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List of symbols 
 (  matrix of stoichiometric coefficients 

 surface or interfacial area (  

 Affinity of reaction  (  

 activity of species  

 stoichiometric coefficient between component  and species ; matrix 
element of  

 magnetic flux density 

 ) column vector of molar amounts of components  

 molar amount of component   

 number of added constraints in a matrix of stoichiometric coefficients, 

 electric field  

 Helmholtz free energy  

 Faraday constant  

 Gibbs free energy  

 free energy function (other than ) matching system specific constraints 
 

 free energy function as calculated by a free energy minimiser  

 modified minimised free energy function in a free energy minimiser  
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 thermodynamic work coefficient  

 thermodynamic work coefficient  for a species  as pure phase (such 
as surface energy ) 
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 thermodynamic work coordinate   

 molar contribution to the thermodynamic work coordinate  by species  
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 molar magnetic susceptibility of   

 

Subscript and superscript related terminology (  is a generic Roman or Greek 
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 where  can be also be ,  or . Partial molar quantity corresponding to 
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in the preceding list) 

,  change in  due to processes that are internal to the system or those 
that are interactions with its surroundings respectively  

 part or value of the quantity  related to the part  or  only 
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1. Introduction 

Computational methods in chemical equilibrium thermodynamics have found nu-
merous application areas in diverse fields such as pyrolysis and combustion, met-
allurgy, petrochemistry, the pulp and paper industry, the study of advanced inor-
ganic materials, environmental science and biochemistry (Alberty, 2003; 
Gmehling, Kolbe, Kleiber, & Rarey, 2012; Hack, 2008; Jäntschi & Bolboacǎ, 2014; 
Kangas, 2015; Letcher, 2004). This is not surprising considering the general ap-
plicability of thermodynamic relations, theoretical and data development over a 
century and finally the rapid improvements in computational methods during the 
last few decades. Also a large number of computer codes and programmes have 
been developed for accurate handling of thermochemical systems and effective, 
robust and practical determination of the equilibrium state based on the minimisa-
tion of the Gibbs free energy of the system.  

As many of the cases of interest are not in actual equilibrium, there is a need for 
methods that extend the application area of chemical equilibrium solvers to non-
equilibrium systems. Likewise there is a need for efficient computational methods 
for thermochemical systems that are described by parameters other than those 
most commonly associated with Gibbs energy, namely temperature, pressure and 
fixed elemental (and charge) balances.  

The purpose of this work has been to explore, develop and collect a systematic 
set of computational methods that can be used with a standard Gibbs energy 
minimiser for solving advanced thermochemical problems. The actual calculations 
have been made using the ChemSheet or ChemApp software (Koukkari, Penttilä, 
Hack, & Petersen, 2000), but the presentation has aimed to be generic and appli-
cable with other thermochemical codes that allow the user to define thermodynam-
ic data and the stoichiometries of the constituent species in the system. The algo-
rithmic functioning of those codes, such as finding the global free energy minimum 
reliably and computationally efficiently in systems containing multiple components 
(dozens, if required), and potentially multiple non-ideal mixture phases has not 
been considered a part of this work. The idea has been to extract as much as 
possible useful information regarding the system by applying the regular bulk 
thermodynamic data (assumed well established) by involving as few additional 
assumptions or parameters as possible.   

The first version of this work published in Paper I, used the term Constrained 
Free Energy (CFE) method as a descriptions of the extensions done to standard 
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Gibbs energy minimisation models. In Paper V, additional constraints and energy 
terms were treated in more systematic fashion applying the term Constrained and 
Extended Free Energy Minimisation.     
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2. Thermodynamic basis 

In this work it is assumed that the system considered is either isotropic, having the 
same values for T, chemical potentials, P and other work-coefficients throughout 
the system, or that it can be divided into a finite number of such  parts. If not ex-
plicitly stated otherwise, the model equations are written for one isotropic part. The 
presentation of the thermodynamic theory in this chapter aims to be sufficient for 
understanding the concepts presented in the work, not complete in other respects. 

 Definitions 2.1

A computational system in chemistry can be divided from one hand to phases and 
their constituent species, and from the other hand to components that form the 
species according to their stoichiometries. While the same definitions are also 
understood to apply for real systems, there is some level of abstraction with each 
of them. With phases regarding their assumed uniformity, with components re-
garding the time scale used to study and what processes can be considered in 
equilibrium within it. Different kinds of speciations within a mixture phase and 
related excess energy models can be used to derive within practical accuracy 
same actual measurable properties of the system.  
  

2.1.1 Phase 

A phase in thermodynamics is typically defined as a region of a system with a 
uniform composition, temperature and physical state (Clarke, Hastie, Kihlborg, 
Metselaar, & Thackeray, 1994; Pitzer, 1995; Prigogine, Defay, & Everett, 1954). In 
his work, Guggenheim stated that systems with for example compositional gradi-
ents should be considered to be composed of infinite number of infinitesimal 
phases (Guggenheim, 1967). In this work, it has been assumed the system can, 
with sufficient accuracy, be divided to a finite number of such parts with phases of 
uniform composition within each part. In a computational system, a predefined set 
of possible phases exists from which the free energy minimiser selects the ones 
leading to the free energy minimum.       
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2.1.2 Component 

The number of independent components in a thermochemical system refers to the 
number of substances constituting the system amounts of which can be inde-
pendently set. In this work, the definition used by e.g. Pitzer (1995) is followed 
where the word component always refers to such independent components. In 
free energy minimiser programmes and related databases the stoichiometry of the 
various species or constituents is given in terms of some basic building blocks, 
most often elements and electrical charge that are typically denoted as ‘compo-
nents’ or ‘system components’. In most cases their number would equal the num-
ber thermodynamic components referred above. In some cases when, for exam-
ple, the number of species present is less than the number of such ‘system com-
ponents’, the stoichiometries would need to be redefined  within the calculation 
routine (Eriksson & Hack, 1990) to correspond to the proper thermodynamic num-
ber of components.   

2.1.3 Species 

Each phase of the system is considered to be made of one or more species, or 
constituents (the two words are used interchangeably in this work, though in some 
texts difference is made between the two (Hillert, 2007)). They are typically mo-
lecular entities that can be transferred from one phase to another (though for ex-
ample with charged species this is not necessarily true). In a computational sys-
tem each phase definition contains one (when the phase has fixed stoichiometry) 
or more species (with their typically temperature- and pressure-dependent stand-
ard state chemical potentials) that may be present in the phase. This speciation 
together with the corresponding non-ideality model defines the equilibrium ther-
modynamic properties of the computational system. 

 Minimum free energy as an equilibrium condition 2.2

The change in internal energy of a system can be given (Haase, 1990)  by the 
Eq. (1) 

 (1) 

while the corresponding Euler form for internal energy is 

 (2) 

where  is the generalised work coefficient with intensive character and  is the 
corresponding generalised work coordinate with extensive character. Example 
cases have been listed in Table 1. While the expression of the generalised work 
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[Eq. (1)] has been adapted from the comprehensive treatment of Haase (1990), 
the nomenclature mostly follows Alberty (2001). 
 
Table 1. Common examples of thermodynamic work coefficients and coordinates 

 
work coefficient  work coordinate  

 (pressure)  (volume) 
 (surface energy)  (surface area) 
(electric potential)  (charge) 
 (electric field)  (electric dipole moment) 

 (magnetic flux density)  (magnetic moment) 
 
 

For the internal energy , the natural variables are ,  and , meaning that if  
is known as a function of those extensive variables, all the other thermodynamic 
properties of the system can be derived (Alberty, 2001).  

Common definitions (Haase, 1990) for enthalpy , Helmoholtz  and Gibbs 
 free energy are given by (Eqs. (3)-(5)) 

 (3) 

 (4) 

 (5) 

In this work the extensive work coordinates  are divided into partial molar contri-
butions from each species following Eq.(6) 

 (6) 

so that 

 (7) 

For the practical applicability with a Gibbs energy minimiser, in the present work it 
has been further assumed that the partial molar properties expressed by Eq. (6) 
are not functions of phase composition.  

Energy function expressions on molar basis are given by Eqs. (8)-(10) 

 (8) 
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 (9) 

 (10) 

Based on the first law of thermodynamics the change in internal energy of a 
system can also be stated as 

 

 
(11) 

Changes in (molar) amounts of substances have been divided here to those due 
to mass transfer between the system and the surroundings and those due to 
chemical reactions within the system. 

 (12) 

Likewise, the entropy change in the system can be divided into those caused by 
internal processes  and those caused by interactions of the system and its 
surroundings   

 (13) 

with 

 (14) 

so that 

 (15) 

and 

 (16) 

According to one of the formulations of the second law of thermodynamics 
(Kondepudi & Prigogine, 1998), internal processes in any system always increase 
the entropy, so any internal changes in the system always increase the value 
given by expressions (17)-(20) towards its maximum value. 

 (17) 
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 (18) 

 (19) 

 (20) 

For a closed system with constant temperature and  (including ) the require-
ment that  leads to , with constant temperature and   (such as ) 
is the corresponding condition . For an adiabatic system, . 

 Systems with constant work coordinates 2.3

In cases in which some of the work coordinates (and not the corresponding work 
coefficients) are constant, a corresponding free energy function can be defined 
(Alberty, 2001) 

 (21) 

where the summation is over the constant values of hl  so that 

 (22) 

or 

 (23) 

when temperature and pressure and each of the  and s are kept constant in a 
closed system. A corresponding molar free energy,  in this work1 that includes 
a contribution to the work coordinate amount specific to the species  can be de-
fined as  

 
(24) 

Eq. (24) applied to pure phase gives the standard state free energy with the ad-
ditional work coordinate contribution as 

                                                           
1 Here the superscript  is used to denote a specific phase or part of the system in which the 

work coefficient of interest applies. When superscripts   and  are used, the species that 
 and  or   and  refer to are the same in different parts or phases of the system.   
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 (25) 

For simplicity, the Eqs. (24) and (25) are written for the case where only one 
work coordinate  is kept constant. In the constrained equilibrium, i.e., the mini-
mum of , the chemical potential is still, as a state variable, the quantity that is 
phase independent, i.e., equal throughout the system. 

 (26) 

In terms of activities the chemical potential can be expressed as:  

 (27) 

 Systems with constant chemical potentials 2.4

With regard to systems in chemical equilibrium, Eq. (22) can be written in terms of 
independent variables, so that the species in the system are replaced by compo-
nents, whose number is less than the number of species assuming chemical reac-
tions or mass transfer between phases are taking place.  

 (28) 

The chemical potential of a component  in this work has been denoted by the 
symbol , and its molar amount by  to make them easier to distinguish from the 
chemical potential  and molar amount of a species . 

A suitable free energy function when some component chemical potentials are 
kept at a constant value by material bath is given by 

 (29) 

where the summation is over the non-constant values of   

 
(30) 

with Eq. (23) following, so that when temperature, work coordinates  and each of 
the  and  are kept constant,  is minimised. 

Mathematically Eqs. (21) and (29) represent Legendre transforms of the free 
energy function to a new one with a new set of independent variables (Alberty, 
2001). The transforms allow solving of the equilibrium state and all its thermody-
namic functions specified by the natural variables, where the natural variables can 
be freely chosen from the conjugate pairs of molar amounts and chemical poten-
tials; temperature and entropy as well as work coordinates and work coefficients. 
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 Systems with other than work coordinate constraints 2.5

If other constraints (e.g. due to slow reaction rates) that are not related to an addi-
tional work term  apply to the system, the form of the energy functions [Eqs. 
(2)-(5)] is not altered. The free energy corresponding to any specific composition 
remains unchanged. However, the possible states of the system are reduced and 
the equilibrium is generally shifted to some state with higher free energy than 
without the constraint. When the states of the system are constrained by a relation 
or relations that can be expressed as linear combinations of amounts of species, 
the effective number of components in the system is increased, as was first noted 
by J. W. Gibbs, who called these kinds of constraints “passive resistances”(Gibbs, 
1876; Koukkari, Pajarre, & Hack, 2008).  
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3. Use of a free energy minimiser 

 Traditional problem statement 3.1

The problems to be solved with a typical free energy minimiser are of the type: 
Find the minimum of function : 

 (31) 

subject to constraints 

 (32) 

and 

 (33) 

where matrix element  of matrix  is the stoichiometric coefficient between 
component  and species , vector element  the molar amount of species  and 
vector element  the (fixed) molar amount of component  in the system. The  in 
Eq. (31) is the free energy of the system, either   (Gibbs energy) or  as defined 
by Eq. (5) or (21), depending on whether additional work co-ordinate constraints 
have been applied. When  equals , the molar quantity  equals the chemical 
potential .  

In the minimum free energy ( ) state, the derivatives of the Lagrangian function 
(Smith & Missen, 1991) 

 (34) 

(where  is a vector of Lagrange multipliers) with respect to molar amounts and 
individual Lagrange multipliers must be zero, so that 

 (35) 

The chemical potential or molar Gibbs energy of a species in the calculation is 
expressed in the following or equivalent form: 
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 (36) 

Most often the activities are calculated based on activity coefficients on a mole 
fraction based scale  

 (37) 

so that the standard state value  in Eq. (36) refers to the chemical potential 
of the pure substance in given conditions, but also other activity scales are used. 
The activity coefficients  for a free energy minimiser are given as functions of 
phase composition, temperature, and possibly pressure. The pressure dependen-
cy of  is formally given by 

 (38) 

For gaseous species the ideal gas law is often applied leading to  

 (39) 

while for condensed phases the pressure dependency is often ignored, effectively 
assuming that  is small enough that it can be considered zero. 

The Lagrange multiplier for a component can be equated with its chemical po-
tential as 

 (40) 

both when  equals  and when it equals . Eq. (35) can also be applied to spe-
cies that are not present in the equilibrium, allowing the calculation of molar free 
energy for a species that is not present in the equilibrium state and for which Eq. 
(36) is not directly applicable (Eriksson, 1975). 
  Equilibrium solvers typically allow solving of problems where the equilibrium 
chemical potential of certain species is fixed while the corresponding feed amount 
is allowed to vary. After redefining system stoichiometry so that the species of 
interest equals one of the system components, the problem equals the one de-
scribed by Eq. (29). Computationally it can be solved (Cheluget, Missen, & Smith, 
1987; Norval, Phillips, Missen, & Smith, 1991) by normal numerical routines by 
noting that (here summation index  goes over the components whose chemical 
potentials are held constant) 

 
(41) 
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This means that the correct free energy function is minimised if the standard 
state values of those species containing the components with fixed chemicals 
potential are adjusted according to Eq. (42)  

 (42) 

Additionally the mass balance constraints (33) related to components  need to 
be relaxed (the components are removed from matrix . 

 Additional work coefficients 3.2

 In most cases with chemical equilibrium problems, the thermodynamic data is 
not given as a function of any other work coefficients than pressure, that is, any 
other work coefficients are assumed to be zero. According to the Eqs. (10) and 
(20) the Gibbs energy is also the minimised free energy function for non-zero 
constant values of . The Gibbs energy is then given by (from Eqs. (1) and (5)) 

 (43) 

 (44) 

while the change in chemical potential is given by 

 (45) 

and therefore standard state value corresponding to constant non-zero  is 

 (46) 

In order to avoid handling vector components separately it is assumed for Eq. 
(46) that  can be replaced with  (  and  are either scalars or they 
are aligned).  

As an example, for a ferromagnetic material as a pure phase when the magnet-
isation is assumed to be constant  

 (47) 

and for paramagnetic material, if magnetisation is directly proportional to the ex-
ternal field 

 (48) 

The chemical potential for a mixture phase is then given by 

 (49) 
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The practical applicability of Eq. (49) is greatest when the dependency of the 
activity coefficients on  can be ignored.  

 Addition of new components to computational systems 3.3

The addition of a new component/constraint to a computational system adds a 
new row to matrix  and new elements to the vectors ,  and  in Eq. (34). The 
resulting Lagrangian function  is identical to one defined for a system with the 
original components, but with adjusted free energy function  defined by 

 

 

(50) 

so that the adjusted free energy function is one where the molar contributions 
have been augmented by the factor  

 (51) 

while the free energy function includes an additional term 

 (52) 

The minimum energy condition corresponding to Eq. (35), together with the origi-
nal mass balance constraints, is now  

 (53) 

The quantity on the left side of Eq. (53), marked with  in (51), replaces the 
original chemical potential expression (  as the quantity that must be 
equal in phases and parts of the system that are in equilibrium with each other, 
that is, it is the chemical potential in the system. The comma in  is used to 
denote, that the standard state value may have been adjusted from the value used 
in the unconstrained system if new work coordinate has been applied, in concur-
rence with Eq. (24) 

    (54) 

Here is the work coefficient for pure species  in phase or system part . In 
the example cases discussed in this work, it is zero except with surface energy-
related calculations, where it equals the surface energy of the pure substance (it 
can also be applied to the case of an external magnetic field as an alternative to a 
fiel- related new component (section 4.5)). 

Comparing Eq. (53) with Eq. (27) we have, for cases where the constraint can 
be equated with a fixed work co-ordinate, the equality   
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 (55) 

For the practical applicability with Gibbs energy minimisers, it is also required 
here that  is not a function of . Therefore, it is assumed that  can be fac-
tored into two parts, separating the possible dependency on  from the depend-
ency on .  

 (56) 

(Subscript  omitted from the equation for clarity as a continuously repeating ele-
ment) Provided that Eq. (56) is valid, the stoichiometric coefficient  can be 
defined by 

 (57) 

and the corresponding work coefficient as  

 (58) 

In Eqs. (57)-(58),  is a normalisation constant with the same units as  and 
an arbitrary yet fixed numerical value. 

Formally then, if a work coordinate related stoichiometric coefficient can be de-
duced on physical basis, the min( ) procedure can incorporate such factors in a 
multiphase calculation. According to Eq. (55) the respective component potentials 
become solved as additional Lagrange multipliers within the minimisation. 

If the applied constraint cannot be equated with a work co-ordinate, the corre-
sponding term does not enter Eq. (5), so for example for the case of system with a 
constant temperature, (external) pressure and a non-work constraint the Gibbs 
energy remains 

 (59) 

In terms of original components the minimised free energy nevertheless has an 
additional term as expressed by Eq. (50). With a molar free energy defined as  

  (60) 

we have from Eq. (53) an equality that is also valid for rate constrained sys-
tems. 

 (61) 
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 Applying additional components for calculations with 3.4
additional non-zero constant work coefficients  

In principle, the application of Eq. (46) to adjusted standard state values is suffi-
cient for calculations when the value of new work coefficient instead of the corre-
sponding work coordinate is specified (it is assumed here that the activity coeffi-
cients are not explicit functions of ). However, one often wants to perform re-
peated calculations with many different values of  while the databases used and 
free energy minimiser programmes do not necessarily readily support this. An 
alternative is to define a new component for the stoichiometry of the relevant spe-
cies and adjust the chemical potential of that component.  

From Eqs. (41) and (46)  

 (62) 

As before, it is assumed here that  can be factored to two parts, separat-
ing the possible dependency on  from the dependency on   as shown by Eq. 
(63) (If this is not possible, more than one added component with fixed potentials 
should be applied in the model system) 

 (63) 

so that 

 (64) 

Applying Eqs. (62) and (64) one can again set a definition for the stoichiometric 
coefficient 

 (65) 

The value of the corresponding chemical potential is consequently given by  

 (66) 

If  is not a function of , the preceding Eqs. simplify to 
 

 (67) 

 (68) 
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4. Application examples and results 

A collection of various example systems and their properties are presented in 
Table 2. Given are the minimised Free energy functions (  or ), work coeffi-
cients and coordinates, the adjusted standard state values for pure phases as 
given by Eqs. (54) (for systems with constant work coordinates) or (46) (for a case 
of constant work coefficient and the equipotential between species of same stoi-
chiometry2 in different phases or parts of the system (typically called chemical 
potential). Also given are the expressions for the stoichiometric coefficients related 
to the new constraints and the constraint equations.  

Example systems where the applied constraint and the corresponding chemical 
potential do not form a work coefficient and coordinate pair are listed in Table 3. 
Given are the formulas for stoichiometric coefficients related to the constraining 
components and the chemical potentials of those components. The coefficients 
and chemical potentials are largely analogous to the work coefficients and coordi-
nates of the previous examples.   
  

                                                           
2 ‘Same stoichiometry’ refers to here to the regular components of the system, excluding the 

added component related to the new constraint and/or work coordinate. Amounts of those  
components used to limit chemical reactions in the system are still required to be same.  
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Table 2. Applications of the free energy method (2 pages) 
 

System Minimised free energy  or 
 

Work coeffi-
cient 

Work  
coordinate 

Generic 
(constant work coordinate )    

Generic  
(constant work coefficient )  

Surface 
  

surface energy 
(contribution from 
individual layer) 

 

area 

Donnan equilibrium 
  

electrochemical 
potential difference 

 

charge 

Constrained volume 
  

(osmotic) pressure 
difference 

 

Magnetised 
 

 

magnetic flux 
density 

 

magnetic moment 
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Table 2. Applications of the free energy method (2 pages) 
 

Adjusted standard state  Equipotential (between 
species of the same stoichi-
ometry in different phases 

or parts of a system) 

Stoichiometric 
coefficient 

Constraint 

  

 

chemical potential 

 

when 

 

 

 
 

chemical potential 

not required not applicable 

 

(for the topmost surface layer) 

 

   

  

 

 

 

(electro)chemical potential 

  

 

( in a single species 
system) 

  

 

 

(  assumed  to be 
independent  of 

pressure) 

 

 

 

 

 

 

when 

 

not applicable 
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Table 3. Example system with additional components that are not directly linked to 
a work coordinate. 

 

System Stoichiometric coefficient for 

the constraint 

component chemical potential 

Spherical nanopar-

ticle 
 

(geometric constraint) 

 

surface energy  normalisation 

constant 

Reaction extent or 

affinity constrained 

system 

 

extent of reaction r 

 

affinity of reaction r 

 

 
In these cases when the component amount is constrained, the minimised free 

energy function is the Gibbs energy of the system as defined by equation (59).The 
energy and entropy terms (and therefore chemical potentials) may still contain 
added work coefficient-dependent terms (as they do in the nanoparticle case).  

 

 Surface and interfacial energy 4.1

The model application for surface and interfacial systems has been discussed in 
detail in Papers II and IV. Paper II describes a monolayer model of a liquid sur-
face, where the single surface layer is modelled as a separate phase, whose con-
stituents interact only with each other. In Paper IV a multilayer model that includes 
non-ideal interactions between different layers is developed for metal-oxide sur-
face, and tested for liquid-liquid metal alloy interfaces.  

In a system with a liquid-vapour surface or liquid-liquid interface the derivative 
of the free energy with respect to interfacial area is the surface or interfacial ener-
gy 

 (69) 

In the current work the surface or interface has been modelled with a finite 
number, one or more, individual monomolecular layers. With the simplifying as-
sumption that the molar surface areas of individual constituents are independent 
from system composition 
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 (70) 

the contribution of an individual interfacial layer k can be included in the free ener-
gy equation as  

 (71) 

with the following relations based on Eqs. (57) and (58).  

 (72) 

 (73) 

where the normalisation constant  has the units of . For the bulk 
phase(s) the molar surface/interfacial areas  are zero, as there is no surface 
area associated with them. The interfacial energy contribution of an individual 
layer is denoted by while the physical interfacial energy given by summation 
over all   layers. 

 (74) 

The  in Eq. (71) is the molar free energy of constituent  on the layer , as 
stated in Eq. (24). For the bulk phases in the models described in both Papers II 
and IV, it was assumed that the direct energetic effects related to the surface were 
restricted to the top most atomic or molecular layer of the surface. With that con-
vention applied, following Eqs. (27) and (54) the chemical potential was expressed 
on the layer closest to the surface by equation (superscripts  and  denote the 
surface layer and bulk respectively) 

 (75) 

and on other interfacial layers by (superscript  denotes the interfacial layer) 

 (76) 

The molar free energies for the surface and interfacial species, as defined by 
Eq. (24), were in Papers II and IV defined implicitly via excess energies using the 
Redlich-Kister model. In Paper IV the excess energies were evaluated considering 
both the compositions of the individual layer in question and its nearest neigh-
bours using the equation  
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(77) 

for the excess free energy for an individual layer where   and  
are composition dependent interaction energies within layer  and between it and 
its nearest neighbours and  is a geometric parameter expressing the factor of 
nearest neighbours of a species that are in one of the adjacent layers in an com-
positionally uniform system. For the derivation of thermodynamically consistent 
relations it was necessary for the multilayer system to add further constraint(s) that 
kept the composition of the interfacial layer closest to the bulk equal to that of the 
bulk, the interfacial energy contribution of the additional constraints approaching 
zero with an increasing number of layers. Example results for calculations in metal 
alloy and metal-oxygen systems are shown in Fig. 1.  

Figure 1. Surface tension in Ag-Au-Cu metal alloys system (left) and iron-oxygen 
system (right). The model and experimental data for Ag-Au-Cu alloy as presented 
in Paper II and for Fe-O system as in Paper IV.  

In the surface monolayer model the assumption of no interactions between the 
surface layer and the bulk make the model elegantly simple as a mathematical 
construction. It is also obvious that is not physically reasonable to assume it to be 
strictly accurate. However, as a practical tool it has found wide use (Egry, Ricci, 
Novakovic, & Ozawa, 2010; Tanaka, Hack, Iida, & Hara, 1996) and has been 
shown to work reasonably accurately for especially metallic systems. The analogy 
of the surface ‘phase’ in a monolayer model to regular bulk phase equilibria has 
also been explored by Kang (2015a, 2015b). Additional assumptions, which are 
validated only insofar as the resulting model gives reasonable predictions com-
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pared with experimental data, are needed for the monolayer or multilayer excess 
energies.  

 Volume-constrained system  4.2

In a system in which the volume of part of the system is constrained, an additional 
pressure component affecting its chemical potential applies to that part. For 
straightforward application of the current method, it is necessary that the partial 
molar volumes are not functions of phase composition, although they could be 
functions of pressure. In the ion-exchange system of Paper III, a constraint on the 
water volume is an essential feature of the model. Only the molar volume of the 
water itself (assumed to be incompressible) is considered. The free energy from 
Eq. (21) can then be stated as  

 (78) 

where the last term is constant. The stoichiometric coefficient related to the con-
straining component is directly proportional to the molar volume.  

 (79) 

The osmotic pressure difference is consequently obtained as 

 (80) 

In principle it could be expected to be possible to predict, e.g., the swelling be-
haviour of fibres (application area in Paper III) applying the calculated osmotic 
pressure together with the modelled charge state and a model for the fibre wall 
elasticity, but even a semi quantitative model has been found to be elusive.  

 Nanoparticles with a combined area and volume 4.3
constraint 

A model for small-scale systems can have volume and surface that area inter-
linked. Considering the simplest case of a spherical particle, the changes in vol-
ume and area are connected by the equation 

 (81) 

Therefore, the balance equation for surface area related to molar area and vol-
ume can be written as 

 (82) 
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If the change in total volume (and therefore radius) is relatively small, the value 
in brackets in Eq. (82) can be taken as a constant similarly to molar volumes and 
areas in the previous sections. In Paper V a model for a melting nanoparticle was 
developed based on the idea that the limiting phase transition would be the for-
mation of a liquid surface on a solid core. 

The Euler equation for internal energy of a fully solid or liquid particle is given 
following Eq. (2) 

 (83) 

where  denotes the physical state (solid or liquid) and  is used to emphasise 
that the standard state value is the one based on the external pressure of the 
system. The minimised free energy when there is no external constraint on the 
surface energy or surface area3 is given by     

 (84) 

Correspondingly, the standard states for the core and the second layer can be 
given by 

 (85) 

and for the solid surface by  

 (86) 

and for a liquid surface on a solid core 

 (87) 

The ratio of the area of the interface between the first and second atomic lay-
ers, , and the surface area,  in Eq. (87) can be estimated based on liquid 
metal molar area and volume by  

 (88) 

The chemical potential of the component ,  is the chemical potential of 
the macroscopic unconstrained substance  in the system. With the definitions 
used, it is given for one chemical component fully solid or liquid system by Eq. (89) 
(superscript  refers to either a solid or liquid state). 

 (89) 

                                                           
3 The added constraint in the stoichiometry in Table 4 (or equation (82)) is really for particle 

sphericity and the assumption that the number of spherical particles is not changed. 
While not discussed here, with orientation dependencies ignored, the spherical form is 
the one corresponding to minimum energy.   
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The differences in chemical potential in the particle and a macroscopic phase in 
a same state can be related to the differences in vapour pressures. The familiar 
Kelvin equation directly follows from Eq. (89). 

 (90) 

The graphs in Fig. 2 for melting of tin and silver nanoparticles have been calcu-
lated assuming that the interfacial energy between the solid and liquid follows the 
perfect wetting condition (Eustathopoulos, 1983) and applying the experimental 
solid and liquid surface energies, molar volumes and free energies of melting as 
referenced in Paper V. 

  

Figure 2. Melting temperature of metallic nanoparticles. From Paper V.  

In Fig. 2. the model calculations are compared with experimental data from lit-
erature for Sn (left) and Ag (right). While a reasonably good match between the 
basic model (solid curve) and the experimental data was found with Sn, an 
agreement with Ag data could be reached only assuming (following Sim & Lee  
(2014)) that the effective solid surface energy (taking into account as adjustable 
correction factor the effect of surface strain and anisotropic nature particle sur-
face)) was higher by a factor of 1.17 than the tabulated one.  

It was noted in Paper V that the model used closely matches the one for which 
the melting point of the particle is calculated based on equal chemical potential 
(not free energy) such as the one used in e.g. Lee et al. (2007), Sim & Lee (2014) 
and Sopousek et al. (2014).  

 Donnan equilibrium 4.4

Ion-exchange model with Donnan equilibrium was described in detail in Papers I 
and III with comparison to lab results. Process simulation work based on the 
thermodynamic this model has been published several papers and presentations 
(Kalliola, Pajarre, Koukkari, Hakala, & Kukkamäki, 2012; Kangas, Pajarre, Nappa, 
& Koukkari, 2012; Koukkari et al., 2007; Pajarre, Koukkari, & Penttilä, 2008).  
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For a system in which the electrochemical Donnan equilibrium is present, a new 
component needs to be defined for the electrical charge for each additional sub-
volume present. The related new constraint equation is 

 (91) 

The potential difference in a Donnan equilibrium system is caused by electrical-
ly charged species that are not freely mobile. The electrical work related to them 
can be stated (taking into account Eq. (91)) as 

 (92) 

A Donnan equilibrium free energy problem requires at least two additional com-
ponents related to the charged species: at least one constraining the immobile 
species, the amount of which in the pulp suspension models was a fixed quantity 
(bound, carboxylic or sulfonic acid groups), and whose chemical potential was 
without practical interest, and one for the overall charge balance. Based on Eq. 
(92), the work term common to all the charged species is    

   (93) 

Setting  the Donnan potential difference is obtained as 

 (94) 

The equipotential, commonly called the electrochemical potential, that is same 
in both aqueous phases for mobile ions is following Eq. (27) given by 

 (95) 

The  in Eq. (95), rather than merely the ‘chemical’ part it ( , is the 
chemical potential of the species  as defined by Eq. (1) and other fundamental 
relationships in thermodynamics. As pointed out by for example, Guggenheim 
(1967), the ‘chemical’ and ‘electrical’ parts of it are not experimentally measurable 
and have questionable meaning as physical entities. For the purposes of computa-
tional thermodynamics it is useful to define individual ion activities and activity 
coefficients that are compatible with well-definable and measurable activities and 
activity coefficients of neutral combinations of them. The models used by the au-
thors have in common that the aqueous solution has been modelled applying the 
Pitzer non-ideality model (Harvie, Møller, & Weare, 1984) while the multicompo-
nent model has also included solid precipitates, and when applicable, a gas phase 
exchanging carbon dioxide with the solution. The specifics of the individual ion 
activity coefficients and the corresponding implicit pH scale have been discussed 
e.g. by Harvie et al. (1984).     

An example of the Donnan theory applied to a laboratory system is presented in 
Fig. 3. All the calculation results for each pH are from a single multi-component 
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equilibrium calculation, just as the various metal amounts were determined from a 
single sample.  

 

Figure 3. Experimental and modelled concentrations in an aqueous solution in a 
multicomponent and multiphase system with ion exchange, complexation and 
precipitation. Adapted from Paper III.  

The Donnan equilibrium model application for pulp suspensions has been found 
to be valuable to predict the chemical phenomena and process behaviour in pulp-
ing, bleaching and paper machines (Kalliola et al., 2012; Kuitunen, 2014), while 
the assumed non-specific nature of ion-exchange interactions is known to face 
limitations with di- and multivalent ions, especially in systems with high ionic 
strengths (Kangas et al., 2012; Sundman, Persson, & Öhman, 2010; Sundman, 
2008). 

 

 Systems with an external magnetic field 4.5

The chemical system for a free energy minimiser can be defined either following 
Eq. (46) and modifying the standard states for the given field strength (without 
defining any additional components), or by applying one or more additional com-
ponents whose chemical potentials are set following Eq. (66) based on the field 
strength-dependent magnetisation properties of the substance. The second meth-
od has been found by the authors to be more readily applicable to calculations that 
are repeated with multiple field strengths. The applicable equations in this case 
are 
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 (96) 

for the stoichiometric coefficient, and   

 (97) 

when the molar magnetic moment can be factorised (Eq. (98)) 

 (98) 

Example cases of equilibrium in external magnetic field were discussed in Paper 
V.  

 
Figure 4. Left: Effect of magnetic field on the equilibrium phase diagram in the Fe-
C system. Right; Equilibrium hydrogen pressure and magnetic moment as a func-
tion of magnetic field strength with a LaCo5-H system. Experimental data points 
shown with a smoothed fit together with a model curve for both equilibrium pres-
sure and magnetisation based on measured magnetic moment and pressure val-
ues respectively. Adapted from Paper V.  

 Constrained reaction extents and mass transfer 4.6

In a system where a single reaction of the form 

 (I) 

or 

 (99) 

where  equals  for products and   for reactants, the extent of the reaction 
is defined as  

 (100) 

In a system with multiple possible reactions, it is in general impossible to define 
the change in the extent of any individual reaction  based on the change in 
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system composition unless the other linearly independent reactions forming a 
basis spanning the reaction space are first defined. When they are, the equation 
(101) for  can be solved 

 (101) 

where  is the vector of changes of molar amounts of the  constituents in the 
system,  a vector of changes in extents of the specified reactions, and  a 

matrix of stoichiometric coefficients of the reaction vectors spanning the 
reaction space.  

For an equilibrium system, the matrix equation  

 (102) 

where  is an  matrix of stoichiometric coefficients between the  constitu-
ents and  components (  that forms a link between the system 
stoichiometry and the reactions allowed by it (Alberty, 1989, 1991; Keck & 
Gillespie, 1971; Keck, 1990; Koukkari & Pajarre, 2006; Smith & Missen, 1991). 
Any kinetic restrictions in the possible reactions that cause the system to develop 
towards some other state than full equilibrium will lead to a new matrix equation 

 (103) 

where  is an  matrix (  made of the reduced reaction set and  
is the corresponding  matrix ( , where  is the 
number of added constraints) of stoichiometric coefficients for the new augmented 
matrix of stoichiometric coefficients.  

Each linearly independent restriction on the set of reactions allowed to freely 
equilibrate corresponds to an additional stoichiometric constraint, or a row in the  
matrix that is linearly independent of the existing component balances or previous-
ly defined reaction kinetic constraints. A practical way of defining a restricted reac-
tion in a multispecies constrained equilibrium system is by Eq. (104) 

 (104) 

where  is a matrix element in the augmented matrix , where the th 
row defines the constraint related to the reaction and  the change in the 
value of the corresponding element in the augmented component vector. The 
matrix form corresponding to Eq. (104) is 

 (105) 

where  is the  submatrix forming the lower part of .   
If the number of restricted reactions (constraints) defined equals , so that no 

unrestricted linearly independent reactions remain,  in Eq. (105) can be re-
placed with , and   with , where the first  components of the  
vector equal zero, and the last  components are the same as in .  
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 (106) 

As matrix  has linearly independent rows it is invertible. Matrix  contains 
in its columns coefficients for reaction like transformations for the set of species, 
so that in each transformation the amount of one of the components is increased 
by one, while the amounts of other components are kept constant. In matrix form 
this can be stated as. 

 (107) 

Multiplying the Eq. (106) by  one obtains 

 (108) 

The first  transformations are not allowed as they violate the normal compo-
nent balances, and the corresponding values in the change of advancement vec-
tor  are zero, while the remaining reactions are the constrained ones defined by 
Eq. (105), so that the last  columns of matrix  equal matrix  and the last 

 values of  equal vector  in Eq. (105). The definition in Eq. (105) thus 
becomes equivalent to the one in Eq. (101). 

As a schematic example, one can consider a system with the following species 
, , ,  and .  and , so that it is possible to define a 

maximum of three independent constrained reactions using the formalism of Eq. 
(104) corresponding to, for example to the following  matrix where the first two 
rows refer to the elements  and  and the last three to the added constraints: 

 (109) 

The constraints set here are of arbitrary nature for the schematic example alt-
hough the first and third of them are fairly intuitive (both restricting the amount of 
an individual species). By inspection or by linear algebra one can derive 

 (110) 

where the last three columns give in the traditional reaction equation format the 
following three rate constrained reactions compatible with both Eqs. (101) and 
(105). 
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(II) 

(III) 

(IV) 

However, the three reaction constraints given by matrix (109) are also unam-
biguously defined individually, while the reaction equation format (II-IV) is properly 
defined only for a full set of independent equilibrium or non-equilibrium reactions.  

With the reaction equations defined by the added components, many of the 
mathematical relationships defined in earlier sections can also be applied. The 
affinity of a restricted reaction , , in a constrained equilibrium system is directly 
related to the chemical potential of the corresponding component.  

 (111) 

where  is the amount of any of the components  in the system. For any 
chemical reaction that is not one of those defined by Eq. (104), the affinity is ob-
tained as a linear combination of them and equilibrium reactions  

 

 

(112) 

where  is the stoichiometric coefficient between the reaction  and component 
.  

It is possible that in a system where the extent of one or more reactions are 
constrained, the modelled time behaviour of the system approaches a state where 
the affinity or affinities are zero without the state in question being the actual equi-
librium state of the system. Such a state would be a local, but not global free en-
ergy minimum of the system with respect to the specified reaction extents. Provid-
ed that the applied reaction rates give a sufficiently accurate description of the real 
reactions taking place in the system, such a local minimum state corresponds to a 
real long term metastable state. In such cases constrained chemical potential 
(affinity) could not be reasonably used as an alternative to constrained reaction 
extent for specifying the state of the system.        

Corresponding to Eq. (53) it is possible to form a relationship between chemical 
potentials in a rate constrained system 

 (113) 

By setting the affinity (corresponding to the component chemical potential ) to 
a constant value, it can be used to calculate restricted equilibrium states with a 
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fixed affinity (deviation from equilibrium), or when affinity is set to zero, equilibrium 
(in respect to the specified reaction) without redefining the system stoichiometry. A 
standard state value for species for a system with given ,  and  could be 
defined following Eq. (29) by relation (114) 

 (114) 

but typically applying the fixed chemical potential condition via the added compo-
nent is more practical.  

Reaction constrained free energy models have been presented for e.g., indus-
trial production of precipitated calcium carbonate (PCC) (Koukkari, Pajarre, & 
Blomberg, 2011) high temperature oxidation of TiCl4 to TiO2 (Koukkari et al., 
2008), calcination of TiO2 from an oxyhydrate slurry (Koukkari & Pajarre, 2006) 
and in studies of biomass gasification (Kangas, Hannula, Koukkari, & Hupa, 2014; 
Kangas, Koukkari, & Hupa, 2014; Kangas, 2015; Yakaboylu, Harinck, Smit, & de 
Jong, 2015). Application of the current model to NO emissions was also presented 
in Paper V.   

The fundamental guiding principle of work related to reaction constraints has 
been to strive towards a model containing only the necessary amount of kinetic 
complexity while applying the constrained equilibrium thermodynamics as much as 
possible. Highly complex reaction kinetic models have been criticised in the area 
of gas phase chemistry on the basis that because of uncertainties related to mod-
elling parameters, the increased complexity is unlikely to bring additional value to 
the results (Keck, 2008). With multiphase processes and kinetics the uncertainties 
will probably tend to be even greater. Therefore, it has been considered valid in 
the work regarding reaction-constrained systems to aim at system descriptions 
that capture the most essential parts of the rate-dependent processes with only a 
few constrained reactions. Such descriptions are of course only an approximation 
of the physical system; shortcomings of the approach are probably more likely to 
become apparent when behaviour of complex systems is studied over moderate 
temperatures and short time intervals (Kangas, 2015).   

From the computational point of view, a mass transfer process between two 
phases is a reaction where the species  in phase  is transformed to same spe-
cies (or a species of equal stoichiometry) in another phase. Therefore, the reaction 
rate and affinity equations derived earlier apply equally to such mass transfer 
processes. As a specific example one can consider metallurgical paraequilibrium 
were new phases are formed with the same alloy composition as the parent phase 
but substitutional element like carbon can equilibriate between them. The resulting 
constraints are of the form (Pelton, Koukkari, Pajarre, & Eriksson, 2014)  

 (115) 

where  is the mole ratio of iron (or other reference metal chosen for the sys-
tem) and metal  in the parent phase. 
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5. Conclusions 

The topic of this work has been to extend the application area of traditional Gibbs 
energy minimisers for systems of theoretical and practical interest. The aim has 
been to develop, within the possibilities offered by the minimisers, as generic as 
possible methods for both increased understanding the thermodynamic relation-
ships in the systems and for easier future application of the method for systems 
that are not handled in present work  

The application area of standard Gibbs energy minimisers has been extended, 
for the most part using existing published phase models with supplementary data 
and stoichiometry definitions.  

Chemical problems worked with have included reaction rate constrained sys-
tems, surface and interfacial tension in molten systems, Donnan equilibrium as a 
part of multiphase model, and systems affected by external magnetic fields.  

The greatest practical success has been achieved with the models that com-
bine reaction kinetics with partial thermodynamic equilibrium calculation and ion 
exchange models based on Donnan equilibrium, that both have been applied with 
success in real-life industrial design and development work with multicomponent, 
multiphase systems. Applied to liquid surface energies the method has been suc-
cessful in handling systems with multiple components and complex non-
equilibrium data. 
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6. Discussion 

Thermodynamic data for bulk phases in this work has been generally accepted 
as it has been found in literature or databases. The charge parameterization re-
quired for the Donnan model for pulp systems could be set based on titration ex-
periment independent of the ion exchange model itself. Effects of adjusting the 
interaction or interfacial energies for better fit have been discussed with nanoparti-
cles (section 4.3) and with surface tension model in section 3.1 of Paper IV.  

A fundamental guiding principle of the modelling work has been to keep the 
number of parameters not directly related to known bulk thermodynamics as low 
as possible. This has been done both to avoid overparametrised models with 
seemingly good fits but little predictive power and to keep the models easier to 
work with and results clearer to interpret.  

The surface and interfacial energy models have required 1-2 geometric pa-
rameters for the excess energies. Same parameter values have been used for 
similar systems. The Donnan model requires an estimate of the bound aqueous 
volume, which could be tied to the measurable water retention value. The model 
results are not very sensitive to exact value chosen and (regarding pulp suspen-
sions) in the work by the author, co-authors and other researches, quite similar 
values have been used. The models with reaction kinetics require literature-
derived or fitted rate equation for each constrained linearly independent reaction. 
The benefit of applying the Constrained Free Energy method is naturally greatest 
here when the number of reactions proceeding to equilibrium is great and the 
multiphase chemistry of the system is complex, while the number of kinetic con-
straints required for modelling the time development for sufficient accuracy is 
small. Need for more complex handling of reaction kinetics will generally increase 
when studies are done over moderate temperatures (especially not in aque-
ous/liquid solutions) over and short time intervals as noted in section 4.6. For 
systems in a magnetic field, the magnetisation as a function of field strength had 
to be known or be fitted to the model.      

Restrictions on the applicability of the present method include the assumption 
that the stoichiometric coefficients between species and components are constant 
when calculating the equilibrium for a specified set of conditions; especially, that 
they are not functions of system or phase composition. This applies for example to 
the molar surface or interfacial areas in the interfacial models. This is expected to 
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be less of a problem with the metallic or oxide systems discussed in Papers II and 
IV than for example aqueous solutions. The requirement for constant stoichio-
metric coefficients also makes it necessary that the possible dependency of the 
molar contributions to work coordinates from the work coefficients can be separat-
ed by factorization from any dependency from identity of the species themselves. 
These are requirements related to the software tools applied.   

Additional assumptions are applied to keep the models structurally simple. As 
discussed in section 4.1, for the surface monolayer model the assumption of no 
interactions between the surface layer and the bulk is made, making the model 
surface layer formally equivalent to a proper phase. Thermodynamics of systems 
where this is not an applicable approximation are discussed in Paper IV with a 
more complex model where the similar assumption is then made only for the layer 
closest to the bulk in a multilayer model. Implicit assumption in the ion-exchange 
models presented is that the non-specific Donnan equilibrium concept is sufficient 
to describe the interactions between the bound and solute ions with acceptable 
accuracy. As noted in section 4.4, this is not necessarily always true even with 
pulp suspensions. Inclusion of specific interactions to the model via complexation 
would be straightforward in theory, but has not been applied by the author due to 
increased complexity of the parameterisation. Again, regarding reaction rate con-
strained systems the model construction in practice has started with the equilibri-
um system with reaction rate constraints and equations added only up to the level 
where sufficient accuracy compared to experimental results has been obtained. 
Considering the large uncertainties in the known reaction kinetic parameters, this 
approach of minimum kinetics is regarded justified (with the limitations mentioned 
earlier).  
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Abstract

The Gibbs energy minimization encompasses active use of the chemical potentials (partial molar Gibbs energies) of the constituents of the
system. Usually, these appear at their equilibrium values as a result of the minimization calculation, the mass balance constraints being the
necessary subsidiary conditions. Yet, there are several such physico-chemical circumstances where the system is also constrained by other factors,
such as surface effects, potential fields or even by chemical reaction kinetics. In this paper a particular method is presented by which constrained
chemical potentials can be applied in a multi-phase Gibbs energy minimization. The constrained potentials arise typically from work-related
thermodynamic displacements in the system. When Gibbs energy minimization is performed by the Lagrange method, these constraints appear as
additional Lagrangian multipliers. Examples of the constrained potential method are presented in terms of the electrochemical Donnan equilibria
in aqueous systems containing semi-permeable interfaces, the phase formation in surface-energy controlled systems and in systems with affinities
controlled by chemical reaction kinetics. The methods have been applied successfully in calculating distribution coefficients for metal ions together
with pH-values in pulp suspensions, in the calculation of surface tension of alloys, and in thermochemical process modeling involving chemical
reaction rates.
c© 2005 Elsevier Ltd. All rights reserved.

1. Introduction

With the improving numerical capacity of present day com-
puters, Gibbs energy minimization has gained increasing inter-
est not only in the calculation of complex chemical equilibria
and phase diagrams, but also in performing complicated pro-
cess simulations. The advantage of the thermodynamic method
is that it avails a common basis for complex chemical problems
in multi-phase systems with various proportions and conditions.
Both industrial processes and small scale laboratory systems
can be calculated successfully with the Gibbs energy method.

However, the multi-phase Gibbs energy minimization
technique has not been applicable to more complicated
problems where the thermodynamic system is subjected to a
displacement caused by a generalized work coefficient or when
the chemical or phase change is constrained by slow reaction
kinetics. Such problems are often encountered in practical
materials science and in the simulation of processes, notably
including such topics as membrane separated electrochemical
equilibrium systems, complex surface energy equilibria and

∗ Corresponding author. Tel.: +358 20 722 6366; fax: +358 20 722 7026.
E-mail address: pertti.koukkari@vtt.fi (P. Koukkari).

finally time-dependent systems controlled with chemical
reaction rates. A common feature of all these phenomena is
that the total Gibbs energy is affected by an additional physical
constraint, which is due to a work-related thermodynamic
displacement, including the affinity of kinetically controlled
chemical reactions.

In the conventional Gibbs energy minimization calculation,
the system is subjected to the mass balance constraints which
are deduced from the input amounts of the components of
the equilibrium system. The Gibbs free energy minimum is
often solved by using the Lagrange method of undetermined
multipliers with the mass balances of the system components
as the necessary subsidiary constraints. The chemical potentials
of the constituents of the multi-component system can then
be solved in terms of the elements of the mass conservation
(stoichiometric) matrix and the Lagrange multipliers. As
the elements of the matrix are dimensionless factors, the
Lagrange multipliers represent chemical potentials of the
system components. By extension of the matrix, one may
introduce additional constraints for a desired set of constituents
and thus take into account additional Gibbs energy terms due
to the surface tension, electrochemical potential or affinity of
a kinetically controlled reaction. In what follows, we present a

0364-5916/$ - see front matter c© 2005 Elsevier Ltd. All rights reserved.
doi:10.1016/j.calphad.2005.11.007
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Lagrangian method, which allows a number of such phenomena
to be calculated with Gibbs energy minimization.

2. Theory

2.1. Overview of the Lagrangian method

The Gibbs energy of the multicomponent system is written
in terms of the chemical potentials as follows

G =
∑
α

∑
k

nα
k μα

k (1)

where μα
k = μα

k (T, p, nα
k ) is the chemical potential of the

species (k) in the respective phase α and nα
k is its molar

amount. The Gibbs energy is an extensive state variable and
the chemical potential μα

k is the partial molar Gibbs energy of
the constituent k.

For the Lagrangian method, the mass balance equations are
needed as follows [1,2]:

φ j = b j −
Ψ∑

α=1

Nα∑
k=1

aα
kj n

α
k = 0 ( j = 1, 2, . . . , l) (2)

where b j is the total input amount of a system component
and aα

kj refers to the stoichiometric number of component j in
constituent k, in its respective phase α. The number of phases is
denoted by Ψ , and Nα is used for the number of constituents in
phase α. A system component is typically, but not necessarily,
a chemical element. The total number of system components is
l. The individual mass balances are denoted for brevity as φ j .
The Lagrangian function is then written in terms of the Gibbs
energy and the mass balance conditions:

L = G −
l∑

j=1
λ j φ j (3)

where the λ j s are the undetermined multipliers of the Lagrange
method. The minimum condition of the Gibbs energy is the
same as this condition for the Lagrangian function (L), and is
received at constant temperature and pressure by finding the
extremum points for the respective partial derivatives:(

∂L
∂nk

)
i �=k

= μk −
l∑

j=1
akj λ j = 0 (k = 1, 2, . . . , N) (4)

Conditions (2) and (4) together give a set of N + l equations
with an equal number of unknowns to be solved (N is the
total number of constituents). The solution gives the molar
amounts (nks) at equilibrium for the closed system when
temperature and pressure are held constant. In addition, the
undetermined multipliers (λ j ) become solved. By definition of
(3), they connect the mass balances of each system component
to the Gibbs energy. In fact, the solution of the undetermined
multipliers produces each λ j as representing the chemical
potential of the respective system component j . To emphasize,
we denote this potential by π j and get, for the chemical
potentials of any constituent k:

μk =
l∑

j=1
akj π j (k = 1, 2, . . . , N) (5)

Eq. (5) gives the chemical potential of any constituent k as a
linear combination of the respective potentials of the system
components [1]. The respective (N × l) conservation matrix is

A =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

a(1)
1,1 · · · a(1)

1,l
...

. . .
...

a(1)
N1,1 · · · a(1)

N1,l
a(2)

N1+1,1 · · · a(2)
N1+1,l

...
. . .

...

a(Ψ )
N,1 · · · a(Ψ )

N,l

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(6)

In the conventional CALPHAD methods, the system com-
ponents represent stoichiometric building blocks of the con-
stituents and the matrix elements akj are the respective stoi-
chiometric coefficients. For example, the chemical potential of
carbon dioxide (CO2) in an equilibrium system with the ele-
ments carbon (C) and oxygen (O) as system components will
be given in terms of their potentials. Carbon dioxide consists
of one unit of carbon and two units of oxygen, and the chemi-
cal potential is accordingly μCO2 = πC + 2πO. The condition
is equivalent to the requirement that the affinity of all possible
chemical reactions is zero at equilibrium.

The independent components of the system may be
chosen to represent stoichiometric entities other than chemical
elements. These include, for example, chemical substances,
ions and electronic charge, which characteristically may occur
as independent components of a phase constituent. The
stoichiometric coefficients given in the transformed matrix
must be consistent with the conservation of mass in the
system, which is defined in terms of the total mass (mtot) as∑l

j=1 b j M j = mtot. Here, M j is the molecular mass of the
system component j .

2.2. Setting additional constraints with the conservation matrix

The conservation matrix A has a row for each species and a
column for each independent conservation equation [1,3]. The
conservation matrix is thus made up of the coefficients of the
conservation equations valid in the system. As stated above,
in chemical reactions, atoms of elements and electric charge
are conserved. Sometimes, additional conservation equations
are required, for example to denote conserved molecular
groups [4]. The new constraint appears as an additional column
in the conservation matrix:

A =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

a(1)
1,1 · · · a(1)

1,l a(1)
1,l+1

...
. . .

...
...

a(1)
N1,1 · · · a(1)

N1,l a(1)
N1,l+1

a(2)
N1+1,1 · · · a(2)

N1+1,l a(2)
N1+1,l+1

...
. . .

...
...

a(Ψ )
N,1 · · · a(Ψ )

N,l a(Ψ )
N,l+1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(7)

Here the matrix elements for the phase constituents remain
equivalent to those in Eq. (6), but the additional column with
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subscript l + 1 represents the new conservation equation. Thus,
the element aα

k,l+1 = 0 for all those constituents k which
are not affected by the additional constraint, whereas aα

k,l+1 is
not zero for those constituents which are affected by the said
constraint. Thus, for example, the number of aromatic groups
to be conserved in each aromatic compound can be attached to
the Gibbs energy calculation by the new pseudoelement [4]. It is
obvious that the mass balance of the total system is not affected
if the molecular mass of the pseudoelement Ml+1 is chosen to
be zero.

The additional constraint affects the chemical potential
of the phase constituents through Eq. (5). As the elements
of the matrix are dimensionless factors, the Lagrangian
multipliers represent additive contributions to the chemical
potentials of the constituents. Applying this property, one
may introduce additional conditions for a desired set of
constituents, thus generalizing the conservation matrix to
applicable physical constraints of the system. Such constraints
may be set for the electroneutrality condition of phases [5],
or for an affinity related metastable or kinetically conserved
species [6,7]. Further, a constraint set for the surface area of
the system is similarly linked to the surface energy of the
system and it can be used to predict the surface tension and
surface compositions of multi-component mixtures [8]. In what
follows, three simple examples are presented to detail the use
of the additional constraint when calculating surface tensions
of multi-component alloys, to determine Donnan equilibria
in membrane-separated multi-phase aqueous systems, and to
conserve the affinity of a kinetically conserved chemical
reaction in a multi-phase system.

3. Calculation examples

3.1. Computation of surface tension

Surface energy can appear as an additional factor in the
Gibbs energy function of a multi-component system. If the (flat)
surface layer is assumed to be one monolayer thick, the total
Gibbs energy of the system is:

G =
Nb∑

k=1
μb

knb
k +

Ns∑
k=1

μs
kns

k + σ

Ns∑
k=1

Akns
k (8)

Here superscripts and subscripts b and s have been used for
the bulk and surface phases, respectively. As the same species
can be assumed to be present both in the bulk and in the
surface, with N being the total number of species, we have
Nb = Ns = N/2 and the same subscript denotes the same
chemical species in both the bulk and the surface phase. The
surface tension is a function of temperature and composition,
σ = σ(T, xk). Each constituent of the surface phase occupies
a characteristic molar surface area Ak . The total surface area is
assumed to be constant at equilibrium:

N∑
k=1

Akns
k = A (9)

Considering the two phases, Eq. (9) may also be written as

A/A0 −
∑
α

N∑
k=1

(Aα
k /A0)nα

k = 0 (10)

where the molar surface for any species in the bulk phase is
zero. The area terms are divided by a normalization constant
A0 with dimensions of m2/mol. This equation then shows the
constraint of constant surface area, in analogy to the mass
balance conditions of Eq. (2). It is then mathematically possible
to consider Eq. (10) as an additional constraint of a multi-
component system, where the surface layer is introduced as
a separate phase and the surface area as an additional system
component [6].

Using (8) in (3) and by applying (2) and (10), the Lagrangian
function of the multi-component surface system becomes

L =
Nb∑

k=1
μb

knb
k +

Ns∑
k=1

μs
kns

k + σ

Ns∑
k=1

Akns
k

−
l+1∑
j=1

λ j

(
b j −

(∑
k

ab
kj nb

k +
∑

k
as

kj n
s
k

))
(11)

Here, summation of the constraints extend over all system
components, that is, j = 1, 2, . . . , l, l + 1, where the last
constraint is the one deduced from the surface area, with bl+1 =
A/A0, and as

k,l+1 = Aα
k /A0. From Eqs. (4) and (11), the partial

derivative conditions become:(
∂L
∂nb

k

)
i �=k

= μb
k −

l∑
j=1

ab
kj λ j = 0 (12)

(
∂L
∂ns

k

)
i �=k

= μs
k + Akσ −

l+1∑
j=1

as
kj λ j = 0 (13)

At equilibrium, the chemical potential of each species is
independent of phase, that is, μb

k = μs
k = μk . From Eqs. (12)

and (13), it follows that the surface tension of the mixture is
obtained as the additional Lagrange multiplier:

σ · A0 = πl+1 (14)

The numerical value of the constant A0 can be chosen
arbitrarily, but for practical calculation reasons it can be
advantageous if the ratio Ak/A0 is a value close to unity,
being of the same order of magnitude as the stoichiometric
coefficients appearing in the conservation matrix.

To perform the calculations with a Gibbs energy minimizing
program, such as ChemApp [9], the input data must be arranged
in terms of the standard state and excess Gibbs energy data of
chemical potentials of the system constituents. It is sufficient
here to state that the chemical potentials of species k in the bulk
and surface phases can be written in terms of the respective
activities as follows:

μb
k = μ0

k + RT ln ab
k (15)

μs
k = μ

0,s
k + RT ln as

k − Akσ (16)

where the superscript 0 refers to the standard state, and ab
k and

as
k are the activities of the constituent k in the bulk phase and
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Table 1
Stoichiometric matrix for the Fe–FeO system

Fe FeO Area

Bulk Fe 1 0 0
FeO 0 1 0

Surface Fe 1 0 3.7187
FeO 0 1 5.8782

The molar surface areas for Fe and FeO at 1973 K are 37 187 m2/mol and
58 782 m2/mol, respectively [10].

surface phases, respectively. By applying Eqs. (15) and (16)
for the case of a pure one-component system, a relationship
between the standard states of the bulk and surface phase can
be derived:

μ
0,s
k = μ0

k + Akσk (17)

Eqs. (15)–(17) then indicate that the necessary input for a
Gibbsian surface energy model must include not only standard
state and activity (excess Gibbs energy) data for the constituents
of the bulk and surface phases, but also the data for surface
tensions of the pure substances (σk) as well as their molar
surface areas (Ak). The numerical calculation technique is
described in detail elsewhere [6]. In Table 1, the extended
matrix of an FeO/Fe binary system is given. Respective
calculation results at 1970 K are presented in Fig. 1 (the mole
fraction of FeO in the surface phase vs. that in the bulk (left) and
surface tension of the mixture (right)). The molar surface area,
pure substance surface tension values and Gibbs excess energy
are taken from Tanaka and Hara [10]. The calculated results for
the FeO/Fe binary also agree with those presented in [10].

The obvious advantage of the Gibbsian method is in
the direct calculation of surface tensions in multi-component
mixtures. An example of a simple ternary system was given
earlier in [6].

3.2. Ion exchange equilibria in aqueous multi-phase systems

When two aqueous solutions at the same temperature (and
pressure) are separated with a membrane that is permeable to
some ions but not to others nor to the solvent, a distribution
known as Donnan equilibrium. Donnan equilibrium is formed
in the system of the two compartments [11,12]. The system
consists of two aqueous phases with water as the solvent
and mobile and immobile ions as solute species. In a multi-
phase system, gas as well as precipitating solids may be
present. Both compartments containing the aqueous solutions
remain electrically neutral. The essential feature of the Donnan
equilibrium is that, due to the macroscopic charge balance in
the separate compartments, immobility of some of the ions
will cause an uneven distribution for the mobile ions too.
This distribution strongly depends on the acidity (pH) of the
system in such cases where dissociating molecules in one of the
compartments may release mobile hydrogen ions, while their
respective (large or bound) counter anions remain immobile due
to the separating membrane. By applying the electroneutrality
condition together with other physical conditions of the
membrane system, the constrained potential method allows the

calculation of the multi-phase Donnan equilibrium with Gibbs
energy minimization. Thus, the distribution of ions in the two
compartments, together with formation of precipitating phases
for example, can be calculated.

In Table 2 an example of the stoichiometric matrix for a
two-compartment Donnan system is presented. For the two
solution phases present, notations ′ and ′′ have been used. The
constancy of the amount of water in the second compartment is
ascertained by setting the respective matrix element to unity. As
there is no molecular mass assigned for this system component,
the mass for the constituent H2O in the second solution volume
(solvent′′) is obtained from the respective system components
O (for oxygen) and H (for hydrogen). The electronic charge of
aqueous ions is introduced to both aqueous phases in terms of
the negative charge numbers, and an additional electroneutrality
condition has been set for the secondary aqueous phase,
denoted in the matrix as q ′′. The immobile anion (Aniona)
has been positioned as a constituent for the secondary aqueous
phase ′′. For clarity, just values different from zero are shown.

With the given matrix conditions, by using Eq. (5) for the
chemical potentials of charged species at equilibrium, we have

μ′′
k = μ0′′

k + RT ln a′′
k

= μ′
k + zkπq′′ = μ0′

k + RT ln a′
k + zkπq′′ (18)

where the chemical potentials of the primary and secondary
aqueous phases have been written in terms of their respective
activities (a′

k and a′′
k ). The additional term (zkπq′′) deduced

from Eq. (5) is due to the supplementary electroneutrality
constraint set for the secondary aqueous phase. Eq. (18) is
comparable to the general form of electrochemical equilibrium
of charged species [11]:

μ0′′
k + RT ln a′′

k = μ0′
k + RT ln a′

k + zk F�ϕ (19)

where F is the Faraday constant and �ϕ is the electrical
potential difference between the primary and secondary
aqueous phases. It follows that the solution of the Gibbsian
problem with the additional electroneutrality constraint gives
this potential difference as the Lagrange multiplier πq′′:

F�ϕ = πq′′ (20)

Similarly, from Eq. (5) one may deduce the chemical potential
of water in the two aqueous phases in terms of the Lagrangian
multipliers. Obviously, these two chemical potentials are not
equal, but differ by the Lagrange multiplier πsolvent′′ . This is
because the Gibbs energy model does not include the effect
of the contractive forces of the membrane system, which
prevent the transport of water from the primary compartment
to the secondary volume. Yet the model can be applied to
determine the activity difference of the two aqueous phases
and thus to define the expected pressure difference in various
membrane systems [12,13]. Assuming incompressibility, i.e.
that the partial molar volume of water is constant in the
moderate pressure range of the membrane systems, we have

−πsolvent′′ = (p′′ − p′)V m
solvent = RT ln

(a′
solvent

a′′
solvent

)
(21)
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Fig. 1. Surface composition and surface tension as a function of bulk composition in a Fe–FeO mixture at 1970 K.

Table 2
Example of the stoichiometric matrix for a Donnan equilibrium system with two membrane-separated compartments containing ionic solutions

O H Na C Ca Solvent′′ Aniona e− q ′′

1. Solution volume

H2O 1 2
H+ 1 −1
OH− 1 1 1
Na+ 1 −1
CO2 2 1
HCO−

3 3 1 1 1
CO2−

3 3 1 2
Ca2+ 1 −2

2. Solution volume

H2O 1 2 1
H+ 1 −1 1
OH− 1 1 1 −1
Na+ 1 −1 1
CO2 2 1
HCO−

3 3 1 1 1 −1
CO2−

3 3 1 2 −2
Ca2+ 1 −2 2
Anion−

a 1 1 −1

CaCO3 CaCO3 3 1 1

The partial molar volume of the solvent (water) is denoted
by V m

solvent. The constraining factor πsolvent′′ emerges as the
potential difference due to the different activities of solvent
water in the two different compartments. Thus, the pressure
drop across the membrane (p′′ − p′) can be calculated on the
basis of either the activities of the solvent in the two volumes
or the potential πsolvent′′ .

An example calculation of the above described Donnan
equilibrium system is a pulp fiber suspension where the fibers
absorb both water and solute ions. Fibers contain carboxylic
acid groups of hemicellulose and phenolic groups of the
lignines. The anions of these groups are generally bound to
the fiber, but the protons of these acidic functional groups
can be dissolved and transferred through the fiber to an
external bulk solution. Charge neutrality prevails both within
the fiber structure and in the external solution, and thus
the dissociation of the functional groups may lead to ion
exchange between the cell structure of the fiber and the bulk
solution. The stoichiometric Donnan equilibrium theory has
been used already by Neale (1929) and Farrar and Neale
(1952) to characterize electrolyte interactions with cellulose

fibers [14,15]. In 1996 Towers and Scallan published their
Donnan model, which could be used to calculate the ionic
distribution of mixtures of mono- and divalent cations and
monovalent anions in pulp suspensions [16]. The solution
model was further extended by Räsänen et al. to include
the presence of multivalent anions as well as the formation
of hydroxyl complexes and ligands [17]. The multi-phase
Gibbs energy model of the fiber suspension, introduced by
Koukkari, Pajarre and Pakarinen (2002), enables the calculation
of the solution equilibria (including the distribution of the
charged species) while precipitating solids and the dissolution
of gaseous constituents are also taken into account [5].

The Gibbs energy model of the fiber suspension is
essentially based on the electrochemical theory described
above, the fibers representing the secondary aqueous phase
containing both mobile and immobile ions. The basic input data
of the multi-phase Donnan model is similar to any characteristic
aqueous solution model, requiring the incoming amounts
of substances and equilibrium temperature and pressure.
The water content of pulp fibers is based on experimental
water retention values and given as additional model input.
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Fig. 2. Measured and modeled concentrations of Na, Ca, Mg, and Mn ions bound by the fibers (f) and in the surrounding solution (s). Experimental results are taken
from Ref. [16]. Low concentrations in the surrounding solutions at pH values above 10 are due to precipitation of hydroxides.

Furthermore, to characterize the immobile anionic species in
the fiber phase, their amounts and Gibbs energy data must
be specified. Unlike the mobile ions and neutral solutes, the
bound acidic groups are included only in the fiber phase.
As no reactions that would change the total amount of these
groups is assumed to take place, the chemical potential of the
undissociated forms of these groups can be set to zero, while
the chemical potential of the anionic forms can be calculated
based on the thermodynamic relation

�Gi = −RT ln Ki (22)

where the acidic dissociation constants (Ki ) and the
corresponding molar amounts are determined experimentally
by potentiometric or conductometric titration. This data is
sufficient to perform the equilibrium calculations, and the
chemical structure of the acids needs not to be known. It
has been found quite customarily that both the Ki -values and
amount of charge are characteristic to a given form of cellulose
or pulp with a known treatment history. Consequently, this
data appears comparable with standard Gibbs energy data of
known substances [18,19]. In Fig. 2, typical ionic distributions
and phase formation in terms of changing pH in various
pulp suspensions have been calculated from thermodynamic
equilibrium data and compared with the experimental results
of Towers and Scallan [16]. The input amounts (Table 3) are
from the same source. At low pH of the external solution,
the acidic groups within the fiber phase remain undissociated,
their anionic charge is small and the cations, such as Ca2+,
Mg2+, Na+ and K+ typically, are evenly distributed between
the fiber and the external solution. With decreasing acidity, the
pH in the external solution is raised and the acid groups in
the fiber are dissociated. This feature triggers the ion exchange
between the two aqueous phases, the protons are transported to
the external solution and the corresponding charge in the fiber
phase becomes compensated with the metal cations. At high
enough pH, precipitating carbonates and hydroxides are formed

Table 3
Input amounts used for pulp suspension model calculations

H2O 89.12 kg
H2Of 1.4 kg
Bound acid (pK = 4) 0.085 mol
Ca(OH)2 0.0282 mol
Mg(OH)2 0.0174 mol
Mn(OH)2 0.00166 mol
NaOH 0.0615 mol
HCl varied for pH control

H2Of denotes the water inside the fibers, H2O the amount of the rest of the
aqueous solution (corresponding to the 1. solution volume in Table 2).

as solid phases. The practical perspective of the multi-phase
equilibria in pulp suspensions lies in the improved control of
pH buffering of paper machines and in metal management of
pulp bleaching solutions [18].

3.3. Reaction rate controlled systems

The conventional method in studies of reaction mechanisms
is to distinguish between the fast (equilibrium) reactions
and the slow (rate controlled) reactions. This has been a
viable approach when applying the stoichiometric method with
explicit reaction equations, with the equilibrium constant data
easily available for the reactions between thermodynamically
well-defined substances and the reaction rate constants usually
deduced from experiment. A similar technique, when applied
with the Gibbsian multi-phase method, would avail a flexible
route to calculate reaction rate controlled systems in terms
of their thermochemical properties. An early approach in
combining reaction rates with multi-phase calculations was the
extension of the stoichiometric matrix of a Gibbsian multi-
component system by the inert image component [20]. The
image method was proven successful in many cases where
the driving force of a single reaction is sufficient for reaching
100% conversion from reactants to products. The introduction
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Table 4
Thermodynamic and kinetic data for TiO(OH)2 calcination reactions

Reaction �H (1000 ◦C) (kJ mol−1) �G(1000 ◦C) (kJ mol−1) Reaction rate equation Ea (kJ mol−1) A (h−1)

TiO(OH)2 ↔ TiO2(An) + H2O ↑ 43.5 −83.6 – – –
TiO2(An) ↔ TiO2(Ru) −6.6 −5.9 ξ = 1 − (1 − kt)3 441.99 1.80E+17

of conservable groups as additional system components to
the stoichiometric matrix in the Lagrangian method of Gibbs
energy minimization was originally used by Alberty [4] to
preserve aromatic rings in a benzene flame model. With a
further matrix extension, this technique was shown to be
applicable to kinetically conserved species [6] and could be
applied to several related problems [7]. In what follows, the
method is shown to include the characteristics of the potential
constraint technique, in the sense that it conserves the (non-
zero) affinity of the rate controlled reactions step as the
additional Lagrange multiplier.

As a simple example, calcination of titanium oxyhydrate
(TiO(OH)2) slurry is considered, referring to the formation
of titanium dioxide powder in a calciner. The feed consists
of (wet) titanium oxyhydrate slurry, the chemical composition
being approximated as TiO(OH)2 ∗ nH2O. During calcination,
the slurry is dried and finally the hydrate decomposes, leaving
the product titanium dioxide in the bed. From the oxyhydrate,
at relatively low temperatures (ca. 200 ◦C) the crystalline
form anatase, TiO2(An), is formed first, and only in the high
temperature zone of the furnace end, the thermodynamically
stable rutile form TiO2(Ru) appears as the desired product. The
reactions are as follows:

TiO(OH)2 ∗ nH2O ↔ TiO2(An) + (n + 1)H2O ↑ (I)
TiO2(An) ↔ TiO2(Ru). (II)

Rutile is the thermodynamically more stable form of these
two titanium dioxide species (Table 4). Thus a thermodynamic
calculation, such as Gibbs free energy minimization, would at
all temperatures result in rutile and water. This would lead to a
100% rutilisation of the titania already at temperatures where
the Ti-oxyhydrate is all but calcined by reaction (I). Yet it
is well known from practical experience that the rutilisation
reaction (II) is slow and only takes place with a finite rate at
elevated temperatures (above 850◦C). The simulation of the
calcination reactions must take this feature into account [21].

In Table 5, the stoichiometry of the calcination system is
presented. The three first columns with system components
oxygen (O), hydrogen (H) and titanium (Ti) show the elemen-
tal abundance-constrained stoichiometry of the equilibrium sys-
tem. The additional column (R) represents the additional kinetic
constraint, affecting the conservation of rutile content in each
Gibbsian calculation sequence.

The formation of the Lagrangian function from Eq. (3)
by using the equilibrium matrix is straightforward, as well
as the solution of the (zero) affinities for the stoichiometric
reactions (I) and (II) from the equilibrium condition in Eq.
(4). (For simplicity, the Ti-oxyhydrate has been written without
the bound water molecules.) When the additional constraint is

Table 5
Stoichiometric matrix for TiO(OH)2 calcination with kinetically constrained
rutilisation

Index (k) Species O H Ti R

1 O2-gas 2 0 0 0
2 H2O-gas 1 2 0 0
3 TiO(OH)2 3 2 1 0
4 TiO2(An) 2 0 1 0
5 TiO2(Ru) 2 0 1 1

Substance index (k) is shown in the left-hand column.

taken into account, the Lagrangian function becomes:

L(n) =
2∑

k=1
nk

(
μ0

k + ln
nk

n1 + n2

)
+

N=5∑
k=3

nkμk

−
l∗=4∑
j=1

π j

(
b j −

N=5∑
k=1

akj nk

)
(23)

where the first term on the right is the chemical potentials of
the two gaseous species in terms of their partial pressures, the
second is formed from the three condensed species, and the last
term is deduced from the mass balances (a single ascending
value has been used for the constituent index k). The total
number of mass balance constraints is l∗ = 4, including the
additional zero-mass ‘rutility’ of the formed titanium dioxide.
From (4) and (23), the following conditions are obtained:

μ4 +
(

μ0
2 + ln

n2

n1 + n2

)
− μ3 = 0 (24)

μ4 − μ5 = π4. (25)

Eq. (24) is the equilibrium condition for the fast reaction (I)
which forms anatase and water from the oxyhydrate at elevated
temperatures. Condition (25) gives the additional Lagrange
multiplier as the affinity of reaction (II) and is dependent on
the value of the constraint b4. In a sequential computation,
the kinetic constraint is defined as a function of the extent
of such a given reaction [bR = f (ξR)] and is set as
the input of the Gibbsian calculation. The reaction rate
parameters of the rutilisation example are given in Table 4,
where the reaction kinetics are deduced from the experimental
study of McKenzie [22] (model of contracting spheres). The
integrated reaction rate is obtained as a dimensionless ‘degree
of rutilisation’, which equals the extent of reaction (II). At each
sequence of calculation, the constraint b4 = ξ× (number of
TiO(OH)2 moles in the input). As ξ is dimensionless, the unit
of bR is moles.

With the procedure described above, the kinetically
constrained Gibbs energy calculation can be performed in
a sequential procedure, provided that there is a means to
define the value of the additional system component (bR) as



P. Koukkari, R. Pajarre / Computer Coupling of Phase Diagrams and Thermochemistry 30 (2006) 18–26 25

Fig. 3. Measured points and model curves for the rutile fractions are presented at four temperatures (left). The respective Gibbs energies of the system at the same
temperatures are calculated as monotonically descending curves (right).

program input. For the ChemApp program, which applies the
Lagrange method and is hence suitable for the calculation
of the constrained problems, we have developed a more
indirect procedure, which allows for the control of a kinetically
constrained reaction either in its forward or reverse mode [7,9,
23].

The thermodynamic (Gibbs energy) data for the species are
from standard sources [26], yet the estimates for the standard
enthalpy, entropy and heat capacity of TiO(OH)2 were used
as in [24]. The kinetic calculation is then performed in 60
steps with 10 min intervals to cover the experimental data of
McKenzie, ranging up to 10 h at 995 ◦C. For each step, the
Gibbs energy of the system is minimized and, as a result, the
composition and the Gibbs energy of the system are calculated.
The calculation method has been described in more detail
in [23]. The results are shown in Fig. 3. The rutile fraction rises
from zero to one according to the given reaction rate. It is worth
noticing that, with the Gibbsian approach, the thermodynamic
properties of the system also become calculated for each
sequential step. The Gibbs energy of the reactive system is a
monotonically descending curve at any constant temperature.
As the anatase-rutile transformation is an exothermic reaction,
it is of practical interest to also follow the enthalpy change of
the system during the gradual process.

Additional constraints may be set to include a more complex
reaction mechanism. Each kinetically conserved species will
then be annexed to a rate constraint [23]. It seems viable that
a systematic approach, which embeds the necessary reaction
rates as source terms to the multi-phase Gibbsian calculation,
can be developed on the basis of the additional constraints. It
is emphasized, however, that the method provides a technique
to connect the experimentally found reaction rates with the
thermodynamic calculation, but includes no attempt to predict
reaction rates from thermochemical theory.

4. Summary

The method of constrained potentials provides an extension
of the applicability of the Gibbs energy minimization
method to a variety of problems encountered in chemical
thermodynamics. A common feature of all these problems is
that there is a conservation factor additional to that of mass
balance. Above, we have presented three examples, where

Table 6
Potential constraints for surface energy, electro-chemical and reaction rate
systems

System Constraint Potential equation

Surface
∑

k Ak ns
k = A σ · A0 = πsurface

Electro-chemical
∑Nα

k=1 zknk = 0 Fϕα = πq−α

Kinetic
∑

k vkr nk = br
∑

Reactants νkr μkr −∑
Products νkr μkr = πR

the additional conservation clause follows from surface area,
electroneutrality or due to reaction rate. The respective Gibbs
energy factor is then surface energy, electrochemical potential
and affinity of the kinetically constrained reaction. This
potential becomes solved during the Gibbs energy minimization
as the additional Lagrange multiplier. A summary of the three
examples with the additional constraints and the respective
potential factors is given in Table 6.

For the equilibrium systems in Table 6, i.e. the surface
energy and electrochemical systems, the equations relating
the Lagrange multiplier and the respective physical quantity
seem to be unambiguous in the form presented. For those
systems, generally one single constraint is necessary. As for
systems constrained by reaction rate, the equation presented in
Table 6 is valid for a single stoichiometric reaction, with the
constraint set for one of the reaction products as was given in
the example of anatase-rutile transformation. When considering
a mechanism with more than one linearly independent rate
controlled reaction, an equal number of constraints needs to be
defined into the Gibbsian system, and the respective relation
between the affinities of these reactions and the constrained
potentials (πr ) in terms of their stoichiometric coefficients is
then applicable [23].

The method of constrained potentials avails the possibility
for quantitative Gibbs energy calculations of several new
phenomena with a wide scope of practical applications.
From the examples presented above, the surface tension of
metals and alloys, including that of steel, can be deduced
in various conditions. As the surface energy becomes more
dominant for material properties with decreasing particle/grain
size, an interesting application is the phase behavior and
properties of nano-size particles [25]. As for electrochemistry,
the approach of constrained potentials has enabled the pH-
dependent solubility and ion exchange models for pulp
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suspensions and other membrane separated systems (e.g. [18]).
One may expect similar applications in related electrochemical
problems. The constraining of reaction rate-dependent affinities
in the Gibbsian calculation extends the applicability of the
thermodynamic method to process simulations in systems
where it is essential to follow both chemical and energy changes
and their interdependence. Finally, as there are many analogous
phenomena in chemical thermodynamics where an additional
displacement factor affects the chemical potential of one or
several species, we expect that the method presented will also
find applications other than those mentioned in this text.

References

[1] G. Eriksson, Chem. Scripta 8 (1975) 100–103.
[2] S.M. Walas, Phase Equilibria in Chemical Engineering, Butterworth

Publishers, Stoneham, 1985.
[3] W.R. Smith, R.W. Missen, Chemical Reaction Equilibrium Analysis:

Theory and Algorithms, Krieger Publishing Company, Malabar, Florida,
1991.

[4] R.A. Alberty, J. Phys. Chem. 93 (1989) 413–417.
[5] P. Koukkari, R. Pajarre, H. Pakarinen, J. Solution Chem. 31 (2002)

627–638.
[6] R. Pajarre, Modelling of equilibrium and non-equilibrium systems by

Gibbs energy minimization, Master’s Thesis, Helsinki University of
Technology, Espoo, 2001.

[7] P. Koukkari, R. Pajarre, K. Hack, Z. Metallkd. 92 (2001) 1151–1157.

[8] R. Pajarre, P. Koukkari, T. Tanaka, Y. Lee, CALPHAD (in press).
[9] http://www.gtt-technologies.de/ .

[10] T. Tanaka, S. Hara, Z. Metallkd. 90 (1999) 348–354.
[11] E.A. Guggenheim, Thermodynamics, 6th ed., North Holland Publishing

Company, Amsterdam, New York, Oxford, 1975.
[12] F. Helfferich, Ion Exchange, Dover Publications, Mineola, New York,

1995.
[13] R. Pajarre, P. Koukkari, J. Mol. Liq. (in press).
[14] S.M. Neale, J. Textile I. 20 (1929) 373.
[15] J. Farrar, S.M. Neale, J. Colloid. Sci. 7 (1952) 186–195.
[16] M. Towers, A.M. Scallan, J. Pulp Pap. Sci. 22 (1996) J332–J337.
[17] E. Räsänen, P. Stenius, P. Tervola, Nord. Pulp Pap. Res. J. 16 (2001)

130–139.
[18] P. Koukkari, R. Pajarre, E. Räsänen, in: T.M. Letcher (Ed.), Chemical

Thermodynamics in Industry, Royal Society of Chemistry, Cambridge,
2004, pp. 23–32.

[19] E. Räsänen, Modelling ion exchange and flow in pulp suspensions,
Doctoral Thesis, Helsinki University of Technology, VTT Publications
495, Espoo, 2003.

[20] P. Koukkari, Comput. Chem. Eng. 17 (12) (1993) 1157–1165.
[21] M. Ketonen, P. Koukkari, K. Penttilä, The European Control Conference,
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Abstract

The surface tension in metallic alloy systems is modelled by applying a direct Gibbs energy minimisation technique to the surface monolayer
model. The model results are compared with previously published experimental values for the Bi–Sn system as well as surface tension values
determined by the authors using the sessile drop method for the ternary Ag–Au–Cu system.
c© 2005 Elsevier Ltd. All rights reserved.

Keywords: Surface tension; Gibbs energy minimisation; Metal alloys

1. Introduction

Information about the surface tension of metal alloy systems
is essential for understanding and prediction of things such
as wettability, crystal growth or phase properties of nanoscale
particles. A commonly used assumption is that the surface
can be modelled as a single monolayer. The purpose of this
work is to show how the monolayer model can handled by
normal thermodynamic equilibrium programs based on the
minimisation of the total Gibbs energy of the system. The
model results are compared with experimental data in two
example cases.

2. Experimental

Experimental surface tension values for the Ag–Au–Cu
system were determined by the sessile drop method at 1381 K.
The shape of metal alloy drops of about 6–8 mm in equatorial
diameter and 4–6 mm in height was determined using a CCD
camera and image analysis software and the drop shape was

∗ Corresponding author. Tel.: +358 20 722 6332; fax: +358 20 722 7026.
E-mail address: risto.pajarre@vtt.fi (R. Pajarre).

1 Present address: Division of Materials Science and Engineering,
Korea University, 5-1 Anam-dong, Sungbuk-ku, Seoul 136-701, Republic of
Korea.

used to calculate the surface tension of the alloy. A detailed
description of the experimental procedure can be found in
Ref. [1].

3. Theory

3.1. Basic thermodynamic relations

If a system containing a surface is considered as being
comprised of two parts (phases), a surface layer (s) and an
isotropic bulk (b), the total Gibbs energy of the system can be
written as

G =
∑

i
niμi + Aσ =

∑
i

nb
i μi +

∑
i

ns
i μi + Aσ (1)

where ni is the molar amount and μi the chemical potential of
species i , σ the surface tension in the system and A the surface
area. If the surface phase is considered to be of a monolayer
thickness, Eq. (1) can be rewritten in a form

G =
∑

i
nb

i μi +
∑

i
ns

i (μi + Aiσ) (2)

where Ai is the molar surface area of the species i . The
chemical potential of species i in the bulk phase can be written
as

μi = μ0
i + RT ln ab

i (3)

0364-5916/$ - see front matter c© 2005 Elsevier Ltd. All rights reserved.
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Table 1
Presentation in a matrix form of stoichiometries in a system with a bulk phase and a surface phase, N species and M components

Component (1) Component (2) · · · Component (M) Area

Bulk Species (1) v11 v12 · · · v1M 0
Species (2) v21 v22 · · · v2M 0
.
.
.

.

.

.
.
.
.

. . .
.
.
.

.

.

.

Species (N) vN1 vN2 · · · vN M 0

Surface Species (1) v11 v12 · · · v1M A1/A0
Species (2) v21 v22 · · · v2M A2/A0
.
.
.

.

.

.
.
.
.

. . .
.
.
.

.

.

.

Species (N) vN1 vN2 · · · vN M AN /A0

and in the surface phase as

μi = μ
0,s
i + RT ln as

i − Aiσ. (4)

By applying Eqs. (3) and (4) for the case of a pure one-
component system, a relationship between the standard states
of the bulk and surface phase can be derived:

μ
0,s
i = μ0

i + Aiσi . (5)

By combining Eqs. (1), (3) and (4), the total Gibbs energy of
the system can be given in a simple form that does not explicitly
include the surface tension term:

G =
∑

i
nb

i (μ
0
i + RT ln ab

i ) +
∑

i
ns

i (μ
0,s
i + RT ln as

i ) (6)

while from Eqs. (3)–(5) one obtains

μ0
i + Aiσi + RT ln as

i − Aiσ = μ0
i + RT ln ab

i

⇒ σ = σi + RT
Ai

ln
as

i
ab

i
(7)

an equation first derived by Butler [2], and used extensively in
calculating surface tension in various mixtures, including metal
alloy systems [3].

3.2. Use of Gibbs energy minimiser for surface equilibria
calculations

When a Gibbs energy minimiser is used to solve chemical
equilibrium states, the total Gibbs energy is usually calculated
as

G =
∑
α

∑
i

nα
i μi (over all phases (α) and species (i)

present in the system) (8)

where the chemical potentials of the species are calculated from
supplied thermodynamic data using an equation of the type or
equivalent to

μα
i = μ

0,α
i (T, p) + RT ln xα

i γ α
i . (9)

Comparing Eqs. (2), (4) and (9), one can see that the chem-
ical potential for a species in the surface phase as calculated by
a Gibbs energy minimiser would really be the total molar Gibbs
energy of the surface species, marked here with μ∗

i :

μ∗
i ≡ μi + Aiσ. (10)

For a traditional chemical equilibrium calculation the mass
balance relations restricting the possible states can be given in
the form∑

α

∑
i

vik nα
i − bk = 0 (for all components k) (11)

where bk is the total molar amount of component k and vik the
stoichiometric coefficient between species i and component k.
The condition of constant total surface area can be stated in a
similar form as∑

i
Ai ns

i − A = 0 (12)

or alternatively as∑
α

∑
i

Aα
i nα

i − A = 0 (13)

where the molar surface for any species in any non-surface
phase α is zero. A is the total surface area of the system. As
the constant surface area condition (Eq. (13)) is of the same
form as the traditional mass balances (Eq. (11)), it can for the
mathematical handling of the system be combined with them by
considering the surface area as a new component in the system.
In the Table 1 this is presented in a matrix form; the species in
the system are presented as rows and the conserved components
as columns.

In Table 1 A0 is a normalisation constant with dimensions of
m2/mol. The numerical value of A0 is in principle arbitrary, but
for the best numerical performance of Gibbs energy minimisers
it is generally best to choose the value so that the resulting
Ai/A0 values are fairly near to unity.

In a chemical equilibrium state, in addition to species
and phases, chemical potentials can also be defined for the
different components in the system [4]. The chemical potential
of individual species are related to the chemical potentials of
the components by Eq. (14)

μi =
∑

k
vikπk (14)

where πk is the chemical potential of the component k, and vik
the stoichiometric coefficient between species i and component
k.
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Table 2
Required data for calculations in Bi–Sn binary system from Refs. [4,5]

VBi (m3/mol) = 0.0000208 ∗ (1 + 0.000117 ∗ (T/K − 544)) [5]
VSn (m3/mol) = 0.000017 ∗ (1 + 0.00087 ∗ (T/K − 505)) [5]
σBi (N/m) = 0.378 − 0.00007 ∗ (T/K − 544) [5]
σSn (N/m) = 0.56 − 0.00009 ∗ (T/K − 544) [5]
GExcess (J/mol) = xBixSn L [6]
L (J/mol) = 490 + 0.97T + (xBi − xSn)(−30 − 0.235T )

Applied to the surface system, Eq. (14) can be stated for a
bulk species as

μi =
M+1∑
k=1

vikπk =
M∑

k=1
vikπk (15)

and for the surface species as

μ∗
i =

M+1∑
k=1

vikπk =
M∑

k=1
vikπi + Ai

A0
πarea (16)

where πarea is the chemical potential of the new component
defined to fix the total surface area of the system.

Finally, from Eqs. (15), (10) and (16) we have the equalities

πarea/A0 = (μ∗
i − μi )/Ai = σ. (17)

The chemical potential (divided by the normalisation
constant A0) of the new ‘area’ component is equal to the surface
tension of the system.

4. Results

As examples we consider a binary and a ternary alloy system
in the liquid state. The method described above is applied to
calculate the surface tension and composition of Bi–Sn and
Ag–Au–Cu melts in temperatures where experimental surface
tension data are available for these mixtures.

4.1. Bi–Sn liquid binary system at 608 K

The thermodynamic and other physical data required to
make the calculations in the Bi–Sn system are presented in
Table 2.

The molar surface areas are calculated from the molar
volume data using Eq. (18) where Na is Avogardo’s number.

Ai = 1.091 · N1/3
a V 2/3

i . (18)

The resulting surface areas at 608 K are ABi =
70 028 m2/mol and ASn = 64 499 m2/mol. By choosing
the value 10 000 m2/mol for the normalisation factor A0 the
stoichiometric definitions for the system at 608 K are as
presented in Table 3.

Normal standard state values can be used for the bulk phase
(although for the purpose of calculating surface tension and
equilibrium composition they could also be set to zero), while
the standard state values for the surface phase need to be
adjusted using Eq. (5). The excess Gibbs energy for the bulk

Table 3
Stoichiometry of the Bi–Sn system at 608 K

Bi Sn Area

Bulk Bi(l) 1 0 0
Sn(l) 0 1 0

Surface Bi(l) 1 0 7.0028
Sn(l) 0 1 6.4499

Table 4
Calculated chemical potentials of the surface component and the surface
tensions as a function of Sn content of the Bi–Sn binary alloy

X (Sn) πarea (J/mol) πarea/Ao = σ (N/m)

0 3736.71 0.3737
0.05 3769.70 0.3770
0.1 3803.93 0.3804
0.15 3839.54 0.3840
0.2 3876.66 0.3877
0.25 3915.50 0.3915
0.3 3956.28 0.3956
0.35 3999.33 0.3999
0.4 4045.01 0.4045
0.45 4093.82 0.4094
0.5 4146.41 0.4146
0.55 4203.61 0.4204
0.6 4266.53 0.4267
0.65 4336.72 0.4337
0.7 4416.33 0.4416
0.75 4508.53 0.4509
0.8 4618.17 0.4618
0.85 4753.25 0.4753
0.9 4928.10 0.4928
0.95 5171.49 0.5171
1 5542.38 0.5542

Table 5
Molar volume and surface tension data for the Ag–Au–Cu system

VAu (m3/mol) = 11.3 ∗ (1 + 0.8/10 000 ∗ (T/K − 1337.33))/1000 000 [5]
VAg (m3/mol) = 11.6 ∗ (1 + 0.98/10 000 ∗ (T/K − 1234.93))/1000 000 [9]
VCu (m3/mol) = 7.94 ∗ (1 + 1/10 000 ∗ (T/K − 1357.77))/1000 000 [9]
σAu (N/m) = 1.33 − 0.00014 ∗ T/K [5]
σAg (N/m) = 1.207 − 0.000228 ∗ T/K [9]
σCu (N/m) = 1.585 − 0.00021 ∗ T/K [9]

is calculated as given in Table 2, but the excess energy for the
surface phase is modified by using Eq. (19):

GExcess
surface = β · xs

Bix
s
SnL (19)

where the factor β with a numerical value of 0.83 [3] is used
to approximate the effect that the reduced coordination number
of metal atoms on the surface as well as that of reconfiguration
has on the excess Gibbs energy.

The calculation results for the example system are as shown
in Table 4 and in Fig. 1. The calculations were made using
the ChemSheet program [7] that is based on the ChemApp [7]
thermodynamic program library.



R. Pajarre et al. / Computer Coupling of Phase Diagrams and Thermochemistry 30 (2006) 196–200 199

Fig. 1. Calculated surface tension values (left) and surface layer composition (right) as a function of bulk composition in the Bi–Sn system. Experimental surface
tension values are from Ref. [8].

Fig. 2. Calculated surface tension values compared to experimental values measured by the authors (left) and the dependency of the surface molar fraction of copper
from bulk composition (right) in the Ag–Au–Cu ternary system.

Table 6
Interaction parameters for the Ag–Au–Cu system
0 LAg,Au = −16 402 + 1.14T/K [11]
0 LAg,Cu = 17 384.37 − 4.46438T/K [10] 1 LAg,Cu = 1660.74 − 2.31516T/K [10]
0 LAu,Cu = −27 900 − T/K [12] 1 LAu,Cu = 4730 [12] 2 LAu,Cu = 3500+3.5T/K [12]
0 LAg,Au,Cu = 10 000 [10] 1 LAg,Au,Cu = −105 000 + 30T/K [10] 2 LAg,Au,Cu = −1000 [10]

4.2. Ag–Au–Cu liquid ternary system at 1381 K

Molar volume and surface tension data required for the
calculations in the Au–Ag–Cu system are presented in Table 5.

The excess Gibbs energy values for the bulk phase are
calculated using Eq. (20) [10]:

GExcess (J/mol) =
∑

i

∑
j>i

xi x j Li, j + xi x j>i xk> j Li, j,k . (20)

The binary and ternary interaction parameters have a
Redlich–Kister type dependency on the composition (Eqs. (21)
and (22)):

Li, j =
∑
v

(xi − x j )
v v Li, j (21)

Li, j,k = xi
0 Li, j,k +x j

1Li, j,k +xk
2 Li, j,k . (22)

The interaction parameters are listed in Table 6.
For the surface phase the excess Gibbs energy is modified

as in previous example by multiplying the excess energy

expression with β = 0.83. Modelled surface tension values
are compared with experimental results in Fig. 2. There is
a fairly large amount of scatter in the experimental surface
tension results. More precise measurements are currently being
conducted in Osaka University using the constrained drop
method [13]. Also modelled dependencies of surface mole
fraction of copper from the bulk fraction are shown for different
Ag/Au ratios.

5. Conclusions

The stoichiometric conservation matrix of a Gibbs energy
minimising program can be extended to include a surface
monolayer as a separate phase while the constraint of constant
surface area is included by adding a new component in the sys-
tem. A single equilibrium calculation then results in the equilib-
rium composition of the bulk and surface phases. The surface
tension of the mixture is received from the chemical potential
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of the new area component. The model is consistent with the
Butler monolayer model for surfaces while the use of a gen-
eral Gibbs energy minimiser makes it easier to handle systems
with multiple components and complex non-ideal mixing ener-
gies. The example cases considered in the paper are metal alloy
systems with a particularly simple relation between the expres-
sions of excess Gibbs energies in the bulk and in the surface, but
the method is also directly extendable to other systems where
more complex relations for Gibbs excess energies for the sur-
face layer have been derived, such as ionic melts [14].
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Abstract

Donnan equilibrium based models can be used to predict ion-exchange related phenomena within many application fields. In this paper, a

method for doing Donnan equilibrium calculations using Gibbs energy minimization is presented. With this approach, it is possible to solve

Donnan equilibrium systems with complex solution or multiphase chemistry using Gibbs energy minimizing programs.
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1. Introduction

Donnan equilibrium based models have been used to model

ion exchange phenomena in industrial pulp and papermaking

processes [1], in basic research of polyelectrolytes [2] and

membrane equilibrium with ionic drugs [3]. In some of these

situations, the overall chemistry of the system can be quite

complex with multiple components and phases and non-ideal

interactions in solutions. As advanced computer programs and

databases have been developed for solving multi-component

and multi-phase equilibria problems, it has been the purpose of

this work to show how a general purpose Gibbs energy

minimizing program can be used for equilibrium calculations

in systems where the Donnan equilibrium applies.

2. Theory

2.1. Donnan equilibrium

Electrochemical systems consisting of two parts where one or

more charged species are restricted to one part of the system by a

semi-permeable membrane were first investigated by Donnan in

early 20th century [4]. It has been later shown that the same basic

relations can also often be applied to model systems where the

confinement of some ionic species is caused, not by amembrane,

but by chemical bonding to a macromolecular structure. The

essential feature of Donnan equilibrium is that because all

macroscopic parts of the systemmust remain electrically neutral,

the binding of some of the ions into one part of the system will

cause an uneven distribution also for the freely mobile ions. The

equilibrium distributions between different solution volumes

will be defined by their electrochemical potentials

l14V ¼ l0i Vþ RT lnaiVþ ziFwV ð1Þ
¼ li4W ¼ l0i Wþ RT lnaiWþ ziFwW

where li* is the electrochemical potential, li
0 the standard state

chemical potential, aiVthe activity and zi the charge of species i, F
Faraday’s constant and w the electrical potential. Superscripts V
and W denote the two solution volumes. Rearranging Eq. (1), a

relation for the equilibrium activities of solutes in the two

solution volumes is reached:

aiW
aiV

¼ exp
l0i V� l0i Wþ ziF wV� wWð Þ

RT

� �
ð2Þ

With the equality of standard state chemical potentials, Eq.

(2) can be simplified further

aiW
aiV

¼ exp
ziF wV� wWð Þ

RT

� �

¼ exp
F wV� wWð Þ

RT

� �� �zi

ukzi ð3Þ

where the characteristic constant k is the same for all mobile

solute species for any given state of the system.

0167-7322/$ - see front matter D 2005 Elsevier B.V. All rights reserved.

doi:10.1016/j.molliq.2005.11.016

* Corresponding author. Tel.: +358 9 456 6332; fax: +358 20 722 7026.

E-mail address: Risto.Pajarre@vtt.fi (R. Pajarre).

Journal of Molecular Liquids 125 (2006) 58 – 61

www.elsevier.com/locate/molliq

mailto:Risto.Pajarre@vtt.fi
http://www.elsevier.com/locate/molliq


2.2. Gibbs energy minimization

Computer programs that can calculate the equilibrium state

of a chemically reactive system by minimizing its overall

Gibbs energy have been in active use since the 1950’s. For

such programs, two kinds of data are needed for calculations: a

listing of phases and their constituent species together with

their stoichiometries with respect to the chemical elements or

other fundamental components they can be considered to be

formed of, and functions for calculating the chemical potentials

(molar Gibbs energies) of each species as a function of

temperature, pressure and phase composition. The stoichio-

metric data for the system can be presented in a matrix format,

an example of which is given in Table 1.

The equilibrium composition of a system defined in this

way (with N possible species and M elements or other

components) can be derived by solving the nonlinear optimi-

zation problem of finding the minimum of the total Gibbs

energy of the system:

G ¼
XN
i¼1

nili ð4Þ

subject to the constraints that the molar amount of no species

can be negative

ni � 0 ð5Þ
and that the total amounts of all components in the system are

conservedXN
i¼1

aijni ¼ bj ð6Þ

where aij is the stoichiometric coefficient of species i with

respect to element j and bj the total amount of element j in the

system. Because the change in Gibbs energy for every reaction

among the species that are present in the system is zero at

equilibrium, chemical potentials (molar Gibbs energies) can

also be defined for each component in the equilibrium system

[5] so that they satisfy the relation

li ¼
XM
j¼1

aijpj ð7Þ

where pj is the chemical potential of component j and li the

chemical potential of any species i present in the system.

2.3. Gibbs energy model for Donnan equilibrium

For calculations with Donnan equilibrium, two separate

solution phases are defined in the system as separate phases

(Table 2). All mobile solutes are present in both phases and

normally, as the solvent is the same in both, the thermodynamic

data for the solutes in both phases are identical as well. The

immobile ions have been defined as species for only one of the

phases. Two other modifications to the stoichiometries in the

system are needed. To ensure that not only the system as a whole

but also both solution volumes separately remain electrically

neutral, a new component for the charge in the second solution

volume is added. A second new component is introduced to

prevent the free movement of the solvent from one side to the

other. Without this last added constraint, all the solvent would

Table 1

A representation of a simple chemical system consisting of an aqueous solution

and a solid precipitate

O H Na C Ca N e�

Aqueous solution H2O 1 2

H+ 1 �1

OH� 1 1 1

N2 2

O2 2

Na+ 1 �1

CO2 2 1

HCO3
� 3 1 1 1

CO3
2� 3 1 2

Ca2+ 1 �2

CaCO3 CaCO3 3 1 1

Table 2

The chemical system of Table 1 divided to two volumes with an added ion (Aniona
�) that cannot be transferred from the second sub-volume to the first one

O H Na C Ca solvent2 Aniona e� charge2

(1) Solution volume H2O 1 2

H+ 1 �1

OH� 1 1 1

Na+ 1 �1

CO2 2 1

HCO3
� 3 1 1 1

CO3
2� 3 1 2

Ca2+ 1 �2

(2) Solution volume H2O 1 2 1

H+ 1 �1 1

OH� 1 1 1 �1

Na+ 1 �1 1

CO2 2 1

HCO3
� 3 1 1 1 �1

CO3
2� 3 1 2 �2

Ca2+ 1 �2 2

Aniona
� 1 1 �1

CaCO3 CaCO3 3 1 1
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typically transfer to the volume containing the immobile ions to

make the solution there as dilute as possible (lowering the Gibbs

energy of the solvent), a behaviour in real cases generally

prevented by a build up of a pressure difference. It could be

argued that this last constraint should be for the total volume of

the solution in the restricted sub-volume and not just for the

molar amount (volume) of the solvent, but the practical problems

that the authors have worked with have been with systems that

are relatively dilute (especially regarding the bound ions) and

where the solution sub-volumes are not very accurately defined.

For these purposes, the numerically simple system described in

Table 2 is both sufficient and preferable.

With the system definitions described in Table 2, the

equilibrium distribution of solutes calculated by minimizing

the total Gibbs energy of the system will follow the relation

given by Eq. (8)

l2i ¼ l0;2i þ RT lna2i ¼ l1i þ zipcharge2

¼ l0;1i þ RT lna1i þ zipcharge2 : ð8Þ
The relation between activities in the two solution volumes

is therefore

a2i
a1i

¼ exp
l0;1i � l0;2i þ zipcharge2

RT

 !
ð9Þ

that can be further simplified when the standard states are equal

to

a2i
a1i

¼ exp
zipcharge2

RT

� �
¼ exp

pcharge2
RT

� �� �zi
: ð10Þ

Comparing Eqs. (3) and (10), we can note the equality

F w1 � w2
� � ¼ pcharge2 ð11Þ

which means that the chemical potential of the new component,

used for differentiating charges of the species in the two sub-

volumes in the system, is directly proportional to the electrical

potential difference between those two volumes.

For the solvent, the calculated chemical potentials in the two

volumes will differ by the amount of the chemical potential of

the new component defined to fix the amount of the solvent in

one of the phase volumes.

l1s ¼ l0s þ RT lna1s ð12Þ

l2s ¼ l0s þ RT lna2s ¼ l1s þ psolvent2 ð13Þ
Naturally, the actual chemical potential of the solvent must

be the same in both parts of the equilibrium system. The

calculated chemical potentials differ because they do not

include the effect of the constraining force required to prevent

the flow of the solvent from the first solution phase volume to

the second one. If the solvent is considered incompressible, the

actual equilibrium condition is

l2s ¼ l0s þ RT lna2s þ Vm
s p2 � p1
� � ¼ l1s : ð14Þ

Comparing Eqs. (13) and (14), we obtain an equation for the

relationship between the calculated chemical potential of the

component restricting the movement of the solvent in the

model and the pressure difference actually required to have the

solvent in equilibrium when the solute concentrations are

unequal

p2 � p1 ¼ � psolvent2
Vm
s

: ð15Þ

In the discussion above, it has generally been assumed that

the solute standard state values are the same on both sides of

the system. This is what one would expect if the partitioning

membrane or other structural feature that makes some of the

ions non-mobile does not prevent the movement of the solvent

molecules. However, the standard state values could also be

adjusted to reflect observed partition coefficients as in the

Donnan equilibrium based modelling work for ionic drugs in

Ref. [3] where hydrophobic interactions between a fixed

charged membrane and drug molecules are taken into account

by using partition coefficients of this kind. Finally, while the

model has been presented for the case of two solution volumes,

the extension to an arbitrary number of volumes is straightfor-

ward, requiring two additional components for each added sub-

volume (phase).

3. Results and discussion

Thermodynamic models as described above have been used

by the authors in co-operation with other researchers [1,6] to

model ion-exchange phenomena in pulp suspensions in

conditions relevant to practical industrial processes. In those

models, the two (aqueous) solution volumes are the water

contained by the fibres themselves and the surrounding water

in the suspension. The immobile ions are organic acidic groups

that are chemically bound to the fibre structure. pKa values

determined by titration are used to set suitable thermodynamic

values for the dissociation of these acids while standard state

values acquired from various published data compilations are

used for the other solutes, gaseous species and potential

precipitates. Equal standard state values have been used for the

ESA/CaCO3/HCl
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Fig. 1. Modelled and measured Ca concentrations in a CaCO3 containing pulp

suspension as function of pH. Modelled amounts of remaining solid CaCO3 are

also shown.
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two aqueous volumes. The activity coefficients for the ions

have been modelled using the Pitzer equations [7], which

reduce to activity coefficient expressions similar to the Davies

equation in dilute solutions or when no ion-specific interaction

parameters are available. The equilibrium calculations have

been done mostly using ChemSheet [8], which is a part of the

widely used Solgasmix/ChemSage/ChemApp program fami-

ly—in principle, any Gibbs energy minimizer program that

allows the user to define stoichiometries and thermodynamic

data for the phases and their constituents could be used.

Modelled and experimental Ca concentrations together with

the modelled solid CaCO3 amount in a 1% consistency

eucalyptus sulphate pulp suspension containing CaCO3 are

shown in Fig. 1. The CaCO3 content is 0.05 mol/(kg of dry

fibre), while the acidic group content of the fibre is 0.067 mol/

(kg of dry fibre). The amount of bound water in the fibre was

estimated to be 1 kg/(kg of dry fibre). The experimental results

are from Ref. [9]. The Ca content in the solution rises with the

pH value, first with the dissolving CaCO3 and then as the

acidic groups become deprotonated releasing the Ca-ions

bound by the fibres at higher pH values.

Modelling results for a 4.8% consistency pulp suspension

treated with EDTA chelating agent are shown in Fig. 2. At very

low pH, the organic acids are not deprotonated and the metal

concentrations would be expected to be roughly equal in the

fibres and in the surrounding solution. With increasing pH, the

negatively charged fibres will attract cations, the effect as

described by Eqs. (3) and (10) being stronger for divalent than

monovalent ions. Formation of negatively charged complexes

with EDTA explains why a larger fraction of Ca than Mg

remains in the solution with pH values greater than 4.

In general, the thermodynamic model presented here has

been found to be able to give useful results on pH values and

concentrations of inorganic ions in pulp suspensions, though

both kinetic effects and complex interactions with various

organic components in the system can affect the accuracy of

the model predictions [1,11]. The models have been applied to

planning and modelling of actual industrial pulp and paper-

making processes [12,13].

4. Conclusion

A computational model for solving multi-phase chemical

equilibrium problems with Donnan ion-exchange phenomena

has been constructed. Using the model, it is possible to

consider ion-exchange effects in chemical systems using

commercially available Gibbs energy minimizers. In the field

of pulp and paper industries, the resulting models have been

used to simulate both laboratory experiments and planned and

existing industrial processes. The method could be expected to

be useful in other areas where Donnan type ion-exchange

equilibrium needs to be considered in chemically reactive

systems.
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[10] E. Räsänen, L. Kärkkäinen, J. Pulp Pap Sci. 29 (6) (2003) 196.

[11] E. Räsänen, Modelling Ion Exchange and Flow in Pulp Suspensions

(Doctoral Thesis, Helsinki University of Technology), VTT Publications

495, Espoo, Finland, 2003.

[12] A. Weaver, A. Kalliola, P. Koukkari, Third Major Pira International

Conference of Scientific and Technical Advances in Wet End Chemistry,

Wien, Austria, 2002.
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a b s t r a c t

Computational methods in chemical equilibrium thermodynamics have found numerous application
areas in diverse fields such as metallurgy, petrochemistry, the pulp and paper industry, the study of
advanced inorganic materials, environmental science and biochemistry. As many of the cases of interest
are not actually in equilibrium, there is a need for methods that extend the application area of multi-
phase equilibrium solvers to non-equilibrium systems. Likewise there is a need for efficient handling of
thermochemical systems that are described by parameters other than those most commonly associated
with Gibbs energy, namely temperature, pressure and fixed elemental (and charge) balances.

In the work computational methods and related theory are presented that can be used with a
standard Gibbs energy minimiser to solve advanced thermochemical problems. The actual calculations
have been performed using the ChemSheet software, but the presentation has aimed to be generic and
applicable to other thermochemical codes that allow the user to define thermodynamic data and the
stoichiometries of the constituent species in the system.

The examples discussed include electrochemical Donnan equilibrium (particularly applied to aqueous
pulp suspensions), surface and interfacial energies of liquid mixtures, systems affected by external
magnetic fields and systems with time-dependent reaction extents and diffusion-constrained para-
equilibrium. A number of practical applications have been achieved with the models that combine
reaction kinetics with partial thermodynamic equilibrium calculation and ion exchange models based on
Donnan equilibrium, that have both been applied with success in real-life industrial design and devel-
opment work with multicomponent, multiphase systems. The method has been successfully applied to
liquid surface energies of systems with multiple components and complex non-equilibrium data.

& 2016 Elsevier Ltd. All rights reserved.

1. Introduction

Computational chemical equilibrium thermodynamics has
been applied extensively in diverse fields such as metallurgy,
petrochemistry, the pulp and paper industry, the study of
advanced inorganic materials, environmental science and bio-
chemistry (Jäntschi and Bolboacă, 2014; Gmehling, et al., 2012;
Letcher, 2004; Hack, 2008; Alberty, 2003). Efficient and practical
models have been developed for complex mixtures for high

temperature slags and melts as well as concentrated aqueous
solutions while simultaneously the multicomponent methodology
has been successfully applied to various interrelated material
properties. Thermodynamic databanks cover fields for many
classes of substances ranging from organic and biochemical sys-
tems to various inorganic and metallurgical materials. The sys-
tematic data storage and management in connection with the
increasing numerical capability of modern computers enables
treatment of the thermochemistry of complex systems as a whole.
Thus, accurate theoretical studies of the phase stability and equi-
libria of systems with a great number of chemical components can
be made. The progress is not surprising considering the general
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applicability of the thermodynamic relations, theoretical and data
development over a century and finally the rapid improvements in
computational methods during the last few decades. A large
number of computer codes and programmes have also been
developed for accurate handling of thermochemical systems and
effective, robust and practical determination of the equilibrium
state based on the minimisation of the Gibbs free energy of the
system.

As many of the cases of interest are not in actual equilibrium,
there is a need for methods that extend the application area of
chemical equilibrium solvers to non-equilibrium systems, includ-
ing those that are at least in part constrained by slow reactions
while the assumption of local chemical equilibrium (LCE) is valid
for fast ‘unconstrained’ reactions. Likewise there is a need for
efficient handling of thermochemical systems that are described
by parameters other than those most commonly associated with
Gibbs energy, namely temperature, pressure and fixed elemental
(and charge) balances. These include parameters that connect
electromagnetic and mechanic functions to chemical or phase
changes, i.e. the conjugate variables that are used to define e.g.
electrochemical, electromagnetic or mechanical work.

The purpose of this work has been to explore, develop and
collect a systematic set of computational methods that can be used
with a standard Gibbs energy minimiser for solving advanced
thermochemical problems. In earlier work (Koukkari and Pajarre,
2011) the authors have used the term Constrained Free Energy (CFE)
method to describe the approach in which additional constraints
were added to standard Gibbs energy minimisation. In the present
paper, additional constraints and energy terms are treated in a more
systematic fashion, and the application area is also broadened. The
actual calculations have been done using the ChemSheet or Che-
mApp software (Koukkari, et al., 2000; Petersen and Hack, 2007),
but the presentation has aimed to be generic and applicable to
other thermochemical codes that allow the user to define ther-
modynamic data and the stoichiometries of the constituent species
in the system. The functioning of those codes, such as finding the
global free energy minimum reliably and computationally effi-
ciently in systems containing multiple components (dozens, if
required), and potentially multiple non-ideal mixture phases has
not been considered a part of this work. Such topics are discussed in
detail e.g. by Harvey et al. (2013) and references therein.

2. Thermodynamic basis

In this work it is assumed that the system considered is either
isotropic, having the same values for temperature, chemical
potentials, pressure and other work-coefficients throughout the
system, or that it can be divided into a finite number of such parts.
If not explicitly stated otherwise, the model equations are written
for one isotropic part of the system.

2.1. Gibbs free energy

The change in internal energy of a system can be given (Haase,
1990) by the Eq. (1)

dU ¼ TdSþ
X
j

Lj � dljþ
X
i

μidni ð1Þ

while the corresponding Euler form for internal energy is

U ¼ TSþ
X
j

Lj � ljþ
X
i

μini ð2Þ

where Lj is the generalized work coefficient with intensive char-
acter and lj is the corresponding generalized work coordinate with
extensive character. Example cases have been listed in Table 1.

While the expression of the generalized work [Eq. (1)] has been
adapted from the comprehensive treatment of Haase (1990), the
further nomenclature mostly follows Alberty (2001).

For the internal energy U, the natural variables are S, li and nk,
meaning that if U is known as a function of those extensive vari-
ables, all the other thermodynamic properties of the system can be
derived (Alberty, 2001).

Common definitions (Haase, 1990) for enthalpy ðHÞ, Helmholtz
ðFÞ and Gibbs ðGÞ free energy are given by (Eqs. (3)–5)

H � U�
X
j

Lj � lj ð3Þ

F � U�ST ð4Þ

G � U�ST�
X
j

Lj � lj ð5Þ

In this work the extensive work coordinates lj are divided
to partial molar contributions from each species following Eq.
(6)

lj;i �
∂lJ
∂ni

� �
T ;Lk ;nha i

ð6Þ

so that

lj ¼
X
i

lj;ini ð7Þ

For the practical applicability with a Gibbs energy minimiser, in the
present work it has been further assumed that the partial molar
properties expressed by Eq. (6) are not functions of phase composition.

Gibbs energy expression on a molar basis is given by Eq. (8)

Gi � U�SiT�
X
j

Lj � lj;i ¼ μi ð8Þ

For a closed system with a constant temperature and Lj
(including P) the condition for a spontaneous process is dGr0, so
that G has its minimum value in equilibrium state.

2.2. Systems with constant work coordinates

In cases in which some of the work coordinates (and not the
corresponding work coefficients) are constant, a corresponding
free energy function can be defined (Alberty, 2001).

G0 � Gþ
X
h

Lh � lh ¼
X
i

μiniþ
X
h

Lh � lh ð9Þ

where the summation is over the constant values of lh. G
0 obtains

its minimum value at the equilibrium corresponding to the new
set of constraints. A corresponding molar free energy, μ0;α

i in this
work1 that includes a contribution to the work coordinate amount

Table 1
Common examples of thermodynamic work coefficients and coordinates.

work coefficient Lj work coordinate lj

�P (pressure) V (volume)
σ (surface tension) A (surface area)
ϕj(electric potential) Qj (charge)
E (electric field strength) p (electric dipole moment)
B (magnetic flux density) m (magnetic moment)

1 Here the superscript α is used to denote a specific phase or part of the system
in which the work coefficient of interest applies. When superscripts α and β are
used, the species that nαi and nβi or μαi and μβi refer to are the same chemical species
in different parts or phases of the system.
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specific to the species i can be defined as

μ0;α
i � ∂G

0

∂nαi

 !
T ;Lj ;nka i ;n

β
m

¼ μiþ
∂G

0

∂lh

 !
T ;Lj ;nk

∂lh
∂nαi

� �
T ;Lj ;nka i

¼ μiþLhl
α
h;i

ð10Þ
Eq. (10) applied to a pure phase gives the standard state free

energy with the additional work co-ordinate contribution as

μ0;α;0
i ¼ μ0

i þLhl
α
h;i ð11Þ

For simplicity, (Eqs. (10) and 11) are written for the case where
only one work coordinate h is kept constant. In the constrained
equilibrium, i.e. the minimum of G0, the chemical potential is still
as a state variable the quantity that is phase independent – i.e.
equal throughout the system.

μαi ¼ μβi ¼ μi ð12Þ
In terms of activities the chemical potential can be expressed as

μi ¼ μ0;α
i �Lhl

α
h;i ¼ μ0;α; 0

i þRT ln ai�Lhl
α
h;i ð13Þ

2.3. Systems with constant chemical potentials

With regard to systems in chemical equilibrium, Eq. (2) can be
written in terms of independent variables, so that the species in
the system are replaced by components, whose number is less
than the number of species assuming chemical reactions or mass
transfer between phases are taking place.

U ¼ TSþ
X
j

Lj � ljþ
X
k

πkbk ð14Þ

The chemical potential of a component k in this work has been
denoted by symbol πk, and its molar amount by bk to make them
easier to distinguish from the chemical potential μi and molar
amount ni of a species i.

A suitable free energy function when some component che-
mical potentials are kept at a constant value by material bath is
given by

G0 � G�
X
h

πhbh ð15Þ

where the summation is over the non-constant values of bh.
Mathematically Eqs. (9) and (15) represent Legendre trans-

forms of the free energy function to a new one with a new set of
independent variables (Alberty, 2001). The transforms allow sol-
ving of the equilibrium state and all its thermodynamic functions
specified by the natural variables, where the natural variables can
be freely chosen from the conjugate pairs of molar amounts and
chemical potentials; temperature and entropy as well as work
coordinates and work coefficients.

2.4. Systems with other than work coordinate constraints

If other constraints (e.g. due to slow reaction rates) that are not
related to an additional work term Lj � lj

� �
are relevant to the

system, the form of the energy functions [(Eqs. (2)–5)] is not
altered. The free energy corresponding to any specific composition
remains unchanged. However, the possible states of the system are
reduced and the equilibrium is generally sifted to some state with
higher free energy than without the constraint. When the states of
the system are constrained by a relation or relations that can be
expressed as linear combinations of amounts of species, the
effective number of components in the system is increased, as was
first noted by J.W. Gibbs who called these kinds of constraints
“passive resistances” (Gibbs, 1876; Koukkari, et al., 2008b). Con-
straints of this kind are discussed in more detail together with

systems constrained by slow kinetics and mass transfer as well as
nanoparticles.

3. Use of a free energy minimiser

3.1. Traditional problem statement

The basic problems to be solved with a typical free energy
minimiser are of the type: Find the minimum of function G:

G¼
X
α

X
i

Gα
i xαj ; T ; P
� �

nαi ð16Þ

subject to constraints

nαi Z0 8 i ð17Þ
and

An�b¼ 0 ð18Þ
where matrix element aji of matrix A is the stoichiometric coeffi-
cient between component j and species i, vector element ni the
molar amount of species i and vector element bj the (fixed) molar
amount of component j in the system. The G in Eq. (16) is the free
energy of the system, either G (Gibbs energy) or G0 as defined by
Eq. (5) or Eq. (9), depending on whether additional work co-
ordinate constraints have been applied. When G equals G, the
molar quantity Gi equals the chemical potential μi.

In the minimum free energy (G) state, the derivatives of the
Lagrangian function L (Smith and Missen, 1991)

L¼G�λT An�bð Þ ð19Þ
(where λ is a vector of Lagrange multipliers) with respect to molar
amounts and individual Lagrange multipliers must be zero, so that

∂L
∂ni

¼ ∂G
∂ni

�
X
j

λjaj;i ¼Gi�
X
j

λjaj;i ¼ 0 ð20Þ

The chemical potential or molar Gibbs energy of species in
calculations are expressed in the following or equivalent form:

μi ¼ μ0
i T ; Pð ÞþRT ln ai ð21Þ

The Lagrange multiplier for a component can be equated with
its chemical potential as

πj �
∂G
∂bj

� �
T ;P;bka j

¼ λj ð22Þ

both when G equals G and when it equals G0. Eq. (20) can also be
applied to species that are not present in the equilibrium, allowing
the calculation of molar free energy for a species that is not pre-
sent in the equilibrium state and for which Eq. (21) is not directly
applicable (Eriksson, 1975).

Equilibrium solvers typically allow the calculation of problems
where the equilibrium chemical potentials of certain species are
fixed while the corresponding feed amounts are allowed to vary.
The problem, after defining the system components so that the
species of interest is one of them, is equal to the one described by
Eq. (15). Computationally it can be solved (Cheluget and and
Missen, 1987), (Norval, et al., 1991) by normal numerical routines
by noting that (here summation index h goes over the components
whose chemical potentials are held constant)

G0 �
X
i

μini�
X
h

πhbh ¼
X
i

G0
i þRT ln ai

� �
ni�

X
i

πhah;ini

¼
X
i

μ0
i �
X
h

πhah;iÞþRT ln ai

 !
ni

 
ð23Þ

This means that the correct free energy function is mini-
mised if the standard state values of those species containing
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the components with fixed chemicals potential are adjusted
according to Eq. (24)

μ0;0
i � μ0

i �
X
h

πhah;i ð24Þ

Additionally the mass balance constraints Eq. (18) related to
components h need to be relaxed (the components are removed
from the matrix A)

3.2. Additional work coefficients

In conventional Gibbs energy minimising software dealing with
chemical equilibrium problems, the thermodynamic data is not
given as a function of any other work coefficients than pressure,
that is, all other work coefficients are assumed to be zero. The
Gibbs energy, as defined by Eq. (5) is the minimised free energy
function for also non-zero constant values of Lj. Gibbs energy is
given by (from (Eqs. (1) and (5))

∂G
∂Lj

� �
T ;Lka j ;ni

¼ � lj ð25Þ

G T ; P; Lj
� �¼ G T ; P; Lj ¼ 0

� �� Z lj � dLj ð26Þ

while the change in chemical potential is given by

∂μi

∂Lj

� �
T ;Lka j ;nk

¼ � ∂lj
∂ni

� �
T ;Lk ;nka i

¼ � lj;i ð27Þ

and therefore standard state value corresponding to a non-zero Lj
is

μ0
i T ; P; Lj
� �¼ μ0

i T ; P; Lj ¼ 0
� �� Z lj;idLj ð28Þ

In order to avoid handling vector components separately it is
assumed for Eq. (28) that Lh�lh;i can be replaced with Lhlh;i (Lh and
lh;i are either scalars or they are aligned).

As an example, for a ferromagnetic material as a pure phase
when the magnetization is assumed to be constant

μ0
i T ; P;Bð Þ ¼ μ0

i T ; P;B¼ 0ð Þ�miB ð29Þ
and for paramagnetic material, if magnetization is directly pro-
portional to the external field

μ0
i T ; P;Bð Þ ¼ μ0

i T ; P;B¼ 0ð Þ�0:5χ iB
2 ð30Þ

The chemical potential for a mixture phase is then given by

μi T ; P; Lj
� �¼ μ0

i T ; P; Lj
� �þRT ln γixi ð31Þ

The practical applicability of the Eq. (31) is greatest when the
dependency of the activity coefficients on Lj can be ignored.

3.3. Addition of new components to computational systems

Addition of a new component/constraint to a computational
system adds a new row to matrix A and new elements to the
vectors λ, n and b in Eq. (19). The resulting Lagrangian function L is
identical to one defined for a system with the original compo-
nents, but with an adjusted free energy function G0 defined by

G0 � G�λr
X
i

ar;ini�br

!
¼
X
i

μini�λr
X
i

ar;ini�br

!  

¼
X
i

ðμi�λrar;iÞniþλrbr ð32Þ

so that the adjusted free energy function is one where the molar
contributions have been augmented by the factor �λrar;i
μ0
i ¼ μi�λrar;i � μi�πrar;i ð33Þ

while the free energy function includes an additional term

λrbr ¼ πrbr ð34Þ
The minimum energy condition corresponding to Eq. (20),

together with the original mass balance constraints, is now

μ0;0
i þRTlnai�πrar;i ¼

X
ja r

πjaj;i ð35Þ

The quantity on the left side of Eq. (35), marked with μ0
i in Eq.

(33), replaces the original chemical potential expression
(μ0

i þRTlnaiÞ as the quantity that must be equal in phases and parts
of the system that are in equilibrium with each other, that is, it is
the chemical potential in the system. The comma in μ0;0

i is used to
denote that the standard state value may have been adjusted from
the value used in the unconstrained system if new work coordi-
nate has been applied, in concurrence with Eq. (10)

μ0;0
i ¼ μ0

i þLi;αh lαh;i ð36Þ

where Li;αh is the work coefficient for pure species i in phase system
part α. In the example cases discussed in this work, it is zero
except with surface tension-related calculations, where it equals
the surface tension of the pure substance.

Comparing Eq. (35) with Eq. (13) we have, for cases where the
constraint can be equated with a fixed work co-ordinate, the
equality

Lhl
α
h;i ¼ πraαr;i ð37Þ

For the practical applicability with Gibbs energy minimisers, it
is also required here that ar;i is not a function of πr . Therefore, it is
assumed that lαh;i can be factored to two parts, separating the
possible dependency on Lj from the dependency on i.

lj;i ¼ l0j Lj
� �

l00j;i ð38Þ

(Subscript α omitted from the equation for clarity as a con-
tinuously repeating element) Provided that Eq. (38) is valid, the
stoichiometric coefficient ar;i can be defined by

ar;i ¼
l00j;i
l0j

ð39Þ

and the corresponding work coefficient as

Lj ¼
πr

l0j l
0
j

ð40Þ

In (Eqs. (39) and 40), l0j is a normalisation constant with the
same units as l00j;i and an arbitrary but fixed numerical value.

Formally then, if a work coordinate related stoichiometric
coefficient can be deduced on physical basis, the min(G) proce-
dure can incorporate such factors in its multiphase calculation.
According to Eq. (34) the respective component potentials
become solved as additional Lagrange multipliers within the
minimisation.

If the applied constraint cannot be equated with a work co-
ordinate, the corresponding term does not enter Eq. (5), so for
example for the case of system with a constant temperature,
(external) pressure and a non-work constraint the Gibbs energy
remains

G � U�STþPV ¼
X
i

μini ð41Þ

In terms of original components the minimised free energy
nevertheless has an additional term as expressed by Eq. (32). With
a molar free energy defined as

G0
i ¼

∂G0

∂ni

� �
T ;P;nj a i;br

ð42Þ
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we have from Eq. (35) an equality that is valid also for rate con-
strained systems.

G0
i ¼ μ0

i þRT ln ai�πrar;i ¼
X
ja r

πjaj;i ð43Þ

3.4. Applying additional components for calculations with additional
non-zero constant work coefficients Lh

In principle, the application of Eq. (28) to adjusted standard
state values is the only thing that is required for calculations when
the value of a new work coefficient instead of the corresponding
work coordinate is specified (it is assumed here that the activity
coefficients are not explicit functions of Lh). As one often wants to
do repeated calculations with many different values of Lh and the
databases used and free energy minimiser programmes do not
necessarily readily support this, an alternative is to define a new
component for the stoichiometry of the relevant species and
adjust the chemical potential of that component.

From (Eqs. (23) and 28)Z
lj;idLj ¼ πhah;i ð44Þ

As before, it is assumed here that
R
lj;idLj can be factored into

two parts, separating the possible dependency on Lj from the
dependency on i as shown by Eq. (38) so thatZ

lj;idLj ¼ l00j;i

Z
l0jdLj ð45Þ

Applying Eq. (39) for the stoichiometric coefficient with
(Eqs. (44) and 45), the value of the corresponding chemical
potential is given by

πr ¼
l00j;i
ar;i

Z
l0jdLj ¼ l0j

Z
l0jdLj ð46Þ

If lj;i is not a function of Lj, the equations for the stoichiometric
coefficient and component chemical potential simplify to

ar;i ¼
lj;i
l0j

ð47Þ

πr ¼ Ljl
0
j ð48Þ

3.5. Additional components as constrained reaction extents

The constraints-related slow reaction kinetics largely follows
the same mathematical rules as those related to added work
coefficients and coordinates.

In a system where a single reaction of the form

wAAþwBB3wCCþwDD ð10Þ
orX
i

υini ¼ 0 ð49Þ

where υi equals wi for products and �wi for reactants, the extent
of reaction is defined as

dξ¼ dni

υi
ð50Þ

In a system with multiple possible reactions, it is in general
impossible to define the change in the extent of any individual
reaction dξr based on the change in system composition unless the
other linearly independent reactions forming a basis spanning the
reaction space are first defined. When they are, the equation for dξ

can be solved

dn¼υdξ ð51Þ
where dn is the vector of changes of molar amounts of the N
constituents in the system, dξ a vector of changes in extents of the
NR specified reactions, and υ a N � NR matrix of stoichiometric
coefficients of the reaction vectors spanning the reaction space.

For an equilibrium system the matrix equation

Aυ¼ 0 ð52Þ
where A is a M � N matrix of stoichiometric coefficients between
the N constituents and M components (M¼ rankðυÞÞ forms a link
between the system stoichiometry and the reactions allowed by it
(Smith and Missen, 1991; Alberty, 1989, 1991; Keck and Gillespie,
1971; Keck, 1990; Koukkari and Pajarre, 2006b). Any kinetic
restrictions in the possible reactions that cause the system to
develop towards some other state than full equilibriumwill lead to
a new matrix equation

A'υ'¼ 0 ð53Þ
where υ0 is a N � NR0 matrix (NR0oRÞ of made of the reduced
reaction set and A0 is the corresponding M0 � N matrix ðM0 ¼Mþ
NR�NR0 � MþCÞ of stoichiometric coefficients for the new aug-
mented matrix of stoichiometric coefficients. Each linearly inde-
pendent restriction on the set of reactions allowed to freely
equilibrate corresponds to an additional stoichiometric constraint,
or a row in the A matrix, that is linearly independent of the
existing component balances or previously defined reaction
kinetic constraints. A practical way of defining a restricted reaction
in a multispecies constrained equilibrium system is by Eq. (54)

dξj �
X
i

aMþ j;idni ¼ dbMþ j ð54Þ

where aMþ j;i is matrix element in the augmented matrix A0, where
the Mþ jth row defines the constraint related to the reaction and
dbMþ j change in the value of the corresponding element in the
augmented component vector. The matrix form corresponding to
Eq. (54) is

dξ¼A00dn¼ db00 ð55Þ
where A″ is the C � N submatrix forming the lower part of A0.

If the number of restricted reactions defined equals R, so that
no unrestricted linearly independent reactions remain, A″ in
Eq. (55) can be replaced with A0, and dξ with dξ0, where the first
N�R components of the dξ0 vector equal zero, and the last NR
components are the same as in dξ.
dξ0 ¼A0dn ð56Þ

As the matrix A0 has linearly independent rows it is invertible.
The matrix ðA0Þ�1 contains coefficients for reaction like transfor-
mations for the set of species, so that in each transformation the
amount of one of the components is increased by one, while the
amounts of other components are kept constant. In matrix form
this can be stated as.

A0� ��1A0 ¼ I ð57Þ
Multiplying the Eq. (56) by ðA0Þ�1 one obtains

A0� ��1dξ0 ¼ dn ð58Þ
The first M transformations are not allowed as they violate the

normal component balances, and the corresponding values in the
change of advancement vector dξ0 are zero, while the remaining
reactions are the constrained ones defined by Eq. (55), so that the
lower NR rows of matrix ðA0Þ�1 equal matrix υ and the last NR
values vector dξ in Eq. (51), so that the definition in Eq. (55)
becomes equivalent with the one in Eq. (51).
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As a schematic example, for a system with the following spe-
cies H2, CH4, C2H4, C2H6 and C3H8 N¼ 5 and M¼ 2, so that it is
possible to define a maximum of three independent constrained
reactions using the formalism of Eq. (54), corresponding to, for
example to the following A0 matrix where the first two rows are
refer to the elements C and H and the last three to the added
constraints

A0 ¼

H2 CH4 C2H4 C2H6 C3H8

0 1 2 2 3
2 4 4 6 8
0 0 0 0 1
1 0 �1 0 0
0 0 0 1 0

2
6666664

3
7777775

ð59Þ

by inspection or by linear algebra one can derive

A0� ��1 ¼

H2

CH4

C2H4

C2H6

C3H8

2 �0:5 �2 2 �1
�3 1 1 �2 0
2 �0:5 �2 1 �1
0 0 0 0 1
0 0 1 0 0

2
6666664

3
7777775 ð60Þ

where the last three columns give in the traditional reaction
equation format the following three rate constrained reactions
compatible with both (Eqs. (51) and 55)

2H2þ2C2H43 C3H8þCH4 ð20Þ

2CH43C2H4þ2H2 ð30Þ

C2H4þH23C2H6 ð40Þ
However, the three reaction constraints given by matrix (59)

are also unambiguously defined individually, while the reaction
equation format Eqs. (20)–(40) is properly defined only for a full set
of independent equilibrium or non-equilibrium reactions.

With the reaction equations defined by the added components,
many of the mathematical relationships defined in earlier sections
can also be applied. The affinity of a restricted reaction j, Aj, in a
constrained equilibrium system is directly related to the chemical
potential of the corresponding component.

Aj ¼ � ∂G
∂ξj

 !
T ;P;biξka j

¼ � ∂G
∂bjþM

� �
T ;P;biξka j

¼ �πjþM ð61Þ

where bi is the amount of any of the components b1…bM in the
system. For any chemical reaction that is not one of those defined
by Eq. (54) the affinity is obtained as a linear combination of them
and equilibrium reactions

Aj ¼ �
X
i

υi;j0μi ¼ �
X
i

υij0
XMþC

k ¼ 1

akiπk ¼ �
X
i

υij0
XMþC

k ¼ Mþ1

akiπk

¼ �
XMþC

k ¼ Mþ1

ak;jπk ð62Þ

where νkj0 is the stoichiometric coefficient between the reaction j0

and component k.
It is possible that in a system where the extent of one or more

reactions are constrained, the modelled time behaviour of the
system approaches a state where the affinity or affinities are zero
without the state in question being the actual equilibrium state of
the system. Such a state would be a local, but not global free
energy minimum of the system in respect to the specified reaction
extents. Provided that the applied reaction rates give a sufficiently
accuarate description of the real reactions taking place in the
system, such a local minimum state corresponds to a real long
term metastable state. In such cases constrained chemical

potential (affinity) could not be reasonably used as an alternative
to constrained reaction extent for specifying the state of the
system.

Corresponding to Eq. (35) it is possible to form a relationship
between chemical potentials in a rate constrained system

μ0
i þRTlnai�

X
r

πrar;i ¼ μ0
i þRT ln aiþ

X
r

Arar;i ð63Þ

Setting the affinity (corresponding component chemical poten-
tial πj) to a fixed value can be used to calculate restricted equili-
brium states with a fixed affinity or deviation from equilibrium, or
when affinity is set zero, equilibrium (in respect to the specified
fixed reaction) without redefining the system stoichiometry. A
standard state value for species for a system with given T , P and Ar

could be defined following Eq. (15) by relation Eq. (64)

μ0
i T ; P;Arð Þ ¼ μ0

i T ; P;Ar ¼ 0ð ÞþArar;i ð64Þ
but typically applying the fixed chemical potential condition via the
added component is more practical.

3.6. Application examples

A collection of various example systems and their related work
coefficients and coordinates is presented below. In Table 2 systems
with a fixed work coordinate are shown.

The minimised free energy function G0 and the molar free
energy are given by (Eqs. (9) and 10), the adjusted standard state
by Eq. (36), and the equipotential between species of the same
stoichiometry in different phases or parts of the system (chemical
or electrochemical potential) is given by Eq. (13). The stoichio-
metric coefficient between the new component and each species is
given by Eq. (47) and the relationship of the corresponding che-
mical potential and work coefficient by Eq. (48).

Example cases with a fixed work coefficient are given in Table 3.
The minimised free energy function G is given by

G¼G¼
X
i

μini ð65Þ

when the effect of constant work coordinate is applied by mod-
ified standard states [following Eq. (28)] and from the equation

G0 ¼G¼
X
i

μini�πjbj ð66Þ

when the effect of the work co-ordinate (field) is applied via a new
component. The molar free energy in both cases is the chemical
potential. When new components are used, (Eqs. (39) and 46)

Table 2
Systems with a constrained work coordinate.

System Work coefficient Work coordinate

Surface σ (surface energy) A¼P
i
Aini areað Þ

Donnan
equilibrium

Δϕα (electrochemical poten-
tial difference)

�qα ¼ �P
i
Fzinαi chargeð Þ

Constrained
volume

ΔPα ([osmotic] pressure
difference)

Vα ¼ �P
i
Vinαi subvolumeð Þ

Table 3
Systems with a constrained work coefficient (field).

System Work coefficient Work co-ordinate

Magnetized B (magnetic flux
density

m¼P
i
mini (magnetic

moment)
Electrically polarized E (electric field) p¼P

i
pini (dipole moment)
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apply for the stoichiometric coefficients and the component che-
mical potential.

Analogous to the examples in Table 3, non-specific ionic
interactions (Debye–Hückel and various variations of the Davies
equation) can also be handled via Legendre transform (Alberty,
2003; Blomberg and Koukkari, 2009). From the computational
point of view the system behaves as if the semi-empirical inter-
action energy were a product of an electrostatic work coefficient
and coordinate.

Gex ¼ � αRT
ffiffi
I

p

1þB
ffiffi
I

p z2i ni ð67Þ

The corresponding stoichiometric coefficients for the specified
Ionic strength and fixed chemical potential are

ar;i ¼ z2i ð68Þ

πr ¼ � αRT
ffiffi
I

p

1þB√I
ð69Þ

The related effects caused by constant activities (including pH)
of certain species can be applied directly based on Eq. (24).

Example systems where the applied constraint and the corre-
sponding chemical potential do not form a work coefficient and
coordinate pair are listed in Table 4.

In these cases when the component amount is constrained, the
minimised free energy function is the Gibbs energy of the system
as defined by Eq. (41). The energy and entropy terms (and there-
fore chemical potentials) may still contain added work coefficient-
dependent terms (as they do in the nanoparticle case).

4. Results

4.1. Surface and interfacial energy

The model application for surface and interfacial systems has
been discussed previously both for a liquid surface in (Pajarre,
et al., 2006a, 2006b), where the single surface layer is modelled as
a separate phase whose constituents interact only with each other,
and for a multilayer model (Pajarre, et al., 2013) including non-
ideal interactions between different layers that has been devel-
oped for metal-oxide surface, and tested for liquid-liquid metal
alloy interfaces.

In a system with a liquid–vapour surface or liquid-liquid
interface the derivative of the free energy with respect to inter-
facial area is the surface or interfacial tension

∂G
∂A

� �
T ;P;ni

¼ σ ≡ Lh ð70Þ

In the current work the surface or interface has been modelled
with a finite number, one or more, individual monomolecular
layers. With the simplifying assumption that the molar surface

areas of individual constituents are independent from system
composition

∂Ai

∂xj
¼ 0 ð71Þ

the contribution of an individual interfacial layer k on the surface
or interface energy can be included in the free energy equation as

μ'ki ¼
XM
j ¼ 1

aj;iπjþσkAi ¼
XM
j ¼ 1

aj;iπjþajiπMþk ð72Þ

with the following relations based on (Eqs. (39) and 40)

akþM;i ¼
Ak
i

A0
ð73Þ

σk ¼ πMþ1

A0
ð74Þ

where the normalization constant A0 has the units of m2mol�1. NL
in Eq. (72) is the number of interfacial layers. σk refers to the
interfacial energy contribution of an individual layer, the physical
interfacial energy given by

σ ¼
XNL
k ¼ 1

σk ð75Þ

The μ0
ik in Eq. (72) is the molar free energy of constituent i on

the layer k, as stated in Eq. (10). In the models described here, it
has been assumed that the direct energetic effects related to the
surface were restricted to the top most atomic or molecular layer
of the surface. With that convention applied, following (Eqs. (13)
and (36), the chemical potential can be expressed on the layer
closest to the surface by equation (superscripts s and b denote the
surface layer and bulk respectively)

μs
i ¼ μ0;s;0

i þRT ln asi �σAi ¼ μb;0
i þσiAiþRT ln asi �σAi ¼ μb

i ¼ μi

ð76Þ
and on other interfacial layers by (superscript α denotes the
interfacial layer)

μαi ¼ μb;0
i þRTlnaαi �σAi ¼ μb

i ¼ μi ð77Þ

The molar free energies for the surface and interfacial species,
as defined by Eq. (10), can be calculated for example based on the
Redlich–Kister model (Pajarre et al, 2006b, 2013). In Pajarre et al.
(2013) the excess energies were evaluated considering both the
compositions of the individual layer in question and its nearest
neighbours using the equation

Gex;k ¼ nk
X
i

X
j

1
2
1�m0� �

Ωk
ijx

k
i x

k
j þ

1
2
m0 �1

2
Ωkþ1

ij xkþ1
i xkþ1

j

��

�1
2
Ωk�1

ij xk�1
i xk�1

j þΩk;kþ1
ij xki x

kþ1
j þΩk;k�1

ij xki x
k�1
j

�!
ð78Þ

for the excess free energy for an individual layer k; where Ωk
ij;

Ωk;kþ1
ij andΩk;k�1

ij are composition dependent interaction energies
within layer k and between it an its nearest neighbours and m0 a
geometric parameter expressing the factor of nearest neighbours
of a species that are in one of the adjacent layers in an composi-
tionally uniform system. For the derivation thermodynamically
consistent relations it was necessary for the multilayer system to
add further constraint(s) that kept the composition of the inter-
facial layer closest to the bulk equal to that of the bulk, the
interfacial energy contribution of the additional constraints
approaching zero with an increasing number of layers (Pajarre,
et al., 2013). Example results for calculations in metal alloy and
metal–oxygen systems are shown in Fig. 1.

Table 4
Example system with additional components that are not directly linked to a work
coordinate.

System Stoichiometric coeffi-
cient for the constraint

Component chemical
potential

Spherical nanoparticle Ai�2Vi
r

� �
1
A0

σiA0 (surface energy U
normalization constant)

Reaction extent or affi-
nity constrained
system

ξr ¼
P
i
ar;ini (extent of

reaction r)

�Ar (affinity of
reaction r)
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4.2. Volume-constrained system

In a system in which the volume of part of the system is con-
strained, an additional pressure component, affecting its chemical
potential, applies to that part. For straightforward application of
the current method it is necessary that the partial molar volumes
are not functions of phase composition, although they could be
functions of pressure. In an ion-exchange model, such as the one
made for pulp fibres in Koukkari et al. (2002) and Pajarre et al.
(2006a), a constraint on the water volume is an essential feature.
Only the molar volume of the water itself (assumed to be
incompressible) is considered here. The free energy from Eq. (9)
can then be stated as

G0 ¼
X
i

μini�ΔP � VH2On
α
H2O ¼ G�ΔPVα ¼ GβþFαþVαPβ ð79Þ

where the last term is constant. The stoichiometric coefficient
related to the constraining component is directly proportional to
the molar volume.

ar;i ¼
VH2O

V0
j

ð80Þ

The osmotic pressure difference is consequently obtained as

ΔP ¼ �πrV0
j ð81Þ

In principle it could be expected to be possible to predict the
swelling behaviour of the fibres applying the calculated osmotic
pressure together with the modelled charge state and a model for
the fibre wall elasticity, but even a semi-quantitative model has
been found to be elusive.

4.3. Nanoparticles with a combined area and volume constraint

Small-scale systems can have volume and surface that area
interlinked. Considering the simplest case of a spherical particle,
the changes in volume and area are connected by the equation

dA¼ 2dV
r

ð82Þ

Therefore, the balance equation for surface area related to
molar area and volume can be written as
X
i

dni Ai�
2Vi

r

� �
¼ 0 ð83Þ

If the change in total volume (and therefore radius) is relatively
small, the value in brackets in Eq. (83) can be taken as a constant
similarly to molar volumes and areas in the previous sections. If
one considers the system to be made of a surface layer (1) and a
core and takes as the limiting phase transition for melting the
formation of liquid surface layer on a solid core, one can define a
system with stoichiometry according to Table 5, where the core is
divided into an inner core (c) and a monolayer (2) closest to the
surface layer.

The components of the system are for the elements (in this
example only one element), and for the surface area of the particle
(GeoÞ:To simplify the computational system the liquid–solid
interfacial energy of a partially molten system is considered to be a
property of the liquid layer alone. The definition of free energy in
the system is somewhat subtle as discussed by Reiss (1965). As a
simplification, here it is assumed that a suitable constant average
value can be used for the surface energy of the solid. The Euler
equation for internal energy of a fully solid or liquid particle is
given following Eq. (4)

U ¼ TS�P0VþσMe αð ÞAþμMe αð Þ P0
� �

nMe ð84Þ

where αð Þ denotes the physical state (solid or liquid) and P0 is used
to emphasise that the standard state value is the one based on the
external pressure of the system. The minimised free energy when
there is no external constraint on the surface energy or surface
area2 is given by

G0 � U�STþP0V ¼ μMe P0
� �

nMeþσMe αð ÞA ð85Þ
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Fig. 1. Surface tension in Ag–Au–Cu metal alloys system (left) and iron–oxygen system (right). The model and experimental data for Ag–Au–Cu alloy as presented from a
previous work by the authors (Pajarre et al., 2006b, 2013).

Table 5
Stoichiometry for a nanoparticle model.

Phase Species Components

Me Geo

Solid surface Mes 1 �2Vs
Me
r þAs

Me

� �
1
A0

Liquid surface Mel 1 �2Vl
Me
r þAl

Me

� �
1
A0

Solid second layer Me2 1 �2Vs
Me
r

1
A0

Solid core Mec 1 �2Vs
Me
r

1
A0

2 The added constraint in the stoichiometry in Table 4 (or Eq. (83)) is really for
particle sphericity and the assumption that the number of spherical particles is not
changed. While not discussed here, with orientation dependencies ignored, the
spherical form is the one corresponding to minimum energy.
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Correspondingly, the standard states for the core and the sec-
ond layer can be given by

μ0; c;0
Me αð Þ ¼ μ0; 2;0

Me αð Þ ¼ μ0
Me αð Þ P0

� �
ð86Þ

and for the solid surface by

μ0;1;0
Me sð Þ ¼ μ0

Me sð Þ þσs
MeA

s
Me ð87Þ

and for a liquid surface on a solid core:

μ0;1;0
Me lð Þ ¼ μ0

Me lð Þ þσl
MeA

l
Meþσsl

MeA
l
Me

A2

A1 ð88Þ

The ratio of the area of the interface between the first and
second atomic layers, A2, and the surface area, A1 in Eq. (88) can be
estimated by

A2

A1
¼ 1�3VMe lð Þ

AMe lð Þr

� �2
3

ð89Þ

The chemical potential of the component Me, πMe is the che-
mical potential of the macroscopic unconstrained substance Me in
the system. With the definitions used, it is given for one chemical
component fully solid or liquid system by Eq. (90) (superscript α
refers to either solid or liquid state)

πMe ¼ μ0;α
Me þ

2Vα
Me

rA0
πAConstraint ¼ μ0;s

Meþ
2Vα

Me

r
σαMe ð90Þ

The differences in chemical potential in the particle and a
macroscopic phase in a same state can be related to the differences
in vapour pressures. The familiar Kelvin equation directly follows
from Eq. (90).

πMe�μ0;α
Me ¼ RTln

PMe

P0;αMe

¼ 2VMe

r
σs
Me ð91Þ

where P0i is the partial pressure of substance i in equilibrium with
a macroscopic phase in state α. The total free energy for the par-
ticle is given by

P0Me ¼ Pref exp μ0;α
i �μ0;g

i

� �
=RT

� �
ð92Þ

On component basis the free energy of the system is given by

G0 ¼ bMeπMeþbGeoπGeo ¼ nMe μ0;α
Me þ

2Vα
Me

r
σαMe

� �
þ Vα

Me

r
σαMe

� �� �

¼ nMe μ0;α
Me þ

3Vα
Me

r
σαMe

� �
¼ nMeμ0;α

Me þAσαMe ð93Þ

in agreement with (Eqs. (85) and 90) integrated over particle size.
The graphs in Fig. 2 for melting of tin and silver nanoparticles

have been calculated assuming the interfacial energy between the

solid and liquid follows the perfect wetting condition (Eq. (94))
(Eustathopoulos, 1983).

σsl ¼ σs�σl ð94Þ
The data used in calculations is listed in Table 6.
The model based on stoichiometry in Table 5 and standard

states given by (Eqs. (86)–88) compared with experimental data
for Sn (left) and Ag (right). Experimental data are from Tang et al.
(2012) and Chen et al. (2010) for silver and from Lai (1996) for tin.

While a reasonably good match between the basic model (solid
curve) and the experimental data was found with Sn, an agree-
ment with Ag data could be reached only assuming (following
(Sim and Lee, 2014)) that the effective solid surface energy (taking
into account as adjustable correction factor the effect of surface
strain and anisotropic nature particle surface) was higher than the
tabulated one.

The dotted curve on the right side of Fig. 2 is calculated
assuming a correction factor of 1.17.

σs ef f ectiveð Þ
Ag ¼ 1:17σs

Ag ð95Þ

It can be noted that the model used approximately matches the
one were the melting point of the particle is calculated based on
equal chemical potential (not free energy) (Lee, et al., 2007;
Sopousek, et al., 2014; Sim and Lee, 2014). Assuming the thickness
of a monolayer is small compared with the particle radius (and for
simplicity that the differences in molar volumes and solids can be
ignored), the condition for free energy change being favourable for
the formation of a molten surface layer in the model described
above is given by

ΔGfus
i 4πr2Δr
Vm

þ σl�σs
� �

4π rð Þ2þσsl4π r�Δr
� �2o0 ð96Þ

This can be further simplified assuming Δr{r and that Eq. (94)
is valid in a form that could be derived assuming equal chemical
potentials for solid and liquid particles.

ΔGfus
i o2 σs�σl

� �
Vm

r
ð97Þ

4.4. Systems with an external magnetic field

The chemical system for a free energy minimiser can be defined
either following Eq. (28) and modifying the standard states for the
given field strength (without defining any additional components),
or by applying one or more additional components whose che-
mical potentials are set following Eq. (46) based on the field
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Fig. 2. Melting temperature of metallic nanoparticles.

R. Pajarre et al. / Chemical Engineering Science 146 (2016) 244–258252



strength dependent magnetisation properties of the matter. The
second method has been found by the authors to be more readily
applicable to calculations that are repeated with multiple field
strengths. The applicable equations in this case are

ar;i ¼
mi''
m0

j

ð98Þ

for the stoichiometric coefficient, and

πr ¼m0
Z

m0dB ð99Þ

when the molar magnetic moment can be factorized

mi � m0 Bð Þm00
i ð100Þ

If the magnetic moment is assumed to have a constant
(¼ saturation) value, the m0 in (Eqs. (99) and 100) can be set to
unity. For example, the effect of magnetic field on the equili-
brium between austenite (γ–Fe; FCC) and ferrite (α–Fe;BCCÞ as
described by Ludtka, et al. (2005) can be calculated by this way
as shown in Fig. 3, left, with ar;BCC ¼ 12:6 corresponding to m¼
12:6 J �mol�1T�1 (Ludtka, et al., 2005) and πr ¼ B � Jmol�1T�1

� �
.

The thermodynamic data otherwise is from FactSage 6.3 (Bale, et
al., 2002, 2008).

In a paramagnetic system, such as the one studied by Yama-
moto et al. (1995) the magnetic moment is a function of the field
strength. In that work, the equilibrium between LaCo5 hydrides
and hydrogen gas was explored. ΔM in Fig. 3 is defined as the
change in saturation moment per desorbed mol of hydrogen
atoms. The adsorption–desorption reaction in the system can be
written as

0:5xH2 gð ÞþLaCo5Hy2LaCo5Hyþx ð50Þ

so that the standard chemical potential of LaCo5H4:2þx can be
determined by the equations

μ0
LaCo5Hyþ x

B¼ 0ð Þ ¼ LaCo5H
0
yþ

x
2
RTln

PH2 B¼ 0ð Þ
P0

� �
ð101Þ

and

μ0
LaCo5Hyþ x

¼ μ0
LaCo5Hyþ x

B¼ 0ð Þ�x
Z B

0
ΔMdB ð102Þ

A good correspondence between magnetically induced changes
in phase equilibria and independently measured magnetization of
phases could be obtained by the current authors by applying
(Eqs. (101) and 102) for either calculating the equilibrium hydro-
gen pressure with an applied additional work term (Section 3.4)
corresponding to smoothed experimental magnetization change,
or in reverse for calculating the required change in magnetisation
caused by desorption to match the experimental hydrogen pres-
sure data (Fig. 3, right).

The discussion here has been restricted to magnetic fields, but
the basic formulation of the problem with electric fields would be
analogous.

4.5. Donnan equilibrium

For a system in which the electrochemical Donnan equilibrium
is present, a new component needs to be defined for the electrical
charge for each additional subvolume in the system (Koukkari,
et al., 2002; Pajarre et al., 2006a, 2006b). The related new con-
straint equation isX
i

nαi zi ¼ 0 ð103Þ

Table 6
Thermodynamic data for the nanoparticle calculations.

Surface tension σlAg N=m
� �¼ 0:9256�0:000228 T= K�1234:93

� �
(Lee, 2004)

σsAg N=m
� �¼ 1:1�0:00047 T= K�1234:93

� �
(Murr, 1975)

σlSn N=m
� �¼ 0:5472�0:000065 T= K�505:08

� �
(Lee, 2004)

σsSn N=m
� �¼ 0:671�0:00013 T= K�505:08

� �
(Alchgirov, et al., 2001)

Molar volume (Iida and Guthtrie, 1988) Vl
Ag m3=mol
� �¼ 11:6U10�6 1þ0:000098 T=K�1234:93

� �� �
Vs
Ag m3=mol
� �¼ 11:2066U10�6 1þ0:000098 T=K�1234:93

� �� �
Vl
Sn m3=mol
� �¼ 17U10�6 1þ0:000087 T=K�505:08

� �� �
Vl
Sn m3=mol
� �¼ 16:6U10�6 1þ0:000087 T=K�505:08

� �� �
Free energy of melting (Dinsdale, 1991, 2009) Gfus

Ag J =mol
� �¼ 11025:076�8:89102 T=K

� ��1:033905U10�20 T=K
� �7

Gfus
Ag J =mol
� �¼ 11025:076�8:89102 T=K

� ��1:033905U10�20 T=K
� �7
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R. Pajarre et al. / Chemical Engineering Science 146 (2016) 244–258 253



The potential difference in a Donnan equilibrium system is
caused by electrically charged species that are not freely mobile.
The electrical work related to them can be stated (taking into
account Eq. (103)) as

dW ¼
X
i

ΔϕαFzidnαi immobileð Þ ¼ �
X
i

ΔϕαFzidnαi mobileð Þ ð104Þ

A Donnan equilibrium free energy problem requires at least
two additional components related to the charged species. At least
one constraining the immobile species, amount of which in the
pulp suspension models is a fixed quantity (bound, carboxylic or
sulphonic acid groups), and whose chemical potential is without
practical interest, and one for the overall charge balance. Based on
Eq. (104), the work term common to all the charged species is

Ljlj;ini ¼ �ΔϕαFzini ð105Þ
Setting ari � zi the Donnan potential difference is obtained as

Δϕα � ϕα�ϕβ
� �

¼ �πr

F
ð106Þ

The equipotential, commonly called the electrochemical
potential, that is the same in both aqueous phases for mobile ions,
following Eq. (13), is given by

μi ¼ μ0;0
i þRT ln aiþΔϕαFzi ¼ μ0

i þRT ln aiþΔϕαFzi ð107Þ

The μi in Eq. (107) [rather than merely ‘chemical’ part of it
(μ0

i þRTlnaiÞ] is the chemical potential of the species i as defined
by Eq. (1) and other fundamental relationships in thermo-
dynamics. As pointed out by for example Guggenheim (1967), the
‘chemical’ and ‘electric’ parts of it are not experimentally mea-
surable and have questionable meaning as physical entities. For
the purposes of computational thermodynamics it is useful to
define individual ion activities and activity coefficients that are
compatible with well definable and measurable activities and
activity coefficients of neutral combinations of them. The models
used by the authors have in common that the aqueous solution
has been modelled applying the Pitzer non-ideality model (Harvie,
et al., 1984) while the multicomponent model has also included
solid precipitates, and when applicable, a gas phase exchanging
carbon dioxide with the solution. The specifics of the individual
ion activity coefficients and the corresponding implicit pH scale
have been discussed e.g. by Harvie, et al. (1984).

An example of the Donnan theory applied to a laboratory system
is presented in Fig. 4. All the calculation results for each pH are from
a single multi-component equilibrium calculation, just as the var-
ious metal amounts were determined from a single sample. The

Pitzer model was used to describe the aqueous phase non-ideality.
The formation of solid precipitates is predicted close to pH 11.

The process simulation work based on applying ion exchange
phenomena in the CFE framework has been done both for rela-
tively simple models with small number of free energy mini-
misation units and process integrates of paper machines and
pulping mills with a few hundred chemistry units (Koukkari, et al.,
2007) (Pajarre, et al., 2008) (Kangas, et al., 2012) and (Kalliola,
et al., 2012).

4.6. Systems constrained by reaction kinetics

Reaction constrained free energy models have been presented
e.g. for industrial production of precipitated calcium carbonate
(PCC) (Koukkari, et al., 2011) and high temperature oxidation of
TiCl4 to TiO2 (Koukkari, et al., 2008a) and studies of biomass
gasification. (Kangas, et al., 2014a, 2014b; Kangas, 2015;
Yakaboylu, et al., 2015). Here, a short introduction to utilising
reaction-constrained free energy models is given with modelling
of nitric oxide emissions used as an example.

Thermal NO emissions in high temperature post flame condi-
tions can be described with the Zeldovich mechanism (Zeldovich,
1946), described by Eqs. (50) and (60). However during the oxida-
tion of hydrocarbons the radical over-shoot increases the NO
emissions rapidly, which cannot be modelled with the Zeldovich
mechanism alone. Thus this simplified model is extended with a
description of carbon monoxide oxidation and oxygen radical
build-up (cs (70) and (80))

N2þO-NþNO ð60Þ

NþO2-NOþO ð70Þ

COþO2-CO2þO ð80Þ

COþOþM-CO2þM ð90Þ
When the NO emissions are considered, the reaction (60) is

immediately followed by reaction (70). The rate of formation of NO
is given in Eq. (108). The oxidation of CO is described as the sum of
reactions (80) and (90) and rate Eq. (109) is applied. As a numerical
simplification, when the difference in the rates of reactions (80)
and (90) is estimated at less than 10% of the rate of reaction (80), the
O-radical concentration is estimated by the quasi steady-state
approximation [Eq. (110)]. Reverse reaction rates are included for
all reactions with the method described by Koukkari et al. (2011).

rNO ¼ 2r1 ¼ 2k1 N2½ � O½ � ð108Þ

rCO ¼ �r2�r3 ¼ �k2 CO½ � O2½ ��k3½CO�½O�½M� ð109Þ

O½ � ¼ k2k
�1
3 O2½ � M½ ��1 ð110Þ

The constraints for the system are set for the O, NO and CO
species. Detailed description of kinetic parameters applied here
are given in an earlier work (Coda Zabetta and Hupa, 2008), where
also large detailed kinetic model (DKM) of the oxidation of car-
bohydrates and formation of nitric oxides is described. The steady
state condition has been set via the affinity (AO) of the oxygen
dissociation reaction (100)

1
2
O22O ð100Þ

The affinity can be expressed by thermodynamic and kinetic
parameters and concentrations of other species than oxygen by
applying (within vicinity of the steady state)
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Fig. 4. Experimental and modelled concentrations inside and outside pulp fibres
together with the modelled Donnan potential in a (single) aqueous pulp suspension
sample. Drawn based on the model and data presented by Koukkari and Pajarre
(2006a).
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The last part of Eq. (111) could be factored to
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where the second term is the affinity (divided by RT) at the quasi
steady-state.

The DKM is used to calculating the validation data for this
example. Fig. 5 illustrates a case where carbon monoxide is com-
busted in dry air (79 v-% of nitrogen and 21 v-% of oxygen; lambda
1.2). A laminar plug-flow reactor model is applied with a residence
time of 10 s. The temperature is 1500 °C.

Nitric oxide formation and oxidation of carbon monoxide are
similar when the results from the CFE and DKM models are
compared. The radical over-shoot at the beginning of combustion
can be predicted correctly with the CFE method. More details for
applying CFE method when modelling the nitric oxide emission is
given by authors in Kangas et al. (2015).

4.7. Mass transfer between phases and paraequilibrium

From the computational point of view, a mass transfer process
between two phases is a reaction in which the species i in phase α
is transformed into the same species (or a species of equal stoi-
chiometry) in another phase. Therefore, the reaction rate and
affinity equations derived earlier also apply equally to such mass
transfer processes. As a specific example, the metallurgical para-
equilibrium can be considered where new phases are formed so
that they have the same alloy composition as the parent phase but
substitutional elements like carbon can equilibrate between them.
The constraints in a free energy model are of the form Pelton
et al. (2014).X
i

YMeaαMe;i�aαFe;i
� �

nαi ¼ 0 ð113Þ

where YMe is the mole ratio of iron (or other reference metal
chosen for the system) and metal Me in the parent phase. The
superscript α refers to the new formed phase under study. In
general, a description for a system with M metallic components
(including the reference metal, typically iron) and P phases

(including the original parent phase) will contain M�1ð Þ P�1ð Þ
constraints.

As a simple example in the paraequilibrium between FCC and
BCC iron in Fe : Cr : Ni : C system with the relative molar amounts
of 6:2:3, the matrix coefficients corresponding to Eq. (113) result

ð114Þ
The three first rows correspond to the elements Fe, Cr, Ni and C,

the two last ones to constraint equations of Eq. (113) relative to Cr
and Ni. Paraequilibrium systems and the corresponding phase
diagrams are discussed in more detail in Pelton et al (2014).

5. Discussion

The thermodynamic framework has been applied to many
kinds of systems. The basic thermodynamic relationships are
universally valid. The extensive range of application of the con-
strained Gibbs energy minimisation descends from this generic
base. For the best practical applicability of the models, some
additional assumptions that are only possibly or approximately
valid typically need to be made. For example, in the surface
monolayer model the assumption of no interactions between the
surface layer and the bulk make the model elegantly simple as a
mathematical construction. It is also obvious that is not physically
reasonable to assume it to be strictly accurate. However, as a
practical tool it has found wide use (Egry, et al., 2010; Tanaka,
et al., 1996) and has shown to work reasonably accurately for
many, even if not all, kinds of systems. Additional assumptions,
which are validated only insofar as the resulting model gives
reasonable predictions compared with experimental data, are
needed for the mono- or multilayer excess energies.

To operate with constant stoichiometric coefficients (that are
not functions of composition) in a Gibbs energy minimiser, it has
been assumed in all models that the molar work coordinate con-
tributions (such as molar areas and volumes) are not functions of
composition. While not actually studied, it is the opinion of the
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authors that in a typical inorganic interfacial systems the inaccu-
racy related to this is not significant compared with both inac-
curacies related to experimental data and assumptions made
regarding the form of the thermodynamic excess energy functions
when the bulk data are adapted to a surface or an interfacial layer.

The fundamental guiding principle of work related to systems
with reaction constraints has been to strive towards a model
containing only the necessary amount of kinetic complexity while
applying the constrained equilibrium thermodynamics as much as
possible. Highly complex reaction kinetic models have been criti-
cized in the area of gas phase chemistry on the basis that because
of uncertainties related to modelling parameters, the increased
complexity is unlikely to bring additional value to the results
(Keck, 2008). With multiphase processes and kinetics the uncer-
tainties will probably tend to be even greater. Therefore, it has
been considered valid in the work regarding reaction-constrained
systems to aim at system descriptions that capture the most
essential parts of the rate-dependent processes with only a few
constrained reactions. Such descriptions are of course only an
approximation of the physical system; shortcomings of the
approach are probably more likely to become apparent when
behaviour of complex systems is studied over moderate tem-
peratures and short time intervals (Kangas, 2015).

The Donnan equilibrium model application for pulp suspensions
has been found to be valuable to predict the chemical phenomena
and process behaviour in pulping, bleaching and paper machines
(Kalliola, et al., 2012; Kuitunen, 2014), while the assumed non-
specific nature of ion-exchange interactions is known to face lim-
itations with di- and multivalent ions, especially in systems with
high ionic strengths (Kangas, et al., 2012; Sundman, et al., 2010;
Sundman, 2008).

6. Conclusions

The topic of this work has been to extend the application area
of traditional Gibbs energy minimisers with systems of theore-
tical and practical interest. The aim has been to develop methods
that are as generic as possible, within the possibilities offered by
the minimisers, for both greater understanding the thermo-
dynamic relationships in the systems and for easier future
application of the method to systems that are not handled in
present work.

The application area of standard Gibbs energy minimisers has
been extended, for the most part using existing published phase
models with new data and stoichiometry definitions.

The chemical problems that have been worked on have inclu-
ded reaction rate constrained systems, surface and interfacial
tension in molten systems, Donnan equilibrium as part of a mul-
tiphase model, and systems with external magnetic fields.

The greatest practical success has been achieved with the
models that combine reaction kinetics with partial thermo-
dynamic equilibrium calculation and ion exchange models based
on Donnan equilibrium which have both been applied with suc-
cess in real-life industrial design and development work with
multicomponent, multiphase systems. Elementary kinetic models
and steady-state assumptions can be incorporated as part of the
reaction-constrained free energy models, providing an alternative
for large detailed kinetic models in some practical problems, while
the combination of fairly simple kinetics and multiphase calcula-
tions has been found to be valuable in many practical problems.
Applied to liquid surface energies the method has been successful
in handling systems with multiple components and complex non-
equilibrium data.

List of symbols

A (M � NÞ matrix of stoichiometric coefficients
A surface or interfacial area (m2Þ
Ai affinity of reaction i ðJ �mol�1Þ
ai activity of species i
aj;i stoichiometric coefficient between component j and

species i, matrix element of A
B magnetic flux density T¼ V � s �m�2

� �
b ðM � 1) column vector of molar amounts of

components (mol)
bk molar amount of component k ðmolÞ
Qj reaction quotient of reaction j
E electric field ðN � C�1Þ
F Helmholtz free energy ðJÞ
F Faraday constant � 96485 J �mol�1 � V�1

� �
G Gibbs free energy ðJÞ
G0 free energy function (other than G) matching system

specific constraints ðJÞ
G free energy function as calculated by a free energy

minimiser ðJÞ
G0 modified minimised free energy function in a free energy

minimiser ðJÞ
H enthalpy ðJÞ
ki reaction rate constant of reaction i
Kj equilibrium constant of reaction j
L Lagrangian function
Lj thermodynamic work coefficient j
Lij thermodynamic work coefficient j for a species i as pure

phase (such as surface tension σi)
lj thermodynamic work coordinate j
lj;i molar contribution to the thermodynamic work coordi-

nate j by species i
M number of components in the system
m magnetic moment ðJ � T�1Þ
N number of species in the system
NR number of reactions
n N � 1ð Þ column vector of molar amount of species ðmolÞ
ni molar amount of species i ðmolÞ
P pressure ðPa¼N �m�2Þ
Pi partial pressure of species i ðPaÞ
Pref reference pressure ð105Pa¼ 1barÞ
p electric dipole moment ðC �mÞ
Q heat ðJÞ
q charge ðCÞ
R gas constant
rX rate of formation of species x mol � s�1 � cm�3

� �
r radius of a particle
S entropy ðJ � K�1Þ
T temperature ðKÞ
U internal energy ðJÞ
V volume ðm3Þ
vi;wi stoichiometric coefficient of species i in a reaction
V volume ðm3Þ
ΔGfus Gibbs free energy of fusion ðJÞ
ϕ electric potential ðVÞ
λj Lagrange multiplier related to component j (J mol�1)
λ column vector of Lagrange multipliers related to com-

ponent j (J mol�1)
μi chemical potential of species i (J mol�1)
μ0
i standard state chemical potential of species i (J mol�1)
μ0
i molar free energy of species i (J mol�1)
μ0;0
i standard state molar free energy of species i (J mol�1)

ξ ðR� 1Þ column vector of extents of R reactions
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ξr extent of reaction r
πk chemical potential of component k (J mol�1)
σ surface energy (J m�2)
σi surface energy of pure substance i (J m�2)
χ i molar magnetic susceptibility of i (J T�2 mol�1)

Subscript and superscript related terminology (X is a generic
Roman or Greek character)

Xi where i can be also be j, k or l, partial molar quantity
corresponding to the integral quantity X of the whole
system (unless Xi is explicitly given in the preceding list)

Xα;Xβ part or value of the quantity X related to the part α or
β only

XT transpose of matrix X
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