

A
alto-D

D
 15

9
/2

016
V

TT S
C

IE
N

C
E

 13
3

9HSTFMG*agjfjd+

ISBN 978-952-60-6959-3 (printed)
ISBN 978-952-60-6958-6 (pdf)
ISSN-L 1799-4934
ISSN 1799-4934 (printed)
ISSN 1799-4942 (pdf)

978-951-38-8448-2 (printed)
978-951-38-8447-5 (pdf)
2242-119X
2242-119X (printed)
2242-1203 (pdf)

Aalto University
School of Science
Department of Computer Science
www.aalto.fi

BUSINESS +
ECONOMY

ART +
DESIGN +
ARCHITECTURE

SCIENCE +
TECHNOLOGY

CROSSOVER

DOCTORAL
DISSERTATIONS

Jussi Lahtinen
M

odel C
hecking Large N

uclear Pow
er Plant Safety System

 D
esigns

A
alto

 U
n
ive

rsity

2016

Department of Computer Science

Model Checking Large
Nuclear Power Plant Safety
System Designs

Jussi Lahtinen

DOCTORAL
DISSERTATIONS

Aalto University publication series
DOCTORAL DISSERTATIONS 159/2016
VTT SCIENCE 133

Model Checking Large Nuclear Power
Plant Safety System Designs

Jussi Lahtinen

A doctoral dissertation completed for the degree of Doctor of
Science (Technology) to be defended, with the permission of the
Aalto University School of Science, at a public examination held at
the lecture hall T2 of the school on 7 October 2016 at 12.

Aalto University
School of Science
Department of Computer Science

Supervising professor
Assoc. Prof. Keijo Heljanko

Thesis advisor
Assoc. Prof. Keijo Heljanko

Preliminary examiners
Assoc. Prof. Jiří Barnat, Masaryk University, Czech Republic
Prof. Lars M. Kristensen, Bergen University College, Norway

Opponent
Prof. Gerald Lüttgen, University of Bamberg, Germany

Aalto University publication series
DOCTORAL DISSERTATIONS 159/2016

© Jussi Lahtinen

ISBN 978-952-60-6959-3 (printed)
ISBN 978-952-60-6958-6 (pdf)
ISSN-L 1799-4934
ISSN 1799-4934 (printed)
ISSN 1799-4942 (pdf)
http://urn.fi/URN:ISBN:978-952-60-6958-6

Unigrafia Oy
Helsinki 2016

Finland

Aalto University publication series
VTT SCIENCE 133

© Jussi Lahtinen

ISBN 978-951-38-8448-2 (printed)
ISBN 978-951-38-8447-5 (pdf)
ISSN-L 2242-119X
ISSN 2242-119X (printed)
ISSN 2242-1203 (pdf)
http://urn.fi/URN:ISBN:978-951-38-8447-5

Unigrafia Oy
Helsinki 2016

Finland

http://urn.fi/URN:ISBN:978-952-60-6958-6
http://urn.fi/URN:ISBN:978-951-38-8447-5

Abstract
Aalto University, P.O. Box 11000, FI-00076 Aalto www.aalto.fi

Author
Jussi Lahtinen
Name of the doctoral dissertation
Model Checking Large Nuclear Power Plant Safety System Designs
Publisher School of Science
Unit Department of Computer Science
Series Aalto University publication series DOCTORAL DISSERTATIONS 159/2016
Field of research Theoretical Computer Science
Manuscript submitted 4 May 2016 Date of the defence 7 October 2016
Permission to publish granted (date) 4 July 2016 Language English

Monograph Article dissertation Essay dissertation

Abstract
 Digital instrumentation and control (I&C) systems are increasingly being used for
implementing safety-critical applications such as nuclear power plant safety systems. The
exhaustive verification of these systems is challenging, and verification methods such as
testing and simulation are typically insufficient. Model checking is a formal method for
verifying the correctness of a system design model. The requirements of the system are
formalised using temporal logic, and the behaviour of the system model is exhaustively
analysed with respect to these formal specifications. The method is very effective in finding
hidden design errors.

 Model checking is computationally very demanding, and thus one of the challenges in applying
model checking is its scalability. This dissertation discusses the verification of larger systems
implementing multiple functions using model checking. First of all, this dissertation presents
methodology for modelling safety system designs, and describes a simple abstraction technique
for models of these systems that utilises modular over-approximating abstractions.
Furthermore, the dissertation presents the development of an iterative abstraction refinement
algorithm for the purpose of automatically finding an abstraction level suitable for verification.
This dissertation also studies hardware failures, and creates an extension of the safety system
modelling methodology that enables the analysis of fault-tolerance properties in large many-
redundant system assemblies. The methodology follows closely the conventions of
probabilistic risk assessment (PRA), and serves as a first step for further integration between
model checking and PRA. Finally, this work presents the development of a test set generation
technique based on model checking that utilises the structure of function block diagram (FBD)
programs.

 The results of this work have a high significance to safety because the developed techniques
can be used to verify the correctness of safety system designs used in nuclear power plants. The
work has also improved the scalability and applicability of model checking, and can be seen as
part of a continuum toward larger plant-level models and toward new all-encompassing safety
analysis approaches.

Keywords model checking, automation, nuclear, PLC, Function Block Diagram, fault-
tolerance, instrumentation and control I&C, iterative abstraction refinement,
compositional minimization, formal verification, safety system, structure-based
testing, test generation

ISBN (printed) 978-952-60-6959-3 ISBN (pdf) 978-952-60-6958-6
ISSN-L 1799-4934 ISSN (printed) 1799-4934 ISSN (pdf) 1799-4942
Location of publisher Helsinki Location of printing Helsinki Year 2016
Pages 230 urn http://urn.fi/URN:ISBN:978-952-60-6958-6

http://www.aalto.fi
http://urn.fi/URN:ISBN:978-952-60-6958-6

Tiivistelmä
Aalto-yliopisto, PL 11000, 00076 Aalto www.aalto.fi

Tekijä
Jussi Lahtinen
Väitöskirjan nimi
Ydinvoimaloiden laajojen turva-automaatiojärjestelmien mallintarkastus
Julkaisija Perustieteiden korkeakoulu
Yksikkö Tietotekniikan laitos
Sarja Aalto University publication series DOCTORAL DISSERTATIONS 159/2016
Tutkimusala Tietojenkäsittelyteoria
Käsikirjoituksen pvm 04.05.2016 Väitöspäivä 07.10.2016
Julkaisuluvan myöntämispäivä 04.07.2016 Kieli Englanti

Monografia Artikkeliväitöskirja Esseeväitöskirja

Tiivistelmä
 Monet turvakriittiset sovellukset kuten ydinvoimaloissa käytetyt turva-automaatiojärjes-
telmät perustuvat yhä enenevässä määrin digitaaliseen ohjelmoitavaan tekniikkaan. Tällaisten
digitaalisten järjestelmien verifiointi on erittäin haastavaa, eivätkä perinteiset menetelmät
kuten testaus ja simulointi usein kykene saavuttamaan täydellistä kattavuutta. Mallintarkastus
on formaali menetelmä, jota käytetään järjestelmän verifioinnin apuvälineenä. Mallintarkas-
tuksessa järjestelmän toiminnalliset vaatimukset muodostetaan aikalogiikan lauseiden avulla,
ja vaatimusten täyttyminen tarkastetaan käymällä systemaattisesti läpi kaikki järjestelmästä
laaditun mallin käyttäytymiset. Menetelmä on erittäin tehokas löytämään piileviä suunnittelu-
virheitä.

 Mallintarkastus on laskennallisesti vaativa menetelmä, ja eräs menetelmän soveltamiseen
liittyvä haaste on sen skaalautuvuus. Tässä väitöstyössä tutkitaan mallintarkastuksen sovel-
tamista useiden alijärjestelmien muodostamien laajojen kokonaisuuksien verifiointiin. Työssä
on luotu metodologiaa turvajärjestelmien mallintamiseen, sekä tehty mallinnustavan kanssa
yhteensopiva modulaarinen abstraktiomenetelmä, joka perustuu moduulien yliapproksima-
tiivisiin abstraktioihin. Lisäksi väitöstyössä on kehitetty iteratiivinen tekniikka, jonka tarkoi-
tuksena on etsiä verifiointiin sopiva abstraktiotaso automaattisesti. Työssä on myös tutkittu
laitteistovikojen mallintamista ja kehitetty turvajärjestelmien mallinnuksen kanssa yhteen-
sopiva mallinnustekniikka, joka mahdollistaa järjestelmän vikasietoisuuteen liittyvien ominai-
suuksien tarkastelemisen laajoissa moniredundanttisissa järjestelmissä. Tekniikka mukailee
todennäköisyysperusteisen riskianalyysin (PRA, probabilistic risk assessment) käyttämiä
tapoja jäsentää vikaantumiseen liittyviä ongelmia, ja on täten myös askel kohti näiden kahden
menetelmän syvempää integraatiota. Viimeiseksi, työssä on kehitetty mallintarkastusta hyö-
dyntävä tekniikka, jonka avulla voidaan automaattisesti luoda joukko testejä toimilohko-
kaavion (function block diagram, FBD) rakenteen perusteella.

 Väitöstyön tulokset ovat tärkeitä turvallisuuden kannalta, sillä kehitettyjä tekniikoita voidaan
käyttää varmistamaan turva-automaatiojärjestelmien suunnittelun virheettömyys. Väitös-
työn myötä mallintarkastuksen skaalautuvuus ja käyttökelpoisuus ovat myös parantuneet.
Työn voi nähdä osana jatkumoa kohti yhä suurempia laitostason malleja, ja uusia kokonais-
valtaisia tapoja analysoida turvallisuutta.

Avainsanat mallintarkastus, automaatio, ydinvoima, toimilohko, vikasietoisuus, abstraktio,
formaali verifiointi, turvajärjestelmä, rakenteellinen testaus, testigenerointi

ISBN (painettu) 978-952-60-6959-3 ISBN (pdf) 978-952-60-6958-6
ISSN-L 1799-4934 ISSN (painettu) 1799-4934 ISSN (pdf) 1799-4942
Julkaisupaikka Helsinki Painopaikka Helsinki Vuosi 2016
Sivumäärä 230 urn http://urn.fi/URN:ISBN:978-952-60-6958-6

http://www.aalto.fi
http://urn.fi/URN:ISBN:978-952-60-6958-6

Contents

Contents 1

Preface 5

List of Publications 7

Author’s Contribution 9

1. Introduction 13

1.1 Background and research environment 13

1.2 Objectives and scope . 16

1.3 Research process and dissertation structure 20

2. Model checking 21

2.1 General model-checking process 21

2.1.1 System modelling . 23

2.2 Temporal logic . 24

2.2.1 Linear temporal logic 25

2.3 NuSMV model checker . 27

2.3.1 Modelling language . 27

2.4 Employed algorithms . 29

2.5 Symbolic model checking . 29

2.6 Symbolic invariant checking 32

2.6.1 BDD-based invariant checking 32

2.6.2 Property directed reachability 35

2.7 k-induction . 37

2.8 Model-checking techniques for liveness properties 39

2.8.1 BDD-based symbolic LTL model checking 39

2.8.2 Liveness-to-safety reductions 44

1

Contents

3. Nuclear instrumentation and control system development

and verification 47

3.1 Nuclear power plant I&C systems 47

3.2 Digital I&C system development 49

3.2.1 Model checking using SCADE 51

4. Related work 53

4.1 Application of formal methods in the verification of nuclear

power plant I&C systems . 53

4.1.1 Use of formal methods in the Darlington nuclear power

plant in Canada . 53

4.1.2 Use of model checking in the Paks nuclear power

plant in Hungary . 54

4.1.3 Formal verification of Korean nuclear power plant

automation systems . 54

4.1.4 Model checking in the Finnish nuclear domain 55

4.1.5 Other use of formal tools 55

4.2 Model checking of programmable logic controllers (PLCs) . . 56

4.3 Abstraction and compositional verification 57

4.4 Iterative abstraction refinement 59

4.5 Fault-tolerance analysis using model checking 61

4.6 Automatic test generation using model checking 62

4.7 Applying NuSMV model checking to full-scale and real-world

systems . 64

5. Methodology for modelling FBD programs 67

5.1 Scope of modelling . 67

5.2 Environment model . 68

5.3 Cyclic operation of the PLC 69

5.4 Modelling of time and analogue variables 69

5.5 Justification of time discretisation 70

5.6 Modelling FBD programs . 72

5.7 Requirement formalisation . 75

5.8 Typical errors found using model checking 76

5.9 Threats to validity and limitations 78

6. Iterative abstraction refinement on modular systems 83

6.1 Module level over-approximations 84

6.1.1 Abstractions of the model 85

2

Contents

6.2 Modular iterative abstraction refinement 87

6.2.1 Initial abstraction . 88

6.2.2 Model checking . 88

6.2.3 Preliminary refinement 89

6.2.4 Refinement minimisation 92

6.2.5 Correctness of the algorithm 94

6.3 Results of tests . 97

6.3.1 Comparison against the IC3 algorithm implemented

in nuXmv . 102

6.4 Validity of the technique . 103

7. Analysing fault-tolerance of nuclear power plant safety sys-

tems 105

7.1 Background and motivation 105

7.1.1 Traditional architecture-level analyses 105

7.1.2 Using model checking for architecture-level analysis 107

7.2 Fault modelling methodology 107

7.2.1 Limitations . 111

7.3 Integration of PRA and model checking 111

7.3.1 A concept-level approach for coupled use of PRA and

model checking . 112

8. Using model checking for structure-based testing of FBD

models 115

8.1 Motivation . 115

8.2 Test generation using model checking 120

8.3 Technical issues . 121

8.4 Alternative implementation 122

8.5 Limitations of the technique and threats to validity 123

9. Conclusion 125

9.1 Answers to the research questions 125

9.2 Theoretical implications . 127

9.3 Practical implications . 128

9.4 Reliability and validity . 128

9.5 Recommendations for future research 129

Appendix A 131

A.1 AND . 131

A.2 OR . 132

3

Contents

A.3 NOT . 132

A.4 SR . 132

A.5 RS . 133

A.6 TP . 133

A.7 TON . 135

A.8 TOF . 136

Bibliography 139

Errata 157

Publications 159

4

Preface

Model checking has been an interest of mine for quite a long time. I did

my Master’s thesis in 2007 on model checking of safety instrumented sys-

tems using timed automata but I had been introduced to model checking

during my university studies even before that. Even though I officially en-

rolled for postgraduate studies as late as 2010, the actual research work

presented in this dissertation started already around 2008 when I was

hired as a research scientist at VTT.

I would like to express my gratitude to the people and organisations that

have supported me throughout my doctoral work. To start with, the fund-

ing of the work was provided primarily by three different SAFIR (Finnish

National Research Program on Nuclear Safety) programmes: SAFIR2010,

SAFIR2014, and SAFIR2018. The funding of my work within the pro-

grammes comes from the Finnish state nuclear waste management fund

(VYR, Valtion Ydinjätehuoltorahasto) collected annually from the Finnish

utilities Fortum Oyj, Teollisuuden Voima Oyj, and Fennovoima Oy. Re-

search in the SAFIR programmes is also funded by VTT Oy. I have addi-

tionally received a personal grant from the Fortum Foundation, and direct

funding in the form of work hours from VTT. All funding of this work is

gratefully acknowledged.

I am indebted to my thesis advisor Assoc. Prof. Keijo Heljanko who has

been extremely active throughout the entire process. I am certain that

this dissertation would not yet be finished without his continuous sup-

port. Keijo managed to find time for frequently occurring private tutoring

sessions, and encouraged me to continue with the work at times when the

problems seemed too overwhelming.

I would also like to thank my preliminary examiners for their construc-

tive feedback that helped me improve the contributions of my work. I am

honoured to have Prof. Gerald Lüttgen from the University of Bamberg

5

Preface

as my opponent in the public defence of my dissertation.

My workplace has also supported my research work, and has given

me plenty of time to finalise this dissertation. I owe thanks to Dr. Jari

Hämäläinen for hiring me, and for being enthusiastic about research work

related to model checking in the early phases of my research career. I

would also like to thank my former team leader Dr. Juhani Hirvonen for

encouraging me during the early phases of my career, as well as my cur-

rent team leader Dr. Juha Kortelainen, Research Professor Dr. Tommi

Karhela and Head of Research Area Dr. Riikka Virkkunen for their sup-

port during the final phases of the writing process.

I am grateful for the contributions of my co-authors. In addition to As-

soc. Prof. Keijo Heljanko who was already mentioned, I worked with many

researchers. Prof. Ilkka Niemelä was involved in the writing of Pub-

lication I and Publication II. His comments were insightful as always,

and the influence of the conversations we had was significant. I am also

grateful to my other co-authors Janne Valkonen, Kim Björkman, Tuomas

Kuismin and Juho Frits for their efforts and helpful comments. I owe

special thanks to Janne Valkonen who has arranged many opportunities

for me to focus on my research, and has helped me advance my work in

countless other ways as well. I would also like to thank Antti Pakonen,

Teemu Tommila, Dr. Jan-Erik Holmberg and Tero Tyrväinen who have

provided helpful remarks on many occasions. Numerous representatives

of Fortum, TVO and the Finnish Radiation and Nuclear Safety Authority

(STUK) and other organisations have also been very supportive towards

my work. I want to especially thank Martti Välisuo, Olli Hoikkala, Mauri

Viitasalo, Mika Koskela, Minna Tuomainen and Erik Lönnqvist.

Finally, I am very grateful for love and support from my family, friends

and relatives. Katri and Akseli, thank you for your patience, and all the

healthy distractions you have provided.

Espoo, August 8, 2016,

Jussi Lahtinen

6

List of Publications

This thesis consists of an overview and of the following publications which

are referred to in the text by their Roman numerals.

I Jussi Lahtinen, Janne Valkonen, Kim Björkman, Juho Frits, Ilkka Nie-

melä and Keijo Heljanko. Model checking of safety critical software

in the nuclear engineering domain. Reliability Engineering & System

Safety, Vol. 105, p.104 – 113, Elsevier, September 2012.

(http://dx.doi.org/10.1016/j.ress.2012.03.021)

II Jussi Lahtinen, Kim Björkman, Janne Valkonen, Ilkka Niemelä. Em-

ergency diesel generator control system verification by model checking

and compositional minimization. In 8th Doctoral Workshop on Mathe-

matical and Engineering Methods in Computer Science (MEMICS 2012),

Znojmo, Czech Republic. Antonín Kučera, Thomas A. Henzinger, Jar-

oslav Nešetřil, Tomás Vojnar and David Antoš (Eds), p. 49 – 60, NOV-

PRESS, October 2012, ISBN 978-80-87342-15-2.

III Jussi Lahtinen, Tuomas Kuismin and Keijo Heljanko. Verifying large

modular systems using iterative abstraction refinement. Reliability En-

gineering & System Safety, Vol. 139, p. 120 – 130, Elsevier, July 2015.

(http://dx.doi.org/10.1016/j.ress.2015.03.012)

IV Jussi Lahtinen. Verification of fault-tolerant system architectures us-

ing model checking. In 1st International Workshop on Development,

Verification and Validation of Critical Systems (DEVVARTS), Lecture

Notes in Computer Science, Vol. 8696, p. 195 – 206, Springer, Septem-

ber 2014. (http://dx.doi.org/10.1007/978-3-319-10557-4_23)

7

http://dx.doi.org/10.1016/j.ress.2012.03.021
http://dx.doi.org/10.1016/j.ress.2015.03.012
http://dx.doi.org/10.1007/978-3-319-10557-4_23

List of Publications

V Jussi Lahtinen. Automatic test set generation for function block based

systems using model checking. In 9th International Conference on the

Quality of Information and Communications Technology (QUATIC 2014),

Guimarães, Portugal, p. 216 – 225, IEEE, September 2014.

(http://dx.doi.org/10.1109/QUATIC.2014.15)

8

http://dx.doi.org/10.1109/QUATIC.2014.15

Author’s Contribution

Publication I: “Model checking of safety critical software in the
nuclear engineering domain”

The author of this dissertation is the main author of Publication I. The

author has developed the model-checking methodology described in the

paper together with Valkonen, Björkman, Frits, Niemelä, and Heljanko.

The case study systems have been modelled by Björkman and Frits. The

author’s involvement is also in providing the discussion and conclusions

of the paper.

Publication II: “Emergency diesel generator control system
verification by model checking and compositional minimization”

The author of this dissertation is the main author of Publication II. The

idea of using this approach was from Niemelä and the author. The au-

thor was the main developer of the compositional minimization technique

described in this paper together with Niemelä, and the development was

supported by Björkman and Valkonen. The author has modelled the emer-

gency diesel generator control system used in Publication II as a case

study, and applied the developed technique in practice.

Publication III: “Verifying large modular systems using iterative
abstraction refinement”

The author of this dissertation is mainly responsible for writing Publi-

cation III. The author has created the fictional example system used in

the work, and modelled both of the analysed case study systems. The

9

Author’s Contribution

concrete iterative abstraction refinement technique developed in Publica-

tion III was created together with Kuismin and Heljanko. The software

described in the work was developed together with Kuismin.

Publication IV: “Verification of fault-tolerant system architectures
using model checking”

The author of this dissertation is solely responsible for Publication IV.

Publication V: “Automatic test set generation for function block
based systems using model checking”

The author of this dissertation is solely responsible for Publication V.

List of author’s other related publications

The author of this dissertation has also contributed to the following publi-

cations that are closely related to nuclear domain system verification even

though they are not part of the dissertation.

Kim Björkman, Juho Frits, Janne Valkonen, Jussi Lahtinen, Keijo Hel-

janko, Ilkka Niemelä, and Jari J Hämäläinen. Verification of safety logic

designs by model checking. In Sixth American Nuclear Society Interna-

tional Topical Meeting on Nuclear Plant Instrumentation, Control, and

Human-Machine Interface Technologies, (NPIC & HMIT 2009), pages 5–

9. American Nuclear Society (ANS), 2009.

Antti Pakonen, Teemu Mätäsniemi, Jussi Lahtinen, and Tommi Karhela.

A toolset for model checking of PLC software. In IEEE 18th Conference on

Emerging Technologies & Factory Automation (ETFA), pages 1–6, Septem-

ber 2013.

Jussi Lahtinen, Janne Valkonen, Kim Björkman, Juho Frits, and Ilkka

Niemelä. Model checking methodology for supporting safety critical soft-

ware development and verification. In European Safety and Reliability

Conference, ESREL2010, pages 2056–2063, September 2010.

10

Author’s Contribution

Kim Björkman, Jussi Lahtinen, Tero Tyrväinen, and Jan-Erik Holm-

berg. Coupling model checking and PRA for safety analysis of digital I&C

systems. In The International Topical Meeting on Probabilistic Safety As-

sessment and Analysis (PSA 2015), pages 384–392. American Nuclear So-

ciety (ANS), 2015.

Antti Pakonen, Jussi Lahtinen, Veli-Pekka Kuutti, and Tommi Karhela.

Integrating model checking with safety-critical I&C software design. In

7th International International Topical Meeting on Nuclear Plant Instru-

mentation, Control, and Human-Machine Interface Technologies, (NPIC &

HMIT 2010), pages 1729–1740. American Nuclear Society (ANS), 2010.

Jussi Lahtinen, Mika Johansson, Jukka Ranta, Hannu Harju, and Risto

Nevalainen. Comparison between IEC 60880 and IEC 61508 for certifi-

cation purposes in the nuclear domain. In Erwin Schoitsch, editor, Com-

puter Safety, Reliability, and Security, volume 6351 of Lecture Notes in

Computer Science, pages 55–67. Springer Berlin Heidelberg, 2010.

Hannu Harju, Jussi Lahtinen, Jukka Ranta, Risto Nevalainen, and Mika

Johansson. Software safety standards for the basis of certification in the

nuclear domain. In Quality of Information and Communications Tech-

nology (QUATIC), 2010 Seventh International Conference on the, pages

54–62, Sept 2010.

11

1. Introduction

1.1 Background and research environment

This dissertation addresses the problem of verifying the logical correct-

ness of nuclear power plant safety automation systems using a formal

method called model checking.

Nuclear power plants have three main safety functions: (1) to control the

reactivity of the reactor; (2) to remove heat from the reactor core; and (3)

to confine radioactive material, to shield against radiation and control of

planned radioactive releases, and to limit accidental radioactive releases

[116].

The main safety functions are achieved partly by automation systems

that can, e.g., shut down the reactor when needed or pump water to the re-

actor in order to increase heat removal. In modern nuclear power plants,

these automation systems are mostly computer-based digital systems that

read measurements, and decide when a set of actuators (e.g., pumps or

valves) should be actuated. Furthermore, in order to achieve high reliabil-

ity, multiple redundant subsystems as well as several diverse systems op-

erating, e.g., using different physical principles, are typically used. These

kinds of design solutions decrease the effect of hardware failures on the

operation of the safety functions. The correct operation of these systems is

also dependent on the correctness of their software. Design errors in soft-

ware may occur simultaneously in all redundant subsystems as a common

cause failure, leading to erroneously inhibited actuation signals or spuri-

ous commands from the safety function in the worst case.

Ensuring the correctness of the systems and their operational logic is

of paramount importance, as failures of the systems can be potentially

catastrophic. Traditionally used techniques include testing and simu-

13

Introduction

lation. These are very useful techniques, but they are limited to cover-

ing only a small subset of all possible behaviours of the system, and can

thus only detect the presence of errors, not their absence. Safety-critical

systems, such as the safety automation systems used in nuclear power

plants, however, require absolute assurance of the correctness of the sys-

tems. Another more formal approach is deductive verification, which uses

axioms and proof rules to prove the correctness of a system. The method

is time-consuming and can only be performed by experts with consider-

able experience. None of these methods alone is capable of exhaustive

verification with reasonable effort.

Model checking [65] is a formal method that does analyse the system

behaviour exhaustively. A model of the system is first built, similarly as

in simulation, to be used in the analysis. However, unlike simulation or

testing, interesting system scenarios need not be specified or processed

individually. Instead, the requirements of the system are formalised and

the correctness of the system model with respect to these formal require-

ments is then exhaustively verified using efficient algorithms. The scal-

ability of the model-checking technique has constantly increased due to

improvements in computer technology, and more efficient algorithms. The

first significant algorithmic advancement was the introduction of sym-

bolic Binary Decision Diagram (BDD) -based model checking [147]. Later,

techniques based on mapping the model-checking problem into a proposi-

tional satisfiability (SAT) problem were developed (see, e.g., [25]), further

improving the scalability of the method. Most recently, induction-based

algorithms and the invention of the Property-Directed Reachability (PDR)

algorithm [39] have yet again improved the performance of the method.

Model checking has been adopted in many safety-critical areas, and ar-

eas where a failure can lead to substantial economic loss. These techno-

logical advancements have already enabled the verification of realistic-

sized safety-critical systems using model checking. For example, in the

aviation domain model checking has been used for verifying flight critical

software [153], for detecting situations where the systems is in a differ-

ent mode than that assumed by the operator [182], and for verifying the

coordination protocol for an automated air traffic control system [218]. In

the space domain, NASA has applied model checking to the verification

of a multi-threaded operating system used in the Deep Space-1 space-

craft [100], and developed a model-checking tool for Java programs [101].

Model-checking tools for C/C++ programs exist as well. The explicit-state

14

Introduction

model checker DiVinE [14], for instance, supports model checking of mul-

tithreaded C/C++ programs. Model checking has also been heavily used

for verifying the correctness of microprocessors at Intel [85] and at IBM

[19], and to support operating system software development at Microsoft

[12, 11]. Another application area of model checking is protocol verifica-

tion, see, e.g., [106] and [125].

In the nuclear domain, Instrumentation & Control (I&C) system devel-

opment relies typically on qualified automatic code generators, simula-

tions and testing. Model-checking methods are not widely used in the

nuclear context, even though tools such as SCADE (Safety Critical Ap-

plication Development Environment) [22] offer limited support for formal

analysis including model checking. Most similar to this dissertation, is

the application of model checking to Korean nuclear power plant automa-

tion systems. [211, 214, 123]

The Finnish nuclear industry uses many different approaches to ver-

ify the correctness of systems. Typically, model checking is not used by

the system designers. Instead, model checking analyses are performed as

part of independent verification commissioned by the Finnish Radiation

and Nuclear Safety Authority (STUK) or by the power utilities. This ar-

rangement, in which the correctness of an existing system design needs to

be independently demonstrated is the starting point of this dissertation.

The practice of applying model checking in the nuclear domain is not yet

wide-spread, and the focus of such analysis has been in the verification of

small limited case studies. This dissertation intends to find efficient and

practical ways of applying model checking in the nuclear context, and to

better integrate the method into the system development. This disserta-

tion discusses how model checking can aid system verification on a larger

scale, i.e., how larger systems implementing multiple safety functions can

be efficiently verified, and how the method can also benefit plant-level

fault tolerance analyses. The main benefit of this work is that it enables

the exhaustive verification of the correctness of safety-critical system de-

signs, which is unachievable in large-scale systems using testing and sim-

ulation. The problem of large-scale system verification by model checking

in the context of nuclear power plants has not previously been addressed

in the literature.

15

Introduction

1.2 Objectives and scope

The general research problem of large-scale system verification is divided

into four more specific research questions.

Model checking can become computationally challenging on larger sys-

tem models. This is due to state explosion, i.e., the number of states in the

model grows exponentially as the size of the model increases. Modelling

solutions and the use of abstraction techniques can significantly improve

on the feasibility of model-checking analysis.

Research Question 1 (RQ1): How can modelling and abstraction tech-

niques be used to enable the model checking of larger nuclear domain

automation systems?

Model checking involves a lot of manual work that makes the use of the

method expensive and prone to human error. One part of modelling work

that often requires human interaction is finding a suitable abstraction

level for the model. Especially in large models it can be difficult to find

a level of abstraction that is both computationally feasible and accurate

enough for actual verification.

Research Question 2 (RQ2): How can a suitable abstraction level of

the system model be found automatically?

Nuclear power plants are designed to be tolerant to failures. Tradition-

ally the fault-tolerance of the systems and of the plant is analysed using

methods that exclude the detailed operational logic of the safety automa-

tion systems. A model-checking approach could provide a more exhaustive

plant-level fault-tolerance analysis if hardware failures and their effects

were integrated with models of the safety automation systems.

Research Question 3 (RQ3): How can plant-level models be created

that cover both the detailed operational logic of multiple automation sys-

tems and the hardware failures related to these systems?

The safety system software used in nuclear power plants need to be

rigorously tested. The tests performed on the software need to include

specification-based tests as well as structure-based tests. The software

is often designed using the function block diagram (FBD) language [110],

and the FBD programs are automatically translated into code. It is more

intuitive to design tests based on the function block diagrams instead of

the computer-generated code. However, no well-established methods exist

16

Introduction

Table 1.1. The relationships between research questions and the publications

Pub.

I

Pub.

II

Pub.

III

Pub.

IV

Pub.

V

RQ1: How can modelling

and abstraction techniques

be used to enable the model

checking of larger nuclear do-

main automation systems?

X X X

RQ2: How can a suitable

abstraction level of the sys-

tem model be found automat-

ically?

X

RQ3: How can plant-level

models be created that cover

both the detailed operational

logic of multiple automation

systems and the hardware

failures related to these sys-

tems?

X

RQ4: Can model checking

be used to support structure-

based test design of function

block diagrams?

X

for structure-based test design based on function block diagrams.

Research Question 4 (RQ4): Can model checking be used to support

structure-based test design of function block diagrams?

The relationships between research questions and the publications that

address these questions is illustrated in Table 1.1.

The contributions of each paper and the relations between the publica-

tions are illustrated in Figure 1.1. A short description of each publication

and its contribution follows.

Publication I develops basic methodology for modelling safety automa-

tion systems. The methodology presented in this dissertation is the result

of collaboration between many researchers. The main methodological con-

tributions of Publication I are the use of a free environment model, and

the generic techniques for abstracting the scan cycle of safety systems.

17

Introduction

Publication I also discusses the model-checking process and work prac-

tices that should be followed to better support the safety demonstration

and licensing of these systems. Two case studies are presented in which

design errors were found using model checking. Publication I also identi-

fies issues hindering the integration of model checking to system develop-

ment.

The contribution of Publication II is an abstraction method for large

modular systems, enabling simple abstraction of a system. An emergency

diesel generator control system is used as a case study. Diesel generators

are typically used at nuclear power plants to provide backup power in case

of emergencies. The studied control system is made up of several inter-

connected subsystems. A design error discovered using model checking is

presented in the paper.

Publication III defines a technique for determining a suitable abstrac-

tion level automatically that is based on the methodology of Publication I

and Publication II. The novel contribution of Publication III is a technique

based on iterative abstraction refinement, as well as the use of multiple

model-checking engines in parallel. The technique is tested by applying it

on two case study systems. The results show that in most cases the tech-

nique is able to find proofs of correctness more efficiently than traditional

model-checking approaches.

The contribution of Publication IV is an extension of the methodology

of Publication I to hardware failures allowing larger models to be built,

in which also fault-tolerance properties can be analysed. The methodol-

ogy follows closely the conventions of probabilistic risk assessment (PRA)

[16], and serves as a first step for further integration between these two

approaches.

The contribution of Publication V is an automatic test set generation

technique to support structure-based testing. In this technique, model

checking is used to generate the concrete test cases. The resulting test set

is efficient in the sense that the number of test cases is small and the tests

are concise while having maximum coverage according to a structure-

based criterion.

This dissertation focuses on the verification of application software used

in nuclear power plants to implement safety functions and safety-related

functions. Any other software such as platform software or software re-

lated to data handling, transmission, or any software not relevant to

safety is out of scope of this dissertation. In addition to application soft-

18

Introduction

Publication I

Generic modelling methodology, model checking process

Publication II,
Publication III

Modular
abstraction

techniques for
systems

Publication III

Determining a
suitable

abstraction
level

automatically

Publication IV

Modelling
methodology
for hardware

failures

Publication V

Using model
checking to

support
stucture-

based testing

Figure 1.1. The contribution of each publication of this dissertation

ware, hardware components and failures related to safety systems are

considered in Publication IV.

The dissertation focuses on verifying the logical correctness of the de-

sign of safety systems. Only system designs in the form of FBD programs

are considered to be in the scope of this work. It is assumed that the

FBD design language follows IEC 61131-3 [110]. Validating the final im-

plementation against the original design of the system is also excluded

in this work, and tools performing, e.g., code generation based on FBD

programs are assumed to be correct.

Any asynchronous behaviour and data transmission delays are also left

out of scope. Throughout this work it is assumed that the correct timing of

the systems is separately verified, and that asynchronous anomalies due

to, e.g., clock drift are appropriately handled by the automation platform.

The capability of model checking to exhaustively analyse a system is

also based on the assumption that the functional requirements of the sys-

tem used for the analysis are complete and correct. Problems related to

the coverage, correctness, and formalisation of requirements are out of

scope in this dissertation.

19

Introduction

1.3 Research process and dissertation structure

The research of this dissertation includes both experimental and theoret-

ical research. A significant part of the research is the development of a

new methodology for: (1) modelling safety system designs; (2) modelling

hardware failures; and (3) abstraction methods of modular systems.

The research also involves technique development. First, an automatic,

iterative technique is developed for obtaining a suitable abstraction level

of the model. Secondly, a technique for test set generation is developed.

Both research tasks also include software tool development. Finally, the

research work includes several case studies, in which the feasibility of the

developed techniques and methodologies is evaluated by modelling both

fictitious and real systems.

This dissertation consists of five publications and a comprehensive sum-

mary of the work. The summary part is structured as follows. Chap-

ter 1 describes the background of the work, the objectives and scope of the

work, and the research process. Chapter 2 introduces the model-checking

method and the model-checking algorithms most relevant to this work.

Chapter 3 briefly discusses nuclear domain system design and verifica-

tion. Related work is in Chapter 4. Chapter 5 summarises the main

results of Publication I, and presents modelling methodology for FBD pro-

grams. Chapter 6 describes the contents of Publication II and Publication

III, and presents the iterative abstraction refinement technique for large

modular systems. In addition to the technique as described in Publication

III, an extension of the technique that covers also liveness properties is

presented. Chapter 6 also presents a comparison of the developed tech-

nique against another implementation of the Property-Directed Reach-

ability (PDR) algorithm. Chapter 7 discusses the results of Publication

IV related to hardware failure modelling and analysis of fault-tolerance,

and describes a novel concept-level approach for coupled use of proba-

bilistic risk assessment (PRA) and model checking that was not included

in Publication IV. Chapter 8 presents the test set generation technique

developed in Publication V. Finally, Chapter 9 concludes the dissertation

by summarising the answers to the research questions, and discusses the

implications of the work, as well as recommendations for future work.

20

2. Model checking

Model checking is a formal method used for verifying the correctness of

systems. The effectiveness of traditional verification methods such as

testing and simulation is dependent on the coverage of the test cases and

the coverage of the executed simulation traces. In many complex systems

the traditional verification methods cannot provide exhaustive analysis

due to the sheer number of test cases or simulation traces required, and

thus certain errors may remain hidden. A particular error is found only

if a scenario capturing such an error is explicitly specified as part of the

test design.

Another traditional technique is deductive verification (see, e.g., [34]),

which uses axioms and proof rules to verify the correctness of a system.

The technique is also known as interactive theorem proving. This kind

of approach requires manual interaction, and can be difficult to use in

practice.

Model checking is an automatic method that is also exhaustive. In

model checking, test cases need not be explicitly defined. Instead, the

functional requirements of the system are formalised, and a software tool

ensures that all behaviour related to that property is analysed.

2.1 General model-checking process

Model checking is defined in Publication I as an iterative work process;

see Figure 2.1. The process starts with the definition of the scope and

boundaries of the analysis. This is done by analysing the overall design

of the system and deciding which parts of the system behaviour should be

included in the model.

In the model construction step a model of the system is built based on de-

sign documentation. The model can, for example, use propositional logic

21

Model checking

System
design

System
requirements

Formalizing
properties

Model
checking Documentation

Model
construction

Interpretation
of results

Automated

Definition of
scope and
boundaries

Overall
design

Figure 2.1. Model-checking process

to describe valid transitions, and a state machine model can then be au-

tomatically generated based on these constraints. The model can also

specify the state machine model explicitly. In practice, these models are

quite similar to simulation models. It is important to both define the inter-

face between the model and its environment, and decide the appropriate

abstraction level.

The system requirements need to be formalised using some exact no-

tation such as temporal logic [170]. In temporal logic it is possible to

express system behaviour in terms of time. Linear Temporal Logic (LTL)

and Computation Tree Logic (CTL) [65] are examples of temporal logics.

The formalisation of system requirements can be demanding, especially

as the requirements are typically not precise enough to be directly trans-

lated into temporal logic. Typically they need to be divided into several

sub-requirements each of which can be separately formalised. Require-

ment formalisation goes hand in hand with modelling since the require-

ments are based on the selected level of abstraction, and the interface

between the model and the environment.

When the model and the formalised properties exist, the model-checking

tool automatically checks whether a property f is true in a model M at its

initial state s0, formally denoted as M, s0 |= f . If this is true the model-

checking tool reports that the formalised property is true. If the property

does not hold, the tool generates a concrete counterexample.

The next step is interpretation of the results of the model checker. The

counterexamples output by the model checker need to be manually anal-

ysed to see whether the counterexample describes an actual error in the

system, or if the counterexample is caused by incorrect assumptions in

modelling, the level of abstraction chosen in the model, or an error in the

model or a specification. If the model or a specification is incorrect, these

parts need to be revised and the model-checking phase is executed again.

This iterative nature of the model-checking process significantly improves

the quality of models because the errors made in the modelling phase are

22

Model checking

typically found when the counterexamples are interpreted.

The last model-checking phase is documentation. Items that are typ-

ically documented include the functional description of the system, the

verified properties both in natural language and in temporal logic, and

the results of model checking for each property. The findings (potential

errors) need to be precisely documented so that the cause of the erroneous

behaviour can be identified.

2.1.1 System modelling

In order to properly analyse the system it must be described in a way that

captures the system state and the possible changes in that state through

time. In practice, various high-level languages such as the modelling lan-

guage of NuSMV [51], Promela [106], and Petri nets [157] are used for

modelling. In the model-checking literature, however, Kripke structures

(see, e.g., [65]) have become the standard representation for formulating

verification algorithms in a modelling language independent way. In a

Kripke structure, a state captures the value of every variable at a par-

ticular time instant. Transitions between states may exist depicting the

possible ways a system can change its state as time progresses. The set of

pairs forming the transitions is called the transition relation. A sequence

of states that is according to the transition relation is called a path.

Definition 2.1. A Kripke structure is defined as M = (S, S0, R, L) where

S is the set of states, S0 ⊆ S is the set of initial states, R ⊆ S × S is the

transition relation, and L : S → 2AP is the labelling function, where AP is

the set of atomic propositions.

The labelling function describes the relations between states and the

values of atomic propositions in these states. If a state is labelled with

an atomic proposition it means that the proposition is true in that state.

Conversely, the absence of that label means that the atomic proposition is

false in that state.

A finite path of a Kripke structure M is a finite sequence of states p =

s0, s1, s2, . . . , sn such that (si, si+1) ∈ R for all 0 ≤ i < n, and s0 ∈ S0.

An infinite path of M is a sequence of states p = s0, s1, s2, . . . such that

(si, si+1) ∈ R for all i ≥ 0, and s0 ∈ S0. Consequently, a finite word w

of M is a finite sequence of labels w = x0, x1, x2, . . . , xn such that xi =

L(si) for all 0 ≤ i ≤ n, for a finite path p = s0, s1, s2, . . . , sn of M . An

infinite word is a sequence of labels w = x0, x1, x2, . . . such that xi = L(si)

23

Model checking

for all i ≥ 0, for an infinite path p = s0, s1, s2, . . . of M . The temporal

logic LTL that is used in this dissertation is concerned with infinite paths.

In this chapter, we extend deadlocking states of the Kripke structure by

adding self-loops, and this gives the semantics of LTL to finite paths. In

the following examples and definitions the terms path and word will refer

to infinite paths and infinite words respectively.

Example 2.1. A small Kripke structure is shown in Figure 2.2. It has

four states: s, t, u, and v. The state s is the only initial state depicted using

an incoming edge with no source state. The structure has four transitions:

from s to t, from t to u, from u to v, and from v to itself. The labelling

of the structure is such that L(s) = {P}, L(t) = {Q}, L(u) = {P,Q}, and

L(v) = {Q}. A possible path in the example is p = s, t, u, v, v, v,

s
{P}

t
{Q}

u
{P, Q}

v
{Q}

Figure 2.2. An example Kripke structure

2.2 Temporal logic

In order to reason about the behaviour of systems represented as Kripke

structures, a formalism for describing sequences of transitions is needed.

Temporal logic is such a formalism that extends classical logic in a way

that makes reasoning about timelines possible. Temporal logic is needed

as classical logic cannot capture properties such as “event A eventually

happens.”

In model checking, temporal logic is used for formalising functional re-

quirements of the system as properties that the model should have. Tra-

ditionally properties are classified as safety or liveness properties. The

safety-liveness classification was originally proposed by Lamport in [135].

Other more refined classifications of temporal properties exist as well, see,

e.g., [145], or [53].

Intuitively, safety properties assert that “nothing bad happens,” while

liveness properties state that “something good” eventually happens in the

system. Safety properties are such that if the property can be violated,

a finite counterexample exists that demonstrates how the “bad state” is

24

Model checking

reached. Counterexamples of liveness properties are always infinite se-

quences, in which the “good thing” does not happen.

In this dissertation, requirements are formalised using either state in-

variants or Linear Temporal Logic (LTL). State invariant properties ex-

press that a specified condition holds for all reachable states. A state

invariant consists of a single formula of propositional logic that must be

true in all initial states, and the satisfaction of the formula must be in-

variant under all states that can be reached from the initial states. Many

safety properties are invariant properties. However, all safety properties

are not invariants as safety properties may have requirements on finite

path fragments instead of reachable states only. It is possible to reduce

safety property verification to invariant checking by extending the model

with a construct that recognizes these finite path fragments. A transla-

tion algorithm from LTL safety properties to finite automata is presented

in [136]. The algorithm is based on the work of Kupferman and Vardi

[126] and essentially reduces LTL safety checking to invariant checking.

There are also other well-known techniques for mapping safety prop-

erties to invariants. One example is the use of a subset of a temporal

logic such as past LTL for which there is a construction based on history

variables for reducing the property into an invariant. [102]

2.2.1 Linear temporal logic

There are two main branches of temporal logics: branching time and lin-

ear logics. Branching time logics see the future as a tree-shaped structure,

in which many different futures exist any one of which may be realised.

Linear logics, such as Linear Temporal Logic (LTL), on the other hand

perceive all possible system behaviours as a set of paths. The descriptions

of LTL syntax and semantics below mostly follow the notations in [65].

Given a set of atomic propositions AP , the set of LTL formulas can be

inductively defined as follows:

• If p ∈ AP , then p is an LTL formula,

• If Φ is and LTL formula, then ¬Φ, and X Φ (next state) are LTL formulas,

• If Φ1 and Φ2 are LTL formulas, then Φ1 ∨ Φ2, and Φ1 U Φ2 (until) are

LTL formulas.

Logical shorthands such as ∧, →, ↔, True, and False can be used as well.

The temporal operator X (next state) requires that the property holds at

25

Model checking

the next state of the path. The temporal operator U (until) is such that a

formula Φ1 U Φ2 holds on a path where (1) Φ1 is continuously true until

Φ2 becomes true; and (2) Φ2 must eventually become true at some point.

In addition to the temporal operators X and U the following shorthand

temporal operators can also be used:

• Finally: F Φ = True U Φ, holds when a property eventually becomes

true at some future state of the path;

• Globally: G Φ = ¬ F ¬Φ, requires that the property holds at every fu-

ture state of the path;

• Release: Φ1 R Φ2 = ¬(¬Φ1 U ¬Φ2), requires that either Φ2 is always

true, or it is continuously true until and including the point where Φ1

becomes true; and

• Weak until: Φ1 W Φ2 = (Φ1 U Φ2) ∨ G Φ1, requires that either Φ1 is

always true, or it is continuously true until Φ2 becomes true.

Formally, the semantics of LTL formulas can be defined with respect

to an infinite word w ∈ (2AP)ω where w = x0, x1, x2, The suffix of w

starting at xi is denoted as wi. The relation |= is defined inductively as

follows:

wi |= p iff p ∈ xi for p ∈ AP,

wi |= ¬Φ iff wi
|= Φ,

wi |= Φ1 ∨ Φ2 iff wi |= Φ1 or wi |= Φ2,

wi |= X Φ iff wi+1 |= Φ, and

wi |= Φ1 U Φ2 iff ∃j ≥ i such that wj |= Φ2 and wn |= Φ1 for all i ≤ n < j.

The formal semantics of temporal formulas can be interpreted with re-

spect to paths of a Kripke structure. When a set of paths is considered,

the LTL formula has to be true on all paths to be true. Therefore, an

LTL formula Φ holds in a Kripke structure M if and only if w |= Φ for

every word w of M . If a formula Φ does not hold for M there is a word

w = x0, x1, x2, . . . such that w |= ¬Φ. Such a word w is called a counterex-

ample to Φ.

26

Model checking

2.3 NuSMV model checker

The model-checking tool primarily used throughout this work is NuSMV1

[57, 84]. NuSMV is a state-of-the-art open-source model-checking tool

that can be used for modelling many kinds of systems. The input lan-

guage of NuSMV is intended for describing finite-state machine models

that operate in discrete time. Finite data types such as Boolean variables,

enumerative variables, and integers with a limited range are supported.

2.3.1 Modelling language

NuSMV models are collections of variable declarations and assignments

defining the valid initial states and transition relations over these vari-

ables. Non-deterministic transitions are also supported. In addition, the

modelling language uses, e.g., macro definitions, and module hierarchies.

The modules of NuSMV are simply encapsulated collections of declara-

tions. Once a module has been defined, instances of it can be created as

many times as necessary. Modules are associated with a list of parame-

ters, and can contain instances of other modules. In a NuSMV model, a

single main module must exist that has no parameters. This is the main

module of the model that is evaluated by the interpreter.

In NuSMV, specifications can be expressed using state invariants or Lin-

ear Temporal Logic (LTL). NuSMV also supports specification languages

that have not been used in this work. Such languages are, e.g., Compu-

tation Tree Logic (CTL) [65] and Property Specification Language (PSL)

[115].

An example NuSMV model is in Listing 2.1. The main module of the

model declares a single Boolean variable var1, and creates an instance

detector1 of another module EdgeDetector with the Boolean variable

var1 as a parameter. The main module also has two macro definitions for

the outputs of detector1: rising_edge and falling_edge. The mod-

ule EdgeDetector detects rising edges and falling edges of its Boolean

parameter input. It declares a Boolean variable previnput whose ini-

tial value is set to false in the ASSIGN section of the module. The tran-

sition relation regarding the variable is defined using the next expres-

sion. In this case it is defined so that at the next time step the value

of previnput is equal to the value of the parameter input at the cur-

rent time point. The result is that after the initial time point previnput

1NuSMV version 2.5.4 was used. http://nusmv.fbk.eu/

27

http://nusmv.fbk.eu/

Model checking

always holds the value of input at the previous time point.

Finally, in the DEFINE section of EdgeDetector two macro definitions

rising and falling are described using simple case structures. The

definition rising is true whenever the parameter input was false in

the previous time point, and is true at the current time point. Similarily,

falling is true whenever the parameter input is currently false, and

was is true at the previous time point. An example of a state invariant

specification in the format of NuSMV is given on line 10. An equivalent

LTL specification is given on line 11.

1 MODULE main

2 VAR

3 var1 : boolean;

4 detector1 : EdgeDetector(var1);

5

6 DEFINE

7 rising_edge := detector1.rising;

8 falling_edge := detector1.falling;

9

10 INVARSPEC (! rising_edge);

11 LTLSPEC G (! rising_edge);

12

13 MODULE EdgeDetector(input)

14 VAR

15 previnput : boolean;

16 DEFINE

17 rising :=

18 case

19 ! previnput : input;

20 TRUE : FALSE;

21 esac;

22 falling :=

23 case

24 ! input : previnput;

25 TRUE : FALSE;

26 esac;

27 ASSIGN

28 init(previnput) := FALSE;

29 next(previnput) := input;

Listing 2.1. An example NuSMV model

28

Model checking

2.4 Employed algorithms

NuSMV implements many different model-checking algorithms. With

regard to the algorithms used in this dissertation, the BDD-based sym-

bolic invariant checking (see Section 2.6.1) and BDD-based symbolic LTL

model checking (see Section 2.8.1) are both implemented in NuSMV. For a

detailed description of NuSMV’s implementation of LTL model checking,

see, e.g., [178].

NuSMV also employs many SAT-based model-checking algorithms. The

implementation of the k-induction algorithm (described in Section 2.7) in

NuSMV follows the description of Eén and Sörensson [78].

NuSMV does not have any implementation of the PDR algorithm nor

any implementation of liveness-to-safety reductions. The iterative ab-

straction refinement technique described in Chapter 6 uses both tech-

niques. For PDR model checking, the NuSMV model is translated into

the format required by the model-checking tool ABC/ZZ [80] that has an

implementation of PDR. The models used in the ABC/ZZ tool are in the

AIGER input format. The AIGER [28] format is based on And-Inverter

Graphs (AIGs) and it basically corresponds to a low level desription of

a Boolean circuit. The liveness-to-safety reduction is performed using

standalone software that implements the state-recording translation as

described in [186].

The PDR algorithm and the liveness-to-safety reduction are both imple-

mented in the nuXmv [50] tool, which is an extension to NuSMV. However,

the license conditions of nuXmv prevent free commercial use. Since the

research in this dissertation intends to support verification work typically

performed in customer projects, the nuXmv tool was not utilised.

2.5 Symbolic model checking

The first model-checking techniques were simultaneously developed by

two different research groups: Clarke and Emerson [63], and Quielle and

Sifakis [172]. The developed algorithms were originally explicit-state tech-

niques in which the system states are individually represented and enu-

merated, and the algorithms operated directly on the Kripke structure.

These early explicit-state techniques suffered severely from the state ex-

plosion problem. State explosion means that the number of states in the

model grows exponentially as the size of the model increases. As an ex-

29

Model checking

ample, a system with n Boolean variables can have 2n states in the worst

case. Even though some explicit state model checkers such as SPIN [106]

and DiVinE [14] have been quite succesful, the explicit-state techniques

can become quite infeasible in large models such as the system models

studied in this dissertation that involve a lot of free input variables, and

have state spaces with a high branching degree. There are also interest-

ing new approaches halfway between symbolic and explicit-state model

checking, see, e.g., [156]. These approaches have not been studied in this

dissertation, and determining whether the approaches are applicable to

this domain is left for future work.

In spite of many different approaches, the state explosion problem has

remained a formidable challenge. One of the most successful approaches

has been symbolic model checking, in which states are not individually

represented, and the algorithms operate on sets of states and sets of tran-

sitions instead.

The symbolic encoding of the states and transitions of a Kripke structure

is demonstrated here using the system described in Example 2.1. The

example Kripke structure is defined as:

S = {s, t, u, v},

S0 = {s},

R = {(s, t), (t, u), (u, v), (v, v)}, and

L(s) = {P};L(t) = {Q};L(u) = {P,Q};L(v) = {Q}.

The different states of the system need to be symbolically encoded. Since

there are four states in the system, all states can be represented using two

bits: x0 and x1. The encoding used here maps s to ¬x0 ∧¬x1, t to ¬x0 ∧ x1,

u to x0∧¬x1, and v to x0∧x1.2 This encoding allows us to represent sets of

states using Boolean functions such that each Boolean function evaluates

to true exactly for the states it represents. For example, the set of states

in which Q is true can be represented by the Boolean formula x0 ∨ x1.

Other labels of the system can be represented in a similar manner.

For symbolically representing the transitions of the system, two sets of

state variables are needed. The starting state of a transition is encoded as

x = (x0, x1) and the target state of the transition is encoded using primed

copies of the variables: x′ = (x′0, x′1). The symbolic transition relation RS

is then a formula such that (s, s′) ∈ R if and only if x = (x0, x1) is the sym-

2An alternative way to express this encoding is to use a bit vector of length 2, so
that the states s, t, u, v are mapped to vectors 00, 01, 10, 11 respectively.

30

Model checking

bolic representation of s, and x′ = (x′0, x′1) is the symbolic representation

of s′, and RS(x, x′) evaluates to true.

In the example system, the total symbolic transition relation is: RS =

{(¬x0 ∧¬x1 ∧¬x′0 ∧ x′1)∨ (¬x0 ∧ x1 ∧ x′0 ∧¬x′1)∨ (x0 ∧¬x1 ∧ x′0 ∧ x′1)∨ (x0 ∧
x1 ∧ x′0 ∧ x′1)}

For model checkers, variants of Binary Decision Diagrams (BDDs) [43]

have traditionally been used for representing the state sets and the tran-

sition relation. A BDD is a directed acyclic graph that has two sink nodes

labelled 0 and 1 representing the Boolean values 0 (False) and 1 (True).

Each non-sink node is labelled with a Boolean variable v. The non-sink

nodes have two child nodes called low child and high child, and the edges

to these nodes are labelled with 0 and 1. An edge from v to its low child

represents an assingment of v to 0. Similarly, an edge from v to its high

child represents an assignment of v to 1. An Ordered Binary Decision

Diagram (OBDD) is a BDD in which the input variables are ordered, and

every path from a source node to a sink node follows the variable order-

ing. A Reduced Ordered Binary Decision Diagram (ROBDD) is a BDD in

which all isomorphic subgraphs have been merged, and nodes that have

isomorphic child nodes have been removed. ROBDDs are typically used

as they are very compact, and have a canonical representation. Many ba-

sic operations can be performed very efficiently on ROBDDs. An example

ROBDD is illustrated in Figure 2.3. When compared to explicit represen-

tation of state spaces, representing sets of states by their characteristic

functions symbolically makes it possible to verify systems that have sev-

eral orders of magnitude more states [44].

In addition to BDD-based symbolic model checking, techniques based on

propositional satisfiability (SAT) solving are also often used, see, e.g., [25].

The propositional satisfiability problem [29] can be defined as follows. Let

V = x1, x2, . . . xn be a finite set of Boolean variables. A Boolean variable xi

or its negation ¬xi is called a literal. A clause is a disjunction of literals,

and a SAT instance is a conjunction of clauses. A valuation is a function

that assigns each variable in V to a Boolean value. A literal xi is satisfied

if xi is assigned a Boolean value 1. A literal ¬xi is satisfied if xi is assigned

a Boolean value 0. A clause is satisfied when at least one of its literals is

satisfied. A SAT instance is satisfied when all of its clauses are satisfied.

The SAT problem is to decide whether a valuation that satisfies the SAT

instance exists, and it is the canonical NP-complete decision problem [29].

31

Model checking

X0

X1

X’0 X’0 X’0

X’1 X’1

0 1

0

0

0

0

0 0

0

1

1

1
1

1
1

1

Figure 2.3. A Reduced Ordered Binary Decision Diagram for the transition relation of
the example system, RS = {(¬x0 ∧ ¬x1 ∧ ¬x′

0 ∧ x′
1) ∨ (¬x0 ∧ x1 ∧ x′

0 ∧ ¬x′
1) ∨

(x0 ∧¬x1 ∧ x′
0 ∧ x′

1)∨ (x0 ∧ x1 ∧ x′
0 ∧ x′

1)}. A variable ordering of x0, x1, x
′
0, x

′
1

is applied.

2.6 Symbolic invariant checking

As was mentioned in Section 2.2, safety property checking can be re-

duced to the checking of state invariant properties. Therefore, in the con-

text of safety property verification this dissertation only discusses model-

checking algorithms that can be used to verify state invariants. These al-

gorithms, together with an appropriate reduction, can be used to check all

safety properties. Three invariant checking algorithms are covered. BDD-

based invariant checking [74, 57] and the PDR algorithm [39] use an ap-

proach based on inductive invariants, while the more general k-induction

algorithm [189] builds on Bounded Model Checking (BMC) principles, and

extends traditional BMC to also proving properties.

2.6.1 BDD-based invariant checking

The basic method for verifying invariant properties is to prove that a state

in which the invariant property is false cannot be reached from the initial

32

Model checking

S1(s)

S0(s)=I(s)

Sn(s)≡Sn+1(s)

¬P(s)

Figure 2.4. The forward method checks whether a bad state ¬P (s) can be reached from
the initial states.

state of the model. The basic forward variant of this method, see, e.g., [74],

starts from the initial states and iteratively applies the transition relation

to the forward direction to create sets of states that can be reached from

the initial states. A description of this technique follows.

Assume that I(s) = S0(s) is a formula encoding the initial states of a

system, R(s, s′) is a formula encoding the transition relation of the sys-

tem, and P (s) is a formula encoding the states that satisfy the invariant

property, where s and s′ are sets of states.

The forward method starts with the set of initial states I(s), and checks

whether the formula I(s) ∧ ¬P (s) is satisfiable. If the formula is not sat-

isfiable, the algorithm calculates a new set of states by forward traver-

sal of the transition relation: S1(s) := I(s) ∨ ∃s′ : I(s′) ∧ R(s′, s). For

arbitrary n the formula Sn(s) can then be recursively calculated from

Sn+1(s) := Sn(s) ∨ {s′|∃s′′ : Sn(s
′′) ∧R(s′′, s′)}, for n ≥ 0.

At each recursive step the algorithm checks whether the formula Sn(s)∧
¬P (s) is satisfied. If it is, then the satisfying truth assignment represents

a counterexample to the invariant property. If the formula remains unsat-

isfied, the algorithm increases n until a fix-point is reached, i.e., Sn+1 ≡
Sn(s). This fix-point corresponds to the reachable state space of the sys-

tem. If the formula Sn(s)∧¬P (s) is true in this fix-point state, the invari-

ant property is true in the system.

In the alternative backward calculating method (see, e.g., [148]) the bad

states are the starting point, and reachable states are calculated in the

33

Model checking

B0(s)=¬P(s)

B1(s)

Bn(s)≡Bn+1(s)

I(s)

Figure 2.5. The backward method checks starts from a bad state ¬P (s) and checks
whether an initial state I(s) of the system can be reached by backward traver-
sal of the transition relation.

backwards direction. The invariant property is unsatisfied if an initial

state can be reached, and satisfied if a fix-point state is reached that does

not include initial states. In the backward method the bad state ¬P (s) is

denoted as B0. Bn+1(s) is then the set of states from which a bad state can

be reached in n + 1 steps, calculated recursively from Bn+1(s) := Bn(s) ∨
{s′|∃s′′ : Bn(s

′′) ∧ R(s′, s′′)}, for n ≥ 0. On each iteration the algorithm

checks whether an initial state was reached, i.e., whether I(s) ∧ Bn(s
′)

is satisfied. If the formula I(s) ∧ Bn(s
′) is satisfied, the satisfying truth

assignment again represents a counterexample to the invariant property.

Finally, a combination of forward and backward invariant checking is

also possible. In this third variant the algorithm calculates both pred-

icates Sn(s) and Bn(s) simultaneously with increasing values of n. On

each step the algorithm checks whether a state exists that is in both Sn(s)

and Bn(s). If such a state s′ exists, it means that it can be reached from

the initial state in n steps, and that a bad state can be reached from s′

in n steps. The satisfying truth assignment of Sn(s) ∧ Bn(s) represents

a counterexample to the invariant property P . The recursive calculation

is again terminated when such a state cannot be found, and either of the

predicates Sn(s) and Bn(s) reach a fix-point.

34

Model checking

2.6.2 Property directed reachability

Bradley suggested an entirely new model-checking approach originally

titled IC3 (Incremental Construction of Inductive Clauses for Indubitable

Correctness) [39]. Later in [77] the technique was improved upon, and

renamed as Property Directed Reachability (PDR). PDR is a SAT-based

technique that avoids the unrolling of the transition relation, and instead

attempts to reach a proof by solving several smaller SAT-problems. The

technique has been found to be very efficient in practice. For example,

Brayton’s initial implementation of the algorithm won third place in the

Hardware Model Checking Competition HWMCC’10 (2010) [26]. In later

competitions, various PDR implementations have been incorporated also

in other submissions. The description of the algorithm here follows mostly

the notations of the original approach [39], while the improvements of [77]

are also discussed. In the description below, the transition relation over

current and next-state variables of the model is denoted T (s, s′). The set of

initial states is denoted I(s), and the set of property states is denoted P (s).

For convenience, the dependence of T , I, and P on the state variables

s and s′ is omitted below. For a more detailed explanation of inductive

generalisation of states, see [77]. For a proof of the termination of the

original algorithm, see [39].

PDR is an algorithm for verifying safety properties. In particular, the

intention of the PDR algorithm is to create an inductive invariant that

proves the original state invariant property P under examination. This

invariant is a Boolean formula called Proof that has the following proper-

ties:

• Proof property 1: Proof is satisfied in the initial states of the system

I(s);

• Proof property 2: Proof is inductive, i.e., if a state s satisfies the invari-

ant, all successors of s also satisfy the invariant, Proof ∧ T =⇒ Proof ′;

and

• Proof property 3: Proof is such that it implies the examined property P ,

Proof =⇒ P .

The algorithm operates on sets of clauses Fi, that over-approximate the

set of states reachable from the initial states of the system in i transi-

tions. The sets of clauses F0, . . . Fk, also called frames, are such that the

35

Model checking

following four properties are always satisfied:

• Frame property 1: F0 = I.

• Frame property 2: Fi =⇒ Fi+1, for 0 ≤ i < k.

• Frame property 3: Every state that can be reached in one transition

from a state satisfying Fi satisfies Fi+1, i.e., Fi ∧ T =⇒ Fi+1, for 0 ≤ i <

k.

• Frame property 4: The invariant P is satisfied in all sets Fi, Fi =⇒ P ,

for 0 ≤ i ≤ k.

The algorithm works iteratively. Initially it starts with just one set of

clauses F0 = I, and first checks whether the negation of the property P

is satisfied in it. If it is, the initial state of the system is a bad state.

Otherwise, it enters the main loop of the algorithm.

On each execution of the main loop the algorithm checks whether a bad

state can be reached in one transition from the highest frame by solving

Fk∧T ∧¬P , using a SAT solver. If the formula is satisfiable the SAT-solver

returns a predecessor of a bad state m that satisfies it. The state m is then

generalised to a cube3 s.

Next the algorithm attempts to remove s from Fk by trying to find out

if the cube is blocked by a previous frame by checking the satisfiability of

Fk−1 ∧ T ∧ s′, where s′ denotes the next-state encoding of s. If the formula

is satisfiable, a satisfying cube t can be extracted, and the algorithm tries

to similarly block this new cube in the previous frame Fk−2. Eventually

a cube will be blocked by some frame, or the initial frame F0 is reached.

If the initial frame (initial state) cannot block the previous cube, the al-

gorithm has found a counterexample to the property P . If, however, at

some point a cube can be blocked in some frame Fi, the algorithm adds a

negation of that cube to frames Fj , where j ≤ i, so that frame property 2

remains satisfied.

Once the formula Fk∧T ∧¬P becomes unsatisfiable in the main loop, the

algorithm adds a new frame Fk+1 = P , and the propagates the formulas in

the frames to their successors whenever this can be done without violating

the frame properties. For each clause c ∈ Fi the algorithm checks whether

Fi∧T ∧¬c is satisfiable. If the formula is unsatisfiable, c is added to frame

3A cube is defined as a conjunction of literals. A literal is defined as a variable or
its negation. The cube s is such that it describes a set of states, and it is created
by removing irrelevant literals from the bad state m. In PDR, this reduction is
done by ternary simulation.

36

Model checking

Fi+1.

The algorithm terminates with a proof when two consecutive frames

become identical, i.e., Fi ≡ Fi+1, for some 0 ≤ i < k. Since all of the Frame

properties are true, we can see that Fi satisfies the properties of a proof.

Proof property 1 is implied by Frame properties 1 and 2; Proof property 2

is implied by the fact that Fi = Fi+1; and Proof property 3 is implied by

Frame property 3.

One of the particular benefits of the PDR algorithm is that the proof

given by the algorithm is an actual Boolean formula. The Proof formula

serves as a certificate of the correctness of the model-checking process

since the inductive invariance of the Proof formula can be independently

checked using another tool.

2.7 k-induction

One alternative to the BDD-based symbolic model-checking technique is

called Bounded Model Checking (BMC) [25]. In BMC, the general model-

checking problem is not directly addressed. Instead, a more restricted

bounded problem is analysed instead. The basic idea of BMC is to ask

whether a counterexample of length k can be found. This problem is then

translated into a propositional satisfiability (SAT) problem that can then

be solved using efficient SAT solvers.

Let M be a Kripke structure of a system, and P be an invariant that is

being verified against the system. A path of M is encoded by unrolling

its transition relation k times. This means that k + 1 copies of the state

variables are created: one copy for each time point. The transition relation

T always holds for state variables of two consecutive time points. The

initialised finite paths of M of length k are then defined as:

�M,k� := I(s0) ∧
k−1∧
i=0

T (si, si+1)

A formula that encodes the initialised finite paths of M of length k that

lead to a state in which the invariant P is false can be defined as:

�M,k,¬P � := I(s0) ∧
k−1∧
i=0

T (si, si+1) ∧ ¬P (sk)

In the traditional BMC approach, the value of the bound k is initially 0.

If a counterexample to the model-checking problem with a bound cannot

be found, the value of k is increased. If the examined property is true, the

37

Model checking

value of k is in theory increased until a completeness threshold, i.e., a sep-

arately computable bound that guarantees that the property holds over

all infinite paths of the model, is met. In practice, the BMC method is

not complete, since the completeness thresholds are typically very large

on non-trivial models.

The technique called k-induction [189, 78] combines the BMC approach

with mathematical induction in order to verify invariant properties. In

k-induction, the transition relation T is unrolled as well, and the coun-

terexamples are found using a formula similar to the BMC approach. In

addition to this, k-induction uses a second SAT formula for finding a proof

that no counterexamples exist. The description of the k-induction tech-

nique follows the notation of the paper by Eén and Sörensson [78].

The k-induction approach starts with a k value of 0 and increases k

whenever no counterexample has been found and the property has not

been proved. When formulas generated for high values of k are used,

the k-induction algorithm always assumes that the reasoning on lower k

values has been inconclusive.

The main idea of k-induction is to create a k-step inductive proof. The

base case of the induction proof states that a bad state cannot be reached

from an initial state in k steps. The induction step of the proof then states

that if P has been true for k consecutive time points, it will always be true

at time point k + 1. If both the base case and the induction step are true

for some k, it is possible to inductively deduce that P is true in the system.

Finally, termination and completeness of the k-induction technique can

be guaranteed by restricting the analysis to unique paths in the induc-

tion step. Unique paths are such that all states on the path are unique,

i.e., there are no loops in the path. In finite state systems, there neces-

sarily exists an upper bound for the length of such a path, ensuring the

termination of the approach.

The base case, the induction step, and the formula restricting the induc-

tion step to non-looping paths are defined below. The formulas are such

that their unsatisfiability is used when proving the correctness of P .

Basek := I(s0) ∧
k−1∧
i=0

T (si, si+1) ∧ ¬P (sk)

InductionStepk :=
k∧

i=0

T (si, si+1) ∧
k∧

i=0

P (si) ∧ ¬P (sk+1)

38

Model checking

Uniquek :=
k−1∧
i=0

k∧
j=i+1

(si
= sj)

The k-induction method with the checks for non-looping paths is a com-

plete method for verifying state invariants. Similar complete methods for

more descriptive temporal logics exist as well. The technique described

in [27] combines k-induction with a Büchi automata-based BMC encoding

for LTL with past operators and a reduction from liveness properties to

safety properties, resulting in a complete method.

2.8 Model-checking techniques for liveness properties

LTL can be used to express liveness properties. In this section, two differ-

ent approaches for checking liveness properties expressed using LTL are

briefly described. BDD-based symbolic LTL model checking is described

in Section 2.8.1, and an approach based on reducing liveness checking into

safety checking is described in Section 2.8.2.

2.8.1 BDD-based symbolic LTL model checking

LTL model checking is based on the automata-theoretic approach [202], in

which the negated LTL specification ¬φ is transformed into a generalised

Büchi automaton denoted A¬φ, and composed with the system model M

forming AM,¬φ. In this approach the model-checking problem reduces to

checking for emptiness of the language of the composed system. In what

follows, this well-known symbolic LTL model-checking technique is ex-

plained in detail following the notations used by Clarke, Grumberg, and

Peled in [65] as well as the description of the technique by Rozier in [178].

Definition 2.1. A Büchi automaton is a tuple 〈Σ, S, S0,Δ, F 〉 where: Σ is

a finite alphabet, S is a finite set of states, S0 ⊆ S is the set of initial states,

Δ ⊆ S × Σ× S is the transition relation, and F ⊆ S is the set of accepting

states.

A run r of a Büchi automaton over an infinite word a0, a1, a2, · · · ∈ Σω is a

sequence of states s0, s1, s2, · · · ∈ S such that s0 ∈ S0, and (si, ai, si+1) ∈ Δ

for all i ≥ 0. A run r is accepting if it visits a state in F infinitely often.

The set of infinite words accepted by an automaton A is the language of

L(A) ⊆ Σω. A language is empty when L(A) = ∅.

A generalised Büchi Automaton (GBA) can have multiple acceptance

39

Model checking

sets F1, F2, . . . , Fn ∈ F and an infinite run is accepted by the automaton if

it visits a state in each set infinitely often.

For every LTL formula φ, it is possible to construct a non-deterministic

generalised Büchi automaton Aφ (also called tableau) such that the lan-

guage accepted by A, Lω(Aφ) corresponds exactly to the runs described by

φ, see, e.g., [140] for a proof.

The process of constructing the Büchi automaton Aφ = (Σ, Sφ, S
0
φ,Δφ, Fφ)

is as follows. Assume that the logical ∧ operator has been eliminated by

DeMorgan’s law (a ∧ b is equivalent to ¬(¬a ∨ ¬b)), and that the temporal

operators G, F, R, and W have been eliminated from the formula (us-

ing the equivalences described in Section 2.2.1), and let AP be the set of

atomic propositions in φ. The alphabet Σ of the Büchi automaton is 2AP .

In order to construct the set of states of the Büchi automaton, the set of

elementary formulas el(φ) is first recursively defined.

• el(p) = {p}, if p ∈ AP

• el(¬ψ) = el(ψ)

• el(ψ1 ∨ ψ2) = el(ψ1) ∪ el(ψ2)

• el(X ψ) = {X ψ} ∪ el(ψ)

• el(ψ1 U ψ2) = { X (ψ1 U ψ2)} ∪ el(ψ1) ∪ el(ψ2)

Each subset of el(φ) corresponds to a state s ∈ Sφ of the Büchi automa-

ton Aφ. Each of these states is labelled with the elementary formulas it

corresponds to. The labelling of state s is denoted l(s). In addition to

these states, a special state s0φ is also added to Sφ. The state s0φ is the

initial state of the Büchi automaton, S0
φ = s0φ.

In order to construct the transitions between the states, a function sat

is first defined that associates each subformula of φ with the set of states

that satisfies that subformula.

• sat(ψ) = {s | ψ ∈ s} where ψ ∈ el(φ)

• sat(¬ψ) = {s | s /∈ sat(ψ)}
• sat(ψ1 ∨ ψ2) = sat(ψ1) ∪ sat(ψ2)

• sat(ψ1 U ψ2) = sat(ψ2) ∪ (sat(ψ1) ∩ sat(X (ψ1 U ψ2)))

The transition relation of the Büchi automaton must be such that each

elementary formula labelled in a state is true in that state. In particular,

if an elementary formula of the form X ψ is labelled in a state s, then ψ

40

Model checking

should be satisfied by all successors of s. Also, if ¬X ψ is true in s, then

none of the successors of s should satisfy ψ. Formally this property of the

transition relation can be defined so that:

Δx = {(s, a, s′) ∈ Sφ×AP×Sφ | ∀ X ψ ∈ el(φ) :
(
s ∈ sat(X ψ) ⇔ s′ ∈ sat(ψ)

)
and a = l(s′) ∩ AP}

In addition to this, transitions are added from the special initial state

s0φ to all states s′ where sat(φ) is satisfied. This can be defined formally as

follows:

Δi = {(s0φ, a, s′) ∈ S0
φ × AP× ∈ Sφ | s′ ∈ sat(φ) and a = l(s′) ∩AP}

The transition relation of the Büchi automaton Aφ is then:

Δφ = Δx ∪Δi

Finally, the acceptance sets of the Büchi automaton are constructed so

that for each subformula of φ of the form ψ1 U ψ2, a new acceptance set

Fψ1 U ψ2
∈ Fφ is created containing all states labelled ψ2, and all states

labelled ¬ψ1 U ψ2.

If such a Büchi automaton is created for the negated specification ¬φ,

the resulting automaton A¬φ characterises all possible runs that violate

the specification φ. When this automaton is composed with the system

model M , the resulting automaton AM,¬φ characterises all possible runs

of M that also violate φ.

The system model M is given as a Kripke structure M = (S, S0, R, L)

over a set of atomic propositions AP must first be interpreted as a Büchi

automaton. Again, a special initial state s0M must be added to the Büchi

automaton. AM = (Σ, SM , S0
M ,ΔM , FM) is the corresponding Büchi au-

tomaton, where:

• Σ = 2AP ,

• SM = S ∪ {s0M},

• S0
M = {s0M}

• For all s, s′ ∈ SM , a ∈ Σ : (s, a, s′) ∈ ΔM if and only if L(s′) = a and

(((s, s′) ∈ R) or (s = s0M and s′ = s0)); and

• FM = SM .

41

Model checking

Let A¬φ = (Σ, Sφ, S
0
φ,Δφ, Fφ) be the automaton that corresponds to the

negated LTL formula, and AM = (Σ, SM , S0
M ,ΔM , FM) be the automaton

corresponding to the system model.

In the special case where all of the states of AM are accepting (FM =

SM) the automaton AM,¬φ = (Σ, S, S0,Δ, F) accepting the intersection of

the languages L(AM) ∩ L(A¬φ) can be defined by a simpler production

construction method4 [65]:

• S = SM × Sφ,

• S0 = S0
M × S0

φ,

• For all s, s′ ∈ SM , t, t′ ∈ Sφ, a ∈ Σ : ((s, t), a, (s′, t′)) ∈ Δ if and only if

(s, a, s′) ∈ ΔM and (t, a, t′) ∈ Δφ, and

• F = FM × Fφ

If an accepting run can be found in AM,¬φ it is a counterexample of φ in

M . If no such run can be found, i.e., L(AM,¬φ) = ∅, it is concluded that φ

holds in M , i.e., M |= φ.

The product automaton AM,¬φ can also be viewed as a directed graph

GM,¬φ = (V,E) where V is the finite set of states corresponding to the

states of the automaton such that V = S, and E ⊆ V × V is the set of

edges such that (s, s′) ∈ E whenever (s, a, s′) ∈ Δ for any two states s and

s′, and for any alphabet a ∈ Σ. The paths of the graph then correspond to

the computations of the automaton.

In order to perform model checking, strongly connected components (SCC)

of the graph G can be exploited. A strongly-connected component is de-

fined as a maximal subgraph such that any two states are mutually reach-

able. A single state that is not connected to itself is a trivial SCC.

Given a set of accepting sets F , a fair SCC is defined to be a such a

nontrivial SCC that intersects each accepting set in F .

Every accepting run of a generalised Büchi automaton can be repre-

sented as a lasso-shaped path from an initial state to an accepting cycle.

Thus, using the above defined constructs, the problem of finding whether

the generalised Büchi automaton AM,¬φ has an accepting run can be re-

duced to finding a path to a fair strongly-connected component in the

graph GM,¬φ.

In symbolic LTL model checking, the model AM , the LTL formula A¬φ
and the product automaton AM,¬φ are encoded using reduced ordered

4Note that this product construction is not correct for arbitrary automata.

42

Model checking

Algorithm 2.1 Symbolic algorithm detecting fair cycles [79]
1: procedure CHECKFAIRCYCLES(F)

2: Z ′ := �
3: repeat

4: Z := Z ′

5: for each Fi ∈ F do

6: Y := CheckEU (Z,Fi ∧ Z)

7: Z ′ := Z ′ ∧ PreImage(Y)

8: end for

9: until Z ′ ⇔ Z

10: return Z

11: end procedure

12: procedure CHECKEU(φ1, φ2)

13: X := φ2

14: repeat

15: X ′ := X

16: X := X ∨ (φ1 ∧ PreImage(X))

17: until X ′ ⇔ X

18: return X

19: end procedure

BDDs (see Section 2.5). Accepting runs are detected based on a symbolic

algorithm that operates on sets of states, and sets of transitions. The first

such algorithm was by Emerson and Lei [79]. The Emerson-Lei algorithm

is based on μ-calculus (see, e.g., [147]) and the computation of fix-points

by repeated pre-image computations.

A symbolic algorithm based on the original Emerson-Lei algorithm is

outlined as pseudo-code in Algorithm 2.1. The algorithm operates on sets

of states, i.e., the variables X,Y, Z,X ′, Z ′ are reduced ordered BDDs repre-

senting a set of states. The algorithm has two procedures. CheckFairCycles

has as input the set of accepting states F , and it returns either an empty

set or a state set in which each state can be reached from another state

within the set, and all accepting conditions are met. It does this by great-

est fix-point calculation. The value of Z is initially set to � (i.e., all of the

states in the automaton) and the value of Z is iteratively updated until it

converges to a fix-point.

The procedure CheckEU is used to compute a set of states from which a

path exists such that the first parameter φ1 is true until the second pa-

43

Model checking

rameter φ2 becomes true. It does this by calculating a least fix-point.

CheckFairCycles makes repeated calls to CheckEU in order to compute

states from which each of the accepting states can be reached. It then

excludes the states that do not have any successors, as such states can

not form a fair cycle. Both procedures of Algorithm 2.1 utilise a predicate

PreImage(X) that calculates the states that are backwards reachable from

the state set X. Formally PreImage(X) can be defined as:

PreImage(X) = {s ∈ S|(s, a, s′) ∈ Δ for some s′ ∈ X}.

If a fair cycle can be found using Algorithm 2.1, it remains to be shown

that the corresponding cycle in M can be reached from the initial states.

The detailed counterexample trace also has to be created. A path to the

fair SCC can be calculated by starting from the initial states of M and

calculating states reachable from them by repeatedly applying the transi-

tion relation until a state in the fair SCC is found or a fix-point state (all

reachable states found) is reached. A similar reachability analysis can be

used to construct a looping trace in the fair SCC such that all acceptance

sets are visited. The counterexample trace is the combination of the path

from the initial state to the SCC, and the loop inside that SCC visiting all

of the acceptance sets.

Due to a doubly-nested fix-point operator, the Emerson-Lei algorithm

operates in quadratic time. A theoretically better O(n log n) algorithm is

described in [35] but this alternative algorithm has been found to often

perform worse in practice; see [174].

2.8.2 Liveness-to-safety reductions

In this dissertation (Publication III in particular) a liveness-to-safety re-

duction is employed as one way to check liveness properties. In Publica-

tion III, the state-recording translation method is used for this purpose.

The state-recording translation by Schuppan and Biere [24, 186] reduces

liveness checking to safety checking in a monolithic way, i.e., so that only

a single safety-checking query is needed to verify a liveness property.

The state-recording translation can be applied for general LTL formu-

las. The product automaton AM,¬φ is built, similarly as was described

in Section 2.8.1, and each acceptance set can be interpreted as a fairness

constraint.

A counterexample to a liveness property is an infinite path where some-

44

Model checking

thing good never happens. In a finite-state system this means that the

counterexample is lasso-shaped, consisting of a finite prefix and an in-

finitely repeating loop.

The state-recording translation works by trying to guess the starting

point of that loop. In practice, this translation extends the model with a

separate observing part, and uses an oracle variable save to determine the

starting point of the loop. The translation saves copies of the state vari-

able values to a second pair of state variables at this time point. Another

variable saved is used to indicate that the loop starting point has already

been guessed in the past. A condition looped is also created that is true

when the current state equals the previously saved state, indicating that

a lasso-shaped path has been found. The translations monitors the fulfil-

ment of the acceptance sets of the liveness property using flag variables.

It creates an additional state variable fair i for each acceptance set Fi that

observes whether a state in the acceptance set is visited within the loop.

Using the auxiliary constructs described above, the liveness property

can then be translated into an invariant property stating that no lasso-

shaped path exists (where at the last state the state variable values are

equal to the saved variable values) such that every acceptance set related

to the liveness property is satisfied within the loop. Finally, the liveness

property is true when no such paths exist in the model. If k is the number

of acceptance sets, the invariant in the translated model corresponding to

the original liveness property is of the form:

¬
(
looped

k∧
i=0

fair i

)

In addition to the state-recording translation, other liveness-to-safety

reduction techniques exist as well. The k-liveness [60] and the acceptance-

counting translation [90] describe essentially the same technique. This

technique is based on the observation that an LTL property holds when

there exists an integer N such that no run of AM,¬φ visits an accepting

state N or more times. This technique tracks visits to accepting states

using counter variables. If an upper bound for N is found, it deduces that

the LTL property must hold.

Another approach by Bradley et al. [40] looks for fair strongly-connected

components in the composition of the system model and the negated prop-

erty AM,¬φ by making a series of separate reachability queries that are

performed by a model-checking tool. In their approach, the queries are

done using the PDR algorithm.

45

3. Nuclear instrumentation and control
system development and verification

This chapter focuses on the development and verification of digital In-

strumentation & Control (I&C) systems used in nuclear power plants.

Section 3.1 covers the most essential design principles related to nuclear

domain I&C systems, and Section 3.2 briefly discusses digital I&C system

development related matters.

3.1 Nuclear power plant I&C systems

I&C systems enable and ensure the safe operation of nuclear power plants.

In their most simple form, I&C systems measure the physical parameters

of the plant, provide the HMI (Human-Machine Interaction) interface to

the control room, and actuate devices such as pumps and valves when

necessary. These control actions can either be fully automatic, or based

on manual operator commands.

Nuclear power plants have strict requirements for safety and reliabil-

ity. To meet these requirements, the defence in depth principle [109] is

applied. Defence in depth is essentially the use of multiple successive de-

fensive barriers to prevent the release of radioactive material into the en-

vironment. When successfully used, this design principle leads to systems

in which no single human or mechanical failure can lead to a hazardous

scenario. In I&C system design the defence in depth principle is achieved

with a hierarchy of systems, and the use of redundancy and diversity.

For example, it is common to implement three levels of I&C systems:

control systems, preventive protection systems, and protection systems.

The intention of this arrangement is that preventive protection systems

are activated when control systems fail to keep the plant processes within

predetermined limits, and protection systems are activated if the control

actions of the preventive protection systems are insufficient. The pro-

47

Nuclear instrumentation and control system development and verification

tection systems have a higher safety category, and they are physically

separated from systems belonging to lower safety categories.

The reliability of individual systems is commonly increased by imple-

menting several redundant subsystems that are all capable of performing

the same safety function. This design approach is very effective against

single failures in, e.g., measurements.

In addition to single failures, I&C system design also takes common

cause failures (CCFs) into consideration. CCFs can occur when multiple

components fail simultaneously due to the same cause such as, e.g., in-

correct maintenance actions, loss of electrical power, environmental con-

ditions (fire, flood, earthquake), or software design errors. In I&C system

design, CCFs are prevented by the use of diversity. Diversity is the use of

different means to perform the same function. In practice, diversity can

be about measuring different physical parameters (e.g., temperature/pres-

sure), using different physical operating principles (e.g., inserting control

rods to the reactor to shutdown/injecting boron to the reactor to shut-

down), and the use of different design organisations, different vendors or

different underlying technologies.

Nuclear power plants have traditionally used conservative technology

because of, e.g., the long lifetime of the plants, and due to the strict re-

quirements to demonstrate the safety of the used technology. The first

generation nuclear power plants relied on analogue technology, but these

systems are becoming obsolete, and digital I&C systems have become in-

creasingly more common. The existing analogue systems are currently

being replaced with digital technology, and new plants rely primarily on

digital I&C systems.

The use of digital I&C systems poses challenges for functional verifica-

tion as these software-based systems often are more complex than tradi-

tional analogue systems, and cannot be exhaustively tested. Due to the

use of defence in depth principles, design errors in these software-based

systems typically cannot lead to any hazardous events in the plant. How-

ever, software errors can decrease the protection capabilities of the plant

by inhibiting individual protection systems. Software errors can also have

significant consequences to the plant operation and safety through spuri-

ous protection signals, and CCFs, rendering the detection of such errors

essential.

48

Nuclear instrumentation and control system development and verification

3.2 Digital I&C system development

Digital I&C systems differentiate between the platform of the system,

and application software that runs on the platform. The platform is an

underlying computer system, containing both hardware and software, on

which application programs can be executed.

The application program is typically executed using a Programmable

Logic Controller (PLC), even though alternative technologies are possible.

In this dissertation, it is assumed that the implementation of the platform

is correct, and that the application program is PLC-based.

A PLC generally executes a series of instructions cyclically. During each

scan cycle it reads inputs, executes a PLC program, and updates outputs

based on the computation. In nuclear power plant applications a fixed

scan cycle length is typically used.

The international standard IEC 61131-3 [110] defines five languages

used for PLC programming: function block diagram (FBD), ladder dia-

gram (LD), instruction list (IL), structured text (ST), and sequential func-

tion chart (SFC). This dissertation focuses on the commonly used FBD

language. FBD is a graphical design language in which simple elemen-

tary function blocks such as AND, OR, or timers are represented as blocks.

A function block diagram is built by connecting these function block in-

stances to each other by drawing lines between input and output gates

of the function blocks. An example function block diagram following the

graphical notations used in this dissertation is illustrated in Fig. 3.1. An

input of a diagram may be connected to an output of another diagram.

Composite function blocks that consist of several interconnected function

blocks may also be defined. Finally, an FBD program consists of a collec-

tion of function block diagrams.

One way of developing PLC based systems is to utilise automatic trans-

lators. Once a safety function has been implemented as an FBD program

it can be automatically translated into a C program that again can be

automatically compiled into PLC executable code, see Figure 3.2. This

general PLC system development process is followed in several nuclear

domain I&C platforms, e.g., AREVA’s TELEPERMS XS [5], and Rolls-

Royce’s Spinline [176]. In these platforms, vendor-specific variants of the

FBD language are used that do not follow IEC 61131-3. The actual lan-

guages used by the vendors are confidential. In this dissertation it is

assumed that the design language follows IEC 61131-3, and it is noted

49

Nuclear instrumentation and control system development and verification

INPUTS OUTPUTS

FB_TYPE

IN1

TIME4.0 s

FB_TYPE

IN1

IN2

INSTANCE_1

INSTANCE_2

Input signal 1

Input signal 2

Output signal 1

Output signal 2

EXAMPLE TITLEEXAMPLE TITLE

Figure 3.1. An example function block diagram (FBD)

FBD C code Executable
PLC

Automatic
code generator

Compiler and
linker

Figure 3.2. PLC system development

that the methodology described in Chapter 5 is also applicable to other

vendor-specific FBD language variants.

AREVA uses the SPACE (Specification and Coding Environment) tool

(see, e.g., [4]) for developing TELEPERM XS application software. The

tool contains a qualified code generator with multiple years of operating

experience. Verification of TELEPERM XS systems relies heavily on the

correctness of the code generator since it reduces the need for testing the

generated code. In the context of TELEPERM XS, the focus of formal

verification has been in validating the code generator. The verification

process of TELEPERM XS relies heavily on using the SIVAT (Simulation

Validation Test Tool) [175] simulator tool, as well as separately performed

formal checks to ensure the equivalence of functional requirements, the

application program design and the automatically generated code.

In the Spinline platform, application software development is based

on the use of SCADE (Safety Critical Application Development Environ-

ment) [22], and CLARISSE System and Software Development Environ-

ment (SSDE) (see, e.g., [176]). CLARISSE is a dedicated software work-

50

Nuclear instrumentation and control system development and verification

shop providing the software tools and libraries needed for Spinline system

configuration and application software development. SCADE is an indus-

trial tool developed by Esterel technologies.It is based on the synchronous

LUSTRE [169] language, and it provides a block diagram formalism for

designing the system with well-defined semantics, a design verifier that

supports a variety of formal validation tasks, and an automatic tool for

C code generation. The design verifier of SCADE is independently devel-

oped by Prover Technology.

3.2.1 Model checking using SCADE

The design verifier of SCADE supports two model checking based veri-

fication strategies: the proof strategy, and the debug strategy. The proof

strategy is based on the use of BDDs, and k-induction. The debug strategy

performs SAT-based bounded model checking. [1]

SCADE does not support the use of temporal logic for property formal-

isation. Only invariant properties can be checked. More complex prop-

erties can be checked by modelling the property as an observer using the

same modelling language as is used for the design. Huhn et al. [107] have

reported severe complexity problems in the SCADE design verifier, but

manage to verify medium-sized industrial systems by applying various

abstraction and model simplification techniques. Basold et al. [15] have

also looked out for alternative verification methods for SCADE programs,

but their method has not yet matched the verification capabilities of the

design verifier included in SCADE. Wakankar et al. [204] describe the use

of SCADE to verify a steam generator pressure control system used in a

nuclear power plant.

51

4. Related work

This chapter reviews the related work with respect to nuclear domain sys-

tem verification, and the techniques developed in Publication I, Publica-

tion II, Publication III, Publication IV, and Publication V. Section 4.1

presents work related to the application of formal methods for verify-

ing nuclear domain systems. Section 4.2 covers model checking of pro-

grammable logic controllers. Section 4.3 discusses abstraction techniques

and compositional verification techniques. Section 4.4 reviews iterative

abstraction refinement approaches. Section 4.5 discusses the use of model

checking for fault-tolerance analysis, and Section 4.6 discusses the use of

model checking for automatic test generation. Finally, Section 4.7 briefly

reviews model checking of full-scale and real-world systems using NuSMV.

4.1 Application of formal methods in the verification of nuclear
power plant I&C systems

This section reviews different approaches used for applying model check-

ing and formal methods in general to the verification of nuclear power

plant I&C systems.

4.1.1 Use of formal methods in the Darlington nuclear power
plant in Canada

The paper by Wassyng and Lawford [208] describes one of the earliest ap-

plications of formal methods in a nuclear context. In their approach, a tab-

ular notation is used to describe both requirements and the design, and

the correctness of the design is verified using a theorem prover. The ap-

proach was successfully applied in the design process of reactor shutdown

system software used in the Darlington nuclear power plant in Canada.

53

Related work

4.1.2 Use of model checking in the Paks nuclear power plant in
Hungary

Nemeth and Bartha [158, 159] have applied formal methods to the veri-

fication of a primary-to-secondary leaking (PRISE) safety procedure used

in the Hungarian Paks nuclear power plant. The application software

of the system is designed using FBDs, and implemented on the basis of

TELEPERM XS system platform. Nemeth and Bartha modelled the FBDs

using a Colored Petri Net (CPN) formalism, and proved that the PRISE

procedure is initiated whenever a real accident occurs, and that the pro-

cedure is not activated when no real accidents have occurred. These prop-

erties were proved using state space analysis together with explicit state

model checking. Additionally, primary circuit dynamics were also mod-

elled using CPN, and the composition of this model and the PRISE proce-

dure was analysed by simulation.

4.1.3 Formal verification of Korean nuclear power plant
automation systems

Formal methods and model checking have been extensively used by re-

searchers in the context of Korean nuclear power plant automation sys-

tems. In [123], a computer aided tool-set is described that supports the

development of PLC-based systems. The development life-cycle is based

on formal requirement specifications, system design using FBDs, and an

automatic translation to C programs. A formal language based on both

tabular notations and automata is used for requirement specification, and

for synthesising FBD programs automatically, see [213].

Model checking and theorem proving are used to verify the correctness

of the FBD programs, see [211, 214]. The model-checking approach is

based on first translating the FBD programs to Verilog, which is one of

the most common Hardware Description Languages (HDLs) used in the

design of integrated circuits (IC). Verilog programs are then automatically

translated into the input language of the Cadence SMV model checker. In

their approach, the temporal specifications used for model checking are

manually developed in cooperation with domain experts, and specified in

LTL. The model-checking approach is demonstrated in [211, 214] using a

nuclear power plant shutdown system as a case study. In the case study,

several errors were found that were not noticed during manual inspec-

tions.

54

Related work

Verification activities based on equivalence checking are also used. In

[211, 214] the VIS verification system is used to verify the behavioural

equivalence between an FBD program and a modified version of the same

FBD program. In [138], the translation from FBD to an ANSI-C program

is verified using the model checker HW-CBMC [62].

4.1.4 Model checking in the Finnish nuclear domain

Model checking has been studied in the context of Finnish nuclear power

plant automation since 2007. The method has been used in several re-

search case studies, including an emergency cooling system of a nuclear

reactor [199], an industrial arc protection system [199, 128, 124], a change-

over switching unit for a busbar [33], an emergency diesel generator con-

trol system [131], a stepwise shutdown system [30], and an embedded

control software of an uninterruptible power supply (UPS) [89]. Also, two

fictive yet realistic case studies have been used: the fictive two-redundant

system presented in Publication III, and the fictive nuclear power plant

model used in Publication IV.

Model checking has also been used in the Finnish nuclear industry as

an independent verification approach. The power company Fortum has

utilised model checking in the verification application I&C software [167].

In the Olkiluoto 3 project VTT Technical Research Centre of Finland Ltd

performed a model-checking analysis of two safety-critical systems: the

Protection System (PS) and the Priority Actuation and Control System

(PACS). Due to non-disclosure agreements, further information on the lat-

ter assignment is not available.

4.1.5 Other use of formal tools

In the nuclear industry, formal verification approaches have focused a lot

on the correctness of automatic code generators, and on analysing gener-

ated code using static code analysis tools. ISTec GmbH1 has developed

a reverse engineering tool called RETRANS [86][152] that can be used

to check the functional equivalence between generated source code and a

FBD specification. The tool has been used in the verification TELEPERM

XS systems used in nuclear plants in Bohunice (Slovakia), Paks (Hun-

gary), and Beznau (Switzerland). [86]

1Institut für Sicherheitstechnologie (Istec GmbH). http://www.istec-gmbh.
com/

55

http://www.istec-gmbh

Related work

Static code analysis tools such as PolySpace [75], Frama-C [71], and

Astrée [70] have been used by Electricité de France (EDF) 2 to assess soft-

ware used in nuclear power plants [162]. The techniques are currently

being used to analyse the protection system of the EPR Flamanville nu-

clear power plant. The tools analyse the generated C code, and are used

to prove program properties formally, and to detect run-time errors in the

code.

The MALPAS [209] toolkit used for the static analysis of generated C

code has also been used for analysing nuclear power plant software sys-

tems. The tool was used for assessing the Temelín nuclear power plant

reactor protection systems in Czech Republic [215], and in the analysis of

Sizewell B nuclear power plant primary protection system in the United

Kingdom [207].

4.2 Model checking of programmable logic controllers (PLCs)

Model checking of PLC software has been addressed by several authors.

Many of the approaches are based on the standard programming lan-

guages of IEC 61131-3. This section focuses on model-checking work

done in the context of FBD programs. For approaches based on other

IEC 61131-3 formalisms, see, e.g., [144], [210], [48], [184], and [41] for ap-

proaches based on Instruction List programs; [95] for an approach based

on Structured Text; [139], and [108] for Sequential Function Chart ap-

proaches; and [177] for an approach based on Ladder Diagrams. For a

more extensive survey on the application of model checking to the verifi-

cation of PLC software, see, e.g., [163].

Several techniques have been developed for model checking FBD pro-

grams. Yoo et al. [211], [212], [117] define formal semantics for FBDs and

develope translation rules from FBD to Verilog programs that are then au-

tomatically translated into the input language of the Cadence SMV model

checker. This work is part of the Korean nuclear domain verification re-

search discussed in Section 4.1.3.

Pavlovic and Ehrich [168] describe a process of verifying FBD programs

using the NuSMV model checker. Their approach consists of three consec-

utive transformations, in which the graphical FBD program is first trans-

lated into textual format, then simplified by removing redundant circuit

variables, and finally translated into the NuSMV modelling language. In

2Electricité de France (EDF). http://www.edf.fr/

56

http://www.edf.fr/

Related work

this work the scan cycle of the PLC is implicitly modelled by using a pro-

gram counter in the model to track the program execution.

Translations from FBD programs to timed automata exist as well. Silva

and Barbosa [72] translate both the FBD program and the system speci-

fications into timed automata. They then use a conformance testing tool

called UPPAAL-TRON for verifying that the system implementation is ac-

cording to its specification. Soliman et al. [190, 191, 192] have constructed

timed automata models for a set of formally specified function blocks

specifically designed to be used in safety applications, namely PLCopen

safety function blocks. They have also created a prototype model trans-

former in Java. Enoiu et al. [83, 82] have created timed automata models

based on FBD programs as well. This work is related to test generation

and is also discussed in Section 4.6.

Finally, Nemeth and Bartha [158, 159] describe verification of FBD pro-

grams in the context of nuclear power plants using Colored Petri Nets

(CPN). This work was also mentioned in Section 4.1.2.

The work described in this dissertation abstracts away from the PLC

scan cycle, and program counters as in [168] are not used. The biggest

difference to previous work is the systematic use of a modular hierarchy

enabling larger systems to be easily modelled. In addition, the models in

this work are built manually based on early design phase documentation

of the system.

4.3 Abstraction and compositional verification

Abstraction is a technique for reducing the state explosion problem. Intu-

itively, a simplification of a model is called an abstraction, whereas adding

more detail to the model is called a refinement. Abstractions can be

thought as binary relations between two system models, in which states

of the more concrete system are mapped to the states of the abstract sys-

tem. If the abstract system allows for more behaviour than the concrete

system, it is called an over-approximation. The state spaces related to

over-approximations tend to be large but can be less complex to analyse

by symbolic methods. An over-approximation can lead to spurious coun-

terexamples because of unrealistic behaviour may be induced in the model

by the abstraction. Under-approximations, on the other hand, reduce the

state space by restricting the behaviour of the model, and can thus lead

to false positives.

57

Related work

In this work an over-approximating abstraction technique called com-

positional minimisation [68] has been primarily utilised to simplify the

verification task. The general idea of compositional minimization is that

the system is divided into interconnected modules, and a subset of mod-

ules is replaced with abstract modules. These abstract modules, or in-

terface modules have no intrinsic functionality, and the variables at the

interfaces of the modules are completely non-deterministic, making the

verification of the abstract system significantly more efficient.

Many other verification approaches based on the compositionality of the

system have been developed. The general idea in these compositional

verification approaches is that it is often possible to break down a large

verification problem into simpler locally verifiable properties, the conjunc-

tion of which implies the result of the original problem. Typically, these

approaches also assume that the system is composed of interconnected

modules.

In assume-guarantee reasoning [181] [171], an assumption is made of

the environment of a module, and verified separately. It is then checked

whether a particular module fulfils a system property under this assump-

tion. If the property is true in the individual module, it is also true in

the whole system. Assume-guarantee reasoning generally requires a lot

of human effort, as it is not trivial to come up with assumptions advanc-

ing the verification. In [69], a learning algorithm is described that creates

assumptions of the environment model automatically, and improves these

assumptions based on the results of model checking.

Circular reasoning [149] is another compositional verification approach,

in which the correctness of each individual module is verified assuming

that the environment of that module also behaves correctly. The circular-

ity of the reasoning is then resolved using induction over time.

In some model-checking approaches a parallel composition of the com-

ponents of the model is calculated in order to create a single global model

that depicts the behaviour of the system as a whole. Some special-purpose

model-checking algorithms exploit the compositionality of the model in-

stead. For example, partitioned transition relations [45] and lazy paral-

lel compositions [20] examine the transition relations of different compo-

nents in the model separately, which can reduce the state space needed

for verification.

58

Related work

4.4 Iterative abstraction refinement

The iterative abstraction refinement technique of Publication III is based

on the generic verification strategy consisting of the classical four steps:

(1) generating an initial abstraction; (2) model checking the property on

the abstraction; (3) checking possible counterexamples on the concrete

model; and (4) refining the abstraction when needed. This type of itera-

tive abstraction refinement was first introduced by Kurshan et al. [127].

Their technique titled the localisation reduction uses non-deterministic

abstractions on the variable level and relies heavily on the dependency

graph of the variables in the model.

Many other variations to the generic iterative refinement loop have been

suggested. Balarin and Sangiovanni-Vincentelli [10] describe a way to au-

tomate the iterative abstraction refinement process using a tool based on

language containment. Das and Dill [73] have applied predicate abstrac-

tion in their version of counterexample guided refinement. In [66, 67],

a SAT solver is used to validate abstract counterexamples, and a combi-

nation of sampling with Integer Linear Programming (ILP) and machine

learning is used in the refinement step.

The Counter-Example Guided Abstraction Refinement (CEGAR) tech-

nique by Clarke et al. [61] uses a more general existential abstraction

technique based on predicate abstraction that divides the variables into

abstract variable clusters. In this approach the validity of the counterex-

amples is checked using symbolic BDD-based simulation. Refinements

are created by inspecting the counterexample in order to locate variables

that can be used for partitioning a variable cluster and making the coun-

terexample infeasible.

The technique developed in this dissertation has been inspired by the

original CEGAR technique but instead of using predicate abstraction and

computing abstract transition relations using predicates, a light-weight

approach based on module-level abstractions is used.

In the proof-based abstraction approach [151, 2] the counterexample it-

self is not used for checking the feasibility of the counterexample or in the

refinement step. Instead, a SAT-solver is used to prove that counterexam-

ples up to a certain bound k are not possible, and BDD-based techniques

are used to prove the refined model. The idea is similar to the one used

in this dissertation except that the feasibility checks are performed using

k-induction.

59

Related work

There are also iterative techniques that focus on the compositionality of

the system. In [219], an iterative refinement technique based on the mod-

ularity of the system has been developed in the context of asynchronic

circuits. Refinements in the technique are based on parallel composi-

tion. Each component is refined iteratively by checking synchronizations

among components with shared interfaces.

Compositionality and dependency analysis have also been used in the

context of state/event models. State/event models consist of concurrent

finite-state machines that have pairs of input events and output actions

that are associated with the transitions of the machines. In [141], a

compositional verification technique is presented for state/event models,

in which only a few component-machines are initially considered, and if

necessary, more component-machines are gradually included based on a

dependency analysis of the structure of the system and traversal of the

dependency graph. In [18] this technique is used for the verification

of state/event models with a deep hierarchical structure. In this work

the hierarchical structure is also exploited by reusing earlier reachability

checks of superstates of the model to conclude the reachability of their

substates.

The iterative abstraction refinement technique developed in this dis-

sertation utilises multiple verification engines in parallel, similar to the

generic portfolio-based approach, see, e.g., [193]. To make the parallel ap-

proach more diverse, a model translation toolchain is employed, in which

the NuSMV models are translated into low level AIGER format models

on-the-fly, enabling the utilisation of other competitive model checking

tools such as the ABC/ZZ model checker used in the current implemen-

tation of the algorithm. The author of this dissertation is not aware of

similar iterative abstraction refinement approaches in which the model-

checking engines are run in parallel. Multiple different algorithms have

previously been applied consecutively and in different phases of the ab-

straction refinement loop. For example, Glusman et al. [94] have used two

different model checkers: a SAT-based technique to check and concretise

spurious counterexamples, and a BDD-based model checker to verify the

abstractions. Wang et al. [205] employ BDD-based model checking as well

as a BDD-ATPG (automatic test pattern generation) hybrid algorithm for

verification.

60

Related work

4.5 Fault-tolerance analysis using model checking

There are several previous approaches in which model checking is used to

analyse system faults and fault-tolerance.

FSAP/NuSMV-SA [38] is a safety analysis platform in which a system

model can be augmented with failure modes, and the fault-tolerance of the

system can be analysed by injecting faults into the model and using model

checking for verification. The platform also supports reliability analysis,

and can, e.g., generate fault trees of the system automatically.

The SCADE system discussed in Section 3.2.1 has also been used in

the context of analysing system failures using model checking. Joshi and

Heimdahl [121] have analysed Simulink models using the SCADE design

verifier. A verification approach based on fault injection is used, and the

technique is applied to a simple wheel brake system case study. In [97], a

formal safety analysis method called Deductive Cause-Consequence Anal-

ysis (DCCA) is integrated in the SCADE framework, allowing safety anal-

ysis to be performed using the SCADE design verifier.

Bieber et al. [23] use a combination of fault tree analysis and model

checking for safety analysis of complex systems. In this work, the Al-

tarica language [6] is used to model an AIRBUS A320 hydraulic system.

The model is separately analysed using fault tree analysis techniques and

model checking, and results from both approaches are used together to as-

sess the fulfilment of safety requirements of the system. For other work

combining model checking with fault tree analysis, see [122, 52, 161].

In [185], Schneider et al. show how model checking can be used to vali-

date the fault-tolerance of a dual-redundant system for a spacecraft con-

troller. The approach uses a fault injection scheme and the model checker

Spin.

In [187, 188], an approach called Hierarchically Performed Hazard Ori-

gin and Propagation Studies (HiP-HOPS) is combined with model check-

ing. HiP-HOPS is used to obtain information on component failures based

on fault trees and failure modes and effects analysis (FMEA), and model

checking is used to verify safety properties based on this information.

Finally, process algebra based approaches for formalising fault-tolerant

systems have also been developed, see, e.g., [21] and [42].

The hardware failure modelling methodology described in this disserta-

tion, in contrast to previous work, is about modelling large modular sys-

tems in which various different hardware faults can be postulated. The

61

Related work

methodology is built on top of the NuSMV modelling language, and is

closely related to probabilistic risk assessment (PRA).

4.6 Automatic test generation using model checking

The classic way of using a model checker to generate test cases was first

introduced by Callahan et al. [46] and Engels et al. [81]. In both ap-

proaches the negation of a specification is model checked in order to create

a counterexample that represents a test case fulfilling the original spec-

ification. Since then, numerous variants of this generic test generation

principle have been developed, see [88] for an extensive survey.

A few research groups have addressed automatic structure-based test

generation in the context of function block diagrams. Enoiu et al. [83]

have defined their own coverage criteria for function block diagrams, and

utilise the model checker UPPAAL for test generation.

Jee et al. [119] have also developed an automatic test generation tech-

nique for FBD programs based on coverage metrics [120, 118] they had

previously developed. The main difference of the technique when com-

pared against the technique developed as part of this dissertation is that

a Satisfiability Modulo Theories (SMT) solver is used to derive the con-

crete test cases instead of a model checker.

Automatic test generation has also been used in the SCADE framework.

In [76], the tools GATEL and TCG (Test Case Generator) are used for

generating test cases based on structure-based coverage metrics.

In Publication V, simple greedy heuristics are used for generating an

efficient test set. Several other papers have addressed the efficiency of

tests and the test generation process as well. Ammann et al. [3] reduce

the size of the test set by removing duplicate test cases and detecting

tests which are already a prefix to another test. Gargantini et al. [92] also

detect generated tests that are prefixes to other tests, and use the SMV

model checker to get the shortest possible test cases.

Hamon et al. [98] have developed a technique called iterated extension in

which a model-checking tool is modified to search for extensions to previ-

ously found counterexamples. This approach reduces the time to generate

very long test cases.

There are also techniques for generating efficient test sets that are not

related to model checking. For example, automatic test pattern genera-

tors (ATPGs) use test compaction to reduce the overall size of the tests.

62

Related work

Test compaction can be applied to both combinatorial and sequential cir-

cuits. In combinatorial circuits, two test cases can be run simultaneously

when the test vectors use non-conflicting logic values on the inputs. In

sequential circuits the test sequences cannot be arbitrarily combined. In-

stead, the compatibility of the test sequences must be first analysed. See,

e.g., Niermann et al. [160] for a description of different algorithms used

for compacting a set of tests generated by a sequential circuit ATPG.

In an approach developed by Gargantini and Fraser [91], efficient test

sets are generated in the context of Boolean form expressions. Their ap-

proach is based on hypothesising faults and applying a set of fault classes

on the Boolean expressions. Test predicates are optimised using either a

SAT solver or an SMT solver. In one of their optimisation strategies, test

cases are designed so that several independent faults can be detected at

once. Their work has similarities to what was done in Publication V, as

the bounded model checking algorithm used for test generation also relies

on satisfiability solvers. In addition, the test collection strategy for opti-

mising the test generation process resembles the heuristics implemented

in Publication V.

Automatic test generation approaches related to model checking exist

for software code as well. For example, a combination of concrete and

symbolic execution of Java programs is used in [93] for test generation in

order to exercise a large number of paths in a program. This work is in the

context of developing an automated testing environment for a software

component providing separation assurance between multiple airplanes.

Fraser and Arcuri [87] have developed a genetic algorithm for test set

generation in the context of software code. The algorithm tries to cover

all coverage goals simultaneously while keeping the size of the test set as

small as possible.

Test set efficiency is also discussed by Campos et al. [47]. They have

tried to improve fault localization in software by generating a test set

based on its fault detection capability. This is another aspect of test ef-

ficiency that can be very useful for debugging. The technique described

in Publication V does not strive for improving fault localisation since it

is more straight-forward to try to localise errors using traditional model

checking based verification.

63

Related work

4.7 Applying NuSMV model checking to full-scale and real-world
systems

This dissertation focuses heavily on the use of the NuSMV [51] model

checker, (see [150] for an extensive tutorial). NuSMV has been applied to

a variety of real-world problems.

In [142], NuSMV is used in the context of artificial intelligence (AI) to

verify that multi-agent systems comply with their specifications. In par-

ticular, the paper focuses on the verification of temporal epistemic prop-

erties of the system.

In [96], a real-world hybrid system modelled as a Fluid Petri Net (FPN)

is analysed, and the FPN model is automatically converted into a discrete

model, whose specifications are defined using Computational Tree Logic

(CTL) and verified using NuSMV.

Choi and Heimdahl [56] have verified safety-critical systems in the do-

main of aircraft control systems. They have verified a Flight Guidance

System (FGS), a Flight management system (FMS), and a fictitious Alti-

tude Switch System (ASW) using an abstraction technique they call do-

main reduction abstraction. In domain reduction abstraction the input

domain (environment) of the system is simplified by a division of input

variable values into equivalence classes. A representative set of data val-

ues for each equivalence class is selected using a linear/integer program-

ming tool.

Miller [154] describes five succesful examples of using formal methods

in the development of high-integrity systems. Three of the cases utilise

NuSMV: the verification of Flight Control System (FCS 5000), the verifi-

cation of the Adaptive Display and Guidance System (ADGS-2100), and

verification of the Operational Flight Program (OFP). All three systems

were initially modelled using Simulink, and a translation from Simulink

models to NuSMV is utilised. In all three cases, several previously un-

known errors were discovered (26 errors in the Flight Control System,

98 errors in the Adaptive Display and Guidance System, and 12 in the

Operational Flight Program).

Miller et al. have also studied the early validation of system require-

ments [155]. In this work, a formal model of a Flight Guidance Sys-

tem was created based on the system’s requirements. Functional and

safety requirements of the system were then captured as natural lan-

guage “shall” statements and manually translated into formal properties

64

Related work

over the model. The shall statements were then validated against the

formal model using NuSMV.

In [49], the Computer Based Interlocking System (CBI) used for ensur-

ing safe train movements at a railway station is verified using NuSMV. A

search algorithm is first used to generate interlocking tables based on the

system description, originally given in a domain specific language. The in-

terlocking tables are then translated into a NuSMV model, and verified.

Several approaches related to safety analysis have also been used. In

[195], a particular function of a flight management system is analysed

by first performing a hazard analysis of the system, and then identifying

general categories of errors by conducting a Fault Tree Analysis and a

Failure Mode Effects Analysis. A list of safety requirements is then devel-

oped based on these error categories, and verified using model checking.

In [146], an extension of the NuSMV tool called nuXmv is used to for-

mally compare different designs of an automated air traffic control sys-

tem. As part of this work, the models of the alternative system designs

are also extended with faults, and the resulting fault trees are analysed

and compared with each other.

Bozzano et al. [37] perform a complete formal analysis of the AIR6110

wheel brake system including contract-based design, model checking and

safety analysis. The different architecture-level designs of the system are

recreated in a formal manner, the behaviours of the different design level

models are automatically analysed and compared, and the functional cor-

rectness of the system is verified. Several formal techniques are used,

including model checking using the nuXmv tool. In addition, fault trees

and probabilistic reliability measures are automatically produced as part

of the safety analysis.

65

5. Methodology for modelling FBD
programs

This chapter summarises the main results of Publication I, and presents

modelling methodology for FBD programs. The methodology focuses on

using the modelling language of the NuSMV model checker, and it is the

basis for the models and case studies discussed in Publication II, Publica-

tion III, Publication IV, and Publication V.

The methodology presented here is the result of collaboration between

many researchers. The contribution of Publication I is in the abstractions

used for scan cycle discretisation and environment modelling. The util-

isation of a function block library, and the practical modular modelling

conventions described in Section 5.6 (see also [165]) are based on earlier

research work at VTT, and the author of this dissertation has no contri-

bution on these aspects of the methodology.

Section 5.1 first discusses the scope of modelling. Sections 5.2, 5.3, 5.4,

and 5.5 cover methodological issues related to time discretisation and the

environment model. Section 5.6 presents a modular technique for mod-

elling FBD programs in the modelling language of NuSMV. Section 5.7

briefly covers issues related to requirement formalisation. Section 5.8

discusses examples of errors found using model checking. Finally, Sec-

tion 5.9 discusses the limitations and threats to validity of the modelling

approach.

5.1 Scope of modelling

As was mentioned in Section 3.2, the application software of safety au-

tomation systems is commonly designed using vendor-specific derivatives

of the FBD language, and the FBD programs are typically used as a basis

for code generation. As far as this dissertation is concerned, it is assumed

that the software performing the code generation is trusted, and is not

67

Methodology for modelling FBD programs

expected to have errors. The model-checking approach of this dissertation

focuses solely on the FBD programs. Source code is thus not used as an

input for modelling, even though analysing the source code could lead to

more accurate results. This is mainly due to: (1) contractual difficulties

in obtaining and using source code in a research case study; (2) function

block diagrams, unlike source code, are available in early design phases

where it is still possible to make changes with moderate cost and effort;

and (3) superior analysability of the function block diagram formalism

when compared to the source code.

Furthermore, the models described in this dissertation focus solely on

the logical function of a system, and the hardware and system level as-

pects are left out. Only application software is in the scope of verification,

and all operating system software, platform software, or any data trans-

mission issues are excluded. It is also assumed that the function blocks

operate as specified, and that the controller running the application soft-

ware is running correctly, and there are, e.g., no race conditions possible.

In Chapter 7 the scope of modelling is extended to cover also other system

aspects such as hardware failures.

5.2 Environment model

The essential idea in environment modelling is to allow the environment

to behave freely so that no behaviour is excluded due to wrong modelling

choices. Thus, all variables of the environment are free variables that

get their values non-deterministically at every point in time. This sort of

over-approximation retains the truth value of universal properties such as

LTL properties [65, Chapter 13]. This is because the over-approximated

system has more behaviours than the real system, and the approximated

system includes all the realistic behaviours as well. If some unsafe be-

haviour cannot be found in the over-approximated system, then the be-

haviour cannot be found in the concrete system either. On the other hand,

in over-approximated systems false negatives (i.e., counterexamples that

are due to the environment acting up in a way that is not realistic) are

possible in the system verification. This means that the efforts required

for analysing counterexamples and specifying the examined specifications

are somewhat increased. Typically the false negatives can be ruled out by

carefully stated specifications. Another thing to consider when making

over-approximating abstractions is to make sure that the performed ab-

68

Methodology for modelling FBD programs

straction actually is an over-approximation.

5.3 Cyclic operation of the PLC

An FBD program is executed by repeatedly running a scan cycle. During

a scan cycle the PLC reads the inputs of the FBDs, executes the logic

elements (function blocks) within the FBDs, and updates the outputs. In

safety-critical systems it is typical that the scan cycle is of constant length,

and dynamic features associated with varying scan cycle lengths are not

recommended.

The execution of the logic elements in an FBD means that all the in-

dividual function blocks read their inputs and update the outputs. The

execution order of the function blocks may be explicitly ordered. However,

an explicit execution order is not required by the IEC 61131-3 standard,

and instead the order can be implicitly determined by following a set of

rules given in the standard. The standard requires, for example, that

a function block may not be evaluated before all of its inputs have been

evaluated within a scan cycle.

5.4 Modelling of time and analogue variables

The model checker NuSMV operates in discrete time steps. Due to this,

the modeller needs to decide what a single time step in the model cor-

responds to. This decision can have significant consequences on the be-

haviour of the system model, see the discussion in Section 5.9.

In the literature, three different approaches are typically used for mod-

elling the scan cycle: explicit modelling, implicit modelling, and abstrac-

tion from the scan cycle. The explicit modelling focuses on the real time

aspects of calculations performed during a scan cycle. The implicit mod-

elling approch focuses on the individual instructions performed by the

PLC during a scan cycle but the duration of the scan cycle is not of in-

terest. Finally, models that abstract from scan cycles assume that the

program execution is instantaneous. This approach is most useful when

the environment of the model is much slower than the scan cycle length.

[143]

The models used in this dissertation abstract away from the scan cycle.

A single discrete time step of the model corresponds to executing the en-

69

Methodology for modelling FBD programs

tire scan cycle. It is assumed that the scan cycle length is constant, which

is the case in typical nuclear domain software systems.

It is also assumed that communication between individual FBD pro-

grams is synchronous and instantaneous. In the final implementation of

a system two FBD programs that communicate with each other via their

inputs and outputs can be physically implemented on separate comput-

ers. In these cases certain data transmission protocols and delays may

be involved in their communication. Typically it is the task of platform

software to handle data transmission issues in such a way that they are

invisible to application software. From the point of view of application

software the assumptions are therefore reasonable and correspond to re-

ality assuming the automation platform operates within specified timing

requirements. These issues are left out of consideration and instead it

is assumed that communication between all FBDs is fault-free, seamless,

and that no transmission related delays occur.

Another modelling choice is to decide the length of the time step used

in the model. Ideally, the time step should correspond to the scan cycle

length used in the actual system. If a longer time step is used in the

model, it is possible that certain behaviours of the system are missed.

The issue is discussed further in Section 5.9.

Because of the discrete nature of the NuSMV tool, function blocks in-

volving delays are modelled using counter variables of integer type. Ana-

logue variables of the system need to be discretised as well. An often used

modelling technique is a division into equivalence classes. When control

logic is analysed that does not involve complex arithmetics and operates

on a constant scan cycle length, the discretisation of counters and ana-

logue variables can typically be applied in a way does not lose any control

functionality of the original system, and can therefore be justified.

5.5 Justification of time discretisation

In the models used in this dissertation, the real time aspects of the sys-

tem are handled by using discrete time models and counter variables.

The control systems that are implemented based on the FBD programs

use a discretised constant length scan cycle, and this justifies the use of

time discretisation in this dissertation. On the more theoretical level, the

problem of timer discretisation and its justification has been studied in

several papers, see, e.g., [105] and [7]. Henzinger et al. [105] discuss veri-

70

Methodology for modelling FBD programs

fication methods that assume that time is observed at integer time points

only, and the use of such methods to verify real time systems. First off, it

is noted that restricting oneself to discrete trace models that formalise the

behaviour of a system as an infinite sequence of snapshots of the global

state at different times is adequate for modelling discrete processes, which

change state only finitely often between two time points. The paper also

shows that for real time systems that can be modelled as timed transi-

tion systems, and the class of properties including time-bounded invari-

ance and time-bounded response, the verification problem can be reduced

(digitised) to an integral-time problem. In addition, it is shown that even

systems that cannot be digitised can benefit from integral-time verifica-

tion, when conservative approximations on the time bounds are used. The

implication with regard to this work is that since programmable logic con-

trollers are discrete processes that operate finitely often between two time

points, it suffices to use discrete trace modelling for them. Thus, the inte-

ger model of time used in the models of this dissertation can be justified.

Another more informal justification for time discretisation is that the

analyses performed in this dissertation focus solely on extrinsic proper-

ties of the system. Namely, only properties that refer to the values of the

inputs and outputs of the PLC are examined. For these extrinsic prop-

erties the intermediary values of variables calculated during a PLC cycle

are not meaningful, and the only meaningful time point is at the end of

the PLC cycle when the outputs are updated. It is also quite simple to dis-

cretise PLC behaviour as it by nature operates periodically. The models in

this work assume that the intervals between consecutive PLC cycles are

constant, which is the case in typical safety-critical systems.

Another issue related to time discretisation is the use of a coarser dis-

cretisation than the one used in the actual system (using a time step that

is longer than the scan cycle length of the system). A coarser time dis-

cretisation was used for example in Publication III in the modelling of the

emergency diesel generator control system. In Publication III the model

was used in the evaluation of the developed iterative abstraction refine-

ment technique, and the coarsening was necessary because a model with

a coarser time discretisation was more serviceable for analysing a large

set of benchmark properties in reasonable time. In Publication II, how-

ever, a discretisation of time corresponding to the actual system scan cycle

length was used for verifying the same emergency diesel generator control

system.

71

Methodology for modelling FBD programs

Utilising a coarser discretisation of time is not a sound method because

it might ignore some important system behaviour (see Section 5.9). In-

stead, an approach based on using over-approximating delay function

blocks with non-deterministic choice [64] could be a potential way to ab-

stract the scan cycle length in a sound way. Such an abstraction approach

could also be used together with the modelling approach presented in this

dissertation. Similar over-approximations of delays have been used in re-

search case studies closely related to this dissertation, see, e.g., [200] and

[90]. The reason for not using an over-approximating approach in the first

place is that a typical nuclear domain safety system can involve several

time delays, and the lengths of the delays can vary from fractions of sec-

onds to several minutes. Over-approximating the lengths of time delays

can easily lead to a great number of spurious counterexamples, rendering

the interpretation of verification results overly complicated. The devel-

opment of a systematic over-approximation approach for FBD programs

that handles this issue, however, is left for future work.

5.6 Modelling FBD programs

The employed modelling approach [165] exploits modularity as much as

possible. Each function block type is modelled as a reusable module, and

the correctness of the function blocks is verified separately. The function

block modules constitute a function block library that can be imported into

the models. When an FBD program is modelled, the elementary function

blocks are instantiated using the library, and connected together. The

model code corresponding to some often used function blocks can be found

in Appendix A, along with short explanations on the functionalities of the

blocks.

An example FBD shown in Figure 5.1 has three inputs: START_ALLOWED,

START_BUTTON_PUSHED, and RESET_START_SEQUENCE. The single out-

put START is calculated using three function blocks: an AND gate, a set

dominant flip-flop memory, and a TON (Timer ON) timer. In the exam-

ple system, whenever starting is allowed and the start button is pressed,

the START output should be set and memorised. Also, a reset command

should eventually reset the START output whenever the start button is

not pushed or the start is not allowed. The function blocks types used in

the example system are also listed in the Appendix.

A model is typically divided into several modules according to the dif-

72

Methodology for modelling FBD programs

INPUTS OUTPUTS

START
ALLOWED

START

Example FBD

RESET
START

SEQUENCE

START
BUTTON
PUSHED

3s

SR

S1

R

FLIPFLOP1

AND

IN1

IN2

AND1

TON

IN
PT

Q

TON1

ET

Q1

Figure 5.1. An example FBD

ferent functions on the top-level. The modularity on the top level allows

redundant structures to be modelled more efficiently.

In the example case, the FBD may be encapsulated into a single reusable

module. The idea is illustrated in Figure 5.2 where two redundant in-

stances of the example FBD of Figure 5.1 are created. Both instances

are treated as their own modules. The modules receive the same inputs,

and their outputs are collected in an OR function block VOTE_1oo2_1.

The voting function block sets the START output of the system whenever

at least one of the signals received from the EXAMPLE_FBD modules is

true. This encapsulation of certain parts of the model into reusable com-

posite function blocks allows deep hierarchies to be implemented in the

model. The techniques introduced in Chapter 6, however, operate on a

non-nested hierarchy structure, in which the modules instantiated at the

top level only create instances of the elementary function blocks and do

not create instances of other modules.

Encapsulating the example FBD of Figure 5.1 as a composite module re-

sults in the model code shown in Listing 5.1. The inputs of the system are

parameters of the module, and the output of the system START is in the

DEFINE section of the module. The function block instances are created

in the VAR section of the module. The inputs of the flip-flop function block

instance FLIPFLOP1 are connected to the outputs of the AND1 instance

and the TON1 function block instance. In this example, it is assumed that

the scan cycle length related to the design is 100 ms. Subsequently, the

3 s delay associated with the TON timer translates into 30 scan cycles,

73

Methodology for modelling FBD programs

INPUTS OUTPUTS

START
ALLOWED

START

Main

RESET
START

SEQUENCE

EXAMPLE_FBD

start

EXAMPLE_FBD1

START
BUTTON
PUSHED

start_allowed

start_pushed

reset

EXAMPLE_FBD

start

EXAMPLE_FBD2

start_allowed

start_pushed

reset

OR

VOTE_1oo2_1

IN1

IN2

Figure 5.2. Two redundant instances of an encapsulated FBD are instantiated in the
main module.

which is given as parameter to the TON block.

1 MODULE EXAMPLE_FBD(START_ALLOWED, START_BUTTON_PUSHED,

2 RESET_START_SEQUENCE)

3 VAR

4 AND1 : AND(START_ALLOWED, START_BUTTON_PUSHED);

5 TON1 : TON(RESET_START_SEQUENCE, 30);

6 FLIPFLOP1 : SR(AND1.OUT, TON1.Q);

7 DEFINE

8 START := FLIPFLOP1.Q1;

9 ASSIGN

Listing 5.1. NuSMV code for the encapsulated example FBD

1 MODULE main

2 VAR

3 START_ALLOWED : boolean;

4 START_BUTTON_PUSHED : boolean;

5 RESET_START_SEQUENCE : boolean;

6

7 EXAMPLE_FBD1 : EXAMPLE_FBD (START_ALLOWED, START_BUTTON_PUSHED,

8 RESET_START_SEQUENCE);

9 EXAMPLE_FBD2 : EXAMPLE_FBD (START_ALLOWED, START_BUTTON_PUSHED,

10 RESET_START_SEQUENCE);

11 VOTE_1oo2_1 : OR (EXAMPLE_FBD1.START, EXAMPLE_FBD2.START);

12 DEFINE

13 START := VOTE_1oo2_1.OUT;

Listing 5.2. NuSMV code for the main module

74

Methodology for modelling FBD programs

If the FBD program depicted in Figure 5.2 is modelled, two instances of

this module need to be created in the main module. The corresponding

model code is in Listing 5.2. In addition to the two composite modules, an

instance of the OR function block is also created. The inputs of the en-

vironment of the system are defined as free variables in the VAR section

of the main module, and the output of the model is defined as a DEFINE

macro in the main module.

5.7 Requirement formalisation

Requirement formalisation goes hand in hand with modelling since the

requirements are based on the selected level of abstraction, and the inter-

face between the model and the environment. The main issues regarding

requirement formalisation are related to minimising the effort needed for

formalisation, verifying the correctness of formal specifications, and im-

proving the understandability of formal notations. In this dissertation,

requirement formalisation is not thoroughly addressed even though it is

an important aspect of model checking. These problems have been studied

widely by other researchers as discussed further below.

Several papers describe the use of a tabular notation in which the re-

quirements are formally expressed as a set of relationships between mon-

itored system variable values and required control actions. Lawford et

al. [137] have utilised a tabular method to the specification and verifica-

tion of systems used in the Darlington nuclear power plant.

Heitmeyer et al. [104] have used formal consistency checking to detect

errors in requirement specifications expressed in the SCR (Software Cost

Reduction) tabular notation. Furthermore, the application of the SCR

tabular method to three NASA systems, and lessons learned are discussed

in [103].

Cimatti et al. [58, 59, 54] have developed a methodology and a series of

techniques for the formalisation and validation of requirements for safety-

critical applications. The methodology consists of three phases: informal

analysis, formalisation, and formal validation. They use techniques based

on model checking for checking consistency, checking whether an expected

property is implied by the formalised requirement fragments, and check-

ing the compatibility of scenarios given the constraints imposed by for-

malised requirements. The techniques were applied within an industrial

75

Methodology for modelling FBD programs

project in the railway domain.

Several different approaches have also been developed for specification

debugging. A model-checking tool only states that a specification is true

on a model but it cannot determine whether the examined specification

is meaningful for the model. Vacuity checking approaches (see, e.g., [17])

utilise witness traces of specifications to demonstrate that the specifica-

tions are not trivially valid. For instance, propositional logic formulas that

contain implications are trivially valid when the pre-condition of the im-

plication is not satisfiable. In [179], another sanity checking approach

is introduced in which an LTL specification and its negation are both

checked for satisfiability in order to detect specifications that are true in

all models. In [180], a multi-encoding implementation of this approach is

developed that can be used as a front-end to NuSMV.

Finally, restricted vocabularies and approaches based on the use of re-

quirement templates have also been used to support property formalisa-

tion. For instance, see [194] for work closely related to this dissertation.

In this paper, Tommila and Pakonen have utilised Controlled Natural

Language (CNL) and identified temporal logic templates for requirement

constructs commonly used in the context of safety critical I&C systems.

5.8 Typical errors found using model checking

Experience in utilising model checking for the verification of industrial

safety systems has shown that the errors found using model checking are

typically caused by not taking into account: (1) mistimed manual actions;

(2) sensor, communication or hardware failures; (3) events occurring in

an unexpected order; or (4) simultaneity of several signals. These kinds

of issues are hard to take into account in test design. [166]

The use of certain function blocks also seems to correlate with prob-

lems in the design. Rising edge-triggered pulse blocks, set-reset flipflops

and complex non-standard function blocks have been especially problem-

atic. The pulse function block is triggered only by a rising edge and input

changes during the pulse are ignored. If the input is set during a pulse,

the output of the time pulse block can freeze to zero. With the flipflop

function block the difficulty is in intuitively understanding how chang-

ing the prioritisation or the initial value of the function block affects the

system behaviour.

An example of the problematic use of pulse blocks is described in Publi-

76

Methodology for modelling FBD programs

INPUTS OUTPUTS

Diesel start sequence

RESET

SR

S1

FLIPFLOP1

Q1
R

TON

IN
PT

Q

TON1

ET

TON

IN
PT

Q

TON2

ET

TP

IN
PT

Q

PULSE1

ET

OR

IN1

IN2

OR1

AND

IN1

IN2

AND1

START
30 s

8 s 10 s

OFF

ON

Figure 5.3. Part of the design for starting the diesel generator

cation II, where the control system of an emergency diesel generator was

verified using model checking. One of the tasks of the diesel control sys-

tem was to give start commands to the diesel generator according to a

specific starting sequence. The desired starting sequence is such that the

diesel generator is first given a command to start (ON) for 8 seconds. It is

possible for the diesel generator to not start on the first attempt. After a

10 second rest period, the ON command is again given for 12 seconds. The

part of the logic of the system implementing this sequence is illustrated in

Figure 5.3. The logic consists of a set dominant flip-flop, two TON timer

blocks (8 s, 30 s), a time pulse function block (10 s), AND-block and an

OR-block.

The design is such that the sequence may be interrupted by a reset sig-

nal if the reason to start the diesel generator is no longer valid. An in-

terruption to the starting sequence should be performed in a safe way. In

particular, it is expected that the ON-signal is not given continuously for

long periods of time, since this might be harmful to the device. However,

when the system was analysed using model checking, a counterexample

could be found in which the ON signal is continuously set for over 20 sec-

onds. This long continuous ON signal is possible when two consecutive

starting sequences interfere with each other.

Figure 5.4 illustrates the timing diagram related to the scenario. In

the scenario, the start sequence is first initiated at the 0 s mark (Step

1 in Figure 5.4). After 8 seconds, the output of TON1 initiates PULSE1.

Immediately after this a reset command is given followed by another start

77

Methodology for modelling FBD programs

Start

Reset

ON

TON1.OUT

TON2.OUT

PULSE1.OUT

0 s 8 s 16 s 38 s

Step 1 Step 2 Step 3 Step 4

Figure 5.4. Timing diagram of the error scenario. Two consecutive starting commands
are given (Steps 1 and 2). At the 16 s mark (Step 3) TON1.OUT is supposed to
initiate the 10 s PULSE1. The rising edge of TON1, however, is not detected
as the pulse is still running. As a result, the ON output is continuously set
for over 20 s (Step 4).

command (Step 2 in Figure 5.4). At the 16 s mark, the output of TON1

should again initiate PULSE1. However, the previous starting sequence

is still on-going (PULSE1 is running), and the rising edge from TON1 is

not detected (Step 3 in Figure 5.4). As a result, as the time pulse ends, the

ON output is set for over 20 seconds, and is finally reset when the output

of TON2 is set (Step 4 in Figure 5.4).

Based on observations made in Publication I, it is recommended that

more attention is put into: (1) testing of boundary values of systems; (2)

testing of manual operations; (3) testing of system behaviour during hard-

ware failures; (4) covering various timed sequences of inputs instead of

mere combinatorial coverage; and (5) testing of parts of the design where

time pulses, feedback or complex non-standard function blocks are used.

5.9 Threats to validity and limitations

Different function-block-based design paradigms, such as the distributed

function block diagrams described in IEC 61499 [111], exist. The method-

ology described in this dissertation is intended only for modelling FBD

programs that follow the semantics of the IEC 61131-3 [110] definitions,

and vendor-specific variations thereof. The model-checking tool and mod-

elling capabilities fit well with decision logic functions with many Boolean

variables, memories, time delays, and some feedback. However, not all

78

Methodology for modelling FBD programs

INPUTS OUTPUTS

OUTPUT

Example FBD

Input
0,1 s

TP

IN
PT

Q

PULSE1

ET

AND

IN1

IN2

AND1

Figure 5.5. An example function block diagram illustrating an intricate timing scenario

functions that can be implemented using FBDs can be modelled and ver-

ified. Control logic implemented using proportional-integral-derivative

(PID) controllers is one example of this. These control loop feedback mech-

anisms either cannot be modelled in the NuSMV modelling language, or

lead to state explosion in the model-checking analysis. The NuSMV tool

also has very limited support for complex arithmetic. Calculations involv-

ing real-valued variables and complex mathematical functions can not be

performed. For example, the tool has a division operator that can be used

but the results are rounded to the closest integer value.

Some of the assumptions made in the modelling are such that certain

kind of errors are not found. Our modelling methodology does not take

into account the asynchronicity issues of real systems. Thus, errors caused

by, e.g., race conditions or errors caused by small differences in clock cy-

cles of distributed computers are not found.

In some cases a coarsening of the scan cycle length of the PLC may be

required to make system verification feasible in practice. The models used

in this dissertation mainly employ a discretisation of time corresponding

to a realistic system scan cycle length. An exception is the model of the

emergency diesel generator control system. The version of the model used

as a benchmark in Publication III utilised a coarser time discretisation

so that analysing a large set of benchmark properties could be done in

reasonable time. In Publication II, however, a discretisation of time cor-

responding to the actual system scan cycle length was used for verifying

the same emergency diesel generator control system.

79

Methodology for modelling FBD programs

FF01

FT01

FF11

FT11

TF01

TT01

TF11

TT11

Figure 5.6. State space of the intricate timing example, with a scan cycle length of 0.1 s.
The states are labelled with four values: the Boolean value of the input of
the system (T/F); the Boolean value of the internal prev_IN variable of the
pulse (T/F); the integer value of the clock variable of the pulse (0/1); and the
PT parameter of the pulse. The output of the model is false in all reachable
states.

A coarser time discretisation may be required in, e.g., systems where

the application logic contains long time delays. Multiple second delays

together with the short time step length cause state space explosion in

the model. In addition the counterexamples tend to become overly long.

A quick solution to this is to use a longer scan cycle length in the model,

or modify the delays implemented in the application logic. If the model

is modified in such a way, certain intricate timing related errors may not

be found. The FBD in Figure 5.5 is such that certain behaviour is left

out if the scan cycle length is extended in the model. The FBD includes

a very short pulse and an AND block with one of its inputs negated. The

pulse function block works so that whenever a rising edge is detected on

its input, then the output is set for 0.1 seconds. If the input disappears

during this pulse the output still remains set. The output of the FBD is

true whenever the pulse is on and the input is not set. For this to happen,

the input must first become true to set the pulse, and then quickly (within

the 0.1 seconds) set to false so that both inputs of the AND block are true.

The behaviour of the model depends on the scan cycle length. In a model

where the scan cycle length is set to 0.1 seconds the length of the pulse

corresponds to only a single time step, and the output of the function block

diagram can never become true.

The reachable state spaces of two alternative implementations are de-

picted in Figures 5.6 and 5.7. If the intricate timing example is modelled

with a scan cycle length of 0.1 s (Figure 5.6), the length of the pulse is a

single time step (the PT parameter of the pulse is 1), and the output of

80

Methodology for modelling FBD programs

FF02

FT02

FF12 FF22

FT12 FT22

TF02

TT02

TF12 TF22

TT12 TT22

Figure 5.7. State space of the intricate timing example, with a scan cycle length of 0.05 s.
The states are labelled with four values: the Boolean value of the input of the
system (T/F); the Boolean value of the internal prev_IN variable of the pulse
(T/F); the integer value of the clock variable of the pulse (0/1/2); and the PT
parameter of the pulse. The reachable states in which the output becomes
true are highlighted in green colour.

the model is false in all reachable states. If, however, a shorter scan cycle

length of 0.05 s is used (Figure 5.7), the length of the pulse corresponds

to two time steps (the PT parameter of the pulse is 2). Consequently, the

state space of the model grows, and a state in which the output is true be-

comes reachable. The model code of the pulse function block is presented

in Appendix A.

To avoid incorrect results on all models, the use of a time step length

corresponding to the actual scan cycle length of the system is strongly

encouraged. If for model checking scalability reasons a coarsening of the

scan cycle length has to be made, very careful expert judgement should be

used when analysing the results.

Also note that design choices such as the one in Figure 5.5 are potential

sources for error, as the scan cycle length of the system may change during

the design life-cycle. If a system is eventually operated on a different scan

cycle length than what was originally intended, the system may become

functionally different in a critical way.

Finally, since the environment of the system is completely free the mod-

eller should be careful when verifying, e.g., existential properties of the

system. The free environment of the model may allow certain behaviours

that will not occur when the actual system is executing.

81

6. Iterative abstraction refinement on
modular systems

This chapter describes the contents of Publication II and Publication III,

and presents an iterative abstraction refinement technique for modular

systems.

The methodology presented in Chapter 5 together with currently avail-

able classical model-checking methods suffices well for verifying individ-

ual safety functions. However, especially in safety-critical domains it is

common to improve the system’s tolerance to hardware failures by im-

plementing several subsystems that execute the same protection function

using design diversity in software and/or hardware. These diverse sub-

systems may need to be analysed simultaneously to check that no unin-

tended interactions between the subsystems exist, and because system

specifications may refer to their combined behaviour. The classical model-

checking methods (such as BDD-based techniques, SAT-based bounded

model checking, k-induction or the PDR algorithm) do not always scale

sufficiently well to analysing these large and complex systems.

The scaling problem can often be avoided by creating abstractions of the

model that are easier to verify. Depending on the examined specification,

only a small portion of the model may be significant to the analysis. In

Publication II it is described how insignificant parts of the model can be

left out of the analysis using over-approximating abstractions.

Unfortunately, creating such an abstract model for each checked speci-

fication is non-trivial and requires quite a lot of manual work, becoming

tedious and thus also error prone. For the best efficiency gains, the ab-

straction must be tailored for each specification separately.

In Publication III, it is described how these kinds of over-approximating

abstractions can be created automatically using an iterative abstraction

refinement technique. The described technique: (1) significantly reduces

the amount of manual work needed to create the abstractions; (2) proves

83

Iterative abstraction refinement on modular systems

system correctness based on verification runs automatically performed on

the abstractions; and (3) can often significantly reduce the overall compu-

tational effort required for model checking, enabling the model checking

of larger system models.

The technique is based on partitioning the system into modules and cre-

ating module-level over-approximations, as well as an iterative procedure

for refining the abstraction level. In addition, the efficiency of the tech-

nique is improved by running several model-checking engines in parallel,

focusing only on finding proofs for properties, instead of looking for coun-

terexamples. In order to get faster verification results for both true and

false specifications, it is useful to run the algorithm simultaneously with

another approach that is good at finding counterexamples quickly, such as

traditional bounded model checking. An implementation of the technique

that is used in this dissertation is available online.1

Section 6.1 discusses the over-approximating abstractions. Section 6.2

goes through the iterative abstraction refinement technique. Section 6.3

presents results on applying the technique, and Section 6.4 discusses the

validity of the technique.

6.1 Module level over-approximations

The developed technique works with systems that can be partitioned into

modules. The modular partition must be such that the modules are on a

single level of hierarchy, i.e., a module does not contain another module.

The systems studied in this work consist of a set of FBDs. Typically a

single FBD implements a single function of the system. In these systems

it is simple to use a modular partition in which a single FBD corresponds

to a single module. This partition is also quite natural as it is dictated by

the design process. The resulting modules are compact, and the connec-

tions between the modules are limited. The restriction of the developed

technique to models having a single level of hierarchy is not a major ob-

stacle since all FBD programs can theoretically be organized syntactically

on one level.

Figure 6.1 illustrates the modular partition of the fictional system used

as a case study in Publication III. The system consists of 18 FBDs each

separated as its own module. The big rectangles in Figure 6.1 represent

modules and the blocks inside the rectangles represent individual func-

1https://github.com/JussiLahtinen/Dissertation

84

Iterative abstraction refinement on modular systems

Figure 6.1. The modular partition of the fictional system used as a case study in Publi-
cation III, in which the system consists of 18 modules. Each module contains
an FBD.

tion blocks. The modules have connections with each other as some of

the outputs of the FBDs are used as input in other FBDs. Also, many of

the inputs and outputs are not connected to other FBDs. Instead, they

are connected to the environment of the model. In our models, however,

the environment is free so the inputs/outputs are not connected anywhere

and thus may obtain a different value at each time step.

Several other ways to split the system into modules exist. It would be

interesting to see whether changing the level of coarseness of the modules

can have influence on the performance of our technique. Such alternative

system partitions are primarily left for future work.

6.1.1 Abstractions of the model

The abstractions in our technique are created on the module level so that

a whole module is always replaced with an abstract version of it. The

abstractions are based on the compositional minimisation technique, in

which the system is abstracted using reduced versions of some of the sys-

tem’s modules. Such a reduced module version is called an interface mod-

85

Iterative abstraction refinement on modular systems

Figure 6.2. The fictional system where 15 out of the 18 modules have been replaced with
interface modules

ule. It has the same input and output interfaces as the concrete module

it substitutes, but no internal state. No restrictions are set to the out-

puts: they are completely non-deterministic. A model-checking model of

an interface module does not contain any function blocks. Instead, only

the outputs of the module are defined as free non-deterministic variables.

For example, the interface module corresponding to the example FBD in

Figure 5.1 and Listing 5.1 is illustrated in Listing 6.1.

An abstraction of the system is created by selecting either the concrete

version or the interface version of each module. The idea is illustrated in

Figure 6.2, in which 15 out of the 18 modules have been replaced with an

interface module.

1 MODULE EXAMPLE_FBD(START_ALLOWED, START_BUTTON_PUSHED,

2 RESET_START_SEQUENCE, CYCLES_IN_SECOND)

3 VAR

4 START : boolean;

5 DEFINE

6 ASSIGN

Listing 6.1. NuSMV code for the interface module of an FBD

The abstraction discussed above is such that there is a simulation rela-

86

Iterative abstraction refinement on modular systems

Counter-
example

Initial
abstraction

Proof
found

Return TRUE

Preliminary
refinement

Refinement
minimization

Return
counter-
example

Refinement
impossible

Counter-
example
infeasible

Model
checking

Figure 6.3. The iterative abstraction refinement loop for verifying large modular systems

tion between the abstract model and the concrete model, i.e. each tran-

sition of the concrete model can be matched by some transition in the

abstract model. The interface modules of the abstract model are over-

approximations of the modules’ of the concrete model. Because of this

universal properties (e.g., properties of LTL) that are true in the abstrac-

tion are also true in the concrete model.

6.2 Modular iterative abstraction refinement

A feasible abstraction level is found automatically using an iterative ab-

straction refinement algorithm. The main loop of the algorithm is illus-

trated in Figure 6.3. The algorithm follows the phases of the generic itera-

tive abstraction refinement loop. The initial abstraction is first generated

and model checked. If the examined property produces a counterexam-

ple, the algorithm refines the model and verifies the resulting new model

again. The process is continued until the property is proved or no further

model refinement is possible.

The general intention of the algorithm is to begin with as much abstrac-

tion as possible, and then iteratively add modules to the configuration

87

Iterative abstraction refinement on modular systems

BDD
invariant
checking

k-
induction

L2S
smvtoaig

PDR

Generate
NuSMV model

Check
property type

Invariant
LTL

property

Execute in parallel Execute in parallel

L2S BDD
LTL

checking

BDD
invariant
checking

k-
induction smvtoaig

PDR

Invariant
to LTL

Collect result
Proof
found

Counter-
example

found

smvflatten

smvflatten

Figure 6.4. The model-checking phase of the technique

until the abstraction satisfies the property. For refinement, the algorithm

follows a two-phase procedure. First, the algorithm creates a preliminary

refinement by iteratively adding new modules to the abstraction, until the

counterexample becomes infeasible. Then the algorithm minimises the re-

finement by sampling subsets of the preliminary refinement and checks

the feasibility of the samples. In what follows, the individual steps of the

algorithm are described in more detail.

6.2.1 Initial abstraction

The initial abstraction is created by extracting the variables used in the

examined specification and determining the modules whose outputs these

variables are. Concrete versions of these modules are used in the initial

abstraction. All other modules of the model are replaced by their respec-

tive interface modules.

6.2.2 Model checking

In the model-checking phase several algorithms are utilised in parallel as

illustrated in Figure 6.4. The implementation of the algorithm supports

both state invariant properties and LTL properties.

In the case of state invariant properties the BDD-based algorithm, and

the k-induction algorithm are run using NuSMV, while the property di-

88

Iterative abstraction refinement on modular systems

rected reachability (PDR) algorithm is run using a model-checking tool

called ABC/ZZ [80].

The ABC/ZZ tool requires models to be in the AIGER [28] format. In or-

der to be able to use the PDR algorithm implemented in the ABC/ZZ tool,

the NuSMV model has to be transformed into AIGER models. A suit-

able transformation tool called smvtoaig is available in the AIGER tool

package. The tool requires that the model has been flattened beforehand.

The flattening feature implemented in NuSMV is utilised by running

the following commands in NuSMV: read_model, flatten_hierarchy,

encode_variables, build_boolean_model, write_boolean_model.

This command sequence creates a deterministic model with no modular

hierarchy, in which integers are encoded using Boolean variables. The

smvtoaig tool can translate this flattened model into the AIGER format

but the translation does not support all modelling features of NuSMV. The

most conventional modelling conventions used in Appendix A, for exam-

ple, are supported.

Finally, the examined state invariant is transformed into an LTL prop-

erty so that the model together with the LTL property translates correctly

into an AIGER format model that can be model checked by the PDR model

checker. The LTL formula is created simply by adding the LTL globally

operator G before the state invariant.

When LTL properties are verified the algorithm first utilises the liveness-

to-safety reduction described in Section 2.8.2 after which it runs BDD-

based state invariant checking and the k-induction algorithm on the re-

sulting model. For PDR model checking, the algorithm follows a simi-

lar procedure as in the case of state invariant properties, except that the

property is already written in LTL and need not be changed. For LTL

properties the BDD-based LTL checking algorithm is additionally run in

parallel using NuSMV.

6.2.3 Preliminary refinement

In the refinement phase the objective is to find a new abstraction (i.e.,

a configuration of concrete modules and interface modules) that is more

detailed than the current configuration of the model and makes the cur-

rent counterexample infeasible. The original specification is then checked

again on that refined abstraction.

The preliminary refinement phase itself is an iterative loop, in which

each iteration adds new modules to the model configuration. The loop

89

Iterative abstraction refinement on modular systems

Check CE
feasibility

using
k-induction

Generate
NuSMV model

Check
property type

Invariant
LTL

property

Check CE
feasibility

using
k-induction

L2S

Refine
(add modules)

Read result

Counter-example
still feasible

ProofCounter-example
infeasible

Refinement
possible

Refinement
impossible (cannot

add any new
modules)

Figure 6.5. The preliminary refinement phase of the algorithm

is illustrated in Figure 6.5. Similarly, as in the model-checking phase

of the algorithm, both state invariant properties and LTL properties are

supported. In the case of LTL properties the liveness-to-safety reduction

is again utilised to generate a model on which the k-induction algorithm

can be used.

The algorithm uses the dependency graph of the model to identify new

modules to be added to the model.

Definition 6.1. A dependency graph of a system divided into modules

v ∈ V is a directed graph D = (V,E) where the vertices V represent the

modules and the edges represent the data dependencies of modules towards

each other. A module v can be described with respect to its inputs and

outputs as v = (Iv, Ov), where Iv is the set of input signals of v, and Ov is

the set of output signals of v. The transitions of the dependency graph are

then defined so that: (t, v) ∈ E ⇔ ∃x such that x ∈ Ot and x ∈ Iv where t =

(It, Ot), v = (Iv, Ov) ∈ V .

Note that in our definition of the dependency graph, the edges of the

graph are in the direction of the data flow.

On each preliminary refinement iteration the algorithm the dependency

graph of the model is traversed one step in the backwards direction start-

ing from all the vertices representing the modules in the current abstrac-

90

Iterative abstraction refinement on modular systems

tion, and all of the modules representing these neighbour vertices are

added to the abstraction.

The preliminary refinement phase is presented as pseudo-code in Algo-

rithm 6.2. The function RefineConfiguration has as input the set Current

of modules that are concrete in the current abstraction, and the length

of the recently received counterexample CElength. The algorithm returns

the set of new modules Refinement that are added to the current model,

and a string indicating whether no further refinement is possible or if a

proof is found while checking the feasibility of the refinement.

Algorithm 6.2 Preliminary refinement
1: procedure REFINECONFIGURATION(Current ,CElength)

2: Configuration ← Current

3: Refinement ← ∅
4: while True do

5: newRefinement ← ∅
6: for e ∈ getNeighbourModules(Configuration) do

7: if e /∈ Configuration then

8: newRefinement ← newRefinement ∪ e

9: end if

10: end for

11: if len(newRefinement) == 0 then

12: return [Refinement , “no refinement”]

13: end if

14: Configuration ← Configuration ∪ newRefinement

15: Refinement ← Refinement ∪ newRefinement

16: CEinfeasible, proved ← checkFeasibility(Configuration,CElength)

17: if CEinfeasible then

18: if proved then return [Refinement ,“proof”]

19: end if

20: break // R efinement found

21: end if

22: end while

23: return [Refinement , “”]

24: end procedure

The function getNeighbourModules traverses the dependency graph one

step in the backwards direction starting from all the vertices representing

the modules in the current abstraction, and returns all of the modules

91

Iterative abstraction refinement on modular systems

representing these neighbour vertices.

The algorithm generates a new model configuration Configuration in

which the modules in the refinement are concrete, and all other modules

are interface modules. If all of the relevant edges of the dependency graph

have been traversed, and no new modules can be added, the property is

false in the concrete model. The counterexample that was generated in a

previous step is the final counterexample. Note that these counterexam-

ples may have some abstract modules that are not capable of influencing

the variables in the property.

When refinement candidates are being created, the algorithm checks

the feasibility of the previous counterexample using the checkFeasibility

function. The function checks the original specification using k-induction

with the bound k set to the length of the counterexample, and thus the

feasibility of all other counter-examples up to this length is also simulta-

neously checked. It is possible for longer counterexample traces to exist

that are feasible at the same abstraction. These counterexamples will be

eventually found in the model checking phase of subsequent iterations of

the algorithm, as the abstraction-level has been refined so that the sim-

pler counterexamples have become infeasible. Note that also classic BMC

could be used but k-induction has the added benefit of occasionally prov-

ing the property during a feasibility check. If a counterexample can be

found within the bound, the refinement has not been successful, and the

algorithm continues with the preliminary refinement phase. If no coun-

terexamples can be found within the bound, the refinement has been suc-

cessful, and the algorithm moves on to refinement minimisation.

6.2.4 Refinement minimisation

After the first suitable refinement has been found, refinement minimisa-

tion is begun. The minimisation algorithm is represented as pseudo-code

in Algorithm 6.3.

The function Minimisation has as input the set Current of modules that

are concrete in the current abstraction, the length of the recently received

counterexample CElength, and the set of modules Refinement in the pre-

liminary refinement. The algorithm returns a new set of modules that

includes all modules in Current and a locally minimal set of modules in

Refinement that suffice to make the refinement feasible, and a string indi-

cating if the property could be proved during the feasibility check.

The algorithm samples subsets of the modules in the preliminary refine-

92

Iterative abstraction refinement on modular systems

Algorithm 6.3 Refinement minimisation
1: procedure MINIMISATION(Current ,CElength,Refinement)

2: n ← 2

3: NewRefinement ← Refinement

4: while True do

5: if len(NewRefinement) < 2 then

6: return [Current ∪ NewRefinement , “”]

7: end if

8: subsets ← partitionSet(NewRefinement , n)

9: complements ← getComplements(subsets,NewRefinement)

10: CEinfeasible ← False

11: for c ∈ subsets ∪ complements do

12: Configuration ← Current ∪ c

13: CEinfeasible, proved ← checkFeasibility(Configuration,CElength)

14: if CEinfeasible then

15: if proved then return [Configuration, “proof”]

16: end if

17: if c ∈ subsets then

18: n ← 2 // c ∈ subsets

19: else

20: n ← max(n− 1, 2) // c ∈ complements

21: end if

22: NewRefinement ← c

23: break

24: end if

25: end for

26: if CEinfeasible then continue

27: end if

28: if n < len(NewRefinement) then

29: n ← min(len(NewRefinement), 2n)

30: continue

31: else

32: return [Current ∪ NewRefinement , “”]

33: end if

34: end while

35: end procedure

93

Iterative abstraction refinement on modular systems

ment in an iterative manner, and checks the feasibility of the samples sim-

ilarly as in preliminary refinement using the function checkFeasibility . If a

suitable subset of modules is found, the algorithm restarts the minimisa-

tion procedure using the found subset as a starting point. The approach

leads to a locally minimal subset of modules. Note that the refinement

approach is cumulative, since the minimisation is applied only to the new

modules in the preliminary refinement. The modules from previous iter-

ations cannot be removed in the minimisation.

The subset sampling is based on the delta debugging technique for soft-

ware code described in [216] and [217]. The purpose of the original tech-

nique is to generate a simple test case that captures the variable as-

signments that cause a particular failure. In delta debugging based re-

finement minimisation, the set of modules is first partitioned into two

parts (the initial granularity is two), and refinements based on both sets

are checked. If the minimisation is not successful, the granularity is in-

creased, and the set of modules is divided into four parts. After this these

four sets and their complement sets are checked. If none of these subsets

is suitable, granularity is again increased. The process continues until

the granularity reaches the size of the module set.

The function partitionSet(set ,n) partitions a set into n parts. For ex-

ample, partitionSet([1, 2, 3, 4, 5, 6], 3) returns [[1, 2], [3, 4], [5, 6]]. The func-

tion getComplements(partitions, set) is used to produce the complements

of these sets. getComplements([[1, 2], [3, 4], [5, 6]], [1, 2, 3, 4, 5, 6]) returns the

set of sets [[3, 4, 5, 6], [1, 2, 5, 6], [1, 2, 3, 4]].

The iterative structure of the refinement minimisation phase is illus-

trated in Figure 6.6. The liveness-to-safety reduction is again used to

support the feasiblity checking of LTL properties.

6.2.5 Correctness of the algorithm

The soundness, completeness and termination of the developed technique

are addressed in this section. The procedure related to the iterative ab-

straction refinement algorithm is depicted in Figure 6.7, where the tran-

sitions are numbered.

Proposition 6.1. The iterative abstraction refinement algorithm always

terminates.

Proof sketch. As the models we consider are finite state, for the termina-

tion proof we will assume that the model checking phase of the algorithm

94

Iterative abstraction refinement on modular systems

Check CE
feasibility

using
k-induction

Generate
NuSMV model

Check
property type

Invariant
LTL

property

Check CE
feasibility

using
k-induction

L2S

Sample subset
of modules

Read result

Counter-example
becomes feasible

Proof
found

Counter-example
still infeasible

Discard
subset

Minimize
further

Sampling
finished

Figure 6.6. Refinement minimisation

always terminates. The preliminary refinement phase iteratively adds

modules based on the modules’ dependencies. It can not do this ad infini-

tum as the system model has a finite number of modules. Therefore, the

preliminary refinement phase also always terminates. The refinement

minimisation phase performs a finite number of iterations by sampling

subsets of the modules in the preliminary refinement. The number of

modules in the preliminary refinement is finite. Therefore, the number of

subsets is also finite, and the refinement minimisation phase must even-

tually terminate.

Regarding delta debugging used in the refinement minimisation phase,

we assume that it terminates and leaves at least one module provided

by the preliminary refinement phase. The number of iterations of delta

debugging in the worst case is addressed by Zeller and Hildebrandt (see

Proposition 17 in [217]). Delta debugging leads to a locally minimal subset

of modules (see Proposition 16 in [217]).

Now, assume that the algorithm does not terminate. Since individual

phases of the algorithm terminate, this is possible only if the transitions

numbered 3, 6 and 8 in Figure 6.7, are infinitely looped. Transition 3 is

associated with a counterexample, which becomes infeasible in transition

6 as the model is refined by adding new concrete modules to the model. On

the other hand, if no new modules are added in preliminary refinement,

transition 4 should have been taken. Also, transition 6 can not be taken if

no new modules have been added because the counterexample would then

95

Iterative abstraction refinement on modular systems

Counter-
example

Initial
abstraction

Proof
found

Return TRUE

Preliminary
refinement

Refinement
minimization

Return
counter-
example

Refinement
impossible

Counter-
example
infeasible

Model
checking

1.

2.3.

4.

5.

6.

7.

8.

Figure 6.7. The iterative abstraction refinement loop with numbered transitions

be feasible as the model is equal to the model in transition 3. In refine-

ment minimisation, modules are removed from the refinement. All mod-

ules can not be removed because the counterexample would then again

become feasible. Therefore, a single iteration of the algorithm (transi-

tions 3, 6, and 8) necessarily increases the number of concrete modules in

the model. The model has a finite number of modules. Therefore, within a

finite number of iterations, the algorithm must eventually be in the model

checking phase with a model configuration in which no new modules can

be added. On this model configuration the examined property is either

true or false. Therefore, either transition 2 or transitions 3 and 4 are

eventually taken terminating the algorithm.

Proposition 6.2. If the iterative abstraction refinement algorithm returns

an answer, the answer is correct.

Proof sketch. First, assume that the algorithm returns “True”. The an-

swer is correct because all created abstractions are over-approximating

abstractions, in which a set of modules of the model is replaced with in-

terface modules. All abstractions have more behaviours than the concrete

96

Iterative abstraction refinement on modular systems

model. If the examined property is true on any such abstraction, the prop-

erty is also true on the concrete system model.

Now assume that the algorithm returns a counterexample. A counterex-

ample is only given when no further refinement is possible by adding con-

crete modules to the model based on the modules’ dependencies. The ini-

tial abstraction starts with modules immediately related to the examined

property. From this starting point, if a model configuration is reached in

which no new modules can be added, it necessarily corresponds to the re-

sult of applying the cone-of-incluence (COI) reduction [65] on the module

level. The counter-example is valid because the modules excluded in the

model are not relevant to the property under verification.

Corollary 6.1. By Propositions 6.1 and 6.2 the iterative abstraction re-

finement algorithm terminates and returns a correct answer for any input.

6.3 Results of tests

In Publication III, the iterative abstraction refinement technique was

used to verify properties on two different models. First, a fictive but real-

istic system2 was used for demonstrating that the algorithm can be more

efficient in proving meaningful safety properties of a system. Secondly,

the technique was evaluated by using a real-world diesel control system

as a benchmark, and comparing the technique with other model-checking

algorithms. Since the technique focuses on finding proofs efficiently, only

true state invariants were used in this comparison. A set of 100 ran-

domly generated true state invariant specifications were verified on the

diesel model using four approaches: our technique, k-induction, property

directed reachability (PDR), and a BDD-based state invariant checking

method. The BDD approach, the k-induction approach, and the PDR ap-

proach used the full concrete model. For simplicity, the comparison fo-

cused on state invariant specifications, and no LTL properties were used.

In the comparison, the commands used for model checking were as fol-

lows. The BDD approach used the check_invar command of NuSMV.

The NuSMV flags -dynamic and -coi were also used. The k-induction

approach was run by executing the command check_invar_bmc_inc

2The model of the fictive system and its detailed description is available online:
https://github.com/JussiLahtinen/Dissertation

97

https://github.com/JussiLahtinen/Dissertation

Iterative abstraction refinement on modular systems

 0.1

 1

 10

 100

 1000

 0.1 1 10 100 1000

O
ur

 te
ch

ni
qu

e

BDD

Figure 6.8. Run-times (in seconds) of BDD model checking and our technique

-k 10000 in NuSMV. A large bound was used because running out of

memory is preferred to not reporting a result. The NuSMV flags -dynamic

and -coi were used for k-induction as well. The command used for run-

ning the PDR algorithm of ABC/ZZ was: bip ,live -k=inc -eng=pdr2.

The random state invariants were generated by randomly selecting two

to three variables from the set of modules’ outputs and non-deterministic

variables of the main module. Negations were randomly placed in front

of the chosen variables, and the operators joining the chosen variables

were randomly selected (AND/OR). After this the random state invariant

was model checked using the different model-checking methods until each

state invariant was proved either true or false. Finally, only the true state

invariants were picked out for the results. The invariants were also man-

ually reviewed to ensure that all invariants were unique. The following is

an example of a random state invariant property:

((not MOD14.output1 OR MOD2.output2) AND

not main_module_input1)

The results of the comparison are in Figures 6.8, 6.9 and 6.10.

The k-induction algorithm was able to verify 55% of the properties rather

98

Iterative abstraction refinement on modular systems

 0.1

 1

 10

 100

 0.1 1 10 100

O
ur

 te
ch

ni
qu

e

k-induction

Figure 6.9. Run-times (in seconds) of k-induction and our technique

quickly, but for the rest of the properties (45%) the required bound for

a proof was so large that the technique ran out of memory. The BDD-

based method was able verify 81% of the properties within the 1800 sec-

ond timeout. However, 13% of the generated random state invariants

were such that neither the BDD-based technique nor the k-induction tech-

nique could verify them within the given resource limits. The PDR tech-

nique was able to solve all properties within the given resources. The Fig-

ure 6.10 does not show the time to generate the AIGER format model from

the NuSMV model. On average this time was 17 s. The model transfor-

mation time is, however, included in the PDR verification runs performed

as part of our technique since these model transformations depend on the

model configuration and cannot be calculated beforehand.

Figure 6.9 contains a distinct vertical grouping of data points. The set of

points indicates that many properties have been solved in approximately

15 seconds by the k-induction method. This is presumably because a cer-

tain amount of time is needed for building and initialising of the model,

after which the properties may be quickly proved within a small bound.

A similar phenomenon is apparent in Figures 6.8 and 6.10 as well. The

99

Iterative abstraction refinement on modular systems

 0.1

 1

 10

 100

 0.1 1 10 100

O
ur

 te
ch

ni
qu

e

PDR

Figure 6.10. Run-times (in seconds) of PDR and our technique

preprocessing costs of the algorithms could be the reason why our tech-

nique outperforms them, as the preprocessing costs are low on smaller

models used by our technique. The effect of the preprocessing costs to

our technique could become more significant if even large models were

considered.

Our technique could verify all of the properties within the given re-

sources. In cases where the other techniques were able to provide a proof,

our technique was typically faster. In 68% of the cases the properties

were such that the proof could be found faster using our technique than

by using the other three algorithms. In 1% of the cases, the k-induction

technique was the fastest. The PDR-based technique was the fastest in

31% of the cases.

When our technique is analysed in detail, it is noted that 82 properties

are proved in the model-checking phase of the algorithm, and 18 proper-

ties are proved in the preliminary refinement phase of the algorithm. The

distribution of the model-checking phase proofs was such that 32 proper-

ties are proved by the k-induction subroutine, 10 properties are proved

by the BDD-based subroutine, and 40 of the properties are proved by the

100

Iterative abstraction refinement on modular systems

0

5

10

15

20

25

30

35

40

45

Iteration 1 Iteration 2 Iteration 3

Refinement
k-induction
BDD
PDR

Figure 6.11. The number of proofs found by k-induction, BDD, PDR, and refinement
phase k-induction, and the cumulative number of proofs found on different
iterations of the algorithm

PDR-based subroutine. The proofs of the preliminary refinement phase

are also generated by the k-induction subroutine as only that subroutine

is used for checking the feasibility of the refinement. The cumulative fre-

quency graph in Figure 6.11 shows the number of proofs obtained by the

different subroutines (k-induction, BDD, PDR, and refinement phase k-

induction) and the distribution of these proofs on the different iterations

of the algorithm. Three iterations of the algorithm sufficed to prove all

properties.

Based on Figure 6.11 it can be observed that the k-induction method

handles the most trivial properties in the first iteration (31 properties).

For a majority of the remaining properties, the refinement phase results

in an abstraction that is detailed enough for a proof by the PDR-based

method (34 properties) or the BDD-based method (10 properties) in the

second iteration. The average for the number of modules needed in a

proof was 3.4 in the system consisting of 14 modules.

In very large models, the initialisation of the model can already take

quite long, and finding a proof with a very small bound can still take a

lot of time. In the technique, only a small local subsystem is initially

examined which is much faster. The results confirm the assumption that

in large models, only a small subsystem is typically needed for proving

a single property. The results also show that locating such a subsystem,

and verifying the property on that subsystem can in most cases be faster

than the analysis of the whole system model.

101

Iterative abstraction refinement on modular systems

 0.1

 1

 10

 100

 0.1 1 10 100

Ou
r t

ec
hn

iq
ue

IC3 (nuXmv)
Figure 6.12. Run-times (in seconds) of the IC3 algorithm implemented in nuXmv and our

technique

6.3.1 Comparison against the IC3 algorithm implemented in
nuXmv

The nuXmv model checker [50] is an extension to NuSMV that has an im-

plementation of the PDR (IC3) algorithm. In this work, however, nuXmv

has not been used for verification. This is because one of the objectives of

the research was to facilitate verification work in future customer projects.

The license conditions of nuXmv prevent free commercial use rendering

utilisation of that tool unattractive in this setting. On the other hand, the

model-checking tools used in this work (NuSMV and ABC/ZZ) have less

restricting open source license conditions.

To get a better picture of the performance of the developed technique,

a comparison against the IC3 algorithm implemented in nuXmv was also

conducted again using the real-world diesel control system benchmark.

The nuXmv command check_invar_ic3 was run on the full system

model in which all of the modules are concrete. The previously gener-

ated set of 100 state invariants were utilised also in this comparison. The

results of the comparison are in Figure 6.12.

102

Iterative abstraction refinement on modular systems

The nuXmv tool could verify all of the properties within the given re-

sources. In 78 % of the cases, our algorithm found a proof faster than the

IC3 implementation of nuXmv. The average verification time of nuXmv

was 30,2 s; and the median verification time was 15,6 s. The average veri-

fication time of our technique was 14,2 s; and the median verification time

was 9,3 s. The performance of ABC/ZZ is slightly better when compared

to nuXmv. The average verification time of ABC/ZZ was 18,5 s; and the

median verification time was 12,6 s. These verification times, however,

do not include the time needed for translating the model into the AIGER

format.

6.4 Validity of the technique

The performance of the iterative abstraction refinement technique relies

heavily on the structure of the model’s dependency graph. Systems where

there are a lot of dependencies between the modules, can quickly lead to

a situation where all modules are included in the model. So far, the tech-

nique has been well-suited for safety-critical systems where unnecessary

links between subsystems are avoided.

The technique is also more efficient in models that produce short coun-

terexamples. Checking the feasibility of long counterexamples is much

more time-consuming as the bound k used for k-induction increases. This

is a potential problem in systems where there are, e.g., long time delays

in the application logic.

There are also some limitations related to model transformations. In

order to use the PDR algorithm implemented in the ABC/ZZ tool the

NuSMV models need to be transformed into AIGER models. There can

be problems in this transformation when unusual NuSMV modelling fea-

tures are used in the model. Another problem is mapping the witness

trace of ABC/ZZ back into the counterexample format used in NuSMV,

which is fairly straight-forward in most cases, but again requires special

attention when the more unusual NuSMV features are used.

For LTL properties the liveness-to-safety reduction is used to trans-

form the model into another variant in which the liveness property can

be stated as a state invariant. The result of the reduction leads to a model

with a much bigger state space. When the reduction is used on a model

that is already very large the result can become infeasible.

103

7. Analysing fault-tolerance of nuclear
power plant safety systems

This chapter discusses methodology for modelling hardware failures de-

veloped in Publication IV, the motivation for this work, as well as poten-

tial integration approaches with probabilistic risk assessment (PRA).

7.1 Background and motivation

The main motivation for this work is the aim of analysing increasingly

larger systems. Model checking has turned out to be a useful tool for ver-

ifying the correctness of individual systems. Thus, it makes sense to try

to increase the scope of verification, and to see whether other problems of

larger scale can also be solved. In nuclear power plants, the natural step

from individual safety system is to move on to analysing the plant archi-

tecture level, i.e., how multiple safety systems work together, and how

their functionality is organised. On this higher level, requirements for

fault tolerance of the architecture become important, as the architecture

is designed in such a way that design errors of individual safety systems

do not lead to hazardous situations. A methodology for modelling hard-

ware failures is needed in order to analyse fault-tolerance.

7.1.1 Traditional architecture-level analyses

Analysing the fault-tolerance of the plant can be quite a difficult task due

to: (1) complex hardware architecture (a single computer unit may be

used to execute the application logic of several different safety systems);

(2) common cause failures (CCFs) (failure of multiple similar components

due to the same cause); and (3) unpredictable behaviour of the system

caused by software design errors.

Traditionally, architecture-level analysis is performed using methods

such as failure mode and effects analysis (FMEA) [112], and probabilistic

105

Analysing fault-tolerance of nuclear power plant safety systems

risk assessment (PRA) [16].

In FMEA, the failure modes of subsystems and components are system-

atically defined, and the causes and effects of each individual failure mode

are analysed. FMEA focuses on single failures, and its capability to anal-

yse CCFs is quite limited. Postulating failures of software components is

also possible in FMEA. Typically this is based on a list of presumed effects

of these errors.

PRA is a method that is used for estimating different kinds of risks

related to the operation of a nuclear power plant. One use of PRA is to

estimate the frequency of accidents that cause damage to the reactor core

(i.e., level 1 PRA). In this kind of analysis, a set of accidents (initiating

events) such as the loss of coolant accident (LOCA) are first defined. Each

initiating event is then analysed using event trees and fault trees.

Event trees (see, e.g., [206]) illustrate the consequence of different acci-

dent sequences. An example event tree is in Figure 7.1. An accident se-

quence is a series of successes and failures of safety systems represented

as paths of the event tree. If one or more safety systems function properly

the plant typically fully recovers from the accident without core damage.

If enough safety systems fail, the accident can cause core damage or lead

to some other less critical unwanted end state. In Figure 7.1, an accident

leads to core damage only when both System 1 and System 2 fail.

In PRA the top events are further analysed using fault trees (see Fig-

ure 7.2). In fault tree analysis (FTA) [203] the top event is broken down

into simple component failures (basic events) using Boolean logic gates.

In FTA, a list of minimal cut sets (MCSs) (see, e.g. [203]) is typically cal-

culated to create an understanding of the system’s weak points. A cut set

is a combination of failures that causes the top event. A minimal cut set

is a set of component failures such that if any of the basic events in the set

is removed, the remaining events no longer form a cut set. For example,

the fault tree in Figure 7.2 has two minimal cut sets. The first minimal

cut set consists of a power supply failure, and the second minimal cut set

includes the failure of both actuator 1 and actuator 2. A cut set that con-

sists of two failures: (1) failure of actuator 1; and (2) the failure of power

supply is not minimal as the top event (failure of system 1) happens also

when the first failure is removed from the set.

By estimating the failure rates of each component used in the plant, the

core damage frequency can be estimated. It is also possible to analyse the

criticality of the basic events using risk importance metrics such as the

106

Analysing fault-tolerance of nuclear power plant safety systems

Initiating
event

System 1 System 2

OK

OK

OK
Success Success

Failure

Failure

Core damageFailure

Success

Figure 7.1. An example event tree

Fussell-Vesely measure of importance and the risk increase factor, see,

e.g., [201]. In PRA, software errors can also be postulated, e.g., based

on a software failure taxonomy (see [8]), but the methodology is not yet

mature. Similarly as in FMEA, this approach is based on guessing the

probable effects of a software failure.

7.1.2 Using model checking for architecture-level analysis

In FMEA and PRA software errors can be postulated but they are not

methods that can find concrete scenarios in which the postulated errors

occur. Model checking, on the other hand, can find these concrete scenar-

ios if they exist. If model checking is applied on a system model that takes

into consideration both the detailed behaviour of the application software

and the hardware failures, it is possible to find new concrete scenarios in

which the plant safety function is not fulfilled. These scenarios can be

such that they involve both software design errors and hardware failures.

Using model checking for analysing architecture-level properties enables

a more exact and more extensive approach for analysing fault-tolerance.

7.2 Fault modelling methodology

The hardware failure methodology in Publication IV was developed based

on using a PRA model (see, e.g., [9]) of a nuclear power plant as reference.

The model-checking methodology purposefully followed the notations and

107

Analysing fault-tolerance of nuclear power plant safety systems

System 1 fails

Power supply
failure

Failure in
actuators

Actuator 2
stuck closed

Actuator 1
stuck closed

Figure 7.2. An example fault tree

conventions used in the PRA model whenever possible, and was designed

to fit seamlessly with earlier methodology for modelling the application

programs as described in Chapter 5. The new model components of the

proposed methodology are link modules, a failure module and a process

module.

The main idea of the methodology is to use link modules to encapsulate

connections between measurements, logic modules and equipment. Link

modules are parameterised with hardware components that implement

that connection. Link modules may alter the signal value, as hardware

failures may cause the value of the signal transmitted via that link to be

interpreted in a different way. The failure module is used to keep track of

all instances of hardware components, and to decide on the failure modes

experienced by the components. The process module plays the role of an

environment model, and decides on the values of the physical parameters

of the plant based on predetermined scenarios.

The model used as a case study in this work included several four-

redundant safety systems. A redundant subsystem is also called a di-

vision. A typical architecture of a single safety system from the point of

view of division 1 is illustrated in Figure 7.3. The system consists of mea-

108

Analysing fault-tolerance of nuclear power plant safety systems

Measurement

APU

Voting unit

Actuator

Division 1 Division 2 Division 3 Division 4

Measurement

APU

Measurement

APU

Measurement

APU

...

Figure 7.3. Typical I&C system architecture

surements, acquisition and processing units (APUs), voting units, and ac-

tuators. APUs are used for deciding on control actions sent to the actuator.

Voting units are used for majority voting, so that diverging APU decisions

can be ignored.

If the system is interpreted as a data flow graph, it can be seen that all

data paths are of the form depicted in Figure 7.4(a). When a single data

path is modelled, each of the three connections is encapsulated with a

link module, see Figure 7.4(b). The link modules are parameterised with

hardware component failure modes received from the failures module. For

example, the link between the measurement and the APU is related to

information of the failures of the measuring instrument, the connection

medium (such as a cable) between the instrument and the APU, the in-

put module of the APU, and failures of the power supply of the APU. If,

e.g., the measuring device experiences an undetected failure in which the

measured value freezes, the link module changes the value of its output

accordingly. Figure 7.4(b) also illustrates how the measurements receive

values from the process module. If a measuring device experiences no fail-

ures, its value will follow the physical parameters of the process module.

In Publication IV, the fulfilment of success criteria under various fault

assumptions is analysed on the case study model. It should be noted that

109

Analysing fault-tolerance of nuclear power plant safety systems

Measurement

APU

Voting unit

Actuator

(a) Data path of the system

Measurement

APU

Voting unit

Actuator

Link

Link

Link

Fa
ilu

re
m

od
ul

e

Process
module

(b) Modelled data path

Figure 7.4. Modelling idea illustrated on a single data path

the analysis is possible mainly due to simplifications and abstractions

used in the model. Most importantly, the exclusion of timing aspects in

the case study significantly simplifies the state space of the model, mak-

ing model checking of the case study model more feasible. The actuation

logic used in realistic systems does use a lot of timing, and its analysis

without these timing aspects is only of a very limited use. Even without

these timing aspects, the case study model was very large. So large in

fact, that the model checker failed to calculate the full state space, and

the size of the state space could only be calculated for a simpler model in-

cluding three of the safety systems used in the model. This simpler model

consisted of 1.1× 10260 different states out of which 1.9× 10160 states were

reachable.

The conclusion of this case study is that the methodology is not directly

applicable to the verification of properties on the architecture-level sim-

ply because the model becomes too large. The systematic approach for

hardware failure modelling provides a functioning framework for such

110

Analysing fault-tolerance of nuclear power plant safety systems

analyses, but other measures still need to be taken to simplify the size

of the verification problem. One possibility is simply to use the method-

ology for analysing fault-tolerance properties of smaller system assem-

blies. It could also be possible to use an iterative abstraction refinement

technique similar to the one described in Chapter 6 in order to obtain a

smaller configuration of the model that is still within capacity limits of

the verification tool. Another possibility is to limit the extent in which the

hardware failures are examined by focusing only on the most important

failure modes. This approach is discussed in Section 7.3.1.

Detailed descriptions of the model, the abstractions used, and the verifi-

cation results can be found in a research report [129]. The models related

to this work are available online.1

7.2.1 Limitations

A major limitation is that the verification of plant-level models is only

possible when heavy simplifications and abstractions are made. Another

limitation is that the methodology is based on the assumption that observ-

able signal values can always be deduced from the experienced hardware

failures. In some cases this can be very difficult. If several closely related

hardware failures occur at the same time, the model should be able to de-

cide which failure dominates over the other one. For example, if a failure

occurs in both the input module of a computer and its power source, the

failure of the power source is dominating because it masks the other fail-

ure. The possible propagation of failures related to, e.g., network failures

was also not addressed in the developed methodology.

7.3 Integration of PRA and model checking

The developed modelling approach is compatible with PRA methodology,

and may offer an opportunity to integrate the two approaches to produce

a more extensive safety analysis method.

As an example, as the same data can be used as input for both ap-

proaches, it would be beneficial to have a common plant-model for both

analysis methods, accompanied with tools capable of generating both the

PRA model and the model used for model checking. The plant model could

be expressed using a domain specific modelling language, and the model

1https://github.com/JussiLahtinen/Dissertation

111

Analysing fault-tolerance of nuclear power plant safety systems

could contain all information needed for building both models. The main

advantage of using a common plant model is that the efforts needed for

modelling and version control between the two models are reduced. A

common plant model could also enable cross-verification of the models.

For example, the correctness of calculating the minimal cut sets in the

PRA tool could be independently verified using model checking.

7.3.1 A concept-level approach for coupled use of PRA and
model checking

The two approaches could also be used together in order to make up for

each other’s weaknesses, and to provide new safety assessment capabil-

ities. PRA is an efficient method for analysing hardware failures but it

does not have mature methodology for handling software failures. In

model checking, the situation is the opposite. Pure software properties

can be analysed in realistic-sized models, but the method does not seem to

scale well to large systems when hardware failures are assumed. Neither

approach on its own is sufficient for analysing the middle ground: finding

concrete scenarios involving both software design errors and hardware

failures. The middle ground could, however, be tackled by an approach

using both analysis methods in a coupled manner.

A concept-level approach for coupled use of PRA and model checking is

illustrated in Figure 7.5. The approach is based on two ideas:

1. Using information received from PRA to restrict the model-checking

analysis only to certain hardware failures, making the model-checking

phase more scalable to large models

2. Verification of a single hardware failure combination at a time.

Some hardware failures are not as important to safety as others. PRA

can provide information on the importance of the component failures. This

can be done either by using risk importance measures such as the Fussell-

Vesely measure of importance and the risk increase factor, or by exploiting

the minimal cut sets calculated in PRA, as is shown in Figure 7.5. Basic

events in short minimal cut sets are more critical than basic events in

longer minimal cut sets. This is because short minimal cut sets describe

scenarios in which only a small number of component failures is able to

cause the top event (failure of the safety system). In the proposed ap-

proach, model checking focuses only on analysing failures that belong to a

112

Analysing fault-tolerance of nuclear power plant safety systems

Minimal Cut Sets Calculate MCSs
using PRA

Generate restricted
model based on
failures in MCSs

Analyse the risk
imporance of the

scenario using PRA

Exclude previously analysed failure
combination

Scenario involving a software design
error and a hardware fault

End of analysis

S
uc

ce
ss

cr
ite

ria
fu

lfi
lle

d

Document results

Model checking PRA

Verify fulfillment of
success criteria

Figure 7.5. An integration approach for PRA and model checking

short (e.g., 1-3 basic events) minimal cut set. Subsets of these short min-

imal cut sets are interesting since a software design error during such

a failure combination might cause the system to fail in a previously un-

known manner.

Once the set of most important failures is selected, all relevant failure

combinations (e.g., subsets of minimal cut sets) are gone through one by

one.

Finally, if a new scenario is found using model checking, it should be

analysed whether the scenario describes a previously unknown failure

of the safety system. If this is the case, the risk importance of the new

scenario can be analysed using PRA.

The proposed concept extends safety assessment to an area that the

individual approaches themselves cannot reach. A more detailed descrip-

tion of the proposed technique and results of experimenting with it using

a small case study model is available in a research report [132]. The devel-

oped technique is based on earlier work by Björkman et al., see [32]. The

author of this dissertation has developed the proposed technique together

with Björkman.

113

8. Using model checking for
structure-based testing of FBD
models

This chapter discusses the contents of Publication V, and the utilisation

of model checking to support testing of systems designed using FBDs. In

Publication V, a method was developed that utilises model checking and

the structure of the FBDs, and automatically generates an efficient test

suite with high structural coverage.

Publication V is the first paper written on the subject by the author

of this dissertation. Consequently, the technique described in the paper

still requires additional research into improving the proposed methodol-

ogy. Main issues related to the technique have already been identified in

the paper, and they are also discussed in Section 8.3. Further develop-

ment related to the test generation technique can be found in a research

report, see [130]. The report presents an alternative version of the test

generation technique for FBDs, and evaluates the capability of generated

test suites to detect errors using mutation analysis.

8.1 Motivation

Safety systems used in nuclear power plants are thoroughly verified us-

ing a vast spectrum of different tests. The ISO/IEC 29119-4 [114] stan-

dard defines three different categories of test techniques for software:

specification-based, structure-based, and experience-based testing. In the

verification of nuclear automation, specification-based testing is primar-

ily used, and structure-based testing is used to increase the coverage of

verification.

In specification-based testing the test cases are derived from the re-

quirement specification of the system, while structure-based tests are de-

rived from the structure of the system. The use of both testing techniques

is required in nuclear regulatory guides, and recommended in commonly

115

Using model checking for structure-based testing of FBD models

used standards. For example, the USNRC Regulatory Guide 1.171 [197]

requires that testing of safety system software is based on both the specifi-

cations of the system, and a structure-based coverage metric. In addition,

the generic standard IEC-61508-3 [113] for programmable safety-related

systems recommends that structure-based testing is applied to software

systems in order to achieve 100% coverage according to several structure-

based criteria.

Traditional model checking focuses on verifying the correctness of the

system according to a set of formalised properties. The requirement spec-

ification of the system and consequently the properties used for model

checking may be incomplete. When test cases are generated according

to structure-based criteria, however, test sequences may emerge that de-

scribe behaviour that have not been fully addressed in the requirement

specification. Structure-based testing is a complementary approach to

traditional model checking that can be used to identify deficiencies in the

requirement specification, and improve the coverage of the analysed prop-

erties.

As was explained in Chapter 3, application-level control software is typ-

ically designed using FBDs, and then automatically translated into soft-

ware code. Structure-based testing in this framework could focus either

on the structure of the FBDs or the structure of the generated code. In

this work the FBDs, and not the software code are utilised. The reason

for this is that test cases based on the structure of generated code can be

non-intuitive and difficult to understand by humans. Also, as was noted

in [183], structure-based testing of automatically generated code is not

effective in detecting function block level defects in FBDs.

In order to apply structure-based testing, a metric is needed that can

be used to calculate the coverage of the tests. Many structure-based

test metrics have been defined for software code, see [114]. For exam-

ple, statement coverage, branch coverage, and path coverage are widely

used. Statement coverage in software is achieved when each line of the

program is executed in one of the executed test cases. Branch coverage is

achieved when each branch of the control flow (e.g., both the then-branch

and the else-branch of an if-then-else statement) is covered in the tests.

Path coverage is achieved when each execution path of the program is

explored in one of the test cases.

There are also coverage metrics based on data flow (see, e.g., [173]) that

focus on events related to the definition and use of variables and data ob-

116

Using model checking for structure-based testing of FBD models

jects. A definition of a variable is a statement that assigns a value to it,

and a use of a variable is a statement that uses a value of it. As an exam-

ple, the All-DU-paths (all define-use paths) coverage metric requires that

all definition-free sub-paths of the control flow graph from each definition

of a variable to every use of that definition are covered by a test.

Another quite rigorous test metric for software code is modified condi-

tion / decision coverage (MC/DC) [55]. MC/DC is commonly used in avion-

ics for measuring test coverage of safety-critical software. The use of the

metric is also recommended in the generic IEC 61508-3 standard [113].

MC/DC is based on the concepts of condition and decision. A condition

is a Boolean valued expression that cannot be broken down into simpler

Boolean expressions, e.g., x > 1. A decision is a Boolean expression that

consists of conditions and Boolean operators, e.g., (x > 1) ∨ (y = 1) ∧ z.

In order to achieve full MC/DC coverage, the test cases shall fulfil the

following requirements:

1. Each entry and exit point in the program is covered.

2. Each condition takes every possible outcome.

3. Each decision in the program takes every possible outcome.

4. Each condition in a decision has been shown to independently affect

the outcome of that decision.

The fourth item in the list is fulfilled when it is shown that changing the

value of a selected condition also changes the value of the whole decision

while all other condition values in that decision retain their value. Two

test cases that show such an effect are called an independence pair.

1 if (A && B) || C) then

2 {

3 // omitted code

4 }

5 else

6 {

7 // omitted code

8 }

Listing 8.1. Example pseudocode extract

For an example of MC/DC coverage, consider the pseudocode extract in

Listing 8.1 that consists of a single if-then-else structure. A set of test

cases fulfilling the requirements for MC/DC coverage is shown in Ta-

ble 8.1. The MC/DC requirement of covering each entry and exit point

117

Using model checking for structure-based testing of FBD models

Table 8.1. Test cases that achieve MC/DC coverage on the example pseudocode extract.
Values of A, B, C and the result of the decision ((A && B) || C) are shown.

test number A B C Decision

1 false false false false

2 false false true true

3 true true false true

4 false true false false

5 true false false false

(MC/DC requirement 1) is trivially covered in this example. In the table,

every condition (A, B, C) takes both possible outcomes (true and false) at

least once fulfilling MC/DC requirement 2. MC/DC requirement 3 is also

fulfilled because the decision ((A && B) || C) evaluates to true in tests

2 and 3, and false in tests 1, 4 and 5. Finally, MC/DC requirement 4 is

fulfilled by three independence pairs. Tests 1 and 2 form an independence

pair for condition C; tests 3 and 4 form an independence pair for condition

A; and tests 3 and 5 form an independence pair for condition B.

All of the above metrics are control-flow based meaning that they focus

on the order of instructions that are executed during a test sequence. They

are thus not directly applicable to FBDs. Even though the execution order

of function blocks can be explicitly defined there is no control flow similar

to software code in FBDs. Instead, all function blocks read inputs and

produce outputs on every clock cycle.

Hardware testing (see, e.g., [196]) uses many of the same coverage met-

rics that are used in the context of software for designing tests based

on the HDL (hardware description language) description of the system.

Hardware testing also uses the concept of circuit coverage which includes

both toggle coverage, and latch coverage. Toggle coverage means that

each input and output of the circuit have both values in the tests. Latch

coverage requires that the latches of the circuit are both on an off during

the tests. While these coverage metrics are more applicable to FBDs, they

are quite simple.

Fortunately, a few coverage metrics have been designed for the purpose

of measuring test coverage in FBDs. The ones developed by Jee et al.

[120, 118] are used in Publication V. Related similar test coverage metrics

used by other authors are discussed in Section 4.6. The metrics by Jee et

al. interpret an FBD as a data flow graph, and focus on different paths

from the inputs to the outputs of that graph. Figure 8.1 highlights using

118

Using model checking for structure-based testing of FBD models

INPUTS OUTPUTS

Process
input

Manual trip 2

CONTROL

Stepwise shutdown system

Manual trip 1
1oo2

input1

input2
output1

OR
PULSE

Reset
PULSE

NOT ANDinput1

input2
output1 input1

input2
output1

input1

output1

input1

time

reset

input1
time output1

output1

14 s
4 s

OR1

VOTE1

PULSE1

NOT1 AND1 PULSE2

Feedback

Figure 8.1. A single data path of a function block diagram

red colour one of the data paths of an example system used in Publication

V. The data path starts from an input called Process input , goes through

three function blocks (OR, AND, PULSE), and ends at an output called

CONTROL.

Jee et al. noticed that it is possible to write a propositional formula that

evaluates to true whenever a certain input of a function block has in-

fluence on the output. This formula is called a function block condition

(FBC)1. For example, consider the AND function block in Figure 8.1. It

has two inputs, called input1 and input2 , and a single output output1 . Ac-

cording to Jee et al. the condition under which input1 affects the value of

output1 is FBCAND(〈input1, output1〉) = ¬input1 ∨ input2 . This is because

input1 can force the value of the output if it is false, and it can make the

output value true only if input2 is also true.

When these conditions have been written for all input-output pairs of

every function block type, a similar condition can also be written for a

data path by conjoining the function block conditions within that path.

An input of a data path affects the output whenever all the function block

conditions within that path evaluate to true simultaneously.

In Figure 8.1, the input Process input affects the value of CONTROL

when the FBCs FBCOR(〈input1, output1〉), FBCAND(〈input1, output1〉), and

1Jee et al. make a distinction between a function condition (FC) and a function
block condition (FBC). In their terminology, FBC is used in the context of complex
function blocks with, e.g., internal memories. Otherwise, the term FC is used. In
this chapter the term function block condition (FBC) is used to refer to all input-
output condition formulas.

119

Using model checking for structure-based testing of FBD models

Function
block

conditions

Data
paths

Test
coverage
criterion

Function
block

diagram

Temporal logic
specifications

Model

Counter-
examples

Test
cases

Test
requirements

Model
checking

Figure 8.2. Test generation using model checking

FBCPULSE (〈input1, output1〉) are all true at the same time. A conjunction

of these formulas is called a data path condition (DPC).

Jee et al. have defined three different coverage metrics all based on ex-

amining the DPCs. The Basic Coverage criterion (BC) is met when each

DPC is fulfilled by one of the test cases. The input condition coverage

(ICC) criterion requires that for each Boolean input of a data path, there

is a test case in which: (1) the DPC is fulfilled and that input is false; (2)

the DPC is fulfilled and that input is true. The complex condition cover-

age (CCC) criterion requires that for each Boolean signal within a data

path, there is a test case in which: (1) the DPC is fulfilled and that signal

is false; (2) the DPC is fulfilled and that signal is true.

8.2 Test generation using model checking

The test generation technique developed in Publication V is based on the

test coverage metrics of Jee et al. These metrics are such that it can be

very difficult to manually come up with a test case in which the test re-

quirement is true. First of all, the test requirements can be quite lengthy.

Secondly, the FBD related to the test requirements can also be quite elab-

orate. It may be challenging to think of a way to drive the system into

some desired state if the system has multiple delays or a feedback loop.

In some cases it is in fact impossible for the FBD to fulfil a test require-

ment. Deducing this manually can be very hard.

The test generation technique relies on the classic idea of using model

checking to produce test cases: negating the test requirement. If it is

possible to fulfil a test requirement, model checking of the negated test

requirement will produce a concrete sequence in which this happens.

The workflow related to the technique is illustrated in Figure 8.2. The

examined FBD is first modelled using the methodology described in Chap-

ter 5. The test requirements related to the system are deduced by first

120

Using model checking for structure-based testing of FBD models

determining the data paths of the FBD, writing the function block condi-

tions, and then selecting the test coverage criterion applied on the system.

The test requirements can then be negated and written in temporal logic.

After model checking, the inputs and expected outputs of the test cases

are derived from the counterexamples. FBD modelling and the creation

of the function block conditions are manual work, and all the other work

phases depicted in Figure 8.2 are automatic.

Following the procedure depicted in Figure 8.2 it is possible to generate

a single test case for each test requirement. There may, however, be a lot

of test requirements, especially when the FBD is large. In order to reduce

the number of test cases, Publication V used a simple greedy algorithm to

create efficient test cases in which as many test requirements as possible

are fulfilled simultaneously. This algorithm makes repeated queries to

the model checker, asking whether a previously generated test case can

be modified so that an additional test requirement can also be fulfilled

by it. The source code of the implementation of the algorithm used in

Publication V is available online.2

Based on experience and the tests performed in Publication V the tech-

nique does scale to realistic-size nuclear domain safety systems. The test

generation times, however, can become quite high for certain types of

FBDs. An alternative more efficient test generation approach has later

been developed and is described in a research report, see [130].

8.3 Technical issues

There are several technical challenges related to the use of the test gen-

eration technique. First of all, the definition Jee et al. use for defining

function block conditions is not quite intuitive, and following the manner

in which MC/DC defines this input-output relation can be unambiguous.

In MC/DC an input of a function block is considered to affect an output

only when flipping of the input value also flips the output value while all

other inputs of the function block retain their value. One of the findings of

Publication V was that function block conditions written according to the

MC/DC ideology can be more intuitive and easier to verify automatically.

Another issue in need of further consideration is that in some cases an

input of a function block may not have an instant effect on the output.

Instead, the input may affect the output with a delay. As an example,

2https://github.com/JussiLahtinen/Dissertation

121

Using model checking for structure-based testing of FBD models

consider a DELAY function block that memorises its input and outputs

the value of that input on the previous time point. The input of a DELAY

function block at time point n influences the output at time point n+1. In

order to take this kind of behaviour into account, the function block con-

ditions of such input-output pairs would have to be written as a function

of current as well as previous values of the inputs. Delayed dependencies

also influence the definition of a data path. A delayed dependency divides

the data path into two parts that occur at different time points.

Feedback loops pose a problem in the technique since they induce infi-

nite paths from inputs to outputs. In Publication V this problem is solved

by disconnecting the loop, introducing a new input variable that replaces

the feedback signal in the loop, and calculating the data paths based on

this alternative loop-free design. A design that has a feedback loop in-

duces additional data path fragments to be considered that start from the

beginning of the feedback loop and end at an output of the design. The

feedback loops are disconnected at such a point that each intermediate

signal of the design is present in one of the generated data paths. Discon-

necting the feedback loops does not impact the correctness of the eventual

test cases, since the tests are generated using the original model in which

the feedback loops are still intact.

Analogue variables are also problematic because the coverage metrics

assume Boolean valued signals. Function blocks that perform calcula-

tions based on analogue variables are problematic because it can difficult

to decide when an analogue input affects the output value of that func-

tion block. In Publication V the function block conditions of such function

blocks were simply defined to have the value True because in some sense

the input always affects the output in such analogue calculations.

8.4 Alternative implementation

As a continuation to Publication V, an alternative version of the test gen-

eration technique was later developed and documented in a research re-

port [130]. This version of the technique incorporates all test require-

ments into the model as additional Boolean valued macro formulas. This

makes it easy to determine whether other test requirements (in addition

to the currently examined one) are also fulfilled by a counterexample.

This kind of an approach is more efficient because it reduces the num-

ber of iterations needed to generate the whole test set. This alternative

122

Using model checking for structure-based testing of FBD models

version of the technique also defines the function block conditions in a

more formal manner based on the ideology of MC/DC. The definition also

supports delayed input-output dependencies enabling the methodology to

be used together with a wider range of systems. Issues with analogue

variables are dealt with by focusing only on the Boolean path fragments

of the system.

The research report related to the alternative version analyses the fault

detection capability of the generated test sets using mutation analysis.

Two sets of function block diagrams are evaluated in the experiment: (1) a

set of fictitious FBDs equivalent to the ones used in Publication V; and (2)

a set of vendor-specific real-world FBDs. The results of the research pa-

per suggest that the test generation approach is scalable to most nuclear

domain safety systems. On the larger vendor-specific FBDs, however, test

generation times can become excessively long. The average fault detec-

tion capability of the generated tests ranged from 90 % to 95 % in the

mutation analysis experiment.

8.5 Limitations of the technique and threats to validity

One major threat to internal validity has to do with all coverage metrics

in general. Namely, there exists no well-defined characterisation of soft-

ware design errors in general making error models difficult to come up

with. Consequently, there is only an intuitive connection between a given

coverage metric and an error. In other words, the metrics have no formal

meaning and there is no direct correlation between classes of bugs and

coverage metrics.

Threats to internal validity might also come from errors in the imple-

mentation code, the model-checking model, and the function block con-

ditions that are manually composed. To reduce possible errors in these

parts, the implementation of the test generation algorithm was repeat-

edly tested on many FBDs, and intermediate products such as data paths

and test requirements were manually reviewed.

Another fundamental limitation of the technique is related to the test

oracle problem, i.e., the problem of distinguishing between desired and

undesired behaviour given an input for that system. In the test gener-

ation technique a set of test cases is created based on a model of that

system’s design. The test sequences, however, may represent undesired

functionality of the system even if the test sequence is according to sys-

123

Using model checking for structure-based testing of FBD models

tem specification. This undesired behaviour may arise from design errors,

errors in modelling, or omissions in the requirement specification. Ideally,

the test generation process would be coupled with a computer-based test

oracle that would ensure that the tests always correspond to desired be-

haviour. In practice, creating such a test oracle for an arbitrary system

can be very challenging and time-consuming. Using a human test oracle

may be a more feasible approach.

The test generation algorithm of Publication V is intended for creating

a small number of tests that fulfil multiple test requirements simultane-

ously. A threat to construct validity is that such small efficient test cases

may be undesirable if there is need to, e.g., identify which test require-

ment is the one leading to the detection of an error in the system. It can

also be quite difficult to determine the correctness of the outputs in elab-

orate test cases where multiple test requirements are fulfilled at once.

A threat to external validity is whether the methodology can be used

for test design in the context of real-world systems. The limitations dis-

cussed in Section 5.9 apply here as well. In addition, based on the results

of [130] it seems that test generation for larger FBDs can become quite

infeasible in practice when the number of test requirements is very high.

This problem, however, could be alleviated by dividing such systems into

several smaller parts that are separately tested.

The technique as described in Publication V is applicable only to sys-

tems where inputs of function blocks always instantaneously affect out-

puts. The problems related to delayed input-output dependencies were

handled in another paper [130] by an extension to the methodology. This

extension relies on the fact that the system is cyclically run on constant

length intervals so that the system behaviour corresponds to the discrete

time model-checking model.

124

9. Conclusion

Model checking related research in the Finnish nuclear domain began

in 2007 as a collaboration between Helsinki University of Technology

(TKK) (currently known as Aalto university) and VTT. The author of this

dissertation started to work on his Master’s thesis at TKK on a related

subject [128] in the same year, and was hired as a research scientist at

VTT after that.

Since 2007, the topic has been considered important in the SAFIR re-

search programmes (The Finnish Research Programme on Nuclear Power

Plant Safety). During the years 2007-2010 the aim of the MODSAFE

(Model-based safety evaluation of automation systems) project [198] was

to demonstrate the usefulness of the model-checking technique and de-

velop basic methodology for modelling systems. Later, in the SARANA

(Safety evaluation and reliability analysis of nuclear automation) project

(2011-2014) [31] the focus shifted to further extending the scope of the

method, and increasing its scalability. One of the objectives of the cur-

rently on-going SAUNA (Integrated safety assessment and justification of

nuclear power plant automation) project is the integration of model check-

ing with other techniques. This dissertation is strongly linked to research

done in the SAFIR programmes, and these research topics have developed

into the research questions of this dissertation.

9.1 Answers to the research questions

This dissertation tackles the question of how to utilise model checking in

the verification of large nuclear domain safety systems. This general re-

search topic has been divided into four more specific research questions.

Answers to these questions can be found in preceding chapters, and they

are summarised in what follows.

125

Conclusion

RQ1: How can modelling and abstraction techniques be used to

enable the model checking of larger nuclear domain automation

systems?

Publication I developed generic methodology for modelling safety sys-

tems, and Chapter 5 described a more specific technique for modelling

system designs described as FBDs. This modelling technique is based on

abstracting away from the PLC scan cycle, and utilising a free environ-

ment model. Secondly, the system is partitioned into interconnected mod-

ules. Each module represents a part of the system design, and consists of

a collection of function block instances that are connected together. This

modular hierarchy enables simple interface modules developed in Publi-

cation II to be used for abstraction. The interface modules replace a single

module with an over-approximating abstraction of it. The interface mod-

ule abstraction simplifies the state graph of the system by releasing model

constraints, and thus allows the state space to be more compactly repre-

sented, for example, as a BDD. The benefit of this approach is that this

kind of coarse high-level abstraction is simple and easily understandable.

From the verification point of view the main benefit is that such abstrac-

tions retain the truth value of universal properties, making system verifi-

cation more straight-forward.

RQ2: How can a suitable abstraction level of the system model

be found automatically?

Chapter 6 represents a description of an iterative abstraction refine-

ment algorithm developed in Publication III for the purpose of finding an

abstraction level suitable for verification. The technique is based on using

interface modules for abstraction, and on the analysis of the module-level

dependency graph of the system. The fundamental idea of the technique

is that typically only a small part of the system is needed for the veri-

fication of some specific property. The algorithm starts by trying to find

a proof locally using only modules associated with variables used in the

property. If this fails the scope of the verification is extended to new mod-

ules based on the dependencies between the modules.

RQ3: How can plant-level models be created that cover both the

126

Conclusion

detailed operational logic of multiple automation systems and the

hardware failures related to these systems?

Chapter 7 describes an extension to the FBD modelling methodology

that addresses hardware failure modelling. The extension was developed

in Publication IV. The principal idea of this work is to use link modules

to encapsulate connections between measurements, computers and actu-

ators. The methodology allows large plant-level models to be created, in

which fault-tolerance properties can be analysed. However, verification of

such large plant models is very challenging in practice due to the sheer

size of the model. The modelling technique adopted hardware failure re-

lated concepts and terminology from PRA methodology, which makes in-

tegration with the two approaches easier. Chapter 7 proposes a concept-

level idea of coupling model checking with PRA. This approach uses PRA

results to focus the model-checking analysis to only the most critical fail-

ures, in an attempt to reduce the complexity of verification.

RQ4: Can model checking be used to support structure-based

test design of function block diagrams?

Publication V presented the development of a technique for automati-

cally generating a set of test cases that have high coverage according to

structure-based criteria. Chapter 8 describes the technique on a general

level. The technique first calculates a set of test requirements the test

cases should fulfil, and then uses model checking to create concrete coun-

terexamples representing test cases in which these test requirements are

efficiently fulfilled. The developed technique can be of practical value in

test design when the examined system is complicated enough to make

manual test design infeasible.

9.2 Theoretical implications

One theoretical implication of the work is that the scalability of model

checking has been increased for analysing large modular systems. The

tests performed on the iterative abstraction refinement algorithm demon-

strate that it is often possible to find a proof of a system property locally,

and that finding such a local abstraction and extracting a proof from

it can be faster than analysing the system as a whole. The systematic

127

Conclusion

methodology for modelling hardware failures is another important result

of this work that extends the scope of model checking to fault-tolerance

analyses. The sharing of concepts and terminology with PRA for mod-

elling hardware failures also allows a multi-faceted modelling approach

in which models used for either model checking or PRA analysis are gen-

erated from a single common plant model. Both, the improved scalabil-

ity and the extended applicability of model checking can be seen as part

of a continuum towards larger plant-level models, and towards new all-

encompassing safety analysis approaches. Further integration of model

checking and reliability methods may be a useful step in this direction.

9.3 Practical implications

Model checking has been demonstrated to be a valuable tool for detecting

design errors. Due to this, model checking has already become a part of

the software verification processes used in the Finnish nuclear industry.

The Finnish power company Fortum used model checking in the Loviisa

NPP automation renewal project (LARA) to verify the correct functional-

ity of application I&C software [167]. In the Finnish Olkiluoto 3 project,

VTT Technical Research Centre of Finland Ltd used model checking in the

analysis of two safety-critical systems: the Protection System (PS) and

the Priority Actuation and Control System (PACS). Due to non-disclosure

agreements, further information on this work is not available. Some of

the developed techniques, i.e., the PLC scan cycle abstraction technique,

a free environment model, and the utilisation of interface modules for ab-

straction were utilised in these projects, and have thus also been validated

in practice.

9.4 Reliability and validity

The threats to validity and the limitations of the developed methods and

algorithms have been extensively covered in the preceding chapters. On a

general level, one of the threats to validity is whether systems are being

modelled using a suitable abstraction level. This dissertation focuses on

the verification of FBDs that are used for designing control application

software in nuclear power plants. Any other software such as platform

software has not been modelled and is out of scope of this dissertation.

128

Conclusion

Also, verification of the equivalence between the design and the final sys-

tem implementation is not included in this work. Furthermore, any asyn-

chronous behaviour due to, e.g., clock drift is out of the scope of this work.

Throughout the work it is assumed that distributed systems operate syn-

chronously, and that the timing of the systems has been separately veri-

fied to be correct. The limitations of the modelling methodology for FBDs

and threats to its external validity was discussed in more detail in Sec-

tion 5.9. Threats to validity related to the iterative abstraction refinement

algorithm was discussed in Section 6.4. Limitations of the hardware mod-

elling methodology was addressed in Section 7.2.1, and the issues related

to structure-based testing were covered in Section 8.5.

9.5 Recommendations for future research

Verification of system designs could benefit significantly from machine

readable models and automatic translations. Currently the modelling

phase consists of a lot of manual work even though tools that facilitate

modelling based on a graphical user interface are already being used, see,

e.g., [165]. Compiling the model-checking model from the design of the

system automatically could further diminish this workload, while simul-

taneously reducing the effects of human errors.

Another work phase that currently still requires extensive human at-

tention is property formalisation. Tools based on, e.g., the use of temporal

logic templates could speed up this work phase, and help the modeller

and the engineers developing the requirement specification of the system

better understand the meaning of the formalised properties.

A potential useful direction for future research is the development of

over-approximating abstractions for function blocks that involve time de-

lays. System designs where long time delays occur may often be modelled

by coarsening the time discretisation of the model by lengthening the scan

cycle of the model or by shortening the length of the delays. These kind

of changes to the model are potentially dangerous, as they disregards cer-

tain behaviour existing in the real system. An alternative approach to

this could be to develop over-approximations of the function blocks that

involve time delays, and develop a verification strategy for using these

kinds of abstractions, leading to a more extensive verification result.

The coupled use of PRA and model checking is also left for future work.

It is recognised that the methods are somewhat related, and an integrated

129

Conclusion

approach using both methods could offer a more extensive safety analysis

of a plant-level model with results that cannot be obtained in practice by

using the methods individually. Applying an iterative approach similar

to the one developed in this dissertation to the analysis of these plant-

level models is also a potential research direction. Additionally, as the

same data can be used as input for both model checking and PRA, it could

be beneficial to utilise a common plant-model expressed using a domain

specific modelling language for both analysis methods, accompanied with

tools capable of automatically generating both the PRA model and the

model used for model checking.

Some important aspects of plant operation such as asynchronicity, hu-

man operator actions and software code are also left for future research.

In this dissertation it is assumed that the analysed system operates as a

single synchronous entity. In reality, nuclear safety systems are typically

distributed among several computers that use different clocks. Asyn-

chronicity rising from, e.g., data transmission delays or processor clock

drift in a large distributed control system also require systematic analysis

as they may cause severe problems in these systems. Human-machine in-

terfaces have previously been studied using model checking, see, e.g., [182,

36]. Similar analysis could be used for finding scenarios that lead to

poor situational awareness of operators, and for analysing the correct-

ness of the procedural guides that the operators use. This dissertation

has focused primarily on the correctness of the system design expressed

as FBDs. The final implementation of the system as software code should

also be formally analysed. Finally, only application software has been ad-

dressed in this work. The correctness of platform level software employed

in the I&C systems should also be formally analysed.

130

Appendix A: Model code for a set of
commonly used IEC 61131-3 function
blocks

In this appendix, the model code for a small set of often used function

blocks is given in the modelling language of NuSMV. The modelled func-

tion blocks are: AND, OR, NOT, SR, RS, TP, TON, and TOF. If possible,

the conventions of the IEC 61131-3 standard are followed. If a function

block has a single input it is named _IN in the models since IN is a re-

served word in the NuSMV modelling language. Similarly, the input vari-

able name S is a reserved word in the NuSMV modelling language, and

the variable name _S is used instead. If a function block has several in-

puts they are either named IN1, IN2, etc., unless differing input names

are specified in IEC 61131-3. By default the output of a function block is

named OUT, but the standard also uses other output variable names for

some of the function blocks.

A.1 AND

The AND function block calculates the Boolean AND based on its two

inputs: IN1 and IN2. The result is set as the value of OUT. The corre-

sponding NuSMV module is in Listing A.1.

1 MODULE AND(IN1, IN2)

2 VAR

3 DEFINE

4 OUT := IN1 & IN2;

5 ASSIGN

Listing A.1. NuSMV model code for the AND function block

131

Appendix A: Model code for a set of commonly used IEC 61131-3 function blocks

A.2 OR

The OR function block calculates the Boolean OR based on its two inputs:

IN1 and IN2. The result is set as the value of OUT. The corresponding

NuSMV module is in Listing A.2.

1 MODULE OR(IN1, IN2)

2 VAR

3 DEFINE

4 OUT := IN1 | IN2;

5 ASSIGN

Listing A.2. NuSMV model code for the OR function block

A.3 NOT

The NOT function block calculates the Boolean NOT based on its input

_IN. The result is set as the value of OUT. The corresponding NuSMV

module is in Listing A.3.

1 MODULE NOT(_IN)

2 VAR

3 DEFINE

4 OUT := ! _IN;

5 ASSIGN

Listing A.3. NuSMV model code for the NOT function block

A.4 SR

1 MODULE SR(S1, R)

2 VAR

3 prev_Q1 : boolean;

4 DEFINE

5 Q1 := (prev_Q1 & ! R) | S1;

6 ASSIGN

7 init(prev_Q1) := FALSE;

8 next(prev_Q1) := Q1;

Listing A.4. NuSMV model code for the set dominant bistable function block SR

The set dominant bistable function block (also known as a flip-flop mem-

ory) has two Boolean inputs: S1, and R, and a single Boolean internal

variable prev_Q1. The S1 input sets prev_Q1 to true and the R input

132

Appendix A: Model code for a set of commonly used IEC 61131-3 function blocks

resets it. S1 is prioritised over R. If both inputs are false prev_Q1 retains

its value. The output of the flip-flop (Q1) is true whenever S1 is true, or

when prev_Q1 is true and R is false. The initial value of prev_Q1 is set

as false. The NuSMV code is in Listing A.4.

A.5 RS

1 MODULE RS(_S, R1)

2 VAR

3 prev_Q1 : boolean;

4 DEFINE

5 Q1 := (prev_Q1 | _S) & ! R1;

6 ASSIGN

7 init(prev_Q1) := FALSE;

8 next(prev_Q1) := Q1;

Listing A.5. NuSMV model code for the reset dominant bistable function block RS

The reset dominant bistable function block is similar to the set dominant

bistable function block except that the resetting input is prioritised over

the set input. The function block has two Boolean inputs: _S, and R1, and

a single Boolean internal variable prev_Q1. The _S input sets prev_Q1

to true and the R1 input resets it. If both inputs are false prev_Q1 retains

its value. The output of the flip-flop (Q1) is true whenever R1 is false and

either _S or prev_Q1 are true. The initial value of prev_Q1 is set as false.

The NuSMV code is in Listing A.5.

A.6 TP

The time pulse (or TP) function block has two inputs _IN and PT. The PT

input is the parameter for the time delay (as a number of scan cycles). TP

has two outputs Q and ET. The Q output is set the _IN output turns from

false to true, and the output is set for the time period indicated by PT.

After the pulse a new rising edge of _IN is needed in order to start a new

pulse. Rising edges of _IN are ignored if a pulse is already being output.

The ET output indicates the time that has elapsed from the beginning

of a pulse. Example timing diagram illustrating the behaviour of TP is

presented in Figure A.1.

The NuSMV code for the TP function block is in Listing A.6. The im-

plementation uses a variable prev_IN to track the previous value of _IN,

133

Appendix A: Model code for a set of commonly used IEC 61131-3 function blocks

and a counter variable clock. The upper value of clock has to be manu-

ally adjusted according to the modelled implementation. In this example

the value has been set to 100. Initially clock is set to 0. The clock

counter is started when a rising edge is detected in the _IN input, and

the pulse is currently off (clock is 0). The counter is increased on every

time step until the value PT is reached. After this clock can be reset if

the _IN input is false. The ET output follows the value of clock except

in one case: when _IN and the output Q are both false ET is set to 0. This

exception is because it takes one time step to update the value of clock

when it is reset. The exception is needed in order to show the effect of the

reset immediately. The primary output Q is set when either a new rising

edge is detected in the input, or the clock is running. Otherwise Q is false.

1 MODULE TP(_IN, PT)

2 VAR

3 prev_IN : boolean;

4 clock : 0..100;

5 DEFINE

6 Q := case

7 clock = 0 & ! prev_IN & _IN : TRUE;

8 clock > 0 & clock < PT : TRUE;

9 TRUE : FALSE;

10 esac;

11 ET := case

12 ! Q & ! _IN : 0;

13 TRUE : clock;

14 esac;

15 ASSIGN

16 init(clock) := 0;

17 next(clock) := case

18 clock = 0 & ! prev_IN & _IN : 1;

19 clock > 0 & clock < PT : clock +1;

20 clock = PT & _IN : PT;

21 clock = PT & ! _IN : 0;

22 TRUE : 0;

23 esac;

24

25 init(prev_IN) := FALSE;

26 next(prev_IN) := _IN;

27

Listing A.6. NuSMV model code for the TP function block (time pulse)

134

Appendix A: Model code for a set of commonly used IEC 61131-3 function blocks

_IN

Q

ET

t1 t2 t3

t1 t1+PT t3 t3+PT

t1 t2 t3 t3+PT

PT

Figure A.1. Example timing behaviour of the TP function block

A.7 TON

The timer ON (or TON) function block has the same inputs and outputs

as TP. The output Q of the TON timer is set whenever _IN has been con-

tinuously true for the time period indicated by PT. Whenever the _IN is

false the output Q is also false, and the elapsed time counter ET is reset.

Example timing diagram illustrating the behaviour of TON is presented

in Figure A.2.

1 MODULE TON(_IN, PT)

2 VAR

3 clock : 0..100;

4 DEFINE

5 ET := case

6 ! _IN : 0;

7 TRUE : clock;

8 esac;

9

10 Q := case

11 clock = PT & _IN : TRUE;

12 TRUE : FALSE;

13 esac;

14 ASSIGN

15 init(clock) := 0;

16 next(clock) := case

17 _IN & clock < PT : clock + 1;

18 _IN & clock = PT : PT;

19 TRUE : 0;

20 esac;

Listing A.7. NuSMV model code for the TON function block (timer ON)

135

Appendix A: Model code for a set of commonly used IEC 61131-3 function blocks

_IN

Q

ET

t1 t2 t3

t2t1+PT

t1 t2 t3 t4

PT

t4

Figure A.2. Example timing behaviour of the TON function block

The NuSMV code for the TON function block is in Listing A.7. The

implementation uses a counter variable clock. The upper value of clock

has to be manually adjusted according to the modelled implementation.

In this example the value has been set to 100. Initially clock is set to

0. The counter is increased by 1 whenever _IN is true. If the limit PT

is reached, the counter will remain at that value. The counter is reset

whenever _IN is false. The output Q is set iff clock is at value PT and

_IN is true. The ET output follows the value of clock. However, if _IN is

false ET is immediately set to 0 so that the reset delay that occurs in the

counter is ignored.

A.8 TOF

The timer OFF (or TOF) function block has the same inputs and outputs

as TP and TON. The output Q of the TOF timer is set whenever _IN is set.

When _IN experiences a falling edge, Q remains set for the time period

indicated by PT. If _IN is again set during that time period, the count

to PT is restarted. Example timing diagram illustrating the behaviour of

TOF is presented in Figure A.3.

The NuSMV code for the TOF function block is in Listing A.8. The im-

plementation uses a variable prev_IN to track the previous value of _IN,

and a counter variable clock. The upper value of clock has to be manu-

ally adjusted according to the modelled implementation. In this example

the value has been set to 100. Initially clock is set to 0. The counter

is reset whenever _IN is true. The counter is started if the _IN has been

true at the previous time point, and is now false. If the limit PT is reached,

the counter will remain at that value. The output Q is set whenever _IN is

136

Appendix A: Model code for a set of commonly used IEC 61131-3 function blocks

_IN

Q

ET

t1 t2 t3

T2+PTt1

t2 t3t4

PT

t4 t5 t6

t3 T6+PT

t5 t6

Figure A.3. Example timing behaviour of the TOF function block

true, or the counter is running. The ET output follows the value of clock.

However, if _IN is false ET is immediately set to 0 so that the reset delay

that occurs in the counter is ignored.

1 MODULE TOF(_IN, PT)

2 VAR

3 clock : 0..100;

4 prev_IN : boolean;

5 DEFINE

6 ET := case

7 _IN : 0;

8 TRUE : clock;

9 esac;

10

11 Q := case

12 _IN : TRUE;

13 ! _IN & prev_IN & PT > 0 : TRUE;

14 clock > 0 & clock < PT : TRUE;

15 TRUE : FALSE;

16 esac;

17

18 ASSIGN

19 init(clock) := 0;

20 next(clock) := case

21 _IN : 0;

22 ! _IN & prev_IN : 1;

23 clock > 0 & clock < PT : clock + 1;

24 TRUE : clock;

25 esac;

26 init(prev_IN) := FALSE;

27 next(prev_IN) := _IN;

Listing A.8. NuSMV model code for the TOF function block (timer OFF)

137

Bibliography

[1] Parosh Aziz Abdulla, Johann Deneux, Gunnar Stålmarck, Herman Ågren,
and Ove Åkerlund. Designing safe, reliable systems using Scade. In Lever-
aging Applications of Formal Methods, pages 115–129. Springer, 2006.

[2] Nina Amla and Kenneth L. McMillan. Combining abstraction refinement
and SAT-based model checking. In Orna Grumberg and Michael Huth,
editors, Tools and Algorithms for the Construction and Analysis of Sys-
tems, volume 4424 of Lecture Notes in Computer Science, pages 405–419.
Springer Berlin / Heidelberg, 2007.

[3] Paul E. Ammann, Paul E. Black, and William Majurski. Using model
checking to generate tests from specifications. In Formal Engineering
Methods, 1998. Proceedings. Second International Conference on, pages
46–54, Dec 1998.

[4] AREVA. Software Program Manual for TELEPERM XSTM Safety Systems.
Topical report. ANP-10272. Available at http://pbadupws.nrc.gov/

docs/ML0636/ML063610100.pdf, 2006. [Last accessed: Jan/13/2016].

[5] AREVA. Instrumentation and Control – TELEPERM XS System
Overview. Available at http://www.areva.com/mediatheque/

liblocal/docs/activites/reacteurs-services/reacteurs/

pdf-teleperm-xs-feat.pdf, 2008. [Last accessed: Jan/13/2016].

[6] André Arnold, Gérald Point, Alain Griffault, and Antoine Rauzy. The
AltaRica formalism for describing concurrent systems. Fundam. Inf.,
40(2,3):109–124, August 1999.

[7] Eugene Asarin, Oded Maler, and Amir Pnueli. On discretization of de-
lays in timed automata and digital circuits. In CONCUR’98 Concurrency
Theory, pages 470–484. Springer, 1998.

[8] Stefan Authén and Jan-Erik Holmberg. Reliability analysis of digital sys-
tems in a probabilistic risk analysis for nuclear power plants. Nuclear
Engineering and Technology, 44(5):471–482, 2012.

[9] Stefan Authén, Jan-Erik Holmberg, Tero Tyrväinen, and Lisa Zamani.
Guidelines for reliability analysis of digital systems in PSA context - Fi-
nal report. NKS Report NKS-330, Nordic Nuclear Safety Research (NKS),
2015.

[10] Felice Balarin and Alberto L. Sangiovanni-Vincentelli. An iterative ap-
proach to language containment. In Proceedings of the 5th International

139

http://pbadupws.nrc.gov/
http://www.areva.com/mediatheque/

Bibliography

Conference on Computer Aided Verification, CAV ’93, pages 29–40, London,
UK, UK, 1993. Springer-Verlag.

[11] Thomas Ball, Byron Cook, Vladimir Levin, and Sriram K. Rajamani.
SLAM and static driver verifier: Technology transfer of formal methods
inside microsoft. In Eerke A. Boiten, John Derrick, and Graeme Smith,
editors, IFM, volume 2999 of Lecture Notes in Computer Science, pages
1–20. Springer, 2004.

[12] Thomas Ball, Vladimir Levin, and Sriram K. Rajamani. A decade of soft-
ware model checking with SLAM. Communications of the ACM, 54(7):68–
76, 2011.

[13] Jiří Barnat. Distributed memory LTL model checking. PhD thesis, PhD
thesis, Faculty of Informatics, Masaryk University Brno, 2004.

[14] Jiří Barnat, Luboš Brim, Vojtěch Havel, Jan Havlíček, Jan Kriho, Mi-
lan Lenčo, Petr Ročkai, Vladimír Štill, and Jiří Weiser. DiVinE 3.0 –
An Explicit-State Model Checker for Multithreaded C & C++ Programs.
In Computer Aided Verification (CAV 2013), volume 8044 of LNCS, pages
863–868. Springer, 2013.

[15] Henning Basold, Henning Günther, Michaela Huhn, and Stefan Milius.
An open alternative for SMT-based verification of Scade models. In Formal
Methods for Industrial Critical Systems, pages 124–139. Springer, 2014.

[16] Tim Bedford and Roger Cooke. Probabilistic risk analysis: foundations
and methods, 2001.

[17] Ilan Beer, Shoham Ben-David, Cindy Eisner, and Yoav Rodeh. Efficient de-
tection of vacuity in temporal model checking. Formal Methods in System
Design, 18(2):141–163, 2001.

[18] Gerd Behrmann, Kim Guldstrand Larsen, Henrik Reif Andersen, Henrik
Hulgaard, and Jørn Lind-Nielsen. Verification of hierarchical state/event
systems using reusability and compositionality. In Fifth International Con-
ference on Tools and Algorithms for the Construction and Analysis of Sys-
tems (TACAS ’99), pages 163–177. Springer, 1999.

[19] Shoham Ben-David, Cindy Eisner, Daniel Geist, and Yaron Wolfsthal.
Model checking at IBM. Formal Methods in System Design, 22(2):101–108,
2003.

[20] Sergey Berezin, Sérgio Campos, and Edmund M. Clarke. Compositional
reasoning in model checking. In Willem-Paul de Roever, Hans Langmaack,
and Amir Pnueli, editors, Compositionality: The Significant Difference,
volume 1536 of Lecture Notes in Computer Science, pages 81–102. Springer
Berlin Heidelberg, 1998.

[21] Cinzia Bernardeschi, Alessandro Fantechi, and Stefania Gnesi. Model
checking fault tolerant systems. Softw. Test., Verif. Reliab., 12(4):251–275,
2002.

[22] Gérard Berry. SCADE: Synchronous design and validation of embedded
control software. In Next Generation Design and Verification Methodolo-
gies for Distributed Embedded Control Systems, pages 19–33. Springer,
2007.

140

Bibliography

[23] Pierre Bieber, Charles Castel, and Christel Seguin. Combination of fault
tree analysis and model checking for safety assessment of complex system.
In In Proc. 4th European Dependable Computing Conference, volume 2485
of LNCS, page page. Springer-Verlag, 2002.

[24] Armin Biere, Cyrille Artho, and Viktor Schuppan. Liveness checking
as safety checking. Electronic Notes in Theoretical Computer Science,
66(2):160–177, 2002.

[25] Armin Biere, Alessandro Cimatti, Edmund M. Clarke, and Yunshan Zhu.
Symbolic model checking without BDDs. In Rance Cleaveland, editor,
TACAS, volume 1579 of Lecture Notes in Computer Science, pages 193–
207. Springer, 1999.

[26] Armin Biere and Koen Claessen. Hardware model checking competition.
In Hardware Verification Workshop, 2010.

[27] Armin Biere, Keijo Heljanko, Tommi A. Junttila, Timo Latvala, and Viktor
Schuppan. Linear encodings of bounded LTL model checking. Logical
Methods in Computer Science, 2(5:5):1–64, 2006.

[28] Armin Biere, Keijo Heljanko, and Siert Wieringa. AIGER 1.9 and beyond.
Available at http://fmv.jku.at/hwmcc11/beyond1.pdf, 2011. [Last
accessed: Jan/13/2016].

[29] Armin Biere, Marijn Heule, and Hans van Maaren. Handbook of satisfia-
bility, volume 185. IOS press, 2009.

[30] Kim Björkman, Juho Frits, Janne Valkonen, Jussi Lahtinen, Keijo Hel-
janko, Ilkka Niemelä, and Jari J Hämäläinen. Verification of safety logic
designs by model checking. In Sixth American Nuclear Society Interna-
tional Topical Meeting on Nuclear Plant Instrumentation, Control, and
Human-Machine Interface Technologies, (NPIC & HMIT 2009), pages 5–
9. American Nuclear Society (ANS), 2009.

[31] Kim Björkman, Keijo Heljanko, Kari Kähkönen, Jussi Lahtinen, Antti
Pakonen, Markus Porthin, Tero Tyrväinen, and Janne Valkonen. Safety
evaluation and reliability analysis of nuclear automation (SARANA). In
Jari Hämäläinen and Vesa Suolanen, editors, SAFIR2014 – The Finnish
Research Programme on Nuclear Power Plant Safety 2011–2014 Final Re-
port, (VTT Technology 213), chapter 7, pages 103–112. VTT Technical Re-
search Centre of Finland, Espoo, Finland, 2015.

[32] Kim Björkman, Jussi Lahtinen, Tero Tyrväinen, and Jan-Erik Holmberg.
Coupling model checking and PRA for safety analysis of digital I&C sys-
tems. In The International Topical Meeting on Probabilistic Safety Assess-
ment and Analysis (PSA 2015), pages 384–392. American Nuclear Society
(ANS), 2015.

[33] Kim Björkman, Janne Valkonen, and Jukka Ranta. Verification of auto-
mated changeover switching unit by model checking. In Proceedings of
the seventh international topical meeting on nuclear plant instrumenta-
tion, control and human–machine interface technologies (NPIC & HMIT
2010). Las Vegas (NV), pages 1719–28, 2010.

141

http://fmv.jku.at/hwmcc11/beyond1.pdf

Bibliography

[34] Nikolaj Bjørner, Anca Browne, Eddie Chang, Michael Colón, Arjun Kapur,
Zohar Manna, Henny B. Sipma, and Tomás E. Uribe. STeP: Deductive-
algorithmic verification of reactive and real-time systems. In Computer
Aided Verification, pages 415–418. Springer, 1996.

[35] Roderick Bloem, Harold N Gabow, and Fabio Somenzi. An algorithm for
strongly connected component analysis in n log n symbolic steps. In Formal
Methods in Computer-Aided Design, pages 56–73. Springer, 2000.

[36] Matthew L. Bolton, Radu Siminiceanu, Ellen J. Bass, et al. A systematic
approach to model checking human–automation interaction using task an-
alytic models. Systems, Man and Cybernetics, Part A: Systems and Hu-
mans, IEEE Transactions on, 41(5):961–976, 2011.

[37] Marco Bozzano, Alessandro Cimatti, Anthony Fernandes Pires, David H.
Jones, Greg Kimberly, Tyler Petri, Richard Robinson, and Stefano Tonetta.
Formal design and safety analysis of air6110 wheel brake system. In Com-
puter Aided Verification, pages 518–535. Springer, 2015.

[38] Marco Bozzano and Adolfo Villafiorita. The FSAP/NuSMV-SA safety anal-
ysis platform. International Journal on Software Tools for Technology
Transfer, 9(1):5–24, 2007.

[39] Aaron R. Bradley. SAT-based model checking without unrolling. In Ran-
jit Jhala and David A. Schmidt, editors, VMCAI, volume 6538 of Lecture
Notes in Computer Science, pages 70–87. Springer, 2011.

[40] Aaron R. Bradley, Fabio Somenzi, Zyad Hassan, and Yan Zhang. An incre-
mental approach to model checking progress properties. In Formal Meth-
ods in Computer-Aided Design (FMCAD), 2011, pages 144–153. IEEE,
2011.

[41] Ed Brinksma and Angelika Mader. Verification and optimization of a PLC
control schedule. In SPIN Model checking and software verification, pages
73–92. Springer, 2000.

[42] Glenn Bruns and Ian Sutherland. Model checking and fault tolerance. In
Michael Johnson, editor, Algebraic Methodology and Software Technology,
volume 1349 of Lecture Notes in Computer Science, pages 45–59. Springer
Berlin Heidelberg, 1997.

[43] Randal E. Bryant. Graph-based algorithms for boolean function manipu-
lation. IEEE Trans. Computers, 35(8):677–691, 1986.

[44] Jerry R. Burch, Edmund M. Clarke, Kenneth L. McMillan, David L. Dill,
and Lain-Jinn Hwang. Symbolic model checking: 10 20 states and beyond.
Information and Computation, 98(2):142–170, 1992.

[45] Jerry R. Burch, D.E. Long, and Edmund M. Clarke. Symbolic model check-
ing with partitioned transition relations. Technical Report CMU-CS-91-
195, Carnegie-Mellon University. Pittsburgh (PA US), 1991. Winner of the
Sidney Michaelson best paper award at VLSI 91, Edinburgh, Scotland.

[46] John Callahan, Francis Schneider, Steve Easterbrook, et al. Automated
software testing using model-checking. In Proceedings 1996 SPIN work-
shop, volume 353. Citeseer, 1996.

142

Bibliography

[47] Juan Campos, Rui Abreu, Gordon Fraser, and Marcelo d’Amorim. Entropy-
based test generation for improved fault localization. In Automated Soft-
ware Engineering (ASE), 2013 IEEE/ACM 28th International Conference
on, pages 257–267, Nov 2013.

[48] Géraud Canet, Sandrine Couffin, Jean-Jacques Lesage, Antoine Petit, and
Philippe Schnoebelen. Towards the automatic verification of PLC pro-
grams written in instruction list. In Systems, Man, and Cybernetics, 2000
IEEE International Conference on, volume 4, pages 2449–2454. IEEE,
2000.

[49] Yan Cao, Qiuzi Lu, Tianhua Xu, Tao Tang, Haifeng Wang, and Yongcheng
Xu. Integrating dsl-cbi and nusmv for modeling and verifiying interlocking
systems. In Proceedings of the 5th International Conference on Secure Soft-
ware Integration & Reliability Improvement Companion (SSIRI-C), pages
136–143. IEEE, 2011.

[50] Roberto Cavada, Alessandro Cimatti, Michele Dorigatti, Alberto Griggio,
Alessandro Mariotti, Andrea Micheli, Sergio Mover, Marco Roveri, and
Stefano Tonetta. The nuxmv symbolic model checker. In Computer Aided
Verification, pages 334–342. Springer, 2014.

[51] Roberto Cavada, Alessandro Cimatti, Charles Arthur Jochim, Gavin
Keighren, Emanuele Olivetti, Marco Pistore, Marco Roveri, and Andrei
Tchaltsev. NuSMV 2.5 User Manual. FBK-irst, 2010.

[52] Sungdeok Cha, Hanseong Son, Junbeom Yoo, Eunkyung Jee, and
Poong Hyun Seong. Systematic evaluation of fault trees using real-time
model checker UPPAAL. Reliability engineering & system safety, 82(1):11–
20, 2003.

[53] Edward Chang, Zohar Manna, and Amir Pnueli. The safety-progress clas-
sification. Springer, 1993.

[54] Angelo Chiappini, Alessandro Cimatti, Luca Macchi, Oscar Rebollo, Marco
Roveri, Angelo Susi, Stefano Tonetta, and Berardino Vittorini. Formal-
ization and validation of a subset of the european train control system.
In Software Engineering, 2010 ACM/IEEE 32nd International Conference
on, volume 2, pages 109–118. IEEE, 2010.

[55] John Joseph Chilenski and Steven P. Miller. Applicability of modified con-
dition/decision coverage to software testing. Software Engineering Jour-
nal, 9(5):193–200, 1994.

[56] Yunja Choi and Mats Heimdahl. Model checking software requirement
specifications using domain reduction abstraction. In Proceedings of 18th
IEEE International Conference on Automated Software Engineering, pages
314–317. IEEE, 2003.

[57] Alessandro Cimatti, Edmund M. Clarke, Enrico Giunchiglia, Fausto
Giunchiglia, Marco Pistore, Marco Roveri, Roberto Sebastiani, and Ar-
mando Tacchella. NuSMV 2: An opensource tool for symbolic model check-
ing. In Ed Brinksma and Kim Guldstrand Larsen, editors, CAV, volume
2404 of Lecture Notes in Computer Science, pages 359–364. Springer, 2002.

143

Bibliography

[58] Alessandro Cimatti, Marco Roveri, Angelo Susi, and Stefano Tonetta.
From informal requirements to property-driven formal validation. In
FMICS, pages 166–181. Springer, 2008.

[59] Alessandro Cimatti, Marco Roveri, Angelo Susi, and Stefano Tonetta. For-
malization and validation of safety-critical requirements. arXiv preprint
arXiv:1003.1741, 2010.

[60] Koen Claessen and Niklas Sorensson. A liveness checking algorithm that
counts. In Formal Methods in Computer-Aided Design (FMCAD), 2012,
pages 52–59. IEEE, 2012.

[61] Edmund Clarke, Orna Grumberg, Somesh Jha, Yuan Lu, and Helmut
Veith. Counterexample-guided abstraction refinement for symbolic model
checking. J. ACM, 50(5):752–794, September 2003.

[62] Edmund Clarke and Daniel Kroening. Hardware verification using ANSI-
C programs as a reference. In Proceedings of the 2003 Asia and South
Pacific Design Automation Conference, pages 308–311. ACM, 2003.

[63] Edmund M. Clarke and E. Allen Emerson. Design and synthesis of syn-
chronization skeletons using branching-time temporal logic. In Dexter
Kozen, editor, Logic of Programs, volume 131 of Lecture Notes in Computer
Science, pages 52–71. Springer, 1981.

[64] Edmund M. Clarke, Orna Grumberg, and David E. Long. Model check-
ing and abstraction. ACM transactions on Programming Languages and
Systems (TOPLAS), 16(5):1512–1542, 1994.

[65] Edmund M. Clarke, Orna Grumberg, and Doron Peled. Model checking.
MIT Press, 2001.

[66] Edmund M. Clarke, Anubhav Gupta, James H. Kukula, and Ofer Shrich-
man. SAT based abstraction-refinement using ilp and machine learning
techniques. In Proceedings of the 14th International Conference on Com-
puter Aided Verification, CAV ’02, pages 265–279, London, UK, UK, 2002.
Springer-Verlag.

[67] Edmund M. Clarke, Anubhav Gupta, and Ofer Strichman. SAT-based
counterexample-guided abstraction refinement. IEEE Trans. on CAD of
Integrated Circuits and Systems, 23(7):1113–1123, 2004.

[68] Edmund M. Clarke, David E. Long, and Kenneth L. McMillan. Composi-
tional model checking. In LICS, pages 353–362. IEEE Computer Society,
1989.

[69] Jamieson M. Cobleigh, Dimitra Giannakopoulou, and Corina S. Păsăre-
anu. Learning assumptions for compositional verification. In Tools and
Algorithms for the Construction and Analysis of Systems, pages 331–346.
Springer, 2003.

[70] Patrick Cousot, Radhia Cousot, Jerôme Feret, Laurent Mauborgne, An-
toine Miné, David Monniaux, and Xavier Rival. The ASTRÉE analyzer. In
Programming Languages and Systems, pages 21–30. Springer, 2005.

144

Bibliography

[71] Pascal Cuoq, Florent Kirchner, Nikolai Kosmatov, Virgile Prevosto, Julien
Signoles, and Boris Yakobowski. Frama-C. In Software Engineering and
Formal Methods, pages 233–247. Springer, 2012.

[72] Leandro Dias Da Silva, Luiz Paulo de Assis Barbosa, Kyller Gorgônio,
Angelo Perkusich, and Antonio Marcus Nogueira Lima. On the auto-
matic generation of timed automata models from function block diagrams
for safety instrumented systems. In Industrial Electronics, 2008. IECON
2008. 34th Annual Conference of IEEE, pages 291–296, Nov 2008.

[73] Satyaki Das and David L. Dill. Successive approximation of abstract tran-
sition relations. In Proceedings of the 16th Annual IEEE Symposium on
Logic in Computer Science, LICS ’01, pages 51–, Washington, DC, USA,
2001. IEEE Computer Society.

[74] David Déharbe and Anamaria Martins Moreira. Using induction and
BDDs to model check invariants. In CHARME, volume 97, 1997.

[75] Alain Deutsch. Static verification of dynamic properties. PolySpace White
Paper, 2004.

[76] Guy Durrieu, Odile Laurent, Christel Seguin, and Virginie Wiels. Auto-
matic test case generation for critical embedded systems. Proceedings of
Data Systems In Aerospace (DASIA 2004), Nice, France, 2004.

[77] Niklas Een, Alan Mishchenko, and Robert Brayton. Efficient implemen-
tation of property directed reachability. In Formal Methods in Computer-
Aided Design (FMCAD), 2011, pages 125–134. IEEE, 2011.

[78] Niklas Eén and Niklas Sörensson. Temporal induction by incremental SAT
solving. Electr. Notes Theor. Comput. Sci., 89(4):543–560, 2003.

[79] Ernest Allen Emerson and Chin-Laung Lei. Efficient model checking in
fragments of the propositional mu-calculus. In IEEE Symposium on Logic
in Computer Science, pages 267–278. IEEE Computer Society Press, 1986.

[80] Niklas Eén. The ABC/ZZ verification and synthesis framework, 2014.

[81] André Engels, Loe Feijs, and Sjouke Mauw. Test generation for intelli-
gent networks using model checking. In Ed Brinksma, editor, Tools and
Algorithms for the Construction and Analysis of Systems, volume 1217 of
Lecture Notes in Computer Science, pages 384–398. Springer Berlin Hei-
delberg, 1997.

[82] Eduard P. Enoiu, Adnan Čaušević, Thomas J. Ostrand, Elaine J. Weyuker,
Daniel Sundmark, and Paul Pettersson. Automated test generation us-
ing model checking: an industrial evaluation. International Journal on
Software Tools for Technology Transfer, pages 1–19, 2014.

[83] Eduard Paul Enoiu, Daniel Sundmark, and Paul Pettersson. Model-
based test suite generation for function block diagrams using the UPPAAL
model checker. In Software Testing, Verification and Validation Workshops
(ICSTW), 2013 IEEE Sixth International Conference on, pages 158–167.
IEEE, 2013.

[84] FBK-IRST, Carnegie Mellon University, University of Genova and Univer-
sity of Trento. NuSMV model checker v.2.5.4, 2012.

145

Bibliography

[85] Limor Fix. Fifteen years of formal property verification in intel. In Orna
Grumberg and Helmut Veith, editors, 25 Years of Model Checking, volume
5000 of Lecture Notes in Computer Science, pages 139–144. Springer, 2008.

[86] Institut für Sicherheitstechnologie (Istec GmbH). RETRANS. Avail-
able at http://www.istec-gmbh.de/leistungen/qualifizierung/
produkte, [Last accessed Oct/30 2015].

[87] Gordon Fraser and Andrea Arcuri. Whole test suite generation. IEEE
Transactions on Software Engineering, 39(2):276–291, 2013.

[88] Gordon Fraser, Franz Wotawa, and Paul E. Ammann. Testing with
model checkers: a survey. Software Testing, Verification and Reliability,
19(3):215–261, 2009.

[89] Juho Frits. Model checking embedded control software. Master’s thesis,
2010.

[90] Xiang Gan, Jori Dubrovin, and Keijo Heljanko. A symbolic model check-
ing approach to verifying satellite onboard software. Science of Computer
Programming, 82:44–55, 2014.

[91] Angelo Gargantini and Gordon Fraser. Generating minimal fault detecting
test suites for general boolean specifications. Information and Software
Technology, 53(11):1263 – 1273, 2011.

[92] Angelo Gargantini and Constance Heitmeyer. Using model checking to
generate tests from requirements specifications. In Oscar Nierstrasz and
Michel Lemoine, editors, Software Engineering — ESEC/FSE ’99, volume
1687 of Lecture Notes in Computer Science, pages 146–162. Springer Berlin
Heidelberg, 1999.

[93] Dimitra Giannakopoulou, Falk Howar, Malte Isberner, Todd Lauderdale,
Zvonimir Rakamarić, and Vishwanath Raman. Taming test inputs for sep-
aration assurance. In Proceedings of the 29th ACM/IEEE international
conference on Automated software engineering, pages 373–384. ACM, 2014.

[94] Marcelo Glusman, Gila Kamhi, Sela Mador-Haim, Ranan Fraer, and
Moshe Y. Vardi. Multiple-counterexample guided iterative abstraction re-
finement: an industrial evaluation. In Proceedings of the 9th international
conference on Tools and algorithms for the construction and analysis of
systems, TACAS’03, pages 176–191, Berlin, Heidelberg, 2003. Springer-
Verlag.

[95] Vincent Gourcuff, Olivier De Smet, and Jean-Marc Faure. Efficient rep-
resentation for formal verification of PLC programs. In Discrete Event
Systems, 2006 8th International Workshop on, pages 182–187. IEEE, 2006.

[96] Marco Gribaudo, András Horváth, Andrea Bobbio, Enrico Tronci, Ester
Ciancamerla, and Michele Minichino. Model-checking based on fluid petri
nets for the temperature control system of the icaro co-generative plant.
Lecture notes in computer science, 2434:273–283, 2002.

[97] Matthias Güdemann, Frank Ortmeier, and Wolfgang Reif. Using deductive
cause-consequence analysis (DCCA) with SCADE. In Computer Safety,
Reliability, and Security, pages 465–478. Springer, 2007.

146

http://www.istec-gmbh.de/leistungen/qualifizierung/

Bibliography

[98] Grégoire Hamon, Leonardo De Moura, and John Rushby. Generating effi-
cient test sets with a model checker. In Software Engineering and Formal
Methods, 2004. SEFM 2004. Proceedings of the Second International Con-
ference on, pages 261–270, Sept 2004.

[99] Hannu Harju, Jussi Lahtinen, Jukka Ranta, Risto Nevalainen, and Mika
Johansson. Software safety standards for the basis of certification in the
nuclear domain. In Quality of Information and Communications Technol-
ogy (QUATIC), 2010 Seventh International Conference on the, pages 54–62,
Sept 2010.

[100] Klaus Havelund, Mike Lowry, and John Penix. Formal analysis of a space-
craft controller using SPIN. Software Engineering, IEEE Transactions on,
27(8):749–765, 2001.

[101] Klaus Havelund and Thomas Pressburger. Model checking JAVA programs
using JAVA PathFinder. International Journal on Software Tools for Tech-
nology Transfer, 2(4):366–381, 2000.

[102] Klaus Havelund and Grigore Roşu. Efficient monitoring of safety prop-
erties. International Journal on Software Tools for Technology Transfer,
6(2):158–173, 2004.

[103] Constance L. Heitmeyer and Ralph D. Jeffords. Applying a formal require-
ments method to three NASA systems: Lessons learned. In Aerospace
Conference, 2007 IEEE, pages 1–10. IEEE, 2007.

[104] Constance L. Heitmeyer, Ralph D. Jeffords, and Bruce G. Labaw. Auto-
mated consistency checking of requirements specifications. ACM Transac-
tions on Software Engineering and Methodology (TOSEM), 5(3):231–261,
1996.

[105] Thomas A Henzinger, Zohar Manna, and Amir Pnueli. What good are
digital clocks? In Automata, Languages and Programming, pages 545–
558. Springer, 1992.

[106] Gerard J. Holzmann. The SPIN model checker: Primer and reference man-
ual, volume 1003. Addison-Wesley Reading, 2004.

[107] Michaela Huhn and Stefan Milius. Observations on formal safety analysis
in practice. Science of Computer Programming, 80:150–168, 2014.

[108] Ralf Huuck. Software verification for programmable logic controllers. PhD
thesis, University of Kiel, 2003.

[109] International Atomic Energy Agency (IAEA). Defence in depth in nuclear
safety, INSAG-10 – A report by the International Nuclear Safety Advisory
Group, 1996.

[110] IEC. IEC 61131-3 (2013): International Standard for Programmable Con-
trollers — Part 3: Programming Languages. 1993.

[111] IEC. IEC 61499 (2005): International Standard IEC 61499, Function
Blocks, Part 1 — Part 4. 2005.

[112] IEC. IEC 60812: Analysis techniques for system reliability – Procedure
for failure mode and effects analysis (FMEA), 2006.

147

Bibliography

[113] IEC. ISO/IEC 61508-3 ed2.0 (2010): Functional safety of electrical/elec-
tronic/programmable electronic safety-related systems – Part 3: Software
requirements. 2010.

[114] IEC. ISO/IEC 29119-4 (2013): Software and systems engineering — Soft-
ware testing — Part 4: Test techniques. 2013.

[115] IEEE. IEEE standard for property specification language (PSL). IEEE Std
1850-2005, pages 1–143, 2005.

[116] International Atomic Energy Agency (IAEA). Safety of Nuclear Power
Plants: Design, IAEA Safety Standards series No. SSR-2/1, 2012.

[117] Eunkyoung Jee, Seungjae Jeon, Sungdeok Cha, Kwangyong Koh, Junbeom
Yoo, Geeyong Park, Poonghyun Seong, et al. FBDVerifier: interactive and
visual analysis of counter-example in formal verification of function block
diagram. Journal of Research and Practice in Information Technology,
42(3):171, 2010.

[118] Eunkyoung Jee, Suin Kim, Sungdeok Cha, and Insup Lee. Automated
test coverage measurement for reactor protection system software imple-
mented in function block diagram. In Proceedings of the 29th International
Conference on Computer Safety, Reliability, and Security, SAFECOMP’10,
pages 223–236, Berlin, Heidelberg, 2010. Springer-Verlag.

[119] Eunkyoung Jee, Donghwan Shin, Sung Deok Cha, Jang-Soo Lee, and Doo-
Hwan Bae. Automated test case generation for FBD programs imple-
menting reactor protection system software. Softw. Test., Verif. Reliab.,
24(8):608–628, 2014.

[120] Eunkyoung Jee, Junbeom Yoo, Sung Deok Cha, and Doohwan Bae. A data
flow-based structural testing technique for FBD programs. Information &
Software Technology, 51(7):1131–1139, 2009.

[121] Anjali Joshi and Mats P. E. Heimdahl. Model-based safety analysis of
Simulink models using SCADE design verifier. In Proceedings of the
24th International Conference on Computer Safety, Reliability, and Secu-
rity, SAFECOMP’05, pages 122–135, Berlin, Heidelberg, 2005. Springer-
Verlag.

[122] Kwang Yong Koh and Poong Hyun Seong. SMV model-based safety anal-
ysis of software requirements. Reliability Engineering & System Safety,
94(2):320 – 331, 2009.

[123] Seo-Ryong Koo, Poong Hyun Seong, JunBeom Yoo, Sung Deok Cha,
Cheong Youn, and Hyun-Chul Han. NuSEE: an integrated environment
of software specification and V&V for PLC based safety-critical systems.
Nuclear Engineering and Technology, 38(3):259–276, 2006.

[124] Matti Koskimies. Applying model checking to analysing safety instru-
mented systems. Master’s thesis, 2008.

[125] Lars M. Kristensen and Kent Inge Fagerland Simonsen. Applications of
Coloured Petri Nets for functional validation of protocol designs. In Trans-
actions on Petri Nets and Other Models of Concurrency VII, pages 56–115.
Springer, 2013.

148

Bibliography

[126] Orna Kupferman and Moshe Y. Vardi. Model checking of safety properties.
Formal Methods in System Design, 19(3):291–314, 2001.

[127] Robert P. Kurshan. Computer-aided verification of coordinating processes:
the automata-theoretic approach. Princeton University Press, Princeton,
NJ, USA, 1994.

[128] Jussi Lahtinen. Model checking timed safety instrumented systems. Mas-
ter’s thesis, 2008.

[129] Jussi Lahtinen. Hardware failure modelling methodology for model check-
ing. Research report VTT-R-00213-14, VTT Technical Research Centre of
Finland, Espoo, Finland, 2014.

[130] Jussi Lahtinen. Supporting structure-based test design using model check-
ing. Research report VTT-R-04004-15, VTT Technical Research Centre of
Finland Ltd., Espoo, Finland, 2016.

[131] Jussi Lahtinen, Kim Björkman, Janne Valkonen, Juho Frits, and Ilkka
Niemelä. Analysis of an emergency diesel generator control system by
compositional model checking. VTT Working Papers 156, VTT Technical
Research Centre of Finland, 2010.

[132] Jussi Lahtinen and Kim Björkman. Feasibility study on the integration of
PRA methods and model checking. Research report VTT-R-04924-15, VTT
Technical Research Centre of Finland Ltd., Espoo, Finland, 2016.

[133] Jussi Lahtinen, Mika Johansson, Jukka Ranta, Hannu Harju, and Risto
Nevalainen. Comparison between IEC 60880 and IEC 61508 for certifica-
tion purposes in the nuclear domain. In Erwin Schoitsch, editor, Computer
Safety, Reliability, and Security, volume 6351 of Lecture Notes in Computer
Science, pages 55–67. Springer Berlin Heidelberg, 2010.

[134] Jussi Lahtinen, Janne Valkonen, Kim Björkman, Juho Frits, and Ilkka
Niemelä. Model checking methodology for supporting safety critical soft-
ware development and verification. In European Safety and Reliability
Conference, ESREL2010, pages 2056–2063, September 2010.

[135] Leslie Lamport. Proving the correctness of multiprocess programs. Soft-
ware Engineering, IEEE Transactions on, (2):125–143, 1977.

[136] Timo Latvala. Efficient model checking of safety properties. In Model
Checking Software, pages 74–88. Springer, 2003.

[137] Mark Lawford, Peter Froebel, and Greg Moum. Application of tabular
methods to the specification and verification of a nuclear reactor shutdown
system. Formal Methods in System Design, 2004.

[138] Dong-Ah Lee, Junbeom Yoo, and Jang-Soo Lee. A systematic verification of
behavioral consistency between FBD design and ANSI-C implementation
using HW-CBMC. Reliability Engineering & System Safety, 120:139 – 149,
2013.

[139] Dominique L’Her, Philippe Le Parc, and Lionel Marcé. Proving sequential
function chart programs using automata. In Automata Implementation,
pages 149–163. Springer, 1999.

149

Bibliography

[140] Orna Lichtenstein and Amir Pnueli. Checking that finite state concurrent
programs satisfy their linear specification. In Proceedings of the 12th ACM
SIGACT-SIGPLAN symposium on Principles of programming languages,
pages 97–107. ACM, 1985.

[141] Jørn Lind-Nielsen, Henrik Reif Andersen, Henrik Hulgaard, Gerd
Behrmann, Kåre Kristoffersen, and Kim Guldstrand Larsen. Verification
of large state/event systems using compositionality and dependency anal-
ysis. Formal Methods in System Design, 18(1):5–23, 2001.

[142] Alessio Lomuscio, Franco Raimondi, and Marek J. Sergot. Towards model
checking interpreted systems. In Proceedings of the second international
joint conference on Autonomous agents and multiagent systems, pages
1054–1055. ACM, 2003.

[143] Angelika Mader. A classification of PLC models and applications. In
R. Boel and G. Stremersch, editors, Discrete event systems: analysis and
control, pages 239–247. Kluwer Academic, 2000.

[144] Angelika Mader and Hanno Wupper. Timed automaton models for simple
programmable logic controllers. In Real-Time Systems, 1999. Proceedings
of the 11th Euromicro Conference on, pages 106–113. IEEE, 1999.

[145] Zohar Manna and Amir Pnueli. A hierarchy of temporal properties (in-
vited paper, 1989). In Proceedings of the ninth annual ACM symposium on
Principles of distributed computing, pages 377–410. ACM, 1990.

[146] Cristian Mattarei, Alessandro Cimatti, Marco Gario, Stefano Tonetta, and
Kristin Y. Rozier. Comparing different functional allocations in automated
air traffic control design. In Formal Methods in Computer-Aided Design
(FMCAD 2015), Austin, Texas, USA. IEEE/ACM, 2015.

[147] Kenneth L. McMillan. Symbolic Model Checking: An Approach to the State
Explosion Problem. PhD thesis, Pittsburgh, PA, USA, 1992. UMI Order
No. GAX92-24209.

[148] Kenneth L. McMillan. Symbolic model checking. Kluwer, 1993.

[149] Kenneth L. McMillan. Circular compositional reasoning about liveness. In
Laurence Pierre and Thomas Kropf, editors, Correct Hardware Design and
Verification Methods, volume 1703 of Lecture Notes in Computer Science,
pages 342–346. Springer Berlin Heidelberg, 1999.

[150] Kenneth L. McMillan. Getting started with SMV. Cadence Berkeley Lab-
oratories, 1999.

[151] Kenneth L. McMillan and Nina Amla. Automatic abstraction without
counterexamples. In Hubert Garavel and John Hatcliff, editors, Tools and
Algorithms for the Construction and Analysis of Systems, volume 2619 of
Lecture Notes in Computer Science, pages 2–17. Springer Berlin / Heidel-
berg, 2003.

[152] Horst Miedl. RETRANS – a tool to verify the functional equivalence of
automatically generated source code with its specification. 1998.

150

Bibliography

[153] Steven Miller, Elise Anderson, Lucas Wagner, Michael Whalen, and Matts
Heimdahl. Formal verification of flight critical software. In Proceedings of
the AIAA Guidance, Navigation and Control Conference and Exhibit, pages
15–18, 2005.

[154] Steven P. Miller. Will this be formal? In Theorem Proving in Higher Order
Logics, pages 6–11. Springer, 2008.

[155] Steven P. Miller, Alan C. Tribble, and Mats P. E. Heimdahl. Proving the
shalls. In FME 2003: Formal Methods, pages 75–93. Springer, 2003.

[156] Jan Mrázek, Petr Bauch, Henrich Lauko, and Jiří Barnat. SymDIVINE:
Tool for control-explicit data-symbolic state space exploration. In Dragan
Bošnački and Anton Wijs, editors, Model Checkings Software, volume 9641
of Lecture Notes in Computer Science, pages 208–213. Springer, 2016.

[157] Tadao Murata. Petri nets: Properties, analysis and applications. Proceed-
ings of the IEEE, 77(4):541–580, 1989.

[158] Erzsébet Németh and Tamás Bartha. Formal verification of safety func-
tions by reinterpretation of functional block based specifications. In Dar-
ren Cofer and Alessandro Fantechi, editors, Formal Methods for Industrial
Critical Systems, volume 5596 of Lecture Notes in Computer Science, pages
199–214. Springer Berlin Heidelberg, 2009.

[159] Erzsébet Németh, Tamás Bartha, Cs Fazekas, and Katalin M. Hangos.
Verification of a primary-to-secondary leaking safety procedure in a nu-
clear power plant using coloured Petri nets. Reliability Engineering &
System Safety, 94(5):942 – 953, 2009.

[160] Thomas M. Niermann, Rabindra K. Roy, Janak H. Patel, and Jacob Abra-
ham. Test compaction for sequential circuits. Computer-Aided Design of
Integrated Circuits and Systems, IEEE Transactions on, 11(2):260–267,
Feb 1992.

[161] Frank Ortmeier, Gerhard Schellhorn, Andreas Thums, Wolfgang Reif,
Bernhard Hering, and Helmut Trappschuh. Safety analysis of the height
control system for the Elbtunnel. Reliability Engineering & System Safety,
81(3):259–268, 2003.

[162] Alain Ourghanlian. Evaluation of static analysis tools used to assess soft-
ware important to nuclear power plant safety. Nuclear Engineering and
Technology, 47(2):212 – 218, 2015. Special Issue on ISOFIC/ISSNP2014.

[163] Tolga Ovatman, Atakan Aral, Davut Polat, and Ali Osman Ünver. An
overview of model checking practices on verification of PLC software. Soft-
ware & Systems Modeling, pages 1–24, 2014.

[164] Antti Pakonen, Jussi Lahtinen, Veli-Pekka Kuutti, and Tommi Karhela.
Integrating model checking with safety-critical I&C software design. In
7th International International Topical Meeting on Nuclear Plant Instru-
mentation, Control, and Human-Machine Interface Technologies, (NPIC &
HMIT 2010), pages 1729–1740. American Nuclear Society (ANS), 2010.

[165] Antti Pakonen, Teemu Mätäsniemi, Jussi Lahtinen, and Tommi Karhela.
A toolset for model checking of PLC software. In IEEE 18th Conference on

151

Bibliography

Emerging Technologies & Factory Automation (ETFA), pages 1–6, Septem-
ber 2013.

[166] Antti Pakonen, Teemu Mätäsniemi, and Janne Valkonen. Model checking
reveals hidden errors in safety-critical I&C software. In 8th International
Topical Meeting on Nuclear Plant Instrumentation, Control and Human-
Machine Interface Technologies, (NPIC & HMIT 2012), pages 1823–1834.
American Nuclear Society (ANS), 2012.

[167] Antti Pakonen, Janne Valkonen, Sami Matinaho, and Markus Har-
tikainen. Model checking for licensing support in the Finnish nuclear
industry. In International Symposium on Future I&C for Nuclear Power
Plants (ISOFIC 2014), Jeju Island, Repulic of Korea, 2014.

[168] Olivera Pavlovic and Hans-Dieter Ehrich. Model checking PLC software
written in function block diagram. In Software Testing, Verification and
Validation (ICST), 2010 Third International Conference on, pages 439–
448, April 2010.

[169] Daniel Pilaud, Nicolas Halbwachs, and John A. Plaice. LUSTRE: A declar-
ative language for programming synchronous systems. In Proceedings of
the 14th Annual ACM Symposium on Principles of Programming Lan-
guages (14th POPL 1987). ACM, New York, NY, volume 178, page 188,
1987.

[170] Amir Pnueli. The temporal logic of programs. In Foundations of Computer
Science, 1977., 18th Annual Symposium on, pages 46–57. IEEE, 1977.

[171] Corina S. Păsăreanu, Matthew B. Dwyer, and Michael Huth. Assume-
guarantee model checking of software: A comparative case study. In Den-
nis Dams, Rob Gerth, Stefan Leue, and Mieke Massink, editors, Theoreti-
cal and Practical Aspects of SPIN Model Checking, volume 1680 of Lecture
Notes in Computer Science, pages 168–183. Springer Berlin Heidelberg,
1999.

[172] Jean-Pierre Queille and Joseph Sifakis. Specification and verification of
concurrent systems in CESAR. In Mariangiola Dezani-Ciancaglini and
Ugo Montanari, editors, Symposium on Programming, volume 137 of Lec-
ture Notes in Computer Science, pages 337–351. Springer, 1982.

[173] Sandra Rapps and Elaine J. Weyuker. Selecting software test data us-
ing data flow information. Software Engineering, IEEE Transactions on,
(4):367–375, 1985.

[174] Kavita Ravi, Roderick Bloem, and Fabio Somenzi. A comparative study of
symbolic algorithms for the computation of fair cycles. In Formal Methods
in Computer-Aided Design, pages 162–179. Springer, 2000.

[175] Steffen Richter and Jens-Uwe Wittig. Verification and validation process
for safety I&C systems. Nuclear Plant Journal, 21(3):36–40, 2003.

[176] Rolls-Royce. SpinlineTM – A Rolls-Royce modular I&C digital plat-
form dedicated to nuclear safety. Technical sheet. Available at
http://www.rolls-royce.com/~/media/Files/R/Rolls-Royce/

documents/customers/nuclear/spinlinetm-tcm92-50342.pdf,
2012. [Last accessed: Jan/13/2016].

152

http://www.rolls-royce.com/~/media/Files/R/Rolls-Royce/

Bibliography

[177] Olivier Rossi and Philippe Schnoebelen. Formal modeling of timed func-
tion blocks for the automatic verification of Ladder Diagram programs. In
Proc. 4th Int. Conf. Automation of Mixed Processes: Hybrid Dynamic Sys-
tems (ADPM’2000), Dortmund, Germany, pages 177–182. Citeseer, 2000.

[178] Kristin Y. Rozier. Linear temporal logic symbolic model checking. Com-
puter Science Review, 5(2):163 – 203, 2011.

[179] Kristin Y. Rozier and Moshe Y. Vardi. Ltl satisfiability checking. In 14th
Workshop on Model Checking Software (SPIN ’07), volume 4595 ofLecture
Notes in Computer Science (LNCS), pages 149–167. Springer-Verlag, 2007.

[180] Kristin Y. Rozier and Moshe Y. Vardi. A multi-encoding approach for ltl
symbolic satisfiability checking. In 17th International Symposium on For-
mal Methods (FM2011), volume 6664 of Lecture Notes in Computer Science
(LNCS), pages 417–431. Springer-Verlag, 2011.

[181] John Rushby. Formal verification of McMillan’s compositional assume-
guarantee rule. In University of Minnesota, Minneapolis. His. Citeseer,
2001.

[182] John Rushby. Using model checking to help discover mode confusions
and other automation surprises. Reliability Engineering & System Safety,
75(2):167–177, 2002.

[183] Mahdi Sarabi. Evaluation of structural testing effectiveness in industrial
model-driven software development. Master’s thesis, Mälardalen Univer-
sity, June 2012.

[184] Bastian Schlich, Jörg Brauer, Jörg Wernerus, and Stefan Kowalewski. Di-
rect model checking of PLC programs in IL. Proceedings of DCDS, pages
28–33, 2009.

[185] Francis Schneider, Steve M. Easterbrook, John R. Callahan, and Gerard J.
Holzmann. Validating requirements for fault tolerant systems using model
checking. In ICRE, pages 4–13. IEEE Computer Society, 1998.

[186] Viktor Schuppan and Armin Biere. Efficient reduction of finite state model
checking to reachability analysis. International Journal on Software Tools
for Technology Transfer, 5(2-3):185–204, 2004.

[187] Septavera Sharvia and Yiannis Papadopoulos. IACoB-SA: An approach
towards integrated safety assessment. In CASE, pages 220–225. IEEE,
2011.

[188] Septavera Sharvia and Yiannis Papadopoulos. Integrating model checking
with HiP-HOPS in model-based safety analysis. Reliability Engineering &
System Safety, 135:64 – 80, 2015.

[189] Mary Sheeran, Satnam Singh, and Gunnar Stålmarck. Checking safety
properties using induction and a SAT-solver. In Warren A. Hunt Jr. and
Steven D. Johnson, editors, FMCAD, volume 1954 of Lecture Notes in Com-
puter Science, pages 108–125. Springer, 2000.

[190] Doaa Soliman and Georg Frey. Verification and validation of safety ap-
plications based on PLCopen safety function blocks. Control Engineer-
ing Practice, 19(9):929 – 946, 2011. Special Section: DCDS’09 – The 2nd
{IFAC} Workshop on Dependable Control of Discrete Systems.

153

Bibliography

[191] Doaa Soliman, Kleanthis Thramboulidis, and Georg Frey. Function block
diagram to UPPAAL timed automata transformation based on formal mod-
els. Information Control Problems in Manufacturing, 14(1):1653–1659,
2012.

[192] Doaa Soliman, Kleanthis Thramboulidis, and Georg Frey. Transformation
of function block diagrams to UPPAAL timed automata for the verification
of safety applications. Annual Reviews in Control, 36(2):338 – 345, 2012.

[193] Baruch Sterin, Niklas Een, Alan Mishchenko, and Robert Brayton. The
benefit of concurrency in model checking. In IWLS’11, pages 176–182,
2011.

[194] Teemu Tommila and Antti Pakonen. Controlled natural language require-
ments in the design and analysis of safety critical I&C systems. Research
report VTT-R-01067-14, VTT Technical Research Centre of Finland, 2014.

[195] Alan C. Tribble and Stephan P. Miller. Software safety analysis of a flight
management system vertical navigation function – a status report. In In
Proceedings of the 22ndDigital Avionics Systems Conference (DASC’03),
volume 1, pages 1–B. IEEE, 2003.

[196] Iñigo Ugarte and Pablo Sanchez. Formal meaning of coverage metrics in
simulation-based hardware design verification. In High-Level Design Val-
idation and Test Workshop, 2005. Tenth IEEE International, pages 221–
228. IEEE, 2005.

[197] USNRC. Software Unit Testing for Digital Computer Software Used in
Safety Systems of Nuclear Power Plants, Regulatory Guide 1.171, 1997.

[198] Janne Valkonen, Kim Björkman, Jussi Lahtinen, Jukka Ranta, Juho Frits,
Keijo Heljanko, and Ilkka Niemelä. Model-based safety evaluation of au-
tomation systems (MODSAFE). In Eija Karita Puska and Vesa Suolanen,
editors, The Finnish Research Programme on Nuclear Power Plant Safety
2007–2010 Final Report, (VTT Research notes 2571), chapter 4, pages 55–
65. VTT Technical Research Centre of Finland, Espoo, Finland, 2011.

[199] Janne Valkonen, Matti Koskimies, Ville Pettersson, Keijo Heljanko, Jan-
Erik Holmberg, Ilkka Niemelä, and Jari J. Hämäläinen. Formal verifica-
tion of safety I&C system designs: Two nuclear power plant related ap-
plications. In Enlarged Halden Programme Group Meeting-Proceedings of
the Man-Technology-Organisation Sessions C, volume 4, 2008.

[200] Janne Valkonen, Ville Pettersson, Kim Björkman, Jan-Erik Holmberg,
Matti Koskimies, Keijo Heljanko, and Ilkka Niemelä. Model-based analy-
sis of an arc protection and an emergency cooling system. In VTT Working
Papers 93, VTT Technical Research Centre of, 2008.

[201] Mario Van der Borst and Herman Schoonakker. An overview of PSA impor-
tance measures. Reliability Engineering & System Safety, 72(3):241–245,
2001.

[202] Moshe Y. Vardi and Pierre Wolper. An automata-theoretic approach to
automatic program verification. In 1st Symposium in Logic in Computer
Science (LICS). IEEE Computer Society, 1986.

154

Bibliography

[203] William E. Vesely, Francine F. Goldberg, Norman H. Roberts, and David F.
Haasl. Fault tree handbook. Technical report, DTIC Document, 1981.

[204] Amol Wakankar, Raka Mitra, Anup K. Bhattacharjee, Shraddha V.
Shrikhande, Sham D. Dhodapkar, and Rajendra K. Patil. Formal model
based methodology for developing controllers for nuclear applications. In
Proceedings of 20th IEEE International Symposium on Software Reliabil-
ity Engineering (ISSRE-2009), Mysore, India, 2009.

[205] Dong Wang, Pei-Hsin Jiang, James Kukula, Yunshan Zhu, Tony Ma, and
Robert Damiano. Formal property verification by abstraction refinement
with formal, simulation and hybrid engines. In Proceedings of the 38th
annual Design Automation Conference, DAC ’01, pages 35–40, New York,
NY, USA, 2001. ACM.

[206] John X. Wang and Marvin L. Roush. What every engineer should know
about risk engineering and management. CRC Press, 2000.

[207] Nick J. Ward. The rigorous retrospective static analysis of the Sizewell ‘B’
primary protection system software. In SAFECOMP’93, pages 171–181.
Springer, 1993.

[208] Alan Wassyng and Mark Lawford. Lessons learned from a successful im-
plementation of formal methods in an industrial project. In FME 2003:
Formal Methods, pages 133–153. Springer, 2003.

[209] John T. Webb. MALPAS—an automatic static analysis tool for software
validation and verification. In Edited papers presented at the 1st Inter-
national Conference on Reliability and robustness of engineering software,
pages 67–75. Elsevier Science Publishers BV, 1987.

[210] Rik Willems. Compact timed automata for PLC programs. 1999.

[211] Junbeom Yoo, Sungdeok Cha, and Eunkyoung Jee. A verification frame-
work for FBD based software in nuclear power plants. In Software En-
gineering Conference, 2008. APSEC ’08. 15th Asia-Pacific, pages 385–392,
Dec 2008.

[212] Junbeom Yoo, Sungdeok Cha, and Eunkyoung Jee. Verification of PLC
programs written in FBD with VIS. Nuclear Engineering and Technology,
(1):79–90, 2009.

[213] Junbeom Yoo, Sungdeok Cha, Chang Hwoi Kim, and Duck Yong Song. Syn-
thesis of fbd-based PLC design from NuSCR formal specification. Reliabil-
ity Engineering & System Safety, 87(2):287–294, 2005.

[214] Junbeom Yoo, Eunkyoung Jee, and Sung Deok Cha. Formal modeling and
verification of safety-critical software. IEEE Software, 26(3):42–49, 2009.

[215] Petr Závodskỳ. Independent assessment of the Temelín safety system soft-
ware. NEA/CSNI/R (2002) 1/VOL1 Un classified, page 63, 2002.

[216] Andreas Zeller. Isolating cause-effect chains from computer programs. In
SIGSOFT FSE, pages 1–10, 2002.

[217] Andreas Zeller and Ralf Hildebrandt. Simplifying and isolating failure-
inducing input. IEEE Trans. Software Eng., 28(2):183–200, 2002.

155

Bibliography

[218] Yang Zhao and Kristin Yvonne Rozier. Formal specification and verifica-
tion of a coordination protocol for an automated air traffic control system.
Science of Computer Programming, 96:337–353, 2014.

[219] Hao Zheng, Haiqiong Yao, and Tomohiro Yoneda. Modular model checking
of large asynchronous designs with efficient abstraction refinement. IEEE
Trans. Comput., 59(4):561–573, April 2010.

156

Errata

Publication I

The actual size of the state space mentioned in Section 4.2 should be 1018

instead of 1018.

Publication II

Reference 7 of the paper has been incorrectly written. The correct refer-

ence is:

Corina S. Păsăreanu, Matthew B. Dwyer, and Michael Huth. Assume-

guarantee model checking of software: A comparative case study. In Den-

nis Dams, Rob Gerth, Stefan Leue, and Mieke Massink, editors, Theoreti-

cal and Practical Aspects of SPIN Model Checking, volume 1680 of Lecture

Notes in Computer Science, pages 168–183. Springer Berlin Heidelberg,

1999.

157

Publication I

Jussi Lahtinen, Janne Valkonen, Kim Björkman, Juho Frits, Ilkka Niemelä

and Keijo Heljanko. Model checking of safety critical software in the nuclear

engineering domain. Reliability Engineering & System Safety, Vol. 105, p.

104 – 113, Elsevier 2012.

c© 2012 Elsevier.

Reprinted with permission.

159

Model checking of safety-critical software in the nuclear engineering domain

J. Lahtinen a,n, J. Valkonen a, K. Björkman a, J. Frits b, I. Niemelä b, K. Heljanko b

a VTT Technical Research Centre of Finland, Systems Research, P.O. Box 1000, FI-02044 Espoo, Finland
b Department of Information and Computer Science, School of Science, Aalto University, PO Box 15400, FI-00076 Aalto, Finland

a r t i c l e i n f o

Article history:

Received 31 March 2011

Received in revised form

6 March 2012

Accepted 25 March 2012
Available online 2 April 2012

Keywords:

Model checking

Verification

Safety

I&C

Automation

Nuclear

a b s t r a c t

Instrumentation and control (I&C) systems play a vital role in the operation of safety-critical processes.

Digital programmable logic controllers (PLC) enable sophisticated control tasks which sets high

requirements for system validation and verification methods. Testing and simulation have an important

role in the overall verification of a system but are not suitable for comprehensive evaluation because

only a limited number of system behaviors can be analyzed due to time limitations. Testing is also

performed too late in the development lifecycle and thus the correction of design errors is expensive.

This paper discusses the role of formal methods in software development in the area of nuclear

engineering. It puts forward model checking, a computer-aided formal method for verifying the

correctness of a system design model, as a promising approach to system verification. The main

contribution of the paper is the development of systematic methodology for modeling safety critical

systems in the nuclear domain. Two case studies are reviewed, in which we have found errors that were

previously not detected. We also discuss the actions that should be taken in order to increase

confidence in the model checking process.

& 2012 Elsevier Ltd. All rights reserved.

1. Introduction

The traditional method of assessing the system correctness
relies on testing and simulation techniques. In testing, the basic
idea is to exercise the implemented system itself and assess its
correctness using a collection of test cases. In simulation, the aim
is to capture the system behavior in a system model and verify
the correctness of the system by simulating different scenarios
one by one using this model. Another more formal method is
deductive verification, which uses computer-aided theorem pro-
vers to prove system correctness. It is time-consuming and can
only be performed by experts with considerable experience, but
can scale to very large systems [1]. All these methods play their
part in the design process, but for exhaustive verification with
reasonable effort and time, none of them alone is suitable.

When systems become increasingly complicated, both testing
and simulation are faced with serious scaling problems. On one
hand, testing or simulating different scenarios is time-consuming
and, hence, only a small fraction of all possible behaviors can be
covered in practice. On the other hand, it becomes increasingly
difficult to develop a collection of test cases or scenarios that
exercises all relevant behavior of the system model in order to
provide sufficient evidence of its correctness.

The poor coverage of the traditional verification methods sets
high requirements for the verification of safety-critical industrial
systems that are increasingly dependent on software components
and the use of digital technology. The use of digital programmable
logic controllers often increases system complexity through a
wide range of different function blocks the designer can choose
from. Suboptimal design decisions frequently lead to unnecessa-
rily complicated software and system designs. This complexity
often leads to problems in system verification. For this reason, in
safety-critical applications the use of formal methods based on
mathematics and logic is becoming a more fundamental part of
development and verification processes.

Model checking is a computer-aided formal method for verify-
ing the correct functioning of a system design model [2,3]. Unlike
traditional verification methods, model checking examines all
possible behaviors of the model.

In this paper, we describe how formal model checking meth-
odology can complement the traditional safety methods and help
reveal unlikely but fatal system behaviors that on occasion go
undiscovered with traditional methods. The proposed methodol-
ogy can be used efficiently for exhaustive verification of safety
critical I&C systems with reasonable effort, especially in the early
phases of the design process. The employed model checking
approach can also be used to generate interesting scenarios for
more detailed inspection with traditional testing and simulation.

The main contribution of the paper is the development of
systematic methodology for modeling function block based

Contents lists available at SciVerse ScienceDirect

journal homepage: www.elsevier.com/locate/ress

Reliability Engineering and System Safety

0951-8320/$ - see front matter & 2012 Elsevier Ltd. All rights reserved.

http://dx.doi.org/10.1016/j.ress.2012.03.021

n Corresponding author.

E-mail address: jussi.lahtinen@vtt.fi (J. Lahtinen).

Reliability Engineering and System Safety 105 (2012) 104–113

http://www.elsevier.com/locate/ress
mailto:jussi.lahtinen@vtt.fi
http://dx.doi.org/10.1016/j.ress.2012.03.021

system designs using two model checking tools: NuSMV and
UPPAAL. The efficiency of the methodology is based on a reusable
function block library, a modular model structure, and a non-
restricted environment model.

We also demonstrate how system-level analysis of a device can
be accomplished bymodel checking. Building a system-level model
of a device can be done even when the detailed documentation of
the system is not available. This requires reverse-engineering and
interviewing the system developers.

The modeling methodology was successfully employed in
several case studies. This paper reviews two of these case studies,
in which a real-world industrial system was successfully analyzed
using model checking. In both cases, an error was found through
model checking that had previously gone undetected. Based on our
model checking experience, we also present errors typically found
by model checking, and analyze the root causes of these errors.

Finally, we identify the reasons why model checking is not yet
used in larger scale. We give recommendations to improve the
model checking process in order to make it more efficient, and
increase confidence in the correctness of its results.

The remainder of this paper is structured as follows: Section 2
introduces model checking. Section 3 reviews the related work.
Section 4 reviews our model checking methodology and two case
studies. Discussion regarding the limitations of model checking is
presented in Section 5. Section 6 concludes the paper.

2. Model checking

Model checking [2,3] is a computer-aided verification method
developed to formally verify the correctness of a system designmodel
by examining all of its possible behaviors. The models used in
model checking are quite similar to those used in simulation, as the
model must essentially describe the behavior of the system design for
all sequences of inputs. Typically, some variant of state machines or
digital circuits is used to model the system. However, unlike simula-
tion, model checkers examine the behavior of the system design with
all input sequences and compare it to a formal specification of the
system. The specification is expressed in a suitable language, tem-
poral logics being a prime example, describing the permitted system
behaviors. In model checking, at least in principle, the analysis can be
carried out fully automatically using computer aided tools. Given a
model and a specification as input, a model checking algorithm
determines whether the system violates the specification. If there are
system behaviors that violate a given specification, the model checker
will automatically give a counter-example execution of the model
demonstrating how the property can be violated. In this work two
model checking tools are examined: NuSMV [4,5] and UPPAAL [6].

2.1. Model checking process for critical I&C system designs

The process of using model checking for verifying system
designs is illustrated in Fig. 1. The first step is to analyze the type

of properties to be verified using the model by examining the
overall design of the system. This facilitates the definition of
model boundaries and the selection of system parts that will be
abstracted away as part of the environment model. This step
helps to avoid unnecessarily complicated models that can pose
challenges to the efficiency and performance of the model
checking tools.

The model is built based on design documentation such as the
system’s functional descriptions and logic diagrams. The model is
usually a state machine model but the behavior of the model is
written in the modeling language of the model checking tool
used. For systematic modeling it is important to identify the
system boundaries and the interface between the system and its
environment. Another key issue is to choose an appropriate level
of abstraction for the model so that irrelevant details are
abstracted away and, thus, the computational cost of performing
the model checking task remains reasonable. The objective is to
include only the most important system behaviors, known as the
smallest sufficient model [22]. The rest is abstracted on a suitable
level depending on the property to be verified.

Another important and challenging task is the definition of the
properties to be verified in a detailed level. Typically, the system
requirements that are the basis of designing the system are not
precise and detailed enough to be directly used for model
checking. They must first be dismantled into more detailed
requirements that define the desired behavior of the system at
the input–output level of the model. They can then be formalized
as temporal logic formulas that are given as input to the model
checker. Temporal logic is an extension of propositional logic with
temporal modalities used to describe the behavior of reactive
systems [2]. The formalization of these properties interacts with
modeling where the level of abstraction and the system/environ-
ment interface as well as component interfaces are designed to
support requirement specification so that requirements can be
formalized as temporal logic properties on these interfaces.

When the system has been modeled and the properties to be
verified have been formalized using temporal logic properties, the
actual model checking is performed. Running the model checking
tool is often the most straightforward part. If the model does not
satisfy the verified properties, the model checker gives a counter-
example execution of the model showing the sequence of state
transitions that leads to the violation of the property. Interpreting
the results produced by the tool is in principle quite simple if the
created model supports traceability, i.e. supports interpretation of
the behaviors of the model as behaviors of the original design.
However, counter-example executions demonstrating that a spe-
cification is violated by the system design can be quite compli-
cated and further tool support may be needed to illustrate the
underlying erroneous system behavior detected. By analyzing the
counter-example the user can decide whether the violation was
caused by an actual error in the system, an error made while
modeling the system, inaccurately written natural language
requirement, inaccurately written temporal logic formula or

Fig. 1. Model checking process.

J. Lahtinen et al. / Reliability Engineering and System Safety 105 (2012) 104–113 105

whether it was due to over-simplification of the model. If the
counter-example is not caused by an error originating from the
system design, the model or the properties to be checked must be
refined and model checking is performed again. Thus, model
checking is an iterative process that educates the modeler as
the model checking process goes on.

Currently, while using model checking for verifying safety-
critical I&C system designs, only the model checking phase is
automated because it is done with a model checking tool. In our
current workflow all other phases of the process are performed
manually and, thus, may be prone to human error. However, the
iterative nature of the model checking process remarkably
improves the quality of models because the errors made in the
modeling phase are usually revealed when the counter-examples
are interpreted. See [23] for an approach to microprocessor
verification that fully automates the model building process for
a hardware description language. The first step in this direction
for I&C systems would require a machine readable system
description language with formally defined semantics.

3. Related work

The model checking concept was proposed in the early 1980s
but it was in the 1990s when new symbolic model checking
techniques led to novel tools such as Symbolic Model Verifier
(SMV) and a breakthrough in scalability [7]. Model checking first
proved effective in hardware verification [7–9]. Currently, for
example most major microprocessor manufacturers use model
checking techniques to verify their processor designs [8,9]. More
recently, the focus has shifted to software model checking [10].
One of the main success stories has been the Windows C code
device driver verification tool SLAM [11] which has been at
production use at Microsoft for a number of years. All Microsoft-
developed device drivers for Windows 7 have undergone model
checking for proper Windows device driver API usage before their
release [43]. Model checking has been used for verifying data
communications protocols [12,13], for understanding human–
computer interaction problems in avionics [14] and for analyzing
real-time controllers [15], to name a few example application
domains.

Model checking has also been utilized in the analysis of safety-
critical systems. In aviation, model checking has been applied in
the formal verification of flight critical software for identification
of design errors early in the lifecycle [16]. In the safety analysis of
an embedded control system, model checking was used to prove
the functional correctness of the system, and the reliability of the
system was assessed using fault tree analysis [17].

In the nuclear context, [18] presents an approach where model
checking is combined with fault tree analysis to provide formal,
automated and qualitative assistance to informal and quantitative
risk analysis. However, the closest work to ours is the work on
model checking Korean nuclear power plant automation systems
[19–21]. In their work, they used model checking to analyze
Programmable Logic Controllers that had been programmed as
function block diagrams (FBD). They also checked the equivalence
of FBD designs using model checking. They found several critical
logic errors in the FBDs of reactor shutdown systems.

4. Model checking critical I&C designs

We have studied the applicability of model checking for safety
analysis of various kinds of critical I&C designs by analyzing
several industrial cases. The analyzed cases include an emergency
cooling system of a nuclear reactor [39], an industrial arc

protection system [39], a changeover switching unit for a busbar
[38], an emergency diesel generator control system [33], a
stepwise shutdown system [32], and embedded control software
of an uninterruptible power supply (UPS) [34]. In what follows,
we introduce methodology for modeling these systems, and
shortly present two of the case studies we have analyzed. The
cases show how time-related erroneous system behavior easily
escapes the analyses done with traditional methods but can be
discovered with model checking.

4.1. Model checking methodology

Several of the case designs were given as function block
diagrams. We have created systematic methodology to model
function block diagrams for two model checking tools: NuSMV
and UPPAAL.

NuSMV models are basically collections of variable declara-
tions and assignments that define the valid initial states and
transition relations for these variables. In addition, the modeling
language uses, e.g. simple data structures, macro definitions, and
module hierarchies.

In NuSMV, our modeling approach is based on a collection of
function block modules. These reusable modules are used to build
up the functionalities of the system. Since a module can contain
instances of other modules, our models employ a structural
hierarchy. The model is typically divided into several modules
according to different top-level functionalities. The reusable
function block modules reduce the modeling effort, and their
function can easily be separately verified. The modularity on the
top level allows redundant structures to be modeled more
efficiently. Because of the modular structure of our models it is
also easier to create abstract models in which only a part of the
system functionality is examined. These abstractions are some-
times necessary as the size of the model increases.

Because NuSMV does not support continuous time, the time-
dependent components are modeled to operate in discrete time
steps of fixed length. During each time step, first the inputs of the
functional blocks are sampled and then the outputs are updated.

When using model checking to verify whether a system design
satisfies a specification, this is done against an environment model
describing how the environment and the system interact. Both in
the UPPAAL and NuSMV modeling, no assumptions about the
environment of the system are made. In our approach simple
environment models that allow the environment to behave quite
freely and independently of the system under verification are used
wherever possible. This leads to safe model checking results: if the
model checking tool determines that the system model satisfies
the specification in this liberal environment model, then the
system model will satisfy the specification in all more restricted
environments and thus the correctness of system behavior is not
based on strict assumptions on the environment behavior.

In UPPAAL a model is built up from several timed automata
that synchronize with each other through channels. A timed
automaton is a finite state automaton extended with real-valued
clock variables. The edges of a timed automaton can have guard
constraints which have to be true in order for the transition to be
enabled. Processes send synchronization events to a channel to
inform other automata about important events, e.g. the change of
an input signal state. For further information on timed automata,
see for instance [37].

When modeling function block diagrams in UPPAAL, the same
principles mentioned above are followed. Each function block
type is translated into a reusable timed automaton. In addition
we use one separate automaton for input sampling in the
model. We have also developed methods that allow the discovery
of erroneous asynchronous behavior in the UPPAAL, see [33].

J. Lahtinen et al. / Reliability Engineering and System Safety 105 (2012) 104–113106

In NuSMV modeling we make the assumption that the modules of
the system function synchronously (the whole system is an entity
that samples the inputs and produces the outputs within one
clock cycle). In UPPAAL, it is possible to examine other asynchro-
nous subsystem behavior as well.

The level of abstraction that we use in our methodology is
highly dependent on the available documentation. Typically, we
intend to focus on the logical function of a system in detail, and
leave out the hardware and system level aspects. When making
abstractions of the system, we opt for over-approximations so
that the model has more behaviors than the actual system.

4.2. Stepwise shutdown system

The stepwise shutdown system is a safety-related system used
for stepwise control of the process towards the normal operating
state in case of disturbances. The purpose of the system is to
reduce the possibility of the process entering an undesired state
where the more complicated actual shutdown function is
required.

The stepwise shutdown system was modeled based on the
system design documentation. The input documentation used for
modeling was from the early phases of the development life-
cycle. The design was based on function block diagrams, and the
methodology as described before was applied. The system was
modeled using both NuSMV and UPPAAL.

A part of the stepwise shutdown system is illustrated in Fig. 2.
In case of e.g. high temperature or over-pressure, the alarm signal
is activated and the stepwise action is initiated. The process is first
driven towards a safer state for a certain period (3 s) after which
the shutdown action is inactive for another period (12 s). A check is
then done to determine whether the conditions that triggered the
shutdown are still valid. This cycle continues until a normal or safe
state is reached, in which the alarm signal disappears. The period
between the control commands can be shortened by activating a
manual bypass command in the control room.

We compared the performance and applicability of NuSMV
and UPPAAL model checking tools and utilized them in the model
checking of the system design. The UPPAAL model for the
abstracted design is presented in Fig. 3. A more detailed descrip-
tion of the model and the checked properties can be found in [32].

Both tools were successfully employed to verify several basic
safety properties of the system, and were able to reveal the same
hidden design error in the design. The found error violated the
following natural language property: if alarm is set, then even-
tually the output of the system gets value 1. To get reasonable
results, an additional condition was included in the checked
property: the output of the 15 s time pulse block must be zero
when the alarm is set. This additional condition ensures that only
an alarm signal set after the inactive period is considered. This
eliminates the spurious counter-examples where the alarm signal
is first reset, then set and finally reset again during the 15 s
period. In UPPAAL the property can be formalized using the
temporal logic TCTL [36]. The property can be captured by the

following TCTL formula:

A& ðððIn:Alarm and Pulse15_out¼ ¼ 0Þ imply A �
Pulse3:Out1Þ:
This formula was expressed in the UPPAAL specification

language with the special leads-to operator ‘‘-’’ as follows:

ðIn:Alarm and Pulse15_out¼ ¼ 0Þ-Pulse3:Out1:

In NuSMV, the specifications were formalized with LTL [2] and
the property was expressed in LTL as follows:

LTLSPEC G ððALARM & !pulse15S:BOÞ-FðOutputÞÞ:
The discovered error results in that the output of the system

freezes at a value of zero. The error is caused by a mistimed
operator action combined with the misuse of a time pulse block.
The used time pulse blocks are triggered by a rising edge and all
input changes during the pulse are ignored. The error occurs
when the manual bypass is activated during the 3 s control.
Subsequently, the 15 s block is reset, which creates a new rising
edge for the 3 s pulse block when the alarm is set, but because the
pulse is already set the rising edge is ignored. Since the 15 s pulse
block is reset a new rising edge to trigger the 3 s pulse block
cannot be created as long as the alarm is set.

Model checking times of the NuSMV model ranged between
0.3 s and 30 s depending on the used time step (10–1000 ms) and
the verified property. The size of the state space of the most
complicated scenario modeled with NuSMV was 1018. The
computation times of the UPPAAL model were between 9 s and
20 s, being a bit longer than those of NuSMV on average. Even
though the functionality of the system is quite simple and the
number of inputs is low, the timing functions remarkably increase
the size of the state space. In practice, it is not feasible to provide
an exhaustive analysis of these kinds of systems with traditional
methods.

In this case study the temporal logic specifications were
typically derived from a collection of natural language require-
ments that could be based on regulatory requirements, laws or
standards. However, these requirements seldom include all the
necessary detailed requirements of a system. Also, the task of
interpreting the high level regulatory requirements as precise
temporal logic specifications is quite challenging. Requirements
expressed in natural language are frequently ambiguous, or
inaccurate. It is often necessary to split the high level require-
ments into several precise formal statements that together cover
the high level requirement.

For instance, regarding the stepwise shutdown system, the
Finnish Regulatory Guide on nuclear safety YVL 5.5 [40] specifies
the following requirement ‘‘ythat errors in data communication
do not cause faulty functions or prevent the functioning of safety
functionsy’’ Similarly, the requirements specification of the sys-
tem defines that the system shall fulfill the single failure criterion.
In the stepwise shutdown system, these criteria were interpreted
as follows: (i) a single failure in input signals shall not prevent the
functioning of the system, and (ii) a single failure in input signals
shall not spuriously trigger the system. These two interpretations
were then translated into temporal logic specifications.

Fig. 2. Stepwise shutdown system.

J. Lahtinen et al. / Reliability Engineering and System Safety 105 (2012) 104–113 107

4.3. UPS control software

An uninterruptible power supply is a device used to provide
back-up power in case of power failures and to protect connected
equipment from various power disturbances. UPS devices are
used in safety-critical systems to guarantee an uninterrupted
power supply to the devices that must be continuously available
to ensure the safety of the system.

We applied model checking to verify the control software of an
industrial UPS [34]. The UPS was not specifically designed for
nuclear applications but a similar device could also be used in a
nuclear plant. The case study differs from the stepwise shutdown
system in many aspects. The software of the system was not
based on a function block design. The model was created by
reverse-engineering the control software implementation that
was already employed in the devices. The modeling task required
interviewing system developers as well. Detailed requirement
specification of the system was not available, and the formaliza-
tion of the temporal logic specifications was based on the
statements of the developers. The analysis of the system could
not be done using a totally non-restricted environment model as
is usually preferred. The speed at which the input line voltage can
possible rise had to be taken into account. In addition, the
behavior of the model is highly dependent on the various
operational delays in the electrical components. These parameters
had to be defined and verified with the developers of the system

as well. A simplified design diagram of the UPS is presented in
Fig. 4. The UPS feeds power to output either from a DC link
through an inverter or from a bypass input. The DC link is
powered through a rectifier, which filters sudden voltage changes
of the input power. It is possible to connect the inputs to separate
supply sources or to a common supply source. Two switches are
used to change between the two inputs: K1 in the bypass line and
K2 before the rectifier to cut power from the DC link.

The UPS should provide uniform quality power to the output.
For instance, it is not acceptable to feed overvoltage to the output.
Therefore, the voltage of both input lines is constantly measured.
If the rectifier line has overvoltage, the K2 switch is opened and
the bypass line is connected by closing the K1 switch. On the
other hand, if the bypass line has overvoltage, the K1 switch must
be opened and the power is provided only by a battery connected
to the DC link. If the inputs are connected to a common supply
source, the UPS should not switch to the bypass line if overvoltage
is detected on both inputs (i.e. symmetric input overvoltage).

An UPPAAL model of the system was built to investigate the
operation of the UPS in different overvoltage situations. A simplified
model of the system, presented in Fig. 5, consisted of four automata.
One automaton was used to model the operation of the K1 switch.
The DCLink and bypass automata modeled the relevant part of the
control software that controls the K1 switch in overvoltage situa-
tions. The environment automaton captured the system environ-
ment, i.e. when the overvoltage threshold is exceeded in the UPS

Fig. 3. UPPAAL model of the stepwise shutdown system.

Fig. 4. Simplified design diagram of the UPS.

J. Lahtinen et al. / Reliability Engineering and System Safety 105 (2012) 104–113108

inputs. For the purposes of simplicity, K2 was abstracted away from
the model and it was assumed that K2 could open anytime. A more
detailed description of the employed modeling approach and the
checked properties can be found in [34].

The design criterion of the UPS is to feed power to the output
as long as possible but it is not acceptable to feed overvoltage to
the output. This requirement is clear but it is very difficult to test
all possible event sequences. This difficulty stems from a range of
timing issues that have to be taken into account:

1. The switches open and close with a delay of 4–8 ms.
2. Filtering the bypass voltage measurement takes 5 ms.

3. Filtering the DC link voltage measurement takes 2 ms.
4. The bypass voltage measurement is read by an interrupt

handling routing that is called every 10 ms.
5. The rectifier delays the increase of voltage in the DC link

measurement. The magnitude of the overvoltage in the input
network affects the rate at which the voltage in the DC link
increases.

An error was discovered in the system that causes overvoltage
to be fed to the output. The error occurs in the symmetric
overvoltage situation. In the UPPAAL model, this was modeled

Fig. 5. UPPAAL model of the UPS system.

Fig. 6. Unwanted behavior revealed by model checking: overvoltage in the Bypass and K1 is closed.

J. Lahtinen et al. / Reliability Engineering and System Safety 105 (2012) 104–113 109

with a common InputOV synchronization that was sent to both
the DCLink and bypass automata by the environment automaton.
The timings related to the error are presented in Fig. 6. If the
voltage in the input network rises to a level 1.5 times the nominal
voltage, it causes the voltage in the DC link to increase at a rate of
10 V/ms. It takes seven milliseconds for the DC link voltage to
reach the overvoltage limit (DCLinkOV is set). The alarm bit
(DCOV_Filtered) is set after measurements filtering. At this point,
the K1 switch is commanded to close because the system is trying
to switch to the bypass line. In the bypass line the overvoltage is
recorded as soon as the measurement is filtered (BypassOV is set).
However, the system only reacts (BypAvailable is reset) to the
value when the interrupt handling routine is invoked. The routine
gives K1 switch the command to open. The error occurs because
the system may switch to bypass before the bypass line reacts to
the overvoltage. The demonstrated erroneous behavior can occur
only when the periodic interrupt handling routing is called
between 13 and 15 ms after the beginning of the overvoltage
situation.

The error was found by checking the property: ‘‘The UPS
should not transfer to bypass while there is overvoltage in the
bypass line’’. In UPPAAL specification language this behavior can
be written as:

A½ � ! ðBypassOV && K1:ClosedÞ:
The specification states that there should never be a situation,

in which there is overvoltage in the bypass and K1 is closed.

4.4. Typical errors discovered by model checking

Model checking has proven to be a useful tool for design
verification in several application areas. The design errors that
have remained unobserved by traditional testing and verification
methods, but have been discovered by model checking, are in our
experience typically infrequent scenarios where a few indepen-
dent events occur during a short time frame.

Experience in utilizing model checking in several industrial
cases has shown that hidden design errors are typically caused by
the designer of the system not taking into account (1) mistimed
manual actions, (2) events outside the actual logic, such as sensor,
communication or hardware failures, (3) physical events occur-
ring in an unexpected order or (4) simultaneity of several signals.
In function block based designs it has been noted that the use of
certain function blocks often facilitates the occurrence of design
faults. It might be that the functionality of these function blocks is
difficult for the designer to comprehend intuitively. Thus the
designer may incorrectly determine that the abovementioned
issues are not possible in the design.

The most problematic function blocks based on our experience
are rising edge triggered time pulse blocks, set–reset flip-flops
and modified function blocks that implement non-standard
functionality. The time pulse block is problematic since it is only
triggered by a rising edge and all input changes during the pulse
are ignored. Thus, if the input remains set or is set during the
pulse, the output of the time pulse block can freeze to zero.
The problem concerning the set–reset flip-flop is that it is difficult
to intuitively understand how changing the prioritization or the
initial value of the inner memory affects system behavior. Chan-
ging the type of a problematic flip-flop may cause a different error
that may be even more severe than the original during some other
rare event. The problem with non-standard function blocks is that
a function block might not act as expected in all situations,
e.g. the non-standard functionality may mask other actions of
the function block.

Errors like the ones described are hard to detect by simulation
or testing because the test designer must think of all the possible

system behaviors when the test plan is made. On the other hand,
the advantage of model checking is that it suffices to describe the
most important properties formally, i.e. the test designer does not
have to think of all possible behaviors himself, as the model
checking tool does this for him. The model checking tool inves-
tigates all possible behaviors and if errors are found, automati-
cally returns a counter-example showing the state transitions
leading to the erroneous behavior. Another advantage of model
checking is that it is possible to prove negative properties, i.e.
what the system should not do, which is hard to show by testing.

Based on our case studies thus far, we recommend that more
attention is put into testing boundary values of systems, manual
actions, and hardware failures. The test cases should focus more
on covering various timed sequences of inputs rather than only
increasing combinatorial coverage. In function block based
designs, parts using non-standard function blocks should be
analyzed more rigorously.

5. Discussion

As we have been able to reveal hidden design errors in our
case studies, model checking has been increasingly used as part of
the verification and inspection process in the Finnish nuclear
sector. The power companies and the nuclear safety authority
have been supporting the development and application of model
checking methods right from the beginning of our work. Integrat-
ing model checking more closely to the development, licensing
and qualification processes of systems could be very beneficial. It
would lead to verifying nuclear safety systems in a more formal
fashion, and the potential faults in the systems could be found
earlier in the system lifecycle.

Despite the clearly demonstrated benefits of using model
checking, it is still not widely in use for verification of safety-
critical systems. The reasons for this are: (1) amount of resources
needed to apply model checking, (2) lack of confidence in the
model checking results, and (3) lack of support in relevant
standards and regulations. In what follows, we discuss these
issues and give recommendations to improve the situation.

5.1. Model checking effort

In many cases model checking is not used simply because of
the assumed high volume of human resources needed for the
adoption and use of the method. Compared to effort needed for
the industrial deployment of some other formal methods, how-
ever, model checking requires relatively little training and human
resources. In model checking, the modeler does not have to
understand how the model checking tool itself works. It suffices
to be able to generate a model of the system. If methodology
exists for modeling a certain type of system, a new model can be
created quite quickly. Based on our experience, a moderate sized
function block based design can be modeled and analyzed within
five working days. The required effort naturally depends on the
complexity of the design. Also, if a model already exists, it is easy
to modify it according to changes made in the system, or analyze
new properties of the system. However, in cases where conven-
tional modeling methodology is not readily available, such as
in the UPS case study, the required modeling effort may be
substantial.

To improve the cost-effectiveness of the method, we recommend
improving the model checking process by automated model crea-
tion. This reduces the manual effort required for modeling and cuts
the costs of correcting errors that would otherwise be found later
in the product lifecycle. The approach would also significantly
reduce the number of human errors in modeling. Integrating a

J. Lahtinen et al. / Reliability Engineering and System Safety 105 (2012) 104–113110

model checking tool into the semantic modeling and simulation
platform Simantics is one step in this direction [35]. The semantic
approach of Simantics enables automatic conversion of function
block based design models to the format required by a model
checking tool.

5.2. Increasing confidence in the model checking results

The model checking method is not as fully developed as
traditional V&V methods, and the correctness of the model, the
temporal specifications checked and the tool used can be ques-
tioned if these issues are not addressed. This lack of confidence in
the model checking results limits the use of the results in the
licensing and qualification processes of systems.

More confidence in the results of model checking can be
achieved with a well-defined and documented process of using
the method, as well as ensuring that no mistakes are made in the
model checking process. This includes ensuring the correctness of
the tool, the model, and the specifications.

When a property of a system does not hold, model checking tool
produces a counter-example. It is then rather straightforward to
validate the counter-example, by testing for example. Thus, the
correctness of the model checking result is easy to ensure when a
fault is discovered. However, model checking tools do not provide
counter-examples when a property is satisfied and the model is
considered to function according to the specification. This is proble-
matic, because it is difficult to be assured of the correctness of the
claim. An error in the model, model checking tool or specification
could cause an erroneous response from the tool. Absence of errors is
difficult to show, but all issues concerning the correctness of the
model checking result should be addressed in some way.

Model checking is a method that is capable of exhaustively
analyzing whether a system is according to its specification. As it
is with all verification methods, absolute certainty of the correct-
ness of the system can never be achieved with model checking.
However, the reliability of the result can be increased through
various means up to a certain point.

It is obvious that reviewing (inspecting) the model and the
specification is beneficial, but reviews cannot prove the correctness
of systems. In order to increase confidence in the model, we
recommend model checking additional properties of the model, and
verifying that the outcomes match the expectations of the modeler.

The temporal logic formulas checked must represent the
original specifications of the system. Not only is it difficult to
formalize specifications, but often the natural language specifica-
tions themselves are incomplete or ambiguous. Correct formali-
zation of properties can be facilitated by training, and review
work, as well as using temporal logic requirements debugging
tools [26]. Other possible means of improvement are the use of
specification patterns, the use of demonstrative tools and syntac-
tic/semantic analysis of the formula.

Confidence in the tool itself can be supported by certification,
reverse-engineering and cross-checking with another model
checker [27]. The common position of nuclear regulators [24]
also states that previous operational usage can be used to validate
a tool. These approaches, however, are usually not feasible in
many practical cases. In our experience, cross-checking the
results with another model checker is the most feasible approach.
There are attempts [28,29] to combine model checking with
theorem proving. This approach can be used to automatically
generate a deductive proof when a model checking tool reports
that the specification holds. This proof could then be mechani-
cally checked by either humans or simple proof checking algo-
rithms. Even though theorem proving is time consuming and
labor intensive and these methods are not yet in routine

production use, the approach could be significant in the future
due to the strengths discussed above.

Elaborate documentation increases confidence in correct appli-
cation of model checking. We recommend that in order to make the
model checking results more credible, more effort should be put in
the justification of the selected abstraction level, and the conse-
quences of the selected assumptions in the model. Discussion of the
errors that are left outside the analysis should also be included.
Furthermore, the measures taken to ensure correctness of the
model checking process should be addressed in the documentation.

The common position of nuclear regulators [24] has similar
guidelines for formal methods. It requires that the system
boundaries are defined and selection of methods is justified.
The common position also requires the formalisms and methods
to have been previously used in a related application, and requires
a syntactical verification of the formal descriptions. These matters
should be part of the documentation of model checking results to
make them more credible for the safety demonstration.

Another recommendable addition to the documentation of the
results is suggested in [25], which proposes that a positive reply
of the model checker be accompanied by two additional simu-
lated paths: an interesting witness path, which attempts to
demonstrate that the specification can be satisfied non-vacuously,
and a non-interesting witness path, which is a path that is not
covered by the specification. These additions can demonstrate the
meaning of the specification in the model, and the behavior that is
beyond the scope of the specification.

5.3. Requirements in standards

In the nuclear domain, IEC 60880 [30] mentions model checking
as a complementary method for software verification. The more
generic IEC 61508 [31] recommends the use of model-based testing,
semi-formal and formal methods based on the intended safety
integrity level. The use of software verification tools to support the
verification process of safety-critical software is generally recom-
mended (but not required) in software standards. The reason for such
mild requirements for using formal methods is probably that until
recently their use has not been feasible for industrial sized systems.

In our case studies, the found errors were not discovered prior
to model checking. Thus there is definite advantage in the use of
formal methods. However, it is difficult to mention any specific
requirements that should be added to the current safety stan-
dards based on our case studies. The reason is that the standards
are so generic by their nature. Because of the conservative view in
standards, the introduction of new techniques is difficult in
general. However, now that the potential of model checking has
been demonstrated, its use should be somehow encouraged.

Our opinion is that the integration of model checking techniques
to the current certification process can be enhanced by using the
safety case approach, allowing model checking as an alternative
method for compliance in the standards, and by adding require-
ments on how the methods should be used in a systematic manner.

The safety case approach (see e.g. [42]) for certification enables the
use of formal methods based evidence, since the claim–argument–
evidence structure of the safety case is not dictated by regulation.
If the standards-based approach for certification is used, the standard
could encourage the use of formal methods by relieving the require-
ments set for other verification methods if a particular property is
shown by e.g. model checking. In the aviation domain standard DO-
178B [41], such alternative methods for compliance are allowed for
some objectives. Finally, the common position of nuclear regulators
[24] gives more specific practical requirements on how formal
methods should be utilized, but these requirements are not obliga-
tory. It would be useful if the key standards in safety-critical domains

J. Lahtinen et al. / Reliability Engineering and System Safety 105 (2012) 104–113 111

would give similar guidance on a systematic and well-defined process
of using formal methods.

6. Conclusions

Complex digital systems are increasingly being used to imple-
ment safety-critical systems. This presents new challenges for
verification. Systems with multiple inputs, memories inside the
system design and time-dependent behavior are impossible to
test or simulate exhaustively. To address this problem, model
checking has been applied to analyze several safety-critical
industrial systems.

This work shows that model checking is an applicable and
scalable method for the analysis of medium-sized industrial
systems. Two case studies were presented, in which an error
was detected. The scalability of model checking derives mostly
from efficient algorithms but modeling methodology plays a big
part in achieving sufficient scalability and thus applicability. The
main contribution of the paper is the development of systematic
methodology for modeling function block based system designs
using two model checking tools: NuSMV and UPPAAL. Our
modular methods for function block based models decrease the
modeling effort. In addition, the abstractions made on the
environment models simplify the verification of the system, while
resulting in safe model checking results.

There are clear benefits in using model checking. Our experi-
ence shows that the method can effectively be used to find hidden
erroneous behaviors that are typically not taken into account in
system design or test specification. Based on the found errors, we
recommend that more attention is put into testing various timed
sequences of inputs rather than increasing combinatorial cover-
age in tests. The test cases should focus more on boundary values
of systems, manual actions, and hardware failures.

Despite the clearly demonstrated benefits of using model
checking, it is still not widely in use for verification of safety-
critical systems. In our opinion, this is due to the seemingly high
effort in the adoption and use of the method, and the lack of
confidence in the results of the analysis.

In order to reduce the effort required to perform model
checking, we recommend improving the model checking process
by automated model creation. The measures taken to ensure
correctness of the used tools, modeling abstractions, the checked
specifications, and the model checking process should be system-
atically addressed in the documentation.

Regarding the requirement in standards, the current stan-
dards-based certification process could be enhanced by allowing
model checking as an alternative method for compliance in the
standards, and by adding requirements on how the methods
should be used in a systematic manner. An alternative certifica-
tion approach based on a safety case would also allow relatively
novel methods to be used more extensively.

To further improve the applicability of the method, we plan to
develop modeling methodology for large distributed systems. Our
future research subjects include applying compositional model
checking techniques and assume-guarantee reasoning to enable
the analysis of large complex systems, developing more systema-
tic methodology for asynchronous distributed systems and
expanding our models modularly by adding fault models to them.

References

[1] Kaivola R, Ghughal R, Narasimhan N, Telfer A, Whittemore J, Pandav S, et al.
Replacing testing with formal verification in Intel CoreTM i7 processor
execution engine validation. CAV 2009: Lecture Notes in Computer Science
2009;5643:414–29.

[2] Clarke E, Grumberg O, Peled D. Model checking. The MIT Press; 1999.

[3] Baier C, Katoen J-P. Principles of model checking. MIT Press; 2008.
[4] Cimatti A, Clarke E, Giunchiglia E, Giunchiglia F, Pistore M, Roveri M., et al.

NuSMV2: an OpenSource tool for symbolic model checking. In: Proceedings
of the international conference on computer-aided verification. Copenhagen,
Denmark; 2002.

[5] Cavada R, Cimatti A, Jochim CA, Keighren G, Olivetti E., Pistore M, et al.
NuSMV 2.5 user manual. FBK-IRST 2010 [see also /http://nusmv.fbk.eu/S].

[6] Behrmann G, David A, Larsen KG. A tutorial on UPPAAL. In: Bernardo M,
Corradini F, editors. Formal methods for the design of real-time systems
(revised lectures), of lecture notes in computer science, vol. 3185; 2004. p.
200–37 [see also /http://www.uppaal.com/S].

[7] Burch J, Clarke E, McMillan K, Dill D, Hwang L. Symbolic model checking:
10^20 states and beyond. Information and Computation 1992;98(2):142–70.

[8] Fix L. Fifteen years of formal property verification in Intel. 25 Years of model
checking. Lecture Notes in Computer Science 2008;5000:139–44.

[9] Ben-David S, Eisner C, Geist D, Wolfsthal Y. Model checking at IBM. Formal
Methods in System Design 2003;22(2):101–8.

[10] Jhala R, Majumdar R. Software model checking. ACM Computing Surveys
2009;41:4.

[11] Ball T, Cook B, Levin V, Rajamani S. SLAM and static driver verifier:
technology transfer of formal methods inside Microsoft. In: Proceedings of
the fourth international conference on integrated formal methods. Lecture
notes in computer science, vol. 2999; 2004. p. 1–20.

[12] Holzmann GJ, Smith MH. Automating software feature verification. Bell Labs
Technical Journal (BELL) 2000;5(2):72–87.

[13] David A, Yi W. Modelling and analysis of a commercial field bus protocol. In:
Proceedings of the 12th Euromicro conference on real time systems; 2000.
p. 165–72.

[14] Rushby J. Using model checking to help discover mode confusions and other
automation surprises. Reliability Engineering and System Safety 2002;75(2):
167–177.

[15] Bengtsson J, Griffioen WOD, Kristoffersen KJ, Larsen KG, Larsson F, Pettersson
P, et al. Automated verification of an audio-control protocol using UPPAAL.
Journal of Logic and Algebraic Programming 2002;52–53:163–81.

[16] Miller SP, Anderson EA, Wagner LG, Whalen MW, Heimdahl MPE. Formal
verification of flight critical software. In: Proceedings of the AIAA guidance,
navigation and control conference and exhibit. San Francisco; August 15–18,
2005.

[17] Ortmeier F, Schellhorn G, Thums A, Reif W, Hering B, Trappschuh H. Safety
analysis of the height control system for the Elbtunnel. Reliability Engineer-
ing and System Safety 2003:259–68 [safety, reliability and security of
industrial computer systems].

[18] Koh KY, Seong PH. SACS2: a dynamic and formal approach to safety analysis
for complex safety critical system. In: Proceedings of the sixth American
nuclear society international topical meeting on nuclear plant instrumenta-
tion, control, and human–machine interface technologies. Knoxville, Tennes-
see; April 2009.

[19] Yoo J, Cha SD, Jee EA. Verification framework for FBD based software in nuclear
power plants. In: Proceedings of the fifteenth Asia-Pacific Software Engineer-
ing Conference; 2008. p. 385–92.

[20] Yoo J, Jee E, Cha SD. Formal modeling and verification of safety-critical
software. IEEE Software 2009;26(3):42–9.

[21] Koo SR, Seong PH, Yoo J, Cha SD, Youn C, Han H. NuSEE: an integrated
environment of software specification and V&V for PLC based safety-critical
systems. Nuclear Engineering and Technology 2006;38(3).

[22] Holzmann GJ. The SPIN model checker: primer and reference manual.
Addison-Wesley; 2003.

[23] Hunt Jr. WA, Swords S. Centaur technology media unit verification. CAV
2009: Lecture Notes in Computer Science 2009;5643:353–67.

[24] EUR 19265 Rev. 2010. Licensing of safety critical software for nuclear
reactors. Common position of seven European nuclear regulators and
authorised technical support organisations.

[25] Chockler H, Kupferman O, Vardi MY. Coverage metrics for temporal logic
model checking. Formal Methods in System Design 2006;28(3):189–212.

[26] Bloem R, Cimatti A, Greimel K, Hofferek G, Könighofer R, Roveri M, et al.
RATSY—a new requirements analysis tool with synthesis. CAV 2010: Lecture
Notes in Computer Science 2010;6174:425–9.

[27] IAEA. Software for computer based systems important to safety in nuclear
power plants. IAEA safety guide NS-G-1.1; 2000.

[28] Namjoshi KS. Certifying model checkers. Lecture Notes in Computer Science
2001;2102:2–13.

[29] Peled D, Zuck L. From model checking to a temporal proof. In: SPIN ’01:
proceedings of the eighth international SPIN workshop on model checking of
software; 2001. p. 1–14.

[30] International Electrotechnical Commission. IEC 60880. Nuclear power
plants – I&C systems important to safety – software aspects for computer
based performing category A functions; 2006.

[31] International Electrotechnical Commission. IEC 61508. Functional safety of
electrical/electronic/programmable electronic safety-related systems; 2009.

[32] Björkman K, Frits J, Valkonen J, Lahtinen J, Heljanko K, Niemelä I, et al.
Verification of safety logic designs by model checking. In: Proceedings of the
sixth American nuclear society international topical meeting on nuclear plant
instrumentation, control, and human–machine interface technologies. Knox-
ville, Tennessee; April 2009. ISBN: 978-0-89448-067-6.

[33] Lahtinen J, Björkman K, Valkonen J, Frits J, Niemelä I. Analysis of an
emergency diesel generator control system by compositional model

J. Lahtinen et al. / Reliability Engineering and System Safety 105 (2012) 104–113112

http://nusmv.fbk.eu/S]
http://www.uppaal.com/S]

checking—MODSAFE 2010 work report. VTT working papers 156. Espoo: VTT
Technical Research Centre of Finland; 2010 [see also /http://www.vtt.fi/inf/
pdf/workingpapers/2010/W156.pdfS].

[34] Frits J. Model checking embedded control software. Research report TKK-ICS-
R28. Espoo, Finland: Aalto University School of Science and Technology,
Department of Information and Computer Science; March 2010.

[35] Pakonen A, Lahtinen J, Kuutti V-P, Karhela T. Integrating model checking with
safety-critical I&C software design. In: Proceedings of the seventh interna-
tional topical meeting nuclear plant instrumentation, control and human–
machine interface technologies. Las Vegas (NV); 7–11 November 2010.

[36] Alur R, Courcoubetis C, Dill DL. Model checking for real-time systems. In:
Proceedings of the fifth annual IEEE symposium on logic in computer science.
IEEE Computer Society Press: Philadelphia (PA); 4–7 June 1990. p. 414–25.

[37] Alur R, Dill DL. A theory of timed automata. Theoretical Computer Science
1994;126(2):183–235.

[38] Björkman K, Valkonen J, Ranta J. Verification of automated changeover
switching unit by model checking. In: Proceedings of the seventh interna-
tional topical meeting on nuclear plant instrumentation, control and human–
machine interface technologies (NPIC&HMIT 2010). Las Vegas (NV); Novem-
ber 7–11, 2010. p. 1719–28.

[39] Valkonen J, Koskimies M, Pettersson V, Heljanko K, Holmberg J-E, Niemelä I,
et al. Formal verification of safety I&C system designs: two nuclear power
plant related applications. Enlarged Halden programme group meeting. In:
Proceedings of man–technology–organisation session. Loen, Norway; 18–23
May, 2008.

[40] STUK Regulatory Guides on Nuclear Safety. Guide YVL 5.5, instrumentation
systems and components at nuclear facilities. Helsinki: Radiation and
Nuclear Safety Authority; 2002.

[41] Requirements and technical concepts for aviation, Washington, DC. DO-
178B: software considerations in airborne systems and equipment certifica-
tion; December 1992. Also issued as EUROCAE ED-12B in Europe.

[42] Kelly TP, McDermid JA. Safety case construction and reuse using patterns. In:
Daniel P, editor. SAFECOMP97: the 16th international conference on compu-
ter safety, reliability and security. York, UK: Springer; 7–10 September 1997.
p. 55–69.

[43] Ball T, Levin V, Rajamani SK. A decade of software model checking with
SLAM. Communications of the ACM 2011;54(7):68–76.

J. Lahtinen et al. / Reliability Engineering and System Safety 105 (2012) 104–113 113

http://www.vtt.fi/inf/

Publication II

Jussi Lahtinen, Kim Björkman, Janne Valkonen, Ilkka Niemelä. Emergency

diesel generator control system verification by model checking and com-

positional minimization. In 8th Doctoral Workshop on Mathematical and

Engineering Methods in Computer Science (MEMICS 2012), Znojmo, Czech

Republic. Antonín Kučera, Thomas A. Henzinger, Jaroslav Nešetřil, Tomás

Vojnar and David Antoš (Eds), p. 49 – 60, NOVPRESS 2012.

c© 2012 NOVPRESS.

Reprinted with permission.

171

Emergency Diesel Generator Control System
Verification by Model Checking and

Compositional Minimization

Jussi Lahtinen, Kim Björkman, Janne Valkonen, and Ilkka Niemelä

VTT Technical Research Centre of Finland, Systems Research, P.O. Box 1000,
FI-02044 Espoo, Finland.

Department of Information and Computer Science, School of Science, Aalto
University, P.O. Box 15400, FI-00076 Aalto, Finland.

{jussi.lahtinen,kim.bjorkman,janne.valkonen}@vtt.fi

ilkka.niemela@aalto.fi

Abstract. Digital instrumentation and control (I&C) systems contain-
ing programmable logic controllers are challenging to verify. They enable
complicated control functions and the state spaces (number of distinct
values of inputs, outputs and internal memory) of the designs easily be-
come too large for comprehensive manual inspection. Model checking
is a formal method that can be used for verifying that systems have
been correctly designed. A number of efficient model checking systems
are available which provide analysis tools that are able to determine au-
tomatically whether a given state machine model satisfies the desired
safety properties. However, model checking of large complex systems is
often quite infeasible. In this paper, we present a compositional mini-
mization technique for abstracting large modular function block based
systems. We have applied the abstraction technique to the verification
of a safety-critical emergency diesel generator control system. The sys-
tem is so large that the non-abstract model could not be model checked
within reasonable resources. Using the abstraction technique we man-
aged to verify several universal properties of the system and were able
to discover errors in the system designs. The abstraction technique is
intended as a basis for an iterative abstraction refinement framework.

Key words: model checking, verification, validation, compositional
minimization, diesel generator

1 Introduction

Verification of digital instrumentation and control (I&C) systems is challenging
because programmable logic controllers enable complicated control functions and
the state spaces (number of distinct values of inputs, outputs and internal mem-
ory) of the designs easily become too large for comprehensive manual inspection.
Design verification is a key task in the design flow, because it can eliminate tricky
design errors which are hard to detect later in the development process and are

mailto:ilkka.niemela@aalto.fi

2 Lahtinen et al.

very expensive to repair, often leading to a major redesign and reimplementa-
tion cycle. Typically, verification and validation (V&V) activities rely heavily on
subjective evaluation, which covers only a limited part of the possible behaviours
of the system, and therefore more rigorous formal methods are required.

Model checking [1] is a formal method that can be used for verifying the cor-
rectness of system designs. It has been used in verifying the correct behaviour of
e.g. hardware and microprocessor designs, data communications protocols and
operating system device drivers. A number of efficient model checking systems
are available which provide analysis tools that are able to automatically deter-
mine whether a given state machine model satisfies given specifications. Model
checking can also handle delays and other time-related operations, which are
crucial in safety I&C systems and challenging to design and verify.

Model checking has been successfully applied to the verification of individual
nuclear domain safety I&C systems, see e.g. [2]. In the nuclear domain, however,
it is common to cope with hardware failures by implementing several diverse
systems that execute the same physical function using different design, software
and/or hardware. Because of this, it may be necessary to examine these systems
simultaneously, because they might influence the same physical parameters. This
requirement leads to very large models that are too complex to model check
within reasonable resources.

This paper introduces the development of a compositional verification ap-
proach for model checking large system designs. The approach is utilized in the
analysis of a case study concerning the control system of an emergency diesel
generator. In our technique the system is divided into modules. Based on the
specification, some system functionality may be irrelevant and can be left out of
the model. Abstractions of the model are created by replacing a subset of the
modules with non-deterministic interface modules similar to the compositional
minimization approach [3]. A more detailed description of the work can be found
in a technical report [4].

The rest of the paper is structured as follows. Section 2 introduces related
work. Section 3 provides background information on model checking methodol-
ogy. Section 4 describes the emergency diesel generator control system and some
of its main requirements. Section 5 introduces compositional minimization as
an approach for large modular function block based systems. Finally, Section 6
sums up the results and findings concerning the emergency diesel generator case,
and Section 7 concludes the paper.

2 Related Work

The general idea in compositional verification is to break down the specification
into several specifications describing the behaviour of individual components
or modules of that system. Checking these local specifications is usually more
feasible, and if the conjunction of the local properties implies the original speci-
fication, it is possible to deduce that the entire system satisfies the specification

EDG Control System Verification by Model Checking 3

as well. Many of the techniques [5, 3] require that the system is composed of
interconnected modules.

Many approaches to compositional verification exist. These techniques in-
clude compositional minimization [3], assume-guarantee reasoning [6, 7] (includ-
ing circular reasoning techniques [8]), partitioned transition relations [9] and lazy
parallel composition [5].

In compositional minimization [3] the system is abstracted using reduced
versions of some of the system’s modules. The idea behind the compositional
minimization is that not every part of the logic is necessarily required in order
to verify a property. The reduced modules, or ’interface modules’, are abstracted
away from their intrinsic functionality, so that the modules’ behaviour is com-
pletely non-deterministic, making the verification significantly more efficient. In
this work we have applied the concept of compositional minimization to the
analysis of function block diagrams by model checking. We have also developed
semi-interface modules that preserve some of the modules’ functionality.

3 Model Checking

Model checking [1, 10, 11] is a computer-aided verification method developed to
formally verify the correct functioning of a system design model by examining all
of its possible behaviours. The models used in model checking are quite similar to
those used in simulation, as basically the model must describe the behaviour of
the system design for all sequences of inputs. However, unlike simulation, model
checkers examine the behaviour of the system design with all input sequences
and compare it with the system specification. In model checking, at least in
principle, the analysis can be fully automated with computer-aided tools. The
specification is expressed in a suitable language, temporal logics being a prime
example, describing the permitted behaviours of a system. Given a model and
a specification as inputs, a model checking algorithm determines whether the
system has violated its specification. If none of the behaviours of the system
violate the given specification, the (model of the) system is correct. Otherwise,
the model checker will automatically give a counter-example execution of the
system demonstrating how the specification has been violated.

We have used the model checker NuSMV [12, 13], which was originally de-
signed for hardware model checking. NuSMV is a state-of-the-art symbolic model
checker that supports synchronous state machine models where the real-time
behaviour must be modelled using discrete time steps. NuSMV supports model
checking using both Linear Temporal Logic (LTL) and Computation Tree Logic
(CTL) [1] making it quite flexible in expressing design specifications. The model
checking algorithms employed in this work are based on symbolically repre-
senting and exploring the state space of the system by using Binary Decision
Diagrams (BDDs) [14, 15]. In addition, SAT-based (Propositional Satisfiability)
bounded model checking [16] is also supported by NuSMV [17] for finding bugs
in larger designs.

4 Lahtinen et al.

4 Description of the Emergency Diesel Generator Control
System

4.1 Emergency Diesel Generator Control

The case study is based on high-level design documentation of the control system
that does not take into account the redundant implementations of the system
and related voting logic that will be realised in the final system. This work
focuses on the control logic of the diesel generator system that is represented as
function block diagrams.

The purpose of the emergency diesel system is to provide reserve power in
case the primary power supply fails. Emergency diesel systems are used in e.g.
nuclear power plants where it is essential that safety systems are constantly
connected to a power supply. In case of a black out or a disturbance in the
main power supply, the diesel generators can be quickly turned on to keep the
necessary devices available.

The inputs of the diesel control system logic include voltage and frequency
measurements, operator commands, check-back signals and measurements of the
conditions of the diesel generator. The outputs of the logic are control signals for
the diesel generator, the breakers, cooling systems and load protection signals
for several pumps and other devices, for which power can be supplied by the
diesel generator.

In addition to the function block diagrams, parts of the system environment,
i.e. the expected diesel functionality, the busbar and the related breakers are
also included in the model. Figure 1 illustrates the high level architecture of the
electrical connections of the system. One of the control system’s objectives is
to connect the busbar to an available power supply. Typically only one power
source is connected to the busbar.

Fig. 1. The high level architecture of the electrical connections.

There is a large amount of logic related to the diesel generator control. The
system analyzed here covers 10 different control functions, including functions

EDG Control System Verification by Model Checking 5

related to the activation of the diesel generators, operation of the diesel genera-
tors, protection of the diesel generators, and voltage and frequency regulation. In
addition, some functions are diverse implementations of other functions. In most
cases each function was modelled as a separate module. Due to non-disclosure
agreements, the more detailed system descriptions are not presented.

4.2 System Requirements

Based on general system requirements, a list of detailed requirements was created
and verified. However, the detailed requirements and temporal logic specifica-
tions are not covered in this paper due to confidentiality issues. The checked
specifications were based on the following general system requirements:

1. If there is a reason to start the diesels, they will be started, and they will
eventually feed power to the busbar.

2. When the diesels are started, a specified starting sequence is followed.
3. Loads are connected to the diesels according to a specified loading sequence.
4. The diesels take a few seconds to reach their operating speed. No loads

should be connected to the generators during this time.
5. The connections to the busbar are controlled by several breakers as illus-

trated in Figure 1. The breakers should be operated in a safe fashion.
6. The control of the diesels is realised by several diverse systems. The priori-

tisation of the different systems’ signals must be correct.
7. There should be no race conditions.

5 Abstracting Large Modular Models

It is possible that only a small part of the model is needed in order to verify a par-
ticular specification. It should be possible to easily leave some parts of the model
outside examination. We achieve this through compositional minimization.

In our approach, function block diagrams are modelled as follows. A function
block library is first written that consists of descriptions of all individual function
blocks. In addition to Boolean operations, function blocks may realize more
complicated functions using memories, such as flip-flops or various timers. The
function blocks handle signal status information as well. Every signal carries a
status bit that is used to mark the signal faulty. A faulty signal can affect the
function block operation.

A function block diagram is modelled as a module that has a set of inputs, a
set of outputs, and a set of function blocks that are instantiated from the function
block library. A very simple example function block diagram is presented in
Figure 2. It has three inputs, two outputs, and two AND function blocks.

The corresponding NuSMV model consists of a function block description
of the AND function block, and the description of the function block diagram
that instantiates the AND blocks. These two modules are presented below. In
addition to the presented modules the main module of the model is needed.

6 Lahtinen et al.

Fig. 2. An example function block diagram.

MODULE AND_FB(input1, input1_status, input2, input2_status)

DEFINE

output1 := input1 & input2;

output1_status := input1_status | input2_status;

MODULE example_diagram(input1, input1_status, input2,

input2_status, input3, input3_status)

VAR

AND1 : AND_FB(input1, input1_status, input2, input2_status);

AND2 : AND_FB(AND1.output1, AND1.output1_status,

input3, input3_status);

DEFINE

output1 := AND1.output1;

output2 := AND2.output1;

output1_status := AND1.output1_status;

output2_status := AND2.output1_status;

The function block diagrams are modelled as modules as described above. In
our compositional minimization approach a subset of these modules are replaced
with abstract versions. The abstract version can be either a completely non-
deterministic full-interface module or a semi-interface module that contain parts
of the original logic of the modules. An abstraction of the system model is created
by selecting the abstraction-level of each module that describes a function block
diagram. The full-interface abstraction and the semi-interface abstraction are
described below.

A full-interface module contains no function blocks, and the outputs of the
module are defined simply as free non-deterministic variables. Definition of the
output variables as free variables is a complete over-approximation of the module,
i.e. no restrictions on the behaviour of the module are set. A set of full-interface
modules can be manually written in parallel with the model construction process.

EDG Control System Verification by Model Checking 7

Below is the full-interface module of the function block diagram in the running
example.

MODULE example_diagram_interface(input1, input1_status, input2,

input2_status, input3, input3_status)

VAR

output1 : boolean;

output2 : boolean;

output1_status : boolean;

output2_status : boolean;

In semi-interface modules some function blocks are non-abstract, and some
are approximated by ’interface function blocks’. Interface function blocks are
dummy function blocks, the outputs of which are defined as free variables. For
easy utilisation, an interface function block library was created.

The semi-interface module is created as follows. The abstraction parame-
ters are a set of module outputs and the depth n of the abstraction. A program
slicing method is then used to select a subset of function blocks that remain non-
abstract. Other function blocks are transformed into interface function blocks.
The program slicing method handles the function block diagram as a dependency
graph, in which the signals between function blocks indicate one-way dependen-
cies. Starting from the defined outputs, the program slicing method travels that
dependency graph for n steps in a breadth-first manner, and selects the function
blocks that are encountered. In our running example a semi-interface module
could be created by replacing one of the AND blocks with an instance of an
interface AND block. The model code for the interface AND block is below.

MODULE AND_FB_interface(input1, input1_status, input2,

input2_status)

VAR

output1 : boolean;

output1_status : boolean;

In our previous models, e.g. in [2], abstracting away from some functionality
of a large system required a lot of manual effort. This work is reduced to selecting
an abstraction level for each module. The model can then be generated using a
simple computer script.

An example of a model configuration is shown in Figure 3. The model in
the figures consists of five modules. Each of these modules has a set of func-
tion blocks. The function blocks are depicted as boxes, where grey boxes stand
for non-abstract function blocks and white boxes stand for interface function
blocks. The figure presents a configuration of one non-abstract module, one semi-
interface module and three full-interface modules.

As the abstract model can be easily compiled, the remaining questions are: 1)
How is the abstraction used to deduce whether a property is true in the accurate
non-abstract model? 2) How can the correct configuration of modules be found,
that both allows a property to be verified and is computationally manageable?

8 Lahtinen et al.

Fig. 3. A model configuration of one non-abstract module, one semi-interface module
and three full-interface modules.

The first question can be answered when the examined system property is a
universally quantified property, i.e. properties of LTL and ACTL*. If a universal
property is true in a model configuration, in which some of the modules are
replaced by interface modules, the same property is also true in the accurate non-
abstract model. Interface modules are over-approximations, i.e. they have more
behaviour than the regular non-abstracted modules. If a model configuration
that uses these interface modules cannot produce undesired behaviour (violate
the checked property), then the accurate model also cannot violate the property.

If a universal property is false in a model configuration containing interface
modules, it should be determined whether the violation of the property is feasible
in the non-abstract model, or if the violation is caused by the interface modules.
If the property is violated because of the behaviour of the interface modules,
a new refined configuration of interface modules and non-abstracted modules
should be selected for further analysis.

Regarding the second question, an automatic method for the selection of the
model configuration (similar to [18]) can be created, and thus the verification of
large systems can in many cases be automated based on an iterative algorithm.
In this work the model configuration is selected manually, but the abstraction
technique is intended as a basis for an automatic iterative abstraction refinement
technique. We have already experimented with various automatic methods but
this work is not part of this paper.

6 Results and Findings

The emergency diesel generator control system was modelled with the NuSMV
model checking tool. The NuSMV model consists of nine modules representing

EDG Control System Verification by Model Checking 9

the ten system functions (two functions were merged in to one module), a func-
tion block library and four modules representing the environment of the system.
In addition, interface modules were created for each module (14 modules). For
the purpose of using semi-interface modules, an interface function block library
was also created. The NuSMV model has 2200 lines of code, including tests and
comments. This does not include code for the interface modules (680 lines) or
the interface function block library (230 lines).

Several properties of the diesel control system were analysed by model check-
ing. The non-abstract NuSMV model is so complex that properties cannot be
checked on the non-abstract model using a practical amount of time or memory.
Fortunately, most of the examined properties in this case study can be verified
by using model configurations in which only one or two non-abstract modules are
present, and other modules are replaced with interface modules. The required
model configuration is case-specific. Some properties, however, require the in-
clusion of several modules. When several modules are required for verification,
semi-interface modules can be used to further avoid state space explosion. In
what follows, we present an example of a true property of the system, and an
example of an error that was found in the system design.

6.1 True Property Verification

One of the system requirements states that there should be no race conditions.
For a particular device controlled by the system this means that it should not be
possible to drive the device on and off at the same time by different functions.
The device can be controlled by two functions that communicate with each
other. These functions were modelled as two modules: Module1 and Module2.
The systems operate erroneously if they produce conflicting control signals that
are not marked as faulty (by their respective status bits). The resulting temporal
logic formula was then:

G !(Module1.Device_ON & not Module1.Device_ON_Fault_status &

Module2.Device_OFF & not Module2.Device_OFF_Fault_status).

The property cannot be verified in the full model because of the state explo-
sion problem. In order to verify the specification we created a model configura-
tion in which the two related modules were included in addition to two other
modules describing the behaviour of the diesel devices (Module3 and Module4).
Other modules of the model were replaced with their respective interface mod-
ules. Later it was noticed that a smaller model configuration suffices to prove the
property: the diesel behaviour (Module3 andModule4) is irrelevant to the proof,
and these modules can also be replaced with interface modules. The verification
times and state spaces in these different model configurations are presented in
Table 1. The state space for the full non-abstract model could not be calculated
in reasonable time. The runs were performed on a PC with Inter Core i7 Q740
processor and 3 GB of RAM. For model checking, NuSMV version 2.5.4 was
used.

10 Lahtinen et al.

Table 1. Verification times and state space sizes in various model configurations

Model Time Mem (MB) Reachable state space /
Full state space

Full model > 2 h > 124 - / -
Modules 1, 2 29 s 54 6.5× 1080 / 1.7× 10117

Modules 1, 2, 3, 4 690 s 68 1.5× 1079 / 2.2× 10119

6.2 Found Errors

The analysis of some system properties resulted in counter-examples on the ab-
stract models. In order to check whether these counter-examples were spurious,
we ran bounded model checking on the full model using the counter-example
length as the bound. Counter-examples that could be produced in the full model
were interpreted as real system design errors. Some of these violations could be
explained by the generality of the design documentation, i.e. the level of detail
used in the design documentation did not fully include signal status handling.
Other findings were related to the timing issues of the logic. In what follows, an
error in which two consecutive operational sequences interfere with each other
is examined in more detail.

A design error was found, in which a certain control sequence of the diesel
is disrupted and restarted rapidly. This results in unwanted behaviour since the
first sequence has not ended properly before the second sequence starts.

Part of the logic causing an overlapping sequence is illustrated in Figure 4.
The logic consists of a set-reset flip-flop, two TON timer blocks (8 s, 30 s), a
time pulse function block (10 s), AND-block and an OR-block. The logic intends
to carry out a starting sequence of alternating signals given to a device. The
sequence is specified so that first the ON-signal is given for 8 seconds, and then
the OFF-signal is given for 10 seconds. After the OFF-signal, the ON-signal is
given again for 12 seconds.

The intended sequence may be interrupted by the Reset signal but the inter-
rupt should occur in a safe way. In particular, it is expected that the ON-signal
is not given continuously for long periods of time, since this might be harmful
to the device. To check for unnecessarily long control periods we implemented
an observer variable in the model that counted the time that the ON-signal had
been set. Then we checked whether the counter variable could reach a value of
greater than or equal to 20 seconds using the temporal formula:

G (counter < 20)

When this property was examined by model checking, a counter-example was
found in which the ON-signal is continuously set for 22 seconds. This behaviour
occurs when the starting sequence is reset and quickly restarted just after 8
seconds after the first Start signal. This way the time pulse block is not reset,
which interferes with the newly restarted system behaviour. In particular, the
time pulse will not be re-initiated because the time pulse function block does
not detect the rising edge from the 8 s TON-block.

EDG Control System Verification by Model Checking 11

Fig. 4. Part of the logic related to overlapping sequences.

7 Conclusions

In this paper we have introduced an abstraction technique for model checking
large modular function block based systems, in which abstractions of the model
are created by replacing a subset of the modules with non-deterministic interface
modules. We have applied the technique and the NuSMV model checking tool
to the analysis of an emergency diesel control system.

The developed abstraction technique allows the model checking of large sys-
tems that otherwise can not be examined as quickly and smoothly. In the case
study we were able to verify several safety properties of the system that could not
be verified without the abstraction. We also found errors in the system design.

The compositional verification technique used here significantly reduces the
manual work required for modelling, and reduces the required verification time
of the model. The technique can be further automated to ease the analysis of
large systems. The work described here is intended as a basis for an iterative
abstraction refinement tool that can automatically select a suitable model con-
figuration that is computationally feasible but at the same time describes the
system to be analyzed with enough detail to enable verification of the selected
property. The results of the model checking tool can be used for selecting such
a configuration.

The benefit of the method is dependent on the checked temporal property.
Only universal properties can be examined with the current methodology. Also,
all properties may not be checked with the method because some properties
are dependent on a large portion of the logic and, thus, verifying the property
requires the inclusion of too many modules.

Future work includes the development of the iterative abstraction refinement
tool, extending the methodology to cover liveness properties, and developing
asynchronous modelling methodology. Our current NuSMV modelling technique
is based on the assumption that the communication between different functions
is synchronized. The assumption is, however, false since the functions are often
implemented on separate decentralised processors. We have previously analysed
asynchronous phenomena using timed automata (see e.g. [4]). Similar method-
ology would be useful also in the context of our NuSMV models.

12 Lahtinen et al.

References

1. Clarke, E.M., Grumberg, O., Peled, D.: Model checking. MIT Press (2001)
2. Lahtinen, J., Valkonen, J., Björkman, K., Frits, J., Niemelä, I., Heljanko, K.: Model

checking of safety-critical software in the nuclear engineering domain. Reliability
Engineering & System Safety (2012) Available online.

3. Clarke, E.M., Long, D.E., McMillan, K.L.: Compositional model checking. In:
LICS. (1989) 353–362

4. Lahtinen, J., Björkman, K., Valkonen, J., Frits, J., Niemelä, I.: Analysis of an
emergency diesel generator control system by compositional model checking. VTT
Working Papers 156, VTT Technical Research Centre of Finland (2010)

5. Berezin, S., Campos, S.V.A., Clarke, E.M.: Compositional reasoning in model
checking. In de Roever, W.P., Langmaack, H., Pnueli, A., eds.: COMPOS. Volume
1536 of Lecture Notes in Computer Science., Springer (1997) 81–102

6. Rushby, J.: Formal verification of McMillan’s compositional assume-guarantee rule.
Technical report, University of Minnesota, Minneapolis (2001)

7. Dams, D., Gerth, R., Leue, S., Massink, M., eds.: Theoretical and Practical Aspects
of SPIN Model Checking, 5th and 6th International SPINWorkshops, Trento, Italy,
July 5, 1999, Toulouse, France, September 21 and 24 1999, Proceedings. In Dams,
D., Gerth, R., Leue, S., Massink, M., eds.: SPIN. Volume 1680 of Lecture Notes in
Computer Science., Springer (1999)

8. McMillan, K.L.: Circular compositional reasoning about liveness. In Pierre, L.,
Kropf, T., eds.: CHARME. Volume 1703 of Lecture Notes in Computer Science.,
Springer (1999) 342–345

9. Burch, J.R., Clarke, E.M., Long, D.E.: Symbolic model checking with partitioned
transistion relations. In: VLSI. (1991) 49–58

10. Clarke, E.M., Emerson, E.A.: Design and synthesis of synchronization skeletons
using branching-time temporal logic. In Kozen, D., ed.: Logic of Programs. Volume
131 of Lecture Notes in Computer Science., Springer (1981) 52–71

11. Queille, J.P., Sifakis, J.: Specification and verification of concurrent systems in
CESAR. In Dezani-Ciancaglini, M., Montanari, U., eds.: Symposium on Program-
ming. Volume 137 of Lecture Notes in Computer Science., Springer (1982) 337–351

12. Cavada, R., Cimatti, A., Jochim, C.A., Keighren, G., Olivetti, E., Pistore, M.,
Roveri, M., Tchaltsev, A.: NuSMV 2.5 User Manual. FBK-irst. (2010)

13. FBK-IRST, Carnegie Mellon University, University of Genova and University of
Trento: Nusmv model checker v.2.5.4 (2012)

14. Bryant, R.E.: Graph-based algorithms for boolean function manipulation. IEEE
Trans. Computers 35(8) (1986) 677–691

15. McMillan, K.L.: Symbolic model checking. Kluwer (1993)
16. Biere, A., Cimatti, A., Clarke, E.M., Zhu, Y.: Symbolic model checking without

BDDs. In Cleaveland, R., ed.: TACAS. Volume 1579 of Lecture Notes in Computer
Science., Springer (1999) 193–207

17. Biere, A., Heljanko, K., Junttila, T.A., Latvala, T., Schuppan, V.: Linear encodings
of bounded LTL model checking. Logical Methods in Computer Science 2(5:5)
(2006) 1–64

18. Clarke, E.M., Gupta, A., Strichman, O.: SAT-based counterexample-guided ab-
straction refinement. IEEE Trans. on CAD of Integrated Circuits and Systems
23(7) (2004) 1113–1123

Publication III

Jussi Lahtinen, Tuomas Kuismin and Keijo Heljanko. Verifying large modu-

lar systems using iterative abstraction refinement. Reliability Engineering

& System Safety, Vol. 139, p. 120 – 130, Elsevier 2015.

c© 2015 Elsevier.

Reprinted with permission.

185

Verifying large modular systems using iterative abstraction refinement

Jussi Lahtinen a,n, Tuomas Kuismin b, Keijo Heljanko b

a VTT Technical Research Centre of Finland Ltd., Systems Research, P.O. Box 1000, FI-02044 Espoo, Finland
b Helsinki Institute for Information Technology HIIT and Department of Computer Science, School of Science, Aalto University, P.O. Box 15400, FI-00076 Aalto,
Finland

a r t i c l e i n f o

Article history:
Received 7 June 2013
Received in revised form
5 March 2015
Accepted 6 March 2015
Available online 14 March 2015

Keywords:
Model checking
Verification
Validation
Iterative abstraction refinement

a b s t r a c t

Digital instrumentation and control (I&C) systems are increasingly used in the nuclear engineering domain.
The exhaustive verification of these systems is challenging, and the usual verification methods such as
testing and simulation are typically insufficient. Model checking is a formal method that is able to
exhaustively analyse the behaviour of a model against a formally written specification. If the model checking
tool detects a violation of the specification, it will give out a counter-example that demonstrates how the
specification is violated in the system. Unfortunately, sometimes real life system designs are too big to be
directly analysed by traditional model checking techniques. We have developed an iterative technique for
model checking large modular systems. The technique uses abstraction based over-approximations of the
model behaviour, combined with iterative refinement. The main contribution of the work is the concrete
abstraction refinement technique based on the modular structure of the model, the dependency graph of the
model, and a refinement sampling heuristic similar to delta debugging. The technique is geared towards
proving properties, and outperforms BDD-based model checking, the k-induction technique, and the
property directed reachability algorithm (PDR) in our experiments.

& 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Digital instrumentation and control (I&C) systems are increasingly
used in the nuclear engineering domain. The exhaustive verification
of these systems is challenging, and verification methods such as
testing and simulation are typically insufficient.

Model checking [1,2] is a formal method that is able to exhaus-
tively analyse the behaviour of a model against formally written
specifications. If the model checking tool detects a violation of a
specification, it will give out a counter-example that demonstrates
how the specification is violated in the system.

In this work, we are primarily using the model checker NuSMV
2.5.4 [3], which was originally designed for synchronous digital
hardware model checking. The NuSMV model checker does not have
a notion of continuous time but instead the timing elements in our
models are modelled with discrete time steps using explicit counter
variables. In NuSMV, the formal correctness specification can be
written as a simple state invariant clause that should hold in each
individual reachable state of the system, or in a more complex
specification language such as the Linear Temporal Logic (LTL) and
the Computation Tree Logic (CTL) [1,2]. In addition to NuSMV, we also
utilise another model checking tool called ABC/ZZ by Niklas Eén [4].

Since our models are written in the NuSMV modelling language, we
translate the NuSMVmodels into the AIGER format [5] used in ABC/ZZ.

The specifications used in this work are formalised as state
invariant specifications, but we are exploiting a procedure compatible
with our approach that reduces LTL property model checking into
state invariant model checking [6], thus enabling all LTL properties to
be model checked.

The classical algorithm for model checking state invariant
specifications is based on symbolically representing and exploring
the reachable state space of the system by using Binary Decision
Diagrams (BDDs) [1], which are a highly efficient data structure for
representing and doing operations with large state spaces. Another
way to check state invariants is to use a propositional satisfiability
solving (SAT)-based approach. This line of work employs a proposi-
tional satisfiability solver in a bounded model checking (BMC)
procedure [7,6], which looks for counter-examples shorter than a
user provided maximum length, called the bound. An advanced
variant of this procedure we employ in this work is called
k-induction [8,9]. In that approach the state invariants are proved
using induction, and the base step and the induction step of the
proof are basically reduced to bounded model checking problems.
Another SAT-based technique for checking safety properties is the
IC3 algorithm by Bradley [10], also known as property directed
reachability (PDR). The technique inductively searches for an
invariant that holds in the initial state and implies the examined
specification.

Contents lists available at ScienceDirect

journal homepage: www.elsevier.com/locate/ress

Reliability Engineering and System Safety

http://dx.doi.org/10.1016/j.ress.2015.03.012
0951-8320/& 2015 Elsevier Ltd. All rights reserved.

n Corresponding author.
E-mail address: jussi.lahtinen@vtt.fi (J. Lahtinen).

Reliability Engineering and System Safety 139 (2015) 120–130

http://www.elsevier.com/locate/ress
mailto:jussi.lahtinen@vtt.fi
http://dx.doi.org/10.1016/j.ress.2015.03.012

The traditional model checking algorithms including the ones
described above have been successfully used to analyse individual
nuclear domain safety I&C systems, see e.g. [11,12], as well as satellite
onboard software designs [13]. However, in the nuclear domain it is
common to cope with hardware failures by implementing several
subsystems that execute the same physical function using design
diversity in software and/or hardware. It may be necessary to examine
these diverse subsystems simultaneously, e.g. because the specifica-
tions may in fact cover their combined behaviour, and to also
additionally check that the diverse subsystems have no unintended
interactions. Unfortunately, the currently available classical model
checking methods by themselves do not always scale to analysing
these large and complex combined systems. In our experience, the
Binary Decision Diagram (BDD)-based techniques by themselves have
proven to be inadequate in the analysis of our models in some of these
larger system configurations. The alternative SAT-based bounded
model checking (BMC) techniques [7,6] can often find counter-exam-
ples in many large systems. Some BMC techniques such as the
k-induction technique [8,9], and the PDR algorithm [10] can prove
properties, but in our experience the necessary CPU time and memory
needed for a proof can make the verification impractical for many real
life designs.

One classical approach to avoid the scaling problem is to use
abstraction. Intuitively, abstraction is the act of simplifying a model
with the intention of making the verification of the model more
efficient, whereas adding more detail to the model is called a
refinement. In systems where multiple diverse subsystems are pre-
sent, the whole system functionality is rarely needed to verify a
system property. Depending on the exact specification some sub-
systems or parts of subsystems may be irrelevant for proving the
specification, and can be abstracted. The abstractions we use in this
work are over-approximations. Over-approximation techniques tend
to relax constraints, e.g., by allowing a variable to also have values
that are not realistic. Over-approximation leads to a model that has
more behaviour but can be less complex to analyse. Because of the
possible unrealistic behaviour in the model, over-approximation can
lead to spurious counter-examples. [14] Since the over-approximated
model has more behaviour than the concrete model, the correctness
of the resulting abstract model implies also the correctness of the full
model when universal properties such as state invariants are
examined.

Unfortunately, creating such an abstract model for each checked
specification is non-trivial and requires a lot of manual work,
becoming tedious and thus also error prone. For the best efficiency
gains, the abstraction is tailored for each specification separately.

In this paper, we describe how these kinds of over-approximating
abstractions can be created fully automatically by using an iterative
abstraction refinement technique exploiting the modular structure of
the system. Our technique will (i) significantly reduce the amount of
manual work needed to create these abstractions, (ii) prove the system
correctness based on verification runs automatically performed on
these abstractions, and (iii) reduce the overall computational effort
required for model checking, enabling the model checking of larger
system models. Our approach is designed to be efficient at finding
proofs for properties, as we expect most of the designs at this stage of
inspection to actually be correct. For all properties that hold, the
algorithm will find some abstraction of the system.

In our technique, we require that the system is structured into
modules. Abstractions of the model are created by automatically
replacing a subset of the modules with stubs that can at each time
point non-deterministically give any value from any of their outputs.
These simplified modules are called interface modules. This approach
is similar to the compositional minimisation [15] technique.

In iterative abstraction refinement an initial abstraction is first
generated and model checked. If the examined property produces a
counter-example, the model is refined and the resulting new model is

verified again. The process is continued until the property is proved or
no further model refinement is possible.

In the model checking step of our abstraction refinement techni-
que three model checking algorithms (BDD-based, k-induction, PDR)
are run in parallel in a portfolio-based manner, similar to what is
described in [16].

The abstractions in our technique are refined using a two-phase
procedure. First, in the preliminary refinement phase, we obtain a
computationally manageable subset of the modules in which the
previously found counter-example becomes infeasible. This part of the
refinement procedure is based on traversing the dependency graph of
the modules. After the preliminary refinement phase we attempt to
minimise the size of the needed model refinement using an iter-
ative sampling procedure similar to delta debugging. Delta debugging
[17,18] is originally a technique for isolating failure causes of software
errors automatically. The techniqueworks by systematically narrowing
down failure-inducing circumstances until a minimal set remains. In
our work we use the same principles in order to minimise the size of
the refinement. The feasibility of the candidate refinements is repeat-
edly checked during both model refinement phases. These feasibility
checks are performed using k-induction [8,9] to see whether the
spurious counter-example of length k has been removed.

We have tested our technique, and report experimental results
from verifying two different systems with it. The first system is a
fictional case study that consists of two diverse safety systems. The
fictional system is used to demonstrate the technique in practice, and
to show more detailed examples of the system implementation. The
second system is an actual industrial emergency diesel generator
control system that is used for evaluating the performance of our
technique on a real life system. The system is safety-critical, as
emergency diesels are used e.g. in nuclear power plants to provide
electricity in case of power failures. In both case studies we have
compared our technique against three other model checking
approaches: classical BDD-based model checking, SAT-based k-induc-
tion, and PDR-based model checking. In the comparisons these
approaches used the full concrete model for verification. The results
show that for most of the properties our technique is able to find a
proof of correctness of the system more efficiently than the other
three approaches.

2. Verified systems

We have tested our algorithm by applying it on two case study
systems. The first is a fictional safety system we have constructed for
demonstration purposes. The other is a model of an actual emer-
gency diesel generator. The purpose of the emergency diesel model is
simply to provide some additional benchmark information on the
performance of the algorithm on a real-life industrial model.

2.1. Fictional system description

We have created a fictional system model for demonstration
purposes. The NuSMV model of the system is available online [19].
The fictional model consists of two safety systems. Safety system
1 reads temperature measurements and controls an actuator device (a
pump) if the measurements exceed a certain limit. Safety system 2 has
pressure measurements as input, and it controls two other actuator
devices. The systems are redundant, and the purpose of the pumps is
to cool down a process so that the temperature and pressure of the
underlying process remain sufficiently low.

The basic functionality in both of the safety systems is such that
if the measurements exceed the given limits, the safety system is
initiated and this fact is memorised. The safety systems are also
associated with particular timing sequences that are given to the
actuators when they are started.

J. Lahtinen et al. / Reliability Engineering and System Safety 139 (2015) 120–130 121

The system includes the manual control of the actuators as well.
The safety systems can cease to operate if the relevant input is no
longer above the limit and the operator presses a manual reset button.
In addition, the operator can stop and start the actuators manually
using push-buttons. Since this can lead to conflicting commands to the
devices, prioritisation logic is associated with each actuator. Manual
stop has the highest priority, manual start has the second highest
priority, and the start commands from the safety systems have the
lowest priority.

We have divided the system into 18 modules so that each module
encompasses a single function of the system. Each of the modules is
defined by a function block diagram. As an example, the function block
diagram realising the behaviour of module 11 is illustrated in Fig. 1.
The functionality of the other modules is defined in a similar manner.
The dependency graph of the fictional model is illustrated in Fig. 2. The
dependency graph tells how information flows between modules. For
example, module 11 represents a function block diagram that receives
its input from the output of module 9. The output of module 11 is used
by the module 13 as input. Safety system 1 is implemented in modules
2, 4, 6, 9, 11, 13 and 16. Safety system 2 is implemented in modules 3,
5, 7, 8, 10, 12, 14, 15, 17 and 18.

Both safety systems are associated with a certain timing sequence
(realised in modules 11 and 12). For example, the timing sequence
specified for safety system 1 in module 11 is to drive the actuator for
4 s, and thenwait for 10 s. If the input of module 11 is still set after this

the sequence is driven again. Module 12 drives the actuators (modules
17 and 18) for 30 s once when the command to initiate the safety
system 2 is received.

In our model, the actuators (modules 16, 17 and 18) can fail non-
deterministically, and cannot be repaired after a failure. An actuator
starts functioning after it has received a start command continuously
for a specified amount of time. The actuator also outputs a feedback
signal that implies whether a start command is being received.

The model has some internal feedback loops as well. The
simultaneous start of actuators 1 and 2 is forbidden. This mimics a
real life situation where simultaneous use would result in excessive
power usage. For this reason, the rising edge of the start signal of
actuator 1 prevents the simultaneous start of safety system 2, and vice
versa. Both safety systems can also be inhibited if some related
equipment has failed. Module 1 reads measurements indicating
equipment failures, including the failure of actuator 3. For example,
if the actuator 3 is broken, both safety systems are prevented from
giving the start command. Manual controls are not prevented.

The main requirements of the fictional system are described in
Table 1.

2.2. Real world diesel generator control system

For evaluating real world performance we use a model of an actual
emergency diesel generator control system. The emergency diesel

Delay NOT

&Input 1 Output 1&
4s

1

14s1

Fig. 1. The function block diagram associated with module 11 of the fictional system.

Module 1
Inhibition

Module 2
Input handling

Module 3
Input handling

Module 4
Operator reset

Module 5
Operator reset

Module 6
Manual control

1

Module 7
Manual control

2

Module 8
Manual control

3

Module 9
Safety System 1

memory

Module 10
Safety System 2

memory

Module 11
Safety System 1

timing

Module 12
Safety System 2

timing

Module 13
Prioritization

Module 14
Prioritization

Module 15
Prioritization

Module 16
Actuator 1

Module 17
Actuator 2

Module 18
Actuator 3

Fig. 2. An overview of the fictional model consisting of two different safety systems. The figure represents the dependency graph of the modules in the system.

J. Lahtinen et al. / Reliability Engineering and System Safety 139 (2015) 120–130122

system provides reserve power in case of power loss. Emergency
diesel systems are used in e.g. nuclear power plants where it is
essential that safety systems are constantly connected to a power
supply. In case of a black out or a disturbance in the main power
supply, the diesel generators can be quickly turned on to keep the
necessary systems operational.

There is a large amount of logic related to the diesel generator
control. The analysed system covers 10 different control functions,
including functions related to the activation, operation, and protection
of the diesel generators, and voltage and frequency regulation. In
addition, some functions are diverse implementations of another
function that intend to increase the system's tolerance to failures.
Diverse functions perform the same physical function using a different
software or hardware design.

The control logic of the system was represented as function
block diagrams. We modelled the control logic in the NuSMV
modelling language. The model was created manually based on a
functional description of the vendor-specific function blocks used in
the design, and several function block diagrams describing the
system functions. Each of the system's functions, as well as the
system environment, was written as a separate module, resulting in
14 modules. The dependency graph of the model is presented in

Fig. 3. Details of the emergency diesel system are not presented
here due to non-disclosure agreements. A more detailed description
of the case study together with a manual compositional verification
approach for it can be found in a technical report [20].

3. Abstractions of large modular systems

3.1. Modelling methodology

We leave out the hardware and system level aspects, and focus on
modelling the design logic of the system. In our example cases the
design logic is implemented using function blocks. A function block
diagram consists of a set of function blocks and the connections
between the function blocks. Each function block diagram has a set of
inputs, some internal state, and calculates its outputs based on these
two. Inputs of a function block diagram can be connected to outputs of
other function block diagrams, or to the environment of the system.
For example, module 11 (presented in Fig. 1) has one input, one
output, two pulse function blocks, an AND gate, a NOT gate, and one
delay function block.

A function block based system is modelled so that a separate
function block library is first created that has all the declarations for
the function block types used in the system. A model of a function
block diagram then creates instances of these function blocks and
makes the connections between the inputs and outputs of the
function blocks. We allow the environment of the system to behave
freely and independently of the system under verification. Further
details on our modelling methodology can be found in [12,21].

3.2. Partition into modules

Our technique works with systems that can be easily partitioned
into modules. We also require that the modules are on a single level of
hierarchy, and that a module does not contain another module.

In the modelling phase there are several possible ways to split
the system into modules. In our example cases the modules
correspond to the function block diagrams of the system. The level
of coarseness of the models comes from the design of the industrial
systems. In the diesel generator control system the partition of the
system into function block diagrams was dictated by the actual
design process. In the fictional system, we tried to create a modular
partitionwith a similar level of coarseness so that it would resemble
real life industrial designs. The modular structure is also visible
in the NuSMV model of the system. Each module used in the
technique is implemented using one or more NuSMV modules. In
our implementation of the technique we use annotations in the
model to indicate which NuSMV modules correspond to the
modules used for abstraction in our technique. It would be inter-
esting to see whether changing the level of coarseness of the
modules can have influence on the performance of our technique.

Table 1
The main requirements of the fictional system.

Requirement Description

Requirement 1 If the temperature measurements surpass a limit value, safety system 1 is started
Requirement 2 If the pressure measurements surpass a limit value, safety system 2 is started
Requirement 3 Manual OFF command in module 6/7/8 stops the actuator 1/2/3
Requirement 4 Manual ON command in module 6/7/8 starts the actuator 1/2/3, unless the manual OFF command is received
Requirement 5 Whenever the inhibit signal of module 1 is true, the safety systems are not given a new start command in modules 9 and 10
Requirement 6 If the temperature measurement does not exceed the limit value, and operator reset is received from module 4, the memory in module 9 is reset
Requirement 7 If the pressure measurement does not exceed the limit value, and operator reset is received from module 5, the memory in module 10 is reset
Requirement 8 The priority of control commands in modules 13, 14 and 15 is Manual STOP, Manual START, Automation Start
Requirement 9 The start of the safety systems shall not occur simultaneously due to excessive power usage

Fig. 3. The dependency graph of the emergency diesel generator control
system model.

J. Lahtinen et al. / Reliability Engineering and System Safety 139 (2015) 120–130 123

However, in this paper, we do not discuss how the partition into
modules should be performed.

3.3. Abstracting the model through compositional minimisation

In our abstractions we exclude some parts of the model from
examination by doing compositional minimisation. In the composi-
tional minimisation technique [15] the system is abstracted using
reduced versions of some of the system's modules. We call such a
reduced module version an interface module. It has the same outputs
as the concrete module it substitutes, but no internal state. No restr-
ictions are set to the outputs: they are completely non-deterministic,
and this is the abstraction we use for all modules. The compositional
minimisation technique we use is discussed in more detail in our
previous work [22,23].

An abstraction of the system is created by selecting either the
concrete version or the interface version of each module. Using
interface modules instead of concrete ones can simplify the state
space of the model significantly.

The abstractions discussed above are such that the abstract model
simulates the concrete model, i.e. the interface modules are over-
approximations of the modules. Because of this universal properties
(properties of LTL and ACTLn) that are true in the abstraction are also
true in the concrete model. For example, suppose we wanted to
verify a universal property that refers to variables from module 9
and module 14 in Fig. 2. Through trial and error, we select a set of
modules whose functionality is significant with respect to the
property, say modules 9, 17 and 14, and replace all other modules
with an interface module. If the abstract model created based on this
selection can be used to prove that the universal specification is true,
then the whole system must also function according to the specifica-
tion. In what follows, for simplicity we only focus on the verification
of state invariant properties. State invariant properties express that a
condition holds for all reachable states. State invariants are useful
for checking safety properties. We can check, for example, that two
signal values controlling a particular device in opposite directions
can never occur at the same time. Universal properties are more
general, as they may also give requirements for path fragments.

4. Modular iterative abstraction refinement

Our algorithm finds a suitable level of abstraction by selecting
modules that are necessary to prove a property. By suitable, we mean
that the abstraction is detailed enough to verify the analysed property,
but coarse enough so that it can be model checked in reasonable time.
We achieve this through iterative abstraction refinement. Our techni-
que is able to produce counter-examples as well, but it specialises
in finding proofs quickly. In order to get faster verification results for
both true and false specifications, it is useful to run our algorithm
simultaneously with another one that is good at finding counter-
examples quickly. For example the traditional BMC engine is such an
algorithm [24]. Our technique uses three existing model checking
algorithms as subroutines: an incremental BMC-based k-induction
algorithm, a BDD-based algorithm, and the property directed reach-
ability (PDR) algorithm.

4.1. Implementation

Our general iterative abstraction refinement loop is illustrated
in Fig. 4. We examine an abstract version of the model, possibly get
a counter-example, and refine the abstraction by adding new
modules to the current abstract configuration so that the spurious
counter-example is not present. We then minimise the refinement
using a minimisation heuristic. The general algorithm is as follows:

1. Choose the initial configuration of modules based on the state
variables appearing in the state invariant property.

2. Model check the current abstraction of modules by running the
k-induction, the BDD-based method and the PDR algorithm in
parallel and terminate when one of them finishes. If a proof is
found return “true”. Otherwise a counter-example is produced,
and refinement is attempted based on it.

3. Based on the dependency graph of the system modules, create a
preliminary refinement of the model by iteratively adding new
modules until the counter-example becomes infeasible. If the
model cannot be refined any further (all the modules on which
the property is dependent on have been included), return “false”,
and report the abstract counter-example from the feasibility check.

4. Minimise the refinement by sampling subsets of the prelimin-
ary refinement and checking the feasibility of the samples.
After successful minimisation go to step 2.

The feasibility of the candidate refinements is checked in
steps 3 and 4 of the algorithm. The feasibility check is performed
by checking the original specification using k-induction, and the
counter-example length as the bound k. The feasibility check can
have three different outcomes:

1. The k-induction algorithm manages to prove the property
during the feasibility check.

2. k-induction cannot find a counter-example within the bound.
3. A counter-example is found.

If the property is proved during the feasibility check, we return
“true”. If a counter-example cannot be found within the bound, the
refinement has been successful. If a counter-example is still found,
the refinement is not concrete enough.

Note that because our approach is geared towards obtaining
proofs we assume that the initial counter-example is spurious, and
do not check its feasibility before refinement. The general intention of
the algorithm is to begin with as much abstraction as possible, and

Counter-
example

Initial
abstraction

Proof
found

Return TRUE

Preliminary
refinement

Refinement
minimization

Return
counter-
example

Refinement
impossible

Counter-
example
infeasible

Model
checking

Fig. 4. The general algorithm for verifying large modular systems.

J. Lahtinen et al. / Reliability Engineering and System Safety 139 (2015) 120–130124

then iteratively add modules to the configuration until the abstraction
satisfies the property. If the property is false, the abstraction will
contain all the modules in the cone-of-influence of the property, and
the resulting counter-example is returned as a result.

For all properties that hold, the algorithm will find some abstrac-
tion of the system. Note that this abstraction might be the original
non-abstract system in the worst case. Furthermore, the abstractions
computed by the algorithm are subset minimal, that is, no single
module added to the new refinement can be made abstract without
making the property feasible. This is the case because the refinement
minimisation algorithm will try to remove each individual module
separately from the refinement before the final minimised refinement
is returned. In what follows, the individual steps of the algorithm are
described in more detail.

4.1.1. Initial configuration
The initial configuration is selected by extracting the variables

from the examined specification and determining the modules
whose outputs these variables are. These modules represent the
initial configuration, and concrete versions of these modules are
used in the model. Other modules of the model are replaced by
their respective interface modules.

4.1.2. Model checking
The second step is model checking the current configuration of

modules. In this step we use several model checking algorithms in
parallel as illustrated in Fig. 5.

In our implementation, BDD-based state invariant checking, and
the k-induction algorithm are run using NuSMV, while the property
directed reachability (PDR) algorithm is run using the ABC/ZZ model
checker [4].

We have used the incremental k-induction algorithm, since the
algorithm is also capable of proving properties using an induction
based approach. A standard BMC engine could have also been used
instead of k-induction, but the proofs of k-induction improve the
performance of our approach. The BDD-based model checking algo-
rithm may require a lot of memory and time when the size of the
model increases, which is why the other model checking algorithms
have been included. The BMC and PDR algorithms can find counter-
examples faster, and thus reduce the overall run-time of the algorithm.
The approaches are often complementary to each other.

The ABC/ZZ tool uses AIGER [5] format models as input. In
order to be able to use the PDR algorithm implemented in the
ABC/ZZ tool some model transformations are necessary. We first
flatten the NuSMV model using the flattening feature

implemented in NuSMV and then run the smvtoaig tool that is
in the AIGER tool package that creates a corresponding model in
the AIGER format. We also transform the state invariant into an
LTL property so that the model together with the LTL property
translates correctly into an AIGER format model that can be model
checked by the PDR model checker. The LTL formula is created
simply by adding the LTL globally operator G before the state
invariant.

4.1.3. Preliminary refinement
In case of a spurious counter-example, the objective is to find a

new abstraction (i.e. a configuration of concrete modules and interface
modules) that is more detailed than the current configuration of the
model and makes the current counter-example infeasible. The original
specification is then checked again on the refined abstraction.

The preliminary refinement phase is presented as pseudo-code
in Algorithm 1. The function RefineConfiguration has as input the
set Current of modules that are concrete in the current abstraction,
and the length of the recently received counter-example CElength.
The algorithm returns the set of new modules Refinement that are
added to the current model, and a string indicating whether no
further refinement is possible or if a proof is found while checking
the feasibility of the refinement.

Algorithm 1. Preliminary refinement.

1: procedure REFINECONFIGURATION (Current,CElength)
2: Configuration’Current
3: Refinement’∅
4: while True do
5: newRefinement’∅
6: for eAgetNeighbourModulesðConfigurationÞ do
7: if e=2Configuration then
8: newRefinement’newRefinement [e
9: end if
10: end for
11: if lenðnewRefinementÞ ¼ ¼ 0 then
12: return [Refinement, “no refinement”]
13: end if
14: Configuration’Configuration [newRefinement
15: Refinement’Refinement [newRefinement
16: CEinfeasible; proved’checkFeasibility

ðConfiguration;CElengthÞ
17: if CEinfeasible then
18: if proved then return [Refinement,“proof”]
19: end if
20: break ▹ Refinement found
21: end if
22: end while
23: return [Refinement, “”]
24: end procedure

The algorithm uses the dependency graph of the model to identify
new modules to be added to the model.

The function getNeighbourModules traverses the dependency
graph one step in the backwards direction starting from all the
nodes representing the modules in the current abstraction, and
returns the modules representing these neighbour nodes.

A newmodel configuration Configuration is generated inwhich the
modules in the refinement are concrete, and all other modules are
interface modules. If all of the relevant edges of the dependency graph
have been traversed, and no new modules can be added, the property
is false in the concrete model. The counter-example that was
generated in a previous step is the final counter-example. Note that

Generate
NuSMV model

Execute in parallel

BDD
invariant
checking

k-
induction

smvtoaig
PDR

Invariant
to LTL

Collect result

Proof
found

Counter-
example

found

flatten

Fig. 5. Parallel model checking used in the algorithm.

J. Lahtinen et al. / Reliability Engineering and System Safety 139 (2015) 120–130 125

these counter-examples may have some abstract modules that are not
capable of influencing the variables in the property.

When refinement candidates are being created, the feasibility
of the previous counter-example is checked using the function
checkFeasibility. The function checks the original specification
using k-induction with the bound k set to the length of the
counter-example. If a counter-example can be found within the
bound, the refinement has not been successful, and we continue
with the preliminary refinement phase. If no counter-examples
can be found within the bound, the refinement has been success-
ful, and we move on to refinement minimisation.

We do not use counter-example information, other than its
length, to guide the refinement process. We use the counter-
example length during the feasibility checks. We simply check that
counter-examples of similar length (or shorter) are not possible.
One specific advantage is that all counter-examples of length up
to the bound k are eliminated in one check. Another benefit is that
k-induction may prove the property during the feasibility checks.
According to our experience further analysis of the counter-example is
too demanding when compared to the achieved benefits. This simple
approach leads to better performance in our algorithm.

Algorithm 2. Refinement minimisation.

1: procedure MINIMISATION (Current,CElength,Refinement)
2: n’2
3: NewRefinement’Refinement
4: while True do
5: if lenðNewRefinementÞo2 then
6: return [Current [NewRefinement, “”]
7: end if
8: subsets’partitionSetðNewRefinement;nÞ
9: complements’getComplementsðsubsets;NewRefinementÞ
10: CEinfeasible’False
11: for cAsubsets [complements do
12: Configuration’Current [c
13: CEinfeasible;

proved’checkFeasibilityðConfiguration;CElengthÞ
14: if CEinfeasible then
15: if proved then return [Configuration, “proof”]
16: end if
17: if cAsubsets then
18: n’2 ▹ cAsubsets
19: else
20: n’maxðn�1;2Þ ▹ cAcomplements
21: end if
22: NewRefinement’c
23: break
24: end if
25: end for
26: if CEinfeasible then continue
27: end if
28: if no lenðNewRefinementÞ then
29: n’minðlenðNewRefinementÞ;2nÞ
30: continue
31: else
32: return [Current [NewRefinement, “”]
33: end if
34: end while
35: end procedure

4.1.4. Refinement minimisation
After the first suitable refinement has been found, we perform

refinement minimisation. The minimisation algorithm is represented
as pseudo-code in Algorithm 2.

The function Minimisation has as input the set Current of modules
that are concrete in the current abstraction, the length of the recently
received counter-example CElength, and the set of modules Refinement
in the preliminary refinement. The algorithm returns a new set of
modules Configuration that includes all modules in Current and a
locally minimal set of modules in Refinement that suffice to make the
refinement feasible, and a string indicating if the property could be
proved during the feasibility check.

In refinement minimisation we iteratively sample subsets of
the modules in the preliminary refinement and check counter-
example feasibility on the resulting model. The feasibility checks
are performed similarly as in preliminary refinement using the
function checkFeasibility. If a suitable subset of modules is found,
the minimisation procedure is restarted using the found subset as
a starting point. The approach leads to a locally minimal subset
of modules. Note that our refinement approach is cumulative,
since the minimisation is applied only to the new modules in the
preliminary refinement. The modules from previous iterations
cannot be removed in the minimisation.

The subset sampling is based on the delta debugging technique
described in [17,18]. The purpose of the original technique is to
generate a simple test case that captures the variable assignments
that cause a particular failure. In delta debugging based refinement
minimisation, we first partition the set of modules into two parts,
giving us the initial granularity of two, and check refinements based
on both sets. If the minimisation is not successful, we increase the
granularity, and divide the set of modules into four parts. After this we
check these four sets and their complement sets. If none of these
subsets is suitable, we again increase granularity. The process is
continued until the granularity reaches the size of the module set.

The function partitionSetðset;nÞ partitions a set into n parts. For
example, partitionSetð½1;2;3;4;5;6�;3Þ returns ½½1;2�; ½3;4�; ½5;6��. The
function getComplementsðpartitions; setÞ is used to produce
the complements of these sets. getComplementsð½½1;2�; ½3;4�; ½5;6��;
½1;2;3;4;5;6�Þ returns the set ½½3;4;5;6�; ½1;2;5;6�; ½1;2;3;4��.

To simplify the presentation, the pseudo-code in Algorithm 2
misses some of the functionality in our implementation. In our
implementation, we also maintain a history of checked refinements
in order to avoid redundant feasibility checks. We also randomise the
order of the modules in NewRefinement in the beginning of the while
loop so that the order does not have influence on the result of the
minimisation.

5. Related work

Our verification approach is based on iterative abstraction
refinement, which has been used in various model checking related
contexts. The generic verification strategy is based on the classical
four steps: (i) generating an initial abstraction, (ii) model checking
the property on the abstraction, (iii) checking possible counter-
examples on the concrete model, and (iv) refining the abstraction
when needed. Iterative abstraction refinement was first introduced
as the localisation reduction by Kurshan et al. [25]. This technique is
similar to ours in the way abstractions are made. The abstractions
are non-deterministic but they are performed on the variable level
instead of using abstraction on the module level as we do. The
technique relies heavily on the dependency graph of the variables.

After localisation reduction, many variations to the generic iterative
refinement loop have been suggested [26–31]. The variations differ in
the way the abstraction is used and refined, and in the way the
spurious counter-examples are handled. The CEGAR technique by
Clarke et al. [27] uses a more general existential abstraction technique
based on predicate abstraction that divides the variables into abstract
variable clusters. In this approach spurious counter-examples are
checked by symbolic BDD-based simulation, and the refinement step

J. Lahtinen et al. / Reliability Engineering and System Safety 139 (2015) 120–130126

uses the counter-example to partition some previous equivalence class
of the abstraction so that the counter-example becomes invalid. Later
research, e.g. [14] has suggested that the use of SAT-based methods
can be more effective in abstract counter-example validation.

Our technique has been inspired by the original CEGAR techniques
but instead of using predicate abstraction and computing abstract
transition relations using predicates, we use a lighter-weight approach
where each submodule of the system can be replaced by its abstract
counterpart, which seems to be a more scalable technique for large
scale industrial safety systems.

McMillan et al. [30,32] have introduced the “Proof-based Abstrac-
tion” approach where the counter-example itself is not used in the
feasibility checking or refinement steps. Instead, they use a SAT-
solver to prove that counter-examples up to a certain bound k are
not possible. The idea is to use BMC techniques for refinement and
BDD-based techniques to prove the refined model. This same basic
approach is used in our technique. However, the way we refine the
model is different as we are exploiting the modular structure of the
system to be verified. In our refinement step we find a set of modules
that become concrete and thereby remove all counter-examples up
to the length of the current one. In addition, in our technique a side
result of the feasibility check may be that the k-induction finds a
proof for the property. Another difference is that in the proof-based
abstraction technique the refinement is not cumulative, while our
technique creates cumulative refinements.

There are other iterative refinement techniques that focus on
modules and compositionality. The work in [33] is in the context of
explicit model checking of state graphs. They use a component
refinement method based on parallel composition.

Finally, our algorithm runs several verification engines in parallel.
The use of multiple verification engines is not new, see e.g. [34,31].
For example in [31], two different model checkers are used in the
abstraction refinement loop. They use a SAT-based technique to
check and concretise spurious counter-examples, and a BDD-based
model checker to verify the abstractions. The refinement technique is
based on information from multiple counter-examples. The use of
several model checking engines in a parallel portfolio has also been
studied, e.g. in [24], but we are not aware of other approaches than
ours related to parallel use of several different model checking
algorithms for iterative abstraction refinement.

6. Results

A prototype implementation of the technique was created in
the Python programming language. The Python implementation is
available online [19]. Some example properties were verified on
the fictional model. In addition, we tested 100 randomly generated
true invariants on a model of a real world emergency diesel
generator control system. The verification runs were performed
on a computer with an Intel Xeon X5560 processor with 16 cores
running at 2.80 GHz. In the model checking phase of our techni-
que, three cores are used concurrently. A memory limit of 4 GB and
a timeout of 1800 s were used in the tests.

6.1. Verification on the fictional model

A set of 20 state invariants was formalised based on the list of
requirements for the fictional model (Table 1). Most of the
invariants proved to be quite easy for the traditional invariant
checking algorithms. However, some state invariants were very
difficult for these algorithms. As an example we present five

formalised properties with an emphasis on the more difficult
properties:

� Property 1 (based on requirement 1 in Table 1): When the
measurements in module 2 (temperature) are over the desig-
nated limits, and the prevention signal from module 1 is not set,
and the feedback signal from module 17 does not indicate that
the diverse safety system is starting, safety system 1 is initiated
by module 9. As a state invariant, this can be written as

ðððtemp14250Þ & ðtemp24250Þ &
! MOD1:output1 & ! MOD9:feedstopÞ �4 MOD9:output1Þ

� Property 2 (based on requirement 3 in Table 1): If a manual
OFF command has been given at the previous time point
(module 6), the device (module 16) is not on. This requires
that module 6 keeps track of the history of the manual OFF
command in its internal state. As a state invariant,

ððMOD6:prevoffÞ �4 ! MOD16:output1Þ

� Property 3 (based on requirement 9 in Table 1): Unless manual
commands are used, actuators 1 and 2 (modules 16 and 17)
cannot be started exactly at the same time. As a state invariant,

! ð! MOD6:wasused & ! MOD7:wasused &
MOD16:risingedge & MOD17:risingedgeÞ

� Property 4 (based on requirement 9 in Table 1): If actuator 1
(module 16) receives a starting command but has not yet started,
module 10 cannot initiate the diverse safety system. As a state
invariant,

! ð! MOD16:output3 & ! MOD16:output1 & MOD13:output1 &

MOD16:output2 & MOD10:output1 & ! MOD10:wasprevÞ

� Property 5 (based on requirement 9 in Table 1): If actuator 2
(module 17) receives a starting command but has not yet
started, module 9 cannot initiate the diverse safety system. As
a state invariant,

! ð! MOD17:output3 & ! MOD17:output1 & MOD14:output1 &

MOD17:output2 & MOD9:output1 & ! MOD9:wasprevÞ

The above properties were verified using four techniques: BDD
based invariant checking, the BMC based k-induction technique,
property directed reachability (PDR), and our algorithm. The
bound used in the k-induction technique was 10 000. We used
such a large bound because we prefer running out of memory to
not reporting a result. The verification results are in Table 2.

The verification times in Table 2 for PDR do not include the time
to transform the NuSMV model to the AIGER format. The results
show that our algorithm manages to verify all properties rather

Table 2
Verification times for model checking the state invariants using four techniques:
BDD based invariant checking, the BMC based k-induction technique, property
directed reachability (PDR), and our algorithm.

Property BDD k-induction PDR Algorithm

Property 1 3.25 s 1.6 s 7.27 s 0.49 s
Property 2 TIMEOUT 1.71 s 5.48 s 0.47 s
Property 3 TIMEOUT 1.99 s 7.83 s 8.11 s
Property 4 TIMEOUT MEMOUT 16.95 s 0.21 s
Property 5 TIMEOUT MEMOUT 52.80 s 0.41 s

J. Lahtinen et al. / Reliability Engineering and System Safety 139 (2015) 120–130 127

quickly, while the BDD-based technique, and the k-induction tech-
nique cannot verify all properties within the given resource limits.
Our technique is also faster than PDR, though the PDR algorithm
could also verify all of the properties. Our technique is the fastest
in properties 1, 2, 4 and 5. The k-induction technique is the fastest for
verifying property 3.

6.2. Verification on the emergency diesel control system

The technique was evaluated by using the real world diesel
control system as a benchmark. The performance of our technique
was compared with other model checking algorithms. Since our
technique focuses on finding proofs efficiently, we have used only
true state invariants in the comparison. We verified 100 randomly
generated true state invariant specifications on the diesel model
using four approaches: our technique, k-induction, property direc-
ted reachability (PDR), and a BDD-based state invariant checking
method. In the BDD-based method and the k-induction method the
cone-of-influence reduction (NuSMV option -coi) was also used.
The BDD based state invariant checking algorithmwas also runwith
dynamic variable ordering (NuSMV option -dynamic). Both of these
options resulted in better running times. The PDR algorithm was
run using the command bip ,live -k¼inc -eng¼pdr2. The
BDD approach, the k-induction approach, and the PDR approach
used the full concrete model.

The random state invariants were generated so that two or three
variables were randomly selected from the set of the modules'
outputs and non-deterministic variables of the main module. Nega-
tions were randomly placed in front of the chosen variables, and the
operators joining the chosen variables were randomly selected (AND/
OR). After this the random state invariant was model checked using
the different model checking methods until each state invariant was
proved either true or false. Finally, only the true state invariants were
picked out for the results. The following is an example of a random
state invariant property:

ððnot MOD14:output1 OR MOD2:output2Þ AND
not main_module_input1Þ

The results of the comparison are in Figs. 6–8.
The k-induction algorithm was able to verify 55% of the properties

rather quickly, but for the rest of the properties (45%) the required

bound for a proof was so large that the technique ran out of memory.
The BDD-based method was able to verify 81% of the properties within
the 1800 s timeout. 13% of the generated random state invariants were
such that neither the BDD-based technique nor the k-induction
technique could verify them within the given resource limits. The
PDR technique was able to solve all properties within the given
resources. Fig. 8 does not show the time to generate the AIGER format
model from the NuSMV model. On average this time was 17 s. The
model transformation time is, however, included in the PDR verifica-
tion runs performed as part of our technique since these model
transformations depend on the model configuration and cannot be
calculated beforehand.

Fig. 7 contains a distinct vertical grouping of data points. The set
of points indicates that many properties have been solved in
approximately 15 s by the k-induction method. We assume that
this is because a certain amount of time is needed for building and
initialising the model, after which the properties may be quickly

 0.1

 1

 10

 100

 1000

 0.1 1 10 100 1000

O
ur

 te
ch

ni
qu

e

BDD

Fig. 6. Run-times (in seconds) of BDD model checking and our technique.

 0.1

 1

 10

 100

 0.1 1 10 100

O
ur

 te
ch

ni
qu

e
k-induction

Fig. 7. Run-times (in seconds) of k-induction and our technique.

 0.1

 1

 10

 100

 0.1 1 10 100

O
ur

 te
ch

ni
qu

e

PDR

Fig. 8. Run-times (in seconds) of PDR and our technique.

J. Lahtinen et al. / Reliability Engineering and System Safety 139 (2015) 120–130128

proved within a small bound. A similar phenomenon is apparent in
Figs. 6 and 8 as well.

Our technique could verify all of the properties within the given
resources. In cases where the other techniques were able to provide a
proof, our technique was typically faster. In 68% of the cases the
properties were such that the proof could be found faster using our
technique than by using the other three algorithms. In 1% of the
cases, the k-induction technique was the fastest. The PDR-based
technique was the fastest in 31% of the cases.

When our technique is analysed in detail, we note that 82
properties are proved in the model checking phase of the algorithm,
and 18 properties are proved in the preliminary refinement phase
of the algorithm. The distribution of the model checking phase
proofs was such that 32 properties are proved by the k-induction
subroutine, 10 properties are proved by the BDD-based subroutine,
and 40 of the properties are proved by the PDR-based subroutine.
The proofs of the preliminary refinement phase are also generated
by the k-induction subroutine as only that subroutine is used for
checking the feasibility of the refinement. The cumulative frequency
graph in Fig. 9 shows the number of proofs obtained by the different
subroutines (k-induction, BDD, PDR, and refinement phase k-induc-
tion) and the distribution of these proofs on the different iterations
of the algorithm. Three iterations of the algorithm sufficed to prove
all properties.

The technique seems to work so that the k-induction method
handles most of the trivial properties in the first iteration. If a
property is not trivial for k-induction, the refinement phase usually
results in an abstraction that is detailed enough for a proof by the
PDR-based method or the BDD-based method in the second itera-
tion. The average for the number of modules needed in a proof was
3.4 in the system consisting of 14 modules.

7. Conclusions

This paper presents a technique for model checking large modular
systems. The main contributions are the development of an iterative
abstraction refinement technique based on simple modular abstrac-
tion, and a refinement technique based on the dependency graph of
the modules, and heuristic similar to delta debugging. The technique
uses BDD-based model checking, k-induction, and PDR-based mo-
del checking concurrently to verify a particular abstraction, and
k-induction to check the feasibility of abstract counter-examples.
The technique can be used to analyse state invariant properties.

Our iterative verification technique is similar to other iterative
refinement based verification techniques, but it differs in the way

that it uses module structure to decompose the system in a natural
way, so that abstractions of the system are simpler.

We have applied the technique to the verification of two systems:
a fictional model that consists of two diverse safety systems, and an
emergency diesel generator control system. We have compared the
performance of the technique to some standard model checking
algorithms. The results show that our technique is a feasible
approach for the verification of large systems. When applied on the
real life industrial emergency diesel control system, our technique
outperformed the compared methods in 68% of the tested random
true state invariants.

It is probable that the performance of our technique is dependent
on the structure of the model's dependency graph. Both systems that
were used in the tests comprised several individual subsystems, and
could we divided into modules in a natural way. The resulting
dependency graphs were quite balanced. For example, there were
no modules that were dependent on overly many other modules.
Such structures in the dependency graph could lead to the inclusion
of all the model's modules when using our technique. Safety-critical
systems may suit well with our technique because the various
diverse and redundant functions of these systems inherently avoid
unnecessary dependencies between other functions. We plan to test
the performance of our technique on other classes of system models
in future work.

We also realise that the efficiency of our technique relies on the
length of the spurious counter-examples. The feasibility checking of
longer counter-examples takes a lot more effort as the k-induction
technique is used. This could be a potential problem for some types
of systems.

In addition to verifying state invariants and general LTL proper-
ties, verifying safety subsets of temporal logics such as the syntactic
LTL safety properties [35] and the IEEE 1850 Property Specification
Language (PSL) safety properties [36] can be very efficiently reduced
into model checking state invariant properties, and thus handled
even more efficiently than generic LTL properties.

In the case studies, the models were manually created based on
function block diagrams and other design documentation. To increase
confidence in the correctness of the model and in the verification
results, an automatic method for generating the model is needed. Such
a method requires that the system is well-specified and in a machine-
readable format. Automatic translation approaches based on the IEC
61131-3 standard exist, see e.g. [37] and [38]. In the diesel generator
control system case study, however, only a textual description of the
functionality of the vendor-specific function blocks was available for
modelling, making an automatic translation method infeasible.

Acknowledgements

Funding from the SAFIR2014 programme (The Finnish Research
Programme on Nuclear Power Plant Safety 2011–2014), and Academy
of Finland projects 139402 and 277522 are gratefully acknowledged.

References

[1] Clarke EM, Grumberg O, Peled D. Model checking. Cambridge, Massachusetts, US:
MIT Press; 2001 ISBN 978-0-262-03270-4.

[2] Baier C, Katoen JP. Principles of model checking. Cambridge, Massachusetts,
US: MIT Press; 2008 ISBN 978-0-262-02649-9.

[3] Cimatti A, Clarke EM, Giunchiglia E, Giunchiglia F, Pistore M, Roveri M, et al.
NuSMV 2: an opensource tool for symbolic model checking. In: Brinksma E,
Larsen KG, et al., editors. CAV; Lecture notes in computer science, vol. 2404.
Berlin, Heidelberg: Springer; 2002. p. 359–64 ISBN 3-540-43997-8.

[4] Eén N. The ABC/ZZ verification and synthesis framework. URL 〈https://bitbucket.
org/niklaseen/abc-zz〉; 2014.

[5] AIGER: a format, library and set of utilities for And-Inverter Graphs (AIGs). URL
〈http://fmv.jku.at/aiger/〉; 2014.

[6] Biere A, Heljanko K, Junttila TA, Latvala T, Schuppan V. Linear encodings of
bounded LTL model checking. Log Methods Comput Sci 2006;2(5:5):1–64.

0

5

10

15

20

25

30

35

40

45

Iteration 1 Iteration 2 Iteration 3

Refinement
k-induction
BDD
PDR

Fig. 9. The number of proofs found by k-induction, BDD, PDR, and refinement
phase k-induction, and the cumulative number of proofs found on different
iterations of the algorithm.

J. Lahtinen et al. / Reliability Engineering and System Safety 139 (2015) 120–130 129

https://bitbucket
http://fmv.jku.at/aiger/%E2%8C%AA

[7] Biere A, Cimatti A, Clarke EM, Zhu Y. Symbolic model checking without BDDs.
In: Cleaveland R, editor. TACAS; Lecture notes in computer science, vol. 1579.
Springer; 1999. p. 193–207 ISBN 3-540-65703-7.

[8] Sheeran M, Singh S, Stålmarck G. Checking safety properties using induction
and a SAT-solver. In: Hunt WA, Jr., Johnson SD, editors. FMCAD; Lecture notes
in computer science, vol. 1954. Berlin, Heidelberg: Springer; 2000. p. 108–25.
ISBN 3-540-41219-0.

[9] Eén N, Sörensson N. Temporal induction by incremental SAT solving. Electr
Notes Theor Comput Sci 2003;89(4):543–60.

[10] Bradley AR. SAT-basedmodel checking without unrolling. In: Jhala R, Schmidt DA,
editors. VMCAI; Lecture notes in computer science, vol. 6538. Berlin, Heidelberg:
Springer; 2011. p. 70–87 ISBN 978-3-642-18274-7.

[11] Yoo J, Jee E, Cha SD. Formal modeling and verification of safety-critical
software. IEEE Softw 2009;26(3):42–9.

[12] Lahtinen J, Valkonen J, Björkman K, Frits J, Niemelä I, Heljanko K. Model
checking of safety-critical software in the nuclear engineering domain. Reliab
Eng Syst Saf 2012;105:104–13. http://dx.doi.org/10.1016/j.ress.2012.03.021.

[13] Gan X, Dubrovin J, Heljanko K. A symbolic model checking approach to
verifying satellite onboard software. Sci Comput Program 2013. http://dx.doi.
org/10.1016/j.scico.2013.03.005 Available online.

[14] Clarke EM, Gupta A, Strichman O. SAT-based counterexample-guided abstrac-
tion refinement. IEEE Trans CAD Integr Circuits Syst 2004;23(7):1113–23.

[15] Clarke EM, Long DE, McMillan KL. Compositional model checking. In: LICS.
IEEE Computer Society; 1989. p. 353–62. ISBN 0-8186-1954-6.

[16] Sterin B, Een N, Mishchenko A, Brayton R. The benefit of concurrency in model
checking. In: Proceedings of the international workshop on logic synthesis,
IWLS'11; 2011. p. 176–82.

[17] Zeller A. Isolating cause-effect chains from computer programs. In: SIGSOFT
FSE; 2002. p. 1–10.

[18] Zeller A, Hildebrandt R. Simplifying and isolating failure-inducing input. IEEE
Trans Softw Eng 2002;28(2):183–200.

[19] Lahtinen J, Kuismin T, Heljanko K. CEGAR algorithm and fictional model. 〈http://
users.ics.aalto.fi/tlauniai/cegar-2013/〉; 2014 [accessed September 2, 2014].

[20] Lahtinen J, Björkman K, Valkonen J, Frits J, Niemelä I. Analysis of an emergency
diesel generator control system by compositional model checking. VTT Work-
ing Papers 156.VTT Technical Research Centre of Finland; 2010.

[21] Pakonen A, Mätäsniemi T, Lahtinen J, Karhela T. A toolset for model checking of
PLC software. In: IEEE 18th conference on emerging technologies & factory
automation (ETFA); 2013. p. 1–6. http://dx.doi.org/10.1109/ETFA.2013.6648065.

[22] Lahtinen J, Launiainen T, Heljanko K. Model checking methodology for large
systems, faults and asynchronous behaviour. VTT Technology 12, VTT Techni-
cal Research Centre of Finland; 2012.

[23] Lahtinen J, Björkman K, Valkonen J, Niemelä I. Emergency diesel generator
control system verification by model checking and compositional minimiza-
tion. In: Kučera A, Henzinger TA, Nešetřil J, Vojnar T, Antoš D, editors. MEMICS
2012; 2012. p. 49–60. ISBN 978-80-87342-15-2.

[24] Sterin B, Een N, Mishchenko A, Brayton R. The benefit of concurrency in model
checking. In: IWLS'11; 2011. p. 176–82.

[25] Kurshan RP. Computer-aided verification of coordinating processes: the
automata-theoretic approach. Princeton, NJ, USA: Princeton University Press;
1994 ISBN 0-691-03436-2.

[26] Balarin F, Sangiovanni-Vincentelli AL. An iterative approach to language
containment. In: Proceedings of the 5th international conference on computer
aided verification. CAV '93. London, UK: Springer-Verlag; 1993. p. 29–40. ISBN
3-540-56922-7.

[27] Clarke E, Grumberg O, Jha S, Lu Y, Veith H. Counterexample-guided abstrac-
tion refinement for symbolic model checking. J ACM 2003;50(5):752–94. http:
//dx.doi.org/10.1145/876638.876643.

[28] Das S, Dill DL. Successive approximation of abstract transition relations. In:
Proceedings of the 16th annual IEEE symposium on logic in computer science.
LICS '01. Washington, DC, USA: IEEE Computer Society; 2001, p. 51–58.

[29] Clarke EM, Gupta A, Kukula JH, Shrichman O. SAT based abstraction-
refinement using ilp and machine learning techniques. In: Proceedings of
the 14th international conference on computer aided verification. CAV '02.
London, UK: Springer-Verlag; 2002. p. 265–79. ISBN 3-540-43997-8.

[30] McMillan K, Amla N. Automatic abstraction without counterexamples. In:
Garavel H, Hatcliff J, editors. Tools and algorithms for the construction and
analysis of systems, Lecture notes in computer science, vol. 2619. Berlin,
Heidelberg: Springer; 2003. p. 2–17 ISBN 978-3-540-00898-9.

[31] Glusman M, Kamhi G, Mador-Haim S, Fraer R, Vardi MY. Multiple-
counterexample guided iterative abstraction refinement: an industrial evalua-
tion. In: Proceedings of the 9th international conference on tools and
algorithms for the construction and analysis of systems. TACAS'03. Berlin,
Heidelberg: Springer-Verlag; 2003. p. 176–91. ISBN 3-540-00898-5.

[32] Amla N, McMillan K. Combining abstraction refinement and SAT-based model
checking. In: Grumberg O, HuthM, editors. Tools and algorithms for the construction
and analysis of systems; Lecture notes in computer science, vol. 4424. Berlin,
Heidelberg: Springer; 2007. p. 405–19. http://dx.doi.org/10.1007/978-3-540-71209
-1_31 ISBN 978-3-540-71208-4.

[33] Zheng H, Yao H, Yoneda T. Modular model checking of large asynchronous
designs with efficient abstraction refinement. IEEE Trans Comput 2010;59
(4):561–73. http://dx.doi.org/10.1109/TC.2009.187.

[34] Wang D, Jiang PH, Kukula J, Zhu Y, Ma T, Damiano R. Formal property
verification by abstraction refinement with formal, simulation and hybrid
engines. In: Proceedings of the 38th annual design automation conference.
DAC'01. New York, NY, USA: ACM; 2001. p. 35–40. ISBN 1-58113-297-2. http://
dx.doi.org/10.1145/378239.378260.

[35] Latvala T. Efficient model checking of safety properties. In: Proceedings of 10th
International SPIN workshop on model checking software, Portland, OR, USA,
May 9–10, 2003, Lecture notes in computer science, vol. 2648. Berlin,
Heidelberg: Springer; 2003. p. 74–88.

[36] Launiainen T, Heljanko K, Junttila TA. Efficient model checking of PSL safety
properties. IET Comput Digit Tech 2011;5(6):479–92.

[37] Yoo J, Cha S, Jee E. Verification of PLC programs written in FBD with VIS. Nucl
Eng Technol 2009;41(1):79–90.

[38] Soliman D, Thramboulidis K, Frey G. Transformation of function block
diagrams to UPPAAL timed automata for the verification of safety applications.
Annu Rev Control 2012;36(2):338–45.

J. Lahtinen et al. / Reliability Engineering and System Safety 139 (2015) 120–130130

http://dx.doi.org/10.1016/j.ress.2012.03.021
http://dx.doi
http://users.ics.aalto.fi/tlauniai/cegar-2013/%E2%8C%AA
http://users.ics.aalto.fi/tlauniai/cegar-2013/%E2%8C%AA
http://dx.doi.org/10.1109/ETFA.2013.6648065
http://dx.doi.org/10.1007/978-3-540-71209
http://dx.doi.org/10.1109/TC.2009.187
http://dx.doi.org/10.1145/378239.378260
http://dx.doi.org/10.1145/378239.378260

Publication IV

Jussi Lahtinen. Verification of fault-tolerant system architectures using

model checking. In 1st International Workshop on Development, Verifica-

tion and Validation of Critical Systems (DEVVARTS), Lecture Notes in Com-

puter Science, volume 8696, p. 195 – 206, Springer 2014.

c© 2014 Springer.

Reprinted with permission.

199

Publication V

Jussi Lahtinen. Automatic test set generation for function block based

systems using model checking. In 9th International Conference on the

Quality of Information and Communications Technology (QUATIC 2014),

Guimarães, Portugal, p. 216 – 225, IEEE 2014.

c© 2014 IEEE.

Reprinted with permission.

213

Automatic test set generation for function block based systems using model checking

Jussi Lahtinen
VTT Technical Research Centre of Finland

P.O. Box 1000
Espoo, Finland

Email: jussi.lahtinen@vtt.fi

Abstract—Many nuclear instrumentation and control (I&C)
systems are designed using a function block diagram de-
scription of the system. Strict requirements pertain to the
verification of these systems. Different verification techniques,
including structure-based testing, are demanded by standards
and the regulators. Unfortunately, the traditional structure-
based test techniques intended for software code are not
directly applicable to function block diagrams. However, cov-
erage criteria for function block diagrams have recently been
developed. In this work we have used these coverage criteria
and developed a technique for generating structure-based
test sets for function block based designs. The test set is
automatically generated but the technique requires that a
model checking model of the system is available. The technique
utilises model checking to determine the concrete test cases. We
have also described how tests can be generated so that multiple
test requirements can be fulfilled at once, thus decreasing the
number of generated test cases. We have implemented our
approach as a proof-of-concept tool, and demonstrated the
technique on a case study system.

I. INTRODUCTION

Digital instrumentation & control (I&C) systems are
increasingly being used for implementing safety-critical
applications such as nuclear power plant safety systems.
These systems have to be adequately verified using meth-
ods including simulation, formal methods, and predomi-
nantly testing. The ISO/IEC 29119-4 [1] standard divides
test techniques into three categories: specification-based,
structure-based, and experience-based testing. In the nuclear
automation domain, specification-based and structure-based
testing techniques are commonly used. Specification-based
testing means that the tests are derived from the requirement
specification of the system, while structure-based tests are
derived directly from the structure of the system. The
use of both testing techniques is required by the nuclear
regulators, e.g. the USNRC Regulatory Guide 1.171 [2].
Another motivation for structure-based testing is that other
forms of testing are specification-centric, and their success
depends a lot on whether the requirements of the system
have been sufficiently specified. Structure-based testing can
provide test cases that help identify omissions in the system
requirement specification.

Structure-based test design techniques can be subdivided
into control flow based and data flow based techniques.

A program can be modelled as a control flow graph, in
which all the possible execution sequences are represented as
paths of the graph. The control flow test techniques such as
statement testing, branch testing and decision testing define
coverage with respect to this graph. Data flow testing, on
the other hand, focuses on points at which variables receive
values and points at which these values are used, and defines
coverage with respect to these events.

Many nuclear I&C systems are designed using a function
block representation of the system. Function Block Diagram
(FBD) as defined in the IEC standard 61131-3 [3] is a
commonly used graphical programming language for pro-
grammable logic controllers, in which the design consists
of inputs, outputs, and a set of simple elementary function
blocks such as AND, OR, or timer function blocks, and
the connections between these components. An example
function block diagram following the graphical notations
used in this paper can be seen in Fig. 1.

The IEC 61131-3 standard is not always strictly followed
in real applications and other vendor-specific implemen-
tations are typical. For example, vendor-specific function
blocks are used in the design phase of application functions
in the AREVA’s TXS platform. The application functions
are then converted into C code using an automatic code
generator.

Applying structure-based testing to automatically gener-
ated code is undesirable as the test cases can become non-
intuitive and difficult to understand. One alternative to this
is to determine the structure-based tests on the level of the
function block diagram. However, the traditional structure-
based test techniques are not directly applicable.

Function block diagrams are fundamentally different from
code when it comes to testing, and the traditional definitions
of code coverage do not apply. Especially the control flow
methodology is not applicable. In code, only part of the code
is covered in a single test case. In function block diagrams
the whole system is usually1 “covered” on every time step,
i.e. all function blocks have some input, and produce some

1Different function block based design paradigms exist. The function
block diagrams as defined in IEC 61499 are executed in an event-based
manner. For these function blocks the control flow testing techniques might
be more suitable.

mailto:jussi.lahtinen@vtt.fi

output.
In order to be able to perform structure-based testing one

must first define a test coverage criterion that describes the
degree to which a particular system is tested by a set of tests.
Jee et al. [4], [5] have developed some novel coverage crite-
ria that can be used as a basis for planning structure-based
tests for function block diagrams. The coverage criteria are
based on interpreting the system as a data flow diagram, and
generating a set of test requirements that the tests have to
fulfil.

These coverage criteria offer a good basis for planning
structure-based tests. On trivial systems tests can be man-
ually composed. On more complex system designs that
contain memories, timers and feedback loops, however, it
can be quite difficult to come up with a test case that fulfils
a given test requirement. Furthermore, in larger systems the
number of test requirements can be rather high. It would be
practical to design the tests so that a single test case will
fulfil multiple test requirements simultaneously, and that the
number of tests is small. Doing this manually is infeasible,
and an automatic technique for determining the test cases
can be of considerable use.

Model checking [6] is a formal method that can be used
for analysing the behaviour of a system exhaustively. In
model checking, a model of the system is written and the
system specifications are formalised in a suitable language,
e.g. temporal logic. A model checking tool then analyses
the model against the temporal logic clause in a way that
takes all possible system behaviours into account. If it is
possible to violate the specification in the model, the model
checking tool gives a concrete counter-example as output
that demonstrates on variable-level how the violation might
occur. This ability to produce concrete counter-examples can
also be useful for generating test cases. The classic way
to use model checking for test generation is to take the
negation of some system requirement and formalise that in
temporal logic. When the resulting formula is analysed using
the model checking tool a counter-example will be produced
that is according to the original requirement. The inputs and
expected outputs of the test case can then be read from the
counter-example.

In our previous work (see e.g. [7]) we have used model
checking for analysing and verifying properties of safety-
critical nuclear domain systems. In this paper we combine
model checking and test case generation. We use the cov-
erage criteria designed for function block based systems
and introduce a novel approach for generating a test set
that has maximum coverage according to these criteria. The
test requirements established by using the coverage criteria
are transformed into suitable temporal logic formulas, and
analysed against a model of the system. We also describe
how tests can be generated so that multiple test requirements
can be fulfilled at once, thus decreasing the number of
generated test cases. For model checking, we employ both

FB_TYPE

IN1

TIME

OUT1

4.0 s

FB_TYPE

IN1

IN2
OUT1

INSTANCE_1

INSTANCE_2

EXAMPLE TITLE

Figure 1. An example of a function block diagram (FBD)

Binary Decision Diagram (BDD) -based [6] and bounded
model checking (BMC) -based [8] algorithms provided
by the model checker NuSMV 2.5.4 [9]. In BMC, only
model executions of length up to 𝑘 are examined, and the
model checking problem is translated into a propositional
satisfiability problem (SAT) that can be solved using SAT-
solvers.

We have implemented our approach as Python code, and
demonstrate the implementation on a small example system.
An early version of the technique and the implementation
are explained in more detail in a research report [10].

II. RELATED WORK

The first papers on the subject of using model checking to
generate tests were by Callahan et. al [11] and Engels et. al
[12]. These papers introduce the classic way of generating
test cases, in which the negation of a specification is model
checked in order to create a test case according to the
original specification. Since these pioneering papers, the
general test generation idea has been adapted in a variety
of applications. An extensive survey on research combining
test generation and model checking can be found in [13].

The work by Enoiu et. al [14] also discusses function
block diagrams in the context of test generation using model
checking. They have used the model checker UPPAAL to
generate a test set for function block diagrams. They have
defined their own coverage criteria for function block dia-
grams. However, no special heuristic algorithms to minimise
the number of test cases are used in their work.

Several papers have addressed the efficiency of the test
set, and the efficiency of the test generation process. For
example, Ammann et. al [15] reduce the test set size
simply by removing duplicate test cases and by dropping
the counter-examples which are a prefix to another counter-
example.

The paper by Hamon et. al [16] is concerned with methods
for efficient generation of test sets. In their technique, called
iterated extension, a model checking tool is modified so that

in addition to searching for counter-examples in a regular
manner, the tool also searches for extensions to previously
found counter-examples.

There are also techniques for generating efficient test
sets that are not necessarily related to model checking. For
example, automatic test pattern generators (ATPG’s) use test
compaction to reduce the overall size of the tests. The paper
by Niermann et. al [17] desribes a number of heuristic
algorithms used for compacting a set of tests generated by
a sequential circuit automatic test pattern generator.

Test cases are generated for Boolean form expressions in
[18]. The approach is based on fault classes for hypothesised
faults. Test predicates are formed by applying the various
fault classes on the Boolean expressions. The set of test
predicates is optimised using a SAT solver or a SMT solver.
One of their optimisation strategies, called test collecting,
considers several independent faults at once in order to find
a single test case that detects all of them.

In a paper by Fraser and Arcuri [19] a genetic algorithm
is used in order to generate a test suite for software code in
which all coverage goals are covered at the same time while
size of the test suite is kept as small as possible.

Test set efficiency is also discussed in a paper by Campos
et. al [20]. The objective in their work is to improve fault
localization in software by generating a test set based on its
ability to diagnose the fault. This is another aspect of test
set efficiency that can be very useful for debugging.

Our work in contrast to the related work focuses on
structure-based tests in the context of function block di-
agrams. In addition, we also propose a simple heuristic
algorithm to reduce the size of the test set.

III. EXAMPLE SYSTEM DESCRIPTION

A small function block based system, illustrated in Fig. 2,
is used as a running example to demonstrate the test
coverage criteria and our test generation technique. The
example is a stepwise shutdown system (adapted from [21])
that has been designed as a preventive safety system to
drive a process into a normal operating state without having
to rapidly shut the process down. It can be triggered by
a process input (e.g. high measurement value) or by the
operator using a manual trip command. A 14 s control
cycle is used that consists of a 4 s control followed by
10 s idle time after which the cycle is started again if the
measurements are still high. In addition, the operator can
add 4 s control cycles manually if the 10 s idle time seems
too long. The design contains an intentional error: if the
manual trip command is given during the 4 s control the
system freezes until the process input disappears. The design
error is left in the example so that we can see whether the
generated tests will be able to detect the error.

IV. TEST COVERAGE CRITERIA FOR FUNCTION BLOCK

DIAGRAMS

Jee et al. [4], [5] have developed three test coverage
criteria for structure-based testing of function block dia-
grams: basic coverage (BC), input condition coverage (ICC),
and complex condition coverage (CCC). To the best of
our knowledge, test coverage criteria for function block
diagrams prior to these did not exist. The coverage criteria
are based on interpreting the function block diagram as a
data flow graph, and calculating the data paths of that graph.
A set of test requirements is then written based on the data
paths. In what follows, we briefly go through the relevant
definitions related to the coverage criteria.

The function block diagram 𝐹 is defined as a tuple 𝐹 =
⟨FBs , 𝑉, 𝐸⟩, where FBs is a set of function blocks, 𝑉 is a
set of variables, and 𝐸 is a set of edges. An edge is defined
as a connection between two function blocks or a function
block and a variable. Function blocks can be defined with
respect to the edges. For example, the function block AND
is defined as: 𝑒𝑂𝑈𝑇 = 𝐴𝑁𝐷(𝑒𝐼𝑁1, 𝑒𝐼𝑁2), where 𝑒𝑂𝑈𝑇 is
the output edge of the function block and 𝑒𝐼𝑁1 and 𝑒𝐼𝑁2

are the input edges.
A data path is defined as a finite sequence ⟨𝑒1, 𝑒2 . . . 𝑒𝑛⟩

of edges where all the edges succeed one another. Since data
paths are finite, any internal feedback loop in a function
block diagram needs to be somehow handled. We handle
feedback loops by creating an alternative version of the
function block diagram in which all feedback loops are
disconnected. New input signals are added to replace the
feedback signals. This alternative version is used for deter-
mining the data paths and test requirements of the system.

The example system has a single feedback loop. Fig. 3
illustrates the example system with the feedback loop dis-
connected. The loop-inducing edge has been replaced with a
new input 𝐹𝑒𝑒𝑑𝑏𝑎𝑐𝑘. In addition, we have left the DELAY
function block out of examination in the example system in
order to simplify the example. DELAY function blocks are
problematic as the methodology does not currently provide
proper means to handle them adequately (see Section VI).

Once the feedback loop is removed it is straight-forward
to calculate the data paths. The example system has eight
data paths. Note that the time parameters of the PULSE
blocks are also considered as inputs of the system. One of
the data paths of the example system is highlighted in Fig. 3.

A function condition (FC) is the logical condition under
which the output edge 𝑒𝑜 of a function block is influenced
by the value at the input edge 𝑒𝑖. If internal variables of
the function block need to be analysed to determine the
relationship between an input and an output, the condition
is called a function block condition (FBC).

For example, the FCs and FBCs of the example system
are presented in Table I. The conditions of the example
system were determined manually following the convention

1oo2
input1

input2
output1

OR
PULSE

Reset
PULSE

NOT AND

DELAY

input1

input2
output1 input1

input2
output1

input1

output1

input1

time

reset

input1
time output1

input1

output1

output1

14 s
4 s

OR1

VOTE1

DELAY1

PULSE1

NOT1 AND1 PULSE2

Figure 2. Stepwise shutdown system

Table I
THE FUNCTION CONDITIONS AND FUNCTION BLOCK CONDITIONS

REQUIRED FOR THE ANALYSIS OF THE EXAMPLE SYSTEM

Function
block

FCs or FBCs

AND
FCAND (⟨𝑖𝑛𝑝𝑢𝑡1, 𝑜𝑢𝑡𝑝𝑢𝑡⟩) = ¬𝑖𝑛𝑝𝑢𝑡1 ∨ 𝑖𝑛𝑝𝑢𝑡2
FCAND (⟨𝑖𝑛𝑝𝑢𝑡2, 𝑜𝑢𝑡𝑝𝑢𝑡⟩) = ¬𝑖𝑛𝑝𝑢𝑡2 ∨ 𝑖𝑛𝑝𝑢𝑡1

NOT FCNOT (⟨𝑖𝑛𝑝𝑢𝑡1, 𝑜𝑢𝑡𝑝𝑢𝑡⟩) = 𝑇𝑅𝑈𝐸

PULSE
FBCPULSE (⟨𝑖𝑛𝑝𝑢𝑡1, 𝑜𝑢𝑡𝑝𝑢𝑡⟩) = ¬(𝑐𝑙𝑜𝑐𝑘 > 0)
∧¬𝑝𝑟𝑒𝑣 ∧ ¬𝑝𝑟𝑒𝑣𝑜𝑢𝑡
FBCPULSE (⟨𝑡𝑖𝑚𝑒, 𝑜𝑢𝑡𝑝𝑢𝑡⟩) = 𝑐𝑙𝑜𝑐𝑘 > 0

OR
FCOR(⟨𝑖𝑛𝑝𝑢𝑡1, 𝑜𝑢𝑡𝑝𝑢𝑡⟩) = 𝑖𝑛𝑝𝑢𝑡1 ∨ ¬𝑖𝑛𝑝𝑢𝑡2
FCOR(⟨𝑖𝑛𝑝𝑢𝑡2, 𝑜𝑢𝑡𝑝𝑢𝑡⟩) = 𝑖𝑛𝑝𝑢𝑡2 ∨ ¬𝑖𝑛𝑝𝑢𝑡1

1oo2

FC 1oo2 (⟨𝑖𝑛𝑝𝑢𝑡1, 𝑜𝑢𝑡𝑝𝑢𝑡⟩) =
𝑖𝑛𝑝𝑢𝑡1 ∨ ¬𝑖𝑛𝑝𝑢𝑡2
FC 1oo2 (⟨𝑖𝑛𝑝𝑢𝑡2, 𝑜𝑢𝑡𝑝𝑢𝑡⟩) =
𝑖𝑛𝑝𝑢𝑡2 ∨ ¬𝑖𝑛𝑝𝑢𝑡1
FBCResetPULSE (⟨𝑖𝑛𝑝𝑢𝑡1, 𝑜𝑢𝑡𝑝𝑢𝑡⟩) =
¬(𝑐𝑙𝑜𝑐𝑘 > 0) ∧ ¬𝑝𝑟𝑒𝑣 ∧ ¬𝑝𝑟𝑒𝑣𝑜𝑢𝑡 ∧ ¬𝑟𝑒𝑠𝑒𝑡

Reset FBCResetPULSE (⟨𝑟𝑒𝑠𝑒𝑡, 𝑜𝑢𝑡𝑝𝑢𝑡⟩) = 𝑟𝑒𝑠𝑒𝑡∨
PULSE (¬𝑝𝑟𝑒𝑣 ∧ ¬𝑝𝑟𝑒𝑣𝑜𝑢𝑡 ∧ 𝑖𝑛𝑝𝑢𝑡1) ∨ (𝑐𝑙𝑜𝑐𝑘 > 0)

FBCResetPULSE (⟨𝑡𝑖𝑚𝑒, 𝑜𝑢𝑡𝑝𝑢𝑡⟩) =
(𝑐𝑙𝑜𝑐𝑘 > 0) ∧ ¬𝑟𝑒𝑠𝑒𝑡

described in [4], [5]. In practice, the FBCs were manually
deduced from a list of all input and output combinations of
relevant variables of a function block. The function block
conditions of the two PULSE function blocks refer to inter-
nal variables (𝑝𝑟𝑒𝑣, 𝑝𝑟𝑒𝑣𝑜𝑢𝑡, 𝑐𝑙𝑜𝑐𝑘) used for implementing
them. The variable 𝑝𝑟𝑒𝑣 stores the previous value of the
input, 𝑝𝑟𝑒𝑣𝑜𝑢𝑡 stores the previous value of the output, and
𝑐𝑙𝑜𝑐𝑘 is a counter that is started whenever the pulse begins.
For more detail, the NuSMV implementation of the example
system is presented in [10].

A data path condition (DPC) is the condition along the
data path under which the input value plays a role in
computing the output. It can be composed as the con-
junction of the function block conditions on that path.
The data path condition corresponding to the data path
in Fig. 3 in is: (process input ∨ ¬VOTE1 .output)∧
((¬OR1 .output) ∨NOT1 .output)∧ (¬(PULSE2 .clock >
0) ∧¬ PULSE2 .prev ∧¬𝑃𝑈𝐿𝑆𝐸2.𝑝𝑟𝑒𝑣𝑜𝑢𝑡).

The coverage criterion and the data path conditions are
used to generate a set of test requirements. The BC coverage
criterion (BC) is met when each DPC is fulfilled by one of
the test cases.

The input condition coverage (ICC) criterion requires that
for each Boolean input of a data path, there is a test case
in which: 1) the DPC is fulfilled and the input is false; 2)
the DPC is fulfilled and the input is true.

The complex condition coverage (CCC) criterion is even
more demanding. It requires that for each Boolean variable
within a data path, there is a test case in which: 1) the DPC
is fulfilled and the variable is false; 2) the DPC is fulfilled
and the variable is true.

A test requirement is fulfilled by a test case that at
some point drives the system to a state in which the test
requirement evaluates to true. If all of the test requirements
can be fulfilled by one of the tests, 100 % test coverage
is achieved. In many cases, however, some of the test
requirements can be infeasible, due to e.g. timings in the
design.

1oo2
input1

input2
output1

OR
PULSE

Reset
PULSE

NOT ANDinput1

input2
output1 input1

input2
output1

input1

output1

input1

time

reset

input1
time output1

output1

14 s
4 s

OR1

VOTE1

PULSE1

NOT1 AND1 PULSE2

Figure 3. The figure illustrates the example system with the feedback loop disconnected. One of the data paths of the system is highlighted.

V. TEST SET GENERATION USING MODEL CHECKING

A. Using model checking for generating test cases

Our technique for using model checking to generate test
cases for function block diagrams is illustrated in Fig. 4.
The prerequisites for the technique are that the function
conditions and function block conditions have been defined
for each function block type, and that the function block
diagram is modelled as a model checking model. A method-
ology for modelling function block diagrams already exists;
see e.g. [22]. The model checking methodology suits well
for designs where Boolean logic is used together with timers
and memories. However, complex functionality such as PID
controllers are too complex to be used for model checking.
Another limitation is that the model checking tool used in
this work does not support analog variables, and therefore
analog variables as well as time are discretised in the model.

Once the initial information has been acquired, the data
paths of the system are identified, and a set of test re-
quirements is written. This is straight-forward work and can
be done automatically if the system design is in computer
readable form.

Next we need to define a test case that fulfils a given
test requirement. Each test requirement can be transformed
into a temporal logic clause stating that the test requirement
can never be fulfilled. In linear temporal logic (LTL) the
property is specified as G¬(testRequirement).

The model checking tool can be used to evaluate the
temporal logic clause against the system model. If a path
exists to a state in which the test requirement is fulfilled, it
is given as a counter-example. The system inputs used for
a test case and the expected outputs of the system can be
read from the counter-example.

B. Test set generation algorithm

It is possible to create test cases that fulfil multiple test
requirements at once. This can be done by combining two (or
several) temporal logic formulas into a single formula that
covers all the associated test requirements. As an example,
assume we have two test requirements: testRequirement1
and testRequirement2 . The corresponding temporal logic
formula covering these two test requirements is:

G¬(testRequirement1) ∨ G¬(testRequirement2).
The temporal logic formula is also equivalent to:
¬(F(testRequirement1) ∧ F(testRequirement2)).
The formula states that no path exists, in which each test

requirement is true at some time point during the test. If a
path exists that fulfils both test requirements it will be output
by the model checking tool as a counter-example.

It is possible to create a single temporal logic formula
encompassing all of the test requirements. However, such
a test may be very complex, or consist of very many time
steps. Some test requirements can also be infeasible, and
these cases should be detected and sorted out.

We developed an automatic test set generation algorithm
with the intention of keeping the test cases simple, and the
number of tests low. The algorithm is presented as pseudo
code in Algorithm 1. In the procedure GenerateTestSet , we
assume that the set of test requirements 𝑅 has already been
calculated, and that the system FBD has been modelled.
The procedure makes calls to another function runMC that
creates the temporal logic formula corresponding to the set
of currently examined test requirements, and performs the
model checking on the model, and returns two elements: a
Boolean variable testfound that expresses whether a suitable
test case could be found, and the counter-example file 𝑐𝑒, if

Function
block

conditions

Data
paths

Test
coverage
criterion

Function
block

diagram

Temporal logic
specifications

Model

Counter-
examples

Test
cases

Test
requirements

Model
checking

Figure 4. Test generation using model checking

one exists.
The algorithm begins with the first test requirement and

determines whether a test case for that single test require-
ment can be found. If it can be found we attach a new test
requirement to the examined set of test requirements, and
find out whether a counter-example of the same length that
fulfils all test requirements in the set can be found. If such a
counter-example is still possible we continue by attempting
to add even more test requirements to the set. If the counter-
example becomes infeasible, we exclude the most recent
test requirement and continue by adding one from the set
of unexamined test requirements. Once all test requirements
have been gone through, we have a single test case that
fulfils 𝑛 out of the ∣𝑅∣ test requirements. The process is
then repeated with the ∣𝑅∣ − 𝑛 remaining test requirement
until every test requirement is covered by some test case, or
it has been determined that the test requirement is infeasible.

For simplicity, the pseudo code presentation is missing
some of the functionality of our algorithm. We use a
bounded model checking (BMC) algorithm to quickly look
for short test cases. If the BMC algorithm does not find
a counter-example within its bound, we employ a BDD-
based algorithm as a backup, since the BDD-based approach
will find counter-examples of any length. We also store the
lengths of the already found counter-examples and use them
to guide the BMC algorithm: when the set of currently
examined test requirements grows, the length of the test
fulfilling the requirements is kept unchanged if possible.
Finally, we also create a mapping from the test requirements
to the test cases that fulfil them.

C. Implementation

The test set generation technique was implemented as
a prototype tool using Python. The tool requires a model
checking model as input. The model is annotated so that
parts referring to the inputs, outputs and function blocks of
the model can be easily recognised. The tool then deduces
the structure of the function block diagram based on the
model. In addition to the model file, we also use a separate
file for relevant information regarding the different function
block types, e.g. names and types of the output signals of
function blocks, and most importantly the function condi-

Algorithm 1 Test set generation algorithm
1: procedure GENERATETESTSET(𝑅,FBD)
2: Checked ← ∅ ⊳ Covered test requirements
3: Infeasible ← ∅ ⊳ Infeasible test requirements
4: Current ← ∅ ⊳ Current set of requirements
5: Tests ← ∅ ⊳ Resulting test set
6: for 𝑥 ← 0, ∣𝑅∣ − 1 do
7: if 𝑅[𝑥] ∈ Checked then
8: continue
9: end if

10: Current ← ∅
11: for 𝑦 ← 𝑥, ∣𝑅∣ − 1 do
12: if 𝑅[𝑦] ∈ Checked then
13: continue
14: end if
15: Current ← Current ∪𝑅[𝑦]
16: [𝑡𝑒𝑠𝑡𝑓𝑜𝑢𝑛𝑑, 𝑐𝑒] = runMC (FBD ,Current)
17: if not 𝑡𝑒𝑠𝑡𝑓𝑜𝑢𝑛𝑑 then
18: if ∣Current = 1 then
19: Infeasible ← Infeasible ∪𝑅[𝑦]
20: Checked ← Checked ∪𝑅[𝑦]
21: break
22: end if
23: if ∣Current ∣ > 1 then
24: Current ← Current −𝑅[𝑦]
25: end if
26: else ⊳ Test found
27: Checked ← Checked ∪𝑅[𝑦]
28: end if
29: if ∃𝑧 : 𝑅[𝑧] /∈ Checked , 𝑧 > 𝑦 then
30: continue
31: else
32: Tests ← Tests ∪ 𝑐𝑒
33: break
34: end if
35: end for
36: end for
37: end procedure

tions and function block conditions related to each input-

output pair.
Function block diagrams may have diverging connections

between the function blocks. By this we mean that an
output of a function block is used as input in multiple
other function blocks. According to the used methodology,
however, a connection has to be between two function
blocks or a function block and a variable. Our tool examines
the structure of the FBD, and if diverging connections are
detected, dummy function blocks are added to the branch
points. The dummy function blocks have a single input and
several outputs, and they simply forward the input signal to
the outputs.

We also implemented a loop removal feature in the tool.
Loops are removed automatically via a backwards depth-
first-search starting from the outputs of the FBD. If an edge
is encountered during the search that has been previously
visited, then a loop has been detected. The loop removal
procedure is used only for creating the test requirements of
the system. The actual tests are generated for the original
system that still has all feedback loops intact.

VI. DISCUSSION

We have identified some issues that complicate the utili-
sation of the structure-based coverage criteria as defined in
[4] and [5]. First, there is a slight difference in the definition
of the function block conditions of the coverage criteria
by Jee et. al, and the input-output condition as defined
in another widely used coverage criterion called Modified
Condition/Decision Coverage (MC/DC) (see IEC 29119-4).
For example, according to Jee et. al the function condition
for one of the inputs of an AND function block is:
FC ⟨𝑖𝑛𝑝𝑢𝑡1, 𝑜𝑢𝑡𝑝𝑢𝑡⟩ = (¬𝑖𝑛𝑝𝑢𝑡1) ∨ 𝑖𝑛𝑝𝑢𝑡2
The condition states that when 𝑖𝑛𝑝𝑢𝑡1 is false, it has

influence on 𝑜𝑢𝑡𝑝𝑢𝑡, and if 𝑖𝑛𝑝𝑢𝑡1 is true, it influences the
output only when 𝑖𝑛𝑝𝑢𝑡2 is true as well. A similar input-
output influence relation is defined in the MC/DC coverage
criterion. In MC/DC the influence relation is somewhat
different: input has influence on the output when flipping of
the input value, also flips the output value. If the function
condition for the AND function block was written based on
this definition, it would be:
FC ⟨𝑖𝑛𝑝𝑢𝑡1, 𝑜𝑢𝑡𝑝𝑢𝑡⟩ = 𝑖𝑛𝑝𝑢𝑡2
That is, 𝑖𝑛𝑝𝑢𝑡1 has influence on 𝑜𝑢𝑡𝑝𝑢𝑡 only when the

other input is true. The difference in these two definitions
is the case where both inputs are false. According to the
definition by Jee et. al 𝑖𝑛𝑝𝑢𝑡1 has influence on the output
since 𝑖𝑛𝑝𝑢𝑡1 is one of the inputs that are false. According
to the MC/DC definition 𝑖𝑛𝑝𝑢𝑡1 does not have influence
on 𝑜𝑢𝑡𝑝𝑢𝑡. In our opinion the MC/DC definition is more
intuitive and leaves less room for interpretation.

Another issue is that the current methodology by Jee et.
al does not adequately take the time dimension into account
in the function block conditions. Only the instantaneous
influence of an input to an output is considered. However,

Table II
INFORMATION ON THE TEST GENERATION FOR THE EXAMPLE SYSTEM

Coverage Test Infeasible Test Achieved
criterion Requirements Requirements cases coverage

BC 8 0 1, 3a 100%
ICC 14 1 1, 2, 3b 92,9%
CCC 80 10 1, 2, 3c 87,5%

in some cases an input may only have a delayed influence
on an output signal. A perfect example is the DELAY
function block. If its function block condition is defined in
strict terms we realise that the input has no direct influence
on the output, and the function block condition becomes:
FBC ⟨𝑖𝑛𝑝𝑢𝑡1, 𝑜𝑢𝑡𝑝𝑢𝑡⟩ = 𝐹𝐴𝐿𝑆𝐸. This causes all the test
requirements involved with a data path that has a DELAY
function block to become infeasible. This seems counter-
intuitive since there is a clear dependency between the
input of the DELAY and the output. However, setting the
function block condition to TRUE could cause test cases to
be generated, in which the input of a data path does not
influence the output due to a time delay within the path.

The input of the DELAY function block at time point 𝑛
influences the output at time point 𝑛+1. The methodology
should be further developed so that the time aspect is
somehow taken into account.

VII. RESULTS

In this section we present the generated tests for the
example system. In addition, we present results of using the
developed tool for test generation on a small group of other
function block diagrams. The tests were generated on a PC
with Intel Core i7 Q740 processor and 3 GB of RAM. For
model checking, NuSMV version 2.5.4 was used.

A. Example system

Test cases were generated for the example system based
on the three coverage criteria (BC, ICC and CCC). Infor-
mation related to the test generation process is illustrated
Table II.

Applying the coverage criteria to the system resulted in
eight test requirements for the BC criterion, 14 test require-
ments for the ICC criterion, and 80 test requirements for
the CCC criterion. All BC test requirements were feasible.
One ICC test requirement was infeasible because it required
that the feedback signal was true while the internal memory
indicating the previous control output value was false. In the
actual system where the feedback loop is intact these two
signals are the same signal which causes the requirement
to be infeasible. Ten out of the 80 CCC test requirements
were infeasible. As an example of the infeasible cases, one
of the test requirements states that the output of a PULSE
function block is false while the internal clock of the PULSE
is running. This cannot occur in the system because the
output is set whenever the clock is running.

Process input

Manual trip 1

Manual trip 2

Control

Test case 1
Process input

Manual trip 1

Manual trip 2

Control

Test case 3a

Process input

Manual trip 1

Manual trip 2

Control

Test case 2
Process input

Manual trip 1

Manual trip 2

Control

Test case 3b

Process input

Manual trip 1

Manual trip 2

Control

Test case 3c

Figure 5. Timing diagrams of the generated test cases

The timing diagrams of the generated test cases are
illustrated in Fig. 5. The BC criterion led to test cases 1
and 3a, ICC led to test cases 1, 2 and 3b, and CCC led
to test cases 1, 2 and 3c. Test case 1 consists of a single
time point at which the control output should be set when
the process input is true, and the manual trip commands are
false. Test case 2 consists of a single time point as well and
it requires that the control output is not set when all inputs
are false. All criteria led to a single longer test case (test
cases 3a, 3b and 3c). In these tests the process input is true
until the control output becomes false after the 4 s pulse. The
three test cases have minor differences in how the manual
trip commands alternate during the pulse and after it.

Three test cases suffice for fulfilling all feasible test
requirements of the case study system, even when the
most rigorous coverage criterion (CCC) is used. In the
example system the benefit of using the CCC criterion when
compared to the less rigorous ICC criterion cannot be seen.
This is probably due to the simplicity of the case study
system. However, the difference between BC and the more
rigorous coverage criteria can be seen: BC results in two
tests while ICC and CCC results in three test cases. The
ICC and CCC test cases are also more intricate.

The case study system was chosen because it includes a
design error: if the manual trip command is given during
the 4 s control the system freezes until the input disappears.
In the generated test cases the error triggering behaviour is
present but the end effect of the error can not be seen. The
manual trip command is indeed given during the 4s control
in the test cases 3a, 3b and 3c. Unfortunately, the generated
test cases are too short to show the freeze of the output,
and thus the error can not be identified only based on the
generated tests. With the help of the test cases, however,
a system designer may notice that a scenario in which the
operator gives the trip command at a wrong time has not
been considered.

Table III
FUNTION BLOCK DIAGRAMS USED AS INPUT FOR TEST GENERATION

FBD name Inputs Outputs Function blocks Data paths
FBD1 3 1 6 3
FBD2 2 1 4 2
FBD3 1 1 1 1
FBD4 1 4 14 15
FBD5 4 4 12 18
FBD6 1 1 6 3
FBD7 1 2 5 6
FBD8 3 2 8 15
FBD9 2 5 10 10

B. Test generation results

Using the developed tool, we generated structure-based
tests for nine exemplar function block diagrams. Some
statistics of these function block diagrams are presented
in Table III. For these tests we defined the input-output
relations of the function blocks following the MC/DC
methodology, unlike in the running example. We also did not
consider parameters of the function blocks as separate inputs
as was the case in the running example. The function block
condition of the DELAY function block was defined as:
FBC ⟨𝑖𝑛𝑝𝑢𝑡1, 𝑜𝑢𝑡𝑝𝑢𝑡⟩ = 𝐹𝐴𝐿𝑆𝐸 according to the MC/DC
principles.

The test generation results for different coverage criteria
are summarised in Tables IV, V and VI. In addition to the
number of total and infeasible test requirements, the number
of generated tests, the number of performed model checker
executions, and total test generation time are shown. Our
test generation technique is able produce compact test cases,
since the number of test cases remains low even when the
number of total test requirements is high.

We can also see that the number of infeasible test re-
quirements is quite high. This is due to the use of DELAY
function blocks in systems FBD4, FBD5, FBD6, FBD7,

Table IV
TEST GENERATION RESULTS WHEN THE BC TEST COVERAGE

CRITERION IS USED

FBD Test Infeasible Test Model Elapsed
name reqs. test reqs. cases checker runs time
FBD1 3 0 1 3 3 s
FBD2 2 0 1 2 2 s
FBD3 1 0 1 1 1 s
FBD4 15 9 2 23 71 s
FBD5 18 12 1 29 38 s
FBD6 3 1 1 4 5 s
FBD7 6 3 2 8 10 s
FBD8 15 5 2 28 29 s
FBD9 10 7 1 15 20 s

Table V
TEST GENERATION RESULTS WHEN THE ICC TEST COVERAGE

CRITERION IS USED

FBD Test Infeasible Test Model Elapsed
name reqs. test reqs. cases checker runs time
FBD1 4 0 1 4 4 s
FBD2 2 0 1 2 2 s
FBD3 2 0 2 3 3 s
FBD4 15 9 2 23 70 s
FBD5 36 24 5 119 127 s
FBD6 6 3 2 12 14 s
FBD7 12 7 3 20 24 s
FBD8 30 12 5 110 106 s
FBD9 20 14 2 42 51 s

Table VI
TEST GENERATION RESULTS WHEN THE CCC TEST COVERAGE

CRITERION IS USED

FBD Test Infeasible Test Model Elapsed
name reqs. test reqs. cases checker runs time
FBD1 20 0 3 32 31 s
FBD2 12 0 3 24 22 s
FBD3 4 0 2 6 5 s
FBD4 212 136 5 712 1123 s
FBD5 262 182 5 902 999 s
FBD6 34 22 2 75 102 s
FBD7 70 45 3 113 152 s
FBD8 202 97 5 731 712 s
FBD9 140 104 2 287 347 s

FBD8 and FBD9. As noted in section VI all data paths
that are involved with a DELAY function block produce
infeasible test requirements.

The number of test requirements can become quite high
when the CCC coverage criterion is used (Table VI). Sub-
sequently, the model checker has to be run hundreds of
times, and the examined temporal logic formulas become
long. Our test generation technique can manage these FBDs
with a higher number of test requirements because the
individual model checker runs remain short in duration. The
test generation times, however, can still be quite high for a
relatively simple function block diagram.

VIII. THREATS TO VALIDITY

In our technique we create a small number of tests that
achieve high structure-based coverage by fulfilling multiple
test requirements simultaneously. A threat to construct va-
lidity is that small tests may not be desirable if there is
also need to e.g. identify which test requirement is the one
localizing an error in the system. It can also be quite difficult
to determine the correctness of the outputs of a test case
when multiple test requirements are fulfilled at once.

Threats to internal validity might come from errors in the
implementation code, the model checking model, and the
function block conditions that were manually composed. To
reduce possible errors in these components, the implementa-
tion was tested on many function block diagrams other than
the one used as a running example, and the intermediate
products of the implementation such as data paths and
data path conditions and test requirements were manually
reviewed.

The most important threat to external validity is whether
the methodology can be extended to cover also function
blocks that have no direct combinatorial dependencies be-
tween the inputs and the outputs (such as the DELAY
function block). In addition, our technique depends on the
fact that the system can be adequately described in the
modelling language of the model checking tool. Designs
including complex mathematical functions cannot be exactly
modelled. Also, analog variable ranges have to be discretised
for the tool.

IX. CONCLUSIONS

In this work we have introduced a technique for using
model checking to generate structure-based test cases for
function block diagrams. We have also presented an al-
gorithm for generating a set of test cases that has high
structure-based coverage. The test set is automatically gener-
ated but the technique requires that a model checking model
of the system is available. The resulting test set is efficient
in the sense that the number of test cases is small and the
tests are concise. We have implemented the algorithm using
the Python programming language and have demonstrated
the use of the technique in a small case study system, and
presented test generation results on a small group of function
block diagrams.

The main application of our technique are safety-critical
function block based systems, but the technique can be used
for other relatively simple function block based systems
consisting of Boolean logic, timers and memories. Based on
our experience the technique should scale to typical nuclear
domain safety systems, as long as only the behaviour of the
single system is included in the analysis.

Our test set generation technique currently requires a
fair amount of manual work. A model checking model of
the examined system has to be available, and the input-
output relations of the function blocks have to be manually

analysed. In future, we plan to determine a way to gen-
erate these conditions in a more automatic fashion. This
automatic generation could be based on iterative counter-
example guided model checking of a single function block.
Using the MC/DC definition for defining the input-output
relations seems more intuitive and more suitable for auto-
matic generation purposes. We also plan to further extend
the methodology so that the time dimension is taken into
account in the definition of the function block conditions.

Finally, we plan on refining the test generation algorithm
as many optimisations to the algorithm are possible. The
test generation process can take a considerable amount of
time. Infeasible test requirements may cause many redundant
model checker executions. The test generation time could be
shortened by trying to detect the infeasible test requirements
as soon as possible so that the number of redundant model
checker executions remains low. It may also be useful
to check whether a previously generated counter-example
already fulfils a test requirement without running the model
checker (similar to monitoring of faults in [18]).

REFERENCES

[1] IEC, ISO/IEC 29119-4 (2013): Software and systems engi-
neering — Software testing — Part 4: Test techniques, 2013.

[2] USNRC, “Software Unit Testing for Digital Computer Soft-
ware Used in Safety Systems of Nuclear Power Plants,
Regulatory Guide 1.171,” 1997.

[3] IEC, IEC 61131-3 (2013): International Standard for Pro-
grammable Controllers — Part 3: Programming Languages,
1993.

[4] E. Jee, J. Yoo, S. D. Cha, and D. Bae, “A data flow-based
structural testing technique for FBD programs.” Information
& Software Technology, vol. 51, no. 7, pp. 1131–1139, 2009.

[5] E. Jee, S. Kim, S. Cha, and I. Lee, “Automated test coverage
measurement for reactor protection system software imple-
mented in function block diagram,” in Proceedings of the 29th
International Conference on Computer Safety, Reliability, and
Security, ser. SAFECOMP’10. Berlin, Heidelberg: Springer-
Verlag, 2010, pp. 223–236.

[6] E. M. Clarke, O. Grumberg, and D. Peled, Model checking.
MIT Press, 2001.

[7] J. Lahtinen, J. Valkonen, K. Björkman, J. Frits, I. Niemelä,
and K. Heljanko, “Model checking of safety-critical software
in the nuclear engineering domain,” Reliability Engineering
& System Safety, vol. 105, no. 0, pp. 104 – 113, 2012.

[8] A. Biere, K. Heljanko, T. A. Junttila, T. Latvala, and
V. Schuppan, “Linear encodings of bounded LTL model
checking,” Logical Methods in Computer Science, vol. 2, no.
5:5, pp. 1–64, 2006.

[9] FBK-IRST, Carnegie Mellon University, University of
Genova and University of Trento, “NuSMV model checker
v.2.5.4,” 2012. [Online]. Available: http://nusmv.fbk.eu/

[10] J. Lahtinen, J. Ranta, and L. Lötjönen, “CORSICA 2013 work
report: Test set generation, FPGA model checking, and fault
injection,” VTT Technical Research Centre of Finland, Espoo,
Finland, Research report VTT-R-00212-14, 2014.

[11] J. Callahan, F. Schneider, S. Easterbrook et al., “Automated
software testing using model-checking,” in Proceedings 1996
SPIN workshop, vol. 353. Citeseer, 1996.

[12] A. Engels, L. Feijs, and S. Mauw, “Test generation for
intelligent networks using model checking,” in Tools and
Algorithms for the Construction and Analysis of Systems,
ser. Lecture Notes in Computer Science, E. Brinksma, Ed.
Springer Berlin Heidelberg, 1997, vol. 1217, pp. 384–398.

[13] G. Fraser, F. Wotawa, and P. E. Ammann, “Testing with
model checkers: a survey,” Software Testing, Verification and
Reliability, vol. 19, no. 3, pp. 215–261, 2009. [Online].
Available: http://dx.doi.org/10.1002/stvr.402

[14] E. P. Enoiu, D. Sundmark, and P. Pettersson, “Model-based
test suite generation for function block diagrams using the
UPPAAL model checker,” in Software Testing, Verification
and Validation Workshops (ICSTW), 2013 IEEE Sixth Inter-
national Conference on. IEEE, 2013, pp. 158–167.

[15] P. Ammann, P. Black, and W. Majurski, “Using model check-
ing to generate tests from specifications,” in Formal Engi-
neering Methods, 1998. Proceedings. Second International
Conference on, Dec 1998, pp. 46–54.

[16] G. Hamon, L. de Moura, and J. Rushby, “Generating efficient
test sets with a model checker,” in Software Engineering
and Formal Methods, 2004. SEFM 2004. Proceedings of the
Second International Conference on, Sept 2004, pp. 261–270.

[17] T. Niermann, R. Roy, J. Patel, and J. Abraham, “Test
compaction for sequential circuits,” Computer-Aided Design
of Integrated Circuits and Systems, IEEE Transactions on,
vol. 11, no. 2, pp. 260–267, Feb 1992.

[18] A. Gargantini and G. Fraser, “Generating minimal fault
detecting test suites for general boolean specifications,” In-
formation and Software Technology, vol. 53, no. 11, pp. 1263
– 1273, 2011.

[19] G. Fraser and A. Arcuri, “Whole test suite generation,” IEEE
Transactions on Software Engineering, vol. 39, no. 2, pp.
276–291, 2013.

[20] J. Campos, R. Abreu, G. Fraser, and M. d’Amorim, “Entropy-
based test generation for improved fault localization,” in
Automated Software Engineering (ASE), 2013 IEEE/ACM
28th International Conference on, Nov 2013, pp. 257–267.

[21] K. Björkman, J. Valkonen, K. Heljanko, and I. Niemelä,
“Model-based analysis of a stepwise shutdown logic,” VTT
Technical Research Centre of Finland, VTT Working Papers
115, 2009.

[22] A. Pakonen, T. Mätäsniemi, J. Lahtinen, and T. Karhela, “A
toolset for model checking of PLC software,” in IEEE 18th
Conference on Emerging Technologies & Factory Automation
(ETFA), September 2013, pp. 1–6.

http://nusmv.fbk.eu/
http://dx.doi.org/10.1002/stvr.402

A
alto-D

D
 15

9
/2

016
V

TT S
C

IE
N

C
E

 13
3

9HSTFMG*agjfjd+

ISBN 978-952-60-6959-3 (printed)
ISBN 978-952-60-6958-6 (pdf)
ISSN-L 1799-4934
ISSN 1799-4934 (printed)
ISSN 1799-4942 (pdf)

978-951-38-8448-2 (printed)
978-951-38-8447-5 (pdf)
2242-119X
2242-119X (printed)
2242-1203 (pdf)

Aalto University
School of Science
Department of Computer Science
www.aalto.fi

BUSINESS +
ECONOMY

ART +
DESIGN +
ARCHITECTURE

SCIENCE +
TECHNOLOGY

CROSSOVER

DOCTORAL
DISSERTATIONS

Jussi Lahtinen
M

odel C
hecking Large N

uclear Pow
er Plant Safety System

 D
esigns

A
alto

 U
n
ive

rsity

2016

Department of Computer Science

Model Checking Large
Nuclear Power Plant Safety
System Designs

Jussi Lahtinen

DOCTORAL
DISSERTATIONS

http://www.aalto.fi

