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List of symbols

A

(M x N) matrix of stoichiometric coefficients
surface or interfacial area (m?)

Affinity of reaction i (] - mol™1)

activity of species i

stoichiometric coefficient between component j and species i; matrix
element of A

magnetic flux density (T=V-s-m™32)

(M x 1) column vector of molar amounts of components (mol)

molar amount of component k (mol)

number of added constraints in a matrix of stoichiometric coefficients,
electric field (N - C™1)

Helmholtz free energy (J)

Faraday constant (~ 96485 ] - mol~! - V1)

Gibbs free energy (J)

free energy function (other than G¢) matching system specific constraints

0]

free energy function as calculated by a free energy minimiser (J)
modified minimised free energy function in a free energy minimiser (])
enthalpy (J)

Lagrangian function

thermodynamic work coefficient j

thermodynamic work coefficient j for a species i as pure phase (such
as surface energy o;)



thermodynamic work coordinate j

molar contribution to the thermodynamic work coordinate j by species i

M number of components in the system

m magnetic moment (J - T™1)

N number of species in the system

NR number of reactions

n (N x 1) column vector of molar amount of species (mol)
n; molar amount of species (mol)

P pressure (Pa = N-m™?)

p electric dipole moment (C - m)

Q heat (J)

q charge (C)

R gas constant (=~ 8.3145] - mol™1 - K™1)

S entropy (J- K1)

T temperature (K)

U internal energy (J)

|4 volume (m?3)

vy, Wi stoichiometric coefficient of species i in a reaction
Y; mole ratio of i to reference metal

) electric potential (V)

Vi activity coefficient of species

A Lagrange multiplier related to component j

Ui chemical potential of species i (J - mol™1)

g (R x 1) column vector of extents of R reactions
&, extent of reaction r (mol)

Qi j interaction energy between i and j

v chemical potential of component k (J - mol™1)

o surface energy (J - m~2)

o; surface energy of pure substance i (J - m~2 - mol)



Xi

molar magnetic susceptibility of i (J - T~2 - mol™1)

Subscript and superscript related terminology (X is a generic Roman or Greek

character)

where i can be also be j, k or . Partial molar quantity corresponding to
the integral quantity X of the whole system (unless X; is explicitly given
in the preceding list)

change in X due to processes that are internal to the system or those
that are interactions with its surroundings respectively

part or value of the quantity X related to the part a or g only
value of the quantity X for pure substance i

transpose of matrix X
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1. Introduction

Computational methods in chemical equilibrium thermodynamics have found nu-
merous application areas in diverse fields such as pyrolysis and combustion, met-
allurgy, petrochemistry, the pulp and paper industry, the study of advanced inor-
ganic materials, environmental science and biochemistry (Alberty, 2003;
Gmehling, Kolbe, Kleiber, & Rarey, 2012; Hack, 2008; Jantschi & Bolboaca, 2014;
Kangas, 2015; Letcher, 2004). This is not surprising considering the general ap-
plicability of thermodynamic relations, theoretical and data development over a
century and finally the rapid improvements in computational methods during the
last few decades. Also a large number of computer codes and programmes have
been developed for accurate handling of thermochemical systems and effective,
robust and practical determination of the equilibrium state based on the minimisa-
tion of the Gibbs free energy of the system.

As many of the cases of interest are not in actual equilibrium, there is a need for
methods that extend the application area of chemical equilibrium solvers to non-
equilibrium systems. Likewise there is a need for efficient computational methods
for thermochemical systems that are described by parameters other than those
most commonly associated with Gibbs energy, namely temperature, pressure and
fixed elemental (and charge) balances.

The purpose of this work has been to explore, develop and collect a systematic
set of computational methods that can be used with a standard Gibbs energy
minimiser for solving advanced thermochemical problems. The actual calculations
have been made using the ChemSheet or ChemApp software (Koukkari, Penttil3,
Hack, & Petersen, 2000), but the presentation has aimed to be generic and appli-
cable with other thermochemical codes that allow the user to define thermodynam-
ic data and the stoichiometries of the constituent species in the system. The algo-
rithmic functioning of those codes, such as finding the global free energy minimum
reliably and computationally efficiently in systems containing multiple components
(dozens, if required), and potentially multiple non-ideal mixture phases has not
been considered a part of this work. The idea has been to extract as much as
possible useful information regarding the system by applying the regular bulk
thermodynamic data (assumed well established) by involving as few additional
assumptions or parameters as possible.

The first version of this work published in Paper I, used the term Constrained
Free Energy (CFE) method as a descriptions of the extensions done to standard

11



Gibbs energy minimisation models. In Paper V, additional constraints and energy
terms were treated in more systematic fashion applying the term Constrained and
Extended Free Energy Minimisation.
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2. Thermodynamic basis

In this work it is assumed that the system considered is either isotropic, having the
same values for T, chemical potentials, P and other work-coefficients throughout
the system, or that it can be divided into a finite number of such parts. If not ex-
plicitly stated otherwise, the model equations are written for one isotropic part. The
presentation of the thermodynamic theory in this chapter aims to be sufficient for
understanding the concepts presented in the work, not complete in other respects.

2.1 Definitions

A computational system in chemistry can be divided from one hand to phases and
their constituent species, and from the other hand to components that form the
species according to their stoichiometries. While the same definitions are also
understood to apply for real systems, there is some level of abstraction with each
of them. With phases regarding their assumed uniformity, with components re-
garding the time scale used to study and what processes can be considered in
equilibrium within it. Different kinds of speciations within a mixture phase and
related excess energy models can be used to derive within practical accuracy
same actual measurable properties of the system.

2.1.1 Phase

A phase in thermodynamics is typically defined as a region of a system with a
uniform composition, temperature and physical state (Clarke, Hastie, Kihlborg,
Metselaar, & Thackeray, 1994; Pitzer, 1995; Prigogine, Defay, & Everett, 1954). In
his work, Guggenheim stated that systems with for example compositional gradi-
ents should be considered to be composed of infinite number of infinitesimal
phases (Guggenheim, 1967). In this work, it has been assumed the system can,
with sufficient accuracy, be divided to a finite number of such parts with phases of
uniform composition within each part. In a computational system, a predefined set
of possible phases exists from which the free energy minimiser selects the ones
leading to the free energy minimum.

13



2.1.2 Component

The number of independent components in a thermochemical system refers to the
number of substances constituting the system amounts of which can be inde-
pendently set. In this work, the definition used by e.g. Pitzer (1995) is followed
where the word component always refers to such independent components. In
free energy minimiser programmes and related databases the stoichiometry of the
various species or constituents is given in terms of some basic building blocks,
most often elements and electrical charge that are typically denoted as ‘compo-
nents’ or ‘system components’. In most cases their number would equal the num-
ber thermodynamic components referred above. In some cases when, for exam-
ple, the number of species present is less than the number of such ‘system com-
ponents’, the stoichiometries would need to be redefined within the calculation
routine (Eriksson & Hack, 1990) to correspond to the proper thermodynamic num-
ber of components.

2.1.3 Species

Each phase of the system is considered to be made of one or more species, or
constituents (the two words are used interchangeably in this work, though in some
texts difference is made between the two (Hillert, 2007)). They are typically mo-
lecular entities that can be transferred from one phase to another (though for ex-
ample with charged species this is not necessarily true). In a computational sys-
tem each phase definition contains one (when the phase has fixed stoichiometry)
or more species (with their typically temperature- and pressure-dependent stand-
ard state chemical potentials) that may be present in the phase. This speciation
together with the corresponding non-ideality model defines the equilibrium ther-
modynamic properties of the computational system.

2.2 Minimum free energy as an equilibrium condition

The change in internal energy of a system can be given (Haase, 1990) by the
Eq. (1)

dU:TdS+ZLj-dlj+z,ukdnk )
7 %

while the corresponding Euler form for internal energy is

U=TS+ZLj~lj+Z,uknk 2)
J k

where L; is the generalised work coefficient with intensive character and [; is the
corresponding generalised work coordinate with extensive character. Example
cases have been listed in Table 1. While the expression of the generalised work

14



[Eq. (1)] has been adapted from the comprehensive treatment of Haase (1990),
the nomenclature mostly follows Alberty (2001).

Table 1. Common examples of thermodynamic work coefficients and coordinates

work coefficient L; work coordinate [;
—P (pressure) V (volume)
o (surface energy) A (surface area)
¢“(electric potential) q; (charge)
E (electric field) p (electric dipole moment)
B (magnetic flux density) m (magnetic moment)

For the internal energy U, the natural variables are S, [; and n,, meaning that if U
is known as a function of those extensive variables, all the other thermodynamic
properties of the system can be derived (Alberty, 2001).

Common definitions (Haase, 1990) for enthalpy (H), Helmoholtz (F) and Gibbs
(G) free energy are given by (Egs. (3)-(5))

HEU—ZL]--IJ- (3)
F=U-ST (4)

GEU—ST—ZL]-J]- (5)
j
In this work the extensive work coordinates [; are divided into partial molar contri-
butions from each species following Eq.(6)
al
b= () ©)

YT L Mpsi

b= Z bimi @)
i

For the practical applicability with a Gibbs energy minimiser, in the present work it
has been further assumed that the partial molar properties expressed by Eq. (6)
are not functions of phase composition.

Energy function expressions on molar basis are given by Egs. (8)-(10)

H;=U; - Z Lj -y (8)
J

so that

15



F,=U, —ST ©)

GiEU_SiT_ZLj'lj,izlli (10)

Based on the first law of thermodynamics the change in internal energy of a
system can also be stated as

dU = dQ + Z L - dl; + Z Uy dony — ZZ Ll domy
J k k
—dQ + Z L - dlj + Z Hyd,my,
b %

Changes in (molar) amounts of substances have been divided here to those due
to mass transfer between the system and the surroundings and those due to
chemical reactions within the system.

dTLk = deTLk + dink (12)

(11)

Likewise, the entropy change in the system can be divided into those caused by
internal processes (d;S) and those caused by interactions of the system and its
surroundings (d,S)

dS = d;S +d,S (13)
with

Td,S =dQ + TZSkdenk (14)

k

so that

dQ = —TZ Sed,ny, + TdS — Td,S (15)

k

and

U = TdS—le-S+ZLj dl +Z,ukdenk (16)

j k

According to one of the formulations of the second law of thermodynamics
(Kondepudi & Prigogine, 1998), internal processes in any system always increase
the entropy, so any internal changes in the system always increase the value
given by expressions (17)-(20) towards its maximum value.

TdLS =—dU +TdS +Z L] . dl] + Z,ujden]- >0 (17)
J Jj
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TdiS = —dH +TdS = ) b dLy+ ) pydem; 2 0 (18)

J J

TdiS = —dF = SAT+ Y L dl+ ) pydgn; 2 0 (19)
j j

TdiS = —dG —SdT = Y - dL;+ ) pydeny 2 0 (20)
7 7

For a closed system with constant temperature and [; (including V) the require-
ment that d;S > 0 leads to dF < 0, with constant temperature and L; (such as P)
is the corresponding condition dG < 0. For an adiabatic system, dS > 0.

2.3 Systems with constant work coordinates

In cases in which some of the work coordinates (and not the corresponding work
coefficients) are constant, a corresponding free energy function can be defined
(Alberty, 2001)

G’EG+ZLh~lh=Zuini+ZLh~lh (2’])
h i h

where the summation is over the constant values of lh so that
Td,S = —dG' — SdT — Z - dL + Z Ly, - dly + Z medene 20 (22)
j#h h k
or
Td;S = —dG’ (23)

when temperature and pressure and each of the L; and [,s are kept constant in a
closed system. A corresponding molar free energy, yg'“ in this work that includes
a contribution to the work coordinate amount specific to the species i can be de-

fined as
(), ), ()
W=\ =u+ |5 —
b\ il ) NP 1 (24)

= w; + Lply;

Eq. (24) applied to pure phase gives the standard state free energy with the ad-
ditional work coordinate contribution as

' Here the superscript « is used to denote a specific phase or part of the system in which the
work coefficient of interest applies. When superscripts ¢ and g are used, the species that

n¥ and nf” or uff and Mf refer to are the same in different parts or phases of the system.
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w0 = pd + Lyl (25)

For simplicity, the Egs. (24) and (25) are written for the case where only one
work coordinate h is kept constant. In the constrained equilibrium, i.e., the mini-
mum of G', the chemical potential is still, as a state variable, the quantity that is
phase independent, i.e., equal throughout the system.

w=pp = (26)
In terms of activities the chemical potential can be expressed as:
i = pp® — Lyl = ui™° + RTIna; — Lyl¥, (27)

L

2.4 Systems with constant chemical potentials

With regard to systems in chemical equilibrium, Eq. (22) can be written in terms of
independent variables, so that the species in the system are replaced by compo-
nents, whose number is less than the number of species assuming chemical reac-
tions or mass transfer between phases are taking place.

Td,S = —dG — SdT — Z - dL; + Z T doby (28)
I %

The chemical potential of a component k in this work has been denoted by the
symbol m;, and its molar amount by b, to make them easier to distinguish from the
chemical potential x; and molar amount n; of a species i.

A suitable free energy function when some component chemical potentials are
kept at a constant value by material bath is given by

G =G - Z by (29)
h
where the summation is over the non-constant values of b,

Td,S = —dG' — SdT — Z L dL; - Z bydiy, — Z S
J h h

+ Z Ty de bk
k+h

(30)

with Eq. (23) following, so that when temperature, work coordinates L; and each of
the m,, and by, are kept constant, G’ is minimised.

Mathematically Egs. (21) and (29) represent Legendre transforms of the free
energy function to a new one with a new set of independent variables (Alberty,
2001). The transforms allow solving of the equilibrium state and all its thermody-
namic functions specified by the natural variables, where the natural variables can
be freely chosen from the conjugate pairs of molar amounts and chemical poten-
tials; temperature and entropy as well as work coordinates and work coefficients.
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2.5 Systems with other than work coordinate constraints

If other constraints (e.g. due to slow reaction rates) that are not related to an addi-
tional work term (L]- . l]-) apply to the system, the form of the energy functions [Egs.
(2)-(5)] is not altered. The free energy corresponding to any specific composition
remains unchanged. However, the possible states of the system are reduced and
the equilibrium is generally shifted to some state with higher free energy than
without the constraint. When the states of the system are constrained by a relation
or relations that can be expressed as linear combinations of amounts of species,
the effective number of components in the system is increased, as was first noted
by J. W. Gibbs, who called these kinds of constraints “passive resistances”(Gibbs,
1876; Koukkari, Pajarre, & Hack, 2008).
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3. Use of a free energy minimiser

3.1 Traditional problem statement

The problems to be solved with a typical free energy minimiser are of the type:
Find the minimum of function G:

G = Z Z (G‘i"(xj“,T, P)n¥ (31)

subject to constraints

nf>0 Vi (32)
and

An—-b=0 (33)

where matrix element a; of matrix A is the stoichiometric coefficient between
component j and species i, vector element n; the molar amount of species i and
vector element b; the (fixed) molar amount of component j in the system. The G in
Eq. (31) is the free energy of the system, either G (Gibbs energy) or G’ as defined
by Eq. (5) or (21), depending on whether additional work co-ordinate constraints
have been applied. When G equals G, the molar quantity G; equals the chemical
potential y;.

In the minimum free energy (G) state, the derivatives of the Lagrangian function
L (Smith & Missen, 1991)

L=G-AT(An—b) (34)

(where A is a vector of Lagrange multipliers) with respect to molar amounts and
individual Lagrange multipliers must be zero, so that

oL 4G
W=W_leaj,i =G —Zaja,-,,- =0 (35)
7 7

The chemical potential or molar Gibbs energy of a species in the calculation is
expressed in the following or equivalent form:
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u; = pd (T, P) + RTIna; (36)

Most often the activities are calculated based on activity coefficients on a mole
fraction based scale

a; =Vix; (37)

so that the standard state value u{ (T, P) in Eq. (36) refers to the chemical potential
of the pure substance in given conditions, but also other activity scales are used.
The activity coefficients y; for a free energy minimiser are given as functions of
phase composition, temperature, and possibly pressure. The pressure dependen-
cy of G is formally given by

0
W v (38)

For gaseous species the ideal gas law is often applied leading to
P
pd(T,P) = pd(T, P°) + RTIn (ﬁ) (39)

while for condensed phases the pressure dependency is often ignored, effectively
assuming that V; is small enough that it can be considered zero.

The Lagrange multiplier for a component can be equated with its chemical po-
tential as

<a«;> p (40)
m=— =]
! ab] T,P,bk¢j ’

both when G equals G and when it equals G'. Eq. (35) can also be applied to spe-
cies that are not present in the equilibrium, allowing the calculation of molar free
energy for a species that is not present in the equilibrium state and for which Eq.
(36) is not directly applicable (Eriksson, 1975).

Equilibrium solvers typically allow solving of problems where the equilibrium
chemical potential of certain species is fixed while the corresponding feed amount
is allowed to vary. After redefining system stoichiometry so that the species of
interest equals one of the system components, the problem equals the one de-
scribed by Eq. (29). Computationally it can be solved (Cheluget, Missen, & Smith,
1987; Norval, Phillips, Missen, & Smith, 1991) by normal numerical routines by
noting that (here summation index h goes over the components whose chemical
potentials are held constant)

G = Z My — Z Ttpbp = Z(#? + RTIna;)n; — Z TpQn,iM;
7 h i ¢
= Z (#? - z rrha,u-> + RTlna; |n;
g R

L

(41)
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This means that the correct free energy function is minimised if the standard
state values of those species containing the components with fixed chemicals
potential are adjusted according to Eq. (42)

ui® =uf - Z Th @ (42)
h

Additionally the mass balance constraints (33) related to components h need to
be relaxed (the components are removed from matrix A.

3.2 Additional work coefficients

In most cases with chemical equilibrium problems, the thermodynamic data is
not given as a function of any other work coefficients than pressure, that is, any
other work coefficients are assumed to be zero. According to the Egs. (10) and
(20) the Gibbs energy is also the minimised free energy function for non-zero
constant values of L;. The Gibbs energy is then given by (from Egs. (1) and (5))

<aG> l s
aL] T,Li=jn

G(T,P,L;)=G(T,P,L; = 0) —fl,- -dL; (44)

while the change in chemical potential is given by

&),
ke jltk kol

and therefore standard state value corresponding to constant non-zero L; is
wd(T,P,L;) = pd(T,P,L; =0) — f lidL; (46)

In order to avoid handling vector components separately it is assumed for Eq.
(46) that Ly, - I,; can be replaced with Lyl,; (L, and [, ; are either scalars or they
are aligned).

As an example, for a ferromagnetic material as a pure phase when the magnet-
isation is assumed to be constant

and for paramagnetic material, if magnetisation is directly proportional to the ex-
ternal field

ud(T,P,B) = ud(T,P,B = 0) — 0.5y;B? (48)
The chemical potential for a mixture phase is then given by

wi(T,P,L;) = ul(T,P,L;) + RTlny;x; (49)
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The practical applicability of Eq. (49) is greatest when the dependency of the
activity coefficients on L; can be ignored.

3.3 Addition of new components to computational systems

The addition of a new component/constraint to a computational system adds a
new row to matrix A and new elements to the vectors A, n and b in Eq. (34). The
resulting Lagrangian function L is identical to one defined for a system with the
original components, but with adjusted free energy function G’ defined by

G =G6G-2, (Z Ay in; — br> = Z win; — A, (Z Arin; — br)
7

i i

(50)
= (= e yni+ah,
i

so that the adjusted free energy function is one where the molar contributions
have been augmented by the factor —1,.a,;

Wi =i — ArQri = Py — Tl (51)
while the free energy function includes an additional term
Arb, = 1. b, (52)

The minimum energy condition corresponding to Eq. (35), together with the origi-
nal mass balance constraints, is now

1 + RTlna; — mya,; = Z mia;; (53)
Jj#*r

The quantity on the left side of Eq. (53), marked with y; in (51), replaces the
original chemical potential expression (1) + RTIna;) as the quantity that must be
equal in phases and parts of the system that are in equilibrium with each other,
that is, it is the chemical potential in the system. The comma in u{'o is used to
denote, that the standard state value may have been adjusted from the value used
in the unconstrained system if new work coordinate has been applied, in concur-

rence with Eq. (24)

i = + Ly (54)

Here L‘}'l"‘is the work coefficient for pure species i in phase or system part a. In
the example cases discussed in this work, it is zero except with surface energy-
related calculations, where it equals the surface energy of the pure substance (it
can also be applied to the case of an external magnetic field as an alternative to a
fiel- related new component (section 4.5)).

Comparing Eq. (53) with Eq. (27) we have, for cases where the constraint can
be equated with a fixed work co-ordinate, the equality
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Lply; = mpas; (55)

For the practical applicability with Gibbs energy minimisers, it is also required
here that a,; is not a function of m,. Therefore, it is assumed that Ij; can be fac-

tored into two parts, separating the possible dependency on L; from the depend-
ency on i.

Lo = L(L)G) (56)

(Subscript @ omitted from the equation for clarity as a continuously repeating ele-
ment) Provided that Eq. (56) is valid, the stoichiometric coefficient a,; can be

defined by

ari =35 (57)

and the corresponding work coefficient as
”r
j = J077
By

(58)

In Egs. (57)-(58), l}’ is a normalisation constant with the same units as [j; and

an arbitrary yet fixed numerical value.

Formally then, if a work coordinate related stoichiometric coefficient can be de-
duced on physical basis, the min(G) procedure can incorporate such factors in a
multiphase calculation. According to Eq. (55) the respective component potentials
become solved as additional Lagrange multipliers within the minimisation.

If the applied constraint cannot be equated with a work co-ordinate, the corre-
sponding term does not enter Eq. (5), so for example for the case of system with a
constant temperature, (external) pressure and a non-work constraint the Gibbs
energy remains

GEU—ST+PV=Z,uini (59)
i

In terms of original components the minimised free energy nevertheless has an
additional term as expressed by Eq. (50). With a molar free energy defined as

o = (%€
L7 \on; ;
lT,P,nj;tL,b,

(60)

we have from Eq. (53) an equality that is also valid for rate constrained sys-
tems.

G{ = 1) + RTna; — mya,; = z i, (61)

JEd
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3.4 Applying additional components for calculations with
additional non-zero constant work coefficients L,

In principle, the application of Eq. (46) to adjusted standard state values is suffi-
cient for calculations when the value of new work coefficient instead of the corre-
sponding work coordinate is specified (it is assumed here that the activity coeffi-
cients are not explicit functions of L,). However, one often wants to perform re-
peated calculations with many different values of L, while the databases used and
free energy minimiser programmes do not necessarily readily support this. An
alternative is to define a new component for the stoichiometry of the relevant spe-
cies and adjust the chemical potential of that component.
From Egs. (41) and (46)

—fl}’ldL] = —TMpAp,; (62)

As before, it is assumed here that | l;;dL; can be factored to two parts, separat-
ing the possible dependency on L; from the dependency on i as shown by Eq.
(63) (If this is not possible, more than one added component with fixed potentials
should be applied in the model system)

i = (L)L (63)

so that
f LdLy =1} f lidL; (64)

Applying Egs. (62) and (64) one can again set a definition for the stoichiometric
coefficient

;=2 (65)
The value of the corresponding chemical potential is consequently given by
i
T, = 2= f ldL; =1 f ldL; (66)
Qi
If ;; is not a function of L;, the preceding Eqgs. simplify to

Ari = ﬂ (67)

. = L]l}0 (68)
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4. Application examples and results

A collection of various example systems and their properties are presented in
Table 2. Given are the minimised Free energy functions (G or G'), work coeffi-
cients and coordinates, the adjusted standard state values for pure phases as
given by Egs. (54) (for systems with constant work coordinates) or (46) (for a case
of constant work coefficient and the equipotential between species of same stoi-
chiometry2 in different phases or parts of the system (typically called chemical
potential). Also given are the expressions for the stoichiometric coefficients related
to the new constraints and the constraint equations.

Example systems where the applied constraint and the corresponding chemical
potential do not form a work coefficient and coordinate pair are listed in Table 3.
Given are the formulas for stoichiometric coefficients related to the constraining
components and the chemical potentials of those components. The coefficients
and chemical potentials are largely analogous to the work coefficients and coordi-
nates of the previous examples.

2 ‘Same stoichiometry’ refers to here to the regular components of the system, excluding the
added component related to the new constraint and/or work coordinate. Amounts of those
components used to limit chemical reactions in the system are still required to be same.
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Table 2. Applications of the free energy method (2 pages)

System Minimised free energy G or | Work coeffi- Work
G' cient coordinate
Generic L=)Y Lm
(constant work coordinate j) G'= Z wn + Ll L ! Z .
Generic
(constant work coefficient j) G= Z iy
Surface
a

G = Zuini +ZZU"AE‘n£‘
i k i

surface energy
(contribution from

A= ZA,ni

i

S area
individual layer)
Donnan equilibrium B
G' =Zuini—ZA¢“ Fznf Ad —q% = _ZFZL‘TL;I
i i electrochemical i
potential difference charge

Constrained volume

G' =Zuini —APZVini

AP*

(osmotic) pressure
difference

V== unf
i

Magnetised

G= Z#a”i
T

B

magnetic flux
density

m= E mn;
7

magnetic moment
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Adjusted standard state

Equipotential (between

Stoichiometric

Constraint

= WO(T,P,L = 0) — f LdL

Hi

chemical potential

species of the same stoichi- coefficient
ometry in different phases
or parts of a system)
aG' L
W= (z?n.) = + Lyl we = Ll i = il Z @ity = br =0
L T,P,Lp i
when
= u° + RTlnaf — L1%
ok o Li=U(Ly) - 4
chemical potential
w(T,P,L) not required not applicable

wO(T,P,0;) = pd(T,P) + oA, Wi = pi — oA} ar; = Ai/A, ZA'n‘ —A=0
(for the topmost surface layer) = u/° + RTInaf — c*A¢ '
u{ (T, P, %) = uf(T,P) i = uf + RTlna; + ApFz; i =2/2 Z Zm; =0
(L}? =0) (electro)chemical potential :
(T, PF) H; = ui(T,PF) + RTlna; + APV, ar =Vi/Vy Z Vi~V =0
i

(AP* = 0 in a single species
system)

(V; assumed to be
independent of
pressure)

w(T,P,B)

=u(T,P,B=0)— J-m”dB

=

a,; =mj/mg

when

m; =m'(B) -m{

not applicable
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Table 3. Example system with additional components that are not directly linked to
a work coordinate.

System Stoichiometric coefficient for component chemical potential

the constraint

Spherical nanopar- ( 2Vi> 1 04,
=)=
ticle r /A surface energy - normalisation
(geometric constraint) constant
Reaction extent or £ = Z am —-A,
affinity constrained i affinity of reaction r

system extent of reaction r

In these cases when the component amount is constrained, the minimised free
energy function is the Gibbs energy of the system as defined by equation (59).The
energy and entropy terms (and therefore chemical potentials) may still contain
added work coefficient-dependent terms (as they do in the nanoparticle case).

4.1 Surface and interfacial energy

The model application for surface and interfacial systems has been discussed in
detail in Papers Il and IV. Paper Il describes a monolayer model of a liquid sur-
face, where the single surface layer is modelled as a separate phase, whose con-
stituents interact only with each other. In Paper IV a multilayer model that includes
non-ideal interactions between different layers is developed for metal-oxide sur-
face, and tested for liquid-liquid metal alloy interfaces.

In a system with a liquid-vapour surface or liquid-liquid interface the derivative
of the free energy with respect to interfacial area is the surface or interfacial ener-
ay

G
—=0=1, (69)

In the current work the surface or interface has been modelled with a finite
number, one or more, individual monomolecular layers. With the simplifying as-
sumption that the molar surface areas of individual constituents are independent
from system composition
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dA;
i 7
o (70)

the contribution of an individual interfacial layer k can be included in the free ener-
gy equation as
M M

[,l’{-( = Z aj,inj + O'kAi = Z aj’inj + ajinM+k (71)
j=1 j=1

with the following relations based on Egs. (57) and (58).

A
Ap+m,i = A_LO (72)
k _ ™+k
= (73)

where the normalisation constant 4, has the units of m?mol~t. For the bulk
phase(s) the molar surface/interfacial areas A; are zero, as there is no surface
area associated with them. The interfacial energy contribution of an individual
layer is denoted by o* while the physical interfacial energy given by summation
over all NL layers.

NL

o= Z ok (74)

k=1

The ¥ in Eq. (71) is the molar free energy of constituent i on the layer k, as
stated in Eq. (24). For the bulk phases in the models described in both Papers Il
and IV, it was assumed that the direct energetic effects related to the surface were
restricted to the top most atomic or molecular layer of the surface. With that con-
vention applied, following Egs. (27) and (54) the chemical potential was expressed
on the layer closest to the surface by equation (superscripts s and b denote the
surface layer and bulk respectively)

uf = u*® + RTInas — oA; = u° + 0,A; + RTInas — cA; = p?

L =W (75)

and on other interfacial layers by (superscript a denotes the interfacial layer)

#{1 = ‘ulp'o + RTlnaf‘ - UAi = ,Llf’ = Ml’ (76)

The molar free energies for the surface and interfacial species, as defined by
Eqg. (24), were in Papers Il and IV defined implicitly via excess energies using the
Redlich-Kister model. In Paper IV the excess energies were evaluated considering
both the compositions of the individual layer in question and its nearest neigh-
bours using the equation
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1
Gevk = pk Z > (1- m")Qi-"'jxl-kxjk

4

1 1 1
0 k+1,k+1, k+1 k-1,k-1,k-1
+Em <_EQU Xp Xj _EQU Xi TXj 77)

kk+1_ k. k+1 kk-1, k. k-1

for the excess free energy for an individual layer k, where Qf, Q' and Q"

]’

are composition dependent interaction energies within layer k and between it and
its nearest neighbours and m° is a geometric parameter expressing the factor of
nearest neighbours of a species that are in one of the adjacent layers in an com-
positionally uniform system. For the derivation of thermodynamically consistent
relations it was necessary for the multilayer system to add further constraint(s) that
kept the composition of the interfacial layer closest to the bulk equal to that of the
bulk, the interfacial energy contribution of the additional constraints approaching
zero with an increasing number of layers. Example results for calculations in metal
alloy and metal-oxygen systems are shown in Fig. 1.
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x(Cu) bulk Oxygen content (wt.%)

Figure 1. Surface tension in Ag-Au-Cu metal alloys system (left) and iron-oxygen
system (right). The model and experimental data for Ag-Au-Cu alloy as presented
in Paper Il and for Fe-O system as in Paper IV.

In the surface monolayer model the assumption of no interactions between the
surface layer and the bulk make the model elegantly simple as a mathematical
construction. It is also obvious that is not physically reasonable to assume it to be
strictly accurate. However, as a practical tool it has found wide use (Egry, Ricci,
Novakovic, & Ozawa, 2010; Tanaka, Hack, lida, & Hara, 1996) and has been
shown to work reasonably accurately for especially metallic systems. The analogy
of the surface ‘phase’ in a monolayer model to regular bulk phase equilibria has
also been explored by Kang (2015a, 2015b). Additional assumptions, which are
validated only insofar as the resulting model gives reasonable predictions com-

32



pared with experimental data, are needed for the monolayer or multilayer excess
energies.

4.2 Volume-constrained system

In a system in which the volume of part of the system is constrained, an additional
pressure component affecting its chemical potential applies to that part. For
straightforward application of the current method, it is necessary that the partial
molar volumes are not functions of phase composition, although they could be
functions of pressure. In the ion-exchange system of Paper lll, a constraint on the
water volume is an essential feature of the model. Only the molar volume of the
water itself (assumed to be incompressible) is considered. The free energy from
Eq. (21) can then be stated as

G = Z uin; — AP - Vy,onfi o = G — APV® = GP + F* + VoPF (78)
i

where the last term is constant. The stoichiometric coefficient related to the con-
straining component is directly proportional to the molar volume.

VH o
QAri = V]ZO (79)
The osmotic pressure difference is consequently obtained as
AP = -, V? (80)

In principle it could be expected to be possible to predict, e.g., the swelling be-
haviour of fibres (application area in Paper lll) applying the calculated osmotic
pressure together with the modelled charge state and a model for the fibre wall
elasticity, but even a semi quantitative model has been found to be elusive.

4.3 Nanoparticles with a combined area and volume
constraint

A model for small-scale systems can have volume and surface that area inter-
linked. Considering the simplest case of a spherical particle, the changes in vol-
ume and area are connected by the equation

2dv
an="7 (81)

Therefore, the balance equation for surface area related to molar area and vol-
ume can be written as

Z Z dnf (Af‘ - g) = (82)
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If the change in total volume (and therefore radius) is relatively small, the value
in brackets in Eq. (82) can be taken as a constant similarly to molar volumes and
areas in the previous sections. In Paper V a model for a melting nanoparticle was
developed based on the idea that the limiting phase transition would be the for-
mation of a liquid surface on a solid core.

The Euler equation for internal energy of a fully solid or liquid particle is given
following Eq. (2)

U=TS—-PV + O-Me(a)A + #Me(oz)(PO)nMe (83)

where (a) denotes the physical state (solid or liquid) and P° is used to emphasise
that the standard state value is the one based on the external pressure of the
system. The minimised free energy when there is no external constraint on the
surface energy or surface area’ is given by

G'=U —ST + PV = e (PO)Nye + Ope(A (84)

Correspondingly, the standard states for the core and the second layer can be
given by
ne0 120 0 (P9 (85)
:uMe(oz) MMe(zz) Hpme(a)
and for the solid surface by
H;l;llé(()s) = .ul(\)/le(s) + UA%eAﬁde (86)

and for a liquid surface on a solid core
o 2
1,1, _
nuMe(l) - nul(\)/le(l) + UI%/IeAf\/le + GA%leA%We ﬁ

(87)

The ratio of the area of the interface between the first and second atomic lay-
ers, A%, and the surface area, A' in Eq. (87) can be estimated based on liquid
metal molar area and volume by

2
, 2
4 (1 _ e ) (88)
A AMe(l)r

The chemical potential of the component Me, m,, is the chemical potential of
the macroscopic unconstrained substance Me in the system. With the definitions
used, it is given for one chemical component fully solid or liquid system by Eq. (89)
(superscript a refers to either a solid or liquid state).

2V b
— ,,0a Me _ 05 Me o
TTme = HUpme + TAO Taconstraint = Hme + r OMe (89)

® The added constraint in the stoichiometry in Table 4 (or equation (82)) is really for particle
sphericity and the assumption that the number of spherical particles is not changed.
While not discussed here, with orientation dependencies ignored, the spherical form is
the one corresponding to minimum energy.
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The differences in chemical potential in the particle and a macroscopic phase in
a same state can be related to the differences in vapour pressures. The familiar
Kelvin equation directly follows from Eq. (89).

P, 2V
Tme — Uage = RTIn 1(\;1; = rMe Oire (90)
Me

The graphs in Fig. 2 for melting of tin and silver nanoparticles have been calcu-
lated assuming that the interfacial energy between the solid and liquid follows the
perfect wetting condition (Eustathopoulos, 1983) and applying the experimental
solid and liquid surface energies, molar volumes and free energies of melting as
referenced in Paper V.
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Figure 2. Melting temperature of metallic nanoparticles. From Paper V.

In Fig. 2. the model calculations are compared with experimental data from lit-
erature for Sn (left) and Ag (right). While a reasonably good match between the
basic model (solid curve) and the experimental data was found with Sn, an
agreement with Ag data could be reached only assuming (following Sim & Lee
(2014)) that the effective solid surface energy (taking into account as adjustable
correction factor the effect of surface strain and anisotropic nature particle sur-
face)) was higher by a factor of 1.17 than the tabulated one.

It was noted in Paper V that the model used closely matches the one for which
the melting point of the particle is calculated based on equal chemical potential
(not free energy) such as the one used in e.g. Lee et al. (2007), Sim & Lee (2014)
and Sopousek et al. (2014).

4.4 Donnan equilibrium

lon-exchange model with Donnan equilibrium was described in detail in Papers |
and Ill with comparison to lab results. Process simulation work based on the
thermodynamic this model has been published several papers and presentations
(Kalliola, Pajarre, Koukkari, Hakala, & Kukkamaki, 2012; Kangas, Pajarre, Nappa,
& Koukkari, 2012; Koukkari et al., 2007; Pajarre, Koukkari, & Penttila, 2008).
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For a system in which the electrochemical Donnan equilibrium is present, a new
component needs to be defined for the electrical charge for each additional sub-
volume present. The related new constraint equation is

Z niz =0 (91)

i
The potential difference in a Donnan equilibrium system is caused by electrical-

ly charged species that are not freely mobile. The electrical work related to them
can be stated (taking into account Eq. (91)) as

aw = Z AP F z;dn{immobitey = — Z AP F zidn{mopite) (92)
7 7

A Donnan equilibrium free energy problem requires at least two additional com-
ponents related to the charged species: at least one constraining the immobile
species, the amount of which in the pulp suspension models was a fixed quantity
(bound, carboxylic or sulfonic acid groups), and whose chemical potential was
without practical interest, and one for the overall charge balance. Based on Egq.
(92), the work term common to all the charged species is

le]-,ini = —A(l)“FZini (93)
Setting a,; = z; the Donnan potential difference is obtained as
2p” = (9% — ¢F) = —% (o4)

The equipotential, commonly called the electrochemical potential, that is same
in both aqueous phases for mobile ions is following Eq. (27) given by

i = u° + RTIna; + Ap*Fz; = p + RTlna; + Ap®Fz; (95)

The y; in Eq. (95), rather than merely the ‘chemical’ part it (1 + RTIna;), is the
chemical potential of the species i as defined by Eq. (1) and other fundamental
relationships in thermodynamics. As pointed out by for example, Guggenheim
(1967), the ‘chemical’ and ‘electrical’ parts of it are not experimentally measurable
and have questionable meaning as physical entities. For the purposes of computa-
tional thermodynamics it is useful to define individual ion activities and activity
coefficients that are compatible with well-definable and measurable activities and
activity coefficients of neutral combinations of them. The models used by the au-
thors have in common that the aqueous solution has been modelled applying the
Pitzer non-ideality model (Harvie, Mgller, & Weare, 1984) while the multicompo-
nent model has also included solid precipitates, and when applicable, a gas phase
exchanging carbon dioxide with the solution. The specifics of the individual ion
activity coefficients and the corresponding implicit pH scale have been discussed
e.g. by Harvie et al. (1984).

An example of the Donnan theory applied to a laboratory system is presented in
Fig. 3. All the calculation results for each pH are from a single multi-component
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equilibrium calculation, just as the various metal amounts were determined from a
single sample.

fraction of the total metal amount in solution

Figure 3. Experimental and modelled concentrations in an aqueous solution in a
multicomponent and multiphase system with ion exchange, complexation and
precipitation. Adapted from Paper IIl.

The Donnan equilibrium model application for pulp suspensions has been found
to be valuable to predict the chemical phenomena and process behaviour in pulp-
ing, bleaching and paper machines (Kalliola et al., 2012; Kuitunen, 2014), while
the assumed non-specific nature of ion-exchange interactions is known to face
limitations with di- and multivalent ions, especially in systems with high ionic
strengths (Kangas et al., 2012; Sundman, Persson, & Ohman, 2010; Sundman,
2008).

4.5 Systems with an external magnetic field

The chemical system for a free energy minimiser can be defined either following
Eq. (46) and modifying the standard states for the given field strength (without
defining any additional components), or by applying one or more additional com-
ponents whose chemical potentials are set following Eq. (66) based on the field
strength-dependent magnetisation properties of the substance. The second meth-
od has been found by the authors to be more readily applicable to calculations that
are repeated with multiple field strengths. The applicable equations in this case
are
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Qi =k (96)

for the stoichiometric coefficient, and

T, = mofm’dB (97)
when the molar magnetic moment can be factorised (Eq. (98))

m; = m'(B)m;’ (98)

Example cases of equilibrium in external magnetic field were discussed in Paper
V.

900 < 30 05
AN —or - 045
AN 25 + AM (experimental)
SN |=—-30T - o04
850 N _ ] s
< - Lo, )
Tz 20 — T AM (fit)
,,,,,,,,,,,,,,,,,,,,,,,,,, 3 P to3 ©
£ <
© 800 E1s 025~ — AM(model)
= =
= 2 / / - &
4 Fo02 E
210 4 = In(pH2/p0)
750 Austenite . r 015 (experimental)
Austenite + Ferrite Austenite + Fe;C 5 L o1 —— In(pH2/0) (fit)

Ferrite + Fe,C - 0.05
. 0 . . 0
0 10 20
Magnetic field / T

700 ! T T T T
0.50% 0.60% 0.70% 0.80% 0.90% 1.00%
C/w%

— ~In(pH2/p0) (model)

Figure 4. Left: Effect of magnetic field on the equilibrium phase diagram in the Fe-
C system. Right; Equilibrium hydrogen pressure and magnetic moment as a func-
tion of magnetic field strength with a LaCos-H system. Experimental data points
shown with a smoothed fit together with a model curve for both equilibrium pres-
sure and magnetisation based on measured magnetic moment and pressure val-
ues respectively. Adapted from Paper V.

4.6 Constrained reaction extents and mass transfer

In a system where a single reaction of the form

WyA +wgB & weC +wpD (1

Z vn; =0 (99)

L

or

where v; equals w; for products and —w; for reactants, the extent of the reaction
is defined as

_ dni

dé = (100)

Vi

In a system with multiple possible reactions, it is in general impossible to define
the change in the extent of any individual reaction dé, based on the change in
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system composition unless the other linearly independent reactions forming a
basis spanning the reaction space are first defined. When they are, the equation
(101) for d€ can be solved

dn = vdg (101)

where dn is the vector of changes of molar amounts of the N constituents in the
system, d§ a vector of changes in extents of the NR specified reactions, and v a
N x NR matrix of stoichiometric coefficients of the reaction vectors spanning the
reaction space.

For an equilibrium system, the matrix equation

Av=0 (102)

where A is an M x N matrix of stoichiometric coefficients between the N constitu-
ents and M components (M = rank(v)) that forms a link between the system
stoichiometry and the reactions allowed by it (Alberty, 1989, 1991; Keck &
Gillespie, 1971; Keck, 1990; Koukkari & Pajarre, 2006; Smith & Missen, 1991).
Any kinetic restrictions in the possible reactions that cause the system to develop
towards some other state than full equilibrium will lead to a new matrix equation

AV =0 (103)

where v’ is an N x NR' matrix (NR' < NR) made of the reduced reaction set and A’
is the corresponding M’ x N matrix (M' =M + NR — NR' = M + C, where C is the
number of added constraints) of stoichiometric coefficients for the new augmented
matrix of stoichiometric coefficients.

Each linearly independent restriction on the set of reactions allowed to freely
equilibrate corresponds to an additional stoichiometric constraint, or a row in the A
matrix that is linearly independent of the existing component balances or previous-
ly defined reaction kinetic constraints. A practical way of defining a restricted reac-
tion in a multispecies constrained equilibrium system is by Eq. (104)

de; = Z Qg jidn; = dbyy (104)
i
where ay.;; is a matrix element in the augmented matrix A’, where the M +jth
row defines the constraint related to the reaction and db,.; the change in the
value of the corresponding element in the augmented component vector. The
matrix form corresponding to Eq. (104) is

dt = A"dn = db” (105)

where A" is the C x N submatrix forming the lower part of A’.

If the number of restricted reactions (constraints) defined equals NR, so that no
unrestricted linearly independent reactions remain, A” in Eqg. (105) can be re-
placed with A’, and d§ with d¥’, where the first N — NR components of the d¥'’
vector equal zero, and the last NR components are the same as in dg.
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d¥’ = A'dn (106)

As matrix A’ has linearly independent rows it is invertible. Matrix (A")~! contains
in its columns coefficients for reaction like transformations for the set of species,
so that in each transformation the amount of one of the components is increased
by one, while the amounts of other components are kept constant. In matrix form
this can be stated as.

(Al)—lA! =1 (107)
Multiplying the Eq. (106) by (A")~! one obtains
(A)~1d¥ = dn (108)

The first M transformations are not allowed as they violate the normal compo-
nent balances, and the corresponding values in the change of advancement vec-
tor d&’ are zero, while the remaining reactions are the constrained ones defined by
Eq. (105), so that the last NR columns of matrix (A’)~! equal matrix v and the last
NR values of d§’ equal vector d§ in Eq. (105). The definition in Eq. (105) thus
becomes equivalent to the one in Eq. (101).

As a schematic example, one can consider a system with the following species
H,, CH,, C,H,, C;Hg and C3Hg. N =5 and M = 2, so that it is possible to define a
maximum of three independent constrained reactions using the formalism of Eq.
(104) corresponding to, for example to the following A’ matrix where the first two
rows refer to the elements C and H and the last three to the added constraints:

Booh GH GH G

[0 1 2 2 3]
2 4 4 6 8
- 109
4 00 0 01 ( )
1 0 -1 0 O
00 0 10

The constraints set here are of arbitrary nature for the schematic example alt-
hough the first and third of them are fairly intuitive (both restricting the amount of
an individual species). By inspection or by linear algebra one can derive

) 2 —05 -2 2 -1
CH, [—3 1 1 =2 0]
AN t=e¢4 2 —-05 -2 1 -1
Gk |0 0 0 0 1J
Gh Lo 0 1 0 0

(110)

where the last three columns give in the traditional reaction equation format the
following three rate constrained reactions compatible with both Egs. (101) and
(105).
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2H, + 2C,H, & C3Hg + CH, (1

2CH, & C,H, + 2H, (i
C,H, + Hy, © C,Hg (V)

However, the three reaction constraints given by matrix (109) are also unam-
biguously defined individually, while the reaction equation format (11-IV) is properly
defined only for a full set of independent equilibrium or non-equilibrium reactions.

With the reaction equations defined by the added components, many of the
mathematical relationships defined in earlier sections can also be applied. The
affinity of a restricted reaction j, A;, in a constrained equilibrium system is directly
related to the chemical potential of the corresponding component.

aG aG
Aj=_<6_> =_<6b ) = ~Tjiy (111)
& T.Pb JHM/ P biE s,

where b; is the amount of any of the components b, ... by, in the system. For any
chemical reaction that is not one of those defined by Eq. (104), the affinity is ob-
tained as a linear combination of them and equilibrium reactions

i$kzj

M+C M+C
Aj = ZUL]’HL = ZUU Z ATy = _ZUU Z ATy
k=M+1
(112)
M+C
- Z ak'jn'k
k=M+1

where vy, is the stoichiometric coefficient between the reaction ;' and component
k.

It is possible that in a system where the extent of one or more reactions are
constrained, the modelled time behaviour of the system approaches a state where
the affinity or affinities are zero without the state in question being the actual equi-
librium state of the system. Such a state would be a local, but not global free en-
ergy minimum of the system with respect to the specified reaction extents. Provid-
ed that the applied reaction rates give a sufficiently accurate description of the real
reactions taking place in the system, such a local minimum state corresponds to a
real long term metastable state. In such cases constrained chemical potential
(affinity) could not be reasonably used as an alternative to constrained reaction
extent for specifying the state of the system.

Corresponding to Eq. (53) it is possible to form a relationship between chemical
potentials in a rate constrained system

ud + RTIna; — Z Ty = u? + RTlna; + Z Ara,; (113)
T

T

By setting the affinity (corresponding to the component chemical potential ;) to
a constant value, it can be used to calculate restricted equilibrium states with a
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fixed affinity (deviation from equilibrium), or when affinity is set to zero, equilibrium
(in respect to the specified reaction) without redefining the system stoichiometry. A
standard state value for species for a system with given T, P and A, could be
defined following Eq. (29) by relation (114)

AuLO(T' P'Ar) = #?(T, P, AT‘ = 0) + Arar,i (1 14)

but typically applying the fixed chemical potential condition via the added compo-
nent is more practical.

Reaction constrained free energy models have been presented for e.g., indus-
trial production of precipitated calcium carbonate (PCC) (Koukkari, Pajarre, &
Blomberg, 2011) high temperature oxidation of TiCls to TiO, (Koukkari et al.,
2008), calcination of TiO», from an oxyhydrate slurry (Koukkari & Pajarre, 2006)
and in studies of biomass gasification (Kangas, Hannula, Koukkari, & Hupa, 2014;
Kangas, Koukkari, & Hupa, 2014; Kangas, 2015; Yakaboylu, Harinck, Smit, & de
Jong, 2015). Application of the current model to NO emissions was also presented
in Paper V.

The fundamental guiding principle of work related to reaction constraints has
been to strive towards a model containing only the necessary amount of kinetic
complexity while applying the constrained equilibrium thermodynamics as much as
possible. Highly complex reaction kinetic models have been criticised in the area
of gas phase chemistry on the basis that because of uncertainties related to mod-
elling parameters, the increased complexity is unlikely to bring additional value to
the results (Keck, 2008). With multiphase processes and kinetics the uncertainties
will probably tend to be even greater. Therefore, it has been considered valid in
the work regarding reaction-constrained systems to aim at system descriptions
that capture the most essential parts of the rate-dependent processes with only a
few constrained reactions. Such descriptions are of course only an approximation
of the physical system; shortcomings of the approach are probably more likely to
become apparent when behaviour of complex systems is studied over moderate
temperatures and short time intervals (Kangas, 2015).

From the computational point of view, a mass transfer process between two
phases is a reaction where the species i in phase « is transformed to same spe-
cies (or a species of equal stoichiometry) in another phase. Therefore, the reaction
rate and affinity equations derived earlier apply equally to such mass transfer
processes. As a specific example one can consider metallurgical paraequilibrium
were new phases are formed with the same alloy composition as the parent phase
but substitutional element like carbon can equilibriate between them. The resulting
constraints are of the form (Pelton, Koukkari, Pajarre, & Eriksson, 2014)

Z(YMeai‘Ze,i — afe)nf =0 (115)
i

where Yy, is the mole ratio of iron (or other reference metal chosen for the sys-
tem) and metal Me in the parent phase.
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5. Conclusions

The topic of this work has been to extend the application area of traditional Gibbs
energy minimisers for systems of theoretical and practical interest. The aim has
been to develop, within the possibilities offered by the minimisers, as generic as
possible methods for both increased understanding the thermodynamic relation-
ships in the systems and for easier future application of the method for systems
that are not handled in present work

The application area of standard Gibbs energy minimisers has been extended,
for the most part using existing published phase models with supplementary data
and stoichiometry definitions.

Chemical problems worked with have included reaction rate constrained sys-
tems, surface and interfacial tension in molten systems, Donnan equilibrium as a
part of multiphase model, and systems affected by external magnetic fields.

The greatest practical success has been achieved with the models that com-
bine reaction kinetics with partial thermodynamic equilibrium calculation and ion
exchange models based on Donnan equilibrium, that both have been applied with
success in real-life industrial design and development work with multicomponent,
multiphase systems. Applied to liquid surface energies the method has been suc-
cessful in handling systems with multiple components and complex non-
equilibrium data.
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6. Discussion

Thermodynamic data for bulk phases in this work has been generally accepted
as it has been found in literature or databases. The charge parameterization re-
quired for the Donnan model for pulp systems could be set based on titration ex-
periment independent of the ion exchange model itself. Effects of adjusting the
interaction or interfacial energies for better fit have been discussed with nanoparti-
cles (section 4.3) and with surface tension model in section 3.1 of Paper IV.

A fundamental guiding principle of the modelling work has been to keep the
number of parameters not directly related to known bulk thermodynamics as low
as possible. This has been done both to avoid overparametrised models with
seemingly good fits but little predictive power and to keep the models easier to
work with and results clearer to interpret.

The surface and interfacial energy models have required 1-2 geometric pa-
rameters for the excess energies. Same parameter values have been used for
similar systems. The Donnan model requires an estimate of the bound aqueous
volume, which could be tied to the measurable water retention value. The model
results are not very sensitive to exact value chosen and (regarding pulp suspen-
sions) in the work by the author, co-authors and other researches, quite similar
values have been used. The models with reaction kinetics require literature-
derived or fitted rate equation for each constrained linearly independent reaction.
The benefit of applying the Constrained Free Energy method is naturally greatest
here when the number of reactions proceeding to equilibrium is great and the
multiphase chemistry of the system is complex, while the number of kinetic con-
straints required for modelling the time development for sufficient accuracy is
small. Need for more complex handling of reaction kinetics will generally increase
when studies are done over moderate temperatures (especially not in aque-
ous/liquid solutions) over and short time intervals as noted in section 4.6. For
systems in a magnetic field, the magnetisation as a function of field strength had
to be known or be fitted to the model.

Restrictions on the applicability of the present method include the assumption
that the stoichiometric coefficients between species and components are constant
when calculating the equilibrium for a specified set of conditions; especially, that
they are not functions of system or phase composition. This applies for example to
the molar surface or interfacial areas in the interfacial models. This is expected to
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be less of a problem with the metallic or oxide systems discussed in Papers Il and
IV than for example aqueous solutions. The requirement for constant stoichio-
metric coefficients also makes it necessary that the possible dependency of the
molar contributions to work coordinates from the work coefficients can be separat-
ed by factorization from any dependency from identity of the species themselves.
These are requirements related to the software tools applied.

Additional assumptions are applied to keep the models structurally simple. As
discussed in section 4.1, for the surface monolayer model the assumption of no
interactions between the surface layer and the bulk is made, making the model
surface layer formally equivalent to a proper phase. Thermodynamics of systems
where this is not an applicable approximation are discussed in Paper IV with a
more complex model where the similar assumption is then made only for the layer
closest to the bulk in a multilayer model. Implicit assumption in the ion-exchange
models presented is that the non-specific Donnan equilibrium concept is sufficient
to describe the interactions between the bound and solute ions with acceptable
accuracy. As noted in section 4.4, this is not necessarily always true even with
pulp suspensions. Inclusion of specific interactions to the model via complexation
would be straightforward in theory, but has not been applied by the author due to
increased complexity of the parameterisation. Again, regarding reaction rate con-
strained systems the model construction in practice has started with the equilibri-
um system with reaction rate constraints and equations added only up to the level
where sufficient accuracy compared to experimental results has been obtained.
Considering the large uncertainties in the known reaction kinetic parameters, this
approach of minimum kinetics is regarded justified (with the limitations mentioned
earlier).
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Abstract

The Gibbs energy minimization encompasses active use of the chemical potentials (partial molar Gibbs energies) of the constituents of the
system. Usually, these appear at their equilibrium values as a result of the minimization calculation, the mass balance constraints being the
necessary subsidiary conditions. Yet, there are several such physico-chemical circumstances where the system is also constrained by other factors,
such as surface effects, potential fields or even by chemical reaction kinetics. In this paper a particular method is presented by which constrained
chemical potentials can be applied in a multi-phase Gibbs energy minimization. The constrained potentials arise typically from work-related
thermodynamic displacements in the system. When Gibbs energy minimization is performed by the Lagrange method, these constraints appear as
additional Lagrangian multipliers. Examples of the constrained potential method are presented in terms of the electrochemical Donnan equilibria
in aqueous systems containing semi-permeable interfaces, the phase formation in surface-energy controlled systems and in systems with affinities
controlled by chemical reaction kinetics. The methods have been applied successfully in calculating distribution coefficients for metal ions together
with pH-values in pulp suspensions, in the calculation of surface tension of alloys, and in thermochemical process modeling involving chemical

reaction rates.
© 2005 Elsevier Ltd. All rights reserved.

1. Introduction

With the improving numerical capacity of present day com-
puters, Gibbs energy minimization has gained increasing inter-
est not only in the calculation of complex chemical equilibria
and phase diagrams, but also in performing complicated pro-
cess simulations. The advantage of the thermodynamic method
is that it avails a common basis for complex chemical problems
in multi-phase systems with various proportions and conditions.
Both industrial processes and small scale laboratory systems
can be calculated successfully with the Gibbs energy method.

However, the multi-phase Gibbs energy minimization
technique has not been applicable to more complicated
problems where the thermodynamic system is subjected to a
displacement caused by a generalized work coefficient or when
the chemical or phase change is constrained by slow reaction
kinetics. Such problems are often encountered in practical
materials science and in the simulation of processes, notably
including such topics as membrane separated electrochemical
equilibrium systems, complex surface energy equilibria and

* Corresponding author. Tel.: +358 20 722 6366; fax: +358 20 722 7026.
E-mail address: pertti.koukkari@vtt.fi (P. Koukkari).

0364-5916/$ - see front matter © 2005 Elsevier Ltd. All rights reserved.
doi:10.1016/j.calphad.2005.11.007

finally time-dependent systems controlled with chemical
reaction rates. A common feature of all these phenomena is
that the total Gibbs energy is affected by an additional physical
constraint, which is due to a work-related thermodynamic
displacement, including the affinity of kinetically controlled
chemical reactions.

In the conventional Gibbs energy minimization calculation,
the system is subjected to the mass balance constraints which
are deduced from the input amounts of the components of
the equilibrium system. The Gibbs free energy minimum is
often solved by using the Lagrange method of undetermined
multipliers with the mass balances of the system components
as the necessary subsidiary constraints. The chemical potentials
of the constituents of the multi-component system can then
be solved in terms of the elements of the mass conservation
(stoichiometric) matrix and the Lagrange multipliers. As
the elements of the matrix are dimensionless factors, the
Lagrange multipliers represent chemical potentials of the
system components. By extension of the matrix, one may
introduce additional constraints for a desired set of constituents
and thus take into account additional Gibbs energy terms due
to the surface tension, electrochemical potential or affinity of
a kinetically controlled reaction. In what follows, we present a
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Lagrangian method, which allows a number of such phenomena
to be calculated with Gibbs energy minimization.

2. Theory
2.1. Overview of the Lagrangian method

The Gibbs energy of the multicomponent system is written
in terms of the chemical potentials as follows

G:Zanu% (D
ok

where uf = uf(T, p,ny) is the chemical potential of the
species (k) in the respective phase a and nf is its molar
amount. The Gibbs energy is an extensive state variable and
the chemical potential uf is the partial molar Gibbs energy of
the constituent k.

For the Lagrangian method, the mass balance equations are
needed as follows [1,2]:

¥ Ny
Gp=bi—>_ Y afnf=0(G=12...10 )
a=1k=1
where b; is the total input amount of a system component
and a,‘fj refers to the stoichiometric number of component j in
constituent £, in its respective phase . The number of phases is
denoted by ¥, and N, is used for the number of constituents in
phase «. A system component is typically, but not necessarily,
a chemical element. The total number of system components is
/. The individual mass balances are denoted for brevity as ¢;.
The Lagrangian function is then written in terms of the Gibbs
energy and the mass balance conditions:

!
L=G-Y r¢, 3)
Jj=1
where the A ;s are the undetermined multipliers of the Lagrange
method. The minimum condition of the Gibbs energy is the
same as this condition for the Lagrangian function (L), and is
received at constant temperature and pressure by finding the
extremum points for the respective partial derivatives:

L .
( ) :Mkfg agr;j =0k =1,2,...,N) 4)
itk

any J=1

Conditions (2) and (4) together give a set of N + [/ equations
with an equal number of unknowns to be solved (N is the
total number of constituents). The solution gives the molar
amounts (nxs) at equilibrium for the closed system when
temperature and pressure are held constant. In addition, the
undetermined multipliers (A ;) become solved. By definition of
(3), they connect the mass balances of each system component
to the Gibbs energy. In fact, the solution of the undetermined
multipliers produces each A; as representing the chemical
potential of the respective system component j. To emphasize,
we denote this potential by 7; and get, for the chemical
potentials of any constituent k:

!
we=Y agm; (k=1.2,....N) 5)
j=1

Eq. (5) gives the chemical potential of any constituent £ as a
linear combination of the respective potentials of the system
components [1]. The respective (N x /) conservation matrix is

1) (1)

41 A4y
(1 (1)
R

A= Any411 T ANt (©)
(§2] (¥)
an.1 an.i

In the conventional CALPHAD methods, the system com-
ponents represent stoichiometric building blocks of the con-
stituents and the matrix elements ay; are the respective stoi-
chiometric coefficients. For example, the chemical potential of
carbon dioxide (CO2) in an equilibrium system with the ele-
ments carbon (C) and oxygen (O) as system components will
be given in terms of their potentials. Carbon dioxide consists
of one unit of carbon and two units of oxygen, and the chemi-
cal potential is accordingly puco2 = mc + 27o. The condition
is equivalent to the requirement that the affinity of all possible
chemical reactions is zero at equilibrium.

The independent components of the system may be
chosen to represent stoichiometric entities other than chemical
elements. These include, for example, chemical substances,
ions and electronic charge, which characteristically may occur
as independent components of a phase constituent. The
stoichiometric coefficients given in the transformed matrix
must be consistent with the conservation of mass in the
system, which is defined in terms of the total mass (m) as
25-:1 bjM; = muy. Here, M; is the molecular mass of the
system component ;.

2.2. Setting additional constraints with the conservation matrix

The conservation matrix A has a row for each species and a
column for each independent conservation equation [1,3]. The
conservation matrix is thus made up of the coefficients of the
conservation equations valid in the system. As stated above,
in chemical reactions, atoms of elements and electric charge
are conserved. Sometimes, additional conservation equations
are required, for example to denote conserved molecular
groups [4]. The new constraint appears as an additional column
in the conservation matrix:

(1) (1) (1
arq e ayy ayi+1
) ) M
Al
A=Lay g o aniig O @
(‘W) . ('W) (W.)
an.1 Ay AN, I+1

Here the matrix elements for the phase constituents remain
equivalent to those in Eq. (6), but the additional column with
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subscript / + 1 represents the new conservation equation. Thus,
the element ay, ; = 0 for all those constituents k& which
are not affected by the additional constraint, whereas al‘(", 141 18
not zero for those constituents which are affected by the said
constraint. Thus, for example, the number of aromatic groups
to be conserved in each aromatic compound can be attached to
the Gibbs energy calculation by the new pseudoelement [4]. It is
obvious that the mass balance of the total system is not affected
if the molecular mass of the pseudoelement M, is chosen to
be zero.

The additional constraint affects the chemical potential
of the phase constituents through Eq. (5). As the elements
of the matrix are dimensionless factors, the Lagrangian
multipliers represent additive contributions to the chemical
potentials of the constituents. Applying this property, one
may introduce additional conditions for a desired set of
constituents, thus generalizing the conservation matrix to
applicable physical constraints of the system. Such constraints
may be set for the electroneutrality condition of phases [5],
or for an affinity related metastable or kinetically conserved
species [6,7]. Further, a constraint set for the surface area of
the system is similarly linked to the surface energy of the
system and it can be used to predict the surface tension and
surface compositions of multi-component mixtures [8]. In what
follows, three simple examples are presented to detail the use
of the additional constraint when calculating surface tensions
of multi-component alloys, to determine Donnan equilibria
in membrane-separated multi-phase aqueous systems, and to
conserve the affinity of a kinetically conserved chemical
reaction in a multi-phase system.

3. Calculation examples
3.1. Computation of surface tension

Surface energy can appear as an additional factor in the
Gibbs energy function of a multi-component system. If the (flat)
surface layer is assumed to be one monolayer thick, the total
Gibbs energy of the system is:

Np Ny Ne
G=Zu2n2+2uini+ozz4kni 3)
k=1 k=1 k=1

Here superscripts and subscripts b and s have been used for
the bulk and surface phases, respectively. As the same species
can be assumed to be present both in the bulk and in the
surface, with N being the total number of species, we have
Ny = Ny = N/2 and the same subscript denotes the same
chemical species in both the bulk and the surface phase. The
surface tension is a function of temperature and composition,
o = o(T, xi). Each constituent of the surface phase occupies
a characteristic molar surface area Ay. The total surface area is
assumed to be constant at equilibrium:

N
> Aymy =4 )
k=1

Considering the two phases, Eq. (9) may also be written as

N
A/Ag =Y > (A% /A =0 (10)
o k=1
where the molar surface for any species in the bulk phase is
zero. The area terms are divided by a normalization constant
Ao with dimensions of m?/mol. This equation then shows the
constraint of constant surface area, in analogy to the mass
balance conditions of Eq. (2). It is then mathematically possible
to consider Eq. (10) as an additional constraint of a multi-
component system, where the surface layer is introduced as
a separate phase and the surface area as an additional system
component [6].
Using (8) in (3) and by applying (2) and (10), the Lagrangian
function of the multi-component surface system becomes

Np Ny Ny
b b S K
L=t + Yt 40 3 A
k=1 k=1 k=1
1+1

=Y 5 (bj<za,{’jn2+2a,ijn;)) 11
j=1 k k

Here, summation of the constraints extend over all system
components, that is, j = 1,2,...,/,] + 1, where the last
constraint is the one deduced from the surface area, with by+1 =
A/ Ay, and ali,l+1 = Af/Ao. From Egs. (4) and (11), the partial
derivative conditions become:

L b ! b
™ =ug—Y afrj=0 (12)
") iz j=1
oL ) I+1 ,
(W) =i+ Ao =Y ajh =0 (13)
k/ ik j=I1

At equilibrium, the chemical potential of each species is
independent of phase, that is, p,,lz = pj, = k. From Egs. (12)
and (13), it follows that the surface tension of the mixture is
obtained as the additional Lagrange multiplier:

o Ao =41 (14)

The numerical value of the constant 4¢ can be chosen
arbitrarily, but for practical calculation reasons it can be
advantageous if the ratio Ax/Ao is a value close to unity,
being of the same order of magnitude as the stoichiometric
coefficients appearing in the conservation matrix.

To perform the calculations with a Gibbs energy minimizing
program, such as ChemApp [9], the input data must be arranged
in terms of the standard state and excess Gibbs energy data of
chemical potentials of the system constituents. It is sufficient
here to state that the chemical potentials of species & in the bulk
and surface phases can be written in terms of the respective
activities as follows:

1 =pd+ RTInal (15)
1y = py* + RT Ina — Ago (16)

where the superscript © refers to the standard state, and a,f and
aj are the activities of the constituent k in the bulk phase and
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Table 1
Stoichiometric matrix for the Fe-FeO system
Fe FeO Area
Fe 1 0 0
Bulk FeO 0 1 0
Surface Fe 1 0 3.7187
FeO 0 1 5.8782

The molar surface areas for Fe and FeO at 1973 K are 37 187 m2/mol and
58 782 mz/mol, respectively [10].

surface phases, respectively. By applying Eqgs. (15) and (16)
for the case of a pure one-component system, a relationship
between the standard states of the bulk and surface phase can
be derived:

wyt = uf + Agoy an

Egs. (15)—(17) then indicate that the necessary input for a
Gibbsian surface energy model must include not only standard
state and activity (excess Gibbs energy) data for the constituents
of the bulk and surface phases, but also the data for surface
tensions of the pure substances (ox) as well as their molar
surface areas (Ax). The numerical calculation technique is
described in detail elsewhere [6]. In Table 1, the extended
matrix of an FeO/Fe binary system is given. Respective
calculation results at 1970 K are presented in Fig. 1 (the mole
fraction of FeO in the surface phase vs. that in the bulk (left) and
surface tension of the mixture (right)). The molar surface area,
pure substance surface tension values and Gibbs excess energy
are taken from Tanaka and Hara [10]. The calculated results for
the FeO/Fe binary also agree with those presented in [10].

The obvious advantage of the Gibbsian method is in
the direct calculation of surface tensions in multi-component
mixtures. An example of a simple ternary system was given
earlier in [6].

3.2. lon exchange equilibria in aqueous multi-phase systems

When two aqueous solutions at the same temperature (and
pressure) are separated with a membrane that is permeable to
some ions but not to others nor to the solvent, a distribution
known as Donnan equilibrium. Donnan equilibrium is formed
in the system of the two compartments [11,12]. The system
consists of two aqueous phases with water as the solvent
and mobile and immobile ions as solute species. In a multi-
phase system, gas as well as precipitating solids may be
present. Both compartments containing the aqueous solutions
remain electrically neutral. The essential feature of the Donnan
equilibrium is that, due to the macroscopic charge balance in
the separate compartments, immobility of some of the ions
will cause an uneven distribution for the mobile ions too.
This distribution strongly depends on the acidity (pH) of the
system in such cases where dissociating molecules in one of the
compartments may release mobile hydrogen ions, while their
respective (large or bound) counter anions remain immobile due
to the separating membrane. By applying the electroneutrality
condition together with other physical conditions of the
membrane system, the constrained potential method allows the

calculation of the multi-phase Donnan equilibrium with Gibbs
energy minimization. Thus, the distribution of ions in the two
compartments, together with formation of precipitating phases
for example, can be calculated.

In Table2 an example of the stoichiometric matrix for a
two-compartment Donnan system is presented. For the two
solution phases present, notations ' and ” have been used. The
constancy of the amount of water in the second compartment is
ascertained by setting the respective matrix element to unity. As
there is no molecular mass assigned for this system component,
the mass for the constituent H>O in the second solution volume
(solvent”) is obtained from the respective system components
O (for oxygen) and H (for hydrogen). The electronic charge of
aqueous ions is introduced to both aqueous phases in terms of
the negative charge numbers, and an additional electroneutrality
condition has been set for the secondary aqueous phase,
denoted in the matrix as ¢”. The immobile anion (Anion,)
has been positioned as a constituent for the secondary aqueous
phase ”. For clarity, just values different from zero are shown.

With the given matrix conditions, by using Eq. (5) for the
chemical potentials of charged species at equilibrium, we have

wy = pnY +RT Inaj
= W + zmgn = pd + RT Inaj, + zgyn 18)

where the chemical potentials of the primary and secondary
aqueous phases have been written in terms of their respective
activities (a; and aj). The additional term (zz7y,) deduced
from Eq. (5) is due to the supplementary electroneutrality
constraint set for the secondary aqueous phase. Eq. (18) is
comparable to the general form of electrochemical equilibrium
of charged species [11]:

Y + RT Ina) = uY + RT Inaj, + zx FAg 19)

where F is the Faraday constant and Ag is the electrical
potential difference between the primary and secondary
aqueous phases. It follows that the solution of the Gibbsian
problem with the additional electroneutrality constraint gives
this potential difference as the Lagrange multiplier 7,

FAp = Tgn (20)

Similarly, from Eq. (5) one may deduce the chemical potential
of water in the two aqueous phases in terms of the Lagrangian
multipliers. Obviously, these two chemical potentials are not
equal, but differ by the Lagrange multiplier 7y ene. This is
because the Gibbs energy model does not include the effect
of the contractive forces of the membrane system, which
prevent the transport of water from the primary compartment
to the secondary volume. Yet the model can be applied to
determine the activity difference of the two aqueous phases
and thus to define the expected pressure difference in various
membrane systems [12,13]. Assuming incompressibility, i.e.
that the partial molar volume of water is constant in the
moderate pressure range of the membrane systems, we have
a/
~Tsolvent” = (P” - P/) s'glvem =RTIn (M) 21

solvent
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Fig. 1. Surface composition and surface tension as a function of bulk composition in a Fe-FeO mixture at 1970 K.

Table 2
Example of the stoichiometric matrix for a Donnan equilibrium system with two membrane-separated compartments containing ionic solutions
o H Na C Ca Solvent” Aniong e~ ”
H,0 1 2
Ht 1 -1
OH™ 1 1 1
. Na™ 1 -1
1. Solution volume o, 2 1
HCO; 3 1 1 1
co3~ 3 1 2
Ca?t 1 -2
H,0 1 2 1
Ht 1 —1 1
OH™ 1 1 1 —1
Nat 1 -1 1
2. Solution volume CO, 2 1
HCOy 3 1 1 1 -1
co3~ 3 1 2 -2
Ca?t 1 -2 2
Anion, 1 1 -1
CaCO3 CaCO3 3 1 1

The partial molar volume of the solvent (water) is denoted
by Viienr The constraining factor mggj ey emerges as the
potential difference due to the different activities of solvent
water in the two different compartments. Thus, the pressure
drop across the membrane (p” — p’) can be calculated on the
basis of either the activities of the solvent in the two volumes
or the potential 7y ene -

An example calculation of the above described Donnan
equilibrium system is a pulp fiber suspension where the fibers
absorb both water and solute ions. Fibers contain carboxylic
acid groups of hemicellulose and phenolic groups of the
lignines. The anions of these groups are generally bound to
the fiber, but the protons of these acidic functional groups
can be dissolved and transferred through the fiber to an
external bulk solution. Charge neutrality prevails both within
the fiber structure and in the external solution, and thus
the dissociation of the functional groups may lead to ion
exchange between the cell structure of the fiber and the bulk
solution. The stoichiometric Donnan equilibrium theory has
been used already by Neale (1929) and Farrar and Neale
(1952) to characterize electrolyte interactions with cellulose

fibers [14,15]. In 1996 Towers and Scallan published their
Donnan model, which could be used to calculate the ionic
distribution of mixtures of mono- and divalent cations and
monovalent anions in pulp suspensions [16]. The solution
model was further extended by Résdnen et al. to include
the presence of multivalent anions as well as the formation
of hydroxyl complexes and ligands [17]. The multi-phase
Gibbs energy model of the fiber suspension, introduced by
Koukkari, Pajarre and Pakarinen (2002), enables the calculation
of the solution equilibria (including the distribution of the
charged species) while precipitating solids and the dissolution
of gaseous constituents are also taken into account [5].

The Gibbs energy model of the fiber suspension is
essentially based on the electrochemical theory described
above, the fibers representing the secondary aqueous phase
containing both mobile and immobile ions. The basic input data
of the multi-phase Donnan model is similar to any characteristic
aqueous solution model, requiring the incoming amounts
of substances and equilibrium temperature and pressure.
The water content of pulp fibers is based on experimental
water retention values and given as additional model input.
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Fig. 2. Measured and modeled concentrations of Na, Ca, Mg, and Mn ions bound by the fibers (f) and in the surrounding solution (s). Experimental results are taken
from Ref. [16]. Low concentrations in the surrounding solutions at pH values above 10 are due to precipitation of hydroxides.

Furthermore, to characterize the immobile anionic species in
the fiber phase, their amounts and Gibbs energy data must
be specified. Unlike the mobile ions and neutral solutes, the
bound acidic groups are included only in the fiber phase.
As no reactions that would change the total amount of these
groups is assumed to take place, the chemical potential of the
undissociated forms of these groups can be set to zero, while
the chemical potential of the anionic forms can be calculated
based on the thermodynamic relation

AG; = —RTnK; (22)

where the acidic dissociation constants (K;) and the
corresponding molar amounts are determined experimentally
by potentiometric or conductometric titration. This data is
sufficient to perform the equilibrium calculations, and the
chemical structure of the acids needs not to be known. It
has been found quite customarily that both the K;-values and
amount of charge are characteristic to a given form of cellulose
or pulp with a known treatment history. Consequently, this
data appears comparable with standard Gibbs energy data of
known substances [18,19]. In Fig. 2, typical ionic distributions
and phase formation in terms of changing pH in various
pulp suspensions have been calculated from thermodynamic
equilibrium data and compared with the experimental results
of Towers and Scallan [16]. The input amounts (Table 3) are
from the same source. At low pH of the external solution,
the acidic groups within the fiber phase remain undissociated,
their anionic charge is small and the cations, such as Ca?™,
Mg?*, Nat and K typically, are evenly distributed between
the fiber and the external solution. With decreasing acidity, the
pH in the external solution is raised and the acid groups in
the fiber are dissociated. This feature triggers the ion exchange
between the two aqueous phases, the protons are transported to
the external solution and the corresponding charge in the fiber
phase becomes compensated with the metal cations. At high
enough pH, precipitating carbonates and hydroxides are formed

Table 3

Input amounts used for pulp suspension model calculations

H,0 89.12 kg

H,O¢ 1.4 kg

Bound acid (pK = 4) 0.085 mol

Ca(OH), 0.0282 mol
Mg(OH), 0.0174 mol
Mn(OH), 0.00166 mol

NaOH 0.0615 mol

HCl varied for pH control

H,O¢ denotes the water inside the fibers, HyO the amount of the rest of the
aqueous solution (corresponding to the 1. solution volume in Table 2).

as solid phases. The practical perspective of the multi-phase
equilibria in pulp suspensions lies in the improved control of
pH buffering of paper machines and in metal management of
pulp bleaching solutions [18].

3.3. Reaction rate controlled systems

The conventional method in studies of reaction mechanisms
is to distinguish between the fast (equilibrium) reactions
and the slow (rate controlled) reactions. This has been a
viable approach when applying the stoichiometric method with
explicit reaction equations, with the equilibrium constant data
easily available for the reactions between thermodynamically
well-defined substances and the reaction rate constants usually
deduced from experiment. A similar technique, when applied
with the Gibbsian multi-phase method, would avail a flexible
route to calculate reaction rate controlled systems in terms
of their thermochemical properties. An early approach in
combining reaction rates with multi-phase calculations was the
extension of the stoichiometric matrix of a Gibbsian multi-
component system by the inert image component [20]. The
image method was proven successful in many cases where
the driving force of a single reaction is sufficient for reaching
100% conversion from reactants to products. The introduction
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Table 4
Thermodynamic and kinetic data for TiIO(OH); calcination reactions

Reaction AH(1000°C) (kImol™!) AG(1000°C) (kimol™!) Reaction rate equation E4 (kJmol™1) Amh
TiO(OH); < TiOy(An) + HO0 1 435 —83.6 - - -
TiO5 (An) <> TiO, (Ru) —6.6 59 E=1—(1—k)3 441.99 1.80E+17

of conservable groups as additional system components to
the stoichiometric matrix in the Lagrangian method of Gibbs
energy minimization was originally used by Alberty [4] to
preserve aromatic rings in a benzene flame model. With a
further matrix extension, this technique was shown to be
applicable to kinetically conserved species [6] and could be
applied to several related problems [7]. In what follows, the
method is shown to include the characteristics of the potential
constraint technique, in the sense that it conserves the (non-
zero) affinity of the rate controlled reactions step as the
additional Lagrange multiplier.

As a simple example, calcination of titanium oxyhydrate
(TiO(OH)3) slurry is considered, referring to the formation
of titanium dioxide powder in a calciner. The feed consists
of (wet) titanium oxyhydrate slurry, the chemical composition
being approximated as TiO(OH); % nH,O. During calcination,
the slurry is dried and finally the hydrate decomposes, leaving
the product titanium dioxide in the bed. From the oxyhydrate,
at relatively low temperatures (ca. 200°C) the crystalline
form anatase, TiOz(An), is formed first, and only in the high
temperature zone of the furnace end, the thermodynamically
stable rutile form TiO; (Ru) appears as the desired product. The
reactions are as follows:

TiO(OH), * nH,0 <> TiO2(An) + (n + 1)H,0 4 @
TiO,(An) < TiO(Ru). (1)

Rutile is the thermodynamically more stable form of these
two titanium dioxide species (Table 4). Thus a thermodynamic
calculation, such as Gibbs free energy minimization, would at
all temperatures result in rutile and water. This would lead to a
100% rutilisation of the titania already at temperatures where
the Ti-oxyhydrate is all but calcined by reaction (I). Yet it
is well known from practical experience that the rutilisation
reaction (II) is slow and only takes place with a finite rate at
elevated temperatures (above 850°C). The simulation of the
calcination reactions must take this feature into account [21].

In Table 5, the stoichiometry of the calcination system is
presented. The three first columns with system components
oxygen (O), hydrogen (H) and titanium (Ti) show the elemen-
tal abundance-constrained stoichiometry of the equilibrium sys-
tem. The additional column (R) represents the additional kinetic
constraint, affecting the conservation of rutile content in each
Gibbsian calculation sequence.

The formation of the Lagrangian function from Eq. (3)
by using the equilibrium matrix is straightforward, as well
as the solution of the (zero) affinities for the stoichiometric
reactions (I) and (II) from the equilibrium condition in Eq.
(4). (For simplicity, the Ti-oxyhydrate has been written without
the bound water molecules.) When the additional constraint is

Table 5
Stoichiometric matrix for TiO(OH), calcination with kinetically constrained
rutilisation

Index (k) Species (0] H Ti R
1 0O;-gas 2 0 0 0
2 H;0-gas 1 2 0 0
3 TiO(OH), 3 2 1 0
4 TiO3(An) 2 0 1 0
5 TiOz (Ru) 2 0 1 1

Substance index (k) is shown in the left-hand column.

taken into account, the Lagrangian function becomes:

L(n) = an <l/«k+1ﬂ ) + anuk

k=1
*=4 N=

-y 7 (b_/ -> akjnk) (23)
j=1 k=1

where the first term on the right is the chemical potentials of
the two gaseous species in terms of their partial pressures, the
second is formed from the three condensed species, and the last
term is deduced from the mass balances (a single ascending
value has been used for the constituent index k). The total
number of mass balance constraints is /* = 4, including the
additional zero-mass ‘rutility’ of the formed titanium dioxide.
From (4) and (23), the following conditions are obtained:

ot (14 m) — =0 4
+n2
W4 — |5 = T4 (25)

Eq. (24) is the equilibrium condition for the fast reaction (I)
which forms anatase and water from the oxyhydrate at elevated
temperatures. Condition (25) gives the additional Lagrange
multiplier as the affinity of reaction (II) and is dependent on
the value of the constraint b4. In a sequential computation,
the kinetic constraint is defined as a function of the extent
of such a given reaction [bp = f(&r)] and is set as
the input of the Gibbsian calculation. The reaction rate
parameters of the rutilisation example are given in Table 4,
where the reaction kinetics are deduced from the experimental
study of McKenzie [22] (model of contracting spheres). The
integrated reaction rate is obtained as a dimensionless ‘degree
of rutilisation’, which equals the extent of reaction (II). At each
sequence of calculation, the constraint b4 = &x (number of
TiO(OH), moles in the input). As & is dimensionless, the unit
of by is moles.

With the procedure described above, the kinetically
constrained Gibbs energy calculation can be performed in
a sequential procedure, provided that there is a means to
define the value of the additional system component (bg) as
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Fig. 3. Measured points and model curves for the rutile fractions are presented at four temperatures (left). The respective Gibbs energies of the system at the same

temperatures are calculated as monotonically descending curves (right).

program input. For the ChemApp program, which applies the
Lagrange method and is hence suitable for the calculation
of the constrained problems, we have developed a more
indirect procedure, which allows for the control of a kinetically
constrained reaction either in its forward or reverse mode [7,9,
23].

The thermodynamic (Gibbs energy) data for the species are
from standard sources [26], yet the estimates for the standard
enthalpy, entropy and heat capacity of TiO(OH), were used
as in [24]. The kinetic calculation is then performed in 60
steps with 10 min intervals to cover the experimental data of
McKenzie, ranging up to 10 h at 995 °C. For each step, the
Gibbs energy of the system is minimized and, as a result, the
composition and the Gibbs energy of the system are calculated.
The calculation method has been described in more detail
in [23]. The results are shown in Fig. 3. The rutile fraction rises
from zero to one according to the given reaction rate. It is worth
noticing that, with the Gibbsian approach, the thermodynamic
properties of the system also become calculated for each
sequential step. The Gibbs energy of the reactive system is a
monotonically descending curve at any constant temperature.
As the anatase-rutile transformation is an exothermic reaction,
it is of practical interest to also follow the enthalpy change of
the system during the gradual process.

Additional constraints may be set to include a more complex
reaction mechanism. Each kinetically conserved species will
then be annexed to a rate constraint [23]. It seems viable that
a systematic approach, which embeds the necessary reaction
rates as source terms to the multi-phase Gibbsian calculation,
can be developed on the basis of the additional constraints. It
is emphasized, however, that the method provides a technique
to connect the experimentally found reaction rates with the
thermodynamic calculation, but includes no attempt to predict
reaction rates from thermochemical theory.

4. Summary

The method of constrained potentials provides an extension
of the applicability of the Gibbs energy minimization
method to a variety of problems encountered in chemical
thermodynamics. A common feature of all these problems is
that there is a conservation factor additional to that of mass
balance. Above, we have presented three examples, where

Table 6
Potential constraints for surface energy, electro-chemical and reaction rate
systems

System Constraint Potential equation
Surface >k f’f”i =4 o Ay = Tgurface
Electro-chemical Z,]{V:l zpng =0 Foo =74 _q
Kinetic Dk Vkrnk = br D Reactants Vkr Hkr —

> Products Vkr Hkr = TR

the additional conservation clause follows from surface area,
electroneutrality or due to reaction rate. The respective Gibbs
energy factor is then surface energy, electrochemical potential
and affinity of the kinetically constrained reaction. This
potential becomes solved during the Gibbs energy minimization
as the additional Lagrange multiplier. A summary of the three
examples with the additional constraints and the respective
potential factors is given in Table 6.

For the equilibrium systems in Table 6, i.e. the surface
energy and electrochemical systems, the equations relating
the Lagrange multiplier and the respective physical quantity
seem to be unambiguous in the form presented. For those
systems, generally one single constraint is necessary. As for
systems constrained by reaction rate, the equation presented in
Table 6 is valid for a single stoichiometric reaction, with the
constraint set for one of the reaction products as was given in
the example of anatase-rutile transformation. When considering
a mechanism with more than one linearly independent rate
controlled reaction, an equal number of constraints needs to be
defined into the Gibbsian system, and the respective relation
between the affinities of these reactions and the constrained
potentials () in terms of their stoichiometric coefficients is
then applicable [23].

The method of constrained potentials avails the possibility
for quantitative Gibbs energy calculations of several new
phenomena with a wide scope of practical applications.
From the examples presented above, the surface tension of
metals and alloys, including that of steel, can be deduced
in various conditions. As the surface energy becomes more
dominant for material properties with decreasing particle/grain
size, an interesting application is the phase behavior and
properties of nano-size particles [25]. As for electrochemistry,
the approach of constrained potentials has enabled the pH-
dependent solubility and ion exchange models for pulp
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suspensions and other membrane separated systems (e.g. [18]).
One may expect similar applications in related electrochemical
problems. The constraining of reaction rate-dependent affinities
in the Gibbsian calculation extends the applicability of the
thermodynamic method to process simulations in systems
where it is essential to follow both chemical and energy changes
and their interdependence. Finally, as there are many analogous
phenomena in chemical thermodynamics where an additional
displacement factor affects the chemical potential of one or
several species, we expect that the method presented will also
find applications other than those mentioned in this text.
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Abstract

The surface tension in metallic alloy systems is modelled by applying a direct Gibbs energy minimisation technique to the surface monolayer
model. The model results are compared with previously published experimental values for the Bi—Sn system as well as surface tension values
determined by the authors using the sessile drop method for the ternary Ag—Au—Cu system.

© 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

Information about the surface tension of metal alloy systems
is essential for understanding and prediction of things such
as wettability, crystal growth or phase properties of nanoscale
particles. A commonly used assumption is that the surface
can be modelled as a single monolayer. The purpose of this
work is to show how the monolayer model can handled by
normal thermodynamic equilibrium programs based on the
minimisation of the total Gibbs energy of the system. The
model results are compared with experimental data in two
example cases.

2. Experimental

Experimental surface tension values for the Ag—Au—Cu
system were determined by the sessile drop method at 1381 K.
The shape of metal alloy drops of about 6—8 mm in equatorial
diameter and 4-6 mm in height was determined using a CCD
camera and image analysis software and the drop shape was

* Corresponding author. Tel.: +358 20 722 6332; fax: +358 20 722 7026.
E-mail address: risto.pajarre@vtt.fi (R. Pajarre).
! present address: Division of Materials Science and Engineering,
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Korea.
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used to calculate the surface tension of the alloy. A detailed
description of the experimental procedure can be found in
Ref. [1].

3. Theory
3.1. Basic thermodynamic relations

If a system containing a surface is considered as being
comprised of two parts (phases), a surface layer (s) and an
isotropic bulk (b), the total Gibbs energy of the system can be
written as

G=Y nipi+Ao =y nlui+Yy niu+ Ao 60
i i i

where n; is the molar amount and j; the chemical potential of
species i, o the surface tension in the system and A4 the surface
area. If the surface phase is considered to be of a monolayer
thickness, Eq. (1) can be rewritten in a form

G =3 nfui+ D i + Ai0) @)
1 1

where A; is the molar surface area of the species i. The
chemical potential of species i in the bulk phase can be written
as

Wi = u,? + RTlnaf’ 3)
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Table 1
Presentation in a matrix form of stoichiometries in a system with a bulk phase and a surface phase, N species and M components
Component (1) Component (2) Component (M) Area
Bulk Species (1) vy| V12 vim 0
Species (2) 21 22 VM 0
Species (N) UN1 VN2 UNM 0
Surface Species (1) vy vy viM A/ Ay
Species (2) V2] v VM A/ Ao
Species (N) uN] UN2 UNM AN/ Ao

and in the surface phase as

()

By applying Eqs. (3) and (4) for the case of a pure one-
component system, a relationship between the standard states
of the bulk and surface phase can be derived:

Wi = ,u?’x +RTIna; — 4;0.

(&)

By combining Egs. (1), (3) and (4), the total Gibbs energy of
the system can be given in a simple form that does not explicitly
include the surface tension term:

0.5
= uwd + 405

G =) nl(u) +RTnal)+> ni(u)* +RTa)  (6)
i i
while from Egs. (3)—(5) one obtains
[L? + Ajo; + RTIna} — Ajo = }L? —i—RTlnaf7
RT af
— 0+ — |n - 7
=0 =0+ 1 na? 7

an equation first derived by Butler [2], and used extensively in
calculating surface tension in various mixtures, including metal
alloy systems [3].

3.2. Use of Gibbs energy minimiser for surface equilibria
calculations

When a Gibbs energy minimiser is used to solve chemical
equilibrium states, the total Gibbs energy is usually calculated
as

G= Z Z n$p; (over all phases (o) and species (i)
o«

present in the system)

®)

where the chemical potentials of the species are calculated from
supplied thermodynamic data using an equation of the type or
equivalent to

u¢ = u*(T, p) + RTInx%y2. ©

Comparing Egs. (2), (4) and (9), one can see that the chem-
ical potential for a species in the surface phase as calculated by
a Gibbs energy minimiser would really be the total molar Gibbs
energy of the surface species, marked here with g

Wi = pi + Aio. (10)

For a traditional chemical equilibrium calculation the mass
balance relations restricting the possible states can be given in
the form

Z Z vign$ — by = 0 (for all components k) (11)
o«

where by is the total molar amount of component £ and v;; the
stoichiometric coefficient between species i and component £.
The condition of constant total surface area can be stated in a
similar form as

> Ainf—4=0 (12)
i

or alternatively as

DY At —4=0 (13)
a

where the molar surface for any species in any non-surface
phase « is zero. 4 is the total surface area of the system. As
the constant surface area condition (Eq. (13)) is of the same
form as the traditional mass balances (Eq. (11)), it can for the
mathematical handling of the system be combined with them by
considering the surface area as a new component in the system.
In the Table 1 this is presented in a matrix form; the species in
the system are presented as rows and the conserved components
as columns.

In Table 1 A4 is a normalisation constant with dimensions of
m?/mol. The numerical value of A is in principle arbitrary, but
for the best numerical performance of Gibbs energy minimisers
it is generally best to choose the value so that the resulting
A;i/ Ao values are fairly near to unity.

In a chemical equilibrium state, in addition to species
and phases, chemical potentials can also be defined for the
different components in the system [4]. The chemical potential
of individual species are related to the chemical potentials of
the components by Eq. (14)

Mi = Z Vik Tk
k

where 7% is the chemical potential of the component £, and v
the stoichiometric coefficient between species i and component
k.

14
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Table 2
Required data for calculations in Bi—Sn binary system from Refs. [4,5]

Table 3
Stoichiometry of the Bi—Sn system at 608 K

Vi (m3 /mol) = 0.0000208 x (1 + 0.000117 % (T/K — 544)) [5] Bi Sn Area
Van (m3/mol) = 0.000017 x (1 + 0.00087 « (T/K — 505)) [5] -
opi (N/m) = 0.378 — 0.00007  (T/K — 544) [5] Bulk ]SB‘(II) (1) (1] g
osn (N/m) = 0.56 — 0.00009 * (T/K — 544) [5] n(h)
GExeess (1/mol) = xgixsn L [6] Surface Bi(l) 1 0 7.0028
L (J/mol) = 490 4 0.97T + (xBi — xSn)(—30 — 0.235T) Sn(l) 0 1 6.4499

Applied to the surface system, Eq. (14) can be stated for a

Table 4

bulk species as

M+l M

M=) VTR = Y VikTk (15)
k=1 k

=1
and for the surface species as

M+l M 4.
1

I'L;‘k = E Vip T = § Vik T + A_T[area (16)
k=1 k=1 0

where marea is the chemical potential of the new component
defined to fix the total surface area of the system.
Finally, from Egs. (15), (10) and (16) we have the equalities

Tarea/ Ao = (MT —ui)/4i =o. (17)

The chemical potential (divided by the normalisation
constant Ag) of the new ‘area’ component is equal to the surface
tension of the system.

4. Results

As examples we consider a binary and a ternary alloy system
in the liquid state. The method described above is applied to
calculate the surface tension and composition of Bi—Sn and
Ag—Au—Cu melts in temperatures where experimental surface
tension data are available for these mixtures.

4.1. Bi-Sn liquid binary system at 608 K

The thermodynamic and other physical data required to
make the calculations in the Bi—Sn system are presented in
Table 2.

The molar surface areas are calculated from the molar
volume data using Eq. (18) where N, is Avogardo’s number.

A =1.091- NPy, (18)

The resulting surface areas at 608 K are Ap; =
70028 m?/mol and As, = 64499 m?/mol. By choosing
the value 10000 m?/mol for the normalisation factor 4o the
stoichiometric definitions for the system at 608 K are as
presented in Table 3.

Normal standard state values can be used for the bulk phase
(although for the purpose of calculating surface tension and
equilibrium composition they could also be set to zero), while
the standard state values for the surface phase need to be
adjusted using Eq. (5). The excess Gibbs energy for the bulk

Calculated chemical potentials of the surface component and the surface
tensions as a function of Sn content of the Bi—Sn binary alloy

X (Sn) Tarea (J/mol) Tarea/ Ao = o (N/m)
0 3736.71 0.3737
0.05 3769.70 0.3770
0.1 3803.93 0.3804
0.15 3839.54 0.3840
0.2 3876.66 0.3877
0.25 3915.50 0.3915
0.3 3956.28 0.3956
0.35 3999.33 0.3999
0.4 4045.01 0.4045
0.45 4093.82 0.4094
0.5 4146.41 0.4146
0.55 4203.61 0.4204
0.6 4266.53 0.4267
0.65 4336.72 0.4337
0.7 4416.33 0.4416
0.75 4508.53 0.4509
0.8 4618.17 0.4618
0.85 4753.25 0.4753
0.9 4928.10 0.4928
0.95 5171.49 0.5171
1 5542.38 0.5542
Table 5

Molar volume and surface tension data for the Ag—Au—Cu system

Vau (m3/mol) = 11.3 % (1 4 0.8/10 000 + (T/K — 1337.33))/1000 000 [5]
Vag (m3/mol) = 11.6 (1 +0.98/10000 % (T/K — 1234.93))/1000 000 [9]
Vg (m3/mol) = 7.94 % (1 + 1/10000 % (T/K — 1357.77))/1000 000 [9]
oau (N/m) = 1.33 — 0.00014  T/K [5]

oag (N/m) = 1.207 — 0.000228 % T/K [9]

ocy (N/m) = 1.585 — 0.00021 + T/K [9]

is calculated as given in Table 2, but the excess energy for the
surface phase is modified by using Eq. (19):

Giutace = B - ¥Bi¥sa L (19)
where the factor 8 with a numerical value of 0.83 [3] is used
to approximate the effect that the reduced coordination number
of metal atoms on the surface as well as that of reconfiguration
has on the excess Gibbs energy.

The calculation results for the example system are as shown
in Table 4 and in Fig. 1. The calculations were made using
the ChemSheet program [7] that is based on the ChemApp [7]
thermodynamic program library.
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Fig. 1. Calculated surface tension values (left) and surface layer composition (right) as a function of bulk composition in the Bi—Sn system. Experimental surface

tension values are from Ref. [8].
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Fig. 2. Calculated surface tension values compared to experimental values measured by the authors (left) and the dependency of the surface molar fraction of copper

from bulk composition (right) in the Ag—Au—Cu ternary system.

Table 6
Interaction parameters for the Ag—Au—Cu system

0L ag.Au = —16402 + 1.14T/K [11]
OL pg.cu = 1738437 — 4.46438T /K [10]
Lay,cu=—27900 — T/K [12]

0L Ag, Au,cu = 10000 [10] 'Lag Aucu

VL pg,cu = 1660.74 — 2.31516T/K [10]
'L au.cu = 4730[12]
—105000 + 307/K [10]

2L au,cu = 3500+3.5T/K [12]
2L Ag Au,Ccu = —1000[10]

4.2. Ag—Au—Cu liquid ternary system at 1381 K

Molar volume and surface tension data required for the
calculations in the Au—Ag—Cu system are presented in Table 5.
The excess Gibbs energy values for the bulk phase are
calculated using Eq. (20) [10]:
GBS (J/mol) = Z iniji,j +xixj>ixk>;Lij k. (20)
i j>i
The binary and ternary interaction parameters have a

Redlich—Kister type dependency on the composition (Egs. (21)
and (22)):

Lij= Z(Xi =x;)""Li;
v

0 1 2
Lijk=xi Lijk+xj Lijk+xr“Lijk.

)]

(22)

The interaction parameters are listed in Table 6.
For the surface phase the excess Gibbs energy is modified
as in previous example by multiplying the excess energy

expression with B = 0.83. Modelled surface tension values
are compared with experimental results in Fig.2. There is
a fairly large amount of scatter in the experimental surface
tension results. More precise measurements are currently being
conducted in Osaka University using the constrained drop
method [13]. Also modelled dependencies of surface mole
fraction of copper from the bulk fraction are shown for different
Ag/Au ratios.

5. Conclusions

The stoichiometric conservation matrix of a Gibbs energy
minimising program can be extended to include a surface
monolayer as a separate phase while the constraint of constant
surface area is included by adding a new component in the sys-
tem. A single equilibrium calculation then results in the equilib-
rium composition of the bulk and surface phases. The surface
tension of the mixture is received from the chemical potential
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of the new area component. The model is consistent with the
Butler monolayer model for surfaces while the use of a gen-
eral Gibbs energy minimiser makes it easier to handle systems
with multiple components and complex non-ideal mixing ener-
gies. The example cases considered in the paper are metal alloy
systems with a particularly simple relation between the expres-
sions of excess Gibbs energies in the bulk and in the surface, but
the method is also directly extendable to other systems where
more complex relations for Gibbs excess energies for the sur-
face layer have been derived, such as ionic melts [14].
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Abstract

Donnan equilibrium based models can be used to predict ion-exchange related phenomena within many application fields. In this paper, a
method for doing Donnan equilibrium calculations using Gibbs energy minimization is presented. With this approach, it is possible to solve
Donnan equilibrium systems with complex solution or multiphase chemistry using Gibbs energy minimizing programs.
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1. Introduction

Donnan equilibrium based models have been used to model
ion exchange phenomena in industrial pulp and papermaking
processes [1], in basic research of polyelectrolytes [2] and
membrane equilibrium with ionic drugs [3]. In some of these
situations, the overall chemistry of the system can be quite
complex with multiple components and phases and non-ideal
interactions in solutions. As advanced computer programs and
databases have been developed for solving multi-component
and multi-phase equilibria problems, it has been the purpose of
this work to show how a general purpose Gibbs energy
minimizing program can be used for equilibrium calculations
in systems where the Donnan equilibrium applies.

2. Theory
2.1. Donnan equilibrium

Electrochemical systems consisting of two parts where one or
more charged species are restricted to one part of the system by a
semi-permeable membrane were first investigated by Donnan in
early 20th century [4]. It has been later shown that the same basic
relations can also often be applied to model systems where the
confinement of some ionic species is caused, not by a membrane,
but by chemical bonding to a macromolecular structure. The

* Corresponding author. Tel.: +358 9 456 6332; fax: +358 20 722 7026.
E-mail address: Risto.Pajarre@vtt.fi (R. Pajarre).
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essential feature of Donnan equilibrium is that because all
macroscopic parts of the system must remain electrically neutral,
the binding of some of the ions into one part of the system will
cause an uneven distribution also for the freely mobile ions. The
equilibrium distributions between different solution volumes
will be defined by their electrochemical potentials

W = 1Y + RTIna/ + zFy (1)
_ ’u;k/r _ M(_)// + RTII’ICI,'” +ZiFl//”

where uf is the electrochemical potential, u? the standard state
chemical potential, athe activity and z; the charge of species i, F’
Faraday’s constant and  the electrical potential. Superscripts ’
and ” denote the two solution volumes. Rearranging Eq. (1), a
relation for the equilibrium activities of solutes in the two
solution volumes is reached:

4 exp <u?’ — W+ zF(Y —y") >

; = @

i
With the equality of standard state chemical potentials, Eq.
(2) can be simplified further

a[_’/ _ ZLF(W, _ "b//)
a exP( RT

_ (exp <F(l//’R; ") ))E o 3)

where the characteristic constant 1 is the same for all mobile
solute species for any given state of the system.
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Table 1
A representation of a simple chemical system consisting of an aqueous solution
and a solid precipitate

(6] H Na C Ca N e

Aqueous solution H,O 1 2

H 1 —1

OH™ 1 1 1

N, 2

0, 2

Na' 1 -1

CO, 2 1

HCO;3 3 1 1 1

co;” 3 1 2

Ca®" 1 -2
CaCOs3 CaCOs3 3 1 1

2.2. Gibbs energy minimization

Computer programs that can calculate the equilibrium state
of a chemically reactive system by minimizing its overall
Gibbs energy have been in active use since the 1950’s. For
such programs, two kinds of data are needed for calculations: a
listing of phases and their constituent species together with
their stoichiometries with respect to the chemical elements or
other fundamental components they can be considered to be
formed of, and functions for calculating the chemical potentials
(molar Gibbs energies) of each species as a function of
temperature, pressure and phase composition. The stoichio-
metric data for the system can be presented in a matrix format,
an example of which is given in Table 1.

The equilibrium composition of a system defined in this
way (with N possible species and M elements or other
components) can be derived by solving the nonlinear optimi-
zation problem of finding the minimum of the total Gibbs
energy of the system:

subject to the constraints that the molar amount of no species
can be negative

n; 2 0 (5)
and that the total amounts of all components in the system are
conserved

N
> agni=1b (6)
i=1

where a;; is the stoichiometric coefficient of species i with
respect to element j and b; the total amount of element j in the
system. Because the change in Gibbs energy for every reaction
among the species that are present in the system is zero at
equilibrium, chemical potentials (molar Gibbs energies) can
also be defined for each component in the equilibrium system
[5] so that they satisfy the relation

M
My = Z T (7)
J=1

where 7; is the chemical potential of component j and y; the
chemical potential of any species i present in the system.

2.3. Gibbs energy model for Donnan equilibrium

For calculations with Donnan equilibrium, two separate
solution phases are defined in the system as separate phases
(Table 2). All mobile solutes are present in both phases and
normally, as the solvent is the same in both, the thermodynamic
data for the solutes in both phases are identical as well. The
immobile ions have been defined as species for only one of the
phases. Two other modifications to the stoichiometries in the
system are needed. To ensure that not only the system as a whole
but also both solution volumes separately remain electrically
neutral, a new component for the charge in the second solution
volume is added. A second new component is introduced to

N
G = Z i (4) prevent the free movement of the solvent from one side to the
i=1 other. Without this last added constraint, all the solvent would
Table 2
The chemical system of Table 1 divided to two volumes with an added ion (Anion,) that cannot be transferred from the second sub-volume to the first one
(0] H Na C Ca solvent, Anion, e charge,
(1) Solution volume H,0 1 2
H" 1 -1
OH™ 1 1 1
Na* 1 -1
CO, 2 1
HCO5 3 1 1 1
Cco3~ 3 1 2
Ca®" 1 -2
(2) Solution volume H,O 1 2 1
H' 1 —1 1
OH™ 1 1 1 -1
Na* 1 —1 1
CO, 2 1
HCO3 3 1 1 1 -1
CO3 3 1 2 -2
Ca®* 1 -2 2
Anion, 1 1 -1

CaCOs CaCOs 3




60 R. Pajarre et al. / Journal of Molecular Liquids 125 (2006) 58—61

typically transfer to the volume containing the immobile ions to
make the solution there as dilute as possible (lowering the Gibbs
energy of the solvent), a behaviour in real cases generally
prevented by a build up of a pressure difference. It could be
argued that this last constraint should be for the total volume of
the solution in the restricted sub-volume and not just for the
molar amount (volume) of the solvent, but the practical problems
that the authors have worked with have been with systems that
are relatively dilute (especially regarding the bound ions) and
where the solution sub-volumes are not very accurately defined.
For these purposes, the numerically simple system described in
Table 2 is both sufficient and preferable.

With the system definitions described in Table 2, the
equilibrium distribution of solutes calculated by minimizing
the total Gibbs energy of the system will follow the relation
given by Eq. (8)

/1,2 = ?’2 +RT11’1L112 = /lll + ZiTtcharge,
= lu?‘l +RT1na} + ZiTlcharge, - (8)

The relation between activities in the two solution volumes
is therefore

0,1 0.2
ﬁ =exp <ui' — K + ZiTtcharge, ) (9)

a! RT

that can be further simplified when the standard states are equal
0

=

2
ai _ (ZiT[chargez ) _ ( <7'fcharge2 ))Z’
al exXp —RT exp —RT .

i

(10)
Comparing Eqgs. (3) and (10), we can note the equality
F(l:bl - ‘//2) = Tlcharge, (11)

which means that the chemical potential of the new component,
used for differentiating charges of the species in the two sub-
volumes in the system, is directly proportional to the electrical
potential difference between those two volumes.

For the solvent, the calculated chemical potentials in the two
volumes will differ by the amount of the chemical potential of
the new component defined to fix the amount of the solvent in
one of the phase volumes.

1t = 1l + RTna! (12)

(13)

Naturally, the actual chemical potential of the solvent must
be the same in both parts of the equilibrium system. The
calculated chemical potentials differ because they do not
include the effect of the constraining force required to prevent
the flow of the solvent from the first solution phase volume to
the second one. If the solvent is considered incompressible, the
actual equilibrium condition is

’ug = 'ug + RTlnag = ,U; + Tsolvent,

12 = pd +RTIna? + V™ (p* - p') = ul. (14)

Comparing Eqs. (13) and (14), we obtain an equation for the
relationship between the calculated chemical potential of the

component restricting the movement of the solvent in the
model and the pressure difference actually required to have the
solvent in equilibrium when the solute concentrations are
unequal

2 _ 1 Tlsolvent, 15
P —p e (15)

In the discussion above, it has generally been assumed that
the solute standard state values are the same on both sides of
the system. This is what one would expect if the partitioning
membrane or other structural feature that makes some of the
ions non-mobile does not prevent the movement of the solvent
molecules. However, the standard state values could also be
adjusted to reflect observed partition coefficients as in the
Donnan equilibrium based modelling work for ionic drugs in
Ref. [3] where hydrophobic interactions between a fixed
charged membrane and drug molecules are taken into account
by using partition coefficients of this kind. Finally, while the
model has been presented for the case of two solution volumes,
the extension to an arbitrary number of volumes is straightfor-
ward, requiring two additional components for each added sub-
volume (phase).

3. Results and discussion

Thermodynamic models as described above have been used
by the authors in co-operation with other researchers [1,6] to
model ion-exchange phenomena in pulp suspensions in
conditions relevant to practical industrial processes. In those
models, the two (aqueous) solution volumes are the water
contained by the fibres themselves and the surrounding water
in the suspension. The immobile ions are organic acidic groups
that are chemically bound to the fibre structure. pK, values
determined by titration are used to set suitable thermodynamic
values for the dissociation of these acids while standard state
values acquired from various published data compilations are
used for the other solutes, gaseous species and potential
precipitates. Equal standard state values have been used for the

ESA/CaCO3/HCI
0.6

0.5 1

0.4 1

0.3 1

0.2

Ca/mmol/dm3

0.1 A

pH

—— [Ca]s A [Ca]s measured ---- CaCO3

Fig. 1. Modelled and measured Ca concentrations in a CaCOs containing pulp
suspension as function of pH. Modelled amounts of remaining solid CaCOj are
also shown.



R. Pajarre et al. / Journal of Molecular Liquids 125 (2006) 58—61 61

fraction of the total metal amount in solution

2 4 6 8 10 12

Na ------ K Ca
¢ Na (exp) O K (exp) A Ca (exp)

Mg
O Mg (exp)

Fig. 2. Calculated and experimental ratio between the metal amounts in solution
and the total metal content of the pulp as function of pH in a suspension treated
with EDTA. Experimental values and chemical inputs for the model based on
Ref. [10].

two aqueous volumes. The activity coefficients for the ions
have been modelled using the Pitzer equations [7], which
reduce to activity coefficient expressions similar to the Davies
equation in dilute solutions or when no ion-specific interaction
parameters are available. The equilibrium calculations have
been done mostly using ChemSheet [8], which is a part of the
widely used Solgasmix/ChemSage/ChemApp program fami-
ly—in principle, any Gibbs energy minimizer program that
allows the user to define stoichiometries and thermodynamic
data for the phases and their constituents could be used.

Modelled and experimental Ca concentrations together with
the modelled solid CaCO; amount in a 1% consistency
eucalyptus sulphate pulp suspension containing CaCO; are
shown in Fig. 1. The CaCOj; content is 0.05 mol/(kg of dry
fibre), while the acidic group content of the fibre is 0.067 mol/
(kg of dry fibre). The amount of bound water in the fibre was
estimated to be 1 kg/(kg of dry fibre). The experimental results
are from Ref. [9]. The Ca content in the solution rises with the
pH value, first with the dissolving CaCO; and then as the
acidic groups become deprotonated releasing the Ca-ions
bound by the fibres at higher pH values.

Modelling results for a 4.8% consistency pulp suspension
treated with EDTA chelating agent are shown in Fig. 2. At very
low pH, the organic acids are not deprotonated and the metal
concentrations would be expected to be roughly equal in the
fibres and in the surrounding solution. With increasing pH, the
negatively charged fibres will attract cations, the effect as
described by Egs. (3) and (10) being stronger for divalent than
monovalent ions. Formation of negatively charged complexes
with EDTA explains why a larger fraction of Ca than Mg
remains in the solution with pH values greater than 4.

In general, the thermodynamic model presented here has
been found to be able to give useful results on pH values and

concentrations of inorganic ions in pulp suspensions, though
both kinetic effects and complex interactions with various
organic components in the system can affect the accuracy of
the model predictions [1,11]. The models have been applied to
planning and modelling of actual industrial pulp and paper-
making processes [12,13].

4. Conclusion

A computational model for solving multi-phase chemical
equilibrium problems with Donnan ion-exchange phenomena
has been constructed. Using the model, it is possible to
consider ion-exchange effects in chemical systems using
commercially available Gibbs energy minimizers. In the field
of pulp and paper industries, the resulting models have been
used to simulate both laboratory experiments and planned and
existing industrial processes. The method could be expected to
be useful in other areas where Donnan type ion-exchange
equilibrium needs to be considered in chemically reactive
systems.
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Computational methods in chemical equilibrium thermodynamics have found numerous application
areas in diverse fields such as metallurgy, petrochemistry, the pulp and paper industry, the study of
advanced inorganic materials, environmental science and biochemistry. As many of the cases of interest
are not actually in equilibrium, there is a need for methods that extend the application area of multi-
phase equilibrium solvers to non-equilibrium systems. Likewise there is a need for efficient handling of
thermochemical systems that are described by parameters other than those most commonly associated
with Gibbs energy, namely temperature, pressure and fixed elemental (and charge) balances.

In the work computational methods and related theory are presented that can be used with a
standard Gibbs energy minimiser to solve advanced thermochemical problems. The actual calculations
have been performed using the ChemSheet software, but the presentation has aimed to be generic and
applicable to other thermochemical codes that allow the user to define thermodynamic data and the
stoichiometries of the constituent species in the system.

The examples discussed include electrochemical Donnan equilibrium (particularly applied to aqueous
pulp suspensions), surface and interfacial energies of liquid mixtures, systems affected by external
magnetic fields and systems with time-dependent reaction extents and diffusion-constrained para-
equilibrium. A number of practical applications have been achieved with the models that combine
reaction kinetics with partial thermodynamic equilibrium calculation and ion exchange models based on
Donnan equilibrium, that have both been applied with success in real-life industrial design and devel-
opment work with multicomponent, multiphase systems. The method has been successfully applied to
liquid surface energies of systems with multiple components and complex non-equilibrium data.

© 2016 Elsevier Ltd. All rights reserved.

1. Introduction

temperature slags and melts as well as concentrated aqueous
solutions while simultaneously the multicomponent methodology

Computational chemical equilibrium thermodynamics has
been applied extensively in diverse fields such as metallurgy,
petrochemistry, the pulp and paper industry, the study of
advanced inorganic materials, environmental science and bio-
chemistry (Jantschi and Bolboaci, 2014; Gmehling, et al., 2012;
Letcher, 2004; Hack, 2008; Alberty, 2003). Efficient and practical
models have been developed for complex mixtures for high

* Corresponding author.

http://dx.doi.org/10.1016/j.ces.2016.02.033
0009-2509/© 2016 Elsevier Ltd. All rights reserved.

has been successfully applied to various interrelated material
properties. Thermodynamic databanks cover fields for many
classes of substances ranging from organic and biochemical sys-
tems to various inorganic and metallurgical materials. The sys-
tematic data storage and management in connection with the
increasing numerical capability of modern computers enables
treatment of the thermochemistry of complex systems as a whole.
Thus, accurate theoretical studies of the phase stability and equi-
libria of systems with a great number of chemical components can
be made. The progress is not surprising considering the general
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applicability of the thermodynamic relations, theoretical and data
development over a century and finally the rapid improvements in
computational methods during the last few decades. A large
number of computer codes and programmes have also been
developed for accurate handling of thermochemical systems and
effective, robust and practical determination of the equilibrium
state based on the minimisation of the Gibbs free energy of the
system.

As many of the cases of interest are not in actual equilibrium,
there is a need for methods that extend the application area of
chemical equilibrium solvers to non-equilibrium systems, includ-
ing those that are at least in part constrained by slow reactions
while the assumption of local chemical equilibrium (LCE) is valid
for fast ‘unconstrained’ reactions. Likewise there is a need for
efficient handling of thermochemical systems that are described
by parameters other than those most commonly associated with
Gibbs energy, namely temperature, pressure and fixed elemental
(and charge) balances. These include parameters that connect
electromagnetic and mechanic functions to chemical or phase
changes, i.e. the conjugate variables that are used to define e.g.
electrochemical, electromagnetic or mechanical work.

The purpose of this work has been to explore, develop and
collect a systematic set of computational methods that can be used
with a standard Gibbs energy minimiser for solving advanced
thermochemical problems. In earlier work (Koukkari and Pajarre,
2011) the authors have used the term Constrained Free Energy (CFE)
method to describe the approach in which additional constraints
were added to standard Gibbs energy minimisation. In the present
paper, additional constraints and energy terms are treated in a more
systematic fashion, and the application area is also broadened. The
actual calculations have been done using the ChemSheet or Che-
mApp software (Koukkari, et al., 2000; Petersen and Hack, 2007),
but the presentation has aimed to be generic and applicable to
other thermochemical codes that allow the user to define ther-
modynamic data and the stoichiometries of the constituent species
in the system. The functioning of those codes, such as finding the
global free energy minimum reliably and computationally effi-
ciently in systems containing multiple components (dozens, if
required), and potentially multiple non-ideal mixture phases has
not been considered a part of this work. Such topics are discussed in
detail e.g. by Harvey et al. (2013) and references therein.

2. Thermodynamic basis

In this work it is assumed that the system considered is either
isotropic, having the same values for temperature, chemical
potentials, pressure and other work-coefficients throughout the
system, or that it can be divided into a finite number of such parts.
If not explicitly stated otherwise, the model equations are written
for one isotropic part of the system.

2.1. Gibbs free energy

The change in internal energy of a system can be given (Haase,
1990) by the Eq. (1)

dU=TdS+)_Li-dli+Y_ pdn 1
J i
while the corresponding Euler form for internal energy is
U=TS+> Li- L+ pn; 2)
7 i
where L; is the generalized work coefficient with intensive char-

acter and J; is the corresponding generalized work coordinate with
extensive character. Example cases have been listed in Table 1.

Table 1
Common examples of thermodynamic work coefficients and coordinates.

work coefficient L; work coordinate [;

—P (pressure)

o (surface tension)
¢j(electric potential)

E (electric field strength)
B (magnetic flux density)

V (volume)

A (surface area)

Q; (charge)

p (electric dipole moment)
m (magnetic moment)

While the expression of the generalized work [Eq. (1)] has been
adapted from the comprehensive treatment of Haase (1990), the
further nomenclature mostly follows Alberty (2001).

For the internal energy U, the natural variables are S, [; and ny,
meaning that if U is known as a function of those extensive vari-
ables, all the other thermodynamic properties of the system can be
derived (Alberty, 2001).

Common definitions (Haase, 1990) for enthalpy (H), Helmholtz
(F) and Gibbs (G) free energy are given by (Egs. (3)-5)

H=U->L| ©)
j
F=U-ST @
G=U-ST-> L] Q)
j

In this work the extensive work coordinates [; are divided
to partial molar contributions from each species following Eq.

(6)

al
li = (4) (6)
! on; T.Linp 2

so that
[=>"Lm @)
i

For the practical applicability with a Gibbs energy minimiser, in the
present work it has been further assumed that the partial molar
properties expressed by Eq. (6) are not functions of phase composition.

Gibbs energy expression on a molar basis is given by Eq. (8)

G=U-ST-> L-li=p; ®)
j

For a closed system with a constant temperature and L;
(including P) the condition for a spontaneous process is dG < 0, so
that G has its minimum value in equilibrium state.

2.2. Systems with constant work coordinates

In cases in which some of the work coordinates (and not the
corresponding work coefficients) are constant, a corresponding
free energy function can be defined (Alberty, 2001).

G = G+Z Lh',l1:Z.uini+Z Ly - Iy (©)]
h i h

where the summation is over the constant values of ;. G’ obtains
its minimum value at the equilibrium corresponding to the new

set of constraints. A corresponding molar free energy, y;” in this

work! that includes a contribution to the work coordinate amount

1 Here the superscript « is used to denote a specific phase or part of the system
in which the work coefficient of interest applies. When superscripts « and f are
used, the species that n and n{’ or uf* and ;4,” refer to are the same chemical species
in different parts or phases of the system.
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specific to the species i can be defined as

, oG oG ol o
e = (—a> =pi+ <—> <—a> = pi+ Lyl
on; L, o, oy T, M) Ty

(10

Eq. (10) applied to a pure phase gives the standard state free
energy with the additional work co-ordinate contribution as

M7 =l + Lnly an

For simplicity, (Egs. (10) and 11) are written for the case where
only one work coordinate h is kept constant. In the constrained
equilibrium, i.e. the minimum of G, the chemical potential is still
as a state variable the quantity that is phase independent - i.e.
equal throughout the system.

pE = = (12)
In terms of activities the chemical potential can be expressed as
Hi=f* =Lyl = O+ RT In a; — Lyl (13)

2.3. Systems with constant chemical potentials

With regard to systems in chemical equilibrium, Eq. (2) can be
written in terms of independent variables, so that the species in
the system are replaced by components, whose number is less
than the number of species assuming chemical reactions or mass
transfer between phases are taking place.

U=TS+Y Li-h+> mby 14
j k

The chemical potential of a component k in this work has been
denoted by symbol 7y, and its molar amount by b, to make them
easier to distinguish from the chemical potential y; and molar
amount n; of a species i.

A suitable free energy function when some component che-
mical potentials are kept at a constant value by material bath is
given by

G =G- mby (15)
h

where the summation is over the non-constant values of b,

Mathematically Eqgs. (9) and (15) represent Legendre trans-
forms of the free energy function to a new one with a new set of
independent variables (Alberty, 2001). The transforms allow sol-
ving of the equilibrium state and all its thermodynamic functions
specified by the natural variables, where the natural variables can
be freely chosen from the conjugate pairs of molar amounts and
chemical potentials; temperature and entropy as well as work
coordinates and work coefficients.

2.4. Systems with other than work coordinate constraints

If other constraints (e.g. due to slow reaction rates) that are not
related to an additional work term (L;-I;) are relevant to the
system, the form of the energy functions [(Eqs. (2)-5)] is not
altered. The free energy corresponding to any specific composition
remains unchanged. However, the possible states of the system are
reduced and the equilibrium is generally sifted to some state with
higher free energy than without the constraint. When the states of
the system are constrained by a relation or relations that can be
expressed as linear combinations of amounts of species, the
effective number of components in the system is increased, as was
first noted by JW. Gibbs who called these kinds of constraints
“passive resistances” (Gibbs, 1876; Koukkari, et al., 2008b). Con-
straints of this kind are discussed in more detail together with

systems constrained by slow kinetics and mass transfer as well as
nanoparticles.

3. Use of a free energy minimiser

3.1. Traditional problem statement

The basic problems to be solved with a typical free energy
minimiser are of the type: Find the minimum of function G:

6= G;’(xj“, T,P)n;‘ (16)

subject to constraints

nf>0 Vi a17)
and
An—-b=0 18)

where matrix element a;; of matrix A is the stoichiometric coeffi-
cient between component j and species i, vector element n; the
molar amount of species i and vector element b; the (fixed) molar
amount of component j in the system. The G in Eq. (16) is the free
energy of the system, either G (Gibbs energy) or G’ as defined by
Eq. (5) or Eq. (9), depending on whether additional work co-
ordinate constraints have been applied. When G equals G, the
molar quantity G; equals the chemical potential y;.

In the minimum free energy (G) state, the derivatives of the
Lagrangian function L (Smith and Missen, 1991)

L=G-2\"(An—b) 19
(where A is a vector of Lagrange multipliers) with respect to molar
amounts and individual Lagrange multipliers must be zero, so that
aL G
Ezﬁ—z@aﬂ = G,-—Z/Ijaj',-zo (20)
J J

The chemical potential or molar Gibbs energy of species in

calculations are expressed in the following or equivalent form:

pi=p2(T,P)+RT In g; (21)

The Lagrange multiplier for a component can be equated with
its chemical potential as

6@)
= | = =4 22)
! (dbj TPhis; ’

both when G equals G and when it equals G'. Eq. (20) can also be
applied to species that are not present in the equilibrium, allowing
the calculation of molar free energy for a species that is not pre-
sent in the equilibrium state and for which Eq. (21) is not directly
applicable (Eriksson, 1975).

Equilibrium solvers typically allow the calculation of problems
where the equilibrium chemical potentials of certain species are
fixed while the corresponding feed amounts are allowed to vary.
The problem, after defining the system components so that the
species of interest is one of them, is equal to the one described by
Eq. (15). Computationally it can be solved (Cheluget and and
Missen, 1987), (Norval, et al., 1991) by normal numerical routines
by noting that (here summation index h goes over the components
whose chemical potentials are held constant)

Zﬂiﬂi—Zﬂhbh = Z (G?+RT In a,») ni—Zm,ahv,-n,‘
7 7 7

=Y ( (ﬂ? =" man)+RT In a,-) n; 23)
i h

This means that the correct free energy function is mini-
mised if the standard state values of those species containing

G
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the components with fixed chemicals potential are adjusted
according to Eq. (24)

o = pud- Z Th0pi (24)
B

Additionally the mass balance constraints Eq. (18) related to
components h need to be relaxed (the components are removed
from the matrix A)

3.2. Additional work coefficients

In conventional Gibbs energy minimising software dealing with
chemical equilibrium problems, the thermodynamic data is not
given as a function of any other work coefficients than pressure,
that is, all other work coefficients are assumed to be zero. The
Gibbs energy, as defined by Eq. (5) is the minimised free energy
function for also non-zero constant values of L;. Gibbs energy is
given by (from (Egs. (1) and (5))

dG)
— =1 (25)
(‘uj T.Ly . jn; !

G(T,P,L)) =G(T,P,L;=0) — / lj-dL (26)

while the change in chemical potential is given by

%), (), -
i = (=L =1 27)
(‘)Lj T Ly o M) 1L H

and therefore standard state value corresponding to a non-zero L;
is

wf (T.P.Lj) = p? (T.P.L;=0) — /lj,dej (28)

In order to avoid handling vector components separately it is
assumed for Eq. (28) that Ly,-l;; can be replaced with Lyl,; (L, and
Ip; are either scalars or they are aligned).

As an example, for a ferromagnetic material as a pure phase
when the magnetization is assumed to be constant

uY(T,P,B)=pd(T,P,B=0)—m;B 29)

and for paramagnetic material, if magnetization is directly pro-
portional to the external field

ud(T,P,B)=ud(T,P,B=0)—0.5y,;B (30)
The chemical potential for a mixture phase is then given by
#i(T.P.Lj) = uf (T.P, L) +RT In y;; (€3]

The practical applicability of the Eq. (31) is greatest when the
dependency of the activity coefficients on L; can be ignored.

3.3. Addition of new components to computational systems

Addition of a new component/constraint to a computational
system adds a new row to matrix A and new elements to the
vectors A, n and b in Eq. (19). The resulting Lagrangian function L is
identical to one defined for a system with the original compo-
nents, but with an adjusted free energy function G’ defined by

G*lr (Z Qrin; *br> = Zﬂini —Ar (Z arin; 7br>

= (= A i+ Acby (32)

G

so that the adjusted free energy function is one where the molar
contributions have been augmented by the factor —A.qa;;

Hi= pi—Arr = py— ey (33)

while the free energy function includes an additional term
Arbr = by (34)

The minimum energy condition corresponding to Eq. (20),
together with the original mass balance constraints, is now

W +RTIng; - mar; =y _mja;; 35)
J#T

The quantity on the left side of Eq. (35), marked with y; in Eq.
(33), replaces the original chemical potential expression
(49 +RTIna;) as the quantity that must be equal in phases and parts
of the system that are in equilibrium with each other, that is, it is
the chemical potential in the system. The comma in ;4;‘0 is used to
denote that the standard state value may have been adjusted from
the value used in the unconstrained system if new work coordi-
nate has been applied, in concurrence with Eq. (10)

K = u}+ LT (36)

where L;'T"’is the work coefficient for pure species i in phase system
part a. In the example cases discussed in this work, it is zero
except with surface tension-related calculations, where it equals
the surface tension of the pure substance.

Comparing Eq. (35) with Eq. (13) we have, for cases where the
constraint can be equated with a fixed work co-ordinate, the
equality
Lyly; = mra; 37)

For the practical applicability with Gibbs energy minimisers, it
is also required here that a,; is not a function of z.. Therefore, it is
assumed that [j; can be factored to two parts, separating the
possible dependency on L; from the dependency on i.

i =L(L)L; (38)

(Subscript a omitted from the equation for clarity as a con-
tinuously repeating element) Provided that Eq. (38) is valid, the
stoichiometric coefficient a,; can be defined by

Q=3 39)

and the corresponding work coefficient as
L :l’uLl (40)
i)

In (Egs. (39) and 40), ljl-J is a normalisation constant with the
same units as [; and an arbitrary but fixed numerical value.

Formally then, if a work coordinate related stoichiometric
coefficient can be deduced on physical basis, the min(G) proce-
dure can incorporate such factors in its multiphase calculation.
According to Eq. (34) the respective component potentials
become solved as additional Lagrange multipliers within the
minimisation.

If the applied constraint cannot be equated with a work co-
ordinate, the corresponding term does not enter Eq. (5), so for
example for the case of system with a constant temperature,
(external) pressure and a non-work constraint the Gibbs energy
remains

G = U—ST+PV:Z;4,-ni (41)
i
In terms of original components the minimised free energy

nevertheless has an additional term as expressed by Eq. (32). With
a molar free energy defined as

Gi= (ﬁ) (42)
Mi ) 1p; £ib,
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we have from Eq. (35) an equality that is valid also for rate con-
strained systems.

Gi=p)+RT Ingi—ma,; =y maj; (43)
j#T

3.4. Applying additional components for calculations with additional
non-zero constant work coefficients Ly,

In principle, the application of Eq. (28) to adjusted standard
state values is the only thing that is required for calculations when
the value of a new work coefficient instead of the corresponding
work coordinate is specified (it is assumed here that the activity
coefficients are not explicit functions of L,). As one often wants to
do repeated calculations with many different values of L, and the
databases used and free energy minimiser programmes do not
necessarily readily support this, an alternative is to define a new
component for the stoichiometry of the relevant species and
adjust the chemical potential of that component.

From (Egs. (23) and 28)

/ ljidLj = 7pan; (44)
As before, it is assumed here that [];;dL; can be factored into

two parts, separating the possible dependency on L; from the
dependency on i as shown by Eq. (38) so that

/ Ll =1Ij; / Ll (45)
Applying Eq. (39) for the stoichiometric coefficient with

(Egs. (44) and 45), the value of the corresponding chemical
potential is given by

I
7= / LdL; =10 / LdL, 46)
Tl

If [j; is not a function of L;, the equations for the stoichiometric
coefficient and component chemical potential simplify to

arj=-5 (47)
=Ll (48)

3.5. Additional components as constrained reaction extents

The constraints-related slow reaction kinetics largely follows
the same mathematical rules as those related to added work
coefficients and coordinates.

In a system where a single reaction of the form

WaA+WwWgB < wcC+wpD 1)

or

D oini=0 (49)
i

where v; equals w; for products and —w; for reactants, the extent
of reaction is defined as

dé= %" (50)

In a system with multiple possible reactions, it is in general
impossible to define the change in the extent of any individual
reaction d¢, based on the change in system composition unless the
other linearly independent reactions forming a basis spanning the
reaction space are first defined. When they are, the equation for d¢

can be solved
dn =vd€ (51)

where dn is the vector of changes of molar amounts of the N

constituents in the system, d& a vector of changes in extents of the

NR specified reactions, and v a N x NR matrix of stoichiometric

coefficients of the reaction vectors spanning the reaction space.
For an equilibrium system the matrix equation

Av=0 (52)

where A is a M x N matrix of stoichiometric coefficients between
the N constituents and M components (M = rank(v)) forms a link
between the system stoichiometry and the reactions allowed by it
(Smith and Missen, 1991; Alberty, 1989, 1991; Keck and Gillespie,
1971; Keck, 1990; Koukkari and Pajarre, 2006b). Any kinetic
restrictions in the possible reactions that cause the system to
develop towards some other state than full equilibrium will lead to
a new matrix equation

AV =0 (33)

where v is a N x NR' matrix (NR' <R) of made of the reduced
reaction set and A’ is the corresponding M’ x N matrix (M’ = M+
NR—NR' = M+C) of stoichiometric coefficients for the new aug-
mented matrix of stoichiometric coefficients. Each linearly inde-
pendent restriction on the set of reactions allowed to freely
equilibrate corresponds to an additional stoichiometric constraint,
or a row in the A matrix, that is linearly independent of the
existing component balances or previously defined reaction
kinetic constraints. A practical way of defining a restricted reaction
in a multispecies constrained equilibrium system is by Eq. (54)

d&; =" ayjidn; =dby (54
i

where ay j; is matrix element in the augmented matrix A’, where
the M+jth row defines the constraint related to the reaction and
dby . change in the value of the corresponding element in the
augmented component vector. The matrix form corresponding to
Eq. (54) is

d& =A"dn = db” (55)

where A" is the C x N submatrix forming the lower part of A’.

If the number of restricted reactions defined equals R, so that
no unrestricted linearly independent reactions remain, A” in
Eq. (55) can be replaced with A’, and d& with d&, where the first
N—R components of the d€ vector equal zero, and the last NR
components are the same as in dé.

d¢ =A'dn (56)

As the matrix A’ has linearly independent rows it is invertible.
The matrix (A’)~' contains coefficients for reaction like transfor-
mations for the set of species, so that in each transformation the
amount of one of the components is increased by one, while the
amounts of other components are kept constant. In matrix form
this can be stated as.

) 'a =1 (57)
Multiplying the Eq. (56) by (A’)~' one obtains
(&) 'd€ =dn (58)

The first M transformations are not allowed as they violate the
normal component balances, and the corresponding values in the
change of advancement vector d€" are zero, while the remaining
reactions are the constrained ones defined by Eq. (55), so that the
lower NR rows of matrix (A')~! equal matrix v and the last NR
values vector d§ in Eq. (51), so that the definition in Eq. (55)
becomes equivalent with the one in Eq. (51).
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As a schematic example, for a system with the following spe-
cies H,, CH4, C3Hy4, CoHg and C3Hg N=5 and M = 2, so that it is
possible to define a maximum of three independent constrained
reactions using the formalism of Eq. (54), corresponding to, for
example to the following A" matrix where the first two rows are
refer to the elements C and H and the last three to the added
constraints

H, CH4 CyHs CyHg CsHg
0 1 2 2 3
R 4 6 8
A=lo 0o o 0 1 59
1 0 -1 0 0
0 0 0 1 0
by inspection or by linear algebra one can derive
Hy 2 -05 -2 2 -1
CHy -3 1 1 -2 0
(A')*l — CyHy 2 -05 -2 1 -1 (60)
CyHg 0 0 0 0 1
C3Hg 0 0 1 0 0

where the last three columns give in the traditional reaction
equation format the following three rate constrained reactions
compatible with both (Egs. (51) and 55)

2H;+2CyH4 < C3Hg+CHy )
2CH4 < CoH4+2H, 3)
CyH4+H, < CHg (€]

However, the three reaction constraints given by matrix (59)
are also unambiguously defined individually, while the reaction
equation format Eqs. (2')—(4") is properly defined only for a full set
of independent equilibrium or non-equilibrium reactions.

With the reaction equations defined by the added components,
many of the mathematical relationships defined in earlier sections
can also be applied. The affinity of a restricted reaction j, A;, in a
constrained equilibrium system is directly related to the chemical
potential of the corresponding component.

i/ TPbig JEMITRbG s

where b; is the amount of any of the components b;...by in the
system. For any chemical reaction that is not one of those defined
by Eq. (54) the affinity is obtained as a linear combination of them
and equilibrium reactions

M+C M+C
Aj= =D 0 Hi= = 0 Y Que=—> Uy > G
7 R F
M+C
=- Z Ay ik (62)
k=M+1

where v,y is the stoichiometric coefficient between the reaction j'
and component k.

It is possible that in a system where the extent of one or more
reactions are constrained, the modelled time behaviour of the
system approaches a state where the affinity or affinities are zero
without the state in question being the actual equilibrium state of
the system. Such a state would be a local, but not global free
energy minimum of the system in respect to the specified reaction
extents. Provided that the applied reaction rates give a sufficiently
accuarate description of the real reactions taking place in the
system, such a local minimum state corresponds to a real long
term metastable state. In such cases constrained chemical

Table 2
Systems with a constrained work coordinate.

System Work coefficient Work coordinate
Surface o (surface energy) A=Y Anj(area)
i

Donnan A¢* (electrochemical poten-  —q* = -3 Fzn{(charge)
equilibrium tial difference) i

Constrained AP“ ([osmotic] pressure V* = -3 Vin(subvolume)
volume difference) I

Table 3

Systems with a constrained work coefficient (field).

System Work coefficient Work co-ordinate

Magnetized B (magnetic flux

m= 73" m;n; (magnetic
density !

moment)

Electrically polarized E (electric field) p=>_p;n; (dipole moment)
i

potential (affinity) could not be reasonably used as an alternative
to constrained reaction extent for specifying the state of the
system.

Corresponding to Eq. (35) it is possible to form a relationship
between chemical potentials in a rate constrained system

U +RTING =" 70 = p) +RT In @i+ Y Aray; (63)
r T

Setting the affinity (corresponding component chemical poten-
tial 7;) to a fixed value can be used to calculate restricted equili-
brium states with a fixed affinity or deviation from equilibrium, or
when affinity is set zero, equilibrium (in respect to the specified
fixed reaction) without redefining the system stoichiometry. A
standard state value for species for a system with given T, P and A,
could be defined following Eq. (15) by relation Eq. (64)

PO(T,P,A) = pd(T,P, Ar = 0)+Aray; (64)

but typically applying the fixed chemical potential condition via the
added component is more practical.

3.6. Application examples

A collection of various example systems and their related work
coefficients and coordinates is presented below. In Table 2 systems
with a fixed work coordinate are shown.

The minimised free energy function G’ and the molar free
energy are given by (Egs. (9) and 10), the adjusted standard state
by Eq. (36), and the equipotential between species of the same
stoichiometry in different phases or parts of the system (chemical
or electrochemical potential) is given by Eq. (13). The stoichio-
metric coefficient between the new component and each species is
given by Eq. (47) and the relationship of the corresponding che-
mical potential and work coefficient by Eq. (48).

Example cases with a fixed work coefficient are given in Table 3.

The minimised free energy function G is given by

6=G=) mm (65)
i

when the effect of constant work coordinate is applied by mod-

ified standard states [following Eq. (28)] and from the equation

G,:G:Zﬂinifﬂ'jbj (66)
i

when the effect of the work co-ordinate (field) is applied via a new

component. The molar free energy in both cases is the chemical
potential. When new components are used, (Egs. (39) and 46)
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apply for the stoichiometric coefficients and the component che-
mical potential.

Analogous to the examples in Table 3, non-specific ionic
interactions (Debye-Hiickel and various variations of the Davies
equation) can also be handled via Legendre transform (Alberty,
2003; Blomberg and Koukkari, 2009). From the computational
point of view the system behaves as if the semi-empirical inter-
action energy were a product of an electrostatic work coefficient
and coordinate.

aRTVI
- Zin;
1+BVI

The corresponding stoichiometric coefficients for the specified
Ionic strength and fixed chemical potential are

ex =

(67)

arj= Ziz (68)

P aRT1 (69)
1+By/I

The related effects caused by constant activities (including pH)
of certain species can be applied directly based on Eq. (24).

Example systems where the applied constraint and the corre-
sponding chemical potential do not form a work coefficient and
coordinate pair are listed in Table 4.

In these cases when the component amount is constrained, the
minimised free energy function is the Gibbs energy of the system
as defined by Eq. (41). The energy and entropy terms (and there-
fore chemical potentials) may still contain added work coefficient-
dependent terms (as they do in the nanoparticle case).

4. Results
4.1. Surface and interfacial energy

The model application for surface and interfacial systems has
been discussed previously both for a liquid surface in (Pajarre,
et al,, 2006a, 2006b), where the single surface layer is modelled as
a separate phase whose constituents interact only with each other,
and for a multilayer model (Pajarre, et al., 2013) including non-
ideal interactions between different layers that has been devel-
oped for metal-oxide surface, and tested for liquid-liquid metal
alloy interfaces.

In a system with a liquid-vapour surface or liquid-liquid
interface the derivative of the free energy with respect to inter-
facial area is the surface or interfacial tension

oG
(a?) 1 =o=h (70)

In the current work the surface or interface has been modelled
with a finite number, one or more, individual monomolecular
layers. With the simplifying assumption that the molar surface

Table 4
Example system with additional components that are not directly linked to a work
coordinate.

Stoichiometric coeffi-
cient for the constraint

System Component chemical

potential

6iAo (surface energy -
normalization constant)
— A, (affinity of
reaction r)

Spherical nanoparticle 2v;
phral nanoparide (3,2
Reaction extent or affi-
nity constrained
system

& =Y a.n; (extent of
i

reaction r)

areas of individual constituents are independent from system
composition
0A;

o _ (71)
2]

the contribution of an individual interfacial layer k on the surface
or interface energy can be included in the free energy equation as

M M
1k
U i( = Z a;i7j +O'kAi = Z Q; i+ AT 4k (72)
=1 i=1

with the following relations based on (Egs. (39) and 40)

Ak
Ay M :/T; (73)
k_TM+1
l ="a (74)

where the normalization constant Ay has the units of m>mol~'. NL
in Eq. (72) is the number of interfacial layers. o refers to the
interfacial energy contribution of an individual layer, the physical
interfacial energy given by

NL
o= o (75)

k=1

The pjk in Eq. (72) is the molar free energy of constituent i on
the layer k, as stated in Eq. (10). In the models described here, it
has been assumed that the direct energetic effects related to the
surface were restricted to the top most atomic or molecular layer
of the surface. With that convention applied, following (Egs. (13)
and (36), the chemical potential can be expressed on the layer
closest to the surface by equation (superscripts s and b denote the
surface layer and bulk respectively)

w8 ="+ RT In a — 0A; = u° + 0;Ai+RT In @ — 6A; = b = p;
(76)

and on other interfacial layers by (superscript @ denotes the
interfacial layer)

uf = uP £ RTInaf — oA = pb = p; 77

The molar free energies for the surface and interfacial species,
as defined by Eq. (10), can be calculated for example based on the
Redlich-Kister model (Pajarre et al, 2006b, 2013). In Pajarre et al.
(2013) the excess energies were evaluated considering both the
compositions of the individual layer in question and its nearest
neighbours using the equation

1 K 1 1k+1
Gk :n"zz (j(] 7m°)Qijxf»‘xj‘F+im°(—§Qij+ Xk
i

1yk=1 k- 1k kk-+1 kk—1 .
—iﬁij XTI QT xf-‘x}‘“+$2ii xfxet (78)

for the excess free energy for an individual layer k, where Qg

Q;}"‘“ and Q§k4 are composition dependent interaction energies
within layer k and between it an its nearest neighbours and m°® a
geometric parameter expressing the factor of nearest neighbours
of a species that are in one of the adjacent layers in an composi-
tionally uniform system. For the derivation thermodynamically
consistent relations it was necessary for the multilayer system to
add further constraint(s) that kept the composition of the inter-
facial layer closest to the bulk equal to that of the bulk, the
interfacial energy contribution of the additional constraints
approaching zero with an increasing number of layers (Pajarre,
et al., 2013). Example results for calculations in metal alloy and
metal-oxygen systems are shown in Fig. 1.
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Fig. 1. Surface tension in Ag-Au-Cu metal alloys system (left) and iron-oxygen system (right). The model and experimental data for Ag-Au-Cu alloy as presented from a

previous work by the authors (Pajarre et al., 2006b, 2013).

Table 5
Stoichiometry for a nanoparticle model.

Phase Species Components
Me Geo
; s N
Solid surface Me' 1 (*Lr““rﬂfne)nlj
Liquid surface Me' 1 Whe | al
q (_Arm'*'AMe)Z%

Solid second layer Me? 1 7%%

roA
Solid core Me® 1 Wi 1

)

4.2. Volume-constrained system

In a system in which the volume of part of the system is con-
strained, an additional pressure component, affecting its chemical
potential, applies to that part. For straightforward application of
the current method it is necessary that the partial molar volumes
are not functions of phase composition, although they could be
functions of pressure. In an ion-exchange model, such as the one
made for pulp fibres in Koukkari et al. (2002) and Pajarre et al.
(2006a), a constraint on the water volume is an essential feature.
Only the molar volume of the water itself (assumed to be
incompressible) is considered here. The free energy from Eq. (9)
can then be stated as

G =Y pini— AP - Vyonf o =G—APVY = F + F* 1 vopl (79)
i

where the last term is constant. The stoichiometric coefficient
related to the constraining component is directly proportional to
the molar volume.

V
ari= ;}g," 80)
The osmotic pressure difference is consequently obtained as
AP= -7V} (81)

In principle it could be expected to be possible to predict the
swelling behaviour of the fibres applying the calculated osmotic
pressure together with the modelled charge state and a model for
the fibre wall elasticity, but even a semi-quantitative model has
been found to be elusive.

4.3. Nanoparticles with a combined area and volume constraint

Small-scale systems can have volume and surface that area
interlinked. Considering the simplest case of a spherical particle,
the changes in volume and area are connected by the equation

an=24

; (82)

Therefore, the balance equation for surface area related to
molar area and volume can be written as

s (a-24) o

If the change in total volume (and therefore radius) is relatively
small, the value in brackets in Eq. (83) can be taken as a constant
similarly to molar volumes and areas in the previous sections. If
one considers the system to be made of a surface layer (1) and a
core and takes as the limiting phase transition for melting the
formation of liquid surface layer on a solid core, one can define a
system with stoichiometry according to Table 5, where the core is
divided into an inner core (c) and a monolayer (2) closest to the
surface layer.

The components of the system are for the elements (in this
example only one element), and for the surface area of the particle
(Geo).To simplify the computational system the liquid-solid
interfacial energy of a partially molten system is considered to be a
property of the liquid layer alone. The definition of free energy in
the system is somewhat subtle as discussed by Reiss (1965). As a
simplification, here it is assumed that a suitable constant average
value can be used for the surface energy of the solid. The Euler
equation for internal energy of a fully solid or liquid particle is
given following Eq. (4)

(83)

U =TS =PV + OrteaA+Fageay (PO) Ne (84)

where (a) denotes the physical state (solid or liquid) and P° is used
to emphasise that the standard state value is the one based on the
external pressure of the system. The minimised free energy when
there is no external constraint on the surface energy or surface
area’ is given by

G = U—ST+PV =y, (PO)nMe+rrMe(,,)A (85)

2 The added constraint in the stoichiometry in Table 4 (or Eq. (83)) is really for
particle sphericity and the assumption that the number of spherical particles is not
changed. While not discussed here, with orientation dependencies ignored, the
spherical form is the one corresponding to minimum energy.
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Correspondingly, the standard states for the core and the sec-
ond layer can be given by

/4;\’/1?(?1) = M;\’/lgfg) = Hite) <PO> (86)
and for the solid surface by
”k/;é(os) = ﬂl?ﬂe(s) +OJMeA?\/Ie (87)
and for a liquid surface on a solid core:

/10 0 I gl Lo A
Hitety = Hmey T GMEAME+O—SM9AM9AT (88)

The ratio of the area of the interface between the first and
second atomic layers, A?, and the surface area, A' in Eq. (88) can be
estimated by

1&7 173VM2(1) %
A

AMe(I)r

The chemical potential of the component Me, 7y is the che-
mical potential of the macroscopic unconstrained substance Me in
the system. With the definitions used, it is given for one chemical
component fully solid or liquid system by Eq. (90) (superscript a
refers to either solid or liquid state)
2V, 2V

rAo r

The differences in chemical potential in the particle and a
macroscopic phase in a same state can be related to the differences
in vapour pressures. The familiar Kelvin equation directly follows
from Eq. (90).

(89)

Olte (90)

0.a 0.s
TiMe = Hpge + TCAConstraint = Hpje +

P Me __ 2VMe
fo=

Pyg T

where P? is the partial pressure of substance i in equilibrium with

a macroscopic phase in state a. The total free energy for the par-

ticle is given by

PY,, =P ¥exp ( (,u?'“ e ) / RT)

On component basis the free energy of the system is given by

on

Tnte — Ho% = RTIn Cie

92)

v 0. 2V&e a V&e a
G’ = bmeTme +bgeoGeo = Nvte | | Hpie T Ome |t T Ome
0. 3V&e a 0. a
=Npe | Upte + Oite | = NMeMpie +ACH e 93)

in agreement with (Eqs. (85) and 90) integrated over particle size.
The graphs in Fig. 2 for melting of tin and silver nanoparticles
have been calculated assuming the interfacial energy between the
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solid and liquid follows the perfect wetting condition (Eq. (94))
(Eustathopoulos, 1983).
ol=c"—o'

The data used in calculations is listed in Table 6.

The model based on stoichiometry in Table 5 and standard
states given by (Egs. (86)-88) compared with experimental data
for Sn (left) and Ag (right). Experimental data are from Tang et al.
(2012) and Chen et al. (2010) for silver and from Lai (1996) for tin.

While a reasonably good match between the basic model (solid
curve) and the experimental data was found with Sn, an agree-
ment with Ag data could be reached only assuming (following
(Sim and Lee, 2014)) that the effective solid surface energy (taking
into account as adjustable correction factor the effect of surface
strain and anisotropic nature particle surface) was higher than the
tabulated one.

The dotted curve on the right side of Fig. 2 is calculated
assuming a correction factor of 1.17.

ﬂs/‘(;ffective) — ]A]70‘2g

94

(95)

It can be noted that the model used approximately matches the
one were the melting point of the particle is calculated based on
equal chemical potential (not free energy) (Lee, et al, 2007;
Sopousek, et al., 2014; Sim and Lee, 2014). Assuming the thickness
of a monolayer is small compared with the particle radius (and for
simplicity that the differences in molar volumes and solids can be
ignored), the condition for free energy change being favourable for
the formation of a molten surface layer in the model described
above is given by

AG " anr2 Ar
7+
Vm

This can be further simplified assuming Ar«r and that Eq. (94)
is valid in a form that could be derived assuming equal chemical
potentials for solid and liquid particles.

2(6°—6')Vn
L

(¢'=0°)4n(n? +o%an(r— Ar)* <0 (96)

AG™ < 97)

4.4. Systems with an external magnetic field

The chemical system for a free energy minimiser can be defined
either following Eq. (28) and modifying the standard states for the
given field strength (without defining any additional components),
or by applying one or more additional components whose che-
mical potentials are set following Eq. (46) based on the field
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f .’ + experimental
° 1100 /
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Fig. 2. Melting temperature of metallic nanoparticles.
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Table 6
Thermodynamic data for the nanoparticle calculations.

Surface tension o

Molar volume (lida and Guthtrie, 1988)

N/m

Vi (m?/mol) =11.6-10~
Vi (m?/mol) = 11.2066 - 10~
V&, (m3/mol) =17-10~
V&, (m3/mol) = 16.6- 10~

=0.9256—0.000228 (T/ K—1234.93) (Lee, 2004)

=1.1-0.00047(T/ K—1234.93) (Murr, 1975)

=0.5472—0.000065(T/ K—505.08) (Lee, 2004)
=0.671-0.00013(T/ K—505.08) (Alchgirov, et al., 2001)
8(1+0.000098 (T/K—1234.93))
5(1+0.000098 (T/K — 1234.93))
5(1+0.000087(T/K—505.08))
8(1+0.000087 (T/K—505.08))

Free energy of melting (Dinsdale, 1991, 2009) -G/ (j /mol) = 11025.076 — 8.89102(T/K) — 1.033905 - 10~ **(T/K)’
Gy () /mol) = 11025.076 —8.89102(T/K) —1.033905 - 10~2°(T/K)”

30 r 0.5
r 045
25 | 04 @ AM(experimental)
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Fig. 3. Left: Effect of magnetic field on the equilibrium phase diagram in the Fe-C system. Right: Equilibrium hydrogen pressure and magnetic moment as a function of
magnetic field strength with a LaCos-H system. Experimental data points (Yamamoto et al., 1995) shown with a smoothed fit together with a model curve for both
equilibrium pressure and magnetization based on measured magnetic moment and pressure values respectively. Error bars for AM from the original paper.

strength dependent magnetisation properties of the matter. The
second method has been found by the authors to be more readily
applicable to calculations that are repeated with multiple field
strengths. The applicable equations in this case are

m

Qrj= milo (98)
J

for the stoichiometric coefficient, and

i :mo/m’dB (99)

when the molar magnetic moment can be factorized

m; = m'(Bym; (100)

If the magnetic moment is assumed to have a constant
(= saturation) value, the m’ in (Egs. (99) and 100) can be set to
unity. For example, the effect of magnetic field on the equili-
brium between austenite (y-Fe, FCC) and ferrite (a—Fe,BCC) as
described by Ludtka, et al. (2005) can be calculated by this way
as shown in Fig. 3, left, with a,pcc = 12.6 corresponding to m=
12.6]-mol~'T~! (Ludtka, et al., 2005) and 7, = B - (Jmorlr‘).
The thermodynamic data otherwise is from FactSage 6.3 (Bale, et
al., 2002, 2008).

In a paramagnetic system, such as the one studied by Yama-
moto et al. (1995) the magnetic moment is a function of the field
strength. In that work, the equilibrium between LaCos hydrides
and hydrogen gas was explored. AM in Fig. 3 is defined as the
change in saturation moment per desorbed mol of hydrogen
atoms. The adsorption-desorption reaction in the system can be
written as

0.5xH>(g) +LaCosHy <> LaCosHy , x 5"

so that the standard chemical potential of LaCosH4,,x can be
determined by the equations

Py, (B=0
Hacous, . (B=0) = LaCosHY +’2—‘Rnn (%) (101
and
0 0 B
HlaCosHy,, = HLacos, . (B= 0)*"/0 AMdB (102)

A good correspondence between magnetically induced changes
in phase equilibria and independently measured magnetization of
phases could be obtained by the current authors by applying
(Egs. (101) and 102) for either calculating the equilibrium hydro-
gen pressure with an applied additional work term (Section 3.4)
corresponding to smoothed experimental magnetization change,
or in reverse for calculating the required change in magnetisation
caused by desorption to match the experimental hydrogen pres-
sure data (Fig. 3, right).

The discussion here has been restricted to magnetic fields, but
the basic formulation of the problem with electric fields would be
analogous.

4.5. Donnan equilibrium

For a system in which the electrochemical Donnan equilibrium
is present, a new component needs to be defined for the electrical
charge for each additional subvolume in the system (Koukkari,
et al.,, 2002; Pajarre et al., 2006a, 2006b). The related new con-
straint equation is

> nfzi=0
7

(103)
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The potential difference in a Donnan equilibrium system is
caused by electrically charged species that are not freely mobile.
The electrical work related to them can be stated (taking into
account Eq. (103)) as

aw = Z A¢aFZ"dnx()(limmvbile) == Z A¢anidn1€)(lmubile) (104)
1 1

A Donnan equilibrium free energy problem requires at least
two additional components related to the charged species. At least
one constraining the immobile species, amount of which in the
pulp suspension models is a fixed quantity (bound, carboxylic or
sulphonic acid groups), and whose chemical potential is without
practical interest, and one for the overall charge balance. Based on
Eq. (104), the work term common to all the charged species is

lej'ini = — Aqﬁ”inni (105)
Setting a,; = z; the Donnan potential difference is obtained as
o a 4p\ _ Tr
S = (4-0) -

The equipotential, commonly called the electrochemical
potential, that is the same in both aqueous phases for mobile ions,
following Eq. (13), is given by

(106)

i = +RT In a;+ Ag“Fz; = p0 +RT In a;+ Ad“Fz; (107)

The y; in Eq. (107) [rather than merely ‘chemical’ part of it
(19 +RTlIna;)] is the chemical potential of the species i as defined
by Eq. (1) and other fundamental relationships in thermo-
dynamics. As pointed out by for example Guggenheim (1967), the
‘chemical’ and ‘electric’ parts of it are not experimentally mea-
surable and have questionable meaning as physical entities. For
the purposes of computational thermodynamics it is useful to
define individual ion activities and activity coefficients that are
compatible with well definable and measurable activities and
activity coefficients of neutral combinations of them. The models
used by the authors have in common that the aqueous solution
has been modelled applying the Pitzer non-ideality model (Harvie,
et al,, 1984) while the multicomponent model has also included
solid precipitates, and when applicable, a gas phase exchanging
carbon dioxide with the solution. The specifics of the individual
ion activity coefficients and the corresponding implicit pH scale
have been discussed e.g. by Harvie, et al. (1984).

An example of the Donnan theory applied to a laboratory system
is presented in Fig. 4. All the calculation results for each pH are from
a single multi-component equilibrium calculation, just as the var-
ious metal amounts were determined from a single sample. The
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u [ 06 + [Nalf measured

10 o [NaJs measured
05 —[calf

- [Cals
®»  [Ca]f measured
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—[Mgjf
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s S— i —— Y]
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°
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Fig. 4. Experimental and modelled concentrations inside and outside pulp fibres
together with the modelled Donnan potential in a (single) aqueous pulp suspension
sample. Drawn based on the model and data presented by Koukkari and Pajarre
(2006a).

Pitzer model was used to describe the aqueous phase non-ideality.
The formation of solid precipitates is predicted close to pH 11.

The process simulation work based on applying ion exchange
phenomena in the CFE framework has been done both for rela-
tively simple models with small number of free energy mini-
misation units and process integrates of paper machines and
pulping mills with a few hundred chemistry units (Koukkari, et al.,
2007) (Pajarre, et al., 2008) (Kangas, et al., 2012) and (Kalliola,
et al., 2012).

4.6. Systems constrained by reaction kinetics

Reaction constrained free energy models have been presented
e.g. for industrial production of precipitated calcium carbonate
(PCC) (Koukkari, et al.,, 2011) and high temperature oxidation of
TiCly to TiO, (Koukkari, et al, 2008a) and studies of biomass
gasification. (Kangas, et al, 2014a, 2014b; Kangas, 2015;
Yakaboylu, et al., 2015). Here, a short introduction to utilising
reaction-constrained free energy models is given with modelling
of nitric oxide emissions used as an example.

Thermal NO emissions in high temperature post flame condi-
tions can be described with the Zeldovich mechanism (Zeldovich,
1946), described by Egs. (5') and (6'). However during the oxida-
tion of hydrocarbons the radical over-shoot increases the NO
emissions rapidly, which cannot be modelled with the Zeldovich
mechanism alone. Thus this simplified model is extended with a
description of carbon monoxide oxidation and oxygen radical
build-up (cs (7’) and (8))

N,+0-N+NO (6)
N+0,-NO+0 (7)
C0+0,-C0,40 ®)
CO+0+M—COy+M 9)

When the NO emissions are considered, the reaction (6') is
immediately followed by reaction (7). The rate of formation of NO
is given in Eq. (108). The oxidation of CO is described as the sum of
reactions (8') and (9') and rate Eq. (109) is applied. As a numerical
simplification, when the difference in the rates of reactions (8')
and (9') is estimated at less than 10% of the rate of reaction (8'), the
O-radical concentration is estimated by the quasi steady-state
approximation [Eq. (110)]. Reverse reaction rates are included for
all reactions with the method described by Koukkari et al. (2011).

No =211 = 2k, [N>][0] (108)
rco = —T2—T3 = —kz[COJ[02] - k3[CO][O][M] (109)
[0] = Kok '[0,)M] ! 110

The constraints for the system are set for the O, NO and CO
species. Detailed description of kinetic parameters applied here
are given in an earlier work (Coda Zabetta and Hupa, 2008), where
also large detailed kinetic model (DKM) of the oxidation of car-
bohydrates and formation of nitric oxides is described. The steady
state condition has been set via the affinity (Ap) of the oxygen
dissociation reaction (10")

%024—»0 (10

The affinity can be expressed by thermodynamic and kinetic
parameters and concentrations of other species than oxygen by
applying (within vicinity of the steady state)

Ao_ 1o (Qo) _ 1n<\/x(oz>' [01>

RT ™ Ko K, [02]
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Fig. 5. NO emissions during carbon monoxide oxidation. Results from the CFE model compared to the detailed kinetic model (DKM) (Coda Zabetta and Hupa, 2008) and
equilibrium value (EQ). Temperature is 1500 °C, dry air (21 v-% 02 and 79 v-% N2) and excess air, 2=1.2 applied.

Q
——In (Lk_z (1-%) VX(OZ)) ain
Mlks (1 ,%) Ko
The last part of Eq. (111) could be factored to
Q
fo_ 1k (12RO oy | ([01\/)«02))
RT [M] ks (17%)[0] K, [0,]K,
_ 2 7Ao(steady)
—_In <r3) —ogn (112)

where the second term is the affinity (divided by RT) at the quasi
steady-state.

The DKM is used to calculating the validation data for this
example. Fig. 5 illustrates a case where carbon monoxide is com-
busted in dry air (79 v-% of nitrogen and 21 v-% of oxygen; lambda
1.2). A laminar plug-flow reactor model is applied with a residence
time of 10 s. The temperature is 1500 °C.

Nitric oxide formation and oxidation of carbon monoxide are
similar when the results from the CFE and DKM models are
compared. The radical over-shoot at the beginning of combustion
can be predicted correctly with the CFE method. More details for
applying CFE method when modelling the nitric oxide emission is
given by authors in Kangas et al. (2015).

4.7. Mass transfer between phases and paraequilibrium

From the computational point of view, a mass transfer process
between two phases is a reaction in which the species i in phase a
is transformed into the same species (or a species of equal stoi-
chiometry) in another phase. Therefore, the reaction rate and
affinity equations derived earlier also apply equally to such mass
transfer processes. As a specific example, the metallurgical para-
equilibrium can be considered where new phases are formed so
that they have the same alloy composition as the parent phase but
substitutional elements like carbon can equilibrate between them.
The constraints in a free energy model are of the form Pelton
et al. (2014).

> (Yuetyes—afe; ) =0

i

(113)

where Yy, is the mole ratio of iron (or other reference metal
chosen for the system) and metal Me in the parent phase. The
superscript « refers to the new formed phase under study. In
general, a description for a system with M metallic components
(including the reference metal, typically iron) and P phases

(including the original parent phase) will contain (M—1)(P—1)
constraints.

As a simple example in the paraequilibrium between FCC and
BCC iron in Fe : Cr : Ni : C system with the relative molar amounts
of 6:2:3, the matrix coefficients corresponding to Eq. (113) result

Fcc | BcC EI
Fe Fe:C (Cr C(r:C Ni Nicl Fe Fe:C Cr (Cr:C Ni  Ni
11 000 0 1 1 0 0 0 0
, oo 1100 0 01 1 0 o0
A=l9o 00 0 11 0 0 0 0 1 1
01 010 1 0 1 0 1 0 1
00 00 0 0 -1-13 3 0 0
00 00 0 0 -1 -110 0 2 2
114)

The three first rows correspond to the elements Fe, Cr, Ni and C,
the two last ones to constraint equations of Eq. (113) relative to Cr
and Ni. Paraequilibrium systems and the corresponding phase
diagrams are discussed in more detail in Pelton et al (2014).

5. Discussion

The thermodynamic framework has been applied to many
kinds of systems. The basic thermodynamic relationships are
universally valid. The extensive range of application of the con-
strained Gibbs energy minimisation descends from this generic
base. For the best practical applicability of the models, some
additional assumptions that are only possibly or approximately
valid typically need to be made. For example, in the surface
monolayer model the assumption of no interactions between the
surface layer and the bulk make the model elegantly simple as a
mathematical construction. It is also obvious that is not physically
reasonable to assume it to be strictly accurate. However, as a
practical tool it has found wide use (Egry, et al., 2010; Tanaka,
et al, 1996) and has shown to work reasonably accurately for
many, even if not all, kinds of systems. Additional assumptions,
which are validated only insofar as the resulting model gives
reasonable predictions compared with experimental data, are
needed for the mono- or multilayer excess energies.

To operate with constant stoichiometric coefficients (that are
not functions of composition) in a Gibbs energy minimiser, it has
been assumed in all models that the molar work coordinate con-
tributions (such as molar areas and volumes) are not functions of
composition. While not actually studied, it is the opinion of the
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authors that in a typical inorganic interfacial systems the inaccu-
racy related to this is not significant compared with both inac-
curacies related to experimental data and assumptions made
regarding the form of the thermodynamic excess energy functions
when the bulk data are adapted to a surface or an interfacial layer.

The fundamental guiding principle of work related to systems
with reaction constraints has been to strive towards a model
containing only the necessary amount of kinetic complexity while
applying the constrained equilibrium thermodynamics as much as
possible. Highly complex reaction kinetic models have been criti-
cized in the area of gas phase chemistry on the basis that because
of uncertainties related to modelling parameters, the increased
complexity is unlikely to bring additional value to the results
(Keck, 2008). With multiphase processes and kinetics the uncer-
tainties will probably tend to be even greater. Therefore, it has
been considered valid in the work regarding reaction-constrained
systems to aim at system descriptions that capture the most
essential parts of the rate-dependent processes with only a few
constrained reactions. Such descriptions are of course only an
approximation of the physical system; shortcomings of the
approach are probably more likely to become apparent when
behaviour of complex systems is studied over moderate tem-
peratures and short time intervals (Kangas, 2015).

The Donnan equilibrium model application for pulp suspensions
has been found to be valuable to predict the chemical phenomena
and process behaviour in pulping, bleaching and paper machines
(Kalliola, et al., 2012; Kuitunen, 2014), while the assumed non-
specific nature of ion-exchange interactions is known to face lim-
itations with di- and multivalent ions, especially in systems with
high ionic strengths (Kangas, et al., 2012; Sundman, et al., 2010;
Sundman, 2008).

6. Conclusions

The topic of this work has been to extend the application area
of traditional Gibbs energy minimisers with systems of theore-
tical and practical interest. The aim has been to develop methods
that are as generic as possible, within the possibilities offered by
the minimisers, for both greater understanding the thermo-
dynamic relationships in the systems and for easier future
application of the method to systems that are not handled in
present work.

The application area of standard Gibbs energy minimisers has
been extended, for the most part using existing published phase
models with new data and stoichiometry definitions.

The chemical problems that have been worked on have inclu-
ded reaction rate constrained systems, surface and interfacial
tension in molten systems, Donnan equilibrium as part of a mul-
tiphase model, and systems with external magnetic fields.

The greatest practical success has been achieved with the
models that combine reaction kinetics with partial thermo-
dynamic equilibrium calculation and ion exchange models based
on Donnan equilibrium which have both been applied with suc-
cess in real-life industrial design and development work with
multicomponent, multiphase systems. Elementary kinetic models
and steady-state assumptions can be incorporated as part of the
reaction-constrained free energy models, providing an alternative
for large detailed kinetic models in some practical problems, while
the combination of fairly simple kinetics and multiphase calcula-
tions has been found to be valuable in many practical problems.
Applied to liquid surface energies the method has been successful
in handling systems with multiple components and complex non-
equilibrium data.

List of symbols

A (M x N) matrix of stoichiometric coefficients

A surface or interfacial area (m?)

A affinity of reaction i (J - mol™)

a; activity of species i

aj; stoichiometric coefficient between component j and
species i, matrix element of A

B magnetic flux density (T=V-s-m~2)

b (M x1) column vector of molar amounts of
components (mol)

by molar amount of component k (mol)

Q; reaction quotient of reaction j

E electric field (N-C™ 1)

F Helmholtz free energy (J)

F Faraday constant ( ~96485] - mol ™! ~V’1)

G Gibbs free energy (J)

G free energy function (other than G) matching system
specific constraints (J)

G free energy function as calculated by a free energy
minimiser (J)

G’ modified minimised free energy function in a free energy
minimiser (J)

H enthalpy (J)

ki reaction rate constant of reaction i

K; equilibrium constant of reaction j

L Lagrangian function

L thermodynamic work coefficient j

L]’3 thermodynamic work coefficient j for a species i as pure
phase (such as surface tension o;)

| thermodynamic work coordinate j

Lj; molar contribution to the thermodynamic work coordi-
nate j by species i

M number of components in the system

m magnetic moment (J- T~ ')
number of species in the system

NR number of reactions

n (N x 1) column vector of molar amount of species (mol)

n; molar amount of species i (mol)

P pressure (Pa=N.m~2)

P; partial pressure of species i (Pa)

pY reference pressure (10°Pa = 1bar)

p electric dipole moment (C - m)

Q heat (J)
charge (C)

R gas constant

X rate of formation of species x (mol-s~!.cm~3)
r radius of a particle

S entropy (J-K~')

T temperature (K)

U internal energy (J)

%4 volume (m?3)

Vi, Wi stoichiometric coefficient of species i in a reaction
volume (m?)

AG"™  Gibbs free energy of fusion (J)

¢ electric potential (V)

A Lagrange multiplier related to component j (J mol~')

A column vector of Lagrange multipliers related to com-
ponent j (Jmol~1)

i chemical potential of species i (J mol~')

uo standard state chemical potential of species i (J mol~1)

M molar free energy of species i (J mol~')

;4;:0 standard state molar free energy of species i (J mol~")

& (R x 1) column vector of extents of R reactions
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I extent of reaction r

Tk chemical potential of component k (J mol ')

c surface energy (] m~2)

oi surface energy of pure substance i (J m~2)

Zi molar magnetic susceptibility of i (J T-2 mol~')

Subscript and superscript related terminology (X is a generic
Roman or Greek character)

X where i can be also be j, k or I, partial molar quantity
corresponding to the integral quantity X of the whole
system (unless X; is explicitly given in the preceding list)

X% XP  part or value of the quantity X related to the part a or
p only

XT transpose of matrix X
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Chemical thermodynamics offers a univer-
sally applicable and rigorous method to
describe the possible processes and final
states in any chemically reactive system.
Numerical programmes that minimise
Gibbs energy have been used for decades to
calculate equilibrium compositions and
phase diagrams. Such software has been
especially focussed on materials and met-
allurgical chemistry, combustion and
aqueous solutions. A considerable amount of
work has been spent to make the programs
robust and efficient.

In this work, the use of Gibbs energy-
minimising programmes is extended to
novel systems by using additional con-
straints and by adjusting the data input to
include the effects of various kinds of ther-
modynamic work. The same principle ap-
plies to non-equilibrium processes con-
strained by slow reaction kinetics as well as
for systems restricted by system geometry.
The method is shown to be applicable to
reactive chemical systems, aqueous pulp
suspensions, liquid surface properties and
nanoparticle phase transformations.
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