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Preface

This thesis ties up the results of multiple projects related to low-noise radiometers |
have been involved in during my (first) 17 years of working at VTT Technical
Research Centre of Finland. VTT has given me a chance to work with challenging
projects in the intriguing field of millimeter-wave technology. Although our team’s
name has changed multiple times during the years the actual work has remained the
same. In addition to radiometer related projects, | have had an opportunity to study
millimeter-wave communications in several projects.

The work presented in this thesis has been funded mainly by the European Space
Research and Technology Centre (ESTEC) of the European Space Agency (ESA).
Financial support for the millimeter-wave imager was received from the Finnish
Defence Forces Technical Research Center.

Writing this preface gives me a great opportunity to look back at past years and
remember those who have contributed in my work. First, | want to thank my former
and current colleagues who have worked with circuits, antennas, systems, and
measurements regardless of the frequency range. It has always been easy to knock
on the door and ask for support. | thank Manu Lahdes, Tauno Vaha-Heikkila, Jussi
Tuovinen, Jussi Varis, Mikko Varonen, and Timo Karttaavi for their participation in
research projects and writing the publications presented in this thesis. Jan
Holmberg, Tero Kiuru, Pekka Rantakari, Jussi Saily, Antti Lamminen, Mervi
Hirvonen, Pekka Pursula, Arttu Luukkanen, and Hannu Hakojarvi deserve thanks for
their support.

Secondly, most of this work could not have been completed without international
collaboration. Special thanks go to Tapani Narhi from ESA, who originally initiated
the collaboration between our groups. He also kept pushing us towards ever better
results. Mikko Karkkainen needs to be acknowledged for his participation in the
design work in multiple projects as part of the MilliLab team. Great part of our
collaboration has been the work performed at Fraunhofer IAF in Freiburg, Germany.
| wish to thank Michael Schlechtweg, Matthias Seelmann-Eggebert, Rainer Weber,
Arnulf Leuther, Markus Rdsch, Ernst Weissbrodt, and Axel Tessmann for their
efforts. | have always enjoyed my visits to Freiburg, hopefully | will see you soon
again. A part of the work presented in the publications has been performed by DA-
Design. | thank Petri Jukkala and others for the participation in the projects. The
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work with millimeter-wave low-noise amplifiers has continued with reliability studies
and hopefully we will see the results of our work operating in space in the 2020s.

Finally, | thank my father and late mother for their support over the years. Terhi
and llpo also deserve thanks for the fun times we have together and the support for
each other. | thank Eva-Lisa for the help with English grammar, and also for the
support and patience during the finalisation of my thesis. | also thank my former and
current volleyball teammates for providing me a chance to forget everything else and
focus on the game as well as all the fun times in and out of the court.

Helsinki, November 2016

Mikko Kantanen
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1. Introduction

The frequency range of 30-300 GHz is called the millimeter-wave range due to the
corresponding wavelength range of 10-1 mm. Traditionally the use of millimeter-
wave frequencies has been limited to scientific purposes, especially astronomy.
Examples of astronomy missions are the Wilkinson microwave anisotropy probe
(WMAP) [1], the Planck-mission [2], [3], and the Atacama large millimeter-wave
array (ALMA) [4]. Millimeter-wave radars are used for collision avoidance in cars
at around 77 GHz and there are missile seeker heads operating at 94 GHz [5], [6].
More recently, an increasing demand for data transfer is pushing the
communications systems towards higher frequencies. The frequency ranges 39-
44 GHz, 59-66 GHz, 71-76 GHz, 81-86 GHz, 92-95 GHz, 140 GHz, and 220 GHz
are reserved or considered for communication systems [7]-[11]. Millimeter-wave
identification (MMID) systems have been proposed as an extension of radio
frequency identification (RFID) systems [12]. Radiometers operating at specific
ranges between 31 and 243 GHz are used to gather meteorological data for
weather forecasting [13], [14].

1.1 Background

This thesis focuses on millimeter-wave low-noise circuits for sensitive radiometers
and related devices, systems and measurements. In the following, a general
background of radio receivers, millimeter-wave radiometers, and transistor
technologies as well as essential two-port parameter definitions are introduced.

111 Receiver topologies

Radio receivers can be divided into two main categories, direct detection (or
homodyne) and heterodyne receivers. Simplified schematics with optional
amplification are presented in Figure 1.1. In the direct detection receiver, the
signal captured by an antenna is detected without frequency conversion. Most
receiver systems use low-noise amplifiers (LNAs) to improve the sensitivity of the
receiver. The detection can involve power measurement of the incoming signal or
demodulation of amplitude, frequency or phase. In a heterodyne receiver, the
incoming signal is converted to a different frequency for the detection. In general,
detection electronics are easier to design at lower frequencies, thus the signal is



usually downconverted. Main figures of merit for the receivers are sensitivity,
linearity, selectivity, and stability. In the millimeter-wave region, the low-noise
receivers are essential for most applications.

- L RF IF Demodulation

1| Demodulation I fir Detection
fiv Detection LO
fLO
a) b)

Figure 1.1. Simplified schematics of main receiver categories. a) Direct detection,
b) heterodyne receiver.

Noise of a radio receiver can be calculated using noise temperature. The output
noise power of any resistive load

P, = kT,B (1.1)

where the noise temperature T, is defined as a physical temperature where the
resistive load should be in order to produce output noise power P, k is
Boltzmann’s constant, and B is the measurement bandwidth. Noise of a two-port
can be modeled using a matched load with effective noise temperature T, at the
input of a noiseless two-port as shown in Figure 1.2.

Noiseless
two-port

Figure 1.2. Presentation of noise in two-port by noise temperature.

When two-ports with available power gains of G, and noise temperatures T, are
cascaded, the resulting total noise temperature at the input
Too=1 | Tpa—1

TTOT: Tn1 +m+m+'". (12)



This is commonly known as the Friis formula [15]. A noise figure F describes the
deterioration of signal-to-noise ratio in a circuit

_ Psi/Pai
" Poo/Pro (1:3)

where Psi/Pyi and Pso/Ppo are signal-to-noise available power ratios at input and
output, respectively. The noise figure can be calculated from noise temperature
using

Tn

F=1+?0

(1.4)
where Ty is standard temperature 290 K [16]. The Friis formula expressed using
noise figures is

Fy=1 |  Fa—1

Fror=Fy +
ror 1 Gav1 Gav1Gan

(1.5)

1.1.2  Millimeter-wave radiometers and atmospheric measurements

Radiation of all objects can be characterized using Planck’s black body radiation
law for surface brightness

2hf 1
Bu =5 (s (1.6)

where h is Planck’s constant, c is the speed of light, fis the frequency of radiation,
and T, is the physical temperature of the object [17]. At microwave and millimeter-
wave frequencies hf<<kTp; therefore the brightness of a black body can be
approximated using the Rayleigh-Jeans law [17]

By, = 2T, (1.7)

According to the Rayleigh-Jeans law, the brightness of an object is proportional to
its physical temperature. Natural objects are not perfect black bodies. The
detected radiation is partly due to the object itself and partly to reflected radiation
from the surroundings. The emissivity ¢ defines the ratio of the radiation emitted by
the object itself

2PKT,
c?

By, = ¢ (1.8)

Commonly, instead of brightness By, the brightness temperature

Tor = €Ty (1.9



is defined [17]. An object with a physical temperature T, and an emissivity ¢
radiates as a black body with a brightness temperature T, as long as the
Rayleigh-Jeans law applies. The reflectivity p describes how much an object
reflects radiation from its surroundings. For an object that radiation cannot
penetrate

e+p=1. (1.10)

Emissivity and reflectivity depend on the frequency. Power emitted by a black
body, measured on a single polarization and over the bandwidth Bis

P, = kT,,B. (1.11)

The brightness temperature is an equivalent quantity to the noise temperature.
The noise temperature of the radiation emanating from a natural object is

Tbody = Tpr + pT,-ef/ = E3Tp +pTren (1.12)

where Ty is the noise temperature of the incident radiation reflected by the object.

Radiometers are sensitive receivers that are used to measure the power of the
incident radiation [17]. Simplified schematic of a radiometer is presented in Figure
1.3. Detected power at the radiometer output

Pget = kBGsysTsys (1.13)

where Gsys is the average power gain of the radiometer system and Tsys is the
system noise temperature. The bandwidth can be derived by integrating the gain
over frequency

B=———" Gg,s(Ndf (1.14)

Gsys,max

where Gsysmax is the maximum system gain [18]. Commonly, B is approximated
with the 3 dB bandwidth of system gain. The system noise temperature

Tsys = Tant + Trec (1.15)

where T, is the antenna noise temperature and T, is the total noise temperature
of the receiver. The antenna noise temperature describes the power of the
received noise signal. Minimum detectable noise temperature difference of an
ideal radiometer or radiometric sensitivity is given by

AT=T2 (1.16)



where 7; is the integration time; ie. the time spent observing the target. If non-
idealities, such as gain variation, are considered, AT will change to

2
AT =Ty, |2 +(AG—Y) (1.17)

Bt \ Gys
where AGsys is the root mean square value of the detected power gain variation.

Amplification
Antenna : ‘p Detection Integration

Figure 1.3. Simplified schematic of a radiometer.

Radiometers have high gain and wide bandwidth to increase the power level
above the threshold for detection because the input power level is typically very
low. As other radio receivers, the radiometers can be realized as direct detection
or heterodyne radiometers. Heterodyne radiometers are utilized when good
frequency selectivity is needed. Direct detection radiometers typically utilize wide
bandwidth to increase the received noise signal power. Both types of radiometers
can be further divided to total power radiometers, Dicke-radiometers, noise
injection radiometers, continuous comparison radiometers, and other more
complex radiometers [17]. Some radiometers utilize a reference load with known
noise temperature to reduce the effects of gain variation. For example, the Dicke-
radiometer [19] utilizes a switch to connect either the antenna or the reference
load to the radiometer. Simplified schematic of the Dicke-radiometer is presented
in Figure 1.4. If equal time is spent measuring the target and the reference,

2Tt 2(Trort Teo)? | (8Gsys)
AT= j5—+(6—) (Tant = T)? (1.18)

where T is the noise temperature of the reference load [17]. It is apparent from
(1.17) that if Treris equal to T, the effects of gain variation are cancelled and AT
is doubled compared to the ideal radiometer.
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Figure 1.4. Simplified schematic of the Dicke-radiometer.

For accurate measurements of the target temperature the radiometers need to
be calibrated. Radiometers are calibrated by measuring at least two loads with
known noise temperature [17], [20]. For the best accuracy, noise temperatures of
the loads should be outside the expected noise temperature of the target, ie., a
‘hot’ and ‘cold’ load.

One of the main applications of millimeter-wave radiometers is the remote
sensing of the Earth’s atmosphere from space. The attenuation of the atmosphere
at microwave and millimeter-wave frequencies is presented in Figure 1.5. Local
maxima in attenuation are caused by molecular absorption of oxygen and water
molecules. In the microwave and millimeter-wave regions, there are absorption
peaks caused by oxygen around 60 GHz and 118 GHz and peaks caused by
water vapor around 23.8 GHz and 183 GHz. Local minima between the absorption
frequencies are called window frequencies.

The attenuation and the shape of the peaks depend on the temperature,
humidity and pressure. Shapes of the 183 GHz water vapor peak with different
meteorological values are shown in Figure 1.6. Water vapor density pwater has a
large effect to the peak attenuation value while temperature changes have
moderate effect to the attenuation. By performing measurements at several
frequencies, different parameters for meteorological models and weather
forecasting can be determined. For example, MetOp-SG satellites to be launched
after 2022 by EUMETSAT and ESA will have on-board an instrument called
microwave sounder (MWS) that has multiple radiometers operating at different
channels [13]. The channels and their use are listed in Table 1.1.
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Figure 1.5. Attenuation of the atmosphere at sea level [21]. T = 15 °C, p = 1013
mbar, puater = 7.5 g/m°.
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Figure 1.6. Shapes of the 183 GHz water vapor absorption peak with different

meteorological values [21]. Water vapor density pwaer has a large effect to the
peak attenuation value.



Table 1.1. Microwave channels and their utilization in the microwave sounder

instrument for the MetOp-SG satellite [13].

Channel Frequency (GHz) Utilisation
MW S-1 23.8 Water-vapour column
MWS-2 314 Window, water-vapour column
MWS-3 50.3 Quastwindow,
surface emissivity
MW S-4 52.8 Temperature profile
MWS-5 53.246+0.08 Temperature profile
MW S-6 53.596+0.115 Temperature profile
MWS-7 53.948+0.081 Temperature profile
MWS-8 54.4 Temperature profile
MWS-9 54.94 Temperature profile
MWS-10 55.5 Temperature profile
MW S-11 57.290344 Temperature profile
MWS-12 57.290344+0.217 Temperature profile
MWS-13 57.290344+0.3222+0.048 Temperature profile
MWS-14 57.290344+0.3222+0.022 Temperature profile
MWS-15 57.290344+0.3222+0.010 Temperature profile
MWS-16 57.290344+0.3222+0.0045 Temperature profile
MWS-17 89 Window
MWS-18 165.5+0.725 VCV’:f‘es;i'v":SgS;"’r’)roﬂle
MWS-19 183.31127.0 \é\::i?;i;’:tf’oon“r profile,
MWS-20 183.31114.5 Water vapour profile
MW S-21 183.311+3.0 Water vapour profile
MWS-22 183.311+1.8 Water vapour profile
MWS-23 183.311+1.0 Water vapour profile
MWS-24 229 Quasi-window,

water vapour profile




1.1.3  Transistor technologies for millimeter-wave frequencies

Traditionally millimeter-wave low-noise amplifiers have been realized by using I1I-V
compound semiconductor technologies such as gallium arsenide (GaAs) or indium
phosphide (InP) [22]. During the past few years developments in silicon based
technologies, CMOS and silicon germanium (SiGe), have allowed the use of these
technologies at millimeter-wave frequencies [22]. While gain and noise properties
of 1lI-V compound semiconductor based technologies are superior to their silicon
based counterparts, the possibility to integrate more functions on a single chip
makes silicon based circuits attractive for mass production applications.

The most common IlI-V compound semiconductor transistor type utilized in the
millimeter-wave region is the high electron mobility transistor (HEMT). HEMT is a
special type of the field effect transistor (FET) where a so called two dimensional
electron gas is formed on a thin layer in the structure. In FETs, the amount of the
available carrier electrons between the source and drain terminals is controlled by
applied voltage at the gate terminal.

Cross sections of a conventional GaAs HEMT structure and metamorphic
HEMT structure are presented in Figure 1.7 [23], [25]. In a conventional GaAs
HEMT, an undoped GaAs buffer layer and an undoped aluminum gallium arsenide
(AlGaAs) spacer layer are grown on a semi-insulating GaAs substrate. Due to a
higher band gap of AlGaAs compared to GaAs, free electrons diffuse into GaAs
and form a thin two-dimensional electron gas (2-DEG) at the interface. Electrons
in the 2-DEG channel exhibit high mobility and velocity due to lack of donor atoms
in the undoped GaAs layer. The amount of charge in 2-DEG is controlled by the
gate to source voltage. The main advantages of the HEMT structure are high
electron mobility, small source resistance, high transit frequency f; due to high
electron velocity, high transconductance, and high output resistance [23].

When comparing different HEMT technologies, InP HEMTs have enhanced
noise and gain properties compared to GaAs HEMTs. However, pure InP is very
fragile and very expensive to manufacture. This has led to the development of
pseudomorphic and metamorphic HEMT technologies. In the pseudomorphic
HEMT (PHEMT) technology, devices with an indium channel are manufactured on
a GaAs wafer. InP and GaAs have different lattice constants which results in
lattice mismatch. The lattice mismatch causes structural strain and dislocations
which reduce electron mobility in the device. In metamorphic HEMT (MHEMT)
technology, a buffer layer is processed between the GaAs wafer and the In
channel. Indium content is adjusted linearly in the buffer layer which allows
matching the lattice constants [23], [24].
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Figure 1.7. Cross-sections of a) conventional GaAs HEMT and b) metamorphic
HEMT devices. Adapted from [23], [25].

The high frequency small signal equivalent circuit of a HEMT device is
presented in Figure 1.8. The equivalent circuit consists of intrinsic and extrinsic
components. The intrinsic components (Cys, rgs, Cgd, fgd, Gm, T, Gas, and Cgs) describe
the behavior inside the device while the extrinsic components (Lg, Ry, Rs, Ls, Ra,
L4, Cpss, Cprep, and Cpps) describe the effects of connections to circuit
components [23], [26], [27]. The noise of a HEMT device can be modeled by
assigning the temperatures Ty and T, on resistors gus and rgs, respectively [28].
Together with the small signal model the temperatures Ty and T, determine the
complex noise parameters of the device.

1
CPS'G
G L R, ' Cyu Intrinsic device H L, D
DT —/\\ T | | VN — T
E V|__c, i
: g.ve" J T, ;
E Q) ;gas Cos __
i T, i
Lo i bt | c. ©
1 " 1
L,
S

Figure 1.8. High frequency small signal equivalent circuit of a HEMT device.
Adapted from [26].

10



Transconductance as a function of the gate voltage with different drain voltage
values of a HEMT device is presented in Figure 1.9. For each drain voltage value
there is a gate voltage value maximizing the transconductance. Maximum
transconductance biasing is utilized in circuit design to maximize the gain of the
transistor.

50

45
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Figure 1.9. Measured transconductance of a HEMT device as a function of gate
voltage.

1.1.4  Parameter definitions for two-ports

During the circuit design work, most of the electrical components are considered
to be one-ports, two-ports or multiports. In the following, definitions of the
parameters used in this thesis are given. A two-port characterized with S-
parameters and related reflection coefficients is presented in Figure 1.10.

‘1"/,, Two-port | r
S, L,
SII SZ2
I, r,,
T S.
| Fmim rn! l—‘opt ‘

Figure 1.10. Two-port characterized with S-parameters and reflection coefficients.
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The noise figure F of any two-port varies as a function of the source reflection
coefficient I's as [29]

F = Fn + 4, et (1.19)
T (A rgl2) 14 T '

where Fpj, is the minimum noise figure of the two-port, r, is the normalized noise
resistance, and T'opt is the optimum source reflection coefficient, with which the
minimum noise figure is achieved. The parameters Fpin, rn, and Ty are called
noise parameters. As a three dimensional representation, equation (2.1) defines a
paraboloid over the Smith chart. When the noise figure values are projected on the
Smith chart they form noise circles. These circles aid in optimizing the input
matching of low-noise amplifiers. Both the noise paraboloid and the noise circles
with a Smith chart are presented in Figure 1.11.

Figure 1.11. Noise paraboloid over the Smith chart with projected noise circles.
Colors of the noise circles correspond to the noise figure values at the paraboloid
surface. Optimum source reflection coefficient value is marked with an o.

Stability is a very important consideration in the design of amplifiers.
Conventional requirement [30] for unconditional stability is K> 1 and |A| > 1 where

I S R S Al
K= 2|S12S21] (1.20)
and
A= S811S2 — S125z1. (1.21)
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If both requirements are not met amplifier is conditionally stable. Stability can be
examined on the Smith chart by using stability circles as shown in Figure 1.12
[31]. The radii r;s and center points of the circles C;s are

_ | _S12821
= |822|2—|A|2|' (1.22)
_ (322—3;1A)'
Ci= 1Sz22-14[2” (1.23)
_|_S12821
fs = |822|2—|A|2|' (1.24)
and
Si1=Siah)
_( 11—S22 ) (1.25)

ST Isul2-1a2’

for load and source, respectively. If |[S11|< 1, then the area outside the load stability
circle is the stable area and stability of the two-port is maintained using any
impedance from that area as load impedance. The same applies for |S2,| and
source stability [31]. Alternatively to K and [A|, two-port is unconditionally stable if
stability circles lie outside of the Smith chart and the stable area is outside the
stability circles. This can be characterized by stability factors p and p’ which define
the shortest distance to the edge of stability circle from the center of the Smith
chart for load and source, respectively [32]. These stability factors can be
calculated using

_ 118112 (1.26)
|322—S11A|+|S12321|

and

= 1-1Spl? (1.27)
|S11—322A|+|S12321|

Conditions for unconditional stability are p>1 and p’ > 1.
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Unstable region if |S,,|<1

Figure 1.12. Source stability circle on the Smith chart. Similar figure can be drawn
using C;, nand p.

The available power gain of a two-port is defined as the ratio between the
power available from the two-port Pa,n to the power available from the source
Pav,S

Payn _  1=ITg? 2 1
G — av, - S S
& Pas |1—s11rs|2| 21l 1=|Toul?

(1.28)

where I's is source reflection coefficient and I'oy is the output source reflection
coefficient. Values of I's that produce constant G, can be shown to form circles
known as constant available power gain circles on a Smith chart [31]. Another
power gain definition is the transducer power gain defined as the ratio between the
power delivered to the load P; to the power available from the source

G,= P, 1-ITl? |821|2 1-|T)2 (1.29)

Pavs  11-SyTs2 EVE

where T is load reflection coefficient. The transducer power gain is maximized
when both input and output are conjugate matched (I's = T T = F*ou,). Under
these conditions also G, = G;. If stability factor K > 1, then maximum available or
transducer power gain can be calculated from [31]

/ S.
Gavmax = Gtmax = K— K -1 :S—?;: (1.30)
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1.2 Objectives and content of this thesis

The research work done in the frame of this thesis has been motivated by several
R&D projects that VTT and MilliLab have carried out for the space and other
industries. Industries need new measurement techniques and new high
performance solutions for sensing with lower cost circuits and systems at ever
higher frequencies.
The objectives of the work described in this thesis are:
1. To develop a measurement system for transistor noise characterization at
millimeter-wave frequencies.
2. To develop novel calibration sources for radiometers.
3. To develop low-noise amplifiers for sensitive radiometers.
4. To develop a radiometer for imaging purposes.
The first part of the thesis gives an introduction to the research area and
summarizes the results presented in the scientific articles.
The second part of the thesis presents seven scientific articles where
theoretical and experimental results of the work have been reported.
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2. Millimeter-wave on-wafer measurement
techniques

In general, radio frequency (RF), microwave, and millimeter-wave measurements
can be divided into small signal and large signal measurements. Small signal
measurements, such as S-parameter and noise measurements, describe the
linear behavior of the device under test (DUT); ie., in the cases where the
operation of the DUT is not affected by the test signals. Large signal
measurements, such as compression point and intercept point measurements,
characterize the non-linear operation of the DUT.

On-wafer measurements require on-wafer probes, which are used to connect
measurement system to the DUT. Probes with coaxial cable interface are
available up to 140 GHz and probes with waveguide interface are offered up to
1100 GHz [33]-[35].

2.1 S-parameter and noise figure measurements

Scattering parameters (or S-parameters) are commonly used to describe
operation of linear circuits at microwave and millimeter-wave frequencies. An s-
parameter presentation of a two-port is shown in Figure 2.1. The S-parameters
describe how incoming (a1, a2) and outgoing (b1, b2) signal waves are reflected
(S11, S22) or travelled through (S21, S12) the two-port. Noise of the two-port can be
modeled with correlated noise waves (c1, ¢2).

Two-port cy
a, S, b
s, S
b, S, a

Le

Figure 2.1. S-parameter presentation of a two-port.
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Presently, vector network analyzers for S-parameter measurements are
commercially available up to 140 GHz with coaxial cable interface. Extension units
are available with waveguide interfaces from 50 GHz up to 1100 GHz covering a
single waveguide band at a time [36], [37].

For on-wafer measurements, the vector network analyzer needs to be
calibrated with on-wafer calibration standards. The most commonly used
calibration methods at millimeter-wave frequencies are TRL and LRRM [40]-[42].

A simplified schematic of a noise figure measurement system is presented in
Figure 2.2. The main functional blocks are a noise source and a noise receiver.
The noise source is a component producing noise at controlled power level, for
example a temperature controllable termination or a noise diode. The output
power of the noise source is characterized as noise temperature. The noise
receiver is essentially a radiometer measuring noise power and can be realized as
a direct detection or heterodyne receiver. Commercially available measurement
equipment, noise figure analyzers, can be used as a basis of the noise receiver. If
needed, an additional noise downconverter is utilized to convert high frequency
noise to frequency which is suitable for the noise figure analyzer. By delivering two
different known noise power levels to the noise receiver and using (1.13), the
receiver's noise temperature can be determined using the commonly known Y-
factor method [20]

To=YT
Trov =", °¢ (2.1)

where Ty and T¢ are the hot and cold noise temperatures, respectively,
corresponding to two known noise power levels generated by noise sources.
Factor Y = P4/Pc, the ratio between the measured power levels Py and P for load
noise temperatures Ty and Tg, respectively. Commonly, noise sources with noise
temperatures Ty and T are referred to as a hot and a cold source, respectively.

+ Noise receiver
.

Noise
. .
figure analyzer | :

H
Noise source DUT |—— Downconverter —
.
@

Figure 2.2. Simplified noise figure measurement system.

After receiver calibration, the DUT is connected to the measurement system
and total noise temperature of cascaded DUT and receiver (Tror) is determined
using (2.2). Finally, the noise temperature of the DUT is calculated using (1.2)

Trcy—1
Tpour = TroT = ZZ‘;T : (2.2)
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Noise figure and noise parameter measurement systems and software solutions
are commercially available up to 110 GHz [38]. For higher frequencies, noise
diodes based on avalanche diodes can be purchased up to roughly 200 GHz [39].
Above that, the parasitic capacitance of avalanche diodes reduces their usability.
Terminations, either as waveguide component or black body radiators, are
available at higher frequencies [43], [44]. Fully assembled receivers or their
components can be purchased up to 1100 GHz [36].

2.2 Millimeter-wave on-wafer measurement system for noise
parameter determination

For efficient design work of low-noise amplifiers, it is essential to have accurate
small signal models for the passive and active components utilized in the designs.
While passive components can be modeled with a combination of electro-
magnetic simulations and measurements, the small signal models of active
components are typically derived from measured data only. S-parameter
measurements provide data that partially describe the operation of an active
component. To completely characterize an active component, additional
measurements, such as noise figure or noise parameters, are needed. Usually,
the models used to describe noise behavior in the millimeter-wave region are
extrapolated from noise parameter determination in the microwave region or are
based only on noise figure measurements [45]-[50]. Determination of noise
parameters at millimeter-wave frequencies are needed to refine the low frequency
models to accurately characterize noise behavior in the millimeter-wave region.

The noise parameters are not directly measurable quantities; instead they are
determined by measuring the noise figure with different source reflection
coefficient values. Because the optimum source reflection coefficient is a complex
quantity, at least four noise figure measurements with different source impedances
are needed to solve the noise parameters in (1.16). To reduce the effect of
measurement uncertainty, more than four measurements are usually made and
noise parameters are solved using mathematical fitting routines. For passive two-
ports, the noise parameters can be directly calculated from the measured S-
parameters, as presented in [51].

In order to measure the noise figure as a function of source impedance an
impedance tuner can be inserted between the noise source and the DUT to the
noise figure measurement system. The schematic of a general noise figure
measurement system with a tuner is presented in Figure 2.3. The tuner losses
change the noise temperature generated by the noise source. The noise
temperature after a lossy passive two-port can be expressed as

To=(1=)Tpys +1T, (2.3)

where Tphys is the physical temperature of the two-port, L is the loss of the two-
port, and T, is the noise temperature delivered to the lossy passive two-port [16].

19



When the input reflection coefficient seen by the DUT is changed, the losses
introduced by the tuner will also change and very careful characterization of tuner
losses is needed in order to preserve good accuracy for the noise figure
measurements. It can be seen in (2.3) that if the noise temperature T, equals the
physical temperature of the two-port, also the noise temperature after the two-port
is equal to the physical temperature. Thus, for any impedance created by a lossy
passive network at an ambient temperature, the noise temperature equals the
ambient temperature. This has led to a development of a so called cold-source
measurement technique [52]. With the cold-source measurement technique, most
of the noise figure measurements are performed with a passive source at ambient
temperature, only one measurement with a noise source with higher noise
temperature is needed. This measurement should be performed in a low-loss state
of the tuner and close to a 50 Q impedance to reduce measurement uncertainty.

'
H Noise receiver
.

Noise '
figure analyzer | !

Noise source Tuner |—— DUT |—+ Downconverter [—
:

Figure 2.3. Simplified noise parameter measurement system.

Several mathematical approaches to determine noise parameters have been
reported [53]-[58]. Most of the methods rely on least square fitting of (2.1) to the
measurement data minimizing an error between measured and calculated noise
figure for each source impedance [53]-[55]. Possible measurement errors in both
noise figures and source impedances are taken into account in [56] and [57]. In
[58], a direct method to calculate noise parameters as an average of each four
measurement point groups from measurement data is presented.

The on-wafer noise parameter measurement setup used in this work is
presented in Figure 2.4. The measurement setup is based on WR-15 waveguide
components and operates over the frequency range of 50-75 GHz. The
measurements are based on the cold-source method [52]. A solid state noise
diode is used to provide hot (Th~ 10000 K) and cold (T¢ = 295 K) noise
temperatures during the noise receiver calibration. During measurements with a
DUT, the noise diode is used only as an ambient temperature load. The noise
receiver consists of a waveguide probe, an isolator, an LNA, a mixer, a signal
generator, and a noise figure meter. A commercially available waveguide tuner
controls the source reflection coefficient seen by the DUT with a moveable needle
or probe inside a straight waveguide. The magnitude of the source reflection
coefficient is controlled by changing the probe’s insertion into the waveguide and
the phase is controlled by moving the probe along the waveguide. The probe
motion is controlled by two stepper motors. Probe’s placement inside the
waveguide can be characterized by step counts of the stepper motors. The DUT is
placed in an on-wafer probing station and is connected to the measurement
system with on-wafer probes with waveguide interfaces. Bias for active devices
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can be fed through the probes or a separate biasing probe may be used. A vector
network analyzer can be used to perform S-parameter measurements by utilizing
two waveguide switches.

Automated noise figure meter

Vector network analyvzer

HP8510C HP8970A
Variable attenuator ’
HP8495D
A Bi €T
: ' o Low noise /
! oo Isolator amplifier
Noise source : | HP23184
< Tuner H— || Mixer
-15- . T .
NSS-15-R1520 | MTo77A |} | i PV-VB
i Switch P Switch
MPI 530V : i | MPI 330V
Probe Isolator
station HP2518A
Tuner controller
MT986A .
Signal generator
HP836350A
GP-IB I

Figure 2.4. Automated noise parameter measurement setup [l].

From an operational point of view, the measurement system can be divided into
five functional blocks which are presented in Figure 2.5 with notations for noise
figure calculations. The calibration measurements include two port S-parameter
measurements of the tuner, the input probe, the DUT, and a thru calibration
standard. One port S-parameter measurements of the noise source, the receiver
and the source reflection coefficients are also needed.
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Figure 2.5. Functional blocks of the noise parameter measurement system with
notation for noise figure calculations [l].

The noise receiver is calibrated by placing an on-wafer thru calibration standard
between the probes. In order to subtract the receiver’s noise contribution, its kBG-
factor and noise parameters are required. The kBG-factor, normalized to perfectly
matched load (I'rcv = 0), is determined by measuring one hot and one cold noise
power measurement and is calculated using

2
P,—P, |1-S11,40T ws|
kBG = ~"—C |1 — [ geyTspevl’ ——— 22— (2.4)
Tu=Tc (1-ITnsl?)|S21,40]

where Py and Pc are the noise powers measured with a hot and a cold noise
source, respectively. Ty is the noise temperature of the hot noise source
transferred to the receiver input plane, T¢ is the physical temperature of the
measurement system, T'srcv is the source reflection coefficient of the input
network at the receiver input, I' rev is the reflection coefficient of the receiver, and
Sijap are the overall S-parameters of the cascaded tuner, probe, and thru. The
derivation of formula (2.4) is presented in Appendix A.

The noise figure of the receiver with different source reflection coefficient values
can be determined from cold noise source measurements using

_ _Pa M-Tirevsrevil® _ Tc
Fi= TokBG  1-ITsgevil? ot 1 (2.5)

where Pgi is the measured noise power with the ith source reflection coefficient
I'srevi, and Ty is the standard temperature 290 K. By measuring the noise power
for at least four source reflection coefficient values, the noise parameters of the
receiver can be calculated. The method in [58] with the modifications suggested in
[59] is used in this work.

After the calibrations, the DUT is placed in the probe station and power
measurements with the cold noise source are performed. For each source
reflection coefficient value T'spyr the total noise figure of the cascade of the DUT
and the noise receiver
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TokBG (1-ITspumil?)|S21,0u7] To

where P¢; is the measured noise power for the ith source reflection coefficient
I'spun, and I'srevi is the reflection coefficient of the network connected to the input
of the receiver. The noise figure of the DUT can be calculated by the Friis noise
formula (1.5)

Frov—1
Fpuni = Fron — % (2.7)

where Frcviis the noise figure of the receiver and Gpyn the available power gain of
the DUT for the ith source reflection coefficient. Noise parameters of the DUT are
calculated similarly as for the receiver.

Almost 40 measured quantities affect to the final values of the noise
parameters. These include S-parameters, reflection coefficients, power
measurements, ENR calibration of the noise source and room temperature. To get
an estimation of measurement accuracy, a Monte Carlo analysis [60] was carried
out. In the analysis, random errors are added to the initial measured values and
the noise parameters are calculated, for example 1000 times. Statistical analysis
is then performed to the obtained noise parameter sets. To get values for random
error distributions, uncertainties were divided into A- and B-type uncertainties as
suggested in [61]. A-type uncertainties are determined through statistical analysis
and B-type uncertainties by other means (e.g. from literature). Prior work with
manual on-wafer measurement system provided most of the information [62].
Uncertainties used in the error analysis are listed in Table 2.1. Rectangular
distribution was used for S-parameter, reflection coefficient, and power
measurement errors. Triangular distribution was used for ambient temperature.

Deviation of the minimum noise figure of an InP HEMT device is presented in
Figure 2.6. S-parameters of the DUT and the source reflection coefficient
measurement (I'spyri) were found to be the main sources of errors [l]. Confidence
boundaries depend heavily on the test device. As an example the measured
values for the HEMT device at 57 GHz with the corresponding 20 confidence
boundaries are given in Table 2.2. Obtained boundaries correspond to observed
ripple well when clearly erroneous values are discarded.
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Table 2.1. Uncertainties of the measured parameters. Data from [l].

Parameter Standard uncertainty Uncertainty type
S11,7UN, S22,TUN 0.005 A, B
S12,7UN, S21,TUN 0.006 A, B
S11,PrB, S22,PRB 0.036 B
S12,prB, S21,PRB 0.005 B
Si.our, S22.pur 0.036 B
Si2.our, S21,0UT 0.05 B

T'LrCY 0.036 B
T'sputi 0.036 A, B
I'ns 0.005 B
ENR (dB) 0.06 B
Pu, Pc(dB) 0.04 B
Tc (K) 0.82 B

Percentage of calculated values

14 16 1.8 2 2.2 2.4 2.6 28 3 32 3.4
F_ (dB)
min

Figure 2.6. Deviation of Fy;, obtained in the Monte Carlo analysis with 1000 runs
at 57 GHz. Data from [l].

Table 2.2. Measured noise parameters and corresponding confidence boundaries
for a HEMT device at 57 GHz. Data from [l].

Parameter Measured value 20 (95.5 %) confidence boundary
Frmin 2.65dB + 0.6 dB
In 0.25 + 0.06
[Copd 0.57 +0.1
LT opt 121° +9°
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2.3 Experimental results

The noise parameters of a passive and active test device were presented in [I].
For passive devices, the noise parameters can be calculated from S-parameters
[51] and they can be utilized to verify the operation of the test system. For both
devices, the noise parameters were determined by measuring the noise figure with
nine source reflection coefficient values. The noise parameters of an InP HEMT
device are presented in Figure 2.7. The measurements show minimum noise
figures in the range of 2.0-3.0 dB and normalized noise resistances in the range of
0.1-0.2. A similar transistor has also been measured at W-band using a similar
measurement system [63] and comparison between the bands has been
presented in [64].
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Figure 2.7. Noise parameters measured for an InP HEMT device. a) Minimum
noise figure, b) normalized noise resistance, c) magnitude of optimum source
reflection coefficient, and d) phase of optimum source reflection coefficient, Data
from [l].

In addition to the data presented in this work, the on-wafer noise parameter
measurement system presented here has been utilized to verify and develop noise
models for HEMT and CMOS devices [65]-[68].

Besides the wideband measurements with a low number of source reflection
coefficient values per frequency, the test system can be used to measure the
noise figures with large number of source reflection coefficient values at a single
frequency. Noise figure values and noise circles calculated using fitted noise
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parameters for a CMOS device with 80 reflection coefficients are presented in
Figure 2.8.

Figure 2.8. Noise figure values (in dB) measured using 80 reflection coefficient
values (x) and constant noise circles from 3.5 dB to 7 dB with 0.5 dB step
calculated from fitted noise parameters of a CMOS transistor at 60 GHz.

Only a small number of noise parameter measurement results has been
published in the millimeter-wave region. Researchers from MilliLab have published
results on V- and W-bands with waveguide based systems utilizing manual tuners
[62], [63], [69], [70]. Noise parameter results using a measurement system based
on a coaxial cable environment have been published up to 40 GHz and 60 GHz, in
[71] and [72], respectively. At W-band, noise parameters of a passive device have
been published in [73], [74]. Integrating a tuner as a part of a DUT with noise
parameter results have been reported in [75]-[79].
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3. Millimeter-wave active cold loads

Loads with known noise temperature are utilized as reference or calibration loads
for the radiometers. The radiometer calibration loads can be either external or
internal. External calibration loads are viewed by the entire radiometer system,
including a target-pointed antenna. This way the antenna and the associated feed
network are also calibrated [80]. An external calibration load can be a cold sky, i.e.
measurement of cosmic microwave background noise, or a temperature controlled
microwave absorber. Internal calibration loads are connected between the
antenna and the radiometer front-end. Thus, only the radiometer itself is calibrated
by the internal calibration loads. The antenna and the feed network need to be
calibrated by other means. Examples of internal calibration loads are noise diodes,
matched loads, and active cold loads (ACLs).

An active cold load is a one port circuit with noise temperature below the
physical ambient temperature. It was shown in [81] that a FET based circuit can
have a noise temperature below the ambient by a proper feedback network
design. Low noise temperatures make ACLs attractive calibration loads especially
in Earth-observing radiometers. For Earth-observing radiometers the hot
calibration load has typically noise temperature of 300 K. It is beneficial to have
the cold calibration load with around 100 K noise temperature that an ACL can
provide. Most of the reported ACLs are based on FETs [81]-[89]. It is also possible
to achieve a noise temperature lower than the ambient temperature with a
Schottky diode where shot noise is the dominant noise source [90].

3.1 Design of active cold loads

A noise wave based analysis and general design flow of active cold loads have
been presented by Weatherspoon and Dunleavy [91]. A notation for the two-port
noise analysis is presented in Figure 3.1. The noise temperature incident at the
input plane of the system
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Figure 3.1. Noise wave based notation for active cold load design. Adapted from
[91].

Ts1 =T+ [(T1(1 = IT41%) + T2) Gor D212 + T2 (1 = I121%)| G (3.1)

where T, and T, are alternate noise parameters [92], [93], which are derived from
the traditional noise parameters (Temin, Rn, Yopt = GopttjBopt) by

n=nm+ﬂ$ﬁ (32)
and

Ty = —— T min- (3.3)

| v '

Tk is given by

T = 4ToR0Gop (3.4)
and

Cope = 0t (35)

where the Ty is the standard temperature of 290 K. The terminal invariant gains
are derived from the circuit S-parameters and are given by

Giz4 =7 5,72 (3.6)
and

G — |821|2 (3 7)

RSN '
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Ts1is minimized when T'j, = F*opt. Input noise and power matching can be obtained
simultaneously when

_ l-‘opt_SH
2= S12521+S22(T o= S11)’ (3.8)
A single transistor can have the magnitude of I'> greater than unity, which would
not be possible to realize by a purely passive network. In this case a feedback
network has to be designed to obtain a realizable value |T'2| < 1. In principle ACL
design has three steps [91]:

1. The design of a feedback network to obtain a realizable value for the drain

matching circuit reflection coefficient 'L = T,.

2. The design of a drain matching circuit for T';.

3. The design of a gate matching circuit for l"*op,.
The ACL design process is quite close to the low-noise amplifier design process.
Main differences are that the gain of the resulting circuit when designed for an
ACL operation is typically low and the output and input matching networks can be
designed independently for the ACL due to low reverse gain. In an LNA design
process, design iterations of the input and output matching networks are usually
needed.

3.2 Experimental results

Two ACL circuits were designed for millimeter-wave frequencies using the 100 nm
MHEMT process from Fraunhofer IAF, Freiburg, Germany [ll]. The schematic of
the realized ACL designs is presented in Figure 3.2.

Vg Vd

and biasing

a0

2
Stubs for matching
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=

et Additional matching stub
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RF port T
D— j P L
<£opt: )
Source line

Figure 3.2. Schematic of the realized active cold loads [lI].
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An inductive source feedback was utilized to obtain |I',| < 1 for the drain
matching network. Additional constraints for the length of the inductive source
transmission line arose from stability considerations [ll]. The drain matching
network consists of an open ended shunt stub, an RF short circuited shunt stub, a
50 ohm termination, and a DC blocking capacitor. Wideband matching of the RF
port can be improved by using two stubs in the drain matching network.

The gate matching network provides simultaneous noise and conjugate
impedance match for the transistor. The gate matching network is realized using
an RF shorted stub, a series transmission line and a DC blocking capacitor. The
losses of the gate matching network have a large effect on the overall noise
temperature of the ACL as is apparent from (2.3). Micrographs of the two realized
ACL monolithic millimeter-wave integrated circuits (MMICs) for 31.4 GHz and 52
GHz are presented in Figure 3.3.

a) b)

Figure 3.3. Micrographs of the realized ACLs. a) 31.4 GHz, chip size 2.0 mm x 1.0
mm, b) 50-54 GHz, chip size 1.5 mm x 1.0 mm [ll].

Two test setups are used to characterize the noise temperatures of the realized
ACLs. The setups are based on waveguide components at Ka- and V-bands. Both
measurement setups have similar functional blocks and a generic block diagram is
shown in Figure 3.4. At Ka-band, the probe block includes a coaxial on-wafer
probe and a short section of coaxial cable. Stainless steel waveguide is not used
at Ka-band, but it is included in the V-band setup. The noise calibration plane is at
the coaxial port of the coaxial to waveguide transition connected to a waveguide
full-band isolator input. A commercially available waveguide LNA and a
fundamental mixer are used to amplify and downconvert the noise signal to fixed
IF frequency band. The isolator provides constant source impedance to the LNA.
A microwave signal generator provides the LO signal to the mixer. A noise figure
analyzer is utilized for noise power measurements.
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Figure 3.4. An ACL noise temperature measurement system [ll].

The Ka-band setup is calibrated by a noise diode with a nominal excess noise
ratio (ENR) of 12 dB. The calibration method is not optimal for the ACL
measurement because the expected noise temperature is lower than the cold
noise temperature used for the calibration. Extrapolation of the calibration line
increases the measurement uncertainty because the setup behavior is assumed to
be linear, which may not always be the case. Also, the hot calibration noise
temperature is very high compared to the expected ACL noise temperature.

In the V-band setup, the waveguide on-wafer probe is followed by a section of
stainless steel waveguide. Again, an isolator is utilized to provide constant source
impedance for the LNA. The LNA has been developed in-house and is housed in a
split-block waveguide package. A fundamental mixer is used and the LO-chain
includes a microwave signal generator and a quadrupler. The noise calibration is
performed using a heatable waveguide load. Noise powers are measured with
load temperatures of 298 K and 373 K. The stainless steel waveguide prevents
heat flow from the load to the rest of the measurement setup. A temperature
controller keeps the load temperature within +1.5 K during the frequency sweep.
Again, the expected ACL noise temperature is below the calibration points and the
extrapolation of the calibration line is required.

Comparisons of the simulated noise performance and RF port reflection
coefficients are shown in Figure 3.5 and Figure 3.6. The simulations agree quite
well with the measured values, the difference is 10-20 K over the 26-40 GHz band
and 10-30 K over the 50-75 GHz band. The measured noise temperatures are
75 K at 31.4 GHz and 141 K over the 50-54 GHz range. The RF port reflection
coefficients are below a -24 dB level for both designs. Variations of noise
temperatures over bias conditions at 31.4 GHz and 52 GHz are presented in
Figure 3.7. Both circuits are rather insensitive to small bias variations. The noise
temperatures of the realized ACLs are compared to those of the other reported
FET based ACLs in Table 3.1. In order to assess the usefulness of the ACLs in a
real radiometer, careful system level calculations are needed for the specific
radiometer and application. Especially the 1/f performance, which relates to
integration time, is important to take into account.
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Figure 3.5. Comparison between simulated (dashed) and measured performance
(solid) of 31.4 GHz ACL. a) Noise temperature, b) Input reflection coefficient. Data
from [l1].
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Figure 3.6. Comparison between simulated (dashed) and measured performance

(solid) of 50-54 GHz ACL. a) Noise temperature, b) Input reflection coefficient.
Data from [lI].
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Figure 3.7. Noise temperature variation over bias conditions at a single frequency.
a) 31.4 GHz, b) 52 GHz. The lowest noise temperature values are achieved
around Vys =0.8V, Iy =18 mA at 31.4 GHz and around Vys = 0.8 V, Iy =8 mA at
52 GHz. Data from [ll].

Table 3.1. Comparison of reported FET based ACLs. Data from [ll].

Frequency Noise temperature Technology,
(GHz) (K) integration level Reference

1.4 50 GaAs MESFET, hybrid 181]
18 105 InP HEMT, hybrid [82]
2-10 90 GaAs MHEMT, MMIC [83]
10-26 125 GaAs MHEMT, MMIC [83]
4-8 100 GaAs PHEMT, MMIC [84]
10.69 56 GaAs PHEMT, hybrid [85]
238 72 GaAs MHEMT, hybrid [86]
1.4 65 GaAs PHEMT, MMIC [87]
94 155 GaAs MHEMT, MMIC [88]
94 190 GaAs MHEMT, MMIC [89]
31.4 75 GaAs MHEMT, MMIC il
50-54 141 GaAs MHEMT, MMIC il
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4. Millimeter-wave low-noise amplifiers

Sensitivity is the key figure of merit for millimeter-wave radiometers and many
other receivers. According to (1.5) the first component of a receiver should have
low noise figure and high gain in order to minimize the total noise figure. Low
noise and high gain are the main design parameters for LNA. A good figure of
merit when comparing amplifiers is the noise measure

M= F1 (4.1)

1
_
Gav

where F is the noise figure and G, is the available power gain of the amplifier
[94]. An amplifier with the lowest noise measure is the best choice as the first
amplifier in a chain of amplifiers. In the millimeter-wave region, MMIC technology
is the most frequently used way to realize low-noise amplifiers. Presently, MMIC
LNAs can be manufactured up to 850 GHz [95], [96]. The first low-gain amplifiers
have even been reported at 1 THz [97].

4.1 Design of monolithic low-noise amplifiers

With sufficient gain, the noise temperature of a receiver is determined entirely by
the first low-noise amplifier in the receiver chain, as seen in (1.5). Typically, low-
noise amplifiers have multiple stages in order to obtain sufficient gain. The
designer’s goal is to design input, output, and inter-stage matching networks to
provide low-noise, sufficient gain and specified input and output matching
performance simultaneously.

Figure 4.1 shows constant noise and available power gain circles at a single
frequency calculated using a small signal model for a HEMT device on a Smith
chart. Also, part of the input stability circle is presented. Typically, the optimum
source reflection coefficients in terms of noise I'opr and conjugate matching S
are not the same. Feedback networks can be utilized to change values of I'qt and
S'11. The change is seen more easily in S'11. Inductive feedback can be realized
by adding sections of transmission lines to the source terminals of the transistor in
the common source configuration. For the optimum noise performance, a
matching network should present a source reflection coefficient of T'o to a
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transistor, whereas for the best gain performance, conjugate matching S'11 should
be used.

a) b)

Figure 4.1. Simulated noise circles with minimum noise reflection coefficient (red),
available power gain circles with conjugate matching impedance (blue), and
source stability circle (purple) for an integrated MHEMT device. a) Without
inductive source feedback, b) with inductive source feedback. The stable
impedance region is outside the stability circle.

The gain of a single transistor is moderate (5-10 dB) at millimeter-wave
frequencies. The overall noise performance is mainly set by the first couple of
stages of the amplifier. The gain of different stages play an important role, and the
designer is bound to make trade-offs between noise and gain of individual stages
in order to obtain an optimal performance for the amplifier. Moreover, matching
networks need to be designed with additional care in order to maintain the stability
of the amplifier also outside the desired frequency range.

4.2 Experimental results

A number of MMIC LNAs has been designed and manufactured using GaAs
based MHEMT processes developed by Fraunhofer IAF, Freiburg, Germany [lll]-
[VI]. Their two processes differ by the gate length (50 or 100 nm) of the MHEMT
device [98], [99]. The processes are suitable for coplanar waveguide (CPW)
designs and feature nickel chromium (NiCr) thin film resistors, metal-insulator-
metal (MIM) capacitors and backside metallization. Unwanted substrate modes
are suppressed using ground via holes through the GaAs substrate [98]. As a
result of extensive modeling work, Fraunhofer IAF provides reliable models for
CPW components and transistors. The characteristics of the two processes are
presented in Table 4.1.
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Table 4.1. Characteristics of 100 nm and 50 nm MHEMT processes of Fraunhofer
IAF [98], [99].

Parameter 100 nm MHEMT 50 nm MHEMT
Indium content 65 % 80 %
lgmax (MA/mm) 900 1200

Vba (V) 4.3 2.2
Gm,max (MS/mm) 1200 1800

fi (GHz) 220 400

fmax (GHZz) 300 420
MTTF (h) 3x10’ 2.7 x 10°

The LNAs were designed to demonstrate the suitability of GaAs MHEMT
technology for Earth observation radiometers. Specifications for gain, noise,
center frequency and bandwidth have been given by the European Space Agency.

Radiometric measurements around 89 GHz are utilized for path loss,
precipitation, and snowfall characterization [13]. Two LNAs were designed and
manufactured with the 100 nm MHEMT process [98], [100] for use in spaceborne
W-band radiometers. A micrograph and a simplified schematic of the LNA are
presented in Figure 4.2 and Figure 4.3, respectively. The on-wafer measured S-
parameters and noise figure are shown in Figure 4.4. The design was optimized
for a low noise performance and wide bandwidth. The first stage of the four stage
design was biased to low noise bias, while the maximum transconductance bias
was used for the latter stages. Inductive source feedback transmission lines are
added to transistors to improve stability and further improvements are achieved by
not matching to maximum gain. The input and output matching networks have
open stubs as a matching element and quarter wavelength shorted stubs are used
for biasing. The interstage matching networks consist of short-circuited shunt
stubs and a DC decoupling capacitor in series. The RF-short is realized by small
capacitance. Additional resistors and capacitors are used to improve stability at
frequencies well below the operating range [101].

The amplifier MMIC was packaged in an E-plane split-block module and the
performance of the LNA in the module was compared to on-wafer measurement
results. Performance improvement at cryogenic temperatures was also
demonstrated [Ill]. A comparison of published MMIC LNAs around 94 GHz is
presented in Table 4.2.

The LNAs designed in this work have 5.7-6.0 dB of gain per stage and noise
measures of 1.0-1.3 which are similar or better performance values than those of
the most of the LNAs realized with GaAs PHEMT, GaAs MHEMT or InP HEMT
devices with 100 nm gate length. With the demonstrated 3.0 dB noise figure of the
LNAs, the MHEMT technology was found useful for W-band Earth observing
radiometers.
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Figure 4.2. Micrograph of a low-noise amplifier [llI].
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Figure 4.3. Simplified schematic of a four stage low-noise ampilifier [IlI].
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Figure 4.4. S-parameters and noise figure of a four stage W-band amplifier
measured on-wafer. Data from [Ill].
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Table 4.2. Comparison to other reported HEMT based MMIC low-noise amplifiers
around 94 GHz.

Center Noise Number
frequency Gain figure of
(GHz) (dB) (dB) stages Technology Reference
90 7 1 750 nm PHEMT [102]
92 14.8 4.5 3 150 nm GaAs PHEMT [103]
92 17.3 3.3 3 150 nm InP HEMT [103]
92 4.5 1 100 nm GaAs PHEMT [104]
94 6.4 5 100 nm InP HEMT [105]
90 8 2 100 nm InP HEMT [106]
94 17.3 3.2 3 100 nm InP HEMT [107]
94 11 4.7 2 100 nm GaAs PHEMT [108]
93.4 16 3 2 150 nm InP HEMT [109]
93 16.5 3 2 150 nm InP HEMT [110]
90 8 2 100 nm InP HEMT [111]
96 3.1 4.5 1 100 nm GaAs PHEMT [112]
94 13.3 5.5 2 100 nm GaAs PHEMT [113]
94 21 3.5 3 100 nm GaAs PHEMT [114]
94 12 3.5 3 100 nm InP HEMT [115]
94 20 6 4 100 nm GaAs PHEMT [116]
94 12 4.5 2 100 nm GaAs PHEMT [117]
94 20 4 100 nm GaAs PHEMT [118]
90 27 5 4 100 nm InP HEMT [119]
94 26.4 3.9 4 100 nm GaAs PHEMT [120]
94 7 6 2 100 nm GaAs PHEMT [121]
94 34 4 7 100 nm GaAs PHEMT [122]
94 40 6.5 6 100 nm GaAs PHEMT [123]
94 20 3.3 3 100 nm InP HEMT [124]
94 5 23 1 100 nm InP HEMT [125]
94 15.5 4 250 nm InP HEMT [126]
94 20 5.5 4 150 nm GaAs PHEMT [127]
94 5.9 4.2 1 100 nm InP HEMT [128]
94 25 6 150 nm GaAs PHEMT [129]
94 37 6 8 150 nm GaAs PHEMT [130]
95 20 25 4 100 nm InP HEMT [131]
94 12 3.3 2 100 nm InP HEMT [132]
89 14 4.8 3 100 nm GaAs MHEMT [133]
90 16 5.5 3 120 nm GaAs PHEMT [134]
90 22 3 120 nm InP HEMT [135]
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At D-band (110-170 GHz), there is a local maximum in the atmospheric
attenuation curve due to the oxygen molecular resonance line around 118.75
GHz. Measurements around the resonance line together with measurements at
the closest window frequency range 125-170 GHz are used to characterize
precipitation and snowfall as well as height and depth of the melting layer of
clouds [13]. Two LNAs were designed to operate around 155 GHz with the 100 nm
MHEMT technology [IV]. A micrograph of one of the amplifiers is presented in
Figure 4.5. In addition to standard design library elements, one of the amplifiers
includes an interdigital capacitor as an interstage matching element. The
interdigital capacitors have lower capacitance per area than the MIM capacitors.
When connected in series, this small capacitance will reduce the gain at
frequencies below the operating range of the amplifier. The use of the interdigital
capacitor also simplifies the design of the interstage matching network [IV], [171].
The amplifiers were tested both on-wafer and in a split-block module [IV]. The on-
wafer measurement results are presented in Figure 4.6.

Two LNAs were designed to operate at 165 GHz transmission window
frequency with both 50 nm and 100 nm MHEMT technologies [V], [VI]. Narrow
band operation was targeted for 165 GHz LNAs. The amplifiers were tested both
on-wafer and in a split-block module.

A comparison of published amplifiers in the 130-170 GHz window frequency
range is presented in Table 4.3. The LNA demonstrated with the 50 nm MHEMT
technology can reach noise figure of 5.2 dB, a feasible value in order to use the
amplifier as the first stage of an Earth-observing radiometer.

Figure 4.5. Micrograph of a 155 GHz low-noise amplifier [IV].
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Figure 4.6. S-parameters and noise figure of a 155 GHz amplifier measured on-
wafer. Data from [IV].
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Table 4.3. Comparison of HEMT based MMIC low noise amplifiers for 130-170
GHz atmospheric window.

Center Noise Number
frequency Gain figure of
(GHz) (dB) (dB) stages Technology Reference

142 9 2 100 nm InP HEMT [172]
155 12 3 100 nm InP HEMT [173]
130 14 6 100 nm InP PHEMT [174]
154 10 5.1 3 100 nm InP PHEMT [175]
153 7.5 3 120 nm InP HEMT [176]
141 30 3 100 nm InP HEMT [177]
155 8 4 70 nm InP PHEMT [178]
160 6 6 4 80 nm InP PHEMT [178]
160 26 6 80 nm InP PHEMT [179]
140 14 4 100 nm InP HEMT [180]
148 12 4 150 nm GaAs MHEMT [181]
155 15 4 4 100 nm GaAs MHEMT [182]
163 17 3 70 nm InP HEMT [183]
152 8 2 70 nm InP HEMT [184]
160 21 3.7 3 35 nm InP HEMT [185]
150 19 45 4 70 nm GaAs MHEMT [160]
130 27 3.8 4 100 nm GaAs MHEMT [186]
140 20 4 4 50 nm GaAs MHEMT [186]
155 24 6 4 70 nm GaAs MHEMT [187]
135 23 3.5 4 20 nm GaAs MHEMT [188]
160 15 3 75 nm InP HEMT [190]
165 23 3 35 nm InP HEMT [189]
130 23 4 50 nm GaAs MHEMT [191]
140 25 6 4 50 nm GaAs MHEMT [192]
151 30 4 20 nm GaAs MHEMT [193]
142 19.0 6.0 4 100 nm GaAs MHEMT [IV]

150 18.5 6.2 4 100 nm GaAs MHEMT [IV]

165 25.0 5.2 4 50 nm GaAs MHEMT V]

153 20.6 5.2 4 100 nm GaAs MHEMT [vi]
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One amplifier was designed to operate around the 183 GHz water vapor line
frequency [VI]. Radiometric measurements around this frequency can be utilized
in characterization of water vapor profile and snowfall [13]. The amplifier was
manufactured with the 100 nm MHEMT technology and wideband operation was
targeted. The amplifier was tested on-wafer. Comparison with published amplifiers
around 183 GHz is presented in Table 4.4. While the reported amplifier has 21.4
dB of gain, the noise figure of 7.5 dB is rather high when compared to the noise

figures of the other reported amplifiers.

Table 4.4. Comparison of published HEMT based MMIC amplifiers for 183 GHz

water vapor absorption peak frequency range.

Center Noise Number
frequency Gain figure of
(GHz) (dB) (dB) stages Technology Reference
190 7.2 2 80 nm InP HEMT [194]
188 9 2 70 nm InP PHEMT [178]
189 9 2 80 nm InP PHEMT [193]
185 18 6 80 nm InP PHEMT [179]
180 17 8 100 nm InP HEMT [180]
175 14 7 3 70 nm InP HEMT [196]
186 15 6 100 nm InP HEMT [197]
185 15 3 80 nm InP PHEMT [198]
200 19 8 70 nm GaAs MHEMT [145]
195 15 4 100 nm GaAs MHEMT [100]
198 24 4 50 nm GaAs MHEMT [199]
185 21 3 50 nm InP HEMT [200]
200 17 4.8 4 50 nm GaAs MHEMT [99]
180 14 4.2 3 35 nm InP HEMT [185]
195 20 6 35 nm GaAs MHEMT [202]
183 15.0 4.8 5 100 nm GaAs MHEMT [201]
193 17 3 35 nm InP HEMT [189]
190 23 4 35 nm InP HEMT [203]
180 10 3 75 nm InP HEMT [190]
192 23 4 35 nm GaAs MHEMT [204]
183 20 6.7 5 50 nm GaAs MHEMT [209]
180 245 3.5 5 50 nm GaAs MHEMT [206]
183 214 75 5 100 nm GaAs MHEMT V1]
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5. Passive millimeter-wave imaging

In passive millimeter-wave imaging, the noise temperature of the incoming signal
is mapped over the desired area and an image is formed by comparing the
incoming signal levels pixel by pixel. The noise temperature of incident radiation is
measured by a radiometer. Imaging radiometers typically have high gain and
narrow beam antennas to improve angular resolution. When the target fills the
antenna beam completely the detected noise temperature is given by (1.12). Main
sources of the incident radiation reflected from the object are natural objects (Tien
~300 K) and the sky. At millimeter-wave frequencies, the sky noise is partly due to
cosmic background noise and thermal noise caused by the atmospheric
attenuation [17]. Thus, the brightness temperature of the sky noise depends on
the angle of incidence due to the longer distance through the atmosphere at lover
elevation angles. The brightness temperature of the sky as a function of antenna
elevation angle at window channel between 70-110 GHz is presented in Figure
5.1. The noise temperature of the sky is more uniform versus incident angle at
molecular absorption frequencies due to the increased attenuation of the
atmosphere. Due to this increase in attenuation, passive millimeter-wave imaging
is performed in window frequency ranges.
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Figure 5.1. Brightness temperature of the sky at different elevation angles as a
funcstion of frequency. Adapted from [209]. T = 15°C, p = 1023 mbar, pwater = 7.5
g/m-.

Different materials appear to be at different noise temperatures due to emissivity
and reflectivity as given by (1.12). Examples of emissivity and reflectivity values of
different materials at 94 GHz are presented in Table 5.1.

Table 5.1. Emissivity and reflectivity of different materials at 94 GHz [207], [208].

Material Emissivity Reflectivity
Metal 0.04 0.96
Metal under canvas 0.24 0.76
Dry gravel 0.92 0.08
Dry asphalt 0.91 0.09
Brick 0.90 0.10
Grass 0.95 0.05
Water, smooth surface 0.59 0.41
Human skin 0.90 0.10
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5.1 Passive millimeter-wave imager

A passive millimeter-wave imager was built as a part of this work [VII], [210]. The
focus of the system design was on the quality of images in terms of radiometric
resolution AT by increasing the integration time. This results in a slow imaging
speed. The targeted operational center frequency was around 94 GHz located in
the atmospheric window frequency range. Other restrictions to the system were
given by the movability and availability of the components.

The imaging system has a 300 mm diameter lens horn antenna with less than
1° beamwidth specified by the manufacturer. The far-field of the antenna, where
radiation can be approximated as a plane wave and the antenna radiation pattern
is well defined, is reached after 56 m. In order to use the antenna also for
observing targets that are at a distance less than 56 m from the antenna, an
additional focusing lens was manufactured from high density polyethylene
(HDPE). The hyperboloid shaped focusing lens moves the focal point of the
antenna from infinity to the distance of 2 m [210], [211].

The Dicke-radiometer used in the imaging system is presented in Figure 5.2.
The first component of the radiometer is a PIN diode based single-pole-double-
throw (SPDT) switch which connects either the antenna or reference load to the
low-noise amplifier input. A waveguide termination is used as the reference load to
reduce effects of gain variation. Complete noise temperature calibration would
require two loads with different noise temperatures. The amplification chain
consists of two low-noise amplifiers and the signal is detected by a wideband
diode detector. Isolators have been utilized to reduce reflections due to
mismatches between the amplifiers and the detector. The signal from the detector
is amplified by a gain controlled video amplifier. The signal from the video amplifier
is digitized by an AD-converter. The noise temperature and insertion gain of the
radiometer chain from the switch input to the output of the second isolator
measured with a noise figure measurement system are presented in Figure 5.3.
The 3 dB bandwidth of the radiometer defined by the LNAs is roughly 90-96 GHz
where a noise temperature of 900 K or better is achieved. Theoretical radiometric
sensitivity AT calculated with (1.16) is 0.2 K with 20 ms integration time. In
practice, additional noise coupling with the signal after the detector increase AT to
1 K[210].
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Figure 5.2. Realized Dicke-radiometer for the passive imaging system.
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Figure 5.3. Gain and noise temperature of radiometer chain from the switch input
to the output of the second isolator in the realized passive millimeter-wave imager.

The antenna and the radiometer are mounted on a structure where the antenna
azimuth and elevation are controlled by stepper motors. The antenna elevation
movement is continuous providing a so called line scan, while the azimuth
movement is performed with discrete steps. The in-house written software controls
the motors and produces the final millimeter-wave image. The millimeter-wave
image is produced by sampling the line scan signal to discrete pixels. The
scanning speed is set by integration time, 20 ms was selected as a trade-off

between AT and imaging speed. A photograph of the imaging system is presented
in Figure 5.4.
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Figure 5.4. A photograph of the realized millimeter-wave imaging system.

5.2 Experimental results

Two main applications of passive millimeter-wave imaging, contraband detection
and area surveillance, were studied with the realized imaging system. A
photograph and an indoor taken millimeter-wave image of a contraband detection
is presented in Figure 5.5. Higher noise temperatures are mapped with darker
color and lower noise temperatures are mapped with lighter color in the grayscale
image. The mapping is scaled within a single image, the lowest temperature is
white and the highest temperature is black. Similar mapping is used in all
millimeter-wave images presented in this thesis. The person in the photo is
holding a metallic handgun silhouette under his shirt. The silhouette is seen as a
lighter area in the millimeter-wave, while the person appears darker. A sharper
image would require an even narrower antenna beam. The noise reflected by the
metal silhouette is emitted by the walls, thus the silhouette is seen as grayscale
color similar to the surroundings. Also, “a millimeter-wave shadow”, noise of the
person reflected by the background wall is visible in the millimeter-wave image.
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a) c)

Figure 5.5. a) A photograph b) an indoor taken millimeter-wave image of a person
with ¢) a metal gun silhouette under his shirt. Data from [210].

Figure 5.6 shows a similar passive millimeter-wave image of contraband
detection taken outdoors. The person on the right is hiding the metallic handgun
silhouette under his jacket. Outdoors a significant part of the incident radiation to
the target comes from the cold sky and the contrast is improved. The body parts
that reflect the sky radiation towards the radiometer, such as the forehead,
shoulders and arms appear lighter than the rest of the body. Also, keys and
cellphone that are in the trouser pockets of the person on the left appear bright.

Figure 5.6. A photograph (left) and a millimeter-wave image (right) of two persons
taken outdoors. The person on the right has a metal gun silhouette under his
jacket. Data from [VII]
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Millimeter waves penetrate dust, smoke, and fog much better than visible light
or infrared light. Thus, millimeter-wave imaging can be used as an alternative for
wide area surveillance under poor visibility conditions. A photograph and a
millimeter-wave image over a wide area are presented in Figure 5.7. Different soil
types, a walk path, trees, buildings and metallic objects can be distinguished from
the image. The strongest reflections come from a car, roofs, a trash container, and
street lamps. A cooling effect of the shadow on the grass can also be seen on the
lower left part of the image. A similar image could be produced under the
presence of fog.

PR

Figure 5.7. A photograph (leff) and a millimeter-wave image (right) of a scenery.
Data from [VII].
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6. Summary of the appended publications

[11 “A wide-band on-wafer noise parameter measurement system at 50-75 GHz”

The design and performance verification of an automated on-wafer noise
parameter system are presented in this publication. The motivation for the work
was the ability to accurately characterize the noise performance of transistors over
50-75 GHz range for either modelling or verification purposes. The measurements
are performed according to so called cold-source method and the operation of the
test system is verified using both a passive and an active test device. The results
and uncertainty analysis presented in the paper show that the measurement
system can be used for transistor noise characterization with reasonable
accuracy.

[11] “Active cold load MMICs for Ka-, V-, and W-bands”

The design and characterization of integrated active cold loads is presented in
this publication. Motivation for the work is to use internal calibration loads to
calibrate most parts of a radiometer without the need to use external loads, which
usually require complex maneuvers of the radiometer or its platform. Additionally,
the hybrid circuit realization of the ACLs that has successfully been used at lower
frequencies becomes infeasible at millimeter-wave frequency range. Thus, the
MMIC realization of ACLs was studied by designing three ACLs for selected
frequencies within the 30-100 GHz range. The measured noise temperatures of
the realized loads were 75, 141, and 170 K at 31.4, 52.0, and 89.0 GHz,
respectively. While the achieved noise temperatures are useful for radiometer
calibration in general, a careful case-by-case analysis for their use in an actual
system is needed.

[1] “W-band low noise amplifiers”

The motivation for the work presented in this publication was to study the
feasibility of 100 nm MHEMT process for realization of W-band low-noise
amplifiers for radiometers. W-band radiometers are useful for instruments of
weather forecasting satellites as well as for millimeter-imaging. Additionally, the
W-band low-noise amplifiers are used in collision avoidance radars in cars as well
as in high-speed data transfer communication systems. Multiple designs of W-
band amplifiers are presented in the publication with 18-23 dB gain and 3.0-3.5 dB
noise figure measured on-wafer. Also, the measurement results of amplifier
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modules, both at room temperature and at cryogenic temperatures, are presented.
The presented results demonstrated the feasibility of the 100 nm MHEMT
technology for W-band low-noise amplifiers.

[IV] “Low noise amplifiers for D-band*

The motivation for the work presented in this publication was to study the
feasibility of the 100 nm MHEMT process for realization of D-band low-noise
amplifiers for radiometers. D-band radiometers are useful for instruments of
weather forecasting satellites. Multiple designs of D-band amplifiers are presented
in the publication with 17.6-22.7 dB gain and 5.5-7.0 dB noise figure measured on-
wafer. Targeted gain values were achieved with the presented designs, but lower
noise figures would be preferred for better sensitivity for D-band radiometers.
Some amplifiers were packaged in split-block packages and the measurement
results show only a slight decrease in performance.

[V] “MHEMT G-band low-noise amplifiers”

The motivation for the work presented in this publication was to study the
feasibility of the 50 nm MHEMT process for realization of G-band low-noise
amplifiers for radiometers, namely for 165 and 183 GHz. Combination of these
frequencies is utilized for water vapor profiling for weather forecasting.
Additionally, one of the aims was to compare performance of the LNAs
manufactured with the 50 nm process against similar circuits manufactured with
the 100 nm process. Multiple amplifier designs are presented for both frequencies
in the publication. On-wafer measured performance show 25 dB of gain with
5.2 dB noise figure at 165 GHz and 20 dB of gain with 6.7 dB noise figure at
183 GHz.

[V1] “Low noise amplifiers for G-band radiometers”

The motivation for the work presented in this publication was to study the
feasibility of the 100 nm MHEMT process for realization of G-band low-noise
amplifiers for radiometers, namely for 165 and 183 GHz. Combination of these
frequencies is utilized for water vapor profiling for weather forecasting. Multiple
amplifier designs are presented for both frequencies in the publication. On-wafer
measured performance show 19.2-27.4 dB peak gain and 4-8 dB noise figure.
There is a frequency shift in the measured responses of the amplifiers compared
to simulated ones.

[VII] “Passive millimeter-wave imager”

The motivation of this work was to demonstrate millimeter-wave imaging around
94 GHz by setting up a radiometer based imaging system and create images for
different application scenarios. The design of the imaging system based on the
Dicke-radiometer is presented in the publication. The operation of the imaging
system is demonstrated by millimeter-wave images. The capabilities of the
imaging system were demonstrated by the millimeter-wave images for security

54



screening both indoors and outdoors as well as for area surveillance are
presented.
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7. Conclusions

The research work presented in this thesis focused on design and
characterization of low-noise circuits for radiometers. A measurement system for
transistor noise parameter characterization was developed for 50-75 GHz range.
The system can be used to provide data for device modeling or to verify existing
models generated with data from lower frequency measurements. While the initial
target was the modeling of 1ll-V compound semiconductor devices, the recent
developments with CMOS and SiGe technologies have increased the demand for
transistor noise modeling at millimeter-wave range. The developed measurement
system has been utilized in transistor measurements, both for in-house projects as
well as a commercial service.

In some radiometric applications the internal calibration of the radiometer is
required or the number of calibrations with measurements of external calibration
loads could be reduced with internal calibration. The ACLs developed in this work
demonstrate the capabilities of MMIC technology for ACL realization up to 100
GHz. Especially at the lower end of the millimeter-wave region, the realized cold
load noise temperature is close to the boiling temperature of nitrogen which is a
commonly used to cool absorber materials to provide a calibrated noise
temperature.

A number of low-noise amplifiers for selected bands between 75-200 GHz
range has been designed. The European Space Agency ordered a series of
research projects to study the feasibility of MHEMT technology for radiometer
applications. In the first projects the design work focused on the 100 nm MHEMT
process. While these first design projects progressed, Fraunhofer IAF matured
their 50 nm MHEMT process to the point that it could be used in the designs of the
final projects. The work presented in this thesis partially demonstrated the maturity
of the MHEMT technology for millimeter-wave low-noise amplifiers for space. Due
to better noise performance, the 50 nm MHEMT process from Fraunhofer IAF, is
the prime candidate to be used in the MetOp-SG, the next generation weather
satellites, most likely up to 229 GHz.

In order to demonstrate terrestrial use of millimeter-wave radiometers a
millimeter-wave imager was built. The quality of millimeter-wave images was
emphasized in the imager design in expense of imaging time. The taken images
demonstrate qualitatively the possibilities of millimeter-wave imaging in security
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and surveillance applications. Quantitative assessment of the images as well as
re-design of the entire system would be necessary for more practical use of
millimeter-wave imaging.
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Appendix A: Derivation of kBG-factor

Functional blocks of the noise parameter measurement system are presented in
Figure A.1. When the noise source noise temperature is Ty, the noise power Py
measured over the load inside the receiver is given by

Pyi= kBGy 1o1(Ty + Tsys) = kBGayapGirev (Th + Tsys) (A1)

where G;ror is the total transducer power gain and Tsys is the noise temperature
of the system consisting of the network AD and the receiver, Gayap is the available
power gain of the network AD, and Gircv is the transducer power gain of the
receiver. Respectively, for noise temperature T¢

Pc=kBG;101(Tc + Tsys) = kBG,, apGirev (Tc + Tsys)- (A.2)
A B C D
Noise source Tuner Probe : DUT/Thru | Receiver
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Figure A.1. Functional blocks of the noise parameter measurement system.
According to (1.27) and (1.28)
1-IT0)2

1=IT revl?
=T revTsrevl?

2
Girev = |S21.rev (A.3)

2
[1-S22,revT 12|

where Sz1rcv and Sz rcv are S-parameters of the receiver, and I'» is reflection
coefficient inside the receiver and

1
1-|T revl

1-Tnsl?

[1-S11,apTns|

2
Gav,ap = AR (A.4)

If the source impedance of the receiver is 50 Q leading to T’ rcv = 0 we can write

2 A-|r,?

Girev,so = |Sa1,rev] (A.5)

2
[1-S22reVT L2

and
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1-|T revl?

G =
ERCY ™ 11T royTsrovl?

t,RCV,50-

Using (A.4) and (A.6) in (A.1) and (A.2) we obtain

2
1 1—|FN3|2|321AD|
P, = kBG = (Th + Tsys)
H t,RCV,50 |1_FLRCVFSRCV|2 |1_S11,ADFNS| H SYS
and
2
1 1—|FN3|2|321,AD|
PC = kBGt,RCV,SO P 2 (TC + TSYS)'
[1-T revTsrevl |1—S11,ADFNS|

kBGt¢ rcvso can then be solved

2
|1~S11,a0Tns|
2
(1=1Twsl?)[S21,40]

_ Pr=Pc 2
kBGrov,s0 = 7 —7 11 = TLrovIsrevl
H™IC

which is abbreviated as kBG-factor in (2.4).

86

(A.6)

(A7)

(A.8)

(A.9)



Errata

In [IV], Fig. 5 and Fig. 13 are incorrect. The correct figures are shown below.
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A Wide-Band On-Wafer Noise Parameter
Measurement System at 50—75 GHz

Mikko Kantanen, Manu Lahdes, Tauno Vaha-Heikkila, Student Member, IEEE, and Jussi Tuovinen, Member, IEEE

Abstract—A wide-band on-wafer noise parameter measure-
ment system at 50-75 GHz is presented. This measurement system
is based on the cold-source method with a computer-controlled
waveguide tuner. Calibrations and measurement methods are
discussed and measured results for passive and active on-wafer
devices are shown over a 50-75-GHz range. An InP high elec-
tron-mobility transistor device is used as a test item for the
active device. A Monte Carlo analysis to study measurement
uncertainties is also shown. The measurement system is a useful
tool in the development and verification of device noise models, as
well as in device characterization.

Index Terms—Noise-parameter measurements, on-wafer

characterization, wide-band measurements.

1. INTRODUCTION

OMMERCIAL exploitation of millimeter waves is
currently becoming a reality with increasing intent. The
main driving force has been the development in manufacturing
monolithic integrated circuits, which can currently be produced
up to approximately 220 GHz. Examples of commercial mil-
limeter-wave applications are automotive collision-avoidance
radars, radio links, and local area networks. Scientific mil-
limeter-wave research is mainly related to radio astronomy and
cosmology. Millimeter waves are also very attractive to be used
in imaging systems for surveillance and contraband detection.
Funding for this kind of application is coming from military and
law enforcement agencies. Many applications mentioned above
rely on the use of low-noise amplifiers (LNA). It is desirable to
model noise behavior properly as early as possible during the
LNA design process to avoid expensive and time-consuming
iterations. The noise properties of LNAs are usually calculated
during the design process using noise parameters of transistors.
In contrast to the microwave region, noise parameters of tran-
sistors at millimeter waves are usually not given by the man-
ufacturer or they have been extrapolated from measurements
made in the microwave region using device dependent noise
models. These models themselves are commonly developed at
microwave frequencies and applying them in a millimeter-wave
region is risky. Thus, on-wafer noise parameter measurements
at millimeter-wave frequencies are needed to characterize de-
vices and to develop and verify device dependent noise models.
Thus far, wide-band on-wafer noise parameter measurements
have been carried out up to 40 GHz [1]. At 50-75 GHz, measure-
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ments covering part of the band and using a manual input tuner
have been reported [2]-[4]. A partial report about the measure-
ment system described here has been presented in [5]. Above
75 GHz, results on single frequency and for a passive device
have been presented [6]. Wide-band measurements are neces-
sary in order to detect systematic errors that may not be detected
in measurements over a narrow frequency band, even if the mea-
surement system seems to work properly otherwise. Using the
measurement system described here, noise parameters of a chip
device can be measured over the entire 50—-75-GHz range in an
automated manner.

II. NOISE PARAMETERS

Noise parameters are not directly measurable quantities,
which are determined indirectly by measuring the noise figure
of a linear two-port with different source impedances connected
to the device-under-test (DUT). The noise figure of a linear
two-port varies as a function of the source reflection coefficient,
as given by the commonly known equation [7]

‘FS - I‘opt|2
(1=10s[) 1+ Do

F = Foin + 41y Q)

where Fl,;, is the minimum noise figure of the two-port, 7, is
the normalized noise resistance, I'op¢ is the optimum reflection
coefficient, with which the minimum noise figure is achieved,
and I's is a reflection coefficient of a network connected to the
input of the two-port. Parameters Finin, 7, and T'qp¢ are called
noise parameters. Since 'y, is a complex quantity, at least four
noise-figure measurements using different source reflection co-
efficients I's have to be made in order to solve the noise param-
eters of the DUT. To reduce the effect of measurement errors,
more than four measurements are often made and noise param-
eters are solved using mathematical fitting routines.

III. MEASUREMENT SETUP

The schematics and photograph of the automated measure-
ment setup built are presented in Figs. 1 and 2, respectively. The
reference planes used in the calibrations are also shown. The
so-called cold-source method [8], [9] was selected to be used.
In the developed setup, an automated noise-figure meter is used
to perform the noise-figure measurements. Since the frequency
range of the noise-figure meter is 10-1500 MHz, a receiver
chain consisting of an LNA, a mixer, and a millimeter-wave
signal generator is used to downconvert the noise power from
millimeter waves to 30 MHz. The LNA is obtained through

0018-9480/03$17.00 © 2003 IEEE



1490

Vector network analyzer Automated noise figure meter|

HPS510C HP8970A

Variable attenuator
HP8495D

Low noise
Isolator amplifier

=
NSS-15-R1520[ [\~
| Switch
IMPI 530V

Tuner i

MT977A 1
Switch
MPI 530V

i ———
“ Probe

station

Isolator
HP2518A

Tuner controller
MT9I86A

Signal generator
HP83650A
GP-IB I

Fig. 1. Noise-parameter measurement setup.

Fig. 2. Photograph of the measurement system.

Planck Surveyor collaboration [10]. A DUT is placed in a probe
station and its source impedance is varied using the automated
tuner. The tuner is a commercially available waveguide tuner
in which the reflection coefficient at the reference plane B is
controlled using a moveable probe. The magnitude of the re-
flection coefficient is controlled by changing probe insertion
into the waveguide and the phase of the reflection coefficient
is controlled moving the probe along the waveguide. The probe
motions are automated by stepper motors. The probe’s place-
ment inside the waveguide can be characterized by two coordi-
nates, which are step counts of the stepper motors. Thus, probe’s
placement will be referred to simply as tuner position below.
Due to losses between the tuner and a DUT, the maximum re-
alizable magnitude of a reflection coefficient at the DUT input
is approximately 0.8. A solid-state noise source is connected to
the tuner input. Bias for active devices is fed through internal
bias tees of the probes. A vector network analyzer and wave-
guide switches are added to the measurement system in order
to perform S-parameter measurements without a need of recon-
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setup.

figuration of the system. In-house written software is used to
control measurement setup.

IV. CALIBRATION AND MEASUREMENT PROCEDURES

From the operational point-of-view, the measurement setup
can be divided into five functional blocks, which are the noise
source, tuner, input probe, DUT, and noise receiver. These
blocks, notation of their parameters, and connection types of
the reference planes are shown in Fig. 3. The reference planes
between different blocks are selected this way in order to make
calibrations and calculations easier. Required measurements
can be divided into three steps. The first two steps are related
to the characterization of the measurement system and can
be omitted if no change in the measurement system has been
made. These three steps are described individually below.

A. S-Parameter and Reflection-Coefficient Measurements

In order to perform noise-parameter measurements, S-pa-
rameters of the tuner, the input probe, the DUT, and a thru
calibration standard have to be known. S-parameters of one
tuner position are needed in receiver calibration calculations
and they are measured while the tuner probe is retracted from
the waveguide and the tuner is essentially a normal waveguide.
This measurement, as well as the S-parameter measurements
for the DUT and the thru calibration standard, are done with
a vector network analyzer in a straightforward manner. The
line-reflect—reflect-match (LRRM) calibration [11] is used
for the on-wafer components and waveguide thru-reflect-line
(TRL) calibration [12] is used for the tuner. The calibration
methods mentioned above were selected because they provided
the best accuracy with existed calibration standards. Since the
input probe is a noninsertable network, its S-parameters cannot
be measured directly. Thus, two one-port calibrations are done,
i.e., a waveguide short-offset short-load (SSL) calibration
in reference plane B and a coplanar short-open-load (SOL)
on-wafer calibration in reference plane C. S-parameters of
the noninsertable network B—C can be calculated from the
network analyzers’ error correction coefficients obtained in
these calibrations [13], [14].

The S-parameters of the thru standard, which are used in the
calculations, are determined in the following manner. First, an
LRRM calibration is done with a set of the calibration standards.
S-parameters of a thru from a different set of calibration stan-
dards are then measured. These S-parameters are then used in
the noise-parameter calculations. Usually, the magnitude of the
So1 is approximately 0.99 over the entire V -band.
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Fig. 4. Measured source reflection coefficients (I'spur) at 57 GHz during
tuner characterization.

The reflection coefficient measurements include reflection
coefficients of the cold noise source (I'ns) and the receiver
(TLrev), as well as source reflection coefficient (TspuT)
measurements with different tuner positions. The latter two
operations cannot be performed directly because the port to
be measured is the coplanar probe tip in both cases. Thus,
the thru calibration standard is used. Instead of measuring the
reflection coefficient of the receiver at reference plane D, the
reflection coefficient of a cascade of the thru and the receiver is
measured at reference plane C'. The reflection coefficient of the
receiver can then be calculated from the measured value when
S-parameters of the thru are known. A similar procedure is
used when source reflection coefficients at the DUT input plane
are measured using different tuner positions. During these
measurements, the entire input network (noise source, tuner,
and input probe) is assembled and the reflection coefficient
is measured for a great number of tuner positions to allow
device specific selection during the later measurements. As
an example, measured source reflection coefficient values at
57 GHz are shown in Fig. 4. Measurement of I'yg is a simple
waveguide operation.

The accurate characterization of these passive networks is a
very important issue in noise-parameter measurements. The at-
tenuation between the noise source and receiver decreases hot
noise temperature at the receiver input and inaccuracies in the
source reflection-coefficient measurements directly affects the
noise parameter extraction accuracy. Thus, few unidealities and
assumptions in calibration methods that degrade the accuracy
of passive network characterization are outlined here [15], [16].
With waveguides, the two-port TRL and one-port SSL calibra-
tions are considered to be very accurate with manufacturer pro-
vided standard definitions. The on-wafer coplanar SOL calibra-
tion is the most sensible for standard definition errors because
all calibration standards used have to be fully characterized.
With LRRM calibration, only the line standard needs to be fully
known, reflect standards need not to be equal, and a load induc-
tance present in the coplanar load is calculated during the cali-
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bration. Standard definitions for SOL standards and the LRRM
line were provided by the calibration substrate manufacturer and
their effects are taken into account in the calibration software
used for the on-wafer calibrations. The differences between the
actual standard used in the calibration and the standard defini-
tions are the main source for inaccuracies in the calibrations.
These differences can occur, for example, from wearing of the
standards and probes, as well as from inaccurate probe place-
ment. Thus, there will always be residual errors in measured
S-parameters.

B. Noise Receiver Calibration

To carefully characterize the noise contribution of the re-
ceiver, its k BG-factor and noise parameters have to be known.
The kBG-factor is a constant on each frequency and it includes
the Boltzmann’s constant k, the noise bandwidth of the mea-
surement system B, and the transducer gain G of the receiver
for a 50-Q source. During these measurements, the thru cali-
bration standard is placed in the probe station. A more detailed
description about the measurement procedure can be found in
[9]. Only the most important formulas are repeated here. The
k BG-factor of the receiver is determined performing one noise
power measurement with a hot and a cold noise source, respec-
tively. The kBG-factor is calculated with the following:

Py — Pc
Ty —Tc

kBG = 1- FLRCVFSRCV\?

1= S11,ADF1\'S|2 @
(1 - |FNS|2> |S21,AD|2

where Py and Pc are noise powers measured with a hot and
a cold noise source, respectively, T is the noise temperature
of the hot noise source calculated from the excess noise ratio
(ENR) and transformed into receiver input plane, 7 is the
physical temperature of the measurement system, I'sgcy is the
source reflection coefficient of the input network at the receiver
input reference plane (the reference plane D), I'r ey is the
reflection coefficient of the receiver, and S;; ap are overall
S-parameters of the cascaded tuner, probe, and thru.

The noise parameters of the receiver are determined by mea-
suring noise powers of the cold noise source using at least four
different tuner positions. The noise figure is obtained using

Pei
TokBG 1— |FSRCV1'
where Pc; is the measured noise power for the ith source
reflection coefficient 'sgcvq, To is the standard temperature
290 K, and T is the physical temperature of the measurement
system. Using obtained noise-figure—source reflection-coef-
ficient pairs, noise parameters are calculated using the noise
parameter extraction technique described in [17] with similar
modifications as suggested in [18]. In brief, exact solutions of
four F; — I'sgovs pair subsets are calculated at first. Errors
between values calculated using this solution and measured
values are then derived. After all possible four pair subsets are
investigated, solutions with which the error remained within
predetermined boundaries are averaged to produce the final
noise parameters. In these measurements, 20% of error was
allowed for each value.

Il - Trrevlsrovil”  Te

F= i
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C. Noise-Parameter Measurements of the DUT

After the calibrations, the DUT is placed in the probe station.
During this phase, only the cold noise source is used with dif-
ferent tuner positions. The total noise figure of the cascade of
the DUT and receiver can be calculated using

Pci
TokBG
[1=811, putl'spuTi [?1=Trrevlsrevi

(1—\FSDUT;,|2> \521,DUT|2

FTOTi =

|2

“4

where Pc; is the measured noise power for the ith source re-
flection coefficient I'spyt; and I'srcyv; is the reflection co-
efficient of the network connected to the input of the receiver.
With well-known Friis formula [19] for cascaded two-port, the
DUT’s noise figure can be calculated using

Fpuri = Frori — Frevi — 1 (5)

Gpuri

where Frov; is the noise factor of the receiver calculated from
the receiver’s noise parameters for each source reflection coef-
ficient and Gpum; is the available gain of the DUT. Noise pa-
rameters of the DUT are determined using the same extraction
procedure as with the receivers noise parameters.

V. MEASUREMENT RESULTS

The operation of the measurement system was verified by
measuring noise parameters of both passive and active on-wafer
devices. Nine different source reflection-coefficient values
were used during these measurements. The reflection-coeffi-
cient values used were distributed uniformly over the Smith
chart. Minimum noise figure and normalized noise resistance
of the receiver are shown in Figs. 5 and 6. The optimum
source reflection coefficient was close to zero. The minimum
noise figure shows uniform operation of the receiver over the
entire 50-75-GHz band. With normalized noise resistance
curve, there is a step in the curve after 66 GHz. Although
the step remained in the results also after recalibration, this is
suspected to be a fault. For a passive device, noise parameters
can be calculated from measured S-parameters [20]-[22].
Comparison between the noise parameters determined using
the developed measurement system and the values calculated
from S-parameter measurements for passive device are shown
in Figs. 7 and 8. The passive test item was nominally 40-(2
resistor connected in series between the probes. The resistor
was measured from an old test wafer, where component
characteristics differed from nominal values significantly. The
resistor was selected because its S-parameters indicated a wide
range for minimum noise figure. A good agreement between
the measured and calculated data can be seen. There are only
two significant deviations from calculated values in Fig. 8
at 73 and 74 GHz. Single origin for these errors can not be
pointed out. Typical results obtained for an indium phosphide
(InP) high electron-mobility transistor (HEMT) are shown in
Figs. 9—12. Gate length and gatewidth of the HEMT device are
0.18 pum and 2 x 40 pm, respectively, and it was manufactured
by DaimlerChrysler, Ulm, Germany. Drain voltage of 1.0 V and
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Fig. 6. Normalized noise resistance of the receiver.
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Fig. 7. Comparison of minimum noise figure between values measured using

a wide-band measurement system and the value calculated from measured
S-parameters for the passive on-wafer device.

drain current of 10 mA were used in the measurements. Values
above 65 GHz have excess errors due to difficulties in the noise
receiver calibration. Clear errors can be seen at the 66—68-GHz
band, where the values of the minimum noise figure and noise
resistance differ noticeably from the trend of preceding values.
Similar behavior was seen on the normalized noise resistance
of the receiver. The effect of the receiver noise resistance is
greater with the HEMT device than with the resistor because
receiver source reflection coefficient is further away from the
center of the Smith chart with the HEMT device. Thus, the
effect of some terms in (1) increases. These kinds of errors
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Fig. 8. Comparison of normalized noise resistance between values measured

using a wide-band measurement system and the value calculated from measured
S-parameters for the passive on-wafer device.
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Fig. 9. Minimum noise figure measured for the InP HEMT device.
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Fig. 10. Normalized noise resistance measured for the InP HEMT device.

can be clearly seen from the wide-band data, but may remain
undiscovered when single-frequency measurements are done.

VI. ERROR ANALYSIS

Almost 40 measured quantities affect the final values of the
noise parameters. These include S-parameters, reflection co-
efficients, power measurements, ENR calibration of the noise
source, and room temperature. To get an estimation of measure-
ment accuracy, a Monte Carlo analysis [23] was carried out. In
the analysis, random errors are added to the initial measured
values and the noise parameters are calculated, e.g., 1000 times.
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Fig. 12. Phase of optimum source reflection coefficient measured for the InP
HEMT device.

TABLE 1
UNCERTAINTIES FOR MEASURED PARAMETERS
Standard  Uncertaini
Parameter uncertainty type ty
Si1.TuN s S2,1UN 0.005 A,B
Si2,TuN > S21,TUN 0.006 A B
S11,prB > S22,PRB 0.036 B
Si2prB > S21,PRB 0.005 B
S11,put > S22,pUT 0.036 B
S12,put > S21,0UT 0.05 B
Tirev 0.036 B
Tspur 0.036 A,B
s 0.005 B
ENR (dB) 0.06 B
Py, Pc (dB) 0.04 B
Tc (K) 0.82 B

Statistical analysis is then performed to the obtained noise-pa-
rameter sets. To get values for random error distributions, uncer-
tainties were divided into A- and B-type uncertainties, as sug-
gested in [24]. A-type uncertainties are determined through sta-
tistical analysis and B-type uncertainties by any other means
(i.e., from literature). Prior work with manual on-wafer mea-
surement system provided most of the information [25]. Uncer-
tainties used in the error analysis are listed in Table 1. Rect-
angular distribution was used for S-parameter, reflection co-
efficient, and power measurement errors. Triangular distribu-
tion was used for ambient temperature. Deviations of the min-
imum noise figure and the optimum source reflection coeffi-
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Fig. 13. Deviation of the minimum noise figure obtained in the Monte Carlo
analysis with 1000 runs at 57 GHz.

Fig. 14. Scattering of the optimum source reflection coefficient obtained in
the Monte Carlo analysis with 1000 runs at 57 GHz.

TABLE 11
MEASURED NOISE PARAMETERS AND CORRESPONDING CONFIDENCE
BOUNDARIES FOR THE HEMT DEVICE AT 57 GHz

Parameter Fin In [Copd LT opt

Measured )¢5 45 025 057 121°
value

26 (955%) | 0.6

confidence T 1006 0.1 £9°

boundary

cient are presented in Figs. 13 and 14. S-parameters of the DUT
and source reflection-coefficient measurement (I'spur) were
found to be the main sources of errors. Confidence boundaries
depend heavily on the test device. For example, the noise pa-
raboloid defined by (1) for an HEMT device has a very flat
bottom due to a low value of r,,. Thus, even a major displace-
ment of the optimum source reflection coefficient has only a
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little effect on the shape of the noise paraboloid. This leads to
a wide confidence boundary for the optimum reflection coeffi-
cient. As an example, the measured values for the HEMT device
at 57 GHz with the corresponding 20 confidence boundaries are
given in Table II. Obtained boundaries correspond to observed
ripple well when clearly erroneous values are discarded.

VII. CONCLUSIONS

A unique wide-band automated on-wafer noise parameter
measurement setup has been built and its performance has been
demonstrated by measuring noise parameters for both passive
and active on-wafer devices. Wide-band noise-parameter
measurements at millimeter-wave frequencies are important
for accurate interpretation of the measured results. For ex-
ample, if measurements had been made on a single frequency
at 67 GHz, false results would have been obtained due to
problems with the noise receiver calibration. These kinds of
frequency-dependent systematic errors can be revealed only
when wide-band measurements are performed. The wide-band
on-wafer measurement system will also be an important tool
in development and verification of device models, as well as in
device characterization.
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Abstract: Three active cold load circuits operating at millimetre-wave frequencies are presented. The circuits have been
manufactured using 100 nm metamorphic high electron mobility transistor technology. On-wafer measurements of
noise temperature and match are presented. Measured noise temperatures are 75 K, 141K, and 170 K at 31.4 GHz, 52

GHz, and 89 GHz, respectively. Measured reflection coefficients are better than —19 dB for all designs.

1 Introduction

Radiometers are widely used in several applications in the areas of
earth atmosphere and surface observation, radio astronomy,
spectroscopy as well as deep space astrophysics. Radiometers are
calibrated by measuring at least two loads with known noise
temperature. For the best accuracy noise temperatures of the loads
should be outside the expected noise temperature of the target, that
is, ‘hot’ and ‘cold’ load. The calibration loads can be either
external or internal. External calibration loads are viewed by the
entire radiometer system, including a target-looking antenna. This
way the antenna and the associated feed network are also
calibrated. An External calibration load can be a cold sky target or
a heated microwave absorber. Internal calibration loads are
connected between the antenna and the radiometer front-end.
Thus, only the radiometer itself is calibrated by the internal
calibration loads. The antenna and the feed network need to be
calibrated by other means. Typical realisation of an internal
calibration system includes a through path for the antenna and
means to connect two loads to the radiometer input by switches or
directional couplers. The losses of the through path worsen
accuracy of the radiometer and should be minimised. Examples of
internal calibration loads are noise diodes, matched loads, and
active cold loads (ACL).

An ACL is a one port transistor circuit with noise temperature
below the physical ambient temperature. Low noise temperature
makes ACLs attractive calibration loads especially in earth
observation radiometers. Typical target temperature for the earth
observation radiometers is 100-300 K and ACLs can provide low
temperature calibration point. Previously published ACL realisations
include hybrid designs [1-5] and monolithic microwave integrated
circuit (MMIC) designs [6-8] for RF and microwave regions. The
first millimetre wave MMIC designs have been reported in [9]. A
summary of published results is presented in Table 1.

This paper presents design and measurements for three ACL
circuits operating at millimetre-wave frequencies. Nominal
specifications for the operating frequencies are 31.4+0.2 GHz,
52.0£2.0 GHz, and 89.0+2.0 GHz. The frequency ranges are
selected to cover multiple channels in the planned MetOp-SG
instruments [10]. The ACLs are realised as MMICs using 100 nm
GaAs metamorphic high electron mobility transistor (MHEMT)
technology. MMIC realisation offers advantages over hybrid
realisation in performance and size at the lower frequency end of
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millimetre-wave frequencies. The GaAs MHEMT technology
provides good low noise performance with lower costs compared
to InP HEMT technology.

2 Theory

The theoretical foundations of cold transistor circuits were laid in
1981 [1], when it was shown that noise temperatures below
ambient temperature could be achieved for FET based circuit by
proper matching network design. Noise wave based analysis and
generalised design flow have been presented in [11]. The most
important formulas are repeated here. Notation of two-port noise
analysis is presented in Fig. 1. The noise temperature incident at
the input plane of the system is

Ty =T,
+ [(T](l - |F1{2> + Tu)GZin}F2|2+TZ<1 - ‘F2}2>]G12,n
1)

where 7, and T}, are alternate noise parameters [12], which are
derived from the traditional noise parameters (T, min, Ry Yopi=
Gopl +jBopl) by

2

Tk F:)pt
Ta = Te,min + , 2 (2)
1= Loy
and
T,
Tb = % - Te.mm (3)
1= |Top
Ty is given by
Tk = 4T0Rn Gopl (4)
and
r. = l_‘Tn 7Fopl (5)
ot I‘uplrin -1
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Table 1 Previously published transistor based cold loads

Frequency, GHz Noise temperature, K Technology Reference
1.4 50 GaAs MESFET [11
18 105 InP HEMT [2]
2-10 90 GaAs MHEMT [61
10-26 125 GaAs MHEMT [6]
4-8 100 GaAs PHMET 71
10.69 56 GaAs PHEMT [3]
1.4 65 SiGe HBT [4]
23.8 72 GaAs MHEMT [5]
1.4 90 GaAs PHEMT [81
94 155 GaAs MHEMT [91
L Tay,
H Noiseless !
: : Load
Sy:»_tem H two-port : T
' : [S] | :
Lin, Laily
o '
-—

Fig. 1 Notation for two-port noise analysis

Here the Ty is standard temperature of 290 K. The terminal invariant
gains are derived from the circuit S-parameters and are given by

|,
Goi=—1" 6
12,1 l—|S11}2 ( )
and
|5, [*
Gy y=—"— 7)
21,1 1— |S22}2 (

Ty, is minimised when I';, = I'; .. Input noise and power matching

can be obtained simultaneously when

F:pt _Sll

r, = i
2T 85080 + STy — i)

opt

®)

For a transistor alone, I'; can have magnitude greater than unity. In

and biasing

Fig. 2 Schematic of realised ACL designs
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Stubs for matching

Source line

this case a feedback network has to be designed to obtain a realisable
value.

3 Designs

The manufacturing process used in this work is the 100 nm GaAs
based MHEMT technology of the Fraunhofer IAF, Freiburg,
Germany. The transistors have f; of 220 GHz, and the process is
suitable for grounded coplanar waveguide (GCPW) designs. The
process features NiCr thin film resistors, metal-insulator-metal
(MIM) capacitors and backside metallisation. Unwanted substrate
modes are suppressed using ground via holes through the GaAs
substrate. As a result of extensive modelling work the Fraunhofer
TAF provides reliable models for CPW components and transistors
[13].

The schematic of the realised ACL designs is presented in Fig. 2.
The two port noise analysis can be utilised in a circuit simulator
software by replacing the termination at the drain matching
network by a 50 Q simulation port. In principle, the ACL design
work has three steps [11]:

1. Design of a feedback network to obtain a realisable value for the
drain matching circuit reflection coefficient I'; =T,.
2. Design of a drain matching circuit for I';.

3. Design of a gate matching circuit for szl.

Inductive source feedback was utilised in the ACL circuits realised
in this work.

The transistor size and the length of source transmission line have
the largest effect on the overall noise temperature of an ACL.
According to the design theory [11], the inductive feedback is
adjusted to obtain the lowest noise temperature while satisfying the
condition |I';|<1 for drain matching network. Additional
restrictions for the source transmission line length arise from
stability considerations. Fig. 3a shows the expected noise
temperature at 31.4 GHz as a function of the source line length for
four differently sized transistors. The expected noise temperature
decreases as the source line length increases. However, the
stability of the transistor above 100 GHz depends heavily on the
source line length. Fig. 35 shows p stability factor of a 4 x 20 um
transistor as a function of frequency for five source line lengths.
With longer source transmission line p stability factor becomes
smaller at frequencies above 100 GHz indicating larger unstable
area on a Smith’s chart. The designer is forced to perform a
trade-off between the expected noise temperature and the stability.

The drain matching networks are designed to provide optimum
load impedance for the transistor. The drain matching networks are

Additional matching stub
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Fig. 3 Expected noise temperature at 31.4 GHz as a function of the source
line length or transistor size

a Expected noise temperature as a function of source transmission line length for four
transistor sizes at 31.4 GHz

b Stability factor p of a 4 x 20 um transistor as a function of frequency for five source
transmission line lengths

realised using one open-ended stub and one RF-shorted stub. At 89
GHz, only a single RF-shorted stub is used. Other matching elements
are a 50 Q resistor and a DC-blocking capacitor which is also
optimised for matching. The RF-short is realised by a capacitor.
The transistor is biased through a RF-shorted stub, an additional
stabilising resistor and large valued capacitors. An additional
open-ended stub gives the designer one more degree of freedom in
designing the matching network. It also improves the bandwidth of
the RF port match. The reverse gain of the transistor is small and
the noise contribution of the drain matching network is almost
negligible. Thus, additional stabilising or matching elements can
be added to the drain matching network without deteriorating the
overall noise performance.

The gate matching networks provide simultaneous noise and
conjugate match for the transistor. The losses of the gate matching
network affect the overall noise performance greatly. The gate
matching networks are realised using an RF-shorted stub, a series
transmission line and a DC-blocking capacitor. Gate bias is fed
through the RF-shorted stub. The resistor on the bias line was
minimised or omitted to improve noise temperature while
maintaining unconditionally stable operation. The simulated ACL
results based on these design principles are presented in Section 5
together with measured results.

4 Measurements
Three test setups were used to characterise the noise temperatures of
the realised ACLs. The setups are based on waveguide components

at Ka-, V-, and W-bands. All measurement setups have similar
functional blocks and a generic block diagram is shown in Fig. 4a.
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At Ka-band, the probe block includes a coaxial on-wafer probe
and a short section of coaxial cable. Stainless steel waveguide is
not used at Ka-band, but it is included in the V- and W-band
setups. The noise calibration plane is at the coaxial port of the
coaxial to waveguide transition connected to a waveguide
full-band isolator input. A commercially available waveguide LNA
and a fundamental mixer are used to amplify and downconvert the
noise signal to fixed IF frequency. The isolator provides constant
source impedance to the LNA. A microwave signal generator
provides the LO-signal to the mixer. A noise figure analyser is
utilised for noise power measurements. The Ka-band setup is
calibrated by a noise diode with nominal excess noise ratio (ENR)
of 12 dB. The calibration method is not optimal for the ACL
measurement because the expected noise temperature is lower than
the cold temperature of the calibration. Extrapolation of the
calibration line increases measurement uncertainty because the
setup behaviour is assumed to be linear, which may not always be
the case. Also, the hot calibration temperature is very high
compared to the expected ACL noise temperature.

At V- and W-band setups the waveguide on-wafer probes are
followed by sections of stainless steel waveguides. A photograph
of the V-band measurement setup is shown in Fig. 4b. Again,
isolators are utilised to provide constant source impedance for the
LNAs. The LNAs on both bands are developed in-house and they
are housed in split-block waveguide packages. Fundamental
mixers are again used and the LO-chain includes a microwave
signal generator and a quadrupler at both bands. At both the V-
and the W-band, the noise calibration is performed using heatable
waveguide loads. Noise powers are measured with load
temperatures of 298 K and 373 K. The stainless steel waveguide
prevents heat flow from the load to the rest of the measurement
setup. A temperature controller keeps the load temperature within
+1.5 K during the frequency sweeps. Again, the expected ACL
noise temperatures on both bands are below calibration points and
the extrapolation of the calibration line is required.

After calibration, the ACL under test and the on-wafer probe are
connected to the measurement setup and the noise temperature at
the probe output plane is measured. The probe loss is calculated
from its S-parameters and the noise due to the probe is removed

Calibration Noise Figure Analyser
plane
LNA
Isolator =
= H I X
—{
S8 waveguide o I LO chain

To Noise Figure
Analyser

| Laml gl
Stainless steel | _"
waveguide \

Fig. 4 Measurement setup

a Functional block diagram of the measurement setups
b Photograph of V-band measurement setup with heatable load
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Fig. 5 Micrograph of the 31.4 GHz ACL

Chip size is 2.0 mm x 1.0 mm

Fig. 7 Micrograph of the 52 GHz ACL

Chip size is 1.5 mm x 1.0 mm
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Fig. 6 Performance of the 31.4 GHz ACL

a Measured (solid) and simulated (dashed) noise temperature of the 31.4 GHz ACL at

design bias V4=1.0 V, [4=24 mA

b Measured (solid) and simulated (dashed) RF port reflection of the 31.4 GHz ACL at

design bias V4=1.0V, I4=24 mA
¢ Variation of noise temperature over bias at 31.4 GHz

Fig. 8 Performance of the 52 GHz ACL

a Measured (solid) and simulated (dashed) noise temperature of the 52 GHz ACL at

design bias V4=1.0V, Ij=12 mA

b Measured (solid) and simulated (dashed) RF port reflection coefficient of the 52 GHz

ACL at design bias V4=1.0V, Ij=12 mA
¢ Variation of noise temperature over bias at 52 GHz
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Fig. 9 Micrograph of the 89 GHz ACL

Chip size is 1.0 mm x 1.0 mm

from the measured noise temperature. The S-parameters of the probes
are determined using a method described in [14]. The noise
temperature values are not corrected due to mismatch in any
measurement reported here. This introduces a systematic
measurement error. However, ACLs have low reflection coefficient
values especially over design band which reduces the mismatch effect.

A micrograph of a 31.4 GHz ACL is shown in Fig. 5. A transistor of
size 4 x 20 um with source transmission lines of 140 pm was selected
for the design. A comparison between the measured and the simulated
noise temperatures and the RF port reflection coefficient at the design
bias of Vd=1.0 V and Id=24 mA are presented in Figs. 6a and b,
respectively. The simulated noise temperature agrees with the
measured noise temperature very well, the difference between the
values is about 10 K around the design band. The average noise
temperature over 30-32GHz is 75K. Assuming +0.2dB
worst-case uncertainty [15] for ENR value during receiver
calibration leads to +I5K uncertainty in measured noise
temperature value when calibration line is extrapolated. Also, the
lowest reflection coefficient is achieved at the desired frequency
range although even lower value was obtained in the simulations.
However, the RF port reflection coefficient is better than —20 dB
over 29-34 GHz. On our narrow design band of 31.4 +0.2 GHz the
reflection coefficient is better than —24 dB. The effect of bias was
studied at the 31.4 GHz frequency by measuring the noise
temperature with different bias settings. Results are presented in
Fig. 6¢. The noise temperature of this ACL is rather insensitive to
small changes in the drain voltage or current.

A micrograph of a 52 GHz ACL is shown in Fig. 7. The transistor
size is 2 X 20 um and the source transmission line length is 135 um.
A comparison between the measured and the simulated noise
temperatures and the RF port reflection coefficient at design bias
of Vd=1.0V and Id=12 mA are presented in Figs. 8a and b,
respectively. Again, the simulation agreed with the measured noise
temperature very well. There is about 20 K difference between the
measurement and the simulation at the lower frequency end of the
measurement band. This could be partly due to the measurement
system, because the operation of the LNA and the mixer in the
measurement system are deteriorated at the band edges. The
average noise temperature over 50-54 GHz is 141 K. Estimated
worst-case noise temperature uncertainty due to calibration line
extrapolation is +10 K assuming 2 K deviation in calibration load
temperatures. The RF port reflection coefficient over the design
band of 50-54 GHz is better than —30 dB and the simulations
correspond to the measurements extremely well. On a wider range,
the reflection coefficient is better than —24 dB over a 49-63 GHz
range. The effect of bias was investigated at 52 GHz frequency.
Results are presented in Fig. 8c. Again, the ACL is rather
insensitive to small changes in the drain voltage or current. Some
improvement in noise temperature could be achieved by lowering
the drain voltage and current.

A micrograph of an 89 GHz ACL is shown in Fig. 9. The
transistor size is 2 x 15 um and the source transmission line length
is 47 um. A comparison between the measured and the simulated
noise temperatures and the RF port reflection coefficient at the
design bias of Vd=1.0V and Id=12mA are presented in
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Fig. 10  Performance of the 89 GHz ACL

a Measured (solid) and simulated (dashed) noise temperature of the 89 GHz ACL at design
bias V4=1.0V, ;=12 mA

b Measured (solid) and simulated (dashed) RF port reflection coefficient of the 89 GHz
ACL at design bias V4=1.0V, Ij=12 mA

¢ Variation of noise temperature over bias at 89 GHz

Figs. 10a and b, respectively. For this circuit the measured noise
temperature is about 40 K higher than the simulated one. The
frequency, where the minimum noise temperature occurs, has
shifted towards higher frequencies, which explains a part of the

Table 2 Performance summary of realized MHEMT cold loads

Frequency, Noise Worst case Power

GHz temperature, K match, dB consumption, mW
31.4+0.2 75 -24 24
52.0+2.0 141 -30 12
89.0+2.0 170 -19 12

IET Microw. Antennas Propag., 2015, Vol. 9, Iss. 8, pp. 742-747
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noise temperature difference. The average noise temperature over
87-91 GHz is 170 K. Estimated worst-case noise temperature
uncertainty due to calibration line extrapolation is +8 K assuming
2 K deviation in calibration load temperatures. The RF port
reflection coefficient over the design band of 87-91 GHz is better
than —19 dB and the agreement between the measured and the
simulated value is not as good as with the two ACLs operating at
lower frequencies. On a wider range, the reflection coefficient is
better than —15 dB over a 76-110 GHz range. The effect of bias at
the 89 GHz frequency is presented in Fig. 10c. Also at the 89
GHz, the variation of the noise temperature is only a few Kelvins
for small changes in the drain voltage or current. Again, some
improvement in noise temperature could be achieved by lowering
the drain voltage and current.

The performance values of the realised ACLs are summarised in
Table 2. The measured performance compares well to the
previously published ACL results.

5 Conclusion

Three active cold loads operating at millimetre-wave frequencies of
31.4, 52, and 89 GHz have been designed and characterised.
MHEMT MMIC ACLs offer noise temperatures well below
ambient up to at least 100 GHz. Simulation models predicted
resulting noise temperature very well. Good RF port reflection
coefficient levels of —20 dB were realised at 31.4 and 52 GHz. At
89 GHz RF port reflection coefficient is slightly worse due to
frequency shift of 5 GHz towards higher frequencies.

Achieved noise temperatures are useful for Earth observation
radiometers. For practical use with a radiometer, packaging and a
switch are needed. Whether additional losses can be tolerated and
usefulness of ACL assessed, careful system level calculations are
needed for the specific radiometer and application.
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Abstract — We report low noise amplifiers for a 94-GHz cloud
profiling radar. Four amplifiers were designed using coplanar
waveguides and they were manufactured with a 100-nm meta-
morphic high electron mobility transistor technology. Selected
chips were assembled in a split block package having WR-10
waveguide interfaces and alumina microstrip transitions. The
scattering parameters and the noise figures of the amplifiers were
measured on-wafer and in WR-10 waveguide environment at W-
band. At room temperature, the on-wafer measured gain at 94
GHz was between 18 and 23 dB and the measured noise fig-
ure ranged from 3.0 to 3.5 dB. Packaged amplifiers exhibit more
than 20 dB of gain and noise figures around 3.7 dB. One pack-
aged amplifier was also measured at cryogenic temperature and
the results are presented.

Index Terms — Low noise amplifiers, Metamorphic high elec-
tron mobility transistors, Microstrip transitions, MMIC ampli-
fiers, packaging, W-band.

I. Introduction

In an effort to increase the accuracy of climate models one
has to obtain more information on vertical profile charac-
teristics of clouds. A 94-GHz cloud profiling radar (CPR)
is an important element of the joint European-Japanese
EarthCARE (Earth Clouds, Aerosols and Radiation Ex-
plorer) mission, currently under pre-development for the
planned launch in 2012 [1].

The low noise amplifier (LNA) is one of the key compo-
nents in a millimetre-wave receiver application, such as the
cloud profiling radar. Millimetre-wave integrated circuits
have traditionally been implemented using technologies,
which are based on compound semiconductors such as
gallium arsenide (GaAs) or indium phosphide (InP). The
metamorphic high electron mobility transistor (MHEMT)
has emerged as an attractive, low cost alternative to InP
HEMTs. In MHEMT technology, the metamorphic buffer
layer is grown on the GaAs, which enables the growth of a
channel layer having 30-80 % indium content. This leads
to a substantial cost reduction and manufacturability im-
provement over InP-substrate based devices [2]. Recently,
the antimonide-based compound semiconductor (ABCS)
InAs/AlSb HEMTs have become interesting because of
their low dc-power dissipation.

A performance overview of state-of-the-art millimetre
wave integrated amplifiers can be found in [3]. At W-
band, GaAs pseudomorphic high electron mobility transis-
tor (PHEMT) amplifiers have achieved noise figures (NF)
of 3.6-4.0 dB [4], [5]. Previously, best noise results at
W-band have been achieved with InP HEMT amplifiers
[6]-[9]. The MHEMT amplifiers have recently shown per-
formances comparable to InP HEMT amplifiers [10]-[12].

The InAs/A1Sb HEMT amplifiers have demonstrated noise
figures ranging from 3.9 to 5.4 dB at 94 GHz [13], [14].
At millimetre-waves the packaging of the monolithic mi-
crowave integrated circuits (MMIC) becomes more de-
manding than at lower frequencies. Typically, the MMIC
can be mounted face-up on a housing and bonded to a tran-
sition to couple the MMIC to waveguide [10], [15], [16].
Another approach is the flip-chip technology [17].

The aim of our work was to find out how well the 100-
nm metamorphic HEMT technology and an E-plane split-
block package assembly suits to low noise amplification at
W-band and, particularly, considering the cloud profiling
radar operating at 94 GHz. In this paper, we present the
design of the waveguide transitions of an E-plane split-
block package and the measured results obtained from the
packaged amplifiers. Because of the careful design of the
mechanical package and the waveguide probes, the pack-
aging degraded the noise figure only by a few tenths of
decibels when compared to on-wafer results. In addition,
one of the amplifier packages was measured at cryogenic
temperatures.

This paper is organized as follows: The fabrication tech-
nology is presented in Section II. The detailed design of
the MMIC LNAs was reported in [18]. Therefore, only a
brief summary and measurement results of these circuits
are presented in Section III. The design of the package
and waveguide probes are presented in Section IV follow-
ing the measurement results of the packaged LNAs. In that
section, measurement results of one packaged amplifier at
cryogenic temperature are also shown. Finally, we present
conclusions in Section V.

II. Fabrication technology

The manufacturing process is a 100-nm GaAs based
metamorphic HEMT technology from Fraunhofer
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IAF, Freiburg, Germany. The transistor fr and
fmax are 220 and 300 GHz, respectively, and the
process features ground via holes through GaAs-
substrate as well as backside metallization. The
structure of the composite channel of the MHEMT
is  IngspAlgagAs/InggoGag.20As/Ing s3Gaga7As. A
transmission electron microscope (TEM) picture of a
cross-section of a 100-nm MHEMT is shown in Fig. 1.
This technology achieves a maximum transconductance
of 1300 mS/mm and a gate-to-drain breakdown voltage of
4 volts.

Fig. 1. A TEM cross-section of a 100-nm metamorphic HEMT.

III. MMIC low noise amplifier design

Four low noise amplifiers with different design targets
were implemented using grounded coplanar waveguide
(GCPW) topology. A 4x15-um gate width MHEMT was
chosen as a suitable low noise device for the amplifiers.
The transistor is in a common source configuration. The
simulation models were provided by the Fraunhofer IAF.
The detailed design of the MMIC LNAs is presented in
[18]. The first design (LNA1) is a narrowband three-stage
amplifier while the second design (LNA2) is a wideband
three-stage amplifier. All the stages are biased to opti-
mum gain. A simplified schematic and a micrograph of
the LNA2 is presented in Fig. 2 and 3, respectively.

Fig. 2. Simplified schematic of the wideband LNA2.

The third design (LNA3) is also a three-stage amplifier.
This design is optimised for low noise performance. The
first stage is biased to low noise bias, while second and
third stages are biased for peak gain. To increase gain and

Fig. 3. Micrograph of the LNA2. The chip size is 2.25 mm X
1.00 mm.

bandwidth of the LNA3, a four-stage version (LNA4) was
designed.

The on-wafer noise measurement setup is described in
[19]. The measured and simulated S-parameters and noise
figures of the four amplifiers are presented in Figs. 4-7.
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Fig. 4. Measured and simulated (dashed lines) S-parameters and
noise figure of the narrowband LNA1. Data from [18]. The mea-
sured gain and noise figure are 18 dB and 3.1 dB at 94 GHz,
respectively. Vsuppry = 1.7V, I; = 54 mA.

8 B
I
l:?

AT RSN BNt

Ve
" i /[ [
p- yal AT

Y v

!
/]
é?-;% P3F

ot

£
0 10 20 30 40 50 60 70 80 90 100 110
Frequency [GHz]

Fig. 5. Measured and simulated (dashed lines) S-parameters and
noise figure of the wideband LNA2. Data from [18]. The mea-
sured gain and noise figure are 22.5 dB and 3.3 dB at 94 GHz,
respectively. Vsuppry = 1.34 V, Ig = 54 mA.
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W-BAND LOW-NOISE AMPLIFIERS

Frequency [GHz] | Gain [dB] | NF [dB] Technology Ref.
95 20 2.5 InP [6]
94 18 29 InP [71
94 16 3.2 100-nm InP [8]
94 12 243 100-nm InP [9]
90 17 2.8 MHEMT [12]
89 14 4.8 100-nm MHEMT [20]
80-100 12 23 70-nm MHEMT [11]
70-105 20 2.5 70-nm MHEMT [10]
94 31 4.0 100-nm GaAs low noise PHEMT | [4]
90-100 10.3 3.6 100-nm GaAs power PHEMT [5]
94 11 5.4 100-nm InAs/AlSb HEMT [13]
94 20 39 200-nm InAs/AlSb HEMT [14]
94 18-23 3.0-3.5 100-nm MHEMT This work, on-wafer
Table 1. Comparison of Published HEMT MMIC Amplifiers for W-band.
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Fig. 6. Measured and simulated (dashed lines) S-parameters and
noise figure of the LNA3. Data from [18]. The measured gain
and noise figure are 19.5 dB and 3.0 dB at 94 GHz, respectively.
Vsuppty =095V, Iy = 45 mA.

A good agreement between simulated and measured re-
sults was achieved. The measured performance of the
MMIC low noise amplifiers is compared to published re-
sults in Table I. The presented results demonstrate excel-
lent noise and gain performance and the designed chips
compare well with the previously published amplifiers.

IV. Packaged amplifiers

Selected chips of the designs LNA1, LNA2, and LNA4
were assembled in a split block package having WR-10
waveguide interfaces.

A) Mechanical package and waveguide probes

The design of the package is based on an E-plane split-
block [16]. The block has a space for a 5-pin micro con-
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Fig. 7. Measured and simulated (dashed lines) S-parameters and
noise figure of the LNA4. Data from [18]. The measured gain
and noise figure are 23 dB and 3.5 dB at 94 GHz, respectively.
Vsupply = 094V, I; = 63 mA.

nector and a small PCB for installing a bias network (low
pass RC), and a small space adjacent to the LNA-chip for
single layer capacitors. All components are attached to the
block with conductive epoxy.

The E-plane split block packaging requires transitions
from the waveguide to the coplanar input of the MMICs.
The transitions are manufactured with a thin-film process
on 100 um thick polished alumina (99.6 %). The de-
sign method of the transitions follows the outline pre-
sented in [21]. By using Ansoft HFSS electromagnetic
simulations, the transitions were designed by determin-
ing the length, metallization width and backshort distance
of the waveguide probe to achieve nearly constant im-
pedance over a wide bandwidth. A short inductive line and
a quarter-wave transformer were then added as matching

360

Proceedings of the European Microwave Association




M. VARONEN ET AL.

elements to bring this impedance to 50 Q. As shown in
simulations in Fig. 8., the transition provides better than
20 dB return loss to the microstrip over almost 30-GHz
bandwidth.
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Fig. 8. Simulated transmission (1) and return loss (2) of the WR-
10-to-microstrip transition.

Since the MMIC has a coplanar waveguide input, a transi-
tion from microstrip to CPW was added to the probe. The
ground pads are connected to the backside metal by plated-
through vias as shown in Fig. 9. In simulations, the effect
of this transition is negligible on the overall performance
of the waveguide probe.

Fig. 9. Microstrip to CPW transition.

A micrograph of a low noise amplifier chip assembled in
a housing is presented in Fig. 10 and a photograph of the
package is shown in Fig. 11.

B) Measurement systems for LNA packages

The packaged amplifiers were measured in WR-10
waveguide environment. The s-parameters were measured
using an HP8510C vector network analyser with the Ag-
ilent W85104A extension modules for W-band. Correc-
tion coefficients for the analyser were obtained through the
TRL-calibration method [22]. An external attenuator was
needed to reduce input power from port one to avoid com-
pression of the LNAs. The attenuator reduces the dynamic
range of the analyser and, thus, the quality of S11 calibra-
tion will deteriorate. However, despite the approximate 15
dB of additional attenuation, a successful calibration was
achieved.

Fig. 10. A 94-GHz MMIC low noise amplifier assembled in the
lower half of the split block package.

Fig. 11. A photograph of the split-block package. The dimen-
sions of the package are 16 mm x 19 mm x 19 mm.

The noise figure and the insertion gain were measured us-
ing the Y-factor method. The block diagram of the room
temperature measurement setup is shown in Fig. 12(a).
The measurement system utilizes an Agilent N8973A
Noise Figure Analyzer and a noise diode from ELVA-1
having an excess noise ratio (ENR) of about 15 dB. An
in-house assembled noise downconverter, consisting of a
mixer and a LO-multiplier, transforms the noise signal
from the 75-110 GHz range to a 50-MHz signal, which is
a suitable input frequency for the noise figure analyser. At
frequencies above 105 GHz the noise figure of the down-
converter increases rapidly, which leads to a higher mea-
surement uncertainty.

The same setup was also used for noise figure (NF) and
the insertion gain (G;,s) measurements at cryogenic tem-

‘peratures. The setup is shown in Fig. 12(b). In this case,

a cryogenic test chamber is connected between the noise
diode and the noise downconverter. The input and output
waveguide assemblies, which both consist of a stainless
steel waveguide for thermal isolation and a short section
of standard waveguide, are located inside the test chamber.
The LNA block is connected between these assemblies.
The entire assembly is presented in Fig. 13. A thermally
conductive wire connects the LNA block to a cold finger
of the cryogenic cooler. Temperature sensors are placed on
the LNA block and on the waveguides to monitor cooling.
At first, during the first cooling cycle, the insertion gain
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o— - m Noise Noise
o1se source DUT Downconverter Figure Analyzer

(a)

Noise
Figure Analyzer

Noise
Downconverter

Noise source

Cryogenic chamber
(b)

Fig. 12. Block diagrams of noise figure measurement setups. (a)
Room temperature setup. (b) Cryogenic temperatures setup.

(Gins) and the NF of the waveguide assembly were mea-
sured without the LNA by connecting the input and output
to each other. The measurements of the G;,; and the NF
were performed at selected temperatures. During the sec-
ond cooling cycle the G, and the NF of the entire chain
including the LNA block were measured at the same tem-
peratures. The insertion gain Gy and the noise figure
Frna of the LNA is calculated from the total insertion
gain and noise figure using

Fror — Fi Four — 1
(1) FLna I + Giva +1,
where F;,; is the total noise figure of cascaded waveguides
and the LNA, Fj, and F,,; are noise figures of the input
and output waveguides, respectively, and L;,, is the loss of
the input waveguide.

Fig. 13. Photograph of the cryogenic measurement setup.

C) Room temperature measurement results of the
packaged LNAs

The measured S-parameters of the packaged LNA1, LNA2
and LNA4 are presented in Fig. 14, Fig. 15. and Fig. 16,
respectively.
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Fig. 14. Measured S-parameters of the packaged LNA1. The
dashed lines represent measured on-wafer results. Vs ;p1y = 1.7
V, I; =54 mA.
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Fig. 15. Measured S-parameters of the packaged LNA2. The

dashed lines represent measured on-wafer results. Vs, pp1y =
134V, I; =54 mA.
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Fig. 16. Measured S-parameters of the packaged LNA4. The

dashed lines represent measured on-wafer results. Vyyppry =
094V, I; =63 mA.

The noise performances of the packaged amplifiers are
shown in Fig. 17, Fig. 18. and Fig. 19. The measured on-
wafer results are included in these figures for compari-
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son. Although, the gain response of the packaged LNA1
has slightly shifted downwards in frequency, the measured
gain and noise figure are 15 dB and 4.2 dB at 94 GHz, re-
spectively. The packaged LNA?2 exhibits a gain better than
18.5 dB from 75 to 100 GHz. It achieves a 3.7 dB noise
figure at 94 GHz. The packaged LNA4 has more than 15
dB gain over the entire W-band. At 94 GHz, the measured
noise figure is 3.7 dB.

As a conclusion, the measured results indicate that the
packaging and the design of waveguide probes were re-
alized successfully. The packaging has a minimal effect
on the frequency responses of the LNA MMICs. More-
over, the packaging degraded the noise figure only by a
few tenths of decibels when compared to the on-wafer re-
sults.
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Fig. 17. Measured noise figure and insertion gain of the pack-
aged LNA1. The measured gain and noise figure are 15 dB and
4.2 dB at 94 GHz, respectively. Vsyppry = 1.7V, I5 = 54 mA.
The dashed lines represent measured on-wafer results.
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Fig. 18. Measured noise figure and insertion gain of the pack-
aged LNA2. The measured gain and noise figure are 19 dB and
3.7 dB at 94 GHz, respectively. Vs, ppry = 1.34 V, Iy = 54 mA.
The dashed lines represent measured on-wafer results.
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Fig. 19. Measured noise figure and insertion gain of the pack-
aged LNA4. The measured gain and noise figure are 23.5 dB and
3.7 dB at 94 GHz, respectively. Vsyppry = 0.94 V, 15 =63 mA.
The dashed lines represent measured on-wafer results.

D) Test results at cryogenic temperatures

Measured noise figure and insertion gain of the packaged
LNAZ2 for various physical temperatures in cryogenic mea-
surement setup are presented in Fig. 20. and Fig. 21, re-
spectively.
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Fig. 20. Measured noise figure of the packaged LNA?2 at various
physical temperatures. Vy,ppry = 1.1V, Vp =01V, I; = 38,
32,30, 28 mA.
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Fig. 21. Measured insertion gain of the packaged LNA2 at vari-
ous physical temperatures. Vs,ppry =1.1V, Vy =0.1V, Iy =38,
32, 30, 28 mA.
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The supply voltage and gate-to-source voltages were kept
constant at different temperatures. About 3 dB improve-
ment in insertion gain and 2.5 dB in noise figure can be
observed over the tested temperature range.

V. Conclusions

This paper describes the design of MMIC amplifiers
and their successful integration into waveguide packages.
Measurement results of both LNA MMICs and packaged
amplifiers are presented and the results are discussed. The
presented results demonstrate excellent noise and gain per-
formance and the designed chips compare well with the
previously published amplifiers. Because of the careful de-
sign of the mechanical package and the waveguide probes,
the packaging has a minimal effect on the frequency re-
sponses of the LNA MMICs. Moreover, the packaging
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Abstract — Four low noise amplifiers for D-band (110-170 GHz)
operation are presented. The amplifier circuits have been man-
ufactured using a 100-nm gate length metamorphic high elec-
tron mobility transistor technology. A good agreement between
simulations and measurements is verified by on-wafer measure-
ments. Selected amplifiers have been assembled into a split-block
waveguide module. The design and performance of the ampli-
fier modules are presented. The amplifier modules exhibit better
than 15-20 dB small signal gain with 6.0-7.5 dB noise figure. The
bandwidths range from 141-152 GHz to 130-170 GHz.

Index Terms — Millimeter wave amplifiers, MMIC amplifiers,
Integrated circuit packaging, Metamorphic high electron mobil-
ity transistors (MHEMT).

1. Introduction

Advances in the manufacturing of millimeter-wave mono-
lithic integrated circuits (MMICs) can open new possibili-
ties to exploit Jarge bandwidths available above 100 GHz.
Low noise amplifiers have been developed up to 260 GHz
and the first circuits exhibiting gain at 300 GHz have been
reported [1]-[4]. Future applications above 100 GHz may
include wideband communication, environmental moni-
toring and millimeter-wave imaging.

An example application is the atmospheric water vapor
profiling using a radiometer for simultaneous measure-
ments at the water vapor resonance frequency 183 GHz
and at a window frequency within 140 to 165 GHz. In the
current generation of atmospheric sounders, heterodyne
radiometer architecture is used with Schottky mixers as the
first component after the antenna. The sensitivity of these
instruments could be improved with a low noise amplifier
(LNA), and even direct detection architecture is possible.
Traditionally, the manufacturing of low noise millimeter-
wave integrated circuits has relied on the use of high elec-
tron mobility transistors (HEMT) implemented with gal-
lium arsenide (GaAs) or indium phosphide (InP). While
best noise performance has been achieved using InP
HEMT technology there are some drawbacks. These in-
clude higher manufacturing cost, lower breakdown volt-
age, more fragile structure, and device reliability when
comparing to GaAs technology. Few InP HEMT based
LNAs operating at D-band have been reported [S]-[10].
To overcome some of drawbacks with InP, the possibil-
ity to process indium channel devices on GaAs carrier
wafer has been introduced in pseudomorphic (PHEMT)
and MHEMT technologies. In MHEMT technology, a
metamorphic buffer layer is grown on the GaAs substrate,
to enable the growth of the channel layer having 30-80 %
indium content. This leads to cost reduction and manu-

facturability improvement over pure InP technology [11],
[12]. So far, few PHEMT and MHEMT LNAs operating at
D-band have been reported [13]-[18].

Packaging of MMICs operating above 100 GHz is
challenging. Typically, the MMIC is mounted inside a
waveguide module and a transition is used to couple the
signal from the rectangular waveguide to the MMIC. Tran-
sitions can be manufactured on a separate substrate, which
are then connected to MMIC using wire bonding or flip-
chip technique. As frequency increases, the wire bonding
becomes more demanding and the length of the wire has to
be minimized [19], [20]. The use of flip-chip technique has
been demonstrated with MMICs up to 100 GHz [21]-[24].
In addition, the integration of the transition on MMIC has
been studied in [6].

With the water vapor profiling as a background appli-
cation, the aim of this work was to study the possibil-
ities of using metamorphic high electron mobility tran-
sistors (MHEMTS) for low noise amplification in the D-
band (110-170 GHz). Four low noise amplifiers were de-
signed and selected chips were assembled in an E-plane
split-block package. Package design including transitions
from coplanar to rectangular waveguide is presented. Re-
sults on both on-wafer and packaged module measurement
are shown.

II. Fabrication technology and modelling

The manufacturing process used in this work is the 100-nm
GaAs based MHEMT technology of the Fraunhofer IAF,
Freiburg, Germany. The process is suitable for coplanar
waveguide (CPW) designs [3]. The process features NiCr
thin film resistors, metal-insulator-metal (MIM) capacitors
and backside metallization. Unwanted substrate modes are
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suppressed using ground via holes through the GaAs sub-
strate. As a result of extensive modelling work the Fraun-
hofer IAF provided reliable models for CPW components
and transistors. A transistor with a gate width of 2x15 pm
was chosen as a suitable device for D-band operation. The
ft of the transistor is about 200 GHz and it is used in com-
mon source configuration. All designs were optimized for
high stable gain rather than low noise, because the noise
model extracted from lower frequencies was considered
unreliable at these frequencies.

III. Low noise amplifier designs

Four low noise amplifiers were designed using different
design goals or design methodologies. More detailed de-
scription of LNA designs is presented in [25]. The basic
schematic of the first design (LNA1) is shown in Fig. 1.

out

I

Fig. 1. Principal schematics of the LNA1.

LNAL1 is a narrowband amplifier. Matching networks are
designed using conventional reactive matching technique.
Stability is improved using inductive source feedback. A
micrograph of the LNA1 is presented in Fig. 2. The on-
wafer measurement results and simulations are shown in
Fig. 3. The measurements show peak gain of 22.7 dB at
152 GHz with a noise figure of 6.0 dB. The S-parameters
were measured using two systems. The Agilent PNA se-
ries network analyzer was used over the range 1-110 GHz
and the HP8510C network analyzer with G-band exten-
sion modules was applied for 130-200 GHz range. The
noise figure measurement setup for the G-band consists
of in-house assembled external downconverter and Agi-
lent N8973A noise figure analyzer.

JaE,

Fig. 2. Micrograph of the LNA1 MMIC. The chip size is 1.0 x
2.0 mm2.

The second design (LNA2) is a narrowband four-stage am-
plifier. Input, output and interstage matching is based on
series transmission lines. Bias voltage for the transistor is
fed through A/4 short circuited shunt stubs.

Magnitude (dB)

0 20 40 60 80 100 120 140 160 180 200
Frequency (GHz)

Fig. 3. Measured (solid) and simulated (dashed) S-parameters
and noise figure (measurement only) for LNA1. The peak gain
of 22.7 dB with the noise figure of 6.0 dB is achieved at 152
GHz. Vd =1.09 V, Id = 36 mA. Data from [25].

25
20

Magnitude (dB)

0 20 40 60 80 100 120 140 160 180 200
Frequency (GHz)

Fig. 4. Measured (solid) and simulated (dashed) S-parameters
and noise figure (measurement only) for LNA2. The peak gain
of 19.8 dB with the noise figure of 6.3 dB is achieved at 143
GHz. The applied bias values were Vd = 1.54 V, Id = 36 mA.
Data from [25].

Stability is improved by using inductive source feedback
and small series resistors in shunt stubs. The on-wafer
measurement results and simulations are shown in Fig. 4.
The measurements show a peak gain of 19.8 dB at 143
GHz with a noise figure of 6.3 dB.

The third design (LNA3) is a wideband amplifier. The in-
put and output matching networks are designed using the
reactive matching technique. The double resonant match-
ing technique is used for interstage matching, in order to
obtain wideband match. Stability is improved using induc-
tive source feedback. The on-wafer measurement results
and simulations are shown in Fig. 5. There is an unwanted
gain peak with a poor output return loss at around 105
GHz, making the amplifier only conditionally stable. Oth-
erwise, average gain of 18.0 dB is achieved over a wide
bandwidth.

The fourth design (LNA4) is also a wideband amplifier. To
suppress gain below 100 GHz, an interdigital capacitor is
placed in two interstage networks. This capacitor provides
smaller capacitance than MIM capacitors. Otherwise, the
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Table 1. Comparison of reported HEMT MMIC LNAs at D-band.
Frequency (GHz)  Gain (dB) NF (dB) Number of Stages
150215 12 N.A. 3
150-215 2046 8 6
150-205 17£2 N.A. 8
140 30 NA. 3
90-140 1543 N.A. 6
150 5 N.A. 1
164 6 N.A. 2
120-124 10-12 N.A. 2
142 9 N.A. 2
155 10.1 5.1 3
148 12 N.A. 2 cascode stages
155-160 15 N.A. 2 cascode stages
152 227 6.0 4
143 19.8 6.3 4
130-154 18.0-19.0 5.5-7.0 4
130-171 17.6-20.6 5.5-7.0 4

Technology
70-nm InP HEMT
80-nm InP HEMT
100-nm InP HEMT
100-nm inP HEMT
100-nm InP HEMT
120-nm InP HEMT
70-nm InP PHEMT

100-nm InP PHEMT

100-nm InP PHEMT

100-nm InP PHEMT
150-nm GaAs PHEMT
70-nm GaAs MHEMT
100-nm GaAs MHEMT
100-nm GaAs MHEMT
100-nm GaAs MHEMT
100-nm GaAs MHEMT
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Fig. 5. Measured (solid) and simulated (dashed) S-parameters
and noise figure (measurement only) for LNA3. A flat gain of 18
dB was achieved at D-band with noise figure of 5.5-7.0 dB. Vd
=1.36 V, Vg = 36 mA. Data from [25].

reactive matching technique was used for matching net-
work design and inductive source feedback improves sta-
bility. The on-wafer measurement results and simulations
are shown in Fig. 6. The maximum gain is 20.6 dB with
a 3 dB bandwidth of 130-175 GHz. The measured noise
figure is 5.5-7.0 dB between 142-175 GHz.

As a summary, the measured gain was found to be higher
than simulated ones. The on-wafer performance of the
designed amplifiers has been compared to previously re-
ported MMIC LNAs at D-band in Tab. 1. The LNAs re-
ported in this paper show comparable or better perfor-
mance than the previously published amplifiers.

IV. Packaging

The mechanical design of the module used in this work
is based on an E-plane split-block package, originally de-
scribed in [26]. The concept is illustrated in Fig. 7, show-
ing both halves of a WR-6 (110-170 GHz) block with the
amplifier MMIC and two waveguide to CPW transitions.

Magnitude (dB)

0 20 40 60 80
Frequency (GHz)

100 120 140 160 180 200

Fig. 6. Measured (solid) and simulated (dashed) S-parameters
and noise figure (measurement only) for LNA4. The peak gain
of 20.6 dB was achieved at 130 GHz. The 3 dB bandwidth is
130-171 GHz. The noise figure is less than 7.0 dB at 142-175
GHz range. Vd = 1.18 V, Id = 36 mA. Data from [25].

The outer dimensions of the block (excluding waveguide
alignment pins) are 16x19x19 mm. The block has a space
for a 5-pin micro connector and a small PCB for installing
a bias network (lowpass RC), as well as a smaller cavity
adjacent to the LNA for chip capacitors. All components
are attached to the block with conductive epoxy glue.

The waveguide to CPW transitions required for E-plane
split-block packaging were manufactured with a thin-film
process on 100 wm thick, 99.6 % polished alumina. The
design method of the transitions follows the outline pre-
sented in [27], where general transitions from waveguide
to microstrip have been designed. The simulation model
for the transition is illustrated in Fig. 8. The height and
width of the microstrip channel were designed to result in
cutoff above 200 GHz for the first waveguide-like mode in
the channel. For the WR-6 antenna probe it was possible
to find a combination of the width and length of the probe
as well as the backshort distance that resulted directly in
50 2 real impedance. A transition from microstrip to CPW
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_ i

Fig. 7. Photograph of the split-block module with MMIC,
waveguide to CPW transitions and DC-feeding network assem-
bled.

is obtained with a short taper from the 50 € microstrip to
the 47 wm wide center conductor of the CPW added to the
transition. CPW structure is completed with two ground
pads on the sides, which are connected to the backside
metal by plated-through vias. For the transition, the sim-
ulations showed a transmission loss below 1 dB and the
return loss above 20 dB over 20 GHz band around 150
GHz.

Fig. 8. Simulation model for waveguide to CPW transition.

V. Measurement results for packaged ampli-
fiers

Selected amplifiers were packaged in a split-block
waveguide package. The measurement range of packaged
amplifiers was limited by the available test equipment.
The S-parameters were measured using HP8510C with G-
band extension modules, leading to a measurement range
of 130-175 GHz. The upper frequency limit is due to the
WR-6 package. The noise figures of the packaged ampli-
fiers were measured using same measurement system as
with the on-wafer measurements. It is noted that the mean-
ingful noise measurement bandwidth depends on the gain
of the amplifier.

First, the optimum bias conditions for each amplifier mod-
ule were identified by sweeping the supply voltage and the
drain current and measuring the noise figure and the in-
sertion gain at a fixed frequency. As an example, the bias
sweep for LNA3 is presented in Figs. 9 and 10 for noise
figure and insertion gain, respectively.
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Fig. 9. Noise figure of the LNA3 in a waveguide module with
different bias settings at 155 GHz. The gate voltage was swept
from -0.1 V t0 0.25 V with 0.5'V steps.
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Fig. 10. Insertion gain of the LNA3 in a waveguide module with
different bias settings at 155 GHz. The gate voltage was swept
from -0.1 V to 0.25 V with 0.5 V steps.

The measurement results for a packaged LNA2 are pre-
sented in Fig. 11. With the tuned bias settings, the LNA2
exhibits a gain of 19.5 dB and a noise figure of 6.8 dB at
145 GHz. The values are not directly comparable to the on-
wafer measurements due to different biasing conditions.
Reasonable input and output match values (<-5 dB) are
achieved over a wide bandwidth.

The measurement results for a packaged LNA3 are shown
in Fig. 12. A peak gain of 18.9 dB and a noise figure of 6.7
dB are achieved at 151 GHz. Again, reasonable input and
output match values are achieved up to 152 GHz. The gain
is better than 15 dB at 130-140 GHz range.
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Table 2. Comparison of on-wafer and packaged amplifier performances.

Design

LNA1

LNA2

LNA3

LNA4

Frequency
(GH2)
152
143

130-154

130-171

On-wafer
Gain NF (dB)
(dB)

22.7 6.0
19.8 6.3
18.0-19.0 5.5-7.0
17.6-20.6 5.5-7.0

Bias
Va=1.09
ls=36 mA
Vg=1.54
ls=36 mA
Vg=136
ls=36 mA
Va=1.18
ls=36 mA

Package
Frequency Gain A
(GH2) (B) NF (dB) Bias
N.A. N.A. N.A. N.A.
Va=1.1
145 195 6.8 lo=24 mA
Va=1.1
130-154 15.0-18.9 5.5-7.5 Je=30 mA
Va=0.8
130-161 15.0-19.5 5.5-7.5 =30 mA
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Fig. 11. Measured S-parameters and noise figure of LNA2 in
a waveguide module. The peak gain of 19.5 dB with the noise
figure of 6.8 dB was achieved at 145 GHz with the following
bias conditions Vd = 1.1 V, Vg =0.1 V, Id = 24 mA.
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Fig. 12. Measured S-parameters and noise figure of LNA3 in
a waveguide module. The peak gain of 18.9 dB with the noise
figure of 6.7 dB was achieved at 151 GHz with the following
bias conditions Vd = 1.1 V, Vg =0.05 V, Id = 30 mA.

The measurement results of a packaged LNA4 are pre-
sented in Fig. 13. The gain is higher than 15 dB from 130

to 161 GHz and the noise figure values range from 5.5 to
7.5 dB at frequency range of 142-171 GHz.
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Fig. 13. Measured S-parameters and noise figure of LNA4 in
a waveguide module. The gain is 14-20 dB over 130-161 GHz
range with noise figure of 5.5-7.5. The applied bias conditions
were Vd=0.8 V, Vg =0.0 V, Id = 30 mA.

The measured results of the packaged amplifiers are com-
piled and compared to on-wafer results in Tab. 2. The
measurements for the packaged amplifiers show that the
waveguide packaging with wire bonding was successful.
The packaged amplifiers demonstrate state-of-the-art per-
formance.

VI. Conclusion

Four amplifier designs for D-band operation and their
performance have been presented. The on-wafer mea-
surements showed larger gain than was predicted by
the simulations. The measured results are comparable
when compared to InP HEMT amplifiers. Selected am-
plifiers were packaged in a split-block waveguide pack-
age. The measurements for the packaged amplifier show
that the waveguide packaging with wire bonding was
successful. The MHEMT technology was found use-
ful for D-band low noise applications. Using MMIC
amplifiers the noise figure of D-band radiometers can
be lowered, resulting better sensitivity compared to ar-
chitectures with direct down conversion without pre-
amplification.
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MHEMT (G-Band Low-Noise Amplifiers

Mikko Kirkkédinen, Mikko Kantanen, Sylvain Caujolle-Bert, Mikko Varonen, Rainer Weber, Arnulf Leuther,
Matthias Seelmann-Eggebert, Ari Alanne, Petri Jukkala, Tapani Néarhi, and Kari A. I. Halonen

Abstract—To improve the performance of G-band equip-
ment for humidity sounding of the atmosphere, a high-gain and
low-noise amplifier is needed. Here, the performances of 165 and
183 GHz low-noise amplifier microchips intended for atmospheric
water vapor profiling application are reported. The microchips are
manufactured in metamorphic high-electron mobility transistor
technology having a gate length of 50 nm. The on-wafer measured
results show noise figures of 4.4-7.4 dB and 16-25 dB gain at
the operating frequencies. In addition, two of the amplifiers were
assembled in waveguide packages and the measured results show
a gain of 19-20 dB and 7 dB noise figure at both 165 and 183 GHz.

Index Terms—Low-noise amplifiers (LNAs), millimeter-wave
integrated circuits, millimeter-wave transistors, MMICs,
MODFETs.

1. INTRODUCTION

TMOSPHERIC sensing is becoming increasingly impor-
tant when the climate is being studied at a global scale.
For example, a high-resolution humidity profile of the atmos-
phere can be obtained by observing radiometer measurement
results at around a window frequency and the water molecule
resonances at 165 and 183 GHz, respectively [1]. The sensitivity
of the humidity sounders could be improved by developing a
high-performance low-noise amplifier (LNA) for the receiver.
Several amplifiers operating around the 180-GHz frequency
have previously been reported [2]-[8]. Most of the state-of-
the-art noise performance results are achieved with InP-HEMT-
based devices. In the past, we have reported D-band ampli-
fiers in 100-nm metamorphic high-electron mobility transistor
(MHEMT) technology [9], and this work has been extended to
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Fig. 1. Simulated small-signal 2 x 60 gm-sized mHEMT model. The current
density is 400 mA/mm and the simulation range of the .S-parameters is from
500 MHz to 300 GHz. The measured S-parameters are from 500 MHz to
110 GHz for comparison.

higher frequencies using a 50-nm process [10]. The aim of this
paper is to show that the metamorphic HEMT-based amplifiers
are reaching performance levels that have previously been seen
in results obtained from amplifiers based on indium phosphide
devices exclusively. This paper presents the design of the am-
plifiers and the waveguide package in detail as well as explana-
tion on the transistor model and measurement methods. More-
over, the paper is complemented with results from 165-GHz
amplifiers.

This paper is organized as follows. In Section 11, the manufac-
turing technology is briefly explained. The G-band low-noise
amplifier (LNA) design, and both simulated and measured re-
sults are presented in Section III. In Section IV, the results for
waveguide packaged 165- and 183-GHz LNAs are shown and
compared with the corresponding on-wafer results. Finally, in
Section V, a comparison with previously published results is
presented, and conclusions are compiled.

II. MANUFACTURING TECHNOLOGY AND TRANSISTOR MODEL

The LNAs are manufactured in GaAs MHEMT
technology from Fraunhofer IAF, Freiburg, Germany.

2156-342X © 2014 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.
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Fig. 2. Simplified schematic of a five-stage LNA.

This  50-nm  gate-length  technology  features an
In0,52AlUV48As/InU_SUGa0_20As/InUV53GaO_47As composite
channel structure, resulting in an extrinsic transit frequency fr
of 370 GHz and a maximum extrinsic transconductance g, max
of 2100 mS/mm. The technology is suitable for grounded
coplanar waveguide (GCPW) designs and features NiCr
thin-film resistors, metal-insulator-metal (MIM) capacitors
and both backside metallization and via holes through the
substrate [11].

The small-signal transistor model is based on a large mea-
surements database containing results from transistors having
different sizes and different bias voltages. The database is
generated from S-parameter measurements from 100 MHz
to 110 GHz. The noise characteristics are modeled with
Pospieszalski’s method [12], although it proved to be sufficient
to adjust the noise temperature of the output conductance
only. The development and optimization of the fully scalable
transistor model including the noise characteristics is presented
in detail in [13]. The small-signal model was later verified
by comparison to S-parameters, as shown in Fig. 1. In the
beginning, we expected that the model would extrapolate up to
the G-band and enable amplifier design.

III. LOow-NOISE AMPLIFIERS

A. Design

A simplified schematic of a five-stage LNA is presented
in Fig. 2. In each case, the designer chose transistor size and
matching. All transistors are in common source configuration
and the transistor sizes vary from 2 x 10 gm to 2 X 15 pm.
The gate and drain bias voltages are fed through short-circuited
shunt stubs. The use of inductive source feedback is mostly
dictated by stability considerations and tolerable gain loss.
The stability is checked for each amplifier stage separately
and the feedback is tuned accordingly. A reasonable margin
for stability was required for every stage. The amplifier design
relied on the active and passive component models that were
provided by the Fraunhofer IAF. Next, the design of a 183-GHz
LNA is presented in more detail.

The decision on transistor size can be difficult as there are
some tradeoffs between noise, gain, and stability. The selec-
tion of the amount of source feedback can be added to the list

11 |11 LEF LEF
J T
Underpass
Source
feedback
lines
GCPW
ground
planes

Fig. 3. Simplified layout of the connections of the two-finger MHEMT.

of difficult questions, especially, if the feedback line is mod-
eled including its loss. To see how these issues are affecting the
transistor characteristics, one can simulate the transistor perfor-
mance and calculate, based on the simulations, the minimum
noise figure of optimally matched cascaded chain of transis-
tors, Fcas min. This means that the transistors are matched to
optimum noise measure [14]-[16]. As any ideal lossless pas-
sive network embedding the transistor does not affect this figure
of merit [14], [17], one could neglect the feedback network
from these simulations and still obtain the optimum solution
concerning the selection of the transistor size. However, if one
wants to see, how the actual lossy feedback network affects
the Feas.min, One can simulate it as a function of the feedback
line length. In Fig. 3, the transistor layout is shown with the
two-sided source lines connecting to the sources on the sides
of the two-finger device. The length of the two parallel source
feedback lines is equal, and they are swept simultaneously to
find the optimum size. Although the effect is small, it is clearly
visible, as shown in Fig. 4, for a selection of three different size
unit fingers W at 183 GHz.

The second important issue is the related to the associated
gain, when the input of the transistor is matched to the optimum
noise measure and output to the corresponding conjugate. In
some cases, as seen in Fig. 4, this results in a higher gain than
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Fig. 4. Simulated Fcqq min of three different-size two-finger MHEMTs at 183
GHz and 400 mA/mm of drain current density.
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Fig. 5. Simulated stability margin of three different-size two-finger MHEMTs
at 183 GHz and 400 mA/mm of drain current density. The margin is calculated
as a difference between the optimally noise measure matched transistor gain and
maximum stable gain (MSG).

the maximum stable gain is. This is an avoidable situation and
one would like to have some margin for stability. In this case,
the margin is set to 1 dB. From Fig. 5, it is seen that the 10-zm
gate-width MHEMT exhibits a good margin with a source feed-
back length from 7 to 27 pm, whereas the 5-pm transistor is
stable from 17 to 27 pm of feedback range only. This means
that, with the Wy = 10 um, good stability should be achiev-
able at the center frequency even if the source line has to be
tuned to obtain good stability for out-of-band frequencies, as
an example. Furthermore, as referring to Fig. 3, the F .5 min of
the 10-ygm MHEMT is only 0.15 dB higher, when compared
with the 5-pm transistor. For the 15-um transistor the increase
in Feag min 18 0.37 dB.

In conclusion, the 10-gm unit finger width MHEMT has the
best compromise between F' ¢, min and stability margin over the
range of source feedback line lengths varying from 7 to 27 gm
at 183 GHz. The optimum noise measure bias would be around
300 mA/mm of current density, but it was noticed that, in prac-
tice, the peak transconductance bias of 400 mA/mm is better
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Fig. 6. LNA input matching.

Source stability circle

Available gain circles

Fig. 7. LNA input matching showing the impedances at the different points
of the network. I',,,; shows the reflection coefficient for minimum noise figure
and Tyiope is for the corresponding reflection coefficient for the minimum noise
measure.

considering the gain requirement of 20 dB, bandwidth and only
minor effect on total noise figure of a multistage amplifier and
simplicity of the bias arrangements. However, the noise perfor-
mance may be improved by a fraction of a decibel by biasing the
first stage to the optimum noise bias. The design target for the
165-GHz amplifiers is a 5-GHz bandwidth and for the 183-GHz
amplifiers it is 20 GHz.

The input matching consists of several parts as shown in
Fig. 6, and the corresponding reflection coefficients are shown
in Fig. 7. A wide-center-conductor GCPW having 30-§2 char-
acteristic impedance helps in bringing the impedance closer to
the optimum and it has lower loss, when compared to the other
50- and 70-€} lines available in the design kit. The capacitors
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Fig. 8. Block diagram of the on-wafer noise figure and insertion gain measure-
ment setup.

C1 and C2 have small capacitance to provide a good short
at the center frequency, while C3 is used for stabilizing the
amplifier and decoupling the dc bias network from the rest of
the amplifier. In some designs, the series C1 is an essential part
of the matching network as it effectively brings the phase of
the reflection coefficient backwards as opposed to the effect of
the connecting lines. In LNAS, there is an additional open stub
at the input, which slightly improves the bandwidth.

B. Measurement Methods

The S-parameters in the range of 140-200 GHz have been
tested using an HP8510B Network Analyzer with Oleson
extension modules for G-band (140-220 GHz). The exten-
sion modules have been mounted on a Cascade Model 42
manual probe station and Picoprobe model 220 GSG-probes
with 75-um pitch were used. The measurement system is
calibrated using Picoprobe calibration substrate and the LRRM
calibration method [18], [19]. The calibration coefficients are
calculated using WinCal-software from Cascade Microtech.
Good calibration was achieved over the range of 140-200 GHz.
Unfortunately, above 200 GHz, the calibration measurements
suffer from poor dynamic range.

The noise figure and the insertion gain are measured using a
well-known Y -factor method [20]. The measurement procedure
is simple and requires only measurement of the relative power
levels. The on-wafer noise measurement setup consists of two
functional blocks, the noise source and the noise receiver. The
block diagram of the measurement setup is presented in Fig. 8.
A custom made solid-state noise source with two power levels,
hot and cold, is used to generate noise with known noise tem-
perature. An on-wafer probe is used to couple the noise to the
device under test (DUT). The noise receiver consists of an input
probe, an isolator, a subharmonic waveguide mixer, a sweep-
able microwave source, a frequency quadrupler, a 70-110-GHz
(W -band) medium power amplifier (MPA), an adjustable atten-
uator, an IF-amplifier, and a noise figure analyzer.

The noise figure analyzer controls the output frequency of the
microwave source via general purpose interface bus (GPIB) and
sweeps the measurement frequency in selected steps over the
entire G-band. The output frequency of the microwave source
is quadrupled using the frequency multiplier to generate a mil-
limeter wave signal in 70—110 GHz range. The signal is ampli-
fied in the MPA and fed to the LO-port of the harmonic mixer
via the adjustable attenuator. The adjustable attenuator is used

to fine tune the LO-power level to obtain as low noise tempera-
ture for the harmonic mixer as possible. Conversion loss of the
mixer is in the range of 5-8 dB.

The wideband noise signal in the 140-220-GHz range is fed
to the RF-port of the subharmonic mixer via the input probe
and the isolator. The isolator is used to minimize effects of mis-
match when the DUT is connected to the measurement setup.
The IF signal is fed to the noise figure meter through the IF am-
plifier, and the noise power at single frequency is measured with
4-MHz bandwidth at 100 MHz. The measurement bandwidth is
limited by noise figure analyzer’s internal filter. The IF amplifier
lowers overall noise temperature. Double side-band noise tem-
perature of the receiver without the input probe is 3500-6500 K.
Loss of a single probe is 2.5-3.5 dB over the G-band. For the
packaged amplifier module measurements, the on-wafer probes
and probe station are omitted from the setup.

C. Measured Results

1) 165-GHz LNAs: The LNAI is a four-stage design with
2 x 15 pm-sized transistors. The micrograph of the chip and
measured results are presented in Figs. 9 and 10, respectively.
A gain of 20 dB and a noise figure of 4.4 dB are measured at
165 GHz. The power consumption of LNAT is 44 mW.

After the first processing round, some of the possible prob-
lems related to the design kit models were considered. Ref-
erence plane uncertainty related to T-junctions and transistors
were identified as most critical parameters for the designs. With
refinements to reference planes a new low-noise amplifier was
designed. The design is called LNA2. The measurement result
for a second run chip is presented in Fig. 11. A gain of 25 dB and
a noise figure of 5.2 dB are measured at 165 GHz. The power
consumption of LNA2 is 36 mW.

2) 183-GHz LNAs: The LNA3 is a 4-stage design that has
2 x 10 p#m —sized transistors. All the transistors are biased to
peak transconductance of 400 mA/mm current density, which
corresponds to 8 mA of drain current and 35 mW power con-
sumption. The measured S-parameters and noise figure are pre-
sented in Fig. 12. A gain of 16 dB and a noise figure of 7.4 dB
are measured at 183 GHz.

The LNAA4 is a four-stage design, which has a varying tran-
sistor size from 2 x 10 yzm to 2 X 12 y#zm. Again, all of the tran-
sistors are biased to peak transconductance. To obtain wideband
matching open-ended stubs have been used and the series ca-
pacitors values have been tuned. The measured and simulated
S-parameters and noise figure are presented in Fig. 13. A gain
of 17 dB and a noise figure of 6.5 dB are measured at 183 GHz,
while consuming 32 mW of dec power. Overall, frequency shifts
of over 10 GHz are seen in the S1; and S22 in Figs. 10, 11, and
13 for the LNA1, LNA2, and LNA4, respectively. Furthermore,
the LNA3 and LNA4 show decreasing gain at high frequencies
that was not expected. It can be concluded that the original tran-
sistor model is too optimistic at G-band.

As with the 165-GHz amplifiers, a new version was designed
for the second processing round to obtain better performance.
The new five-stage amplifier is called LNAS. To ensure that
sufficiently high gain and wide bandwidth would be obtained
without compromising the stability, one stage was added to the
original design in an effort to obtain 20 dB gain and to maintain
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Fig. 10. Measured S-parameters and noise figure of LNA1. The thin lines rep-
resent the simulated results for comparison.
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Fig. 11. Measured S-parameters and noise figure of LNA2. The thin lines rep-
resent the simulated results for comparison.

a good margin for stability. A microphotograph of the LNAS is
in Fig. 14, and both the simulated and measured results for the
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Fig. 12. Measured S-parameters and noise figure of LNA3. The thin lines rep-
resent the simulated results for comparison.
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Fig. 13. Measured S-parameters and noise figure of LNA4. The thin lines rep-
resent the simulated results for comparison.

second processing round chip are presented in Fig. 15. A gain
of 20 dB and a noise figure of 6.7 dB are obtained at 183 GHz.
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Fig. 15. Measured .S-parameters and noise figure of LNAS. The thin lines rep-
resent the simulated results for comparison.

The power consumption of LNAS is 41 mW, which is increased
by 8 mW, because of the added fifth stage. For this design, the
gain drop at high frequencies, which was observed in the earlier
chips, has vanished.

IV. PACKAGED G-BAND LNAS

A gold-plated brass G-band waveguide package was devel-
oped, which is similar to the one presented in [9] for lower fre-
quencies. The original design method is presented in [21]. The
E-plane split-block package requires transitions from the WR-5
waveguide interfaces to the coplanar input and output of the
MMICs. Moreover, there is a small PC board for bias and supply
voltages inside the package. The first design was made for alu-
mina substrate that has been used before. However, sufficiently
good full-band characteristics were difficult to achieve with this
material and the alumina was replaced with quartz. According
to the Ansoft HFSS EM-simulations, good full band character-
istics were achieved. The design of the waveguide-to-microstrip
transition substrate is shown in Fig. 16. The EM-simulation of

Fig. 16. Waveguide-to-microstrip transition design for the G'-band split block
package.

the microstrip substrate channel was made to determine that the
cutoff frequency of the waveguide modes is above 200 GHz.
The impedance at the end of the waveguide probe in the window
on the waveguide wall was simulated while the width and length
of the probe and the back short distance were swept parametri-
cally. The combination of the dimensions showing the minimum
variation close to 50 {2 was selected for the subsequent simula-
tions. The return loss at the end of the probe and the insertion
loss between the waveguide input and the end of the probe were
followed together with the impedance. Several sweeps were re-
quired to converge the dimension range and find the best dimen-
sion combination. The tapered section of the transmission line
was added to improve the bandwidth.The parametric sweeps in-
cluding the dimensions of the tapered section were computed to
find the minimum impedance variation.

A separate WR-5 test module was designed and assembled
in back-to-back configuration with two microstrip transitions
bonded together without the additional length needed for the
LNA chip. The S-parameters of the back-to-back module were
measured to characterize the G-band package, as seen in Fig. 17.
Between 150-165 GHz the loss is less than 1.3 dB with a re-
turn loss of around 20 dB. At higher frequencies, the loss in-
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Fig. 17. Measured S-parameters of the G-band waveguide test module. Two
transitions in back-to-back configuration are assembled inside the package.
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Fig. 18. Measured S-parameters of the waveguide packaged LNA2. The thin
lines represent the on-wafer results for comparison.
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Fig. 19. Measured insertion gain (WG Gins) and noise figure (WG NF) of the
waveguide packaged LNA2. The thin lines represent the on-wafer results for
comparison.

creases up to around 2-3 dB and the matching deteriorates more
significantly.
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Fig.20. Photograph of the manufactured split-block package with WR-5 wave-
guide input and output interfaces. The size of the package is approximately
10 x 20 x 20 mm?.

Fig. 21. Photograph of the LNAS chip placed in the cavity inside the wave-
guide package. The input and output transitions are also visible on both sides of
the chip.

The LNA2 of the 165-GHz designs and the LNAS of the
183-GHz designs were mounted inside the packages. The S-pa-
rameter and noise measurement results for the 165-GHz pack-
aged chip, and a comparison to on-wafer results are presented
in Figs. 18 and 19, respectively. The insertion gain is computed
from the noise figure measurement. Since the noise source does
not present exact 50-€2 source impedance to the amplifier, the
Giys 1s not equal to the S»1. As shown in Figs. 18 and 19, gains
of 20 and 7.0 dB noise figure were obtained for the 165-GHz
LNA2 package.

The 183-GHz LNAS package and the detailed picture of the
chip-mounted inside the cavity are shown in Figs. 20 and 21,
respectively. The measured results of the packaged LNAS are
compared to the on-wafer results in Figs. 22 and 23 The mea-
sured results show a gain of 19 dB and a noise figure of 7.1 dB
at 183 GHz. Unfortunately, there was an unwanted resonance
in the package cavity at around 165 GHz, which is visible in
the measured curves. This resonance effect was minimized by
placing absorbing material inside the cavity of the package. The
average noise figure of the package is around 0-1 dB higher
than the on-wafer result, which is in line with the measured
back-to-back response and the simulated input transition loss
0f 0.68-0.80 dB for the package around a frequency range from
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TABLE 1
COMPARISON OF PUBLISHED G'-BAND AMPLIFIERS
Fre[gt:lezr]\cy ?daér; [21;] Number of Stages Technology Ref.
183 16 34% 3 35-nm InP HEMT [2]
150-220 18-26 - 3 50-nm InP HEMT [4]
150-215 12 - 3 70-nm InP HEMT [5]
150-215 2046 8 6 80-nm InP HEMT [6]
160-220 13-23 4.9-5.6%) 3 35-nm InP HEMT [7]
180-220 16 4.8 4 50-nm GaAs MHEMT [8]
165 20 4.4 4 50-nm GaAs MHEMT This work
165 20%) 7.0% 4 50-nm GaAs MHEMT This work
183 17 6.5 5 50-nm GaAs MHEMT This work
183 19%) 71% 5 50-nm GaAs MHEMT This work
*) packaged chip
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Fig. 22. Measured S-parameters of the waveguide packaged LNAS. The thin
lines represent the on-wafer results for comparison.
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Fig. 23. Measured insertion gain (WG Gins) and noise figure (WG NF) of the
waveguide packaged LNAS. The thin lines represent the on-wafer results for
comparison.

170 to 200 GHz as well as taking into account the uncertainty
of the on-wafer noise measurement.

V. CONCLUSION

This paper demonstrates the capability of a 50-nm meta-
morphic HEMT technology. The database extracted transistor
model, including the noise characteristics, lends itself to -band
LNA design. Details regarding the transistor size selection and
input matching were also discussed. In the measured results,
two 165-GHz and three 183-GHz LNA designs were presented
and the performance was improved for the second run circuits.

A WR-5 waveguide package was designed and manufactured
for the LNAs. The packaged G-band amplifiers, LNA2 and
LNAS, both achieve 19-20 dB gain and 7 dB noise figure at
165 and 183 GHz, respectively. Table I shows a comparison
of the results to previously published 150-220-GHz ampli-
fiers. The metamorphic HEMT-based amplifiers are reaching
performance levels that have previously been seen in results
obtained from amplifiers based on indium phosphide devices
exclusively.
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Abstract-Six low noise amplifiers (LNAs) for three frequency
ranges are presented. The amplifier circuits have been
manufactured using a 100-nm gate length metamorphic high
electron mobility transistor technology. Measured on-wafer
performance shows 19-27 dB of gain and lowest noise figure
values of 4 dB.

I. INTRODUCTION

The advances in semiconductor technologies for millimeter-
wave monolithic integrated circuits (MMICs) have made use
low noise amplifier possible for higher frequency, namely up
to 500 GHz [1]. For spaceborne radiometry above 140 GHz
two main benefits of low noise amplifiers can be foreseen.
First benefit is low-noise pre-amplification in front of
currently used radiometers based on Schottky mixers
improving receiver sensitivity. Secondly, low noise amplifiers
enable the use of direct-detection radiometers.

II. FABRICATION TECHNOLOGY

The manufacturing of low noise millimetre-wave integrated
circuits has traditionally relied to use of high electron mobility
transistors (HEMT) implemented with gallium arsenide (GaAs)
or indium phosphide (InP). The best results have been
achieved with InP technology. However, there are some
drawbacks with the InP technology. These include higher
manufacturing cost, lower breakdown voltage, more fragile
structure, and device reliability when comparing to GaAs
technology. To overcome some of these drawbacks, the
possibility to process InP channel devices on the GaAs carrier
wafer have been introduced in pseudomorphic (PHEMT) and
metamorphic  (MHEMT) technologies. In MHEMT
technology, the metamorphic buffer layer is grown on the
GaAs substrate, to enable the growth of the channel layer
having 30-80 % indium content. This leads to cost reduction
and manufacturability improvement over pure InP technology.
The process can also be optimised for the intended purpose by
controlling the indium content. The higher indium content
provides more gain and less noise, whereas lower indium

content is more suitable for applications requiring higher
breakdown voltage [2].

The manufacturing process used in this work is the 100-nm
GaAs based MHEMT technology of the Fraunhofer IAF,
Freiburg, Germany. The process is suitable for coplanar
waveguide (CPW) designs. The process features NiCr thin
film resistors, metal-insulator-metal (MIM) capacitors and
backside metallization. Unwanted substrate modes are
suppressed using ground via holes through the GaAs substrate.
As a result of extensive modelling work the Fraunhofer IAF
provided reliable models for CPW components and transistors
[3]. On-wafer G-band measurements of the test devices for the
models suffered from serious systematic experimental errors,
which were observed at the IAF as well as at Millilab. This
phenomenon was attributed to an interference of the probe-tips
with the neighboring on-wafer circuitry and is presently under
detailed investigation. It impeded the extension of the model
data base to G-band frequencies. Unfortunately, some
parasitic and distributed effects become visible only at
frequency above 100 GHz and lead to an unpredicted shift of
up to 10 GHz to lower frequencies in the realized MMICs.

III. DESIGNS AND MEASURED PERFORMANCE

Six low noise amplifiers were designed. LNA1 and LNA2
were targeted to narrowband operation at 165 =2 GHz, LNA3,
LNA4, and LNAS for a wide frequency range over
183+ 10 GHz, and LNA6 for narrowband operation at
229 +2 GHz. Design goal was 20 dB of gain with -10 dB
input and output match while achieving low noise
performance.

All designs use coplanar waveguide (CPW) topology.
Transistors with gate widths of 2x10 um and 2x15 pm were
chosen for the LNAs. Larger transistor was used for 165 GHz
and smaller transistor for the two higher frequency ranges.
Transistors achieve peak transconductance with 400 mA/mm
drain current density and f; is around 220 GHz. Availability of
noise model enabled noise optimised designs.



Figure 1. Schematics for baseline LNA design.
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Figure 3. Measured (solid) and simulated (dashed) performance of LNAI.

Schematics for a baseline LNA design is presented in Fig. 1.
Matching networks are realised with conventional reactive
matching networks, consisting of series transmission lines,
series capacitors, and RF-short circuited shunt stubs. RF-short
is realised using appropriately valued CPW-capacitor,
typically 200-400 fF. Shunt stubs are used also for biasing.
Low frequency stability is improved by small valued resistor
and large MIM-capacitor following the RF-shorting capacitor
on bias lines. Stability is further improved by using inductive
source feedback.

A LNAI

LNA1l is a 4-stage design using 2x15 pum transistors.
Wideband approach to design was selected to mitigate
possible frequency shifts. Micrograph of the circuits is shown
in Fig. 2. The stages are biased below peak transconductance
current density to improve stability. Second RF-shorting

Figure 4. Micrograph of LNA2. Chip size is 2.0 x 1.0 mm".
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Figure 5. Measured (solid) and simulated (dashed) performance of LNA2.

capacitor is added between series resistor and MIM-capacitor.
Otherwise, design follows the baseline.

Comparison of measured and simulated S-parameters and
noise figure is presented in Fig. 3. The measured gain and
noise figure are 15.5 dB and 5.9 dB at 165 GHz, respectively.
The best gain and noise performance is achieved around 140
GHz, where gain of 19.8 dB and noise figure of 5.0 dB are
reached. The input and output matches are better than -10 dB
over 136-174 GHz and 132-174 GHz, respectively.

B. LNA2

LNA2 is a narrowband 4-stage design using 2x15 pm
transistors. The design was targeted for 165 GHz center
frequency. Micrograph of LNA2 is shown in Fig. 4. The
stages are biased below peak transconductance current density
to improve stability. Design follows the baseline with an
additional open ended stub that is added on output matching
network to obtain wider bandwidth for matching.



Figure 6. Micrograph of LNA3. Chip size is 2.5x 1.0 mm’
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Figure 7. Measured (solid) and simulated (dashed) performance of LNA3.

Comparison of measured and simulated S-parameters and
noise figure is presented in Fig. 5. The peak gain of 20.5 dB is
achieved at 153 GHz and minimum noise of 4.3 dB at 156
GHz. The input and output matches are worse than simulated.
The output match is better than -5 dB over 140-200 GHz and
the input match reaches -10 dB level almost over 152-174
GHz.

C. LNA3

LNA3 is a wideband 4-stage design using 2x10 pm
transistor. The stages are biased to peak transconductance
current density. Realisation follows the baseline design.
Micrograph of LNA3 is shown in Fig. 6.

The comparison of measured and simulated S-parameters
and noise figure is presented in Fig. 7. The peak gain of 20 dB
is achieved at 163 GHz and minimum noise of 5.3 dB at 172
GHz. The output match is better than -10 dB over 140-202
GHz and the input match is better than -10 dB level almost
over 166-187 GHz.

D. LNA4

LNA4 is a wideband 5-stage design using transistors sizes
in between 2x10 pm and 2x12 pm. Micrograph of LNA4 is
shown in Fig. 8. Stages 1 and 2 are biased below peak
transconductance current density, while stages 3, 4 and 5 are
biased to peak transconductance current density. Main
difference to design baseline is an additional 5" stage, which
gives margin for gain per stage requirement. Also, open ended
shunt stubs are added to input and output matching networks.

Comparison of simulated small-signal and noise
performance is presented in Fig. 9. The best operation is
achieved around 150 GHz, where gain of 20.2 dB and noise

Figure 8. Micrograph of LNA4. Chip size is 2.5x 1.0 mm®
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Figure 9. Measured (solid) and simulated (dashed) performance of LNA4.

figure of 5.0 dB are measured. At 183 GHz are obtained 14.9
dB gain and 7.5 dB noise figure. Input and output matches
remain below -10 dB over 148-184 GHz and 151-196 GHz,
respectively.

E. LNAS

LNAS is a five stage amplifier using 2x10pum transistors.
Micrograph of the design is shown in Fig. 10. First three
stages are biased below peak transconductance current density
for better noise performance. Fourth and fifth stages are biased
for peak transconductance current density. Additional fifth
stage is added to the baseline design and capacitively loaded
T-junctions are used in matching networks.

Comparison of measured and simulated S-parameters and
noise figure at this bias point is presented in Fig. 11. This
leads to gain peaking at 157 GHz where gain is reaching 29.0
dB. Also, input and output match are poor here and only
conditional stability is achieved. Otherwise, the output match
is better than -10 dB over 163-184 GHz and the input match
reaches -10 dB over 180-187 GHz. Noise curve has quite nice
and flat shape and values below 6 dB are reached between
166-173 GHz.

F. LNA6

LNAG is a four stages design using 2x10 um transistors.
Micrograph of the design is shown in Fig. 12. All stages are
biased to peak transconductance bias point and design follows
the baseline design.



Figure 10. Micrograph of LNAS5. Chip size is 2.0 x 1.0 mm’
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TABLE 1
MEASURED ON-WAFER PERFORMANCE OF THE DESIGNED AMPLIFIERS

Circuit -3 dB Gain band Peak gain <-10 dB Input match  <-10 dB Output match Noise figure Power consumption
(GHz) (dB) (GHz) (GHz) (dB) (mW)
LNAI 140-159 19.2 140-173 142-173 3.9-59 40
LNA2 149-160 20.6 152-161 N.A. 4.3-6.3 40
LNA3 158-166 19.9 165-188 140-179 54-6.8 35
LNA4 143-167 20.7 180-186 163-184 4459 40
LNAS 157-161 274 171-174 163-184 8295 37
LNA6 199-207 20.2 200-201 199-201 54-7.1 32
Comparison of measured and simulated S-parameters and REFERENCES

noise figure at this bias point is presented in Fig. 13. Peak gain
0f 20 dB and minimum noise figure of 5.5 dB are achieved at
205 GHz. The input is very close to 0 dB at 183 GHz and
reaches -10 dB on a narrow band around 201 GHz. The output
match reaches also -10 dB on a narrow band near 200 GHz.

IV. CONCLUSIONS

Summary of measured performance is presented in Table L
Frequency shift in gain response was observed for all
amplifier designs. Further investigations showed that the
frequency shift could be attributed to the incomplete
descriptions of the source line connection parasitics and a
distributed effect in the parallel capacitors.

Gain values of 20 dB and noise figure values of 4-5 dB
were achieved for the amplifiers, with one exception related to
unstable operation. With the results from the first run
amplifiers could be re-designed to obtain better performance
over the targeted bands.
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Abstract
In this work a millimeter wave imager has been
built to demonstrate millimeter wave imaging
capabilities. Basic theory of millimeter wave
imaging is presented and imaging system is
described. Millimeter wave images taken with the
system are shown.

1. Introduction

Progress in the manufacturing of the millimeter
wave monolithic integrated circuits (MMICs) has
increased the interest towards millimeter wave
applications. The characteristic properties of
millimeter ~waves enable some unique
applications, one of which is the millimeter wave
imaging. Millimeter wave imaging systems can
be considered as an extension of imaging sensors
working at visible light and infrared regions.
Using millimeter waves, imaging can be
performed when it is impossible to obtain images
with visible light or infrared sensors. One great
advantage of using millimeter waves is to be able
to picture a scene under adverse weather
conditions, for example through fog or dust.
Possible applications for millimeter wave
imaging sensors are automotive collision
avoidance radars, enhanced vision systems,
concealed weapon detection, and contraband
detection.

In this paper, a 94 GHz single channel imaging
demonstrator system is described. Millimeter
wave images taken with the demonstrator are
shown.

2. Theory

A millimeter wave image 1is created by
measuring an antenna temperature map over the
scene of interest using a very sensitive
radiometer. The antenna temperature of the object
depends on the noise radiated from the object.
This noise has two components; part of the noise
is related to the physical temperature of the object
and the other part is surrounding noise reflected

by the object. Mathematically this can be
formulated

T,=¢l, +pl, 1)

where 7 and Tp are the antenna temperature and
the physical temperature of the object,
respectively. 7, is the noise temperature of the
reflected  radiation. = Material ~ parameters
emissivity ¢ and reflectivity p, describe how
much radiation is coming from internal and
external source. These two parameters are related
by equation

e+p=1. )]
Using (2), (1) can be re-written
TA:Tr+g(Tl’7]"r):T'r+(17PXTP7E)’ (€)

where it is seen that for two objects at same
physical temperature, the difference in measured
antenna temperatures depends only on the
emissivity (or reflectivity) of the objects.

At millimeter wave region, the sky can be used
as an external noise source for imaging. The
antenna temperature of the sky is a function of the
elevation angle and ranges between 30-290 K at
94 GHz. Thus, objects reflecting noise from the
sky appear colder than their surroundings, in a
sense of antenna temperature [1, 2].

3. Imager

3.1. Scanner

To obtain an informative image of the scene of
interest large number of pixels is needed. In
infrared imagers, full staring arrays with one
detector for each pixel are used. In a millimeter
wave imager, this kind of array is also possible
but very expensive. Thus, imaging is normally
performed using small number of receivers and
scanning the main lobe of an antenna over the
scene of interest.
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Scanning can be mechanical or electrical. In
mechanical scanning, entire antenna or focusing
elements are moved step-by-step or continuously.
Mechanical scanning is relatively easy to realize,
but its drawback is slowness, which is present in
mechanical movement. Also, antenna system may
be quite heavy, which makes scanning system
designing very challenging [3]. In electronic
scanning, the main lobe of an antenna is moved
by adjusting electrical properties of the antenna or
a feed network. The main options for electronic
scanning are multiplexing techniques, correlation
radiometers and phased array antennas [4].
Electrical scanning systems require large amount
of good quality components, such as switches and
phase shifters. Also, quite complex signal
processing algorithms are needed. For these
reasons, millimeter wave imaging systems have
so far mainly used mechanical scanning.

The purpose of this work has been to build a
simple imager that demonstrates the capabilities
of millimeter wave imaging. The main emphasis
has been on the quality of images, while the
imaging speed has been with less importance.
Thus, a mechanical scanning has been used. In
this scanner, the entire radiometer system is
moved in azimuth and elevation planes using two
computer controlled stepper motors. The scene of
interest is scanned in a step-by-step fashion.

3.2. Radiometer

In addition to scanning, another main issue in
creating an informative image is the ability to
measure antenna temperature accurately. This is
done using a very sensitive radiometer. The most
well-known radiometer topologies are total
power, Dicke and noise adding radiometers. In an
ideal case, best antenna temperature resolution is

SPDT-switch

Isolator,

achieved using a total power radiometer.
However, gain instability of the radiometer
degrades its performance. The gain instability
issue is more important as the total imaging time
is longer. The errors due the gain instability are
reduced by calibrating the radiometer constantly,
either by reference load as in Dicke radiometer or
by added noise as in noise adding radiometer [5,
6].

In this work, a Dicke radiometer has been used.
The block diagram and a photo of the radiometer
are presented in Fig. 1 and Fig. 2, respectively. A
300 mm diameter horn antenna, with two
focusing lenses is used to get a narrow main lobe.
The beamwidth is 0.7°. Antenna is followed by a
single pole double throw (SPDT) switch that
connects either the antenna or the reference load
to the first amplifier with 1 kHz frequency. The
amplifier chain consists of two low noise
amplifiers (LNA) and isolators to reduce possible
mismatch problems. The millimeter wave signal
is transformed directly to DC using a detector
diode and a low frequency amplifier. The
operational frequency of the radiometer is
94 GHz with 4 GHz bandwidth.

3.3. Data processing

The resulting two level 1 kHz signal from the
detector diode is fed to 12-bit A/D-converter. The
raw waveform data is read to the computer and
reference and antenna signals are separated.
Using the reference signal to track gain
variations, a corrected antenna temperature
reading is calculated. From the resulting data an
appropriately scaled grayscale picture is created.
The pictures can be further improved using
commercial photo editing programs.

Antenna

==

LNA

Reference
load

Isolator Low
D —_ * |> frequency
amplifier
LNA Detector
diode

Fig. 1. The block diagram of the Dicke radiometer.
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To Antenna

LNA Isolator

Low Frequency
Amplifier

Isolator Lo

Fig. 2. A photo of the Dicke radiometer.

4. Millimeter wave images

In the following, some millimeter wave images
taken with the imager described above are
presented. In the images, colder objects appear

brighter.

Fig. 3 shows two persons standing outdoors. The
person on the right has a metallic handgun
silhouette hidden inside his jacket. The cold sky
is reflected from the metal producing a bright spot
on the person. Reflections from shoulders, head,
and arms can also been seen. A mobile phone and
keys in the pockets of the left-side person produce
also high reflections.

Fig. 4 presents similar situation indoors. In
indoor imaging there is not as large contrast
available, which is clearly seen in the picture.
However, brighter area produced by the handgun
silhouette can be detected also in indoors. For
optimal indoor imaging performance some kind
of illumination system is needed to produce more
informative images.

Fig. 5 illustrates outdoors surveillance abilities.
Different soil types, a walk path, trees, a building
and a metallic object can be distinguished from
the image. The strongest reflections come from
the car, roofs, trash container, and street lamps.
The cooling effect of the shadow on the grass can
also been seen. Similar image could be produced
in the presence of fog.

5. Conclusions

A millimeter wave imager at 94 GHz has been
build. The -capabilities of millimeter wave

imaging are demonstrated for concealed weapons
detection and surveillance applications.
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Fig. 3. A photo and a millimeter wave image of two persons outdoors. The person on the right has
a handgun silhouette hidden inside his jacket.

Fig. 4. A photo and a millimeter wave image of two persons indoors.

Fig. 5. A photo and a millimeter wave image of a scenery. Metallic objects such as a car, roofs and
the street lamps are clearly visible.
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