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Abstract
Falls pose a serious threat to older people, since they may lead to severe injuries,
reduced quality of life and increased health care costs. Every third person over 65
years old falls at least once each year, and the number of falls increases with age
and frailty level. Falls are multifactorial by nature and a person can have several
risk factors contributing to a fall. A variety of assessment scales have been devel-
oped for assessing fall risk factors and estimating the probability of future falls.
These are typically administrated by a health care professional. However, selection
of an assessment scale with high enough sensitivity and specificity and reasonable
administration time can be difficult.

The goal of this thesis was to develop new methods for fall risk assessment uti-
lizing accelerometry-based movement sensing, which enables objective detection
and assessment of a person’s balance deficits. The first objective was to investigate
the perceptions of prospective end-users of new technologies via focus group inter-
views. The analysis showed that familiarity, prior experience and self-efficacy pre-
sumably affect the acceptance of new solutions. The second objective was to in-
vestigate how an individual’s fall risk is manifested through different assessment
scales. The Disease State Fingerprint visualization method was examined for its
potential in comparing different fall risk assessment scales. It was found useful in
discovering the most relevant assessment scales for separating fallers from non-
fallers in the study population, and for presenting how the overall fall risk of an indi-
vidual is constituted. The third objective was to study how body-worn accelerometry
could be utilized in the assessment of individual fall risk. For the third objective,
three data sets were collected from a total of 111 subjects. The results showed that
features derived from the body-worn accelerometer signals could be used for as-
sessment of a person’s balance. Furthermore, they seem to be able detect balance
deficits even earlier than the traditionally used clinical assessment scales. The re-
sults provide a basis for studies validating these methods and further transferring
them into practice.
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Tiivistelmä
Kaatumiset ovat uhka ikääntyneille, koska ne voivat aiheuttaa vakavia vammoja,
heikentää elämänlaatua ja lisätä terveydenhuollon kustannuksia. Joka kolmas yli
65-vuotias kaatuu vähintään kerran vuodessa, ja kaatumisten lukumäärä kasvaa
iän ja heikentyneen kunnon myötä. Kaatumiset voivat johtua lukuisista eri tekijöistä,
ja yhden kaatumisen taustalla voi vaikuttaa useita riskitekijöitä. Kaatumisriskitekijöi-
den ja kaatumisten todennäköisyyden arviointiin on kehitetty useita erilaisia mitta-
reita, joita käyttävät tyypillisesti terveydenhuollon ammattilaiset. Käytettävän mitta-
rin valinta ei ole helppoa, sillä mittarin tulisi olla sensitiivinen ja spesifinen ja arviointi
tulisi voida suorittaa kohtuullisessa ajassa.

Tämän väitöstyön päätavoitteena oli kehittää uusia menetelmiä kaatumisriskin
arvioimiseksi hyödyntämällä kiihtyvyysanturipohjaista liikkeenmittausta, joka mah-
dollistaa henkilön tasapaino-ongelmien tunnistamisen objektiivisesti. Ensimmäinen
tavoite oli selvittää fokusryhmähaastattelujen avulla, miten loppukäyttäjät kokevat
nykyiset ja tulevaisuuden kaatumisriskin arviointiin ja kaatumisten ennaltaehkäisyyn
suunnatut teknologiat. Aineiston analyysi osoitti, että aiheeseen liittyvä tuttuus,
aiempi kokemus sekä minäpystyvyys oletettavasti vaikuttavat uusien ratkaisujen hy-
väksyttävyyteen. Toinen tavoite oli tutkia, miten yksilön kaatumisriski näyttäytyy eri
kaatumisriskimittareissa. Työssä arvioitiin Disease State Fingerprint -visualisointi-
menetelmän käytettävyyttä eri kaatumisriskimittareiden vertailussa. Menetelmän
avulla pystyttiin tunnistamaan ne mittarit, joilla voitiin parhaiten erottaa tutkimusjou-
kon kaatujat ei-kaatujista, sekä osoittamaan, miten yksilön kokonaiskaatumisriski
koostuu eri tekijöistä. Kolmas tavoite oli tutkia, miten puettavia kiihtyvyysantureita
voidaan hyödyntää yksilön kaatumisriskin arvioinnissa. Analyysit pohjautuivat kol-
meen datasettiin, jotka oli kerätty yhteensä 111 henkilöstä. Tulokset osoittavat, että
puettavan kiihtyvyysanturin signaaleista laskettuja piirteitä voidaan käyttää henkilön
tasapainon arviointiin. Lisäksi tulokset osoittavat, että kiihtyvyyteen pohjautuvat piir-
teet saattavat tunnistaa tasapaino-ongelmia jopa perinteisiä kliinisiä mittareita aiem-
min. Saatuja tuloksia voidaan hyödyntää menetelmien validointitutkimuksen sekä
käyttöönoton suunnittelemiseksi ja toteuttamiseksi.
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1. Introduction

1.1 Background

Falls are a major health risk that diminishes the quality of life among older people
and increases health services costs. Every third person over 65 years old falls at
least once each year (Lord, Sherrington, & Menz, 2001) and the number of falls
increases with age and frailty level (World Health Organization, 2007). Falls may
lead to death and serious injuries, e.g. in a study by Parkkari et al. (1999), 98% of
hip fractures were caused by falls, not to mention the negative effect on the quality
of life of a person who has fallen (Salkeld et al., 2000). In the year 2000 in the U.S.,
fall-related, non-fatal injuries produced $19 billion in direct medical costs through
hospitalizations, emergency department visits and outpatient treatment (Stevens,
Corso, Finkelstein, & Miller, 2006). Falls are a multifactorial problem and usually
they are the result of interactions between multiple intrinsic and extrinsic risk factors
(Rubenstein & Josephson, 2006).The most effective fall prevention strategies use
multidimensional fall risk assessment combined with targeted interventions
(Rubenstein & Josephson, 2006). Typically, a person is assessed for e.g. history of
falls, balance, mobility, physical functioning, muscle strength, number of drugs in
use, and cognitive functions (Perell et al., 2001; Scott, Votova, Scanlan, & Close,
2007). However, it is not easy to select which assessment scales to use (Perell et
al., 2001) and regular fall risk assessments would require significant resources from
health care organizations (Ejupi, Lord, & Delbaere, 2014). Thus, it is important to
develop new methods to recognize people at risk cost-effectively and early enough
so the preventive actions can be taken.

A variety of assessment scales are developed for assessing the static and dy-
namic balance of a person (Ambrose, Paul, & Hausdorff, 2013). One of the com-
monly used methods is recording the time it takes to walk a certain distance, e.g.
four metres (Quach et al., 2011), or measuring the distance walked in six minutes
(Steffen, Hacker, & Mollinger, 2002). The Timed Up-and-Go (TUG) (Podsiadlo &
Richardson, 1991) test includes standing up from a chair, walking three metres,
turning around, walking back to the chair and sitting down on the chair again. Fur-
thermore, as an example of a more versatile test the Berg Balance Scale (BBS)
(Berg, Wood-Dauphinee, Williams, & Gayton, 1989) has 14 tasks testing different
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aspects of postural balance and mobility. All of these balance tests are convention-
ally performed under supervision, requiring a professional scoring the tasks or tak-
ing the time. Three-dimensional accelerometry enables unobtrusive long-term mon-
itoring of human movements in unsupervised conditions (Mathie et al., 2004) and
thus provides an opportunity for objective fall risk estimation in free-living situations
(Narayanan et al., 2010) without the need for a health care professional’s presence.
Some studies suggest that body-worn kinematic sensors may even be more accu-
rate than the standard fall-risk metrics. For example, a recent study by van Schooten
et al. (2015) suggests that by combining accelerometry-based gait features with
traditional questionnaires, prospective falls can be estimated more accurately than
with questionnaires or gait features alone. Typically, two types of inertial sensors
are used in fall risk assessment studies: gyroscopes, that measure angular velocity,
or accelerometers, that measure linear acceleration, or a combination of the two.
However, a majority (70%) of the studies utilize only accelerometers (Howcroft,
Kofman, & Lemaire, 2013). There is strong evidence that falls can be prevented with
appropriate interventions (Gillespie, Robertson, & Gillespie, 2012). Prospective fall
risk detection enables initiation of preventive interventions early enough to ensure
their effectiveness.

1.2 Research problem and objectives

This work includes a literature review on the factors causing falls among older adults
and how the fall risk is assessed in current practice. The objective of this thesis was
to develop new methods and data analysis algorithms for fall risk assessment uti-
lizing data especially from body-worn accelerometers. The fundamental target of
the research was to attain methods to prospectively estimate the increase in indi-
vidual fall risk.

Research questions:

1. How do end-users perceive current and future fall risk assessment and
fall prevention technologies?

With this research question the end-user perspective was studied and
understanding of the technology application context is gained. The aim
was also to understand target users’ willingness to adopt the technolo-
gies under development into everyday use.

2. How is an individual’s fall risk manifested through different assessment
scales?

This research questions aims to give insight into how different fall risk
assessment scales currently used in the health care practice are able to
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capture individual fall risk and how the differences between individuals
can be seen in these scales.

3. How can body-worn accelerometry be utilized in assessment of individ-
ual fall risk?
a. How can balance ability be estimated from an acceleration meas-

urement?
b. How can prospective changes in fall risk factors be estimated from

an acceleration measurement?

The third research question is twofold. First, the aim was to investigate
how well data analytics based on body-worn accelerometry can be used
to estimate balance of a person and give comparable results to clinically
used balance assessment scales. Secondly, the aim was to study
whether early signs of deterioration in balance can be detected from
accelerometry data and prospectively estimate the decrease in balance
assessment scales after a certain period of time.

1.3 Research scope and approach

The objectives of the thesis are approached by investigating the data collected from
test subjects in order to evaluate individual fall risk focusing primarily on quantitative
processing and analysis of the acceleration signal measured by body-worn sensors.
The ability to move and perform certain physical tasks is highly indicative of a per-
son’s fall risk and the acceleration signal measured while performing those tasks is
supposed to capture relevant information about the fall risk. Furthermore, a qualita-
tive content analysis approach is applied to understand how the proposed solutions
are perceived by the possible future users.

The original publications are based on four data sets. Paper I is based on ques-
tionnaire and semi-structured discussion data from 58 subjects collected in focus
groups organized in two countries in order to evaluate fall risk assessment and fall
prevention-related scenarios. 29 subjects (aged 63–93 years) participated in four
focus group discussions in Finland and 29 subjects (aged 56–96 years) participated
in four focus groups in Spain.

The three-dimensional acceleration signals used in the analysis were all captured
while the subjects performed specific tasks, such as a balance test, or during walk-
ing under supervised condition. In each study the sensor was attached to the lower
back, near the Centre of Mass (CoM). Paper II is based on a data set collected from
eight patients with a balance-affecting condition and seven healthy controls. Paper
III is based on a data set collected from 54 subjects from three groups: 15 neuro-
logical patients, 20 older adults, and 19 healthy young persons. Papers V and VI
are based on data set collected from 42 older adults.

Paper IV is based on fall risk assessment data, other than accelerometry, of the
same 42 older adults as in Papers V and VI. Paper IV applies an algorithm originally
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developed for a different application field, i.e. early detection of Alzheimer’s disease,
into fall risk assessment. It allows visual inspection of several fall risk assessment
scales at once, both on an individual and group level, and facilitates the comparison
of different scales.

The objective of Papers II and III was to develop algorithms for balance assess-
ment of a person using an acceleration signal measured during walking. The objec-
tive of Papers V and VI was to progress into developing algorithms that prospec-
tively estimate the fall risk of a person by predicting decline in traditional balance
assessment scales in the future based on acceleration measurement. In both ap-
proaches the first part of acceleration signal processing is to extract features from
the raw signal that are expected to contain some relevant information about the
phenomenon under investigation. Second, the features are studied to find out which
of them are significant in identifying the persons with certain characteristics accord-
ing to the reference measure, i.e. balance or fall risk in this case. The following
figure summarises the approaches of each publication and how they relate to the
compilation.

Figure 1. Grouping of the original publications according to research questions.

1.4 Author’s contributions

In Paper I the author was the main responsible for the scenario about self-monitor-
ing of fall risk and commented also the other scenarios. The author participated in
the focus groups as one of the moderators and was responsible for the data analysis
and the corresponding author of the publication. All the authors of the paper partic-
ipated in deriving the scenarios. Milla Immonen, Patrik Eklund and Tuula Petäkoski-
Hult acted as moderators in the focus groups in Finland and Carlos Garcia Gordillo
was the main responsible for organizing the corresponding focus groups in Spain.
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In Paper II the author participated in data collection with Ari Saarinen and was
the main person responsible for the data analysis and writing of the paper. Jouni
Kaartinen coordinated the study design and implementation. Ari Saarinen and Ibra-
him Mahjneh were the medical experts of the study. Mikko Lindholm was responsi-
ble for the acceleration sensor tilt normalization algorithm, which the author utilized
in the data analysis.

In Paper III the author was the main person responsible for the data analysis and
writing of the paper. Juho Merilahti and Miikka Ermes were responsible for design-
ing and implementation of the data collection. Jani Mäntyjärvi and Miikka Ermes
were the supervisors of the data analysis. Mikko Lindholm was responsible for the
gait pattern extraction algorithm utilized in the data analysis.

In Papers IV, V and VI the author was the main person responsible for the design
and implementation of the data collection together with Milla Immonen and was pri-
marily responsible for the data analysis and writing of the papers. In Paper IV the
author was responsible for applying and testing of an existing data analysis algo-
rithm in a novel context, i.e. fall risk assessment. Tuula Petäkoski-Hult participated
in preparation of the study and data collection, and Juho Merilahti participated in
data collection. Miikka Ermes was the supervisor in data analysis for Paper VI.
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2. Literature review

2.1 Older people and falls

In a global perspective, as fertility declines and life expectancy rises, the proportion
of people aged 60 years or more is rapidly increasing (United Nations Department
of Economic and Social Affairs Population Division, 2015). The population is aging
throughout the world and, for example, in Finland it is estimated that in 2060 28.8%
of population will be more than 65 years old while in 2010 it was 17.5% (Official
Statistics of Finland (OSF), 2015).

Each year, 28–35% of people over 65 years old experience a fall and the per-
centage of fallers increases with age and frailty level. The frequency of falls is even
higher in nursing homes, where 30–50% of older people living in long-term care
institution fall each year (World Health Organization, 2007). A common consensus
on a definition of a fall is still lacking. The definition by the Kellogg International
Working Group on prevention of falls in the elderly defines a fall as “an unintention-
ally coming to the ground or some lower level as a consequence of sustaining a
violent blow, loss of consciousness, sudden onset of paralysis as in stroke or an
epileptic seizure” (Gibson, Andres, Isaacs, Radebaugh, & Worm-Petersen, 1987).
One commonly used definition by the World Health Organization (WHO) defines a
fall more broadly as “inadvertently coming to rest on the ground, floor or other lower
level, excluding intentional change in position to rest in furniture, wall or other ob-
jects” (World Health Organization, 2007). It does not specify what caused the fall
and thus it is not limited to any specific type of fall.

Falls may have serious consequences on a person’s health and quality of life.
More than 50% of injury-related hospitalizations of people over 65 years old are
caused by falls (World Health Organization, 2007). In a study by Parkkari et al.
(1999) 98% of hip fractures were the result of a fall and subsequent impact on the
greater trochanter of the proximal femur. Falls are also major contributors to immo-
bility and premature nursing home placement (Rubenstein, 2006). According to Vel-
las et al. (1997) one third of people who have fallen develop fear of falling again,
which is associated with balance, gait and cognitive disorders and thus decreases
the level of mobility. Furthermore, falls cause mortality and a majority of accidental
falls leading to death occur for people over 65 years (Official Statistics of Finland
(OSF), 2011). For example in Finland, 1390 people over 65 years old died in fatal
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accidents in 2009 and 70% of those were caused by falls (Official Statistics of
Finland (OSF), 2011).

2.2 Fall risk factors

A fall risk factor is defined by Rubenstein & Josephson (2006) as “a characteristic
that is found significantly more often in individuals who subsequently experience an
adverse event than in individuals who do not experience the event”. Falls are usually
multifactorial in their origin and one single fall risk factor behind a fall cannot be
identified (Rubenstein & Josephson, 2006). Furthermore, risk of falling increases
with the number of risk factors possessed by the person (Tinetti, Speechley, &
Ginter, 1988). Taxonomy of fall risk factors vary between studies, but often the risk
factors are divided into intrinsic and extrinsic risk factors (Ambrose et al., 2013;
Bueno-Cavanillas, Padilla-Ruiz, Jimeâ Nez-Moleoâ N, Peinado-Alonso, & Gaâ
Lvez-Vargas, 2000; Cesari et al., 2002; Perell et al., 2001; Rubenstein & Josephson,
2006). Intrinsic risk factors refer to, e.g. psychosocial and demographic factors, such
as advanced age, postural instability, sensory and neuromuscular factors, medical
factors, and drugs (Lord et al., 2001; Rubenstein & Josephson, 2006). Extrinsic fac-
tors on the other hand refer to environmental hazards and poor footwear, as exam-
ples (Lord et al., 2001; Rubenstein & Josephson, 2006). The intrinsic and extrinsic
fall risk factors are summarized in Figure 2. According to Rubenstein et al.
(Rubenstein & Josephson, 2006) 25–45% of the falls among older adults are acci-
dental or triggered by environmental hazards. Analysis of fall circumstances and
symptoms near the time of falling may point to a specific aetiology or differential
diagnosis. For example, a sudden rise from a lying or sitting position may induce
orthostatic hypotension, or a trip or slip may be caused by gait, balance or vision
disturbance or an environmental hazard. Although, a person having experienced a
fall may have poor recollection of the event him/herself and reports from witnesses
are important (Rubenstein, 2006).
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Figure 2. Intrinsic and extrinsic fall risk factors.

2.2.1 Intrinsic fall risk factors

2.2.1.1 Balance and gait

Postural control requires integration of several sensorimotor processes and re-
sources for perceiving body orientation in space, interpreting sensory information,
coordinating movement strategies to maintain stance position, control the centre-of-
mass (CoM) dynamics during gait, cognitive processing of the postural task, and
biomechanical constraints for controlling the CoM (Horak, 2006). The human ves-
tibular system consists of three components: a peripheral sensory apparatus, a cen-
tral processor, and a mechanism for motor output (Hain & Helminski, 2007).

The peripheral vestibular system is located in the inner ear and it consists of
membranous and bony labyrinths, and the motion sensors called “the hair cells”.
The bony labyrinth has three semi-circular canals, the cochlea, and a central cham-
ber, the vestibule, all filled with perilymphatic fluid. The membranous labyrinth, filled
with endolymphatic fluid, is suspended within the three canals of bony labyrinth and
has the two otolith organs, the utricle and saccule, inside the vestibule. One end of
each semi-circular canal is widened to form an ampulla. The ampullae and the oto-
lith organs contain the specialized hair cells that sense head motion, gravity and
linear acceleration. Due to the orientation and differences in their fluid mechanics,
the canals and otolith organs respond selectively to head motion in a particular di-
rection, and to angular and linear accelerations (Hain & Helminski, 2007). Vestibular
dysfunction can cause symptoms of dizziness, such as vertigo and imbalance,
which can culminate in a fall in some cases (Agrawal, Carey, Della Santina,
Schubert, & Minor, 2009).

•Gait and balance impairment
•Vestibular dysfunction
•Medical condition
•Drugs
•Cognitive impairment
•Vision problems
•Poor muscle strength
•Fear of falling

Intrinsic fall risk factors

•Environmental hazards
•Poor footwear

Extrinsic fall risk factors
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Normal human gait can be defined as “a method of locomotion involving the use
of two legs, alternately, to provide both support and propulsion at least one foot
being in contact with the ground at all times”. The gait cycle is considered as a time
interval between two successive occurrences of initial contact of one foot, for exam-
ple the right foot. The gait cycle constitutes two phases: stance phase, where the
foot is on the ground, and swing phase, where the foot is in the air. The stance
phase has four periods starting from initial contact: 1) loading response until the
opposite toe lifts off the ground, 2) mid-stance until the heel starts to rise, 3) terminal
stance until the opposite heel touches the ground, and 4) pre-swing until the toe lifts
off the ground and the swing phase begins. The swing phase has three stages: 1)
initial swing until the feet become adjacent to each other, 2) mid-swing until the tibia
of the leg is in a vertical position, and 3) terminal swing until the heel touches the
ground again (subsequent initial contact). (Whittle, 2007)

Spatial and temporal characteristics of the different periods of the gait cycle are
often studied to give insight on a person’s dynamic postural control. Advanced age
affects the motor skills of a person and causes changes in gait. Gait and balance
disorders affect 20–50% of people over 65 years old (Rubenstein & Josephson,
2006). It has been observed that older people have faster horizontal heel contact
velocity, shorter step length and slower transitional acceleration of the whole body
CoM compared to younger people (Lockhart, Woldstad, & Smith, 2003). Increased
gait variability has been associated with history of falls (Toebes, Hoozemans, Fur-
rer, Dekker, & van Dieën, 2012) and it also indicates increased prospective fall risk
among community-living older adults (Hausdorff, Rios, & Edelberg, 2001).

2.2.1.2 Medical condition and drugs

Prevalence of chronic diseases increases with age and it is increasingly common
for older people to have multiple medical conditions at the same time (Salive, 2013).
Medical conditions often require medication treatment, which can themselves be a
risk factor for falls. Especially bentzodiazepines, antidepressants and antipsychotics
were found to be associated with an increased risk of falling (Hartikainen, Lönnroos,
& Louhivuori, 2007) and the risk further increases with use of polypharmacy if at
least one drug known to increase falling risk is in use (Ziere et al., 2005). Parkinson’s
disease is a degenerative disorder that affects the motor system. Risk of falling in-
creases with disease severity and in particular previous falls, disease duration, de-
mentia, and loss of arm swing were found as independent predictors of falling in
idiopathic Parkinson’s disease patients (Wood, Bilclough, Bowron, & Walker, 2002).
Other medical factors associated with increased risk of falling are, for example,
stroke (Forster & Young, 1995), depression (Whooley et al., 1999), arthritis
(Campbell, Borrie, & Spears, 1989), foot problems (Menz, Morris, & Lord, 2006a),
and urinary incontinence (Tromp et al., 2001).
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2.2.1.3 Cognitive impairment

Cognitive impairment is a psychological factor that affects 5–15% of persons over
65 years old and it almost doubles the risk of falling (Rubenstein & Josephson,
2006). Even subtle deficits in executive function was found to be associated with
increased risk of falling and fall injuries (Muir, Gopaul, & Montero Odasso, 2012).
Confusion and cognitive impairment may refer to an underlying systemic or meta-
bolic process or dementing illness. E.g., dementia can impair judgement, visuospa-
tial perception, and orientation ability, and thus increase the risk of falls (Rubenstein
& Josephson, 2006).

2.2.1.4 Vision problems

Visual acuity and contrast sensitivity decline with age (Lord, Clark, & Webster,
1991). Problems with seeing objects at close range or reading small print is com-
pensated with multifocal glasses, which doubles the risk of falling (Reed-Jones et
al., 2013). Furthermore, restricted vision and reduction in visual processing speed
increase response time when facing external obstacles, and thus increase the risk
for trips, slips and falls (Reed-Jones et al., 2013). According to Ray et al. (2008),
restricted vision affects negatively overall postural stability and individuals with vi-
sion loss employ more hip strategy, i.e. bend the upper body forward, to maintain
their balance.

2.2.1.5 Poor muscle strength

Muscle strength declines rapidly in old age. In a study by Goodpaster et al. (2006)
the annual decline in muscle strength was 2.6% to 4.1% among people aged 70 to
79 years. Moreland et al. (2004) concluded in their review that especially lower ex-
tremity muscle weakness is a significant risk factor for falls. Pijnappels et al. (2008)
suggest that the assessment of capacity to generate maximum extension force by
the whole leg can be used to distinguish between fallers and non-fallers.

Vitamin D has been shown to have a direct effect on muscle strength and func-
tion, and thus is associated with frailty and falls (Halfon, Phan, & Teta, 2015). Ac-
cording to a review by Halfon et al. (2015) vitamin D supplementation has contrib-
uted to a reduction of falls in several studies with older adults..

2.2.1.6 Fear of falling

Fear of falling is a psychological factor and a major risk factor for falling (Ambrose
et al., 2013; Yardley et al., 2005). One third of older people that fall develop a fear
of falling again (Vellas, Wayne, Romero, Baumgartner, & Garry, 1997), and up to
40% of people who are afraid of falling will restrict their activities of daily living
(Ambrose et al., 2013). This in turn may lead to functional decline, social isolation
and decreased quality of life (G. A. R. Zijlstra et al., 2007).
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2.2.2 Extrinsic fall risk factors

Environmental hazards at home and in the community are often reported as causes
of falls, especially related to trips and slips, although the primary reason seems to
be intrinsic rather than extrinsic (Lord et al., 2001). The falls caused by environmen-
tal hazards are many times a result of interactions between hazards or hazardous
activities and increased individual susceptibility from accumulated effects of age
and disease (Rubenstein & Josephson, 2006). Some of the general environmental
fall risk factors reported are, e.g., slippery floors or other surfaces, rugs, pets, inap-
propriate furniture, stairs too steep or without handrails, obstacles on walkways,
crowds, certain weather conditions (leaves, snow, ice, rain), brief cycles of traffic
lights, and lack of places to rest outdoors (Lord et al., 2001). Poor footwear, such
as high-heel shoes, can increase the risk of falling (Menant, Steele, Menz, Munro,
& Lord, 2008). Walking barefoot or wearing socks only indoors has been shown to
be associated with risk of falling (Menz, Morris, & Lord, 2006b).

2.3 Fall risk assessment

Fall risk assessment is done on different levels and with different methods depend-
ing on target population (Rubenstein & Josephson, 2006). In general, tools as-
sessing intrinsic characteristics of the patient are the most appropriate and efficient
in the acute care setting. In an outpatient setting, on the other hand, the focus should
be primarily on functional status as in mobility and balance assessment. In the ex-
tended care setting nearly every patient is at high risk for falls and universal precau-
tions for fall prevention may be the most efficient (Perell et al., 2001). It is not always
easy for a health care professional to decide which assessment scales to use, and
thus there are several studies that aim to compare the outcomes of some commonly
used assessment scales (Lajoie & Gallagher, 2004; Scott et al., 2007; Tiedemann,
Shimada, Sherrington, Murray, & Lord, 2008). Perell et al., (2001) recommend the
following criteria for choosing the most appropriate assessment tool: “high sensitiv-
ity, specificity, and interrater reliability; similarity of patient population to ones in
which the instrument was developed or studied; written procedures explicitly outlin-
ing appropriate use of the form; reasonable time required to administer the scale;
and established thresholds identifying when to initiate interventions.”. Furthermore,
a distinction should be made whether the assessment scale is meant for predicting
the possibility of a fall in the future, or does it assess the presence or magnitude of
a certain risk factor. The following subsections review some of the most common
fall risk assessment tools. Typically, an assessment tool addresses more than one
particular intrinsic or extrinsic risk factor, or several tools are used in combination.
The description of tools is divided based on the target of the assessment into multi-
factorial, postural control and mobility, physiological factors, psychological factors
and other risk factors.
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2.3.1 Multifactorial fall risk assessment tools

The Downton Index is an example of a fall risk assessment tool that takes into ac-
count several risk factors and, as an example, it has been validated among patients
in stroke rehabilitation (Nyberg & Gustafson, 1996) showing moderate association
between predicted risk and the observed outcome regarding falls. The fall prediction
sensitivity was 91%, but the specificity was limited to 27% (Nyberg & Gustafson,
1996). The Downton index is a sum of 11 risk factors under the following categories:
previous falls, medication, sensory deficits, mental state, and gait. A score of 3 or
more on a range 0–11 indicates high risk of falls (Downton, 1993).

Fall Risk for Older People in the Community (FROP-Com) is a tool that covers
13 risk factors in 26 questions with scoring from 0 to 3. The total score ranges from
0 to 60, with higher scores indicative of greater falls risk. In a sample of high-risk
older people the FROP-Com was able to predict 71.3% of fallers and 56.1% of non-
fallers. (Russell, Hill, Blackberry, Day, & Dharmage, 2008) Russel et al. (2009) have
further developed a shorter version of the test for initial screening in time-limited
situations. It showed a sensitivity of 67.1% and specificity of 66.7% in predicting falls
of community-dwelling older people. The logistic regression analysis resulted in
three risk factors in the FROP-Com Screen tool: number of falls in the past 12
months, whether the person requires assistance to perform domestic activities of
daily living (ADL), and observation of the person’s balance. All three items are
scored 0–3. A score of more than 4 points indicates high risk of falling (Russell et
al., 2009).

Falls Risk Assessment Tool (FRAT) includes two parts: the first one adminis-
trated by clinical or non-clinical staff for identification of those at higher risk of falling
and the second for clinical staff for guidance with regard to further assessment, re-
ferral options and intervention for those identified as high risk. Part 1 has five ques-
tions about previous falls, taking four or more medications per day, diagnosis of
stroke or Parkinson’s disease, balance problems, and ability to rise from a chair
without using arms. Presence of three or more risk factors was indicative of fall risk
with a positive predictive value of 0.57. The first two items of the second part are
the same as in part 1; balance and gait assessment are covered in more depth and
testing for postural hypotension was included to finally cover four risk factor areas
(Nandy et al., 2004).

The assessment tools introduced above are not the complete list of tools devel-
oped and used in clinical practice. What is common between these scales is that
they all ask about the falls history. In fact, the National Institute for Health and Wel-
fare (THL) in Finland recommends for a health care professional that every time
they see an older person they should ask “Have you fallen during the last 12
months?” (Pajala, 2012). Follow-up measures are determined based on the answer.
Furthermore, each of the scales somehow includes evaluation of balance or gait,
either by self-report or observation.



25

2.3.2 Postural control and mobility assessment

Postural stability when standing is usually tested by observing a person performing
a certain stability task. It can be a measure of spontaneous postural sway during
standing (Maki, Holliday, & Topper, 1994). A more challenging task is to have a
person stand with their feet together (Kirby, Price, & MacLeod, 1987), eyes closed
(Lord, Rogers, Howland, & Fitzpatrick, 1999) or on one foot (Vellas, Wayne,
Romero, Baumgartner, Rubenstein, et al., 1997). The more challenging the stability
task is, the stronger its evidence in indicating increased fall risk (Lord et al., 2001).
Postural stability can also be challenged by reaching forward with feet fixed on place
and measuring the maximum distance the arms can reach (Duncan, Weiner,
Chandler, & Studenski, 1990). In addition, the subject’s sensory or motor systems
responses to external stimuli can be evaluated by external perturbation (Lord et al.,
2001), which is important in preventing falling in such situations. Different devices
have been developed for objective assessment of postural balance, for example, a
sway meter or posturography apparatus (Lanska, 2002), or a force platform (Piirtola
& Era, 2006).

Lord et al. (2001) describe a choice stepping reaction test that measures a per-
son’s 1) perception of a postural threat, 2) selection of an appropriate corrective
response, and 3) proper response execution. The subjects stand on a platform con-
taining four panels that are illuminated in random order. The subjects are instructed
to step on the illuminated panel as quickly as possible. The people with a history of
falls had significantly increased choice reaction stepping times compared to the
people with no history of falls (Lord et al., 2001).

Another example of a stepping test is an alternate-step-test (AST), where the
subject alternatively places the entire left and right foot onto a step 18 cm in height
as fast as possible, eight times (Tiedemann et al., 2008). In a comparative study by
Tiedemann et al. (2008), where eight functional mobility tests were compared, the
AST was the second most useful test for discriminating fallers from non-fallers by
means of validity, reliability and feasibility. They suggested a cut-off point of 10 sec-
onds for discriminating multiple fallers from non-multiple fallers. The most useful test
in that study was sit-to-stand five times (STS-5). In STS-5 the subjects are instructed
to fully stand up from a chair 5 times as quickly as possible and the examiner rec-
ords the time for completing the repetitions. Whitney et al. (2005) suggest that 14.2
seconds is an optimal cut-off score for identifying older people with balance disor-
ders (S. L. Whitney et al., 2005).

TUG is an example of a test that combines multiple tasks (Podsiadlo &
Richardson, 1991). In the TUG test the subject is first asked to sit on a chair. When
that start command is given; the subject stands up, walks over the three-metre
marker (e.g. piece of tape on the floor), turns around, walks back to the chair and
sits down again. The time of 13.5 seconds is suggested as a cut-off point for identi-
fying fallers from non-fallers (Shumway-Cook, Brauer, & Woollacott, 2000). Alt-
hough the TUG is widely used as a screening tool, a more recent meta-analysis
showed that TUG alone has a limited ability to predict falls in community dwelling
older adults (Barry, Galvin, Keogh, Horgan, & Fahey, 2014).
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The Performance-Oriented Mobility Assessment (POMA) tool developed by
Tinetti (Tinetti, 1986) has two parts, balance and gait, with specific tasks evaluated
based on visual assessment on a scale 0 to 2 points. The overall balance score
range is 0–16 and gait score 0–12. Patients with a total score lower than 19 have a
high risk of falling, 19–23 moderate fall risk and a score of 24 or more indicates low
risk of falling.

The BBS constitutes 14 tasks that are increasingly demanding; sitting to stand-
ing, standing unsupported, sitting unsupported, standing to sitting, transfers, stand-
ing with eyes closed, standing with feet together, reaching forward with outstretched
arm, retrieving object from floor, turning to look behind, turning 360 degrees, placing
alternate foot on stool, standing with one foot in front, standing on one foot (Berg et
al., 1989). Each task is scored 0–4, four meaning task execution according to in-
struction without problems, resulting in a maximum score of 56 points. Although a
score of 45 is often recommended as a cut-off score for identifying people at risk of
falling, it rather discriminates between people at risk for multiple falls instead of any
fall (Muir, Berg, Chesworth, & Speechley, 2008). Muir et al. (2008) recommend that
instead as a dichotomous scale the BBS should be used in multilevel form with
likelihood ratios, as it preserves the gradient of risk across the whole range of
scores. Furthermore, they emphasize the multifactorial nature of fall risk estimation
and suggest the balance assessment through BBS to be integrated with other fall
risk information to predict future falls.

Gait speed is an often-used method for assessing functional capacity of a person.
The distance for gait speed assessment is usually four or six metres (Abellan Van
Kan et al., 2009). Older people can be categorized as slow, intermediate, or fast
walkers using cut-off points of 0.6 and 1.0 ms-1, respectively, and there are several
studies that have found an association between slower walking speed and falls
(Abellan Van Kan et al., 2009). Gait speed has also been shown to be associated
with other adverse outcomes and survival of older adults (Studenski et al., 2011).
Mortaza et al. (2014) reviewed several studies that have investigated the ability of
spatio-temporal parameters of gait in predicting falls of older people. The results
showed a tendency that older people who have fallen have a slower walking speed
and cadence, longer stride time, double support duration, shorter stride and step
length, wider step width and more variability in the spatio-temporal parameters of
gait. However, the spatio-temporal analysis alone is not an adequate predictor of
falls in older people (Mortaza, Abu Osman, & Mehdikhani, 2014).

2.3.3 Physiological factors

Physiological Profile Assessment (PPA) combines several aspects of individual fall
risk. The PPA includes tests for vision, peripheral sensation, lower limb strength,
reaction time and body sway. Visual acuity is measured using a letter chart with
high- and low-contrast letters at a three-metre distance. The size of the letters is
smaller on each line and the score for the test depends on the lowest line on which
the subject can correctly read the letters. In the contrast sensitivity test the subject
is asked to identify the orientation of an edge between two areas on twenty circular
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patches that have reducing contrast. The visual field dependence test assesses
indirectly vestibular function by placing vision in conflict with a rotating visual stimu-
lus while the subject is asked to align a straight edge to the true vertical position.
Peripheral sensation tests include 1) test for tactile sensitivity by touching the sub-
ject’s ankle with filaments with varying diameter, 2) vibration sense measurement
with an electronic vibration generator, and 3) proprioception test by measuring the
difference in aligning the lower limbs while the subject is seated with eyes closed.
The maximal isometric muscle force is measured for knee flexors, knee extensors
and ankle dorsiflexors. Reaction times of a finger and foot for a light stimulus are
assessed with an electronic timer. Postural sway is assessed with a sway meter
that measures displacement of the body at the waist level. The test is performed
four times for 30 seconds, if possible, on a firm surface, and on a 15-cm-thick me-
dium-density foam rubber mat, both with the subject’s eyes open and eyes closed.
The screening version of the PPA contains five of the abovementioned tests: edge
contrast sensitivity for vision, proprioception for peripheral sensation, knee exten-
sion force for lower-extremity force, finger reaction time, and body sway on a me-
dium-density rubber mat (Lord, Menz, & Tiedemann, 2003).

Muscle strength alone, especially in the lower body, has also been shown to pre-
dict falls in older adults (Moreland et al., 2004). The methods for muscle strength
measurement vary from timed chair stands to dynamometer devices (Moreland et
al., 2004).

2.3.4 Psychological factors

The Falls Efficacy Scale-International (FES-I) is a questionnaire with 16 items about
a person’s concerns about falling while doing specific everyday activities, such as
cleaning the house, preparing meals, taking a bath, walking in different situations,
etc. (Yardley et al., 2005). Each item is answered on a four-point scale from 1=“Not
at all concerned” to 4=“Very concerned”. A score of more than 23 (range 16 to 64)
is suggested as a cut-off point for indicating high concern about falling (Delbaere et
al., 2010). Another test for fear of falling is the Activities-specific Balance Confidence
(ABC) scale (Powell & Myers, 1995). It has also 16 items inquiring the level of self-
confidence on not losing balance or become unsteady while doing specific everyday
activities. The answer is given as a percentage from 0% to 100% (as full ten-point
increments). The total ABC score is an average rating of all 16 items. A score of
67% is suggested as a cut-off point for predicting geriatric fallers (Lajoie &
Gallagher, 2004).

Mini-Mental State Examination (MMSE) is a scale intended for short-term
memory and cognitive state assessment. It has tasks that require vocal responses
to questions that cover orientation, memory and attention. In addition, there are
tasks that test the subject’s ability to name objects, follow verbal and written com-
mands, write a sentence spontaneously, and copy a complex polygon showed to
them. The maximum score of the test is 30 (Folstein, Folstein, & McHugh, 1975). If
the score is 24 or less, the result is considered deviant (Pajala, 2012).
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The Geriatric Depression Scale (GDS) is a tool with 15 questions each scored as
1 or 0 points. The questions ask about the subject’s feelings, such as satisfaction
with life, emptiness, happiness, etc., over the past week. A score of more than 5
points is suggestive of depression and a score of 10 or more points is almost always
indicative of depression (Kurlowicz & Greenberg, 2007).

2.3.5 Assessment of other risk factors

Other assessments associated with fall risk that are suggested for use are, for ex-
ample, environmental checklists that infer to eliminate home hazards, such as loose
or frayed rugs, trailing electrical cords, and unstable furniture, or ensure adequate
lightning, bathroom grab rails, etc. (Rubenstein, 2006). Furthermore, nutrition, alco-
hol, medication and specific medical conditions are often part of comprehensive fall
risk assessment (Pajala, 2012). The following figure (Figure 3) summarizes the dif-
ferent fall risk assessment scales referred to in this thesis.

Figure 3. Summary of fall risk assessment scales.

2.4 Accelerometry-based postural control and balance
assessment

Body-worn sensors have been increasingly applied in fall risk screening and as-
sessment, as they are inexpensive, small, portable, and can provide movement in-
formation during daily-life tasks. Typically, accelerometers, gyroscopes or their
combination are used for sensing body movements. The accelerometers alone are
used in the majority of the fall risk assessment studies, i.e. in 70% of the studies
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reviewed by Howcroft et al. (Howcroft et al., 2013). In a more specific movement
analysis, e.g., assessment of kinematic gait parameters a whole Inertial Measure-
ment Unit (IMU) containing accelerometer, gyroscope, and magnetometer provides
higher detection accuracy of gait events (Caldas, Mundt, Potthast, Buarque de Lima
Neto, & Markert, 2017). However, this literature review focuses specifically on ac-
celerometry-based methods. The most common sensor location is to place it on the
lower back, near the CoM, while assessing certain activities, such as level walking,
TUG, STS, AST, etc. Other locations sensors are used are the head, upper back,
sternum, shoulder, elbow, wrist, hip, thigh, knee, shank, ankle, and foot (Howcroft
et al., 2013).

In general, the signals produced by the wearable sensors are often prepro-
cessed, e.g. filtered, and a set of features are extracted from them. The features are
further utilized by machine learning methods to form a classification or regression
model to assess the fall risk or estimate the probability of falls. The model typically
tries to classify subjects into high fall risk and low fall risk groups, or fallers and non-
fallers, or to calculate a certain risk estimate. If previous falls, or fall history are used
as a reference in model specification, the resulting model is retrospective, as it aims
to classify subjects based on their experienced falls. More recently the research has
moved more and more towards development of prospective fall risk estimation,
where fall incidents after, e.g. one year, are used as the reference (Shany, Wang,
Liu, Lovell, & Redmond, 2015).

Howcroft et al. (2013) reviewed studies that applied inertial sensors in fall risk
assessment. Their findings showed that 15% of studies classified subjects accord-
ing to prospective falls occurrence data, 30% using retrospective falls history, and
32.5% used clinical assessment as their reference. The rest used a combination of
retrospective falls occurrence and clinical assessments. According to the review,
the accuracy of the predictive models varied between 62–100% (Howcroft et al.,
2013). However, Palumbo et al. (2015) suggest that the theoretical maximum accu-
racy of an ideal prognostic tool would not be more than 81% (Palumbo, Palmerini,
& Chiari, 2015). This implies that the methods used in the studies achieving promi-
nently high prediction accuracies should be critically inspected (Shany et al., 2015).

2.4.1 Acceleration sensor

The accelerometer’s operation is based on Hooke’s law, where a mass responds to
acceleration by causing a spring or an equivalent component to stretch or compress
proportionally to the measured acceleration. The accelerometers may be based on
piezoelectric, piezoresistive, or variable capacitance methods of transduction. It
should be noted that the accelerometers sense the gravitational acceleration in ad-
dition to movement-related acceleration, and the resulting signal is a sum of the two.
In triaxial devices, that measure three-dimensional (3D) acceleration, there are
three sensitive axes mounted orthogonally to one another (Shany, Redmond,
Narayanan, & Lovell, 2012). It can be assumed that the human body movements
are contained within frequency components below 20 Hz (Karantonis, Narayanan,
Mathie, Lovell, & Celler, 2006), and with a sampling rate of 30 Hz one can capture
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99% percent of the signal power in gait (Antonsson & Mann, 1985). Human activity
recognition applications have worked well with an accelerometer sensitivity of ±2g
(g denoting gravitational acceleration of 9.81 ms-1) (Bao & Intille, 2004), although
daily physical activities may produce accelerations up to 10g measured at the waist
level (Jämsä, Vainionpää, Korpelainen, Vihriälä, & Leppäluoto, 2006).

2.4.2 Signal pre-processing and feature extraction

Before feature extraction the raw signals provided by accelerometers are often fil-
tered to remove noise and to separate body acceleration from gravitational acceler-
ation. For example, a low pass filter with a cut-off frequency at 0.25 Hz has been
applied to separate the gravity component of the acceleration (Karantonis et al.,
2006; Liu et al., 2011). The gravitational component can be utilized in determining
the postural orientation of a subject (Shany et al., 2012), while the other component,
obtained by subtracting the gravity component from the original signal, contains the
accelerations produced by body motions (Karantonis et al., 2006). Feature extrac-
tion may be applied separately to all three signals, x, y, and z, measured by the 3D
accelerometer, representing anteroposterior, mediolateral, and vertical directions of
movement, or to resultant acceleration, which is a squared sum of the three signals.
Resultant acceleration is calculated as

( ) ( ) ( )222 )()()()( tatatata zyx ++= (1)

where , , and  represent accelerations of the x, y and z axes, respectively.
Howcroft et al. (2013) identified 130 distinct features calculated from the inertial

sensor data (some of them extracted also from gyroscope signals) that were applied
in fall risk assessment. According to their categorization 7.7% were position and
angle, 11.5% angular velocity, 20% linear acceleration, 3.8% spatial, 23.1% tem-
poral, 3.8% energy, 15.4% frequency and 14.6% other type of features. They listed
13 features that were found to be significant covariates in more than one study: 1)
mediolateral and anteroposterior postural sway length; 2) mediolateral and antero-
posterior sway velocity; 3) ratio of mean squared modulus of postural sway; 4)
standard deviation (SD) of anteroposterior acceleration; 5) root mean square (RMS)
amplitude of vertical linear acceleration; 6) gait speed; 7) sit-to-stand transition du-
ration; 8) dominant Fast Fourier Transform (FFT) peak parameters derived from
lower back linear acceleration signals; 9) ratio of even to odd harmonic magnitudes
derived from head, upper back, and lower-back linear acceleration signals; 10) area
under the first six harmonics divided by the remaining area for lower-back linear
acceleration signals; 11) ratio of the first four harmonics to the magnitude of the first
six harmonics for lower-back linear acceleration signals; 12) maximum Lyapunov
exponent of angular velocity signal; and 13) discrete wavelet transform parameters
from lower-back angular velocity and linear acceleration signals and sternum linear
acceleration signals (Howcroft et al., 2013). In a study by Narayanan et al. (2010)
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several temporal and energy-related features were evaluated for fall risk assess-
ment. Besides duration between successive time markers of the AST test, they ob-
tained a normalized SD of AST time differences and STS-5 dissimilarity of sit-to-
stand cycles as predictors in their fall risk model (Narayanan et al., 2010). Liu et al.
(2011) expanded the study further by adding frequency domain features to the pool
of features and were able to improve the correlation between accelerometry-based
estimates and clinical fall risk assessment.

Accelerometry-based gait analysis has been applied to fall risk assessment by
many researchers. In fact, walking was the most frequently (in 45% of the reviewed
studies) assessed activity for inertial-sensor-based fall risk assessment (Howcroft
et al., 2013). Features extracted from gait signal have been, e.g., gait speed, num-
ber of steps, cadence, step time, step length, step-time asymmetry, stance time,
step and stride regularity/variability, amplitude and width at the dominant frequency
in the power spectral density, harmonic ratio, inter-stride amplitude variability, and
RMS of the accelerometer data (Bautmans, Jansen, Van Keymolen, & Mets, 2011;
Menz, Lord, & Fitzpatrick, 2003a; Mortaza et al., 2014; Senden, Savelberg, Grimm,
Heyligers, & Meijer, 2012; Weiss et al., 2013). Many of these features require step
detection from the acceleration signal. An often-used method is peak detection from
anteroposterior acceleration, since the peak acceleration coincides with the foot
contact phase of the gait cycle (W. Zijlstra & Hof, 2003). Figure 4 shows an example
of one subject’s acceleration during gait.

Figure 4. Example of gait acceleration measured in mediolateral, vertical and an-
teroposterior directions with an accelerometer attached to the lower back near the
CoM. Intervals representing one step and one stride are indicated with double ar-
rows in the figure.
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2.4.3 Fall risk estimation

Building of a model for fall risk estimation has three main steps: 1) selecting the
features to be used in the model; 2) training of the selected model with the training
data set; and 3) validating the model with the test data set. There are several meth-
ods used in the literature for each of the steps. The feature selection should be
performed only with the training data set, although due to the limited available data
sets it is not often realized in many of the studies in this field (Shany et al., 2015).

2.4.3.1 Feature selection

Two commonly used feature selection methods are sequential forward selection
(SFS) (A. W. Whitney, 1971) and sequential forward floating selection (SFFS)
(Pudil, Novovicová, & Kittler, 1994). The SFS algorithm starts with an empty feature
subset. During each step, all the remaining features, not yet selected, are consid-
ered and the feature that gives the best score on the selection criteria is included.
Selection criteria can be, e.g., a distance measure or a classification result. The
step is repeated with the remaining feature pool as long as a predetermined number
of features has been selected, or the threshold set for minimum improvement of the
selection criteria score is not reached anymore. The SFS has a nesting effect that
can be avoided with the SFFS algorithm. In the SFFS algorithm, after the inclusion
of one feature, a backtracking phase begins, where features can be excluded. The
least significant feature in the selected feature pool is determined. If it is the last one
added, the algorithm goes back to selecting a new feature by SFS. Otherwise the
least significant feature is excluded and moved back to the set of available features
and conditional exclusion is continued. Exclusion is carried out for as long as better
feature subsets of the corresponding sizes are found. After that, the cycle starts all
over again with SFS, and is repeated until the previously defined subset size is
reached.

If the number of extracted features is high and the sample size is limited it may
lead to a situation where the classification algorithm learns the data at hand very
well, but has much lower performance when used with other data. Dimensionality
reduction methods may be used to avoid overfitting the classification algorithm and
the following are just couple of examples of such methods. For example, a correla-
tion matrix can be used to find features that are highly correlated with each other
and thus are good candidates to be merged (Duda, Hart, & Stork, 2001). Also, Prin-
cipal Component Analysis (PCA) has been applied to extract new features that ac-
count for most of the data variability and they are used to find a reduced set of
features from the original pool that correlate with the principal components
(Palmerini, Mellone, Rocchi, & Chiari, 2011).

2.4.3.2 Modelling, classification and clustering of fall risk

Different methods have been applied to derive a model for fall risk assessment, fall
prediction or distinguishing fallers from non-fallers. From the papers included in the
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review by Howcroft et al. (2013), 65% used regression models, 15% decision trees,
10% support vector machines (SVM), 10% cluster analysis, and 25% other classifi-
ers such as the Bayesian classifier. 30% of the reviewed studies used more than
one method. The highest levels of sensitivity and specificity were 91.3% and 83.3%
for retrospective fall history and, respectively, the levels were 74% and 82% for the
prospective falls estimation. However, half of the studies did not have separate data
sets for model training and validation, which limits the applicability of the results in
a wider population (Howcroft et al., 2013; Shany et al., 2015).

Regression analysis aims to find the relationship between one or more independ-
ent variables (predictors) and the dependent variable. In logistic regression model-
ling the outcome, i.e. the dependent variable, is binary and can have two values,
e.g. faller vs. non-faller. Furthermore, the generalized linear models use linear meth-
ods, but allow also a nonlinear relationship between a response and predictors
(McCullagh & Nelder, 1989). A regression model for an outcome  is expressed as

= + +⋯+ (2)

where  is the weight for predictor .
In a classification problem the outcome classes are known beforehand. The

Bayesian classifier uses prior probabilities of the features to derive posterior proba-
bilities of a new sample belonging to each of the outcome classes and the class with
the highest probability (or the lowest probability of error) is selected. The method
applies Bayes’ formula

=
( )

( )
(3)

where ( | ) is the posterior probability of an outcome to belong to class , when
a feature vector has values . ( ) is the prior probability of class , ( | ) is
the likelihood of  with respect to , and ( ) is the evidence (or the scale factor)
for stating the probability of . The often-used simple naïve Bayesian classifier takes
the assumption that the input features are conditionally independent given the class
(Duda et al., 2001).

The minimum-distance classifier is one form of representing classification algo-
rithm. It calculates the Euclidean distance ‖ − ‖ between the sample vector
and mean vectors , representing ideal vectors of each of the classes. The class
to which the distance is smallest is selected. The k-nearest-neighbor (kNN) classi-
fier calculates the distance to all training data set points. The resulting class for the
sample under investigation is assigned based on a majority vote of the known clas-
ses of the k-nearest points. The performance of the kNN classifier relies on selection
of the distance metric, e.g. Euclidean or Manhattan distances may be used (Duda
et al., 2001).

The decision tree forms a widening tree structure, where the attribute is tested in
each node against a rule and the following branch is selected based on the result.
The final leaves of the tree represent the different classes. The number of layers in
a tree depends on the application.
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The SVM method maps the original data into a higher dimensional feature space,
and then finds the optimal hyperplane that separates all the data points of one class
from those of the other class. The optimal hyperplane is selected so that it has the
maximum distance from the training samples representing different classes (Gunn,
1998).

The cluster analysis differs from classification in that the outcome classes are not
necessarily determined beforehand. In cluster analysis the samples are grouped so
that samples similar to each other form a group. Several clustering techniques exist,
for example, k-means clustering where the aim is to group the data samples into k
clusters. The cluster is assigned by finding the nearest mean, i.e. the prototype vec-
tor representing a cluster. These methods can also be used for unsupervised fea-
ture extraction as the training data may be unlabelled and the labels are given to
the groups found in the data (Duda et al., 2001). An example of an unsupervised
artificial neural network (ANN) method is a self-organizing map (SOM) that is espe-
cially useful for visualizing low-dimensional views of high-dimensional data. It uses
method of competitive learning where a distance of the input vector to all the weight
vectors is computed. The weights of the best matching reference vector and its
neighbours are tuned closer to the input vector. The size of the neighbourhood set
and the adaptation coefficient decrease monotonically over time, eventually result-
ing in a topologically organized representation of the data (Kohonen, 1990).

The classification methods described above are the most typically used in fall risk
estimation studies, but also other classification techniques exist, such as fuzzy clas-
sifiers (Duda et al., 2001) and the random forest classifier that is used, e.g. in activity
recognition applications (Casale, Pujol, & Radeva, 2011).

2.4.3.3 Model validation

In the ideal situation, the fall risk model training, i.e. the feature selection, model
selection, fitting and hyperparameter tuning, are performed with a training data set
and the obtained model is validated with another independent data set. However,
in many cases the data available for building and validating a model is limited. It
may lead to a situation where the model has learned the present data set well, but
is not generalizable to other data sets.

The classifier performance is often evaluated based on prediction accuracy, sen-
sitivity and specificity. Accuracy is the percentage of correctly predicted outcomes.
Sensitivity of a model is the proportion of positives that are correctly identified, e.g.,
in fall risk estimation context subjects correctly classified as having increased fall
risk. Specificity is the proportion of negatives correctly identified, respectively. In the
holdout method the data set is randomly divided into training and testing sets, e.g.
2/3 of the data is used for training and 1/3 for testing, respectively. In the cross-
validation method the data set is divided into k subsets  (folds).  The  classifier  is
trained for each subset on the union of all the other subsets. The error rate of the
classifier is the average of the error rates for each subset. When the size of the
subset is one, the method is called leave-one-out validation and it is a special case
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of cross-validation (Kotsiantis, 2007). In repeated cross-validation the cross-valida-
tion is done multiple times with the same data, e.g. ten-times ten-fold cross-valida-
tion have been applied (Marschollek et al., 2008).

The Receiver Operating Characteristics (ROC) and Area Under Curve (AUC)
methods can be applied to evaluate classifier performance. The ROC plot repre-
sents the sensitivity vs. 1 – specificity for the range of decision thresholds and thus
provides a complete picture of test accuracy in discriminating between two out-
comes (Zweig & Campbell, 1993). The AUC is determined as the area under the
ROC curve and gives a single measure of a classifier performance (Bradley, 1997).
The closer the AUC is to the value of one, the better the classifier performance.
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3. Research contributions

3.1 Description of the data

The publications utilize four datasets summarized in Table 1. The data collection
protocols and methods are described in more detail in the following sections.

3.1.1 Scenario evaluation in focus groups (Paper I)

Five different scenarios describing possible future technologies for fall risk assess-
ment and fall prevention were jointly created with the research partners, having
backgrounds in, e.g. in mathematics, economics, medicine and software engineer-
ing. Four focus group interviews, with 5–10 older adult participants in each, were
organized in Tampere, Finland (N=29 in total, aged 63–93 years, mean±SD
73.6±7.4 years) and four in Madrid, Spain (N=29 in total, aged 56–96 years,
mean±SD 73.0±9.7 years). The recruited voluntary participants in Finland were res-
idents of privately owned senior houses. In Spain, two of the groups were with hos-
pital patients and the other two with independently living older adults.

After a short introduction to the project, the participants were asked to fill in a
background questionnaire (demographics, current usage and attitudes towards
technology, falls history, possible conditions affecting balance, etc.). The scenarios
were explained to the participants one by one with a picture or a sketch further ex-
plaining the situation. The main features of the scenarios are represented in Table
2. After the explanation the participants evaluated the scenario for its credibility,
usefulness, ease of use, adoptability, ethicality and desirability, on a five-point Likert
scale from strongly agree to strongly disagree (Likert, 1932). In addition, the partic-
ipants’ willingness to pay for such solutions was investigated. In a semi-structured
discussion before and after the scenario evaluation, the participants were asked
about their current knowledge of fall risks and perceptions on fall prevention activi-
ties.
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Table 1. Four datasets used in Papers I–VI.

Data
No of
partic-
ipants

Age
(mean±SD)

Target
group

Reference fall
risk assessment

scales

Focus group
scenario evalua-

tion
(Paper I)

N=29
63–93 years

(73.6±7.4 years)

Senior house
residents,
Finland

falls history
self-rated balance
medical condition

N=29
56–96 years

(73.0±9.7 years)

Hospital pa-
tients and

independently
living older

adults,
Spain

Accelerometer
data for balance

assessment
(Paper II)

N=8
49–77 years

(58.3±9.0 years)

Patients with
balance af-

fecting condi-
tion

10m walk
sit-to-stand

BBS
medical condition

N=7
20–81 years
(61.7±22.2

years)
Controls

Accelerometer
data for balance

assessment
(Paper III)

N=15
40–68 years

(55.2±7.3 years)
Neurological

patients
walk (>10m)

BBS
medical condition

N=20
67–87 years

(76.8±5.6 years)
Older adults

N=19
21–36 years

(27.5±4.4 years)

Healthy
young per-

sons

Comprehensive
fall risk assess-
ment, one-year
follow-up, pro-

spective fall risk
assessment

(Papers IV, V,
VI)

N=42
64–85 years

(74.2±5.6 years)

Independently
living older

adults

medical condition,
falls history, medica-
tion, physical activity,
ABC, GDS, MMSE,
sensory functions,

nutrition, alcohol con-
sumption, Romberg
test (balance plat-

form), walk (>20m),
BBS, TUG, STS-5,
grip strength, lower

body muscle strength
(leg adductor/abduc-

tor and exten-
sor/flexor)
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Table 2. Fall risk assessment and fall prevention-related scenarios evaluated in fo-
cus groups (adapted from Paper I).

Scenario A: Fall risk assessment and prescrib-
ing of fall prevention interventions

Actors
Elsa, 80 years, living at home
Doctor, physiotherapist, nurse
Elsa’s daughter

Main features
· doctor, physiotherapist, Elsa herself and Elsa’s daughter fill-in fall risk assess-

ment scales
· combined fall risk estimate based on all the scales and tests
· guidance for fall prevention based on test results
· follow-up

Scenario B: Self-monitoring of falls risk Actors
Lisa, 65 years, living at home

Main features
· guidance through home terminal device to perform certain physical tasks wear-

ing an activity monitor
· fall risk calculation
· statistics and exercise guidance based on results
· data transfer to central database (for doctors, etc.)

Scenario C: Active fall prevention

Actors
Helmi, 82 years, living at home
with her husband and dog
Physiotherapist

Main features
· intelligent equipment at the gym
· personal ID card, that can be inserted into the gym devices, for viewing exercise

plans and automatic follow-up
· data transfer to the home computer with the ID card

Scenario D: ADL monitor & fall prevention
system

Actors
David, normal healthy person,
65–75 years
General Practitioner

Main features
· monitoring of activities of daily living (partly automatic, partly self-registered)

through home system (PC, webcam, smartphone)
· proposing physical and mental exercises based on ADL assessment
· alert for deterioration trend and prompt for a visit to the general practitioner

Scenario E: Fall prevention by building confi-
dence, physical exercise and social support

Actors
Aino and Reino,
a retired couple, 75–80 years

Main features
· intervention club (a group of older adults who want to prevent falls) all having a

home device (e.g. tablet)
· exercise guidance and information videos (motivation, safety, etc.)
· monitoring of performed exercises
· peer support by other club members via the device: comparison of results, dis-

cussions, motivation
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3.1.2 Accelerometer data collection for balance assessment (Papers II
and III)

Paper II used data from the study where eight patients (aged 49–77 years, with
mean±SD of 58.3±9.0 years) with a balance affecting condition and seven healthy
controls (aged 20–81 years, with mean±SD of 61.7±22.2 years) were recruited for
balance assessment. The subjects wore five wireless 3D acceleration sensors, one
at the lower back near the CoM (±2g, Analog Devices, 33Hz), two on the outsides
of the knees (±2G, Analog Devices, 41.25Hz) and two on the outsides of the ankles
(±2g, Analog Devices, 41.25Hz). The subjects performed balance and mobility tests
under the supervision of a trained physical therapist while wearing the sensors. The
tests included 10m walk test, standing up from a chair, and the BBS. The data from
the lower back sensor during the walking test were analysed in Paper II.

For Paper III, 54 subjects were recruited for the study, for three groups: 15 neu-
rological patients (aged 40–68 years, with mean and SD of 55.2±7.3); 20 older
adults (aged 67–87 years, with mean±SD 76.8±5.6); and 19 healthy young persons
(aged 21–36 years, with mean±SD = 27.5±4.4). The neurological patients had di-
agnosis of cerebrovascular disease, head injury, central nervous system inflamma-
tory disease, or disease of nervous system, such as Parkinson’s disease. The par-
ticipants performed BBS and walk tests (corridor at least 10 metres long) under a
physiotherapist’s supervision while wearing a 3D accelerometer (8 bit, 75 Hz, Alive
Heart Monitor, from Alive Technologies, Queensland, Australia) at the lower back
near the CoM. The data were annotated by a researcher on the site by marking
each task’s starting and ending with computer software synchronized with the sen-
sor.

3.1.3 Comprehensive fall risk assessment data collection at baseline and
one-year follow-up (Papers IV, V and VI)

Fourty-two independently living older adults (aged 64–85 years, mean±SD age
74.2±5.6 years) were recruited for the study. The participants went through a com-
prehensive fall risk assessment procedure at baseline and after a 12-month follow-
up. The testing procedure comprised five parts: 1) background questionnaire, 2)
interview, 3) balance platform assessment with Kinect recording, 4) physical bal-
ance and walk tests with an activity monitor, and 5) muscle strength measurements.
The participants filled in a background questionnaire prior to the tests (de-
mographics, health status, medication usage, physical activity, falls during last 12
months, ABC scale (Powell & Myers, 1995), and GDS (Kurlowicz & Greenberg,
2007)). In the interview the participants were assessed for Mini-Mental State Exam-
ination (MMSE) (Folstein et al., 1975), sensory functions, nutrition, alcohol con-
sumption, and motivators and barriers for physical exercise. Static balance of the
subject was assessed in the baseline and final assessments with the Romberg test,
where the person stood for 30s with eyes open on the balance platform (Balance
Trainer BT4, HURLabs, http://www.hurlabs.com) and then repeated the same with

http://www.hurlabs.com
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eyes closed. A depth camera (Microsoft Kinect, www.microsoft.com) was recording
simultaneously about three metres behind and orthogonally to the balance platform.

The physical balance and walk tests were supervised by a physiotherapist or a
researcher and the subjects wore two accelerometers (±16g, 100Hz, GCDC X16-2,
www.gcdataconcepts.com) attached with special belts. One sensor was at the lower
back near the centre of mass and the other in the front on the right side. A re-
searcher manually annotated the beginning and ending of each task with computer
software, that was synchronized with the accelerometers. The assessment scales
included were BBS (Berg et al., 1989), TUG (Podsiadlo & Richardson, 1991), STS-
5 (i.e. time it takes to perform five repetitions) and corridor walking, which was per-
formed twice in a corridor of over a 20-metre-long distance. In addition to grip
strength, lower body muscle strength was measured from leg adductor/abductor
and extensor/flexor.

3.2 End-user perceptions on fall risk assessment and fall
prevention technologies

This section answers to the first research question: “How do end-users perceive
current and future fall risk assessment and fall prevention technologies?” Under-
standing the context of use and discovering user needs are crucial for successful
adoption of new technologies. By involving the real end-users in the development
already at the early phases gives such insight and helps to set requirements for
research and development. Paper I combined qualitative content analysis of focus
group discussions and quantitative rating of fall risk assessment and fall prevention
related scenarios. All five scenarios received positive scores in terms of goodness
grades, which combines the assessments for credibility, usefulness, ease of use,
adoptability, ethicality and desirability on a scale from -50 to 50 (Kenttä, Merilahti,
Petäkoski-Hult, Ikonen, & Korhonen, 2007). Figure 5 represents the goodness
grades calculated for each scenario.

http://www.microsoft.com
http://www.gcdataconcepts.com
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Figure 5. Average goodness grade values per scenario by different groups of re-
spondents.

The scenario introducing intelligent gym equipment received the highest scores
both in Finland and Spain, and especially in Finland it was clearly the most interest-
ing one for the participants, with a goodness grade of 26.8. Also the peer support
functionalities were valued by the participants. Out of 58 participants, 28 had expe-
rienced one or more falls during the last year, and 30 did not have any falls. Eleven
participants rated their balance as poor and 47 participants moderate to very good.
In general, the persons that had experienced a fall during the last year rated all the
scenarios higher, but, on the contrary, those who rated their balance poorer gave
lower scores for all the scenarios on average. The lowest score of 2.8 was given by
the persons with poor self-rated balance for the scenario including monitoring of
daily activities.

Besides answers to the scenario-related questionnaires, the views of the focus
group participants were reflected on their comments during the discussion. They
considered the external fall risk factors as the most important causes of falls, alt-
hough they realized that also intrinsic factors, such as poor muscle strength, dizzi-
ness, low blood pressure, fear of falling and cerebral infarction may cause falls.
According to the focus group participants, the most important actions to prevent falls
were 1) education and structured information about fall risks, 2) removal of environ-
mental risk factors such as poor footwear and rugs, and 3) balance and muscle
strength training. The Finnish participants seemed to be well aware of the topic of
fall prevention, but some of them considered that it does not concern them yet. The
participants expressed varying opinions on who should pay for these kinds of tech-
nologies, whether it should be the municipality or the older users themselves, and
how expensive the solutions will be. The terminology, such as “computer” used in
the focus groups led to ambivalence among the participants.
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3.3 Comparison and visualization of fall risk assessment
scales

This section answers to the second research question: “How is an individual’s fall
risk manifested through different assessment scales?” Currently, the fall risk as-
sessment practices vary substantially and there is no standard set of assessment
scales used by all health care providers. Furthermore, as research has shown, there
are a variety of factors that can cause a fall and often a different combination of
several risk factors can be identified on an individual level. Paper IV applies the
Disease State Index (DSI) algorithm and Disease State Fingerprint (DSF) visualiza-
tion method proposed by Mattila et al. (2011) in the context of fall risk assessment.
The method allows inspection of several assessment scale results at once, reveal-
ing the most sensitive scales in the population in question and projecting the indi-
vidual fall risk in a holistic way.

The DSI is a scalar index value from 0 to 1, indicating the state of fall risk of a
person in this case. An increasing DSI value indicates increasing similarity to the
risk population. The DSI value determination starts from an individual measurement
level, such as a leg adductor muscle strength measurement. The DSI for each indi-
vidual measurement is obtained by comparing that measurement value to previ-
ously known training data using a fitness function. Fitness function gives the DSI
value for that measurement revealing which population, fallers or non-fallers, the
value fits best. The relevance of each variable is computed using the training data.
It indicates how well a variable is able to discriminate between the known faller and
non-faller populations. The composite DSI value, such as lower body muscle
strength, is obtained as an arithmetic mean of individual measurements weighted
by their relevance values. The composite DSI values from lower branch are then
used for evaluating the relevance and fitness functions for the next step, finally
merging into a total DSI value (Mattila et al., 2011).

In Paper IV the study population was divided based on self-reported history of
falls during the last year into fallers and non-fallers. Eleven out of 42 subjects re-
ported having fallen at least once during the last year and 31 had no falls. The tree
structure for the DSF algorithm consisted of 32 features. The balance platform fea-
tures were selected from the parameters given by the balance platform device and
they were grouped under three branches: Romberg quotient, parameters measured
during the eyes open test, and the same parameters measured during the eyes
closed test. Grip strength of right and left hands were grouped under upper body
muscle strength and all the lower body muscle strength measurements were
grouped together, respectively.

Figure 6 represents two example cases, one with history of falls and one with no
falls during the last year. The size of the node boxes shows the relative relevance
of each feature in differentiating fallers and non-fallers. The nodes are organized
according to descending relevance. The colour and number beside the box indi-
cates the similarity of the subject assessment to the positive (fallers) class. Red
colour refers to fallers and blue to non-fallers.
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Figure 6. Example DSF visualizations for two subjects. Subject 1 has not fallen dur-
ing the last year and subject 3 fell once last year.

The example visualizations in Figure 6 show that the ABC total score, BBS total
score and number of drugs in use are the most relevant measurements and differ
the most between the fallers and non-fallers. The relevance of ABC and BBS in
inspecting retrospective falls have been proven by other studies as well. The ABC
scale assesses how confident a person is in maintaining balance while performing
daily activities. A lower score on the ABC scale implies increased fear of falling and
people having experienced a fall before have a lower ABC score (Lajoie &
Gallagher, 2004). In a study by Shumway-Cook et al. (1997) the BBS was found to
be the best in discriminating fallers from non-fallers, where two or more falls during
the last six months was used as a criterion for a faller status (Shumway-Cook,
Baldwin, Polissar, & Gruber, 1997). They did not find a significant difference in
MMSE result or walking speed between fallers and non-fallers, and these assess-
ment scales showed a low relevance also by DSF.

The DSF demonstrates that overall fall risk of an individual constitutes a different
combination of risk factors and both of the example cases have individual assess-
ments that refer to the opposite class. For example, Subject 3, with a history of falls,
has an increased fall risk according to the BBS test result, but many others, such
as ABC score and number of drugs in use, indicate otherwise. The results for Sub-
ject 1, on the other hand, show the opposite with those measures.
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Although the main objective of Paper IV was to compare and visualize the differ-
ent assessment scale results, the DSI was also tested as a supervised classifier.
The classifier was evaluated with the leave-one-out cross-validation method for sen-
sitivity and specificity in separating fallers from non-fallers. The obtained sensitivity
and specificity of classification were 54.5% and 64.5%, respectively. The classifica-
tion of subjects based on their ABC score was also tested with the same three struc-
tures. Although, in that case the ABC score was replaced by the history of falls as
one of the leaf variables in the DSI. The ABC score of 80% was used as a cut-off,
since a score of ≥80% was considered as indicating good functional capabilities
(Myers, Fletcher, Myers, & Sherk, 1998). In the study group, 35 subjects scored
80% or more and seven had a score below that. The sensitivity and specificity of
the DSI classifier to discriminate subjects with an ABC total score lower than 80%
were 71.4% and 88.6%, respectively.

3.4 Accelerometry-based postural control and balance
assessment

This section answers to the third research question: “How can body-worn acceler-
ometry be utilized in assessment of individual fall risk?” The third question has two
parts a) “How can balance ability be estimated from an acceleration measurement?”
and b) “How can prospective changes in fall risk factors be estimated from an ac-
celeration measurement?” As explained in Chapter 2.4, the accelerometry has been
suggested as a means for inexpensive, objective and sensitive fall risk assessment
that adds to or even enhances the traditional assessment scales. There is a need
for data analysis methods that transforms the raw signals produced by accelerom-
eters into meaningful information about a person’s fall risk. The data analysis meth-
ods accompany information about the measurement protocol, i.e. where and how
the sensor should be placed, and what are the most relevant activities to be ana-
lysed.

3.4.1 Assessment of current balance

Paper II demonstrated that the wireless 3D acceleration sensor network setup
tested was feasible for balance assessment. With the study sample, the patients
with a balance-affecting condition proved to have larger step time variability and
lateral displacement amplitude, and smaller vertical displacement amplitude of the
lower back acceleration sensor, than the control subjects. Figure 7 represents the
feature value distributions for the two groups.
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Figure 7. Distributions of accelerometry-based standard deviation (SD) of step
times, lateral displacement amplitude and vertical displacement amplitude values
for Patients and Controls separately. The box represents the range between the first
and third quartile of the sample with a median value marked with a line. The whisk-
ers extend to the highest and lowest values that are within 1.5 times the box range
outside the box borders. The dots represent the outliers beyond the whiskers.

According to Menz et al. (2003), older people adopt a more conservative gait
pattern as a compensatory strategy to stabilize their balance while walking, which
can be seen as smaller magnitude of accelerations at the head and pelvis, reduced
velocity and step length, and increased step timing variability. Also in Paper II study
sample, the SD of step times was larger in the patient group. Vertical displacement
was smaller in the patient group and lateral displacement was larger, respectively.
Increased lateral pelvic displacement has been found to be associated with slower
walking speed (Dodd & Morris, 2003).

The three features calculated in Paper II were tested for their ability to distinguish
patients from controls with SOM clustering and fuzzy classification methods. The
readily available SOM toolbox for Matlab was used to perform SOM clustering and
visual inspection of the data (“SOM Toolbox 2.0,” 2005). The resulting visualization
is a two dimensional grid of nodes that model the higher-dimensional observations.
The grid visualization depicts the similarities among the data, as the nodes with
similar models are closer to each other than the dissimilar ones. In Paper II, the
resulting clustering map was organized so that most of the patient subjects were
gathered at the opposite end of the map than the control subjects, indicating simi-
larity within the groups.

In fuzzy classification, membership functions were determined with the training
data for the two reference classes and for the three features separately. The ob-
tained degrees of memberships from the three features are summed to get the total
degree of membership for both classes: Patients and Controls. The classification
results showed that 6/8 (75%) of the patients were correctly classified as patients,
and 4/6 (67%) of the controls were classified as controls, respectively.

Paper III introduced a method for estimating the BBS score from an accelerom-
eter measurement. The estimation was performed by evaluating similarity between
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subjects’ acceleration patterns measured during 1) different BBS tasks and 2) gait.
Acceleration patterns measured during nine BBS tasks were selected for further
analysis: sit to stand, stand without support, stand to sit, stand eyes shut, stand feet
together, reaching, picking up an object, look behind, and tandem standing. The
BBS score was estimated with combinations of one, two, and three tasks to deter-
mine which tasks lead to the best estimation result. Resultant acceleration during a
particular task was used for pattern comparison. The subjects’ data were normal-
ized to the average length of that task by resampling or decimation to enable wave-
form comparison. In the gait-based BBS score estimation a unique 3D gait pattern
was constructed for each subject. The procedure for this individual signature gait
pattern creation was introduced by Mäntyjärvi et al. (Mäntyjärvi, Lindholm,
Vildjiounaite, Mäkelä, & Ailisto, 2005). It combines a representation of a person’s
gait acceleration in medio-lateral, vertical and antero-posterior directions including
one stride, i.e. steps with right and left leg.

Three different similarity measures were tested in both BBS task and gait pattern
comparisons: Euclidean distance, correlation coefficient, and Tanimoto coefficient.
The BBS score estimate for a person was determined as an average of BBS scores
of the three nearest neighbouring subjects’ that have the most similar acceleration
patterns using leave-one-out cross-validation. The sample was divided into high and
low fall risk groups, based on their BBS score (high fall risk with BBS score 49 or
less). Table 3 represents the best classification results with both BBS tasks and gait
pattern-based methods.

Table 3. The best classification results with three BBS tasks and gait pattern using
the Tanimoto coefficient as a similarity measure

BBS tasks
   stand to sit
   reaching
   picking up object

Gait pattern

Area Under
Curve (AUC)

0.842 0.889

Low fall risk
BBS > 49

High fall risk
BBS ≤ 49

Low fall risk
BBS > 49

High fall risk
BBS ≤ 49

Low fall risk
BBS > 49

62.1 37.9 96.6 3.4

High fall risk
BBS ≤ 49

10.5 89.5 22.2 77.8

Confusion matrices with respect to low- and high-fall-risk groups are presented as
a percentage (%) of correctly classified subjects.

The Tanimoto coefficient provided with the best results, when compared to the
ones obtained with Euclidean distance and correlation coefficient. The study
showed that the selection of a similarity measure has an effect on the results, but
further studies are needed to analyse the significance of the impact and verify the
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optimal choice for the algorithm. The similarity comparison of acceleration patterns
measured during different BBS tasks indicated that the most useful tasks for esti-
mating the BBS total score were “stand to sit”, “reaching” and “picking up object”.
The similarity comparison of the gait patterns resulted in highest AUC value of
0.889. The accuracy in identifying subjects with high fall risk was 77.7% and 96.6%
with low fall risk, respectively. The BBS tasks-based method was more accurate in
identifying subjects with high fall risk with an accuracy of 89.5%.

 As reviewed in Chapter 2.2.1 postural control requires integration of several sen-
sorimotor processes and resources, and the more complex the task at hand is, the
more attentional requirements are required (Lajoie & Gallagher, 2004). The individ-
ual BBS tasks assess a certain aspect, such as co-ordination or muscle strength.
Gait, on the other hand, is a more complex task capturing a wider range of postural
control requirements. The number of BBS tasks in the estimation was limited to
three, thus possibly omitting some of the other important aspects of balance. This
might also partly explain the better overall BBS score estimation results of the gait-
based method.

3.4.2 Prospective fall risk assessment

Paper V was an explorative study were 11 gait features were investigated for their
correlation to decline in nine fall risk assessment scales during a one-year follow-
up. The features were calculated from the resultant acceleration measured from the
lower back during walking. Table 4 summarizes the features that differed signifi-
cantly between subjects whose assessment scale result decreased during follow-
up and subjects having the same or improved result.

Several of the features were significantly different between subjects that had 1)
decreased and 2) similar or improved results in the ABC total score, BBS score,
GDS score and STS-5 test. Average, SD and minimum-maximum range of signal
vector magnitude and average peak acceleration were the most promising gait fea-
tures in separating subjects with negative and positive change in ABC and BBS
scales. There were no significant associations with gait features and changes in
MMSE, TUG, left hand grip strength and falls during the follow-up period. However,
it should be noted that the analysis in Paper V did not take into account the type of
falls and possible accidental falls were not excluded. Out of 36 subjects seven re-
ported having fallen once and two had fallen twice.
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Table 4. Features that differed significantly (p < 0.05, Kruskal Wallis one-way
ANOVA, marked with X) between subjects whose assessment scale result de-
creased during one year and subjects whose result improved or stayed the same.

Features

Assessment scale
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Average of signal vector mag-
nitude (resultant acceleration)
[G]

X X

SD of resultant acceleration
[G]

X X

Range between minimum and
maximum of resultant acceler-
ation [G]

X X

Average step time [s] X X
Average stride time [s] X X
SD of step times [s] X
SD of stride times [s]
Asymmetry between (a and b)
step times

X

Average peak acceleration
(resultant acceleration) [G]

X X X

SD of peak accelerations (re-
sultant acceleration) [G]
Asymmetry between (a and b)
peak accelerations (resultant
acceleration)

X

Often the gait acceleration features have been investigated in cross-sectional
studies for their correlation to contemporary fall risk assessment scale results. SD
of stride times has previously been found associated with the current result of many
fall risk assessment scales. Increased variability was correlated with poor health
status and decreased performance in several balance and functional tests, such as
number of medications, MMSE, grip strength, TUG, and confidence in one’s ability
to perform activities without falling (Hausdorff, Rios, & Edelberg, 2001). Hausdorff
et al. (2001) state that stride-to-stride variability may not be completely independent
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of neuropsychologic function and fear of falling. In Paper V, on the other hand, the
SD of stride times was not significantly associated with change in those scales.
However, there were several other features associated, for example, with change
in ABC scale that is also a measure of self-confidence in performing daily activities
without losing balance.

SD of step times was associated with change in GDS, as were asymmetries be-
tween right and left step times and peak accelerations. Depression (assessed by
GDS) has been found to be associated with falls and fractures. In a study by
Whooley et al. (1999), older women with depression had a greater frequency of falls
(70%) than women without depression (59%).

Paper V demonstrated that associations between accelerometry-based gait fea-
tures and changes in clinical fall risk assessment scales may be found. The results
served as encouragement for further investigation and analysis carried out in Paper
VI.

The purpose in Paper VI was to analyse whether features extracted from waist
acceleration measured during walking would be able to predict decline in balance
during a one-year follow-up. The paper addressed the objective by presenting gen-
eralized linear models for 1) estimating the result of three selected reference meas-
ure: BBS, TUG and 4-metre walk tests and 2) predicting decline in balance, meas-
ured as decrease in BBS total score and BBS sub-component one leg stance.

The acceleration signal was first low-pass filtered (3rd order elliptic infinite im-
pulse response filter, cut-off at 0.25Hz, passband ripple 0.01 dB, stopband at -100
dB) to separate acceleration components due to gravity and body motion. Four sig-
nals, body accelerations in mediolateral (x), vertical (y), and anteroposterior (z) di-
rections, and resultant acceleration, were used for feature extraction. A total of 43
different features were calculated. The features included basic features, such as SD
and signal range, temporal gait features utilizing step detection, resultant accelera-
tion amplitude features and harmonics ratio features were derived from the signal
frequency spectrum. Age and Body Mass Index (BMI) were inserted as control var-
iables. The SFFS feature selection method with ten-fold cross-validation was ap-
plied to derive the models for estimation and prediction.

Ten models were generated in each round of ten-fold cross-validation. The same
features were repeatedly selected as predictors in the models for estimating the
reference scale results. That indicates that those features presumably contain
higher predictive value over the other features. Signal Magnitude Area (SMA), first
six harmonics ratio to the remaining spectrum of mediolateral acceleration, and ratio
of even harmonics to odd harmonics of antero-posterior acceleration were the most
frequently selected features for estimating the BBS score, SMA being the most pre-
dictive. A positive SMA estimate value indicates that the larger the SMA, the larger
the BBS score estimate. SMA represents the amount of acceleration induced to the
sensor. It is suggested that older people adopt a more conservative gait pattern as
a compensatory strategy to stabilize their balance while walking, which leads to
smaller magnitudes of accelerations at the head and pelvis (Menz et al., 2003b),
and thus smaller SMA.
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The third harmonic ratio to the first six harmonics of resultant acceleration and
average of resultant acceleration were the most predictive of TUG time. The regular
gait is dominated by the second harmonic representing the step frequency (Menz
et al., 2003a). Thus, the third harmonic represents a periodicity of higher frequency
than that of step frequency. The larger value of the third harmonic ratio might reflect
a less smooth gait, since it was also associated with longer time in TUG. Resultant
acceleration represents the amount of total acceleration in three dimensions meas-
ured by the sensor. Larger value of the feature average resultant acceleration was
associated with shorter TUG time, which might indicate a less conservative gait pat-
tern and thus presumably faster movement.

 Average step time, average stride time and standard deviation of mediolateral
acceleration were selected most often in the four-metre walk time estimation model.
Average step and stride times are presumably highly correlated with each other. In
fact, when both features were selected in four folds, the estimate value was multiple
times higher for both of them but with the opposite sign. This indicates that the effect
of the other feature was compensated by deducting the other, and only one of the
features should be included in the analysis. Table 5 summarizes the obtained re-
sults.

Table 5. Mean normalized RMSE values for estimating the reference scale result,
the most frequently selected features and the mean estimate values.

Reference
scale

Mean
NRMSE

Most frequently selected features
(number of folds selected in)

Mean estimate
value (minimum –
maximum

BBS
score

0.28 Signal magnitude area, SMA (9)

First six harmonics ratio to remaining
spectrum of mediolateral acceleration
(5)

Ratio of even harmonics to odd har-
monics of antero-posterior accelera-
tion (4)

0.82(0.58–1.15)

0.92(0.82–1.05)

-0.76(-0.98–(-0.60))

TUG time
[s]

0.18 Third harmonic ratio to first six har-
monics of resultant acceleration (10)

Average of resultant acceleration (8)

1.19(0.99–1.31)

-0.87(-1.01–(-0.66))

4-metre
walk time
[s]

0.22 Average step time (10)

Standard deviation of mediolateral ac-
celeration (4)

0.40(0.27–0.53)*

-0.36(-0.44–(-0.23))

* estimate in six folds, where average stride time was not selected as a predictor
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The BBS test has 14 tasks with increasing difficulty and the final components are
considered the most challenging (Berg et al., 1989). In Paper VI, the subjects were
categorized as “balance declined” if their 1) BBS total score decreased or 2) score
in BBS sub-component one leg stance (task 14) decreased during the follow-up
period. Standard deviation of vertical acceleration was selected in every round of
ten-fold cross-validation for predicting decline in BBS total score and one leg stance.
It was also previously found to be associated with prospective falls (van Schooten
et al., 2015). Standard deviation is a measure of dispersion in the data relative to
the mean. In Paper VI, the standard deviation is equal to RMS, since the gravita-
tional acceleration was removed from the three dimensional accelerations resulting
in signals with a zero mean (Menz et al., 2003a). Vertical RMS has also been found
to be strongly correlated (r=0.60) with the Tinetti scale (also known as POMA) and
it had good discriminative power in differentiating subjects with a Tinetti score of ≤
24 and score of > 24 with an AUC of 0.81 (Senden et al., 2012). Table 6 summarizes
the obtained results. Figure 8 represents the ROC plots for the combined output of
ten-fold cross-validation for predicting subjects with decline in BBS total score and
one leg stance during one-year follow-up.

Table 6. Mean classification accuracy, most frequently selected features, mean es-
timate values and AUCs of models predicting decline in balance.

Measure of
decline in
balance

Mean classi-
fication ac-
curacy [%]

Most frequently se-
lected features (number
of folds selected in)

Mean estimate
value (minimum
- maximum

AUC

BBS total
score

69.2 Standard deviation of
vertical acceleration (10)

-1.68
(-3.04–(-1.41))

0.78

One leg
stance (BBS
task 14)

78.5 Standard deviation of
vertical acceleration (10)

-3.77
(-5.89–(-2.75))

0.82
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Figure 8. ROC curves for predicting decline in BBS total score, and one leg stance
during a one-year follow-up.

It was expected that different sets of features were selected for different models,
since the selected reference scales include aspects that measure different charac-
teristics of balance. Age and BMI were not selected as predictors in any of the mod-
els. This suggests that gait features contain additional information about balance,
and age alone does not explain all the changes in balance ability. In comparison,
van Schooten et al. (2015) reported that their falls prediction model AUC rose from
0.68 to 0.82 when gait parameters were added to the traditional questionnaires, grip
strength and trail making test data. In Paper VI, several acceleration spectra-based
features were associated with BBS, TUG and 4-metre walk test, which suggests
that the frequency spectrum of human movement acceleration contains valuable
information with regard to balance assessment. The same conclusion was drawn
by Liu et al., (2011) in their study of accelerometry-based PPA fall risk score esti-
mation. When frequency spectra-based features were supplemented to temporal
and energy-related features the correlation of estimation rose from r=0.81 to r=0.96.
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4. Discussion

4.1 End-user perceptions on fall risk assessment and fall
prevention technologies

The first research question was: “How do end-users perceive current and future fall
risk assessment and fall prevention technologies?” The results of Paper I focus
groups imply that the acceptance of a new technology solution is higher if the solu-
tion is familiar to a person and it can be easily integrated into current daily activities.
Most of the Finnish focus group participants were actively going to the gym and they
rated the scenario with intelligent gym equipment the highest. Furthermore, the par-
ticipants named muscle strength training as one of the most important actions to
prevent falls. Similar observations were made by Mercer et al. (2016) in their study
on acceptance of wearable activity trackers among people over 50 years old. At the
time of study the wearable activity trackers were an emerging technology and the
participants felt that the activity trackers were too new to be comfortable with
(Mercer et al., 2016).

Peoples’ prior experiences and beliefs, e.g. self-efficacy, have an effect on their
attitudes towards new technologies. In Paper I, people with a history of falls seemed
to be more interested in fall prevention than non-fallers, as they usually gave better
ratings to the proposed scenarios. At the same time, people who rated their balance
better evaluated the scenarios higher than people with poor self-rated balance. This
slightly conflicting finding may arise from the fact that people with poor balance ex-
pect to have difficulties in performing physical activities that were part of most of the
scenarios. Older people might also fear the normal responses of physical exercises,
such as shortness of breath, and fear of getting injured and thus limiting their phys-
ical activity (Stevens, Noonan, & Rubenstein, 2010).

Older people often do not want to admit their vulnerability and recognize they
have increased fall risk. They acknowledge the extrinsic fall risk factors rather than
the intrinsic ones. In addition to focus group interviews in Paper I, this conception
was perceived by other studies as well (Robinovitch et al., 2013; Stevens et al.,
2010). The fallers might want to rationalize the falls as having an external, unavoid-
able cause, so that they are not perceived as vulnerable (Robinovitch et al., 2013).
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4.2 Comparison and visualization of fall risk assessment
scales

The second research question was: “How is an individual’s fall risk manifested
through different assessment scales?” Paper IV presented a method for comparing
and visualizing the results of different fall risk assessment scales at once utilizing
DSI and DSF methods. As explained in Chapter 2.2 individuals have a different
combination of risk factors contributing to the overall fall risk. This could be seen
also in the study population in Paper IV through DSF visualization. This is important
to realize when selecting the assessment scales in practice, so that they capture all
relevant aspects of fall risk.

The visualization in Paper IV gives an indication of which assessment scales dif-
fer the most between fallers and non-fallers among relatively well-functioning older
people. However, the use of DSI as a classification method provided rather low
sensitivity and specificity with this sample. The DSI method is based on distributions
of faller and non-faller training data, and thus would require a representative training
set from both populations. In Paper IV the sample size was small and all the subjects
were in quite good physical condition resulting in highly overlapping distributions of
the fall risk assessment data. Furthermore, self-reported falls information during the
last year was used as a reference. According to a study by Mackenzie et al. (2006)
with 264 subjects over the age of 70 years, retrospective self-reported fall rates may
be under-reported. The sensitivity of recalling the falls from the previous six months
was only 56% (Mackenzie, Byles, & D’Este, 2006). Also in Paper IV, any possible
accidental falls were not excluded and the person was considered a faller already
when there was one fall during the last year. The deficiency in training data presum-
ably was reflected as low sensitivity and specificity of classification results.

The DSI method’s advantage is in that it supports different types of tests and
variables. It provides a large amount of data about the individual back to the clinician
in a way that the clinician is able to concentrate on important information and ignore
irrelevant information (Mattila et al., 2011). That would be especially beneficial for
clinicians with less experience, since they are often unaware of existing fall risk as-
sessment scales and how to select the appropriate ones (Perell et al., 2001). Further
study with a larger sample utilizing the DSF method is needed, possibly with several
subgroups representing older people with different levels of fall risk. Also, the se-
lection of a tree structure influences the results and needs to be studied further.

4.3 Accelerometry-based postural control and balance
assessment

4.3.1 Assessment of current balance

The third research question was: “How can body-worn accelerometry be utilized in
assessment of individual fall risk?” In more specifically question 3a asked: “How can
balance ability be estimated from an acceleration measurement?” Through papers
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II, III and VI, different methods are introduced to derive accelerometry-based bal-
ance assessment that is compared to the current status as measured by clinical
assessment scales. In Paper II, the sensor displacement trajectory was calculated
by double-integrating the acceleration signal. The offset was corrected at each point
by subtracting an average of two consecutive steps, one step before and one step
after the point in question. The offset correction method used may have attenuated
the actual position trajectory peaks. Sensor fusion, e.g., an accelerometer and gy-
roscope might overcome this problem and more accurate position information could
be obtained.

In Paper III, two methods for estimating the BBS score of a person were intro-
duced. The BBS score estimation based on gait patterns worked better compared
to the BBS tasks based method. It is reasonable, since maintaining balance during
gait represents considerable challenges to the postural control system and the gait
patterns change with age due to declines in sensory functions and muscle strength
(Lord et al., 2001). The individual BBS tasks, on the other hand, assess more spe-
cific aspects of balance. The analysis of the acceleration patterns during BBS tasks
gave an indication of which BBS tasks are best able to categorize people into high
and low fall risk groups. If sufficient balance estimation would be achieved with a
smaller number of tasks, it would reduce the time required to administer testing.
Since the proposed method assesses the similarity between the subjects, a com-
prehensive pool of reference data would be needed in order to achieve a proper
estimate for a subject’s BBS score. Based on classification results, the method in
its current form could be applied for rule-out purposes, i.e. to confirm that fall risk
has not increased, as it has higher sensitivity for detecting persons with low fall risk.
The data set in Paper III was skewed toward higher BBS scores, presumably caus-
ing the tendency to overestimate especially the lower BBS score estimates.

The methods introduced in Papers II, III and VI rely on manually annotated ac-
celeration data. However, there are several studies demonstrating walking activity
detection from an accelerometry measurement (e.g. Karantonis et al., 2006;
Könönen, Mäntyjärvi, Similä, Pärkkä, & Ermes, 2010), and thus showing the poten-
tial of transferring these methods into real-world, long-term monitoring applications.
Moreover, the approach used in Paper III to construct the individual gait pattern for
comparison process is not yet fully automatic and needs also to be improved to
enhance its applicability in real environment solutions.

4.3.2 Prospective fall risk assessment

The research question 3b was: “How can prospective changes in fall risk factors be
estimated from an acceleration measurement?” In order to prevent falls, it is crucial
to detect balance problems early enough and thus estimate prospective fall risk
more accurately. Papers V and VI showed that accelerometry has potential in de-
tecting early signs of balance deficits. Gait acceleration analysis presumably can
reveal more subtle changes in physical functioning that are not yet seen by the tra-
ditional clinical fall risk assessment scales.
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Paper V was a first attempt to investigate simple gait features and their associa-
tion with decline in clinical assessment scales after one year. A significant associa-
tion was found between gait features and several assessment scales. The signifi-
cant gait features differed between the assessment scales, which is expected as
the assessment scales measure different fall risk factors. The results infer that gait
contains information about multiple fall risk factors.

Paper IV showed that the ABC score was the best assessment scale able to
differentiate between fallers and non-fallers based on history of falls information.
The decline in the ABC score suggests that the person is less certain that they will
maintain their balance while performing activities of daily living and thus is more
prone to falls (Pajala, 2012). Further analysis of the same data set in Paper V indi-
cated that several calculated gait features were associated with the decline in the
ABC score after one year. The results of Papers IV and V are interesting and en-
couraging for future investigations to validate these findings with a larger sample.

The selected features were different for the estimation of balance assessment
scale result and for prediction of decline in balance in Paper VI. van Schooten et al.
(2015) reported similar findings that different gait characteristics were associated
with retrospective falls and prospective falls. This suggest that the sensor-based
algorithms that are supposed to prospectively predict future falls or weakening of
physical condition should be developed and validated on prospective data.

Paper VI constructed two regression models for predicting decline in balance
during a one-year follow-up. The prediction of change was inspected as a binary
value: decline vs. no decline. This approach did not take into account the amount of
decrease in BBS scores. A decrease of one point or more in BBS total score, and
in the one leg stance for the second model, was considered as a decline in balance.
The study sample was considered too narrow for predicting the actual decrease.
Sheehan et al. (2014) predicted decline in balance with baseline quantitative TUG
parameters, and resulted in AUC values of 0.7 and 0.8 for predicting decline of four
or more points in total BBS score and two or more points in the one leg stance,
respectively. The AUC values in Paper VI were, however, corresponding, since AUC
was 0.78 for predicting decline in total BBS and 0.82 for predicting decline in one
leg stance. The results of this study suggest that a decline as subtle as one point in
BBS might be predictable with gait accelerometry.

The accelerometry-based methods presented here assess principally the pos-
tural control and mobility of a person, which represent a part of intrinsic fall risk
factors and thus do not cover the entire risk of future falls. Also the reference clinical
measures, such as TUG and BBS, display uncertainty in prediction of future falling.
TUG was selected as a reference measure in Paper VI, since it is widely used to
assess the mobility of an older population. However, there are several counter ar-
guments for its ability to predict falls. Barry et al. reviewed that TUG score alone
does not adequately encompass multiple fall risk factors and it needs to be comple-
mented with other assessments to improve its prediction accuracy (Barry et al.,
2014). In a one-year follow-up study by Lin et al. (2004), TUG was also found to not
be responsive to falls, although it had a small but clinically meaningful responsive-
ness to decline in activities of daily living performance, which require balance ability.
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The DSF visualization in Paper IV inferred also that in the study population the TUG
score was not substantially different between subjects with history of falls and non-
fallers.

According to Muir et al. BBS is inadequate for identifying the majority of people
at risk of falling, although it has a good discriminative ability to predict multiple falls
(Muir et al., 2008). However, a decrease in assessment scales measuring postural
control and mobility is an important indication of decline in physical functioning and
should lead to preventive actions. Thus, estimating balance and other fall risk fac-
tors might prove to be a more coherent reference for developing prediction instead
of falls. As explained in Chapter 2.2, falls are caused by a multitude of reasons,
which makes them difficult to predict. It seems that it may be more accurate to esti-
mate a decrease in balance than actual future fall events.

4.4 Study limitations and future prospects

The mutual limitation in Papers II–VI was the rather small sample size ranging from
15 to 54 subjects, which limits the generalizability of the results. It is the topic of
future studies to evaluate the clinical validity of these models with a larger data set.
Also the data used in the analyses were collected under a supervised condition,
which measures the performance at that specific moment. Acceleration measure-
ment during daily life could provide a more reliable balance and mobility assess-
ment. Weiss et al. (2013) have demonstrated that accelerometry-based gait fea-
tures from daily activity monitoring provide valuable information for the fall risk as-
sessment. They found mild to moderate correlations between at-home gait features
and in-laboratory fall risk assessment scales, such as BBS and TUG (Weiss et al.,
2013).

It should also be noted that the feature pool used for deriving the prediction mod-
els in Paper VI was large and possibly contained redundant features. Some of the
calculated features might have been highly correlated with each other and initial
feature selection, e.g. by correlation or PCA, could be applied to reduce dimension-
ality.

The results presented in Papers I–VI are indicative that a simple walk test with
wearable monitoring has a potential for identifying people with early signs of balance
deficits. It could be applied, for example, as a supervised quick screening test or
integrated as part of a long-term activity monitoring solution. However, before the
accelerometry methods proposed are ready to be integrated in real consumer prod-
ucts, a rigorous validation should be made. The validation should be done with an
external prospective data set that is representative of the older population. The ef-
fect of measurement context should also be investigated in the future to determine
whether the same data analysis methods are applicable for the data collected in
real-world settings.
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5. Conclusions

In this thesis, data analysis methods for fall risk assessment of older adults were
proposed. Three research objectives were addressed though six original publica-
tions. The end-user perceptions and understanding of technology context were ob-
tained through focus group scenario evaluations. Different fall risk assessment
scales were compared and visualized utilizing DSI and DSF methods that were
novel to this application field. Three data sets with body acceleration measurement
were used in developing methods for assessment of current balance and prediction
of decline in balance during a one-year follow-up.

The first research question asked how do end-users perceive current and future
fall risk assessment and fall prevention technologies. Fall risk assessment and fall
prevention scenario evaluation with older people showed that new technologies in-
troduced to the end-users should not be too different from the ones they are cur-
rently familiar with. Also people’s prior experience and self-efficacy presumably af-
fect the acceptance of new solutions.

The second research question asked how an individual’s fall risk is manifested
through different assessment scales. The DSF visualization method demonstrated
that visualization of an individual’s fall risk factors is important, especially for the
clinician to gain a comprehensive understanding of a specific person’s fall risk. Peo-
ple may have different combinations of fall risk factors that affect total fall risk. The
method also showed which assessment scales differ the most between the persons
at risk and persons without risk.

The third research question asked how body-worn accelerometry could be uti-
lized in the assessment of individual fall risk. The results showed that accelerome-
try-based gait analysis could be applied in assessing the postural control and mo-
bility of a person. This thesis brought up potentially relevant gait features that are
associated with static and dynamic balance ability. Furthermore, the results indi-
cated that accelerometry has the potential to detect early signs of balance deficits.

The results of this thesis can be used as a basis for future studies, where the
findings can be validated with larger data sets. Also, other reference scales not used
in the analyses should be investigated, since the methods are likely to be general-
izable to other measures of balance as well.
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Abstract. Information and communication technologies (ICT) provide means 
for developing new tools for preventing falls. To enhance adherence to fall pre-
vention interventions, end users need to be engaged from the early phases of the 
development process. This paper reports the focus group evaluation of five sce-
narios related to fall risk assessment and fall prevention. There were four focus 
groups with older adults in both Finland and Spain; 58 participants in all. The 
most interesting features for the interviewees were usage of intelligent gym 
equipment, the possibility of peer support and multi-factorial fall risk assess-
ment. The scenario with intelligent gym equipment rose above the others 
among Finnish participants, while the scenarios were ranked more evenly by 
Spanish correspondents. The analysis showed that a personal history of falls 
and a connection to current habits and routines affected the reception of the 
proposed solutions. 

Keywords: fall risk, fall prevention, older adults, ambient assisted living. 

1 Introduction 

One third of people over the age of 65 fall at least once each year [1]. Falls have a 
negative effect on a person’s quality of life, as they may lead to serious injuries and 
added fear of falling again, not to mention the increased health care costs [2].  In or-
der to prevent falls efficiently, the fall risk of a person needs to be assessed. As an 
example, clinically proven assessment scales such as the Berg Balance Scale [3] and 
Physiological Profile Assessment [4] test postural control and physical functions. 
Furthermore, the Downton Index [5] also considers previous falls, medication,  
sensory deficits and mental state to constitute a fall risk index, to mention but a few 
examples. 

According to Gillespie et al. [6], these interventions are likely to be effective, 
whether targeting multiple risk factors or taking a more specific approach, such as 
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combined muscle strength and balance training. Optimal approaches involve interdis-
ciplinary collaboration [7]. Individually tailored interventions are found to be espe-
cially beneficial in preventing falls [6]. Information and communication technologies 
(ICT) provide means for developing new tools for fall prevention. In order for inter-
ventions to be effective, it is of the utmost importance for the target user to comply 
with the program. For example, in a fall prevention study in Australia, only 21% of 
the 5,681 study participants did balance or strength training and just 3% did both fol-
lowing the recommendation of exercising two days a week [8]. Developers must ac-
knowledge the barriers and motivators for physical exercise that older people perceive 
[9], in order to improve the adherence of such interventions. Thus it is key to engage 
end users from the earliest stages of the development process. 

The aim of our research is to iteratively develop and evaluate tools for fall risk as-
sessment and fall prevention. This paper reports the results from a cross-cultural focus 
group evaluation of five functional scenarios of the prospective system with older 
adults in two countries: Finland and Spain. 

2 Methods 

2.1 Scenarios 

The scenarios are narrative stories that explain the functionalities and flow of events 
of the system from the end-users’ point of view. Five different scenarios were jointly 
created by the research partners, who have backgrounds in fields such as mathemat-
ics, economics, medicine and software engineering. Short descriptions of the main 
features are explained in Table 1. 

Table 1. Main Features of the Evaluated Scenarios 

Scenario Users Main features 
A: Fall risk 
assessment and 
prescription of 
fall prevention 
interventions 

Elsa, 80 years old, 
living at home 

Doctor, physical 
therapist, nurse 

Elsa’s daughter 

- doctor, physical therapist, Elsa and Elsa’s daughter fill in 
fall risk assessment scales 

- combined fall risk estimate based on all the scales and tests 
- guidance for fall prevention based on test results 
- follow-up 

B: Self-
monitoring of 
fall risk 

Lisa, 65 years old, 
living at home 

 

- guidance through home terminal device to perform certain 
physical tasks while wearing an activity monitor 

- fall risk calculation 
- statistics and exercise guidance based on results 
- data transfer to central database (for doctors etc.) 

C: Active fall 
prevention 

Helmi, 82 years 
old, living at home 
with her husband 
and dog 

Physical therapist 

- intelligent equipment at the gym  
- personal ID card that can be inserted into apparatuses at the 

gym for viewing of exercise plans and automatic follow-up  
- data transfer to the home computer with the same ID card 
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Table 1. (continued) 

D: ADL moni-
tor & fall pre-
vention system 

David, normal 
healthy person, 65-
75 years old 

General practition-
er  

- monitoring of activities of daily living (partly automatic, 
partly self-registered) through home system (PC, webcam, 
smartphone) 

- proposing physical and mental exercises based on ADL 
assessment 

- alert in case of deterioration trend and prompt for a visit to 
the general practitioner 

E: Fall preven-
tion by building 
confidence, 
physical exer-
cise and social 
support 

Aino and Reino, 
retired couple, 75-
80 years old 

- intervention club (a group of older adults who want to 
prevent falls) all provided with a home device (e.g. tablet) 

- exercise guidance and information videos (motivation, 
safety, etc.) 

- monitoring of exercises performed 
- peer support by other club members via the device: compar-

ison of results, discussions, motivation 

2.2 Focus Group Evaluation 

Four focus group interviews, with 5-8 older adult participants in each, were organized 
in Tampere, Finland (N=29 in total, aged 63-93 years, mean 74 years). The recruited 
voluntary participants were residents of privately owned senior houses. Furthermore, 
four focus group interviews, with 5-10 older adult participants, were organized in 
Madrid, Spain (N=29 in total, aged 56-96 years, mean 73 years). Two of the groups 
were of patients at the Hospital La Fuenfría; a third group’s participants were inde-
pendently living senior citizens, members of the Cultural Centre in the town of  
Cercedilla (Madrid), and a fourth group were also independently living older people 
attending the Primary Care Centre of Monterrozas in Las Rozas (Madrid). 

After a short introduction to the project, the participants were asked to fill in a 
background questionnaire about demographics, current usage and attitudes towards 
technology, fall history and possible conditions affecting their balance. The scenarios 
were explained one by one, while a picture or a sketch elucidating the story was 
shown to the participants. After each scenario the interviewees filled in a question-
naire with six aspects adopted from Ikonen et al. [10]: credibility, usefulness, ease of 
use, adoptability, ethicality and desirability.  Each aspect was rated on a five-point 
Likert scale; strongly agree, agree, undecided, disagree and strongly disagree. In addi-
tion, a willingness to pay option was included in the questionnaire for each scenario in 
the Spanish focus groups, whereas in the Finnish focus groups this topic was covered 
in the discussion. 

The moderators encouraged the participants to freely discuss the scenarios in order 
to elicit open comments and gather possible improvement ideas. Through semi-
structured discussion before and after the scenario evaluation, the participants were 
asked about their current knowledge of fall risks and perceptions on fall prevention 
activities. The discussions were recorded for later analysis.  

2.3 Data Analysis 

To compare the different scenarios a Goodness Grade, applied from Kenttä et al. [11], 
was calculated for each scenario. The answers for the Likert items were translated 
into numerical form from -2 to 2, with 2 representing the answer “strongly agree” and 
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-2 “strongly disagree”, respectively. The sum of all the answers for the same question 
is adjusted for answer frequency to that particular question. The results are presented 
as percentages from -50 to 50. 

The focus group recordings were examined to collect the comments emerging dur-
ing the scenario evaluation and the semi-structured discussions. 

It is also important to note that the Likert items represent individual ‘attitude’ or 
‘opinion’ with respect to a statement. The statement can be apparently logical, even 
close to a formal predicate in first-order logic, but the specific Likert item selected 
should not necessarily be seen as an objective truth value that the individual attaches 
to the statement. Some responders in a population might have a stronger background 
for logical thinking, some a weaker one. This means, on the one hand, that responses 
are not always comparable and, on the other, that transference from Likert items and 
scales to other items and scales must be done with the utmost care. Furthermore, test 
groups responding with Likert items are usually not given any detailed guidelines, e.g. 
concerning the difference between ‘agree’ and ‘strongly agree’. 

2.4 Statistical Power 

Hypothesis testing is comparing mean values for population groups. If the mean  
values are closer to being the same, we are closer to the ‘truth’ concerning the null 
hypothesis, i.e., closer to ‘not significant’, which means we have not found enough 
evidence against the null hypothesis. Conversely, ‘significance’ means having found 
evidence against the null hypothesis, i.e., there is a ‘significant’ difference in the 
mean values. Note, however, that “no evidence for difference” is not the same as “no 
difference”. 

In our paper, the sample size is rather small relative to conventional ways of pro-
viding power calculations, which focus on type II error, i.e., false negatives. However, 
the sample size is not “too small” to provide some discussions and reach some con-
clusions, e.g. about differences in means. 

Suppose we aim at a statistical significance level of 0.05 with 80% power. Then 
the sample size, using Altman’s monograms [12], should be = × . ; %                                                       (1) 

in each arm of the trial, where the standardized difference is the ratio between differ-
ence in mean and standard deviation = ( )( ) .

                                                (2) 

As an example, consider the sample divided into two fairly equal-sized groups. As 
c0.05;80% = 7.9 and the groups’ answers have a difference in means of close to 0.5 and 
variances close to 1, according to (1) and (2), we obtain an ideal sample size of n = 
63. I.e., we are fairly close the ideal sample size for a typical hypothesis testing. 
These observations also show how extended tests can be performed. 
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3 Results 

3.1 Questionnaire Results 

At least one of the six aspects (credibility, usefulness, ease of use, adoptability, ethi-
cality and desirability) was evaluated by all the focus group participants for scenarios 
A and B. In addition, some participants did not evaluate all the scenarios resulting in 
response rates of 87.9%, 89.7%, and 86.2% for scenarios C, D, and E respectively. 
The first Spanish group with five people was not presented with scenarios C, D and E.  

Fig. 1 presents the overall and separate goodness grades for Finland and Spain for 
each scenario. On a scale from -50 to 50, scenario C scored the highest total goodness 
grade of 22.6, as it did in both countries separately. In Finland, scenario C was clearly 
the best received, with a score of 26.8, whereas in Spain the ratings were more even.  

 

Fig. 1. Left: Goodness grades among all respondents (N=58). Right: Goodness grades among 
Finnish (N=29) and Spanish (N=29) interviewees separately. 

 

Fig. 2. Left: Goodness grades among subjects based on number of falls during the last year; one 
or more falls (N=28) and zero falls (N=30). Right: Goodness grades among subjects based on 
self-rated balance; poor or very poor (N=11) and moderate to very good (N=47). 
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28 of 58 focus group participants had fallen at least once during the previous year 
and 64.3% of those still rated their balance as moderate or better, and 32.1% as good 
or very good. Fig. 2 illustrates how people with a history of falls rated each scenario 
compared to non-fallers, and how people with poor self-rated balance answered com-
pared to people with good self-rated balance.  

There was a clear correlation between the desirability to use an ICT-based fall pre-
vention system and current computer use. Using the average of all answers to the 
questionnaire, the mean to the question “I would like to use it” among those using a 
computer is 2.38 while the mean among those not using a computer is 2.97 (5 
representing absolute rejection and 1 absolute willingness). The difference in mean is 
therefore 0.59. 

Willingness to pay was introduced separately for each scenario in the Spanish 
questionnaire. The results correspond with the qualification given to each scenario. 
The first number denotes average points for all seven questions, and the second num-
ber is the average for the willingness to pay question:  A 2.5/3.1; B 2.5/3.0; C 2.4/2.6; 
D 2.7/3.1; E 2.4/3.0 (5 representing absolute rejection and 1 absolute willingness).  

3.2 Qualitative Data Results 

According to participants in both countries, external factors were by far the most im-
portant cause of falling, i.e. slippery roads, bad footwear and rugs. Intrinsic factors 
that were mentioned included poor muscle strength, dizziness, low blood pressure, 
fear of falling and cerebral infarction.  

Focus group participants considered education important, i.e. sharing information 
about fall risks and fall prevention either among their peers or by professionals. Finnish 
interviewees called the topic of fall prevention very well known by them, although some 
people considered that it doesn’t apply to them at this point. On the other hand, the Span-
ish older adults complained about a lack of structured information about falls before they 
or people in their near circle fall. In addition to proper footwear and environmental mod-
ifications, such as removing rugs, many of the respondents suggested balance exercises 
and strength training as means for preventing falls.   

Opinions on willingness to pay for these kinds of solutions differed. Some consi-
dered them useful and said they would pay at least some money themselves while 
others were not willing to pay at all. Some people were worried that it wouldn’t be 
possible on their low retirement allowance. They said the municipality should be  
responsible for the costs, since using these kinds of systems can reduce health care 
expenses. 

Many of the participants expressed an interest in participating in the development 
in the later stages of the project as field trial users of the future system. Scenario C 
was the most attractive to focus group participants. Comments included: “It is the 
most feasible” and “most usable in real life”. The social aspect of scenario E was 
found positive by many. They valued the peer support and cooperation features. 
However, there were some that thought they might feel pressured when it came to 
comparing their own performance with others.  
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The usage of the word “computer” in the scenarios caused ambivalence among 
some users who did not currently own a computer. Some suspected that the proposed 
solutions could not be implemented in real life. There were worries about who would 
carry out the fall risk evaluations and how much they would cost. 

4 Discussion 

The overall goodness of all scenarios was positively evaluated, since there were no 
negative grades on the scale from -50 to 50. The three best-liked scenarios, those 
introducing intelligent gym equipment, peer support, and multi-factorial fall risk as-
sessment, were the same in both countries, Finland and Spain. In Finland, scenario C 
rose clearly above the others. One contributory factor may be that it was the most 
familiar to many of the Finnish interviewees, since most of them were actively going 
to gym already. Scenario D, with the lowest goodness grade in both countries, may 
have been too technical for many and difficult to understand.  It contained several 
different features and perhaps should have been broken down into smaller sub-
scenarios. In addition, it should be noted that the personality of the moderator may 
have had an effect on the results, as participants were divided into subgroups led by 
different moderators. 

Interestingly, people with a history of falls usually gave better ratings to the proposed 
scenarios than non-fallers. This could indicate that people who have fallen before are, on 
average, keener on fall prevention. At the same time, people who rated their balance better 
evaluated all the scenarios better than people with poor self-rated balance. This might arise 
from the fact that, for people with poor balance, it is difficult to perform the physical activ-
ities that are part of most scenarios. Also Stevens et al. [13] reported that older adults often 
believe themselves to be too old or frail for physical exercise. 

The participants were quite well aware of fall risks, which may be due to the fact that 
they were recruited on a voluntary basis, implying that only people interested in fall pre-
vention participated. Similarly to Stevens et al. [13], the first responses to the question on 
causes of falls usually related to extrinsic factors rather than intrinsic factors.   

There were some interviewees in the focus groups that did not currently own com-
puters, which caused some confusion for them. However, the situation will presuma-
bly be different in the future, since older adults ten years from now will most  
probably be used to working with computers.  

In future work, evaluation results will be used for system requirement specifica-
tions. Similar focus group interviews will also be organized with professional end 
users, e.g. physical therapists, doctors and other caregivers. Furthermore, it would be 
interesting to evaluate the same scenarios at the end of the project to observe possible 
changes in older adults’ perceptions and attitudes towards the presented ideas.  
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Abstract—Balance and gait are a consequence of complex 
coordination between muscles, nerves, and central nervous 
system structures. The impairment of these functions can pose 
serious threats to independent living, especially in the elderly. 
This study was carried out to evaluate the performance of a 
wireless acceleration sensor network and its capability in 
balance estimation. The test has been carried out in eight 
patients and seven healthy controls. The Patients group had 
larger values in lateral amplitudes of the sensor displacement 
and smaller values in vertical displacement amplitudes of the 
sensor. The step time variations for the Patients were larger 
than those for the Controls. A fuzzy logic and clustering 
classifiers were implemented, which gave promising results 
suggesting that a person with balance deficits can be recognized 
with this system. We conclude that a wireless system is easier to 
use than a wired one and more unobtrusive to the user. 

I. INTRODUCTION

AINTAINING balance while walking and performing 
other everyday activities has a great impact on quality 

of life. Disorders of balance and gait have serious 
consequences, since falling can cause serious injuries or 
even death. In Finland, falling has been estimated to cause 
the death of more than one thousand persons annually 
among people over 50 years old [1]. Preventive measures 
could reduce the risk of falling by 20 – 40 % [1].  

Nowadays, balance and gait evaluations usually depend 
on visual objective estimation or on expensive laboratory 
equipment, such as a force platform or video camera system. 
A wireless acceleration sensor network provides for a 
reasonably priced ambulatory measurement system that is 
unobtrusive to the user.  

II. METHODS

A. Wireless Sensor Network 
A fundamental part of this measurement system is a 

SoapBox (Sensing, Operating and Activating Peripheral 
Box). Five SoapBoxes are used to implement an acceleration 
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sensing wireless body area network (WBAN) (see Fig. 1). A 
SoapBox is a flexible and reusable platform for several 
applications in ubiquitous computing. The matchbox-sized 
SoapBox module has a processor, five sensors and wireless 
and wired communication capabilities. Although the 
SoapBox includes several types of sensors, only the 3D 
acceleration sensor is used in this application. The 
acceleration sensor is constructed of two +/-2g Analog 
Devices (ADXL202JE) [2], [3]. 

The WBAN arrangement in this research consists of one 
central SoapBox and four remote SoapBoxes. The remote 
SoapBoxes measure 3D acceleration at a 41.25 Hz sampling 
rate and the central SoapBox has a sampling rate of 33 Hz. 
The central node receives the data from the remote nodes 
wirelessly using a 1 mW licence free 868.35 MHz radio (RF 
Monolithics TR1001). A time division multiple access 
(TDMA) based medium access control (MAC) protocol is 
used for data transfer. The central node forwards both its 
own and the received data to a Nokia Series 60 mobile 
phone. This time a Bluetooth connection (F2M01 serial-to-
Bluetooth adapter) is used for data transfer [2], [3]. 

Fig. 1.  The overall network topology and device setup. 

A MotionLogger (Series 60 Symbian [4] application) is 
created on the mobile phone for storing the WBAN data. An 
annotation feature is added to help distinguish between 
different events in the data at the data processing phase. The 
user adds an annotation label to the data, which stands as a 
mark for the starting point or ending point of a certain event. 
The measured data is transferred to a PC via a Bluetooth 
connection.   

B. Measurements 
The system was tested by executing balance and mobility 
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tests at the Rokua and Kajaani Rehabilitation Centres under 
the supervision of a trained physical therapist. The test 
subjects performed several tasks, for example, walking 10m 
as fast as possible, standing up from a chair, Berg’s balance 
test etc. wearing the wireless sensor network. The SoapBox 
sensors are attached with five specially made rubber bands, 
where a pocket for the SoapBox and its battery is sewed to 
each band. The rubber bands are fastened into place with a 
two-sided adhesive sticker, which is sewed to the rubber 
band so that it doesn’t lose its elasticity. One sensor is 
placed on the lower back at approximately the height of the 
centre of mass. Two of the sensors are attached to the 
outsides of the knees and two to the outsides of the ankles. 
The purpose is to align the sensor axes so that when a person 
is standing in an upright position, one axis is pointing to the 
side, one axis backward or forward and one axis up or down.  

We have included eight patients and seven healthy 
controls in this study (Table I). The study was carried out in 
all subjects after informed consent and in agreement with the 
Helsinki declaration. The subject qualifies as a patient if 
he/she has an illness that may affect his/her balance. The 
results of the 10-meter walk task are presented. 

TABLE I
BACKGROUND INFORMATION OF THE TEST SUBJECTS

Subject 
Patient (P)/ 
Control (C) 

Male (M)/ 
Female (F) 

Age 
(years) Diagnosis 

P1 M 51 MS, spastic, ataxia 
P2 M 55 Dystonia, backwards falling 

attacks 
P3 F 77 Left falling attacks 

occasionally, left hearing 
deficiency 

P4 F 49 Rheumatism, shortening of 
right leg (3cm), stiff right 
ankle, artificial joint in both 
hips and left knee 

P5 F 55 Rheumatism, shortening of 
right leg (3cm), knee 
valgus, stiff ankle, left knee 
instability, artificial joint in 
both hips and left knee 

P6 F 54 Left hemiplegia 
P7 M 61 Mild left leg paralysis 
P8 M 64 Right hemiplegia, ankle 

support, stick 
C1 M 81 - 
C2 M 80 - 
C3 F 79 - 
C4 F 67 - 
C5 F 20 - 
C6 M 56 - 
C7 M 49 - 

C. Tilt Normalization 
Tilt normalization is performed for the hip sensor. The 

sensor axes are rotated so that the up – down axis is in the 
same direction as the gravitational force. This algorithm, 
adopted from [5], only corrects the average tilt due to 

inaccurate attachment of the sensor or different body shapes, 
not the dynamic tilt caused by human movements. The same 
tilt normalization method was found useful in user-
independent gesture recognition in [5].  

D. Parameters 
As stated in [6] and [7], a person can be identified from 

the gait data measured using accelerometers. Thus, it is 
reasonable to believe that disorders affecting balance of gait 
are also noticeable from the acceleration data measured 
while walking. The human gait has been studied several 
times before in the context of balance estimation using 
different types of measurement systems. One example is 
Hausdorff et al [8], who investigated gait variability and its 
relationship to fall risk among older adults using force-
sensitive insoles. This approach is now applied to the 
accelerometer-based system. A hip sensor placed on the 
lower back is most suitable for detecting time variables of 
gait, since it contains information from both legs (right and 
left leg). Heel strikes cause peaks in the vertical acceleration 
signal measured from the hip. The maximum peaks are 
detected from the data, and the step times are calculated 
using the time span between the peaks. A standard deviation 
of the step times within a data clip is calculated. 

The amplitude values of the position trajectories of the 
sensor are also interesting. As Dodd et al [9] investigated 
lateral pelvic displacement (LPD) in stroke patients, this 
research also studies the same feature and its relationship to 
the balance and stability of walking. Position trajectory of 
the sensor is calculated for the walking data by double-
integrating the acceleration signal. An offset fluctuation is 
diminished by calculating a correction curve, which is then 
subtracted from the integral. The correction curve is 
obtained by calculating an offset value for every point, 
which is an average of two consecutive steps that is, one step 
before and one step after the point in question. The 
underlying assumption when calculating the position 
trajectory of the sensor during gait is that, on a level surface, 
the accelerations in lateral and vertical directions should 
have a zero mean value. The correction curve may somewhat 
attenuate real transitory peaks in position trajectory. 
Similarly, the swinging and slight deflection of the sensor 
during walking makes the absolute values of the position 
partly indicative, but differences between position 
trajectories of different persons can still be distinguished. 
Maximum and minimum amplitudes in the lateral position 
trajectory represent displacements to the right and left. The 
total amplitude value is a sum of average right and average 
left amplitudes, that is, an average of total lateral amplitude 
of the sensor. The total vertical displacement amplitudes are 
also investigated where the averages of up and down 
amplitudes are combined. 

E. Subject Classification 
The subject classification utilizes the self-organizing map 

(SOM) clustering [10] and fuzzy logic methods. The 
clustering is carried out with algorithms implemented in the 
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SOM toolbox from [11]. Prior to clustering, the variables are 
normalized using the toolbox’s functions so that their 
variance is set to unity and their mean to zero. This ensures 
equal emphasis on every variable regardless of their 
numerical range. In the fuzzy logic analysis, the leave-one-
out method is used to obtain membership functions for the 
two groups Patients and Controls. For the subject left out, 
the degrees of membership are determined from the 
functions obtained with the other subject’s parameters. The 
four nearest to the median values of the Patients are used to 
define the membership function for that group. The average 
value of them is set to 1 and the minimum and maximum 
values to 0, which results in a membership function shaped 
like a triangle. The membership function for the Controls is 
evaluated similarly. The degree of membership of the 
subject in both groups is determined with the membership 
functions for every three variables separately. The total 
degree of membership is obtained by adding all three 
degrees of membership values in the Patients group and all 
three degrees of membership values in the Controls group. 
Thus, the maximum total degree of membership in a group 
can be three. The subject is classified as belonging to the 
group in which it has the larger degree of membership. 

III. RESULTS

Vertical acceleration of the hip sensor during walking is 
used in the evaluation of time values. Fig. 2 presents 
standard deviations of the step times for both Patients and 
Controls.  

Fig. 2.  Standard deviations of the step times evaluated from 
the acceleration measured from the hip during walking. The 
white boxes contain the four nearest to the median values of 
the Patients (n=8) and the three nearest to the median values 
of the Controls (n=7). Line markers represent the next values 
under and above the box. The dots represent the smallest and 
largest values in both groups. 

Fig. 3. presents lateral and vertical displacement 
amplitudes of the hip sensor during walking in both subject 
groups. The lateral amplitude value used is a sum of average 
right and average left amplitudes. On the other hand, the 
averages of up and down amplitudes for the vertical 

displacement are combined. 

Fig. 3.  Lateral and vertical displacement amplitudes of the 
hip sensor measured during walking. The white boxes 
contain the four nearest to the median values of the Patients 
(n=8) and Controls (n=6) in lateral direction, and the four 
nearest to the median values of the Patients (n=8) and the 
three nearest to the median values of the Controls (n=7) in 
vertical direction. The line markers represent the next 
amplitude values under and above the box. The dots 
represent the smallest and largest values in the group. 
(Control subject C6’s walking sample was too small for 
lateral position assessment, thus it was left undefined.) 

The parameters “standard deviation of the step times”, 
“total amplitude of the lateral position of the hip sensor” and 
“total amplitude of the vertical position of the hip sensor” 
are taken into subject classification analysis. The clustering 
is carried out for subjects P1 – P8 and C1 – C7. The plot in 
Fig. 4a) illustrates how the subjects are distributed on the 
map. The fuzzy logic analysis is carried out for subjects P1 – 
P8 and C1 – C7, excluding subject C6, since it does not have 
values for all three parameters. The results for the fuzzy 
classification are found in Fig. 4b). 

Fig. 4.  a) The subject distribution on the clustering map. b) 
The fuzzy classification of the subjects into two groups 
Patients (P) and Controls (C). 

IV. DISCUSSION

Standard deviations calculated from the step times show a 
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difference between Patients and Controls. The larger 
standard deviation in this context means a more irregular 
gait. The results are consistent with those previously 
reported [8], even though the distance walked was shorter in 
this testing arrangement. Lateral displacement amplitudes of 
the Patients are also greater than those of the Controls, 
which is concordant with the data recently reported [9]. A 
difference between the two groups can also be found in 
vertical displacement amplitudes.  

The clustering and fuzzy logic methods provide similar 
results. Subject C1 is closer to the Patients cluster and it was 
also declared a Patient in the fuzzy logic analysis. The age of 
subject C1 might have had some effect on his gait, thus 
bringing him closer to the Patients group, as the incidence of 
falls increases markedly with age. In addition, subjects P2 
and P6 are more in the Controls cluster than in the Patients 
one, and they were declared Controls with the fuzzy logic 
classifier as well. Patient P6 has left hemiplegia, which is 
mostly emphasized in the left arm. This explains why the 
illness does not affect the patient’s gait very much. Patient 
P2 has an illness, which causes backwards falling attacks. 
According to a medical assessment, the person walks with 
his slightly spastic legs straight forward without any 
abnormal sway between the falling attacks. Two clusters can 
still be separated, one with more Patients in it and the other 
with more Controls in it, and the results are comparable with 
the ones obtained using the fuzzy logic method. 

To improve the testing arrangement, the walking distance 
could be longer than 10 metres e.g. 50 metres depending on 
the condition of the subjects. More subjects could also be 
used in the study. It could also be useful to divide the 
subjects into more specific groups, such as subjects with a 
high fall risk, subjects with a moderate fall risk, and subjects 
with no fall risk. This kind of five-sensor system provides a 
large amount of data. Including the sensor data obtained 
from the knee and ankle sensors to the data analysis would 
provide more accurate results. For example, different phases 
of the gait cycle can be studied further to obtain information 
about the rhythmics of the gait. The dynamical tilt of a 
sensor can be reached with additional sensors, e.g. 
gyroscopes, making it possible to calculate the temporary 3D 
position of the acceleration sensor. This in turn enables 
definition of the continuously changing offset values of the 
acceleration signals caused by the gravity, and thus 
substantially improves the estimation of the position 
trajectory during the gait. 

All in all, the parameters calculated from the walking data 
appeared to have dependence to balance even with quite a 
small test subject group. A reliable classifier was also 
introduced for identifying subjects with balance deficits. 
This provides a method for creating a new ambulatory on-
line balance analyzer tool for doctors and physical therapists. 
The balance analyzer could be used in addition to a physical 
examination or home health care as a means of detecting 
balance deficits at an early stage and identifying the need for 
fall-preventive measures. 
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Accelerometry-Based Berg Balance Scale
Score Estimation

Heidi Similä, Jani Mäntyjärvi, Juho Merilahti, Mikko Lindholm, and Miikka Ermes

Abstract—The objective of the study was to investigate the va-
lidity of 3-D-accelerometry-based Berg balance scale (BBS) score
estimation. In particular, acceleration patterns of BBS tasks and
gait were the targets of analysis. Accelerations of the lower back
were measured during execution of the BBS test and corridor walk-
ing for 54 subjects, consisting of neurological patients, older adults,
and healthy young persons. The BBS score was estimated from one
to three BBS tasks and from gait-related data, separately, through
assessment of the similarity of acceleration patterns between sub-
jects. The work also validated both approaches’ ability to classify
subjects into high- and low-fall-risk groups. The gait-based method
yielded the best BBS score estimates and the most accurate BBS-
task-based estimates were produced with the stand to sit, reaching,
and picking object tasks. The proposed gait-based method can iden-
tify subjects with high or low risk of falling with an accuracy of
77.8% and 96.6%, respectively, and the BBS-task based method
with corresponding accuracy of 89.5% and 62.1%.

Index Terms—Berg balance scale (BBS), fall-risk assessment,
gait analysis.

I. INTRODUCTION

EVERY third person over 65 years of age falls at least once
every year [1], and, for example, falling or stumbling was

the accident most commonly leading to death among both men
and women in Finland in 2010 [2]. Locomotion requires muscle
strength and balance. Problems with balance cause changes in
gait, such as decelerating one’s walking and shortening one’s
steps [3] to compensate for poor balance. One traditional method
of balance assessment is the Berg balance scale (BBS) [4], a
performance-oriented measure of balance that involves 14 tasks.
Performance of each task is scored on a scale of 0–4, making
the maximum possible score 56. According to Shumway-Cook
et al. [5], people with a score lower than 49 show increased risk
of falling, while those with a score over 49 have low fall risk. The
BBS scale is based, however, on subjective assessment by, for
example, a physiotherapist and yields information about balance
at that particular moment, so it is unsuitable for continuous fall-
risk estimation in free-living situations.
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As reviewed by Shany et al. [6] and Scanail et al. [7], wearable
sensors are increasingly being used for human gait and balance
assessment. Typically, one or more accelerometers and/or gy-
roscopes are used. Data-analysis methods and algorithms have
been developed for such purposes as activity recognition [8], fall
detection [9], gait analysis [10], and fall-risk estimation [11].
Studies that aim at distinguishing fallers from nonfallers, or
between people with high and low fall risk, via sensor data
usually compare the results with those of standard clinical fall-
risk assessment scales such as the BBS [12], timed up-and-go
(TUG) [13], or physiological profile assessment [11]. They show
that analysis of sensor data can provide comparable results rel-
ative to the clinical measures [6], [7].

Three-dimensional accelerometry enables unobtrusive long-
term monitoring of human movements in unsupervised condi-
tions [14] and thus provides an opportunity for objective fall-risk
estimation in free-living situations [11] without the need for a
health-care professional’s presence. Some studies suggest that
body-worn kinematic sensors may even be more accurate than
the standard fall-risk metrics. For example, Greene et al. [15]
reported a mean accuracy of 76.8% in contrast to the 61.4% of
BBS testing and 60.6% of TUG in discriminating persons with
a history of falls. It was also indicated by Doheny et al. [16]
that accelerometry might improve discrimination between fall-
ers and nonfallers from that of the standard clinical measure five
times sit-to-stand (STS-5).

Growing health-care impacts and costs of demographic age-
ing serve as motivation to develop methods for recognizing
individuals with increased fall risk more accurately and ear-
lier, since this is an important element in the selection of the
evidence-based interventions with the greatest chance of a pos-
itive outcome [17]. Earlier detection of balance problems en-
ables cost-effective targeting of fall-prevention actions to the
right people, early enough. For example, improvements in mus-
cle strength can compensate somewhat for balance deficits and
diminish difficulties in moving [3].

In the research described here, the aim was to explore the use
of accelerometry in estimating the BBS score and, thus, facilitate
development of methods for estimating a person’s fall risk ob-
jectively and unobtrusively during daily activities. In particular,
the similarity (or distance) between different BBS tasks and gait-
related acceleration trajectories were studied. Duda et al. [18]
state that in some cases general Euclidean distance may or may
not be meaningful, and it is hard to base choice of a metrics
on prior knowledge about the distributions. Therefore, another
objective was to examine whether the selection of a similarity
measure has an impact on the results. Fifty-four subjects from
three groups—neurological patients, older adults, and healthy
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young persons—were studied and a method for estimating a
person’s BBS score is proposed here.

II. METHODS

A. Data Collection

The test protocol included a BSS test [4], which was ex-
plained to the participants and evaluated by a physiotherapist,
and at least a 10-m walk back and forth in a corridor at one’s
own pace in one’s preferred footwear. The BBS test is used by
the health-care professionals at participating university hospital
as part of their care process for evaluation of balance deficits.
Alongside the self-reported history of imbalance, it has been
reported to predict falling with a sensitivity of 91% and speci-
ficity of 82% [5]. Kinetic data were collected during the tests
with a 3-D accelerometer (8 bit, 75-Hz alive heart monitor, from
Alive Technologies, of Queensland, Australia). It is often rec-
ommended that the sensor be attached at waist level, near the
center of mass [6]. To ensure comparability between the individ-
ual results, sensor placement was kept as uniform as possible;
the sensor was attached to the person’s lower back (lumbar
spine) with a tight elastic belt as described in [19]. Each task’s
start and end moments were marked by a researcher on the site
with computer software [20] to an accuracy of 1 s. The anno-
tation entries were checked manually afterward to verify their
correctness.

The BBS consists of 14 physical tasks, such as transfer from
sitting to standing position, standing eyes shut, and picking up
an object from the floor [4], all normally part of daily activities.
Each task performance is assigned 0–4 points by a professional
observer, to give a total score of 0–56. The maximum score of 56
indicates that there is no increased risk of falling. For example,
the full score of four points is given for the BBS task transfer
from standing to sitting position when the person is able to sit
down on the chair without using his or her arms for assistance.
The score is reduced as the amount of help the person gets from
his or her arms, his or her legs, or the supervisor increases.
Use of the arms and/or legs in execution of the task affects the
speed and trajectories of the body. It can also be expected to
influence the signals captured by an accelerometer attached to
the body—e.g., altering the signal form.

B. Subjects

Fifty-four subjects were recruited for the study, for three
groups: 15 neurological patients (aged 40–68 years, with mean
and standard deviation (std) of 55.2 ± 7.3); 20 older adults
(aged 67–87 years, with mean+std 76.8 ± 5.6); and 19 healthy
young persons (aged 21–36 years), with mean+std = 27.5 ±
4.4. Seven of the patients had a diagnosis of cerebrovascular
diseases (ICD-10 I60–I69), one of injuries to the head (ICD-10
S00-S09), one of inflammatory disease of the central nervous
system (ICD-10 G00-G09), and six of diseases of nervous sys-
tem (ICD-10 G20-G26), of which the most had a Parkinson’s
disease. Accelerometer data from five persons were lost due to
technical problems, resulting in inclusion of 19 subjects in the
older adults group, 13 in the neurological patients group and

17 in healthy young persons’ group. The same physiotherapist
evaluated all the participants and the tests situations were as
identical as possible. The study was accepted by the ethical
committee of the hospital district. Preliminary analysis of dif-
ferences in accelerometer signal features between the subject
groups are reported in [12].

C. Data Analysis

The first goal of the data analysis was to develop a method
for estimating the BBS score of a person on the basis of the
accelerometer data recorded 1) during performance of the BBS
tasks and 2) on gait. Both approaches were validated in terms of
their ability in classifying subjects into high- and low-fall-risk
groups. The second goal was to determine which of the BBS
tasks provide the best results and to compare the estimated BBS
scores between the subject groups.

D. Preprocessing of Data

The data analysis was carried out in the Matlab (from Math-
Works, Inc.; Natick, MA, USA) programming environment.
Nine tasks from the BBS were selected for further analysis. The
tasks excluded, among them stool stepping, involve periodic
movements or movements that fewer test subjects were able to
perform. For example, only 39 subjects were able to execute the
standing on one foot task, so its inclusion in the analysis would
have complicated interpretation of the results. These tasks were
selected: sit to stand, stand without support, stand to sit, stand
eyes shut, stand feet together, reaching, picking up an object,
look behind, and tandem standing. The BBS estimation was
analyzed for combinations of one, two, and three tasks, for de-
termination of which tasks lead to the best BBS score estimation
result. There would be 1001 distinct combinations of four tasks
out of nine, so the set size was limited to three tasks in this case.
With the exception of one subject in the neurological-patient
group for the stand to sit task, data existed for all nine tasks
selected for all 49 test subjects.

The data in the x, y, and z dimensions measured during the
BBS tasks and the gait were identified on the basis of man-
ual annotations. In the BBS-task-based approach, the resultant
acceleration was calculated for these data samples according to
(1), where ax is acceleration in the medio-lateral, ay the vertical,
and az the anterior–posterior planes:

ares [n] =
√

(ax [n])2 + (ay [n])2 + (az [n])2 . (1)

The average signal length was calculated for each task, and each
subject’s data were normalized to the average for the relevant
task via resampling of the signal by means of either interpo-
lation or decimation. This procedure enabled comparison of
waveforms between subjects. Two example cases are illustrated
in Fig. 1. Furthermore, to reduce the noise effect, the resulting
signals were filtered with a five-point floating average filter.

In the gait-based approach, the data were preprocessed ac-
cording to Mäntyjärvi et al. [21], to construct a unique 3-D
gait pattern for each subject. While they used only two dimen-
sions of the 3-D data, this paper uses all three dimensions. The



1116 IEEE JOURNAL OF BIOMEDICAL AND HEALTH INFORMATICS, VOL. 18, NO. 4, JULY 2014

Fig. 1. Examples of the data resampling for two cases, denoted as A and B. The upper left picture illustrates the original signals. (a) Image in the upper right
features original and decimated signals, in which the number of data points is reduced from 202 to 153, and (b) original and interpolated signals, in which the
number of data points is increased from 125 to 153. Circles represent the original samples, and the resampled signals are plotted with asterisks (∗). The resampled
signals for A and B are plotted together at the bottom. The data were obtained during the stand to sit task.

procedure was similar otherwise. Data sequences representing
step pairs were separated out from the gait data. Visual inspec-
tion was applied during the process, to verify that the step pairs
had been detected correctly and that at least two separate pairs
were found for each subject. The test subject in question was
omitted from the gait-pattern examination if the step pairs were
not detectable; resulting in 47 subjects in gait-based BBS score
estimation. Intercorrelation of the signals representing the steps
of a specific subject was calculated for all three dimensions,
with a sliding window, to reveal the 60% of pairs that correlated
best. The aim was to discover the step pairs that represent the
typical gait pattern for the relevant person. With this procedure,
extraordinary steps due to turning, swaying, etc., are omitted.
The selected step pairs were averaged for each three dimensions
separately and concatenated to form a person’s signature gait
pattern. The left–right or right–left order of steps is taken into
account by creation of two gait patterns for each subject, which
represent both left–right and right–left combinations without
determination of which is which.

E. BBS Score Estimation

In the first part of the analysis, leave-one-out cross-validation
was applied for calculation of the BBS estimate for each subject.

In addition to distance between two samples, other metrics can
be used to measure the similarity of two vectors [18]. Since dif-
ferent similarity measures suit better for various types of data,
three similarity measures were tested, to compare the person’s
preprocessed data samples to the other subjects’ corresponding
ones. The experiments were done using basic measures such as
Euclidean distance (2) and correlation coefficient (3), and Tan-
imoto coefficient (4), which combines them both in operation.
The aim here was to find out whether the selection of the metrics
used has a significant impact on the results.

d (a,b) =

(
d∑

k=1

|ak − bk |2
)1/2

(2)

rab =
∑d

k=1 (ak − amean) (bk − bmean)√∑d
k=1 (ak − amean)2 ∑d

k=1 (bk − bmean)2
(3)

s (a,b) =
atb

ata + btb − atb
. (4)

Sample vectors from two subjects are denoted as a and b, ak

and bk are the kth sample of vectors a and b, and amean and
bmean are the mean of a and of b, respectively.
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Fig. 2. Data-analysis process for BBS tasks and gait-related acceleration signals.

The k-nearest-neighbor classification with a k value of 3 was
applied for selection of the three most similar reference sub-
jects for the test subject under evaluation. That is, the three
subjects with the greatest similarity or smallest distance to the
subject in question were selected. A 1-s sliding window (based
on the original sampling frequency) was used to eliminate pos-
sible deviations in annotation markers. The greatest similarity
or smallest distance from that window was selected to represent
the similarity to, or distance from, the relevant reference subject.
An average of the real BBS scores of those three neighboring
subjects was used as a BBS estimate. In case the estimation is
based on data from more than one BBS task, the estimates for
individual tasks are averaged over all tasks selected.

F. Validation

The estimated BBS scores were used for classification of the
subjects into high- and low-fall-risk groups. With the real BBS
scores, a cut-off score of 49 [5] was used for determination of
the reference classes. A frequently used method of investigating
the sensitivity and specificity of a classifier, receiver operat-
ing curve (ROC), was applied. Area under curve (AUC) was
calculated for each ROC, to aid in comparison of results and
determination of the best task combinations. The data-analysis
process is illustrated in Fig. 2.

III. RESULTS

The task combinations that produced the highest AUC val-
ues with one, two, and three tasks and the gait-based results
are presented in Table I. The estimated BBS scores differed
significantly (one-way ANOVA, Kruskal Wallis test p < 0.05)
between subjects with low and high fall risk for all other cases
except the task stand to sit, for which Euclidean distance was
employed as a similarity measure.

In the BBS-task-based estimation, each time a task was added
to the algorithm the AUC value increased and the recognition of

subjects with a high risk of falling was improved. The best results
were obtained with the tasks stand to sit, reaching, and picking
object. The gait-based estimates produced higher AUC values
than did BBS-task-based analysis. The highest AUC values were
obtained with Tanimoto coefficient as a similarity measure in
both approaches.

The distributions of the estimated and real BBS scores in the
subject groups; healthy young people, older adults, and neuro-
logical patients are shown as boxplots in Fig. 3. The boxplots
represent estimated BBS scores with different similarity mea-
sures calculated with the combinations of three tasks shown in
Table I and the gait-based method.

The distributions of gait-based BBS estimates between sub-
ject groups are more similar to the real BBS score distributions
than to the ones obtained with the three BBS tasks. Furthermore,
the BBS-task-based estimates tend to have wider distributions
in the healthy-young-adult group and narrower distributions in
the older adult and patient groups in comparison to the real BBS
scores. In all cases, the mean of healthy-young-adults’ BBS
score differed significantly from the means for the other two
groups (p < 0.001).

The estimated BBS values are plotted against the real BBS
scores in Fig. 4 for the three subject groups; Tanimoto coefficient
is used here as a similarity measure with the combination of the
best three tasks (according to AUC analysis) and the gait-based
method, since it produced the highest AUC values.

The total estimation error was smaller for gait-based BBS
score estimation than for the BBS-task based method. The al-
gorithm tends to overestimate the lower BBS scores under both
approaches.

IV. DISCUSSION

The aim of the research described here was to develop an
accelerometry-based method for estimating the BBS score by
using 1) combinations of data obtained during different BBS
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TABLE I
CONFUSION MATRIX FOR THE BEST CLASSIFICATION RESULTS (HIGHEST AUC VALUES) WITH RESPECT TO LOW- AND HIGH-FALL-RISK GROUPS FOR ONE, TWO,

AND THREE BBS TASKS AND THE GAIT-BASED METHOD WITH THREE SIMILARITY MEASURES

tasks and 2) the gait patterns. The approach was validated with
groups of real subjects: the neurological patients, older adults,
and healthy young persons. The results with the current dataset
indicate that the gait-based BBS estimation outperforms the
BBS-task-based estimation. Table I shows that if a threshold
of 49 is used also for the estimates to divide the subjects into
high- and low-fall-risk groups, the accuracy of identification
of people with low risk of falling is very high using gait-based
estimates. However, it might often be more important to identify
those people with high fall risk. Although the table suggests that
this would be done more accurately with the BBS-task-based
method, the higher AUC value indicates better classification
performance for the gait-based method. It should be noted, that
the classifier is not adjusted here, as the classification is based
on the same threshold value for the BBS estimates and the
reference BBS scores. The gait-based BBS estimation might
work better, since problems in balance cause changes in gait [3],
while each of the BBS tasks assess only a certain feature such
as coordination or muscle strength. By having only three tasks
included in the estimation of BBS score, some of the other

important aspects of balance may be omitted. This study also
shows that the selection of similarity measure has an effect on
the results; however, further studies are needed, to analyze how
significant the impact is and which similarity measure would be
the optimal choice for the algorithm.

The most significant BBS tasks for the algorithm presented in
this paper are stand to sit, reaching, and picking object, which
yield the best BBS score estimates with Tanimoto coefficient.
These tasks require lower body muscle strength and coordina-
tion, which are good indications of balance. Our finding that
stand to sit was an important determinant of a person’s bal-
ance is consistent with results of previous studies. According to
Tiedemann et al. [22], multiple-fallers show significantly worse
performance in the STS-5 test, in which stand to sit is part of
the movement, than nonmultiple-fallers do, with a sensitivity of
66% and specificity of 55% for separation of the two groups.
In addition, Doheny et al. [16] report several parameters, such
as mean sit-to-stand time, jerk, and spectral edge frequency
derived from acceleration signals measured during the STS-5
test, that differ significantly between fallers and nonfallers. The
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Fig. 3. Distributions of the real and estimated BBS scores in the subject groups: healthy young people, older adults, and neurological patients. The estimated
BBS scores were calculated with the three tasks producing the highest AUC values (see Table I) and gait data with all three similarity measures.

Fig. 4. Estimated versus real BBS scores for the three subject groups: healthy young persons, older adults, and neurological patients. The top three diagrams
represent the results for three tasks: stand to sit, reaching, and picking object, with Tanimoto coefficient as a similarity measure, and the bottom three are obtained
via the gait-based method, again with Tanimoto coefficient as a similarity measure. The mean and standard deviations of the estimation error for the three tasks
are 4.94 ± 2.38, 4.63 ± 3.89, and 5.08 ± 3.00 score points, for healthy young people, older adults, and neurological patients, respectively, resulting in total mean
error of 4.85 ± 3.14 points. The corresponding mean-error figures for the gait-based method are 0.88 ± 0.86, 4.94 ± 3.51, and 5.17 ± 3.01 score points, and the
total mean error is 3.53 ± 3.32 points.

BBS tasks of reaching forward and picking up an object from
the floor test the ability to shift one’s center of gravity. How-
ever, the functional-reach test alone—i.e., reaching only in the
forward direction—does not give results comparable to those
with BBS [23], [24], but, for example, in [23] reports significant
correlation between the multidirectional-reach test and BBS re-
sults. Similarly, our results in Table I indicate that with reaching

forward added in alongside the tasks stand to sit and picking
object, the identification of people with high fall risk shows
particular improvement, from 79% to 89.5%.

The distributions of the estimated BBS scores show that
the BBS-task-based method produces estimates that have more
unified distributions across subject groups, also resulting in in-
dividual estimates with less variance relative to each other. This
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is probably because of the way the algorithm handles averaging
over the various tasks—i.e., the estimate is based on only three
of the 14 BBS tasks, and a person may have been able to perform
those yet had problems with some of the other tasks. In addition,
the dataset obtained includes too few people with different bal-
ance abilities, and thus quite different BBS scores, for revealing
fully similar subjects. The neurological patients in this study
are an especially heterogeneous group, making for fewer points
of comparison in that set. This is indicated also by the estima-
tion error, as it is smallest in the healthy-young-person group
and largest for the neurological-patient group. The tendency of
the algorithm to overestimate especially the lower BBS scores
presumably is caused by the fact that the dataset is skewed to-
ward higher BBS scores as it features more people with high
BBS scores than with lower ones. The results shown here are
based on this particular dataset, and more data are needed if
reproducibility of the results is to be ensured.

In our approach, the unique gait pattern for a subject is con-
structed through averaging of the stride-length segments of the
data. Bautmans et al. [25] state also that reliability of gait fea-
tures for purposes of identifying subjects with increased fall risk
is improved when the process uses the mean of two walks in-
stead of a single walk. However, the data preprocessing to create
the unique gait patterns is more complicated than for nonperi-
odic movements such as stand to sit transfer, and in this case
visual inspection was required, to ensure the correctness of the
preprocessed signal.

It should be noted that clinical measures such as BBS, when
used as a reference measure, themselves display uncertainty in
prediction of future falling. For example, Muir et al. [26] state
that BBS is inadequate for identifying the majority of people
at risk of falling; however, it has good discriminative ability to
predict multiple falls. As the clinical fall-risk assessment scales
in current use have limitations with regard to their sensitivity
and specificity also, it would benefit our approach to have actual
history of falls as reference data and, on the other hand, long-
term follow-up studies for prospective analysis of fall risk. The
current method could be used as a first indicator of balance prob-
lems and for recommendation of seeking further assessment. In
addition, since the method estimates the fall risk by finding the
most similar subjects from the reference dataset, with a larger
dataset in the future, the background information of those sub-
jects might provide some idea of the underlying physiological
complications.

The data used in this paper were collected in supervised con-
ditions. Accordingly, one aim for future work is to investigate
whether fall-risk estimate can be computed from data obtained
in unsupervised conditions—i.e., whether the movement data
corresponding to clinical balance tests such as the BBS and gait
tests could be recognized from the real-life data and used in cal-
culation of a fall-risk estimate for a person. Furthermore, it is of
interest for us to study how this kind of long-term measurement
could be integrated into current health-care processes. Such
a solution would have clear benefits in fall-risk management
and fall prevention, as the fall risk could be continuously and
unobtrusively evaluated with the aid of low-cost sensors, en-
abling early interventions to decrease the risk more efficiently.
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Abstract— Fall prevention is an important and complex 

multifactorial challenge, since one third of people over 65 years 

old fall at least once every year.  A novel application of Disease 

State Fingerprint (DSF) algorithm is presented for holistic 

visualization of fall risk factors and identifying persons with 

falls history or decreased level of physical functioning based on 

fall risk assessment data. The algorithm is tested with data from 

42 older adults, that went through a comprehensive fall risk 

assessment. Within the study population the Activities-specific 

Balance Confidence (ABC) scale score, Berg Balance Scale 

(BBS) score and the number of drugs in use were the three most 

relevant variables, that differed between the fallers and non-

fallers. This study showed that the DSF visualization is 

beneficial in inspection of an individual’s significant fall risk 

factors, since people have problems in different areas and one 

single assessment scale is not enough to expose all the people at 

risk. 

I. INTRODUCTION 

One third of people over 65 years old fall at least once 

each year [1] and the number of falls per year increases with 

age and frailty level [2]. Furthermore, the world’s population 

is ageing with speed and the number of people aged 65 or 

older is expected to grow from an estimated 524 million in 

2010 to nearly 1.5 billion in 2050 [3]. Falls have serious 

consequences, because they cause mortality, morbidity, 

reduced functioning, and premature nursing home admission 

[4]. Hip fracture is one of the most time and money 

consuming, quality of life changing consequences of falls. 

For example during the years 1996–2008 in Finland 

(population 5 million) approximately 7000 hip fractures 

occurred per year.  The care expenses and consequential 

expenses are very high after a hip fracture and the quality of 

life of fallers dramatically drop after an injuring fall. The 

cost of the first year after the hip-fracture was 14 400€ in 

2003 in Finland. If the patient needed to move from home 

into institutional care after the fracture, the cost for the care 

was 35 700€ for the first year [5]. Society and individuals 

need to take preventive actions against falls. Falls can be 

prevented with interventions targeting multiple risk factors 

or taking a more specific approach, such as combined muscle 

strength and balance training [6].  

There are several intrinsic and extrinsic factors 

contributing to a person’s fall risk, e.g. balance ability, 

muscle strength, dizziness, posture, gait, drugs, 
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environmental and cognitive impairment, medical factors, 

poor footwear, etc. All of these can be seen as individual risk 

factors. However, it is hard to find a single risk factor that is 

a cause of a fall and it is unlikely that one assessment 

measure would have excellent accuracy to predict falls [7]. 

More commonly there are several simultaneous factors 

behind the fall.  

Even with a comprehensive fall risk assessment that 

incorporates several scales it is not easy to form a detailed 

overview of a person’s health status and prevailing fall risk 

factors. As Perell et al. point out in their analytic review of 

fall risk assessment scales [8], the clinicians have difficulties 

in selecting the most appropriate assessment scale or they 

lack knowledge of them. They list the assessment scales with 

diagnostic abilities from separate studies. However, it 

doesn’t provide information of the scales’ reliability and 

validity within the same subjects. Different scales with same 

subjects were compared e.g. in [9] and [10] in which a 

logistic regression models were derived with most predictive 

variables from several scales.  

This paper presents a novel application of Disease State 

Fingerprint (DSF) algorithm [11] to a holistic visualization 

of fall risk factors. It allows identification of particular areas 

with needs for improvement on an individual level as well as 

comparison of groups with different characteristics, such as 

people with falls history and people with no falls. The 

fingerprint visualization can also be used to determine which 

assessment scales or fall risk factors are significant for the 

person or population in question. In addition, the DSF is 

used as a supervised classifier to identify persons at risk 

based on their data. The algorithm is tested with fall risk 

assessment data from 42 older adults. 

II. METHODS 

A. Data collection 

An extensive fall risk assessment is performed for 42 older 

adults in two locations in Finland. 27 test subjects are 

recruited among residents of a senior house in Tampere. 

Residents apply for an apartment by themselves and are in 

relatively good economic position. Their background and 

work history varies a lot, thus they are well representative of 

the population of interest. All the residents have free access 

to gym, which may have an effect on their initial physical 

condition. The participants are recruited to the study by the 

senior house’s service counselor. Furthermore, 15 subjects 

are recruited in Oulu from a physical exercise group led by a 

physiotherapist in a local seniors’ gym. The inclusion criteria 

for the study are age 64 years or more, living independently, 
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don’t have cognitive incapability and is able to perform 

simple physical exercises independently. Person is excluded 

from the study if he/she is wheelchair or bed bound or has a 

medical condition or functionality deficit that prevent from 

doing simple physical exercises. The participants are 

recruited on voluntary basis and result with 42 subjects; one 

male and 41 females. This study was approved by the local 

Ethics Committee of Human Sciences. 

The fall risk assessment consist of following parts: 1) 

background questionnaire, 2) interview, 3) balance platform 

assessment with Kinect recording, 4) physical balance and 

walk tests with an activity monitor, and 5) muscle strength 

measurements. 

Before the tests the participants are given an information 

sheet about the study and they receive a background 

questionnaire they fill in beforehand at home. The 

questionnaire asks about age, gender, height, weight, falls 

during last 12 months, self-rated balance, incontinence, 

medication usage, physical activity and it includes scales 

Activities-specific Balance Confidence (ABC) [12] and 

Geriatric Depression Scale (GDS) [13].  

The participants signed an informed consent when coming 

to the interview carried out by a researcher. The interview is 

based on the IKINÄ report [12] and its purpose was to 

enquire those aspects of fall risk that were not included in the 

background questionnaire, such as questions about sensory 

functions and Mini-Mental State Examination (MMSE) [15]. 

In addition, there were questions about nutrition, alcohol 

consumption, motivators and barriers for physical exercise, 

daily behavior, and own evaluation of fall related 

environmental hazards. After the interview standing balance 

is tested on a balance platform (Balance Trainer BT4, 

HURLabs, http://www.hurlabs.com) following the protocol 

of the Romberg test, i.e. first the person stands 30s with eyes 

open on the balance platform and then repeats the same with 

eyes closed. The balance platform has four force sensitive 

sensors in each of its corner and it incorporates calculation 

of several parameters such as Romberg quotient, trace length 

of sway, velocity and area of movement, etc. A depth camera 

(Microsoft Kinect, www.microsoft.com) is placed about 

three meters behind and orthogonally to the balance platform 

in order to study whether it can be used to detect possible 

sway during the standing tests. 

Physical balance and walk tests are led by a 

physiotherapist in Tampere and by a physiotherapy student 

in Oulu. The tests include Berg Balance Scale (BBS) [16], 

Timed Up and Go –test (TUG) [17], five times sit to stand 

test (STS-5), i.e. time it takes to perform five repetitions, and 

corridor walking, which includes 4m walking speed 

assessment. The walk test is performed twice in a corridor of 

over 20 meters long. During the balance and walk tests the 

test subjects wore two accelerometers (GCDC X16-2, 

www.gcdataconcepts.com), one at the lower back near the 

center of mass and the other in front at the waist level. The 

sensors were attached with special belts that were adjustable 

to each person’s circumference. A researcher annotated the 

acceleration measurement by marking each test and subtask 

with a computer that was synchronized with the 

accelerometers. The data produced by the accelerometers are 

used for more detailed movement analysis later on. 

In Tampere the lower body muscle strength was measured 

with gym equipment and HUR performance recorder. The 

performance recorder is attached to the gym device, where it 

measures maximum force produced by the user. The specific 

muscles are leg adductor/abductor and extensor/flexor. After 

a few minutes warm up with a stationary bike, maximum 

force produced by each of the four muscles is measured three 

times. The maximum value is taken into account. In Oulu the 

same maximum force test was not possible due to available 

gym equipment. Thus the lower body muscle strength is 

measured without performance recorder as repetition test 

[18]. The aim was to find a load (in kilograms) for each 

muscle, so that the subject is able to perform 3-5 repetitions 

with the gym device. The devices are the same as in 

Tampere, i.e. leg adductor/abductor and extensor/flexor. The 

maximum force can then be estimated according to [19]. The 

upper body muscle strength was measured by grip strength 

test with the same hydraulic hand dynamometer by all the 

subjects. The test was performed three times with both hands 

and the best result was taken into account. The muscle 

strength tests were supervised by a researcher or a 

physiotherapy student. After the whole fall risk evaluation all 

the participants were given a feedback sheet with main 

results and interpretation based on their age group averages. 

The following table summarizes the main characteristics 

of the test subjects. 

TABLE I.  SAMPLE CHARACTERISTICS AND GROUPS  

N 
Age 

[years] 
(Mean±std) 

BBS 

score 
(Mean±std) 

Grouping methods 

Fall Incidents  ABC Total score
a
 

Yes No < 80% ≥80% 

42 
64-85 
(74,17±5,57) 

34-56 
(53±3.64) 

11 31 7 35 

a. ABC groups divided according to [20], where ABC functional rating was as follows: 

ABC <50% means poor, <80% moderate and  ≥80 % good functional capabilities. 

B. Data analysis 

The Disease State Fingerprint (DSF) visualization and its 

underlying Disease State Index (DSI) methods developed by 

Mattila et al. [11] were applied to the data. The input data to 

the DSF algorithm should have two classes, e.g. fallers and 

non-fallers. The feature data is organized as a tree with 

selected number of leaves under the root. The provided DSI 

value indicates the proportion of data matching to the profile 

of positive cases in the model. In the case with fallers vs. 

non-fallers the positive case means a faller. The DSI values 

are used for creating a tree visualization of the analysis 

results, where nodes’ sizes show the relative relevance of 

each feature and colors indicate similarity to the positive 

(red) and control (blue) classes. More detailed explanation of 

the algorithm can be found in [11].  
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Figure 1. DSF visualizations for A) mean of fallers group, B) mean of non-fallers group, C) example case from fallers group, and D) example case from 

non-fallers group. The tree visualizations are opened to show all the 32 used features. All the available items from balance platform and the individual 

questions from ABC, BBS and GDS scales are not included besides the total scores. The size of the node boxes show the relative relevance of each 

feature and the numbers indicate the similarity to the positive (fallers) class. 

The DSF is used as a supervised classifier with leave-one-

out cross validation method to investigate the ability of DSI 

value in separating fallers from non-fallers. A DSI value over 

0.5 suggests the subject belongs to the fallers group and 

below 0.5 refers to the non-fallers group respectively. 

Furthermore, different grouping criteria is tested by applying 

the total score from ABC test, and more specifically the level 

of physical functioning, to form the two reference classes. 

When also the individual questions or tasks are included 

from ABC, BBS and GDS scales, the total number of 

features considered in this analysis is 103.  

III. RESULTS 

The DSF visualization for fallers (positive) and non-fallers 

(control) group means are presented in Fig. 1 with example 

cases from both groups. The ABC total score followed by 

BBS total score and number of drugs in use were the three 

most relevant features, that differed the most between the 

two classes. The visualizations of the example cases C) and 

D) show that both have individual assessment results that 

refer to the opposite class. For example the subject in Fig. 1 

C) had BBS total score similar to the non-fallers’ group, 

while ABC total score, number of drugs in use and overall 

balance platform leaf value features were comparable with 

the fallers’ group results.  

Classification of subjects into fallers and non-fallers based 

on their resulting DSI value and the leave-one-out cross 

validation method yielded sensitivity of  54.5% and 

specificity of 64.5%. When the subjects were divided into 

two groups based on the ABC result, the classification 

results with the same features as in Fig. 1, except replacing 

ABC total from the leaves with history of falls, gives 

sensitivity of 71.4% and specificity of 88.6%. 

When testing the individual items from different scales all 

the 103 features were inserted to the DSF directly under the 

root to investigate which of them differ the most between the 

groups of fallers and non-fallers. The ten most relevant 

features were mostly from ABC questionnaire: 1) ABC 

question 5, 2) ABC total score, 3) ABC question 13, 4) ABC 

question 10, 5) BBS task 11, 6) ABC question 4, 7) ABC 

question 9, 8) BBS total score, 9) ABC question 15, and 10) 

Balance platform Eyes closed Standard deviation in X 

direction. Classification with this tree structure resulted in 

sensitivity of 54.5% and specificity of 80.6%. 

IV. DISCUSSION 

This paper presented a novel application of DSF in fall risk 

analysis. A clear benefit and potential of the DSF 

visualization is that it allows inspection of multiple 

assessment scales and factors at a glance. In addition, it 

enables detection of significant factors for the individual, as 

it became evident also in this study sample that the 

assessment scales indicating fall risk for one person might 

not reveal the risk for the other. This confirms the fact that 

people have problems in different areas and one single 

assessment scale is not enough to expose all the people at 

risk. The visualization method represented here allows rapid 

interpretation of large amount of data and can be utilized in 

selecting the most relevant assessment scales.  

The results with this study sample indicated that the BBS 

total score was the second most relevant feature in 

separating fallers from non-fallers. Similar results were 

achieved in [9] and [10], where regression analysis was used 

to form a model for either predicting falling or separating 

fallers from non-fallers. Furthermore the ABC total score, 

that was the most relevant in our study, was also found 

significant in [10]. However, when investigating individual 
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items of the ABC scale, the most relevant questions were not 

the same. In this study, question 5 (confidence when standing 

on tiptoes and reaching for something above head) was the 

most relevant item from the ABC scale, and also from the 

whole set of included features. Whereas, the question 1 

(walking around the house) was the most significant in study 

[10]. The test subjects in this study were in relatively good 

physical condition, due to which they might generally feel 

confident when walking around the house and the difficulties 

come up with more difficult tasks, such as described in 

question 5. This is important finding, since developing 

technologies for early risk detection is more crucial in the 

current ageing population; we need to find out more accurate 

discriminating factors earlier to start early prevention.  

The DSF can be utilized with different grouping criteria of 

subjects, as was demonstrated with the ABC scale result. 

This grouping yielded the highest sensitivity and specificity 

of classification, but more data is needed to validate the 

results. The small sample size and relatively good condition 

of all of them affects especially the classification results, 

since two clearly divergent groups cannot be distinguished 

based on the data. Another interesting grouping criteria 

could be e.g. the total BBS score. Although the current 

sample has relatively high BBS scores with the average of 53 

out of 56 points, it appeared to differ between the fallers and 

non-fallers. 

This research had some limitations, which need to be 

taken into account when exploiting the results. The limited 

number of subjects were in relatively good physical 

condition and the group of fallers was clearly smaller 

compared to non-fallers. In order to verify the method’s 

ability to estimate true fall risk, follow-up data from actual 

fall incidents after the baseline assessment should be 

collected. In addition, the classification performance of the 

algorithm should be compared to other commonly used 

approaches. The objective of our future work is to utilize 

also the accelerometer and depth camera data by studying 

how different sensor features correlate to the total fall risk, 

different clinical assessment scales and individual fall risk 

factors with the DSF algorithm. The same subjects will be 

invited to follow-up assessment to study possible changes in 

their condition and thus in different measures. 
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Abstract— Falls are a major problem for older adults. A 

continuous gait monitoring that provides fall risk assessment 

would allow timely interventions aiming for preventing falls. 

The objective of this work was to find out whether gait 

variables calculated from the acceleration signal measured 

during walk task in the baseline assessment can predict changes 

in commonly used fall risk assessment scales after 12 months 

follow-up. Forty two subjects were measured during walk test 

with a triaxial acceleration sensor worn on a waist belt at the 

lower back near the centre of mass. The fall risk was assessed 

using a test protocol, which included several assessment 

methods. Gait analysis was able to predict a decline in ABC, 

BBS and GDS total scores and slower time in STS-5 after 

twelve-months follow-up. A subsequent study is needed to 

confirm the model's suitability for data recorded in everyday 

lives.  

I. INTRODUCTION 

Every third person over 65 years old fall at least once 
each year [1] and the number of falls per year increases with 
age and frailty level [2]. Falls are multifactorial problem and 
often there are several factors causing the fall, thus a 
comprehensive fall risk assessment requires using a 
combination of several fall risk assessment scales. [3] 
Typically a person is assessed for e.g. balance, physical 
functioning, muscle strength, number of drugs in use, and 
cognitive functions. Regular fall risk assessments would 
require a lot of resources from the health care organizations 
[4]. 

The fall prevention actions such as physical exercising 
interventions are more effective when they are started early 
enough. This means that fall risk has to be identified earlier. 
Body-worn accelerometers are often used for developing 
methods for objective fall risk assessment and gait analysis. 
As an example, Aminian et al. [5] showed that 
accelerometers can be used for analyzing gait improvement 
after hip surgery. According to a recent review by Montaza et 
al. [6] variables such as step length, gait speed, stride length, 
stance times and variability in spatio-temporal gait 
parameters have been shown to differ between fallers and 
non-fallers. Furthermore, currently more studies aim at going 
for unsupervised measurements, where physical activity data 
is gathered in real-life situation representing more genuine 
performance [7, 8]. Often sensor-based fall risk estimation 
studies use cross-sectional data i.e. previous falls in 
developing the data analysis algorithms, however they may 
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not have the same predictive ability with the prospective data 
[9].   

In this paper, the ability of accelerometer-based gait 
variables to estimate changes in typically used fall risk 
assessment scales after one-year follow-up is studied. The 
objective is to investigate whether simple walk test could 
indicate future decline or deterioration in physical or 
cognitive functioning of a person and whether it can estimate 
the falls within the next 12 months. 

II. METHODS 

A. Data Collection 

For this study 42 older adults (aged 64-85 years, mean age 

74.17±5.57 years) were recruited on voluntary basis from 

two locations in Finland. 27 test subjects were recruited 

among residents of a senior house in Tampere and 15 

subjects were recruited from a senior physical exercise 

group in Oulu. The inclusion criteria for the study were age 

64 years or more, living independently, no cognitive 

incapability and is able to perform simple physical exercises 

independently. All participants signed an informed consent 

and this study was approved by the local Ethics Committee 

of Human Sciences.  

The 42 participants, one male and 41 female, went 

through a comprehensive baseline fall risk assessment 

consisted of following parts: 1) background questionnaire, 2) 

interview, 3) balance platform assessment with Kinect 

recording, 4) physical balance and walk tests with an activity 

monitor, and 5) muscle strength measurements. Prior to the 

tests the participants were given an information sheet about 

the study and they received a background questionnaire to be 

filled in beforehand at home. The questionnaire asked e.g. 

about demographics, health status, medication usage, 

physical activity, falls during last 12 months, and it included 

Activities-specific Balance Confidence (ABC) [10] and 

Geriatric Depression Scale (GDS) [11] scales.  

The interview was based on [3] and it included questions 

e.g. about sensory functions, nutrition, alcohol consumption, 

motivators and barriers for physical exercise, and Mini-

Mental State Examination (MMSE) [12]. The balance 

platform assessment (Balance Trainer BT4, HURLabs, 

http://www.hurlabs.com) followed the protocol of the 

Romberg test, i.e. first the person stands 30s with eyes open 

on the balance platform and then repeats the same with eyes 

closed, while a depth camera (Microsoft Kinect, 

www.microsoft.com) was placed about three meters behind 

and orthogonally to the balance platform. 

The physical balance and walk tests included Berg 

Balance Scale (BBS) [13], Timed Up and Go –test (TUG) 

[14], five times sit to stand test (STS-5), i.e. time it takes to 
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perform five repetitions, and corridor walking. The walk test 

was performed twice in a corridor of over 20 meters long. 

During the balance and walk tests the test subjects wore two 

accelerometers (GCDC X16-2, www.gcdataconcepts.com) at 

the waist level attached with special belts. One was at the 

lower back near the centre of mass and the other in front on 

the right side. The acceleration measurement was manually 

annotated by marking each test and subtask with a computer 

that was synchronized with the accelerometers.  

The lower body muscle strength was measured from leg 

adductor/abductor and extensor/flexor after a few minutes 

warm up. HUR performance recorder measuring maximum 

force was connected to the gym device in Tampere. It was 

not compatible with the available gym equipment in Oulu, 

thus the lower body muscle strength was measured there as a 

repetition test [15] and the maximum force was estimated 

according to [16]. The grip strength was measured with the 

same hydraulic hand dynamometer by all the subjects.  

The test subjects were invited twice to the follow-up fall 
risk assessment tests. The second one, i.e. midterm 
assessment, included all the same tests as in the baseline 
assessment except for the balance platform test. The third and 
the final assessment was exactly the same as the baseline 
assessment. The time spans between the tests were 9-12 
months in Tampere and 4-8 months in Oulu (see Table I). 
After each of the assessment the participants were given a 
feedback sheet with main results and interpretation based on 
their age group averages.  

TABLE I.  THE FALL RISK ASSESSMENTS. NUMBER OF SUBJECTS 

AND THE TIMELINE (M0 REFERS TO MONTH 0, I.E. START OF FIRST TESTS)  

 
Baseline 

assessment 

Midterm 

assessment 

Final  

assessment 

Tampere 

N = 27 

M0 

N = 22 

M12-M13 

N = 19 

M21 

Oulu 
N = 15 

M9 

N = 14 

M17 

N = 14 

M20-M21 

Total N = 42 N = 36 N = 33 

 

The first analysis of the baseline assessment data is 

reported in [17]. The test group was divided into three 

groups: technology intervention, paper intervention and 

control groups. All groups went through similar testing 

procedures. Technology group received a touch-screen PC at 

home, with exercise reminders and guidance and paper 

group received paper printed instructions to exercise. 

Control group did not receive instructions to exercise. This 

paper deals with all test persons and differences between 

groups will be analysed in further studies.  

B. Data Processing and Analysis 

The objective of this work was to find out whether gait 

variables calculated from the acceleration signal measured 

during walk task in the baseline assessment can predict 

changes in commonly used fall risk assessment scales after 

12 months follow-up. The data analysis was carried out in 

Matlab (from MathWorks, Inc.; Natick, MA, USA) 

programming environment. The sensor attached to the lower 

back was selected for the analysis. For the conformity of the 

analysis the midterm assessment results were used for the 

Tampere subjects and the final assessment results were used 

for the Oulu subjects. Thus the follow-up period is uniform 

approximately 12 months for all the subjects. This results in 

total of 36 subjects in this analysis. 

The acceleration data from the walk task was separated 

based on manual annotations. The first of the two corridor 

walks was selected. Each data clip was visually inspected to 

ensure correct cut-off points. A resultant acceleration was 

calculated of the three dimensional data according to (1), 

where ax is acceleration in the medio-lateral, ay the vertical, 

and az the anterior–posterior planes.  

          
222

nananana
zyxres

       (1) 

The following variables were extracted from the resultant 

acceleration signal: mean and standard deviation of 

acceleration and difference between maximum and 

minimum accelerations during the walk test. The peaks, i.e. 

the acceleration value and the corresponding time instances, 

representing the steps in the resultant acceleration signal 

were detected and visually inspected for their correctness. 

The first and the last two of the detected steps were excluded 

from the analysis to decrease the effect of speed up and slow 

down phases of gait. The following temporal gait variables 

were calculated for the steps data: mean step/stride lengths 

(in seconds), step/stride time variability (standard deviation 

of step/stride lengths), and step asymmetry between right 

and left as in [18]. Furthermore, mean, standard deviation 

and asymmetry were calculated for the peak accelerations. 

The above mentioned gait variables were inspected with 

one-way ANOVA (Kruskal Wallis test) whether they differ 

significantly between the test subjects that deteriorated their 

scores or performance in 12 months follow-up test and those 

who improved or maintained their level. Similarly to [6], 

Cohen’s d was used as a measure of effect size (ES). The 

assessment scales in this analysis were total scores of ABC, 

GDS, MMSE, and BBS, times in TUG and STS-5 tests, and 

grip strength right/left hands. Higher score does not 

automatically mean improved results, e.g. score of 0 in GDS 

means there is no signs of depression. In addition, the gait 

variables were examined whether they differ between fallers 

and non-fallers. The person was considered as a faller if 

he/she had fallen at least once within the follow-up period.  

III. RESULTS 

Table II summarizes the results of how many subjects 

decreased their scores or performed worse, and how many 

improved or maintained their level in the follow-up fall risk 

assessment. The last two columns show the average 

magnitude of positive and negative changes on that 

particular scale.  

The results in Table III show that 6 out of 11 baseline gait 

variables differed significantly between subjects with lower 

and subjects with higher/same total score in ABC scale after 

12 months and there were also several significant variables 

associating with change in GDC total score, BBS total score 

and STS-5 tests and one with right hand grip strength. The 

effect sizes for these parameters were between 0.7–1.0. 
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TABLE III. SIGNIFICANCE AND EFFECT SIZE OF GAIT VARIABLES IN SEPARATING SUBJECTS WITH POSITIVE OR NEGATIVE CHANGE IN FALL RISK 

ASSESSMENT SCALES 

Assessment scale 

Gait variable with corresponding p-value and effects size (in parentheses) 

(p-values below 0.05 are highlighted with dark background color) 

mean 

total acc 

std total 

acc min-max 

mean 

step 

length 

std step 

length 

mean 

stride 

length 

std stride 

length 

step time 

asymmet

ry 

mean 

peak acc 

std peak 

acc 

peak acc 

asymmet

ry  

ABC total 

0.006 

(0.9) 

0.008 

(0.9) 

0.020 

(0.8) 

0.026 

(0.8) 

0.772 

(0.1) 

0.024 

(0.8) 

0.426 

(0.3) 

0.156 

(0.5) 

0.014 

(0.8) 

0.120 

(0.5) 

0.844 

(0.1) 

GDS total 

0.432 

(0.3) 

0.202 

(0.5) 

0.521 

(0.3) 

0.825 

(0.1) 

0.048 

(0.8) 

0.822 

(0.1) 

0.985 

(0.0) 

0.049 

(0.8) 

0.649 

(0.2) 

0.381 

(0.3) 

0.026 

(0.8) 

MMSE total 

0.610 

(0.2) 

0.899 

(0.0) 

0.894 

(0.1) 

0.487 

(0.3) 

0.793 

(0.1) 

0.480 

(0.3) 

0.912 

(0.0) 

0.666 

(0.2) 

0.807 

(0.1) 

0.916 

(0.0) 

0.853 

(0.1) 

BBS total 

0.013 

(0.8) 

0.003 

(1.0) 

0.009 

(0.9) 

0.445 

(0.3) 

0.954 

(0.0) 

0.443 

(0.3) 

0.562 

(0.2) 

0.831 

(0.1) 

0.024 

(0.8) 

0.163 

(0.5) 

0.858 

(0.1) 

TUG (s) 

0.505 

(0.2) 

0.716 

(0.1) 

0.730 

(0.1) 

0.824 

(0.1) 

0.155 

(0.5) 

0.829 

(0.1) 

0.253 

(0.4) 

0.090 

(0.6) 

0.640 

(0.2) 

0.466 

(0.3) 

0.547 

(0.2) 

STS-5 (s) 

0.123 

(0.5) 

0.287 

(0.4) 

0.519 

(0.2) 

0.035 

(0.7) 

0.265 

(0.4) 

0.036 

(0.7) 

0.650 

(0.2) 

0.383 

(0.3) 

0.992 

(0.0) 

0.587 

(0.2) 

0.571 

(0.2) 

Grip strength right (kg) 

0.464 

(0.2) 

0.265 

(0.4) 

0.095 

(0.6) 

0.813 

(0.1) 

0.265 

(0.4) 

0.811 

(0.1) 

0.334 

(0.3) 

0.074 

(0.6) 

0.033 

(0.7) 

0.470 

(0.2) 

0.265 

(0.4) 

Grip strength left (kg) 

0.959 

(0.0) 

0.863 

(0.1) 

0.457 

(0.3) 

0.704 

(0.1) 

0.123 

(0.5) 

0.704 

(0.1) 

0.345 

(0.3) 

0.054 

(0.6) 

0.327 

(0.3) 

0.362 

(0.3) 

0.846 

(0.1) 

Falls (12 months follow-up) 

0.303 

(0.4) 

0.091 

(0.7) 

0.411 

(0.3) 

0.147 

(0.6) 

0.490 

(0.3) 

0.152 

(0.6) 

0.800 

(0.1) 

0.161 

(0.5) 

0.493 

(0.3) 

0.280 

(0.4) 

0.240 

(0.5) 

 

TABLE II.  NUMBER OF SUBJECTS IN GROUPS HAVING POSITIVE OR 

NEGATIVE CHANGE AND MEAN±STD OF THE CHANGE IN FALL RISK 

ASSESSMENT SCALES RESULT AFTER 12 MONTHS FOLLOW-UP. 

Assessment 

scale 

 

Number of Subjects 
 

Change 

mean±std  

Decreased 
Improved 

or same 
Decreased 

Improved or 

same 

ABC  

(0-100 points) 
23 13 -8.72±8.94  4.90±9.66  

GDS 

(0-15 points) 
27 9 0.74±1.23 -1.33±0.5 

MMSE 
(0-30 points) 

9 27 -1.56±0.88 0.89±0.97 

BBS 

(0-56 points) 
13 23 -2.23±1.36 1.13±1.69 

TUG (s) 25 11 1.39±1.13 -2.07±2.61 

STS-5 (s) 15 21 1.97±1.63 -2.83±2.56 

Grip strength 

right (kg) 
18 18 -3.07±2.25 1.59±1.62 

Grip strength 

left (kg) 
21 15 -2.87±2.26 2.16±3.31 

 

There were no significant association between the gait 

variables and change in MMSE total score, TUG time and 

left hand grip strength, or falls during the 12 months follow-

up. Nine subjects had experienced at least one fall and more 

precisely seven of them had fallen once and two had had two 

falls. The Fig. 1 illustrates the gait variable distributions for 

fallers and non-fallers separately.  

IV. DISCUSSION 

The results indicate that the gait variables extracted from 
the accelerometer signal differ between subjects who had 
lower scores after one year in several assessment scales 
typically used as part of fall risk assessment. Especially 
mean, standard deviation and min-max range of acceleration 
during walking, and mean peak acceleration were the most 
promising gait variables with high effect sizes to estimate 
change in ABC and also in BBS total scores. Decline in ABC 

total score shows that the person is less certain of his 
functional capability than before and has increased risk of 
falling [3]. Based on these results, decline in ABC score may 
be predictable from gait, which would enable earlier 
intervention to better maintain the functional capability.  

 There were no significant association in gait variables 
and changes in assessment scales MMSE and TUG. 
Similarly, in a cross-sectional analysis of Bautmans et al [18], 
the accelerometry-based step time variability did not correlate 
with the results of those scales. With this study sample the 
gait variables did not differ significantly between fallers and 
non-fallers, although differing trends can be seen in Fig. 1. 
As a comparison Hausdorff et al. [19] reported significant 
increase in gait variability with fallers compared to non-
fallers after one-year follow-up. It should be noted that in this 
analysis the person was considered a faller if there were at 
least one fall during the follow-up period. Often used 
approach is to analyze multiple fallers, e.g. [20], but in this 
sample, only two persons had more than one fall during the 
follow-up. 

In addition to small sample size there are limitations that 
may have an effect to these results. First, in this study setup 
the test subjects were divided in three groups, with two of 
them receiving exercise instructions either via technology 
tools or paper. However, all these groups were pooled into 
one for this analysis. The subjects receiving any intervention 
may have better assessment result in the follow-up 
particularly due to the intervention. Secondly, all the test 
subjects were quite active and in good physical condition, 
also in the control group.  

In future work we will analyze the different groups 
separately and consider the level of physical activity as a 
grouping criterion. Furthermore, we will include 
accelerometer data from midterm and final assessments into 
the analysis. These results are promising that such a simple 
walk test or even unobtrusive gait recording during everyday 
lives could be used e.g. as a screening tool to prompt for a 
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Figure 1. Gait variable distributions for fallers (dark boxes) and non-fallers (light boxes). Values are normalized between 0-1 for the visualization. 

more thorough clinical evaluation for the persons with 
increased risks. However, a larger study with more test 
subjects is needed to validate these results. 
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A B S T R A C T

Falls are the cause for more than half of the injury-related hospitalizations among older people. Accurate
assessment of individuals’ fall risk could enable targeted interventions to reduce the risk. This paper presents a
novel method for using wearable accelerometers to detect early signs of deficits in balance from gait. Gait
acceleration data were analyzed from 35 healthy female participants (73.86 ± 5.40 years). The data were
collected with waist-mounted accelerometer and the participants performed three supervised balance tests:
Berg Balance Scale (BBS), Timed-Up-and-Go (TUG) and 4 m walk. The follow-up tests with the same protocol
were performed after one year. Altogether 43 features were extracted from the accelerometer signals. Sequential
forward floating selection and ten-fold cross-validation were applied to determine models for 1) estimating the
outcomes of BBS, TUG and 4 m walk tests and 2) predicting decline in balance during one-year follow-up
indicated as decline in BBS total score and one leg stance. Normalized root-mean-square errors (RMSE) of the
assessment scale result estimates were 0.28 for BBS score, 0.18 for TUG time, and 0.22 for 4 m walk test. Area
under curve (AUC) was 0.78 for predicting decline in BBS total score and 0.82 for one leg stance, respectively.
The results suggest that the gait features can be used to estimate the result of a clinical balance assessment scale
and predict decline in balance. A simple walk test with wearable monitoring could be applicable as an initial
screening tool to identify people with early signs of balance deficits.

1. Introduction

Falls are a significant risk to the health of the older population.
Based on WHO report, 28–35% of people aged over 65 years
experience at least one fall each year [1]. Falls are the cause for more
than 50% of injury-related hospitalizations among older people. They
have been estimated to cost US$ 3611 per a fall injury episode in
Finland and Australia [1]. Thus, effective measures to prevent falls and
identify people at risk of falling are needed. It is important to assess fall
risk at an individual level, since different people have problems in
different areas that compound to the overall fall risk [2]. Falls may be a
result of intrinsic factors such as advanced age, postural instability,
sensory and neuromuscular factors, medical factors, and drugs, or
extrinsic factors such as environmental hazards or poor footwear [3,4].

Gait and balance deficits affect 20–50% of older adults and they
have been found as significant risk factors for falls [4]. Maintaining
balance during walking represents a challenge to musculoskeletal and
sensory systems. Since ageing is associated with decline in both of these
systems, it also causes changes in gait patterns, such as increased

stride-to-stride variability in gait parameters, e.g. cadence, stride
length, and gait speed. These parameters have been associated with
postural instability and falling [3]. Performance-based assessment
scales, such as Tinetti scale [5], Berg Balance Scale (BBS) [6], and
Timed-Up-and-Go (TUG) test [7], are typically used in clinical practice.
They have been developed for assessing mobility, and static and
dynamic balance abilities of a person. However, many of these clinical
balance tests have limitations especially among higher functioning
older adults. For example, the BBS score was not predictive of falls and
it had a ceiling effect for persons with better functional ability [8].
Furthermore, the performance-based tests depend on professional
supervision and thus require resources to administer.

Ambulatory movement monitoring with inertial sensors can bring
further insights into analysis of balance and mobility. Gyroscopes and
accelerometers are inertial sensors that measure angular velocity and
linear acceleration of body segments. There are several studies
demonstrating the potential of inertial sensor parameters in estimating
fall risk of a person [9] and accelerometry is claimed to be able to
capture more subtle changes in gait than the subjective balance
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assessment scales [10]. Accelerometry have been shown to be able to
discriminate between fallers and non-fallers (e.g. [11–13]) using
retrospective falls history data. However, the same algorithms may
not be able to predict future falls [14] and thus recent studies have
focused more on prospective fall risk assessment (e.g. [15–17]). Greene
et al. demonstrated that inertial sensor based method was able to
predict future falls with an accuracy of 79.69% compared to the
accuracies of 59.43% and 64.30% for TUG and BBS respectively in a
2-year follow-up study [18]. When accelerometry-based gait features
are combined with traditional questionnaires, prospective falls may be
predicted more accurately than with questionnaires or gait features
alone. In a study by van Schooten et al., the falls prediction model AUC
rose from 0.68 to 0.82 when gait parameters were added to the
traditional questionnaires, grip strength and trail making test data
[17].

Currently, there are not many studies that aim to estimate decline
in balance from inertial sensor measurement. One such example is
from Sheehan et al. where they investigated quantitative TUG para-
meters to estimate decline as measured by change in BBS total score,
and its sub-components [19]. Inertial sensor-based gait analysis,
however, would not necessarily require performance of any specific
task, such as TUG, or supervision by health care professional. Daily-life
gait analysis has already been shown to have potential in identifying
individuals with increased fall risk [17]. The objective of this study was
to develop models for estimating decline in balance using accelerome-
try-based gait features. We hypothesize that the gait acceleration
measurement is more sensitive in detecting early changes in balance
that are not yet recognized by traditional assessment scales. With the
models we estimated 1) the result of three selected reference measures;
BBS, TUG and 4 m walk tests, commonly used in clinical practice, and
2) decline in balance during one-year follow-up indicated as negative
change in BBS test.

2. Methods

2.1. Data collection

2.1.1. Subjects
We recruited 42 volunteer older adults (one male, 41 female, aged

64–85 years, mean ± std 74.17 ± 5.57 years) to participate in this
study. Twenty-seven of the test subjects were residents of a senior
house in Tampere, Finland, and 15 subjects were members of a senior
physical exercise group in Oulu, Finland. The criteria for inclusion
were: the subject should be living independently, have no cognitive
incapability and is able to independently perform simple physical tasks.
This study was approved by the Ethics Committee of Human Sciences
at the University of Oulu. Prior to the tests the subjects were given an
information sheet about the study and they signed an informed
consent.

2.1.2. Fall risk assessment
The fall risk assessment procedure composed of five parts: 1)

background questionnaire, 2) interview, 3) balance platform assess-
ment with Kinect recording, 4) physical balance and walk tests with an
activity monitor, and 5) muscle strength measurements. The guidelines
for extensive fall risk assessment proposed by Pajala et al. [20] were
followed in planning the assessments.

The background questionnaire, which the participants filled in prior
to the tests, asked about demographics, health status, medication
usage, physical activity, any falls during last 12 months and it included
Activities-specific Balance Confidence (ABC) [21] and Geriatric
Depression Scale (GDS) [22] scales. The background questionnaire
data was complemented with an interview including questions about
sensory functions, nutrition, alcohol consumption, and motivators and
barriers for physical exercise, and Mini-Mental State Examination
(MMSE) [23]. Also more specific details about reported falls where

inquired, such as time of day, location, reasons, and consequences of
the fall. Static balance of the subject was assessed with the Romberg
test, where the person stands 30 s with eyes open on the balance
platform (Balance Trainer BT4 from HURLabs, http://www.hurlabs.
com) and then repeats the same with eyes closed. There was a depth
camera (Microsoft Kinect, www.microsoft.com) recording
simultaneously about three meters behind and orthogonally to the
balance platform. The balance platform and depth camera assessments
were not analyzed further in this paper.

The physical balance and walk tests, supervised by a physiothera-
pist or a researcher, consisted of Berg Balance Scale (BBS) [6], Timed
Up and Go –test (TUG) [7], five times sit to stand test (STS-5), i.e. time
it takes to perform five repetitions, and corridor walking, which was
performed twice in a corridor of over 20 m long. The subjects wore two
accelerometers (GCDC X16-2, www.gcdataconcepts.com, sampling rate
100 Hz, range ± 16 G), while performing the balance and walk tests.
One sensor was fixed to the centre of lower back between L3-L5
vertebrae using an elastic belt. The other sensor was attached with a
separate belt at front side of the body on right hip. The sensors were
attached by the same researcher for all the subjects in order to ensure
uniform positioning. A researcher observed the tests and manually
annotated the beginning and ending of each test and possible subtasks
with a computer software. The real time clock embedded in the
accelerometers were synchronized with the computer clock at the
beginning of each test session. The analyzes of this paper were
performed using the signals only from the lower back sensor.

Lower body isometric muscle strength was measured from leg
adductor/abductor and extensor/flexor three times for each leg with a
performance recorder (Performance Recorder PR1 from HURLabs,
http://www.hurlabs.com) connected to a gym device in Tampere. In
Oulu, the performance recorder was not compatible with the available
gym equipment, thus a repetition test protocol was applied. The goal of
the test was to find the maximum weight, with which the person was
able to perform 4–6 repetition maximums (RM) in order to estimate
the 1RM weight for the muscles under investigation [24]. Lower body
muscle strength measurements, however, were not further analyzed in
this paper. The grip strength was measured three times for right and
left hand separately using hydraulic hand dynamometer (Saehan
Hydraulic Hand Dynamometer, www.msd-europe.com). The subject
warmed up a few minutes with stationary bicycle before the muscle
strength measurements.

2.1.3. Follow-up assessments
The subjects went through a comprehensive fall risk assessment

three times with a time span from 4 to 12 months between the
assessments. The fall risk assessment protocol was the same at all
three time points, except that the balance platform test was not
included in the second, i.e. midterm assessment. Each time the
participants were given a feedback sheet with main results and
interpretation based on their age group averages. The subjects in
Tampere had their midterm assessment 12–13 months and the final
assessment 21 months after the baseline assessment. In proportion, in
Oulu the midterm assessment was eight months and final assessment
12 months after the baseline assessment. In order to have equal period
between data collections, this paper takes into further analysis the
baseline assessment data from all subjects, and midterm assessment
data from Tampere subjects and final assessment data from Oulu
subjects. This results in 12-months follow-up period for all the subjects
in this analysis.

2.1.4. Intervention
The subjects were randomly divided into three groups after the

baseline fall risk assessment by randomizing the order of subject ID
numbers and dividing the result into three groups. One group was
given home technology tools that were iteratively developed within this
study. The home system included touch screen PC with an exercise
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software for supporting fall prevention at home and an accelerometer
for monitoring activity. The exercise software enabled personalized
exercise program with a set of video exercises, reminders for the
exercises, exercise monitoring on a diary and using accelerometer as a
step counter. The home terminal was also used to display timed
questionnaires e.g. about sleep quality and mood. The second group
was given similar exercises on a traditional paper format and a paper
diary for tracking the exercises. The third group participated only in the
assessments. This paper presents secondary analysis of the study where
the analyses are not conducted based on these groups but the fall risk
assessment data of all subjects is employed. The preliminary analysis
on this data is reported in [25].

2.2. Data analysis

The data analysis was carried out using Matlab version R2015a
(Mathworks Inc., Natick, MA, USA) and IBM SPSS Statistics for
Windows version 22.0 (IBM Corp., Armonk, NY, USA).

The BBS test has 14 tasks, i.e. sub-components, with increasing
difficulty and the final components are considered the most challenging
[6]. Sheehan et al. categorized their study participants as “balance
declined” and “balance not-declined” using BBS total score and sub-
component scores for tandem stance (task 13) and one leg stance (task
14) [19]. Respectively, in this study, the subjects were categorized as
“balance declined” if their 1) BBS total score decreased or 2) score in
one leg stance (task 14) decreased at least one point during the follow-
up period. The group differences in baseline characteristics were
analyzed using Mann-Whitney U test. Age and Body Mass Index
(BMI) were added as control variables in the analysis to find out
whether those variables alone could explain the decline in balance.

Acceleration data measured during corridor walking with a sensor
attached to the lower back were separated for further analysis based on
manual annotations. The corridor, where the walk test was performed,
had tape markers on the floor couple of meters after the beginning and
before the end of the corridor. The annotation markers were placed on
the acceleration signal once the subject crossed the tape markers.
Additional two seconds were removed from the beginning and end of
the data in order to ensure normal steady walk data in the analysis. A
low pass filtering (3rd order elliptic infinite impulse response filter, cut-
off at 0.25 Hz, passband ripple 0.01 dB, stopband at −100 dB [26]) was
applied to separate acceleration components due to gravity and body
motion. Body accelerations in mediolateral (x), vertical (y), and
anteroposterior (z) directions were gained by subtracting the filtered
signals from the original accelerations. In addition, resultant accelera-
tion, also referred as signal vector magnitude, was calculated from the
three axis according to (1), where aRES is the resultant acceleration, ax
is body acceleration in the mediolateral, ay the vertical, and az the
anterior–posterior planes, resulting in four signals in feature extrac-
tion.

a n a n a n a n[ ] = ( [ ]) + ( [ ]) + ( [ ])RES x y z
2 2 2

(1)

2.2.1. Acceleration feature extraction
Peaks in the vertical pelvis acceleration coincide with heel strikes

[27]. The algorithm for peaks detection was the following 1) calculation
of 10-point moving average of the vertical acceleration, 2) detecting
crossings of a threshold of 0.15 times the maximum value of the signal
under investigation (the threshold value was determined through trial
and error), 3) detection of the local maxima in the original signal
between indices of consecutive threshold crossings, and 4) visual
inspection of detected steps (plotting the original signal with detected
steps and manual removal/addition of peak indices if necessary). Step
time is the time between two consecutive peaks and stride time is the
time of two consecutive steps. Mean and standard deviation of step

times in seconds, and of stride times respectively, were calculated. Step
frequency during walking test was determined by detecting the
dominant peak in the vertical acceleration frequency magnitude
spectrum obtained by fast Fourier Transform (FFT) algorithm. Step
time asymmetry between right and left steps was determined according
to (2) similarly as in [12].

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

steptimeasymmetry

meanstep
timeleg

meanstep
timeleg

meansteptimesbothlegs
=

1 − 2

(2)

Absolute value of step time asymmetry is taken into further
analysis, since step times are identified so that every other step is
taken by leg1 and every other by leg2, and not left and right specifically.
Summed magnitude area (SMA) of the three axis was calculated as

∑SMA a n a n a n= [ [ ] + [ ] + [ ] ],
n

K

x y z
=1 (3)

where K is the total number of samples in the data.
For the spectral features, in order to minimize spectral leakage, the

signals were multiplied with a Hanning window prior to calculation of a
discrete Fourier transform, similarly as in [28]. The fundamental
frequency of walking is the full gait cycle constituted of two steps
[29]. Thus the first fundamental harmonic frequency was determined
by finding the maximum peak in spectrum near the stride frequency.
The next harmonics from second to sixth were determined as multiples
of the fundamental frequency. The area under the first six harmonics
was calculated as a sum of areas under bands of 0.3 Hz around each
harmonic as proposed by Liu et al. [28]. The frequency features were
calculated as ratio of first six harmonics to area under remaining
spectrum, and ratios of harmonics one to four to all six harmonics. In
addition, ratio of even and odd harmonics was calculated.

Basic features include mean value for resultant acceleration (aRES),
and standard deviation and maximum-minimum range for all signals.
For the resultant acceleration the amplitudes of peaks representing
steps were detected. Mean and standard deviation of the amplitudes
were calculated. Amplitude asymmetry between right and left steps was
determined similarly as step time asymmetry. Table 1. summarizes the
calculated features.

2.2.2. Estimation of Assessment Scale Result
Generalized linear models were determined to estimate BBS, TUG

and 4 m walk test results at baseline with baseline gait features.
Generalized linear models use linear methods, but allow also nonlinear
relationship between a response and predictors [30]. Sequential
forward floating selection (SFFS) method [31] and stratified 10-fold
cross-validation methods were applied to obtain significant features in
the models. The criteria for adding a feature were 1) the feature is
significant at a level p < 0.05 and 2) it minimizes the root-mean-square
error (RMSE) of the estimation. In this study, models for estimating
BBS, TUG and 4 m walk test results were determined. The estimates
were rounded to the accuracy of original measurement, i.e. the BBS
score estimate is rounded to nearest integer with maximum value of 56,
and TUG and 4 m walk times were rounded to precision of 0.01 s.
Normalized RMSE values were determined to evaluate the model
performance. The final model was achieved when no more features
could be added.

2.2.3. Prediction of decline in balance
Secondly, generalized linear models were determined to distinguish

between subjects that had a decline in balance and subjects that had no
decline in balance during the one-year follow-up. The SFFS method
[31] and stratified 10-fold cross-validation methods were applied to
obtain significant features in the models. The criteria for adding a
feature were 1) the feature is significant at a level p < 0.05 and 2) it
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maximizes the classification result as evaluated by the highest area
under curve (AUC) with the training set. In this study, models were
determined for predicting decline in 1) BBS total score and 2) score in
BBS one leg stance task.

To compare the classification performances Receive Operating
Curve (ROC) and AUC were evaluated. The ROC plot represents the
sensitivity vs. 1 – specificity for the range of decision thresholds and
thus provides a complete picture of the test accuracy in discriminating
between the two outcomes [32]. The AUC is determined as the area
under the ROC curve and gives a single measure of a classifier
performance [33]. The closer the AUC is to value of one, the better
the classifier performance.

3. Results

From the original sample of 42 subjects 35 completed the study
protocol and were included in the analysis. Three from the original
sample were not reached, two withdrew because of health reasons, one
moved to another place and the only male subject was not included.
Table 2. represents the baseline characteristics of the test subjects
associated with decline in balance. The 4 m walk time was lost for one
subject, thus all the following results regarding the walk test include 34
subjects.

The BBS baseline tests show that all the subjects were above the
threshold of 49 points or more, which indicates they did not have
decreased balance ability [34]. Four subjects had TUG time more than
12 s that is considered to indicate problems in individual's ambulatory
abilities [35]. All the subjects walked 4 m with a time less than 4.82 s
which gives full points in Short Physical Performance Battery (SPPB)
test according to [20].

3.1. Estimation of assessment scale result

The feature selection was performed for estimating the result of
BBS, TUG and 4 m walk time with generalized linear models. Ten-fold
cross-validation yielded ten models for each reference scale. Table 3.
presents selected features, estimate values, confidence intervals and p-
values of the predictors, and normalized RMSE in each ten folds.

The features most frequently selected in the ten-fold cross-valida-
tion rounds for estimating BBS score were SMA (in nine rounds), first
six harmonics ratio to remaining spectrum of mediolateral accelera-
tion (in five rounds), and ratio of even harmonics to odd harmonics of
antero-posterior acceleration (in four rounds). Third harmonic ratio
to first six harmonics of resultant acceleration was selected in all ten
rounds of TUG time estimation, and average of resultant acceleration
was selected in eight rounds, respectively. Average step time was
selected in all rounds as a predictor of 4 m walk time. Average stride
time and standard deviation of mediolateral acceleration were
selected in four rounds.

Fig. 1. represents the estimated values of BBS score, TUG time and
4 m walk time compared with the corresponding measured assessment
scale result. Mean normalized RMSE of estimation in ten folds was
0.28 for BBS score, 0.18 for TUG time, and 0.22 for 4 m walk time,
respectively.

3.2. Prediction of decline in balance

Generalized linear models were determined by SFFS and ten-fold
cross-validation methods to predict decline in BBS total score and one
leg stance (BBS task 14). Table 4. presents selected features, estimate
values, confidence intervals and p-values of the predictors, and the
accuracy of classification in each ten folds.

Standard deviation of vertical acceleration was selected in each
cross-validation round for predicting decline in both BBS total score
and one leg stance. Mean accuracy of classification was 69.2% for
decline in BBS total score and 78.5% for decline in one leg stance.
Fig. 2. represents the ROC plots for the classification. AUC was 0.78 for
predicting decline in BBS total score and 0.82 for predicting decline in
one leg stance. At the sensitivity level of 80%, the specificities were 73%
and 67% for predicting decline in BBS total score and one leg stance
respectively.

4. Discussion

The purpose of this study was to analyze whether features extracted
from waist acceleration measured during walking can be used to
estimate the result of three reference balance assessment scales and
to detect early signs of decline in balance. In ten-fold cross-validation
the same features were repeatedly selected as predictors in the models

Table 1
List of features calculated from the gait acceleration (no. 1–43) and the two control
variables (no. 44–45).

No. Name Description

1 stepFreq Step frequency [steps/second]
2 SMA Signal magnitude area [G]

Frequency features
3 harmonicsratioX 1st 6 harm. ratio to remaining spectrum X-axis
4 hr1X 1st harm. ratio to all harm. X-axis
5 hr2X 2nd harm. ratio to all harm. X-axis
6 hr3X 3rd harm. ratio to all harm. X-axis
7 hr4X 4th harm. ratio to all harm. X-axis
8 hreoX ratio of even harm. to odd harm. X-axis
9 harmonicsratioY 1st 6 harm. ratio to remaining spectrum Y-axis
10 hr1Y 1st harm. ratio to all harm. Y-axis
11 hr2Y 2nd harm. ratio to all harm. Y-axis
12 hr3Y 3rd harm. ratio to all harm. Y-axis
13 hr4Y 4th harm. ratio to all harm. Y-axis
14 hreoY ratio of even harm. to odd harm. Y-axis
15 harmonicsratioZ 1st 6 harm. ratio to remaining spectrum Z-axis
16 hr1Z 1st harm. ratio to all harm. Z-axis
17 hr2Z 2nd harm. ratio to all harm. Z-axis
18 hr3Z 3rd harm. ratio to all harm. Z-axis
19 hr4Z 4th harm. ratio to all harm. Z-axis
20 hreoZ ratio of even harm. to odd harm. Z-axis
21 harmonicsratioRES 1st 6 harm. ratio to remaining spectrum resultant

acceleration (aRES)
22 hr1RES 1st harm. ratio to all harm. aRES
23 hr2RES 2nd harm. ratio to all harm. aRES
24 hr3RES 3rd harm. ratio to all harm. aRES
25 hr4RES 4th harm. ratio to all harm. aRES
26 hreoRES ratio of even harm. to odd harm. aRES

Basic features
27 meanRES average of signal vector magnitude [G]
28 stdX standard deviation of X-axis [G]
29 stdY standard deviation of Y-axis [G]
30 stdZ standard deviation of Z-axis [G]
31 stdRES standard deviation of aRES [G]
32 minmaxX max - min range of X-axis [G]
33 minmaxY max - min range of Y-axis [G]
34 minmaxZ max - min range of Z-axis [G]
35 minmaxRES max - min range of aRES [G]

Temporal gait features
36 mean_step_time average step time [seconds]
37 std_step_time standard deviation of step times [seconds]
38 mean_stride_time average stride time [seconds]
39 std_stride_time standard deviation of stride times [seconds]
40 asymmetry1 asymmetry between (a and b) step times x 100 [%]

Resultant acceleration amplitude features
41 mean_amplitude average peak amplitude (detected steps) in aRES [G]
42 std_amplitudes standard deviation of peak amplitudes in aRES [G]
43 asymmetry2 asymmetry between (a and b) step amplitudes in

aRES x 100 [%]

Control variables
44 Age subject age [years]
45 BMI subject BMI [kg/m2]
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for estimating BBS, TUG and 4 m walk test results. That indicates that
those features presumably contain higher predictive value over the
other features. The selected reference assessment scales partly measure
similar characteristics of static and dynamic balance, but also include
aspects that measure different characteristics. Thus, it was expected
that different set of features was selected for different models. Features
determined from mediolateral, antero-posterior and resultant accel-
erations were the most significant in estimating the assessment scale
results at baseline, whereas vertical acceleration, standard deviation of
vertical acceleration in particular, seemed to be more predictive of
decline in balance.

The feature SMA, i.e. signal magnitude area, represents the amount
of acceleration induced to the sensor and it was found a significant
predictor of BBS score in nine cross-validation rounds. Positive feature
estimate value indicates that the larger the SMA, the larger the BBS
score estimate. The finding is consistent with the literature, since it is
suggested that older people adopt a more conservative gait pattern as a
compensatory strategy to stabilize their balance while walking, which
leads to smaller magnitude of accelerations at the head and pelvis,
reduced velocity and step length, and increased step timing variability
[36]. Resultant acceleration represents the total acceleration of all
three dimensions measured by the sensor during movement. Therefore,
larger value of that feature should indicate a less conservative gait
pattern and thus presumably faster movement. The results show that,
in fact, larger value of average resultant acceleration was associated
with shorter TUG time. Third harmonic ratio to first six harmonics of
resultant acceleration was the most predictive of TUG time. The third
harmonic represents a periodicity of higher frequency than that of step
frequency, since the regular gait is dominated by the second harmonic
representing the step frequency [27]. In this study, larger value of third
harmonic ratio indicated longer time in TUG, and might reflect a less
smooth gait. Furthermore, it is not very surprising that average step
time was a significant predictor of baseline 4 m walk time in all cross-
validation rounds. Average stride time is presumably highly correlated
with average step time and, in fact, when both features were selected,
the estimate value was quite high for both of them with opposite sign.
This indicates only one of the features should be included in the
analysis.

Standard deviation is a measure of dispersion in the data relative to
mean. Since the gravitational acceleration was removed from the three
dimensional accelerations the resulting signals have zero mean, and
thus the standard deviation is equal to root mean square (RMS) as
explained in [27]. Senden et al. found strong and significant correlation
(r=0.60) between vertical acceleration RMS and the Tinetti scale [10].
In their study, the vertical RMS had also good discriminative power in

differentiating subjects with Tinetti score of ≤24 and subjects with
score of > 24 with AUC of 0.81. Moreover, van Schooten et al. found
vertical standard deviation associated with prospective falls [17]. In
this study the same feature, i.e. vertical standard deviation, was
selected in every 10 folds as a predictor for estimating decline in total
BBS and decline in one leg stance.

Liu et al. reported considerable improvement in accelerometry-
based Physiological Profile Assessment (PPA) fall risk score estimation
when temporal and energy-related features were supplemented with
frequency spectra-based features from correlation of r=0.81 to r=0.96
[28]. However, the large number of features (N=126) relative to sample
size and feature selection methodology applied suggest the obtained
models may be overfitted. In any case, in this study, several accelera-
tion spectra-based features were found associated with BBS, TUG and
4-meters walk test, and were selected by the SFFS method in the
regression models for estimating the results of those scales. These
results suggest that frequency spectrum of human movement accelera-
tion contains valuable information with regard balance assessment.
The control variables, age and BMI, were not selected as predictors in
any of the models suggesting that gait features contain additional
information about balance and age alone does not explain all the
changes in balance ability in this study sample. To summarize the most
important parameters of gait regarding to balance assessment, the
amount of acceleration in three dimensions measured by the sensor
during walking, SMA and average resultant acceleration in particular,
were associated with performance in BBS and TUG tests. The smooth-
ness of gait, quantified as the third harmonic ratio to first six harmonics
of resultant acceleration, was the most important predictor of time in
TUG test. Average step and stride times were expectedly associated
with 4 m walk time. Standard deviation of vertical acceleration was a
significant predictor of decline in both BBS total score and one leg
stance task during one-year follow-up.

In a study by Sheehan et al., baseline quantitative TUG parameters
were able to predict decline in total BBS score and one leg stance with
AUC values of 0.7 and 0.8 respectively [19]. Corresponding results
were achieved in this study, since AUC was 0.78 for predicting decline
in total BBS and 0.82 for predicting decline in one leg stance. Although,
in this study, the decline of one point is used as a cut-off for classifying
subject as having declined balance during follow-up, while Sheehan
et al. used cut-off of two points in one leg stance and four points in total
BBS score [19]. The results of this study suggest that decline as subtle
as one point in BBS might be predictable with gait accelerometry.

There are some limitations in this study. The number of subjects
was rather low and the analysis here did not take into account the
intervention some of the subjects were exposed to. However, all the test

Table 2
Baseline characteristics for the test subjects in total sample, and in groups dichotomized into decline/no decline in balance.

Total sample Decline in total
BBS

No decline in total
BBS

Decline in BBS task 14 (one leg
stance)

No decline in BBS task 14 (one
leg stance)(n =35)

(n =13) (n =22) (n =8) (n =27)

BBS score 54(49–56) 54(50–56) 54(46–56) 53.50(50–56) 54(49–56)
TUG [s] 9.55(2.28) 10.46(2.15)* 9.01(2.23) 10.43(2.42) 9.29(2.22)
Walk 4 m [s] 3.03(0.59) 3.37(0.61)* 2.85(0.51) 3.50(0.70) 2.91(0.51)

(n = 34) (n = 12) (n = 7)
Age [years] 73.80(5.41) 75.92(5.31) 72.55(5.18) 75.00(5.53) 73.44(5.43)
BMI [kg/m2] 26.52(3.86) 26.95(5.37) 26.27(2.73) 28.68(5.92) 25.88(2.86)
Height [cm] 160.03(6.12) 157.77(3.75) 161.36(6.90) 157.00(3.42) 160.93(6.50)
Weight [kg] 68.24(9.76) 69.98(12.81) 67.20(7.58) 75.23(13.47) 66.17(7.50)
ABC score 87(20.47) 85.15(20.36) 88.10(20.94) 80.16(25.06) 89.03(18.98)
MMSE score 28(24–30) 28(24–30) 28.5(25–30) 28.5(24–30) 28(25–30)
Grip strength [kg] 25.63(4.99) 24.67(4.11) 26.19(5.46) 26.15(2.21) 25.47(5.59)
Self-reported history of falls

yes/no
8/27 2/11 6/16 0/8 8/19

Data expressed as mean(standard deviation) and median(minimum-maximum).
* Significant difference between groups at the level of α < 0.05, Mann-Whitney U Test.
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subjects were quite active in all, technology, paper and control groups,
and they participated in the same exercise groups outside this study.
Thus, it is arguable to treat them here as one sample set. It should also
be noted that the three assessments did not have same delay for all the
subjects. Although, a follow-up period of one year was employed for all
the subjects in the analysis of this paper, some of the subjects had one
additional assessment before the follow-up assessment. Exposure to
intervention and additional testing may have encouraged some subjects
to exercise more and improve their physical functioning during the
follow-up period. Furthermore, the study sample consisted only of
female subjects, and the generalizability of the results for males needs
to be verified. The prediction of change in BBS total score and one leg
stance were inspected as a binary value: decrease vs. no decrease. The
approach chosen does not take into account the amount of decrease,
since the study sample was considered too narrow for predicting the
actual decrease. Future studies should investigate whether predicting
actual decrease is feasible and what is the magnitude of change that is
clinically significant. The available data set cannot be used for rigorous
validation of the methods and a comprehensive validation is an
objective of the future studies.

Accelerometry-based fall risk assessment has a great potential in
improving clinical practices. If an instrumented walk test would
provide comparable or better balance assessment results to the
reference measures, it would save time in health care appointment.
Furthermore, since gait analysis could be incorporated in everyday life
[17], it provides with a possibility to long-term monitoring of balance

Table 3
Results from the ten-fold cross-validation of assessment scale result estimation for BBS,
TUG and 4 m walk. Selected features, estimate values, confidence intervals, and p-values
of the predictors, and normalized RMSE in each ten folds are represented.

Fold NRMSE Selected
features

Estimate 95% Confidence
interval

p-value

BBS

1 0.28 2 1.15 0.55 1.74 0.00
3 0.87 0.31 1.43 0.00
20 −0.72 −1.27 −0.17 0.01

2 0.33 2 0.83 0.37 1.28 0.00
3 0.82 0.25 1.39 0.01
20 −0.98 −1.58 −0.39 0.00
1 −0.54 −1.01 −0.06 0.03
8 0.59 0.06 1.12 0.03
15 0.64 0.01 1.26 0.05

3 0.16 2 0.75 0.11 1.40 0.02

4 0.28 3 1.05 0.44 1.66 0.00
8 0.90 0.26 1.54 0.01
2 0.71 0.05 1.37 0.04

5 0.30 3 0.97 0.36 1.57 0.00
2 0.74 0.19 1.28 0.01
20 −0.60 −1.17 −0.03 0.04

6 0.50 4 −1.16 −1.75 −0.58 0.00
6 −0.77 −1.33 −0.22 0.01
2 0.58 0.08 1.08 0.02

7 0.25 2 0.80 0.16 1.43 0.02

8 0.31 27 1.15 0.48 1.82 0.00
1 −0.74 −1.45 −0.04 0.04

9 0.31 2 0.83 0.24 1.42 0.01

10 0.12 2 0.96 0.39 1.52 0.00
3 0.89 0.31 1.47 0.00
20 −0.75 −1.34 −0.16 0.01

TUG

1 0.28 28 −1.13 −1.74 −0.51 0.00
24 1.20 0.63 1.77 0.00
25 −0.69 −1.22 −0.17 0.01
39 0.79 0.25 1.32 0.01
37 −1.09 −2.02 −0.17 0.02

2 0.23 24 1.06 0.48 1.65 0.00
27 −0.66 −1.20 −0.11 0.02
25 −0.59 −1.16 −0.03 0.04

3 0.15 24 1.25 0.63 1.87 0.00
27 −0.85 −1.47 −0.24 0.01

4 0.31 24 1.16 0.75 1.58 0.00
36 3.95 1.93 5.97 0.00
22 1.04 0.63 1.46 0.00
39 0.88 0.48 1.28 0.00
37 −0.55 −0.97 −0.14 0.01
1 2.60 0.50 4.71 0.02

5 0.07 24 1.23 0.57 1.89 0.00
27 −0.94 −1.60 −0.28 0.01

6 0.10 24 1.18 0.56 1.80 0.00
27 −0.94 −1.55 −0.33 0.00

7 0.15 24 1.31 0.69 1.93 0.00
27 −0.95 −1.57 −0.33 0.00

8 0.22 24 0.99 0.39 1.59 0.00
27 −0.74 −1.34 −0.15 0.02

9 0.13 24 1.30 0.68 1.91 0.00
27 −0.87 −1.48 −0.25 0.01

Table 3 (continued)

Fold NRMSE Selected
features

Estimate 95% Confidence
interval

p-value

10 0.14 24 1.18 0.58 1.78 0.00
27 −1.01 −1.58 −0.44 0.00
25 −0.62 −1.23 −0.01 0.05

BBS

1 0.28 36 24.91 8.25 41.58 0.00
38 −24.57 −41.24 −7.89 0.01

2 0.19 36 16.39 1.82 30.97 0.03
28 −0.44 −0.65 −0.22 0.00
30 0.36 0.14 0.59 0.00
38 −15.93 −30.49 −1.38 0.03

3 0.27 36 0.27 0.11 0.43 0.00
27 −0.23 −0.39 −0.08 0.00
25 −0.17 −0.30 −0.04 0.01

4 0.24 36 0.31 0.16 0.47 0.00
28 −0.23 −0.38 −0.07 0.01

5 0.16 36 0.44 0.27 0.61 0.00
28 −0.40 −0.63 −0.17 0.00
30 0.36 0.09 0.62 0.01

6 0.23 36 0.41 0.26 0.56 0.00
28 −0.37 −0.55 −0.19 0.00
34 0.28 0.10 0.47 0.00

7 0.33 36 0.53 0.38 0.69 0.00
26 −0.19 −0.34 −0.04 0.02

8 0.19 36 18.56 1.51 35.61 0.03
27 −0.21 −0.39 −0.03 0.03
38 −18.23 −35.26 −1.19 0.04

9 0.21 36 0.44 0.29 0.60 0.00

10 0.15 36 21.97 3.64 40.31 0.02
38 −21.57 −39.91 −3.22 0.02
4 0.15 0.01 0.29 0.04
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with higher sensitivity to short-term fluctuations in balance. The actual
fall incidents are caused by multitude of reasons and often by extrinsic
factors. Also, because the clinical assessment scales currently in use
have a ceiling effect among higher functioning older people, estimating
balance and fall risk might prove to be more coherent reference for
developing prediction instead of falls. These results can be used as a
basis for further studies to verify the clinical importance of these
findings, and also to investigate possible predictive ability of the gait
features with regard to other assessment scales not inspected here. The
results suggest that simple walk test with wearable monitoring could be
applied, for example, as an initial screening tool to identify people with
early signs of balance deficits and they could be directed to further
testing.
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 eltiT gnisu stluda redlo fo ksir llaf gnissessA  
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 tcartsbA ,seirujni ereves ot dael yam yeht ecnis ,elpoep redlo ot taerht suoires a esop sllaF  
revo nosrep driht yrevE .stsoc erac htlaeh desaercni dna efil fo ytilauq decuder  
htiw sesaercni sllaf fo rebmun eht dna ,raey hcae ecno tsael ta sllaf dlo sraey 56  

evah nac nosrep a dna erutan yb lairotcafitlum era sllaF .level ytliarf dna ega  
evah selacs tnemssessa fo yteirav A .llaf a ot gnitubirtnoc srotcaf ksir lareves  

fo ytilibaborp eht gnitamitse dna srotcaf ksir llaf gnissessa rof depoleved neeb  
.lanoisseforp erac htlaeh a yb detartsinimda yllacipyt era esehT .sllaf erutuf  
dna ytivitisnes hguone hgih htiw elacs tnemssessa na fo noitceles ,revewoH  

 .tlucfifid eb nac emit noitartsinimda elbanosaer dna yticfiiceps
  

tnemssessa ksir llaf rof sdohtem wen poleved ot saw siseht siht fo laog ehT  
evitcejbo selbane hcihw ,gnisnes tnemevom desab-yrtemorelecca gnizilitu  

saw evitcejbo tsrfi ehT .sticfied ecnalab s'nosrep a fo tnemssessa dna noitceted  
aiv seigolonhcet wen fo sresu-dne evitcepsorp fo snoitpecrep eht etagitsevni ot  

ecneirepxe roirp ,ytirailimaf taht dewohs sisylana ehT .sweivretni puorg sucof  
dnoces ehT .snoitulos wen fo ecnatpecca eht tceffa ylbamuserp ycacfife-fles dna  

hguorht detsefinam si ksir llaf s'laudividni na woh etagitsevni ot saw evitcejbo  
dohtem noitazilausiv tnirpregniF etatS esaesiD ehT .selacs tnemssessa tnereffid  

.selacs tnemssessa ksir llaf tnereffid gnirapmoc ni laitnetop sti rof denimaxe saw  
rof selacs tnemssessa tnaveler tsom eht gnirevocsid ni lufesu dnuof saw tI  

gnitneserp rof dna ,noitalupop yduts eht ni srellaf-non morf srellaf gnitarapes  
ot saw evitcejbo driht ehT .detutitsnoc si laudividni na fo ksir llaf llarevo eht woh  

fo tnemssessa eht ni dezilitu eb dluoc yrtemorelecca nrow-ydob woh yduts  
a morf detcelloc erew stes atad eerht ,evitcejbo driht eht roF .ksir llaf laudividni  
-ydob eht morf devired serutaef taht dewohs stluser ehT .stcejbus 111 fo latot

.ecnalab s'nosrep a fo tnemssessa rof desu eb dluoc slangis retemorelecca nrow  
eht naht reilrae neve sticfied ecnalab tceted elba eb ot mees yeht ,eromrehtruF  

rof sisab a edivorp stluser ehT .selacs tnemssessa lacinilc desu yllanoitidart  
 .ecitcarp otni meht gnirrefsnart rehtruf dna sdohtem eseht gnitadilav seiduts
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 ekemiN itnioivra niksirsimutaak nedienytnääkI  
  ällimletenem allisiajhopirutnasyyvythiik
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 ämletsiviiT ,ajommav aivakav aattuehia taviov en aksok ,ellienytnääki akhu tavo tesimutaaK  
ily samlok akoJ .aiskunnatsuk nollouhnedyevret ätäsil aj autaalnämäle äätnekieh  

aavsak äräämukul netsimutaak aj ,assedouv narrek näätnihäv uutaak saitouv-56  
ire atsisiukul authoj taviov tesimutaaK .ätöym nonnuk neenytnekieh aj näi  
.ätiöjiketiksir atiesu aattukiav iov allatsuat nesimutaak nedhy aj ,ätsiöjiket  

yttetihek no niitnioivra nedyysiökännedot netsimutaak aj nediöjiketiksirsimutaaK  
nollouhnedyevret itsesillipyyt tävättyäk atioj ,atierattim aisialire atiesu  

allo isilut nirattim ällis ,aoppleh elo ie atnilav nirattim nävättetyäK .tesialittamma  
 .assaja assesilluuthok aattirous adiov isilut itnioivra aj nenfiiseps aj neniviitisnes

  
niksirsimutaak äimletenem aisuu äättihek ilo aneettiovatääp nöytsötiäv nämäT  

akoj ,atsuattimneekkiil atsiajhopirutnasyyvythiik ällämätnydöyh iskesimioivra  
.itsesiviitkejbo nesimatsinnut neimlegno-oniapasat nölikneh aatsillodham  

netim ,alluva nejulettatsaahämhyrsukof äättivles ilo etiovat neniämmisnE  
aj niitnioivra niksirsimutaak neduusiavelut aj tesiykyn tavekok täjättyäkuppol  

,ittioso isyylana notsieniA .taigolonket tutannuus nyysiäkheatlanne netsimutaak  
itsavattetelo syyvytsypänim äkes sumekok ipmeia ,suuttut ävyttiil neeseehia ätte  

netim ,aiktut ilo etiovat nenioT .neetyyvättyskävyh nejusiaktar neisuu tavattukiav  
niitioivra ässöyT .assierattimiksirsimutaak ire yytyättyän iksirsimutaak nölisky  

ire ättyyvättetyäk nämletenemitniosilausiv- tnirpregniF etatS esaesiD  
naamatsinnut niittytsyp alluva nämleteneM .assuliatrev nedierattimiksirsimutaak  

,atsijutaak-ie tajutaak nokuojsumiktut aattore netiahrap niitiov allioj ,tirattim en  
.ätsiöjiket ire uutsook iksirsimutaaksianokok nölisky netim ,naamattioso äkes  

äätnydöyh naadiov atierutnasyyvythiik aivatteup netim ,aiktut ilo etiovat samloK  
,niittesatad neemlok taviutuajhop tisyylanA .assinnioivra niksirsimutaak nölisky  

navatteup ätte ,tavattioso teskoluT .ätsölikneh 111 äsneethy yttärek ilo aktoj  
nölikneh äättyäk naadiov ätietriip ajutteksal atsielaangis nirutnasyyvythiik  

tavutuajhop neetyyvythiik ätte ,tavattioso teskolut iskäsiL .niitnioivra noniapasat  
atierattim äisiniilk äisietnirep apoj aimlegno-oniapasat aatsinnut tavattaas teetriip  
neskumiktutitniodilav neimletenem äätnydöyh naadiov aiskolut ajutaaS .nimmeia  

 .iskesimattuetot aj iskesimelettinnuus notonööttyäk äkes
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gnisu stluda redlo fo ksir llaf gnissessA  
 sdohtem desab-yrtemorelecca

 
  

eb nac sllaF .raey hcae llaf elpoep redlo fo driht eno naht eroM  
deen a si ereht tub ,noitnevretni ylemit dna tcerroc htiw detneverp  

ylrae elbane taht sdohtem tnemssessa ksir llaf etarucca erom rof  
selacs tnemssessa lacinilc fo yteiraV .ksir desaercni fo noitceted  

selacs tnemssessa hcihw esoohc ot gnignellahc eb nac ti tub ,tsixe  
a gnisuac srotcaf fo edutitlum eb yam ereht ,eromrehtruF .esu ot  

 .laudividni na fo llaf
  

gnirotinom tnemevom desab-yrtemorelecca secudortni siseht sihT  
sdohtem ehT .smelborp ecnalab ssessa dna tceted ot sdohtem  

detnuom-tsiaw a htiw derusaem atad noitarelecca tiag ezylana  
tiag morf detcartxe serutaef ehT .gniklaw gnirud rosnes  

tnemssessa lacinilc ot elbarapmoc stluser edivorp noitarelecca  
serutaef desab-yrtemorelecca eht taht etacidni stluser ehT .selacs  

lanoitidart eht naht reilrae smelborp ecnalab tceted neve yam  
gnirapmoc rof dohtem noitazilausiv a seilppa siseht sihT .selacs  

srotcaf eht gnitneserper dna selacs tnemssessa tnereffid  
era elpoep redlo ehT .laudividni na fo ksir llaf eht gnitutitsnoc  

sucof hguorht seigolonhcet fo tnempoleved eht ni devlovni osla  
 .snoitulos wen fo ytilibatpecca eht ecnahne ot sweivretni puorg

  

 NBSI 1-3758-83-159-879   ).de kcab tfoS(
 NBSI 4-2758-83-159-879  :LRU( snoitacilbup/tcapmi/moc.hcraeserttv.www//:ptth  )

 X911-2422 L-NSSI
 X911-2422 NSSI  )tnirP(
 3021-2422 NSSI  )enilnO(

:NBSI:NRU/fi.nru//:ptth  4-2758-83-159-879

 
E

C
N

EI
C

S 
T

T
V

 3
6

1
 .

..
g

ni
s

u 
st

l
u

d
a 

r
e

dl
o 

f
o 

ks
ir

 l
l

af
 

g
ni

ss
es

s
A

•V
IS

IO
N

S•
SCIENCE•TEC

H
N

O
L

O
G

Y
•RESEARCHHIGHLI

G
H

T
S

 
 noitatressiD

 361

fo ksir llaf gnissessA  
gnisu stluda redlo  

desab-yrtemorelecca  
 sdohtem
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