend also on the stress-damage function and the
constant damage factor that are in use. These models assume that
each wear mechanism generates stresses that in total equal to the
overall measured stresses. Therefore, the wear mechanics interac-
tions and competitions are somehow ignored.

Recently, El-Thalji and Jantunen [37] presented an updated frame-
work of wear evolution in REBs. It is based on the well-known three
stage model (i.e. proposed by Voskamp [38]) and most recent studies
in rolling contact wear. The updated framework is simply described as
a five-stage scenario: running-in, steady-state, defect initiation (den-
tation, micro-cracking, inclusions), defect propagation (pits, propa-
gated cracks), and damage growth (spalling). Thus, the advantage is to
explain more effectively the instability stage which is sub-divided into
three stages. That helps us to explain the general nature of wear
evolution i.e. the wear interactions and competitions in more detailed
manner for modelling and monitoring purposes. It provides better
understanding of wear evolution stages, the involved wear mechan-
isms in each stage, the interaction among wear mechanisms in each
stage, and the influencing factors within each stage. The challenge is
how to develop a dynamic model that can illustrate this five stage
model that considering the wear interactions and competitions due to
the involvement of wear and stress concentration mechanisms.
First, the modelling procedure should be capable to integrate the
contact mechanics model with dynamic model, for iterative feed-
backs. El-Thalji and Jantunen [39] have discussed such modelling
integration for REBs. Second, the modelling procedure should be able
to estimate the wear interactions and competitions over the lifetime.
Third, it should be able to determine the transition events and their
impact on the system dynamic behaviour e.g. dentation event as a
transition between steady-state stage and defect initiation stage.
Therefore, the purpose of this paper is to provide a dynamic model
of wear evolution. The dynamic model is presented for studying the
dynamic behaviour and properties of a single-degree-of-freedom
system under the effects of wear evolution process over the whole
lifetime. The dynamic model requires a number of contact mechanics
models in order to model the transition between wear evolution
stages. Therefore, the contact mechanics models will be discussed to
illustrate the determination of the wear transition events, beside the
wear interactions and competitions. In the end, the study aims to
develop a model that can generate non-linear wear evolution which
can be used for prognosis purposes. The paper begins with presenting
a description of wear evolution. Later, the analytical dynamic model is
explained. The results part describes the simulated dynamic response
of each wear progression stages and discusses the simulated with
respect to the measured data.

2. The developed dynamic model of wear evolution

A real shaft-bearing system is generally very complicated and
difficult to model [40]. In addition to that, the modelling of wear
evolution in REBs makes it even more complicated. Thus, the
developed model obtains simple equations of motion based on
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single-degree-of-freedom system. The dynamic simulation models
are basically described with help of the following equation of
motion:

M½ � €y
� �þ C½ � _y

� �þ K½ � y
� �¼ Ff g ð1Þ

where M½ �; C½ �; and K½ � are respectively matrices of system mass
(es), damping coefficient(s) and stiffness(es). Ff g is the excitation
force matrix.

Surface defects i.e. wear influence the dynamic response of the
system, in particular, the mass, damping ratio, stiffness and excitation
force. The removed material from the surface influences the mass,
either reduce or change the uniform distribution. The surface defect
disturbs the uniformity of the lubrication film and leads to some
changes in damping ratio. When a dent or a defect occur, it will leave
an empty space on the surface, which changes the stiffness i.e.
curvature difference and summation of the rolling contact. The defect
also introduces an excitation force when the rolling element passes
through the edges (i.e. impact areas) of the defected surface. How-
ever, the developedmodel considers the effects of mass and damping
ratio are small and therefore they are ignored in this study. Moreover,
the model considers the surface dentations as damage initiator
rather than the sub-surface defect. The sub-surface cracking is consi-
dered in the crack propagation stage of the model.

It is worth to explain that several bearing manufacturers indicate
with their lifetime estimation formula, e.g. the SKF bearing rating life
formula, that the load and capacity are the main influencing factors,
assuming that the lubrication, oil contamination and operating
conditions are ideal. Based on this assumption, their lifetime predic-
tion show quite long lifetime and they fit very well with applications
where the influences of the lubrication, oil contamination and ope-
rating conditions are controlled and neglected. The damage in the
bearings of such applications are related to sub-surface defect which
appear after long time of operation i.e. after high repeated stress
cycles, inclusions in the sub-surfaces and the degradation of the
material properties.

However, several studies in the literature [41–43], etc. show that
under the normal loading conditions, the damage might appear much
earlier once the lubrication, oil contamination and operating condi-
tions are disturbed. Moreover, the rating life formula expresses the
capacity to load ratio with an exponential factor that is related to
contact type i.e. ball contact, rolling contact. Therefore, the studies
show that lubrication disturbances might generate boundary lubri-
cated contact, abrasive actions, pressing particles between surfaces,
etc. and these actions in fact initiate the surface dentations. Therefore,
the “service life factors” have been introduced to the life rating
formula including lubrication, the degree of contamination, misalign-
ment, proper installation and environmental conditions. These service
life factors can easily influence the bearing lifetime at early stage and
initiate surface dentations much earlier than sub-surface defects, in
particular, for bearings that are operated in normal loading conditions
(with some degree of variation) and assuming high material quality
(which have been used in other applications and showed long
lifetime). In fact, several studies [44,45,43], etc. highlighted that the
probability of getting disturbances in lubrication, contamination
degree and operating conditions are higher than having sub-surface
inclusions at early stage.

Moreover, the model relies on the surface dentations which
might influence the dynamic response in more measurable manner
compare to the sub-surface defect at early stage of wear evolution
process.

Thus, two effects of wear evolution are considered in the dynamic
simulationmodel: stiffness and excitation forces. Therefore, the effect
of surface defect can be introduced to the previous equation as
following:

M½ � €y
� �þ C½ � _y

� �þ KþKF½ � y
� �¼ FþFFf g ð2Þ

where, KF is the stiffness change due to specific defect and FF is the
defect-induced forces. Therefore, most of modelling studies that
discussed in the introduction part have implemented the same
approach of considering surface defect into the dynamic models. The
changes were in the size and shape of the modelled surface defect.

However, the size and shape of the surface defect due to wear
are changing over the lifetime. One of the most probable scenario
of wear evolution is presented in [46]. The scenario highlights that
there are mainly four stress concentration mechanisms which
involved in rolling contact: subsurface inclusions, asperities, dents
and debris (as moving asperities). These mechanisms concentrate
and allocate the stresses at a specific point or region. Cracks are
initiated due to material in-homogeneities and cyclic stresses.
Later, cracks propagate toward the surface. The cracks propagate in
parallel to the surface, until it meets secondary cracks that connect
it to the surface. Asperities might be expressed in the form of
surface roughness. However, the most significant asperities are
initiated by dents, abraded points, ploughed points, etc. A dent can
be described in two dimensions as the stress raiser of two up-ward
asperities (wedges). The asperity acts as a stress raiser which
results in more cracking actions. When the new cracks reach the
surface, new material will be detached and new asperities will be
initiated. That might explain the phenomena of stress increasing
while passing the detected surface zone over time. Moreover, the
asperity might act as minor indenter once it is hard and sharp
enough. However, the asperity is also subjected to over-rolling,
adhesive and abrasive actions, once the operating conditions are
allowing that. The adhesive and abrasive action might reduce the
asperity and its effect as stress raiser. This issue considered as a
wear competition with rolling contact and should be considered to
model the non-linear progress of the wear evolution. This brief
description of wear evolution is schematically illustrated in Fig. 1.

The wear evolution model in Fig. 1 provides a good idea of how
the defect size and shape change over the time. This information is
required to simulate the changes in the stiffness and defect-
induced forces (excitation forces) within the dynamic model. The
literature which have been discussed in [46] show that the surface
topography change due to wear can be represented as force
functions. In Fig. 2, the schematic representation of the surface
topography change due to wear is shown together with approx-
imate force functions (right side). The surface topography changes
i.e. dentation, cracking, defect, and damage growth are considered.
This representation is capable to consider the defect features
(length, depth and width of the defect), issues related to the
trailing edge features i.e. shoulder of asperity, sharpness, and other
issue related to the number of defects i.e. multi asperities and their
chain effects i.e. speed difference. However, in order to simulate
the wear evolution over the whole lifetime a couple of issues
should be considered:

1. The KF and FF should be estimated with respect to the surface
topographical change due to wear evolution process. Thus, the
KF and FF are functions of time and will be inserted to the
equation of motion continuously over the time. However, it is
clear that the change in the KF and FF are related to the change
of the surface topography. Therefore, the changes are related to
certain events of the wear evolution process e.g. dentation,
cracking, defect, and damage growth. Knowing when those
event might occur, it provides us the time when the KF and FF
should be changed to the updated ones.

2. The transition points between wear evolution stages should be
estimated with the help of stress analysis. The basic idea at first,
is to estimate the stress levels which are sufficient to generate a
certain surface topographical change. After the first step the
stress which is generated by the dynamic model over the time
should be accumulated and compared with the determined
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stress levels. The stress history can be extracted based on the
time history to estimate when certain surface topographical
events might happen. In order to determine these three issues,
contact mechanics and dynamic analyses are needed. The
contact mechanics analysis will provide the induced stress due
to the different defected surface topologies. In addition the
contact mechanics analysis is needed to estimate the accumu-
lated stresses in order to determine the transition events
between the five stages of the wear evolution progress. El-
Thalji and Jantunen [39] have discussed the modelling integra-
tion between dynamic and contact mechanics for wear evolu-
tion in REBs.

The basic estimation principle of the induced stresses due to
wear evolution is based on influence of the surface asperities that
are generated by the topographical change. A surface asperity
generates concentrated stresses at certain point of line in the
rolling contacted area. Therefore, the fatigue wear theory is highly
dependent on the asperity size and shape. However, as it is

described in literature [46], the wear process is a process of
multiple wear and stress concentration mechanisms and there
are interactions and competitions among those mechanism. For
example, the surface asperity induced stresses is sufficient to
initiate and propagate the fatigue wear process. At the same time,
this asperity might be smoothen by the over-rolling and abrasive
wear actions, which cause a reduction in the induced stresses in
return. Therefore, the wear interactions and competition should be
considered as well. However, the wear modes that are modelled in
this paper are fatigue and abrasive wear, besides the influence of
over-rolling mechanism.

In summary, this modelling procedure requires iterative update
of stiffness parameters and excitation forces (which change due to
the wear evolution progression) in order to provide the system
response over the studied lifetime. In order to do that, the
modelling procedure should be capable to determine four issues:

1. The stiffness parameter for each certain defected surface
topography.

Fig. 2. The surface topographical changes during the wear evolution process.

Fig. 1. Lifetime progress of rolling contact wear (the below surface topographies are explained further in Fig. 2).
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2. The excitation force for each certain defected surface topo-
graphy.

3. The interaction events i.e. wear competition, over-rolling
smoothing, abrasive wear.

4. The transition events i.e. conditions between the five stages of
the wear evolution progress.

The flowchart in Fig. 3 illustrates the procedures of the dynamic
simulation model. The flowchart shows that the model starts and
accumulates the stresses. When the accumulated stresses reach
certain value, this means a dentation process is started as well. The
generated dent will have specific asperity that produce stress
concentration and again the generated stresses will be accumu-
lated. When the accumulated stresses reach certain value, the crack
is opened. In the same time, the asperities will be under over-rolling
and abrasive wear actions. That means the generated stress due to
dents’ asperities will be reduced, however, they will still sufficient
to open the crack. The crack will propagate and the associated
stresses will be again accumulated. When the accumulated stresses
reach a certain value, the defect will be completed. The model will
keep repeating the previous procedures and the damage will grow
rapidly. The accumulated stresses due to the damage growth
process reach a certain value, the failure is occurred.

2.1. Stiffness estimation for certain surface topography

The Hertzian contact theory is used to estimate the stiffness
parameter due to certain defected surface topography. The contact
stiffness depends on the curvature sum and the difference. There-
fore, the defect is considered as an object generates clearance. The
developed model follows Harris’ method [47] of how to estimate
the elastic and permanent deformation in rolling bearings. Later,
the change in the curvature parameters due to the deformation is
considered in the equation of motion as presented by Tadina and
Boltezar [29]. A very commonly used formula is the force-
indentation relation for sphere to sphere contact [48]:

F ¼ Kδ3=2 ð3Þ
where, F is normal force pressing the solids together. δ is the
deflection of the two spheres, i.e. the total of the deformation of
both surfaces. K is a constant depending on the sphere radii and
elastic properties of the sphere materials.

2.2. Excitation force modelling due to certain surface topography

A shock is the transmission of kinetic energy to a system,
occurring in a relatively short time. Sassi, et al. [27] modelled the
impact force due to a defect based on the defect length. Assuming
that the system is conservative, the conservation of mechanical
energy between state 1 (before shock) and state 2 (after shock) is
given as follow [27]:

1
2
mV1

2þ1
2
Iω1

2
� �

þmg
Bd

2
¼ 1

2
mV2

2þ1
2
Iω2

2
� �

þmg
Bd

2
cos ðθÞ ð4Þ

where m the rolling element is mass, I is the rolling element mass
moment of inertia. V2 and V2 present the linear velocities of the
rolling element, before and after the shock events, respectively. ω1

and ω2 present the angular velocities of the rolling element, before
and after the shock events, respectively. The Bd is the rolling
element diameter and θ is the contact/impact angle as shown
Fig. 4. The equation highlights that the impulse is a change in
momentum. In an impact of very short time duration (between an
initial time ti and a final time tf), the impact force FImpulse is
typically very large. With help of Fig. 4, the impact force FImpulse

can be estimated.

The mg (the gravitational force) is much smaller than FImpulse.
Therefore, the gravity can be ignored for the impulse calculation.
For planar motion in the xy plane, the equations for impulse and
linear momentum are [49]:

mvGxiþ
Z tf

ti
FPxdt ¼mvGxf ; and mvGyiþ

Z tf

ti
FPydt ¼mvGyf

Z tf

ti
FPxdt ¼mvGxf � mvGxi ð5Þ

Z tf

ti
FPydt ¼mvGyf � mvGyi ð6Þ

where vGxi is the velocity of the centre of mass G in the x-direction
before impact, and vGxf is the velocity of the centre of mass G in the
x-direction after impact.

vGxi ¼ �w1r ð7Þ
w1 is the initial velocity of the rolling element and r is the rolling
element radius. The negative sign accounts for the fact that
positive angular velocity means the ball rolls to the left (in the
negative x-direction). vGyi is the velocity of the centre of mass G in
the y-direction before the impact, and vGyf is the velocity of the
centre of mass G in the y-direction after the impact. Since the ball
initially rolls on a flat horizontal surface [49], vGyi ¼ 0, where
vGxf ¼ �vGf cos θ, vGyf ¼ vGf sin θ, where vGf is the velocity of the
center of mass, after impact, which is defined as vGf ¼wf r, where
wf is angular velocity about point P on the tip of the asperity of the
defect.

In order to define the impact forces with respect to the defect
parameters e.g. length, depth, the following angles definitions will
be substituted.

cos θ¼ r�h
r

; sin θ¼ dlength=2
r

ð8Þ

where h is the height of the asperity of the defect and dlength is the
length of the defect. Therefore, the impact forces can be defined:

R tf
ti FPxdt ¼ �mw1 1�5h

7r

� �
r�hð Þþ mw1r

Z tf

ti
FPydt ¼mw1 1�5h

7r

� �
dlength
2

� �
ð9Þ

It can be noted that the impact force depends on defect depth,
defect length, rolling element parameters i.e. mass, speed, and
radius.

In this study, it is significantly important to estimate the
induced stresses due the impact events. The impact stresses can
be estimated based on the stress–force relationship.

FImpact ¼ σImpact � AImpact ð10Þ

The impact area is quite complicated to be estimated. However,
it was assumed to consider the impact area as a pie slice that
might be generated when the rolling element hits the asperity. The
“pie” slice is illustrated schematically in Fig. 5. The segment is only
the small partially curved figure left when the triangle is removed.
The idea is to provide a simplified method to estimate the change
in the impact area once the asperity and defect depth changes over
the wear evolution process.

The impact area AImpact and defect width dwidth can be estimated
as follows:

AImpact ¼ Asegment ¼ Asector�Atriangle ¼
2θ
360

πr2�1
2
r2 ð11Þ

dwidth ¼ 2r sin θ ð12Þ
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Fig. 3. The dynamic simulation model of wear evolution process.
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This part of analysis provides an illustration of how the induced
stresses might be influenced by the defect size parameters and
shape features (as shown in Fig. 6).

In the end, for each of surface topographical change, the KF and
FF can be estimated as described in previous two sections.

2.3. Wear interaction events

The over-rolling and abrasive actions have potential to take a
place within the wear process once the asperity interaction degree
is allowing that. The over-rolling and abrasive actions act as
asperity degradation process. Therefore, their actions are clear
when the asperities of dents and defects are generated. It is clear
that the impact effect of the asperity will be reduced as long as the
asperity degrades. The developed model considers the degradation
effect i.e. smoothening effect as degradation function. Sahoo and
Banerjee [50] present an analysis of the effect of asperity interac-
tion in elastic–plastic contact. Therefore, the developed model
adopted their equation to estimate the asperity deformation due
to the contact pressure at the asperity, which is given as follows:

ω¼ z�dþ1:12
ffiffiffiffiffiffiffiffiffiffiffi
wapa

p
E

ð13Þ

where, ω is the deformation due to the contact pressure at the
asperity, z is the height of a given asperity, d is the mean
separation between the rigid flat and the rough surface, wa is
the contact pressure on a single asperity, pa is the global mean
contact pressure on the surface and E is the modulus of elasticity.
More details of the deformation of asperity can be found in [50,51].

Abrasive wear depends on the lambda ratio (i.e. degree of
asperity interaction). This is the ratio of lubricant film thickness to
composite surface roughness and is given by the expression [34]:

λ¼ hffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
RSurf ace 1

2þRSurf ace 2
2

q ð14Þ

where λ is degree of asperity interaction, h is the lubricant film
thickness, RSurf ace 1 is the RMS roughness of the roller surface, and
RSurf ace 2 is the RMS roughness of the raceway. If λ is less than unity,
it is unlikely that the bearing will attain its estimated design life
because of the surface distress, which can lead to a rapid fatigue
failure of the rolling surfaces. In general λ ratios greater than three
indicate complete surface separation. A transition from full elasto

hydrodynamic lubrication (EHL) to mixed lubrication (partial EHL
film with some asperity contact) occurs in the λ range between
1 and 3 [34].

Therefore, under specific tribological condition, the abrasive
wear is taking a place in the asperity deformation as well. The
abrasive wear depends of the height of the rolling element
asperity which cut part of the surface asperity of the raceway.
Therefore, the developed model has adopted the abrasive wear
model provided by Masen et al. [52]. It is assumed that the
abrasive wear process cut gradually over the time a specific
amount of the surface asperity with specific depth (d). This process
will continue until the surface asperity reach specific height where
no interaction with rolling element asperities.

2.4. Wear transition points

The first transition event within the whole wear evolution
progress is the transition from running-in stage to steady-state
stage. However, this transition event is not with interest of the
developed model. Therefore, the second transition event is
between the steady state and defect initiation stage, in particular,
when the dentations occur. There are several potential defect loca-
tions and four mechanisms of dentation i.e. high stress, contam-
ination, vibration, and lubrication disturbances. In general, the
dentation might occur the applied stresses reach the yield stress
limit (Y). In the elastic–plastic stage, the plastic deformation is
small enough to be accommodated by an expansion of the
surrounding area. The model has adopted the formula in [47] to
estimate the yield stresses for permanent deformation. Therefore,
the model can estimate when the dentation occur by accumulating
the applied stresses until the yield stress limit is reached.

The third transition point is between the dentation and crack
opening stage. Several models show that the stress fields result in
elastic and plastic deformations introduce some changes to the
shape of the surface [52–57]. These models help to estimate how
much induced stresses (to initiate and accelerate the crack open-
ing) are applying on the surface due to the surface asperity. The
asperity-induced stresses are accumulated either by the time for
crack opening process or the accumulated loading cycles. Different
subscripts are used to designate the stress intensity factor for
different modes. The stress intensity factor for mode I is desig-
nated K I and applied to the crack opening mode. The asperity
induced-stresses σ0 can be estimated by the formula of Hannes
and Alfredsson [58]. The model assumes that the crack is straight.
Therefore, the developed model utilise the asperity model to
estimate the asperity-induced stresses and accumulate the

Fig. 4. Impact phenomenon in rolling contact.

Fig. 5. Impact area of asperity and defect.
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Fig. 6. The defect size parameters.
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stresses until the crack opening limit is reached. The crack opening
limit is determined by the stress intensity factor of mode I.

The fourth transition point is between the crack propagation
and defect completion. Ringsberg and Bergkvist [59] studied crack
length, crack angle, crack face friction and coefficient of surface
friction near the contact load. Tsushima [60], Liu et al. [61], Liu and
Choi [62], Donzella and Petrogalli [63] and Leonel and Venturini
[64] have defined a number of issues that are required while
modelling crack propagation: high stress location, depth below
surface and the direction and angle of crack inclination. Therefore,
based on these preliminary studies, quite large number of models
related to crack propagation have been developed [65–78]. The
developed model assumes that the crack propagation process will
continue and the induced stresses will be accumulated until the
crack propagation limit is reached. The crack propagation speed
depends on the applied SIF. The crack propagation distance is
accumulated until it reaches a pre-specified crack length. Navarro
and Rios [79] and Sun et al. [80] proposed the model where the
crack growth rate da/dN is assumed to be proportional to the crack
tip plastic displacement δpl.

da
dN

¼ C0ðδplÞm0 ð15Þ

where C0; and m0 are material constants that are determined
experimentally. The total number of stress cycles N required for a
short crack to propagate from the initial crack length a0 to any
crack length ‘a’ can then be determined as [80]:

N¼ ∑
z

j ¼ 1
Nj ð16Þ

Later, the damage growth stage will start and continue itera-
tively in a rapid growing manner. The developed model assumes
that whenever the accumulated stress reach the crack propagation
limit, a new defect is generated.

3. Results and discussion

A groove ball bearing (SKF 61810-4) was used for the modelling
and testing purposes. The bearing inner diameter is 50 mm, the outer
diameter is 65 mm and the weight is 0.052 kg. The results of the
developed model are shown in Fig. 7 where the main wear events
have been illustrated. The sudden increase in response amplitude
after the dentation occurs, approximately around the middle of the
lifetime, as shown in Fig. 7. The effect of over-rolling and abrasive
actions is clearly observed after the dentation and defect completion
stages. Later, the system response rapidly increased when the defect
is completed and material is removed. The response rapidly increases
due to the generation of new asperities and wear-debris, which
means the damage growth, will continue. A number of bearings were
tested in accelerated laboratory tests. The test arrangement is
explained in [81] and the normalised RMS acceleration response is
shown in Fig. 8. The acceleration measurements were accompanied
with particle counting (HIAC PM4000) in some of the tests.

Both results in Figs. 7 and 8 indicate the steady-state nature of
vibration acceleration during first half of the lifetime. However,
the simulated results show some variation due to the surface
dentation. Later, during the second half of the lifetime, a lot of
variation is presented. Therefore, the simulated data illustrate the
principal phenomena of dynamic response due to wear evolution
process. The principal agreement that can be observed in the
predicted response compared to the measured response is related
to the principal stage and events of wear evolution process.
However, the simulation is based on multiple models that estimate
the response, transition conditions and stress accumulations with
certain degree of uncertainties. These models that are used in the

approach Hertz theory, approximated impact area, stress intensity
factors, etc. are approximated models which can cumulate the
uncertainties and give origin to error propagation.

Moreover, the measured data contains several issues related to
different applications, boundary conditions, environments, third-
body features, etc. At this stage of the model development the
model aims to simulate the wear evolution process in simplified
manner. These issues which are also discussed in detail in [46]
might significantly influence the level of uncertainty of such a
simplified model. Therefore, the further development of the model
should address them in order to enhance the accuracy level.

This study intends to provide reliable interpretations of the
measured data and to predict the future wear progress. Therefore,
at this stage, it aims to achieve a principle agreement between the
simulated and measured data in the first hand. However, for
quantitative comparison purposes, the shift between simulated
and measured curves is needed. It requires having a comparable
timeline for both simulated and measured data sets. At this stage of
model development, it is a heavy computational task to generate
the simulated dynamic response for the whole lifetime e.g. 6 million
cycles. Keep in mind, the ultimate goal is to interpret and predict at
certain time intervals by samples, rather than to get a well fitted
curve over the whole lifetime. This model might help to tune the
multiple models that are used to estimate the response, transition
conditions and stress accumulations and to gain better accuracy
degree, once the whole lifetime picture is considered. In other
words, these multiple models might tune each other to provide a
better fit to the measured data in the end.
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Fig. 7. Normalized RMS value of vibration acceleration of simulated system.
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Fig. 8. Normalized RMS value of vibration acceleration in laboratory tests. [76].
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4. Conclusions

The industrial applications utilise the in-field measurements in
order to plan the required maintenance actions in a cost effective
manner. In the literature, the developed wear evolution models of
for bearings have been developed by introducing a virtual defect
into the model and then the dynamic responses have been
calculated. The defect size parameters have been varied to present
the development of the defect. This approach seems as discrete
evolution model. This study describes a dynamic model of wear
evolution that is capable to mimic the wear process in rolling
bearings in a continuous manner. In fact, it is capable to mimic the
topographical surface evolution due to wear in rolling bearings
over the lifetime. The simulated results of the developed evolution
model are in principal agreement with the experimental results.
The wear evolution progress has been simulated in a continuous
manner. The model suggests multiple force diagrams that are
capable to simulate the wear evolution. The model is capable to
simulate the dynamic nature of wear process, i.e. interaction
among different wear mechanisms. The model utilises several
models of contact mechanism in order to estimate the transition
points between the wear evolution stages. Moreover, the devel-
oped model considers the surface asperity as key issue to:
simulate its dynamic impact, estimate the induced stresses on
the surface, estimate the wear competition due to over-rolling, and
abrasive wear actions. The results represent and illustrate the
fluctuation in the dynamic response of the rolling bearing under
wear process over the whole lifetime. In this sense, the study
shows how different wear and stress mechanisms can influence
surface topography and the dynamic response of the system. Thus,
it provides potential benefits for future enhancements in condition
monitoring, diagnosis, and prognosis of rolling element bearings.
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Signal processing methods are required to extract the features related to the wear process and
how to track its evolution. Several signal processingmethods are commonly applied in the exper-
imental and real field tests. The generated signals of these tests are quite complex due to the
dynamic nature of wear process, i.e., interaction among different wear mechanisms. Therefore, a
dynamicmodel is required to explain the physical phenomena behind the detected signals. How-
ever, the current dynamic models in the literature lack to model the dynamic response under
wear deterioration process over thewhole lifetime, due to the complexity. Therefore, the purpose
of this paper is to illustrate the evolution of the fault features with respect to the wear evolution
process. It utilities a newly developed dynamicmodel and applies different commonly used signal
processing methods to extract the diagnostic features of the whole wear evolution progress. The
statistical timedomain parameters and spectrumanalysis are used in this study. Numerical results
illustrate several issues related to wear evolution i.e., capabilities, weaknesses and indicators. The
results show the extracted fault features and how they changewith respect to the wear evolution
process i.e., how the topological and tribological changes influence the extracted defect features.
In this sense, the study helps to justify the experimental results in literature. The study provides
a better understanding of the capability of different signal processing methods and highlights
future enhancement.

© 2015 Published by Elsevier Ltd.
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1. Introduction

The rolling element bearing (REB) is one of the most critical components that determine the machinery health and its remaining
lifetime inmodern productionmachinery. Robust conditionmonitoring (CM) tools are needed to guarantee the healthy state of REBs
during the operation. CM tools indicate the upcoming failures which provide more time for maintenance planning. CM tools aim to
monitor the deterioration i.e., wear evolution rather than just to detect the defects. Signal processing (SP) methods are required to
extract the defect features. Over the years, several SPmethods have been developed to extract the defect features from the raw signals
of faulty REBs.

In summary, the current signal processing methods try to overcome several challenges [1]: (1) remove the speed fluctuation;
(2) remove the noise effect; (3) remove the smearing effect of transfer path; (4) select optimal band of high Signal-to-Noise ratio;
and (5) extract clear defect features. The order tracking methods are used to avoid the smearing of discrete frequency components
due to speed fluctuations. To handle the smearing effect of transfer path, the minimum entropy de-convolution method has been
developed. For background noise problem, different de-noising filters have been developed such as discrete/random separation,
adaptive noise cancellation, self-adaptive noise cancellation or linear prediction methods to remove the noise background. Different
feature extraction methods have been conducted to study specific monitoring techniques such as vibration, acoustic emission (AE),
rkki.jantunen@vtt.fi (E. Jantunen).
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oil-debris, ultrasound, electrostatic, shock-pulse measurements (SPM) and their use in faulty REB detection. Many studies
have used simple signal/data processing techniques such as root mean square (RMS), kurtosis and FFT. However, the largest
share of studies has focused to develop new SP techniques: envelope, wavelets, data-driven methods, expert systems, fuzzy
logic techniques, etc.

However, the development of physical defect i.e., wear is an evolution process taking place over a specific time interval within the
lifetime. Therefore, the sixth challenge is to track the defect features over the whole lifetime in order to diagnose the bearing health.
The tracking methods utilise the previous feature extraction methods to track the extracted feature(s) over the whole lifetime.
Therefore, the most important issue of tracking technique is the reliability of the signal analysis method and how effective in-
dication it can provide. The detection of defect propagation has been studied in [2–5]. First, it was observed that increasing the
defect length increases the burst duration. Second, it was observed also that increasing the defect width increases the ratio of
burst amplitude. In fact, the signal analysis methods are verified by introducing a virtual defect into the dynamic bearing
model and validated by artificially introduced defect in test rigs. Then, it is assumed that increasing the defect size gradually
is correlated with the defect severity (i.e., wear evolution). For example, Nakhaeinejad [6] utilised the bond graphs to study
the effects of defects on bearing vibration. A localised fault has been introduced into the dynamic model with different defect
size to represent the development of defect severity. It is clear that this kind of approach assumes a linear relationship between
the defect size and the obtained impact response.

However, the experimental studies show some significant degree of nonlinearity that appears in the measured impact. The tests
which have used RMS as tracking measure [7–10] show nonlinear propagation curve of the wear evolution. Moreover, the spectral
kurtosis was used to track the severity. The results show also a stable state of spectral kurtosis when the defected surface is getting
very rough or very smooth [11]. In the industry, the amplitude peaks at the bearing fault frequencies in the spectrum is the most
commonly used indicator. Therefore, the amplitude peaks are extracted and tracked over the time. Several studies e.g., [12,13] have
represented the evolution of the amplitude peaks in the spectrum.

In fact, these spectrum charts represent also the main characteristic frequencies related to the high frequency zone, the bearing
natural frequency, and the bearing fault frequency zone, as shown in Fig. 1. The spectrum correlates the amplitude change in these
peaks at certain frequencies to the wear evolution progress. However, the topological and tribological features e.g., defect shape,
size and the uniformity of the lubrication film might change over the lifetime. Therefore, when the rolling element is passing over
the defected area, the impulsive nature of the contact is changing as well. Moreover, the topological and tribological changes might
disturb the time between the impacts (between rolling element and the defected area) which introduces some degree of slippage.
The slippagemight delay the rotational time of the rolling element and therefore disturb the periodic phenomenon of rolling element
contacts/impacts. Therefore, the frequency peakswhich are related to those impact eventsmight not be as clear (i.e., amplitudes) as if
the impacts would occur in a perfectly periodic manner.

Therefore, in order tomodel thewear evolution, a defect developmentmodel should be introduced in away that can represent the
surface topology changes over the lifetime. Recently, El-Thalji & Jantunen [14,15] presented an updated framework of wear evolution
in REBs. The updated framework of wear evolution is thoroughly illustrated in [15] and schematically shown in Fig. 2, where five-
stages are presented: running-in, steady-state, defect initiation (indentation, micro-cracking, inclusions), defect propagation (pits,
propagated cracks), and damage growth (spalling).

The wear evolution model can be used to give insights and knowledge for further enhancements of current monitoring practices
for REBs. Therefore, the purpose of this paper is to illustrate the evolution of the fault features with respect to the wear evolution
process. It utilities a newly developed dynamic model and applies different commonly used signal processing methods to extract
the diagnostic features of the whole wear evolution progress. The dynamic model of a single-degree-of-freedom system is presented
to study the dynamic behaviour and properties under the effects of wear evolution process for the whole lifetime. The paper begins
with presenting a description of the dynamic model and the main considerations that illustrate the wear evolution. The results part
presents the extracted defect features of each wear progression stages and critical events.
Fig. 1. Schematic spectrum of vibration signal that contain bearing fault.



Fig. 2. Dynamic impact of the wear severity during the lifetime of a bearing [15].
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2. The developed model

The developed model is an integrated model of fault dynamics and wear mechanics. Such integration has introduced a couple of
different terminologies due to different perspectives. For example, the researchers of fault dynamics modelling are interested in the
effect of the fault existence and its severity level (e.g., fault, damage, failure). However, the researchers of contact/wear mechanics
are interested in the fault type (e.g., fatigue, wear) and the involved mechanisms (fatigue wear, adhesive wear, abrasive wear, corro-
sive wear). Thus, the definition of fault is not sufficient to describe the fault type and its mechanism from the perspective of contact/
wear mechanics studies. Therefore, the common terminologies of contact/wear mechanics are used in this paper in the parts where
the mechanics of the fault are described. However, the common terminologies of fault modelling are used in the parts where the
dynamic effects of the fault are described.

It is worth to mention that the purpose of the paper is to apply tracking analysis of the signal that is generated by the developed
dynamic model that is described in [16]. Moreover, the developed dynamic model is based on a descriptive model of wear evolution
that is described in [15]. Therefore, the main focus of this paper is on the signal analysis. However, in order to illustrate the wear evo-
lution effect on the physical characteristics of rolling bearings, a parametric dynamicmodel is described. Thismodel contains the scale
parameters to illustrate their effect on e.g., natural frequencies, displacements, velocities, and forces due to defect. In fact, the bearing
dimensions influence natural frequencies, displacements, velocities, and forces due to surface disturbances e.g., waviness, and defect.
Fig. 3. Schematic representation of the modelled system.
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Therefore, the paper utilises a model of a single-degree of freedom (as shown in Fig. 3) to illustrate how the bearing dimensions in-
fluence the system response under faulty conditions. The model can be represented as the following:
M½ � €yf g þ C½ � y�
� �
þ K½ � yf g ¼ Fexf g ð1Þ
where [M], [C], [K] and {Fex} are respectivelymatrices of systemmass(es), damping coefficient(s), stiffness(es) and external forces. M
is 0.052 kg, K is 5.96 × 107 N/m (For outer race), and C is 5 × 107 N·s/m which are related to the modelled deep groove ball bearing
(SKF 61810-4).

The model can illustrate the effect of bearing size on the following issues:

1. natural frequency
2. magnitude and frequency of force due to waviness
3. magnitude and frequency of force due to defect
4. response in displacement, velocity and acceleration measurements.

In fact, these four issues are significantly important to understand the scale effect on the measured system response. The scale
effect on the response magnitudes due to waviness and defect might explain the monitoring difficulties. For simplicity, in some
part of the analysis, the model considers the bearing outer race.

2.1. Natural frequency of the raceway

The contact events with the help of small degree of loose fit between the raceway and the housing might excite the natural
frequency of the raceway. Sassi et al. [17] showed that natural frequency ωn of bearings for flexural vibration mode ‘n’ can be given
as:
ωn ¼
n n2−1
h i
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ n2

p
ffiffiffiffiffiffiffiffiffi
EI
μR4

s
in rad=s ð2Þ
where E is themodulus of elasticity, I is themoment of inertia of the race cross section, μ is themass per unit length, R is the radius of
the ring and n is the order of flexural vibration. In fact, n is the number of deformation waves in each mode (i + 1). Sassi et al. [17]
highlighted that n0 and n1 correspond to rigid modes, therefore the flexural vibration modes start from n = 2.

However, the value of the sectional secondary moment is needed before using Eq. (2). Due to the difficulties in obtain the exact
value for a bearing ring with a complicated cross-sectional shape. Eq. (3) is suggested by NSK as best used when the radial natural
frequency is known approximately for the outer ring of a radial ball bearing [18].
fn ¼ 9:41� 105 � K D−dð Þ
D−K D−dð Þf g2

�
n n2−1
h i
ffiffiffiffiffiffiffiffiffiffiffiffiffi
n2−1
p in Hz ð3Þ
where d is the bearing bore in mm, D is the bearing outside diameter in mm, K is cross sectional constant (K = .15 for outer ring
of an open type) [18]. Therefore, the approximate natural frequency of the raceway depends highly on the effective diameter of
the raceway. For simplicity, the natural frequency of bearing raceway can be estimated based on ring vibration theory by the
following formula [19]:
ωn ¼
c
πD

ð4Þ
where, c is the speed of sound in the material.

2.2. The potential bearing forces

The distributed fault e.g., waviness and localised fault e.g., defect are expected to influence the system dynamic response. These
faults can be represented in the system equation of motion as:
M½ � €yf g þ C½ � y�
� �
þ K½ � yf g ¼ Fimb þ Fs þ Fdf g ð5Þ
where, Fimb is the imbalance force, Fs is the force due to surface roughness andwaviness and Fd is the force due to surface defect. In the
following sub-sections, the scale effect on the force magnitudes and frequencies of Fs and Fd will be discussed.
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2.2.1. Force due to imbalance
If the structure holding the bearings in such a system is infinitely rigid, the centre of rotation is constrained frommoving, and the

centripetal force resulting from the imbalance mass can be found by the following formula:
Fimb ¼ Im � r �ω
2 � sin 2πωtð Þ ð6Þ
where Fimb is the imbalance force, Im is the mass, r is distance from the pivot, and ω is the angular frequency. For this model, the
imbalance mass considered to be 0.005 kg, r is 0.1 m, and the angular frequency is 160 rad/s.

2.2.2. Force due to surface imperfections
The surface peaks and valleys influence the rolling contact forces. Therefore, the generated force due to surface texture is related to

the frequency of surfacewaves i.e., waviness and roughness. Harsha et al. [20] presented a formula to calculate the restoring force due
to waviness, which can be represented as the relation between local Hertzian contact force and deflection, as follows:
Fs ¼ k rθið Þ
p ð7Þ
where k is thematerial deflection factor and p is related to contact type (i.e., it is 3/2 for ball bearing and 10/9 for rolling bearings). The
parameter rθi is the radial deflection at the azimuth angle θi, which is given as:
rθi ¼ x cosθi þ y sinθið Þ− γþΠif g ð8Þ
where, x is the horizontal direction, y is the vertical direction, γ is the internal radial clearance, andΠi is the amplitude of thewaves at
the contact angle and is given as:
Πi ¼ Π0 þΠp sin Nθið Þ ð9Þ
whereΠp is themaximumamplitude of waves,Π0 is the initial wave amplitude andN is the number of wave lobes. The contact angle
is a function of the number of rolling elements and cage speed, which is given as:
θi ¼
2π
Nb

i−1ð Þ þωcaget ð10Þ
where i = 1,… , Nb. The number of waves for the entire surface length L is given as:
N ¼ L
λ

ð11Þ
where L=πD, andλ is thewavelength of roughness or waviness. The total restoring force is the sumof restoring forces from all of the
rolling elements. Therefore, the total restoring force (considering waviness and clearance) is given as:
Fs ¼
XNb

i¼1k x cosθi þ y sinθið Þ− γþΠif g½ �
3
2: ð12Þ
When the magnitude of contact angle is substituted in the total restoring force formula, the effects of the cage speed ωcage and
bearing diameter D become clear.

In this paper, the waviness order is around 80. The number of waves N is defined [20] as follows:
N ¼ 2 � π � r
λ

ð13Þ
where r is the radius of outer or inner race, andλ is thewavelength. The commonwave length from bearingmanufacture ismeasured
to be about 0.8mm. Therefore, thewaviness order of an outer race of e.g., 10mm in diameter andwavelength of 0.8mm is about 78.5.
With the same logic, the roughness waves can be estimated, where the roughness wavelength is 0.02 mm.

2.2.3. Force due to bearing defect
The bearing fault frequency is basically based on the impact events which are generated when the rolling elements pass over a

dent or defect. The fundamental train frequency FTF is given [21] as:
FTF ¼ F
2
� 1−

Bd

P
cos∅i

� �
ð14Þ
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where, F is the shaft frequency, Bd is the rolling element diameter, P is the pitch diameter, and ∅i is the contact angle. The ball pass
frequency for outer race fault BPFO is given [21] as:
BPFO ¼ N
2
� F� 1−

Bd

P
cos∅i

� �
¼ N� FTF ð15Þ
where, N is the number of rolling elements. The ball pass frequency for inner race fault BPFI is given [21] as:
BPFI ¼ N
2
� F� 1þ Bd

P
cos∅i

� �
¼ N� F−FTFð Þ: ð16Þ
The ball pass frequency BSF is given [21] as:
BSF ¼ P
2Bd
� F� 1−

Bd

P
cos∅i

� �2� �
: ð17Þ
However, the force amplitude due to a surface defect can be represented as contact deflection or impact force. Several dynamic
models simulate the force due to the defect as an expression of deflection:
Fd ¼ k δo;i;b
� �p

ð18Þ
where k is thematerial deflection factor and p is related to the contact type, it is 3 for ball bearing and 10/3 for roller bearing. However,
the radial deflection δo,i,b depends on the defect location. Therefore δo, δi, and δb represent the deflection due to outer race defect, inner
race defect and rolling eminent defect, respectively. In this paper, the focus is to consider only the outer race defect, therefore, it is
given [22] as:
δ0 ¼ ρ j þ ρb− Ro þ Ddð Þ ð19Þ
where, ρj is the radial position of the rolling element, ρb is the radius of the rolling element, Ro is the radius of the non-deformed outer
race andDd is thedepth of the defect at the contact position. Epps [23] shows that the radial deflection depends on contactmode at the
entry and exit points of the defect. However, Sassi et al. [17] described the total impacting force Fd as a sum of the static and dynamic
components as follows:
Fd ¼ Fstatic þ Fdynamic: ð20Þ
The static component of the impact force depends on themaximum load Qmax, separation angle between rolling elementsΨi and
load distribution factor ε:
Fstatic ¼ Qmax 1−
1− cos Ψið Þ

2ε

� �1:5
: ð21Þ
The static component of the impact force is a function of the static component of the impacting force, shock velocity ΔV and
impacting material factor Kimpact:
Fdynamic ¼ FstaticKimpactΔV
2 ð22Þ
where ΔV2 is given as:
ΔV2 ¼ 10
28

g
ddef

Bd

� �2
ð23Þ
where ddef is the defect length (in the rolling direction), and g is the gravitational constant and equal to 9.81 m/s2.
Fig. 4.Wear defect and surface topology evolution [16].
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2.2.4. Force due to fault development
The forces due to machine fault (Fm) and due to surface roughness and waviness Fs can be simply introduced to the dynamic

model. However, the force due to bearing defect Fd is changing over the time due to the topographical and tribological changes.
The evolution of the wear defect stages is described in Fig. 4.

In Fig. 4, themain defect topologies are illustratedwith their force diagrams (to the right side). The solid lines in Fig. 4 show either
dent or defect, while the dotted lines illustrate the potential cracking trajectories. To the right of Fig. 4, the force diagrams of each
defect topology are schematically illustrated and used to generate impulsive force series of the topology features. Basically, the
changes are related to the leading and trailing edge of the dent/defect. Therefore, a load function offive stepswas defined, to represent
the transient impacts i.e., due to defect into the dynamic model, as shown in Fig. 5.

These load function varies based on the variation of the surface topology as illustrated in Fig. 2. Each stages ofwear evolution prog-
resswere introduced into the dynamicmodel by its corresponding force diagram (as shown in Fig. 2) andwith dimensions illustrated
in Table 1. For each stage of wear evolution progress, different parameters of the load function is given in order to simulate the surface
topology variations due to wear progress.

There are three issues that influence the non-linear phenomena of wear evolution in rolling bearing. First, the bearing defect
phenomenon is quite complex to be modelled due to the nonlinear evolution of wear defect. For example, the over-rolling and
mild abrasive wear smoothen the trailing edge of the new defect. Therefore, the measured impact severity might be reduced as
the asperity height and impact area is reduced. Second, the width of the defect is the key parameter in the impact severity. The
wider the defect is the larger the impact area at the trailing edge. Wider impact area means higher peak amplitudes at the
bearing defect frequency zone [26]. Third, the time between impact events is known as the epicyclical frequency. However,
the topological change due to the wear evolution most probably might change the drag and driving tangential forces which
make the cage and rolling element travel more slowly than its epicyclical value, which is one of the main causes of slippage
phenomenon. The simulation model introduces some degree of random slippage. However, the amount is related to the
wear evolution stages. It is basically related to topology features at each stage which influence the tribological features
i.e., drag and driving tangential forces.
3. Results

A deep groove ball bearing (SKF 61810-4) was used for the modelling purposes. The bearing inner diameter is 50 mm, the
outer diameter is 65 mm and the weight is 0.052 kg. Because of various assumption made in developing this model, this model
was continuously verified with the model in [17], both in their numerical and experimental figures. However, the dimension
and feature differences between the modelled bearing type in this model (SKF 661819-4) and the type (SKF 6206) which
considered in [17] should be noticed.

The time history signal is sampled at specific events of wear evolution process in order to apply several signal processing tech-
niques. The aim is to illustrate the defect features and their changes over the time. There are several events which represent the
wear evolution in rolling bearings. Eight different time intervals were sampled to study eight events of wear evolution: (1) normal
operation; (2) mild surface roughness and waviness; (3) excitation of bearing natural frequency; (4) indentation stage; (5) dent
smoothening; (6) slippage case; (7) defect completion; (8) defect smoothening; (9) damage growth. The results of each case event
are briefly illustrated as follows:
Fig. 5. The simulated force diagram of wear defect.



Table 1
Specific events of wear evolution process.

# Wear evolution cases Asperity height of
the defect (in μm)

Defect diameter/size
(in μm)

Reference

1 Real dent 0.4–4 50 [24]
2 Smoothened dent 0 50 [24]
2 Mild defect 20 300 [24]
3 Medium defect 20 1000 [25]
4 Large defect 30 3000 [4,6]
5 Smoothened large defect 4 3000 [4]
6 Damage growth, multi-defects, two large defects 30 3000 [4]
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3.1. Machine fault case

Under normal operation, the REBs are expected to work in a steady state manner, especially after the running-in stage. However,
due to machine faults such as imbalance, bent shaft, misalignment, a number of distortions might be detected. For example, the
imbalance fault can be detected once the spectrum starts showing peak amplitudes at 1xrpm, as shown in Fig. 6.

3.2. Dented surface case

When a dent is localised, it might be expected to see peak amplitudes at the bearing defect frequency zone in the spectrum, as
shown in Fig. 7. However, it is very weak peaks. The amplitude peaks are observed at bearing natural frequency zone (around
1100 Hz) due the impact phenomenon when the rolling element passes over the dent. Epps [23] explained the appearance of
amplitude peak at bearing natural frequency (around 1100 Hz) and the amplitude peak at bearing fault frequency zone (around
170Hz). It was observed that the defect signal is of two parts:first part originates from the entry of the rolling element into the defect,
which generates an amplitude peak at bearing fault frequency zone. Second part originates due to the impact event between the
rolling element and the trailing edge of the defect, which generates an amplitude peak at high frequency zone. However, the first
part of the impact signal is depends highly on the defect size, which is very small at indentation stage.

Over the time, the over-rolling and mild abrasive wear make the dent impacts to become smaller. The reduction of peak
amplitudes at bearing natural frequency zone due to smoothening actions is noticeable, as shown in Fig. 8.

3.3. Defected surface case

Even though, the smoothening processwill take place and reduce the impact forces, the stresses at the trailing edge of the dentwill
still be enough to initiate a crack. The crack will propagate and end eventually as a defect. The impact event at the trailing edge of the
defect is much higher compare to the dent. Therefore, it is expected to see higher peak amplitudes at the bearing defect frequency
zone in the spectrum, as shown in Figs. 9, 10, and 11. In fact, the impact event when the rolling element passes over the trailing
edge does not only generate impulsive impact but also distort the rolling elementmotion i.e., signal flatness. This distortion phenom-
enon is responsible for producing peak amplitudes at the harmonics of the bearing defect frequencies.
Fig. 6. Time response and spectrum of the bearing under misalignment fault.



Fig. 7. Time response and spectrum of the indentation event.
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3.4. Smoothened defect case

The defect impacts become also smaller due to the over-rolling andmild abrasivewear. The reduction of peak amplitudes at bearing
natural frequency zone can be clearly noticeable due to smoothening actions, as shown in Fig. 12.

3.5. Case of damage growth

One important physical feature in the damage growth is the defect width. Thewider the defect is the larger the impact area at the
trailing edge. Wider impact area means higher peak amplitudes at the bearing defect frequency zone. Moreover, the length and the
depth of the defect are expected to propagate over the time until a failure will occur. In Fig. 13, the wear fault features are illustrated.
It is worth to mention, that Fig. 13 represents early-stage of damage growth. As the damage grows, the spectrum becomes more
complicated to visualise the features, due to the complex distortions associated with damage growth process.

4. Discussion

The frequency domainmethods such as FFT have been introduced to detect the fault induced signal. It is also used to track thewear
evolution as presented in [12]. However, this presentation of wear evolution features can be updated based on the simulated data of
this paper. The idea is to enhance our understanding of the non-linear phenomena of wear evolution in rolling bearings. The wear
Fig. 8. Time response and spectrum of the smoothened dent.



Fig. 9. Time response and spectrum of the bearing with defect (0.3 mm).
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evolution stages are illustrated in the following descriptions, with physical justification related to the topological and tribological evo-
lution of the defected bearing.
4.1. High frequency zone

The experimental findings that are discussed in [14] have shown that surface roughness is the main reason behind the amplitude
peaks at the high frequency zone of the spectrum. The surface roughness and waviness generate the surface peaks and valleys which
increase the probability of race surface peaks contact with rolling element surface. These contact events present amplitude peaks at
the high frequency zone. Over the time, the contact events, between the surface peaks of the race and rolling element surface, smooth-
en the surface. Moreover, the film thicknesswill be stabilised and becomeuniform. However, the bearing geometrical and tribological
characteristics might change due to the loading and operating conditions. For example, there is all the time some degree of errors in
the contact profile between the race and the rolling element which disturb the pure rolling contact [27]. Another example is the
lubrication transfer into surface valleys [28]. Such contact disturbances produce high stresses when the rolling elements pass over
the surface asperities. These stresses will appear as amplitude peaks at the high frequency zone in the spectrum. These contact events
Fig. 10. Time response and spectrum of the bearing with defect (1 mm).



Fig. 11. Time response and spectrum of the bearing with defect (3 mm).
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might involve minor abrasive wear which make the surface smoother and higher stresses will be generated from those events. Later,
the distributedwear debriswill be themain issue in generating high stresses. Thatmeans higher amplitude peaks at the high frequency
zone are expected in later stage.

4.2. Bearing natural and bearing defect frequency zones

The impact events when the rolling element passes over the defected area (i.e., with the help of small degree of loose fit between
the raceway and the housing might) excite the natural frequency of the raceway. Epps [23] observed that the defect signal is of two
parts: first part originates from the entry of the rolling element into the defect, which generates an amplitude peak at bearing fault
frequency zone. Second part originates due to the impact event between the rolling element and the trailing edge of the defect,
which generates an amplitude peak at bearing natural frequency zone. However, the defect signalmight change as thewear (defected
area) is evolved over time.

The abrasive wear generates some internal debris whichmight be transferred with the oil lubrication into the valleys of either the
surface waviness or the contact deflection. At the moment when the rolling element passes over the valleys that contain debris, the
rolling element might press the debris into the surface and generate a localised dent. This localised dent generates impact events
that might excite the bearing natural frequency. Therefore, the peak amplitudes at the bearing natural frequency might be seen. In
Fig. 12. Time response and spectrum of the bearing with smoothened defect.



Fig. 13. Time response and spectrum of the bearing under damage growth state.
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fact, the dent acts as stress riser in particular at the trailing edge of the dent [29]. However, the impact eventwhich is generatedwhen
the rolling element passes over the newdent is very small. Moreover, it becomes even smaller due to the over-rolling andmild abrasive
wear of the asperity at the trailing edge of the new dent. However, the high stresses at the trailing edge are still enough to initiate a
crack. The crack will propagate and end eventually as a defect. The defect will have leading and trailing edges as well.

However, the impact event at the trailing edge of the defect is much higher compared to the dent one. Therefore, it is expected to
see higher peak amplitudes at the bearing natural frequency in the spectrum. In fact, the impact event (i.e., generatedwhen the rolling
element passes over the trailing edges) generates impulsive impact and distorts the rolling element motion. The distortion phenom-
enon is responsible for producing peak amplitudes at the harmonics of the bearing defect frequencies. It depends on how much the
impact area (the trailing edge area in contact) is large enough to distort the impact signals.

The over-rolling andmild abrasivewearwill act again to smoothen the trailing edge of the new defect. Therefore, a clear reduction
in peak amplitudes at both the bearing defect and bearing natural frequency zones are expected. However, the high stresses at the
trailing edge are enough to initiate a crack of next defect. The width of the defect is key parameter in the impact severity. The
wider the defect is the larger the impact area at the trailing edge. In fact, the impact area of a dent is smaller than the impact area
of the defect. Therefore, the crack trajectories of the defect will be further from each other when compared to the crack trajectories
of the dent. The crack trajectories are the main issue that determines the width of the new defect. Wider impact area means higher
peak amplitudes at both bearing defect and bearing natural frequency zones.

A significantly important issue of this simulationmodel is the consideration of the slippage phenomenon and its effect on frequen-
cy domain features. The time between impact events is known as the epicyclical frequency that we try to extract from the spectrum.
For example, the topological change due to the wear evolution might most probably change the drag and driving tangential forces
which make the cage and rolling element travel more slowly than of its epicyclical value. In fact, as the wear become more severe,
the topological and tribological features of the surface generate and influence stronger the drag and driving tangential forces,
which means more slip and disturbances. Therefore, the amplitude peaks at the defect frequency might not be clear and several
harmonics and sideband peaks will appear.

4.3. Rotating frequency zone

The machine faults e.g., imbalance, bent shaft, misalignment, looseness have specific characteristic features at the rotating speeds
and their orders. In fact, those machine faults have in-direct influence on the wear initiation and evolution as they introduce some
change in the contact characteristics and load distribution, for example, the misalignment introduces higher contact stresses at
specific part of the raceway, which is one of the main reasons of wear initiation.

5. Conclusion

The industrial applications utilise the in-field measurements in order to plan the required maintenance actions in a cost effective
manner. The available signal processing techniques have been developed to deal with speed fluctuation effect, signal noise, smearing
effect and the challenge of the defect feature extraction in order to extract clear diagnostic indicator e.g., RMS. It is expected that the
selected diagnostic indicator can be used to track the wear evolution progress over the lifetime of the bearing. The study describes a
dynamic model of wear evolution that is capable to mimic the wear process in rolling bearings. In fact, it is capable to mimic the
topological surface evolution due to wear in rolling bearings over the lifetime. However, the study is based on multiple models that
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estimate the response, transition conditions and stress accumulations with certain degree of uncertainties. Thus, the potential
diagnostic indicators of wear defect have been tracked with the help of simple signal processing techniques. The dynamic nature of
wear process, i.e., interaction among different wear mechanisms, makes some indicators hard to be extracted at specific interval.

The statistical time domain parameters and amplitude at bearing defect frequency are not sufficient indicators for thewhole wear
evolution process. The other frequency zones include defect features that are required to be extracted and tracked. In general, one
indicator i.e., change in amplitude, is not even enough to detect the fault and therefore it is hard to track the evolution. The results
represent and illustrate the fluctuation in the clarity of the indicators over the whole lifetime i.e., some indicators are effective at
specific time interval. Thus, the tracking process based on specific indicators might be not sufficient to diagnose the wear evolution
and the bearing health. In this sense, the study show how different indicators were influenced by the wear evolution process
i.e., surface topology changes due to wear. Thus, it provides the potential changes in the tracked indicator and highlights the
need to combine different tracked indicators in order to enhance the tracking effectiveness.
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